Science.gov

Sample records for enhanced national capability

  1. A workshop on enhanced national capability for neutron scattering

    SciTech Connect

    Hurd, Alan J; Rhyne, James J; Lewis, Paul S

    2009-01-01

    This two-day workshop will engage the international neutron scattering community to vet and improve the Lujan Center Strategic Plan 2007-2013 (SP07). Sponsored by the LANL SC Program Office and the University of California, the workshop will be hosted by LANSCE Professor Sunny Sinha (UCSD). Endorsement by the Spallation Neutron Source will be requested. The discussion will focus on the role that the Lujan Center will play in the national neutron scattering landscape assuming full utilization of beamlines, a refurbished LANSCE, and a 1.4-MW SNS. Because the Lujan Strategic Plan is intended to set the stage for the Signature Facility era at LANSCE, there will be some discussion of the long-pulse spallation source at Los Alamos. Breakout groups will cover several new instrument concepts, upgrades to present instruments, expanded sample environment capabilities, and a look to the future. The workshop is in keeping with a request by BES to update the Lujan strategic plan in coordination with the SNS and the broader neutron community. Workshop invitees will be drawn from the LANSCE User Group and a broad cross section of the US, European, and Pacific Rim neutron scattering research communities.

  2. Enhanced Rescue Lift Capability

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2007-01-01

    The evolving and ever-increasing demands of emergency response and disaster relief support provided by rotorcraft dictate, among other things, the development of enhanced rescue lift capability for these platforms. This preliminary analysis is first-order in nature but provides considerable insight into some of the challenges inherent in trying to effect rescue using a unique form of robotic rescue device deployed and operated from rotary-wing aerial platforms.

  3. Enhanced ocean observational capability

    SciTech Connect

    Volpe, A M; Esser, B K

    2000-01-10

    Coastal oceans are vital to world health and sustenance. Technology that enables new observations has always been the driver of discovery in ocean sciences. In this context, we describe the first at sea deployment and operation of an inductively coupled plasma mass spectrometer (ICPMS) for continuous measurement of trace elements in seawater. The purpose of these experiments was to demonstrate that an ICPMS could be operated in a corrosive and high vibration environment with no degradation in performance. Significant advances occurred this past year due to ship time provided by Scripps Institution of Oceanography (UCSD), as well as that funded through this project. Evaluation at sea involved performance testing and characterization of several real-time seawater analysis modes. We show that mass spectrometers can rapidly, precisely and accurately determine ultratrace metal concentrations in seawater, thus allowing high-resolution mapping of large areas of surface seawater. This analytical capability represents a significant advance toward real-time observation and understanding of water mass chemistry in dynamic coastal environments. In addition, a joint LLNL-SIO workshop was convened to define and design new technologies for ocean observation. Finally, collaborative efforts were initiated with atmospheric scientists at LLNL to identify realistic coastal ocean and river simulation models to support real-time analysis and modeling of hazardous material releases in coastal waterways.

  4. ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE

    SciTech Connect

    J. C. Giglio; A. A. Jackson

    2012-03-01

    The Idaho National Laboratory (INL) is preparing to fuel and test the Advanced Stirling Radioisotope Generator (ASRG), the next generation space power generator. The INL identified the thermal vacuum test chamber used to test past generators as inadequate. A second vacuum chamber was upgraded with a thermal shroud to process the unique needs and to test the full power capability of the new generator. The thermal vacuum test chamber is the first of its kind capable of testing a fueled power system to temperature that accurately simulate space. This paper outlines the new test and set up capabilities at the INL.

  5. Fan Flutter Analysis Capability Enhanced

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Srivastava, Rakesh; Stefko, George L.

    2001-01-01

    The trend in the design of advanced transonic fans for aircraft engines has been toward the use of complex high-aspect-ratio blade geometries with a larger number of blades and higher loading. In addition, integrally bladed disks or blisks are being considered in fan designs for their potential to reduce manufacturing costs, weight, and complexity by eliminating attachments. With such design trends, there is an increased possibility within the operating region of part-speed stall flutter (self-excited vibrations) that is exacerbated by the reduced structural damping of blisk fans. To verify the aeroelastic soundness of the design, the NASA Glenn Research Center is developing and validating an accurate aeroelastic prediction and analysis capability. Recently, this capability was enhanced significantly as described here.

  6. Ensemble Statistical Post-Processing of the National Air Quality Forecast Capability: Enhancing Ozone Forecasts in Baltimore, Maryland

    NASA Technical Reports Server (NTRS)

    Garner, Gregory G.; Thompson, Anne M.

    2013-01-01

    An ensemble statistical post-processor (ESP) is developed for the National Air Quality Forecast Capability (NAQFC) to address the unique challenges of forecasting surface ozone in Baltimore, MD. Air quality and meteorological data were collected from the eight monitors that constitute the Baltimore forecast region. These data were used to build the ESP using a moving-block bootstrap, regression tree models, and extreme-value theory. The ESP was evaluated using a 10-fold cross-validation to avoid evaluation with the same data used in the development process. Results indicate that the ESP is conditionally biased, likely due to slight overfitting while training the regression tree models. When viewed from the perspective of a decision-maker, the ESP provides a wealth of additional information previously not available through the NAQFC alone. The user is provided the freedom to tailor the forecast to the decision at hand by using decision-specific probability thresholds that define a forecast for an ozone exceedance. Taking advantage of the ESP, the user not only receives an increase in value over the NAQFC, but also receives value for An ensemble statistical post-processor (ESP) is developed for the National Air Quality Forecast Capability (NAQFC) to address the unique challenges of forecasting surface ozone in Baltimore, MD. Air quality and meteorological data were collected from the eight monitors that constitute the Baltimore forecast region. These data were used to build the ESP using a moving-block bootstrap, regression tree models, and extreme-value theory. The ESP was evaluated using a 10-fold cross-validation to avoid evaluation with the same data used in the development process. Results indicate that the ESP is conditionally biased, likely due to slight overfitting while training the regression tree models. When viewed from the perspective of a decision-maker, the ESP provides a wealth of additional information previously not available through the NAQFC alone

  7. Ensemble statistical post-processing of the National Air Quality Forecast Capability: Enhancing ozone forecasts in Baltimore, Maryland

    NASA Astrophysics Data System (ADS)

    Garner, Gregory G.; Thompson, Anne M.

    2013-12-01

    An ensemble statistical post-processor (ESP) is developed for the National Air Quality Forecast Capability (NAQFC) to address the unique challenges of forecasting surface ozone in Baltimore, MD. Air quality and meteorological data were collected from the eight monitors that constitute the Baltimore forecast region. These data were used to build the ESP using a moving-block bootstrap, regression tree models, and extreme-value theory. The ESP was evaluated using a 10-fold cross-validation to avoid evaluation with the same data used in the development process. Results indicate that the ESP is conditionally biased, likely due to slight overfitting while training the regression tree models. When viewed from the perspective of a decision-maker, the ESP provides a wealth of additional information previously not available through the NAQFC alone. The user is provided the freedom to tailor the forecast to the decision at hand by using decision-specific probability thresholds that define a forecast for an ozone exceedance. Taking advantage of the ESP, the user not only receives an increase in value over the NAQFC, but also receives value for costly decisions that the NAQFC couldn't provide alone.

  8. Can a rapid underwater video approach enhance the benthic assessment capability of the National Coastal Condition Assessmentin the Great Lakes?

    EPA Science Inventory

    In the U.S. National Coastal Condition Assessment (NCCA) field survey in summer 2010, over 400 sites in the nearshore zone of the U.S. Great Lakes were sampled. As a supplement to core NCCA benthic taxonomy and sediment chemistry, underwater video images of the bottom condition ...

  9. The National Ignition Facility: Experimental Capability

    SciTech Connect

    Miller, G H

    2003-09-22

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. NIF will be the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion and matter at extreme energy densities and pressures. NIF's energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will study physical processes at temperatures approaching 10{sup 8} K and 10{sup 11} bar, conditions that exist naturally only in the interior of stars, planets and in nuclear weapons. NIF has completed the first phases of its laser commissioning program. The first four beams of NIF have generated 106 kilojoules of infrared light and over 16 kJ at the third harmonic (351 nm). NIF's target experimental systems are being commissioned and experiments have begun. This paper discusses NIF's current and future experimental capability, plans for facility diagnostics, cryogenic target systems, specialized optics for experiments, and potential enhancements to NIF such as green laser operation and high-energy short pulse operation.

  10. Ensuring US National Aeronautics Test Capabilities

    NASA Technical Reports Server (NTRS)

    Marshall, Timothy J.

    2010-01-01

    U.S. leadership in aeronautics depends on ready access to technologically advanced, efficient, and affordable aeronautics test capabilities. These systems include major wind tunnels and propulsion test facilities and flight test capabilities. The federal government owns the majority of the major aeronautics test capabilities in the United States, primarily through the National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD). However, changes in the Aerospace landscape, primarily the decrease in demand for testing over the last 20 years required an overarching strategy for management of these national assets. Therefore, NASA established the Aeronautics Test Program (ATP) as a two-pronged strategic initiative to: (1) retain and invest in NASA aeronautics test capabilities considered strategically important to the agency and the nation, and (2) establish a strong, high level partnership with the DoD. Test facility utilization is a critical factor for ATP because it relies on user occupancy fees to recover a substantial part of the operations costs for its facilities. Decreasing utilization is an indicator of excess capacity and in some cases low-risk redundancy (i.e., several facilities with basically the same capability and overall low utilization). However, low utilization does not necessarily translate to lack of strategic importance. Some facilities with relatively low utilization are nonetheless vitally important because of the unique nature of the capability and the foreseeable aeronautics testing needs. Unfortunately, since its inception, the customer base for ATP has continued to shrink. Utilization of ATP wind tunnels has declined by more than 50% from the FY 2006 levels. This significant decrease in customer usage is attributable to several factors, including the overall decline in new programs and projects in the aerospace sector; the impact of computational fluid dynamics (CFD) on the design, development, and research

  11. Enhancing capabilities in health professions education

    PubMed Central

    Miller, Susan J.; Siddiqui, Zarrin S.; Jonas-Dwyer, Diana R.D.

    2015-01-01

    Objectives This article documents the results of ongoing summative program evaluation of a suite of postgraduate courses at The University of Western Australia designed to enhance the educational capabilities, academic leadership and scholarly output of health professionals. Methods Commencing students were invited to participate in this descriptive, longitudinal study that surveyed students at commencement and subsequently over a seven year period. Data was collected at baseline and follow-up in relation to the respondents’ educational leadership responsibilities, promotions, involvement in new educational programs, and recognition for contributions towards student learning, educational scholarly outputs and involvement in training programs. Results The respondents came from a wide range of health professions and worked in various roles, with a quarter already holding leadership positions. During the follow-up period, half reported receiving a new promotion or moving to new positions requiring educational leadership. Those identifying as being involved with the development of new educational programs doubled and 34% received a new teaching award. Scholarly productivity doubled with 45% giving an oral presentation related to education, 21% publishing and 29% being successful in obtaining funding related to an education project.  Conclusions These postgraduate courses in health professions education appear to be positively influencing graduates’ capabilities, especially in the areas of educational leadership skills and scholarly productivity. For those looking to develop a community of leaders in health professions education, the authors offer some suggestions. PMID:26590857

  12. Resourcing interventions enhance psychology support capabilities in special operations forces.

    PubMed

    Myatt, Craig A; Auzenne, J W

    2012-01-01

    This study provides an examination of approaches to United States Government (USG) resourcing interventions on a national scale that enhance psychology support capabilities in the Special Operations Forces (SOF) community. A review of Congressional legislation and resourcing trends in the form of authorizations and appropriations since 2006 demonstrates how Congress supported enhanced psychology support capabilities throughout the Armed Forces and in SOF supporting innovative command interests that address adverse affects of operations tempo behavioral effects (OTBE). The formulation of meaningful metrics to address SOF specific command interests led to a personnel tempo (PERSTEMPO) analysis in response to findings compiled by the Preservation of the Force and Families (POTFF) Task Force. The review of PERSTEMPO data at subordinate command and unit levels enhances the capability of SOF leaders to develop policy and guidance on training and operational planning that mitigates OTBE and maximizes resourcing authorizations. A major challenge faced by the DoD is in providing behavioral healthcare that meets public and legislative demands while proving suitable and sustainable at all levels of military operations: strategic, operational, and tactical. Current legislative authorizations offer a mechanism of command advocacy for resourced multi-functional program development that enhances psychology support capabilities while reinforcing SOF readiness and performance. PMID:23536458

  13. Transient dynamics capability at Sandia National Laboratories

    NASA Technical Reports Server (NTRS)

    Attaway, Steven W.; Biffle, Johnny H.; Sjaardema, G. D.; Heinstein, M. W.; Schoof, L. A.

    1993-01-01

    A brief overview of the transient dynamics capabilities at Sandia National Laboratories, with an emphasis on recent new developments and current research is presented. In addition, the Sandia National Laboratories (SNL) Engineering Analysis Code Access System (SEACAS), which is a collection of structural and thermal codes and utilities used by analysts at SNL, is described. The SEACAS system includes pre- and post-processing codes, analysis codes, database translation codes, support libraries, Unix shell scripts for execution, and an installation system. SEACAS is used at SNL on a daily basis as a production, research, and development system for the engineering analysts and code developers. Over the past year, approximately 190 days of CPU time were used by SEACAS codes on jobs running from a few seconds up to two and one-half days of CPU time. SEACAS is running on several different systems at SNL including Cray Unicos, Hewlett Packard PH-UX, Digital Equipment Ultrix, and Sun SunOS. An overview of SEACAS, including a short description of the codes in the system, are presented. Abstracts and references for the codes are listed at the end of the report.

