Science.gov

Sample records for enhanced national capability

  1. A workshop on enhanced national capability for neutron scattering

    SciTech Connect

    Hurd, Alan J; Rhyne, James J; Lewis, Paul S

    2009-01-01

    This two-day workshop will engage the international neutron scattering community to vet and improve the Lujan Center Strategic Plan 2007-2013 (SP07). Sponsored by the LANL SC Program Office and the University of California, the workshop will be hosted by LANSCE Professor Sunny Sinha (UCSD). Endorsement by the Spallation Neutron Source will be requested. The discussion will focus on the role that the Lujan Center will play in the national neutron scattering landscape assuming full utilization of beamlines, a refurbished LANSCE, and a 1.4-MW SNS. Because the Lujan Strategic Plan is intended to set the stage for the Signature Facility era at LANSCE, there will be some discussion of the long-pulse spallation source at Los Alamos. Breakout groups will cover several new instrument concepts, upgrades to present instruments, expanded sample environment capabilities, and a look to the future. The workshop is in keeping with a request by BES to update the Lujan strategic plan in coordination with the SNS and the broader neutron community. Workshop invitees will be drawn from the LANSCE User Group and a broad cross section of the US, European, and Pacific Rim neutron scattering research communities.

  2. Enhanced Rescue Lift Capability

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2007-01-01

    The evolving and ever-increasing demands of emergency response and disaster relief support provided by rotorcraft dictate, among other things, the development of enhanced rescue lift capability for these platforms. This preliminary analysis is first-order in nature but provides considerable insight into some of the challenges inherent in trying to effect rescue using a unique form of robotic rescue device deployed and operated from rotary-wing aerial platforms.

  3. Enhanced ocean observational capability

    SciTech Connect

    Volpe, A M; Esser, B K

    2000-01-10

    Coastal oceans are vital to world health and sustenance. Technology that enables new observations has always been the driver of discovery in ocean sciences. In this context, we describe the first at sea deployment and operation of an inductively coupled plasma mass spectrometer (ICPMS) for continuous measurement of trace elements in seawater. The purpose of these experiments was to demonstrate that an ICPMS could be operated in a corrosive and high vibration environment with no degradation in performance. Significant advances occurred this past year due to ship time provided by Scripps Institution of Oceanography (UCSD), as well as that funded through this project. Evaluation at sea involved performance testing and characterization of several real-time seawater analysis modes. We show that mass spectrometers can rapidly, precisely and accurately determine ultratrace metal concentrations in seawater, thus allowing high-resolution mapping of large areas of surface seawater. This analytical capability represents a significant advance toward real-time observation and understanding of water mass chemistry in dynamic coastal environments. In addition, a joint LLNL-SIO workshop was convened to define and design new technologies for ocean observation. Finally, collaborative efforts were initiated with atmospheric scientists at LLNL to identify realistic coastal ocean and river simulation models to support real-time analysis and modeling of hazardous material releases in coastal waterways.

  4. ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE

    SciTech Connect

    J. C. Giglio; A. A. Jackson

    2012-03-01

    The Idaho National Laboratory (INL) is preparing to fuel and test the Advanced Stirling Radioisotope Generator (ASRG), the next generation space power generator. The INL identified the thermal vacuum test chamber used to test past generators as inadequate. A second vacuum chamber was upgraded with a thermal shroud to process the unique needs and to test the full power capability of the new generator. The thermal vacuum test chamber is the first of its kind capable of testing a fueled power system to temperature that accurately simulate space. This paper outlines the new test and set up capabilities at the INL.

  5. Fan Flutter Analysis Capability Enhanced

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Srivastava, Rakesh; Stefko, George L.

    2001-01-01

    The trend in the design of advanced transonic fans for aircraft engines has been toward the use of complex high-aspect-ratio blade geometries with a larger number of blades and higher loading. In addition, integrally bladed disks or blisks are being considered in fan designs for their potential to reduce manufacturing costs, weight, and complexity by eliminating attachments. With such design trends, there is an increased possibility within the operating region of part-speed stall flutter (self-excited vibrations) that is exacerbated by the reduced structural damping of blisk fans. To verify the aeroelastic soundness of the design, the NASA Glenn Research Center is developing and validating an accurate aeroelastic prediction and analysis capability. Recently, this capability was enhanced significantly as described here.

  6. Ensemble Statistical Post-Processing of the National Air Quality Forecast Capability: Enhancing Ozone Forecasts in Baltimore, Maryland

    NASA Technical Reports Server (NTRS)

    Garner, Gregory G.; Thompson, Anne M.

    2013-01-01

    An ensemble statistical post-processor (ESP) is developed for the National Air Quality Forecast Capability (NAQFC) to address the unique challenges of forecasting surface ozone in Baltimore, MD. Air quality and meteorological data were collected from the eight monitors that constitute the Baltimore forecast region. These data were used to build the ESP using a moving-block bootstrap, regression tree models, and extreme-value theory. The ESP was evaluated using a 10-fold cross-validation to avoid evaluation with the same data used in the development process. Results indicate that the ESP is conditionally biased, likely due to slight overfitting while training the regression tree models. When viewed from the perspective of a decision-maker, the ESP provides a wealth of additional information previously not available through the NAQFC alone. The user is provided the freedom to tailor the forecast to the decision at hand by using decision-specific probability thresholds that define a forecast for an ozone exceedance. Taking advantage of the ESP, the user not only receives an increase in value over the NAQFC, but also receives value for An ensemble statistical post-processor (ESP) is developed for the National Air Quality Forecast Capability (NAQFC) to address the unique challenges of forecasting surface ozone in Baltimore, MD. Air quality and meteorological data were collected from the eight monitors that constitute the Baltimore forecast region. These data were used to build the ESP using a moving-block bootstrap, regression tree models, and extreme-value theory. The ESP was evaluated using a 10-fold cross-validation to avoid evaluation with the same data used in the development process. Results indicate that the ESP is conditionally biased, likely due to slight overfitting while training the regression tree models. When viewed from the perspective of a decision-maker, the ESP provides a wealth of additional information previously not available through the NAQFC alone

  7. Ensemble statistical post-processing of the National Air Quality Forecast Capability: Enhancing ozone forecasts in Baltimore, Maryland

    NASA Astrophysics Data System (ADS)

    Garner, Gregory G.; Thompson, Anne M.

    2013-12-01

    An ensemble statistical post-processor (ESP) is developed for the National Air Quality Forecast Capability (NAQFC) to address the unique challenges of forecasting surface ozone in Baltimore, MD. Air quality and meteorological data were collected from the eight monitors that constitute the Baltimore forecast region. These data were used to build the ESP using a moving-block bootstrap, regression tree models, and extreme-value theory. The ESP was evaluated using a 10-fold cross-validation to avoid evaluation with the same data used in the development process. Results indicate that the ESP is conditionally biased, likely due to slight overfitting while training the regression tree models. When viewed from the perspective of a decision-maker, the ESP provides a wealth of additional information previously not available through the NAQFC alone. The user is provided the freedom to tailor the forecast to the decision at hand by using decision-specific probability thresholds that define a forecast for an ozone exceedance. Taking advantage of the ESP, the user not only receives an increase in value over the NAQFC, but also receives value for costly decisions that the NAQFC couldn't provide alone.

  8. Can a rapid underwater video approach enhance the benthic assessment capability of the National Coastal Condition Assessmentin the Great Lakes?

    EPA Science Inventory

    In the U.S. National Coastal Condition Assessment (NCCA) field survey in summer 2010, over 400 sites in the nearshore zone of the U.S. Great Lakes were sampled. As a supplement to core NCCA benthic taxonomy and sediment chemistry, underwater video images of the bottom condition ...

  9. The National Ignition Facility: Experimental Capability

    SciTech Connect

    Miller, G H

    2003-09-22

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. NIF will be the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion and matter at extreme energy densities and pressures. NIF's energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will study physical processes at temperatures approaching 10{sup 8} K and 10{sup 11} bar, conditions that exist naturally only in the interior of stars, planets and in nuclear weapons. NIF has completed the first phases of its laser commissioning program. The first four beams of NIF have generated 106 kilojoules of infrared light and over 16 kJ at the third harmonic (351 nm). NIF's target experimental systems are being commissioned and experiments have begun. This paper discusses NIF's current and future experimental capability, plans for facility diagnostics, cryogenic target systems, specialized optics for experiments, and potential enhancements to NIF such as green laser operation and high-energy short pulse operation.

  10. Ensuring US National Aeronautics Test Capabilities

    NASA Technical Reports Server (NTRS)

    Marshall, Timothy J.

    2010-01-01

    U.S. leadership in aeronautics depends on ready access to technologically advanced, efficient, and affordable aeronautics test capabilities. These systems include major wind tunnels and propulsion test facilities and flight test capabilities. The federal government owns the majority of the major aeronautics test capabilities in the United States, primarily through the National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD). However, changes in the Aerospace landscape, primarily the decrease in demand for testing over the last 20 years required an overarching strategy for management of these national assets. Therefore, NASA established the Aeronautics Test Program (ATP) as a two-pronged strategic initiative to: (1) retain and invest in NASA aeronautics test capabilities considered strategically important to the agency and the nation, and (2) establish a strong, high level partnership with the DoD. Test facility utilization is a critical factor for ATP because it relies on user occupancy fees to recover a substantial part of the operations costs for its facilities. Decreasing utilization is an indicator of excess capacity and in some cases low-risk redundancy (i.e., several facilities with basically the same capability and overall low utilization). However, low utilization does not necessarily translate to lack of strategic importance. Some facilities with relatively low utilization are nonetheless vitally important because of the unique nature of the capability and the foreseeable aeronautics testing needs. Unfortunately, since its inception, the customer base for ATP has continued to shrink. Utilization of ATP wind tunnels has declined by more than 50% from the FY 2006 levels. This significant decrease in customer usage is attributable to several factors, including the overall decline in new programs and projects in the aerospace sector; the impact of computational fluid dynamics (CFD) on the design, development, and research

  11. Enhancing capabilities in health professions education

    PubMed Central

    Miller, Susan J.; Siddiqui, Zarrin S.; Jonas-Dwyer, Diana R.D.

    2015-01-01

    Objectives This article documents the results of ongoing summative program evaluation of a suite of postgraduate courses at The University of Western Australia designed to enhance the educational capabilities, academic leadership and scholarly output of health professionals. Methods Commencing students were invited to participate in this descriptive, longitudinal study that surveyed students at commencement and subsequently over a seven year period. Data was collected at baseline and follow-up in relation to the respondents’ educational leadership responsibilities, promotions, involvement in new educational programs, and recognition for contributions towards student learning, educational scholarly outputs and involvement in training programs. Results The respondents came from a wide range of health professions and worked in various roles, with a quarter already holding leadership positions. During the follow-up period, half reported receiving a new promotion or moving to new positions requiring educational leadership. Those identifying as being involved with the development of new educational programs doubled and 34% received a new teaching award. Scholarly productivity doubled with 45% giving an oral presentation related to education, 21% publishing and 29% being successful in obtaining funding related to an education project.  Conclusions These postgraduate courses in health professions education appear to be positively influencing graduates’ capabilities, especially in the areas of educational leadership skills and scholarly productivity. For those looking to develop a community of leaders in health professions education, the authors offer some suggestions. PMID:26590857

  12. Resourcing interventions enhance psychology support capabilities in special operations forces.

    PubMed

    Myatt, Craig A; Auzenne, J W

    2012-01-01

    This study provides an examination of approaches to United States Government (USG) resourcing interventions on a national scale that enhance psychology support capabilities in the Special Operations Forces (SOF) community. A review of Congressional legislation and resourcing trends in the form of authorizations and appropriations since 2006 demonstrates how Congress supported enhanced psychology support capabilities throughout the Armed Forces and in SOF supporting innovative command interests that address adverse affects of operations tempo behavioral effects (OTBE). The formulation of meaningful metrics to address SOF specific command interests led to a personnel tempo (PERSTEMPO) analysis in response to findings compiled by the Preservation of the Force and Families (POTFF) Task Force. The review of PERSTEMPO data at subordinate command and unit levels enhances the capability of SOF leaders to develop policy and guidance on training and operational planning that mitigates OTBE and maximizes resourcing authorizations. A major challenge faced by the DoD is in providing behavioral healthcare that meets public and legislative demands while proving suitable and sustainable at all levels of military operations: strategic, operational, and tactical. Current legislative authorizations offer a mechanism of command advocacy for resourced multi-functional program development that enhances psychology support capabilities while reinforcing SOF readiness and performance. PMID:23536458

  13. Transient dynamics capability at Sandia National Laboratories

    NASA Technical Reports Server (NTRS)

    Attaway, Steven W.; Biffle, Johnny H.; Sjaardema, G. D.; Heinstein, M. W.; Schoof, L. A.

    1993-01-01

    A brief overview of the transient dynamics capabilities at Sandia National Laboratories, with an emphasis on recent new developments and current research is presented. In addition, the Sandia National Laboratories (SNL) Engineering Analysis Code Access System (SEACAS), which is a collection of structural and thermal codes and utilities used by analysts at SNL, is described. The SEACAS system includes pre- and post-processing codes, analysis codes, database translation codes, support libraries, Unix shell scripts for execution, and an installation system. SEACAS is used at SNL on a daily basis as a production, research, and development system for the engineering analysts and code developers. Over the past year, approximately 190 days of CPU time were used by SEACAS codes on jobs running from a few seconds up to two and one-half days of CPU time. SEACAS is running on several different systems at SNL including Cray Unicos, Hewlett Packard PH-UX, Digital Equipment Ultrix, and Sun SunOS. An overview of SEACAS, including a short description of the codes in the system, are presented. Abstracts and references for the codes are listed at the end of the report.

  14. Fused Reality for Enhanced Flight Test Capabilities

    NASA Technical Reports Server (NTRS)

    Bachelder, Ed; Klyde, David

    2011-01-01

    The feasibility of using Fused Reality-based simulation technology to enhance flight test capabilities has been investigated. In terms of relevancy to piloted evaluation, there remains no substitute for actual flight tests, even when considering the fidelity and effectiveness of modern ground-based simulators. In addition to real-world cueing (vestibular, visual, aural, environmental, etc.), flight tests provide subtle but key intangibles that cannot be duplicated in a ground-based simulator. There is, however, a cost to be paid for the benefits of flight in terms of budget, mission complexity, and safety, including the need for ground and control-room personnel, additional aircraft, etc. A Fused Reality(tm) (FR) Flight system was developed that allows a virtual environment to be integrated with the test aircraft so that tasks such as aerial refueling, formation flying, or approach and landing can be accomplished without additional aircraft resources or the risk of operating in close proximity to the ground or other aircraft. Furthermore, the dynamic motions of the simulated objects can be directly correlated with the responses of the test aircraft. The FR Flight system will allow real-time observation of, and manual interaction with, the cockpit environment that serves as a frame for the virtual out-the-window scene.

  15. Core capabilities and technical enhancement, FY-98 annual report

    SciTech Connect

    Miller, D.L.

    1999-04-01

    The Core Capability and Technical Enhancement (CCTE) Program, a part of the Verification, Validation, and Engineering Assessment Program, was implemented to enhance and augment the technical capabilities of the Idaho National Engineering and Environmental Laboratory (INEEL). The purpose for strengthening the technical capabilities of the INEEL is to provide the technical base to serve effectively as the Environmental Management Laboratory for the Department of Energy's Office of Environmental Management (EM). An analysis of EM's science and technology needs as well as the technology investments currently being made by EM across the complex was used to formulate a portfolio of research activities designed to address EM's needs without overlapping work being done elsewhere. An additional purpose is to enhance and maintain the technical capabilities and research infrastructure at the INEEL. This is a progress report for fiscal year 1998 for the five CCTE research investment areas: (a) transport aspects of selective mass transport agents, (b) chemistry of environmental surfaces, (c) materials dynamics, (d) characterization science, and (e) computational simulation of mechanical and chemical systems. In addition to the five purely technical research areas, this report deals with the science and technology foundations element of the CCTE from the standpoint of program management and complex-wide issues. This report also provides details of ongoing and future work in all six areas.

  16. Core Capabilities and Technical Enhancement -- FY-98 Annual Report

    SciTech Connect

    Miller, David Lynn

    1999-04-01

    The Core Capability and Technical Enhancement (CC&TE) Program, a part of the Verification, Validation, and Engineering Assessment Program, was implemented to enhance and augment the technical capabilities of the Idaho National Engineering and Environmental Laboratory (INEEL). The purpose for strengthening the technical capabilities of the INEEL is to provide the technical base to serve effectively as the Environmental Management Laboratory for the Office of Environmental Management (EM). An analysis of EM's science and technology needs as well as the technology investments currently being made by EM across the complex was used to formulate a portfolio of research activities designed to address EM's needs without overlapping work being done elsewhere. An additional purpose is to enhance and maintain the technical capabilities and research infrastructure at the INEEL. This is a progress report for fiscal year 1998 for the five CC&TE research investment areas: (a) transport aspects of selective mass transport agents, (b) chemistry of environmental surfaces, (c) materials dynamics, (d) characterization science, and (e) computational simulation of mechanical and chemical systems. In addition to the five purely technical research areas, this report deals with the science and technology foundations element of the CC&TE from the standpoint of program management and complex-wide issues. This report also provides details of ongoing and future work in all six areas.

  17. Towards a National Space Weather Predictive Capability

    NASA Astrophysics Data System (ADS)

    Fox, N. J.; Lindstrom, K. L.; Ryschkewitsch, M. G.; Anderson, B. J.; Gjerloev, J. W.; Merkin, V. G.; Kelly, M. A.; Miller, E. S.; Sitnov, M. I.; Ukhorskiy, A. Y.; Erlandson, R. E.; Barnes, R. J.; Paxton, L. J.; Sotirelis, T.; Stephens, G.; Comberiate, J.

    2014-12-01

    National needs in the area of space weather informational and predictive tools are growing rapidly. Adverse conditions in the space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids, leading to a variety of socio-economic losses and impacts on our security. Future space exploration and most modern human endeavors will require major advances in physical understanding and improved transition of space research to operations. At present, only a small fraction of the latest research and development results from NASA, NOAA, NSF and DoD investments are being used to improve space weather forecasting and to develop operational tools. The power of modern research and space weather model development needs to be better utilized to enable comprehensive, timely, and accurate operational space weather tools. The mere production of space weather information is not sufficient to address the needs of those who are affected by space weather. A coordinated effort is required to support research-to-applications transition efforts and to develop the tools required those who rely on this information. In this presentation we will review datasets, tools and models that have resulted from research by scientists at JHU/APL, and examine how they could be applied to support space weather applications in coordination with other community assets and capabilities.

  18. Towards a National Space Weather Predictive Capability

    NASA Astrophysics Data System (ADS)

    Fox, N. J.; Ryschkewitsch, M. G.; Merkin, V. G.; Stephens, G. K.; Gjerloev, J. W.; Barnes, R. J.; Anderson, B. J.; Paxton, L. J.; Ukhorskiy, A. Y.; Kelly, M. A.; Berger, T. E.; Bonadonna, L. C. M. F.; Hesse, M.; Sharma, S.

    2015-12-01

    National needs in the area of space weather informational and predictive tools are growing rapidly. Adverse conditions in the space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids, leading to a variety of socio-economic losses and impacts on our security. Future space exploration and most modern human endeavors will require major advances in physical understanding and improved transition of space research to operations. At present, only a small fraction of the latest research and development results from NASA, NOAA, NSF and DoD investments are being used to improve space weather forecasting and to develop operational tools. The power of modern research and space weather model development needs to be better utilized to enable comprehensive, timely, and accurate operational space weather tools. The mere production of space weather information is not sufficient to address the needs of those who are affected by space weather. A coordinated effort is required to support research-to-applications transition efforts and to develop the tools required those who rely on this information. In this presentation we will review the space weather system developed for the Van Allen Probes mission, together with other datasets, tools and models that have resulted from research by scientists at JHU/APL. We will look at how these, and results from future missions such as Solar Probe Plus, could be applied to support space weather applications in coordination with other community assets and capabilities.

  19. Undulator A characteristics and specifications: Enhanced capabilities

    SciTech Connect

    Dejus, R.J.; Lai, B.; Moog, E.R.; Gluskin, E.

    1994-05-01

    The Undulator A for the Advanced Photon Source (APS) is a planar insertion device that will generate high-intensity x-ray radiation in the spectral range 3.2 keV to 45 keV by using the first, third, and fifth harmonics of radiation. The device has been optimized for the APS so that the variation in brilliance is small when tuning from one harmonic energy to the next. This has been achieved by an increase of the magnetic field for a given gap and by allowing a smaller minimum gap when installed in the storage ring. This document describes the modifications of the magnetic structure and the enhanced on-axis magnetic fields. The enhanced spectral performance is discussed and illustrated in tuning curves for the brilliance and the flux through apertures of different sizes. The increased power and power densities are described and also discussed in relation to selecting a proper sized aperture for an experiment. The spatial photon distribution is shown in figures at selected energies that clearly indicate the size of the central cone of radiation. This document is intended as a practical guide to aid in the design of beamlines for Undulator A. Therefore, expanded sections describing the spatial photon distributions and the emitted power are included with graphs that can be used for accurate estimates of the beamsize and power loads.

  20. 77 FR 20497 - National Financial Capability Month, 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-05

    ... thirty-sixth. (Presidential Sig.) [FR Doc. 2012-8323 Filed 4-4-12; 8:45 am] Billing code 3295-F2-P ... Documents#0;#0; ] Proclamation 8793 of April 2, 2012 National Financial Capability Month, 2012 By the... all. During National Financial Capability Month, we recommit to ensuring everyone has access to...

  1. National Scientific User Facility Purpose and Capabilities

    SciTech Connect

    K. E. Rosenberg; T. R. Allen; J. C. Haley; M. K. Meyer

    2010-09-01

    The U.S. Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007. This designation allows the ATR to become a cornerstone of nuclear energy research and development (R&D) within the U.S. by making it easier for universities, the commercial power industry, other national laboratories, and international organizations to conduct nuclear energy R&D. The mission of the ATR NSUF is to provide nuclear energy researchers access to world-class facilities, thereby facilitating the advancement of nuclear science and technology within the U.S. In support of this mission, hot cell laboratories are being upgraded. These upgrades include a set of lead shielded cells that will house Irradiated Assisted Stress Corrosion Cracking (IASCC) test rigs and construction of a shielded laboratory facility. A primary function of this shielded laboratory is to provide a state of the art type laboratory facility that is functional, efficient and flexible that is dedicated to the analysis and characterization of nuclear and non-nuclear materials. The facility shall be relatively easy to reconfigure to provide laboratory scale hot cave space for housing current and future nuclear material scientific research instruments.

  2. Using servers to enhance control system capability

    SciTech Connect

    M. Bickley; B.A. Bowling; D.A. Bryan; J. van Zeijts; K.S. White; S. Witherspoon

    1999-03-01

    Many traditional control systems include a distributed collection of front end machines to control hardware. Back end tools are used to view, modify and record the signals generated by these front end machines. Software servers, which are a middleware layer between the front and back ends, can improve a control system in several ways. Servers can enable on-line processing of raw data, and consolidation of functionality. In many cases, data retrieved from the front end must be processed in order to convert the raw data into useful information. These calculations are often redundantly performed by different programs, frequently offline. Servers can monitor the raw data and rapidly perform calculations, producing new signals which can be treated like any other control system signal, and can be used by any back end application. Algorithms can be incorporated to actively modify signal values in the control system based upon changes of other signals, essentially producing feedback in a control system. Servers thus increase the flexibility of a control system. Lastly, servers running on inexpensive UNIX workstations can relay or cache frequently needed information, reducing the load on front end hardware by functioning as concentrators. Rather than many back end tools connecting directly to the front end machines, increasing the work load of these machines, they instead connect to the server. Servers like those discussed above have been used successfully at the Thomas Jefferson National Accelerator Facility to provide functionality such as beam steering, fault monitoring, storage of machine parameters, and on-line data processing. The authors discuss the potential uses of such servers, and share the results of work performed to date.

  3. USING SERVERS TO ENHANCE CONTROL SYSTEM CAPABILITY.

    SciTech Connect

    BICKLEY,M.; BOWLING,B.A.; BRYAN,D.A.; ZEIJTS,J.; WHITE,K.S.; WITHERSPOON,S.

    1999-03-29

    Many traditional control systems include a distributed collection of front end machines to control hardware. Back end tools are used to view, modify, and record the signals generated by these front end machines. Software servers, which are a middleware layer between the front and back ends, can improve a control system in several ways. Servers can enable on-line processing of raw data, and consolidation of functionality. In many cases data retrieved from the front end must be processed in order to convert the raw data into useful information. These calculations are often redundantly performed by different programs, frequently offline. Servers can monitor the raw data and rapidly perform calculations, producing new signals which can be treated like any other control system signal, and can be used by any back end application. Algorithms can be incorporated to actively modify signal values in the control system based upon changes of other signals, essentially producing feedback in a control system. Servers thus increase the flexibility of a control system. Lastly, servers running on inexpensive UNIX workstations can relay or cache frequently needed information, reducing the load on front end hardware by functioning as concentrators. Rather than many back end tools connecting directly to the front end machines, increasing the work load of these machines, they instead connect to the server. Servers like those discussed above have been used successfully at the Thomas Jefferson National Accelerator Facility to provide functionality such as beam steering, fault monitoring, storage of machine parameters, and on-line data processing. The authors discuss the potential uses of such, servers, and share the results of work performed to date.

  4. Toward a US National Air Quality Forecast Capability: Current and Planned Capabilities

    EPA Science Inventory

    As mandated by Congress, NOAA is establishing a US national air quality forecast capability. This capability is being built with EPA, to provide air quality forecast information with enough accuracy and lead-time so that people can take actions to limit harmful effects of poor a...

  5. Enhancing the Radio Astronomy Capabilities at NASA's Deep Space Network

    NASA Astrophysics Data System (ADS)

    Lazio, Joseph; Teitelbaum, Lawrence; Franco, Manuel M.; Garcia-Miro, Cristina; Horiuchi, Shinji; Jacobs, Christopher; Kuiper, Thomas; Majid, Walid

    2015-08-01

    NASA's Deep Space Network (DSN) is well known for its role in commanding and communicating with spacecraft across the solar system that produce a steady stream of new discoveries in Astrophysics, Heliophysics, and Planetary Science. Equipped with a number of large antennas distributed across the world, the DSN also has a history of contributing to a number of leading radio astronomical projects. This paper summarizes a number of enhancements that are being implemented currently and that are aimed at increasing its capabilities to engage in a wide range of science observations. These enhancements include* A dual-beam system operating between 18 and 27 GHz (~ 1 cm) capable of conducting a variety of molecular line observations, searches for pulsars in the Galactic center, and continuum flux density (photometry) of objects such as nearby protoplanetary disks* Enhanced spectroscopy and pulsar processing backends for use at 1.4--1.9 GHz (20 cm), 18--27 GHz (1 cm), and 38--50 GHz (0.7 cm)* The DSN Transient Observatory (DTN), an automated, non-invasive backend for transient searching* Larger bandwidths (>= 0.5 GHz) for pulsar searching and timing; and* Improved data rates (2048 Mbps) and better instrumental response for very long baseline interferometric (VLBI) observations with the new DSN VLBI processor (DVP), which is providing unprecedented sensitivity for maintenance of the International Celestial Reference Frame (ICRF) and development of future versions.One of the results of these improvements is that the 70~m Deep Space Station 43 (DSS-43, Tidbinbilla antenna) is now the most sensitive radio antenna in the southern hemisphere. Proposals to use these systems are accepted from the international community.Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics & Space Administration.

  6. 78 FR 20219 - National Financial Capability Month, 2013

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... Independence of the United States of America the two hundred and thirty- seventh. (Presidential Sig.) [FR Doc... Documents#0;#0; ] Proclamation 8951 of March 29, 2013 National Financial Capability Month, 2013 By the... Financial Capability Month, we recommit to empowering individuals and families with the knowledge and...

  7. Power source evaluation capabilities at Sandia National Laboratories

    SciTech Connect

    Doughty, D.H.; Butler, P.C.

    1996-04-01

    Sandia National Laboratories maintains one of the most comprehensive power source characterization facilities in the U.S. National Laboratory system. This paper describes the capabilities for evaluation of fuel cell technologies. The facility has a rechargeable battery test laboratory and a test area for performing nondestructive and functional computer-controlled testing of cells and batteries.

  8. Los Alamos National Laboratory capability reviews - FY 2011 status

    SciTech Connect

    Springer, Everett P

    2011-01-12

    Capability reviews are the Los Alamos National Laboratory approach to assess the quality of its science, technology, and engineering (STE), and its integration across the Laboratory. There are seven capability reviews in FY 2011 reviews. The Weapons Science and Engineering review will be replaced by the National Nuclear Security Administration's Predictive Science Panel for 2011 . Beginning in 2011, third-year LORD projects will be reviewed by capability review committees rather than the first-year LORD projects that have been performed for the last three years. This change addresses concerns from committees about reviewing a project before it had made any substantive progress. The current schedule, and chairs for the 2011 capability reviews is presented. The three-year cycle (2011-2013) for capability reviews are presented for planning purposes.

  9. Recent Investments by NASA's National Force Measurement Technology Capability

    NASA Technical Reports Server (NTRS)

    Commo, Sean A.; Ponder, Jonathan D.

    2016-01-01

    The National Force Measurement Technology Capability (NFMTC) is a nationwide partnership established in 2008 and sponsored by NASA's Aeronautics Evaluation and Test Capabilities (AETC) project to maintain and further develop force measurement capabilities. The NFMTC focuses on force measurement in wind tunnels and provides operational support in addition to conducting balance research. Based on force measurement capability challenges, strategic investments into research tasks are designed to meet the experimental requirements of current and future aerospace research programs and projects. This paper highlights recent and force measurement investments into several areas including recapitalizing the strain-gage balance inventory, developing balance best practices, improving calibration and facility capabilities, and researching potential technologies to advance balance capabilities.

  10. Enhancing Staging Capabilities at the Device Assembly Facility

    SciTech Connect

    Kanning, R. A.; Long, R. G.; Garcia, B. O.; Williams, V. D.

    2013-06-08

    The radioactive material limits allowed by the Documented Safety Analysis (DSA) at the Nevada National Security Site (NNSS) Device Assembly Facility (DAF) can support larger quantities than the floor space will accommodate. In order to maximize the full staging bunker capability, National Security Technologies, LLC, (NSTec) is developing a plan to take advantage of these high inventory limits and evaluate staging options such as shelves, racks, and mezzanines. This plan will investigate cost and evaluate U.S. Department of Energy (DOE) complex-wide alternatives used at other sites (Highly Enriched Uranium Manufacturing Facility, Pantex, Los Alamos National Laboratory, Sandia National Laboratories, etc.) that addressed similar situations.

  11. Distributed generation capabilities of the national energy modeling system

    SciTech Connect

    LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

    2003-01-01

    This report describes Berkeley Lab's exploration of how the National Energy Modeling System (NEMS) models distributed generation (DG) and presents possible approaches for improving how DG is modeled. The on-site electric generation capability has been available since the AEO2000 version of NEMS. Berkeley Lab has previously completed research on distributed energy resources (DER) adoption at individual sites and has developed a DER Customer Adoption Model called DER-CAM. Given interest in this area, Berkeley Lab set out to understand how NEMS models small-scale on-site generation to assess how adequately DG is treated in NEMS, and to propose improvements or alternatives. The goal is to determine how well NEMS models the factors influencing DG adoption and to consider alternatives to the current approach. Most small-scale DG adoption takes place in the residential and commercial modules of NEMS. Investment in DG ultimately offsets purchases of electricity, which also eliminates the losses associated with transmission and distribution (T&D). If the DG technology that is chosen is photovoltaics (PV), NEMS assumes renewable energy consumption replaces the energy input to electric generators. If the DG technology is fuel consuming, consumption of fuel in the electric utility sector is replaced by residential or commercial fuel consumption. The waste heat generated from thermal technologies can be used to offset the water heating and space heating energy uses, but there is no thermally activated cooling capability. This study consists of a review of model documentation and a paper by EIA staff, a series of sensitivity runs performed by Berkeley Lab that exercise selected DG parameters in the AEO2002 version of NEMS, and a scoping effort of possible enhancements and alternatives to NEMS current DG capabilities. In general, the treatment of DG in NEMS is rudimentary. The penetration of DG is determined by an economic cash-flow analysis that determines adoption based on the

  12. Post Irradiation Capabilities at the Idaho National Laboratory

    SciTech Connect

    J. L. Schulthess; K. E. Rosenberg

    2011-05-01

    The U.S. Department of Energy (DOE), Office of Nuclear Energy (NE) oversees the efforts to ensure nuclear energy remains a viable option for the United States. A significant portion of these efforts are related to post-irradiation examinations (PIE) of highly activated fuel and materials that are subject to the extreme environment inside a nuclear reactor. As the lead national laboratory, Idaho National Laboratory (INL) has a rich history, experience, workforce and capabilities for performing PIE. However, new advances in tools and techniques for performing PIE now enable understanding the performance of fuels and materials at the nano-scale and smaller level. Examination at this level is critical since this is the scale at which irradiation damage occurs. The INL is on course to adopt these advanced tools and techniques to develop a comprehensive nuclear fuels and materials characterization capability that is unique in the world. Because INL has extensive PIE capabilities currently in place, a strong foundation exist to build upon as new capabilities are implemented and work load increases. In the recent past, INL has adopted significant capability to perform advanced PIE characterization. Looking forward, INL is planning for the addition of two facilities that will be built to meet the stringent demands of advanced tools and techniques for highly activated fuels and materials characterization. Dubbed the Irradiated Materials Characterization Laboratory (IMCL) and Advanced Post Irradiation Examination Capability , these facilities are next generation PIE laboratories designed to perform the work of PIE that cannot be performed in current DOE facilities. In addition to physical capabilities, INL has recently added two significant contributors to the Advanced Test Reactor-National Scientific User Facility (ATR-NSUF), Oak Ridge National Laboratory and University of California, Berkeley.

  13. Environmentally Responsible Aviation Project: Infrastructure Enhancements and New Capabilities

    NASA Technical Reports Server (NTRS)

    Bezos-OConnor, Gaudy M.

    2015-01-01

    This oral presentation highlights the technical investments the NASA Environmentally Responsible Aviation Project under the Integrated Systems Research Program within ARMD made during FY10-FY14 to upgrade/enhance the NASA infrastructure/testing assets and new capabilities required to mature the ERA N=2 Portfolio of airframe and propulsion technologies to TRL 5/6.

  14. A Call to Action for National Foreign Language Capabilities

    ERIC Educational Resources Information Center

    US Department of Defense, 2005

    2005-01-01

    The terrorist attacks of September 11th, the Global War on Terrorism, and the continued threat to the Homeland have defined the critical need to take action to improve the foreign language and cultural capabilities of the Nation. The government must act now to improve the gathering and analysis of information, advance international diplomacy, and…

  15. NASA's Space Launch System (SLS): A New National Capability

    NASA Technical Reports Server (NTRS)

    May, Todd A.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) will contribute a new national capability for human space flight and scientific missions to low- Earth orbit (LEO) and beyond. Exploration beyond Earth orbit will be an enduring legacy to future generations, confirming America s desire to explore, learn, and progress. The SLS Program, managed at NASA s Marshall Space Fight Center, will develop the heavy lift vehicle that will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and science experiments for missions beyond Earth s orbit. This paper gives an overview of the SLS design and management approach against a backdrop of the missions it will empower. It will detail the plan to move from the computerized drawing board to the launch pad in the near term, as well as summarize the innovative approaches the SLS team is applying to deliver a safe, affordable, and sustainable long-range national capability.

  16. National Atmospheric Release Advisory Center (NARAC) Capabilities for Homeland Security

    SciTech Connect

    Sugiyama, G; Nasstrom, J; Baskett, R; Simpson, M

    2010-03-08

    The Department of Energy's National Atmospheric Release Advisory Center (NARAC) provides critical information during hazardous airborne releases as part of an integrated national preparedness and response strategy. Located at Lawrence Livermore National Laboratory, NARAC provides 24/7 tools and expert services to map the spread of hazardous material accidentally or intentionally released into the atmosphere. NARAC graphical products show affected areas and populations, potential casualties, and health effect or protective action guideline levels. LLNL experts produce quality-assured analyses based on field data to assist decision makers and responders. NARAC staff and collaborators conduct research and development into new science, tools, capabilities, and technologies in strategically important areas related to airborne transport and fate modeling and emergency response. This paper provides a brief overview of some of NARAC's activities, capabilities, and research and development.

  17. Nuclear energy related capabilities at Sandia National Laboratories

    SciTech Connect

    Pickering, Susan Y.

    2014-02-01

    Sandia National Laboratories' technology solutions are depended on to solve national and global threats to peace and freedom. Through science and technology, people, infrastructure, and partnerships, part of Sandia's mission is to meet the national needs in the areas of energy, climate and infrastructure security. Within this mission to ensure clean, abundant, and affordable energy and water is the Nuclear Energy and Fuel Cycle Programs. The Nuclear Energy and Fuel Cycle Programs have a broad range of capabilities, with both physical facilities and intellectual expertise. These resources are brought to bear upon the key scientific and engineering challenges facing the nation and can be made available to address the research needs of others. Sandia can support the safe, secure, reliable, and sustainable use of nuclear power worldwide by incorporating state-of-the-art technologies in safety, security, nonproliferation, transportation, modeling, repository science, and system demonstrations.

  18. National Criticality Experiments Research Center: Capability and Status

    SciTech Connect

    Hayes, David K.; Myers, William L.

    2012-07-12

    After seven years, the former Los Alamos Critical Experiments Facility (LACEF), or Pajarito Site, has reopened for business as the National Criticality Experiments Research Center (NCERC) at the Nevada National Security Site (NNSS). Four critical assembly machines (Comet, Planet, Flat-Top, and Godiva-IV) made the journey from Los Alamos to the NNSS. All four machines received safety system upgrades along with new digital control systems. Between these machines, systems ranging from the thermal through the intermediate to the fast spectrum may be assembled. Steady-State, transient, and super-prompt critical conditions may be explored. NCERC is the sole remaining facility in the United States capable of conducting general-purpose nuclear materials handling including the construction and operation of high-multiplication assemblies, delayed critical assemblies, and prompt critical assemblies. Reconstitution of the unique capabilities at NCERC ensures the viability of (1) The Nuclear Renaissance, (2) Stockpile Stewardship, and (3) and the next generation of criticality experimentalists.

  19. Enhanced NLTE Atomic Kinetics Modeling Capabilities in HYDRA

    NASA Astrophysics Data System (ADS)

    Patel, Mehul V.; Scott, Howard A.; Marinak, Michael M.

    2014-10-01

    In radiation hydrodynamics modeling of ICF targets, an NLTE treatment of atomic kinetics is necessary for modeling high-Z hohlraum wall materials, high-Z dopants mixed in the central gas hotspot, and is potentially needed for accurate modeling of outer layers of the capsule ablator. Over the past several years, the NLTE DCA atomic physics capabilities in the 3D ICF radiation hydrodynamics code HYDRA have been significantly enhanced. The underlying atomic models have been improved, additional kinetics options including the ability to run DCA in cells with dynamic mixing of species has been added, and the computational costs have been significantly reduced using OpenMP threading. To illustrate the improved capabilities, we will show higher fidelity results from simulations of ICF hohlraum energetics, laser irradiated sphere experiments, and ICF capsule implosions. Prepared by LLNL under Contract DE-AC52-07NA27344.

  20. Developing Nationally Competitive NASA Research Capability in West Virginia

    NASA Technical Reports Server (NTRS)

    Calzonetti, Frank J.

    1997-01-01

    In May, 1995 West Virginia EPSCOR was awarded $150,000 to support activities to develop research capabilities in West Virginia in support of the National Aeronautics and Space Administration (NASA). These funds were used to support three projects: 1) Information Processing and the Earth Observing System, directed by Dr. Stuart Tewksbury of West Virginia University; 2) Development of Optical Materials for Atmospheric Sensing Experiments, directed by Dr. Nancy Giles of West Virginia University; and 3) Development of Doppler Global Velocimeter (DGV) for Aeronautical and Combustion Studies, directed by Dr. John Kuhlman of West Virginia University. The funding provides the means to develop capability in each of these areas. This report summarizes the technical accomplishments in each project supported under this award.

  1. Capabilities for spent fuel characterization at Argonne National Laboratory

    SciTech Connect

    Neimark, L.A.; Strain, R.V.

    1994-10-01

    Summaries of the status of spent nuclear fuel (SNF) owned by the Department of Energy have highlighted the need to obtain a better understanding of the current physical and chemical condition of the SNF as a foundation for establishing a clear path forward for the fuel`s eventual geologic disposal in a long-term repository. To initiate obtaining the required information, DOE has generated an SNF Characterization Plan based on the needs for characterizing the materials stored at the individual major DOE storage sites. The principal focus of the plan is to characterize those fuel attributes that are key to the safe handling, transportation, and storage of the SNF. The drivers for specific attributes are regulatory requirements, resolution of technical issues, or a design need. Argonne National Laboratory`s facilities in Illinois and Idaho possess capabilities that can be used to address many of the characterization issues that have been raised. This paper will describe these capabilities.

  2. Development of an analysis capability for the National Transportation System

    SciTech Connect

    Anson, D.; Nelson, R.

    1997-10-24

    The purpose of this report is to examine the Department of Transportation`s (DOT) National Transportation System (NTS) initiative, to document what has been learned, and to outline a National Transportation Network Analysis Capability (NTNAC) based on a ``TRANSIMS-like`` approach. This study was conducted over a two month period at the end of FY1997. The scope of the effort was carefully defined to accommodate the short time horizon and to provide focus to a very large analytical problem. The objectives were to: (1) define the NTS and the NTS problem; (2) identify problem characteristics; (3) describe an analytical solution based on the TRANSIMS approach; (4) identify data requirements and availability; (5) develop criteria for a scenario to be used in a prototype demonstration; and (6) select a scenario for the prototype demonstration.

  3. Enhanced Monte-Carlo-Linked Depletion Capabilities in MCNPX

    SciTech Connect

    Fensin, Michael L.; Hendricks, John S.; Anghaie, Samim

    2006-07-01

    . These capabilities have been enhanced by the two major new improvements described here. Further improvements are under development to enhance the usefulness of this new capability. (authors)

  4. RADIOISOTOPE POWER SYSTEM CAPABILITIES AT THE IDAHO NATIONAL LABORATORY (INL)

    SciTech Connect

    Kelly Lively; Stephen Johnson; Eric Clarke

    2014-07-01

    --Idaho National Laboratory’s, Space Nuclear Systems and Technology Division established the resources, equipment and facilities required to provide nuclear-fueled, Radioisotope Power Systems (RPS) to Department of Energy (DOE) Customers. RPSs are designed to convert the heat generated by decay of iridium clad, 238PuO2 fuel pellets into electricity that is used to power missions in remote, harsh environments. Utilization of nuclear fuel requires adherence to governing regulations and the INL provides unique capabilities to safely fuel, test, store, transport and integrate RPSs to supply power—supporting mission needs. Nuclear capabilities encompass RPS fueling, testing, handling, storing, transporting RPS nationally, and space vehicle integration. Activities are performed at the INL and in remote locations such as John F. Kennedy Space Center and Cape Canaveral Air Station to support space missions. This paper will focus on the facility and equipment capabilities primarily offered at the INL, Material and Fuel Complex located in a security-protected, federally owned, industrial area on the remote desert site west of Idaho Falls, ID. Nuclear and non-nuclear facilities house equipment needed to perform required activities such as general purpose heat source (GPHS) module pre-assembly and module assembly using nuclear fuel; RPS receipt and baseline electrical testing, fueling, vibration testing to simulate the launch environment, mass properties testing to measure the mass and compute the moment of inertia, electro-magnetic characterizing to determine potential consequences to the operation of vehicle or scientific instrumentation, and thermal vacuum testing to verify RPS power performance in the vacuum and cold temperatures of space.

  5. Electric Propulsion Upper-Stage for Launch Vehicle Capability Enhancement

    NASA Technical Reports Server (NTRS)

    Kemp, Gregory E.; Dankanich, John W.; Woodcock, Gordon R.; Wingo, Dennis R.

    2007-01-01

    The NASA In-Space Propulsion Technology Project Office initiated a preliminary study to evaluate the performance benefits of a solar electric propulsion (SEP) upper-stage with existing and near-term small launch vehicles. The analysis included circular and elliptical Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO) transfers, and LEO to Low Lunar Orbit (LLO) applications. SEP subsystem options included state-of-the-art and near-term solar arrays and electric thrusters. In-depth evaluations of the Aerojet BPT-4000 Hall thruster and NEXT gridded ion engine were conducted to compare performance, cost and revenue potential. Preliminary results indicate that Hall thruster technology is favored for low-cost, low power SEP stages, while gridded-ion engines are favored for higher power SEP systems unfettered by transfer time constraints. A low-cost point design is presented that details one possible stage configuration and outlines system limitations, in particular fairing volume constraints. The results demonstrate mission enhancements to large and medium class launch vehicles, and mission enabling performance when SEP system upper stages are mounted to low-cost launchers such as the Minotaur and Falcon 1. Study results indicate the potential use of SEP upper stages to double GEO payload mass capability and to possibly enable launch on demand capability for GEO assets. Transition from government to commercial applications, with associated cost/benefit analysis, has also been assessed. The sensitivity of system performance to specific impulse, array power, thruster size, and component costs are also discussed.

  6. Capabilities Roadmap Briefings to the National Research Council

    NASA Technical Reports Server (NTRS)

    2005-01-01

    High energy power and propulsion capability roadmap - general background and introduction. Advanced telescopes and observatories and scientific instruments and sensors capability roadmaps - general background and introduction. Space communications capability roadmap interim review. Robotic access to planetary surface capability roadmap. Human health and support systems capability roadmap progress review.

  7. Overview of composites capability at Lawrence Livermore National Laboratory

    SciTech Connect

    Lepper, J.K.

    1983-08-30

    LLNL has had a polymer matrix fiber composite research and development activity for over twenty years. LLNL has an active multidisciplined team investigating all aspects of polymer matrix fiber composites. This is a unique national resource because it is a total capability from the synthesis of new materials to the manufacture of final products. We have concentrated our research and development efforts on high performance structural composites. The materials are used in critical components requiring service reliability certifications of from 10/sup -3/ to 10/sup -6/ failure probabilities. Many of these components are designed to function in severe service environments for more than twenty-five years. Our approach to accomplishing these objectives has been to establish a very large and sound data base. Using this data base we have developed a fundamental understanding of glass, graphite, and aramid fibers, epoxy and polyimide matrices, and their high performance structural composites.

  8. National Air Quality Forecast Capability: Status and Research Needs

    NASA Astrophysics Data System (ADS)

    Stajner, I.; McQueen, J.; Lee, P.; Draxler, R. R.; Tong, D.; Pan, L.; Huang, J. P.; Shafran, P.; Dickerson, P.; Upadhayay, S.

    2014-12-01

    Operational air quality predictions for the United States (U. S.) are provided by National Air Quality Forecasting Capability (NAQFC), which is being built by NOAA in partnership with the U.S. EPA. NAQFC provides nationwide operational predictions of ozone, smoke from wildfires, as well as dust from dust storms for the contiguous 48 states. Predictions are produced beyond midnight of the following day at 12 km resolution and 1 hour time intervals and distributed at http://airquality.weather.gov. Ozone predictions and developmental testing of aerosol predictions combine the NOAA National Centers for Environmental Prediction (NCEP) operational North American Mesoscale (NAM) weather predictions with the Community Multiscale Air Quality (CMAQ) model. Predictions of smoke and dust storms use the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Routine verification of ozone and developmental aerosol predictions relies on AIRNow observations, whereas smoke and dust predictions rely on satellite retrievals. Recent updates to operational ozone prediction at NOAA have focused on mobile emissions, which were updated using the projections of mobile sources for 2012. Satellite and ground observations were used to derive NOx trends, which were compared with the emissions data used by NAQFC indicating improved agreement over large metropolitan areas in the US. Updates to the chemical mechanism are being tested for operational implementation. Recent testing of PM2.5 predictions is relying on National Emission Inventory (NEI) inputs augmented by real time sources from wildfires and dust storms. Testing of PM2.5 predictions continues to exhibit seasonal biases - overprediction in the winter and underprediction in the summer. Current efforts are focusing on inclusion of bias correction and development of linkages with global atmospheric composition predictions.

  9. Langley Aerothermodynamic Facilities Complex: Enhancements and Testing Capabilities

    NASA Technical Reports Server (NTRS)

    Micol, J. R.

    1998-01-01

    Description, capabilities, recent upgrades, and utilization of the NASA Langley Research Center (LaRC) Aerothermodynamic Facilities Complex (AFC) are presented. The AFC consists of five hypersonic, blow-down-to-vacuum wind tunnels that collectively provide a range of Mach number from 6 to 20, unit Reynolds number from 0.04 to 22 million per foot and, most importantly for blunt configurations, normal shock density ratio from 4 to 12. These wide ranges of hypersonic simulation parameters are due, in part, to the use of three different test gases (air, helium, and tetrafluoromethane), thereby making several of the facilities unique. The Complex represents nearly three-fourths of the conventional (as opposed to impulse)-type hypersonic wind tunnels operational in this country. AFC facilities are used to assess and optimize the hypersonic aerodynamic performance and aeroheating characteristics of aerospace vehicle concepts and to provide benchmark aerodynamic/aeroheating data fr generating the flight aerodynamic databook and final design of the thermal protection system (TPS) (e.g., establishment of flight limitations not to exceed TPS design limits). Modifications and enhancements of AFC hardware components and instrumentation have been pursued to increase capability, reliability, and productivity in support of programmatic goals. Examples illustrating facility utilization in recent years to generate essentially all of the experimental hypersonic aerodynamic and aeroheating information for high-priority, fast-paced Agency programs are presented. These programs include Phase I of the Reusable Launch Vehicle (RLV) Advanced Technology Demonstrator, X-33 program, PHase II of the X-33 program, X-34 program, the Hyper-X program ( a Mach 5,7, and 10 airbreathing propulsion flight experiment), and the X-38 program (Experimental Crew Return Vehicle, X-CRV). Current upgrades/enchancements and future plans for the AFC are discussed.

  10. Radioactive material package testing capabilities at Sandia National Laboratories

    SciTech Connect

    Uncapher, W.L.; Hohnstreiter, G.F.

    1995-12-31

    Evaluation and certification of radioactive and hazardous material transport packages can be accomplished by subjecting these packages to normal transport and hypothetical accident test conditions. The regulations allow package designers to certify packages using analysis, testing, or a combination of analysis and testing. Testing can be used to substantiate assumptions used in analytical models and to demonstrate package structural and thermal response. Regulatory test conditions include impact, puncture, crush, penetration, water spray, immersion, and thermal environments. Testing facilities are used to simulate the required test conditions and provide measurement response data. Over the past four decades, comprehensive testing facilities have been developed at Sandia National Laboratories to perform a broad range of verification and certification tests on hazardous and radioactive material packages or component sections. Sandia`s facilities provide an experience base that has been established during the development and certification of many package designs. These unique facilities, along with innovative instrumentation data collection capabilities and techniques, simulate a broad range of testing environments. In certain package designs, package testing can be an economical alternative to complex analysis to resolve regulatory questions or concerns.

  11. New techniques enhance workover skid-off capabilities

    SciTech Connect

    Albaugh, E.K.

    1984-07-01

    A comprehensive program has been developed to extend the reach capabilities of cantilever workover jack-ups. Discussed are various engineering approaches for different types of platforms, as well as minor piping and electrical aspects that will allow substructures, drill floor, cantilever beams and pipe rack deck to be partially or completely skidded off onto the main deck of an offshore platform. This capability will enable more wells to be more economically worked over.

  12. Lawrence Livermore National Laboratory capabilities in multiphase dynamics

    SciTech Connect

    McCallen, R.C.; Kang, Sang-Wook

    1996-04-09

    The computer codes at LLNL with capabilities for numerical analysis for multiphase flow; phenomenology and constitutive theory and modeling; advanced diagnostics, advanced test beds, facilities, and data bases; and multiphase flow applications are listed, with brief descriptions.

  13. SIGMA Release v1.2 - Capabilities, Enhancements and Fixes

    SciTech Connect

    Mahadevan, Vijay; Grindeanu, Iulian R.; Ray, Navamita; Jain, Rajeev; Wu, Danqing

    2015-09-30

    In this report, we present details on SIGMA toolkit along with its component structure, capabilities, and feature additions in FY15, release cycles, and continuous integration process. These software processes along with updated documentation are imperative to successfully integrate and utilize in several applications including the SHARP coupled analysis toolkit for reactor core systems funded under the NEAMS DOE-NE program.

  14. Telescience Resource Kit Software Capabilities and Future Enhancements

    NASA Technical Reports Server (NTRS)

    Schneider, Michelle

    2004-01-01

    The Telescience Resource Kit (TReK) is a suite of PC-based software applications that can be used to monitor and control a payload on board the International Space Station (ISS). This software provides a way for payload users to operate their payloads from their home sites. It can be used by an individual or a team of people. TReK provides both local ground support system services and an interface to utilize remote services provided by the Payload Operations Integration Center (POIC). by the POIC and to perform local data functions such as processing the data, storing it in local files, and forwarding it to other computer systems. TReK can also be used to build, send, and track payload commands. In addition to these features, work is in progress to add a new command management capability. This capability will provide a way to manage a multi- platform command environment that can include geographically distributed computers. This is intended to help those teams that need to manage a shared on-board resource such as a facility class payload. The environment can be configured such that one individual can manage all the command activities associated with that payload. This paper will provide a summary of existing TReK capabilities and a description of the new command management capability. For example, 7'ReK can be used to receive payload data distributed

  15. Materials capability review Los Alamos National Laboratory, May 3-6, 2010

    SciTech Connect

    Taylor, Antoinette

    2010-01-01

    The 2010 'Capability Review' process at LANL significantly differs from the Division reviews of prior years. The Capabilities being reviewed (some 4-8 per year) are deliberately chosen to be crosscutting over the Laboratory, and therefore will include not only several experimental, theoretical and simulation disciplines, but also contributions from multiple line organizations. This approach is consistent with the new Laboratory organizational structure, focusing on agile and integrated capabilities applied to present national security missions, and also nurtured to be available for rapid application to future missions. The overall intent is that the Committee assess the quality of the science, engineering, and technology identified in the agenda, and advise the LANS Board of Governors and Laboratory management. Specifically, the Committees will: (1) Assess the quality of science, technology and engineering within the Capability in the areas defined in the agenda. Identify issues to develop or enhance the core competencies within this capability. (2) Evaluate the integration of this capability across the Laboratory organizations that are listed in the agenda in terms of joint programs, projects, proposals, and/or publications. Describe the integration of this capability in the wider scientific community using the recognition as a leader within the community, ability to set research agendas, and attraction and retention of staff. (3) Assess the quality and relevance of this capability's science, technology and engineering contributions to current and emerging Laboratory programs, including Nuclear Weapons, Threat Reduction/Homeland Security, and Energy Security. (4) Advise the Laboratory Director/Principal Associate Director for Science, Technology and Engineering on the health of the Capability including the current and future (5 year) science, technology and engineering staff needs, mix of research and development activities, program opportunities, environment for

  16. Engine Icing Capability Enhancements for the Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Griffin, Tom

    2010-01-01

    The AC9C is holding their biannual committee meeting in Ottawa, Ontario on 18-20 October 2010. I have been asked to provide a short presentation of the status of the icing project upgrade to the PSL test facility. I will highlight the progress made during construction the past 6 months, our approach for checkout of the facility, and an overview of the system design and its capabilities. A copy of the presentation is attached.

  17. Scientific user facilities at Oak Ridge National Laboratory: New research capabilities and opportunities

    NASA Astrophysics Data System (ADS)

    Roberto, James

    2011-10-01

    Over the past decade, Oak Ridge National Laboratory (ORNL) has transformed its research infrastructure, particularly in the areas of neutron scattering, nanoscale science and technology, and high-performance computing. New facilities, including the Spallation Neutron Source, Center for Nanophase Materials Sciences, and Leadership Computing Facility, have been constructed that provide world-leading capabilities in neutron science, condensed matter and materials physics, and computational physics. In addition, many existing physics-related facilities have been upgraded with new capabilities, including new instruments and a high- intensity cold neutron source at the High Flux Isotope Reactor. These facilities are operated for the scientific community and are available to qualified users based on competitive peer-reviewed proposals. User facilities at ORNL currently welcome more than 2,500 researchers each year, mostly from universities. These facilities, many of which are unique in the world, will be reviewed including current and planned research capabilities, availability and operational performance, access procedures, and recent research results. Particular attention will be given to new neutron scattering capabilities, nanoscale science, and petascale simulation and modeling. In addition, user facilities provide a portal into ORNL that can enhance the development of research collaborations. The spectrum of partnership opportunities with ORNL will be described including collaborations, joint faculty, and graduate research and education.

  18. Towards enhancing Sandia's capabilities in multiscale materials modeling and simulation.

    SciTech Connect

    Aidun, John Bahram; Fang, Huei Eliot; Barbour, John Charles; Westrich, Henry Roger; Chen, Er-Ping

    2004-01-01

    We report our conclusions in support of the FY 2003 Science and Technology Milestone ST03-3.5. The goal of the milestone was to develop a research plan for expanding Sandia's capabilities in materials modeling and simulation. From inquiries and discussion with technical staff during FY 2003 we conclude that it is premature to formulate the envisioned coordinated research plan. The more appropriate goal is to develop a set of computational tools for making scale transitions and accumulate experience with applying these tools to real test cases so as to enable us to attack each new problem with higher confidence of success.

  19. BROOKHAVEN NATIONAL LABORATORYS CAPABILITIES FOR ADVANCED ANALYSES OF CYBER THREATS

    SciTech Connect

    DePhillips M. P.

    2014-06-06

    BNL has several ongoing, mature, and successful programs and areas of core scientific expertise that readily could be modified to address problems facing national security and efforts by the IC related to securing our nation’s computer networks. In supporting these programs, BNL houses an expansive, scalable infrastructure built exclusively for transporting, storing, and analyzing large disparate data-sets. Our ongoing research projects on various infrastructural issues in computer science undoubtedly would be relevant to national security. Furthermore, BNL frequently partners with researchers in academia and industry worldwide to foster unique and innovative ideas for expanding research opportunities and extending our insights. Because the basic science conducted at BNL is unique, such projects have led to advanced techniques, unlike any others, to support our mission of discovery. Many of them are modular techniques, thus making them ideal for abstraction and retrofitting to other uses including those facing national security, specifically the safety of the nation’s cyber space.

  20. Enhancements in Continuous-Energy Monte Carlo Capabilities in SCALE

    SciTech Connect

    Bekar, Kursat B; Celik, Cihangir; Wiarda, Dorothea; Peplow, Douglas E.; Rearden, Bradley T; Dunn, Michael E

    2013-01-01

    Monte Carlo tools in SCALE are commonly used in criticality safety calculations as well as sensitivity and uncertainty analysis, depletion, and criticality alarm system analyses. Recent improvements in the continuous-energy data generated by the AMPX code system and significant advancements in the continuous-energy treatment in the KENO Monte Carlo eigenvalue codes facilitate the use of SCALE Monte Carlo codes to model geometrically complex systems with enhanced solution fidelity. The addition of continuous-energy treatment to the SCALE Monaco code, which can be used with automatic variance reduction in the hybrid MAVRIC sequence, provides significant enhancements, especially for criticality alarm system modeling. This paper describes some of the advancements in continuous-energy Monte Carlo codes within the SCALE code system.

  1. Chemical measurement capabilities at Lawrence Livermore National Laboratory

    SciTech Connect

    Raber, E; Harrar, J E

    1992-04-01

    This document is an attempt to summarize the available analytical chemistry and materials characterization techniques available LLNL. Emphasis of the techniques described is aimed at the variety of samples for which intelligence information is sought and/or applications where sample size would be very limited and duplicate samples are usually not obtainable. Current instrumentation available, types of samples presently being analyzed and a description of the various methods have been provided. LLNL has made an effort during the last three years to develop a forensic science approach to sample analysis. Many of these capabilities are presently utilized, to some degree, for ongoing analysis of unusual samples provided by various sponsor agencies. The analytical techniques utilized, although coordinated through the Special Projects Program, take advantage of the full range of capabilities available at LLNL. This document represents input from several organizations at LLNL, all working together to provide the maximum level of available expertise: Condensed Matter and Analytical Sciences Division of the Materials Science Directorate, Nuclear Chemistry Division of the Defense Sciences Directorate, Center for Accelerator Mass Spectrometry of the Physics Directorate, Biomedical Sciences Division of the Environmental Sciences and Biomedical Directorate, and Applied Technology Division of the Special Projects Program Directorate.

  2. End user needs for enhanced IAEA Safeguards Information Management Capabilities

    SciTech Connect

    Badalamente, R.; Anzelon, G.; Deland, S.; Whiteson, R.

    1994-07-01

    The International Atomic Energy Agency is undertaking a program for strengthening its safeguards on the recognition that safeguards must give assurance not only of the non-diversion of declared material or that declared facilities are not being misused, but also of the absence of any undeclared nuclear activities in States which have signed comprehensive safeguards agreements with the Agency. The IAEA has determined that the detection of undeclared nuclear activities and the creation of confidence in the continuing peaceful use of declared material and facilities is largely dependent on more information being made available to the Agency and on the capability of the Agency to make more effective use of this additional information, as well as existing information.

  3. New Integrated Modeling Capabilities: MIDAS' Recent Behavioral Enhancements

    NASA Technical Reports Server (NTRS)

    Gore, Brian F.; Jarvis, Peter A.

    2005-01-01

    The Man-machine Integration Design and Analysis System (MIDAS) is an integrated human performance modeling software tool that is based on mechanisms that underlie and cause human behavior. A PC-Windows version of MIDAS has been created that integrates the anthropometric character "Jack (TM)" with MIDAS' validated perceptual and attention mechanisms. MIDAS now models multiple simulated humans engaging in goal-related behaviors. New capabilities include the ability to predict situations in which errors and/or performance decrements are likely due to a variety of factors including concurrent workload and performance influencing factors (PIFs). This paper describes a new model that predicts the effects of microgravity on a mission specialist's performance, and its first application to simulating the task of conducting a Life Sciences experiment in space according to a sequential or parallel schedule of performance.

  4. Post Irradiation Capabilities at the Idaho National Laboratory

    SciTech Connect

    Schulthess, J.L.; Robert D. Mariani; Rory Kennedy; Doug Toomer

    2011-08-01

    The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) oversees the research, development, and demonstration activities that ensure nuclear energy remains a viable energy option for the United States. Fuel and material development through fabrication, irradiation, and characterization play a significant role in accomplishing the research needed to support nuclear energy. All fuel and material development requires the understanding of irradiation effects on the fuel performance and relies on irradiation experiments ranging from tests aimed at targeted scientific questions to integral effects under representative and prototypic conditions. The DOE recently emphasized a solution-driven, goal-oriented, science-based approach to nuclear energy development. Nuclear power systems and materials were initially developed during the latter half of the 20th century and greatly facilitated by the United States’ ability and willingness to conduct large-scale experiments. Fifty-two research and test reactors with associated facilities for performing fabrication and pre and post irradiation examinations were constructed at what is now Idaho National Laboratory (INL), another 14 at Oak Ridge National Laboratory (ORNL), and a few more at other national laboratory sites. Building on the scientific advances of the last several decades, our understanding of fundamental nuclear science, improvements in computational platforms, and other tools now enable technological advancements with less reliance on large-scale experimentation.

  5. Post Irradiation Capabilities at the Idaho National Laboratory

    SciTech Connect

    Schulthess, J.L.

    2011-08-01

    The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) oversees the research, development, and demonstration activities that ensure nuclear energy remains a viable energy option for the United States. Fuel and material development through fabrication, irradiation, and characterization play a significant role in accomplishing the research needed to support nuclear energy. All fuel and material development requires the understanding of irradiation effects on the fuel performance and relies on irradiation experiments ranging from tests aimed at targeted scientific questions to integral effects under representative and prototypic conditions. The DOE recently emphasized a solution-driven, goal-oriented, science-based approach to nuclear energy development. Nuclear power systems and materials were initially developed during the latter half of the 20th century and greatly facilitated by the United States ability and willingness to conduct large-scale experiments. Fifty-two research and test reactors with associated facilities for performing fabrication and pre and post irradiation examinations were constructed at what is now Idaho National Laboratory (INL), another 14 at Oak Ridge National Laboratory (ORNL), and a few more at other national laboratory sites. Building on the scientific advances of the last several decades, our understanding of fundamental nuclear science, improvements in computational platforms, and other tools now enable technological advancements with less reliance on large-scale experimentation.

  6. A 16 channel discriminator VME board with enhanced triggering capabilities

    NASA Astrophysics Data System (ADS)

    Borsato, E.; Garfagnini, A.; Menon, G.

    2012-08-01

    Electronics and data acquisition systems used in small and large scale laboratories often have to handle analog signals with varying polarity, amplitude and duration which have to be digitized to be used as trigger signals to validate the acquired data. In the specific case of experiments dealing with ionizing radiation, ancillary particle detectors (for instance plastic scintillators or Resistive Plate Chambers) are used to trigger and select the impinging particles for the experiment. A novel approach using commercial LVDS line receivers as discriminator devices is presented. Such devices, with a proper calibration, can handle positive and negative analog signals in a wide dynamic range (from 20 mV to 800 mV signal amplitude). The clear advantages, with respect to conventional discriminator devices, are reduced costs, high reliability of a mature technology and the possibility of high integration scale. Moreover, commercial discriminator boards with positive input signal and a wide threshold swing are not available on the market. The present paper describes the design and characterization of a VME board capable to handle 16 differential or single-ended input channels. The output digital signals, available independently for each input, can be combined in the board into three independent trigger logic units which provide additional outputs for the end user.

  7. NEW IMPROVEMENTS TO MFIRE TO ENHANCE FIRE MODELING CAPABILITIES

    PubMed Central

    Zhou, L.; Smith, A.C.; Yuan, L.

    2016-01-01

    NIOSH's mine fire simulation program, MFIRE, is widely accepted as a standard for assessing and predicting the impact of a fire on the mine ventilation system and the spread of fire contaminants in coal and metal/nonmetal mines, which has been used by U.S. and international companies to simulate fires for planning and response purposes. MFIRE is a dynamic, transient-state, mine ventilation network simulation program that performs normal planning calculations. It can also be used to analyze ventilation networks under thermal and mechanical influence such as changes in ventilation parameters, external influences such as changes in temperature, and internal influences such as a fire. The program output can be used to analyze the effects of these influences on the ventilation system. Since its original development by Michigan Technological University for the Bureau of Mines in the 1970s, several updates have been released over the years. In 2012, NIOSH completed a major redesign and restructuring of the program with the release of MFIRE 3.0. MFIRE's outdated FORTRAN programming language was replaced with an object-oriented C++ language and packaged into a dynamic link library (DLL). However, the MFIRE 3.0 release made no attempt to change or improve the fire modeling algorithms inherited from its previous version, MFIRE 2.20. This paper reports on improvements that have been made to the fire modeling capabilities of MFIRE 3.0 since its release. These improvements include the addition of fire source models of the t-squared fire and heat release rate curve data file, the addition of a moving fire source for conveyor belt fire simulations, improvement of the fire location algorithm, and the identification and prediction of smoke rollback phenomena. All the improvements discussed in this paper will be termed as MFIRE 3.1 and released by NIOSH in the near future. PMID:27375301

  8. NOAA-EPA's New National Air Quality Forecast Capability: Initial Steps

    NASA Astrophysics Data System (ADS)

    Davidson, P.

    2005-12-01

    In partnership with the US EPA, NOAA has developed, tested and implemented the first two stages of a national air quality forecast capability into the National Weather Service (NWS) operational suite. The initial capability was implemented in September, 2004 and provided ground-level ozone predictions over Northeastern United States. In a program of phased development and testing to expand this capability, the domain has been extended over the entire Eastern United states as of August 31, 2005. Predictions are made with the NOAA-EPA Community Model for Air Quality (CMAQ) driven by NOAA's operational mesoscale weather prediction model (Eta-12). The capability is an end-to-end forecast guidance system providing twice daily predictions of hour-by-hour ground-level ozone concentrations on a 12km grid, disseminated over operational NWS and EPA dataservers. Forecast guidance products are hosted on operational dataservers: fully backed up, with archiving and near-real-time verification in place to monitor forecast accuracy. In order to demonstrate readiness for operational implementation, required accuracy of 90% and reliability of 95% on-time delivery have been demonstrated in the pre-deployment testing. During the Summers of 2004 and 2005, pre-deployment testing of forecast domains over Northeastern US and Eastern US, respectively, have led to operational implementation of the first two stages of the capability. Prior to pre-deployment testing, developmental testing was conducted to demonstrate feasibility of the prototype operational configuration using forecast components for air quality (CMAQ and pollutant emissions pre-processing) adapted from research and assessment simulations. Developmental testing identified priorities for system enhancements needed to improve guidance accuracy; for example: improved model linkage, updated emissions information, improved treatments of solar radiation for photolysis rate estimation, and improved treatments of vertical mixing and

  9. Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability

    PubMed Central

    Ruiz, Oscar N.; Alvarez, Derry; Torres, Cesar; Roman, Laura; Daniell, Henry

    2015-01-01

    Summary Genetic engineering to enhance mercury phytoremediation has been accomplished by expression of the merAB genes that protects the cell by converting Hg[II] into Hg[0] which volatilizes from the cell. A drawback of this approach is that toxic Hg is released back into the environment. A better phytoremediation strategy would be to accumulate mercury inside plants for subsequent retrieval. We report here the development of a transplastomic approach to express the mouse metallothionein gene (mt1) and accumulate mercury in high concentrations within plant cells. Real-time PCR analysis showed that up to 1284 copies of the mt1 gene were found per cell when compared with 1326 copies of the 16S rrn gene, thereby attaining homoplasmy. Past studies in chloroplast transformation used qualitative Southern blots to evaluate indirectly transgene copy number, whereas we used real-time PCR for the first time to establish homoplasmy and estimate transgene copy number and transcript levels. The mt1 transcript levels were very high with 183 000 copies per ng of RNA or 41% the abundance of the 16S rrn transcripts. The transplastomic lines were resistant up to 20 μm mercury and maintained high chlorophyll content and biomass. Although the transgenic plants accumulated high concentrations of mercury in all tissues, leaves accumulated up to 106 ng, indicating active phytoremediation and translocation of mercury. Such accumulation of mercury in plant tissues facilitates proper disposal or recycling. This study reports, for the first time, the use of metallothioniens in plants for mercury phytoremediation. Chloroplast genetic engineering approach is useful to express metal-scavenging proteins for phytoremediation. PMID:21518240

  10. New Capabilities and Results for the National Spherical Torus Experiment

    SciTech Connect

    M.G. Bell, R.E. Bell, D.A. Gates, S.M. Kaye, H. Kugel, B.P. LeBlanc, F.M. Levinton, R. Maingi, J.E. Menard, R. Raman, S.A. Sabbagh, D. Stutman and the NSTX Research Team

    2008-02-29

    The National Spherical Torus Experiment (NSTX) produces plasmas with toroidal aspect ratio as low as 1.25, which can be heated by up to 6 MW High-Harmonic Fast Waves and up to 7 MW of deuterium Neutral Beam Injection. Using new poloidal fields coils, plasmas with cross-section elongation up to 2.7, triangularity 0.8, plasma currents Ip up to 1.5 MA and normalized currents Ip/a·BT up to 7.5 MA/m·T have been achieved. A significant extension of the plasma pulse length, to 1.5 s at a plasma current of 0.7 MA, has been achieved by exploiting the bootstrap and NBI-driven currents to reduce the dissipation of poloidal flux. Inductive plasma startup has been supplemented by Coaxial Helicity Injection (CHI) and the production of persistent current on closed flux surfaces by CHI has now been demonstrated in NSTX. The plasma response to magnetic field perturbations with toroidal mode numbers n = 1 or 3 and the effects on the plasma rotation have been investigated using three pairs of coils outside the vacuum vessel. Recent studies of both MHD stability and of transport benefitted from improved diagnostics, including measurements of the internal poloidal field using the motional Stark effect (MSE). In plasmas with a region of reversed magnetic shear in the core, now confirmed by the MSE data, improved electron confinement has been observed.

  11. Improving National Capability in Biogeochemical Flux Modelling: the UK Environmental Virtual Observatory (EVOp)

    NASA Astrophysics Data System (ADS)

    Johnes, P.; Greene, S.; Freer, J. E.; Bloomfield, J.; Macleod, K.; Reaney, S. M.; Odoni, N. A.

    2012-12-01

    The best outcomes from watershed management arise where policy and mitigation efforts are underpinned by strong science evidence, but there are major resourcing problems associated with the scale of monitoring needed to effectively characterise the sources rates and impacts of nutrient enrichment nationally. The challenge is to increase national capability in predictive modelling of nutrient flux to waters, securing an effective mechanism for transferring knowledge and management tools from data-rich to data-poor regions. The inadequacy of existing tools and approaches to address these challenges provided the motivation for the Environmental Virtual Observatory programme (EVOp), an innovation from the UK Natural Environment Research Council (NERC). EVOp is exploring the use of a cloud-based infrastructure in catchment science, developing an exemplar to explore N and P fluxes to inland and coastal waters in the UK from grid to catchment and national scale. EVOp is bringing together for the first time national data sets, models and uncertainty analysis into cloud computing environments to explore and benchmark current predictive capability for national scale biogeochemical modelling. The objective is to develop national biogeochemical modelling capability, capitalising on extensive national investment in the development of science understanding and modelling tools to support integrated catchment management, and supporting knowledge transfer from data rich to data poor regions, The AERC export coefficient model (Johnes et al., 2007) has been adapted to function within the EVOp cloud environment, and on a geoclimatic basis, using a range of high resolution, geo-referenced digital datasets as an initial demonstration of the enhanced national capacity for N and P flux modelling using cloud computing infrastructure. Geoclimatic regions are landscape units displaying homogenous or quasi-homogenous functional behaviour in terms of process controls on N and P cycling

  12. 3 CFR 8793 - Proclamation 8793 of April 2, 2012. National Financial Capability Month, 2012

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... National Financial Capability Month, we recommit to ensuring everyone has access to the information and... Strategy for Financial Literacy—a comprehensive plan to improve financial education across our country....

  13. Materials Capability Review Los Alamos National Laboratory April 29-May 2, 2012

    SciTech Connect

    Taylor, Antoinette J

    2012-04-20

    Los Alamos National Laboratory (LANL) uses Capability Reviews to assess the quality and institutional integration of science, technology and engineering (STE) and to advise Laboratory Management on the current and future health of LANL STE. The capabilities are deliberately chosen to be crosscutting over the Laboratory and therefore will include experimental, theoretical and simulation disciplines from multiple line organizations. Capability Reviews are designed to provide a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. The principal product of the Capability Review is the report that includes the review committee's assessments, recommendations, and recommendations for STE.

  14. Update: Partnership for the Revitalization of National Wind Tunnel Force Measurement Technology Capability

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.

    2010-01-01

    NASA's Aeronautics Test Program (ATP) chartered a team to examine the issues and risks associated with the lack of funding and focus on force measurement over the past several years, focusing specifically on strain-gage balances. NASA partnered with the U.S. Air Force's Arnold Engineering Development Center (AEDC) to exploit their combined capabilities and take a national level government view of the problem and established the National Force Measurement Technology Capability (NFMTC) project. This paper provides an update on the team's status for revitalizing the government's balance capability with respect to designing, fabricating, calibrating, and using the these critical measurement devices.

  15. Advances in National Capabilities for Consequence Assessment Modeling of Airborne Hazards

    SciTech Connect

    Nasstrom, J; Sugiyama, G; Foster, K; Larsen, S; Kosovic, B; Eme, B; Walker, H; Goldstein, P; Lundquist, J; Pobanz, B; Fulton, J

    2007-11-26

    This paper describes ongoing advancement of airborne hazard modeling capabilities in support of multiple agencies through the National Atmospheric Release Advisory Center (NARAC) and the Interagency Atmospheric Modeling and Atmospheric Assessment Center (IMAAC). A suite of software tools developed by Lawrence Livermore National Laboratory (LLNL) and collaborating organizations includes simple stand-alone, local-scale plume modeling tools for end user's computers, Web- and Internet-based software to access advanced 3-D flow and atmospheric dispersion modeling tools and expert analysis from the national center at LLNL, and state-of-the-science high-resolution urban models and event reconstruction capabilities.

  16. Response capabilities of the National Guard: a focus on domestic disaster medical response.

    PubMed

    Bochicchio, Daniel

    2010-01-01

    The National Guard has a 373-year history of responding to the nation's call to duty for service both at home and abroad (The National Guard Bureau Web site: Available at http://www.ngb.army.mil/default. aspx.). The National Guard (NG) is a constitutionally unique organization (United States Constitution, US Government Printing Office Web site: Available at http://www.gpoaccess.gov/constitution/index.html.). Today's Guard conducts domestic disaster response and civilian assistance missions on a daily basis. Yet, the NG's role, mission, and capabilities are not well-known or understood. The National Response Framework (NRF) places significant responsibility on the local and state disaster planners (Department of Homeland Security: National Response Framework. US Department of Homeland Security, Washington, DC, January 2008). The public health professionals are an integral component of the disaster planning community. It is critical that the public health community be knowledgeable of types and capabilities of all the response assets at their disposal. PMID:20349703

  17. Recent Enhancements to the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Kilgore, W. A.; Balakrishna, S.; Bobbitt, C. W.; Underwood, P.

    2003-01-01

    The National Transonic Facility continues to make enhancements to provide quality data in a safe, efficient and cost effective method for aerodynamic ground testing. Recent enhancements discussed in this paper include the restoration of reliability and improved performance of the heat exchanger systems resulting in the expansion of the NTF air operations envelope. Additionally, results are presented from a continued effort to reduce model dynamics through the use of a new stiffer balance and sting

  18. Recent Enhancements to the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Kilgore, W. A.; Balakrishna, S.; Bobbitt, C. W.; Underwood, P.

    2003-01-01

    The National Transonic Facility continues to make enhancements to provide quality data in a safe, efficient and cost effective method for aerodynamic ground testing. Recent enhancements discussed in this paper include the restoration of reliability and improved performance of the heat exchanger systems resulting in the expansion of the NTF air operations envelope. Additionally, results are presented from a continued effort to reduce model dynamics through the use of a new stiffer balance and sting.

  19. Materials Capability Review Los Alamos National Laboratory May 4-7, 2009

    SciTech Connect

    Taylor, Antoniette J

    2009-01-01

    Los Alamos National Laboratory (LANL) uses external peer review to measure and continuously improve the quality of its science, technology and engineering (STE). LANL uses capability reviews to assess the STE quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. STE capabilities are define to cut across directorates providing a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g ., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. LANL plans to perform a complete review of the Laboratory's STE capabilities (hence staff) in a three-year cycle. The principal product of an external review is a report that includes the review committee's assessments, commendations, and recommendations for STE. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). This report will be used by Laboratory Management for STE assessment and planning. The report is also provided to the Department of Energy (DOE) as part of LANL's Annual Performance Plan and to the Los Alamos National Security (LANS) LLC's Science and Technology Committee (STC) as part of its responsibilities to the LANS Board of Governors. LANL has defined fourteen STE capabilities. Table 1

  20. National laboratories` capabilities summaries for the DOE Virtual Center for Multiphase Dynamics (VCMD)

    SciTech Connect

    Joyce, E.L.

    1997-03-01

    The Virtual Center For Multiphase Dynamics (VCMD) integrates and develops the resources of industry, government, academia, and professional societies to enable reliable analysis in multiphase computational fluid dynamics. The primary means of the VCMD focus will be by the creation, support, and validation of a computerized simulation capability for multiphase flow and multiphase flow applications. This paper briefly describes the capabilities of the National Laboratories in this effort.

  1. Enhancing Seismic Monitoring Capability for Hydraulic Fracturing Induced Seismicity in Canada

    NASA Astrophysics Data System (ADS)

    Kao, H.; Cassidy, J. F.; Farahbod, A.; Lamontagne, M.

    2012-12-01

    The amount of natural gas produced from unconventional sources, such as the shale gas, has increased dramatically since the last decade. One of the key factors in the success of shale gas production is the application of hydraulic fracturing (also known as "fracking") to facilitate the efficient recovery of natural gas from shale matrices. As the fracking operation becomes routine in all major shale gas fields, its potential to induce local earthquakes at some locations has become a public concern. To address this concern, Natural Resources Canada has initiated a research effort to investigate the potential links between fracking operations and induced seismicity in some major shale gas basins of Canada. This federal-provincial collaborative research aims to assess if shale gas fracking can alter regional pattern of background seismicity and if so, what the relationship between how fracking is conducted and the maximum magnitude of induced seismicity would be. Other objectives include the investigation of the time scale of the interaction between fracking events and induced seismicity and the evaluation of induced seismicity potential for shale gas basins under different tectonic/geological conditions. The first phase of this research is to enhance the detection and monitoring capability for seismicity possibly related to shale gas recovery in Canada. Densification of the Canadian National Seismograph Network (CNSN) is currently underway in northeast British Columbia where fracking operations are taking place. Additional seismic stations are planned for major shale gas basins in other regions where fracking might be likely in the future. All newly established CNSN stations are equipped with broadband seismographs with real-time continuous data transmission. The design goal of the enhanced seismic network is to significantly lower the detection threshold such that the anticipated low-magnitude earthquakes that might be related to fracking operations can be

  2. Partnership for the Revitalization of National Wind Tunnel Force Measurement Capability

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.; Skelley, Marcus L.; Woike, Mark R.; Bader, Jon B.; Marshall, Timothy J.

    2009-01-01

    Lack of funding and lack of focus on research over the past several years, coupled with force measurement capabilities being decentralized and distributed across the National Aeronautics and Space Administration (NASA) research centers, has resulted in a significant erosion of (1) capability and infrastructure to produce and calibrate force measurement systems; (2) NASA s working knowledge of those systems; and (3) the quantity of high-quality, full-capability force measurement systems available for use in aeronautics testing. Simultaneously, and at proportional rates, the capability of industry to design, manufacture, and calibrate these test instruments has been eroding primarily because of a lack of investment by the aeronautics community. Technical expertise in this technology area is a core competency in aeronautics testing; it is highly specialized and experience-based, and it represents a niche market for only a few small precision instrument shops in the United States. With this backdrop, NASA s Aeronautics Test Program (ATP) chartered a team to examine the issues and risks associated with the problem, focusing specifically on strain- gage balances. The team partnered with the U.S. Air Force s Arnold Engineering Development Center (AEDC) to exploit their combined capabilities and take a national level government view of the problem. This paper describes the team s approach, its findings, and its recommendations, and the current status for revitalizing the government s balance capability with respect to designing, fabricating, calibrating, and using the instruments.

  3. Los Alamos National Laboratory Training Capabilities (Possible Applications in the Global Initiatives for Proliferation Prevention Program)

    SciTech Connect

    Martin, Olga

    2012-06-04

    The briefing provides an overview of the training capabilities at Los Alamos National Laboratory that can be applied to nonproliferation/responsible science education at nuclear institutes in the Former Soviet Union, as part of the programmatic effort under the Global Initiatives for Proliferation Prevention program (GIPP).

  4. Developing a Dual-Level Capabilities Approach: Using Constructivist Grounded Theory and Feminist Ethnography to Enhance the Capabilities Approaches

    ERIC Educational Resources Information Center

    Hall, Kia M. Q.

    2014-01-01

    In this study, a dual-level capabilities approach to development is introduced. This approach intends to improve upon individual-focused capabilities approaches developed by Amartya Sen and Martha Nussbaum. Based upon seven months of ethnographic research in the Afro-descendant, autochthonous Garifuna community of Honduras, constructivist grounded…

  5. Development of NASA Technical Standards Program Relative to Enhancing Engineering Capabilities

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Vaughan, William W.

    2003-01-01

    The enhancement of engineering capabilities is an important aspect of any organization; especially those engaged in aerospace development activities. Technical Standards are one of the key elements of this endeavor. The NASA Technical Standards Program was formed in 1997 in response to the NASA Administrator s directive to develop an Agencywide Technical Standards Program. The Program s principal objective involved the converting Center-unique technical standards into Agency wide standards and the adoption/endorsement of non-Government technical standards in lieu of government standards. In the process of these actions, the potential for further enhancement of the Agency s engineering capabilities was noted relative to value of being able to access Agencywide the necessary full-text technical standards, standards update notifications, and integration of lessons learned with technical standards, all available to the user from one Website. This was accomplished and is now being enhanced based on feedbacks from the Agency's engineering staff and supporting contractors. This paper addresses the development experiences with the NASA Technical Standards Program and the enhancement of the Agency's engineering capabilities provided by the Program s products. Metrics are provided on significant aspects of the Program.

  6. US Navy Research and Development under the National Earth System Prediction Capability Partnership

    NASA Astrophysics Data System (ADS)

    Reynolds, Carolyn; Peng, Melinda; Jacobs, Gregg; Richman, James; Ridout, James; Eleuterio, Daniel; Whitcomb, Tim

    2016-04-01

    The National Earth System Prediction Capability (National ESPC) is a U.S. multi-agency collaborative effort to leverage resources to develop the next generation earth prediction system. The overarching goal is to meet the need for a new operational global earth system model consisting of high-resolution atmosphere, ocean, ice, land, and space components capable of seamless prediction from hours to decades within the next ten years. This presentation will provide an overview of the US Navy's progress under this ESPC partnership. The Navy is developing a fully coupled global system including the Navy Global Environmental Model (NAVGEM), the HYbrid Coordinate Ocean Model (HYCOM), the Los Alamos Sea Ice Model (CICE), and the Wavewatch III ocean surface wave model. The design and implementation of the coupled architecture uses the earth system modeling framework (ESMF) with the National Unified Operational Prediction Capability (NUOPC) standard. Coupling NAVGEM to CICE reduces low-level polar temperature biases over the stand-alone NAVGEM system. Fully-coupled NAVGEM-HYCOM simulations have smaller SST RMSE and bias than "loosely-coupled" simulations. Fully coupled NAVGEM-HYCOM-CICE monthly and seasonal integrations have been performed for several applications. These include successful reforecasts of the Madden-Julian Oscillation during November 2011, and September minimum sea-ice extent predictions that are in line with other system predictions for 2014 and 2015. Plans for future development, with the goal of demonstrating initial operational capabilities in 2018, will also be presented.

  7. Capability deprivation of people with Alzheimer's disease: An empirical analysis using a national survey.

    PubMed

    Tellez, Juan; Krishnakumar, Jaya; Bungener, Martine; Le Galès, Catherine

    2016-02-01

    How can one assess the quality of life of older people--particularly those with Alzheimer's disease--from the point of view of their opportunities to do valued things in life? This paper is an attempt to answer this question using as a theoretical framework the capability approach. We use data collected on 8841 individuals above 60 living in France (the 2008 Disability and Health Household Survey) and propose a latent variable modelling framework to analyse their capabilities in two fundamental dimensions: freedom to perform self-care activities and freedom to participate in the life of the household. Our results show that living as a couple, having children, being mobile and having access to local shops, health facilities and public services enhance both capabilities. Age, household size and male gender (for one of the two capabilities) act as impediments while the number of impairments reduces both capabilities. We find that people with Alzheimer's disease have a lower level and a smaller range of capabilities (freedom) when compared to those without, even when the latter have several impairments. Hence they need a special attention in policy-making. PMID:26773293

  8. Enhancement of the Feature Extraction Capability in Global Damage Detection Using Wavelet Theory

    NASA Technical Reports Server (NTRS)

    Saleeb, Atef F.; Ponnaluru, Gopi Krishna

    2006-01-01

    The main objective of this study is to assess the specific capabilities of the defect energy parameter technique for global damage detection developed by Saleeb and coworkers. The feature extraction is the most important capability in any damage-detection technique. Features are any parameters extracted from the processed measurement data in order to enhance damage detection. The damage feature extraction capability was studied extensively by analyzing various simulation results. The practical significance in structural health monitoring is that the detection at early stages of small-size defects is always desirable. The amount of changes in the structure's response due to these small defects was determined to show the needed level of accuracy in the experimental methods. The arrangement of fine/extensive sensor network to measure required data for the detection is an "unlimited" ability, but there is a difficulty to place extensive number of sensors on a structure. Therefore, an investigation was conducted using the measurements of coarse sensor network. The white and the pink noises, which cover most of the frequency ranges that are typically encountered in the many measuring devices used (e.g., accelerometers, strain gauges, etc.) are added to the displacements to investigate the effect of noisy measurements in the detection technique. The noisy displacements and the noisy damage parameter values are used to study the signal feature reconstruction using wavelets. The enhancement of the feature extraction capability was successfully achieved by the wavelet theory.

  9. Simple SE Methods Deployed in Revitalizing the Nuclear Post- Irradiation Examination Capability for the Idaho National Laboratory

    SciTech Connect

    Larry R. Zirker; R. Douglas Hamelin; Lori Braase

    2010-07-01

    The “crown jewels” of nuclear energy research facilities (i.e., hot cells, analysis systems, and scientists) have been centered at the Idaho National Laboratory for over 40 years, but in recent years, emphasis and funding for nuclear fuel research and development have declined to adversely affect the readiness and effectiveness of research facilities and equipment. Conversely, the current national nuclear renaissance forces the need for immediate enhancements in facilities, equipment, capabilities, and staff for the post-irradiation examination (PIE) of nuclear fuel. PIE characterizes the “burn-up” and structural integrity of fuel elements and defines the effectiveness of new fuels/alloys in search for optimum fuel burn-up and alloys for current and next generation nuclear reactors. This paper details how a team of system engineers adapted simple system engineering tools and techniques for a customer unfamiliar with the power and effectiveness of system engineering, to achieve project success.

  10. Modern Grid Strategy: Enhanced GridLAB-D Capabilities Final Report

    SciTech Connect

    Schneider, Kevin P.; Fuller, Jason C.; Tuffner, Francis K.; Chen, Yousu

    2009-09-09

    GridLAB-D is a software simulation environment that was initially developed by the US Department of Energy (DOE) Office of Electricity (OE) for the purpose of enabling the effective analysis of emerging smart grid technologies. In order to achieve this goal GridLAB-D was developed using an open source approach with the intent that numerous people and organizations would contribute to the ongoing development. Because of the breadth and complexity of the emerging smart grid technologies the inclusion of multiple groups of developers is essential in order to address the many aspects of the smart grid. As part of the continuing Modern Grid Strategy (MGS) the Pacific Northwest National Laboratory (PNNL) has been tasked with developing an advanced set of GridLAB-D capabilities. These capabilities were developed to enable the analysis of complex use case studies which will allow for multi-disciplinary analysis of smart grid operations. The advanced capabilities which were developed include the implementation of an unbalanced networked power flow algorithm, the implementation of an integrated transmission and distribution system solver, and a set of use cases demonstrating the capabilities of the new solvers.

  11. Destructive analysis capabilities for plutonium and uranium characterization at Los Alamos National Laboratory

    SciTech Connect

    Tandon, Lav; Kuhn, Kevin J; Drake, Lawrence R; Decker, Diana L; Walker, Laurie F; Colletti, Lisa M; Spencer, Khalil J; Peterson, Dominic S; Herrera, Jaclyn A; Wong, Amy S

    2010-01-01

    Los Alamos National Laboratory's (LANL) Actinide Analytical Chemistry (AAC) group has been in existence since the Manhattan Project. It maintains a complete set of analytical capabilities for performing complete characterization (elemental assay, isotopic, metallic and non metallic trace impurities) of uranium and plutonium samples in different forms. For a majority of the customers there are strong quality assurance (QA) and quality control (QC) objectives including highest accuracy and precision with well defined uncertainties associated with the analytical results. Los Alamos participates in various international and national programs such as the Plutonium Metal Exchange Program, New Brunswick Laboratory's (NBL' s) Safeguards Measurement Evaluation Program (SME) and several other inter-laboratory round robin exercises to monitor and evaluate the data quality generated by AAC. These programs also provide independent verification of analytical measurement capabilities, and allow any technical problems with analytical measurements to be identified and corrected. This presentation will focus on key analytical capabilities for destructive analysis in AAC and also comparative data between LANL and peer groups for Pu assay and isotopic analysis.

  12. A new active array MST radar system with enhanced capabilities for high resolution atmospheric observations

    NASA Astrophysics Data System (ADS)

    Durga rao, Meka; Jayaraman, Achuthan; Patra, Amit; Venkat Ratnam, Madineni; Narayana Rao, T.; Kamaraj, Pandian; Jayaraj, Katta; Kmv, Prasad; Kamal Kumar, J.; Raghavendra, J.; Prasad, T. Rajendra; Thriveni, A.; Yasodha, Polisetti

    2016-07-01

    A new version of the 53-MHz MST Radar, using the 1024 solid state Transmit-Receive Modules (TRM), necessary feeder network, multi-channel receiver and a modified radar controller has been established using the existing antenna array of 1024 crossed Yagis. The new system has been configured for steering the beam on a pulse-to-pulse basis in all 360o azimuth and 20o zenith angle, providing enhanced capability to study the Mesosphere-Stratosphere-Troposphere and Ionosphere. The multi channel receiver system has been designed for Spaced Antenna (SA) and Interferometry/ Iamging applications. The new system has also been configured for radiating in circular polarization for its application in the Ionosphere Incoherent Scatter mode. The new active array MST radar at Very-High-Frequency (53-MHz) located at Gadanki (13.45°N, 79.18°E), a tropical station in India, will be used to enhance the observations of winds, turbulence during the passage of convective events over the radar site as deep convection occurs very often at tropical latitudes. The new configuration with enhanced average power, beam agility with multi-channel experiments will be a potential source for studying middle atmosphere and ionosphere. In this paper, we present the system configuration, new capabilities and the first results obtained using the new version of the MST Radar.

  13. Electric Propulsion Interactions Code (EPIC): Recent Enhancements and Goals for Future Capabilities

    NASA Technical Reports Server (NTRS)

    Gardner, Barbara M.; Kuharski, Robert A.; Davis, Victoria A.; Ferguson, Dale C.

    2007-01-01

    The Electric Propulsion Interactions Code (EPIC) is the leading interactive computer tool for assessing the effects of electric thruster plumes on spacecraft subsystems. EPIC, developed by SAIC under the sponsorship of the Space Environments and Effects (SEE) Program at the NASA Marshall Space Flight Center, has three primary modules. One is PlumeTool, which calculates plumes of electrostatic thrusters and Hall-effect thrusters by modeling the primary ion beam as well as elastic scattering and charge-exchange of beam ions with thruster-generated neutrals. ObjectToolkit is a 3-D object definition and spacecraft surface modeling tool developed for use with several SEE Program codes. The main EPIC interface integrates the thruster plume into the 3-D geometry of the spacecraft and calculates interactions and effects of the plume with the spacecraft. Effects modeled include erosion of surfaces due to sputtering, re-deposition of sputtered materials, surface heating, torque on the spacecraft, and changes in surface properties due to erosion and deposition. In support of Prometheus I (JIMO), a number of new capabilities and enhancements were made to existing EPIC models. Enhancements to EPIC include adding the ability to scale and view individual plume components, to import a neutral plume associated with a thruster (to model a grid erosion plume, for example), and to calculate the plume from new initial beam conditions. Unfortunately, changes in program direction have left a number of desired enhancements undone. Variable gridding over a surface and resputtering of deposited materials, including multiple bounces and sticking coefficients, would significantly enhance the erosion/deposition model. Other modifications such as improving the heating model and the PlumeTool neutral plume model, enabling time dependent surface interactions, and including EM1 and optical effects would enable EPIC to better serve the aerospace engineer and electric propulsion systems integrator

  14. Achieving enhanced hole transport capability of Ge1-xSnx alloys through uniaxial compressive strain

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Liang, Renrong; Wang, Jing; Xu, Jun

    2015-11-01

    The hole transport capability of Ge1-xSnx alloys under the uniaxial compressive strain is comprehensively investigated by calculations using the nonlocal empirical pseudopotential method. The results indicate that the [110] uniaxial compressive strain is favorable for the hole transport of Ge1-xSnx alloys. For the [110] uniaxial compression, the strain-parallel hole effective mass of the top most valance band is the smallest, and the corresponding valance band splitting energy is the largest compared with the [100] uniaxial and the (001) biaxial compressive strain. In addition, the large uniaxial compressive strain and the high Sn composition are both beneficial for boosting the hole mobility of strained Ge1-xSnx alloys. The enhanced hole transport capability can be achieved through the [110] uniaxial compressive strain for high-performance Ge1-xSnx pMOSFETs applications.

  15. Development of a Semi-Span Test Capability at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Gatlin, G. M.; Parker, P. A.; Owens, L. R., Jr.

    2001-01-01

    A need for low-speed, high Reynolds number test capabilities has been identified for the design and development of advanced subsonic transport high-lift systems. In support of this need, multiple investigations have been conducted in the National Transonic Facility (NTF) at the NASA Langley Research Center to develop a semi-span testing capability that will provide the low-speed, flight Reynolds number data currently unattainable using conventional sting-mounted, full-span models. Although a semi-span testing capability will effectively double the Reynolds number capability over full-span models, it does come at the expense of contending with the issue of the interaction of the flow over the model with the windtunnel wall boundary layer. To address this issue the size and shape of the semi-span model mounting geometry have been investigated, and the results are presented herein. The cryogenic operating environment of the NTF produced another semi-span test technique issue in that varying thermal gradients have developed on the large semi-span balance. The suspected cause of these thermal gradients and methods to eliminate them are presented. Data are also presented that demonstrate the successful elimination of these varying thermal gradients during cryogenic operations.

  16. The Advanced Test Reactor Irradiation Capabilities Available as a National Scientific User Facility

    SciTech Connect

    S. Blaine Grover

    2008-09-01

    The Advanced Test Reactor (ATR) is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. The ATR is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These capabilities include simple capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. Monitoring systems have also been utilized to monitor different parameters such as fission gases for fuel experiments, to measure specimen performance during irradiation. ATR’s control system provides a stable axial flux profile throughout each reactor operating cycle, and allows the thermal and fast neutron fluxes to be controlled separately in different sections of the core. The ATR irradiation positions vary in diameter from 16 mm to 127 mm over an active core height of 1.2 m. This paper discusses the different irradiation capabilities with examples of different experiments and the cost/benefit issues related to each capability. The recent designation of ATR as a national scientific user facility will make the ATR much more accessible at very low to no cost for research by universities and possibly commercial entities.

  17. Advanced Test Reactor -- Testing Capabilities and Plans AND Advanced Test Reactor National Scientific User Facility -- Partnerships and Networks

    SciTech Connect

    Frances M. Marshall

    2008-07-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world’s premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The physical configuration of the ATR, a 4-leaf clover shape, allows the reactor to be operated at different power levels in the corner “lobes” to allow for different testing conditions for multiple simultaneous experiments. The combination of high flux (maximum thermal neutron fluxes of 1E15 neutrons per square centimeter per second and maximum fast [E>1.0 MeV] neutron fluxes of 5E14 neutrons per square centimeter per second) and large test volumes (up to 122 cm long and 12.7 cm diameter) provide unique testing opportunities. For future research, some ATR modifications and enhancements are currently planned. In 2007 the US Department of Energy designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR for material testing research by a broader user community. This paper provides more details on some of the ATR capabilities, key design features, experiments, and plans for the NSUF.

  18. Resolved-particle simulation by the Physalis method: Enhancements and new capabilities

    NASA Astrophysics Data System (ADS)

    Sierakowski, Adam J.; Prosperetti, Andrea

    2016-03-01

    We present enhancements and new capabilities of the Physalis method for simulating disperse multiphase flows using particle-resolved simulation. The current work enhances the previous method by incorporating a new type of pressure-Poisson solver that couples with a new Physalis particle pressure boundary condition scheme and a new particle interior treatment to significantly improve overall numerical efficiency. Further, we implement a more efficient method of calculating the Physalis scalar products and incorporate short-range particle interaction models. We provide validation and benchmarking for the Physalis method against experiments of a sedimenting particle and of normal wall collisions. We conclude with an illustrative simulation of 2048 particles sedimenting in a duct. In the appendix, we present a complete and self-consistent description of the analytical development and numerical methods.

  19. Army National Guard (ARNG) Objective Supply Capability Adaptive Redesign (OSCAR) end-user manual

    SciTech Connect

    Pelath, R.P.; Rasch, K.A.

    1997-12-01

    The Objective Supply Capability Adaptive Redesign (OSCAR) project is designed to identify and develop programs which automate requirements not included in standard army systems. This includes providing automated interfaces between standard army systems at the National Guard Bureau (NGB) level and at the state/territory level. As part of the OSCAR project, custom software has been installed at NGB to streamline management of major end items. This software allows item managers to provide automated disposition on excess equipment to states operating the Standard Army Retail Supply System Objective (SARSS-O). It also accelerates movement of excess assets to improve the readiness of the Army National Guard (ARNG)--while reducing excess on hand. The purpose of the End-User Manual is to provide direction and guidance to the customer for implementing the ARNG Excess Management Program.

  20. Test Capability Enhancements to the NASA Langley 8-Foot High Temperature Tunnel

    NASA Technical Reports Server (NTRS)

    Harvin, S. F.; Cabell, K. F.; Gallimore, S. D.; Mekkes, G. L.

    2006-01-01

    The NASA Langley 8-Foot High Temperature Tunnel produces true enthalpy environments simulating flight from Mach 4 to Mach 7, primarily for airbreathing propulsion and aerothermal/thermo-structural testing. Flow conditions are achieved through a methane-air heater and nozzles producing aerodynamic Mach numbers of 4, 5 or 7 and have exit diameters of 8 feet or 4.5 feet. The 12-ft long free-jet test section, housed inside a 26-ft vacuum sphere, accommodates large test articles. Recently, the facility underwent significant upgrades to support hydrocarbon fueled scramjet engine testing and to expand flight simulation capability. The upgrades were required to meet engine system development and flight clearance verification requirements originally defined by the joint NASA-Air Force X-43C Hypersonic Flight Demonstrator Project and now the Air Force X-51A Program. Enhancements to the 8-Ft. HTT were made in four areas: 1) hydrocarbon fuel delivery; 2) flight simulation capability; 3) controls and communication; and 4) data acquisition/processing. The upgrades include the addition of systems to supply ethylene and liquid JP-7 to test articles; a Mach 5 nozzle with dynamic pressure simulation capability up to 3200 psf, the addition of a real-time model angle-of-attack system; a new programmable logic controller sub-system to improve process controls and communication with model controls; the addition of MIL-STD-1553B and high speed data acquisition systems and a classified data processing environment. These additions represent a significant increase to the already unique test capability and flexibility of the facility, and complement the existing array of test support hardware such as a model injection system, radiant heaters, six-component force measurement system, and optical flow field visualization hardware. The new systems support complex test programs that require sophisticated test sequences and precise management of process fluids. Furthermore, the new systems, such

  1. Evaluation of national seismograph network detection capabilities: Final report. Volume 2

    SciTech Connect

    McLaughlin, K.L.; Barker, T.G.; Bennett, T.J.

    1997-10-01

    This final report presents detection thresholds, detection probabilities, and location error ellipse projections for the US National Seismic Network (USNSN) with and without real-time cooperative stations in the eastern US. Network simulation methods are used with spectral noise levels at stations in the USNSN and other stations to simulate the processes of excitation, propagation, detection, and processing of seismic phases. The USNSN alone should be capable of detecting 4 or more P waves for shallow crustal earthquakes in nearly all of the eastern and central US at the magnitude 3.8 level. When real-time cooperative stations are used in conjunction with the USNSN, the network should be capable of detecting 4 or more P waves from events 0.2 to 0.3 magnitude units lower. The planned expansion of the USNSN and cooperative stations should improve detection levels by an additional 0.2 to 0.3 magnitudes units in many areas. Location uncertainties for the USNSN should be significantly improved by addition of real-time cooperative stations. Median error ellipses for magnitude 4.5 earthquakes in the eastern and central US depend strongly upon location, but uncertainties should be less than 100 square km in the central US and degrade to 200 square km or more offshore and to the south and north of the international boundaries. Close cooperation with the Canadian National Network should substantially improve detection thresholds and location uncertainties along the Canadian border.

  2. ATR NATIONAL SCIENTIFIC USER FACILITY INSTRUMENTATION ENHANCEMENT EFFORTS

    SciTech Connect

    Joy L. Rempe; Mitchell K. Meyer

    2009-04-01

    A key component of the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) effort is to enhance instrumentation techniques available to users conducting irradiation tests in this unique facility. In particular, development of sensors capable of providing ‘real-time’ measurements of key irradiation parameters is emphasized because of their potential to offer increased fidelity data and reduced post-test examination costs. This paper describes the strategy for identifying new instrumentation needed for ATR irradiations and the program underway to develop and evaluate new sensors to address these needs. Accomplishments from this program are illustrated by describing several new sensors now available to users of the ATR NSUF. In addition, progress is reported on current research efforts to provide users improved in-pile instrumentation.

  3. Large-Scale Testing and High-Fidelity Simulation Capabilities at Sandia National Laboratories to Support Space Power and Propulsion

    SciTech Connect

    Dobranich, Dean; Blanchat, Thomas K.

    2008-01-21

    Sandia National Laboratories, as a Department of Energy, National Nuclear Security Agency, has major responsibility to ensure the safety and security needs of nuclear weapons. As such, with an experienced research staff, Sandia maintains a spectrum of modeling and simulation capabilities integrated with experimental and large-scale test capabilities. This expertise and these capabilities offer considerable resources for addressing issues of interest to the space power and propulsion communities. This paper presents Sandia's capability to perform thermal qualification (analysis, test, modeling and simulation) using a representative weapon system as an example demonstrating the potential to support NASA's Lunar Reactor System.

  4. Arctic Observing Network (AON): Enhancing Observing, Data Archiving and Data Discovery Capabilities as Arctic Environmental System Change Continues

    NASA Astrophysics Data System (ADS)

    Jeffries, M. O.

    2008-12-01

    The National Science Foundation (NSF) and the National Oceanic and Atmospheric Administration, under the auspices of the U.S. Inter-Agency Arctic Research Policy Committee, are leading the development of the Arctic Observing Network (AON) as part of the implementation of the Study of Environmental Arctic Change (SEARCH) and as a legacy of International Polar Year (IPY). As the Observing Change component of SEARCH, AON complements the Understanding Change and Responding to Change components. AON addresses the need to enhance observing capabilities in a data-sparse region where environmental system changes are among the most rapid on Earth. AON data will contribute to research into understanding the causes and consequences of Arctic environmental system change and its global connections, and to improving predictive skill. AON is also a contribution to the development of a multi-nation, pan-Arctic observing network that is being discussed at the IPY 'Sustaining Arctic Observing Networks' (SAON) workshops. Enhancing Arctic observing capabilities faces many challenges, including coordination and integration of disparate observing elements and data systems that operate according to diverse policies and practices. There is wide agreement that data systems that provide archiving and discovery services are essential and integral to AON. In recognition of this, NSF is supporting the development of CADIS (Cooperative Arctic Data and Information Service) as an AON portal for data discovery, a repository for data storage, and a platform for data analysis. NSF is also supporting ELOKA (Exchange for Local Observations and Knowledge in the Arctic), a pilot project for a data management and networking service for community- based observing that keeps control of data in the hands of data providers while still allowing for broad searches and sharing of information. CADIS and ELOKA represent the application of cyberinfrastructure to meet AON data system needs that might also

  5. The National Polar-orbiting Operational Environmental Satellite System:Capabilities for Operational Land Remote Sensing

    NASA Astrophysics Data System (ADS)

    Hoffman, C. W.; Schneider, S.; Murphy, R.

    2005-12-01

    Over the last decade, the tri-agency Integrated Program Office (IPO), comprised of the National Oceanic and Atmospheric Administration (NOAA), the Department of Defense (DoD), and the National Aeronautics and Space Administration (NASA), has been managing the development of the National Polar-orbiting Operational Environmental Satellite System (NPOESS). Once operational later this decade, NPOESS will replace NOAA's Polar-orbiting Operational Environmental Satellites (POES) and DoD's Defense Meteorological Satellite Program (DMSP) systems. The IPO, through its Acquisition and Operations contractor, Northrop Grumman, will launch NPOESS spacecraft into three orbital planes to provide a single, national system capable of satisfying both civil and national security requirements for space-based, remotely sensed environmental data. With the development of NPOESS, we are evolving the existing "weather" satellites into integrated environmental observing systems by expanding our capabilities to observe, assess, and predict the total Earth system - ocean, atmosphere, land, and the space environment. NPOESS will transform today's short-term, space-based ocean research missions into a sustained, operational ocean remote sensing observation program. Land measurements comprise seven of the fifty-five user-validated requirements for geophysical measurements that will be made by NPOESS sensors. In 1997, the IPO initiated a robust sensor risk reduction effort for early development of the critical sensor suites and algorithms necessary to support NPOESS. In 2001, preliminary design efforts were completed for the last of five critical imaging/sounding instruments for NPOESS. Land requirements have directly and substantially "driven" the design of two NPOESS sensors: the Visible/Infrared Imager Radiometer Suite (VIIRS) and the Conical-scanning Microwave Imager/Sounder (CMIS). Compared to the predecessor operational systems, NPOESS will deliver higher resolution (spatial and temporal

  6. Transitioning Enhanced Land Surface Initialization and Model Verification Capabilities to the Kenya Meteorological Department (KMD)

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Mungai, John; Sakwa, Vincent; Zavodsky, Bradley T.; Srikishen, Jayanthi; Limaye, Ashutosh; Blankenship, Clay B.

    2016-01-01

    Flooding, severe weather, and drought are key forecasting challenges for the Kenya Meteorological Department (KMD), based in Nairobi, Kenya. Atmospheric processes leading to convection, excessive precipitation and/or prolonged drought can be strongly influenced by land cover, vegetation, and soil moisture content, especially during anomalous conditions and dry/wet seasonal transitions. It is thus important to represent accurately land surface state variables (green vegetation fraction, soil moisture, and soil temperature) in Numerical Weather Prediction (NWP) models. The NASA SERVIR and the Short-term Prediction Research and Transition (SPoRT) programs in Huntsville, AL have established a working partnership with KMD to enhance its regional modeling capabilities. SPoRT and SERVIR are providing experimental land surface initialization datasets and model verification capabilities for capacity building at KMD. To support its forecasting operations, KMD is running experimental configurations of the Weather Research and Forecasting (WRF; Skamarock et al. 2008) model on a 12-km/4-km nested regional domain over eastern Africa, incorporating the land surface datasets provided by NASA SPoRT and SERVIR. SPoRT, SERVIR, and KMD participated in two training sessions in March 2014 and June 2015 to foster the collaboration and use of unique land surface datasets and model verification capabilities. Enhanced regional modeling capabilities have the potential to improve guidance in support of daily operations and high-impact weather and climate outlooks over Eastern Africa. For enhanced land-surface initialization, the NASA Land Information System (LIS) is run over Eastern Africa at 3-km resolution, providing real-time land surface initialization data in place of interpolated global model soil moisture and temperature data available at coarser resolutions. Additionally, real-time green vegetation fraction (GVF) composites from the Suomi-NPP VIIRS instrument is being incorporated

  7. Northwest Trajectory Analysis Capability: A Platform for Enhancing Computational Biophysics Analysis

    SciTech Connect

    Peterson, Elena S.; Stephan, Eric G.; Corrigan, Abigail L.; Lins, Roberto D.; Soares, Thereza A.; Scarberry, Randall E.; Rose, Stuart J.; Williams, Leigh K.; Lai, Canhai; Critchlow, Terence J.; Straatsma, TP

    2008-07-30

    As computational resources continue to increase, the ability of computational simulations to effectively complement, and in some cases replace, experimentation in scientific exploration also increases. Today, large-scale simulations are recognized as an effective tool for scientific exploration in many disciplines including chemistry and biology. A natural side effect of this trend has been the need for an increasingly complex analytical environment. In this paper, we describe Northwest Trajectory Analysis Capability (NTRAC), an analytical software suite developed to enhance the efficiency of computational biophysics analyses. Our strategy is to layer higher-level services and introduce improved tools within the user’s familiar environment without preventing researchers from using traditional tools and methods. Our desire is to share these experiences to serve as an example for effectively analyzing data intensive large scale simulation data.

  8. The Capabilities Approach: Fostering contexts for enhancing mental health and wellbeing across the globe.

    PubMed

    White, Ross G; Imperiale, Maria Grazia; Perera, Em

    2016-01-01

    Concerted efforts have been made in recent years to achieve equity and equality in mental health for all people across the globe. This has led to the emergence of Global Mental Health as an area of study and practice. The momentum that this has created has contributed to the development, implementation and evaluation of services for priority mental disorders in many low- and middle-income countries.This paper discusses two related issues that may be serving to limit the success of mental health initiatives across the globe, and proposes potential solutions to these issues. First, there has been a lack of sophistication in determining what constitutes a 'good outcome' for people experiencing mental health difficulties. Even though health is defined and understood as a state of 'wellbeing' and not merely an absence of illness, mental health interventions tend to narrowly focus on reducing symptoms of mental illness. The need to also focus more broadly on enhancing subjective wellbeing is highlighted. The second limitation relates to the lack of an overarching theoretical framework guiding efforts to reduce inequalities and inequities in mental health across the globe. This paper discusses the potential impact that the Capabilities Approach (CA) could have for addressing both of these issues. As a framework for human development, the CA places emphasis on promoting wellbeing through enabling people to realise their capabilities and engage in behaviours that they subjectively value. The utilization of the CA to guide the development and implementation of mental health interventions can help Global Mental Health initiatives to identify sources of social inequality and structural violence that may impede freedom and individuals' opportunities to realise their capabilities. PMID:27150600

  9. Synthetic Vision Enhances Situation Awareness and RNP Capabilities for Terrain-Challenged Approaches

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Prinzel, Lawrence J., III; Bailey, Randall E.; Arthur, Jarvis J., III

    2003-01-01

    The Synthetic Vision Systems (SVS) Project of Aviation Safety Program is striving to eliminate poor visibility as a causal factor in aircraft accidents as well as enhance operational capabilities of all aircraft through the display of computer generated imagery derived from an onboard database of terrain, obstacle, and airport information. To achieve these objectives, NASA 757 flight test research was conducted at the Eagle-Vail, Colorado airport to evaluate three SVS display types (Head-Up Display, Head-Down Size A, Head-Down Size X) and two terrain texture methods (photo-realistic, generic) in comparison to the simulated Baseline Boeing-757 Electronic Attitude Direction Indicator and Navigation / Terrain Awareness and Warning System displays. These independent variables were evaluated for situation awareness, path error, and workload while making approaches to Runway 25 and 07 and during simulated engine-out Cottonwood 2 and KREMM departures. The results of the experiment showed significantly improved situation awareness, performance, and workload for SVS concepts compared to the Baseline displays and confirmed the retrofit capability of the Head-Up Display and Size A SVS concepts. The research also demonstrated that the pathway and pursuit guidance used within the SVS concepts achieved required navigation performance (RNP) criteria.

  10. l-Theanine prevents alcoholic liver injury through enhancing the antioxidant capability of hepatocytes.

    PubMed

    Li, Guilan; Ye, Yin; Kang, Jingjing; Yao, Xiangyang; Zhang, Yizhou; Jiang, Wei; Gao, Min; Dai, Yudong; Xin, Yinqiang; Wang, Qi; Yin, Zhimin; Luo, Lan

    2012-02-01

    l-Theanine is a unique amino acid in green tea. We here evaluated the protective effects of l-theanine on ethanol-induced liver injury in vitro and in vivo. Our results revealed that l-theanine significantly protected hepatocytes against ethanol-induced cell cytotoxicity which displayed by decrease of viability and increase of LDH and AST. Furthermore, the experiments of DAPI staining, pro-caspase3 level and PARP cleavage determination indicated that l-theanine inhibited ethanol-induced L02 cell apoptosis. Mechanically, l-theanine inhibited loss of mitochondrial membrane potential and prevented cytochrome c release from mitochondria in ethanol-treated L02 cells. l-Theanine also prevented ethanol-triggered ROS and MDA generation in L02 cells. l-Theanine restored the antioxidant capability of hepatocytes including GSH content and SOD activity which were reduced by ethanol. In vivo experiments showed that l-theanine significantly inhibited ethanol-stimulated the increase of ALT, AST, TG and MDA in mice. Histopathological examination demonstrated that l-theanine pretreated to mice apparently diminished ethanol-induced fat droplets. In accordance with the in vitro study, l-theanine significantly inhibited ethanol-induced reduction of mouse antioxidant capability which included the activities of SOD, CAT and GR, and level of GSH. These results indicated that l-theanine prevented ethanol-induced liver injury through enhancing hepatocyte antioxidant abilities. PMID:22019691

  11. Design Guidelines for Shielding Effectiveness, Current Carrying Capability, and the Enhancement of Conductivity of Composite Materials

    NASA Technical Reports Server (NTRS)

    Evans, R. W.

    1997-01-01

    These guidelines address the electrical properties of composite materials which may have an effect on electromagnetic compatibility (EMC). The main topics of the guidelines include the electrical shielding, fault current return, and lightning protection capabilities of graphite reinforced polymers, since they are somewhat conductive but may require enhancement to be adequate for EMC purposes. Shielding effectiveness depends heavily upon the conductivity of the material. Graphite epoxy can provide useful shielding against RF signals, but it is approximately 1,000 times more resistive than good conductive metals. The reduced shielding effectiveness is significant but is still useful in many cases. The primary concern is with gaps and seams in the material just as it is with metal. Current carrying capability of graphite epoxy is adequate for dissipation static charges, but fault currents through graphite epoxy may cause fire at the shorting contact and at joints. The effect of lightning on selected graphite epoxy material and mating surfaces is described, and protection methods are reviewed.

  12. Siting study for a consolidated waste capability at Los Alamos National Laboratory

    SciTech Connect

    Booth, Steven Richard

    2011-01-26

    Decision analysis was used to rank alternative sites for a new Consolidated Waste Capability (CWC) to replace current hazardous solid waste operations (hazardous/chemical, mixed lowlevel, transuranic, and low-level waste) at Los Alamos National Laboratory's TA-54 Area G. An original list of 21 site alternatives was pre-screened to ten sites that were assessed using the analytical hierarchy process with five top-level criteria and fifteen sub-criteria. Three passes of the analysis were required to assess different site scenarios: 1) a fully consolidated CWC with both transfer/storage and LL W disposal in one location (45 acre minimum), 2) CWC transfer/storage only (12 acre minimum), and 3) LLW disposal only (33 acre minimum). The top site choice for all three options is TA-63/52/46; the second choice is TA-18/36. TA-54 East, Zone 4 also deserves consideration as a LLW disposal site.

  13. National transportable telecommunications capability - Commercial satellite and cellular communications for emergency preparedness

    NASA Astrophysics Data System (ADS)

    Boheim, Kenneth B.; Council, Ronald J.

    1992-03-01

    A quick-reaction emergency satellite, cellular and microwave communications package known as the National Transportable Telecommunications Capability (NTTC) is discussed. The NTTC is designed to restore 'last mile' connectivity to remote or isolated areas in the U.S. or abroad that have been devastated by hurricanes, earthquakes, or other natural or manmade disasters. The NTTC is self-contained for rapid airlift in a single C-130 military transport, or may be transported by land or sea as appropriate. The NTTC operates over a Ku-band domestic satellite back into a gateway station and into the Public Switched Network, FTS-2000, and other military networks. Built with commercial off-the-shelf components, the NTTC is designed to respond to the telecommunication needs of critical NS/EP functions and users.

  14. Capabilities for high explosive pulsed power research at Los Alamos National Laboratory

    SciTech Connect

    Goforth, James H; Oona, Henn; Tasker, Douglas G; Kaul, A M

    2008-01-01

    Research on topics requiring high magnetic fields and high currents have been pursued using high explosive pulsed power (HEPP) techniques since the 1950s at Los Alamos National Laboratory. We have developed many sophisticated HEPr systems through the years, and most of them depend on technology available from the nuclear weapons program. Through the 1980s and 1990s, our budgets would sustain parallel efforts in zpinch research using both HEPr and capacitor banks. In recent years, many changes have occurred that are driven by concerns such as safety, security, and environment, as well as reduced budgets and downsizing of the National Nuclear Security Administration (NNSA) complex due to the end of the cold war era. In this paper, we review the teclmiques developed to date, and adaptations that are driven by changes in budgets and our changing complex. One new Ranchero-based solid liner z-pinch experimental design is also presented. Explosives that are cast to shape instead of being machined, and initiation systems that depend on arrays of slapper detonators are important new tools. Some materials that are seen as hazardous to the environment are avoided in designs. The process continues to allow a wide range of research however, and there are few, if any, experiments that we have done in the past that could not be perform today. The HErr firing facility at Los Alamos continues to have a 2000 lb. high explosive limit, and our 2.4 MJ capacitor bank remains a mainstay of the effort. Modem diagnostic and data analysis capabilities allow fewer personnel to achieve better results, and in the broad sense we continue to have a robust capability.

  15. Evaluation of National Seismograph Network detection capabilities. Annual report, July 1994--July 1995: Volume 1

    SciTech Connect

    McLaughlin, K.L.; Bennett, T.J.

    1996-03-01

    This first annual report presents detection thresholds and probabilities, and location error ellipse projects for the United States National Seismic Network (USNSN) with and without cooperative stations in the eastern US. Network simulation methods are used with spectral noise levels at stations to simulate the processes of excitation, propagation, detection, and processing of seismic phases. USNSN alone should be capable of detecting 4 or more P waves for shallow crustal earthquakes in nearly all the eastern and central US at magnitude 3.8 level. When cooperative stations are added, the network should be able to detect 4 or more P waves from events 0.2 to 0.3 magnitude units lower. Planned expansion of USNSN and cooperative stations should improve detection levels by an additional 0.2-0.3 magnitudes units in many areas. Location uncertainties for USNSN can be improved by adding real-time cooperative stations. Median error ellipses for magnitude 4.5 earthquakes depend strongly on location, but uncertainties should be less than 100 km{sup 2} in the central US and degrade to 200 km{sup 2} or more offshore and sosuth and north of the international boundaries. Close cooperation with the Canadian National Network should substantially improve detection thresholds and location uncertainties along the Canadian border.

  16. Use of Air Quality Observations by the National Air Quality Forecast Capability

    NASA Astrophysics Data System (ADS)

    Stajner, I.; McQueen, J.; Lee, P.; Stein, A. F.; Kondragunta, S.; Ruminski, M.; Tong, D.; Pan, L.; Huang, J. P.; Shafran, P.; Huang, H. C.; Dickerson, P.; Upadhayay, S.

    2015-12-01

    The National Air Quality Forecast Capability (NAQFC) operational predictions of ozone and wildfire smoke for the United States (U.S.) and predictions of airborne dust for continental U.S. are available at http://airquality.weather.gov/. NOAA National Centers for Environmental Prediction (NCEP) operational North American Mesoscale (NAM) weather predictions are combined with the Community Multiscale Air Quality (CMAQ) model to produce the ozone predictions and test fine particulate matter (PM2.5) predictions. The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model provides smoke and dust predictions. Air quality observations constrain emissions used by NAQFC predictions. NAQFC NOx emissions from mobile sources were updated using National Emissions Inventory (NEI) projections for year 2012. These updates were evaluated over large U.S. cities by comparing observed changes in OMI NO2 observations and NOx measured by surface monitors. The rate of decrease in NOx emission projections from year 2005 to year 2012 is in good agreement with the observed changes over the same period. Smoke emissions rely on the fire locations detected from satellite observations obtained from NESDIS Hazard Mapping System (HMS). Dust emissions rely on a climatology of areas with a potential for dust emissions based on MODIS Deep Blue aerosol retrievals. Verification of NAQFC predictions uses AIRNow compilation of surface measurements for ozone and PM2.5. Retrievals of smoke from GOES satellites are used for verification of smoke predictions. Retrievals of dust from MODIS are used for verification of dust predictions. In summary, observations are the basis for the emissions inputs for NAQFC, they are critical for evaluation of performance of NAQFC predictions, and furthermore they are used in real-time testing of bias correction of PM2.5 predictions, as we continue to work on improving modeling and emissions important for representation of PM2.5.

  17. Strengthening Climate Services Capabilities and Regional Engagement at NOAA's National Climatic Data Center

    NASA Astrophysics Data System (ADS)

    Shea, E.

    2008-12-01

    Information System (PaCIS) as a regional climate service prototype; and ongoing planning for enhanced climate services activities at NCDC in the context of discussions of a national climate service.

  18. Development and integration of Raman imaging capabilities to Sandia National Laboratories hyperspectral fluorescence imaging instrument.

    SciTech Connect

    Timlin, Jerilyn Ann; Nieman, Linda T.

    2005-11-01

    Raman spectroscopic imaging is a powerful technique for visualizing chemical differences within a variety of samples based on the interaction of a substance's molecular vibrations with laser light. While Raman imaging can provide a unique view of samples such as residual stress within silicon devices, chemical degradation, material aging, and sample heterogeneity, the Raman scattering process is often weak and thus requires very sensitive collection optics and detectors. Many commercial instruments (including ones owned here at Sandia National Laboratories) generate Raman images by raster scanning a point focused laser beam across a sample--a process which can expose a sample to extreme levels of laser light and requires lengthy acquisition times. Our previous research efforts have led to the development of a state-of-the-art two-dimensional hyperspectral imager for fluorescence imaging applications such as microarray scanning. This report details the design, integration, and characterization of a line-scan Raman imaging module added to this efficient hyperspectral fluorescence microscope. The original hyperspectral fluorescence instrument serves as the framework for excitation and sample manipulation for the Raman imaging system, while a more appropriate axial transmissive Raman imaging spectrometer and detector are utilized for collection of the Raman scatter. The result is a unique and flexible dual-modality fluorescence and Raman imaging system capable of high-speed imaging at high spatial and spectral resolutions. Care was taken throughout the design and integration process not to hinder any of the fluorescence imaging capabilities. For example, an operator can switch between the fluorescence and Raman modalities without need for extensive optical realignment. The instrument performance has been characterized and sample data is presented.

  19. MAINTAINING HIGH RESOLUTION MASS SPECTROMETRY CAPABILITIES FOR NATIONAL NUCLEAR SECURITY ADMINISTRATION APPLICATIONS

    SciTech Connect

    Wyrick, S.; Cordaro, J.; Reeves, G.; Mcintosh, J.; Mauldin, C.; Tietze, K.; Varble, D.

    2011-06-06

    The Department of Energy (DOE) National Nuclear Security Administration (NNSA) has a specialized need for analyzing low mass gas species at very high resolutions. The currently preferred analytical method is electromagnetic sector mass spectrometry. This method allows the NNSA Nuclear Security Enterprise (NSE) to resolve species of similar masses down to acceptable minimum detection limits (MDLs). Some examples of these similar masses are helium-4/deuterium and carbon monoxide/nitrogen. Through the 1980s and 1990s, there were two vendors who supplied and supported these instruments. However, with declining procurements and down turns in the economy, the supply of instruments, service and spare parts from these vendors has become less available, and in some cases, nonexistent. The largest NSE user of this capability is the Savannah River Site (SRS), located near Aiken, South Carolina. The Research and Development Engineering (R&DE) Group in the Savannah River National Laboratory (SRNL) investigated the areas of instrument support that were needed to extend the life cycle of these aging instruments. Their conclusions, as to the focus areas of electromagnetic sector mass spectrometers to address, in order of priority, were electronics, software and hardware. Over the past 3-5 years, the R&DE Group has designed state of the art electronics and software that will allow high resolution legacy mass spectrometers, critical to the NNSA mission, to be operated for the foreseeable future. The funding support for this effort has been from several sources, including the SRS Defense Programs, NNSA Readiness Campaign, Pantex Plant and Sandia National Laboratory. To date, electronics systems have been upgraded on one development system at SRNL, two production systems at Pantex and one production system at Sandia National Laboratory. An NSE working group meets periodically to review strategies going forward. The R&DE Group has also applied their work to the electronics for a

  20. Enhanced methods for determining operational capabilities and support costs of proposed space systems

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles

    1993-01-01

    This report documents the work accomplished during the first two years of research to provide support to NASA in predicting operational and support parameters and costs of proposed space systems. The first year's research developed a methodology for deriving reliability and maintainability (R & M) parameters based upon the use of regression analysis to establish empirical relationships between performance and design specifications and corresponding mean times of failure and repair. The second year focused on enhancements to the methodology, increased scope of the model, and software improvements. This follow-on effort expands the prediction of R & M parameters and their effect on the operations and support of space transportation vehicles to include other system components such as booster rockets and external fuel tanks. It also increases the scope of the methodology and the capabilities of the model as implemented by the software. The focus is on the failure and repair of major subsystems and their impact on vehicle reliability, turn times, maintenance manpower, and repairable spares requirements. The report documents the data utilized in this study, outlines the general methodology for estimating and relating R&M parameters, presents the analyses and results of application to the initial data base, and describes the implementation of the methodology through the use of a computer model. The report concludes with a discussion on validation and a summary of the research findings and results.

  1. National Aeronautics and Space Administration (NASA) Environmental Control and Life Support (ECLS) Capability Roadmap Development for Exploration

    NASA Technical Reports Server (NTRS)

    Bagdigian, Robert M.; Carrasquillo, Robyn L.; Metcalf, Jordan; Peterson, Laurie

    2012-01-01

    NASA is considering a number of future human space exploration mission concepts. Although detailed requirements and vehicle architectures remain mostly undefined, near-term technology investment decisions need to be guided by the anticipated capabilities needed to enable or enhance the mission concepts. This paper describes a roadmap that NASA has formulated to guide the development of Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) and enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro gravity mission; 2) a long duration transit microgravity mission; and 3) a long duration surface exploration mission. To organize the effort, ECLSS was categorized into three major functional groups (atmosphere, water, and solid waste management) with each broken down into sub-functions. The ability of existing, flight-proven state-of-the-art (SOA) technologies to meet the functional needs of each of the three mission types was then assessed. When SOA capabilities fell short of meeting the needs, those "gaps" were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The resulting list of enabling and enhancing capability gaps can be used to guide future ECLSS development. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies needed to enable and enhance exploration may be developed in a manner that synergistically benefits the ISS operational capability, supports Multi-Purpose Crew Vehicle (MPCV) development, and sustains long-term technology investments for longer duration missions. This paper summarizes NASA s ECLSS capability roadmap

  2. Lawrence Livermore National Laboratory Emergency Response Capability 2009 Baseline Needs Assessment Performance Assessment

    SciTech Connect

    Sharry, J A

    2009-12-30

    This document was prepared by John A. Sharry, LLNL Fire Marshal and Division Leader for Fire Protection and was reviewed by Sandia/CA Fire Marshal, Martin Gresho. This document is the second of a two-part analysis of Emergency Response Capabilities of Lawrence Livermore National Laboratory. The first part, 2009 Baseline Needs Assessment Requirements Document established the minimum performance criteria necessary to meet mandatory requirements. This second part analyses the performance of Lawrence Livermore Laboratory Emergency Management Department to the contents of the Requirements Document. The document was prepared based on an extensive review of information contained in the 2004 BNA, a review of Emergency Planning Hazards Assessments, a review of building construction, occupancy, fire protection features, dispatch records, LLNL alarm system records, fire department training records, and fire department policies and procedures. On October 1, 2007, LLNL contracted with the Alameda County Fire Department to provide emergency response services. The level of service called for in that contract is the same level of service as was provided by the LLNL Fire Department prior to that date. This Compliance Assessment will evaluate fire department services beginning October 1, 2008 as provided by the Alameda County Fire Department.

  3. High heat flux testing capabilities at Sandia National Laboratories - New Mexico

    SciTech Connect

    Youchison, D.L.; McDonald, J.M.; Wold, L.S.

    1994-12-31

    High heat flux testing for the United States fusion power program is the primary mission of the Plasma Materials Test Facility (PMTF) located at Sandia National Laboratories - New Mexico. This facility, which is owned by the United States Department of Energy, has been in operation for over 17 years and has provided much of the high heat flux data used in the design and evaluation of plasma facing components for many of the world`s magnetic fusion, tokamak experiments. In addition to domestic tokamaks such as Tokamak Fusion Test Reactor (TFTR) at Princeton and the DIII-D tokamak at General Atomics, components for international experiments like TEXTOR, Tore-Supra, and JET also have been tested at the PMTF. High heat flux testing spans a wide spectrum including thermal shock tests on passively cooled materials, thermal response and thermal fatigue tests on actively cooled components, critical heat flux-burnout tests, braze reliability tests and safety related tests. The objective of this article is to provide a brief overview of the high heat flux testing capabilities at the PMTF and describe a few of the experiments performed over the last year.

  4. Mach Stability Improvements Using an Existing Second Throat Capability at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Chan, David T.; Balakrishna, Sundareswara; Walker, Eric L.; Goodliff, Scott L.

    2015-01-01

    Recent data quality improvements at the National Transonic Facility have an intended goal of reducing the Mach number variation in a data point to within plus or minus 0.0005, with the ultimate goal of reducing the data repeatability of the drag coefficient for full-span subsonic transport models at transonic speeds to within half a drag count. This paper will discuss the Mach stability improvements achieved through the use of an existing second throat capability at the NTF to create a minimum area at the end of the test section. These improvements were demonstrated using both the NASA Common Research Model and the NTF Pathfinder-I model in recent experiments. Sonic conditions at the throat were verified using sidewall static pressure data. The Mach variation levels from both experiments in the baseline tunnel configuration and the choked tunnel configuration will be presented and the correlation between Mach number and drag will also be examined. Finally, a brief discussion is given on the consequences of using the second throat in its location at the end of the test section.

  5. Providing the Nation a Significant "High-Test Peroxide" Propulsion Test Capability

    NASA Technical Reports Server (NTRS)

    Bruce, R.; Taylor, G.; Beckmeyer, D.; Warren, S.; Dracon, S.; Powell, B.; Goodwin, D.; Rieder, P.; Nichols, R.

    1999-01-01

    Renewed interest in high-test peroxide, as a propellant, required the development of a facility capable of testing rocket propulsion systems. The development of this capability at the NASA Stennis Space Center (SSC), MS, focused on meeting this requirement. The challenges, accomplishments, and lessons learned associated with developing the SSC E3 Test Facility's high-test peroxide capability are presented herein.