  14. Fused Reality for Enhanced Flight Test Capabilities

    NASA Technical Reports Server (NTRS)

    Bachelder, Ed; Klyde, David

    2011-01-01

    The feasibility of using Fused Reality-based simulation technology to enhance flight test capabilities has been investigated. In terms of relevancy to piloted evaluation, there remains no substitute for actual flight tests, even when considering the fidelity and effectiveness of modern ground-based simulators. In addition to real-world cueing (vestibular, visual, aural, environmental, etc.), flight tests provide subtle but key intangibles that cannot be duplicated in a ground-based simulator. There is, however, a cost to be paid for the benefits of flight in terms of budget, mission complexity, and safety, including the need for ground and control-room personnel, additional aircraft, etc. A Fused Reality(tm) (FR) Flight system was developed that allows a virtual environment to be integrated with the test aircraft so that tasks such as aerial refueling, formation flying, or approach and landing can be accomplished without additional aircraft resources or the risk of operating in close proximity to the ground or other aircraft. Furthermore, the dynamic motions of the simulated objects can be directly correlated with the responses of the test aircraft. The FR Flight system will allow real-time observation of, and manual interaction with, the cockpit environment that serves as a frame for the virtual out-the-window scene.

  15. Core capabilities and technical enhancement, FY-98 annual report

    SciTech Connect

    Miller, D.L.

    1999-04-01

    The Core Capability and Technical Enhancement (CCTE) Program, a part of the Verification, Validation, and Engineering Assessment Program, was implemented to enhance and augment the technical capabilities of the Idaho National Engineering and Environmental Laboratory (INEEL). The purpose for strengthening the technical capabilities of the INEEL is to provide the technical base to serve effectively as the Environmental Management Laboratory for the Department of Energy's Office of Environmental Management (EM). An analysis of EM's science and technology needs as well as the technology investments currently being made by EM across the complex was used to formulate a portfolio of research activities designed to address EM's needs without overlapping work being done elsewhere. An additional purpose is to enhance and maintain the technical capabilities and research infrastructure at the INEEL. This is a progress report for fiscal year 1998 for the five CCTE research investment areas: (a) transport aspects of selective mass transport agents, (b) chemistry of environmental surfaces, (c) materials dynamics, (d) characterization science, and (e) computational simulation of mechanical and chemical systems. In addition to the five purely technical research areas, this report deals with the science and technology foundations element of the CCTE from the standpoint of program management and complex-wide issues. This report also provides details of ongoing and future work in all six areas.

  16. Core Capabilities and Technical Enhancement -- FY-98 Annual Report

    SciTech Connect

    Miller, David Lynn

    1999-04-01

    The Core Capability and Technical Enhancement (CC&TE) Program, a part of the Verification, Validation, and Engineering Assessment Program, was implemented to enhance and augment the technical capabilities of the Idaho National Engineering and Environmental Laboratory (INEEL). The purpose for strengthening the technical capabilities of the INEEL is to provide the technical base to serve effectively as the Environmental Management Laboratory for the Office of Environmental Management (EM). An analysis of EM's science and technology needs as well as the technology investments currently being made by EM across the complex was used to formulate a portfolio of research activities designed to address EM's needs without overlapping work being done elsewhere. An additional purpose is to enhance and maintain the technical capabilities and research infrastructure at the INEEL. This is a progress report for fiscal year 1998 for the five CC&TE research investment areas: (a) transport aspects of selective mass transport agents, (b) chemistry of environmental surfaces, (c) materials dynamics, (d) characterization science, and (e) computational simulation of mechanical and chemical systems. In addition to the five purely technical research areas, this report deals with the science and technology foundations element of the CC&TE from the standpoint of program management and complex-wide issues. This report also provides details of ongoing and future work in all six areas.

  17. Towards a National Space Weather Predictive Capability

    NASA Astrophysics Data System (ADS)

    Fox, N. J.; Lindstrom, K. L.; Ryschkewitsch, M. G.; Anderson, B. J.; Gjerloev, J. W.; Merkin, V. G.; Kelly, M. A.; Miller, E. S.; Sitnov, M. I.; Ukhorskiy, A. Y.; Erlandson, R. E.; Barnes, R. J.; Paxton, L. J.; Sotirelis, T.; Stephens, G.; Comberiate, J.

    2014-12-01

    National needs in the area of space weather informational and predictive tools are growing rapidly. Adverse conditions in the space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids, leading to a variety of socio-economic losses and impacts on our security. Future space exploration and most modern human endeavors will require major advances in physical understanding and improved transition of space research to operations. At present, only a small fraction of the latest research and development results from NASA, NOAA, NSF and DoD investments are being used to improve space weather forecasting and to develop operational tools. The power of modern research and space weather model development needs to be better utilized to enable comprehensive, timely, and accurate operational space weather tools. The mere production of space weather information is not sufficient to address the needs of those who are affected by space weather. A coordinated effort is required to support research-to-applications transition efforts and to develop the tools required those who rely on this information. In this presentation we will review datasets, tools and models that have resulted from research by scientists at JHU/APL, and examine how they could be applied to support space weather applications in coordination with other community assets and capabilities.

  18. Towards a National Space Weather Predictive Capability

    NASA Astrophysics Data System (ADS)

    Fox, N. J.; Ryschkewitsch, M. G.; Merkin, V. G.; Stephens, G. K.; Gjerloev, J. W.; Barnes, R. J.; Anderson, B. J.; Paxton, L. J.; Ukhorskiy, A. Y.; Kelly, M. A.; Berger, T. E.; Bonadonna, L. C. M. F.; Hesse, M.; Sharma, S.

    2015-12-01

    National needs in the area of space weather informational and predictive tools are growing rapidly. Adverse conditions in the space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids, leading to a variety of socio-economic losses and impacts on our security. Future space exploration and most modern human endeavors will require major advances in physical understanding and improved transition of space research to operations. At present, only a small fraction of the latest research and development results from NASA, NOAA, NSF and DoD investments are being used to improve space weather forecasting and to develop operational tools. The power of modern research and space weather model development needs to be better utilized to enable comprehensive, timely, and accurate operational space weather tools. The mere production of space weather information is not sufficient to address the needs of those who are affected by space weather. A coordinated effort is required to support research-to-applications transition efforts and to develop the tools required those who rely on this information. In this presentation we will review the space weather system developed for the Van Allen Probes mission, together with other datasets, tools and models that have resulted from research by scientists at JHU/APL. We will look at how these, and results from future missions such as Solar Probe Plus, could be applied to support space weather applications in coordination with other community assets and capabilities.

  19. Undulator A characteristics and specifications: Enhanced capabilities

    SciTech Connect

    Dejus, R.J.; Lai, B.; Moog, E.R.; Gluskin, E.

    1994-05-01

    The Undulator A for the Advanced Photon Source (APS) is a planar insertion device that will generate high-intensity x-ray radiation in the spectral range 3.2 keV to 45 keV by using the first, third, and fifth harmonics of radiation. The device has been optimized for the APS so that the variation in brilliance is small when tuning from one harmonic energy to the next. This has been achieved by an increase of the magnetic field for a given gap and by allowing a smaller minimum gap when installed in the storage ring. This document describes the modifications of the magnetic structure and the enhanced on-axis magnetic fields. The enhanced spectral performance is discussed and illustrated in tuning curves for the brilliance and the flux through apertures of different sizes. The increased power and power densities are described and also discussed in relation to selecting a proper sized aperture for an experiment. The spatial photon distribution is shown in figures at selected energies that clearly indicate the size of the central cone of radiation. This document is intended as a practical guide to aid in the design of beamlines for Undulator A. Therefore, expanded sections describing the spatial photon distributions and the emitted power are included with graphs that can be used for accurate estimates of the beamsize and power loads.

  20. 77 FR 20497 - National Financial Capability Month, 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-05

    ... thirty-sixth. (Presidential Sig.) [FR Doc. 2012-8323 Filed 4-4-12; 8:45 am] Billing code 3295-F2-P ... Documents#0;#0; ] Proclamation 8793 of April 2, 2012 National Financial Capability Month, 2012 By the... all. During National Financial Capability Month, we recommit to ensuring everyone has access to...

  1. National Scientific User Facility Purpose and Capabilities

    SciTech Connect

    K. E. Rosenberg; T. R. Allen; J. C. Haley; M. K. Meyer

    2010-09-01

    The U.S. Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007. This designation allows the ATR to become a cornerstone of nuclear energy research and development (R&D) within the U.S. by making it easier for universities, the commercial power industry, other national laboratories, and international organizations to conduct nuclear energy R&D. The mission of the ATR NSUF is to provide nuclear energy researchers access to world-class facilities, thereby facilitating the advancement of nuclear science and technology within the U.S. In support of this mission, hot cell laboratories are being upgraded. These upgrades include a set of lead shielded cells that will house Irradiated Assisted Stress Corrosion Cracking (IASCC) test rigs and construction of a shielded laboratory facility. A primary function of this shielded laboratory is to provide a state of the art type laboratory facility that is functional, efficient and flexible that is dedicated to the analysis and characterization of nuclear and non-nuclear materials. The facility shall be relatively easy to reconfigure to provide laboratory scale hot cave space for housing current and future nuclear material scientific research instruments.

  2. Using servers to enhance control system capability

    SciTech Connect

    M. Bickley; B.A. Bowling; D.A. Bryan; J. van Zeijts; K.S. White; S. Witherspoon

    1999-03-01

    Many traditional control systems include a distributed collection of front end machines to control hardware. Back end tools are used to view, modify and record the signals generated by these front end machines. Software servers, which are a middleware layer between the front and back ends, can improve a control system in several ways. Servers can enable on-line processing of raw data, and consolidation of functionality. In many cases, data retrieved from the front end must be processed in order to convert the raw data into useful information. These calculations are often redundantly performed by different programs, frequently offline. Servers can monitor the raw data and rapidly perform calculations, producing new signals which can be treated like any other control system signal, and can be used by any back end application. Algorithms can be incorporated to actively modify signal values in the control system based upon changes of other signals, essentially producing feedback in a control system. Servers thus increase the flexibility of a control system. Lastly, servers running on inexpensive UNIX workstations can relay or cache frequently needed information, reducing the load on front end hardware by functioning as concentrators. Rather than many back end tools connecting directly to the front end machines, increasing the work load of these machines, they instead connect to the server. Servers like those discussed above have been used successfully at the Thomas Jefferson National Accelerator Facility to provide functionality such as beam steering, fault monitoring, storage of machine parameters, and on-line data processing. The authors discuss the potential uses of such servers, and share the results of work performed to date.

  3. USING SERVERS TO ENHANCE CONTROL SYSTEM CAPABILITY.

    SciTech Connect

    BICKLEY,M.; BOWLING,B.A.; BRYAN,D.A.; ZEIJTS,J.; WHITE,K.S.; WITHERSPOON,S.

    1999-03-29

    Many traditional control systems include a distributed collection of front end machines to control hardware. Back end tools are used to view, modify, and record the signals generated by these front end machines. Software servers, which are a middleware layer between the front and back ends, can improve a control system in several ways. Servers can enable on-line processing of raw data, and consolidation of functionality. In many cases data retrieved from the front end must be processed in order to convert the raw data into useful information. These calculations are often redundantly performed by different programs, frequently offline. Servers can monitor the raw data and rapidly perform calculations, producing new signals which can be treated like any other control system signal, and can be used by any back end application. Algorithms can be incorporated to actively modify signal values in the control system based upon changes of other signals, essentially producing feedback in a control system. Servers thus increase the flexibility of a control system. Lastly, servers running on inexpensive UNIX workstations can relay or cache frequently needed information, reducing the load on front end hardware by functioning as concentrators. Rather than many back end tools connecting directly to the front end machines, increasing the work load of these machines, they instead connect to the server. Servers like those discussed above have been used successfully at the Thomas Jefferson National Accelerator Facility to provide functionality such as beam steering, fault monitoring, storage of machine parameters, and on-line data processing. The authors discuss the potential uses of such, servers, and share the results of work performed to date.

  4. Enhancing the Radio Astronomy Capabilities at NASA's Deep Space Network

    NASA Astrophysics Data System (ADS)

    Lazio, Joseph; Teitelbaum, Lawrence; Franco, Manuel M.; Garcia-Miro, Cristina; Horiuchi, Shinji; Jacobs, Christopher; Kuiper, Thomas; Majid, Walid

    2015-08-01

    NASA's Deep Space Network (DSN) is well known for its role in commanding and communicating with spacecraft across the solar system that produce a steady stream of new discoveries in Astrophysics, Heliophysics, and Planetary Science. Equipped with a number of large antennas distributed across the world, the DSN also has a history of contributing to a number of leading radio astronomical projects. This paper summarizes a number of enhancements that are being implemented currently and that are aimed at increasing its capabilities to engage in a wide range of science observations. These enhancements include* A dual-beam system operating between 18 and 27 GHz (~ 1 cm) capable of conducting a variety of molecular line observations, searches for pulsars in the Galactic center, and continuum flux density (photometry) of objects such as nearby protoplanetary disks* Enhanced spectroscopy and pulsar processing backends for use at 1.4--1.9 GHz (20 cm), 18--27 GHz (1 cm), and 38--50 GHz (0.7 cm)* The DSN Transient Observatory (DTN), an automated, non-invasive backend for transient searching* Larger bandwidths (>= 0.5 GHz) for pulsar searching and timing; and* Improved data rates (2048 Mbps) and better instrumental response for very long baseline interferometric (VLBI) observations with the new DSN VLBI processor (DVP), which is providing unprecedented sensitivity for maintenance of the International Celestial Reference Frame (ICRF) and development of future versions.One of the results of these improvements is that the 70~m Deep Space Station 43 (DSS-43, Tidbinbilla antenna) is now the most sensitive radio antenna in the southern hemisphere. Proposals to use these systems are accepted from the international community.Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics & Space Administration.