  6. FTIR (Fourier transform infrared) spectrophotometry for thin film monitors: Computer and equipment integration for enhanced capabilities

    SciTech Connect

    Cox, J.N.; Sedayao, J.; Shergill, G.; Villasol, R. ); Haaland, D.M. )

    1990-01-01

    Fourier transform infrared spectrophotometry (FTIR) is a valuable technique for monitoring thin films used in semiconductor device manufacture. Determinations of the constituent contents in borophosphosilicate (BPSG), phosphosilicate (PSG), silicon oxynitride (SiON:H,OH), and spin-on-glass (SOG) thin films are a few applications. Due to the nature of the technique, FTIR instrumentation is one of the most extensively computer-dependent pieces of equipment that is likely to be found in a microelectronics plant. In the role of fab monitor or reactor characterization tool, FTIR instruments can rapidly generate large amounts of data. By linking a local FTIR data station to a remote minicomputer its capabilities are greatly improved. We discuss three caused of enhancement. First, the FTIR in the fab area communicates and interacts in real time with the minicomputer: transferring data segments to it, instructing it to perform sophisticated processing, and returning the result to the operator in the fab. Characterizations of PSG thin films by this approach are discussed. Second, the spectra of large numbers of samples are processed locally. The large database is then transmitted to the minicomputer for study by statistical/graphics software. Results of CVD-reactor spatial profiling experiments for plasma SiON are presented. Third, processing of calibration spectra is performed on the minicomputer to optimize the accuracy and precision of a Partial Least Squares'' analysis mode. This model is then transferred to the data station in the fab. The analysis of BPSG thin films is discussed in this regard. The prospects for fully automated at-line monitoring and for real-time, in-situ monitoring will be discussed. 10 refs., 4 figs.

  7. Lawrence Livermore National Laboratory Emergency Response Capability Baseline Needs Assessment Requirement Document

    SciTech Connect

    Sharry, J A

    2009-12-30

    This revision of the LLNL Fire Protection Baseline Needs Assessment (BNA) was prepared by John A. Sharry, LLNL Fire Marshal and LLNL Division Leader for Fire Protection and reviewed by Martin Gresho, Sandia/CA Fire Marshal. The document follows and expands upon the format and contents of the DOE Model Fire Protection Baseline Capabilities Assessment document contained on the DOE Fire Protection Web Site, but only address emergency response. The original LLNL BNA was created on April 23, 1997 as a means of collecting all requirements concerning emergency response capabilities at LLNL (including response to emergencies at Sandia/CA) into one BNA document. The original BNA documented the basis for emergency response, emergency personnel staffing, and emergency response equipment over the years. The BNA has been updated and reissued five times since in 1998, 1999, 2000, 2002, and 2004. A significant format change was performed in the 2004 update of the BNA in that it was 'zero based.' Starting with the requirement documents, the 2004 BNA evaluated the requirements, and determined minimum needs without regard to previous evaluations. This 2010 update maintains the same basic format and requirements as the 2004 BNA. In this 2010 BNA, as in the previous BNA, the document has been intentionally divided into two separate documents - the needs assessment (1) and the compliance assessment (2). The needs assessment will be referred to as the BNA and the compliance assessment will be referred to as the BNA Compliance Assessment. The primary driver for separation is that the needs assessment identifies the detailed applicable regulations (primarily NFPA Standards) for emergency response capabilities based on the hazards present at LLNL and Sandia/CA and the geographical location of the facilities. The needs assessment also identifies areas where the modification of the requirements in the applicable NFPA standards is appropriate, due to the improved fire protection provided, the

  8. Automated alignment of the Advanced Radiographic Capability (ARC) target area at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Roberts, Randy S.; Awwal, Abdul A. S.; Bliss, Erlan S.; Heebner, John E.; Leach, Richard R.; Orth, Charles D.; Rushford, Michael C.; Lowe-Webb, Roger R.; Wilhelmsen, Karl C.

    2015-09-01

    The Advanced Radiographic Capability (ARC) at the National Ignition Facility (NIF) is a petawatt-class, short-pulse laser system designed to provide x-ray backlighting of NIF targets. ARC uses four NIF beamlines to produce eight beamlets to create a sequence of eight images of an imploding fuel capsule using backlighting targets and diagnostic instrumentation. ARC employs a front end that produces two pulses, chirps the pulses out to 2 ns, and then injects the pulses into the two halves of each of four NIF beamlines. These pulses are amplified by NIF pre- and main amplifiers and transported to compressor vessels located in the NIF target area. The pulses are then compressed and pointed into the NIF target chamber where they impinge upon an array of backlighters. The interaction of the ARC laser pulses and the backlighting material produces bursts of high-energy x-rays that illuminate an imploding fuel capsule. The transmitted x-rays are imaged by diagnostic instrumentation to produce a sequence of radiograph images. A key component of the success of ARC is the automatic alignment system that accomplishes the precise alignment of the beamlets to avoid damaging equipment and to ensure that the beamlets are directed onto the tens-of-microns scale backlighters. In this paper, we describe the ARC automatic alignment system, with emphasis on control loops used to align the beampaths. We also provide a detailed discussion of the alignment image processing, because it plays a critical role in providing beam centering and pointing information for the control loops.

  9. Transformational Spaceport and Range Capabilities Roadmap Interim Review to National Research Council External Review Panel

    NASA Technical Reports Server (NTRS)

    Poniatowski, Karen

    2005-01-01

    Contents include the following: Overview/Introduction. Roadmap Approach/Considerations. Roadmap Timeline/Spirals. Requirements Development. Spaceport/Range Capabilities. Mixed Range Architecture. User Requirements/Customer Considerations. Manifest Considerations. Emerging Launch User Requirements. Capability Breakdown Structure/Assessment. Roadmap Team Observations. Transformational Range Test Concept. Roadmap Team Conclusions. Next Steps.

  10. Mission Enabling and Enhancing Spacecraft Capabilities with MicroNewton Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Marrese-Reading, Colleen M.; Ziemer, John K.; Scharf, Daniel; Martin-Mur, Tomas; Thompson, Paul; Wirz, Richie; Mueller, Juergen

    2010-01-01

    The capability to significantly improve current spacecraft pointing, precision orbit maintenance and disturbance mitigation were considered using precision, quiescent microNewton electric propulsion systems. Analysis results showed that electric propulsion systems operating in the microNewton to hundreds of microNewtons thrust range can offer significant improvements over state-of-the-art mission capabilities to enable 30 m Earth-fixed orbital tubes, constellation spacecraft position control to within nanometers and exoplanet observatory pointing with 0.1 milliarcsecond precision. Specific thrust levels and profiles required to support these capabilities are discussed.

  11. ICEPOD - Developing Ice Imaging Capabilities for the New York Air National Guard's LC-130 Aircraft

    NASA Astrophysics Data System (ADS)

    Detemple, J.; Frearson, N.; Zappa, C. J.; Turrin, M.; Bell, R. E.

    2010-12-01

    The ICEPOD program is a 5-year development effort to develop a polar instrumentation suite for the New York Air National Guard’s (NYANG) LC-130’s supported by the NSF American Reinvestment and Recovery Act (ARRA) Major Research Instrumentation program. The fundamental goal of the ICEPOD program is to develop an instrumentation package that can capture the dynamics of the changing polar regions, focusing on ice and ocean targets. The vision is for this instrumentation to be operated both on routine flights of the NYANG in the polar regions, such as missions between McMurdo and South Pole Station and on targeted science missions, such as mapping the sea ice and outlet glaciers surrounding Ross Island or the draining systems from large subglacial lakes in East Antarctica. We are in the process of finalizing the science requirements for the system. To provide support to the ICEPOD development, we are defining the goals for imaging the surface of the ice sheet with a scanning laser system and stereo-photogrammetry, the temperature of the ice surface using an IR camera and the internal structure of the ice sheet using a depth-sounding radar and an accumulation radar. The instrumentation will be positioned using an IMU and differential GPS. We also are working toward two operational modes - low-altitude flight operations to optimize the surface imaging systems, specifically the scanning laser, and a high-altitude flight operation to facilitate wide use of the instrumentation suite during a routine NYANG support mission flight envelope. The ICEPOD program is seeking input on the science goals of the instrumentation suite to ensure the system meets the community’s need for observations. The ultimate goal of the ICEPOD program is to provide the community with a facility for dedicated and routine measurements over the polar regions using the suite of instruments. The final ICEPOD system will also be capable of supporting instrumentation developed by other groups. The

  12. New National Capability in NIMR: Rational, Development and application of meteorological sensors for HALE UAV

    NASA Astrophysics Data System (ADS)

    Choi, Reno K. Y.; Min, Seunghyun; Klein, Marian; Ha, Jong-Chul; Cho, Young-Jun; Cho, ChunHo

    2015-04-01

    Joint Civilian-Military Committee, under Advisory Council on Science and Technology, awarded an ambitious technology demonstration project to build a HALE (High-Altitude Long Endurance) UAV (Unmanned Aerial Vehicle) till 2017. NIMR (National Institute of Meteorological Research) is responsible for developing a payload for meteorological observation, which the committee welcomed not only for technological challenges but also for scientific advances for all parties. NIMR is also responsible for providing numerical weather predictions for flight safety for overall project. HALE UAV is an aircraft that aims to operate at lower stratospheric altitudes for days and weeks. It is an altitude where air becomes thin to prevent operation of conventional jet engines and only military reconnaissance aircrafts have reached at this high or above around 18~21km Since only a couple of unmanned aircraft demonstrated its potential scientific value, atmospheric research at stratospheric altitude offers unique opportunity of monitoring complete troposphere at close range. With advantages from both satellite (consistent observation) and airborne platforms (spatial flexibility), i.e. pseudo-satellite, water content monitoring in the atmosphere enables us to improve prediction of entire life cycle of tropical storms and torrential rains and snows, in addition to better understanding of tropopause dynamics and its prediction capability. This meteorological instrument challenges very limited payload design requirements, i.e. 4kg of weight and 50W of power consumption. With such constraints, NIMR determines to develop passive microwave radiometers (15~100GHz) onboard in the interest of 3D water vapor profiles, along with optical camera for cloud observation. There are number of technical challenges to achieve the goal, such as 1) mechanical and electronic design that works in -75°C and 60hPa with weight and power constraints, and 2) miniaturisation of conventional meteorological instruments

  13. Siting study for a consolidated waste capability at Los Alamos National Laboratory

    SciTech Connect

    Booth, Steven Richard

    2010-11-05

    Decision analysis was used to rank alternative sites for a potential Consolidated Waste Capability (CWC) to replace current hazardous solid waste operations (hazardous/chemical, mixed low-level, transuranic, and low-level waste) at Los Alamos National Laboratory's Technical Area (TA)-54. An original list of 21 site alternatives was pre-screened to seven sites that were assessed using the analytical hierarchy process with five top-level criteria and fifteen sub-criteria. The top site choice is TA-63/52/46; the second choice is TA-18/36. The seven sites are as follows. TA-18/36 (62 acres) is located on Potrillo Drive that intersects Pajarito Road at the bottom of a steep grade. It has some blast zone issues on its southwest side and some important archeological sites on the southeast section. TA-60 (50 acres) is located at the end of Eniwetok Road off Diamond Drive, east of TA-3. Most of the site is within a fifty foot-deep ravine (that may have contamination in the drainage), with a small section on the mesa above. TA-63/52/46 (110 acres) lies to the north of Pajarito Road along Puye Road. It is centrally located in a brown field industrial area, with good access to generators on a controlled road. TA-46 (22 acres) is a narrow site on the south side of Pajarito Road across from TA-46 office buildings. TA-48 (14 acres) is also narrow, and is located on the north side of Pajarito Road near the west vehicle access portal (VAP). TA-51 (19 acres) is located on the south side of Pajarito Road at the top of the hill above TA-18 near the current entrance to the TA-54. TA-54 West (16 acres) is just north of the entrance to TA-54 at Pajarito Road and is close to Zone 4. Although it is near the San Ildefonso Pueblo property line, there may be adequate set-back for sight screening.

  14. National Combustion Code Parallel Performance Enhancements

    NASA Technical Reports Server (NTRS)

    Quealy, Angela; Benyo, Theresa (Technical Monitor)

    2002-01-01

    The National Combustion Code (NCC) is being developed by an industry-government team for the design and analysis of combustion systems. The unstructured grid, reacting flow code uses a distributed memory, message passing model for its parallel implementation. The focus of the present effort has been to improve the performance of the NCC code to meet combustor designer requirements for model accuracy and analysis turnaround time. Improving the performance of this code contributes significantly to the overall reduction in time and cost of the combustor design cycle. This report describes recent parallel processing modifications to NCC that have improved the parallel scalability of the code, enabling a two hour turnaround for a 1.3 million element fully reacting combustion simulation on an SGI Origin 2000.

  15. Technology Transfer Activities of NASA/MSFC: Enhancing the Southeast Region's Production Capabilities

    NASA Technical Reports Server (NTRS)

    Trivoli, George W.

    1998-01-01

    The researcher was charged with the task of developing a simplified model to illustrate the impact of how NASA/MSFC technology transfer activities contribute to shifting outward the Southeast region's and the nation's productive capacity. The report is a background of the impact of technological growth on the nation's production possibility frontier (ppf).

  16. Enhanced visible and near-infrared capabilities of the JET mirror-linked divertor spectroscopy system

    SciTech Connect

    Lomanowski, B. A. Sharples, R. M.; Meigs, A. G.; Conway, N. J.; Zastrow, K.-D.; Heesterman, P.; Kinna, D. [EURATOM Collaboration: JET-EFDA Team

    2014-11-15

    The mirror-linked divertor spectroscopy diagnostic on JET has been upgraded with a new visible and near-infrared grating and filtered spectroscopy system. New capabilities include extended near-infrared coverage up to 1875 nm, capturing the hydrogen Paschen series, as well as a 2 kHz frame rate filtered imaging camera system for fast measurements of impurity (Be II) and deuterium Dα, Dβ, Dγ line emission in the outer divertor. The expanded system provides unique capabilities for studying spatially resolved divertor plasma dynamics at near-ELM resolved timescales as well as a test bed for feasibility assessment of near-infrared spectroscopy.

  17. Enhancements in Continuous-Energy Monte Carlo Capabilities for SCALE 6.2

    SciTech Connect

    Rearden, Bradley T; Petrie Jr, Lester M; Peplow, Douglas E.; Bekar, Kursat B; Wiarda, Dorothea; Celik, Cihangir; Perfetti, Christopher M; Dunn, Michael E

    2014-01-01

    SCALE is a widely used suite of tools for nuclear systems modeling and simulation that provides comprehensive, verified and validated, user-friendly capabilities for criticality safety, reactor physics, radiation shielding, and sensitivity and uncertainty analysis. For more than 30 years, regulators, industry, and research institutions around the world have used SCALE for nuclear safety analysis and design. SCALE provides a plug-and-play framework that includes three deterministic and three Monte Carlo radiation transport solvers that are selected based on the desired solution. SCALE includes the latest nuclear data libraries for continuous-energy and multigroup radiation transport as well as activation, depletion, and decay calculations. SCALE s graphical user interfaces assist with accurate system modeling, visualization, and convenient access to desired results. SCALE 6.2 provides several new capabilities and significant improvements in many existing features, especially with expanded continuous-energy Monte Carlo capabilities for criticality safety, shielding, depletion, sensitivity and uncertainty analysis, and improved fidelity in nuclear data libraries. A brief overview of SCALE capabilities is provided with emphasis on new features for SCALE 6.2.

  18. Enhancing Academics' Capability to Engage Multicultural Classes and Internationalize at Home

    ERIC Educational Resources Information Center

    Mak, Anita

    2010-01-01

    This paper reports the rationale, design, implementation, and outcomes of a strategic diversity course for developing the intercultural capability of academic staff at an Australian university. The interactive workshop called "Engaging and Building Alliance across Cultures" aims at developing awareness of and practical skills in facilitating the…

  19. Wind Tunnel and Propulsion Test Facilities: An Assessment of NASA's Capabilities to Serve National Needs

    NASA Technical Reports Server (NTRS)

    Anton, Philip S.; Gritton, Eugene C.; Mesic, Richard; Steinberg, Paul; Johnson, Dana J.

    2004-01-01

    This monograph reveals and discusses the National Aeronautics and Space Administration's (NASA's) wind tunnel and propulsion test facility management issues that are creating real risks to the United States' competitive aeronautics advantage.

  20. Second-Generation Fuel Cell Stack Durability and Freeze Capability from National FCV Learning Demonstration (Presentation)

    SciTech Connect

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

    2009-11-18

    This presentation provides information about the objectives and partners of the National Fuel Cell Vehicle Learning Demonstration, the status of vehicle and station deployment, and results of vehicle and infrastructure analysis.

  1. The upgraded cold neutron triple-axis spectrometer FLEXX - enhanced capabilities by new instrumental options

    NASA Astrophysics Data System (ADS)

    Habicht, Klaus; Lucía Quintero-Castro, Diana; Toft-Petersen, Rasmus; Kure, Mathias; Mäde, Lucas; Groitl, Felix; Le, Manh Duc

    2015-01-01

    The upgrade of the cold neutron triple axis spectrometer FLEXX, a work-horse instrument for inelastic neutron scattering matching the sample environment capabilities at Helmholtz-Zentrum Berlin, has been successfully accomplished. Experiments confirmed an order of magnitude gain in flux now allowing for intensity demanding options to be fully exploited at FLEXX. In this article, we describe the layout and design of two newly available FLEXX instrument options in detail. The new Heusler analyzer gives an increase of the detected polarized neutron flux due to its superior focusing properties, significantly improving the feasibility of future polarized and neutron resonance spin echo experiments. The MultiFLEXX option provides simultaneous access to large regions in wavevector and energy space for inelastic excitations thus adding mapping capabilities to the spectrometer.

  2. An Enhanced GINGERSimulation Code with Harmonic Emission and HDF5IO Capabilities

    SciTech Connect

    Fawley, William M.

    2006-09-01

    GINGER [1] is an axisymmetric, polychromatic (r-z-t) FEL simulation code originally developed in the mid-1980's to model the performance of single-pass amplifiers. Over the past 15 years GINGER's capabilities have been extended to include more complicated configurations such as undulators with drift spaces, dispersive sections, and vacuum chamber wakefield effects; multi-pass oscillators; and multi-stage harmonic cascades. Its coding base has been tuned to permit running effectively on platforms ranging from desktop PC's to massively parallel processors such as the IBM-SP. Recently, we have made significant changes to GINGER by replacing the original predictor-corrector field solver with a new direct implicit algorithm, adding harmonic emission capability, and switching to the HDF5 IO library [2] for output diagnostics. In this paper, we discuss some details regarding these changes and also present simulation results for LCLS SASE emission at {lambda} = 0.15 nm and higher harmonics.

  3. The National Criticality Experiments Research Center at the Device Assembly Facility, Nevada National Security Site: Status and Capabilities, Summary Report

    SciTech Connect

    S. Bragg-Sitton; J. Bess; J. Werner

    2011-09-01

    The National Criticality Experiments Research Center (NCERC) was officially opened on August 29, 2011. Located within the Device Assembly Facility (DAF) at the Nevada National Security Site (NNSS), the NCERC has become a consolidation facility within the United States for critical configuration testing, particularly those involving highly enriched uranium (HEU). The DAF is a Department of Energy (DOE) owned facility that is operated by the National Nuclear Security Agency/Nevada Site Office (NNSA/NSO). User laboratories include the Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL). Personnel bring their home lab qualifications and procedures with them to the DAF, such that non-site specific training need not be repeated to conduct work at DAF. The NNSS Management and Operating contractor is National Security Technologies, LLC (NSTec) and the NNSS Safeguards and Security contractor is Wackenhut Services. The complete report provides an overview and status of the available laboratories and test bays at NCERC, available test materials and test support configurations, and test requirements and limitations for performing sub-critical and critical tests. The current summary provides a brief summary of the facility status and the method by which experiments may be introduced to NCERC.

  4. An enhanced experimental procedure to rationalize on the impairment of perception of action capabilities.

    PubMed

    Daviaux, Yannick; Cremoux, Sylvain; Tallet, Jessica; Amarantini, David; Cornu, Christophe; Deschamps, Thibault

    2016-03-01

    It is well documented that changes in the physiological states of the perceiver-actor influence the perception of action capabilities. However, because experimental procedures of most studies involved a limitless availability for stimuli visual encoding and perceptual strategies, it remains difficult to adopt a single position among the large range of alternative interpretations for impaired perception. A reaching-to-grasp paradigm under breathing restriction was adapted from Graydon et al. (Cogn Emot 26:1301-1305, 2012) to standardize the time for encoding of stimuli information and narrowed the involvement of perceptual strategies. In the present study, we propose a highly controlled environment where the discrete information is presented during 300 ms, congruently with neurophysiological studies focused on visuomotor transformation. An underestimation of the perception of action capabilities is found under breath restriction, suggesting that 300 ms for stimuli encoding is sufficient to induce altered visuomotor brain transformations when limiting the involvement of perceptual strategies. This result suggests that such behavior could refer to an impaired brain potentiation of the perceptual occurrence, providing strong hypotheses on the brain dynamics of sensorimotor integration that underlie impaired perception of action capabilities in stressful situations. PMID:25702038

  5. DNA fragments binding CTCF in vitro and in vivo are capable of blocking enhancer activity

    PubMed Central

    2012-01-01

    Background Earlier we identified ten 100-300-bp long CTCF-binding DNA fragments selected earlier from a 1-Mb human chromosome 19 region. Here the positive-negative selection technique was used to check the ability of CTCF-binding human genomic fragments to block enhancer-promoter interaction when inserted into the genome. Results Ten CTCF-binding DNA fragments were inserted between the CMV enhancer and CMV minimal promoter driving the herpes simplex virus thymidine kinase (HSV-tk) gene in a vector expressing also the neoR gene under a separate promoter. The constructs were then integrated into the genome of CHO cells, and the cells resistant to neomycin and ganciclovir (positive-negative selection) were picked up, and their DNAs were PCR analyzed to confirm the presence of the fragments between the enhancer and promoter in both orientations. Conclusions We demonstrated that all sequences identified by their CTCF binding both in vitro and in vivo had enhancer-blocking activity when inserted between the CMV minimal promoter and enhancer in stably transfected CHO cells. PMID:22480385

  6. National Research Council Dialogue to Assess Progress on NASA's Advanced Modeling, Simulation and Analysis Capability and Systems Engineering Capability Roadmap Development

    NASA Technical Reports Server (NTRS)

    Aikins, Jan

    2005-01-01

    Contents include the following: General Background and Introduction of Capability Roadmaps. Agency Objective. Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).

  7. Enhanced EOS photovoltaic power system capability with InP solar cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Weinberg, Irving; Flood, Dennis J.

    1991-01-01

    The Earth Observing System (EOS), which is part of the International Mission to Planet Earth, is NASA's main contribution to the Global Change Research Program which opens a new era in international cooperation to study the Earth's environment. Five large platforms are to be launched into polar orbit, two by NASA, two by ESA, and one by the Japanese. In such an orbit the radiation resistance of indium phosphide solar cells combined with the potential of utilizing five micron cell structures yields an increase of 10 percent in the payload capability. If further combined with the advanced photovoltaic solar array the payload savings approaches 12 percent.

  8. Enhancing the force capability of permanent magnet latching actuators for electromechanical valve actuation systems

    NASA Astrophysics Data System (ADS)

    Rens, J.; Clark, R. E.; Jewell, G. W.; Howe, D.

    2005-05-01

    This article introduces a topology of parallel-polarized permanent magnet latching actuator for use in electromagnetic valve actuation systems for internal combustion engines. The actuator has a number of advantages over reluctance actuators, commonly employed in such systems, in terms of reduced starting currents and fail-safe capability. The influence of a number of design features on actuator performance, such as tooth tapering, additional magnets to improve the main magnet flux path and prevent the onset of saturation, and mechanical clearances required to protect the permanent magnet from shock loads are investigated. The design study findings are verified by measurements on a prototype actuator.

  9. Enhanced dispersion compensation capability of angular elements based on beam expansion.

    PubMed

    Du, Rui; Jiang, Runhua; Fu, Ling

    2009-09-14

    We demonstrate that beam size manipulation plays an important role in dispersion compensation. With expanded beam, the maximal negative group delay dispersion (GDD) provided by angular elements increases by an order of magnitude compared with original beam. Both calculation and experimental results show that a modest 2 x and 4 x expanded beams can improve dispersion compensation capability of prisms or acousto-optical deflectors: the restored minimal pulse width decreases by 50% and the corresponding distance between angular elements is shortened more than 70 cm. These findings will be helpful for designing dispersion compensation schemes for femtosecond pulse laser application systems such as multiphoton microscopy or laser micromachining. PMID:19770855

  10. Plasma enhanced multistate storage capability of single ZnO nanowire based memory

    NASA Astrophysics Data System (ADS)

    Lai, Yunfeng; Xin, Pucong; Cheng, Shuying; Yu, Jinling; Zheng, Qiao

    2015-01-01

    Multiple-state storage (MSS) is common for resistive random access memory, but the effects of plasma treatment on the MSS and the switching properties have been scarcely investigated. We have demonstrated a stable four-state storage capability of single zinc oxide nanowire (ZnO NW) treated by argon plasma. The electrical switching is attributed to the electron trapping and detrapping from the oxygen vacancies (Vos). The MSS relates to the electrical-thermal induced distribution of the Vos which determines electron transport behavior to show different resistance states. Additionally, programming (set and reset) voltages decrease with plasma treatment due to the thickness modulation of the interface barrier.

  11. A Decision Support Framework for Feasibility Analysis of International Space Station (ISS) Research Capability Enhancing Options

    NASA Technical Reports Server (NTRS)

    Ortiz, James N.; Scott,Kelly; Smith, Harold

    2004-01-01

    The assembly and operation of the ISS has generated significant challenges that have ultimately impacted resources available to the program's primary mission: research. To address this, program personnel routinely perform trade-off studies on alternative options to enhance research. The approach, content level of analysis and resulting outputs of these studies vary due to many factors, however, complicating the Program Manager's job of selecting the best option. To address this, the program requested a framework be developed to evaluate multiple research-enhancing options in a thorough, disciplined and repeatable manner, and to identify the best option on the basis of cost, benefit and risk. The resulting framework consisted of a systematic methodology and a decision-support toolset. The framework provides quantifiable and repeatable means for ranking research-enhancing options for the complex and multiple-constraint domain of the space research laboratory. This paper describes the development, verification and validation of this framework and provides observations on its operational use.

  12. Plasma enhanced multistate storage capability of single ZnO nanowire based memory

    SciTech Connect

    Lai, Yunfeng Xin, Pucong; Cheng, Shuying; Yu, Jinling; Zheng, Qiao

    2015-01-19

    Multiple-state storage (MSS) is common for resistive random access memory, but the effects of plasma treatment on the MSS and the switching properties have been scarcely investigated. We have demonstrated a stable four-state storage capability of single zinc oxide nanowire (ZnO NW) treated by argon plasma. The electrical switching is attributed to the electron trapping and detrapping from the oxygen vacancies (V{sub o}s). The MSS relates to the electrical-thermal induced distribution of the V{sub o}s which determines electron transport behavior to show different resistance states. Additionally, programming (set and reset) voltages decrease with plasma treatment due to the thickness modulation of the interface barrier.

  13. Enhancing sample preparation capabilities for accelerator mass spectrometry radiocarbon and radiocalcium studies

    SciTech Connect

    Taylor, R.E.

    1991-08-20

    With support provided by the LLNL Accelerator Mass Spectrometry Laboratory, the UCR Radiocarbon Laboratory continued its studies involving sample pretreatment and target preparation for both AMS radiocarbon ({sup 14}C) and radiocalcium ({sup 41}Ca) involving applications to archaeologically -- and paleoanthropologically- related samples. With regard to AMS {sup 14}C-related studies, we have extended the development of a series of procedures which have, as their initial goal, the capability to combust several hundred microgram amounts of a chemically-pretreated organic sample and convert the resultant CO{sub 2} to graphitic carbon which will consistently yield relatively high {sup 13}C{sup {minus}} ion currents and blanks which will yield, on a consistent basis, {sup 14}C count rates at or below 0.20% modern, giving an 2 sigma age limit of >50,000 yr BP.

  14. Simulation information regarding Sandia National Laboratories%3CU%2B2019%3E trinity capability improvement metric.

    SciTech Connect

    Agelastos, Anthony Michael; Lin, Paul T.

    2013-10-01

    Sandia National Laboratories, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory each selected a representative simulation code to be used as a performance benchmark for the Trinity Capability Improvement Metric. Sandia selected SIERRA Low Mach Module: Nalu, which is a uid dynamics code that solves many variable-density, acoustically incompressible problems of interest spanning from laminar to turbulent ow regimes, since it is fairly representative of implicit codes that have been developed under ASC. The simulations for this metric were performed on the Cielo Cray XE6 platform during dedicated application time and the chosen case utilized 131,072 Cielo cores to perform a canonical turbulent open jet simulation within an approximately 9-billion-elementunstructured- hexahedral computational mesh. This report will document some of the results from these simulations as well as provide instructions to perform these simulations for comparison.

  15. Status and capabilities of the National Full Scale Facility 40- by 80-foot wind tunnel modification

    NASA Technical Reports Server (NTRS)

    Mort, K. W.; Engelbert, D. F.; Dusterberry, J. C.

    1982-01-01

    The background, requirements, and aerodynamic design of the modified NASA Ames 40 x 80 ft wind tunnel are reviewed, along with the systems integration and systems test results. Advancing vehicle sizes and airspeeds required a larger wind tunnel test section and a capability for 100 and 300 knots airspeed simulation. Acoustic mufflers at the inlet and exit of the nonreturn circuit provide noise suppression. The enlarged test section is intended to accomodate the complex flowfields of wings with high lift coefficients, and the drive system is designed with minimum residual swirl. Features of the fan blades are examined, along with characteristics of the test channels, control vanes and louvers, the exit, circuit losses, temperature rises during operation of the nonreturn circuit, and the facility acoustics. Specific construction problems and solutions for the conversion process are outlined, and it is noted that operational status is expected at the end of 1982.

  16. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities.

    PubMed

    Esnouf, R M

    1997-04-01

    Owing to its flexibility, MolScript has become one of the most widely used programs for generating publication-quality molecular graphics. Integration with the Raster3D package, to allow the production of photorealistic rendered images, has increased its popularity still further. However, this intensive use has shown the need for enhancement of some areas of the program, especially for controlling the coloring of atoms, bonds, and molecules. This work describes a heavily modified version of MolScript that has added syntax for describing complicated coloring schemes and also has new graphics commands. Enhancements include drawing split-bond ball-and-stick models, smoothly varying the color of molecules (color ramping), abrupt color changes within secondary structural units, and the creation of dashed bonds. Making use of these added features is simple because all MolScript syntax is still supported and one typically needs only to add a few control commands. The final section of this article suggests some uses for this modified MolScript and provides illustrative examples. PMID:9385560

  17. A Lactobacillus mutant capable of accumulating long-chain polyphosphates that enhance intestinal barrier function.

    PubMed

    Saiki, Asako; Ishida, Yasuaki; Segawa, Shuichi; Hirota, Ryuichi; Nakamura, Takeshi; Kuroda, Akio

    2016-05-01

    Inorganic polyphosphate (polyP) was previously identified as a probiotic-derived substance that enhances intestinal barrier function. PolyP-accumulating bacteria are expected to have beneficial effects on the human gastrointestinal tract. In this study, we selected Lactobacillus paracasei JCM 1163 as a strain with the potential to accumulate polyP, because among the probiotic bacteria stored in our laboratory, it had the largest amount of polyP. The chain length of polyP accumulated in L. paracasei JCM 1163 was approximately 700 phosphate (Pi) residues. L. paracasei JCM 1163 accumulated polyP when Pi was added to Pi-starved cells. We further improved the ability of L. paracasei JCM 1163 to accumulate polyP by nitrosoguanidine mutagenesis. The mutant accumulated polyP at a level of 1500 nmol/mg protein-approximately 190 times that of the wild-type strain. PolyP extracted from the L. paracasei JCM 1163 significantly suppressed the oxidant-induced intestinal permeability in mouse small intestine. In conclusion, we have succeeded in breeding the polyP-accumulating Lactobacillus mutant that is expected to enhance intestinal barrier function. PMID:26966939

  18. Lithium titanium oxynitride thin film with enhanced lithium storage and rate capability

    NASA Astrophysics Data System (ADS)

    Yu, Zhaozhe; Xu, Huarui; Zhu, Guisheng; Yan, Dongliang; Yu, Aibing

    2016-04-01

    The lithium titanium oxynitride (LTON) thin film electrode was prepared by radio frequency (RF) magnetron sputtering deposition using a cubic spinel structure Li4Ti5O12 (LTO) powder target in a N2 atmosphere for lithium ion batteries. XRD and SEM test results showed that the thin film was composed of weak crystal or amorphous structure and that its surface was homogeneous. XPS analyses indicated that nitrogen atoms were actually incorporated into the LTO matrix framework. The substitution of nitrogen for oxygen in the thin film created more abundant cross-linking structures, which favored the higher mobility of lithium ions. The LTON had a high capacity of 290 mAh g-1 at 0.1C, excellent rate capability of 160 mAh g-1 at 5C and only ≈7% capacity loss after 100 cycles at 5C charge and discharge rate. These properties make this thin film electrode a promising candidate material for use in thin film lithium ion batteries.

  19. Enhanced Transport Capabilities via Nanotechnologies: Impacting Bioefficacy, Controlled Release Strategies, and Novel Chaperones

    PubMed Central

    Panagiotou, Thomai; Fisher, Robert J.

    2011-01-01

    Emerging nanotechnologies have, and will continue to have, a major impact on the pharmaceutical industry. Their influence on a drug's life cycle, inception to delivery, is rapidly expanding. As the industry moves more aggressively toward continuous manufacturing modes, utilizing Process Analytical Technology (PAT) and Process Intensification (PI) concepts, the critical role of transport phenomena becomes elucidated. The ability to transfer energy, mass, and momentum with directed purposeful outcomes is a worthwhile endeavor in establishing higher production rates more economically. Furthermore, the ability to obtain desired drug properties, such as size, habit, and morphology, through novel manufacturing strategies permits unique formulation control for optimum delivery methodologies. Bottom-up processing to obtain nano-sized crystals is an excellent example. Formulation and delivery are intimately coupled in improving bio-efficacy at reduced loading and/or better controlled release capabilities, minimizing side affects and providing improved therapeutic interventions. Innovative nanotechnology applications, such as simultaneous targeting, imaging and delivery to tumors, are now possible through use of novel chaperones. Other examples include nanoparticles attachment to T-cells, release from novel hydrogel implants, and functionalized encapsulants. Difficult tasks such as drug delivery to the brain via the blood brain barrier and/or the cerebrospinal fluid are now easier to accomplish. PMID:21603220

  20. Oil-Free Turbomachinery Research Enhanced by Thrust Bearing Test Capability

    NASA Technical Reports Server (NTRS)

    Bauman, Steven W.

    2003-01-01

    NASA Glenn Research Center s Oil-Free Turbomachinery research team is developing aircraft turbine engines that will not require an oil lubrication system. Oil systems are required today to lubricate rolling-element bearings used by the turbine and fan shafts. For the Oil-Free Turbomachinery concept, researchers combined the most advanced foil (air) bearings from industry with NASA-developed high-temperature solid lubricant technology. In 1999, the world s first Oil-Free turbocharger was demonstrated using these technologies. Now we are working with industry to demonstrate Oil-Free turbomachinery technology in a small business jet engine, the EJ-22 produced by Williams International and developed during Glenn s recently concluded General Aviation Propulsion (GAP) program. Eliminating the oil system in this engine will make it simpler, lighter (approximately 15 percent), more reliable, and less costly to purchase and maintain. Propulsion gas turbines will place high demands on foil air bearings, especially the thrust bearings. Up until now, the Oil-Free Turbomachinery research team only had the capability to test radial, journal bearings. This research has resulted in major improvements in the bearings performance, but journal bearings are cylindrical, and can only support radial shaft loads. To counteract axial thrust loads, thrust foil bearings, which are disk shaped, are required. Since relatively little research has been conducted on thrust foil air bearings, their performance lags behind that of journal bearings.

  1. Co-sensitized natural dyes potentially used to enhance light harvesting capability

    NASA Astrophysics Data System (ADS)

    Amelia, R.; Sawitri, D.; Risanti, D. D.

    2015-01-01

    We present the photoelectrochemical properties of dye-sensitized solar cells using natural pigments containing anthocyanins, betalains, and caroteins. The dyes were adsorbed by a photoanode that was fabricated from nanocrystalline TiO2 on transparent conductive glass. TiO2 comprises of 100% anatase and 90:10 anatase:rutile fraction. The dyes extracted from mangosteen pericarp, Musa aromatica pericarp, Celosia cristata flower and red beet root were characterized through UV-vis and IPCE. The effectiveness of the dyes was explained through photocurrent as a function of incident light power. It was found that the cocktail and multilayered dyes comprised of anthocyanins and caroteins is beneficial to obtain high photocurrent, whereas betalains is not recommended to be applied on untreated TiO2. Due to the bandgap properties of rutile and anatase, the presence of 10% rutile in TiO2 is favourable to further enhance the electron transport.

  2. Recent Enhancements to the National Transonic Facility (Mixed Mode Operations)

    NASA Technical Reports Server (NTRS)

    Kilgore, W. Allen; Chan, David; Balakrishna, S.; Wahls, Richard A.

    2006-01-01

    The U.S. National Transonic Facility continues to make enhancements to provide quality data in a safe, efficient and cost effective method for aerodynamic ground testing. Recent enhancements discussed in this paper include the development of a Mixed-mode of operations that combine Air-mode operations with Nitrogen-mode operations. This implementation and operational results of this new Mixed-mode expands the ambient temperature transonic region of testing beyond the Air-mode limitations at a significantly reduced cost over Nitrogen Mode operation.

  3. Additive manufacturing capabilities applied to inertial confinement confusion at Los Alamos National Laboratory

    DOE PAGESBeta

    Cardenas, Tana; Schmidt, Derek William; Peterson, Dominic S.

    2016-06-30

    We describe the use at Los Alamos National Laboratory of additive manufacturing (AM) for a variety of jigs and coating, assembly, and radiography fixtures. Additive manufacturing has also been used to produce shipping containers of complex design that would be too costly to have fabricated using traditional techniques. The current goal for AM use in target fabrication is to increase target accuracy and rigidity. This has been realized by implementing AM into target stalk fabrication, allowing increased complexity to address target strength and the addition of features for alignment at facilities. As a result, we will describe the fabrication ofmore » these components and our plans to utilize AM in the future.« less

  4. Enhancing the absorption capabilities of thin-film solar cells using sandwiched light trapping structures.

    PubMed

    Abdellatif, S; Kirah, K; Ghannam, R; Khalil, A S G; Anis, W

    2015-06-10

    A novel structure for thin-film solar cells is simulated with the purpose of maximizing the absorption of light in the active layer and of reducing the parasitic absorption in other layers. In the proposed structure, the active layer is formed from an amorphous silicon thin film sandwiched between silicon nanowires from above and photonic crystal structures from below. The upper electrical contact consists of an indium tin oxide layer, which serves also as an antireflection coating. A metal backreflector works additionally as the other contact. The simulation was done using a new reliable, efficient and generic optoelectronic approach. The suggested multiscale simulation model integrates the finite-difference time-domain algorithm used in solving Maxwell's equation in three dimensions with a commercial simulation platform based on the finite element method for carrier transport modeling. The absorption profile, the external quantum efficient, and the power conversion efficiency of the suggested solar cell are calculated. A noticeable enhancement is found in all the characteristics of the novel structure with an estimated 32% increase in the total conversion efficiency over a cell without any light trapping mechanisms. PMID:26192857

  5. NTR-Enhanced Lunar-Base Supply using Existing Launch Fleet Capabilities

    SciTech Connect

    John D. Bess; Emily Colvin; Paul G. Cummings

    2009-06-01

    During the summer of 2006, students at the Center for Space Nuclear Research sought to augment the current NASA lunar exploration architecture with a nuclear thermal rocket (NTR). An additional study investigated the possible use of an NTR with existing launch vehicles to provide 21 metric tons of supplies to the lunar surface in support of a lunar outpost. Current cost estimates show that the complete mission cost for an NTR-enhanced assembly of Delta-IV and Atlas V vehicles may cost 47-86% more than the estimated Ares V launch cost of $1.5B; however, development costs for the current NASA architecture have not been assessed. The additional cost of coordinating the rendezvous of four to six launch vehicles with an in-orbit assembly facility also needs more thorough analysis and review. Future trends in launch vehicle use will also significantly impact the results from this comparison. The utility of multiple launch vehicles allows for the development of a more robust and lower risk exploration architecture.

  6. Enhancing RHIC luminosity capabilities with in-situ beam piple coating

    SciTech Connect

    Herschcovitch,A.; Blaskiewicz, M.; Fischer, W.; Poole, H. J.

    2009-05-04

    Electron clouds have been observed in many accelerators, including the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory (BNL). They can limit the machine performance through pressure degradation, beam instabilities or incoherent emittance growth. The formation of electron clouds can be suppressed with beam pipe surfaces that have low secondary electron yield. At the same time, high wall resistivity in accelerators can result in levels of ohmic heating unacceptably high for superconducting magnets. This is a concern for the RHIC machine, as its vacuum chamber in the superconducting dipoles is made from relatively high resistivity 316LN stainless steel. The high resistivity can be addressed with a copper (Cu) coating; a reduction in the secondary electron yield can be achieved with a titanium nitride (TiN) or amorphous carbon (a-C) coating. Applying such coatings in an already constructed machine is rather challenging. We started developing a robotic plasma deposition technique for in-situ coating of long, small diameter tubes. The technique entails fabricating a device comprised of staged magnetrons and/or cathodic arcs mounted on a mobile mole for deposition of about 5 {micro}m (a few skin depths) of Cu followed by about 0.1 {micro}m of TiN (or a-C).

  7. National Research Council Dialogue to Assess Progress on NASA's Transformational Spaceport and Range Technologies Capability Roadmap Development: General Background and Introduction

    NASA Technical Reports Server (NTRS)

    Skelly, Darin M.

    2005-01-01

    Viewgraphs on the National Research Council's diaglog to assess progress on NASA's transformational spaceport and range technologies capability roadmap development is presented. The topics include: 1) Agency Goals and Objectives; 2) Strategic Planning Transformation; 3) Advanced Planning Organizational Roles; 4) Public Involvement in Strategic Planning; 5) Strategic Roadmaps; 6) Strategic Roadmaps Schedule; 7) Capability Roadmaps; 8) Capability Charter; 9) Process for Team Selection; 10) Capability Roadmap Development Schedule Overview; 11) Purpose of NRC Review; 12) Technology Readiness Levels; 13) Capability Readiness Levels; 14) Crosswalk Matrix Trans Spaceport & Range; 15) Example linkage to other roadmaps; 16) Capability Readiness Levels Defined; and 17) Crosswalk Matrix Ratings Work In-progress.

  8. Enhanced drug delivery capabilities from stents coated with absorbable polymer and crystalline drug

    PubMed Central

    Carlyle, Wenda C.; McClain, James B.; Tzafriri, Abraham R.; Bailey, Lynn; Zani, Brett G.; Markham, Peter M.; Stanley, James R.L.; Edelman, Elazer R.

    2015-01-01

    Current drug eluting stent (DES) technology is not optimized with regard to the pharmacokinetics of drug delivery. A novel, absorbable-coating sirolimus-eluting stent (AC-SES) was evaluated for its capacity to deliver drug more evenly within the intimal area rather than concentrating drug around the stent struts and for its ability to match coating erosion with drug release. The coating consisted of absorbable poly-lactide-co-glycolic acid (PLGA) and crystalline sirolimus deposited by a dry-powder electrostatic process. The AC-SES demonstrated enhanced drug stability under simulated use conditions and consistent drug delivery balanced with coating erosion in a porcine coronary implant model. The initial drug burst was eliminated and drug release was sustained after implantation. The coating was absorbed within 90 days. Following implantation into porcine coronary arteries the AC-SES coating is distributed in the surrounding intimal tissue over the course of several weeks. Computational modeling of drug delivery characteristics demonstrates how distributed coating optimizes the load of drug immediately around each stent strut and extends drug delivery between stent struts. The result was a highly efficient arterial uptake of drug with superior performance to a clinical bare metal stent (BMS). Neointimal thickness (0.17±0.07 mm vs. 0.28±0.11 mm) and area percent stenosis (22±9% vs. 35±12%) were significantly reduced (p<0.05) by the AC-SES compared to the BMS 30 days after stent implantation in an overlap configuration in porcine coronary arteries. Inflammation was significantly reduced in the AC-SES compared to the BMS at both 30 and 90 days after implantation. Biocompatible, rapidly absorbable stent coatings enable the matching of drug release with coating erosion and provide for the controlled migration of coating material into tissue to reduce vicissitudes in drug tissue levels, optimizing efficacy and reducing potential toxicity. PMID:22800575

  9. Extending i-line capabilities through variance characterization and tool enhancement

    NASA Astrophysics Data System (ADS)

    Miller, Dan; Salinas, Adrian; Peterson, Joel; Vickers, David; Williams, Dan

    2006-03-01

    Continuous economic pressures have moved a large percent of integrated device manufacturing (IDM) operations either overseas or to foundry operations over the last 10 years. These pressures have left the IDM fabs in the U.S. with required COO improvements in order to maintain operations domestically. While the assets of many of these factories are at a very favorable point in the depreciation life cycle, the equipment and processes are constrained to the quality of the equipment in its original state and the degradation over its installed life. With the objective to enhance output and improve process performance, this factory and their primary lithography process tool supplier have been able to extend the usable life of the existing process tools, increase the output of the tool base, and improve the distribution of the CDs on the product produced. Texas Instruments Incorporated lead an investigation with the POLARIS ® Systems & Services business of FSI International to determine the sources of variance in the i-line processing of a wide array of IC device types. Data from the sources of variance were investigated such as PEB temp, PEB delay time, develop recipe, develop time, and develop programming. While PEB processes are a primary driver of acid catalyzed resists, the develop mode is shown in this work to have an overwhelming impact on the wafer to wafer and across wafer CD performance of these i-line processes. These changes have been able to improve the wafer to wafer CD distribution by more than 80 %, and the within wafer CD distribution by more than 50 % while enabling a greater than 50 % increase in lithography cluster throughput. The paper will discuss the contribution from each of the sources of variance and their importance in overall system performance.

  10. Nonbinding Site-Directed Mutants of Transferrin Binding Protein B Exhibit Enhanced Immunogenicity and Protective Capabilities

    PubMed Central

    Frandoloso, Rafael; Martínez-Martínez, Sonia; Calmettes, Charles; Fegan, Jamie; Costa, Estela; Curran, Dave; Yu, Rong-hua; Gutiérrez-Martín, César B.; Rodríguez-Ferri, Elías F.; Moraes, Trevor F.

    2014-01-01

    Host-adapted Gram-negative bacterial pathogens from the Pasteurellaceae, Neisseriaceae, and Moraxellaceae families normally reside in the upper respiratory or genitourinary tracts of their hosts and rely on utilizing iron from host transferrin (Tf) for growth and survival. The surface receptor proteins that mediate this critical iron acquisition pathway have been proposed as ideal vaccine targets due to the critical role that they play in survival and disease pathogenesis in vivo. In particular, the surface lipoprotein component of the receptor, Tf binding protein B (TbpB), had received considerable attention as a potential antigen for vaccines in humans and food production animals but this has not translated into the series of successful vaccine products originally envisioned. Preliminary immunization experiments suggesting that host Tf could interfere with development of the immune response prompted us to directly address this question with site-directed mutant proteins defective in binding Tf. Site-directed mutants with dramatically reduced binding of porcine transferrin and nearly identical structure to the native proteins were prepared. A mutant Haemophilus parasuis TbpB was shown to induce an enhanced B-cell and T-cell response in pigs relative to native TbpB and provide superior protection from infection than the native TbpB or a commercial vaccine product. The results indicate that binding of host transferrin modulates the development of the immune response against TbpBs and that strategies designed to reduce or eliminate binding can be used to generate superior antigens for vaccines. PMID:25547790

  11. Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities

    SciTech Connect

    Schoenberg, Kurt F

    2010-12-15

    This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

  12. The National Teacher Enhancement Program (K-8) coordinated by the Oak Ridge National Laboratory

    SciTech Connect

    Richmond, C.R.

    1991-01-01

    Teachers need help, not harassment. So do the establishments in which teachers practice their profession. Community resources must be marshalled to provide help to local schools and teachers. In 1990 the National Science Foundation (NSF) established a unique educational activity named the National Teacher Enhancement Program (NTEP). NSF took advantage of the Department of Energy (DOE) sponsored educational programs and resources at several large DOE contractor labs that had had prior experience with DOE supported teacher enhancement programs. While DOE concentrated on teacher enhancement activities for secondary teachers, the NSF concentrated on teachers from grades K-8. The Oak Ridge National Laboratory (ORNL) is the lead organization for both administering and coordinating the grant. Other participating laboratories are Argonne National Laboratory (ANL), Fermi National Accelerator Laboratory (FERMI), Battelle-Pacific Northwest Laboratory (PNL), Lawrence Livermore Laboratory (LLNL) with some support functions provided by Brookhaven National Laboratory (BNL) and the Oak Ridge Associated Universities (ORAU). The program calls for a three week duration workshop to be conducted at each lab followed by in-service training and other activities during the year. The NSF/NTEP protocol calls for networking among the participating organizations and some of the teachers. An assessment effort is also an integral part of the program. 2 refs.

  13. Idaho National Laboratory Ten-year Site Plan (2012 through 2021) -- DOE-NE's National Nuclear Capability -- Developing and Maintaining the INL Infrastructure

    SciTech Connect

    Cal Ozaki

    2010-06-01

    To meet long-term objectives to transform the Idaho National Laboratory (INL), we are providing an integrated, long-term vision of infrastructure requirements that support research, development and demonstration (RD&D) goals outlined in the DOE strategic plans, including the NE Roadmap and reports such as Facilities for the Future of Nuclear Energy Research: A Twenty-year Outlook. The goal of the INL Ten-year Site Plan (TYSP) is to clearly link RD&D mission goals and INL core capabilities with infrastructure requirements (single and multi-program), establish the 10-year end-state vision for INL complexes, identify and prioritize infrastructure and capability gaps, as well as the most efficient and economic approaches to closing those gaps.

  14. Demonstration of the Capabilities of CometCIEF: A Web-based Image Enhancement Facility to Enhance Images of Cometary Comae

    NASA Astrophysics Data System (ADS)

    Martin, Michael Patrick; Samarasinha, Nalin; Larson, Steve

    2014-11-01

    Accurate identifications and measurements of spatial information related to coma structures of comets are an essential component of realistic quantitative interpretation of coma observations. For this purpose, there is a number of image enhancement techniques used by cometary scientists. Despite this, the wider applicability of many advanced enhancement techniques is limited due to the non-availability of relevant software as open source. We are making available a number of such techniques using a user-friendly web interface.In this image enhancement facility available at http://www.psi.edu/research/cometimen one can upload a FITS format image of a cometary coma and digitally enhance it using an image enhancement technique of the user’s choice. The user can then download the enhanced image as well as any associated images generated during the enhancement as FITS files for detailed analysis later at the user’s institution. The available image enhancement techniques at the facility are:(a) division by azimuthal average,(b) division by azimuthal median,(c) azimuthal renormalization,(d) division by 1/ρ profile, where ρ is the skyplane projected distance from the nucleus, and(e) radially variable spatial filtering.The site provides documentation describing the above enhancement techniques as well as a tutorial showing the application of the enhancement techniques to actual cometary images and how the results may vary with different input parameters. In addition, the source codes as well as the executables are available for the user to download. To provide a secure facility, all the images uploaded by the users as well as the images created at the facility are deleted using a script that runs every hour.At the Division for Planetary Sciences 2014 meeting, we will present a description of CometCIEF and its capabilities, as well as a live demonstration of the facility that includes a question-answer session.Acknowledgements: We thank the NASA Planetary Atmospheres

  15. A Description of the Development, Capabilities, and Operational Status of the Test SLATE Data Acquisition System at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Cramer, Christopher J.; Wright, James D.; Simmons, Scott A.; Bobbitt, Lynn E.; DeMoss, Joshua A.

    2015-01-01

    The paper will present a brief background of the previous data acquisition system at the National Transonic Facility (NTF) and the reasoning and goals behind the upgrade to the current Test SLATE (Test Software Laboratory and Automated Testing Environments) data acquisition system. The components, performance characteristics, and layout of the Test SLATE system within the NTF control room will be discussed. The development, testing, and integration of Test SLATE within NTF operations will be detailed. The operational capabilities of the system will be outlined including: test setup, instrumentation calibration, automatic test sequencer setup, data recording, communication between data and facility control systems, real time display monitoring, and data reduction. The current operational status of the Test SLATE system and its performance during recent NTF testing will be highlighted including high-speed, frame-by-frame data acquisition with conditional sampling post-processing applied. The paper concludes with current development work on the system including the capability for real-time conditional sampling during data acquisition and further efficiency enhancements to the wind tunnel testing process.

  16. Conceptual Evaluation for the Installation of Treatment Capability for Mixed Low Level Waste at the Nevada National Security Site

    SciTech Connect

    NSTec Environmental Management

    2010-11-24

    National Security Technologies, LLC, initiated an evaluation of treatment technologies that they would manage and operate as part of the mixed low-level waste (MLLW) disposal facilities at the Nevada National Security Site (NNSS). The NNSS Disposal Facility has been receiving radioactive waste from the U.S. Department of Energy (DOE) complex since the 1960s, and since 2005 the NNSS Disposal Facility has been receiving radioactive and MLLW for disposal only. In accordance with the Resource Conservation and Recovery Act (RCRA), all mixed waste must meet land disposal restrictions (LDRs) prior to disposal. Compliance with LDRs is attained through treatment of the waste to mitigate the characteristics of the listed waste hazard. Presently, most generators utilize commercial capacity for waste treatment prior to shipment to the NNSS Disposal Facility. The objectives of this evaluation are to provide a conceptual study of waste treatment needs (i.e., demand), identify potential waste treatment technologies to meet demand, and analyze implementation considerations for initiating MLLW treatment capacity at the NNSS Disposal Facility. A review of DOE complex waste generation forecast data indicates that current and future Departmental demand for mixed waste treatment capacity will remain steady and strong. Analysis and screening of over 30 treatment technologies narrowed the field of treatment technologies to four: • Macroencapsulation • Stabilization/microencapsulation • Sort and segregation • Bench-scale mercury amalgamation The analysis of treatment technologies also considered existing permits, current the NNSS Disposal Facility infrastructure such as utilities and procedures, and past experiences such as green-light and red-light lessons learned. A schedule duration estimate has been developed for permitting, design, and construction of onsite treatment capability at the NNSS Disposal Facility. Treatment capability can be ready in 20 months.

  17. Dust events in Arizona: Long-term satellite and surface observations, and the National Air Quality Forecasting Capability CMAQ simulations

    NASA Astrophysics Data System (ADS)

    Huang, M.; Tong, D.; Lee, P.; Pan, L.; Tang, Y.; Stajner, I.; Pierce, R. B.; McQueen, J.

    2015-12-01

    Dust events in Arizona: An analysis integrating satellite and surface weather and aerosol measurements, and National Air Quality Forecasting Capability CMAQ simulations Dust records in Arizona during 2005-2013 are developed using multiple observation datasets, including level 2 deep blue aerosol product by the Moderate Resolution Imaging Spectroradiometer (MODIS) and the in-situ measurements at the surface Air Quality System (AQS) and Interagency Monitoring of Protected Visual Environments (IMPROVE) sites in Phoenix. The satellite and surface aerosol observations were anti-correlated with three drought indicators (i.e., MODIS vegetation index, a European satellite soil moisture dataset, and Palmer Drought Severity Index). During the dusty year of 2007, we show that the dust events were stronger and more frequent in the afternoon hours than in the morning due to faster winds and drier soil, and the Sonoran and Chihuahuan deserts were important dust source regions during identified dust events in Phoenix as indicated by NOAA's Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) Model calculations. Based on these findings, we suggested a potential for use of satellite soil moisture and vegetation index products to interpret and predict dust activity. We also emphasized the importance of using hourly observations for better capturing dust events, and expect the hourly geostationary satellite observations in the future to well complement the current surface PM and meteorological observations considering their broader spatial coverage. Additionally, the performance of the National Air Quality Forecasting Capability (NAQFC) 12 km CMAQ model simulation is evaluated during a recent strong dust event in the western US accompanied by stratospheric ozone intrusion. The current modeling system well captured the temporal variability and the magnitude of aerosol concentrations during this event. Directions of integrating satellite weather and vegetation observations

  18. Alignment mask design and image processing for the Advanced Radiographic Capability (ARC) at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Leach, Richard R.; Awwal, Abdul; Cohen, Simon; Lowe-Webb, Roger; Roberts, Randy; Salmon, Thad; Smauley, David; Wilhelmsen, Karl

    2015-09-01

    The Advance Radiographic Capability (ARC) at the National Ignition Facility (NIF) is a laser system that employs up to four petawatt (PW) lasers to produce a sequence of short pulses that generate X-rays which backlight high-density inertial confinement fusion (ICF) targets. ARC is designed to produce multiple, sequential X-ray images by using up to eight back lighters. The images will be used to examine the compression and ignition of a cryogenic deuterium-tritium target with tens-of-picosecond temporal resolution during the critical phases of an ICF shot. Multi-frame, hard-X-ray radiography of imploding NIF capsules is a capability which is critical to the success of NIF's missions. As in the NIF system, ARC requires an optical alignment mask that can be inserted and removed as needed for precise positioning of the beam. Due to ARC's split beam design, inserting the nominal NIF main laser alignment mask in ARC produced a partial blockage of the mask pattern. Requirements for a new mask design were needed. In this paper we describe the ARC mask requirements, the resulting mask design pattern, and the image analysis algorithms used to detect and identify the beam and reference centers required for ARC alignment.

  19. Introductory materials for committee members: 1) instructions for the Los Alamos National Laboratory fiscal year 2010 capability reviews 2) NPAC strategic capability planning 3) Summary self-assessment for the nuclear and particle physics, astrophysics an

    SciTech Connect

    Redondo, Antonio

    2010-01-01

    Los Alamos National Laboratory (LANL) uses external peer review to measure and continuously improve the quality of its science, technology and engineering (STE). LANL uses capability reviews to assess the STE quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. STE capabilities are define to cut across directorates providing a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. LANL plans to perform a complete review of the Laboratory's STE capabilities (hence staff) in a three-year cycle. The principal product of an external review is a report that includes the review committee's assessments, commendations, and recommendations for STE. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). This report will be used by Laboratory Management for STE assessment and planning. The report is also provided to the Department of Energy (DOE) as part of LANL's Annual Performance Plan and to the Los Alamos National Security (LANS) LLC's Science and Technology Committee (STC) as part of its responsibilities to the LANS Board of Governors.

  20. Peptide nucleic acid (PNA) is capable of enhancing hammerhead ribozyme activity with long but not with short RNA substrates.

    PubMed Central

    Jankowsky, E; Strunk, G; Schwenzer, B

    1997-01-01

    Long RNA substrates are inefficiently cleaved by hammerhead ribozymes in trans. Oligonucleotide facilitators capable of affecting the ribozyme activity by interacting with the substrates at the termini of the ribozyme provide a possibility to improve ribozyme mediated cleavage of long RNA substrates. We have examined the effect of PNA as facilitator in vitro in order to test if even artificial compounds have facilitating potential. Effects of 12mer PNA- (peptide nucleic acid), RNA- and DNA-facilitators of identical sequence were measured with three substrates containing either 942, 452 or 39 nucleotides. The PNA facilitator enhances the ribozyme activity with both, the 942mer and the 452mer substrate to a slightly smaller extent than RNA and DNA facilitators. This effect was observed up to PNA facilitator:substrate ratios of 200:1. The enhancement becomes smaller as the PNA facilitator:substrate ratio exceeds 200:1. With the 39mer substrate, the PNA facilitator decreases the ribozyme activity by more than 100-fold, even at PNA facilitator:substrate ratios of 1:1. Although with long substrates the effect of the PNA facilitator is slightly smaller than the effect of identical RNA or DNA facilitators, PNA may be a more practical choice for potential applications in vivo because PNA is much more resistant to degradation by cellular enzymes. PMID:9207013

  1. Enhanced capacity and rate capability of carbon nanotube based anodes with titanium contacts for lithium ion batteries.

    PubMed

    DiLeo, Roberta A; Castiglia, Anthony; Ganter, Matthew J; Rogers, Reginald E; Cress, Cory D; Raffaelle, Ryne P; Landi, Brian J

    2010-10-26

    Carbon nanotubes are being considered for adoption in lithium ion batteries as both a current collector support for high-capacity active materials (replacing traditional metal foils) and as free-standing electrodes where they simultaneously store lithium ions. The necessity to establish good electrical contact to these novel electrode designs is critical for success. In this work, application of nickel and titanium as both separable and thin film electrical contacts to free-standing single-wall carbon nanotube (SWCNT) electrodes is shown to dramatically enhance both the reversible lithium ion capacity and rate capability in comparison with stainless steel. Scanning electron microscopy showed that evaporation of Ni and Ti can effectively coat the SWCNT bundles in a bulk electrode which is capable of providing an improved electrical contact. A thin film of titanium emerged as the preferred electrical contact promoting the highest capacity ever measured for a SWCNT free-standing electrode of 1250 mAh/g. In addition, the titanium contacting approach demonstrated a 5-fold improvement in lithium ion capacity at extraction rates greater than 1C for a high-energy density Ge-SWCNT electrode. The overall performance improvement with Ti contacts is attributed to a lower contact resistance, nanoscale "wetting" of SWCNT bundles to improve contact uniformity, and effective electron coupling between Ti and SWCNTs due to work function-energy level alignment. The experimental results provide the basis for a Ragone analysis (power vs energy parameters), whereby Ge-SWCNT-Ti anodes paired with a LiFePO(4) cathode can lead to a 60% improvement over conventional graphite anodes in both power and energy density for a complete battery. PMID:20857949

  2. Toward enhanced capability for detecting and predicting dust events in the western United States: the Arizona case study

    NASA Astrophysics Data System (ADS)

    Huang, M.; Tong, D.; Lee, P.; Pan, L.; Tang, Y.; Stajner, I.; Pierce, R. B.; McQueen, J.; Wang, J.

    2015-11-01

    Dust aerosols affect human life, ecosystems, atmospheric chemistry and climate in various aspects. Some studies have revealed intensified dust activity in the western US during the past decades despite the weaker dust activity in non-US regions. It is important to extend the historical dust records, to better understand their temporal changes, and to use such information to improve the daily dust forecasting skill as well as the projection of future dust activity under the changing climate. This study develops dust records in Arizona in 2005-2013 using multiple observation data sets, including in situ measurements at the surface Air Quality System (AQS) and Interagency Monitoring of Protected Visual Environments (IMPROVE) sites, and level 2 deep blue aerosol product by the Moderate Resolution Imaging Spectroradiometer. The diurnal and inter-annual variability of identified dust events are shown related to observed weather patterns (e.g., wind and soil moisture) and surface conditions (e.g., land cover type and vegetation conditions), suggesting a potential for use of satellite soil moisture and land products to help interpret and predict dust activity. Backtrajectories computed using NOAA's Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model indicate that the Sonoran and Chihuahuan deserts are important dust source regions during identified dust events in Phoenix, Arizona. Finally, we assess the impact of a recent strong dust event on western US air quality, using various observational and modeling data sets, during a period with a stratospheric ozone intrusion event. The capability of the current US National Air Quality Forecasting Capability (NAQFC) Community Multi-scale Air Quality (CMAQ) modeling system to represent the magnitude and the temporal variability of aerosol concentrations is evaluated for this event. Directions for integrating observations to further improve dust emission modeling in CMAQ are also suggested.

  3. Development of Commercial-Length Nuclear Fuel Post-Irradiation Examination Capabilities at the Oak Ridge National Laboratory

    SciTech Connect

    Ott, Larry J; Spellman, Donald J; Bevard, Bruce Balkcom; Chesser, Joel B; Morris, Robert Noel

    2009-01-01

    The U.S. Department of Energy Fissile Materials Disposition Program is pursuing disposal of surplus weapons-usable plutonium by reactor irradiation as the fissile constituent of mixed oxide (MOX) fuel. Lead test assemblies (LTAs) have been irradiated for approximately 36 months in Duke Energy s Catawba-1 nuclear power plant. Per the MOX fuel qualification plan, destructive post-irradiation examinations (PIEs) are to be performed on second-cycle rods (irradiated to an average burnup of approximately 42 GWd/MTHM). These LTA bundles are planned to be returned to the reactor and further irradiated to approximately 52 GWd/MTHM. Nondestructive and destructive PIEs of these commercially irradiated weapons-derived MOX fuel rods will be conducted at the Oak Ridge National Laboratory (ORNL) in the Irradiated Fuels Examination Laboratory (IFEL). PIE began in early 2009. In order to support the examination of the irradiated full-length (~3.66 m) MOX fuel rods, ORNL in 2004 began to develop the necessary infrastructure and equipment for the needed full-scope PIE capabilities. The preparations included modifying the IFEL building to handle a commercial spent-fuel shipping cask; procurement of cask-handling equipment and a skid to move the cask inside the building; development of in-cell handling equipment for cask unloading; and design, fabrication, and testing of the automated, state-of-the-art PIE examination equipment. This paper describes these activities and the full-scope PIE capabilities available at ORNL for commercial full-length fuel rods.

  4. Final Technical Report - 300°C Capable Electronics Platform and Temperature Sensor System For Enhanced Geothermal Systems

    SciTech Connect

    Chen, Cheng-Po; Shaddock, David; Sandvik, Peter; Saia, Rich; Amita Patil, Alexey Vert; Zhang, Tan

    2012-11-30

    A silicon carbide (SiC) based electronic temperature sensor prototype has been demonstrated to operate at 300°C. We showed continuous operation of 1,000 hours with SiC operational amplifier and surface mounted discreet resistors and capacitors on a ceramic circuit board. This feasibility demonstration is a major milestone in the development of high temperature electronics in general and high temperature geothermal exploration and well management tools in particular. SiC technology offers technical advantages that are not found in competing technologies such as silicon-on-insulator (SOI) at high temperatures of 200°C to 300°C and beyond. The SiC integrated circuits and packaging methods can be used in new product introduction by GE Oil and Gas for high temperature down-hole tools. The existing SiC fabrication facility at GE is sufficient to support the quantities currently demanded by the marketplace, and there are other entities in the United States and other countries capable of ramping up SiC technology manufacturing. The ceramic circuit boards are different from traditional organic-based electronics circuit boards, but the fabrication process is compatible with existing ceramic substrate manufacturing. This project has brought high temperature electronics forward, and brings us closer to commercializing tools that will enable and reduce the cost of enhanced geothermal technology to benefit the public in terms of providing clean renewable energy at lower costs.