  5. Toward a US National Air Quality Forecast Capability: Current and Planned Capabilities

    EPA Science Inventory

    As mandated by Congress, NOAA is establishing a US national air quality forecast capability. This capability is being built with EPA, to provide air quality forecast information with enough accuracy and lead-time so that people can take actions to limit harmful effects of poor a...

  6. 78 FR 20219 - National Financial Capability Month, 2013

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... Independence of the United States of America the two hundred and thirty- seventh. (Presidential Sig.) [FR Doc... Documents#0;#0; ] Proclamation 8951 of March 29, 2013 National Financial Capability Month, 2013 By the... Financial Capability Month, we recommit to empowering individuals and families with the knowledge and...

  7. Los Alamos National Laboratory capability reviews - FY 2011 status

    SciTech Connect

    Springer, Everett P

    2011-01-12

    Capability reviews are the Los Alamos National Laboratory approach to assess the quality of its science, technology, and engineering (STE), and its integration across the Laboratory. There are seven capability reviews in FY 2011 reviews. The Weapons Science and Engineering review will be replaced by the National Nuclear Security Administration's Predictive Science Panel for 2011 . Beginning in 2011, third-year LORD projects will be reviewed by capability review committees rather than the first-year LORD projects that have been performed for the last three years. This change addresses concerns from committees about reviewing a project before it had made any substantive progress. The current schedule, and chairs for the 2011 capability reviews is presented. The three-year cycle (2011-2013) for capability reviews are presented for planning purposes.

  8. Power source evaluation capabilities at Sandia National Laboratories

    SciTech Connect

    Doughty, D.H.; Butler, P.C.

    1996-04-01

    Sandia National Laboratories maintains one of the most comprehensive power source characterization facilities in the U.S. National Laboratory system. This paper describes the capabilities for evaluation of fuel cell technologies. The facility has a rechargeable battery test laboratory and a test area for performing nondestructive and functional computer-controlled testing of cells and batteries.

  9. Recent Investments by NASA's National Force Measurement Technology Capability

    NASA Technical Reports Server (NTRS)

    Commo, Sean A.; Ponder, Jonathan D.

    2016-01-01

    The National Force Measurement Technology Capability (NFMTC) is a nationwide partnership established in 2008 and sponsored by NASA's Aeronautics Evaluation and Test Capabilities (AETC) project to maintain and further develop force measurement capabilities. The NFMTC focuses on force measurement in wind tunnels and provides operational support in addition to conducting balance research. Based on force measurement capability challenges, strategic investments into research tasks are designed to meet the experimental requirements of current and future aerospace research programs and projects. This paper highlights recent and force measurement investments into several areas including recapitalizing the strain-gage balance inventory, developing balance best practices, improving calibration and facility capabilities, and researching potential technologies to advance balance capabilities.

  10. Enhancing Staging Capabilities at the Device Assembly Facility

    SciTech Connect

    Kanning, R. A.; Long, R. G.; Garcia, B. O.; Williams, V. D.

    2013-06-08

    The radioactive material limits allowed by the Documented Safety Analysis (DSA) at the Nevada National Security Site (NNSS) Device Assembly Facility (DAF) can support larger quantities than the floor space will accommodate. In order to maximize the full staging bunker capability, National Security Technologies, LLC, (NSTec) is developing a plan to take advantage of these high inventory limits and evaluate staging options such as shelves, racks, and mezzanines. This plan will investigate cost and evaluate U.S. Department of Energy (DOE) complex-wide alternatives used at other sites (Highly Enriched Uranium Manufacturing Facility, Pantex, Los Alamos National Laboratory, Sandia National Laboratories, etc.) that addressed similar situations.

  11. Distributed generation capabilities of the national energy modeling system

    SciTech Connect

    LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

    2003-01-01

    This report describes Berkeley Lab's exploration of how the National Energy Modeling System (NEMS) models distributed generation (DG) and presents possible approaches for improving how DG is modeled. The on-site electric generation capability has been available since the AEO2000 version of NEMS. Berkeley Lab has previously completed research on distributed energy resources (DER) adoption at individual sites and has developed a DER Customer Adoption Model called DER-CAM. Given interest in this area, Berkeley Lab set out to understand how NEMS models small-scale on-site generation to assess how adequately DG is treated in NEMS, and to propose improvements or alternatives. The goal is to determine how well NEMS models the factors influencing DG adoption and to consider alternatives to the current approach. Most small-scale DG adoption takes place in the residential and commercial modules of NEMS. Investment in DG ultimately offsets purchases of electricity, which also eliminates the losses associated with transmission and distribution (T&D). If the DG technology that is chosen is photovoltaics (PV), NEMS assumes renewable energy consumption replaces the energy input to electric generators. If the DG technology is fuel consuming, consumption of fuel in the electric utility sector is replaced by residential or commercial fuel consumption. The waste heat generated from thermal technologies can be used to offset the water heating and space heating energy uses, but there is no thermally activated cooling capability. This study consists of a review of model documentation and a paper by EIA staff, a series of sensitivity runs performed by Berkeley Lab that exercise selected DG parameters in the AEO2002 version of NEMS, and a scoping effort of possible enhancements and alternatives to NEMS current DG capabilities. In general, the treatment of DG in NEMS is rudimentary. The penetration of DG is determined by an economic cash-flow analysis that determines adoption based on the

  12. Environmentally Responsible Aviation Project: Infrastructure Enhancements and New Capabilities

    NASA Technical Reports Server (NTRS)

    Bezos-OConnor, Gaudy M.

    2015-01-01

    This oral presentation highlights the technical investments the NASA Environmentally Responsible Aviation Project under the Integrated Systems Research Program within ARMD made during FY10-FY14 to upgrade/enhance the NASA infrastructure/testing assets and new capabilities required to mature the ERA N=2 Portfolio of airframe and propulsion technologies to TRL 5/6.

  13. Post Irradiation Capabilities at the Idaho National Laboratory

    SciTech Connect

    J. L. Schulthess; K. E. Rosenberg

    2011-05-01

    The U.S. Department of Energy (DOE), Office of Nuclear Energy (NE) oversees the efforts to ensure nuclear energy remains a viable option for the United States. A significant portion of these efforts are related to post-irradiation examinations (PIE) of highly activated fuel and materials that are subject to the extreme environment inside a nuclear reactor. As the lead national laboratory, Idaho National Laboratory (INL) has a rich history, experience, workforce and capabilities for performing PIE. However, new advances in tools and techniques for performing PIE now enable understanding the performance of fuels and materials at the nano-scale and smaller level. Examination at this level is critical since this is the scale at which irradiation damage occurs. The INL is on course to adopt these advanced tools and techniques to develop a comprehensive nuclear fuels and materials characterization capability that is unique in the world. Because INL has extensive PIE capabilities currently in place, a strong foundation exist to build upon as new capabilities are implemented and work load increases. In the recent past, INL has adopted significant capability to perform advanced PIE characterization. Looking forward, INL is planning for the addition of two facilities that will be built to meet the stringent demands of advanced tools and techniques for highly activated fuels and materials characterization. Dubbed the Irradiated Materials Characterization Laboratory (IMCL) and Advanced Post Irradiation Examination Capability , these facilities are next generation PIE laboratories designed to perform the work of PIE that cannot be performed in current DOE facilities. In addition to physical capabilities, INL has recently added two significant contributors to the Advanced Test Reactor-National Scientific User Facility (ATR-NSUF), Oak Ridge National Laboratory and University of California, Berkeley.

  14. A Call to Action for National Foreign Language Capabilities

    ERIC Educational Resources Information Center

    US Department of Defense, 2005

    2005-01-01

    The terrorist attacks of September 11th, the Global War on Terrorism, and the continued threat to the Homeland have defined the critical need to take action to improve the foreign language and cultural capabilities of the Nation. The government must act now to improve the gathering and analysis of information, advance international diplomacy, and…

  15. National Atmospheric Release Advisory Center (NARAC) Capabilities for Homeland Security

    SciTech Connect

    Sugiyama, G; Nasstrom, J; Baskett, R; Simpson, M

    2010-03-08

    The Department of Energy's National Atmospheric Release Advisory Center (NARAC) provides critical information during hazardous airborne releases as part of an integrated national preparedness and response strategy. Located at Lawrence Livermore National Laboratory, NARAC provides 24/7 tools and expert services to map the spread of hazardous material accidentally or intentionally released into the atmosphere. NARAC graphical products show affected areas and populations, potential casualties, and health effect or protective action guideline levels. LLNL experts produce quality-assured analyses based on field data to assist decision makers and responders. NARAC staff and collaborators conduct research and development into new science, tools, capabilities, and technologies in strategically important areas related to airborne transport and fate modeling and emergency response. This paper provides a brief overview of some of NARAC's activities, capabilities, and research and development.

  16. NASA's Space Launch System (SLS): A New National Capability

    NASA Technical Reports Server (NTRS)

    May, Todd A.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) will contribute a new national capability for human space flight and scientific missions to low- Earth orbit (LEO) and beyond. Exploration beyond Earth orbit will be an enduring legacy to future generations, confirming America s desire to explore, learn, and progress. The SLS Program, managed at NASA s Marshall Space Fight Center, will develop the heavy lift vehicle that will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and science experiments for missions beyond Earth s orbit. This paper gives an overview of the SLS design and management approach against a backdrop of the missions it will empower. It will detail the plan to move from the computerized drawing board to the launch pad in the near term, as well as summarize the innovative approaches the SLS team is applying to deliver a safe, affordable, and sustainable long-range national capability.

  17. Nuclear energy related capabilities at Sandia National Laboratories

    SciTech Connect

    Pickering, Susan Y.

    2014-02-01

    Sandia National Laboratories' technology solutions are depended on to solve national and global threats to peace and freedom. Through science and technology, people, infrastructure, and partnerships, part of Sandia's mission is to meet the national needs in the areas of energy, climate and infrastructure security. Within this mission to ensure clean, abundant, and affordable energy and water is the Nuclear Energy and Fuel Cycle Programs. The Nuclear Energy and Fuel Cycle Programs have a broad range of capabilities, with both physical facilities and intellectual expertise. These resources are brought to bear upon the key scientific and engineering challenges facing the nation and can be made available to address the research needs of others. Sandia can support the safe, secure, reliable, and sustainable use of nuclear power worldwide by incorporating state-of-the-art technologies in safety, security, nonproliferation, transportation, modeling, repository science, and system demonstrations.

  18. National Criticality Experiments Research Center: Capability and Status

    SciTech Connect

    Hayes, David K.; Myers, William L.

    2012-07-12

    After seven years, the former Los Alamos Critical Experiments Facility (LACEF), or Pajarito Site, has reopened for business as the National Criticality Experiments Research Center (NCERC) at the Nevada National Security Site (NNSS). Four critical assembly machines (Comet, Planet, Flat-Top, and Godiva-IV) made the journey from Los Alamos to the NNSS. All four machines received safety system upgrades along with new digital control systems. Between these machines, systems ranging from the thermal through the intermediate to the fast spectrum may be assembled. Steady-State, transient, and super-prompt critical conditions may be explored. NCERC is the sole remaining facility in the United States capable of conducting general-purpose nuclear materials handling including the construction and operation of high-multiplication assemblies, delayed critical assemblies, and prompt critical assemblies. Reconstitution of the unique capabilities at NCERC ensures the viability of (1) The Nuclear Renaissance, (2) Stockpile Stewardship, and (3) and the next generation of criticality experimentalists.

  19. Enhanced NLTE Atomic Kinetics Modeling Capabilities in HYDRA

    NASA Astrophysics Data System (ADS)

    Patel, Mehul V.; Scott, Howard A.; Marinak, Michael M.

    2014-10-01

    In radiation hydrodynamics modeling of ICF targets, an NLTE treatment of atomic kinetics is necessary for modeling high-Z hohlraum wall materials, high-Z dopants mixed in the central gas hotspot, and is potentially needed for accurate modeling of outer layers of the capsule ablator. Over the past several years, the NLTE DCA atomic physics capabilities in the 3D ICF radiation hydrodynamics code HYDRA have been significantly enhanced. The underlying atomic models have been improved, additional kinetics options including the ability to run DCA in cells with dynamic mixing of species has been added, and the computational costs have been significantly reduced using OpenMP threading. To illustrate the improved capabilities, we will show higher fidelity results from simulations of ICF hohlraum energetics, laser irradiated sphere experiments, and ICF capsule implosions. Prepared by LLNL under Contract DE-AC52-07NA27344.

  20. Developing Nationally Competitive NASA Research Capability in West Virginia

    NASA Technical Reports Server (NTRS)

    Calzonetti, Frank J.

    1997-01-01

    In May, 1995 West Virginia EPSCOR was awarded $150,000 to support activities to develop research capabilities in West Virginia in support of the National Aeronautics and Space Administration (NASA). These funds were used to support three projects: 1) Information Processing and the Earth Observing System, directed by Dr. Stuart Tewksbury of West Virginia University; 2) Development of Optical Materials for Atmospheric Sensing Experiments, directed by Dr. Nancy Giles of West Virginia University; and 3) Development of Doppler Global Velocimeter (DGV) for Aeronautical and Combustion Studies, directed by Dr. John Kuhlman of West Virginia University. The funding provides the means to develop capability in each of these areas. This report summarizes the technical accomplishments in each project supported under this award.

  1. Capabilities for spent fuel characterization at Argonne National Laboratory

    SciTech Connect

    Neimark, L.A.; Strain, R.V.

    1994-10-01

    Summaries of the status of spent nuclear fuel (SNF) owned by the Department of Energy have highlighted the need to obtain a better understanding of the current physical and chemical condition of the SNF as a foundation for establishing a clear path forward for the fuel`s eventual geologic disposal in a long-term repository. To initiate obtaining the required information, DOE has generated an SNF Characterization Plan based on the needs for characterizing the materials stored at the individual major DOE storage sites. The principal focus of the plan is to characterize those fuel attributes that are key to the safe handling, transportation, and storage of the SNF. The drivers for specific attributes are regulatory requirements, resolution of technical issues, or a design need. Argonne National Laboratory`s facilities in Illinois and Idaho possess capabilities that can be used to address many of the characterization issues that have been raised. This paper will describe these capabilities.

  2. Enhanced Monte-Carlo-Linked Depletion Capabilities in MCNPX

    SciTech Connect

    Fensin, Michael L.; Hendricks, John S.; Anghaie, Samim

    2006-07-01

    . These capabilities have been enhanced by the two major new improvements described here. Further improvements are under development to enhance the usefulness of this new capability. (authors)

  3. Development of an analysis capability for the National Transportation System

    SciTech Connect

    Anson, D.; Nelson, R.

    1997-10-24

    The purpose of this report is to examine the Department of Transportation`s (DOT) National Transportation System (NTS) initiative, to document what has been learned, and to outline a National Transportation Network Analysis Capability (NTNAC) based on a ``TRANSIMS-like`` approach. This study was conducted over a two month period at the end of FY1997. The scope of the effort was carefully defined to accommodate the short time horizon and to provide focus to a very large analytical problem. The objectives were to: (1) define the NTS and the NTS problem; (2) identify problem characteristics; (3) describe an analytical solution based on the TRANSIMS approach; (4) identify data requirements and availability; (5) develop criteria for a scenario to be used in a prototype demonstration; and (6) select a scenario for the prototype demonstration.

  4. RADIOISOTOPE POWER SYSTEM CAPABILITIES AT THE IDAHO NATIONAL LABORATORY (INL)

    SciTech Connect

    Kelly Lively; Stephen Johnson; Eric Clarke

    2014-07-01

    --Idaho National Laboratory’s, Space Nuclear Systems and Technology Division established the resources, equipment and facilities required to provide nuclear-fueled, Radioisotope Power Systems (RPS) to Department of Energy (DOE) Customers. RPSs are designed to convert the heat generated by decay of iridium clad, 238PuO2 fuel pellets into electricity that is used to power missions in remote, harsh environments. Utilization of nuclear fuel requires adherence to governing regulations and the INL provides unique capabilities to safely fuel, test, store, transport and integrate RPSs to supply power—supporting mission needs. Nuclear capabilities encompass RPS fueling, testing, handling, storing, transporting RPS nationally, and space vehicle integration. Activities are performed at the INL and in remote locations such as John F. Kennedy Space Center and Cape Canaveral Air Station to support space missions. This paper will focus on the facility and equipment capabilities primarily offered at the INL, Material and Fuel Complex located in a security-protected, federally owned, industrial area on the remote desert site west of Idaho Falls, ID. Nuclear and non-nuclear facilities house equipment needed to perform required activities such as general purpose heat source (GPHS) module pre-assembly and module assembly using nuclear fuel; RPS receipt and baseline electrical testing, fueling, vibration testing to simulate the launch environment, mass properties testing to measure the mass and compute the moment of inertia, electro-magnetic characterizing to determine potential consequences to the operation of vehicle or scientific instrumentation, and thermal vacuum testing to verify RPS power performance in the vacuum and cold temperatures of space.

  5. Electric Propulsion Upper-Stage for Launch Vehicle Capability Enhancement

    NASA Technical Reports Server (NTRS)

    Kemp, Gregory E.; Dankanich, John W.; Woodcock, Gordon R.; Wingo, Dennis R.

    2007-01-01

    The NASA In-Space Propulsion Technology Project Office initiated a preliminary study to evaluate the performance benefits of a solar electric propulsion (SEP) upper-stage with existing and near-term small launch vehicles. The analysis included circular and elliptical Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO) transfers, and LEO to Low Lunar Orbit (LLO) applications. SEP subsystem options included state-of-the-art and near-term solar arrays and electric thrusters. In-depth evaluations of the Aerojet BPT-4000 Hall thruster and NEXT gridded ion engine were conducted to compare performance, cost and revenue potential. Preliminary results indicate that Hall thruster technology is favored for low-cost, low power SEP stages, while gridded-ion engines are favored for higher power SEP systems unfettered by transfer time constraints. A low-cost point design is presented that details one possible stage configuration and outlines system limitations, in particular fairing volume constraints. The results demonstrate mission enhancements to large and medium class launch vehicles, and mission enabling performance when SEP system upper stages are mounted to low-cost launchers such as the Minotaur and Falcon 1. Study results indicate the potential use of SEP upper stages to double GEO payload mass capability and to possibly enable launch on demand capability for GEO assets. Transition from government to commercial applications, with associated cost/benefit analysis, has also been assessed. The sensitivity of system performance to specific impulse, array power, thruster size, and component costs are also discussed.

  6. Capabilities Roadmap Briefings to the National Research Council

    NASA Technical Reports Server (NTRS)

    2005-01-01

    High energy power and propulsion capability roadmap - general background and introduction. Advanced telescopes and observatories and scientific instruments and sensors capability roadmaps - general background and introduction. Space communications capability roadmap interim review. Robotic access to planetary surface capability roadmap. Human health and support systems capability roadmap progress review.

  7. Overview of composites capability at Lawrence Livermore National Laboratory

    SciTech Connect

    Lepper, J.K.

    1983-08-30

    LLNL has had a polymer matrix fiber composite research and development activity for over twenty years. LLNL has an active multidisciplined team investigating all aspects of polymer matrix fiber composites. This is a unique national resource because it is a total capability from the synthesis of new materials to the manufacture of final products. We have concentrated our research and development efforts on high performance structural composites. The materials are used in critical components requiring service reliability certifications of from 10/sup -3/ to 10/sup -6/ failure probabilities. Many of these components are designed to function in severe service environments for more than twenty-five years. Our approach to accomplishing these objectives has been to establish a very large and sound data base. Using this data base we have developed a fundamental understanding of glass, graphite, and aramid fibers, epoxy and polyimide matrices, and their high performance structural composites.

  8. Langley Aerothermodynamic Facilities Complex: Enhancements and Testing Capabilities

    NASA Technical Reports Server (NTRS)

    Micol, J. R.

    1998-01-01

    Description, capabilities, recent upgrades, and utilization of the NASA Langley Research Center (LaRC) Aerothermodynamic Facilities Complex (AFC) are presented. The AFC consists of five hypersonic, blow-down-to-vacuum wind tunnels that collectively provide a range of Mach number from 6 to 20, unit Reynolds number from 0.04 to 22 million per foot and, most importantly for blunt configurations, normal shock density ratio from 4 to 12. These wide ranges of hypersonic simulation parameters are due, in part, to the use of three different test gases (air, helium, and tetrafluoromethane), thereby making several of the facilities unique. The Complex represents nearly three-fourths of the conventional (as opposed to impulse)-type hypersonic wind tunnels operational in this country. AFC facilities are used to assess and optimize the hypersonic aerodynamic performance and aeroheating characteristics of aerospace vehicle concepts and to provide benchmark aerodynamic/aeroheating data fr generating the flight aerodynamic databook and final design of the thermal protection system (TPS) (e.g., establishment of flight limitations not to exceed TPS design limits). Modifications and enhancements of AFC hardware components and instrumentation have been pursued to increase capability, reliability, and productivity in support of programmatic goals. Examples illustrating facility utilization in recent years to generate essentially all of the experimental hypersonic aerodynamic and aeroheating information for high-priority, fast-paced Agency programs are presented. These programs include Phase I of the Reusable Launch Vehicle (RLV) Advanced Technology Demonstrator, X-33 program, PHase II of the X-33 program, X-34 program, the Hyper-X program ( a Mach 5,7, and 10 airbreathing propulsion flight experiment), and the X-38 program (Experimental Crew Return Vehicle, X-CRV). Current upgrades/enchancements and future plans for the AFC are discussed.

  9. National Air Quality Forecast Capability: Status and Research Needs

    NASA Astrophysics Data System (ADS)

    Stajner, I.; McQueen, J.; Lee, P.; Draxler, R. R.; Tong, D.; Pan, L.; Huang, J. P.; Shafran, P.; Dickerson, P.; Upadhayay, S.

    2014-12-01

    Operational air quality predictions for the United States (U. S.) are provided by National Air Quality Forecasting Capability (NAQFC), which is being built by NOAA in partnership with the U.S. EPA. NAQFC provides nationwide operational predictions of ozone, smoke from wildfires, as well as dust from dust storms for the contiguous 48 states. Predictions are produced beyond midnight of the following day at 12 km resolution and 1 hour time intervals and distributed at http://airquality.weather.gov. Ozone predictions and developmental testing of aerosol predictions combine the NOAA National Centers for Environmental Prediction (NCEP) operational North American Mesoscale (NAM) weather predictions with the Community Multiscale Air Quality (CMAQ) model. Predictions of smoke and dust storms use the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Routine verification of ozone and developmental aerosol predictions relies on AIRNow observations, whereas smoke and dust predictions rely on satellite retrievals. Recent updates to operational ozone prediction at NOAA have focused on mobile emissions, which were updated using the projections of mobile sources for 2012. Satellite and ground observations were used to derive NOx trends, which were compared with the emissions data used by NAQFC indicating improved agreement over large metropolitan areas in the US. Updates to the chemical mechanism are being tested for operational implementation. Recent testing of PM2.5 predictions is relying on National Emission Inventory (NEI) inputs augmented by real time sources from wildfires and dust storms. Testing of PM2.5 predictions continues to exhibit seasonal biases - overprediction in the winter and underprediction in the summer. Current efforts are focusing on inclusion of bias correction and development of linkages with global atmospheric composition predictions.

  10. Radioactive material package testing capabilities at Sandia National Laboratories

    SciTech Connect

    Uncapher, W.L.; Hohnstreiter, G.F.

    1995-12-31

    Evaluation and certification of radioactive and hazardous material transport packages can be accomplished by subjecting these packages to normal transport and hypothetical accident test conditions. The regulations allow package designers to certify packages using analysis, testing, or a combination of analysis and testing. Testing can be used to substantiate assumptions used in analytical models and to demonstrate package structural and thermal response. Regulatory test conditions include impact, puncture, crush, penetration, water spray, immersion, and thermal environments. Testing facilities are used to simulate the required test conditions and provide measurement response data. Over the past four decades, comprehensive testing facilities have been developed at Sandia National Laboratories to perform a broad range of verification and certification tests on hazardous and radioactive material packages or component sections. Sandia`s facilities provide an experience base that has been established during the development and certification of many package designs. These unique facilities, along with innovative instrumentation data collection capabilities and techniques, simulate a broad range of testing environments. In certain package designs, package testing can be an economical alternative to complex analysis to resolve regulatory questions or concerns.

  11. New techniques enhance workover skid-off capabilities

    SciTech Connect

    Albaugh, E.K.

    1984-07-01

    A comprehensive program has been developed to extend the reach capabilities of cantilever workover jack-ups. Discussed are various engineering approaches for different types of platforms, as well as minor piping and electrical aspects that will allow substructures, drill floor, cantilever beams and pipe rack deck to be partially or completely skidded off onto the main deck of an offshore platform. This capability will enable more wells to be more economically worked over.

  12. Lawrence Livermore National Laboratory capabilities in multiphase dynamics

    SciTech Connect

    McCallen, R.C.; Kang, Sang-Wook

    1996-04-09

    The computer codes at LLNL with capabilities for numerical analysis for multiphase flow; phenomenology and constitutive theory and modeling; advanced diagnostics, advanced test beds, facilities, and data bases; and multiphase flow applications are listed, with brief descriptions.