  5. Fe2O3 Nanoparticles Wrapped in Multi-walled Carbon Nanotubes With Enhanced Lithium Storage Capability

    PubMed Central

    Yan, Nan; Zhou, Xuhui; Li, Yan; Wang, Fang; Zhong, Hao; Wang, Hui; Chen, Qianwang

    2013-01-01

    We have designed a novel hybrid nanostructure by coating Fe2O3 nanoparticles with multi-walled carbon nanotubes to enhance the lithium storage capability of Fe2O3. The strategy to prepare Fe2O3@MWCNTs involves the synthesis of Fe nanoparticles wrapped in MWCNTs, followed by the oxidation of Fe nanoparticles under carbon dioxide. When used as the anode in a Li-ion battery, this hybrid material (70.32 wt% carbon nanotubes, 29.68 wt% Fe2O3) showed a reversible discharge capacity of 515 mAhg−1 after 50 cycles at a density of 100 mAg−1 and the capacity based on Fe2O3 nanoparticles was calculated as 1147 mAhg−1, Three factors are responsibile for the superior performance: (1) The hollow interiors of MWCNTs provide enough spaces for the accommodation of large volume expansion of inner Fe2O3 nanoparticles, which can improving the stability of electrode; (2) The MWCNTs increase the overall conductivity of the anode; (3) A stable solid electrolyte interface film formed on the surface of MWCNTs may reduce capacity fading. PMID:24292097

  6. Extending enhanced-vision capabilities by integration of advanced surface movement guidance and control systems (A-SMGCS)

    NASA Astrophysics Data System (ADS)

    Hecker, Peter; Doehler, Hans-Ullrich; Korn, Bernd; Ludwig, T.

    2001-08-01

    DLR has set up a number of projects to increase flight safety and economics of aviation. Within these activities one field of interest is the development and validation of systems for pilot assistance in order to increase the situation awareness of the aircrew. All flight phases ('gate-to-gate') are taken into account, but as far as approaches, landing and taxiing are the most critical tasks in the field of civil aviation, special emphasis is given to these operations. As presented in previous contributions within SPIE's Enhanced and Synthetic Vision Conferences, DLR's Institute of Flight Guidance has developed an Enhanced Vision System (EVS) as a tool assisting especially approach and landing by improving the aircrew's situational awareness. The combination of forward looking imaging sensors (such as EADS's HiVision millimeter wave radar), terrain data stored in on-board databases plus information transmitted from ground or other aircraft via data link is used to help pilots handling these phases of flight especially under adverse weather conditions. A second pilot assistance module being developed at DLR is the Taxi And Ramp Management And Control - Airborne System (TARMAC-AS), which is part of an Advanced Surface Management Guidance and Control System (ASMGCS). By means of on-board terrain data bases and navigation data a map display is generated, which helps the pilot performing taxi operations. In addition to the pure map function taxi instructions and other traffic can be displayed as the aircraft is connected to TARMAC-planning and TARMAC-communication, navigation and surveillance modules on ground via data-link. Recent experiments with airline pilots have shown, that the capabilities of taxi assistance can be extended significantly by integrating EVS- and TARMAC-AS-functionalities. Especially an extended obstacle detection and warning coming from the Enhanced Vision System increases the safety of ground operations. The presented paper gives an overview

  7. Lawrence Livermore National Laboratory interests and capabilities for research on the ecological effects of global climatic and atmospheric change

    SciTech Connect

    Amthor, J.S.; Houpis, J.L.; Kercher, J.R.; Ledebuhr, A.; Miller, N.L.; Penner, J.E.; Robison, W.L.; Taylor, K.E.

    1994-09-01

    The Lawrence Livermore National Laboratory (LLNL) has interests and capabilities in all three types of research that must be conducted in order to understand and predict effects of global atmospheric and climatic (i.e., environmental) changes on ecological systems and their functions (ecosystem function is perhaps most conveniently defined as mass and energy exchange and storage). These three types of research are: (1) manipulative experiments with plants and ecosystems; (2) monitoring of present ecosystem, landscape, and global exchanges and pools of energy, elements, and compounds that play important roles in ecosystem function or the physical climate system, and (3) mechanistic (i.e., hierarchic and explanatory) modeling of plant and ecosystem responses to global environmental change. Specific experimental programs, monitoring plans, and modeling activities related to evaluation of ecological effects of global environmental change that are of interest to, and that can be carried out by LLNL scientists are outlined. Several projects have the distinction of integrating modeling with empirical studies resulting in an Integrated Product (a model or set of models) that DOE or any federal policy maker could use to assess ecological effects. The authors note that any scheme for evaluating ecological effects of atmospheric and climatic change should take into account exceptional or sensitive species, in particular, rare, threatened, or endangered species.

  8. Image analysis algorithms for the advanced radiographic capability (ARC) grating tilt sensor at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Roberts, Randy S.; Bliss, Erlan S.; Rushford, Michael C.; Halpin, John M.; Awwal, Abdul A. S.; Leach, Richard R.

    2014-09-01

    The Advance Radiographic Capability (ARC) at the National Ignition Facility (NIF) is a laser system designed to produce a sequence of short pulses used to backlight imploding fuel capsules. Laser pulses from a short-pulse oscillator are dispersed in wavelength into long, low-power pulses, injected in the NIF main laser for amplification, and then compressed into high-power pulses before being directed into the NIF target chamber. In the target chamber, the laser pulses hit targets which produce x-rays used to backlight imploding fuel capsules. Compression of the ARC laser pulses is accomplished with a set of precision-surveyed optical gratings mounted inside of vacuum vessels. The tilt of each grating is monitored by a measurement system consisting of a laser diode, camera and crosshair, all mounted in a pedestal outside of the vacuum vessel, and a mirror mounted on the back of a grating inside the vacuum vessel. The crosshair is mounted in front of the camera, and a diffraction pattern is formed when illuminated with the laser diode beam reflected from the mirror. This diffraction pattern contains information related to relative movements between the grating and the pedestal. Image analysis algorithms have been developed to determine the relative movements between the gratings and pedestal. In the paper we elaborate on features in the diffraction pattern, and describe the image analysis algorithms used to monitor grating tilt changes. Experimental results are provided which indicate the high degree of sensitivity provided by the tilt sensor and image analysis algorithms.

  9. National Research Council Dialogue to Assess Progress on NASA's Human Health & Support Systems Capability Roadmap Development: General Background and Introduction

    NASA Technical Reports Server (NTRS)

    Aikins, Jan

    2005-01-01

    Contents include the following: General Background and Introduction of Capability Roadmaps. Agency Objective. Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).

  10. National Research Council Dialogue to Assess Progress on NASA's Title of CRM Capability Roadmap Development: General Background and Introduction

    NASA Technical Reports Server (NTRS)

    Crooke, Julie A.

    2005-01-01

    Contents include the following: General Background and Introduction of Capability Roadmaps "Title." Agency Objective. Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).

  11. Induced overexpression of Oct4A in human dental pulp cells enhances pluripotency and multilineage differentiation capability.

    PubMed

    Liu, Lu; Wu, Lijing; Wei, Xi; Ling, Junqi

    2015-04-15

    Octamer-binding transcription factor 4A (Oct4A), one of the three spliced variants of the class V of POU transcription factor family, is mainly expressed in the nucleus of undifferentiated cells and serves as the key regulator for the maintenance of pluripotency and self-renewal. However, its specific role in regulating pluripotency and multilineage differentiation potential of dental pulp cells (DPCs) remains unknown. To explore the effect of Oct4A on pluripotency and multilineage differentiation capability of DPCs, expression of Oct4A in human dental pulp tissue and pluripotent markers Oct4A, Sox2, c-Myc, Nanog, and Klf4 in DPCs with prolonged in vitro culture were examined by immunohistochemistry and immunofluorescent staining. Oct4A transfection rate in DPCs with lentivirus was evaluated by real-time polymerase chain reaction (PCR) and western blot. Cell proliferation, multilineage differentiation, and the expression of Oct4B1, Sox2, Nanog, Klf4, c-Myc, and Utf1 in DPCs after Oct4A transfection were detected by cell counting kit-8, Alizarin red/Oil red O staining, immunofluorescent staining, alkaline phosphatase analysis, and real-time PCR. We demonstrated that Oct4A was mainly expressed in the nucleus of odontoblasts in dental pulp tissue. Oct4A, Sox2, c-Myc, Nanog, and Klf4 were primarily located in the nucleus of DPCs at early passage (passage 1) and translocated to cytoplasm at late passage (passage 7). In DPCs with Oct4A overexpression, Oct4A, Oct4B1, Sox2, Nanog, Klf4, c-Myc, and Utf1 were significantly upregulated (p<0.05) and the cell proliferation (p<0.05), odontogenic and adipogenic differentiation were significantly enhanced. Taken together, Oct4A plays a critical role in regulation of cell proliferation, pluripotency, and multilineage differentiation potential of DPCs. PMID:25422984

  12. Specificity and Strain-Typing Capabilities of Nanorod Array-Surface Enhanced Raman Spectroscopy for Mycoplasma pneumoniae Detection

    PubMed Central

    Henderson, Kelley C.; Benitez, Alvaro J.; Ratliff, Amy E.; Crabb, Donna M.; Sheppard, Edward S.; Winchell, Jonas M.; Dluhy, Richard A.; Waites, Ken B.; Atkinson, T. Prescott; Krause, Duncan C.

    2015-01-01

    Mycoplasma pneumoniae is a cell wall-less bacterial pathogen of the human respiratory tract that accounts for > 20% of all community-acquired pneumonia (CAP). At present the most effective means for detection and strain-typing is quantitative polymerase chain reaction (qPCR), which can exhibit excellent sensitivity and specificity but requires separate tests for detection and genotyping, lacks standardization between available tests and between labs, and has limited practicality for widespread, point-of-care use. We have developed and previously described a silver nanorod array-surface enhanced Raman Spectroscopy (NA-SERS) biosensing platform capable of detecting M. pneumoniae with statistically significant specificity and sensitivity in simulated and true clinical throat swab samples, and the ability to distinguish between reference strains of the two main genotypes of M. pneumoniae. Furthermore, we have established a qualitative lower endpoint of detection for NA-SERS of < 1 genome equivalent (cell/μl) and a quantitative multivariate detection limit of 5.3 ± 1 cells/μl. Here we demonstrate using partial least squares- discriminatory analysis (PLS-DA) of sample spectra that NA-SERS correctly identified M. pneumoniae clinical isolates from globally diverse origins and distinguished these from a panel of 12 other human commensal and pathogenic mycoplasma species with 100% cross-validated statistical accuracy. Furthermore, PLS-DA correctly classified by strain type all 30 clinical isolates with 96% cross-validated accuracy for type 1 strains, 98% cross-validated accuracy for type 2 strains, and 90% cross-validated accuracy for type 2V strains. PMID:26121242

  13. Gigapixel panoramas of Glacier National Park create enhanced education experiences

    NASA Astrophysics Data System (ADS)

    Fagre, D. B.; McKeon, L. A.

    2010-12-01

    Repeat photography has proven to be an effective means to communicate the pace and scope of climate change impacts to Glacier National Park, Montana for broad audiences. The repeat photographs of glaciers vividly document their rate of disappearance and have been used in books, magazines, TV documentaries, on websites, and in several art museum exhibits. In our ongoing efforts to enhance information transfer about climate change to audiences, we have capitalized on an emerging technology by partnering with GigaPan Systems to test the effectiveness of a Gigapan camera system. A Gigapan camera system is a robotically controlled DSLR camera mount that is programmed to take multiple high-resolution digital photographs of objects or entire landscapes in sequence and with overlap between adjoining photographs. The multiple (e.g. 800) photographs are digitally stitched with post production software into one large merged image and served online as a gigapixel panorama. Key objects or parts of the image can be zoomed into at great detail and highlighted as “snapshots”. The snapshot images retain high image resolution and can then be annotated and information such as datasets, maps, or additional images can be linked to that part of the image. GigaPan images can be georeferenced in Google Earth and embedded in websites. We have used this visually compelling technology to photograph alpine glaciers in Glacier Park and create interactive experiences for online users. Results are available at: http://gigapan.org/ Gigapan system with robotically controlled camera

  14. Document Delivery Capabilities of Major Biomedical Libraries in 1968: Results of a National Survey Employing Standardized Tests *

    PubMed Central

    Orr, Richard H.; Schless, Arthur P.

    1972-01-01

    The standardized Document Delivery Tests (DDT's) developed earlier (Bulletin 56: 241-267, July 1968) were employed to assess the capability of ninety-two medical school libraries for meeting the document needs of biomedical researchers, and the capability of fifteen major resource libraries for filling I-L requests from biomedical libraries. The primary test data are summarized as statistics on the observed availability status of the 300 plus documents in the test samples, and as measures expressing capability as a function of the mean time that would be required for users to obtain test sample documents. A mathematical model is developed in which the virtual capability of a library, as seen by its users, equals the algebraic sum of the basic capability afforded by its holdings; the combined losses attributable to use of its collection, processing, relative inacessibility, and housekeeping problems; and the gain realized by coupling with other resources (I-L borrowing). For a particular library, or group of libraries, empirical values for each of these variables can be calculated easily from the capability measures and the status statistics. Regression equations are derived that provide useful predictions of basic capability from collection size. The most important result of this work is that cost-effectiveness analyses can now be used as practical decision aids in managing a basic library service. A program of periodic surveys and further development of DDT's is recommended as appropriate for the Medical Library Association. PMID:5054305

  15. Enhancing The National Map Through Tactical Planning and Performance Monitoring

    USGS Publications Warehouse

    U.S. Geological Survey

    2008-01-01

    Tactical planning and performance monitoring are initial steps toward improving 'the way The National Map works' and supporting the U.S. Geological Survey (USGS) Science Strategy. This Tactical Performance Planning Summary for The National Map combines information from The National Map 2.0 Tactical Plan and The National Map Performance Milestone Matrix. The National Map 2.0 Tactical Plan is primarily a working document to guide The National Map program's execution, production, and metrics monitoring for fiscal years (FY) 2008 and 2009. The Tactical Plan addresses data, products, and services, as well as supporting and enabling activities. The National Map's 2-year goal for FY 2008 and FY 2009 is to provide a range of geospatial products and services that further the National Spatial Data Infrastructure and underpin USGS science. To do this, the National Geospatial Program will develop a renewed understanding during FY 2008 of key customer needs and requirements, develop the infrastructure to support The National Map business model, modernize its business processes, and reengineer its workforce. Priorities for The National Map will be adjusted if necessary to respond to changes to the project that may impact resources, constrain timeframes, or change customer needs. The supporting and enabling activities that make it possible to produce the products and services of The National Map will include partnership activities, improved compatibility of systems, outreach, and integration of data themes.

  16. A Study of Surface Directional Reflectance Properties To Enhance Aerosol Retrieval Capability Over Land Using MISR Data

    NASA Astrophysics Data System (ADS)

    Martonchik, J.; Bull, M.; Dang, V. T.

    2007-12-01

    AERONET data provide an independent and better contrained determination of the aerosol properties at a site during the overpass, which then is used to correct the associated MISR top-of atmosphere imagery for atmospheric effects, resulting in the best estimates of the AERONET site surface spectral directional reflectance at 1.1 km resolution. To understand how the similarity of the angular shape depends on spatial scale, the directional reflectance was retrieveded at a variety of spatial resolutions, starting at 1.1 km pixel centered at the AERONET site and was systematically increased by pixel averaging around the site to 17.6 km resolution, the spatial scale used by the current MISR operational aerosol retrieval. A wide variety of AERONET sites were analyzed to provide information on how the degree of spectral reflectance similarity may relate to surface type. Because MISR data has been available since early 2000 to the present, seasonal and secular trends in surface reflectance variability also were investigated. The similarity condition was quantified at each site by the use of various semi-empirical directional reflectance models which allowed spectral albedo effects to be explicitly taken into account. It is expected that the results of this study will improve the current capability of the MISR aerosol retrieval algorithm over land. This work was performed at the Jet Propulsion Laboratory, California Institute ofTechnology under contract with the National Aeronautics and Space Administration.

  17. ADAPTIVE MONITORING TO ENHANCE WATER SENSOR CAPABILITIES FOR CHEMICAL AND BIOLOGICAL CONTAMINANT DETECTION IN DRINKING WATER SYSTEMS

    EPA Science Inventory

    Optoelectronic and other conventional water quality sensors offer a potential for real-time online detection of chemical and biological contaminants in a drinking water supply and distribution system. The nature of the application requires sensors of detection capabilities at lo...

  18. Enhancing the Educational Potential of Non-Oral Children through Matching Communication Device Capabilities to Children's Needs. Final Report.

    ERIC Educational Resources Information Center

    Coleman, Colette L.; And Others

    The report describes activities and results of a project to identify communication characteristics that would help match augmentative communication system (ACS) capabilities to the needs of nonoral children. Ss had a variety of handicapping conditions, including cerebral palsy and other developmental disabilities. Introductory sections cover the…

  19. Peripheral Social Learning in the Workplace and the Development of Corporate Capability: The Role of National Vocational Qualifications.

    ERIC Educational Resources Information Center

    Cairns, Len; Stephenson, John

    2001-01-01

    Interviews with over 200 people in 8 British and 2 Australian organizations identified 8 features of a healthy learning environment that contributes to organizational capability. Differences emerged between organization-driven and learner-driven learning activities. (Conains 74 references.) (SK)

  20. National Infrastructure Protection Plan: Partnering to Enhance Protection and Resiliency

    ERIC Educational Resources Information Center

    US Department of Homeland Security, 2009

    2009-01-01

    The overarching goal of the National Infrastructure Protection Plan (NIPP) is to build a safer, more secure, and more resilient America by preventing, deterring, neutralizing, or mitigating the effects of deliberate efforts by terrorists to destroy, incapacitate, or exploit elements of our Nation's critical infrastructure and key resources (CIKR)…

  1. Enhancing Both Cooperative Extension and National Environmental Education Resources

    ERIC Educational Resources Information Center

    Monroe, Martha C.

    2012-01-01

    State Extension programs can contribute to the successful adoption of national environmental education programs by making locally relevant resources available, creating reference materials to bridge between 4-H project books and other resources, and developing companion materials that supplement national materials with local issues and resources.…

  2. Implementation of the Enhanced Flight Termination System at National Aeronautics and Space Administration Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Tow, David

    2010-01-01

    This paper discusses the methodology, requirements, tests, and results of the implementation of the current operating capability for the Enhanced Flight Termination System (EFTS) at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC). The implementation involves the development of the EFTS at NASA DFRC starting from the requirements to system safety review to full end to end system testing, and concluding with the acceptance of the system as an operational system. The paper discusses the first operational usage and subsequent flight utilizing EFTS successfully.

  3. FORMAT FOR ACQUIRING RAPID DATA ANALYSIS CAPABILITIES OF STORET DATA: MANIPULATION OF NATIONAL EUTROPHICATION SURVEY WATER QUALITY DATA

    EPA Science Inventory

    As an integral part of the National Eutrophication Survey, a program initiated in 1972 to investigate the threat of accelerated eutrophication to freshwater lakes and reservoirs, the Environmental Monitoring and Support Laboratory, Las Vegas, the collected water quality informati...

  4. Enhanced defect detection capability using learning system for extreme ultraviolet lithography mask inspection tool with projection electron microscope optics

    NASA Astrophysics Data System (ADS)

    Hirano, Ryoichi; Hatakeyama, Masahiro; Terao, Kenji; Watanabe, Hidehiro

    2016-04-01

    Extreme ultraviolet lithography (EUVL) patterned mask defect detection is a major issue that must be addressed to realize EUVL-based device fabrication. We have designed projection electron microscope (PEM) optics for integration into a mask inspection system, and the resulting PEM system performs well in half-pitch (hp) 16-nm-node EUVL patterned mask inspection applications. A learning system has been used in this PEM patterned mask inspection tool. The PEM identifies defects using the "defectivity" parameter that is derived from the acquired image characteristics. The learning system has been developed to reduce the labor and the costs associated with adjustment of the PEM's detection capabilities to cope with newly defined mask defects. The concepts behind this learning system and the parameter optimization flow are presented here. The learning system for the PEM is based on a library of registered defects. The learning system then optimizes the detection capability by reconciling previously registered defects with newly registered defects. Functional verification of the learning system is also described, and the system's detection capability is demonstrated by applying it to the inspection of hp 11-nm EUV masks. We can thus provide a user-friendly mask inspection system with reduced cost of ownership.

  5. Enhanced Lithium-Ion Storage Capability of a Bismuth Sulfide/Graphene Oxide/Poly(3,4-ethylenedioxythiophene) Composite.

    PubMed

    Mukkabla, Radha; Deepa, Melepurath; Srivastava, Avanish Kumar

    2015-10-26

    A Bi2 S3 /graphene oxide (GO) composite enwrapped by a poly(3,4-ethylenedioxythiophene) (PEDOT) coating was prepared for the first time for use as an anode in Li-ion batteries. Pristine Bi2 S3 nanoflowers and composites of Bi2 S3 /GO and Bi2 S3 /GO/PEDOT were assembled into half cells with Li metal as the counter electrode, and initial discharge capacities of 833, 1020, and 1300 mAh g(-1) , respectively, were obtained. Composites of Bi2 S3 /GO/PEDOT and Bi2 S3 /GO showed superior cycling stability and better rate capability than pristine Bi2 S3 . GO provides highly conducting interconnections, which allow facile propagation of electrons during charge/discharge, and this improves the ion-uptake capability of the Bi2 S3 nanoflowers and also increases the rate capability. PEDOT furnishes a protective coating that prevents detachment of the material from the current collector during cycling, and it also imparts better cycling stability to the Bi2 S3 /GO/PEDOT composite. PMID:26247745

  6. Enhancement of process capability for strip force of tight sets of optical fiber using Taguchi's Quality Engineering

    NASA Astrophysics Data System (ADS)

    Lin, Wen-Tsann; Wang, Shen-Tsu; Li, Meng-Hua; Huang, Chiao-Tzu

    2012-03-01

    Strip force is the key to identifying the quality of product during manufacturing tight sets of fiber. This study used Integrated computer-aided manufacturing DEFinition 0 (IDEF0) modeling to discuss detailed cladding processes of tight sets of fiber in transnational optical connector manufacturing. The results showed that, the key factor causing an instable interface connection is the extruder adjustment process. The factors causing improper strip force were analyzed through literature, practice, and gray relational analysis. The parameters design method of Taguchi's Quality Engineering was used to determine the optimal experimental combinations for processes of tight sets of fiber. This study employed case empirical analysis to obtain a model for improving the process of strip force of tight sets of fiber, and determines the correlation factors that affect the processes of quality for tight sets of fiber. The findings indicated that, process capability index (CPK) increased significantly, which can facilitate improvement of the product process capability and quality. The empirical results can serve as a reference for improving the product quality of the optical fiber industry.

  7. Enhanced Electron Extraction Capability of Polymer Solar Cells via Employing Electrostatically Self-Assembled Molecule on Cathode Interfacial Layer.

    PubMed

    Li, Zhiqi; Zhang, Xinyuan; Liu, Chunyu; Zhang, Zhihui; Li, Jinfeng; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2016-03-01

    In this paper, high-performance inverted polymer solar cells (PSCs) with a modified cathode buffer layer, titanium dioxide:polyethylenimine (TiO2:PEI), are demonstrated. The TiO2-O-PEI transport layer was fabricated by electrostatically self-assembled monolayers (ESAM) of PEI molecules. Protonated amine functional groups of PEI can combine protons (H(+)) hydrolyzing from its aqueous solution. Also, PEI could produce ESAM on the surface of hydroxylated TiO2 because of its cationic characteristics. The incorporation of the TiO2-O-PEI layer enhances the photocurrent and power conversion efficiency (PCE) due to the improved interfacial electron transport and extraction of the TiO2-O-PEI surface and the increased light absorption of the active layer. The enhanced PCE, low-cost materials, and solution process of TiO2-O-PEI buffer layers provide a promising method for highly efficient PSCs. PMID:26955888

  8. Second-order sliding mode control for DFIG-based wind turbines fault ride-through capability enhancement.

    PubMed

    Benbouzid, Mohamed; Beltran, Brice; Amirat, Yassine; Yao, Gang; Han, Jingang; Mangel, Hervé

    2014-05-01

    This paper deals with the fault ride-through capability assessment of a doubly fed induction generator-based wind turbine using a high-order sliding mode control. Indeed, it has been recently suggested that sliding mode control is a solution of choice to the fault ride-through problem. In this context, this paper proposes a second-order sliding mode as an improved solution that handle the classical sliding mode chattering problem. Indeed, the main and attractive features of high-order sliding modes are robustness against external disturbances, the grids faults in particular, and chattering-free behavior (no extra mechanical stress on the wind turbine drive train). Simulations using the NREL FAST code on a 1.5-MW wind turbine are carried out to evaluate ride-through performance of the proposed high-order sliding mode control strategy in case of grid frequency variations and unbalanced voltage sags. PMID:24530194

  9. validation and Enhancement of Computational Fluid Dynamics and Heat Transfer Predictive Capabilities for Generation IV Reactor Systems

    SciTech Connect

    Robert E. Spall; Barton Smith; Thomas Hauser

    2008-12-08

    Nationwide, the demand for electricity due to population and industrial growth is on the rise. However, climate change and air quality issues raise serious questions about the wisdom of addressing these shortages through the construction of additional fossil fueled power plants. In 1997, the President's Committee of Advisors on Science and Technology Energy Research and Development Panel determined that restoring a viable nuclear energy option was essential and that the DOE should implement a R&D effort to address principal obstacles to achieving this option. This work has addressed the need for improved thermal/fluid analysis capabilities, through the use of computational fluid dynamics, which are necessary to support the design of generation IV gas-cooled and supercritical water reactors.

  10. Enhancing army analysis capability for warfighter protection: TRADOC-RDECOM M&S decision support environment collaboration

    NASA Astrophysics Data System (ADS)

    Athmer, Keith; Gaughan, Chris; McDonnell, Joseph S.; Leach, Robert; Davis, Bert; Truong, Kiet; Borum, Howard; Leslie, Richard; Ma, Lein

    2012-05-01

    The development of an Integrated Base Defense (IBD) is a significant challenge for the Army with many analytical gaps. The IBD problem space is complex, with evolving requirements and a large stakeholder base. In order to evaluate and analyze IBD decisions, the Training & Doctrine Command (TRADOC) Maneuver Support Center of Excellence (MSCoE) led and continues to lead a series of IBD focused experiments and wargames. Modeling and Simulation (M&S) significantly contributes to this effort. To improve IBD M&S capabilities, a collaborative demonstration with the Research, Development and Engineering Command's (RDECOM's) M&S Decision Support Environment (MSDSE) was held in September 2011. The results of this demonstration provided key input to MSCoE IBD related concepts and technologies. Moreover, it established an initial M&S toolset that will significantly improve force protection in combat zones and Army installations worldwide by providing leaders a capability to conduct analysis of defense and mission rehearsals. The demonstration was executed with a "human in the loop" Battle Captain, who was aided by mission command assets such as Base Expeditionary Targeting and Surveillance Sensors-Combined (BETSS-C). The Common Operating Picture was populated and stimulated using Science & Technology (S&T) M&S, allowing for a realistic representation of physical phenomena without the need for real systems. Novel methods were used for simulation orchestration, and for initializing the simulations and Opposing Force (OPFOR) activities. Ultimately, this demonstration showed that the MSDSE is suitable to support TRADOC IBD analyses and that S&T M&S is ready to be used in a demanding simulation environment. This paper will highlight the event's outcomes and lessons identified.

  11. 77 FR 41190 - Office of Clinical and Preventive Services Funding Opportunity: National HIV Program for Enhanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... June 19, 2012, in FR DOC 2012-14891, on page 36550, in the third column, under the heading ``Dates: Key...: National HIV Program for Enhanced HIV/AIDS Screening and Engagement in Care AGENCY: Indian Health...

  12. Strain Effects on Enhanced Hydrogen Sulphide Detection Capability of Ag-DECORATED Defective Graphene: a First-Principles Investigation

    NASA Astrophysics Data System (ADS)

    Qin, Xian; Meng, Qingyuan; Feng, Yuan Ping

    2012-10-01

    Strain effects on hydrogen sulphide (H2S) adsorption on Ag-decorated Stone-Wales (SW) defect in graphene were investigated by density functional theory calculations. The results indicate that an Ag adatom is easily pinned chemically on the top of the most stretched C-C bond at the SW defect in graphene without mechanical strains. A modest uniform tensile strain (8%) applied in defective graphene greatly increases the binding energy of Ag by 44%, indicating the strain enhanced stabilization of Ag on SW defect. Using the resulting Ag-decorated defective graphene (Ag-SW-g) composite as a model for H2S molecule detection, we found that the tensile strain has little effects on the interaction between the molecule and the composite, and the adsorption energies of H2S around 1.6 eV which is six times larger than that on pristine graphene are produced. The enhanced H2S adsorption on Ag-SW-g is attributed to charge transfer from the molecule to the graphene through the bridge-like Ag adatom. In addition, the electronic property of the Ag-SW-g under different strains changes from a metallic state to a semiconductor state upon H2S adsorption, which should lead to an observable change in its conductivity. These findings pave the way for future development of graphene-based gas sensor.

  13. South Fork Clearwater River Habitat Enhancement, Nez Perce National Forest.

    SciTech Connect

    Siddall, Phoebe

    1992-04-01

    In 1984, the Nez Perce National forest and the Bonneville Power Administration entered into a contractual agreement which provided for improvement of spring chinook salmon and summer steelhead trout habitat in south Fork Clearwater River tributaries. Project work was completed in seven main locations: Crooked River, Red River, Meadow Creek Haysfork Gloryhole, Cal-Idaho Gloryhole, Fisher Placer and Leggett Placer. This report describes restoration activities at each of these sites.

  14. Enhancement of the Wear Particle Monitoring Capability of Oil Debris Sensors Using a Maximal Overlap Discrete Wavelet Transform with Optimal Decomposition Depth

    PubMed Central

    Li, Chuan; Peng, Juan; Liang, Ming

    2014-01-01

    Oil debris sensors are effective tools to monitor wear particles in lubricants. For in situ applications, surrounding noise and vibration interferences often distort the oil debris signature of the sensor. Hence extracting oil debris signatures from sensor signals is a challenging task for wear particle monitoring. In this paper we employ the maximal overlap discrete wavelet transform (MODWT) with optimal decomposition depth to enhance the wear particle monitoring capability. The sensor signal is decomposed by the MODWT into different depths for detecting the wear particle existence. To extract the authentic particle signature with minimal distortion, the root mean square deviation of kurtosis value of the segmented signal residue is adopted as a criterion to obtain the optimal decomposition depth for the MODWT. The proposed approach is evaluated using both simulated and experimental wear particles. The results show that the present method can improve the oil debris monitoring capability without structural upgrade requirements. PMID:24686730

  15. Enhanced Accident Tolerant LWR Fuels National Metrics Workshop Report

    SciTech Connect

    Lori Braase

    2013-01-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), in collaboration with the nuclear industry, has been conducting research and development (R&D) activities on advanced Light Water Reactor (LWR) fuels for the last few years. The emphasis for these activities was on improving the fuel performance in terms of increased burnup for waste minimization and increased power density for power upgrades, as well as collaborating with industry on fuel reliability. After the events at the Fukushima Nuclear Power Plant in Japan in March 2011, enhancing the accident tolerance of LWRs became a topic of serious discussion. In the Consolidated Appropriations Act, 2012, Conference Report 112-75, the U.S. Congress directed DOE-NE to: • Give “priority to developing enhanced fuels and cladding for light water reactors to improve safety in the event of accidents in the reactor or spent fuel pools.” • Give “special technical emphasis and funding priority…to activities aimed at the development and near-term qualification of meltdown-resistant, accident-tolerant nuclear fuels that would enhance the safety of present and future generations of light water reactors.” • Report “to the Committee, within 90 days of enactment of this act, on its plan for development of meltdown-resistant fuels leading to reactor testing and utilization by 2020.” Fuels with enhanced accident tolerance are those that, in comparison with the standard UO2-zirconium alloy system currently used by the nuclear industry, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, and operational transients, as well as design-basis and beyond design-basis events. The overall draft strategy for development and demonstration is comprised of three phases: Feasibility Assessment and Down-selection; Development and Qualification; and

  16. 2D wax-printed paper substrates with extended solvent supply capabilities allow enhanced ion signal in paper spray ionization.

    PubMed

    Damon, Deidre E; Maher, Yosef S; Yin, Mengzhen; Jjunju, Fred P M; Young, Iain S; Taylor, Stephen; Maher, Simon; Badu-Tawiah, Abraham K

    2016-06-21

    Paper-based microfluidic channels were created from solid wax printing, and the resultant 2D wax-printed paper substrates were used for paper spray (PS) mass spectrometry (MS) analysis of small organic compounds. Controlling fluid flow at the tip of the wax-printed paper triangles enabled the use of lower spray voltages (0.5-1 kV) and extended signal lifetime (10 minutes) in PS-MS. High sensitivity (sub ng mL(-1) levels) and quantitation precision (<10% RSD) have been achieved in the analysis of illicit drugs in 4 μL of raw urine (fresh and dry), as well as corrosion inhibitors and pesticides in water samples. The reported study encourages the future development of disposable 3D microfluidic paper-based analytical devices, which function with simple operation but capable of on-chip analyte detection by MS; such a device can replace the traditional complex laboratory procedures for MS analysis to enable on-site in situ sampling with portable mass spectrometers. PMID:27121269

  17. Solid-state synthesis of Ti2Nb10O29/reduced graphene oxide composites with enhanced lithium storage capability

    NASA Astrophysics Data System (ADS)

    Wang, Wan Lin; Oh, Byeong-Yun; Park, Ju-Young; Ki, Hangil; Jang, Jaewon; Lee, Gab-Yong; Gu, Hal-Bon; Ham, Moon-Ho

    2015-12-01

    Owing to their multiple redox couples, titanium-niobium-based oxides are still considered promising candidates for use as anodes for safe, rechargeable lithium ion batteries with high energy and power densities. Titanium-niobium-based oxide electrodes have, however, exhibited relatively poor cycling performance as a result of pulverization. In this study, we report on a simple two-step solid-state reaction route for producing hybrid composites of Ti2Nb10O29 (TNO) anchored on reduced graphene oxide (RGO), and the electrochemical performance of the resulting TNO/RGO composites. Solid-state reactions enable both the formation of TNO and the uniform distribution of RGO in the TNO/RGO composites. The TNO/RGO composites exhibited discharge and charge capacities of 261 and 256 mAh g-1, respectively, with much better cycling performance (182 mAh g-1 after the 50th cycles) and rate capability (165 mAh g-1 at a current density of 500 mA g-1) compared to the pure TNO.

  18. Enhanced pulseshaping capabilities and reduction of non-linear effects in all-fiber MOPA pulsed system

    NASA Astrophysics Data System (ADS)

    Morasse, Bertrand; Chatigny, Stéphane; Gagnon, Éric; de Sandro, Jean-Philippe; Desrosiers, Cynthia

    2009-02-01

    Pulseshaping is important in high energy pulsed fiber MOPA system to mitigate non-linear effects and optimize the processing of different materials. However, pulseshaping is greatly limited by the spectral features of the semiconductor seed source commonly used as the master oscillator. Through the appropriate design of an external fiber Bragg grating (FBG) and adequate current modulation, the spectrum of the fiber-coupled seed laser was broadened to suppress stimulated Brillouin scattering occurring in the amplifier chain and the central emission wavelength and bandwidth were controlled. Pulseshaping is also quickly limited by the saturation energy and doping level of standard aluminosilicate ytterbium doped fibers used in the power amplifier even with large core diameter. Co-doping the fiber with phosphorus greatly increases the saturation energy of the system, which gives smoother pulseshape and significantly lower stimulated Raman scattering (SRS). It is shown that going from 1060 nm to longer emission wavelength at 1090 nm with this fiber increases further the pulseshaping capabilities and reduces SRS. The phosphorus codoping also allows higher ytterbium doping level without photo-degradation, which decreases nonlinear effects generation during the amplification while giving more flexible pump wavelength choice and efficiency.

  19. Enhanced electron extraction capability of polymer solar cells via modifying the cathode buffer layer with inorganic quantum dots.

    PubMed

    Li, Zhiqi; Li, Shujun; Zhang, Zhihui; Zhang, Xinyuan; Li, Jingfeng; Liu, Chunyu; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2016-04-20

    Enhanced performance of polymer solar cells (PSCs) based on the blend of poly[N-9''-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT):[6,6]-phenyl-C70-butyric acid methyl ester (PC71BM) is demonstrated by titanium dioxide (TiO2) interface modification via CuInS2/ZnS quantum dots (CZdots). Devices with a TiO2/CZdots composite buffer layer exhibit both a high short-circuit current density (Jsc) and fill factor (FF), leading to a power conversion efficiency (PCE) up to 7.01%. The charge transport recombination mechanisms are investigated by an impedance behavior model, which indicates that TiO2 interfacial modification results in not only increasing the electron extraction but also reducing impedance. This study provides an important and beneficial approach to develop high efficiency PSCs. PMID:27055908

  20. Physician-directed software design: the role of utilization statistics and user input in enhancing HELP results review capabilities.

    PubMed Central

    Michael, P. A.

    1993-01-01

    The M.D. Rounds Report program was developed and implemented in June of 1992 as an adjunct to the HELP System at Rex Hospital. The program facilitates rapid access to information on allergies and current medications, laboratory results, radiology reports and therapist notes for a list of patients without physicians having to make additional menu or submenu selections. In planning for an upgrade of the program, utilization statistics and user feedback provided valuable information in terms of frequency of access, features used and unused, and the value of the program as a reporting tool in comparison to other online results reporting applications. A brief description of the functionality of the M.D. Rounds Report, evaluation of the program audit trail and user feedback, planned enhancements to the program, and a discussion of the prototyping and monitoring experience and the impact on future physician subsystem development will be presented. PMID:8130443

  1. Multifunctional non-viral gene vectors with enhanced stability, improved cellular and nuclear uptake capability, and increased transfection efficiency

    NASA Astrophysics Data System (ADS)

    Yang, Zhe; Jiang, Zhaozhong; Cao, Zhong; Zhang, Chao; Gao, Di; Luo, Xingen; Zhang, Xiaofang; Luo, Huiyan; Jiang, Qing; Liu, Jie

    2014-08-01

    We have developed a new multifunctional, non-viral gene delivery platform consisting of cationic poly(amine-co-ester) (PPMS) for DNA condensation, PEG shell for nanoparticle stabilization, poly(γ-glutamic acid) (γ-PGA) and mTAT (a cell-penetrating peptide) for accelerated cellular uptake, and a nuclear localization signal peptide (NLS) for enhanced intracellular transport of DNA to the nucleus. In vitro study showed that coating of the binary PPMS/DNA polyplex with γ-PGA promotes cellular uptake of the polyplex particles, particularly by γ-glutamyl transpeptidase (GGT)-positive cells through the GGT-mediated endocytosis pathway. Conjugating PEG to the γ-PGA led to the formation of a ternary PPMS/DNA/PGA-g-PEG polyplex with decreased positive charges on the surface of the polyplex particles and substantially higher stability in serum-containing aqueous medium. The cellular uptake rate was further improved by incorporating mTAT into the ternary polyplex system. Addition of the NLS peptide was designed to facilitate intracellular delivery of the plasmid to the nucleus--a rate-limiting step in the gene transfection process. As a result, compared with the binary PPMS/LucDNA polyplex, the new mTAT-quaternary PPMS/LucDNA/NLS/PGA-g-PEG-mTAT system exhibited reduced cytotoxicity, remarkably faster cellular uptake rate, and enhanced transport of DNA to the nucleus. All these advantageous functionalities contribute to the remarkable gene transfection efficiency of the mTAT-quaternary polyplex both in vitro and in vivo, which exceeds that of the binary polyplex and commercial Lipofectamine™ 2000/DNA lipoplex. The multifunctional mTAT-quaternary polyplex system with improved efficiency and reduced cytotoxicity represents a new type of promising non-viral vectors for the delivery of therapeutic genes to treat tumors.We have developed a new multifunctional, non-viral gene delivery platform consisting of cationic poly(amine-co-ester) (PPMS) for DNA condensation, PEG shell

  2. 77 FR 70414 - White River National Forest; Eagle County, CO; Vail Mountain Recreation Enhancements Projects EIS

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ...Vail Mountain Ski Resort (Vail) recently submitted a proposal to the White River National Forest (WRNF) for new and enhanced activities within its Forest Service-administered Special Use Permit (SUP) area. The WRNF has accepted this proposal, and is initiating a National Environmental Policy Act (NEPA) analysis to document and disclose potential impacts. The Proposed Action--the Vail Mountain......

  3. Final Environmental Impact Statement for the Proposed Relocation of Technical Area 18 Capabilities and Materials at the Los Alamos National Laboratory

    SciTech Connect

    N /A

    2002-09-20

    The National Nuclear Security Administration, a separately organized agency within DOE, is responsible for providing the Nation with nuclear weapons, ensuring the safety and reliability of those nuclear weapons, and supporting programs that reduce global nuclear proliferation. These missions are accomplished with a core team of highly trained nuclear experts. One of the major training facilities for these personnel is located at Technical Area 18 (TA-18), within the Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. Principal TA-18 operational activities involve research in and the design, development, construction, and application of experiments on nuclear criticality. Though TA-18 is judged to be secure by DOE's independent inspection office, its buildings and infrastructure are from 30 to more than 50 years old and are increasingly expensive to maintain and operate. Additionally, the TA-18 operations are located in a relatively isolated area, resulting in increasingly high costs to maintain a security Category I infrastructure. NNSA wishes to maintain the important capabilities currently provided at TA-18 in a manner that reduces the long-term costs for safeguards and security. NNSA proposes to accomplish this by relocating the TA-18 security Category I/II capabilities and materials to new locations. The TA-18 Relocation EIS evaluates the potential direct, indirect, and cumulative environmental impacts associated with this proposed action at the following DOE sites: (1) a different site at LANL at Los Alamos, New Mexico; (2) the Sandia National Laboratories/New Mexico at Albuquerque, New Mexico; (3) the Nevada Test Site near Las Vegas, Nevada (the Preferred Alternative); and (4) the Argonne National Laboratory-West near Idaho Falls, Idaho. The EIS also analyzes the alternatives of upgrading the existing TA-18 facilities and the No Action Alternative of maintaining the operations at the current TA-18 location.

  4. National plan to enhance aviation safety through human factors improvements

    NASA Technical Reports Server (NTRS)

    Foushee, Clay

    1990-01-01

    The purpose of this section of the plan is to establish a development and implementation strategy plan for improving safety and efficiency in the Air Traffic Control (ATC) system. These improvements will be achieved through the proper applications of human factors considerations to the present and future systems. The program will have four basic goals: (1) prepare for the future system through proper hiring and training; (2) develop a controller work station team concept (managing human errors); (3) understand and address the human factors implications of negative system results; and (4) define the proper division of responsibilities and interactions between the human and the machine in ATC systems. This plan addresses six program elements which together address the overall purpose. The six program elements are: (1) determine principles of human-centered automation that will enhance aviation safety and the efficiency of the air traffic controller; (2) provide new and/or enhanced methods and techniques to measure, assess, and improve human performance in the ATC environment; (3) determine system needs and methods for information transfer between and within controller teams and between controller teams and the cockpit; (4) determine how new controller work station technology can optimally be applied and integrated to enhance safety and efficiency; (5) assess training needs and develop improved techniques and strategies for selection, training, and evaluation of controllers; and (6) develop standards, methods, and procedures for the certification and validation of human engineering in the design, testing, and implementation of any hardware or software system element which affects information flow to or from the human.

  5. Hollow-spherical composites of Polyaniline/Cobalt Sulfide/Carbon nanodots with enhanced magnetocapacitance and electromagnetic wave absorption capabilities

    NASA Astrophysics Data System (ADS)

    Ge, Chuanjun; Zhang, Xiang; Liu, Jian; Jin, Feng; Liu, Jichang; Bi, Hong

    2016-08-01

    Hollow-spherical composites of polyaniline/cobalt sulfide/carbon nanodots (PANI/CoS/CDs-0.5T) have been synthesized by in situ polymerization under an applied magnetic field (MF) of 0.5 T. As a control, PANI/CoS/CDs-0T composites have been synthesized without a MF. Both composites acting as electrodes present obvious magnetocapacitances at a scan rate of 100 mV s-1 while the electrochemical cell tested under an external MF of 0.5 T. Notably, PANI/CoS/CDs-0.5T composites show larger magnetocapacitances than PANI/CoS/CDs-0T composites at different scan rates from 5 to 100 mV s-1. Electrochemical impedance spectroscopy (EIS) results indicate that MF can reduce charge transfer resistance at electrode/electrolyte interface. More importantly, PANI/CoS/CDs-0.5T composites show a much stronger electromagnetic wave (EMW) absorbing capability than PANI/CoS/CDs-0T in the range of 2-18 GHz which is attributed to an increased dielectric loss and a magnetic loss in low frequency range of 2-12.5 GHz. MF-induced ferromagnetic nanodomains of Co2+ clusters in the PANI/CoS/CDs-0.5T composites increase the complex permittivity and create more interfacial polarizations or the Maxwell-Wagner effect, which leads to increased dielectric loss. Compared with PANI/CoS/CDs-0T composites with diamagnetic behaviour, MF-induced weak ferromagnetism of CoS in the PANI/CoS/CDs-0.5T composites has caused additional magnetic loss. This work provides an efficient way for modulating electrochemical or electromagnetic properties of inorganic/polymer nanocomposites by employing an external MF.

  6. Soluble (pro)renin receptor via β-catenin enhances urine concentration capability as a target of liver X receptor.

    PubMed

    Lu, Xiaohan; Wang, Fei; Xu, Chuanming; Soodvilai, Sunny; Peng, Kexin; Su, Jiahui; Zhao, Long; Yang, Kevin T; Feng, Yumei; Zhou, Shu-Feng; Gustafsson, Jan-Åke; Yang, Tianxin

    2016-03-29

    The extracellular domain of the (pro)renin receptor (PRR) is cleaved to produce a soluble (pro)renin receptor (sPRR) that is detected in biological fluid and elevated under certain pathological conditions. The present study was performed to define the antidiuretic action of sPRR and its potential interaction with liver X receptors (LXRs), which are known regulators of urine-concentrating capability. Water deprivation consistently elevated urinary sPRR excretion in mice and humans. A template-based algorithm for protein-protein interaction predicted the interaction between sPRR and frizzled-8 (FZD8), which subsequently was confirmed by coimmunoprecipitation. A recombinant histidine-tagged sPRR (sPRR-His) in the nanomolar range induced a remarkable increase in the abundance of renal aquaporin 2 (AQP2) protein in primary rat inner medullary collecting duct cells. The AQP2 up-regulation relied on sequential activation of FZD8-dependent β-catenin signaling and cAMP-PKA pathways. Inhibition of FZD8 or tankyrase in rats induced polyuria, polydipsia, and hyperosmotic urine. Administration of sPRR-His alleviated the symptoms of diabetes insipidus induced in mice by vasopressin 2 receptor antagonism. Administration of the LXR agonist TO901317 to C57/BL6 mice induced polyuria and suppressed renal AQP2 expression associated with reduced renal PRR expression and urinary sPRR excretion. Administration of sPRR-His reversed most of the effects of TO901317. In cultured collecting duct cells, TO901317 suppressed PRR protein expression, sPRR release, and PRR transcriptional activity. Overall we demonstrate, for the first time to our knowledge, that sPRR exerts antidiuretic action via FZD8-dependent stimulation of AQP2 expression and that inhibition of this pathway contributes to the pathogenesis of diabetes insipidus induced by LXR agonism. PMID:26984496

  7. Nanocomposite semi-solid redox ionic liquid electrolytes with enhanced charge-transport capabilities for dye-sensitized solar cells.

    PubMed

    Rutkowska, Iwona A; Marszalek, Magdalena; Orlowska, Justyna; Ozimek, Weronika; Zakeeruddin, Shaik M; Kulesza, Pawel J; Grätzel, Michael

    2015-08-10

    The ability of Pt nanostructures to induce the splitting of the II bond in iodine (triiodide) molecules is explored here to enhance electron transfer in the iodine/iodide redox couple. Following the dispersal of Pt nanoparticles at 2 % (weight) level, charge transport was accelerated in triiodide/iodide-containing 1,3-dialkylimidazolium room-temperature ionic liquid. If both Pt nanoparticles and multi-walled carbon nanotubes were introduced into the ionic-liquid-based system, a solid-type (nonfluid) electrolyte was obtained. By using solid-state voltammetric (both sandwich-type and microelectrode-based) methodology, the apparent diffusion coefficients for charge transport increased to approximately 1×10(-6)  cm(2)  s(-1) upon the incorporation of the carbon-nanotube-supported iodine-modified Pt nanostructures. A dye-sensitized solar cell comprising TiO2 covered with a heteroleptic Ru(II) -type sensitizer (dye) and the semisolid triiodide/iodide ionic liquid electrolyte admixed with carbon-nanotube-supported Pt nanostructures yielded somewhat higher power conversion efficiencies (up to 7.9 % under standard reporting conditions) than those of the analogous Pt-free system. PMID:26119519

  8. Enhanced speech perception capabilities in a blind listener are associated with activation of fusiform gyrus and primary visual cortex.

    PubMed

    Hertrich, Ingo; Dietrich, Susanne; Moos, Anja; Trouvain, Jürgen; Ackermann, Hermann

    2009-01-01

    Blind individuals may learn to understand ultra-fast synthetic speech at a rate of up to about 25 syllables per second (syl)/s, an accomplishment by far exceeding the maximum performance level of normal-sighted listeners (8-10 syl/s). The present study indicates that this exceptional skill engages distinct regions of the central-visual system. Hemodynamic brain activation during listening to moderately- (8 syl/s) and ultra-fast speech (16 syl/s) was measured in a blind individual and six normal-sighted controls. Moderately-fast speech activated posterior and anterior 'language zones' in all subjects. Regarding ultra-fast tokens, the controls showed exclusive activation of supratemporal regions whereas the blind participant exhibited enhanced left inferior frontal and temporoparietal responses as well as significant hemodynamic activation of left fusiform gyrus (FG) and right primary visual cortex. Since left FG is known to be involved in phonological processing, this structure, presumably, provides the functional link between the central-auditory and -visual systems. PMID:19241219

  9. Integrated battlefield-effects research for the National Training Center. Appendix B. Requirements design specification for the addition of nuclear and chemical capabilities to the National Training Center (NTC) Core Instrumentation Subsystem (CIS). Technical report, 13 June 1983-30 December 1984

    SciTech Connect

    Erickson, D.; Ickler, J.; McKeown, P.; Metzger, L.; Plock, R.

    1984-12-31

    Research performed to evaluate and develop enhancements for integrated battlefield training at the U.S. Army National Training Center is described. These enhancements had been identified and concepts developed for their application in earlier phases of this research. This report consists of the basic volume summarizing the research tasks, approach, results, conclusions, and recommendations; plus twelve appendices. This document assumes that the requirements specified in the Core Instrumentation Subsystem Requirements Design Specification (RDS) dated 24 May 1982 with Live-Fire Supplement dated 1 December 1982 would be effective in the operational system used when implementing the requirements specified for nuclear/chemical processing. All basic requirements of the current 500 Player System with Live Fire enhancements, which accommodates a total of 400 players and 75 units per history (with a total of 1023 players across all histories) will be maintained in the 500 Player System which incorporates NBC capabilities.

  10. SPARROW MODELING - Enhancing Understanding of the Nation's Water Quality

    USGS Publications Warehouse

    Preston, Stephen D.; Alexander, Richard B.; Woodside, Michael D.; Hamilton, Pixie A.

    2009-01-01

    The information provided here is intended to assist water-resources managers with interpretation of the U.S. Geological Survey (USGS) SPARROW model and its products. SPARROW models can be used to explain spatial patterns in monitored stream-water quality in relation to human activities and natural processes as defined by detailed geospatial information. Previous SPARROW applications have identified the sources and transport of nutrients in the Mississippi River basin, Chesapeake Bay watershed, and other major drainages of the United States. New SPARROW models with improved accuracy and interpretability are now being developed by the USGS National Water Quality Assessment (NAWQA) Program for six major regions of the conterminous United States. These new SPARROW models are based on updated geospatial data and stream-monitoring records from local, State, and other federal agencies.

  11. GMI Capabilities

    NASA Technical Reports Server (NTRS)

    Strode, Sarah; Rodriguez, Jose; Steenrod, Steve; Liu, Junhua; Strahan, Susan; Nielsen, Eric

    2015-01-01

    We describe the capabilities of the Global Modeling Initiative (GMI) chemical transport model (CTM) with a special focus on capabilities related to the Atmospheric Tomography Mission (ATom). Several science results based on GMI hindcast simulations and preliminary results from the ATom simulations are highlighted. We also discuss the relationship between GMI and GEOS-5.

  12. Chemically primed bone-marrow derived mesenchymal stem cells show enhanced expression of chemokine receptors contributed to their migration capability

    PubMed Central

    Bidkhori, Hamid Reza; Ahmadiankia, Naghmeh; Matin, Maryam Moghaddam; Heirani-tabasi, Asieh; Farshchian, Moein; Naderi-meshkin, Hojjat; Shahriyari, Mina; Dastpak, Mahtab; Bahrami, Ahmad Reza

    2016-01-01

    Objective(s): The limited homing potential of bone-marrow-derived mesenchymal stem cells (BM-MSC) is the key obstacle in MSC-based therapy. It is believed that chemokines and chemokine receptor interactions play key roles in cellular processes associated with migration. Meanwhile, MSCs express a low level of distinct chemokine receptors and they even lose these receptors on their surface after a few passages which influence their therapeutic applications negatively. This study investigated whether treatment of BM-MSCs with hypoxia-mimicking agents would increase expression of some chemokine receptors and cell migration. Materials and Methods: BM-MSCs were treated at passage 2 for our gene expression profiling. All qPCR experiments were performed by SYBR Green method in CFX-96 Bio-Rad Real-Time PCR. The Boyden chamber assay was utilized to investigate BM-MSC homing. Results: Possible approaches to increasing the expression level of chemokine receptors by different hypoxia-mimicking agents such as valproic acid (VPA), CoCl2, and desferrioxamine (DFX) are described. Results show DFX efficiently up-regulate the CXCR7 and CXCR4 gene expression while VPA increase only the CXCR7 gene expression and no significant change in expression level of CXCR4 and the CXCR7 gene was detectable by CoCl2 treatment. Chemotaxis assay results show that pre-treatment with DFX, VPA, and Cocl2 enhances significantly the migration ability of BM-MSCs compared with the untreated control group and DFX treatment accelerates MSCs homing significantly with a higher rate than VPA and Cocl2 treatments. Conclusion: Our data supports the notion that pretreatment of MSC with VPA and DFX improves the efficiency of MSC therapy by triggering homing regulatory signaling pathways. PMID:27096059

  13. Enhancement of the national strong-motion network in Turkey

    USGS Publications Warehouse

    Gulkan, Polat; Ceken, U.; Colakoglu, Z.; Ugras, T.; Kuru, T.; Apak, A.; Anderson, J.G.; Sucuoglu, H.; Celebi, M.; Akkar, D.S.; Yazgan, U.; Denizlioglu, A.Z.

    2007-01-01

    Two arrays comprising 20 strong-motion sensors were established in western Turkey. The 14 stations of BYTNet follow a N-S trending line about 65 km in length, normal to strands of the North Anatolian fault that runs between the cities of Bursa and Yalova. Here the dominant character of the potential fault movement is a right-lateral transform slip. The DATNet array, comprising a total of eight stations, is arranged along a 110-km-long E-W trending direction along the Menderes River valley between Denizli and Aydin. (Two stations in this array were incorporated from the existing Turkish national strong-motion network.) This is an extensional tectonic environment, and the network mornitors potential large normal-faulting earthquakes on the faults in the valley. The installation of the arrays was supported by the North Atlantic Treaty Organization (NATO) under its Science for Peace Program. Maintenance and calibration is performed by the General Directorate of Disaster Affairs (GDDA) according to a protocol between Middle East Technical University (METU) and GDDA. Many young engineers and scientists have been trained in network operation and evaluation during the course of the project, and an international workshop dealing with strong-motion instrumentation has been organized as part of the project activities.

  14. Metrology measurement capabilities

    SciTech Connect

    Shroyer, K.

    1997-02-01

    Since 1958, the AlliedSignal Federal Manufacturing and Technologies (FM and T) Metrology Department has developed measurement technology and calibration capability in four major areas of measurement: (1) mechanical; (2) environmental, gas, liquid; (3) electrical (D.C., A.C., RF/Microwave); and (4) optical and radiation. The capabilities developed include unique capabilities in many areas of measurement and engineering expertise to develop measurement techniques and resolve measurement problems in these major areas. A strong audit function has been developed to provide a means to evaluate the calibration programs of the suppliers and internal calibration organizations. This evaluation includes measurement audits and technical surveys. The requirements placed on metrology require traceability of measurements to the National Institute of Standards and Technology or to nationally recognized methods or natural phenomena. A description of Metrology capabilities, traceability flow charts, and the measurement uncertainty of each of the measurement capabilities is contained in the report.

  15. LOFT Augmented Operator Capability Program

    SciTech Connect

    Hollenbeck, D.A.; Krantz, E.A.; Hunt, G.L.; Meyer, O.R.

    1980-01-01

    The outline of the LOFT Augmented Operator Capability Program is presented. This program utilizes the LOFT (Loss-of-Fluid Test) reactor facility which is located at the Idaho National Engineering Laboratory and the LOFT operational transient experiment series as a test bed for methods of enhancing the reactor operator's capability for safer operation. The design of an Operational Diagnotics and Display System is presented which was backfit to the existing data acquisition computers. Basic color-graphic displays of the process schematic and trend type are presented. In addition, displays were developed and are presented which represent safety state vector information. A task analysis method was applied to LOFT reactor operating procedures to test its usefulness in defining the operator's information needs and workload.

  16. The National Polar-orbiting Operational Environmental Satellite System: Capabilities for Atmospheric Remote Sensing for NWP and Climate -- Moving Towards a Global Earth Observation System of Systems

    NASA Astrophysics Data System (ADS)

    Mango, S. A.; Hinnant, F.; Hoffman, C. W.; Smehil, D. L.; Schneider, S. R.; Simione, S.; Needham, B.; Stockton, D.

    2005-12-01

    Over the last decade, the tri-agency Integrated Program Office (IPO), comprised of the National Oceanic and Atmospheric Administration (NOAA), the Department of Defense (DoD), and the National Aeronautics and Space Administration (NASA), has been managing the development of the National Polar-orbiting Operational Environmental Satellite System (NPOESS). Once operational later this decade, NPOESS will replace NOAA's Polar-orbiting Operational Environmental Satellites (POES) and DoD's Defense Meteorological Satellite Program (DMSP) systems. The IPO, through its Acquisition and Operations contractor, Northrop Grumman, will launch NPOESS spacecraft into three orbital planes to provide a single, national system capable of satisfying both civil and national security requirements for space-based, remotely sensed environmental data. With the development of NPOESS, we are evolving the existing "weather" satellites into integrated environmental observing systems by expanding our capabilities to observe, assess, and predict the total Earth system - ocean, atmosphere, land, and the space environment. The NPOESS will enable more accurate short-term weather forecasts and severe storm warnings and improved monitoring of atmospheric phenomena. NPOESS will also provide continuity of critical data for monitoring, understanding, and predicting climate change and assessing the impacts of climate change on seasonal and longer time scales. For these purposes, the NPOESS Integrated Program Office [IPO] is developing a suite of advanced, atmospheric sounding/probing instruments as a major part of the next generation meteorological, environmental and climate operational satellite system in polar, low earth orbit [LEO]. The IPO is developing the CrIS, Cross-track Infrared Sounder, an Ozone Mapping & Profiler Suite [OMPS]and a Visible and Infrared Imager and Radiometer Suite [VIIRS] and NASA is developing an Advanced Technology Microwave Sounder [ATMS]. These four instruments will be key

  17. LANL Analytical and Radiochemistry Capabilities

    SciTech Connect

    Steiner, Robert E.; Burns, Carol J.; Lamont, Stephen P.; Tandon, Lav

    2012-07-27

    The overview of this presentation is: (1) Introduction to nonproliferation efforts; (2) Scope of activities Los Alamos National Laboratory; (3) Facilities for radioanalytical work at LANL; (4) Radiochemical characterization capabilities; and (5) Bulk chemical and materials analysis capabilities.

  18. Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability

    PubMed Central

    Lee, By Junghan; Zhang, Zhuo; Baek, Seunghyun; Kim, Sangkuk; Kim, Donghyung; Yong, Kijung

    2016-01-01

    Drag reduction has become a serious issue in recent years in terms of energy conservation and environmental protection. Among diverse approaches for drag reduction, superhydrophobic surfaces have been mainly researched due to their high drag reducing efficiency. However, due to limited lifetime of plastron (i.e., air pockets) on superhydrophobic surfaces in underwater, the instability of dewetted surfaces has been a sticking point for practical applications. This work presents a breakthrough in improving the underwater stability of superhydrophobic surfaces by optimizing nanoscale surface structures using SiC/Si interlocked structures. These structures have an unequaled stability of underwater superhydrophobicity and enhance drag reduction capabilities,with a lifetime of plastron over 18 days and maximum velocity reduction ratio of 56%. Furthermore, through photoelectrochemical water splitting on a hierarchical SiC/Si nanostructure surface, the limited lifetime problem of air pockets was overcome by refilling the escaping gas layer, which also provides continuous drag reduction effects. PMID:27095674

  19. Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability

    NASA Astrophysics Data System (ADS)

    Lee, By Junghan; Zhang, Zhuo; Baek, Seunghyun; Kim, Sangkuk; Kim, Donghyung; Yong, Kijung

    2016-04-01

    Drag reduction has become a serious issue in recent years in terms of energy conservation and environmental protection. Among diverse approaches for drag reduction, superhydrophobic surfaces have been mainly researched due to their high drag reducing efficiency. However, due to limited lifetime of plastron (i.e., air pockets) on superhydrophobic surfaces in underwater, the instability of dewetted surfaces has been a sticking point for practical applications. This work presents a breakthrough in improving the underwater stability of superhydrophobic surfaces by optimizing nanoscale surface structures using SiC/Si interlocked structures. These structures have an unequaled stability of underwater superhydrophobicity and enhance drag reduction capabilities,with a lifetime of plastron over 18 days and maximum velocity reduction ratio of 56%. Furthermore, through photoelectrochemical water splitting on a hierarchical SiC/Si nanostructure surface, the limited lifetime problem of air pockets was overcome by refilling the escaping gas layer, which also provides continuous drag reduction effects.

  20. Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability.

    PubMed

    Lee, By Junghan; Zhang, Zhuo; Baek, Seunghyun; Kim, Sangkuk; Kim, Donghyung; Yong, Kijung

    2016-01-01

    Drag reduction has become a serious issue in recent years in terms of energy conservation and environmental protection. Among diverse approaches for drag reduction, superhydrophobic surfaces have been mainly researched due to their high drag reducing efficiency. However, due to limited lifetime of plastron (i.e., air pockets) on superhydrophobic surfaces in underwater, the instability of dewetted surfaces has been a sticking point for practical applications. This work presents a breakthrough in improving the underwater stability of superhydrophobic surfaces by optimizing nanoscale surface structures using SiC/Si interlocked structures. These structures have an unequaled stability of underwater superhydrophobicity and enhance drag reduction capabilities,with a lifetime of plastron over 18 days and maximum velocity reduction ratio of 56%. Furthermore, through photoelectrochemical water splitting on a hierarchical SiC/Si nanostructure surface, the limited lifetime problem of air pockets was overcome by refilling the escaping gas layer, which also provides continuous drag reduction effects. PMID:27095674

  1. NEW GUN CAPABILITY WITH INTERCHANGABLE BARRELS TO INVESTIGATE LOW VELOCITY IMPACT REGIMES AT THE LAWRENCE LIVERMORE NATIONAL LABORATORY HIGH EXPLOSIVES APPLICATIONS FACILITY

    SciTech Connect

    Vandersall, K S; Behn, A; Gresshoff, M; Jr., L F; Chiao, P I

    2009-09-16

    A new gas gun capability is being activated at Lawrence Livermore National Laboratories located in the High Explosives Applications Facility (HEAF). The single stage light gas (dry air, nitrogen, or helium) gun has interchangeable barrels ranging from 25.4 mm to 76.2 mm in diameter with 1.8 meters in length and is being fabricated by Physics Applications, Inc. Because it is being used for safety studies involving explosives, the gun is planned for operation inside a large enclosed firing tank, with typical velocities planned in the range of 10-300 m/s. Three applications planned for this gun include: low velocity impact of detonator or detonator/booster assemblies with various projectile shapes, the Steven Impact test that involves impact initiation of a cased explosive target, and the Taylor impact test using a cylindrical explosive sample impacted onto a rigid anvil for fracture studies of energetic materials. A highlight of the gun features, outline on work in progress for implementing this capability, and discussion of the planned areas of research will be included.

  2. Analysis of the confluence of three patterns using the Centering and Pointing System (CAPS) images for the Advanced Radiographic Capability (ARC) at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Leach, Richard R.; Awwal, Abdul; Bliss, Erlan; Roberts, Randy; Rushford, Michael; Wilhelmsen, Karl; Zobrist, Thomas

    2014-09-01

    The Advance Radiographic Capability (ARC) at the National Ignition Facility (NIF) is a laser system that employs up to four petawatt (PW) lasers to produce a sequence of short pulses that generate X-rays which backlight highdensity internal confinement fusion (ICF) targets. Employing up to eight backlighters, ARC can produce an X-ray "motion picture" to diagnose the compression and ignition of a cryogenic deuterium-tritium target with tens-ofpicosecond temporal resolution during the critical phases of an ICF shot. Multi-frame, hard-X-ray radiography of imploding NIF capsules is a capability which is critical to the success of NIF's missions. The function of the Centering and Pointing System (CAPS) in ARC is to provide superimposed near-field and far-field images on a common optical path. The Images are then analyzed to extract beam centering and pointing data for the control system. The images contain the confluence of pointing, centering, and reference patterns. The patterns may have uneven illumination, particularly when the laser is misaligned. In addition, the simultaneous appearance of three reference patterns may be co-incidental, possibly masking one or more of the patterns. Image analysis algorithms have been developed to determine the centering and pointing position of ARC from these images. In the paper we describe the image analysis algorithms used to detect and identify the centers of these patterns. Results are provided, illustrating how well the process meets system requirements.

  3. National Research Council Dialogue to Assess Progress on NASA's Systems Engineering Cost/Risk Analysis Capability Roadmap Development: General Background and Introduction

    NASA Technical Reports Server (NTRS)

    Regenie, Victoria

    2005-01-01

    Contents include the following: General Background and Introduction of Capability. Roadmaps for Systems Engineering Cost/Risk Analysis. Agency Objectives. Strategic Planning Transformation. Review Capability Roadmaps and Schedule. Review Purpose of NRC Review. Capability Roadmap Development (Progress to Date).

  4. Community psychology and the capabilities approach.

    PubMed

    Shinn, Marybeth

    2015-06-01

    What makes for a good life? The capabilities approach to this question has much to offer community psychology, particularly with respect to marginalized groups. Capabilities are freedoms to engage in valued social activities and roles-what people can do and be given both their capacities, and environmental opportunities and constraints. Economist Amartya Sen's focus on freedoms and agency resonates with psychological calls for empowerment, and philosopher Martha Nussbaum's specification of requirements for a life that is fully human provides an important guide for social programs. Community psychology's focus on mediating structures has much to offer the capabilities approach. Parallels between capabilities, as enumerated by Nussbaum, and settings that foster positive youth development, as described in a National Research Council Report (Eccles and Gootman (Eds) in Community programs to promote youth development. National Academy Press, Washington, 2002) suggest extensions of the approach to children. Community psychologists can contribute to theory about ways to create and modify settings to enhance capabilities as well as empowerment and positive youth development. Finally, capabilities are difficult to measure, because they involve freedoms to choose but only choices actually made or enacted can be observed. The variation in activities or goals across members of a setting provides a measure of the capabilities that the setting fosters. PMID:25822113

  5. The National Polar-orbiting Operational Environmental Satellite System: Capabilities for Operational Space Environment In Situ and Remote Sensing and Solar Irradiance

    NASA Astrophysics Data System (ADS)

    Mango, S. A.; Denig, W. F.; Hoffman, C. W.; Furlong, D.; Haas, J. M.