  13. Telescience Resource Kit Software Capabilities and Future Enhancements

    NASA Technical Reports Server (NTRS)

    Schneider, Michelle

    2004-01-01

    The Telescience Resource Kit (TReK) is a suite of PC-based software applications that can be used to monitor and control a payload on board the International Space Station (ISS). This software provides a way for payload users to operate their payloads from their home sites. It can be used by an individual or a team of people. TReK provides both local ground support system services and an interface to utilize remote services provided by the Payload Operations Integration Center (POIC). by the POIC and to perform local data functions such as processing the data, storing it in local files, and forwarding it to other computer systems. TReK can also be used to build, send, and track payload commands. In addition to these features, work is in progress to add a new command management capability. This capability will provide a way to manage a multi- platform command environment that can include geographically distributed computers. This is intended to help those teams that need to manage a shared on-board resource such as a facility class payload. The environment can be configured such that one individual can manage all the command activities associated with that payload. This paper will provide a summary of existing TReK capabilities and a description of the new command management capability. For example, 7'ReK can be used to receive payload data distributed

  14. SIGMA Release v1.2 - Capabilities, Enhancements and Fixes

    SciTech Connect

    Mahadevan, Vijay; Grindeanu, Iulian R.; Ray, Navamita; Jain, Rajeev; Wu, Danqing

    2015-09-30

    In this report, we present details on SIGMA toolkit along with its component structure, capabilities, and feature additions in FY15, release cycles, and continuous integration process. These software processes along with updated documentation are imperative to successfully integrate and utilize in several applications including the SHARP coupled analysis toolkit for reactor core systems funded under the NEAMS DOE-NE program.

  15. Materials capability review Los Alamos National Laboratory, May 3-6, 2010

    SciTech Connect

    Taylor, Antoinette

    2010-01-01

    The 2010 'Capability Review' process at LANL significantly differs from the Division reviews of prior years. The Capabilities being reviewed (some 4-8 per year) are deliberately chosen to be crosscutting over the Laboratory, and therefore will include not only several experimental, theoretical and simulation disciplines, but also contributions from multiple line organizations. This approach is consistent with the new Laboratory organizational structure, focusing on agile and integrated capabilities applied to present national security missions, and also nurtured to be available for rapid application to future missions. The overall intent is that the Committee assess the quality of the science, engineering, and technology identified in the agenda, and advise the LANS Board of Governors and Laboratory management. Specifically, the Committees will: (1) Assess the quality of science, technology and engineering within the Capability in the areas defined in the agenda. Identify issues to develop or enhance the core competencies within this capability. (2) Evaluate the integration of this capability across the Laboratory organizations that are listed in the agenda in terms of joint programs, projects, proposals, and/or publications. Describe the integration of this capability in the wider scientific community using the recognition as a leader within the community, ability to set research agendas, and attraction and retention of staff. (3) Assess the quality and relevance of this capability's science, technology and engineering contributions to current and emerging Laboratory programs, including Nuclear Weapons, Threat Reduction/Homeland Security, and Energy Security. (4) Advise the Laboratory Director/Principal Associate Director for Science, Technology and Engineering on the health of the Capability including the current and future (5 year) science, technology and engineering staff needs, mix of research and development activities, program opportunities, environment for

  16. Engine Icing Capability Enhancements for the Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Griffin, Tom

    2010-01-01

    The AC9C is holding their biannual committee meeting in Ottawa, Ontario on 18-20 October 2010. I have been asked to provide a short presentation of the status of the icing project upgrade to the PSL test facility. I will highlight the progress made during construction the past 6 months, our approach for checkout of the facility, and an overview of the system design and its capabilities. A copy of the presentation is attached.

  17. Towards enhancing Sandia's capabilities in multiscale materials modeling and simulation.

    SciTech Connect

    Aidun, John Bahram; Fang, Huei Eliot; Barbour, John Charles; Westrich, Henry Roger; Chen, Er-Ping

    2004-01-01

    We report our conclusions in support of the FY 2003 Science and Technology Milestone ST03-3.5. The goal of the milestone was to develop a research plan for expanding Sandia's capabilities in materials modeling and simulation. From inquiries and discussion with technical staff during FY 2003 we conclude that it is premature to formulate the envisioned coordinated research plan. The more appropriate goal is to develop a set of computational tools for making scale transitions and accumulate experience with applying these tools to real test cases so as to enable us to attack each new problem with higher confidence of success.

  18. Scientific user facilities at Oak Ridge National Laboratory: New research capabilities and opportunities

    NASA Astrophysics Data System (ADS)

    Roberto, James

    2011-10-01

    Over the past decade, Oak Ridge National Laboratory (ORNL) has transformed its research infrastructure, particularly in the areas of neutron scattering, nanoscale science and technology, and high-performance computing. New facilities, including the Spallation Neutron Source, Center for Nanophase Materials Sciences, and Leadership Computing Facility, have been constructed that provide world-leading capabilities in neutron science, condensed matter and materials physics, and computational physics. In addition, many existing physics-related facilities have been upgraded with new capabilities, including new instruments and a high- intensity cold neutron source at the High Flux Isotope Reactor. These facilities are operated for the scientific community and are available to qualified users based on competitive peer-reviewed proposals. User facilities at ORNL currently welcome more than 2,500 researchers each year, mostly from universities. These facilities, many of which are unique in the world, will be reviewed including current and planned research capabilities, availability and operational performance, access procedures, and recent research results. Particular attention will be given to new neutron scattering capabilities, nanoscale science, and petascale simulation and modeling. In addition, user facilities provide a portal into ORNL that can enhance the development of research collaborations. The spectrum of partnership opportunities with ORNL will be described including collaborations, joint faculty, and graduate research and education.

  19. Enhancements in Continuous-Energy Monte Carlo Capabilities in SCALE

    SciTech Connect

    Bekar, Kursat B; Celik, Cihangir; Wiarda, Dorothea; Peplow, Douglas E.; Rearden, Bradley T; Dunn, Michael E

    2013-01-01

    Monte Carlo tools in SCALE are commonly used in criticality safety calculations as well as sensitivity and uncertainty analysis, depletion, and criticality alarm system analyses. Recent improvements in the continuous-energy data generated by the AMPX code system and significant advancements in the continuous-energy treatment in the KENO Monte Carlo eigenvalue codes facilitate the use of SCALE Monte Carlo codes to model geometrically complex systems with enhanced solution fidelity. The addition of continuous-energy treatment to the SCALE Monaco code, which can be used with automatic variance reduction in the hybrid MAVRIC sequence, provides significant enhancements, especially for criticality alarm system modeling. This paper describes some of the advancements in continuous-energy Monte Carlo codes within the SCALE code system.

  20. BROOKHAVEN NATIONAL LABORATORYS CAPABILITIES FOR ADVANCED ANALYSES OF CYBER THREATS

    SciTech Connect

    DePhillips M. P.

    2014-06-06

    BNL has several ongoing, mature, and successful programs and areas of core scientific expertise that readily could be modified to address problems facing national security and efforts by the IC related to securing our nation’s computer networks. In supporting these programs, BNL houses an expansive, scalable infrastructure built exclusively for transporting, storing, and analyzing large disparate data-sets. Our ongoing research projects on various infrastructural issues in computer science undoubtedly would be relevant to national security. Furthermore, BNL frequently partners with researchers in academia and industry worldwide to foster unique and innovative ideas for expanding research opportunities and extending our insights. Because the basic science conducted at BNL is unique, such projects have led to advanced techniques, unlike any others, to support our mission of discovery. Many of them are modular techniques, thus making them ideal for abstraction and retrofitting to other uses including those facing national security, specifically the safety of the nation’s cyber space.

  1. End user needs for enhanced IAEA Safeguards Information Management Capabilities

    SciTech Connect

    Badalamente, R.; Anzelon, G.; Deland, S.; Whiteson, R.

    1994-07-01

    The International Atomic Energy Agency is undertaking a program for strengthening its safeguards on the recognition that safeguards must give assurance not only of the non-diversion of declared material or that declared facilities are not being misused, but also of the absence of any undeclared nuclear activities in States which have signed comprehensive safeguards agreements with the Agency. The IAEA has determined that the detection of undeclared nuclear activities and the creation of confidence in the continuing peaceful use of declared material and facilities is largely dependent on more information being made available to the Agency and on the capability of the Agency to make more effective use of this additional information, as well as existing information.

  2. New Integrated Modeling Capabilities: MIDAS' Recent Behavioral Enhancements

    NASA Technical Reports Server (NTRS)

    Gore, Brian F.; Jarvis, Peter A.

    2005-01-01

    The Man-machine Integration Design and Analysis System (MIDAS) is an integrated human performance modeling software tool that is based on mechanisms that underlie and cause human behavior. A PC-Windows version of MIDAS has been created that integrates the anthropometric character "Jack (TM)" with MIDAS' validated perceptual and attention mechanisms. MIDAS now models multiple simulated humans engaging in goal-related behaviors. New capabilities include the ability to predict situations in which errors and/or performance decrements are likely due to a variety of factors including concurrent workload and performance influencing factors (PIFs). This paper describes a new model that predicts the effects of microgravity on a mission specialist's performance, and its first application to simulating the task of conducting a Life Sciences experiment in space according to a sequential or parallel schedule of performance.

  3. Chemical measurement capabilities at Lawrence Livermore National Laboratory

    SciTech Connect

    Raber, E; Harrar, J E

    1992-04-01

    This document is an attempt to summarize the available analytical chemistry and materials characterization techniques available LLNL. Emphasis of the techniques described is aimed at the variety of samples for which intelligence information is sought and/or applications where sample size would be very limited and duplicate samples are usually not obtainable. Current instrumentation available, types of samples presently being analyzed and a description of the various methods have been provided. LLNL has made an effort during the last three years to develop a forensic science approach to sample analysis. Many of these capabilities are presently utilized, to some degree, for ongoing analysis of unusual samples provided by various sponsor agencies. The analytical techniques utilized, although coordinated through the Special Projects Program, take advantage of the full range of capabilities available at LLNL. This document represents input from several organizations at LLNL, all working together to provide the maximum level of available expertise: Condensed Matter and Analytical Sciences Division of the Materials Science Directorate, Nuclear Chemistry Division of the Defense Sciences Directorate, Center for Accelerator Mass Spectrometry of the Physics Directorate, Biomedical Sciences Division of the Environmental Sciences and Biomedical Directorate, and Applied Technology Division of the Special Projects Program Directorate.

  4. A 16 channel discriminator VME board with enhanced triggering capabilities

    NASA Astrophysics Data System (ADS)

    Borsato, E.; Garfagnini, A.; Menon, G.

    2012-08-01

    Electronics and data acquisition systems used in small and large scale laboratories often have to handle analog signals with varying polarity, amplitude and duration which have to be digitized to be used as trigger signals to validate the acquired data. In the specific case of experiments dealing with ionizing radiation, ancillary particle detectors (for instance plastic scintillators or Resistive Plate Chambers) are used to trigger and select the impinging particles for the experiment. A novel approach using commercial LVDS line receivers as discriminator devices is presented. Such devices, with a proper calibration, can handle positive and negative analog signals in a wide dynamic range (from 20 mV to 800 mV signal amplitude). The clear advantages, with respect to conventional discriminator devices, are reduced costs, high reliability of a mature technology and the possibility of high integration scale. Moreover, commercial discriminator boards with positive input signal and a wide threshold swing are not available on the market. The present paper describes the design and characterization of a VME board capable to handle 16 differential or single-ended input channels. The output digital signals, available independently for each input, can be combined in the board into three independent trigger logic units which provide additional outputs for the end user.

  5. Post Irradiation Capabilities at the Idaho National Laboratory

    SciTech Connect

    Schulthess, J.L.; Robert D. Mariani; Rory Kennedy; Doug Toomer

    2011-08-01

    The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) oversees the research, development, and demonstration activities that ensure nuclear energy remains a viable energy option for the United States. Fuel and material development through fabrication, irradiation, and characterization play a significant role in accomplishing the research needed to support nuclear energy. All fuel and material development requires the understanding of irradiation effects on the fuel performance and relies on irradiation experiments ranging from tests aimed at targeted scientific questions to integral effects under representative and prototypic conditions. The DOE recently emphasized a solution-driven, goal-oriented, science-based approach to nuclear energy development. Nuclear power systems and materials were initially developed during the latter half of the 20th century and greatly facilitated by the United States’ ability and willingness to conduct large-scale experiments. Fifty-two research and test reactors with associated facilities for performing fabrication and pre and post irradiation examinations were constructed at what is now Idaho National Laboratory (INL), another 14 at Oak Ridge National Laboratory (ORNL), and a few more at other national laboratory sites. Building on the scientific advances of the last several decades, our understanding of fundamental nuclear science, improvements in computational platforms, and other tools now enable technological advancements with less reliance on large-scale experimentation.

  6. Post Irradiation Capabilities at the Idaho National Laboratory

    SciTech Connect

    Schulthess, J.L.

    2011-08-01

    The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) oversees the research, development, and demonstration activities that ensure nuclear energy remains a viable energy option for the United States. Fuel and material development through fabrication, irradiation, and characterization play a significant role in accomplishing the research needed to support nuclear energy. All fuel and material development requires the understanding of irradiation effects on the fuel performance and relies on irradiation experiments ranging from tests aimed at targeted scientific questions to integral effects under representative and prototypic conditions. The DOE recently emphasized a solution-driven, goal-oriented, science-based approach to nuclear energy development. Nuclear power systems and materials were initially developed during the latter half of the 20th century and greatly facilitated by the United States ability and willingness to conduct large-scale experiments. Fifty-two research and test reactors with associated facilities for performing fabrication and pre and post irradiation examinations were constructed at what is now Idaho National Laboratory (INL), another 14 at Oak Ridge National Laboratory (ORNL), and a few more at other national laboratory sites. Building on the scientific advances of the last several decades, our understanding of fundamental nuclear science, improvements in computational platforms, and other tools now enable technological advancements with less reliance on large-scale experimentation.

  7. NEW IMPROVEMENTS TO MFIRE TO ENHANCE FIRE MODELING CAPABILITIES

    PubMed Central

    Zhou, L.; Smith, A.C.; Yuan, L.

    2016-01-01

    NIOSH's mine fire simulation program, MFIRE, is widely accepted as a standard for assessing and predicting the impact of a fire on the mine ventilation system and the spread of fire contaminants in coal and metal/nonmetal mines, which has been used by U.S. and international companies to simulate fires for planning and response purposes. MFIRE is a dynamic, transient-state, mine ventilation network simulation program that performs normal planning calculations. It can also be used to analyze ventilation networks under thermal and mechanical influence such as changes in ventilation parameters, external influences such as changes in temperature, and internal influences such as a fire. The program output can be used to analyze the effects of these influences on the ventilation system. Since its original development by Michigan Technological University for the Bureau of Mines in the 1970s, several updates have been released over the years. In 2012, NIOSH completed a major redesign and restructuring of the program with the release of MFIRE 3.0. MFIRE's outdated FORTRAN programming language was replaced with an object-oriented C++ language and packaged into a dynamic link library (DLL). However, the MFIRE 3.0 release made no attempt to change or improve the fire modeling algorithms inherited from its previous version, MFIRE 2.20. This paper reports on improvements that have been made to the fire modeling capabilities of MFIRE 3.0 since its release. These improvements include the addition of fire source models of the t-squared fire and heat release rate curve data file, the addition of a moving fire source for conveyor belt fire simulations, improvement of the fire location algorithm, and the identification and prediction of smoke rollback phenomena. All the improvements discussed in this paper will be termed as MFIRE 3.1 and released by NIOSH in the near future. PMID:27375301

  8. Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability

    PubMed Central

    Ruiz, Oscar N.; Alvarez, Derry; Torres, Cesar; Roman, Laura; Daniell, Henry

    2015-01-01

    Summary Genetic engineering to enhance mercury phytoremediation has been accomplished by expression of the merAB genes that protects the cell by converting Hg[II] into Hg[0] which volatilizes from the cell. A drawback of this approach is that toxic Hg is released back into the environment. A better phytoremediation strategy would be to accumulate mercury inside plants for subsequent retrieval. We report here the development of a transplastomic approach to express the mouse metallothionein gene (mt1) and accumulate mercury in high concentrations within plant cells. Real-time PCR analysis showed that up to 1284 copies of the mt1 gene were found per cell when compared with 1326 copies of the 16S rrn gene, thereby attaining homoplasmy. Past studies in chloroplast transformation used qualitative Southern blots to evaluate indirectly transgene copy number, whereas we used real-time PCR for the first time to establish homoplasmy and estimate transgene copy number and transcript levels. The mt1 transcript levels were very high with 183 000 copies per ng of RNA or 41% the abundance of the 16S rrn transcripts. The transplastomic lines were resistant up to 20 μm mercury and maintained high chlorophyll content and biomass. Although the transgenic plants accumulated high concentrations of mercury in all tissues, leaves accumulated up to 106 ng, indicating active phytoremediation and translocation of mercury. Such accumulation of mercury in plant tissues facilitates proper disposal or recycling. This study reports, for the first time, the use of metallothioniens in plants for mercury phytoremediation. Chloroplast genetic engineering approach is useful to express metal-scavenging proteins for phytoremediation. PMID:21518240

  9. NOAA-EPA's New National Air Quality Forecast Capability: Initial Steps

    NASA Astrophysics Data System (ADS)

    Davidson, P.

    2005-12-01

    In partnership with the US EPA, NOAA has developed, tested and implemented the first two stages of a national air quality forecast capability into the National Weather Service (NWS) operational suite. The initial capability was implemented in September, 2004 and provided ground-level ozone predictions over Northeastern United States. In a program of phased development and testing to expand this capability, the domain has been extended over the entire Eastern United states as of August 31, 2005. Predictions are made with the NOAA-EPA Community Model for Air Quality (CMAQ) driven by NOAA's operational mesoscale weather prediction model (Eta-12). The capability is an end-to-end forecast guidance system providing twice daily predictions of hour-by-hour ground-level ozone concentrations on a 12km grid, disseminated over operational NWS and EPA dataservers. Forecast guidance products are hosted on operational dataservers: fully backed up, with archiving and near-real-time verification in place to monitor forecast accuracy. In order to demonstrate readiness for operational implementation, required accuracy of 90% and reliability of 95% on-time delivery have been demonstrated in the pre-deployment testing. During the Summers of 2004 and 2005, pre-deployment testing of forecast domains over Northeastern US and Eastern US, respectively, have led to operational implementation of the first two stages of the capability. Prior to pre-deployment testing, developmental testing was conducted to demonstrate feasibility of the prototype operational configuration using forecast components for air quality (CMAQ and pollutant emissions pre-processing) adapted from research and assessment simulations. Developmental testing identified priorities for system enhancements needed to improve guidance accuracy; for example: improved model linkage, updated emissions information, improved treatments of solar radiation for photolysis rate estimation, and improved treatments of vertical mixing and

  10. New Capabilities and Results for the National Spherical Torus Experiment

    SciTech Connect

    M.G. Bell, R.E. Bell, D.A. Gates, S.M. Kaye, H. Kugel, B.P. LeBlanc, F.M. Levinton, R. Maingi, J.E. Menard, R. Raman, S.A. Sabbagh, D. Stutman and the NSTX Research Team

    2008-02-29

    The National Spherical Torus Experiment (NSTX) produces plasmas with toroidal aspect ratio as low as 1.25, which can be heated by up to 6 MW High-Harmonic Fast Waves and up to 7 MW of deuterium Neutral Beam Injection. Using new poloidal fields coils, plasmas with cross-section elongation up to 2.7, triangularity 0.8, plasma currents Ip up to 1.5 MA and normalized currents Ip/a·BT up to 7.5 MA/m·T have been achieved. A significant extension of the plasma pulse length, to 1.5 s at a plasma current of 0.7 MA, has been achieved by exploiting the bootstrap and NBI-driven currents to reduce the dissipation of poloidal flux. Inductive plasma startup has been supplemented by Coaxial Helicity Injection (CHI) and the production of persistent current on closed flux surfaces by CHI has now been demonstrated in NSTX. The plasma response to magnetic field perturbations with toroidal mode numbers n = 1 or 3 and the effects on the plasma rotation have been investigated using three pairs of coils outside the vacuum vessel. Recent studies of both MHD stability and of transport benefitted from improved diagnostics, including measurements of the internal poloidal field using the motional Stark effect (MSE). In plasmas with a region of reversed magnetic shear in the core, now confirmed by the MSE data, improved electron confinement has been observed.

  11. Improving National Capability in Biogeochemical Flux Modelling: the UK Environmental Virtual Observatory (EVOp)

    NASA Astrophysics Data System (ADS)

    Johnes, P.; Greene, S.; Freer, J. E.; Bloomfield, J.; Macleod, K.; Reaney, S. M.; Odoni, N. A.

    2012-12-01

    The best outcomes from watershed management arise where policy and mitigation efforts are underpinned by strong science evidence, but there are major resourcing problems associated with the scale of monitoring needed to effectively characterise the sources rates and impacts of nutrient enrichment nationally. The challenge is to increase national capability in predictive modelling of nutrient flux to waters, securing an effective mechanism for transferring knowledge and management tools from data-rich to data-poor regions. The inadequacy of existing tools and approaches to address these challenges provided the motivation for the Environmental Virtual Observatory programme (EVOp), an innovation from the UK Natural Environment Research Council (NERC). EVOp is exploring the use of a cloud-based infrastructure in catchment science, developing an exemplar to explore N and P fluxes to inland and coastal waters in the UK from grid to catchment and national scale. EVOp is bringing together for the first time national data sets, models and uncertainty analysis into cloud computing environments to explore and benchmark current predictive capability for national scale biogeochemical modelling. The objective is to develop national biogeochemical modelling capability, capitalising on extensive national investment in the development of science understanding and modelling tools to support integrated catchment management, and supporting knowledge transfer from data rich to data poor regions, The AERC export coefficient model (Johnes et al., 2007) has been adapted to function within the EVOp cloud environment, and on a geoclimatic basis, using a range of high resolution, geo-referenced digital datasets as an initial demonstration of the enhanced national capacity for N and P flux modelling using cloud computing infrastructure. Geoclimatic regions are landscape units displaying homogenous or quasi-homogenous functional behaviour in terms of process controls on N and P cycling

  12. 3 CFR 8793 - Proclamation 8793 of April 2, 2012. National Financial Capability Month, 2012

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... National Financial Capability Month, we recommit to ensuring everyone has access to the information and... Strategy for Financial Literacy—a comprehensive plan to improve financial education across our country....

  13. Materials Capability Review Los Alamos National Laboratory April 29-May 2, 2012

    SciTech Connect

    Taylor, Antoinette J

    2012-04-20

    Los Alamos National Laboratory (LANL) uses Capability Reviews to assess the quality and institutional integration of science, technology and engineering (STE) and to advise Laboratory Management on the current and future health of LANL STE. The capabilities are deliberately chosen to be crosscutting over the Laboratory and therefore will include experimental, theoretical and simulation disciplines from multiple line organizations. Capability Reviews are designed to provide a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. The principal product of the Capability Review is the report that includes the review committee's assessments, recommendations, and recommendations for STE.

  14. Update: Partnership for the Revitalization of National Wind Tunnel Force Measurement Technology Capability

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.

    2010-01-01

    NASA's Aeronautics Test Program (ATP) chartered a team to examine the issues and risks associated with the lack of funding and focus on force measurement over the past several years, focusing specifically on strain-gage balances. NASA partnered with the U.S. Air Force's Arnold Engineering Development Center (AEDC) to exploit their combined capabilities and take a national level government view of the problem and established the National Force Measurement Technology Capability (NFMTC) project. This paper provides an update on the team's status for revitalizing the government's balance capability with respect to designing, fabricating, calibrating, and using the these critical measurement devices.

  15. Advances in National Capabilities for Consequence Assessment Modeling of Airborne Hazards

    SciTech Connect

    Nasstrom, J; Sugiyama, G; Foster, K; Larsen, S; Kosovic, B; Eme, B; Walker, H; Goldstein, P; Lundquist, J; Pobanz, B; Fulton, J

    2007-11-26

    This paper describes ongoing advancement of airborne hazard modeling capabilities in support of multiple agencies through the National Atmospheric Release Advisory Center (NARAC) and the Interagency Atmospheric Modeling and Atmospheric Assessment Center (IMAAC). A suite of software tools developed by Lawrence Livermore National Laboratory (LLNL) and collaborating organizations includes simple stand-alone, local-scale plume modeling tools for end user's computers, Web- and Internet-based software to access advanced 3-D flow and atmospheric dispersion modeling tools and expert analysis from the national center at LLNL, and state-of-the-science high-resolution urban models and event reconstruction capabilities.

  16. Response capabilities of the National Guard: a focus on domestic disaster medical response.

    PubMed

    Bochicchio, Daniel

    2010-01-01

    The National Guard has a 373-year history of responding to the nation's call to duty for service both at home and abroad (The National Guard Bureau Web site: Available at http://www.ngb.army.mil/default. aspx.). The National Guard (NG) is a constitutionally unique organization (United States Constitution, US Government Printing Office Web site: Available at http://www.gpoaccess.gov/constitution/index.html.). Today's Guard conducts domestic disaster response and civilian assistance missions on a daily basis. Yet, the NG's role, mission, and capabilities are not well-known or understood. The National Response Framework (NRF) places significant responsibility on the local and state disaster planners (Department of Homeland Security: National Response Framework. US Department of Homeland Security, Washington, DC, January 2008). The public health professionals are an integral component of the disaster planning community. It is critical that the public health community be knowledgeable of types and capabilities of all the response assets at their disposal. PMID:20349703

  17. Recent Enhancements to the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Kilgore, W. A.; Balakrishna, S.; Bobbitt, C. W.; Underwood, P.

    2003-01-01

    The National Transonic Facility continues to make enhancements to provide quality data in a safe, efficient and cost effective method for aerodynamic ground testing. Recent enhancements discussed in this paper include the restoration of reliability and improved performance of the heat exchanger systems resulting in the expansion of the NTF air operations envelope. Additionally, results are presented from a continued effort to reduce model dynamics through the use of a new stiffer balance and sting

  18. Recent Enhancements to the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Kilgore, W. A.; Balakrishna, S.; Bobbitt, C. W.; Underwood, P.

    2003-01-01

    The National Transonic Facility continues to make enhancements to provide quality data in a safe, efficient and cost effective method for aerodynamic ground testing. Recent enhancements discussed in this paper include the restoration of reliability and improved performance of the heat exchanger systems resulting in the expansion of the NTF air operations envelope. Additionally, results are presented from a continued effort to reduce model dynamics through the use of a new stiffer balance and sting.

  19. Enhancing Seismic Monitoring Capability for Hydraulic Fracturing Induced Seismicity in Canada

    NASA Astrophysics Data System (ADS)

    Kao, H.; Cassidy, J. F.; Farahbod, A.; Lamontagne, M.