    2005-12-01

    Over the last decade, the tri-agency Integrated Program Office (IPO), comprised of the National Oceanic and Atmospheric Administration (NOAA), the Department of Defense (DoD), and the National Aeronautics and Space Administration (NASA), has been managing the development of the National Polar-orbiting Operational Environmental Satellite System (NPOESS). Once operational later this decade, NPOESS will replace NOAA's Polar-orbiting Operational Environmental Satellites (POES) and DoD's Defense Meteorological Satellite Program (DMSP) systems. The IPO, through its Acquisition and Operations contractor, Northrop Grumman, will launch NPOESS spacecraft into three orbital planes to provide a single, national system capable of satisfying both civil and national security requirements for space-based, remotely sensed environmental data. With the development of NPOESS, we are evolving the existing "weather" satellites into integrated environmental observing systems by expanding our capabilities to observe, assess, and predict the total Earth system - ocean, atmosphere, land, and the space environment. NPOESS will transform today's short-term, space-based space environment research missions and the previous operational missions into a sustained, operational space environment remote sensing observation program. A major portion of NPOESS is dedicated to the space environment missions of our users. Fourteen of the fifty-five NPOESS mission environmental data record [EDR] products address various aspects of the solar-geophysical parameters needed to characterize the space environment and solar irradiance. Three factors of our users' requirements present significant challenges for properly sampling the space environment spatial-temporal-spectral characteristics: 1.) the vast volume of the space environment to be covered on both regional and global scales 2.) the large range of natural time scales for the space environment phenomenology to be covered, especially the challenging

  6. Isolation of Bacillus sp. strains capable of decomposing alkali lignin and their application in combination with lactic acid bacteria for enhancing cellulase performance.

    PubMed

    Chang, Young-Cheol; Choi, Dubok; Takamizawa, Kazuhiro; Kikuchi, Shintaro

    2014-01-01

    Effective biological pretreatment method for enhancing cellulase performance was investigated. Two alkali lignin-degrading bacteria were isolated from forest soils in Japan and named CS-1 and CS-2. 16S rDNA sequence analysis indicated that CS-1 and CS-2 were Bacillus sp. Strains CS-1 and CS-2 displayed alkali lignin degradation capability. With initial concentrations of 0.05-2.0 g L(-1), at least 61% alkali lignin could be degraded within 48 h. High laccase activities were observed in crude enzyme extracts from the isolated strains. This result indicated that alkali lignin degradation was correlated with laccase activities. Judging from the net yields of sugars after enzymatic hydrolysis, the most effective pretreatment method for enhancing cellulase performance was a two-step processing procedure (pretreatment using Bacillus sp. CS-1 followed by lactic acid bacteria) at 68.6%. These results suggest that the two-step pretreatment procedure is effective at accelerating cellulase performance. PMID:24316485

  7. Kodak Skills Enhancement Program. U.S. Department of Education National Workplace Literacy Project. Final Report.

    ERIC Educational Resources Information Center

    Beaudin, Bart P.

    The Kodak Skills Enhancement program was a workplace literacy project funded through the U.S. Department of Education's National Workplace Literacy Program. The project goals were as follows: (1) establish a positive climate within the Kodak corporate environment to ensure program effectiveness by garnering support at all levels; (2) determine the…

  8. 77 FR 36550 - Office of Clinical and Preventive Services Funding Opportunity: National HIV Program for Enhanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-19

    ..., day care, health care, or early childhood development services are provided to children. This is...: National HIV Program for Enhanced HIV/AIDS Screening and Engagement in Care Announcement Type: New. Funding... Screening and Engagement in Care. This program is authorized under: the Snyder Act, 25 U.S.C. 13;...

  9. 76 FR 50199 - National Center To Enhance the Professional Development of School Personnel Who Share...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    .... SUPPLEMENTARY INFORMATION: On June 7, 2011, the Department published a notice in the Federal Register (76 FR... published a notice in the Federal Register (71 FR 35260) inviting applications for new awards for fiscal... National Center To Enhance the Professional Development of School Personnel Who Share Responsibility...

  10. Management Enhancement Team Approach (META) for the Australian National Training Authority. An Evaluation Report.

    ERIC Educational Resources Information Center

    Foreman, David J.; Dunn, John G.

    The management enhancement team approach (META) is a team-driven management development program designed for managers within Australia's National Vocational Education and Training Sector (NVETS). META, which has been piloted at more than 70 sites across Australia, is designed to identify and address management development needs within the context…

  11. Enhanced binding capability of nuclear factor-κB with demethylated P2X3 receptor gene contributes to cancer pain in rats.

    PubMed

    Zhou, You-Lang; Jiang, Guo-Qin; Wei, Jinrong; Zhang, Hong-Hong; Chen, Wei; Zhu, Hongyan; Hu, Shufen; Jiang, Xinghong; Xu, Guang-Yin

    2015-10-01

    Nuclear factor-kappa B (NF-κB) signaling is implicated in both cancer development and inflammation processes. However, the roles and mechanisms of NF-κB signaling in the development of cancer-induced pain (CIP) remain unknown. This study was designed to investigate the roles of the p65 subunit of NF-κB in regulation of the purinergic receptor (P2X3R) plasticity in dorsal root ganglion (DRG) of CIP rats. We showed here that tumor cell injection produced mechanical and thermal hyperalgesia, and an enhanced body weight-bearing difference, which was correlated with an upregulation of p65 and P2X3R expression in lumber DRGs and a potentiation of ATP-evoked responses of tibia-innervating DRG neurons. Inhibition of NF-κB signaling using p65 inhibitor pyrrolidine dithiocarbamate, BAY-11-7082, or lentiviral-p65 short-hairpin RNA significantly attenuated CIP and reversed the activities of P2X3R. Interestingly, tumor cell injection led to a significant demethylation of CpG island in p2x3r gene promoter and enhanced ability of p65 to bind the promoter of p2x3r gene. Our findings suggest that upregulation of P2X3R expression was mediated by the enhanced binding capability of p65 with demethylated promoter of p2x3r gene, thus contributing to CIP. NF-κBp65 might be a potential target for treating CIP, a neuropathic pain generated by tumor cell-induced injury to nerves that innervate the skin. PMID:26049406

  12. Enhanced binding capability of nuclear factor-κB with demethylated P2X3 receptor gene contributes to cancer pain in rats

    PubMed Central

    Zhou, You-Lang; Jiang, Guo-Qin; Wei, Jinrong; Zhang, Hong-Hong; Chen, Wei; Zhu, Hongyan; Hu, Shufen; Jiang, Xinghong; Xu, Guang-Yin

    2015-01-01

    Abstract Nuclear factor-kappa B (NF-κB) signaling is implicated in both cancer development and inflammation processes. However, the roles and mechanisms of NF-κB signaling in the development of cancer-induced pain (CIP) remain unknown. This study was designed to investigate the roles of the p65 subunit of NF-κB in regulation of the purinergic receptor (P2X3R) plasticity in dorsal root ganglion (DRG) of CIP rats. We showed here that tumor cell injection produced mechanical and thermal hyperalgesia, and an enhanced body weight–bearing difference, which was correlated with an upregulation of p65 and P2X3R expression in lumber DRGs and a potentiation of ATP-evoked responses of tibia-innervating DRG neurons. Inhibition of NF-κB signaling using p65 inhibitor pyrrolidine dithiocarbamate, BAY-11-7082, or lentiviral-p65 short-hairpin RNA significantly attenuated CIP and reversed the activities of P2X3R. Interestingly, tumor cell injection led to a significant demethylation of CpG island in p2x3r gene promoter and enhanced ability of p65 to bind the promoter of p2x3r gene. Our findings suggest that upregulation of P2X3R expression was mediated by the enhanced binding capability of p65 with demethylated promoter of p2x3r gene, thus contributing to CIP. NF-κBp65 might be a potential target for treating CIP, a neuropathic pain generated by tumor cell–induced injury to nerves that innervate the skin. PMID:26049406

  13. National Research Council Dialogue to Assess Progesss on NASA's Human Exploration Systems and Mobility Capability Roadmap Development: General Background and Introduction

    NASA Technical Reports Server (NTRS)

    Inman, Thomas

    2005-01-01

    General Background and Introduction of Capability Roadmaps: Agency Objective. Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Technology and Capability Readiness Levels. Relationships Between Roadmaps. Purpose of NRC Review. Capability Roadmap Development (Team Progress to Date).

  14. Project CAPABLE: Model Unit.

    ERIC Educational Resources Information Center

    Madawaska School District, ME.

    Project CAPABLE (Classroom Action Program: Aim: Basic Learning Effectiveness) is a classroom approach which integrates the basic learning skills with content. The goal of the project is to use basic learning skills to enhance the learning of content and at the same time use the content to teach basic learning skills. This manual illustrates how…

  15. Metrology measurement capability

    NASA Astrophysics Data System (ADS)

    Shroyer, K.

    1995-01-01

    During the past 36 years, the Kansas City Division's (KCD) Metrology Department has developed measurement technology and calibration capability in four major areas of measurement: (1) Mechanical; (2) Environmental, Gas, Liquid; Electrical (D.C., A.C., RF/Microwave); and (3) Optical and Radiation. The capabilities developed include unique capabilities in many areas of measurement and engineering expertise to develop measurement techniques and resolve measurement problems in these major areas. KCD Metrology was established in 1958 to provide a measurement base for the Kansas City Plant. The Metrology Engineering Department provides the expertise to develop measurement capabilities for virtually any type of measurement which falls into the broad areas listed above. The engineering staff currently averages almost 19 years of measurement experience. A strong audit function has been developed to provide a means to evaluate the calibration programs of our suppliers and internal calibration organizations. This evaluation includes measurement audits and technical surveys. The requirements placed on Metrology require traceability of measurements to the National Institute of Standards and Technology or to nationally recognized methods or natural phenomena. A description of Metrology capabilities, traceability flow charts, and the measurement uncertainty of each of the measurement capabilities is contained in the following pages.

  16. Metrology measurement capabilities

    SciTech Connect

    Barnes, L.M.

    1997-06-01

    Since 1958, the AlliedSignal Federal Manufacturing and Technologies (FM and T) Metrology Department has developed measurement technology and calibration capability in four major areas of measurement: mechanical; environmental, gas, liquid; electrical (D.C., A.C., RF/microwave); and optical and radiation. The capabilities developed include unique capabilities in many areas of measurement and engineering expertise to develop measurement techniques and resolve measurement problems in these major areas. FM and T Metrology was established in 1958 to provide a measurement base for the Department of energy`s Kansas City Plant. The Metrology Engineering Department provides the expertise to develop measurement capabilities for virtually any type of measurement which falls into the broad areas listed above. The engineering staff currently averages almost 16 years of measurement experience. A strong audit function has been developed to provide a means to evaluate the calibration programs of the suppliers and internal calibration organizations. This evaluation includes measurement audits and technical surveys. The requirements placed on Metrology require traceability of measurements to the National Institute of Standards and Technology or to nationally recognized methods or natural phenomena. A description of Metrology capabilities, traceability flow charts, and the measurement uncertainty of each of the measurement capabilities is contained in this report.

  17. Metrology measurement capability

    SciTech Connect

    Shroyer, K.

    1995-01-01

    During the past 36 years, the Kansas City Division`s (KCD) Metrology Department has developed measurement technology and calibration capability in four major areas of measurement: (1) Mechanical; (2) Environmental, Gas, Liquid; Electrical (D.C., A.C., RF/Microwave); and (3) Optical and Radiation. The capabilities developed include unique capabilities in many areas of measurement and engineering expertise to develop measurement techniques and resolve measurement problems in these major areas. KCD Metrology was established in 1958 to provide a measurement base for the Kansas City Plant. The Metrology Engineering Department provides the expertise to develop measurement capabilities for virtually any type of measurement which falls into the broad areas listed above. The engineering staff currently averages almost 19 years of measurement experience. A strong audit function has been developed to provide a means to evaluate the calibration programs of our suppliers and internal calibration organizations. This evaluation includes measurement audits and technical surveys. The requirements placed on Metrology require traceability of measurements to the National Institute of Standards and Technology or to nationally recognized methods or natural phenomena. A description of Metrology capabilities, traceability flow charts, and the measurement uncertainty of each of the measurement capabilities is contained in the following pages.

  18. Remote Controlled Orbiter Capability

    NASA Technical Reports Server (NTRS)

    Garske, Michael; delaTorre, Rafael

    2007-01-01

    The Remote Control Orbiter (RCO) capability allows a Space Shuttle Orbiter to perform an unmanned re-entry and landing. This low-cost capability employs existing and newly added functions to perform key activities typically performed by flight crews and controllers during manned re-entries. During an RCO landing attempt, these functions are triggered by automation resident in the on-board computers or uplinked commands from flight controllers on the ground. In order to properly route certain commands to the appropriate hardware, an In-Flight Maintenance (IFM) cable was developed. Currently, the RCO capability is reserved for the scenario where a safe return of the crew from orbit may not be possible. The flight crew would remain in orbit and await a rescue mission. After the crew is rescued, the RCO capability would be used on the unmanned Orbiter in an attempt to salvage this national asset.

  19. IAC - INTEGRATED ANALYSIS CAPABILITY

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1994-01-01

    Integration via Mesh Interpolation Coefficients), which transforms field values from one model to another; LINK, which simplifies incorporation of user specific modules into IAC modules; and DATAPAC, the National Bureau of Standards statistical analysis package. The IAC database contains structured files which provide a common basis for communication between modules and the executive system, and can contain unstructured files such as NASTRAN checkpoint files, DISCOS plot files, object code, etc. The user can define groups of data and relations between them. A full data manipulation and query system operates with the database. The current interface modules comprise five groups: 1) Structural analysis - IAC contains a NASTRAN interface for standalone analysis or certain structural/control/thermal combinations. IAC provides enhanced structural capabilities for normal modes and static deformation analysis via special DMAP sequences. IAC 2.5 contains several specialized interfaces from NASTRAN in support of multidisciplinary analysis. 2) Thermal analysis - IAC supports finite element and finite difference techniques for steady state or transient analysis. There are interfaces for the NASTRAN thermal analyzer, SINDA/SINFLO, and TRASYS II. FEMNET, which converts finite element structural analysis models to finite difference thermal analysis models, is also interfaced with the IAC database. 3) System dynamics - The DISCOS simulation program which allows for either nonlinear time domain analysis or linear frequency domain analysis, is fully interfaced to the IAC database management capability. 4) Control analysis - Interfaces for the ORACLS, SAMSAN, NBOD2, and INCA programs allow a wide range of control system analyses and synthesis techniques. Level 2.5 includes EIGEN, which provides tools for large order system eigenanalysis, and BOPACE, which allows for geometric capabilities and finite element analysis with nonlinear material. Also included in IAC level 2.5 is SAMSAN 3.1, an

  20. Hitchhiker capabilities

    NASA Technical Reports Server (NTRS)

    Goldsmith, Theodore C.

    1988-01-01

    A carrier system has been developed for economical and quick response flight of small attached payloads on the space shuttle. Hitchhiker can accommodate up to 750 lb of customer payloads in canisters or mounted to an exposed side-mount plate, or up to 1200 lb mounted on a cross-bay structure. The carrier connects to the orbiter's electrical systems and provides up to six customers with standard electrical services including power, real time telemetry and commands. A transparent data and command system concept is employed to allow the customer to easily use his own ground support equipment and personnel to control his payload during integration and flight operations. A general description of the Hitchhiker program and the Shuttle Payload of Opportunity Carrier (SPOC) is given and future enhancements are outlined.

  1. Integrated battlefield-effects research for the National Training Center. Appendix G. Capability of off-the-shelf pagers to receive transmissions in the operational areas of Fort Irwin, California. Technical report, 13 June 1983-30 December 1984

    SciTech Connect

    Erickson, D.; Ickler, J.; McKeown, P.; Metzger, L.; Plock, R.

    1984-12-31

    During the course of research on how to enhance nuclear and chemical warfare training at the National Training Center, a need was identified for field simulators that provide appropriate indications of the simulated environment. Part of the current research is to provide preliminary designs for simulators of the IM-174 radiacmeter, the IM-93 or 185 dosimeter, and the M-43 chemical detector. A method of remotely controlling these simulators by using off-the-shelf commercial pagers appeared to be cost-effective. There appeared to be a significant risk; however, in the ability of a transmission system, constrained by acceptable power levels and frequencies, to communicate with pagers throughout areas of interest at Fort Irwin. The purpose of the test was to verify the capability of commercial off-the-shelf Motorola paging system to communicate throughout an adequate area of Fort Irwin, so that the system could be used to provide remote control of nuclear and chemical field simulators. A secondary objective was to provide a mapping of the pager communications coverage from selected transmission sites at Fort Irwin.

  2. Enhancing the National Incident-Based Reporting System: A Policy Proposal.

    PubMed

    Bierie, David M

    2015-09-01

    The National Incident-Based Reporting System (NIBRS) is an important data set serving social scientists, policy makers, the business community, and the press. However, it is hampered by low participation rates among the nation's police agencies. This article outlines a strategy for enhancing NIBRS by (a) providing police agencies free and supported software to extract and transmit an agency's Record Management System (RMS) data in NIBRS format (or a data-entry system if an RMS does not exist), (b) including personal identifiers of arrestees, and (c) allowing police agencies to access the national data for routine police work. The article describes how taking these steps would decrease the costs of implementing and maintaining NIBRS, encourage widespread adoption, and increase data quality. These enhancements could foster substantial improvements in policing as well as other aspects of the criminal justice system. These changes would also open up new and exciting areas for academics and analysts, including the ability to study criminal careers over time as well as criminal networks within NIBRS. PMID:24618875

  3. Evaluation of the United States National Air Quality Forecast Capability experimental real-time predictions in 2010 using Air Quality System ozone and NO2 measurements

    NASA Astrophysics Data System (ADS)

    Chai, T.; Kim, H.-C.; Lee, P.; Tong, D.; Pan, L.; Tang, Y.; Huang, J.; McQueen, J.; Tsidulko, M.; Stajner, I.

    2013-10-01

    The National Air Quality Forecast Capability (NAQFC) project provides the US with operational and experimental real-time ozone predictions using two different versions of the three-dimensional Community Multi-scale Air Quality (CMAQ) modeling system. Routine evaluation using near-real-time AIRNow ozone measurements through 2011 showed better performance of the operational ozone predictions. In this work, quality-controlled and -assured Air Quality System (AQS) ozone and nitrogen dioxide (NO2) observations are used to evaluate the experimental predictions in 2010. It is found that both ozone and NO2 are overestimated over the contiguous US (CONUS), with annual biases of +5.6 and +5.1 ppbv, respectively. The annual root mean square errors (RMSEs) are 15.4 ppbv for ozone and 13.4 ppbv for NO2. For both species the overpredictions are most pronounced in the summer. The locations of the AQS monitoring sites are also utilized to stratify comparisons by the degree of urbanization. Comparisons for six predefined US regions show the highest annual biases for ozone predictions in Southeast (+10.5 ppbv) and for NO2 in the Lower Middle (+8.1 ppbv) and Pacific Coast (+7.1 ppbv) regions. The spatial distributions of the NO2 biases in August show distinctively high values in the Los Angeles, Houston, and New Orleans areas. In addition to the standard statistics metrics, daily maximum eight-hour ozone categorical statistics are calculated using the current US ambient air quality standard (75 ppbv) and another lower threshold (70 ppbv). Using the 75 ppbv standard, the hit rate and proportion of correct over CONUS for the entire year are 0.64 and 0.96, respectively. Summertime biases show distinctive weekly patterns for ozone and NO2. Diurnal comparisons show that ozone overestimation is most severe in the morning, from 07:00 to 10:00 local time. For NO2, the morning predictions agree with the AQS observations reasonably well, but nighttime concentrations are overpredicted by around

  4. Evaluation of the United States National Air Quality Forecast Capability experimental real-time predictions in 2010 using Air Quality System ozone and NO2 measurements

    NASA Astrophysics Data System (ADS)

    Chai, T.; Kim, H.-C.; Lee, P.; Tong, D.; Pan, L.; Tang, Y.; Huang, J.; McQueen, J.; Tsidulko, M.; Stajner, I.

    2013-05-01

    The National Air Quality Forecast Capability (NAQFC) project provides the US with operational and experimental real-time ozone predictions using two different versions of the three-dimensional Community Multi-scale Air Quality (CMAQ) Modeling System. Routine evaluation using near-real-time AIRNow ozone measurements through 2011 showed better performance of the operational ozone predictions. In this work, quality-controlled and -assured Air Quality System (AQS) ozone and nitrogen dioxide (NO2) observations are used to evaluate the experimental predictions in 2010, with a view towards their improvement. It is found that both ozone and NO2 are overestimated over the contiguous US (CONUS), with annual biases of +5.6 ppbv and +5.1 ppbv, respectively. The annual root mean square errors (RMSEs) are 15.4 ppbv for ozone and 13.4 ppbv for NO2. For both species the over-predictions are most pronounced in the summer. The locations of the AQS monitoring sites are also utilized to stratify comparisons by the degree of urbanization. Comparisons for six predefined US regions show the highest annual biases for ozone predictions in Southeast (+10.5 ppbv) and for NO2 in the Lower Middle (+8.1 ppbv) and Pacific Coast (+7.1 ppbv) regions. The spatial distributions of the NO2 biases in July and August show distinctively high values in Los Angeles, Houston, and New Orleans areas. In addition to the standard statistics metrics, daily maximum eight-hour ozone categorical statistics are calculated using the current US ambient air quality standard (75 ppbv) and another lower threshold (70 ppbv). Using the 75 ppbv standard, the hit rate and proportion of correct over CONUS for the entire year are 0.64 and 0.96, respectively. Summertime biases show distinctive weekly patterns for ozone and NO2. Diurnal comparisons show that ozone overestimation is most severe in the morning, from 07:00 to 10:00 local time. For NO2, the morning predictions agree with the AQS observations reasonably well, but

  5. Space Logistics: Launch Capabilities

    NASA Technical Reports Server (NTRS)

    Furnas, Randall B.

    1989-01-01

    The current maximum launch capability for the United States are shown. The predicted Earth-to-orbit requirements for the United States are presented. Contrasting the two indicates the strong National need for a major increase in Earth-to-orbit lift capability. Approximate weights for planned payloads are shown. NASA is studying the following options to meet the need for a new heavy-lift capability by mid to late 1990's: (1) Shuttle-C for near term (include growth versions); and (2) the Advanced Lauching System (ALS) for the long term. The current baseline two-engine Shuttle-C has a 15 x 82 ft payload bay and an expected lift capability of 82,000 lb to Low Earth Orbit. Several options are being considered which have expanded diameter payload bays. A three-engine Shuttle-C with an expected lift of 145,000 lb to LEO is being evaluated as well. The Advanced Launch System (ALS) is a potential joint development between the Air Force and NASA. This program is focused toward long-term launch requirements, specifically beyond the year 2000. The basic approach is to develop a family of vehicles with the same high reliability as the Shuttle system, yet offering a much greater lift capability at a greatly reduced cost (per pound of payload). The ALS unmanned family of vehicles will provide a low end lift capability equivalent to Titan IV, and a high end lift capability greater than the Soviet Energia if requirements for such a high-end vehicle are defined.In conclusion, the planning of the next generation space telescope should not be constrained to the current launch vehicles. New vehicle designs will be driven by the needs of anticipated heavy users.

  6. RISKIND: An enhanced computer code for National Environmental Policy Act transportation consequence analysis

    SciTech Connect

    Biwer, B.M.; LePoire, D.J.; Chen, S.Y.

    1996-03-01

    The RISKIND computer program was developed for the analysis of radiological consequences and health risks to individuals and the collective population from exposures associated with the transportation of spent nuclear fuel (SNF) or other radioactive materials. The code is intended to provide scenario-specific analyses when evaluating alternatives for environmental assessment activities, including those for major federal actions involving radioactive material transport as required by the National Environmental Policy Act (NEPA). As such, rigorous procedures have been implemented to enhance the code`s credibility and strenuous efforts have been made to enhance ease of use of the code. To increase the code`s reliability and credibility, a new version of RISKIND was produced under a quality assurance plan that covered code development and testing, and a peer review process was conducted. During development of the new version, the flexibility and ease of use of RISKIND were enhanced through several major changes: (1) a Windows{sup {trademark}} point-and-click interface replaced the old DOS menu system, (2) the remaining model input parameters were added to the interface, (3) databases were updated, (4) the program output was revised, and (5) on-line help has been added. RISKIND has been well received by users and has been established as a key component in radiological transportation risk assessments through its acceptance by the U.S. Department of Energy community in recent environmental impact statements (EISs) and its continued use in the current preparation of several EISs.

  7. Evaluating the capability of the enhanced Rangeland Hydrology and Erosion Model (RHEM) for modeling the soil erosion impact of disturbance on rangelands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, enhancement of the application of RHEM has been made using a new approach for predicting concentrated flow erosion in order to expand its applicability to disturbed rangelands. The enhanced model was conceptualized based on observations and results of experimental studies on rangeland...

  8. Enhancing remote surveillance and assessment capabilities in support of non-proliferation using agricultural targets. Annual progress report, September 14, 1995--December 31, 1997

    SciTech Connect

    Perry, E.

    1997-09-01

    This report describes the Department of Energy`s Airborne Multisensor Pod System (ANIPS) missions which include agricultural targets to improve which include agricultural targets. The emphasis is on the use of these agricultural targets to improve nuclear non-proliferation assessment capability. Three areas of application of agricultural targets to non-proliferation is introduced: extending vegetation monitoring capability with radar, assessment of soil and crop damage using data fusion, and the use of data fusion for improved plant stress monitoring using hyperspectral data. Also, new algorithm development and future AMPS mission needs are discussed.

  9. Five-Year Implementation Plan For Advanced Separations and Waste Forms Capabilities at the Idaho National Laboratory (FY 2011 to FY 2015)

    SciTech Connect

    Not Listed

    2011-03-01

    DOE-NE separations research is focused today on developing a science-based understanding that builds on historical research and focuses on combining a fundamental understanding of separations and waste forms processes with small-scale experimentation coupled with modeling and simulation. The result of this approach is the development of a predictive capability that supports evaluation of separations and waste forms technologies. The specific suite of technologies explored will depend on and must be integrated with the fuel development effort, as well as an understanding of potential waste form requirements. This five-year implementation plan lays out the specific near-term tactical investments in people, equipment and facilities, and customer capture efforts that will be required over the next five years to quickly and safely bring on line the capabilities needed to support the science-based goals and objectives of INL’s Advanced Separations and Waste Forms RD&D Capabilities Strategic Plan.

  10. Environmental Assessment for Enhanced Operations of the Advanced Photon Source at Argonne National Laboratory-East, Argonne, Illinois

    SciTech Connect

    N /A

    2003-06-27

    This environmental assessment (EA) has been prepared by the U.S. Department of Energy (DOE) in compliance with the National Environmental Policy Act of 1969 (NEPA) to evaluate the potential environmental impacts associated with continued and enhanced operation of the Advanced Photon Source (APS), including modifications, upgrades, and new facilities, at Argonne National Laboratory-East (ANL-E) in DuPage County, Illinois. This proposed action is needed to meet DOE's mission of sponsoring cutting-edge science and technology. Continued operation would include existing research activities. In 2002, 23 user teams had beamlines in use in 28 sectors of the experiment hall, and approximately 2,000 individual users visited annually (see Section 3.1.1). Enhanced scientific capabilities would include research on Biosafety Level-3 (BSL-3) materials in an existing area originally constructed for such work, and would not require new construction or workforce (see Section 3.1.2). A new experimental unit, the Center for Nanoscale Materials (CNM), would be constructed along the west side of the APS facility and would be used for bench-scale research in nanoscience (see Section 3.1.3). Under the No Action Alternative, current APS operations would continue. However, initiation of BSL-3 research would not occur, and the proposed CNM research facility would not be constructed. The environmental consequences of the Proposed Action are minor. Potential effects to the environment are primarily related to ecological effects during construction and operation of the proposed CNM and human health effects during BSL-3 activities. The potential ecological effects of construction and operation of the CNM would be impacts of stormwater runoff into a restored wetland to the north of the CNM. DOE would minimize stormwater impacts during construction of the CNM by ensuring adequate erosion control before and during construction. Stormwater impacts would be minimized during operation of the CNM by

  11. Research for new UAV capabilities

    SciTech Connect

    Canavan, G.H.; Leadabrand, R.

    1996-07-01

    This paper discusses research for new Unmanned Aerial Vehicles (UAV) capabilities. Findings indicate that UAV performance could be greatly enhanced by modest research. Improved sensors and communications enhance near term cost effectiveness. Improved engines, platforms, and stealth improve long term effectiveness.

  12. Atmospheric Release Advisory Capability

    SciTech Connect

    Dickerson, M.H.; Gudiksen, P.H.; Sullivan, T.J.

    1983-02-01

    The Atmospheric Release Advisory Capability (ARAC) project is a Department of Energy (DOE) sponsored real-time emergency response service available for use by both federal and state agencies in case of a potential or actual atmospheric release of nuclear material. The project, initiated in 1972, is currently evolving from the research and development phase to full operation. Plans are underway to expand the existing capability to continuous operation by 1984 and to establish a National ARAC Center (NARAC) by 1988. This report describes the ARAC system, its utilization during the past two years, and plans for its expansion during the next five to six years. An integral part of this expansion is due to a very important and crucial effort sponsored by the Defense Nuclear Agency to extend the ARAC service to approximately 45 Department of Defense (DOD) sites throughout the continental US over the next three years.

  13. Reimagining What's Possible: How NREL's Energy Analysis and Decision Support Capabilities are Guiding Energy Systems Transformation at Home and Around the World; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-03-01

    This engaging brochure shows examples of how NREL enables energy system transformation through robust capabilities in energy analysis and decision support. By reimagining what's possible for renewable energy, NREL contributes to the Department of Energy mission to create energy systems that are cleaner, more reliable, and more secure.

  14. Enhancing the quality of survey data on woman abuse. Examples from a national Canadian study.

    PubMed

    Dekeseredy, W S

    1995-06-01

    This article discusses the attempts made by the author's to avoid or minimize the methodological shortcoming of previous North American surveys on woman abuse during this national Canadian survey. The author presents the four strategies used by the researchers and offers two suggestions for future survey work. First, the researchers used a broad definition of abuse that views any intentional physical, sexual, or psychological assault on a female dating partner. Second, multiple measures of abuse, such as the Conflict Tactic Scale (CTS), were used to minimize underreporting and enhance the reliability and validity of social variables. Third, the researchers included in the CTS the context, meaning and motive of dating violence in the postsecondary school courtship. Lastly, the survey tested the hypotheses derived from several theoretical perspectives. The author offers two suggestions that address the diversity of racial and ethnic participation and psychological abuse. PMID:12295409

  15. Advancing Test Capabilities at NASA Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Bell, James

    2015-01-01

    NASA maintains twelve major wind tunnels at three field centers capable of providing flows at 0.1 M 10 and unit Reynolds numbers up to 45106m. The maintenance and enhancement of these facilities is handled through a unified management structure under NASAs Aeronautics and Evaluation and Test Capability (AETC) project. The AETC facilities are; the 11x11 transonic and 9x7 supersonic wind tunnels at NASA Ames; the 10x10 and 8x6 supersonic wind tunnels, 9x15 low speed tunnel, Icing Research Tunnel, and Propulsion Simulator Laboratory, all at NASA Glenn; and the National Transonic Facility, Transonic Dynamics Tunnel, LAL aerothermodynamics laboratory, 8 High Temperature Tunnel, and 14x22 low speed tunnel, all at NASA Langley. This presentation describes the primary AETC facilities and their current capabilities, as well as improvements which are planned over the next five years. These improvements fall into three categories. The first are operations and maintenance improvements designed to increase the efficiency and reliability of the wind tunnels. These include new (possibly composite) fan blades at several facilities, new temperature control systems, and new and much more capable facility data systems. The second category of improvements are facility capability advancements. These include significant improvements to optical access in wind tunnel test sections at Ames, improvements to test section acoustics at Glenn and Langley, the development of a Supercooled Large Droplet capability for icing research, and the development of an icing capability for large engine testing. The final category of improvements consists of test technology enhancements which provide value across multiple facilities. These include projects to increase balance accuracy, provide NIST-traceable calibration characterization for wind tunnels, and to advance optical instruments for Computational Fluid Dynamics (CFD) validation. Taken as a whole, these individual projects provide significant

  16. The applicability and availability of Former Soviet Union (FSU) space-related capabilities and facilities to energy-related space activities of Department of Energy, Department of Defense and National Aeronautics and Space Administration

    NASA Astrophysics Data System (ADS)

    Pellechi, M.

    1993-01-01

    A senior-level Department of Energy (DOE), Department of Defense (DoD), and National Aeronautics and Space Administration (NASA) team visited the former Soviet Union (FSU) from 16-28 Oct. 1992. The purpose of the visit was to investigate the applicability and availability of FSU space-related capabilities and facilities to the energy-related space activities of the three agencies. This included renewable energy, nuclear power and propulsion, radiation effects, remote sensing, optics, and lasers. The U.S. delegation was successful in identifying some capabilities that would be useful to the three organizations. Efforts to utilize some of the FSU capabilities viewed are being initiated. Concurrently, there will be a technical assessment performed on the information gained from this and other recent visits to the FSU relative to space research.

  17. The Role of the National Science Foundation: Providing Opporunities to Enhance Geoscience Education

    NASA Astrophysics Data System (ADS)

    Leinen, M.

    2005-12-01

    Over the past two or three decades several trends have led to a decrease in the availability of courses in Earth and space sciences at the secondary and undergraduate levels. This is particularly frustrating given the continued need for well-trained Earth and space scientists, the need for greater sophistication in scientific training of our community and the lack of diversity of our scientific community. The National Science Foundation has responded to this challenge in several ways. At the most general level, the second criterion for evaluation of proposals requires the identification of the broader impact of the research. Many scientists choose to address this criterion by creative efforts to integrate research and education. These efforts are already resulting in substantially more focus on educational and diversity issues. At a more specific level, the Geosciences Directorate of the National Science Foundation has increased our funding for the education and diversity efforts of the earth, ocean and atmospheric sciences communities. In each of the three divisions of Geosciences - Earth Sciences, Ocean Sciences and Atmospheric Sciences - there are special programs for funding educational efforts. In addition, programs in Geoscience Education and in Opportunities to Enhance the Diversity of the Geosciences, provide funding opportunities for geoscientists of all disciplines to propose innovative ways to meet the challenge of training a new generation of geoscientists.

  18. Data Analysis Software Tools for Enhanced Collaboration at the DIII-D National Fusion Facility

    SciTech Connect

    Schachter, J.; Peng, Q.; Schissel, D.P.

    1999-07-01

    Data analysis at the DIII-D National Fusion Facility is simplified by the use of two software packages in analysis codes. The first is GAP1otObj, an IDL-based object-oriented library used in visualization tools for dynamic plotting. GAPlotObj gives users the ability to manipulate graphs directly through mouse and keyboard-driven commands. The second software package is MDSplus, which is used at DIED as a central repository for analyzed data. GAPlotObj and MDSplus reduce the effort required for a collaborator to become familiar with the DIII-D analysis environment by providing uniform interfaces for data display and retrieval. Two visualization tools at DIII-D that benefit from them are ReviewPlus and EFITviewer. ReviewPlus is capable of displaying interactive 2D and 3D graphs of raw, analyzed, and simulation code data. EFITviewer is used to display results from the EFIT analysis code together with kinetic profiles and machine geometry. Both bring new possibilities for data exploration to the user, and are able to plot data from any fusion research site with an MDSplus data server.

  19. Evaluating the capability of the enhanced Rangeland Hydrology and Erosion Model (RHEM) for modeling the soil erosion impact of disturbance on rangelands

    NASA Astrophysics Data System (ADS)

    Al-Hamdan, O. Z.; Hernandez, M.; Pierson, F. B.; Nearing, M.; Williams, C. J.; Stone, J. J.; Boll, J.; Weltz, M.

    2013-12-01

    In this study, enhancement of the application of RHEM has been made using a new approach for predicting concentrated flow erosion in order to expand its applicability to disturbed rangelands. The enhanced model was conceptualized based on observations and results of experimental studies on rangelands disturbed by fire and/or tree encroachment. The enhanced version of the model incorporates: a new stream power- based sediment detachment rate equation that applies a dynamic erodibility concept, a new concentrated flow width equation, and new empirical parameterization equations for estimating hydraulic friction and erodibility as a function of readily available vegetation cover and surface soil texture data. The enhanced version of the model was evaluated against rainfall simulation data for three different sites that exhibit some degree of disturbance by fire and/or tree encroachment. Evaluation results indicated the ability of the model to predict erosion at the plot scale within a satisfactory range of error. The new version of the model was able to match the predicted effect of disturbances across a wide range of ecological sites with diverse vegetation and ground cover conditions. The model performance indicates it can be used as a practical management tool for quantifying soil erosion under current conditions and for assessing accelerated soil erosion risks following rangeland disturbances, such as, wild fire, prescribed fire, and/or tree encroachment.

  20. Uniform Surface Modification of 3D Bioglass®-Based Scaffolds with Mesoporous Silica Particles (MCM-41) for Enhancing Drug Delivery Capability

    PubMed Central

    Boccardi, Elena; Philippart, Anahí; Juhasz-Bortuzzo, Judith A.; Beltrán, Ana M.; Novajra, Giorgia; Vitale-Brovarone, Chiara; Spiecker, Erdmann; Boccaccini, Aldo R.

    2015-01-01

    The design and characterization of a new family of multifunctional scaffolds based on bioactive glass (BG) of 45S5 composition for bone tissue engineering and drug delivery applications are presented. These BG-based scaffolds are developed via a replication method of polyurethane packaging foam. In order to increase the therapeutic functionality, the scaffolds were coated with mesoporous silica particles (MCM-41), which act as an in situ drug delivery system. These sub-micron spheres are characterized by large surface area and pore volume with a narrow pore diameter distribution. The solution used for the synthesis of the silica mesoporous particles was designed to obtain a high-ordered mesoporous structure and spherical shape – both are key factors for achieving the desired controlled drug release. The MCM-41 particles were synthesized directly inside the BG-based scaffolds, and the drug-release capability of this combined system was evaluated. Moreover, the effect of MCM-41 particle coating on the bioactivity of the BG-based scaffolds was assessed. The results indicate that it is possible to obtain a multifunctional scaffold system characterized by high and interconnected porosity, high bioactivity, and sustained drug delivery capability. PMID:26594642

  1. Uniform Surface Modification of 3D Bioglass(®)-Based Scaffolds with Mesoporous Silica Particles (MCM-41) for Enhancing Drug Delivery Capability.

    PubMed

    Boccardi, Elena; Philippart, Anahí; Juhasz-Bortuzzo, Judith A; Beltrán, Ana M; Novajra, Giorgia; Vitale-Brovarone, Chiara; Spiecker, Erdmann; Boccaccini, Aldo R

    2015-01-01

    The design and characterization of a new family of multifunctional scaffolds based on bioactive glass (BG) of 45S5 composition for bone tissue engineering and drug delivery applications are presented. These BG-based scaffolds are developed via a replication method of polyurethane packaging foam. In order to increase the therapeutic functionality, the scaffolds were coated with mesoporous silica particles (MCM-41), which act as an in situ drug delivery system. These sub-micron spheres are characterized by large surface area and pore volume with a narrow pore diameter distribution. The solution used for the synthesis of the silica mesoporous particles was designed to obtain a high-ordered mesoporous structure and spherical shape - both are key factors for achieving the desired controlled drug release. The MCM-41 particles were synthesized directly inside the BG-based scaffolds, and the drug-release capability of this combined system was evaluated. Moreover, the effect of MCM-41 particle coating on the bioactivity of the BG-based scaffolds was assessed. The results indicate that it is possible to obtain a multifunctional scaffold system characterized by high and interconnected porosity, high bioactivity, and sustained drug delivery capability. PMID:26594642

  2. Enhancing FTIR imaging capabilities with two-dimensional correlation spectroscopy (2DCOS): A study of concentration gradients of collagen and proteoglycans in human patellar cartilage

    NASA Astrophysics Data System (ADS)

    Jiang, Eric Y.; Rieppo, Jarno

    2006-11-01

    This paper explores a new application of two-dimensional correlation spectroscopy (2DCOS) in FTIR spectroscopic imaging analysis of biological samples. A particular example demonstrated in this paper is the characterization of concentration gradients of collagen and proteoglycans in human patellar cartilage. A focal plane array detector-based FTIR imaging system has been proven to be an efficient tool to detect early collagen and proteoglycans degradation in developing osteoarthrosis through evaluating compositional changes of osteoarthritic cartilage along the depth. However, the closely overlapped bands of collagen and proteoglycans make normal spectral and spatial analysis difficult. With 2DCOS analysis of the imaging data, it is possible to enhance the spectral resolution and reveal distinctive compositional changes that are normally hidden with conventional approaches. The combined technique, FTIR imaging enhanced with 2DCOS, provides new possibilities to solve challenging problems in the analysis of complex biological systems.

  3. Heavy Ion Fusion Science Virtual National Laboratory1st Quarter FY08 Milestone Report: Report Initial Work on Developing Plasma Modeling Capability in WARP for NDCX ExperimentsReport Initial work on developing Plasma Modeling Capability in WARP for NDCX Experiments

    SciTech Connect

    Friedman, A.; Cohen, R.H.; Grote, D.P.; Vay, J.-L.

    2007-12-10

    This milestone has been accomplished. The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) has developed and implemented an initial beam-in-plasma implicit modeling capability in Warp; has carried out tests validating the behavior of the models employed; has compared the results of electrostatic and electromagnetic models when applied to beam expansion in an NDCX-I relevant regime; has compared Warp and LSP results on a problem relevant to NDCX-I; has modeled wave excitation by a rigid beam propagating through plasma; and has implemented and begun testing a more advanced implicit method that correctly captures electron drift motion even when timesteps too large to resolve the electron gyro-period are employed. The HIFS-VNL is well on its way toward having a state-of-the-art source-to-target simulation capability that will enable more effective support of ongoing experiments in the NDCX series and allow more confident planning for future ones.

  4. Fluorination Induced the Surface Segregation of High Voltage Spinel on Lithium-Rich Layered Cathodes for Enhanced Rate Capability in Lithium Ion Batteries.

    PubMed

    Jin, Yi-Chun; Duh, Jenq-Gong

    2016-02-17

    This study is aimed to explore the effect of fluoride doping and the associated structural transformation on lithium-rich layered cathode materials. The polymeric fluoride source is first adopted for synthesizing lithium intercalated oxide through a newly developed organic precipitation process. A heterostructured spinel/layered composite cathode material is obtained after appreciable fluorination and a superior rate capability is successfully achieved. The fluoride dopant amount and the surface spinel phase are evidenced and systematically examined by various structural spectroscopy and electrochemical analysis. It appears the reversible Ni(2+/4+) redox couple at high voltage regime around 4.8 V because of the formation of spinel LiNi1/2Mn3/2O4 phase. The mechanism of "layer to spinel" phase transformation is discussed in detail. PMID:26807506

  5. NASA Capability Roadmaps Executive Summary

    NASA Technical Reports Server (NTRS)

    Willcoxon, Rita; Thronson, Harley; Varsi, Guilio; Mueller, Robert; Regenie, Victoria; Inman, Tom; Crooke, Julie; Coulter, Dan

    2005-01-01

    This document is the result of eight months of hard work and dedication from NASA, industry, other government agencies, and academic experts from across the nation. It provides a summary of the capabilities necessary to execute the Vision for Space Exploration and the key architecture decisions that drive the direction for those capabilities. This report is being provided to the Exploration Systems Architecture Study (ESAS) team for consideration in development of an architecture approach and investment strategy to support NASA future mission, programs and budget requests. In addition, it will be an excellent reference for NASA's strategic planning. A more detailed set of roadmaps at the technology and sub-capability levels are available on CD. These detailed products include key driving assumptions, capability maturation assessments, and technology and capability development roadmaps.

  6. Yakima River Spring Chinook Enhancement Study, Fisheries Resource Management, Yakima Indian Nation1983 Annual Report.

    SciTech Connect

    Wasserman, Larry

    1984-02-01

    The purpose was to evaluate enhancement methodologies that can be used to rebuild runs of spring chinook to the Yakima River system. In January, 1983, 100,000 fish raised at Leavenworth National Fish Hatchery were transported to Nile Springs Rearing Ponds on the Naches River. These fish were allowed a volitional release as smolts in April. An additional 100,000 smolts were transported from Leavenworth Hatchery in April and immediately released to the Upper Yakima River. Relative survival of smolts from their points of release to a trap at Prosser (RM48) was 1.69:1 for fish from Nile Springs, versus the trucked smolts. The fish from Nile Springs arrived at Prosser and McNary Dam approximately 1 week earlier than the transported fish. To better determine the magnitude and location of releases, distribution and abundance studies were undertaken. There is a decrease in abundance from upstream areas over time, indicating a general downstream movement. In the Naches System, the lower Naches River is heavily utilized by juvenile spring chinook during the early summer. A preliminary study evaluated physical limitations of production. On a single evening 67 fish were killed on diversion screens at Chandler Canal. This constituted 5.7% of the wild spring chinook entering the canal and 8.2% of the fall chinook. The larger hatchery spring chinook sustained a 2.3% loss. Adult returns resulted in 443 redds in the Yakima System, with 360 in the Yakima River and 83 in the Naches System.

  7. Using videovoice methods to enhance community outreach and engagement for the National Children's Study.

    PubMed

    Warren, Christopher M; Knight, Roger; Holl, Jane L; Gupta, Ruchi S

    2014-05-01

    The National Children's Study (NCS) is a prospective observational study examining the effects of environmental influences on child health and development in the United States. Videovoice is a health advocacy and promotion methodology wherein participants use participatory videography and interviewing techniques to identify issues of concern, communicate knowledge, and advocate for community health. This study describes a videovoice project, implemented in six Cook County, IL, communities targeted by the NCS for participant recruitment. A 6-week, videovoice training was conducted to train and empower NCS community outreach and engagement personnel. Pre/post evaluations were administered, and participant footage was qualitatively analyzed to identify overarching themes informing future outreach. Participants reported significant increases (p < .05) in videography/photography skills, community outreach/communication abilities, and awareness of important community health issues. Major themes included the following: high community knowledge of local health issues, low community knowledge of the NCS, and identification of barriers to participation. Two promotional videos were created to address these barriers and educate communities about the NCS. A 6-week, videovoice project was effective in training NCS community outreach personnel and enhancing NCS community engagement within six target Cook County, IL, communities via the production of community-engaged NCS promotional videos. PMID:24127300

  8. NATIONAL CONFERENCE ON URBAN STORM WATER: ENHANCING PROGRAMS AT THE LOCAL LEVEL - PROCEEDINGS CHICAGO, IL FEBRUARY 17-20, 2003

    EPA Science Inventory

    A wide array of effective storm water management and resource protection tools have been developed for urban environments, but their implementation continues to be hampered by a lack of technology transfer opportunities. At the national conference Urban Storm Water: Enhancing Pro...

  9. Electrostatic spray deposition of Li4Ti5O12 based anode with enhanced rate capability and energy density for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Chunhui; Agrawal, Richa; Wang, Chunlei

    2016-05-01

    Li4Ti5O12 (LTO) is one of the most promising anode materials for lithium-ion batteries (LIBs) due to its excellent cyclability and extraordinary structure stability during lithium-ion intercalation and deintercalation. However, LTO suffers from the low electronic conductivity and low theoretical capacity, which results in poor rate capability and low energy density. The present work reviews the latest achievement on improving both energy and power density of LTO based anode materials for LIBs. In addition, our recent results on electrostatic spray deposition (ESD) derived LTO electrode is also discussed. Electrochemical test shows that the resulting LTO has a large specific capacity of 293 mAh g-1 under a current density of 0.15 A g-1 and high rate capacity of 73 mAh g-1 under 3 A g-1. As compared with commercial LTO nano-particle electrode, the improved electrochemical performance of ESD-LTO could be attributed to the structure advantages generate from ESD which could lead to reduced diffusion length for lithium ions and electrons.

  10. Enhance the light-harvesting capability of the ITO-free inverted small molecule solar cell by ZnO nanorods.

    PubMed

    Lin, Ming-Yi; Wu, Shang-Hsuan; Hsiao, Li-Jen; Budiawan, Widhya; Boopathi, Karunakara Moorthy; Tu, Wei-Chen; Chang, Yia-Chung; Chu, Chih-Wei

    2016-08-01

    The ITO-free inverted SMPV1:PC71BM solar cells with an Al doped ZnO (AZO) transparent electrodes are fabricated. The AZO thin film prepared by pulsed laser deposition (PLD) technique exhibits high transmission (>85%) and low sheet resistance (~30 Ω/sq) and the power conversion efficiency (PCE) of devices based on AZO electrode can reach around 4%. To further enhance the light harvesting of the absorption layer of solar cells, ZnO nanorods interlayer is grown on the AZO layer before the deposition the active layer. The absorption spectrums of devices under various conditions are also simulated by RCWA method to identify the optical saturation length of the ZnO nanorods. The PCE of ITO-free inverted small molecule solar cell improved with ZnO nanorods can reach 6.6%. PMID:27505758

  11. Enhanced charging capability of lithium metal batteries based on lithium bis(trifluoromethanesulfonyl)imide-lithium bis(oxalato)borate dual-salt electrolytes

    NASA Astrophysics Data System (ADS)

    Xiang, Hongfa; Shi, Pengcheng; Bhattacharya, Priyanka; Chen, Xilin; Mei, Donghai; Bowden, Mark E.; Zheng, Jianming; Zhang, Ji-Guang; Xu, Wu

    2016-06-01

    Rechargeable lithium (Li) metal batteries with conventional LiPF6-carbonate electrolytes have been reported to fail quickly at charging current densities of about 1.0 mA cm-2 and above. In this work, we demonstrate the rapid charging capability of Li||LiNi0.8Co0.15Al0.05O2 (NCA) cells can be enabled by a dual-salt electrolyte of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium bis(oxalato)borate (LiBOB) in a carbonate solvent mixture. The cells using the LiTFSI-LiBOB dual-salt electrolyte significantly outperform those using the LiPF6 electrolyte at high charging current densities. At the charging current density of 1.50 mA cm-2, the Li||NCA cells with the dual-salt electrolyte can still deliver a discharge capacity of 131 mAh g-1 and a capacity retention of 80% after 100 cycles. The Li||NCA cells with the LiPF6 electrolyte start to show fast capacity fading after the 30th cycle and only exhibit a low capacity of 25 mAh g-1 and a low retention of 15% after 100 cycles. The reasons for the good chargeability and cycling stability of the cells using the LiTFSI-LiBOB dual-salt electrolyte can be attributed to the good film-formation ability of the electrolyte on the Li metal anode and the highly conductive nature of the sulfur-rich interphase layer.

  12. NUCLEAR INCIDENT CAPABILITIES, KNOWLEDGE & ENABLER LEVERAGING

    SciTech Connect

    Kinney, J.; Newman, J.; Goodwyn, A.; Dewes, J.

    2011-04-18

    action. Much work needs to be accomplished to enhance nuclear preparedness and to substantially bolster and clarify the capacity to deploy competent resources. Until detailed plans are scripted, and personnel and other resources are postured, and exercised, IND specific planning remains an urgent need requiring attention and action. Although strategic guidance, policies, concepts of operations, roles, responsibilities, and plans governing the response and consequence management for the IND scenario exist, an ongoing integration challenge prevails regarding how best to get capable and competent surge capacity personnel (disaster reservists) and other resources engaged and readied in an up-front manner with pre-scripted assignments to augment the magnitude of anticipated demands of expertise. With the above in mind, Savannah River National Laboratory (SRNL) puts science to work to create and deploy practical, high-value, cost-effective nuclear solutions. As the Department of Energy's (DOE) applied research and development laboratory, SRNL supports Savannah River Site (SRS) operations, DOE, national initiatives, and other federal agencies, across the country and around the world. SRNL's parent at SRS also employs more than 8,000 personnel. The team is a great asset that seeks to continue their service in the interest of national security and stands ready to accomplish new missions. Overall, an integral part of the vision for SRNL's National and Homeland Security Directorate is the establishment of a National Security Center at SRNL, and development of state of the science capabilities (technologies and trained technical personnel) for responding to emergency events on local, regional, or national scales. This entails leveraging and posturing the skills, knowledge and experience base of SRS personnel to deliver an integrated capability to support local, state, and federal authorities through the development of pre-scripted requests for assistance, agreements, and plans. It

  13. Associations of behavioural risk factors and health status with changes in physical capability over 10 years of follow-up: the MRC National Survey of Health and Development

    PubMed Central

    Cooper, Rachel; Muniz-Terrera, Graciela; Kuh, Diana

    2016-01-01

    Objectives (1) To describe changes in objective measures of physical capability between ages 53 and 60–64 years; (2) to investigate the associations of behavioural risk factors (obesity, physical inactivity, smoking) and number of health conditions (range 0–4: hand osteoarthritis (OA); knee OA; severe respiratory symptoms; other disabling or life-threatening conditions (ie, cancer, cardiovascular disease, diabetes)) at age 53 years with these changes. Design Nationally representative prospective birth cohort study. Setting England, Scotland and Wales. Participants Up to 2093 men and women from the Medical Research Council National Survey of Health and Development, who have been followed-up since birth in 1946, and underwent physical capability assessments performed by nurses following standard protocols in 1999 and 2006–2010. Main outcome measures Grip strength and chair rise speed were assessed at ages 53 and 60–64 years. Four categories of change in grip strength and chair rise speed were identified: decline, stable high, stable low, a reference group who maintained physical capability within a ‘normal’ range. Results Less healthy behavioural risk scores and an increase in the number of health conditions experienced were associated in a stepwise fashion with increased risk of decline in physical capability, and also of having low levels at baseline and remaining low. For example, the sex and mutually adjusted relative-risk ratios (95% CI) of being in the stable low versus reference category of chair rise speed were 1.58 (1.35–1.86) and 1.97 (1.57–2.47) per 1 unit change in behavioural risk score and health indicator count, respectively. Conclusions These findings provide evidence of the associations of a range of modifiable factors with age-related changes in physical capability. They suggest the need to target multiple risk factors at least as early as mid-life when aiming to promote maintenance and prevent decline in physical capability

  14. Overexpression of the Maize psbA Gene Enhances Drought Tolerance Through Regulating Antioxidant System, Photosynthetic Capability, and Stress Defense Gene Expression in Tobacco.

    PubMed

    Huo, Yongjin; Wang, Meiping; Wei, Yangyang; Xia, Zongliang

    2015-01-01

    The psbA (encoding D1 protein) plays an important role in protecting photosystem II (PSII) from oxidative damage in higher plants. In our previous study, the role of the psbA from maize (Zea mays. L) in response to SO2 stress was characterized. To date, information about the involvement of the psbA gene in drought response is scarce. Here we found that overexpression (OE) of ZmpsbA showed increased D1 protein abundance and enhanced drought stress tolerance in tobacco. The drought-tolerant phenotypes of the OE lines were accompanied by increases of key antioxidant enzymes SOD, CAT, and POD activities, but decreases of hydrogen peroxide, malondialdehyde, and ion leakage. Further investigation showed that the OE plants had much less reductions than the wild-type in the net photosynthesis rate (Pn), stomatal conductance (Gs), and the maximal photochemical efficiency of PSII (Fv/Fm) during drought stress; indicating that OE of ZmpsbA may alleviate photosynthesis inhibition during drought. qRT-PCR analysis revealed that there was significantly increased expression of NtLEA5, NtERD10C, NtAREB, and NtCDPK2 in ZmpsbA-OE lines. Together, our results indicate that ZmpsbA improves drought tolerance in tobacco possibly by alleviating photosynthesis reduction, reducing reactive oxygen species accumulation and membrane damage, and modulating stress defense gene expression. ZmpsbA could be exploited for engineering drought-tolerant plants in molecular breeding of crops. PMID:26793207

  15. Self-assembly of PEI/SiO2 on polyethylene separators for Li-ion batteries with enhanced rate capability.

    PubMed

    Wang, Zhuyi; Guo, Fangling; Chen, Cheng; Shi, Liyi; Yuan, Shuai; Sun, Lining; Zhu, Jiefang

    2015-02-11

    A simple and environmentally friendly self-assembly process of oppositely charged polymer PEI and inorganic oxide SiO2 was demonstrated for the construction of an ultrathin layer on the surface of PE separator. The XPS, FT-IR, SEM, and EDS characterizations give clear evidence of the successful self-assembly of PEI and SiO2 without significantly increasing the thickness and sacrificing the pristine porous structure of PE separator. This process improves a variety of crucial properties of PE separator such as the electrolyte wetting, the electrolyte uptake, the thermal stability, the ionic conductivity, Li+ transference number, the electrochemical stability and the compatibility with lithium electrode, endowing lithium-ion battery (Li as anode and LiCoO2 as cathode) with excellent capacity retention at high C-rates and superior cycling performance. At the current density of 5 C, the cell with PE separator almost loses all the capacity. In contrast, the cell with (PEI/SiO2)-modified PE separator still holds 45.2% of the discharge capacity at 0.2 C. The stabilized SEI formation and high Li+ transference number of (PEI/SiO2)-modified PE separator were interpreted to be the substantial reasons leading to the remarkably enhanced battery performance, rendering some new insights into the role of the separator in lithium-ion batteries. PMID:25602261

  16. Enhancing the capabilities of emigration countries to protect men and women destined for low-skilled employment: the case of the Philippines.

    PubMed

    Santo Tomas, P

    1999-01-01

    This study examined policies in receiving countries, evaluated their effectiveness in protecting low skilled Filipino migrant workers, and discusses the potential for quantifying and objectifying labor migrant gains or losses. Data were obtained from focus groups among 10 technical managers of the Philippine Overseas Employment Administration and interviews with 10 policy-makers in order to establish a hierarchy of aims in labor migration and policy indicators. The aims are identified as good jobs abroad, an orderly process, efficient and fair recruitment, and easy transfers of remittances. Findings are that Philippine policies facilitate remittance transfers. Government was least effective in ensuring orderliness. Government was fairly effective in ensuring fairness and efficiency and ensuring good jobs overseas. It succeeded the most in ensuring that nationals can easily transfer their earnings. Allocation data reveal that more resources were expended on searching for good jobs and least on fairness and efficiency. Remittances increased after mandatory remittances were ended as imposed by the Marcos regime. De-skilling often resulted from overseas employment, but rehired workers received better pay on their second and third assignments. This research was exploratory and more research is needed for developing sensitive indicators and refining the process of evaluating key government policies. The Philippine Development Policy that encourages labor migration and protection of overseas workers is a necessity during the ongoing Asian economic crisis. PMID:12322075

  17. Enhancing Outreach using Social Networks at the National Seismological Network of Costa Rica

    NASA Astrophysics Data System (ADS)

    Linkimer, L.; Lücke, O. H.

    2014-12-01

    Costa Rica has a very high seismicity rate and geological processes are part of everyday life. Traditionally, information about these processes has been provided by conventional mass media (television and radio). However, due to the new trends in information flow a new approach towards Science Education is necessary for transmitting knowledge from scientific research for the general public in Costa Rica. Since 1973, the National Seismological Network of Costa Rica (RSN: UCR-ICE) studies the seismicity and volcanic activity in the country. In this study, we describe the different channels to report earthquake information that the RSN is currently using: email, social networks, and a website, as well as the development of a smartphone application. Since the RSN started actively participating in Social Networks, an increase in awareness in the general public has been noticed particularly regarding felt earthquakes. Based on this trend, we have focused on enhancing public outreach through Social Media. We analyze the demographics and geographic distribution of the RSN Facebook Page, the growth of followers, and the significance of their feedback for reporting intensity data. We observe that certain regions of the country have more Facebook activity, although those regions are not the most populated nor have a high Internet connectivity index. We interpret this pattern as the result of a higher awareness to geological hazards in those specific areas. We noticed that the growth of RSN users on Facebook has a strong correlation with the seismic events as opposed to Twitter that displays a steady growth with no clear correlations with specific seismic events. We see the Social Networks as opportunities to engage non-science audiences and encourage the population to participate in reporting seismic observations, thus providing intensity data. With the increasing access to Internet from mobile phones in Costa Rica, we see this approach to science education as an opportunity

  18. Factors affecting enhanced mercury bioaccumulation in inland lakes of Isle Royale National Park, USA.

    PubMed

    Gorski, Patrick R; Cleckner, Lisa B; Hurley, James P; Sierszen, Michael E; Armstrong, David E

    2003-03-20

    We investigated factors causing mercury (Hg) concentrations in northern pike to exceed the consumption advisory level (>500 ng/g) in some inland lakes of Isle Royale National Park. Using Hg-clean techniques, we collected water, zooplankton, macro invertebrates, and fishes in 1998 and 1999 from one advisory lake, Sargent Lake, for analysis of total mercury (Hg(T)) and methylmercury (MeHg). For comparison, samples were also collected from a non-advisory lake, Lake Richie. Concentrations of Hg(T) in northern pike were significantly higher in Sargent Lake (P<0.01). Counter to expectations, mean concentrations of both Hg(T) and MeHg in open water samples were slightly higher in Lake Richie. However, zooplankton in Sargent Lake contained higher average concentrations of Hg(T) and MeHg than in Lake Richie. Mercury concentrations in macro invertebrates were similar between lakes, but different between taxa. The two lakes exhibited similar Hg(T) concentrations in age-1 yellow perch and adult perch but concentrations in large adult perch (>160 mm) in Sargent Lake were twice the concentrations in Lake Richie. Analysis of stable isotopes (delta(13)C and delta(15)N) in biota showed that pike from the two lakes are positioned at the same trophic level (4.2 and 4.3), but that the food web is more pelagic-based in Sargent and benthic-based in Richie. Factors causing concentrations in large pike to be higher in Sargent Lake may include higher bioavailability of methylmercury and a food web that enhances bioaccumulation. PMID:12663194

  19. Designing poly[(R)-3-hydroxybutyrate]-based polyurethane block copolymers for electrospun nanofiber scaffolds with improved mechanical properties and enhanced mineralization capability.

    PubMed

    Liu, Kerh Li; Choo, Eugene Shi Guang; Wong, Siew Yee; Li, Xu; He, Chao Bin; Wang, John; Li, Jun

    2010-06-10

    Efforts to mineralize electrospun hydrophobic polyester scaffold often require prior surface modification such as plasma or alkaline treatment, which may affect the mechanical integrity of the resultant scaffold. Here through rational design we developed a series of polyurethane block copolymers containing poly[(R)-3-hydroxybutyrate] (PHB) as hard segment and poly(ethylene glycol) (PEG) as soft segment that could be easily fabricated into mineralizable electrospun scaffold without the need of additional surface treatment. To ensure that the block copolymers do not swell excessively in water, PEG content in the polymers was kept below 50 wt %. To obtain good dry and hydrated state mechanical properties with limited PEG, low-molecular-weight PHB-diol with M(n) 1230 and 1790 were used in various molar feed ratios. The macromolecular characteristics of the block copolymers were confirmed by (1)H NMR spectroscopy, gel permeation chromatography (GPC), and thermal gravimetric analyses (TGA). With the incorporation of the hydrophilic PEG segments, the surface and bulk hydrophilicity of the block copolymers were significantly improved. Differential scanning calorimetry (DSC) revealed that the block copolymers had low PHB crystallinity and no PEG crystallinity. This was further confirmed by X-ray diffraction analyses (XRD) in both dry and hydrated states. With short PHB segments and soft PEG coupled together, the block copolymers were no longer brittle. Tensile measurements showed that the block copolymers with higher PEG content or shorter PHB segments were more ductile. Furthermore, their ductility was enhanced in hydrated states with one particular example showing increment in strain at break from 1090 to 1962%. The block copolymers were fabricated into an electrospun fibrous scaffold that was easily mineralized by simple incubation in simulated body fluid. The materials have good potential for bone regeneration application and may be extended to other applications by

  20. Weapons Evaluation Test Laboratory at Pantex: Testing and data handling capabilities of Sandia National Laboratories at the Pantex Plant, Amarillo, Texas

    SciTech Connect

    Peters, W.R.

    1993-08-01

    The Weapons Evaluation Test Laboratory (WETL), operated by Sandia Laboratories at the Pantex Plant in Amarillo, Texas, is engaged primarily in the testing of weapon systems in the stockpile or of newly produced weapon systems for the Sandia Surety Assessment Center. However, the WETL`s unique testing equipment and data-handling facilities are frequently used to serve other organizations. Service to other organizations includes performing special tests on weapon components, subassemblies, and systems for purposes such as basic development and specific problem investigation. The WETL staff also sends equipment to other laboratories for specific tests that cannot be performed at Pantex. For example, we modified and sent equipment to Brookhaven National Laboratory for testing with their Neutral Particle Beam. WETL supplied the engineering expertise to accomplish the needed modifications to the equipment and the technicians to help perform many special tests at Brookhaven. A variety of testing is possible within the WETL, including: Accelerometer, decelerometer, and G-switch g-level/closure testing; Neutron generator performance testing; weapon systems developmental tests; weapon system component testing; weapon system failure-mode-duplication tests; simultaneity measurements; environmental extreme testing; parachute deployment testing; permissive action link (PAL) testing and trajectory-sensing signal generator (TSSG) testing. WETL`s existing equipment configurations do not restrict the testing performed at the WETL. Equipment and facilities are adapted to specific requirements. The WETL`s facilities can often eliminate the need to build or acquire new test equipment, thereby saving time and expense.

  1. Assessment of NOx and O3 forecasting performances in the U.S. National Air Quality Forecasting Capability before and after the 2012 major emissions updates

    NASA Astrophysics Data System (ADS)

    Pan, Li; Tong, Daniel; Lee, Pius; Kim, H.-C.; Chai, Tianfeng

    2014-10-01

    In this study, we address outdated emissions inventory problems in air quality forecasting systems. The National Emissions Inventory for NOx from area and mobile sources is projected from 2005 to 2012 and NOx from point sources is projected from 2010 to 2012, in which we find that NOx emissions from area, mobile and point sources reduce by 8.1%, 37.8% and 4.1%, respectively. The majority of the NOx emissions reduction occurs in megacities over the CONtiguous U.S. (CONUS), in which the spatial distribution pattern is generally supported by the NO2 column result retrieved from the GOME-2 satellite data. The CMAQ-predicted NOx and O3 concentrations using updated NOx emissions were then compared to Air Quality System (AQS) ground observations in order to evaluate the updated NOx emissions inventory. The comparison showed an improvement in NOx and O3 predictions over the CONUS. The NOx bias, in July 2011, for urban, suburban and rural land-use types was reduced by 2.34 ppb, 2.09 ppb and 0.57 ppb, respectively. Meanwhile, the O3 bias is reduced by 0.92 ppb, 1.26 ppb and 1.87 ppb, respectively. However, problems remain in CMAQ for NOx and O3 simulations despite undertaking this emissions adjustment. For example, the O3 overestimation in CMAQ during the daytime over the CONUS decreases when the NOx underestimation increases, suggesting that in addition to the NOx emissions inventory, further study of VOC emissions, NOx chemical and physical mechanisms as well as meteorology parameters in the NAQFC is necessary.

  2. Accelerator and electrodynamics capability review

    SciTech Connect

    Jones, Kevin W

    2010-01-01

    Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

  3. Enhanced Computational Infrastructure for Data Analysis at the DIII-D National Fusion Facility

    SciTech Connect

    Schissel, D.P.; Peng, Q.; Schachter, J.; Tepstra, T.B.; Casper, T.A.; Freeman, J.; Jong, R.; Keith, K.M.; McHarg, B.B., Jr; Meyer, W.H.; Parker, C.T.; Warner, A.M.

    1999-07-01

    The DIII-D National Team consists of about 120 operating staff and 100 research scientists drawn from 9 U.S. National Laboratories, 19 foreign laboratories, 16 universities, and 5 industrial partnerships. This multi-institution collaboration carries out the integrated DIII-D program mission which is to establish the scientific basis for the optimization of the tokamak approach to fusion energy production. Presently, about two-thirds of the research physics staff are from the national and international collaborating institutions.

  4. Plant Pathogen Forensics: Capabilities, Needs, and Recommendations

    PubMed Central

    Fletcher, J.; Bender, C.; Budowle, B.; Cobb, W. T.; Gold, S. E.; Ishimaru, C. A.; Luster, D.; Melcher, U.; Murch, R.; Scherm, H.; Seem, R. C.; Sherwood, J. L.; Sobral, B. W.; Tolin, S. A.

    2006-01-01

    A biological attack on U.S. crops, rangelands, or forests could reduce yield and quality, erode consumer confidence, affect economic health and the environment, and possibly impact human nutrition and international relations. Preparedness for a crop bioterror event requires a strong national security plan that includes steps for microbial forensics and criminal attribution. However, U.S. crop producers, consultants, and agricultural scientists have traditionally focused primarily on strategies for prevention and management of diseases introduced naturally or unintentionally rather than on responding appropriately to an intentional pathogen introduction. We assess currently available information, technologies, and resources that were developed originally to ensure plant health but also could be utilized for postintroduction plant pathogen forensics. Recommendations for prioritization of efforts and resource expenditures needed to enhance our plant pathogen forensics capabilities are presented. PMID:16760310

  5. Plant pathogen forensics: capabilities, needs, and recommendations.

    PubMed

    Fletcher, J; Bender, C; Budowle, B; Cobb, W T; Gold, S E; Ishimaru, C A; Luster, D; Melcher, U; Murch, R; Scherm, H; Seem, R C; Sherwood, J L; Sobral, B W; Tolin, S A

    2006-06-01

    A biological attack on U.S. crops, rangelands, or forests could reduce yield and quality, erode consumer confidence, affect economic health and the environment, and possibly impact human nutrition and international relations. Preparedness for a crop bioterror event requires a strong national security plan that includes steps for microbial forensics and criminal attribution. However, U.S. crop producers, consultants, and agricultural scientists have traditionally focused primarily on strategies for prevention and management of diseases introduced naturally or unintentionally rather than on responding appropriately to an intentional pathogen introduction. We assess currently available information, technologies, and resources that were developed originally to ensure plant health but also could be utilized for postintroduction plant pathogen forensics. Recommendations for prioritization of efforts and resource expenditures needed to enhance our plant pathogen forensics capabilities are presented. PMID:16760310

  6. Encouraging Governments to Enhance the Happiness of Their Nation: Step 1: Understand Subjective Wellbeing

    ERIC Educational Resources Information Center

    Cummins, Robert A.; Lau, Anna A. L. D.; Mellor, David; Stokes, Mark A.

    2009-01-01

    This article considers the issue of facilitating policies that enhance population happiness. An impediment to such action is the failure of most policy makers to understand that subjective wellbeing can be measured and understood within the framework of science. Additionally, they fail to realize that enhancing the subjective wellbeing of…

  7. Advanced CLIPS capabilities

    NASA Technical Reports Server (NTRS)

    Riley, Gary

    1991-01-01

    The C Language Integrated Production System (CLIPS) is a forward chaining rule based language developed by NASA. CLIPS was designed specifically to provide high portability, low cost, and easy integration with external systems. The current release of CLIPS, version 4.3, is being used by over 2500 users throughout the public and private community. The primary addition to the next release of CLIPS, version 5.0, will be the CLIPS Object Oriented Language (COOL). The major capabilities of COOL are: class definition with multiple inheritance and no restrictions on the number, types, or cardinality of slots; message passing which allows procedural code bundled with an object to be executed; and query functions which allow groups of instances to be examined and manipulated. In addition to COOL, numerous other enhancements were added to CLIPS including: generic functions (which allow different pieces of procedural code to be executed depending upon the types or classes of the arguments); integer and double precision data type support; multiple conflict resolution strategies; global variables; logical dependencies; type checking on facts; full ANSI compiler support; and incremental reset for rules.

  8. Current Capabilities and Planned Enhancements of SUSTAIN

    EPA Science Inventory

    Efforts have been under way by the U.S. Environmental Protection Agency (EPA) since 2003 to develop a decision-support system for placement of BMPs at strategic locations in urban watersheds. This system is call the System for Urban Stormwater Treatment and Analysis INtergration...

  9. Enhancing Fermi's Capability for Time Domain Astrophysics

    NASA Astrophysics Data System (ADS)

    McEnery, Julie E.; Fermi-LAT Team

    2016-01-01

    All sky monitors, such as the Fermi Gamma-Ray Space Telescope, play a crucial role in detecting transient and variable non-thermal sources for follow up observations by narrow field observatories. In this poster, we describe recent and upcoming improvements in onboard processing, ground analysis pipelines and observatory operations that will to increase the sensitivity to these objects on timescales of seconds to days and reduce the latency for the information to be disseminated to the scientific community. Finally, we will provide examples of some of the expected science returns from these improvements.

  10. Alternative Classification Framework for Engineering Capability Enhancement

    ERIC Educational Resources Information Center

    Patamakajonpong, Mana; Chandarasupsang, Tirapot

    2015-01-01

    Purpose: This paper aims to present an alternative practical framework to classify the skill and knowledge of the individual trainees by comparing it with the expert in an organization. This framework gives the benefit to the organization in order to know the ability level of the personnel and to be able to provide the personnel development method…

  11. Satellite-based Tropical Cyclone Monitoring Capabilities

    NASA Astrophysics Data System (ADS)

    Hawkins, J.; Richardson, K.; Surratt, M.; Yang, S.; Lee, T. F.; Sampson, C. R.; Solbrig, J.; Kuciauskas, A. P.; Miller, S. D.; Kent, J.

    2012-12-01

    Satellite remote sensing capabilities to monitor tropical cyclone (TC) location, structure, and intensity have evolved by utilizing a combination of operational and research and development (R&D) sensors. The microwave imagers from the operational Defense Meteorological Satellite Program [Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS)] form the "base" for structure observations due to their ability to view through upper-level clouds, modest size swaths and ability to capture most storm structure features. The NASA TRMM microwave imager and precipitation radar continue their 15+ yearlong missions in serving the TC warning and research communities. The cessation of NASA's QuikSCAT satellite after more than a decade of service is sorely missed, but India's OceanSat-2 scatterometer is now providing crucial ocean surface wind vectors in addition to the Navy's WindSat ocean surface wind vector retrievals. Another Advanced Scatterometer (ASCAT) onboard EUMETSAT's MetOp-2 satellite is slated for launch soon. Passive microwave imagery has received a much needed boost with the launch of the French/Indian Megha Tropiques imager in September 2011, basically greatly supplementing the very successful NASA TRMM pathfinder with a larger swath and more frequent temporal sampling. While initial data issues have delayed data utilization, current news indicates this data will be available in 2013. Future NASA Global Precipitation Mission (GPM) sensors starting in 2014 will provide enhanced capabilities. Also, the inclusion of the new microwave sounder data from the NPP ATMS (Oct 2011) will assist in mapping TC convective structures. The National Polar orbiting Partnership (NPP) program's VIIRS sensor includes a day night band (DNB) with the capability to view TC cloud structure at night when sufficient lunar illumination exits. Examples highlighting this new capability will be discussed in concert with additional data fusion efforts.

  12. National Mesothelioma Virtual Bank: A standard based biospecimen and clinical data resource to enhance translational research

    PubMed Central

    Amin, Waqas; Parwani, Anil V; Schmandt, Linda; Mohanty, Sambit K; Farhat, Ghada; Pople, Andrew K; Winters, Sharon B; Whelan, Nancy B; Schneider, Althea M; Milnes, John T; Valdivieso, Federico A; Feldman, Michael; Pass, Harvey I; Dhir, Rajiv; Melamed, Jonathan; Becich, Michael J

    2008-01-01

    Background Advances in translational research have led to the need for well characterized biospecimens for research. The National Mesothelioma Virtual Bank is an initiative which collects annotated datasets relevant to human mesothelioma to develop an enterprising biospecimen resource to fulfill researchers' need. Methods The National Mesothelioma Virtual Bank architecture is based on three major components: (a) common data elements (based on College of American Pathologists protocol and National North American Association of Central Cancer Registries standards), (b) clinical and epidemiologic data annotation, and (c) data query tools. These tools work interoperably to standardize the entire process of annotation. The National Mesothelioma Virtual Bank tool is based upon the caTISSUE Clinical Annotation Engine, developed by the University of Pittsburgh in cooperation with the Cancer Biomedical Informatics Grid™ (caBIG™, see ). This application provides a web-based system for annotating, importing and searching mesothelioma cases. The underlying information model is constructed utilizing Unified Modeling Language class diagrams, hierarchical relationships and Enterprise Architect software. Result The database provides researchers real-time access to richly annotated specimens and integral information related to mesothelioma. The data disclosed is tightly regulated depending upon users' authorization and depending on the participating institute that is amenable to the local Institutional Review Board and regulation committee reviews. Conclusion The National Mesothelioma Virtual Bank currently has over 600 annotated cases available for researchers that include paraffin embedded tissues, tissue microarrays, serum and genomic DNA. The National Mesothelioma Virtual Bank is a virtual biospecimen registry with robust translational biomedical informatics support to facilitate basic science, clinical, and translational research. Furthermore, it protects patient privacy

  13. Target Areas for Enhanced Research Funding and Milestones toward an Improved National Ranking

    ERIC Educational Resources Information Center

    New Jersey Commission on Higher Education, 2005

    2005-01-01

    The quality of institutional research, particularly at New Jersey's research universities, is critical to the competitiveness of both the institutions and the state. Strategic efforts to enhance the quality of research, expand the boundaries of knowledge, and increase the amount of research funding for colleges and universities in the state are…

  14. NEW MEDIA TECHNOLOGY DEVELOPMENT TO ENHANCE AND IMPROVE COMMUNICATIONS AT USEPA'S NATIONAL RISK MANAGEMENT RESEARCH LABORATORY

    EPA Science Inventory

    New media technology (NT) interactive applications are currently being developed in house at ORD/NRMRL to enhance and improve communication of NRMRL's 1) research projects, 2) workshops/conferences and 3) specialized training. NT is an exciting mix of cutting-edge information tec...

  15. National Trends Report: Enhancing Education Through Technology (EETT) Round 6, Fiscal Year 2007

    ERIC Educational Resources Information Center

    State Educational Technology Directors Association, 2009

    2009-01-01

    The State Educational Technology Directors Association (SETDA) is pleased to release its sixth annual report on the "Enhancing Education Through Technology" (EETT) program, a component of the No Child Left Behind, Title II, Part D (NCLB IID) Act. The purposes of the NCLB IID program are to: (1) improve academic achievement through technology; (2)…

  16. Can Academic Reference Librarians Enhance the Cultural Diversity of the Nation's Colleges and Universities?

    ERIC Educational Resources Information Center

    Wilkinson, David

    Academic reference librarians can enhance the campus cultural diversity of colleges and universities by displaying sensitivity at the reference desk; understanding multicultural group behaviors; avoiding stereotyped attitudes; appreciating a wide range of cognitive style differences; striving to make multicultural students feel comfortable;…

  17. Stennis Space Center Verification & Validation Capabilities

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Ryan, Robert E.; Holekamp, Kara; O'Neal, Duane; Knowlton, Kelly; Ross, Kenton; Blonski, Slawomir

    2007-01-01

    Scientists within NASA#s Applied Research & Technology Project Office (formerly the Applied Sciences Directorate) have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site enables the in-flight characterization of satellite and airborne high spatial resolution remote sensing systems and their products. The smaller scale of the newer high resolution remote sensing systems allows scientists to characterize geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists have used the SSC V&V site to characterize thermal infrared systems. Enhancements are being considered to characterize active lidar systems. SSC employs geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment, and thermal calibration ponds to characterize remote sensing data products. Similar techniques are used to characterize moderate spatial resolution sensing systems at selected nearby locations. The SSC Instrument Validation Lab is a key component of the V&V capability and is used to calibrate field instrumentation and to provide National Institute of Standards and Technology traceability. This poster presents a description of the SSC characterization capabilities and examples of calibration data.

  18. The National Aeronautics and Space Administration's Earth Science Applications Program: Exploring Partnerships to Enhance Decision Making in Public Health Practice

    NASA Technical Reports Server (NTRS)

    Vann, Timi S.; Venezia, Robert A.

    2002-01-01

    The National Aeronautics and Space Administration (NASA), Earth Science Enterprise is engaged in applications of NASA Earth science and remote sensing technologies for public health. Efforts are focused on establishing partnerships with those agencies and organizations that have responsibility for protecting the Nation's Health. The program's goal is the integration of NASA's advanced data and technology for enhanced decision support in the areas of disease surveillance and environmental health. A focused applications program, based on understanding partner issues and requirements, has the potential to significantly contribute to more informed decision making in public health practice. This paper intends to provide background information on NASA's investment in public health and is a call for partnership with the larger practice community.

  19. National Suicide Prevention Lifeline: Enhancing Mental Health Care for Suicidal Individuals and Other People in Crisis

    ERIC Educational Resources Information Center

    Gould, Madelyn S.; Munfakh, Jimmie L. H.; Kleinman, Marjorie; Lake, Alison M.

    2012-01-01

    Linking at-risk callers to ongoing mental health care is a key goal of crisis hotline interventions that has not often been addressed in evaluations of hotlines' effectiveness. We conducted telephone interviews with 376 suicidal and 278 nonsuicidal crisis callers to the National Suicide Prevention Lifeline (Lifeline) to assess rates of mental…

  20. Promoting Accountability and Enhancing Efficiency: Using National Education Accounts to Track Expenditure Flows

    ERIC Educational Resources Information Center

    Chawla, Deepika; Forbes, Phyllis

    2010-01-01

    Increasing accountability and efficiency in the use of public and out-of-pocket financing in education are critical to realizing the maximum impact of the meager allocations to education in most developing countries. While broad estimates and numbers are routinely collected by most national ministries and state departments of education, the lack…

  1. Adult Financial Capability Framework. Second Edition

    ERIC Educational Resources Information Center

    Basic Skills Agency, 2006

    2006-01-01

    Both the Financial Services Authority and the Basic Skills Agency are committed to supporting those individuals and organisations working to improve the financial capability of themselves and others. The development of the National Strategy for Financial Capability, coordinated by the Financial Services Authority, and the commissioning of a…

  2. ISS National Laboratory Education Project: Enhancing and Innovating the ISS as an Educational Venue

    NASA Technical Reports Server (NTRS)

    Melvin, Leland D.

    2011-01-01

    The vision is to develop the ISS National Laboratory Education Project (ISS NLE) as a national resource for Science, Technology, Engineering and Mathematics (STEM) education, utilizing the unique educational venue of the International Space Station per the NASA Congressional Authorization Act of 2005. The ISS NLE will serve as an educational resource which enables educational activities onboard the ISS and in the classroom. The ISS NLE will be accessible to educators and students from kindergarten to post-doctoral studies, at primary and secondary schools, colleges and universities. Additionally, the ISS NLE will provide ISS-related STEM education opportunities and resources for learners of all ages via informal educational institutions and venues Though U.S. Congressional direction emphasized the involvement of U.S. students, many ISS-based educational activities have international student and educator participation Over 31 million students around the world have participated in several ISS-related education activities.

  3. Testing and technical capabilities

    SciTech Connect

    Morrow, R.W.; Dill, M.S.

    1984-05-01

    Capabilities of the following are outlined: state-of-the-art-services, measurement control and capabilities coordination, sampling and standard section, analytical technology section, environmental-industrial hygiene section, spectrochemical section, inorganic and production control section, instrumentation and control section, instrument technology, and mass spectrometry-isotopic section.

  4. Capability and Deliberation

    ERIC Educational Resources Information Center

    Hinchliffe, Geoffrey

    2009-01-01

    This paper explores the role of deliberation in the context of the capability approach to human well-being from the standpoint of the individual doing the reflecting. The concept of a "strong evaluator" is used develop a concept of the agent of capability. The role of values is discussed in the process of deliberating, particularly the nature of…

  5. XRCF Testing Capabilities

    NASA Technical Reports Server (NTRS)

    Reily, Cary; Kegely, Jeff; Burdine, Robert (Technical Monitor)

    2001-01-01

    The Space Optics Manufacturing Technology Center's X-ray Calibration Facility has been recently modified to test Next Generation Space Telescope (NGST) developmental mirrors at cryogenic temperatures (35 degrees Kelvin) while maintaining capability for performance testing of x-ray optics and detectors. The facility's current cryo-optical testing capability and potential modifications for future support of NGST will be presented.

  6. Widening Participation; Widening Capability

    ERIC Educational Resources Information Center

    Walker, Melanie

    2008-01-01

    This paper proposes that widening participation in higher education might distinctively be conceptualised beyond economically driven human capital outcomes, as a matter of widening capability. Specifically, the paper proposes forming the capability of students to become and to be "strong evaluators", able to make reflexive and informed choices…

  7. Enhancing Advocacy for Eye Care at National Levels: What Steps to Take for the Next Decade?

    PubMed Central

    Rabiu, Muhammad Mansur; Al Rajhi, Abdulaziz; Qureshi, Mohammed Babar; Gersbeck, Jennifer

    2012-01-01

    The global initiative for the elimination of avoidable blindness by the year 2020-(VISION 2020- The Right to Sight), established in 1999, is a partnership of nongovernmental organizations (NGOs), governments, bilateral organizations, corporate bodies and the World Health Organization. The goal is to eliminate the major causes of avoidable blindness by the year 2020. Significant progress has been made in the last decade. For example, the adoption of three major World Health Assembly resolutions (WHA 56.26, 59.25 and 62.1) requesting governments to increase support and funding for the prevention of blindness and eye care. Additionally, the approval of the VISION 2020 declaration, development of plans and establishment of prevention of blindness committees and a designation of a coordinator by most participating countries represent other major achievements. Furthermore there has been increased political and professional commitment to the prevention of visual impairment and an increase in the provision of high-quality, sustainable eye care. Most of these achievements have been attributed to the advocacy efforts of VISION 2020 at the international level. The full success of this global initiative will likely depend on the extent to which the WHA resolutions are implemented in each country. However, most ratifying countries have not moved forward with implementation of these resolutions. To date, only few countries have shown consistent government support and funding for eye care pursuant to the resolutions. One of the main reasons for this may be inadequate and inappropriate advocacy for eye care at the national level. As such it is believed that the success of VISION 2020 in the next decade will depend on intense advocacy campaigns at national levels. This review identified some of the countries and health programs that have had fruitful advocacy efforts, to determine the factors that dictated success. The review highlights the factors of successful advocacy in two

  8. Enhancing Quality Improvements in Cancer Care Through CME Activities at a Nationally Recognized Cancer Center

    PubMed Central

    Uemura, Marc; Morgan, Robert; Mendelsohn, Mary; Kagan, Jean; Saavedra, Crystal; Leong, Lucille

    2013-01-01

    Changing healthcare policy will undoubtedly affect the healthcare environment in which providers function. The current Fee for Service reimbursement model will be replaced by Value-Based Purchasing, where higher quality and more efficient care will be emphasized. Because of this, large healthcare organizations and individual providers must adapt to incorporate performance outcomes into patient care. Here, we present a Continuing Medical Education (CME)-based initiative at the City of Hope National Cancer Center that we believe can serve as a model for using CME as a value added component to achieving such a goal. PMID:23608956

  9. Small rover exploration capabilities

    NASA Astrophysics Data System (ADS)

    Salotti, Jean-Marc; Laithier, Corentin; Machut, Benoit; Marie, Aurélien; Bruneau, Audrey; Grömer, Gernot; Foing, Bernard H.

    2015-05-01

    For a human mission to the Moon or Mars, an important question is to determine the best strategy for the choice of surface vehicles. Recent studies suggest that the first missions to Mars will be strongly constrained and that only small unpressurized vehicles will be available. We analyze the exploration capabilities and limitations of small surface vehicles from the user perspective. Following the “human centered design” paradigm, the team focused on human systems interactions and conducted the following experiments:nation expedition, we studied surface mobility aspects in challenging terrains also to be expected on Mars. Two test subjects in high-fidelity spacesuit simulators and driving All-Terrain Vehicles (ATV, aka quads) had to traverse various obstacles found in a desert region and answer a list of questions about their vehicle, the obstacles and possible options to go further. - Another member of our team participated in the ILEWG EuroMoonMars 2013 simulation at the Mars Desert Research Station in Utah during the same period of time. Although the possible traverses were restricted, a similar study with analog space suits and quads has been carried out. - Other experiments have been conducted in an old rock quarry close to Bordeaux, France. An expert in the use of quads for all types of terrains performed a demonstration and helped us to characterize the difficulties, the risks and advantages and drawbacks of different vehicles and tools. The vehicles that will be used on the surface of Mars have not been defined yet. Nevertheless, the results of our project already show that using a light and unpressurized vehicle (in the order of 150 kg) for the mobility on the Martian surface can be a true advantage. Part of the study was dedicated to the search for appropriate tools that could be used to make

  10. Magnesium-Doped Li1.2[Co0.13Ni0.13Mn0.54]O2 for Lithium-Ion Battery Cathode with Enhanced Cycling Stability and Rate Capability.

    PubMed

    Wang, Yan X; Shang, Ke H; He, Wei; Ai, Xin P; Cao, Yu L; Yang, Han X

    2015-06-17

    Mg-doped Li[Li0.2-2xMgxCo0.13Ni0.13Mn0.54]O2 is synthesized by introducing Mg ions into the transition-metal (TM) layer of this layered compound for substituting Li ions through a simple polymer-pyrolysis method. The structural and morphological characterization reveals that the doped Mg ions are uniformly distributed in the bulk lattice, showing an insignificant impact on the layered structure. Electrochemical experiments reveal that, at a Mg doping of 4%, the Li[Li0.16Mg0.04Co0.13Ni0.13Mn0.54]O2 electrode can deliver a larger initial reversible capacity of 272 mAh g(-1), an improved rate capability with 114 mAh g(-1) at 8 C, and an excellent cycling stability with 93.3% capacity retention after 300 cycles. The superior electrochemical performances of the Mg-doped material are possibly due to the enhancement of the structural stability by substitution of Li by Mg in the TM layer, which effectively suppresses the cation mixing arrangement, leading to the alleviation of the phase change during lithium-ion insertion and extraction. PMID:26011097

  11. National primary drinking water regulations: Long Term 1 Enhanced Surface Water Treatment Rule. Final rule.

    PubMed

    2002-01-14

    In this document, EPA is finalizing the Long Term 1 Enhanced Surface Water Treatment Rule (LT1ESWTR). The purposes of the LT1ESWTR are to improve control of microbial pathogens, specifically the protozoan Cryptosporidium, in drinking water and address risk trade- offs with disinfection byproducts. The rule will require systems to meet strengthened filtration requirements as well as to calculate levels of microbial inactivation to ensure that microbial protection is not jeopardized if systems make changes to comply with disinfection requirements of the Stage 1 Disinfection and Disinfection Byproducts Rule (DBPR). The LT1ESWTR applies to public water systems that use surface water or ground water under the direct influence of surface water and serve fewer than 10,000 persons. The LT1ESWTR builds upon the framework established for systems serving a population of 10,000 or more in the Interim Enhanced Surface Water Treatment Rule (IESWTR). This rule was proposed in combination with the Filter Backwash Recycling Rule (FBRR) in April 2000. PMID:11800007

  12. KSC Technical Capabilities Website

    NASA Technical Reports Server (NTRS)

    Nufer, Brian; Bursian, Henry; Brown, Laurette L.

    2010-01-01

    This document is the website pages that review the technical capabilities that the Kennedy Space Center (KSC) has for partnership opportunities. The purpose of this information is to make prospective customers aware of the capabilities and provide an opportunity to form relationships with the experts at KSC. The technical capabilities fall into these areas: (1) Ground Operations and Processing Services, (2) Design and Analysis Solutions, (3) Command and Control Systems / Services, (4) Materials and Processes, (5) Research and Technology Development and (6) Laboratories, Shops and Test Facilities.

  13. CTH reference manual : composite capability and technologies.

    SciTech Connect

    Key, Christopher T.; Schumacher, Shane C.

    2009-02-01

    The composite material research and development performed over the last year has greatly enhanced the capabilities of CTH for non-isotropic materials. The enhancements provide the users and developers with greatly enhanced capabilities to address non-isotropic materials and their constitutive model development. The enhancements to CTH are intended to address various composite material applications such as armor systems, rocket motor cases, etc. A new method for inserting non-isotropic materials was developed using Diatom capabilities. This new insertion method makes it possible to add a layering capability to a shock physics hydrocode. This allows users to explicitly model each lamina of a composite without the overhead of modeling each lamina as a separate material to represent a laminate composite. This capability is designed for computational speed and modeling efficiency when studying composite material applications. In addition, the layering capability also allows a user to model interlaminar mechanisms. Finally, non-isotropic coupling methods have been investigated. The coupling methods are specific to shock physics where the Equation of State (EOS) is used with a nonisotropic constitutive model. This capability elastically corrects the EOS pressure (typically isotropic) for deviatoric pressure coupling for non-isotropic materials.

  14. Engineering Capabilities and Partnerships

    NASA Technical Reports Server (NTRS)

    Poulos, Steve

    2010-01-01

    This slide presentation reviews the engineering capabilities at Johnson Space Center, The presentation also reviews the partnerships that have resulted in successfully designed and developed projects that involved commercial and educational institutions.

  15. Enhanced cycle stability at high rate and excellent high rate capability of La0.7Sr0.3Mn0.7Co0.3O3-coated LiMn2O4

    NASA Astrophysics Data System (ADS)

    Shi, Ting; Dong, Yue; Wang, Chun-Mei; Tao, Fen; Chen, Li

    2015-01-01

    La0.7Sr0.3Mn0.7Co0.3O3-coated spinel LiMn2O4 with excellent cycle stability and high rate capability is successfully prepared by a sol-gel method. The 3 wt.% La0.7Sr0.3Mn0.7Co0.3O3-coated LiMn2O4 shows the optimum electrochemical performance. It can deliver 101 mAh g-1 at 10 C even after 100 cycles with a capacity retention of 93.5%. In contrast, the bare LiMn2O4 delivers 83.6 mAh g-1 at the same condition, only 84.5% capacity left. The rate capability of 3 wt.% La0.7Sr0.3Mn0.7Co0.3O3-coated LiMn2O4 is also obviously enhanced, especially at high rates (10 C, 20 C and 30 C). It can deliver 74.3 mAh g-1 at 30 C which is much higher than that of the bare sample (47.2 mAh g-1). The bare and coated LiMn2O4 samples are studied with various techniques. Both powder X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) measurements demonstrate the existence of the La0.7Sr0.3Mn0.7Co0.3O3, and it has no influence on the crystal structure of the pristine LiMn2O4. Transmission electron microscopy (TEM) shows that La0.7Sr0.3Mn0.7Co0.3O3 coating layer with good crystallinity can cover the surface of LiMn2O4 to form a core-shell structure. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) demonstrate that the coating layer can improve the kinetics of electrodes.

  16. Prospective Whole-Genome Sequencing Enhances National Surveillance of Listeria monocytogenes.

    PubMed

    Kwong, Jason C; Mercoulia, Karolina; Tomita, Takehiro; Easton, Marion; Li, Hua Y; Bulach, Dieter M; Stinear, Timothy P; Seemann, Torsten; Howden, Benjamin P

    2016-02-01

    Whole-genome sequencing (WGS) has emerged as a powerful tool for comparing bacterial isolates in outbreak detection and investigation. Here we demonstrate that WGS performed prospectively for national epidemiologic surveillance of Listeria monocytogenes has the capacity to be superior to our current approaches using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), multilocus variable-number tandem-repeat analysis (MLVA), binary typing, and serotyping. Initially 423 L. monocytogenes isolates underwent WGS, and comparisons uncovered a diverse genetic population structure derived from three distinct lineages. MLST, binary typing, and serotyping results inferred in silico from the WGS data were highly concordant (>99%) with laboratory typing performed in parallel. However, WGS was able to identify distinct nested clusters within groups of isolates that were otherwise indistinguishable using our current typing methods. Routine WGS was then used for prospective epidemiologic surveillance on a further 97 L. monocytogenes isolates over a 12-month period, which provided a greater level of discrimination than that of conventional typing for inferring linkage to point source outbreaks. A risk-based alert system based on WGS similarity was used to inform epidemiologists required to act on the data. Our experience shows that WGS can be adopted for prospective L. monocytogenes surveillance and investigated for other pathogens relevant to public health. PMID:26607978

  17. Self-reported study habits for enhancing medical students’ performance in the National Medical Unified Examination

    PubMed Central

    Idris, Amr; Al Saadi, Tareq; Edris, Basel; Sawaf, Bisher; Zakaria, Mhd. Ismael; Alkhatib, Mahmoud; Turk, Tarek

    2016-01-01

    Background: The National Medical Unified Examination (NMUE) is currently required for graduation, joining postgraduate medical training, and practicing medicine in Syria. Objective: To investigate self-reported study habits that correlate with high performance on the NMUE. Methods: First through 3rd year residents at the three main hospitals in Damascus, Syria, were asked to complete a retrospective cross-sectional survey investigating their study habits and previous scores. Results: Significantly higher score was associated with >15 study h/day and allocating 1–40% of study time for practicing questions. Mean NMUE score was not significantly different in relation to preparation months for examination or for those who reported spending all their time studying alone compared with spending any amount of time in a group setting. Scores of 231–240 on the Syrian scientific high school exam correlated with significantly higher NMUE performance compared with fewer scores, except scores of 221–230. For every 10 point increase in medical school cumulative grades, the NMUE score increased 3.6 (95% confidence interval 2.5–4.8). Conclusion: The NMUE score was significantly affected by hours spent studying per day, number of practice questions completed, percentage of study time allocated for doing questions, Syrian scientific high school exam scores, and the cumulative medical school class grades. It was not significantly affected by preparation months or studying in a group setting. More studies are needed to further describe and investigate the factors that might affect performance in the NMUE. PMID:27144140

  18. Prospective Whole-Genome Sequencing Enhances National Surveillance of Listeria monocytogenes

    PubMed Central

    Kwong, Jason C.; Mercoulia, Karolina; Tomita, Takehiro; Easton, Marion; Li, Hua Y.; Bulach, Dieter M.; Stinear, Timothy P.; Seemann, Torsten

    2015-01-01

    Whole-genome sequencing (WGS) has emerged as a powerful tool for comparing bacterial isolates in outbreak detection and investigation. Here we demonstrate that WGS performed prospectively for national epidemiologic surveillance of Listeria monocytogenes has the capacity to be superior to our current approaches using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), multilocus variable-number tandem-repeat analysis (MLVA), binary typing, and serotyping. Initially 423 L. monocytogenes isolates underwent WGS, and comparisons uncovered a diverse genetic population structure derived from three distinct lineages. MLST, binary typing, and serotyping results inferred in silico from the WGS data were highly concordant (>99%) with laboratory typing performed in parallel. However, WGS was able to identify distinct nested clusters within groups of isolates that were otherwise indistinguishable using our current typing methods. Routine WGS was then used for prospective epidemiologic surveillance on a further 97 L. monocytogenes isolates over a 12-month period, which provided a greater level of discrimination than that of conventional typing for inferring linkage to point source outbreaks. A risk-based alert system based on WGS similarity was used to inform epidemiologists required to act on the data. Our experience shows that WGS can be adopted for prospective L. monocytogenes surveillance and investigated for other pathogens relevant to public health. PMID:26607978

  19. Physician involvement enhances coding accuracy to ensure national standards: an initiative to improve awareness among new junior trainees.

    PubMed

    Nallasivan, S; Gillott, T; Kamath, S; Blow, L; Goddard, V

    2011-06-01

    Record Keeping Standards is a development led by the Royal College of Physicians of London (RCP) Health Informatics Unit and funded by the National Health Service (NHS) Connecting for Health. A supplementary report produced by the RCP makes a number of recommendations based on a study held at an acute hospital trust. We audited the medical notes and coding to assess the accuracy, documentation by the junior doctors and also to correlate our findings with the RCP audit. Northern Lincolnshire & Goole Hospitals NHS Foundation Trust has 114,000 'finished consultant episodes' per year. A total of 100 consecutive medical (50) and rheumatology (50) discharges from Diana Princess of Wales Hospital from August-October 2009 were reviewed. The results showed an improvement in coding accuracy (10% errors), comparable to the RCP audit but with 5% documentation errors. Physician involvement needs enhancing to improve the effectiveness and to ensure clinical safety. PMID:21677911

  20. The new MCNP6 depletion capability

    SciTech Connect

    Fensin, M. L.; James, M. R.; Hendricks, J. S.; Goorley, J. T.

    2012-07-01

    The first MCNP based in-line Monte Carlo depletion capability was officially released from the Radiation Safety Information and Computational Center as MCNPX 2.6.0. Both the MCNP5 and MCNPX codes have historically provided a successful combinatorial geometry based, continuous energy, Monte Carlo radiation transport solution for advanced reactor modeling and simulation. However, due to separate development pathways, useful simulation capabilities were dispersed between both codes and not unified in a single technology. MCNP6, the next evolution in the MCNP suite of codes, now combines the capability of both simulation tools, as well as providing new advanced technology, in a single radiation transport code. We describe here the new capabilities of the MCNP6 depletion code dating from the official RSICC release MCNPX 2.6.0, reported previously, to the now current state of MCNP6. NEA/OECD benchmark results are also reported. The MCNP6 depletion capability enhancements beyond MCNPX 2.6.0 reported here include: (1) new performance enhancing parallel architecture that implements both shared and distributed memory constructs; (2) enhanced memory management that maximizes calculation fidelity; and (3) improved burnup physics for better nuclide prediction. MCNP6 depletion enables complete, relatively easy-to-use depletion calculations in a single Monte Carlo code. The enhancements described here help provide a powerful capability as well as dictate a path forward for future development to improve the usefulness of the technology. (authors)

  1. The New MCNP6 Depletion Capability

    SciTech Connect

    Fensin, Michael Lorne; James, Michael R.; Hendricks, John S.; Goorley, John T.

    2012-06-19

    The first MCNP based inline Monte Carlo depletion capability was officially released from the Radiation Safety Information and Computational Center as MCNPX 2.6.0. Both the MCNP5 and MCNPX codes have historically provided a successful combinatorial geometry based, continuous energy, Monte Carlo radiation transport solution for advanced reactor modeling and simulation. However, due to separate development pathways, useful simulation capabilities were dispersed between both codes and not unified in a single technology. MCNP6, the next evolution in the MCNP suite of codes, now combines the capability of both simulation tools, as well as providing new advanced technology, in a single radiation transport code. We describe here the new capabilities of the MCNP6 depletion code dating from the official RSICC release MCNPX 2.6.0, reported previously, to the now current state of MCNP6. NEA/OECD benchmark results are also reported. The MCNP6 depletion capability enhancements beyond MCNPX 2.6.0 reported here include: (1) new performance enhancing parallel architecture that implements both shared and distributed memory constructs; (2) enhanced memory management that maximizes calculation fidelity; and (3) improved burnup physics for better nuclide prediction. MCNP6 depletion enables complete, relatively easy-to-use depletion calculations in a single Monte Carlo code. The enhancements described here help provide a powerful capability as well as dictate a path forward for future development to improve the usefulness of the technology.

  2. High harmonic fast wave heating efficiency enhancement and current drive at longer wavelength on the National Spherical Torus Experiment

    SciTech Connect

    Hosea, J.; Bell, R. E.; LeBlanc, B. P.; Phillips, C. K.; Taylor, G.; Valeo, E.; Wilson, J. R.; Jaeger, E. F.; Ryan, P. M.; Wilgen, J.; Yuh, H.; Levinton, F.; Sabbagh, S.; Tritz, K.; Parker, J.; Bonoli, P. T.; Harvey, R.

    2008-05-15

    High harmonic fast wave heating and current drive (CD) are being developed on the National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 41, 1435 (2001)] for supporting startup and sustainment of the spherical torus plasma. Considerable enhancement of the core heating efficiency ({eta}) from 44% to 65% has been obtained for CD phasing of the antenna (strap-to-strap {phi}=-90 deg., k{sub {phi}}=-8 m{sup -1}) by increasing the magnetic field from 4.5 to 5.5 kG. This increase in efficiency is strongly correlated to moving the location of the onset density for perpendicular fast wave propagation (n{sub onset}{proportional_to}Bxk{sub parallel}{sup 2}/{omega}) away from the antenna face and wall, and hence reducing the propagating surface wave fields. Radio frequency (RF) waves propagating close to the wall at lower B and k{sub parallel} can enhance power losses from both the parametric decay instability (PDI) and wave dissipation in sheaths and structures around the machine. The improved efficiency found here is attributed to a reduction in the latter, as PDI losses are little changed at the higher magnetic field. Under these conditions of higher coupling efficiency, initial measurements of localized CD effects have been made and compared with advanced RF code simulations.

  3. High Harmonic Fast Wave Heating Efficiency Enhancement and Current Drive at Longer Wavelength on the National Spherical Torus Experiment

    SciTech Connect

    Hosea, J.; Bell, R. E.; LeBlanc, B; Phillips, Cynthia; Taylor, G.; Valeo, Dr Ernest; Wilson, J. R.; Jaeger, Erwin Frederick; Ryan, Philip Michael; Wilgen, John B; Yuh, H.; Levinton, F.; Sabbagh, S. A.; Tritz, K.; Parker, J.; Bonoli, P.; Harvey, R. W.

    2008-01-01

    High harmonic fast wave heating and current drive CD are being developed on the National Spherical Torus Experiment M. Ono et al., Nucl. Fusion 41, 1435 2001 for supporting startup and sustainment of the spherical torus plasma. Considerable enhancement of the core heating efficiency from 44% to 65% has been obtained for CD phasing of the antenna strap-to-strap = 90 , k= 8 m 1 by increasing the magnetic field from 4.5 to 5.5 kG. This increase in efficiency is strongly correlated to moving the location of the onset density for perpendicular fast wave propagation nonsetBk 2 / away from the antenna face and wall, and hence reducing the propagating surface wave fields. Radio frequency RF waves propagating close to the wall at lower B and k can enhance power losses from both the parametric decay instability PDI and wave dissipation in sheaths and structures around the machine. The improved efficiency found here is attributed to a reduction in the latter, as PDI losses are little changed at the higher magnetic field. Under these conditions of higher coupling efficiency, initial measurements of localized CD effects have been made and compared with advanced RF code simulations.

  4. Evaluating ammonia (NH3) predictions in the NOAA National Air Quality Forecast Capability (NAQFC) using in situ aircraft, ground-level, and satellite measurements from the DISCOVER-AQ Colorado campaign

    NASA Astrophysics Data System (ADS)

    Battye, William H.; Bray, Casey D.; Aneja, Viney P.; Tong, Daniel; Lee, Pius; Tang, Youhua

    2016-09-01

    The U.S. National Oceanic and Atmospheric Administration (NOAA) is responsible for forecasting elevated levels of air pollution within the National Air Quality Forecast Capability (NAQFC). The current research uses measurements gathered in the DISCOVER-AQ Colorado field campaign and the concurrent Front Range Air Pollution and Photochemistry Experiment (FRAPPE) to test performance of the NAQFC CMAQ modeling framework for predicting NH3. The DISCOVER-AQ and FRAPPE field campaigns were carried out in July and August 2014 in Northeast Colorado. Model predictions are compared with measurements of NH3 gas concentrations and the NH4+ component of fine particulate matter concentrations measured directly by the aircraft in flight. We also compare CMAQ predictions with NH3 measurements from ground-based monitors within the DISCOVER-AQ Colorado geographic domain, and from the Tropospheric Emission Spectrometer (TES) on the Aura satellite. In situ aircraft measurements carried out in July and August of 2014 suggest that the NAQFC CMAQ model underestimated the NH3 concentration in Northeastern Colorado by a factor of ∼2.7 (NMB = -63%). Ground-level monitors also produced a similar result. Average satellite-retrieved NH3 levels also exceeded model predictions by a factor of 1.5-4.2 (NMB = -33 to -76%). The underestimation of NH3 was not accompanied by an underestimation of particulate NH4+, which is further controlled by factors including acid availability, removal rate, and gas-particle partition. The average measured concentration of NH4+ was close to the average predication (NMB = +18%). Seasonal patterns measured at an AMoN site in the region suggest that the underestimation of NH3 is not due to the seasonal allocation of emissions, but to the overall annual emissions estimate. The underestimation of NH3 varied across the study domain, with the largest differences occurring in a region of intensive agriculture near Greeley, Colorado, and in the vicinity of Denver. The

  5. Development, enhancement, and evaluation of aircraft measurement techniques for national ambient air quality standard criteria pollutants

    NASA Astrophysics Data System (ADS)

    Brent, Lacey Cluff

    The atmospheric contaminants most harmful to human health are designated Criteria Pollutants. To help Maryland attain the national ambient air quality standards (NAAQS) for Criteria Pollutants, and to improve our fundamental understanding of atmospheric chemistry, I conducted aircraft measurements in the Regional Atmospheric Measurement Modeling Prediction Program (RAMMPP). These data are used to evaluate model simulations and satellite observations. I developed techniques for improving airborne observation of two NAAQS pollutants, particulate matter (PM) and nitrogen dioxide (NO2). While structure and composition of organic aerosol are important for understanding PM formation, the molecular speciation of organic ambient aerosol remains largely unknown. The spatial distribution of reactive nitrogen is likewise poorly constrained. To examine water-soluble organic aerosol (WSOA) during an air pollution episode, I designed and implemented a shrouded aerosol inlet system to collect PM onto quartz fiber filters from a Cessna 402 research aircraft. Inlet evaluation conducted during a side-by-side flight with the NASA P3 demonstrated agreement to within 30%. An ion chromatographic mass spectrometric method developed using the NIST Standard Reference Material (SRM) 1649b Urban Dust, as a surrogate material resulted in acidic class separation and resolution of at least 34 organic acids; detection limits approach pg/g concentrations. Analysis of aircraft filter samples resulted in detection of 8 inorganic species and 16 organic acids of which 12 were quantified. Aged, re-circulated metropolitan air showed a greater number of dicarboxylic acids compared to air recently transported from the west. While the NAAQS for NO2 is rarely exceeded, it is a precursor molecule for ozone, America's most recalcitrant pollutant. Using cavity ringdown spectroscopy employing a light emitting diode (LED), I measured vertical profiles of NO2 (surface to 2.5 km) west (upwind) of the Baltimore

  6. Practitioner Perspectives on Foundational Capabilities

    PubMed Central

    Leider, Jonathon P.; Juliano, Chrissie; Castrucci, Brian C.; Beitsch, Leslie M.; Dilley, Abby; Nelson, Rachel; Kaiman, Sherry; Sprague, James B.

    2015-01-01

    Context: National efforts are underway to classify a minimum set of public health services that all jurisdictions throughout the United States should provide regardless of location. Such a set of basic programs would be supported by crosscutting services, known as the “foundational capabilities” (FCs). These FCs are assessment services, preparedness and disaster response, policy development, communications, community partnership, and organizational support activities. Objective: To ascertain familiarity with the term and concept of FCs and gather related perspectives from state and local public health practitioners. Design: In fall 2013, we interviewed 50 leaders from state and local health departments. We asked about familiarity with the term “foundational capabilities,” as well as the broader concept of FCs. We attempted to triangulate the utility of the FC concept by asking respondents about priority programs and services, about perceived unique contributions made by public health, and about prevalence and funding for the FCs. Setting: Telephone-based interviews. Participants: Fifty leaders of state and local health departments. Main Outcome Measures: Practitioner familiarity with and perspectives on the FCs, information about current funding streams for public health, and the likelihood of creating nationwide FCs that would be recognized and accepted by all jurisdictions. Results: Slightly more than half of the leaders interviewed said that they were familiar with the concept of FCs. In most cases, health departments had all of the capabilities to some degree, although operationalization varied. Few indicated that current funding levels were sufficient to support implementing a minimum level of FCs nationally. Conclusions: Respondents were not able to articulate the current or optimal levels of services for the various capabilities, nor the costs associated with them. Further research is needed to understand the role of FCs as part of the foundational

  7. Capabilities for Intercultural Dialogue

    ERIC Educational Resources Information Center

    Crosbie, Veronica

    2014-01-01

    The capabilities approach offers a valuable analytical lens for exploring the challenge and complexity of intercultural dialogue in contemporary settings. The central tenets of the approach, developed by Amartya Sen and Martha Nussbaum, involve a set of humanistic goals including the recognition that development is a process whereby people's…

  8. Exploration Medical Capability

    NASA Technical Reports Server (NTRS)

    Watkins, Sharmila; Baumann, David; Wu, Jimmy; Barsten, Kristina

    2010-01-01

    Exploration Medical Capability (ExMC) is an element of NASA's Human Research Program (HRP). ExMC's goal is to address the risk of the Inability to Adequately Recognize or Treat an Ill or Injured Crewmember. This poster highlights the approach ExMC has taken to address this goal and our current areas of interest. The Space Medicine Exploration Medical Condition List (SMEMCL) was created to identify medical conditions of concern during exploration missions. The list was derived from space flight medical incidents, the shuttle medical checklist, the International Space Station medical checklist, and expert opinion. The conditions on the list were prioritized according to mission type by a panel comprised of flight surgeons, physician astronauts, engineers, and scientists. From the prioritized list, the ExMC element determined the capabilities needed to address the medical conditions of concern. Where such capabilities were not currently available, a gap was identified. The element s research plan outlines these gaps and the tasks identified to achieve the desired capabilities for exploration missions. This poster is being presented to inform the audience of the gaps and tasks being investigated by ExMC and to encourage discussions of shared interests and possible future collaborations.

  9. Metrology Measurement Capabilities

    SciTech Connect

    Dr. Glen E. Gronniger

    2007-10-02

    This document contains descriptions of Federal Manufacturing & Technologies (FM&T) Metrology capabilities, traceability flow charts, and the measurement uncertainty of each measurement capability. Metrology provides NIST traceable precision measurements or equipment calibration for a wide variety of parameters, ranges, and state-of-the-art uncertainties. Metrology laboratories conform to the requirements of the Department of Energy Development and Production Manual Chapter 13.2, ANSI/ISO/IEC ANSI/ISO/IEC 17025:2005, and ANSI/NCSL Z540-1. FM&T Metrology laboratories are accredited by NVLAP for the parameters, ranges, and uncertainties listed in the specific scope of accreditation under NVLAP Lab code 200108-0. See the Internet at http://ts.nist.gov/Standards/scopes/2001080.pdf. These parameters are summarized. The Honeywell Federal Manufacturing & Technologies (FM&T) Metrology Department has developed measurement technology and calibration capability in four major fields of measurement: (1) Mechanical; (2) Environmental, Gas, Liquid; (3) Electrical (DC, AC, RF/Microwave); and (4) Optical and Radiation. Metrology Engineering provides the expertise to develop measurement capabilities for virtually any type of measurement in the fields listed above. A strong audit function has been developed to provide a means to evaluate the calibration programs of our suppliers and internal calibration organizations. Evaluation includes measurement audits and technical surveys.

  10. Capitalizing on capabilities.

    PubMed

    Ulrich, Dave; Smallwood, Norm

    2004-06-01

    By making the most of organizational capabilities--employees' collective skills and fields of expertise--you can dramatically improve your company's market value. Although there is no magic list of proficiencies that every organization needs in order to succeed, the authors identify 11 intangible assets that well-managed companies tend to have: talent, speed, shared mind-set and coherent brand identity, accountability, collaboration, learning, leadership, customer connectivity, strategic unity, innovation, and efficiency. Such companies typically excel in only three of these capabilities while maintaining industry parity in the other areas. Organizations that fall below the norm in any of the 11 are likely candidates for dysfunction and competitive disadvantage. So you can determine how your company fares in these categories (or others, if the generic list doesn't suit your needs), the authors explain how to conduct a "capabilities audit," describing in particular the experiences and findings of two companies that recently performed such audits. In addition to highlighting which intangible assets are most important given the organization's history and strategy, this exercise will gauge how well your company delivers on its capabilities and will guide you in developing an action plan for improvement. A capabilities audit can work for an entire organization, a business unit, or a region--indeed, for any part of a company that has a strategy to generate financial or customer-related results. It enables executives to assess overall company strengths and weaknesses, senior leaders to define strategy, midlevel managers to execute strategy, and frontline leaders to achieve tactical results. In short, it helps turn intangible assets into concrete strengths. PMID:15202293

  11. Semiconductor research capabilities at the Lawrence Berkeley Laboratory

    SciTech Connect

    Not Available

    1987-02-01

    This document discusses semiconductor research capabilities (advanced materials, processing, packaging) and national user facilities (electron microscopy, heavy-ion accelerators, advanced light source). (DLC)

  12. NASA's Space Launch System: An Enabling Capability for Discovery

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.

    2014-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human spaceflight and scientific missions beyond Earth orbit. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Making its first uncrewed test flight in 2017 and its first crewed flight in 2021, the SLS will evolve into the most powerful launch vehicle ever flown, capable of supporting human missions into deep space and to Mars. This paper will summarize the planned capabilities of the vehicle, the progress the SLS Program has made in the years since the Agency formally announced its architecture in September 2011, and the path the program is following to reach the launch pad in 2017 and then to evolve the 70 metric ton (t) initial lift capability to 130 t lift capability. The paper will outline the milestones the program has already reached, from developmental milestones such as the manufacture of the first flight hardware and recordbreaking engine testing, to life-cycle milestones such as the vehicle's Preliminary Design Review in the summer of 2013. The paper will also discuss the remaining challenges in both delivering the 70 t vehicle and in evolving its capabilities to the 130 t vehicle, and how the program plans to accomplish these goals. In addition, this paper will demonstrate how the Space Launch System is being designed to enable or enhance not only human exploration missions, but robotic scientific missions as well. Because of its unique launch capabilities, SLS will support simplifying spacecraft complexity, provide improved mass margins and radiation mitigation, and reduce mission durations. These capabilities offer attractive advantages for ambitious science missions by reducing

  13. Developing an operational capabilities index of the emergency services sector.

    SciTech Connect

    Collins, M.J.; Eaton, L.K.; Shoemaker, Z.M.; Fisher, R.E.; Veselka, S.N.; Wallace, K.E.; Petit, F.D.

    2012-02-20

    In order to enhance the resilience of the Nation and its ability to protect itself in the face of natural and human-caused hazards, the ability of the critical infrastructure (CI) system to withstand specific threats and return to normal operations after degradation must be determined. To fully analyze the resilience of a region and the CI that resides within it, both the actual resilience of the individual CI and the capability of the Emergency Services Sector (ESS) to protect against and respond to potential hazards need to be considered. Thus, a regional resilience approach requires the comprehensive consideration of all parts of the CI system as well as the characterization of emergency services. This characterization must generate reproducible results that can support decision making with regard to risk management, disaster response, business continuity, and community planning and management. To address these issues, Argonne National Laboratory, in collaboration with the U.S. Department of Homeland Security (DHS) Sector Specific Agency - Executive Management Office, developed a comprehensive methodology to create an Emergency Services Sector Capabilities Index (ESSCI). The ESSCI is a performance metric that ranges from 0 (low level of capabilities) to 100 (high). Because an emergency services program has a high ESSCI, however, does not mean that a specific event would not be able to affect a region or cause severe consequences. And because a program has a low ESSCI does not mean that a disruptive event would automatically lead to serious consequences in a region. Moreover, a score of 100 on the ESSCI is not the level of capability expected of emergency services programs; rather, it represents an optimal program that would rarely be observed. The ESSCI characterizes the state of preparedness of a jurisdiction in terms of emergency and risk management. Perhaps the index's primary benefit is that it can systematically capture, at a given point in time, the

  14. The challenge for improved air cargo capability

    NASA Technical Reports Server (NTRS)

    Vaughan, J.

    1976-01-01

    Requirements for a strategic air cargo capability are considered. Practical national resource investment considerations dictate that future military strategic airlift planners regard civil capabilities as an integral part of the solution. Attention is given to the military needs for airlift, the civil-military airlift commonality, the present air cargo business, growth projections for civil air cargo, future air cargo business, the introduction date for a dedicated airfreighter, and the demands for transport aircraft.

  15. Metrology Measurement Capabilities

    SciTech Connect

    Barnes, L.M.

    2000-03-23

    This document contains descriptions of Federal Manufacturing and Technologies (FM and T) Metrology capabilities, traceability flow charts, and the measurement uncertainty of each measurement capability. Metrology provides NIST traceable precision measurements or equipment calibration for a wide variety of parameters, ranges, and state-of-the-art uncertainties in laboratories that conform to the requirements of the Department of Energy Development and Production Manual Chapter 8.4, and ANSI/NCSL Z540-1 (equivalent to ISO Guide 25). FM and T Metrology laboratories are accredited by NVLAP for the parameters, ranges, and uncertainties listed in the specific scope of accreditation under NVLAP Lab code 200108-0. These parameters are summarized.

  16. Metrology Measurement Capabilities

    SciTech Connect

    Barnes, L.M.

    2003-11-12

    This document contains descriptions of Federal Manufacturing & Technologies (FM&T) Metrology capabilities, traceability flow charts, and the measurement uncertainty of each measurement capability. Metrology provides NIST traceable precision measurements or equipment calibration for a wide variety of parameters, ranges, and state-of-the-art uncertainties. Metrology laboratories conform to the requirements of the Department of Energy Development and Production Manual Chapter 8.4, ANSI/ISO/IEC ANSI/ISO/IEC 17025:2000, and ANSI/NCSL Z540-1 (equivalent to ISO Guide 25). FM&T Metrology laboratories are accredited by NVLAP for the parameters, ranges, and uncertainties listed in the specific scope of accreditation under NVLAP Lab code 200108-0. See the Internet at http://ts.nist.gov/ts/htdocs/210/214/scopes/2001080.pdf. These parameters are summarized in the table at the bottom of this introduction.

  17. Layered Composite Analysis Capability

    NASA Technical Reports Server (NTRS)

    Narayanaswami, R.; Cole, J. G.

    1985-01-01

    Laminated composite material construction is gaining popularity within industry as an attractive alternative to metallic designs where high strength at reduced weights is of prime consideration. This has necessitated the development of an effective analysis capability for the static, dynamic and buckling analyses of structural components constructed of layered composites. Theoretical and user aspects of layered composite analysis and its incorporation into CSA/NASTRAN are discussed. The availability of stress and strain based failure criteria is described which aids the user in reviewing the voluminous output normally produced in such analyses. Simple strategies to obtain minimum weight designs of composite structures are discussed. Several example problems are presented to demonstrate the accuracy and user convenient features of the capability.

  18. Group Capability Model

    NASA Technical Reports Server (NTRS)

    Olejarski, Michael; Appleton, Amy; Deltorchio, Stephen

    2009-01-01

    The Group Capability Model (GCM) is a software tool that allows an organization, from first line management to senior executive, to monitor and track the health (capability) of various groups in performing their contractual obligations. GCM calculates a Group Capability Index (GCI) by comparing actual head counts, certifications, and/or skills within a group. The model can also be used to simulate the effects of employee usage, training, and attrition on the GCI. A universal tool and common method was required due to the high risk of losing skills necessary to complete the Space Shuttle Program and meet the needs of the Constellation Program. During this transition from one space vehicle to another, the uncertainty among the critical skilled workforce is high and attrition has the potential to be unmanageable. GCM allows managers to establish requirements for their group in the form of head counts, certification requirements, or skills requirements. GCM then calculates a Group Capability Index (GCI), where a score of 1 indicates that the group is at the appropriate level; anything less than 1 indicates a potential for improvement. This shows the health of a group, both currently and over time. GCM accepts as input head count, certification needs, critical needs, competency needs, and competency critical needs. In addition, team members are categorized by years of experience, percentage of contribution, ex-members and their skills, availability, function, and in-work requirements. Outputs are several reports, including actual vs. required head count, actual vs. required certificates, CGI change over time (by month), and more. The program stores historical data for summary and historical reporting, which is done via an Excel spreadsheet that is color-coded to show health statistics at a glance. GCM has provided the Shuttle Ground Processing team with a quantifiable, repeatable approach to assessing and managing the skills in their organization. They now have a common

  19. OPSAID improvements and capabilities report.

    SciTech Connect

    Halbgewachs, Ronald D.; Chavez, Adrian R.

    2011-08-01

    Process Control System (PCS) and Industrial Control System (ICS) security is critical to our national security. But there are a number of technological, economic, and educational impediments to PCS owners implementing effective security on their systems. Sandia National Laboratories has performed the research and development of the OPSAID (Open PCS Security Architecture for Interoperable Design), a project sponsored by the US Department of Energy Office of Electricity Delivery and Energy Reliability (DOE/OE), to address this issue. OPSAID is an open-source architecture for PCS/ICS security that provides a design basis for vendors to build add-on security devices for legacy systems, while providing a path forward for the development of inherently-secure PCS elements in the future. Using standardized hardware, a proof-of-concept prototype system was also developed. This report describes the improvements and capabilities that have been added to OPSAID since an initial report was released. Testing and validation of this architecture has been conducted in another project, Lemnos Interoperable Security Project, sponsored by DOE/OE and managed by the National Energy Technology Laboratory (NETL).

  20. Enhancing Diversity in the Geosciences through National Dissemination of the AMS Online Weather Studies Distance Learning Course

    NASA Astrophysics Data System (ADS)

    Weinbeck, R. S.; Geer, I. W.; Mills, E. W.; Porter, W. A.; Moran, J. M.

    2002-12-01

    Our nation faces a serious challenge in attracting young people to science and science-related careers (including teaching). This is particularly true for members of groups underrepresented in science, mathematics, engineering, and technology and is especially acute in the number of minority college students majoring in the geosciences. A formidable obstacle in attracting undergraduates to the geosciences is lack of access, that is, no opportunity to enroll in an introductory geoscience course simply because none is offered at their college or university. Often introductory or survey courses are a student's first exposure to the geosciences. To help alleviate this problem, the American Meteorological Society (AMS) through its Education Program developed and implemented nationally an introductory weather and climate course, Online Weather Studies, which can be added to an institution's menu of general education course offerings. This highly successful course will be offered at 130 colleges and universities nationwide, including 30 minority-serving institutions, 20 of which have joined the AMS Online Weather Studies Diversity Program during 2002. The AMS encourages course adoption by more institutions serving large numbers of minority students through support from the National Science Foundation (NSF) Opportunities for Enhancing Diversity in the Geosciences (OEDG) and Course, Curriculum and Laboratory Improvement-National Dissemination (CCLI-ND) programs. Online Weather Studies is an innovative, 12- to 15-week introductory college-level, online distance-learning course on the fundamentals of atmospheric science. Learner-formatted current weather data are delivered via the Internet and coordinated with investigations keyed to the day's weather. The principal innovation of Online Weather Studies is that students learn about weather as it happens in near real-time-a highly motivational learning experience. The AMS Education Program designed and services this course and

  1. AMS Online Weather Studies: The National Dissemination of a Distance Learning Course for Enhancing Diversity in the Geosciences

    NASA Astrophysics Data System (ADS)

    Weinbeck, R. S.; Geer, I. W.; Mills, E. W.; Porter, W. A.; Moran, J. M.

    2004-12-01

    Our nation faces a serious challenge in attracting young people to science and science-related careers (including teaching). This is particularly true for members of groups underrepresented in science, mathematics, engineering, and technology and is especially acute in the number of minority college students majoring in the geosciences. A formidable obstacle in attracting undergraduates to the geosciences is lack of access, that is, no opportunity to enroll in geoscience courses simply because none is offered at their college or university. Often college-level introductory courses are a student's first exposure to the geosciences. To help alleviate this problem of access, the American Meteorological Society (AMS) has developed and implemented nationally an introductory weather and climate course, Online Weather Studies, which can be added to an institution's menu of general education course offerings. This highly successful course has been licensed by over 230 colleges and universities nationwide, among them 72 minority-serving institutions which have joined via the AMS Online Weather Studies Geosciences Diversity Program since 2002. This program designed to reach institutions serving large numbers of minority students has been made possible through support from the National Science Foundation (NSF) Opportunities for Enhancing Diversity in the Geosciences (OEDG) and Course, Curriculum and Laboratory Improvement-National Dissemination (CCLI-ND) programs. Online Weather Studies is an innovative, 12- to 15-week introductory college-level, online distance-learning course on the fundamentals of atmospheric science. Learner-formatted current weather data are delivered via the Internet and coordinated with investigations keyed to the day's weather. The principal innovation of Online Weather Studies is that students learn about weather as it happens in near real-time - a highly motivational learning experience. The AMS Education Program designed and services this course

  2. Trends in Microfabrication Capabilities & Device Architectures.

    SciTech Connect

    Bauer, Todd; Jones, Adam; Lentine, Anthony L.; Mudrick, John; Okandan, Murat; Rodrigues, Arun F.

    2015-06-01

    The last two decades have seen an explosion in worldwide R&D, enabling fundamentally new capabilities while at the same time changing the international technology landscape. The advent of technologies for continued miniaturization and electronics feature size reduction, and for architectural innovations, will have many technical, economic, and national security implications. It is important to anticipate possible microelectronics development directions and their implications on US national interests. This report forecasts and assesses trends and directions for several potentially disruptive microfabrication capabilities and device architectures that may emerge in the next 5-10 years.

  3. The National Library of Medicine's (NLM) Hazardous Substances Data Bank (HSDB): background, recent enhancements and future plans.

    PubMed

    Fonger, George Charles; Hakkinen, Pertti; Jordan, Shannon; Publicker, Stephanie

    2014-11-01

    The National Library of Medicine's (NLM) Division of Specialized Information Services (SIS) Toxicology and Environmental Health Information Program is responsible for the management of the online Hazardous Substances Data Bank (HSDB). HSDB, a part of NLM's Toxicology Data Network (TOXNET(®)), is a file of chemical/substance information with one record for each specific chemical or substance, or for a category of chemicals or substances. Like the rest of TOXNET's databases and other resources, HSDB is available online at no cost to global users. HSDB has approximately 5600 chemicals and substances, with a focus on toxicology information and also on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, and related areas of likely interest to HSDB users. All data are from a core set of books, government documents, technical reports, selected primary journal literature, and other online sources of information, with a goal of linking the HSDB content to as much publicly available information as possible. HSDB's content is peer-reviewed by the Scientific Review Panel, a group of experts in the areas covering the scope of HSDB content. Recent enhancements include the addition of chemical structures to HSDB records, the addition of new subfields such as age groups for human data, more occupational exposure standards, and the addition of information on numerous nanomaterials. Examples of future plans include providing more exposure-related information, e.g., uses of a chemical or substance in consumer products; the addition of information summaries aimed towards consumers and other members of the public wanting to learn about a chemical or substance; more visual content such as diagrams (images) of the pathways of metabolism of a substance; and enhanced search features and navigation. PMID:25223694

  4. The National Library of Medicine’s (NLM) Hazardous Substances Data Bank (HSDB): Background, Recent Enhancements and Future Plans

    PubMed Central

    Fonger, George Charles; Hakkinen, Pertti; Jordan, Shannon; Publicker, Stephanie

    2014-01-01

    The National Library of Medicine’s (NLM) Division of Specialized Information Services (SIS) Toxicology and Environmental Health Information Program is responsible for the management of the online Hazardous Substances Data Bank (HSDB). HSDB, a part of NLM’s Toxicology Data Network (TOXNET®), is a file of chemical/substance information with one record for each specific chemical or substance, or for a category of chemicals or substances. Like the rest of TOXNET’s databases and other resources, HSDB is available online at no cost to global users. HSDB has approximately 5,600 chemicals and substances, with a focus on toxicology information and also on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, and related areas of likely interest to HSDB users. All data are from a core set of books, government documents, technical reports, selected primary journal literature, and other online sources of information, with a goal of linking the HSDB content to as much publicly available information as possible. HSDB’s content is peer-reviewed by a Scientific Review Panel of experts covering the scope of HSDB content. Recent enhancements include the addition of chemical structures to HSDB records, the addition of new subfields such as age groups for human data, more occupational exposure standards, and the addition of information on numerous nanomaterials. Examples of future plans include providing more exposure-related information, e.g., uses of a chemical or substance in consumer products; the addition of information summaries aimed towards consumers and other members of the public wanting to learn about a chemical or substance; more visual content such as diagrams (images) of the pathways of metabolism of a substance; and enhanced search features and navigation. PMID:25223694

  5. The Blueprint for Change: A National Strategy to Enhance Access to Earth and Space Science Education Resources

    NASA Astrophysics Data System (ADS)

    Geary, E. E.; Barstow, D.

    2001-12-01

    Enhancing access to high quality science education resources for teachers, students, and the general public is a high priority for the earth and space science education communities. However, to significantly increase access to these resources and promote their effective use will require a coordinated effort between content developers, publishers, professional developers, policy makers, and users in both formal and informal education settings. Federal agencies, academic institutions, professional societies, informal science centers, the Digital Library for Earth System Education, and other National SMETE Digital Library Projects are anticipated to play key roles in this effort. As a first step to developing a coordinated, national strategy for developing and delivering high quality earth and space science education resources to students, teachers, and the general public, 65 science educators, scientists, teachers, administrators, policy makers, and business leaders met this June in Snowmass, Colorado to create "Earth and Space Science Education 2010: A Blueprint for Change". The Blueprint is a strategy document that will be used to guide Earth and space science education reform efforts in grades K-12 during the next decade. The Blueprint contains specific goals, recommendations, and strategies for coordinating action in the areas of: Teacher Preparation and Professional Development, Curriculum and Materials, Equity and Diversity, Assessment and Evaluation, Public Policy and Systemic Reform, Public and Informal Education, Partnerships and Collaborations, and Technology. If you develop, disseminate, or use exemplary earth and space science education resources, we invite you to review the Blueprint for Change, share it with your colleagues and local science educators, and join as we work to revolutionize earth and space science education in grades K-12.