    2012-12-01

    The amount of natural gas produced from unconventional sources, such as the shale gas, has increased dramatically since the last decade. One of the key factors in the success of shale gas production is the application of hydraulic fracturing (also known as "fracking") to facilitate the efficient recovery of natural gas from shale matrices. As the fracking operation becomes routine in all major shale gas fields, its potential to induce local earthquakes at some locations has become a public concern. To address this concern, Natural Resources Canada has initiated a research effort to investigate the potential links between fracking operations and induced seismicity in some major shale gas basins of Canada. This federal-provincial collaborative research aims to assess if shale gas fracking can alter regional pattern of background seismicity and if so, what the relationship between how fracking is conducted and the maximum magnitude of induced seismicity would be. Other objectives include the investigation of the time scale of the interaction between fracking events and induced seismicity and the evaluation of induced seismicity potential for shale gas basins under different tectonic/geological conditions. The first phase of this research is to enhance the detection and monitoring capability for seismicity possibly related to shale gas recovery in Canada. Densification of the Canadian National Seismograph Network (CNSN) is currently underway in northeast British Columbia where fracking operations are taking place. Additional seismic stations are planned for major shale gas basins in other regions where fracking might be likely in the future. All newly established CNSN stations are equipped with broadband seismographs with real-time continuous data transmission. The design goal of the enhanced seismic network is to significantly lower the detection threshold such that the anticipated low-magnitude earthquakes that might be related to fracking operations can be

  20. Materials Capability Review Los Alamos National Laboratory May 4-7, 2009

    SciTech Connect

    Taylor, Antoniette J

    2009-01-01

    Los Alamos National Laboratory (LANL) uses external peer review to measure and continuously improve the quality of its science, technology and engineering (STE). LANL uses capability reviews to assess the STE quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. STE capabilities are define to cut across directorates providing a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g ., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. LANL plans to perform a complete review of the Laboratory's STE capabilities (hence staff) in a three-year cycle. The principal product of an external review is a report that includes the review committee's assessments, commendations, and recommendations for STE. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). This report will be used by Laboratory Management for STE assessment and planning. The report is also provided to the Department of Energy (DOE) as part of LANL's Annual Performance Plan and to the Los Alamos National Security (LANS) LLC's Science and Technology Committee (STC) as part of its responsibilities to the LANS Board of Governors. LANL has defined fourteen STE capabilities. Table 1

  1. National laboratories` capabilities summaries for the DOE Virtual Center for Multiphase Dynamics (VCMD)

    SciTech Connect

    Joyce, E.L.

    1997-03-01

    The Virtual Center For Multiphase Dynamics (VCMD) integrates and develops the resources of industry, government, academia, and professional societies to enable reliable analysis in multiphase computational fluid dynamics. The primary means of the VCMD focus will be by the creation, support, and validation of a computerized simulation capability for multiphase flow and multiphase flow applications. This paper briefly describes the capabilities of the National Laboratories in this effort.

  2. Partnership for the Revitalization of National Wind Tunnel Force Measurement Capability

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.; Skelley, Marcus L.; Woike, Mark R.; Bader, Jon B.; Marshall, Timothy J.

    2009-01-01

    Lack of funding and lack of focus on research over the past several years, coupled with force measurement capabilities being decentralized and distributed across the National Aeronautics and Space Administration (NASA) research centers, has resulted in a significant erosion of (1) capability and infrastructure to produce and calibrate force measurement systems; (2) NASA s working knowledge of those systems; and (3) the quantity of high-quality, full-capability force measurement systems available for use in aeronautics testing. Simultaneously, and at proportional rates, the capability of industry to design, manufacture, and calibrate these test instruments has been eroding primarily because of a lack of investment by the aeronautics community. Technical expertise in this technology area is a core competency in aeronautics testing; it is highly specialized and experience-based, and it represents a niche market for only a few small precision instrument shops in the United States. With this backdrop, NASA s Aeronautics Test Program (ATP) chartered a team to examine the issues and risks associated with the problem, focusing specifically on strain- gage balances. The team partnered with the U.S. Air Force s Arnold Engineering Development Center (AEDC) to exploit their combined capabilities and take a national level government view of the problem. This paper describes the team s approach, its findings, and its recommendations, and the current status for revitalizing the government s balance capability with respect to designing, fabricating, calibrating, and using the instruments.

  3. Developing a Dual-Level Capabilities Approach: Using Constructivist Grounded Theory and Feminist Ethnography to Enhance the Capabilities Approaches

    ERIC Educational Resources Information Center

    Hall, Kia M. Q.

    2014-01-01

    In this study, a dual-level capabilities approach to development is introduced. This approach intends to improve upon individual-focused capabilities approaches developed by Amartya Sen and Martha Nussbaum. Based upon seven months of ethnographic research in the Afro-descendant, autochthonous Garifuna community of Honduras, constructivist grounded…

  4. Los Alamos National Laboratory Training Capabilities (Possible Applications in the Global Initiatives for Proliferation Prevention Program)

    SciTech Connect

    Martin, Olga

    2012-06-04

    The briefing provides an overview of the training capabilities at Los Alamos National Laboratory that can be applied to nonproliferation/responsible science education at nuclear institutes in the Former Soviet Union, as part of the programmatic effort under the Global Initiatives for Proliferation Prevention program (GIPP).

  5. Development of NASA Technical Standards Program Relative to Enhancing Engineering Capabilities

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Vaughan, William W.

    2003-01-01

    The enhancement of engineering capabilities is an important aspect of any organization; especially those engaged in aerospace development activities. Technical Standards are one of the key elements of this endeavor. The NASA Technical Standards Program was formed in 1997 in response to the NASA Administrator s directive to develop an Agencywide Technical Standards Program. The Program s principal objective involved the converting Center-unique technical standards into Agency wide standards and the adoption/endorsement of non-Government technical standards in lieu of government standards. In the process of these actions, the potential for further enhancement of the Agency s engineering capabilities was noted relative to value of being able to access Agencywide the necessary full-text technical standards, standards update notifications, and integration of lessons learned with technical standards, all available to the user from one Website. This was accomplished and is now being enhanced based on feedbacks from the Agency's engineering staff and supporting contractors. This paper addresses the development experiences with the NASA Technical Standards Program and the enhancement of the Agency's engineering capabilities provided by the Program s products. Metrics are provided on significant aspects of the Program.

  6. US Navy Research and Development under the National Earth System Prediction Capability Partnership

    NASA Astrophysics Data System (ADS)

    Reynolds, Carolyn; Peng, Melinda; Jacobs, Gregg; Richman, James; Ridout, James; Eleuterio, Daniel; Whitcomb, Tim

    2016-04-01

    The National Earth System Prediction Capability (National ESPC) is a U.S. multi-agency collaborative effort to leverage resources to develop the next generation earth prediction system. The overarching goal is to meet the need for a new operational global earth system model consisting of high-resolution atmosphere, ocean, ice, land, and space components capable of seamless prediction from hours to decades within the next ten years. This presentation will provide an overview of the US Navy's progress under this ESPC partnership. The Navy is developing a fully coupled global system including the Navy Global Environmental Model (NAVGEM), the HYbrid Coordinate Ocean Model (HYCOM), the Los Alamos Sea Ice Model (CICE), and the Wavewatch III ocean surface wave model. The design and implementation of the coupled architecture uses the earth system modeling framework (ESMF) with the National Unified Operational Prediction Capability (NUOPC) standard. Coupling NAVGEM to CICE reduces low-level polar temperature biases over the stand-alone NAVGEM system. Fully-coupled NAVGEM-HYCOM simulations have smaller SST RMSE and bias than "loosely-coupled" simulations. Fully coupled NAVGEM-HYCOM-CICE monthly and seasonal integrations have been performed for several applications. These include successful reforecasts of the Madden-Julian Oscillation during November 2011, and September minimum sea-ice extent predictions that are in line with other system predictions for 2014 and 2015. Plans for future development, with the goal of demonstrating initial operational capabilities in 2018, will also be presented.

  7. Enhancement of the Feature Extraction Capability in Global Damage Detection Using Wavelet Theory

    NASA Technical Reports Server (NTRS)

    Saleeb, Atef F.; Ponnaluru, Gopi Krishna

    2006-01-01

    The main objective of this study is to assess the specific capabilities of the defect energy parameter technique for global damage detection developed by Saleeb and coworkers. The feature extraction is the most important capability in any damage-detection technique. Features are any parameters extracted from the processed measurement data in order to enhance damage detection. The damage feature extraction capability was studied extensively by analyzing various simulation results. The practical significance in structural health monitoring is that the detection at early stages of small-size defects is always desirable. The amount of changes in the structure's response due to these small defects was determined to show the needed level of accuracy in the experimental methods. The arrangement of fine/extensive sensor network to measure required data for the detection is an "unlimited" ability, but there is a difficulty to place extensive number of sensors on a structure. Therefore, an investigation was conducted using the measurements of coarse sensor network. The white and the pink noises, which cover most of the frequency ranges that are typically encountered in the many measuring devices used (e.g., accelerometers, strain gauges, etc.) are added to the displacements to investigate the effect of noisy measurements in the detection technique. The noisy displacements and the noisy damage parameter values are used to study the signal feature reconstruction using wavelets. The enhancement of the feature extraction capability was successfully achieved by the wavelet theory.

  8. Capability deprivation of people with Alzheimer's disease: An empirical analysis using a national survey.

    PubMed

    Tellez, Juan; Krishnakumar, Jaya; Bungener, Martine; Le Galès, Catherine

    2016-02-01

    How can one assess the quality of life of older people--particularly those with Alzheimer's disease--from the point of view of their opportunities to do valued things in life? This paper is an attempt to answer this question using as a theoretical framework the capability approach. We use data collected on 8841 individuals above 60 living in France (the 2008 Disability and Health Household Survey) and propose a latent variable modelling framework to analyse their capabilities in two fundamental dimensions: freedom to perform self-care activities and freedom to participate in the life of the household. Our results show that living as a couple, having children, being mobile and having access to local shops, health facilities and public services enhance both capabilities. Age, household size and male gender (for one of the two capabilities) act as impediments while the number of impairments reduces both capabilities. We find that people with Alzheimer's disease have a lower level and a smaller range of capabilities (freedom) when compared to those without, even when the latter have several impairments. Hence they need a special attention in policy-making. PMID:26773293

  9. Simple SE Methods Deployed in Revitalizing the Nuclear Post- Irradiation Examination Capability for the Idaho National Laboratory

    SciTech Connect

    Larry R. Zirker; R. Douglas Hamelin; Lori Braase

    2010-07-01

    The “crown jewels” of nuclear energy research facilities (i.e., hot cells, analysis systems, and scientists) have been centered at the Idaho National Laboratory for over 40 years, but in recent years, emphasis and funding for nuclear fuel research and development have declined to adversely affect the readiness and effectiveness of research facilities and equipment. Conversely, the current national nuclear renaissance forces the need for immediate enhancements in facilities, equipment, capabilities, and staff for the post-irradiation examination (PIE) of nuclear fuel. PIE characterizes the “burn-up” and structural integrity of fuel elements and defines the effectiveness of new fuels/alloys in search for optimum fuel burn-up and alloys for current and next generation nuclear reactors. This paper details how a team of system engineers adapted simple system engineering tools and techniques for a customer unfamiliar with the power and effectiveness of system engineering, to achieve project success.

  10. Modern Grid Strategy: Enhanced GridLAB-D Capabilities Final Report

    SciTech Connect

    Schneider, Kevin P.; Fuller, Jason C.; Tuffner, Francis K.; Chen, Yousu

    2009-09-09

    GridLAB-D is a software simulation environment that was initially developed by the US Department of Energy (DOE) Office of Electricity (OE) for the purpose of enabling the effective analysis of emerging smart grid technologies. In order to achieve this goal GridLAB-D was developed using an open source approach with the intent that numerous people and organizations would contribute to the ongoing development. Because of the breadth and complexity of the emerging smart grid technologies the inclusion of multiple groups of developers is essential in order to address the many aspects of the smart grid. As part of the continuing Modern Grid Strategy (MGS) the Pacific Northwest National Laboratory (PNNL) has been tasked with developing an advanced set of GridLAB-D capabilities. These capabilities were developed to enable the analysis of complex use case studies which will allow for multi-disciplinary analysis of smart grid operations. The advanced capabilities which were developed include the implementation of an unbalanced networked power flow algorithm, the implementation of an integrated transmission and distribution system solver, and a set of use cases demonstrating the capabilities of the new solvers.

  11. A new active array MST radar system with enhanced capabilities for high resolution atmospheric observations

    NASA Astrophysics Data System (ADS)

    Durga rao, Meka; Jayaraman, Achuthan; Patra, Amit; Venkat Ratnam, Madineni; Narayana Rao, T.; Kamaraj, Pandian; Jayaraj, Katta; Kmv, Prasad; Kamal Kumar, J.; Raghavendra, J.; Prasad, T. Rajendra; Thriveni, A.; Yasodha, Polisetti

    2016-07-01

    A new version of the 53-MHz MST Radar, using the 1024 solid state Transmit-Receive Modules (TRM), necessary feeder network, multi-channel receiver and a modified radar controller has been established using the existing antenna array of 1024 crossed Yagis. The new system has been configured for steering the beam on a pulse-to-pulse basis in all 360o azimuth and 20o zenith angle, providing enhanced capability to study the Mesosphere-Stratosphere-Troposphere and Ionosphere. The multi channel receiver system has been designed for Spaced Antenna (SA) and Interferometry/ Iamging applications. The new system has also been configured for radiating in circular polarization for its application in the Ionosphere Incoherent Scatter mode. The new active array MST radar at Very-High-Frequency (53-MHz) located at Gadanki (13.45°N, 79.18°E), a tropical station in India, will be used to enhance the observations of winds, turbulence during the passage of convective events over the radar site as deep convection occurs very often at tropical latitudes. The new configuration with enhanced average power, beam agility with multi-channel experiments will be a potential source for studying middle atmosphere and ionosphere. In this paper, we present the system configuration, new capabilities and the first results obtained using the new version of the MST Radar.