  6. Marshall Space Flight Center's Impact Testing Facility Capabilities

    NASA Technical Reports Server (NTRS)

    Evans, Steve; Finchum, Andy; Hubbs, Whitney

    2008-01-01

    Marshall Space Flight Center's (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960% then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility's unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Relocated test equipment was dated and in need of upgrade. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. Future ITF improvements will be focused on continued instrumentation and performance enhancements. These enhancements will allow further, more in-depth, characterization of rain drop demise characterization and evaluation of ice crystal impact. Performance enhancements also include increasing the upper velocity limit of the current environmental guns to allow direct environmental simulation for missile components. The current and proposed

  7. Marshall Space Flight Center's Impact Testing Facility Capabilities

    NASA Technical Reports Server (NTRS)

    Evans, Steve; Finchum, Andy; Hubbs, Whitney; Gray, Perry

    2008-01-01

    Marshall Space Flight Center's (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California, The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility's unique capabilities were deemed a 'National Asset' by the DoD, The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Relocated test equipment was dated and in need of upgrade. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. Future ITF improvements will be focused on continued instrumentation and performance enhancements. These enhancements will allow further, more in-depth, characterization of rain drop demise characterization and evaluation of ice crystal impact. Performance enhancements also include increasing the upper velocity limit of the current environmental guns to allow direct environmental simulation for missile components. The current and proposed

  8. Performance enhancements of the CMCC"s national mesh network using the intelligent optical cross-connect switches

    NASA Astrophysics Data System (ADS)

    Gong, Qian; Xu, Rong; Lin, JinTong L.

    2004-04-01

    In the last five years, the traffic growth rate in China has been extremely fast. By 2005, the number of wired telephone customers is estimated to reach 220 to 260 million, while the number of expected cellular customers will reach 260 to 290 million. To meet these challenges, we will continue evolving with more wavelengths and higher speed. By evolving point-to-point WDM systems to OTN/ASON systems, we can eliminate the throughput bottleneck of network nodes caused by electronics, provide optical-layer bandwidth- management capability, provide scalability (which allows continuous traffic growth and network expansion), and provide reconfigurability (which allows semi-dynamic and dynamic optical networking). We can also simplify and speed up provisioning of high-speed circuits and services and offer fast network protection and restoration on the order of tens or hundreds of milliseconds to guarantee excellent network and service survivability. The CMCC (China Mobile Communication Company) will build its OTN network towards the ASON. The CMCC"s long-haul national network utilizing OXC has clearly becomes an intelligent network. It offers end-to-end point-and-click provisioning, shared mesh restoration with a few tens to a couple of hundred msec restoration times, re-provisioning of connections in the event of double failures and network capacity that is not optimally used. In this paper, first we present the CMCC network situation, The network planning tool will be introduced, Then we compare ring with mesh solution in terms of the cost, network performance, protection and restoration, network re-optimization. At last we derive a desired conclusion.

  9. Integrated Analysis Capability Program

    NASA Technical Reports Server (NTRS)

    Vos, R. G.; Beste, D. L.; Greg, J.; Frisch, H. P.

    1991-01-01

    Integrated Analysis Capability (IAC) software system intended to provide highly effective, interactive analysis tool for integrated design of large structures. Supports needs of engineering analysis groups concerned with interdisciplinary problems. Developed to serve as software interface between computer programs from fields of structures, thermodynamics, controls, and dynamics of systems on one hand and executive software system and data base on other hand to yield highly efficient multi-disciplinary system. Special attention given to such users' requirements as handling data and online assistance with operational features and ability to add new modules of user's choice at future date. Written in FORTRAN 77.

  10. The Capabilities of Space Stations

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Over the past two years the U.S. space station program has evolved to a three-phased international program, with the first phase consisting of the use of the U.S. Space Shuttle and the upgrading and use of the Russian Mir Space Station, and the second and third phases consisting of the assembly and use of the new International Space Station. Projected capabilities for research, and plans for utilization, have also evolved and it has been difficult for those not directly involved in the design and engineering of these space stations to learn and understand their technical details. The Committee on the Space Station of the National Research Council, with the concurrence of NASA, undertook to write this short report in order to provide concise and objective information on space stations and platforms -- with emphasis on the Mir Space Station and International Space Station -- and to supply a summary of the capabilities of previous, existing, and planned space stations. In keeping with the committee charter and with the task statement for this report, the committee has summarized the research capabilities of five major space platforms: the International Space Station, the Mir Space Station, the Space Shuttle (with a Spacelab or Spacehab module in its cargo bay), the Space Station Freedom (which was redesigned to become the International Space Station in 1993 and 1994), and Skylab. By providing the summary, together with brief descriptions of the platforms, the committee hopes to assist interested readers, including scientists and engineers, government officials, and the general public, in evaluating the utility of each system to meet perceived user needs.

  11. Teacher Perception of the Alignment of Enhancing Missouri's Instructional Networked Teaching Strategies (eMINTS) with the National Staff Development Council (NSDC) Standards

    ERIC Educational Resources Information Center

    Stanfill, Diana L.

    2010-01-01

    This study used the National Staff Development Council (NSDC) standards for staff development as a framework for measuring specific aspects of the enhancing Missouri's Instructional Networked Teaching Strategies (eMINTS) educational technology professional development program, as perceived by eMINTS teachers. The Technology Integration Cycle…

  12. Laboratory microfusion capability study

    NASA Astrophysics Data System (ADS)

    1993-05-01

    The purpose of this study is to elucidate the issues involved in developing a Laboratory Microfusion Capability (LMC) which is the major objective of the Inertial Confinement Fusion (ICF) program within the purview of the Department of Energy's Defense Programs. The study was initiated to support a number of DOE management needs: to provide insight for the evolution of the ICF program; to afford guidance to the ICF laboratories in planning their research and development programs; to inform Congress and others of the details and implications of the LMC; to identify criteria for selection of a concept for the Laboratory Microfusion Facility; and to develop a coordinated plan for the realization of an LMC. As originally proposed, the LMC study was divided into two phases. The first phase identifies the purpose and potential utility of the LMC, the regime of its performance parameters, driver independent design issues and requirements, its development goals and requirements, and associated technical, management, staffing, environmental, and other developmental and operational issues. The second phase addresses driver-dependent issues such as specific design, range of performance capabilities, and cost. The study includes four driver options: the neodymium-glass solid state laser, the krypton fluoride excimer gas laser, the light-ion accelerator, and the heavy-ion induction linear accelerator. The results of the Phase 2 study are described in the present report.

  13. SPACE: Enhancing Life on Earth. Proceedings Report

    NASA Technical Reports Server (NTRS)

    Hobden, Alan (Editor); Hobden, Beverly (Editor); Bagley, Larry E. (Editor); Bolton, Ed (Editor); Campaigne, Len O. (Editor); Cole, Ron (Editor); France, Marty (Editor); Hand, Rich (Editor); McKinley, Cynthia (Editor); Zimkas, Chuck (Editor)

    1996-01-01

    The proceedings of the 12th National Space Symposium on Enhancing Life on Earth is presented. Technological areas discussed include: Space applications and cooperation; Earth sensing, communication, and navigation applications; Global security interests in space; and International space station and space launch capabilities. An appendices that include featured speakers, program participants, and abbreviation & acronyms glossary is also attached.

  14. Space Launch Initiative: New Capabilities ... New Horizons

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2002-01-01

    This paper presents NASA's Space Launch Initiative (SLI) with new capabilities and new horizons. The topics include: 1) Integrated Space Transportation Plan; 2) SLI: The Work of an Nation; 3) SLI Goals and Status; 4) Composites and Materials; and 5) SLI & DoD/USAF Collaboration. This paper is presented in viewgraph form.

  15. Space Launch Initiative: New Capabilities - New Horizons

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel; Smith, Dennis E. (Technical Monitor)

    2002-01-01

    This paper presents NASA's Space Launch Initiative (SLI) with new capabilities and new horizons. The topics include: 1) Integrated Space Transportation Plan; 2) SLI: The Work of a Nation; 3) SLI Goals and Status; 4) Composites and Materials; and 5) SLI and DOD/USAF Collaboration. This paper is in viewgraph form.

  16. Plutonium Oxide Process Capability Work Plan

    SciTech Connect

    Meier, David E.; Tingey, Joel M.

    2014-02-28

    Pacific Northwest National Laboratory (PNNL) has been tasked to develop a Pilot-scale Plutonium-oxide Processing Unit (P3U) providing a flexible capability to produce 200g (Pu basis) samples of plutonium oxide using different chemical processes for use in identifying and validating nuclear forensics signatures associated with plutonium production. Materials produced can also be used as exercise and reference materials.

  17. Assessing Enterprise Capability: Guidance for Schools

    ERIC Educational Resources Information Center

    National Foundation for Educational Research, 2007

    2007-01-01

    This document offers guidance to schools on how assessment can support enterprise education. It presents the interim findings from research carried out by the National Foundation for Educational Research (NFER) for the Department for Education and Skills (DfES) in secondary schools in England. Enterprise capability is the key outcome of enterprise…

  18. PHOBICS physics capabilities

    SciTech Connect

    Baker, M.D.

    1995-12-31

    PHOBOS is the name of a detector and of a research program to study systematically the physics of relativistic heavy-ion collisions over a large range of impact parameters and nuclear species. Collisions with a center of mass energy of 200 A GeV at RHIC are expected to produce the highest energy densities ever accessible in the laboratory. In this writeup, we outline the physics capabilities of the PHOBOS detector and describe the detector design in terms of the general philosophy behind the PHOBOS research program. In order to make the discussion concrete, we then focus on two specific examples of physics measurements that we plan to make at RHIC: dN/d{zeta} for charged particles and the mass spectrum from {phi}{r_arrow} K{sup +}K{sup -} decays.

  19. Nonintrusive subsurface surveying capability

    SciTech Connect

    Tunnell, T.W.; Cave, S.P.

    1994-06-01

    This presentation describes the capabilities of a ground-pentrating radar (GPR) system developed by EG&G Energy Measurements (EM), a prime contractor to the Department of Energy (DOE). The focus of the presentation will be on the subsurface survey of DOE site TA-21 in Los Alamos, New Mexico. EG&G EM developed the system for the Department of Defense. The system is owned by the Department of the Army and currently resides at KO in Albuquerque. EM is pursuing efforts to transfer this technology to environmental applications such as waste-site characterization with DOE encouragement. The Army has already granted permission to use the system for the waste-site characterization activities.

  20. PHOBOS physics capabilities

    SciTech Connect

    Baker, M.D.

    1995-07-15

    PHOBOS is the name of a detector and of a research program to study systematically the physics of relativistic heavy-ion collisions over a large range of impact parameters and nuclear species. Collisions with a center mass energy of 200 A GeV at RHIC are expected to produce the highest energy densities ever accessible in the laboratory. In this writeup, the authors outline the physics capabilities of the PHOBOS detector and describe the detector design in terms of the general philosophy behind the PHOBOS research program. In order to make the discussion concrete, they then focus on two specific examples of physics measurements that they plan to make at RHIC: dN/d{eta} for charged particles and the mass spectrum from {phi} {yields} K{sup +}K{sup {minus}} decays.

  1. General shape optimization capability

    NASA Technical Reports Server (NTRS)

    Chargin, Mladen K.; Raasch, Ingo; Bruns, Rudolf; Deuermeyer, Dawson

    1991-01-01

    A method is described for calculating shape sensitivities, within MSC/NASTRAN, in a simple manner without resort to external programs. The method uses natural design variables to define the shape changes in a given structure. Once the shape sensitivities are obtained, the shape optimization process is carried out in a manner similar to property optimization processes. The capability of this method is illustrated by two examples: the shape optimization of a cantilever beam with holes, loaded by a point load at the free end (with the shape of the holes and the thickness of the beam selected as the design variables), and the shape optimization of a connecting rod subjected to several different loading and boundary conditions.

  2. TAMDAR Capabilities Development

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi

    2003-01-01

    In this viewgraph presentation, information is provided on a collaboration between NASA, the FAA (Federal Aviation Administration), and NOAA (National Oceanographic and Atmospheric Association), particularly regarding the development of a TAMDAR Sensor system. TAMDAR is envisioned to downlink weather data such as icing, temperature, pressure altitude, humidity, magnetic heading, eddy dissipation rate, true airspeed, dew point, density altitude, and winds at altitude from non-jet aircraft. The weather data will be sent to FSL (Forecast Systems Laboratory), FSS (Flight Service Station), ATC (Air Traffic Control), AWC (Aviation Weather Center), and others via a ground-based infrastructure and to other aircraft. New weather products will be generated and uplinked to the cockpit.

  3. Capability 9.4 Servicing

    NASA Technical Reports Server (NTRS)

    Moe, Rud

    2005-01-01

    This paper presents viewgraphs on capability structure 9.4 servicing. The topics include: 1) Servicing Description; 2) Benefits of Servicing; 3) Drivers & Assumptions for Servicing; 4) Capability Breakdown Structure 9.4 Servicing; 5) Roadmap for Servicing; 6) 9.4 Servicing Critical Gaps; 7) Capability 9.4 Servicing; 8) Capability 9.4.1 Inspection; 9) State-of-the-Art /Maturity Level /Capabilities for 9.4.1 Inspection; 10) Capability 9.4.2 Diagnostics; 11) State-of-the-Art/Maturity Level /Capabilities for 9.4.2 Diagnostics; 12) Capability 9.4.3 Perform Planned Maintenance; 13) State-of-the-Art /Maturity Level /Capabilities for 9.4.3 Perform Planned Maintenance; 14) Capability 9.4.4 Perform Unplanned Repair; 15) State-of-the-Art /Maturity Level /Capabilities for 9.4.4 Perform Unplanned Repair; 16) Capability 9.4.5 Install Upgrade; 17) Capability 9.4.5 Install Upgrade; 18) State-of-the-Art /Maturity Level /Capabilities for 9.4.5 Install Upgrade; 19) Capability 9.4.6 Planning, Logistics, Training; and 20) State-of-the-Art /Maturity Level /Capabilities for 9.4.6 Planning, Logistics, & Training;

  4. Unmanned and Unattended Response Capability for Homeland Defense

    SciTech Connect

    BENNETT, PHIL C.

    2002-11-01

    An analysis was conducted of the potential for unmanned and unattended robotic technologies for forward-based, immediate response capabilities that enables access and controlled task performance. The authors analyze high-impact response scenarios in conjunction with homeland security organizations, such as the NNSA Office of Emergency Response, the FBI, the National Guard, and the Army Technical Escort Unit, to cover a range of radiological, chemical and biological threats. They conducted an analysis of the potential of forward-based, unmanned and unattended robotic technologies to accelerate and enhance emergency and crisis response by Homeland Defense organizations. Response systems concepts were developed utilizing new technologies supported by existing emerging threats base technologies to meet the defined response scenarios. These systems will pre-position robotic and remote sensing capabilities stationed close to multiple sites for immediate action. Analysis of assembled systems included experimental activities to determine potential efficacy in the response scenarios, and iteration on systems concepts and remote sensing and robotic technologies, creating new immediate response capabilities for Homeland Defense.

  5. National Dissemination of Motivation Enhancement Therapy in the Veterans Health Administration: Training Program Design and Initial Outcomes.

    PubMed

    Drapkin, Michelle L; Wilbourne, Paula; Manuel, Jennifer K; Baer, John; Karlin, Bradley; Raffa, Susan

    2016-06-01

    Motivational enhancement therapy (MET) can be defined most simply as the "….combination of Motivational Interviewing (MI) with assessment feedback…." (Miller & Rollnick, 2013, p. 250). MET has a clear evidence-base promoting its use especially for treatment of substance use disorders (SUDs). Despite its efficacy and utility, MET is not widely used in clinical settings. In 2012, to facilitate the dissemination of MET, the Veterans Health Administration [VHA; the health care component of the U.S. Department of Veterans Affairs (VA)] launched a national training program that provided competency-based training in MET to VA staff working in SUD specialty care clinics. All VA facilities are required to implement EBPs for SUDs, such as MET, and ensure that they are available to veterans. This paper describes the VA MET training program and examines the impact of the MET training program on participants' knowledge of MET and self-reported MET skills. We review the components of the training and consultation and discuss adaptations made from the Project MATCH MET model to a real-world clinical setting. Of the 264 training participants we trained 2012-2013, 213 (81%) successfully completed all requirements of the training program, including requirements for demonstrating competency and attending at least 75% of scheduled consultation calls. After completion of the training program, approximately 85% of the clinicians reported implementing MET often (either 1-3 times per week or daily). Furthermore, we saw significant increases in MI knowledge from pretraining assessment to post-workshop and from pretraining to post-consultations. Additional training program details and revisions are discussed. PMID:26951921

  6. Facility Interface Capability Assessment (FICA) project report

    SciTech Connect

    Pope, R.B.; MacDonald, R.R.; Viebrock, J.M.; Mote, N.

    1995-09-01

    The US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from commercial facilities. The objective of the Facility Interface Capability Assessment (FICA) project was to assess the capability of each commercial spent nuclear fuel (SNF) storage facility, at which SNF is stored, to handle various SNF shipping casks. The purpose of this report is to present and analyze the results of the facility assessments completed within the FICA project. During Phase 1, the data items required to complete the facility assessments were identified and the database for the project was created. During Phase 2, visits were made to 122 facilities on 76 sites to collect data and information, the database was updated, and assessments of the cask-handling capabilities at each facility were performed. Each assessment of cask-handling capability contains three parts: the current capability of the facility (planning base); the potential enhanced capability if revisions were made to the facility licensing and/or administrative controls; and the potential enhanced capability if limited physical modifications were made to the facility. The main conclusion derived from the planning base assessments is that the current facility capabilities will not allow handling of any of the FICA Casks at 49 of the 122 facilities evaluated. However, consideration of potential revisions and/or modifications showed that all but one of the 49 facilities could be adapted to handle at least one of the FICA Casks. For this to be possible, facility licensing, administrative controls, and/or physical aspects of the facility would need to be modified.

  7. Overview of Experimental Capabilities - Supersonics

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.

    2007-01-01

    This viewgraph presentation gives an overview of experimental capabilities applicable to the area of supersonic research. The contents include: 1) EC Objectives; 2) SUP.11: Elements; 3) NRA; 4) Advanced Flight Simulator Flexible Aircraft Simulation Studies; 5) Advanced Flight Simulator Flying Qualities Guideline Development for Flexible Supersonic Transport Aircraft; 6) Advanced Flight Simulator Rigid/Flex Flight Control; 7) Advanced Flight Simulator Rapid Sim Model Exchange; 8) Flight Test Capabilities Advanced In-Flight Infrared (IR) Thermography; 9) Flight Test Capabilities In-Flight Schlieren; 10) Flight Test Capabilities CLIP Flow Calibration; 11) Flight Test Capabilities PFTF Flowfield Survey; 12) Ground Test Capabilities Laser-Induced Thermal Acoustics (LITA); 13) Ground Test Capabilities Doppler Global Velocimetry (DGV); 14) Ground Test Capabilities Doppler Global Velocimetry (DGV); and 15) Ground Test Capabilities EDL Optical Measurement Capability (PIV) for Rigid/Flexible Decelerator Models.

  8. Analysis of Alternatives (AoA) of Open Colllaboration and Research Capabilities Collaboratipon in Research and Engineering in Advanced Technology and Education and High-Performance Computing Innovation Center (HPCIC) on the LVOC.

    SciTech Connect

    Vrieling, P. Douglas

    2016-01-01

    The Livermore Valley Open Campus (LVOC), a joint initiative of the National Nuclear Security Administration (NNSA), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL), enhances the national security missions of NNSA by promoting greater collaboration between world-class scientists at the national security laboratories, and their partners in industry and academia. Strengthening the science, technology, and engineering (ST&E) base of our nation is one of the NNSA’s top goals. By conducting coordinated and collaborative programs, LVOC enhances both the NNSA and the broader national science and technology base, and helps to ensure the health of core capabilities at LLNL and SNL. These capabilities must remain strong to enable the laboratories to execute their primary mission for NNSA.

  9. Mobile systems capability plan

    SciTech Connect

    1996-09-01

    This plan was prepared to initiate contracting for and deployment of these mobile system services. 102,000 cubic meters of retrievable, contact-handled TRU waste are stored at many sites around the country. Also, an estimated 38,000 cubic meters of TRU waste will be generated in the course of waste inventory workoff and continuing DOE operations. All the defense TRU waste is destined for disposal in WIPP near Carlsbad NM. To ship TRU waste there, sites must first certify that the waste meets WIPP waste acceptance criteria. The waste must be characterized, and if not acceptable, subjected to additional processing, including repackaging. Most sites plan to use existing fixed facilities or open new ones between FY1997-2006 to perform these functions; small-quantity sites lack this capability. An alternative to fixed facilities is the use of mobile systems mounted in trailers or skids, and transported to sites. Mobile systems will be used for all characterization and certification at small sites; large sites can also use them. The Carlsbad Area Office plans to pursue a strategy of privatization of mobile system services, since this offers a number of advantages. To indicate the possible magnitude of the costs of deploying mobile systems, preliminary estimates of equipment, maintenance, and operating costs over a 10-year period were prepared and options for purchase, lease, and privatization through fixed-price contracts considered.

  10. Materials Research Capabilities

    NASA Technical Reports Server (NTRS)

    Stofan, Andrew J.

    1986-01-01

    Lewis Research Center, in partnership with U.S. industry and academia, has long been a major force in developing advanced aerospace propulsion and power systems. One key aspect that made many of these systems possible has been the availability of high-performance, reliable, and long-life materials. To assure a continuing flow of new materials and processing concepts, basic understanding to guide such innovation, and technological support for development of major NASA systems, Lewis has supported a strong in-house materials research activity. Our researchers have discovered new alloys, polymers, metallic composites, ceramics, coatings, processing techniques, etc., which are now also in use by U.S. industry. This brochure highlights selected past accomplishments of our materials research and technology staff. It also provides many examples of the facilities available with which we can conduct materials research. The nation is now beginning to consider integrating technology for high-performance supersonic/hypersonic aircraft, nuclear space power systems, a space station, and new research areas such as materials processing in space. As we proceed, I am confident that our materials research staff will continue to provide important contributions which will help our nation maintain a strong technology position in these areas of growing world competition. Lewis Research Center, in partnership with U.S. industry and academia, has long been a major force in developing advanced aerospace propulsion and power systems. One key aspect that made many of these systems possible has been the availability of high-performance, reliable, and long-life materials. To assure a continuing flow of new materials and processing concepts, basic understanding to guide such innovation, and technological support for development of major NASA systems, Lewis has supported a strong in-house materials research activity. Our researchers have discovered new alloys, polymers, metallic composites

  11. Information warfare analysis capability

    SciTech Connect

    Smart, J.

    1998-11-18

    With the rapid growth of global computing and communications, information security is a critical issue in all national infrastructure protection discussions. The purpose of our LDRD project-the Information Operations, Warfare, and Assurance (IOWA) initiative-is to advance the enabling core technologies of this field. Special emphasis is placed on computer networks and telecommunication systems. During FY 1998, we developed (1) techniques for identifying the topology of large, complex computer networks, (2) data representation models for these systems, (3) high-performance methods for visualizing the resulting complex models, (4) automated analysis methods for processing large network representations, (5) specialized search techniques for isolating vulnerabilities, (6) a foundation for simulating network operation, and (7) an assessment methodology for determining the consequences of system component failure or disruption.

  12. Integrated Urban Dispersion Modeling Capability

    SciTech Connect

    Kosovic, B; Chan, S T

    2003-11-03

    Numerical simulations represent a unique predictive tool for developing a detailed understanding of three-dimensional flow fields and associated concentration distributions from releases in complex urban settings (Britter and Hanna 2003). The accurate and timely prediction of the atmospheric dispersion of hazardous materials in densely populated urban areas is a critical homeland and national security need for emergency preparedness, risk assessment, and vulnerability studies. The main challenges in high-fidelity numerical modeling of urban dispersion are the accurate prediction of peak concentrations, spatial extent and temporal evolution of harmful levels of hazardous materials, and the incorporation of detailed structural geometries. Current computational tools do not include all the necessary elements to accurately represent hazardous release events in complex urban settings embedded in high-resolution terrain. Nor do they possess the computational efficiency required for many emergency response and event reconstruction applications. We are developing a new integrated urban dispersion modeling capability, able to efficiently predict dispersion in diverse urban environments for a wide range of atmospheric conditions, temporal and spatial scales, and release event scenarios. This new computational fluid dynamics capability includes adaptive mesh refinement and it can simultaneously resolve individual buildings and high-resolution terrain (including important vegetative and land-use features), treat complex building and structural geometries (e.g., stadiums, arenas, subways, airplane interiors), and cope with the full range of atmospheric conditions (e.g. stability). We are developing approaches for seamless coupling with mesoscale numerical weather prediction models to provide realistic forcing of the urban-scale model, which is critical to its performance in real-world conditions.

  13. NASA long duration balloon capability development project

    NASA Astrophysics Data System (ADS)

    Stuchlik, D.; Craddock, W.

    1993-02-01

    The potential benefits of a Long Duration Balloon (LDB) capability have long been recognized and some modest efforts have previously been undertaken by the National Center for Atmospheric Research (NCAR), the National Scientific Balloon Facility (NSBF), et. al., going back to the late 1960's. In 1988, the National Aeronautics and Space Administration (NASA) made a decision to dedicate significant resources toward this effort and a technical and management approach was established. The objective of the project is to develop a near global LDB capability for both Antarctic and mid-latitude applications, including the required telecommunications, navigation and positioning, power, data processing and control systems necessary to conduct flights of scientific experiments weighing 1500 pounds or more on conventional balloons for periods of up to three weeks. The first operational use of the new capability is planned in support of Solar Max experiments in Antarctica during the 1991-1992 austral summer. Development of the Antarctica support system configuration has been initiated and the first test flight was conducted from McMurdo Station in December 1989 - January 1990. The progress, status and future plans for development of the new LDB capability will be discussed.

  14. IAC-1.5 - INTEGRATED ANALYSIS CAPABILITY

    NASA Technical Reports Server (NTRS)

    Vos, R. G.

    1994-01-01

    The objective of the Integrated Analysis Capability (IAC) system is to provide a highly effective, interactive analysis tool for the integrated design of large structures. IAC was developed to interface programs from the fields of structures, thermodynamics, controls, and system dynamics with an executive system and a database to yield a highly efficient multi-disciplinary system. Special attention is given to user requirements such as data handling and on-line assistance with operational features, and the ability to add new modules of the user's choice at a future date. IAC contains an executive system, a database, general utilities, interfaces to various engineering programs, and a framework for building interfaces to other programs. IAC has shown itself to be effective in automating data transfer among analysis programs. The IAC system architecture is modular in design. 1) The executive module contains an input command processor, an extensive data management system, and driver code to execute the application modules. 2) Technical modules provide standalone computational capability as well as support for various solution paths or coupled analyses. 3) Graphics and model generation modules are supplied for building and viewing models. 4) Interface modules provide for the required data flow between IAC and other modules. 5) User modules can be arbitrary executable programs or JCL procedures with no pre-defined relationship to IAC. 6) Special purpose modules are included, such as MIMIC (Model Integration via Mesh Interpolation Coefficients), which transforms field values from one model to another; LINK, which simplifies incorporation of user specific modules into IAC modules; and DATAPAC, the National Bureau of Standards statistical analysis package. The IAC database contains structured files which provide a common basis for communication between modules and the executive system, and can contain unstructured files such as NASTRAN checkpoint files, DISCOS plot files

  15. IAC-1.5 - INTEGRATED ANALYSIS CAPABILITY

    NASA Technical Reports Server (NTRS)

    Vos, R. G.

    1994-01-01

    The objective of the Integrated Analysis Capability (IAC) system is to provide a highly effective, interactive analysis tool for the integrated design of large structures. IAC was developed to interface programs from the fields of structures, thermodynamics, controls, and system dynamics with an executive system and a database to yield a highly efficient multi-disciplinary system. Special attention is given to user requirements such as data handling and on-line assistance with operational features, and the ability to add new modules of the user's choice at a future date. IAC contains an executive system, a database, general utilities, interfaces to various engineering programs, and a framework for building interfaces to other programs. IAC has shown itself to be effective in automating data transfer among analysis programs. The IAC system architecture is modular in design. 1) The executive module contains an input command processor, an extensive data management system, and driver code to execute the application modules. 2) Technical modules provide standalone computational capability as well as support for various solution paths or coupled analyses. 3) Graphics and model generation modules are supplied for building and viewing models. 4) Interface modules provide for the required data flow between IAC and other modules. 5) User modules can be arbitrary executable programs or JCL procedures with no pre-defined relationship to IAC. 6) Special purpose modules are included, such as MIMIC (Model Integration via Mesh Interpolation Coefficients), which transforms field values from one model to another; LINK, which simplifies incorporation of user specific modules into IAC modules; and DATAPAC, the National Bureau of Standards statistical analysis package. The IAC database contains structured files which provide a common basis for communication between modules and the executive system, and can contain unstructured files such as NASTRAN checkpoint files, DISCOS plot files

  16. Advances in Computational Capabilities for Hypersonic Flows

    NASA Technical Reports Server (NTRS)

    Kumar, Ajay; Gnoffo, Peter A.; Moss, James N.; Drummond, J. Philip

    1997-01-01

    The paper reviews the growth and advances in computational capabilities for hypersonic applications over the period from the mid-1980's to the present day. The current status of the code development issues such as surface and field grid generation, algorithms, physical and chemical modeling, and validation is provided. A brief description of some of the major codes being used at NASA Langley Research Center for hypersonic continuum and rarefied flows is provided, along with their capabilities and deficiencies. A number of application examples are presented, and future areas of research to enhance accuracy, reliability, efficiency, and robustness of computational codes are discussed.

  17. Extension of TRIGA reactor capabilities

    SciTech Connect

    Gietzen, A.J.

    1980-07-01

    The first TRIGA reactor went into operation at 10 kW about 22 years ago. Since that time 55 TRIGAs have been put into operation including steady-state powers up to 14,000 kW and pulsing reactors that pulse to 20,000,000 kW. Five more are under construction and a proposal will soon be submitted for a reactor of 25,000 kW. Along with these increases in power levels (and the corresponding fluxes) the experimental facilities have also been expanded. In addition to the installation of new TRIGA reactors with enhanced capabilities many of the older reactors have been modified and upgraded. Also, a number of reactors originally fueled with plate fuel were converted to TRIGA fuel to take advantage of the improved technical and safety characteristics, including the ability for pulsed operation. In order to accommodate increased power and performance the fuel has undergone considerable evolution. Most of the changes have been in the geometry, enrichment and cladding material. However, more recently further development on the UZrH alloy has been carried out to extend the uranium content up to 45% by weight. This increased U content is necessary to allow the use of less than 20% enrichment in the higher powered reactors while maintaining longer core lifetime. The instrumentation and control system has undergone remarkable improvement as the electronics technology has evolved so rapidly in the last two decades. The information display and the circuitry logic has also undergone improvements for enhanced ease of operation and safety. (author)

  18. JEM/SMILES observation capability

    NASA Astrophysics Data System (ADS)

    Kasai, Yasuko J.; Baron, Philippe; Ochiai, Satoshi; Mendrok, Jana; Urban, Joachim; Murtagh, Donal; Moller, Joakim; Manabe, Takeshi; Kikuchi, Kenichi; Nishibori, Toshiyuki

    2009-09-01

    A new generation of sub-millimeter-wave receivers employing sensitive SIS (Superconductor-Insulator- Superconductor) detector technology will provide new opportunities for precise passive remote sensing observation of minor constituents in atmosphere. Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) was designed to be onbord the Japanese Experiment Module (JEM) on the International Space Station (ISS) as a collaboration project of National Institute of Information and Communications Technology (NICT) and Japan Aerospace Exploration Agency (JAXA). SMILES scheduled to be launch in September 11, 2009 by the H-II Transfer Vehicle (HTV). Mission Objectives are: i) Space demonstration of superconductive mixer and 4-K mechanical cooler for the submillimeter limb emission sounding, and ii) global observations of atmospheric minor constituents. JEM/SMILES will allow to observe the atmospheric species such as O3, H35Cl, H37 Cl, ClO, BrO, HOCl, HO2, and HNO3, CH3CN, and Ozone isotope species with the precisions in a few to several tens percents from upper troposphere to the mesosphere. We have estimated the observation capabilities of JEM/SMILES. This new technology may allow us to open new issues in atmospheric science.

  19. Expanding Lookout Capabilities for Architectural Analysis

    NASA Astrophysics Data System (ADS)

    Shick, B.

    SMC/SYSW/ENY's Lookout tool provides a M&S capability for architectural analysis. It models the contributions of ground and space-based assets in several mission threads and scenarios to quantify overall Space Situational Awareness (SSA) capability. Plotting performance results versus costs enables decision makers to identify and evaluate Best Value families of systems and combinations of architectures. Currently, SMC intends to use Lookout to impact the Fiscal Year 2012 budget programming cycle, the National SSA Initial Capabilities Document (ICD) and Architecture definition effort, planning for programs of record, and AFSPC & SMC leadership. Ultimately, Lookout will enable additional space superiority analysis. Previous Lookout work focused on modeling the metric tracking capabilities of the Space Surveillance Network (detecting and tracking) and proposed concepts to close identified collection shortfalls. SMC/SYSW/ENY leveraged some of the lessons learned in developing and implementing the metric tracking models to expand Lookout to develop an initial characterization capability, including non-resolved space object identification (SOI), imaging, and Foreign Instrumentation and Signals (FIS) Intelligence. Characterization collection phenomenologies added in FY08 and FY09 include mechanical tracking and phased array radars, visible telescopes, and signals collection. Lookout enables evaluating the characterization collections for quantity, quality, and timeliness. Capturing the Tasking, Collection, Processing, Exploitation, and Dissemination processes represent one of the biggest challenges in including characterization capabilities in mission thread and scenario-based analysis. The SMC/SYSW/ENY team met with several representatives of the community and held community-wide Technical Interchange Meetings. Based on feedback from these meetings, SMC created an infrastructure for modeling the tasking processes and scales to relate collection quality to intelligence

  20. Performance upgrades to the MCNP6 burnup capability for large scale depletion calculations

    DOE PAGESBeta

    Fensin, M. L.; Galloway, J. D.; James, M. R.

    2015-04-11

    The first MCNP based inline Monte Carlo depletion capability was officially released from the Radiation Safety Information and Computational Center as MCNPX 2.6.0. With the merger of MCNPX and MCNP5, MCNP6 combined the capability of both simulation tools, as well as providing new advanced technology, in a single radiation transport code. The new MCNP6 depletion capability was first showcased at the International Congress for Advancements in Nuclear Power Plants (ICAPP) meeting in 2012. At that conference the new capabilities addressed included the combined distributive and shared memory parallel architecture for the burnup capability, improved memory management, physics enhancements, and newmore » predictability as compared to the H.B Robinson Benchmark. At Los Alamos National Laboratory, a special purpose cluster named “tebow,” was constructed such to maximize available RAM per CPU, as well as leveraging swap space with solid state hard drives, to allow larger scale depletion calculations (allowing for significantly more burnable regions than previously examined). As the MCNP6 burnup capability was scaled to larger numbers of burnable regions, a noticeable slowdown was realized.This paper details two specific computational performance strategies for improving calculation speedup: (1) retrieving cross sections during transport; and (2) tallying mechanisms specific to burnup in MCNP. To combat this slowdown new performance upgrades were developed and integrated into MCNP6 1.2.« less

  1. Performance upgrades to the MCNP6 burnup capability for large scale depletion calculations

    SciTech Connect

    Fensin, M. L.; Galloway, J. D.; James, M. R.

    2015-04-11

    The first MCNP based inline Monte Carlo depletion capability was officially released from the Radiation Safety Information and Computational Center as MCNPX 2.6.0. With the merger of MCNPX and MCNP5, MCNP6 combined the capability of both simulation tools, as well as providing new advanced technology, in a single radiation transport code. The new MCNP6 depletion capability was first showcased at the International Congress for Advancements in Nuclear Power Plants (ICAPP) meeting in 2012. At that conference the new capabilities addressed included the combined distributive and shared memory parallel architecture for the burnup capability, improved memory management, physics enhancements, and new predictability as compared to the H.B Robinson Benchmark. At Los Alamos National Laboratory, a special purpose cluster named “tebow,” was constructed such to maximize available RAM per CPU, as well as leveraging swap space with solid state hard drives, to allow larger scale depletion calculations (allowing for significantly more burnable regions than previously examined). As the MCNP6 burnup capability was scaled to larger numbers of burnable regions, a noticeable slowdown was realized.This paper details two specific computational performance strategies for improving calculation speedup: (1) retrieving cross sections during transport; and (2) tallying mechanisms specific to burnup in MCNP. To combat this slowdown new performance upgrades were developed and integrated into MCNP6 1.2.

  2. The phosphodiesterase 4 inhibitor roflumilast augments the Th17-promoting capability of dendritic cells by enhancing IL-23 production, and impairs their T cell stimulatory activity due to elevated IL-10.

    PubMed

    Bros, Matthias; Montermann, Evelyn; Cholaszczyńska, Anna; Reske-Kunz, Angelika B

    2016-06-01

    Phosphodiesterase 4 (PDE4) inhibitors serve to prevent degradation of the intracellular second messenger cAMP, resulting in broad anti-inflammatory effects on different cell types including immune cells. Agents that elevate cAMP levels via activation of adenylate cyclase have been shown to imprint a Th17-promoting capacity in dendritic cells (DCs). Therefore, we studied the potential of therapeutically relevant PDE inhibitors to induce a pronounced Th17-skewing capacity in DCs. Here we show that mouse bone marrow-derived (BM-) DCs when treated with the PDE4 inhibitor roflumilast (ROF, trade name: Daxas) in the course of stimulation with LPS (ROF-DCs) evoked elevated IL-17 levels in cocultured allogeneic T cells. In addition, as compared with control settings, levels of IFN-γ remained unaltered, while contents of Th2 cytokines (IL-5, IL-10) were diminished. ROF enhanced expression of the Th17-promoting factor IL-23 in BM-DCs. In line, neutralizing antibodies specific for IL-23 or IL-6 when applied to DC/T cell cocultures partially inhibited the IL17-promoting effect of ROF-DCs. Furthermore, ROF-DCs displayed a markedly diminished allogeneic T cell stimulatory capacity due to enhanced production of IL-10, which was restored upon application of IL-10 specific neutralizing antibody to DC/T cell cocultures. Both the IL-17-inducing and impaired T cell stimulatory capacity of BM-DCs were mimicked by a specific activator of protein kinase A, while stimulation of EPACs (exchange proteins of activated cAMP) did not yield such effects. Taken together, our findings suggest that PDE4 inhibitors aside from their broad overall anti-inflammatory effects may enhance the Th17-polarizing capacity in DCs as an unwanted side effect. PMID:27070502

  3. Exploration Medical Capability (ExMC) Projects

    NASA Technical Reports Server (NTRS)

    Wu, Jimmy; Watkins, Sharmila; Baumann, David

    2010-01-01

    During missions to the Moon or Mars, the crew will need medical capabilities to diagnose and treat disease as well as for maintaining their health. The Exploration Medical Capability Element develops medical technologies, medical informatics, and clinical capabilities for different levels of care during space missions. The work done by team members in this Element is leading edge technology, procedure, and pharmacological development. They develop data systems that protect patient's private medical information, aid in the diagnosis of medical conditions, and act as a repository of relevant NASA life sciences experimental studies. To minimize the medical risks to crew health the physicians and scientists in this Element develop models to quantify the probability of medical events occurring during a mission. They define procedures to treat an ill or injured crew member who does not have access to an emergency room and who must be cared for in a microgravity environment where both liquids and solids behave differently than on Earth. To support the development of these medical capabilities, the Element manages the development of medical technologies that prevent, monitor, diagnose, and treat an ill or injured crewmember. The Exploration Medical Capability Element collaborates with the National Space Biomedical Research Institute (NSBRI), the Department of Defense, other Government-funded agencies, academic institutions, and industry.

  4. On Building Inexpensive Network Capabilities

    SciTech Connect

    Shue, Craig A; Kalafut, Prof. Andrew; Allman, Mark; Taylor, Curtis R

    2011-01-01

    There are many deployed approaches for blocking unwanted traffic, either once it reaches the recipient's network, or closer to its point of origin. One of these schemes is based on the notion of traffic carrying capabilities that grant access to a network and/or end host. However, leveraging capabilities results in added complexity and additional steps in the communication process: Before communication starts a remote host must be vetted and given a capability to use in the subsequent communication. In this paper, we propose a lightweight mechanism that turns the answers provided by DNS name resolution---which Internet communication broadly depends on anyway---into capabilities. While not achieving an ideal capability system, we show the mechanism can be built from commodity technology and is therefore a pragmatic way to gain some of the key benefits of capabilities without requiring new infrastructure.

  5. An Update on USCGC HEALY (WAGB-20) and its Capabilities

    NASA Astrophysics Data System (ADS)

    Chayes, D. N.; Forcucci, D.

    2004-12-01

    The USCG Healy (WAGB-20) is the US academic research vessel supporting arctic research. The Healy's keel was laid at Avondale shipyard in 1996. An extensive science evaluation coordinated by the UNOLS Office was conducted in 2000. The first science legs were conducted in 2001 and the status of the Healy was reported by Swift et. al (2002) in EOS. Since then the UNOLS Arctic Icebreaker Coordinating Committee has worked with the Coast Guard, the ship, the National Science Foundation and the user community to encourage a number of significant improvements which have been made to the vessel including substantial upgrades to the science data acquisition and logging system, installation of a significantly improved science seawater system, installation of a dual frequency echo sounder with swept (Chirp) subbottom capability replacement of the 300 KHz ADCP with a 75 KHz broad band ADCP, substantial upgrades to the ship's satellite data receiving system and numerous communication system upgrades. Future upgrades in various stages of planning include upgrades to the lab spaces for improved efficiency and space utilization, improvements in the climate control chambers, more cooling water for incubators, upgrade or replacement of the multibeam seafloor mapping system, improved high latitude communications, and enhancements to the data acquisition, quality control and real-time monitoring capabilities among other things.

  6. Integrated Analysis Capability (IAC) development

    NASA Technical Reports Server (NTRS)

    Young, J. P.

    1981-01-01

    The technical and programmatic aspects of the integrated analysis capability (IAC) are described. The (IAC) is an interdisciplinary analysis system containing a wide range of general purpose analysis programs that are interfaced via a common data base and a unified executive. The system is designed with significant interactive capability as well as the capability to support the entire range of design phases from the definition phase to the verification phase. The system functions as a standalone or interfaced with IPAD.

  7. Strategic Capability Development in the Higher Education Sector

    ERIC Educational Resources Information Center

    Brown, Paul

    2004-01-01

    The research adopts a case study approach (in higher education) to investigate how strategic capabilities might be developed in an organisation through strategic management development (SMD). SMD is defined as "Management development interventions which are intended to enhance the strategic capability and corporate performance of an organisation".…

  8. Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance

    PubMed Central

    González-Guzmán, Miguel; Rodríguez, Lesia; Lorenzo-Orts, Laura; Pons, Clara; Sarrión-Perdigones, Alejandro; Fernández, Maria A.; Peirats-Llobet, Marta; Forment, Javier; Moreno-Alvero, Maria; Cutler, Sean R.; Albert, Armando; Granell, Antonio; Rodríguez, Pedro L.

    2014-01-01

    Abscisic acid (ABA) plays a crucial role in the plant’s response to both biotic and abiotic stress. Sustainable production of food faces several key challenges, particularly the generation of new varieties with improved water use efficiency and drought tolerance. Different studies have shown the potential applications of Arabidopsis PYR/PYL/RCAR ABA receptors to enhance plant drought resistance. Consequently the functional characterization of orthologous genes in crops holds promise for agriculture. The full set of tomato (Solanum lycopersicum) PYR/PYL/RCAR ABA receptors have been identified here. From the 15 putative tomato ABA receptors, 14 of them could be grouped in three subfamilies that correlated well with corresponding Arabidopsis subfamilies. High levels of expression of PYR/PYL/RCAR genes was found in tomato root, and some genes showed predominant expression in leaf and fruit tissues. Functional characterization of tomato receptors was performed through interaction assays with Arabidopsis and tomato clade A protein phosphatase type 2Cs (PP2Cs) as well as phosphatase inhibition studies. Tomato receptors were able to inhibit the activity of clade A PP2Cs differentially in an ABA-dependent manner, and at least three receptors were sensitive to the ABA agonist quinabactin, which inhibited tomato seed germination. Indeed, the chemical activation of ABA signalling induced by quinabactin was able to activate stress-responsive genes. Both dimeric and monomeric tomato receptors were functional in Arabidopsis plant cells, but only overexpression of monomeric-type receptors conferred enhanced drought resistance. In summary, gene expression analyses, and chemical and transgenic approaches revealed distinct properties of tomato PYR/PYL/RCAR ABA receptors that might have biotechnological implications. PMID:24863435

  9. 78 FR 45246 - Office of Clinical and Preventive Services National HIV Program: Enhanced HIV/AIDS Screening and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... cases, any portion of the facility) in which regular or routine education, library, day care, health...: Enhanced HIV/AIDS Screening and Engagement in Care Announcement Type: New. Funding Announcement Number: HHS... Care. This program is funded by the Office of the Secretary (OS), Department of Health and...

  10. National Trends: Enhancing Education through Technology--No Child Left Behind, Title II D--Year Three in Review

    ERIC Educational Resources Information Center

    Lemke, Cheryl; Wainer, Andrew; Haning, Nicole

    2006-01-01

    The State Educational Technology Directors Association is pleased to release its third annual Trends Report on educational technology. In addition to reporting trends on the third round (FY 04) of the No Child Left Behind, Title II, Part D, Enhancing Education Through Technology (EETT) program, the 2006 report also includes general state policy…

  11. Innovative Programs for Improvement in Reading through Cognitive Enhancement: A Remediation Study of Canadian First Nations Children

    ERIC Educational Resources Information Center

    Hayward, Denyse; Das, J. P.; Janzen, Troy

    2007-01-01

    Forty-five Grade 3 students from a reservation school in Western Canada were divided into two remedial groups and a no-risk control group. One remedial group was given a classroom-administered cognitive enhancement program (COGENT) throughout the school year. The second group received COGENT for the first half of the year followed by a pull-out…

  12. Delivery Strategies to Enhance the Sustainability of Training: Lessons from the Food and Agriculture Organization of the United Nations

    ERIC Educational Resources Information Center

    de Rosa, Cecilia; Nadeau, Andrew; Hernandez, Emilio; Kafeero, Fred; Zahiga, Jacques

    2016-01-01

    The Food and Agriculture Organization of the United Nations (FAO) utilizes training as a major component of the support it provides to its member countries in Africa. In the past, stand-alone training events targeting individual actors were the norm. However, an external evaluation indicated that this type of training scores low in terms of…

  13. Indigenous Research Capability in Aotearoa

    ERIC Educational Resources Information Center

    Ormond, Adreanne; Williams, Les R. Tumoana

    2013-01-01

    This article begins by considering the general nature of capability, from some dictionary meanings, then extends to theoretical perspectives related to the capability approach. As a consequence, we arrive at an operational definition that emphasises the ability to solve problems in a systematic way that brings transformation. In these terms,…

  14. Identifying 21st Century Capabilities

    ERIC Educational Resources Information Center

    Stevens, Robert

    2012-01-01

    What are the capabilities necessary to meet 21st century challenges? Much of the literature on 21st century skills focuses on skills necessary to meet those challenges associated with future work in a globalised world. The result is a limited characterisation of those capabilities necessary to address 21st century social, health and particularly…

  15. EB resolution capability with CP exposure

    NASA Astrophysics Data System (ADS)

    Kurokawa, Masaki; Isobe, Hideaki; Abe, Kenji; Oae, Yoshihisa; Yamada, Akio; Narukawa, Shogo; Ishikawa, Mikio; Fujita, Hiroshi; Hoga, Morihisa; Hayashi, Naoya

    2011-05-01

    We are evaluating the resolution capability of character projection (CP) exposure method using a Multi Colum Cell Proof of Concept (MCC-POC) tool. Resolving of 14nm half pitch (HP) 1:1 line and space (LS) patterns are confirmed with fine openings of a DNP fabricated CP mask for 10:1 de-magnification ratio. CP exposure has been proven to exhibit high resolution capabilities even under the most challenging optimization conditions that are required for throughput enhancement. As a result of evaluating the resolution capability of CP technology, it became apparent that the CP technology has strong potentials to meet future challenges in two areas. One is where an increased number of CP with variable illumination technology gives a higher throughput which has been the main objective behind the development of this technology, and the other is to achieve higher resolution capability that is one of the strengths of CP exposure method. We also evaluated the resolution on Quartz mask blanks instead of Si wafers and obtained 18nm HP 1:1 resolution with CP exposure.

  16. Description of the Argonne National Laboratory target making facility

    SciTech Connect

    Thomas, G.E.; Greene, J.P.

    1990-01-01

    A description is given to some recent developments in the target facility at Argonne National Laboratory. Highlights include equipment upgrades which enable us to provide enhanced capabilities for support of the Argonne Heavy-Ion ATLAS Accelerator Program. Work currently in progress is described and future prospects discussed. 8 refs.

  17. Building EOS capability for Malaysia - the options

    NASA Astrophysics Data System (ADS)

    Subari, M. D.; Hassan, A.

    2014-06-01

    Earth observation satellite (EOS) is currently a major tool to monitor earth dynamics and increase human understanding of earth surface process. Since the early 80s, Malaysia has been using EOS images for various applications, such as weather forecasting, land use mapping, agriculture, environment monitoring and others. Until now, all EOS images were obtained from foreign satellite systems. Realising on the strategic need of having its own capability, Malaysia embarked into EOS development programs in the early 90s. Starting with TiungSAT-1, a micro-satellite carrying small camera, then followed by RazakSAT, a small satellite carrying 2.5 m panchromatic (PAN) medium-aperture-camera, the current satellite program development, the RazakSAT-2, designed to carry a 1.0 m high resolution PAN and 4.0m multi-spectral camera, would become a strategic initiative of the government in developing and accelerating the nation's capability in the area of satellite technology and its application. Would this effort continue until all needs of the remote sensing community being fulfilled by its own EOS? This paper will analyze the intention of the Malaysian government through its National Space Policy and other related policy documents, and proposes some policy options on this. Key factors to be considered are specific data need of the EOS community, data availability and the more subjective political motivations such as national pride.

  18. MCNP: Multigroup/adjoint capabilities

    SciTech Connect

    Wagner, J.C.; Redmond, E.L. II; Palmtag, S.P.; Hendricks, J.S.

    1994-04-01

    This report discusses various aspects related to the use and validity of the general purpose Monte Carlo code MCNP for multigroup/adjoint calculations. The increased desire to perform comparisons between Monte Carlo and deterministic codes, along with the ever-present desire to increase the efficiency of large MCNP calculations has produced a greater user demand for the multigroup/adjoint capabilities. To more fully utilize these capabilities, we review the applications of the Monte Carlo multigroup/adjoint method, describe how to generate multigroup cross sections for MCNP with the auxiliary CRSRD code, describe how to use the multigroup/adjoint capability in MCNP, and provide examples and results indicating the effectiveness and validity of the MCNP multigroup/adjoint treatment. This information should assist users in taking advantage of the MCNP multigroup/adjoint capabilities.

  19. Capability 9.2 Mobility

    NASA Technical Reports Server (NTRS)

    Zakrasjek, June

    2005-01-01

    Modern operational concepts require significant bandwidths and multipoint communication capabilities. Provide voice, video and data communications among vehicles moving along the surface, vehicles in suborbital transport or reconnaissance, surface elements, and home planet facilities.

  20. Manufacturing fuel-switching capability, 1988

    SciTech Connect

    Not Available

    1991-09-01

    Historically, about one-third of all energy consumed in the United States has been used by manufacturers. About one-quarter of manufacturing energy is used as feedstocks and raw material inputs that are converted into nonenergy products; the remainder is used for its energy content. During 1988, the most recent year for which data are available, manufacturers consumed 15.5 quadrillion British thermal units (Btu) of energy to produce heat and power and to generate electricity. The manufacturing sector also has widespread capabilities to switch from one fuel to another for either economic or emergency reasons. There are numerous ways to define fuel switching. For the purposes of the Manufacturing Energy Consumption Survey (MECS), fuel switching is defined as the capability to substitute one energy source for another within 30 days with no significant modifications to the fuel-consuming equipment, while keeping production constant. Fuel-switching capability allows manufacturers substantial flexibility in choosing their mix of energy sources. The consumption of a given energy source can be maximized if all possible switching into that energy source takes place. The estimates in this report are based on data collected on the 1988 Manufacturing Energy Consumption Survey (MECS), Forms 846 (A through C). The EIA conducts this national sample survey of manufacturing energy consumption on a triennial basis. The MECS is the only comprehensive source of national-level data on energy-related information for the manufacturing industries. The MECS was first conducted in 1986 to collect data for 1985. This report presents information on the fuel-switching capabilities of manufacturers in 1988. This report is the second of a series based on the 1988 MECS. 8 figs., 31 tabs.

  1. SD46 Facilities and Capabilities

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The displays for the Materials Conference presents some of the facilities and capabilities in SD46 that can be useful to a prospective researcher from University, Academia or other government labs. Several of these already have associated personnel as principal and co-investigators on NASA peer reviewed science investigations. 1. SCN purification facility 2. ESL facility 3. Static and Dynamic magnetic field facility 4. Microanalysis facility 5. MSG Investigation - PFMI 6. Thermo physical Properties Measurement Capabilities.

  2. Earth Science Capability Demonstration Project

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent

    2006-01-01

    A viewgraph presentation reviewing the Earth Science Capability Demonstration Project is shown. The contents include: 1) ESCD Project; 2) Available Flight Assets; 3) Ikhana Procurement; 4) GCS Layout; 5) Baseline Predator B Architecture; 6) Ikhana Architecture; 7) UAV Capability Assessment; 8) The Big Picture; 9) NASA/NOAA UAV Demo (5/05 to 9/05); 10) NASA/USFS Western States Fire Mission (8/06); and 11) Suborbital Telepresence.

  3. Kernel CMAC with improved capability.

    PubMed

    Horváth, Gábor; Szabó, Tamás

    2007-02-01

    The cerebellar model articulation controller (CMAC) has some attractive features, namely fast learning capability and the possibility of efficient digital hardware implementation. Although CMAC was proposed many years ago, several open questions have been left even for today. The most important ones are about its modeling and generalization capabilities. The limits of its modeling capability were addressed in the literature, and recently, certain questions of its generalization property were also investigated. This paper deals with both the modeling and the generalization properties of CMAC. First, a new interpolation model is introduced. Then, a detailed analysis of the generalization error is given, and an analytical expression of this error for some special cases is presented. It is shown that this generalization error can be rather significant, and a simple regularized training algorithm to reduce this error is proposed. The results related to the modeling capability show that there are differences between the one-dimensional (1-D) and the multidimensional versions of CMAC. This paper discusses the reasons of this difference and suggests a new kernel-based interpretation of CMAC. The kernel interpretation gives a unified framework. Applying this approach, both the 1-D and the multidimensional CMACs can be constructed with similar modeling capability. Finally, this paper shows that the regularized training algorithm can be applied for the kernel interpretations too, which results in a network with significantly improved approximation capabilities. PMID:17278566

  4. Evaluation of Variable Refrigerant Flow Systems Performance and the Enhanced Control Algorithm on Oak Ridge National Laboratory s Flexible Research Platform

    SciTech Connect

    Im, Piljae; Munk, Jeffrey D; Gehl, Anthony C

    2015-06-01

    A research project “Evaluation of Variable Refrigerant Flow (VRF) Systems Performance and the Enhanced Control Algorithm on Oak Ridge National Laboratory’s (ORNL’s) Flexible Research Platform” was performed to (1) install and validate the performance of Samsung VRF systems compared with the baseline rooftop unit (RTU) variable-air-volume (VAV) system and (2) evaluate the enhanced control algorithm for the VRF system on the two-story flexible research platform (FRP) in Oak Ridge, Tennessee. Based on the VRF system designed by Samsung and ORNL, the system was installed from February 18 through April 15, 2014. The final commissioning and system optimization were completed on June 2, 2014, and the initial test for system operation was started the following day, June 3, 2014. In addition, the enhanced control algorithm was implemented and updated on June 18. After a series of additional commissioning actions, the energy performance data from the RTU and the VRF system were monitored from July 7, 2014, through February 28, 2015. Data monitoring and analysis were performed for the cooling season and heating season separately, and the calibrated simulation model was developed and used to estimate the energy performance of the RTU and VRF systems. This final report includes discussion of the design and installation of the VRF system, the data monitoring and analysis plan, the cooling season and heating season data analysis, and the building energy modeling study

  5. Space Shuttle capabilities, constraints, and cost

    NASA Technical Reports Server (NTRS)

    Lee, C. M.

    1980-01-01

    The capabilities, constraints, and costs of the Space Transportation System (STS), which combines reusable and expendable components, are reviewed, and an overview of the current planning activities for operating the STS in an efficient and cost-effective manner is presented. Traffic forecasts, performance constraints and enhancements, and potential new applications are discussed. Attention is given to operating costs, pricing policies, and the steps involved in 'getting on board', which includes all the interfaces between NASA and the users necessary to come to launch service agreements.

  6. Human Research Program Exploration Medical Capability

    NASA Technical Reports Server (NTRS)

    Barsten, Kristina

    2010-01-01

    NASA s Human Research Program (HRP) conducts and coordinates research projects that provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration. The Program is divided into 6 major elements, which a) Provide the Program s knowledge and capabilities to conduct research, addressing the human health and performance risks. b) Advance the readiness levels of technology and countermeasures to the point of transfer to the customer programs and organizations. The National Space Biomedical Research Institute (NSBRI) is a partner with the HRP in developing a successful research program. 3

  7. Transferable Denitrification Capability of Thermus thermophilus

    PubMed Central

    Alvarez, Laura; Bricio, Carlos; Blesa, Alba; Hidalgo, Aurelio

    2014-01-01

    Laboratory-adapted strains of Thermus spp. have been shown to require oxygen for growth, including the model strains T. thermophilus HB27 and HB8. In contrast, many isolates of this species that have not been intensively grown under laboratory conditions keep the capability to grow anaerobically with one or more electron acceptors. The use of nitrogen oxides, especially nitrate, as electron acceptors is one of the most widespread capabilities among these facultative strains. In this process, nitrate is reduced to nitrite by a reductase (Nar) that also functions as electron transporter toward nitrite and nitric oxide reductases when nitrate is scarce, effectively replacing respiratory complex III. In many T. thermophilus denitrificant strains, most electrons for Nar are provided by a new class of NADH dehydrogenase (Nrc). The ability to reduce nitrite to NO and subsequently to N2O by the corresponding Nir and Nor reductases is also strain specific. The genes encoding the capabilities for nitrate (nar) and nitrite (nir and nor) respiration are easily transferred between T. thermophilus strains by natural competence or by a conjugation-like process and may be easily lost upon continuous growth under aerobic conditions. The reason for this instability is apparently related to the fact that these metabolic capabilities are encoded in gene cluster islands, which are delimited by insertion sequences and integrated within highly variable regions of easily transferable extrachromosomal elements. Together with the chromosomal genes, these plasmid-associated genetic islands constitute the extended pangenome of T. thermophilus that provides this species with an enhanced capability to adapt to changing environments. PMID:24141123

  8. Stable Isotope Enrichment Capabilities at ORNL

    SciTech Connect

    Egle, Brian; Aaron, W Scott; Hart, Kevin J

    2013-01-01

    The Oak Ridge National Laboratory (ORNL) and the US Department of Energy Nuclear Physics Program have built a high-resolution Electromagnetic Isotope Separator (EMIS) as a prototype for reestablishing a US based enrichment capability for stable isotopes. ORNL has over 60 years of experience providing enriched stable isotopes and related technical services to the international accelerator target community, as well as medical, research, industrial, national security, and other communities. ORNL is investigating the combined use of electromagnetic and gas centrifuge isotope separation technologies to provide research quantities (milligram to several kilograms) of enriched stable isotopes. In preparation for implementing a larger scale production facility, a 10 mA high-resolution EMIS prototype has been built and tested. Initial testing of the device has simultaneously collected greater than 98% enriched samples of all the molybdenum isotopes from natural abundance feedstock.

  9. Enhanced Conversion of Thermal Electron Bernstein Waves to the Extraordinary Electromagnetic Mode on the National Spherical Torus Experiment (NSTX)

    SciTech Connect

    G. Taylor; P.C. Efthimion; B. Jones; B.P. LeBlanc; J.R. Wilson; J.B. Wilgen; G.L. Bell; T.S. Bigelow; R. Maingi; D.A. Rasmussen; R.W. Harvey; A.P. Smirnov; F. Paoletti; S.A. Sabbagh

    2002-10-15

    A four-fold increase in the conversion of thermal electron-Bernstein waves (EBW) to the extraordinary mode (X-mode) was measured when the density scale length (L subscript ''n'') was progressively shortened by a local Boron nitride limiter in the scrape-off of an ohmically heated National Spherical Torus Experiment (NSTX) plasma [M. Ono, S. Kaye, M. Peng, et al., Proceedings 17th IAEA Fusion Energy Conference (IAEA, Vienna, Austria, 1999), Vol. 3, p. 1135]. The maximum conversion efficiency approached 50% when L subscript ''n'' was reduced to 0.7 cm, in agreement with theoretical predictions that used locally measured L subscript ''n''. Calculations indicate that it is possible to establish L subscript ''n'' < 0.3 cm with a local limiter, a value predicted to attain approximately 100% EBW conversion to the X-mode in support of proposed EBW heating and current drive scenarios.

  10. Mach-Zehnder detector system issues and enhancements for use on the National Ignition Facility DANTE x-ray diagnostic

    NASA Astrophysics Data System (ADS)

    Beeman, B. V.; Carpenter, A. C.; Kimbrough, J. R.; Clancy, T. J.; Chow, R.; Bond, E.; Zayas-Rivera, Z.; Bell, P.; Celeste, J.; MacPhee, A. G.; Widmann, W.; Golod, T.; Miller, E. K.; Abbott, R. Q.; Lee, K. K.; Peterson, J. C.; Gordoni, S. M.; Buckley, J. J.; Donaldson, W. R.

    2014-09-01

    We present lessons learned from the fielding of various Mach-Zehnder (MZ) based diagnostic systems on the National Ignition Facility (NIF) and potential solutions. The DANTE X-ray diagnostic is the next in a series of applications for Mach-Zehnder based signal transport and acquisition systems on NIF and as such will incorporate many of these upgrades. In addition to extended dynamic-range performance and improved reliability, the upgrades presented also enable multiplexing of the signals from DANTE's 18 X-Ray Diodes (XRD) to economize on system cost and rack space. Previous deployments on other NIF diagnostics highlighted the necessity to decouple the input light intensity from the bias point of the Mach-Zehnder. Areas of concern including polarization, temperature, bias point and optical power level control will be addressed.

  11. Enhancing Nutrition Security via India's National Food Security Act: Using an Axe instead of a Scalpel?§

    PubMed Central

    Desai, Sonalde; Vanneman, Reeve

    2016-01-01

    In September 2013, India passed a historic National Food Security Act. This paper examines the potential impact of the two central pillars of this act - expansion of the Public Distribution System and strengthening of the Integrated Child Development Schemes – on child nutrition. Using new data from the India Human Development Survey of 2011-12, this paper shows that access to subsidized grains via PDS is not related to improved child nutrition, and while ICDS seems to be related to lower child undernutrition, it has a limited reach in spite of the universalization of the program. The paper suggests that a tiered strategy in dealing with child undernutrition that starts with the identification of undernourished children and districts and follows through with different strategies for dealing with severe, acute malnutrition, followed by a focus on moderate malnutrition, could be more effective than the existing focus on cereal distribution rooted in the NFSA. PMID:27034596

  12. Technical Assistance Guide: Working with DOE National Laboratories (Brochure)

    SciTech Connect

    Not Available

    2012-07-01

    A fact sheet that provides an overview of FEMP's technical assistance through the Department of Energy's National Laboratories. The Federal Energy Management Program (FEMP) facilitates the Federal Government's implementation of sound, cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. To advance that mission, FEMP fosters collaboration between Federal agencies and U.S. Department of Energy (DOE) national laboratories. This guide outlines technical assistance capabilities and expertise at DOE national laboratories. Any laboratory assistance must be in accordance with Federal Acquisition Regulation (FAR) Subpart 35.017 requirements and the laboratory's designation as Federal Funded Research and Development Center (FFRDC) facilities.

  13. Natural Environment Capabilities at MSFC

    NASA Technical Reports Server (NTRS)

    Parker, Linda Neergaard; Willis, Emily M.; Minow, Joseph I.

    2014-01-01

    The Natural Environments Branch at Marshall Space Flight Center is integral in developing, maintaining, and investigating NASA missions such as Space Launch Systems (SLS), currently under development, as well as many NASA and other agency satellite missions. We present the space environment capabilities of the Natural Environments Branch at MSFC. These in-house capabilities include model development, analysis of space and terrestrial related data, spacecraft charging anomaly investigations, surface charging modeling including Nascap-2k, space environment definition and radiation parts assessment. All aspects of space and terrestrial design are implemented with the goal of devising missions to be successful at launch and in the space environment of LEO, polar, GEO, and interplanetary orbits. In this poster, we show examples of recent applications of branch capabilities to NASA missions.

  14. Reactor Pressure Vessel Fracture Analysis Capabilities in Grizzly

    SciTech Connect

    Spencer, Benjamin; Backman, Marie; Chakraborty, Pritam; Hoffman, William

    2015-03-01

    Efforts have been underway to develop fracture mechanics capabilities in the Grizzly code to enable it to be used to perform deterministic fracture assessments of degraded reactor pressure vessels (RPVs). Development in prior years has resulted a capability to calculate -integrals. For this application, these are used to calculate stress intensity factors for cracks to be used in deterministic linear elastic fracture mechanics (LEFM) assessments of fracture in degraded RPVs. The -integral can only be used to evaluate stress intensity factors for axis-aligned flaws because it can only be used to obtain the stress intensity factor for pure Mode I loading. Off-axis flaws will be subjected to mixed-mode loading. For this reason, work has continued to expand the set of fracture mechanics capabilities to permit it to evaluate off-axis flaws. This report documents the following work to enhance Grizzly’s engineering fracture mechanics capabilities for RPVs: • Interaction Integral and -stress: To obtain mixed-mode stress intensity factors, a capability to evaluate interaction integrals for 2D or 3D flaws has been developed. A -stress evaluation capability has been developed to evaluate the constraint at crack tips in 2D or 3D. Initial verification testing of these capabilities is documented here. • Benchmarking for axis-aligned flaws: Grizzly’s capabilities to evaluate stress intensity factors for axis-aligned flaws have been benchmarked against calculations for the same conditions in FAVOR. • Off-axis flaw demonstration: The newly-developed interaction integral capabilities are demon- strated in an application to calculate the mixed-mode stress intensity factors for off-axis flaws. • Other code enhancements: Other enhancements to the thermomechanics capabilities that relate to the solution of the engineering RPV fracture problem are documented here.

  15. Jason 2: A Review of Capabilities

    NASA Astrophysics Data System (ADS)

    Elder, R. L.; Bowen, A. D.; Heintz, M. C.; Naiman, M.; Taylor, C. L.; Sellers, W. J.; Whitcomb, L. L.; Howland, J. C.

    2003-12-01

    The family of remotely operated vehicles (ROVs) operated by Woods Hole Oceanographic Institution (WHOI) for the United States oceanographic research community through the University National Oceanographic Laboratory System (UNOLS), represent some of the most advanced tools and technology available for accomplishing a wide variety of deep submergence science and operations. Over the past five years, research done using these vehicles has provided major contributions to the understanding of deep-sea geological, chemical and biological processes at mid-ocean ridges (MORs). The ROV systems have also contributed to successful deployment of ocean floor observatory monitors and various sensors that seek to understand the geophysical and geotechnical properties of young crust and provide an ability to make routine time series measurements. As a result of experience gained during over 25 cruises with Jason and its companion vehicles and input from the user community and the DEep Submergence Science Committee (DESSC) of UNOLS, WHOI has recently completed an upgrade to the Jason vehicle. This has resulted in substantive additions to the vehicle's capabilities, particularly in the area of propulsion power and manipulative capabilities. During its first complete year of operation, the vehicle has operated a cumulative total of approximately 60 days in the water at depths up to a maximum of 6,500 meters. This poster will describe the capabilities of the new Jason vehicle and briefly review if achievements.

  16. Are climate warming and enhanced atmospheric deposition of sulfur and nitrogen threatening tufa landscapes in Jiuzhaigou National Nature Reserve, Sichuan, China?

    PubMed

    Qiao, Xue; Du, Jie; Lugli, Stefano; Ren, Jinhai; Xiao, Weiyang; Chen, Pan; Tang, Ya

    2016-08-15

    Massive deposition of calcium carbonate in ambient temperature waters (tufa) can form magnificent tufa landscapes, many of which are designated as protected areas. However, tufa landscapes in many areas are threatened by both local anthropogenic activities and climate change. This study, for the first time, posed the question whether the tufa landscape degradation (characterized by tufa degradation and increased biomass of green algae) in Jiuzhaigou National Nature Reserve of China is partially caused by regional air pollution and climate warming. The results indicate that wet deposition (including rain and snow) polluted by anthropogenic SO2, NOx, and NH3 emissions dissolves exposed tufa and may considerably reduce tufa deposition rate and even cause tufa dissolution within shallow waters. These effects of wet deposition on tufa enhanced as pH of wet deposition decreased from 8.01 to 5.06. Annual Volume Weighted Mean concentration of reactive nitrogen (including NH4(+) and NO3(-)) in wet deposition (26.1μmolL(-1)) was 1.8 times of the corresponding value of runoff (14.8μmolL(-1)) and exceeded China's national standard of total nitrogen in runoff for nature reserves (14.3μmolL(-1)), indicating a direct nitrogen fertilization effect of wet deposition on green algae. As water temperature is the major limiting factor of algal growth in Jiuzhaigou and temperature in the top layer (0-5cm) of runoff (depth<1m, no canopy coverage of trees and shrubs) was significantly higher at the sites with increased biomass of green algae (p<0.05), climate warming in this region would favor algal growth. In sum, this study suggests that climate warming and enhanced sulfur and nitrogen deposition have contributed to the current degradation of tufa landscape in Jiuzhaigou, but in order to quantify the contributions, further studies are needed, as many other anthropogenic and natural processes also influence tufa landscape evolution. PMID:27110983

  17. The People Capability Maturity Model

    ERIC Educational Resources Information Center

    Wademan, Mark R.; Spuches, Charles M.; Doughty, Philip L.

    2007-01-01

    The People Capability Maturity Model[R] (People CMM[R]) advocates a staged approach to organizational change. Developed by the Carnegie Mellon University Software Engineering Institute, this model seeks to bring discipline to the people side of management by promoting a structured, repeatable, and predictable approach for improving an…

  18. Capability and Learning to Choose

    ERIC Educational Resources Information Center

    LeBmann, Ortrud

    2009-01-01

    The Capability Approach (henceforth CA) is in the first place an approach to the evaluation of individual well-being and social welfare. Many disciplines refer to the CA, first and foremost welfare economics, development studies and political philosophy. Educational theory was not among the first disciplines that took notice of the CA, but has a…

  19. Demonstration of new PCSD capabilities

    NASA Technical Reports Server (NTRS)

    Gough, M.

    1986-01-01

    The new, more flexible and more friendly graphics capabilities to be available in later releases of the Pilot Climate Data System were demonstrated. The LIMS-LAMAT data set was chosen to illustrate these new capabilities. Pseudocolor and animation were used to represent the third and fourth dimensions, expanding the analytical capabilities available through the traditional two-dimensional x-y plot. In the new version, variables for the axes are chosen by scrolling through viable selections. This scrolling feature is a function of the new user interface customization. The new graphics are extremely user friendly and should free the scientist to look at data and converse with it, without doing any programming. The system is designed to rapidly plot any variable versus any other variable and animate by any variable. Any one plot in itself is not extraordinary; however, the fact that a user can generate the plots instead of a programmer distinguishes the graphics capabilities of the PCDS from other software packages. In addition, with the new CDF design, the system will become more generic, and the new graphics will become much more rigorous in the area of correlative studies.

  20. Medical vest broadens treatment capability

    NASA Technical Reports Server (NTRS)

    Johnson, G. S.

    1970-01-01

    Universal sized vest, with specially tailored pockets designed to hold medical supplies, provides first aid/first care medical teams with broadened on-site capability. Vest is made of nylon, tough fibrous materials, and polyvinyl chloride. Design facilitates rapid donning, doffing, and adjustment.

  1. Enhancing fullchip ILT mask synthesis capability for IC manufacturability

    NASA Astrophysics Data System (ADS)

    Cecil, Thomas; Ashton, Chris; Irby, David; Luan, Lan; Son, D. H.; Xiao, Guangming; Zhou, Xin; Kim, David; Gleason, Bob; Lee, H. J.; Sim, W. J.; Hong, M. J.; Jung, S. G.; Suh, S. S.; Lee, S. W.

    2011-04-01

    It is well known in the industry that the technology nodes from 30nm and below will require model based SRAF / OPC for critical layers to meet production required process windows. Since the seminal paper by Saleh and Sayegh[1][2] thirty years ago, the idea of using inverse methods to solve mask layout problems has been receiving increasing attention as design sizes have been steadily shrinking. ILT in its present form represents an attempt to construct the inverse solution to a constrained problem where the constraints are all possible phenomena which can be simulated, including: DOF, sidelobes, MRC, MEEF, EL, shot-count, and other effects. Given current manufacturing constraints and process window requirements, inverse solutions must use all possible degrees of freedom to synthesize a mask. Various forms of inverse solutions differ greatly with respect to lithographic performance and mask complexity. Factors responsible for their differences include composition of the cost function that is minimized, constraints applied during optimization to ensure MRC compliance and limit complexity, and the data structure used to represent mask patterns. In this paper we describe the level set method to represent mask patterns, which allows the necessary degrees of freedom for required lithographic performance, and show how to derive Manhattan mask patterns from it, which can be manufactured with controllable complexity and limited shot-counts. We will demonstrate how full chip ILT masks can control e-beam write-time to the level comparable to traditional OPC masks, providing a solution with maximized lithographic performance and manageable cost of ownership that is vital to sub-30nm node IC manufacturing.

  2. A database system for enhancing fuel records management capabilities

    SciTech Connect

    Rieke, Phil; Razvi, Junaid

    1994-07-01

    The need to modernize the system of managing a large variety of fuel related data at the TRIGA Reactors Facility at General Atomics, as well as the need to improve NRC nuclear material reporting requirements, prompted the development of a database to cover all aspects of fuel records management. The TRIGA Fuel Database replaces (a) an index card system used for recording fuel movements, (b) hand calculations for uranium burnup, and (c) a somewhat aged and cumbersome system of recording fuel inspection results. It was developed using Microsoft Access, a relational database system for Windows. Instead of relying on various sources for element information, users may now review individual element statistics, record inspection results, calculate element burnup and more, all from within a single application. Taking full advantage of the ease-of-use features designed in to Windows and Access, the user can enter and extract information easily through a number of customized on screen forms, with a wide variety of reporting options available. All forms are accessed through a main 'Options' screen, with the options broken down by categories, including 'Elements', 'Special Elements/Devices', 'Control Rods' and 'Areas'. Relational integrity and data validation rules are enforced to assist in ensuring accurate and meaningful data is entered. Among other items, the database lets the user define: element types (such as FLIP or standard) and subtypes (such as fuel follower, instrumented, etc.), various inspection codes for standardizing inspection results, areas within the facility where elements are located, and the power factors associated with element positions within a reactor. Using fuel moves, power history, power factors and element types, the database tracks uranium burnup and plutonium buildup on a quarterly basis. The Fuel Database was designed with end-users in mind and does not force an operations oriented user to learn any programming or relational database theory in order to take advantage of the information it contains. (author)

  3. Enhancing area of review capabilities: Implementing a variance program

    SciTech Connect

    De Leon, F.

    1995-12-01

    The Railroad Commission of Texas (RRC) has regulated oil-field injection well operations since issuing its first injection permit in 1938. The Environmental Protection Agency (EPA) granted the RRC primary enforcement responsibility for the Class H Underground Injection Control (UIC) Program in April 1982. At that time, the added level of groundwater protection afforded by an Area of Review (AOR) on previously permitted Class H wells was not deemed necessary or cost effective. A proposed EPA rule change will require AORs to be performed on all pre-primacy Class II wells unless a variance can be justified. A variance methodology has been developed by researchers at the University of Missouri-Rolla in conjunction with the American Petroleum Institute (API). This paper will outline the RRC approach to implementing the AOR variance methodology. The RRC`s UIC program tracks 49,256 pre-primacy wells. Approximately 25,598 of these wells have active permits and will be subject to the proposed AOR requirements. The potential workload of performing AORs or granting variances for this many wells makes the development of a Geographic Information System (GIS) imperative. The RRC has recently completed a digitized map of the entire state and has spotted 890,000 of an estimated 1.2 million wells. Integrating this digital state map into a GIS will allow the RRC to tie its many data systems together. Once in place, this integrated data system will be used to evaluate AOR variances for pre-primacy wells on a field-wide basis. It will also reduce the regulatory cost of permitting by allowing the RRC staff to perform AORs or grant variances for the approximately 3,000 new and amended permit applications requiring AORs each year.

  4. Current Capabilities and Planned Enhancements of SUSTAIN - Paper

    EPA Science Inventory

    Efforts have been under way by the U.S. Environmental Protection Agency (EPA) since 2003 to develop a decision-support tool for placement of best management practices (BMPs) at strategic locations in urban watersheds. The tool is called the System for Urban Stormwater Treatment ...

  5. Enhancing Resident Safety by Preventing Healthcare-Associated Infection: A National Initiative to Reduce Catheter-Associated Urinary Tract Infections in Nursing Homes.

    PubMed

    Mody, Lona; Meddings, Jennifer; Edson, Barbara S; McNamara, Sara E; Trautner, Barbara W; Stone, Nimalie D; Krein, Sarah L; Saint, Sanjay

    2015-07-01

    Preventing healthcare-associated infection (HAI) is a key contributor to enhancing resident safety in nursing homes. In 2013, the U.S. Department of Health and Human Services approved a plan to enhance resident safety by reducing HAIs in nursing homes, with particular emphasis on reducing indwelling catheter use and catheter-associated urinary tract infection (CAUTI). Lessons learned from a recent multimodal Targeted Infection Prevention program in a group of nursing homes as well as a national initiative to prevent CAUTI in over 950 acute care hospitals called "On the CUSP: STOP CAUTI" will now be implemented in nearly 500 nursing homes in all 50 states through a project funded by the Agency for Healthcare Research and Quality (AHRQ). This "AHRQ Safety Program in Long-Term Care: HAIs/CAUTI" will emphasize professional development in catheter utilization, catheter care and maintenance, and antimicrobial stewardship as well as promoting patient safety culture, team building, and leadership engagement. We anticipate that an approach integrating technical and socio-adaptive principles will serve as a model for future initiatives to reduce other infections, multidrug resistant organisms, and noninfectious adverse events among nursing home residents. PMID:25814630

  6. Enhancing Resident Safety by Preventing Healthcare-Associated Infection: A National Initiative to Reduce Catheter-Associated Urinary Tract Infections in Nursing Homes

    PubMed Central

    Mody, Lona; Meddings, Jennifer; Edson, Barbara S.; McNamara, Sara E.; Trautner, Barbara W.; Stone, Nimalie D.; Krein, Sarah L.; Saint, Sanjay

    2015-01-01

    Preventing healthcare-associated infection (HAI) is a key contributor to enhancing resident safety in nursing homes. In 2013, the U.S. Department of Health and Human Services approved a plan to enhance resident safety by reducing HAIs in nursing homes, with particular emphasis on reducing indwelling catheter use and catheter-associated urinary tract infection (CAUTI). Lessons learned from a recent multimodal Targeted Infection Prevention program in a group of nursing homes as well as a national initiative to prevent CAUTI in over 950 acute care hospitals called “On the CUSP: STOP CAUTI” will now be implemented in nearly 500 nursing homes in all 50 states through a project funded by the Agency for Healthcare Research and Quality (AHRQ). This “AHRQ Safety Program in Long-Term Care: HAIs/CAUTI” will emphasize professional development in catheter utilization, catheter care and maintenance, and antimicrobial stewardship as well as promoting patient safety culture, team building, and leadership engagement. We anticipate that an approach integrating technical and socio-adaptive principles will serve as a model for future initiatives to reduce other infections, multidrug resistant organisms, and noninfectious adverse events among nursing home residents. PMID:25814630

  7. Shifting Resources and Focus to Meet the Goals of the National HIV/AIDS Strategy: The Enhanced Comprehensive HIV Prevention Planning Project, 2010-2013.

    PubMed

    Flores, Stephen A; Purcell, David W; Fisher, Holly H; Belcher, Lisa; Carey, James W; Courtenay-Quirk, Cari; Dunbar, Erica; Eke, Agatha N; Galindo, Carla A; Glassman, Marlene; Margolis, Andrew D; Neumann, Mary Spink; Prather, Cynthia; Stratford, Dale; Taylor, Raekiela D; Mermin, Jonathan

    2016-01-01

    In September 2010, CDC launched the Enhanced Comprehensive HIV Prevention Planning (ECHPP) project to shift HIV-related activities to meet goals of the 2010 National HIV/AIDS Strategy (NHAS). Twelve health departments in cities with high AIDS burden participated. These 12 grantees submitted plans detailing jurisdiction-level goals, strategies, and objectives for HIV prevention and care activities. We reviewed plans to identify themes in the planning process and initial implementation. Planning themes included data integration, broad engagement of partners, and resource allocation modeling. Implementation themes included organizational change, building partnerships, enhancing data use, developing protocols and policies, and providing training and technical assistance for new and expanded activities. Pilot programs also allowed grantees to assess the feasibility of large-scale implementation. These findings indicate that health departments in areas hardest hit by HIV are shifting their HIV prevention and care programs to increase local impact. Examples from ECHPP will be of interest to other health departments as they work toward meeting the NHAS goals. PMID:26843670

  8. Quantifying enhancement in aerosol radiative forcing during 'extreme aerosol days' in summer at Delhi National Capital Region, India.

    PubMed

    Kumar, Sumant; Dey, Sagnik; Srivastava, Arun

    2016-04-15

    Changes in aerosol characteristics (spectral aerosol optical depth, AOD and composition) are examined during the transition from 'relatively clean' to 'extreme' aerosol days in the summer of 2012 at Delhi National Capital Region (NCR), India. AOD smaller than 0.54 (i.e. 12-year mean AOD-1σ) represents 'relatively clean' days in Delhi during the summer. 'Extreme' days are defined by the condition when AOD0.5 exceeds 12-year mean AOD+1 standard deviation (σ). Mean (±1σ) AOD increases to 1.2±0.12 along with a decrease of Angstrom Exponent from 0.54±0.09 to 0.22±0.12 during the 'extreme' days. Aerosol composition is inferred by fixing the number concentrations of various individual species through iterative tweaking when simulated (following Mie theory) AOD spectrum matches with the measured one. Contribution of coarse mode dust to aerosol mass increased from 76.8% (relatively clean) to 96.8% (extreme events), while the corresponding contributions to AOD0.5 increased from 35.0% to 70.8%. Spectrally increasing single scattering albedo (SSA) and CALIPSO aerosol sub-type information support the dominant presence of dust during the 'extreme' aerosol days. Aerosol direct radiative forcing (ADRF) at the top-of-the-atmosphere increases from 21.2Wm(-2) (relatively clean) to 56.6Wm(-2) (extreme), while the corresponding change in surface ADRF is from -99.5Wm(-2) to -153.5Wm(-2). Coarse mode dust contributes 60.3% of the observed surface ADRF during the 'extreme' days. On the contrary, 0.4% mass fraction of black carbon (BC) translates into 13.1% contribution to AOD0.5 and 33.5% to surface ADRF during the 'extreme' days. The atmospheric heating rate increased by 75.1% from 1.7K/day to 2.96K/day during the 'extreme' days. PMID:26855352

  9. Nuclear Data Needs and Capabilities for Applications

    SciTech Connect

    Brown, D.

    2015-05-27

    In July 2014, DOE NP carried out a review of the US Nuclear Data Program. This led to several recommendations, including that the USNDP should “devise effective and transparent mechanisms to solicit input and feedback from all stakeholders on nuclear data needs and priorities.” The review also recommended that USNDP pursue experimental activities of relevance to nuclear data; the revised 2014 Mission Statement accordingly states that the USNDP uses “targeted experimental studies” to address gaps in nuclear data. In support of these recommendations, DOE NP requested that USNDP personnel organize a Workshop on Nuclear Data Needs and Capabilities for Applications (NDNCA). This Workshop was held at Lawrence Berkeley National Laboratory (LBNL) on 27-29 May 2015. The goal of the NDNCA Workshop was to compile nuclear data needs across a wide spectrum of applied nuclear science, and to provide a summary of associated capabilities (accelerators, reactors, spectrometers, etc.) available for the required measurements. The first two days of the workshop consisted of 25 plenary talks by speakers from 16 different institutions, on nuclear energy (NE), national security (NS), isotope production (IP), and industrial applications (IA). There were also shorter “capabilities” talks that described the experimental facilities and instrumentation available for the measurement of nuclear data. This was followed by a third day of topic-specific “breakout” sessions and a final closeout session. The agenda and copies of these talks are available online at http://bang.berkeley.edu/events/NDNCA/agenda. The importance of nuclear data to both basic and applied nuclear science was reflected in the fact that while the impetus for the workshop arose from the 2014 USNDP review, joint sponsorship for the workshop was provided by the Nuclear Science and Security Consortium, a UC-Berkeley based organization funded by the National Nuclear Security Administration (NNSA).

  10. Improving the RPC rate capability

    NASA Astrophysics Data System (ADS)

    Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Di Stante, L.; Iuppa, R.; Liberti, B.; Paolozzi, L.; Pastori, E.; Santonico, R.; Toppi, M.

    2016-07-01

    This paper has the purpose to study the rate capability of the Resistive Plate Chamber, RPC, starting from the basic physics of this detector. The effect of different working parameters determining the rate capability is analysed in detail, in order to optimize a new family of RPCs for applications to heavy irradiation environments and in particular to the LHC phase 2. A special emphasis is given to the improvement achievable by minimizing the avalanche charge delivered in the gas. The paper shows experimental results of Cosmic Ray tests, performed to study the avalanche features for different gas gap sizes, with particular attention to the overall delivered charge. For this purpose, the paper studies, in parallel to the prompt electronic signal, also the ionic signal which gives the main contribution to the delivered charge. Whenever possible the test results are interpreted on the basis of the RPC detector physics and are intended to extend and reinforce our physical understanding of this detector.

  11. Advanced Power System Analysis Capabilities

    NASA Technical Reports Server (NTRS)

    1997-01-01

    As a continuing effort to assist in the design and characterization of space power systems, the NASA Lewis Research Center's Power and Propulsion Office developed a powerful computerized analysis tool called System Power Analysis for Capability Evaluation (SPACE). This year, SPACE was used extensively in analyzing detailed operational timelines for the International Space Station (ISS) program. SPACE was developed to analyze the performance of space-based photovoltaic power systems such as that being developed for the ISS. It is a highly integrated tool that combines numerous factors in a single analysis, providing a comprehensive assessment of the power system's capability. Factors particularly critical to the ISS include the orientation of the solar arrays toward the Sun and the shadowing of the arrays by other portions of the station.

  12. Deep Ultrasound Enhancements Final Report

    SciTech Connect

    Quarry, M; Thomas, G; Ward, W; Gardner, D

    2006-05-01

    This study involves collaboration between Los Alamos National Laboratory and Lawrence Livermore National Laboratory to enhance and optimize LANL's ultrasonic inspection capabilities for production. Deep-penetrating ultrasonic testing enhancement studies will extend the current capabilities, which only look for disbonds. Current ultrasonic methods in production use 15-20 MHz to inspect for disbonds. The enhanced capabilities use 5 MHz to penetrate to the back surface and image the back surface for any flaws. The enhanced capabilities for back surface inspection use transducers and squirter modifications that can be incorporated into the existing production system. In a production setup the current 15-20 MHz transducer and squirter would perform a bond inspection, followed by a deep inspection that would be performed by simply swapping out the 5 MHz transducer and squirter. Surrogate samples were manufactured of beryllium and bismuth to perform the ultrasonic enhancement studies. The samples were used to simulate flaws on the back surface and study ultrasound's ability to image them. The ultrasonic technique was optimized by performing experiments with these samples and analyzing transducer performance in detecting flaws in the surrogate. Beam patterns were also studied experimentally using a steel ball reflector to measure beam patterns, focal points, and sensitivities to better understand the relationship between design and performance. Many transducers were evaluated including transducers from LANL's production system, LLNL, and other commercially available transducers. Squirter design was also analyzed while performing experiments Flat-bottom holes and ball-mill defects of various sizes were introduced into the samples for experimentation. Flaws depths were varied from .020'' to 0.060'', and diameters varied from 0.0625'' to 0.187''. The smallest defect, .020'' depth and 0.0625'', was detected. Ultrasonic amplitude features produced better images than time

  13. The U.S. National Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Hanisch, Robert

    The U.S. National Virtual Observatory project is a development effort aimed at implementing the framework for an eventual Virtual Observatory facility. Project activities include the development of metadata standards resource and service registries table and image access protocols interfaces to the computational grid and access to VO resources for education and public outreach. Select science prototypes are used to guide technical development and demonstrate the capabilities of the VO framework for enhancing research. The US NVO project works closely with international VO partners through the International Virtual Observatory Alliance. The US NVO project is funded by the National Science Foundation under Cooperative Agreement AST0122449 with The Johns Hopkins University.

  14. HNET - A National Computerized Health Network

    PubMed Central

    Casey, Mark; Hamilton, Richard

    1988-01-01

    The HNET system demonstrated conceptually and technically a national text (and limited bit mapped graphics) computer network for use between innovative members of the health care industry. The HNET configuration of a leased high speed national packet switching network connecting any number of mainframe, mini, and micro computers was unique in it's relatively low capital costs and freedom from obsolescence. With multiple simultaneous conferences, databases, bulletin boards, calendars, and advanced electronic mail and surveys, it is marketable to innovative hospitals, clinics, physicians, health care associations and societies, nurses, multisite research projects libraries, etc.. Electronic publishing and education capabilities along with integrated voice and video transmission are identified as future enhancements.

  15. Diamond Machining Applications And Capabilities

    NASA Astrophysics Data System (ADS)

    Benjamin, Roland J.

    1983-12-01

    Aspheric surface generation and precision machining have been important technologies at Hughes Optical Products, Inc. (formerly Optical Division, Bell & Howell Company) for over twenty years. Present machining capabilities and supporting services which are available on a custom basis are described. A variety of applications of diamond machining are illustrated, involving not only the usual reflective materials such as aluminum, copper, and electroless nickel but also such IR refractive materials as germanium, silicon, and chalcogenide glasses.

  16. Social policies related to parenthood and capabilities of Slovenian parents.

    PubMed

    Mrčela, Aleksandra Kanjuo; Sadar, Nevenka Černigoj

    2011-01-01

    We apply Sen's capability approach to evaluate the capabilities of Slovenian parents to reconcile paid work and family in the context of the transition to a market economy. We examine how different levels of capabilities together affect the work–life balance (WLB) of employed parents. We combine both quantitative and qualitative methodological approaches. The results of our quantitative and qualitative research show that increased precariousness of employment and intensification of work create gaps between the legal and normative possibilities for successful reconciliation strategies and actual use of such arrangements in Slovenia. The existing social policies and the acceptance of gender equality in the sphere of paid work enhance capabilities for reconciliation of paid work and parenthood, whereas the intensification of working lives, the dominance of paid work over other parts of life, and the acceptance of gender inequalities in parental and household responsibilities limit parents’ capabilities to achieve WLB. PMID:21966698

  17. Instrumentation: Analytical Capabilities on Mars

    NASA Technical Reports Server (NTRS)

    Westall, Frances; Allen, Carl; Braiser, Martin; Farmer, Jack; Massell, Wulf; Agee, Carl B.; Steele, Andrew; Fortson, Russ

    1998-01-01

    Human exploration of Mars will consist of a series of long-term missions, with early missions focusing upon establishing the Mars base, and undertaking basic field reconnaissance. A capable laboratory on Mars is an essential element in the exploration strategy. Analytical equipment both in the field and in the laboratory serves to extend the senses of the crew and help them sharpen their sampling skills as they learn to recognize rocks in the field and understand their geologic context and significance. On-site sample analyses allow results to be incorporated into evolving surface exploration plans and strategies, which will be developing in real-time as we learn more about Mars. Early Mars missions will focus on reconnaissance EVAs to collect rock and soil samples, maximizing the amount of Mars material returned to Earth. Later missions will be increasingly devoted to both extensive field campaigns and laboratory analyses. The capabilities and equipment described below will be built up at the Mars base incrementally over many missions, with science payloads and investigative infrastructure being partitioned among launch opportunities. This discussion considers what we require to measure, observe, and explore on a new planetary territory. Alternatively, what do we need to know and how do we equip ourselves to provide ample capabilities to acquire these data? Suggestions follow describing specific instruments that we could use. Appendix 5 lists a strawman science instrument payload, and a feasibility study of equipment transportation into the field on pressurized or unpressurized rovers.

  18. Exploration Medical Capability - Technology Watch

    NASA Technical Reports Server (NTRS)

    Krihak, Michael; Watkins, Sharmila; Barr, Yael; Barsten, Kristina; Fung, Paul; Baumann, David

    2011-01-01

    The objectives of the Technology Watch process are to identify emerging, high-impact technologies that augment current ExMC development efforts, and to work with academia, industry, and other government agencies to accelerate the development of medical care and research capabilities for the mitigation of potential health issues that could occur during space exploration missions. The establishment of collaborations with these entities is beneficial to technology development, assessment and/or insertion. Such collaborations also further NASA s goal to provide a safe and healthy environment for human exploration. The Tech Watch project addresses requirements and capabilities identified by knowledge and technology gaps that are derived from a discrete set of medical conditions that are most likely to occur on exploration missions. These gaps are addressed through technology readiness level assessments, market surveys, collaborations and distributed innovation opportunities. Ultimately, these gaps need to be closed with respect to exploration missions, and may be achieved through technology development projects. Information management is a key aspect to this process where Tech Watch related meetings, research articles, collaborations and partnerships are tracked by the HRP s Exploration Medical Capabilities (ExMC) Element. In 2011, ExMC will be introducing the Tech Watch external website and evidence wiki that will provide access to ExMC technology and knowledge gaps, technology needs and requirements documents.

  19. Tsunami disaster risk management capabilities in Greece

    NASA Astrophysics Data System (ADS)

    Marios Karagiannis, Georgios; Synolakis, Costas

    2015-04-01

    Greece is vulnerable to tsunamis, due to the length of the coastline, its islands and its geographical proximity to the Hellenic Arc, an active subduction zone. Historically, about 10% of all world tsunamis occur in the Mediterranean region. Here we review existing tsunami disaster risk management capabilities in Greece. We analyze capabilities across the disaster management continuum, including prevention, preparedness, response and recovery. Specifically, we focus on issues like legal requirements, stakeholders, hazard mitigation practices, emergency operations plans, public awareness and education, community-based approaches and early-warning systems. Our research is based on a review of existing literature and official documentation, on previous projects, as well as on interviews with civil protection officials in Greece. In terms of tsunami disaster prevention and hazard mitigation, the lack of tsunami inundation maps, except for some areas in Crete, makes it quite difficult to get public support for hazard mitigation practices. Urban and spatial planning tools in Greece allow the planner to take into account hazards and establish buffer zones near hazard areas. However, the application of such ordinances at the local and regional levels is often difficult. Eminent domain is not supported by law and there are no regulatory provisions regarding tax abatement as a disaster prevention tool. Building codes require buildings and other structures to withstand lateral dynamic earthquake loads, but there are no provisions for resistance to impact loading from water born debris Public education about tsunamis has increased during the last half-decade but remains sporadic. In terms of disaster preparedness, Greece does have a National Tsunami Warning Center (NTWC) and is a Member of UNESCO's Tsunami Program for North-eastern Atlantic, the Mediterranean and connected seas (NEAM) region. Several exercises have been organized in the framework of the NEAM Tsunami Warning

  20. Programmatic mission capabilities - chemistry and metallurgy research replacement (CMRR) project

    SciTech Connect

    Gunderson, L Nguyen; Kornreich, Drew E; Wong, Amy S

    2011-01-04

    CMRR will have analysis capabilities that support all the nuclear-material programs and national security needs. CMRR will replace the aging CMR Building and provide a key component responsive infrastructure necessary to sustain all nuclear programs and the nuclear-weapons complex. Material characterization capabilities - evaluate the microstructures and properties of nuclear materials and provide experimental data to validate process and performance models. Analytical chemistry capabilities - provide expertise in chemical and radiochemical analysis of materials where actinide elements make up a significant portion of the sample.

  1. The role of military dental capabilities in mass fatality situations.

    PubMed

    Trengrove, Hugh G; Gray, Andrew

    2013-05-01

    Recent experience with the New Zealand Defence Force in supporting the national disaster victim identification operation following destructive earthquakes in Canterbury, New Zealand, highlights the important role military forensic odontology capabilities can provide in supporting a national disaster response. Military dental personnel are well-trained, practiced, and prepared to support short-notice contingencies and can provide important immediate response augmentation to Disaster Victim Identification teams following a multiple-fatality event. The role of military forensic odontology capabilities in multiple-fatality incidents is reviewed. PMID:23756011

  2. Linking NASA Environmental Data with a National Public Health Cohort Study and a CDC On-Line System to Enhance Public Health Decision Making

    NASA Technical Reports Server (NTRS)

    Al-Hamdan, Mohammad; Crosson, William; Economou, Sigrid; Estes, Maurice, Jr.; Estes, Sue; Hemmings, Sarah; Kent, Shia; Puckett, Mark; Quattrochi, Dale; Wade, Gina; McClure, Leslie

    2012-01-01

    The overall goal of this study is to address issues of environmental health and enhance public health decision making by utilizing NASA remotely-sensed data and products. This study is a collaboration between NASA Marshall Space Flight Center, Universities Space Research Association (USRA), the University of Alabama at Birmingham (UAB) School of Public Health and the Centers for Disease Control and Prevention (CDC) National Center for Public Health Informatics. The objectives of this study are to develop high-quality spatial data sets of environmental variables, link these with public health data from a national cohort study, and deliver the linked data sets and associated analyses to local, state and federal end-user groups. Three daily environmental data sets were developed for the conterminous U.S. on different spatial resolutions for the period 2003-2008: (1) spatial surfaces of estimated fine particulate matter (PM2.5) exposures on a 10-km grid utilizing the US Environmental Protection Agency (EPA) ground observations and NASA s MODerate-resolution Imaging Spectroradiometer (MODIS) data; (2) a 1-km grid of Land Surface Temperature (LST) using MODIS data; and (3) a 12-km grid of daily Solar Insolation (SI) and maximum and minimum air temperature using the North American Land Data Assimilation System (NLDAS) forcing data. These environmental datasets were linked with public health data from the UAB REasons for Geographic and Racial Differences in Stroke (REGARDS) national cohort study to determine whether exposures to these environmental risk factors are related to cognitive decline and other health outcomes. These environmental national datasets will also be made available to public health professionals, researchers and the general public via the CDC Wide-ranging Online Data for Epidemiologic Research (WONDER) system, where they can be aggregated to the county, state or regional level as per users need and downloaded in tabular, graphical, and map formats. The

  3. Intelsat VII communications capabilities and performance

    NASA Astrophysics Data System (ADS)

    Abdel-Nabi, T.; Koh, E.; Kennedy, D.

    This paper describes the general characteristics of the Intelsat VII communications payload and analyzes the suitability of its design for digital transmission, for efficient incorporation of small earth stations into the Intelsat network, and for a relatively straightforward transition from the current Intelsat VA/VI configuration. An overview is presented of the comunications performance of the Intelsat VII satellite for the more important Intelsat digital and analog services, and earth stations standards. Specifically, the advantages, in terms of performance and capabilities, of the improved transponder linearity characteristics associated with the C-Band SSPA's and the K(u)-Band linearized TWTA's are addressed. The enhanced ability of this spacecraft to provide bandwidth where required from several possible orbital locations is discussed.

  4. The NICER mission: Status and technical capabilities

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Deepto; Arzoumanian, Zaven; Gendreau, Keith

    2016-07-01

    NASA's Neutron Star Interior Composition Explorer (NICER), in development for deployment to the International Space Station as an external attached payload, will address decades-old questions about the structure, dynamics, and energetics of neutron stars through high-precision timing of the soft X-ray emissions of rotation- and accretion-powered pulsars. NICER's performance in timing, spectroscopy, and high-throughput sensitivity to 0.2-12 keV X-rays represents a substantial enhancement over existing capabilities, enabling a rich diversity of investigations in both neutron star science as well as broader X-ray astrophysics, the latter through an approved Guest Observer program. This talk briefly summarizes the NICER design and the status of hardware fabrication and testing, currently on pace to deliver the NICER payload for its planned launch in early 2017.

  5. Delta capability for launch of communications satellites

    NASA Technical Reports Server (NTRS)

    Grimes, D. W.; Russell, W. A., Jr.; Kraft, J. D.

    1982-01-01

    The evolution of capabilities and the current performance levels of the Delta launch vehicle are outlined. The first payload was the Echo I passive communications satellite, weighing 179 lb, and placed in GEO in 1960. Emphasis since then has been to use off-the-shelf hardware where feasible. The latest version in the 3924 first stage, 3920 second stage, and Pam D apogee kick motor third stage. The Delta is presently equipped to place 2800 lb in GEO, as was proven with the 2717 lb Anik-D1 satellite. The GEO payload placement performance matches the Shuttle's, and work is therefore under way to enhance the Delta performance to handle more massive payloads. Installation of the Castor-IV solid motor separation system, thereby saving mass by utilizing compressed nitrogen, rather than mechanical thrusters to remove the strap-on boosters, is indicated, together with use of a higher performance propellant and a wider nose fairing.

  6. Future capabilities of the Delta launch vehicle

    NASA Technical Reports Server (NTRS)

    Grimes, D. W.; Kraft, J. D.

    1982-01-01

    Design features and payload delivery capabilities of the Delta 3920 launch vehicle are presented. The 3920 is the 14th iteration in a series that was first launched in 1960 and has in recent years surpassed a 97 percent success rate. Capacity is 2800 lb to GEO. The second stage has a propellant capacity of 13,244 lb and a specific impulse of 319.2 sec and produces 9443 lb thrust. The first mission is the Landsat-D satellite and 27 more launches are scheduled through 1985, some associated with different upper stage configurations. The 3924 configuration delivers payload to GEO at a cost of $7500/lb. A fairing has been designed to provide back-up for Shuttle payloads, although the larger size reduces the GEO payload to 2715 lb. Performance enhancements may, however, be gained through pneumatic thrusters for the Castor IV engine separation, higher Castor IV thrust levels, increased booster thrust, and a cryogenic second stage.

  7. GLAST GRB Observations and Capabilities

    NASA Technical Reports Server (NTRS)

    Meegan, Charles

    2008-01-01

    Gamma Ray Large Area Space Telescope (GLAST) is schedule to launch on May 16, 2008. GLAST consists of the Large Area Telescope (LAT), which will detect gamma rays above 20 MeV with unprecedented sensitivity, and the GLAST Burst Monitor (GBM), which will provide all-sky monitoring of GRBS in the 10 kev to 30 MeV range. Predicted GRB capabilities of GLAST will be described. The on-orbit performance of the instruments and preliminary GRB observations will be presented.

  8. ITER EDA design confinement capability

    NASA Astrophysics Data System (ADS)

    Uckan, N. A.

    Major device parameters for ITER-EDA and CDA are given in this paper. Ignition capability of the EDA (and CDA) operational scenarios is evaluated using both the 1 1/2-D time-dependent transport simulations and 0-D global models under different confinement ((chi((gradient)(T)(sub e)(sub crit)), empirical global energy confinement scalings, chi(empirical), etc.) assumptions. Results from some of these transport simulations and confinement assessments are summarized in and compared with the ITER CDA results.

  9. Predictive Capability Maturity Model (PCMM).

    SciTech Connect

    Swiler, Laura Painton; Knupp, Patrick Michael; Urbina, Angel

    2010-10-01

    Predictive Capability Maturity Model (PCMM) is a communication tool that must include a dicussion of the supporting evidence. PCMM is a tool for managing risk in the use of modeling and simulation. PCMM is in the service of organizing evidence to help tell the modeling and simulation (M&S) story. PCMM table describes what activities within each element are undertaken at each of the levels of maturity. Target levels of maturity can be established based on the intended application. The assessment is to inform what level has been achieved compared to the desired level, to help prioritize the VU activities & to allocate resources.

  10. Determining your organization's 'risk capability'.

    PubMed

    Hannah, Bill; Hancock, Melinda

    2014-05-01

    An assessment of a provider's level of risk capability should focus on three key elements: Business intelligence, including sophisticated analytical models that can offer insight into the expected cost and quality of care for a given population. Clinical enterprise maturity, marked by the ability to improve health outcomes and to manage utilization and costs to drive change. Revenue transformation, emphasizing the need for a revenue cycle platform that allows for risk acceptance and management and that provides incentives for performance against defined objectives. PMID:24851456

  11. Drop Tower and Aircraft Capabilities

    NASA Technical Reports Server (NTRS)

    Urban, David L.

    2015-01-01

    This presentation is a brief introduction to existing capabilities in drop towers and low-gravity aircraft that will be presented as part of a Symposium: Microgravity Platforms Other Than the ISS, From Users to Suppliers which will be a half day program to bring together the international community of gravity-dependent scientists, program officials and technologists with the suppliers of low gravity platforms (current and future) to focus on the future requirements and use of platforms other than the International Space Station (ISS).

  12. Aerothermodynamic Flight Simulation Capabilities for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Miller, Charles G.

    1998-01-01

    Aerothermodynamics, encompassing aerodynamics, aeroheating, and fluid dynamics and physical processes, is the genesis for the design and development of advanced space transportation vehicles and provides crucial information to other disciplines such as structures, materials, propulsion, avionics, and guidance, navigation and control. Sources of aerothermodynamic information are ground-based facilities, Computational Fluid Dynamic (CFD) and engineering computer codes, and flight experiments. Utilization of this aerothermodynamic triad provides the optimum aerothermodynamic design to safely satisfy mission requirements while reducing design conservatism, risk and cost. The iterative aerothermodynamic process for initial screening/assessment of aerospace vehicle concepts, optimization of aerolines to achieve/exceed mission requirements, and benchmark studies for final design and establishment of the flight data book are reviewed. Aerothermodynamic methodology centered on synergism between ground-based testing and CFD predictions is discussed for various flow regimes encountered by a vehicle entering the Earth s atmosphere from low Earth orbit. An overview of the resources/infrastructure required to provide accurate/creditable aerothermodynamic information in a timely manner is presented. Impacts on Langley s aerothermodynamic capabilities due to recent programmatic changes such as Center reorganization, downsizing, outsourcing, industry (as opposed to NASA) led programs, and so forth are discussed. Sample applications of these capabilities to high Agency priority, fast-paced programs such as Reusable Launch Vehicle (RLV)/X-33 Phases I and 11, X-34, Hyper-X and X-38 are presented and lessons learned discussed. Lastly, enhancements in ground-based testing/CFD capabilities necessary to partially/fully satisfy future requirements are addressed.

  13. National facilities study. Volume 4: Space operations facilities task group

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The principal objectives of the National Facilities Study (NFS) were to: (1) determine where U.S. facilities do not meet national aerospace needs; (2) define new facilities required to make U.S. capabilities 'world class' where such improvements are in the national interest; (3) define where consolidation and phase-out of existing facilities is appropriate; and (4) develop a long-term national plan for world-class facility acquisition and shared usage. The Space Operations Facilities Task Group defined discrete tasks to accomplish the above objectives within the scope of the study. An assessment of national space operations facilities was conducted to determine the nation's capability to meet the requirements of space operations during the next 30 years. The mission model used in the study to define facility requirements is described in Volume 3. Based on this model, the major focus of the Task Group was to identify any substantive overlap or underutilization of space operations facilities and to identify any facility shortfalls that would necessitate facility upgrades or new facilities. The focus of this initial study was directed toward facility recommendations related to consolidations, closures, enhancements, and upgrades considered necessary to efficiently and effectively support the baseline requirements model. Activities related to identifying facility needs or recommendations for enhancing U.S. international competitiveness and achieving world-class capability, where appropriate, were deferred to a subsequent study phase.

  14. Applying the concept of quality of life to Israeli special education programs: a national curriculum for enhanced autonomy in students with special needs.

    PubMed

    Reiter, Shunit; Schalock, Robert L

    2008-03-01

    This study provides a description of the design and development of guidelines and programs for a national core curriculum for special education in Israel. Israel was exposed during the 1970s to the ideology of normalization. Later on, toward the end of the 1980s, the concept of quality of life was added. Several research studies were conducted, resulting in the following core ideas about education: a shift of emphasis from teaching independent-living skills to teaching autonomy, self-awareness, self-direction, and interdependence is required. On the basis of these ideas, a new model of instruction was devised and termed the 'cycle of internalized learning' (CIL). The CIL is based on a holistic orientation toward the student and builds on abilities rather than disabilities. The peer group is the basic unit of instruction. Attention is on processes and outcomes. The CIL involves several clearly defined teaching steps: (i) opening--the presentation of the subject matter; (ii) discussion--a conceptual analysis of the subject; (iii) open conversation--students discuss the issues they raised during the first session, express their personal life experiences while applying the new concepts they learned, and suggest possible solutions to problems; (iv) trying out the solutions suggested by students; and (v) repeated discussions, to arrive at personal and social conclusions. Currently there are three published units of the CIL: (i) Social Education, (ii) Career Education, and (iii) Towards Leaving Home for Independent Living in the Community. The fourth unit, on citizenship education through the use of computers, is in its final stages of preparation. The success of the implementation of the program is expressed both at the students' level--as an enhanced sense of self-worth and self-confidence, as well as enhanced academic achievements and social skills--and at the teachers' level--as a paradigm shift from a medical model of approach to students with disabilities to a

  15. Tonopah Test Range capabilities: technical manual

    SciTech Connect

    Manhart, R.L.

    1982-11-01

    This manual describes Tonopah Test Range (TTR), defines its testing capabilities, and outlines the steps necessary to schedule tests on the Range. Operated by Sandia National Laboratories, TTR is a major test facility for DOE-funded weapon programs. The Range presents an integrated system for ballistic test vehicle tracking and data acquisition. Multiple radars, optical trackers, telemetry stations, a central computer complex, and combined landline/RF communications systems assure full Range coverage for any type of test. Range operations are conducted by a department within Sandia's Field Engineering Directorate. While the overall Range functions as a complete system, it is operationally divided into the Test Measurements, Instrumentation Development, and Range Operations divisions. The primary function of TTR is to support DOE weapons test activities. Management, however, encourages other Government agencies and their contractors to schedule tests on the Range which can make effective use of its capabilities. Information concerning Range use by organizations outside of DOE is presented. Range instrumentation and support facilities are described in detail. This equipment represents the current state-of-the-art and reflects a continuing commitment by TTR management to field the most effective tracking and data acquisition system available.

  16. Small, Low Cost, Launch Capability Development

    NASA Technical Reports Server (NTRS)

    Brown, Thomas

    2014-01-01

    A recent explosion in nano-sat, small-sat, and university class payloads has been driven by low cost electronics and sensors, wide component availability, as well as low cost, miniature computational capability and open source code. Increasing numbers of these very small spacecraft are being launched as secondary payloads, dramatically decreasing costs, and allowing greater access to operations and experimentation using actual space flight systems. While manifesting as a secondary payload provides inexpensive rides to orbit, these arrangements also have certain limitations. Small, secondary payloads are typically included with very limited payload accommodations, supported on a non interference basis (to the prime payload), and are delivered to orbital conditions driven by the primary launch customer. Integration of propulsion systems or other hazardous capabilities will further complicate secondary launch arrangements, and accommodation requirements. The National Aeronautics and Space Administration's Marshall Space Flight Center has begun work on the development of small, low cost launch system concepts that could provide dedicated, affordable launch alternatives to small, high risk university type payloads and spacecraft. These efforts include development of small propulsion systems and highly optimized structural efficiency, utilizing modern advanced manufacturing techniques. This paper outlines the plans and accomplishments of these efforts and investigates opportunities for truly revolutionary reductions in launch and operations costs. Both evolution of existing sounding rocket systems to orbital delivery, and the development of clean sheet, optimized small launch systems are addressed.

  17. Stennis Space Center Verification & Validation Capabilities

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Ryan, Robert E.; Holekamp, Kara; ONeal, Duane; Knowlton, Kelly; Ross, Kenton; Blonski, Slawomir

    2005-01-01

    Scientists within NASA s Applied Sciences Directorate have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site enables the in-flight characterization of satellite and airborne high spatial and moderate resolution remote sensing systems and their products. The smaller scale of the newer high resolution remote sensing systems allows scientists to characterize geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active lidar systems. SSC employs geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment, and thermal calibration ponds to characterize remote sensing data products. The SSC Instrument Validation Lab is a key component of the V&V capability and is used to calibrate field instrumentation and to provide National Institute of Standards and Technology traceability. This poster presents a description of the SSC characterization capabilities and examples of calibration data.

  18. Building organizational technical capabilities: a new approach to address the office of environmental management cleanup challenges in the 21. century

    SciTech Connect

    Fiore, J.J.; Rizkalla, E.I.

    2007-07-01

    The United States Department of Energy (DOE), Office of Environmental Management (EM) is responsible for the nations nuclear weapons program legacy wastes cleanup. The EM cleanup efforts continue to progress, however the cleanup continues to be technologically complex, heavily regulated, long-term, and a high life cycle cost estimate (LCCE) effort. Over the past few years, the EM program has undergone several changes to accelerate its cleanup efforts with varying degrees of success. Several cleanup projects continued to experience schedule delays and cost growth. The schedule delays and cost growth have been attributed to several factors such as changes in technical scope, regulatory and safety considerations, inadequacy of acquisition approach and project management. This article will briefly review the background and schools of thought on strategic management and organizational change practiced in the United States over the last few decades to improve an organisation's competitive edge and cost performance. The article will briefly review examples such as the change at General Electric, and the recent experience obtained from the nuclear industry, namely the long-term response to the 1986 Chernobyl accident. The long-term response to Chernobyl, though not a case of organizational change, could provide some insight in the strategic management approaches used to address people issues. The article will discuss briefly EM attempts to accelerate cleanup over the past few years, and the subsequent paradigm shift. The paradigm shift targets enhancing and/or creating organizational capabilities to achieve cost savings. To improve its ability to address the 21. century environmental cleanup challenges and achieve cost savings, EM has initiated new corporate changes to develop new and enhance existing capabilities. These new and enhanced organizational capabilities include a renewed emphasis on basics, especially technical capabilities including safety, project management

  19. Developing monitoring capability of a volcano observatory: the example of the Vanuatu Geohazards Observatory

    NASA Astrophysics Data System (ADS)

    Todman, S.; Garaebiti, E.; Jolly, G. E.; Sherburn, S.; Scott, B.; Jolly, A. D.; Fournier, N.; Miller, C. A.

    2010-12-01

    Vanuatu lies on the Pacific 'Ring of Fire'. With 6 active subaerial and 3 submarine (identified so far) volcanoes, monitoring and following up their activities is a considerable work for a national observatory. The Vanuatu Geohazards Observatory is a good example of what can be done from ‘scratch’ to develop a volcanic monitoring capability in a short space of time. A fire in June 2007 completely destroyed the old observatory building and many valuable records leaving Vanuatu with no volcano monitoring capacity. This situation forced the Government of Vanuatu to reconsider the structure of the hazards monitoring group and think about the best way to rebuild a complete volcano monitoring system. Taking the opportunity of the re-awakening of Gaua volcano (North of Vanuatu), the Vanuatu Geohazards section in partnership with GNS Science, New Zealand developed a new program including a strategic plan for Geohazards from 2010-2020, the installation of a portable seismic network with real-time data transmission in Gaua, the support of the first permanent monitoring station installation in Ambrym and the design and implementation of volcano monitoring infrastructure and protocol. Moreover the technology improvements of the last decade and the quick extension of enhanced communication systems across the islands of Vanuatu played a very important role for the development of this program. In less than one year, the implementation of this program was beyond expectations and showed considerable improvement of the Vanuatu Geohazards Observatory volcano monitoring capability. In response to increased volcanic activity (or unrest) in Ambae, the Geohazards section was fully capable of the installation of a portable seismic station in April 2010 and to follow the development of the activity. Ultimately, this increased capability results in better and timelier delivery of information and advice on the threat from volcanic activity to the National Disaster Management Office and

  20. 2005 White Paper on Institutional Capability Computing Requirements

    SciTech Connect

    Carnes, B; McCoy, M; Seager, M

    2006-01-20

    This paper documents the need for a significant increase in the computing infrastructure provided to scientists working in the unclassified domains at Lawrence Livermore National Laboratory (LLNL). This need could be viewed as the next step in a broad strategy outlined in the January 2002 White Paper (UCRL-ID-147449) that bears essentially the same name as this document. Therein we wrote: 'This proposed increase could be viewed as a step in a broader strategy linking hardware evolution to applications development that would take LLNL unclassified computational science to a position of distinction if not preeminence by 2006.' This position of distinction has certainly been achieved. This paper provides a strategy for sustaining this success but will diverge from its 2002 predecessor in that it will: (1) Amplify the scientific and external success LLNL has enjoyed because of the investments made in 2002 (MCR, 11 TF) and 2004 (Thunder, 23 TF). (2) Describe in detail the nature of additional investments that are important to meet both the institutional objectives of advanced capability for breakthrough science and the scientists clearly stated request for adequate capacity and more rapid access to moderate-sized resources. (3) Put these requirements in the context of an overall strategy for simulation science and external collaboration. While our strategy for Multiprogrammatic and Institutional Computing (M&IC) has worked well, three challenges must be addressed to assure and enhance our position. The first is that while we now have over 50 important classified and unclassified simulation codes available for use by our computational scientists, we find ourselves coping with high demand for access and long queue wait times. This point was driven home in the 2005 Institutional Computing Executive Group (ICEG) 'Report Card' to the Deputy Director for Science and Technology (DDST) Office and Computation Directorate management. The second challenge is related to the balance

  1. Communications, Navigation, and Surveillance Models in ACES: Design Implementation and Capabilities

    NASA Technical Reports Server (NTRS)

    Kubat, Greg; Vandrei, Don; Satapathy, Goutam; Kumar, Anil; Khanna, Manu

    2006-01-01

    Presentation objectives include: a) Overview of the ACES/CNS System Models Design and Integration; b) Configuration Capabilities available for Models and Simulations using ACES with CNS Modeling; c) Descriptions of recently added, Enhanced CNS Simulation Capabilities; and d) General Concepts Ideas that Utilize CNS Modeling to Enhance Concept Evaluations.

  2. Quo Vadis? The Capability Space and New Directions for the Philosophy of Educational Research

    ERIC Educational Resources Information Center

    Hart, Caroline Sarojini

    2009-01-01

    Amartya Sen's capability approach creates an evaluative space within which individual well-being is considered in ways that diverge from dominant utilitarian views. Instead of measuring well-being based on the accumulation of wealth and resources by individuals and nations, the capability approach focuses on the opportunities (capabilities) an…

  3. 32 CFR 728.34 - Care beyond the capabilities of a naval MTF.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Care beyond the capabilities of a naval MTF. 728... Dependents of the Uniformed Services § 728.34 Care beyond the capabilities of a naval MTF. When either during... determination is made that required care or services are beyond the capability of the naval MTF, the...

  4. 32 CFR 728.34 - Care beyond the capabilities of a naval MTF.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Care beyond the capabilities of a naval MTF. 728... Dependents of the Uniformed Services § 728.34 Care beyond the capabilities of a naval MTF. When either during... determination is made that required care or services are beyond the capability of the naval MTF, the...

  5. Cyberinfrastructure for Rapid Prototyping Capability

    NASA Astrophysics Data System (ADS)

    Haupt, T. A.; Kalyanasundaram, A.; Zhuk, I.; Goli, V.

    2007-12-01

    The overall goal of the NASA Rapid Prototyping Capability is to speed the evaluation of potential uses of NASA research products and technologies to improve future operational systems by reducing the time to access, configure, and assess the effectiveness of NASA products and technologies. The infrastructure to support the RPC is thus expected to provide the capability to rapidly evaluate innovative methods of linking science observations. The RPC infrastructure supports two major categories of experiments (and subsequent analysis): comparing results of a particular model as fed with data coming from different sources, and comparing different models using the data coming from the same source. In spite of being conceptually simple, two use cases in fact entail a significant technical challenge. Enabling RPC experiments requires thus a radical simplification of access to both actual and simulated data, as well as tools for data pre- and post-processing. The tools must be interoperable, allowing the user to create computational workflows with the data seamlessly transferred as needed, including third-party transfers to high-performance computing platforms. In addition, the provenance of the data must be preserved in order to document results of different what-if scenarios and to enable collaboration and data sharing between users. The functionality of the RPC splits into several independent modules such as interactive Web site, data server, tool's interfaces, or monitoring service. Each such module is implemented as an independent portlet. The RPC Portal aggregates the different contents provided by the portlets into a single interface employing a popular GridSphere portlet container. The RPC data access is based on Unidata's THREDDS Data server (TDS) extended to support, among others, interactive creation of containers for new data collections and uploading new data sets, downloading the data either to the user desktop or transferring it to a remote location using

  6. Emergent Capabilities Converging into M and S 2.0

    NASA Technical Reports Server (NTRS)

    Reitz, Emilie; Reist, Jay

    2012-01-01

    The continued operational environment complexity faced by the Department of Defense, despite a restricted resource environment, is a mandate for greater adaptability and availability in joint training. To address these constraints, this paper proposes a model for the potential integration of adaptability training, virtual world capabilities and immersive training into the wider Joint Live Virtual and Constructive (JLVC) Federation, supported by human, social, cultural and behavior modeling, and measurement and assessment. By fusing those capabilities and modeling and simulation enhancements into the JLVC federation, it will create a force who is more apt to arrive at and implement correct decisions, and more able to appropriately seize initiative in the field. The model would allow for the testing and training of capabilities and TTPs that cannot be reasonably explored to their logical conclusions in a 'live' environment, as well as enhance training fidelity for all echelons and tasks.

  7. Strengthening the Federal Emergency Management Agency's disaster response capabilities.

    PubMed

    Cannon, Glenn M

    2008-04-01

    The Federal Emergency Management Agency's (FEMA) Disaster Operations Directorate provides the core federal response capability to save lives and to protect property in US communities that have been overwhelmed by the impact of a major disaster or emergency. The directorate executes its mission through three main programme areas: operational direction, command and control; operational teams; and operational planning. Based on lessons learned from years of disaster response experience, FEMA is now taking a more proactive and collaborative approach with its partners. This paper discusses how FEMA is placing a greater emphasis on response operations and strengthening capabilities across the full range of operational and support missions by comprehensively revamping its disaster operations model; enhancing its headquarters and regional operations centres; enhancing its headquarters and regional operational planning capabilities; and addressing catastrophic disaster planning and related critical preparedness issues. PMID:21339114

  8. Presto 4.20 user's guide : addendum for shock capabilities.

    SciTech Connect

    Spencer, Benjamin Whiting

    2011-06-01

    This is an addendum to the Presto 4.20 User's Guide to document additional capabilities that are available for use in the Presto{_}ITAR code that are not available for use in the standard version of Presto. Presto{_}ITAR is an enhanced version of Presto that provides capabilities that make it regulated under the U.S. Department of State's International Traffic in Arms Regulations (ITAR) export-control rules. This code is part of the Vivace product, and is only distributed to entities that comply with ITAR regulations. The enhancements primarily focus on material models that include an energy-dependent pressure response, appropriate for very large deformations and strain rates. Since this is an addendum to the standard Presto User's Guide, please refer to that document first for general descriptions of code capability and use. This addendum documents material models and element features that support energy-dependent material models.

  9. Preventing School Violence: Plenary Papers of the 1999 Conference on Criminal Justice Research and Evaluation--Enhancing Policy and Practice through Research, Volume 2. National Institute of Justice Research Forum.

    ERIC Educational Resources Information Center

    Kellam, Sheppard G.; Prinz, Ron; Sheley, Joseph F.

    This booklet contains conference presentations from the 1999 National Institute of Justice's research forum on preventing school violence. The theme of the conference was "Enhancing Policy and Practice through Research." Three researchers were asked to speak on topics of school violence since effective preventive policy and practices are…

  10. CHARACTERIZATION OF THE ADVANCED RADIOGRAPHIC CAPABILITY FRONT END ON NIF

    SciTech Connect

    Haefner, C; Heebner, J; Dawson, J; Fochs, S; Shverdin, M; Crane, J K; Kanz, V K; Halpin, J; Phan, H; Sigurdsson, R; Brewer, W; Britten, J; Brunton, G; Clark, W; Messerly, M J; Nissen, J D; Nguyen, H; Shaw, B; Hackel, R; Hermann, M; Tietbohl, G; Siders, C W; Barty, C J

    2009-07-15

    We have characterized the Advanced Radiographic Capability injection laser system and demonstrated that it meets performance requirements for upcoming National Ignition Facility fusion experiments. Pulse compression was achieved with a scaled down replica of the meter-scale grating ARC compressor and sub-ps pulse duration was demonstrated at the Joule-level.

  11. BUILDING TRIBAL CAPABILITIES IN ENERGY RESOURCE TRIBES

    SciTech Connect

    Mary Lopez

    2003-04-01

    The CERT Tribal Internship Program is part of the education and training opportunities provided by CERT to accelerate the development of American Indian technical professionals available to serve Tribes and expand the pool of these professionals. Tribes are severely impacted by the inadequate number of Indian professionals available to serve and facilitate Tribal participation and support of the energy future of Tribes,and subsequently the energy future of the nation. By providing interns with hands-on work experience in their field of study two goals are accomplished: (1) the intern is provided opportunities for professional enhancement; and (2) The pool of Indian professionals available to meet the needs of Tribal government and Tribal communities in general is increased. As of January 17, 2003, Lance M Wyatt successfully completed his internship with the Interagency Working Group on Environmental Justice on the Task Force that specifically focuses their work on Tribal nations. While working as an intern with the National Transportation Program, Albuquerque operations, Jacqueline Agnew received an offer to work for the Alaska Native Health Board in Anchorage, Alaska. This was an opportunity that Ms. Agnew did not feel she could afford to forego and she left her internship position in February 2003. At present, CERT is in the process of finding another qualified individual to replace the internship position vacated by Ms. Agnew. Mr. Wyatt's and Ms. Agnew's final comments are given.

  12. Satellite Servicing Capabilities Office Testing

    NASA Technical Reports Server (NTRS)

    Sanders, Sean

    2015-01-01

    While at the KSC, I was given the opportunity of assisting the Satellite Servicing Capabilities Office (SSCO) specifically the Propellant Transfer System (PTS) lead by my mentor, Brian Nufer. While waiting to test different components in the PTS, I was able to assist with testing for the Hose Management Assembly (HMA) and was able to work on a simulation in Labview. For the HMA, I was able to help with testing of a coating as well as to help test the durability of the pinch rollers in space. In Labview, I experimented with building a simulation for the PTS, to show where fluids and gases were flowing depending on which valves in the PTS were opened. Not all of the integrated parts required assembly level testing, which allowed me to test these parts individually by myself and document the results. I was also able to volunteer to assist project NEO, allowing me to gain some knowledge of cryogenic fluid systems.

  13. The polarimetric capabilities of NICMOS

    NASA Technical Reports Server (NTRS)

    Hines, D. C.; Schmidt, G. D.; Lytle, Dyer

    1997-01-01

    The polarimetric capabilities of Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) are demonstrated from data obtained during the Early Release Observations of IRC+10216 and CRL 2688 (the Egg Nebula). Preflight Thermal Vacuum tests revealed that each polarizer has a unique polarizing efficiency, and that the position angle offsets differ from the nominal positions of O deg, 120 deg and 240 deg. Therefore an algorithm different from that of an ideal polarizer is required for proper reduction of astronomical polarimetry data. We discuss this new algorithm and the results of its application to NICMOS data. We also present preliminary estimates of the Instrumental Polarization, the sensitivity of the grisms to polarized light, and the accuracy of NICMOS imaging polarimetry for faint and low polarization objects. Finally, we suggest strategies for maximizing the success of NICMOS polarimetry observations.

  14. Political Instruments Employed by Governments to Enhance University Research and Knowledge Transfer Capacity

    ERIC Educational Resources Information Center

    Harman, Grant

    2005-01-01

    Governments of developed nations use a variety of policy instruments to enhance university research and knowledge transfer capabilities. These include advocacy, persuasion and information; consultation and committees of enquiry; creation of major research centres and commercialisation agencies, and investment in research infrastructure; grants,…

  15. Advanced Post-Irradiation Examination Capabilities Alternatives Analysis Report

    SciTech Connect

    Jeff Bryan; Bill Landman; Porter Hill

    2012-12-01

    An alternatives analysis was performed for the Advanced Post-Irradiation Capabilities (APIEC) project in accordance with the U.S. Department of Energy (DOE) Order DOE O 413.3B, “Program and Project Management for the Acquisition of Capital Assets”. The Alternatives Analysis considered six major alternatives: ? No Action ? Modify Existing DOE Facilities – capabilities distributed among multiple locations ? Modify Existing DOE Facilities – capabilities consolidated at a few locations ? Construct New Facility ? Commercial Partnership ? International Partnerships Based on the alternatives analysis documented herein, it is recommended to DOE that the advanced post-irradiation examination capabilities be provided by a new facility constructed at the Materials and Fuels Complex at the Idaho National Laboratory.

  16. Amartya Sen's Capability Approach and Education

    ERIC Educational Resources Information Center

    Walker, Melanie

    2005-01-01

    The human capabilities approach developed by the economist Amartya Sen links development, quality of life and freedom. This article explores the key ideas in the capability approach of: capability, functioning, agency, human diversity and public participation in generating valued capabilities. It then considers how these ideas relate specifically…

  17. Building Successful Programs to Increase Diversity in the Geosciences Through HBCU/Research Center Collaborations: Lessons to Enhance Rates of Participation Nationally

    NASA Astrophysics Data System (ADS)

    Gilligan, M. R.; Frischer, M. E.; Verity, P. G.

    2004-12-01

    In view of changing demography of the U.S. and the world, it is important that all groups be involved in sustaining and enhancing the vitality and importance of the geosciences. Though Historically Black Colleges and Universities (HBCUs) enroll only 13% of the African Americans who are in college, they award 40% of the science degrees earned by African Americans in the U.S. However, relatively few HBCUs have geoscience programs and faculty who provide exposure, curricula or research opportunities for students to explore options in earth, atmospheric or ocean sciences on their campuses. There is not enough exposure to geosciences at HBCUs. Non-degree granting research institutes and centers have as their primary mission research and compete successfully with research universities for federal and state research funding. However, these institutions lack experience, expertise, and access/visibility to African American students. There are not enough programs at research centers to attract African Americans. Through collaboration with research institutions, Savannah State University (SSU), an HBCU founded in 1890 in Savannah, Georgia, has built successful marine science undergraduate and graduate programs. Since 1999, SSU and the Skidaway Institute of Oceanography (SkIO, a research center founded in 1968) have formally collaborated to join their respective strengths with the goal of providing SSU students expanded undergraduate and graduate curricular offerings and unique research opportunities. The objective is to enhance student motivation and skills to compete successfully for graduate school admission and jobs in the geosciences. At the core is hands-on experiential learning and improved access to leaders in the field. Students report that the opportunity to conduct research, to meet eminent scientists, and to attend national and international scientific conferences provides them with the training, opportunity, motivation, and confidence to pursue advanced degrees

  18. Solar mechanics thermal response capabilities.

    SciTech Connect

    Dobranich, Dean D.

    2009-07-01

    In many applications, the thermal response of structures exposed to solar heat loads is of interest. Solar mechanics governing equations were developed and integrated with the Calore thermal response code via user subroutines to provide this computational simulation capability. Solar heat loads are estimated based on the latitude and day of the year. Vector algebra is used to determine the solar loading on each face of a finite element model based on its orientation relative to the sun as the earth rotates. Atmospheric attenuation is accounted for as the optical path length varies from sunrise to sunset. Both direct and diffuse components of solar flux are calculated. In addition, shadowing of structures by other structures can be accounted for. User subroutines were also developed to provide convective and radiative boundary conditions for the diurnal variations in air temperature and effective sky temperature. These temperature boundary conditions are based on available local weather data and depend on latitude and day of the year, consistent with the solar mechanics formulation. These user subroutines, coupled with the Calore three-dimensional thermal response code, provide a complete package for addressing complex thermal problems involving solar heating. The governing equations are documented in sufficient detail to facilitate implementation into other heat transfer codes. Suggestions for improvements to the approach are offered.

  19. NASA Dryden's UAS Service Capabilities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeff

    2007-01-01

    The vision of NASA s Dryden Flight Research Center is to "fly what others only imagine." Its mission is to advance technology and science through flight. Objectives supporting the mission include performing flight research and technology integration to revolutionize aviation and pioneer aerospace technology, validating space exploration concepts, conducting airborne remote sensing and science missions, and supporting operations of the Space Shuttle and the International Space Station. A significant focus of effort in recent years has been on Unmanned Aircraft Systems (UAS), both in support of the Airborne Science Program and as research vehicles to advance the state of the art in UAS. Additionally, the Center has used its piloted aircraft in support of UAS technology development. In order to facilitate greater access to the UAS expertise that exists at the Center, that expertise has been organized around three major capabilities. The first is access to high-altitude, long-endurance UAS. The second is the establishment of a test range for small UAS. The third is safety case assessment support.

  20. Seismic Analysis Capability in NASTRAN

    NASA Technical Reports Server (NTRS)

    Butler, T. G.; Strang, R. F.

    1984-01-01

    Seismic analysis is a technique which pertains to loading described in terms of boundary accelerations. Earthquake shocks to buildings is the type of excitation which usually comes to mind when one hears the word seismic, but this technique also applied to a broad class of acceleration excitations which are applied at the base of a structure such as vibration shaker testing or shocks to machinery foundations. Four different solution paths are available in NASTRAN for seismic analysis. They are: Direct Seismic Frequency Response, Direct Seismic Transient Response, Modal Seismic Frequency Response, and Modal Seismic Transient Response. This capability, at present, is invoked not as separate rigid formats, but as pre-packaged ALTER packets to existing RIGID Formats 8, 9, 11, and 12. These ALTER packets are included with the delivery of the NASTRAN program and are stored on the computer as a library of callable utilities. The user calls one of these utilities and merges it into the Executive Control Section of the data deck to perform any of the four options are invoked by setting parameter values in the bulk data.