  12. Electric Propulsion Interactions Code (EPIC): Recent Enhancements and Goals for Future Capabilities

    NASA Technical Reports Server (NTRS)

    Gardner, Barbara M.; Kuharski, Robert A.; Davis, Victoria A.; Ferguson, Dale C.

    2007-01-01

    The Electric Propulsion Interactions Code (EPIC) is the leading interactive computer tool for assessing the effects of electric thruster plumes on spacecraft subsystems. EPIC, developed by SAIC under the sponsorship of the Space Environments and Effects (SEE) Program at the NASA Marshall Space Flight Center, has three primary modules. One is PlumeTool, which calculates plumes of electrostatic thrusters and Hall-effect thrusters by modeling the primary ion beam as well as elastic scattering and charge-exchange of beam ions with thruster-generated neutrals. ObjectToolkit is a 3-D object definition and spacecraft surface modeling tool developed for use with several SEE Program codes. The main EPIC interface integrates the thruster plume into the 3-D geometry of the spacecraft and calculates interactions and effects of the plume with the spacecraft. Effects modeled include erosion of surfaces due to sputtering, re-deposition of sputtered materials, surface heating, torque on the spacecraft, and changes in surface properties due to erosion and deposition. In support of Prometheus I (JIMO), a number of new capabilities and enhancements were made to existing EPIC models. Enhancements to EPIC include adding the ability to scale and view individual plume components, to import a neutral plume associated with a thruster (to model a grid erosion plume, for example), and to calculate the plume from new initial beam conditions. Unfortunately, changes in program direction have left a number of desired enhancements undone. Variable gridding over a surface and resputtering of deposited materials, including multiple bounces and sticking coefficients, would significantly enhance the erosion/deposition model. Other modifications such as improving the heating model and the PlumeTool neutral plume model, enabling time dependent surface interactions, and including EM1 and optical effects would enable EPIC to better serve the aerospace engineer and electric propulsion systems integrator

  13. Achieving enhanced hole transport capability of Ge1-xSnx alloys through uniaxial compressive strain

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Liang, Renrong; Wang, Jing; Xu, Jun

    2015-11-01

    The hole transport capability of Ge1-xSnx alloys under the uniaxial compressive strain is comprehensively investigated by calculations using the nonlocal empirical pseudopotential method. The results indicate that the [110] uniaxial compressive strain is favorable for the hole transport of Ge1-xSnx alloys. For the [110] uniaxial compression, the strain-parallel hole effective mass of the top most valance band is the smallest, and the corresponding valance band splitting energy is the largest compared with the [100] uniaxial and the (001) biaxial compressive strain. In addition, the large uniaxial compressive strain and the high Sn composition are both beneficial for boosting the hole mobility of strained Ge1-xSnx alloys. The enhanced hole transport capability can be achieved through the [110] uniaxial compressive strain for high-performance Ge1-xSnx pMOSFETs applications.

  14. Destructive analysis capabilities for plutonium and uranium characterization at Los Alamos National Laboratory

    SciTech Connect

    Tandon, Lav; Kuhn, Kevin J; Drake, Lawrence R; Decker, Diana L; Walker, Laurie F; Colletti, Lisa M; Spencer, Khalil J; Peterson, Dominic S; Herrera, Jaclyn A; Wong, Amy S

    2010-01-01

    Los Alamos National Laboratory's (LANL) Actinide Analytical Chemistry (AAC) group has been in existence since the Manhattan Project. It maintains a complete set of analytical capabilities for performing complete characterization (elemental assay, isotopic, metallic and non metallic trace impurities) of uranium and plutonium samples in different forms. For a majority of the customers there are strong quality assurance (QA) and quality control (QC) objectives including highest accuracy and precision with well defined uncertainties associated with the analytical results. Los Alamos participates in various international and national programs such as the Plutonium Metal Exchange Program, New Brunswick Laboratory's (NBL' s) Safeguards Measurement Evaluation Program (SME) and several other inter-laboratory round robin exercises to monitor and evaluate the data quality generated by AAC. These programs also provide independent verification of analytical measurement capabilities, and allow any technical problems with analytical measurements to be identified and corrected. This presentation will focus on key analytical capabilities for destructive analysis in AAC and also comparative data between LANL and peer groups for Pu assay and isotopic analysis.

  15. Development of a Semi-Span Test Capability at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Gatlin, G. M.; Parker, P. A.; Owens, L. R., Jr.

    2001-01-01

    A need for low-speed, high Reynolds number test capabilities has been identified for the design and development of advanced subsonic transport high-lift systems. In support of this need, multiple investigations have been conducted in the National Transonic Facility (NTF) at the NASA Langley Research Center to develop a semi-span testing capability that will provide the low-speed, flight Reynolds number data currently unattainable using conventional sting-mounted, full-span models. Although a semi-span testing capability will effectively double the Reynolds number capability over full-span models, it does come at the expense of contending with the issue of the interaction of the flow over the model with the windtunnel wall boundary layer. To address this issue the size and shape of the semi-span model mounting geometry have been investigated, and the results are presented herein. The cryogenic operating environment of the NTF produced another semi-span test technique issue in that varying thermal gradients have developed on the large semi-span balance. The suspected cause of these thermal gradients and methods to eliminate them are presented. Data are also presented that demonstrate the successful elimination of these varying thermal gradients during cryogenic operations.

  16. The Advanced Test Reactor Irradiation Capabilities Available as a National Scientific User Facility

    SciTech Connect

    S. Blaine Grover

    2008-09-01

    The Advanced Test Reactor (ATR) is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. The ATR is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These capabilities include simple capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. Monitoring systems have also been utilized to monitor different parameters such as fission gases for fuel experiments, to measure specimen performance during irradiation. ATR’s control system provides a stable axial flux profile throughout each reactor operating cycle, and allows the thermal and fast neutron fluxes to be controlled separately in different sections of the core. The ATR irradiation positions vary in diameter from 16 mm to 127 mm over an active core height of 1.2 m. This paper discusses the different irradiation capabilities with examples of different experiments and the cost/benefit issues related to each capability. The recent designation of ATR as a national scientific user facility will make the ATR much more accessible at very low to no cost for research by universities and possibly commercial entities.

  17. Resolved-particle simulation by the Physalis method: Enhancements and new capabilities

    NASA Astrophysics Data System (ADS)

    Sierakowski, Adam J.; Prosperetti, Andrea

    2016-03-01

    We present enhancements and new capabilities of the Physalis method for simulating disperse multiphase flows using particle-resolved simulation. The current work enhances the previous method by incorporating a new type of pressure-Poisson solver that couples with a new Physalis particle pressure boundary condition scheme and a new particle interior treatment to significantly improve overall numerical efficiency. Further, we implement a more efficient method of calculating the Physalis scalar products and incorporate short-range particle interaction models. We provide validation and benchmarking for the Physalis method against experiments of a sedimenting particle and of normal wall collisions. We conclude with an illustrative simulation of 2048 particles sedimenting in a duct. In the appendix, we present a complete and self-consistent description of the analytical development and numerical methods.

  18. Advanced Test Reactor -- Testing Capabilities and Plans AND Advanced Test Reactor National Scientific User Facility -- Partnerships and Networks

    SciTech Connect

    Frances M. Marshall

    2008-07-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world’s premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The physical configuration of the ATR, a 4-leaf clover shape, allows the reactor to be operated at different power levels in the corner “lobes” to allow for different testing conditions for multiple simultaneous experiments. The combination of high flux (maximum thermal neutron fluxes of 1E15 neutrons per square centimeter per second and maximum fast [E>1.0 MeV] neutron fluxes of 5E14 neutrons per square centimeter per second) and large test volumes (up to 122 cm long and 12.7 cm diameter) provide unique testing opportunities. For future research, some ATR modifications and enhancements are currently planned. In 2007 the US Department of Energy designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR for material testing research by a broader user community. This paper provides more details on some of the ATR capabilities, key design features, experiments, and plans for the NSUF.

  19. Test Capability Enhancements to the NASA Langley 8-Foot High Temperature Tunnel

    NASA Technical Reports Server (NTRS)

    Harvin, S. F.; Cabell, K. F.; Gallimore, S. D.; Mekkes, G. L.

    2006-01-01

    The NASA Langley 8-Foot High Temperature Tunnel produces true enthalpy environments simulating flight from Mach 4 to Mach 7, primarily for airbreathing propulsion and aerothermal/thermo-structural testing. Flow conditions are achieved through a methane-air heater and nozzles producing aerodynamic Mach numbers of 4, 5 or 7 and have exit diameters of 8 feet or 4.5 feet. The 12-ft long free-jet test section, housed inside a 26-ft vacuum sphere, accommodates large test articles. Recently, the facility underwent significant upgrades to support hydrocarbon fueled scramjet engine testing and to expand flight simulation capability. The upgrades were required to meet engine system development and flight clearance verification requirements originally defined by the joint NASA-Air Force X-43C Hypersonic Flight Demonstrator Project and now the Air Force X-51A Program. Enhancements to the 8-Ft. HTT were made in four areas: 1) hydrocarbon fuel delivery; 2) flight simulation capability; 3) controls and communication; and 4) data acquisition/processing. The upgrades include the addition of systems to supply ethylene and liquid JP-7 to test articles; a Mach 5 nozzle with dynamic pressure simulation capability up to 3200 psf, the addition of a real-time model angle-of-attack system; a new programmable logic controller sub-system to improve process controls and communication with model controls; the addition of MIL-STD-1553B and high speed data acquisition systems and a classified data processing environment. These additions represent a significant increase to the already unique test capability and flexibility of the facility, and complement the existing array of test support hardware such as a model injection system, radiant heaters, six-component force measurement system, and optical flow field visualization hardware. The new systems support complex test programs that require sophisticated test sequences and precise management of process fluids. Furthermore, the new systems, such

  20. Army National Guard (ARNG) Objective Supply Capability Adaptive Redesign (OSCAR) end-user manual

    SciTech Connect

    Pelath, R.P.; Rasch, K.A.

    1997-12-01

    The Objective Supply Capability Adaptive Redesign (OSCAR) project is designed to identify and develop programs which automate requirements not included in standard army systems. This includes providing automated interfaces between standard army systems at the National Guard Bureau (NGB) level and at the state/territory level. As part of the OSCAR project, custom software has been installed at NGB to streamline management of major end items. This software allows item managers to provide automated disposition on excess equipment to states operating the Standard Army Retail Supply System Objective (SARSS-O). It also accelerates movement of excess assets to improve the readiness of the Army National Guard (ARNG)--while reducing excess on hand. The purpose of the End-User Manual is to provide direction and guidance to the customer for implementing the ARNG Excess Management Program.

  1. Evaluation of national seismograph network detection capabilities: Final report. Volume 2

    SciTech Connect

    McLaughlin, K.L.; Barker, T.G.; Bennett, T.J.

    1997-10-01

    This final report presents detection thresholds, detection probabilities, and location error ellipse projections for the US National Seismic Network (USNSN) with and without real-time cooperative stations in the eastern US. Network simulation methods are used with spectral noise levels at stations in the USNSN and other stations to simulate the processes of excitation, propagation, detection, and processing of seismic phases. The USNSN alone should be capable of detecting 4 or more P waves for shallow crustal earthquakes in nearly all of the eastern and central US at the magnitude 3.8 level. When real-time cooperative stations are used in conjunction with the USNSN, the network should be capable of detecting 4 or more P waves from events 0.2 to 0.3 magnitude units lower. The planned expansion of the USNSN and cooperative stations should improve detection levels by an additional 0.2 to 0.3 magnitudes units in many areas. Location uncertainties for the USNSN should be significantly improved by addition of real-time cooperative stations. Median error ellipses for magnitude 4.5 earthquakes in the eastern and central US depend strongly upon location, but uncertainties should be less than 100 square km in the central US and degrade to 200 square km or more offshore and to the south and north of the international boundaries. Close cooperation with the Canadian National Network should substantially improve detection thresholds and location uncertainties along the Canadian border.

  2. Arctic Observing Network (AON): Enhancing Observing, Data Archiving and Data Discovery Capabilities as Arctic Environmental System Change Continues

    NASA Astrophysics Data System (ADS)

    Jeffries, M. O.

    2008-12-01

    The National Science Foundation (NSF) and the National Oceanic and Atmospheric Administration, under the auspices of the U.S. Inter-Agency Arctic Research Policy Committee, are leading the development of the Arctic Observing Network (AON) as part of the implementation of the Study of Environmental Arctic Change (SEARCH) and as a legacy of International Polar Year (IPY). As the Observing Change component of SEARCH, AON complements the Understanding Change and Responding to Change components. AON addresses the need to enhance observing capabilities in a data-sparse region where environmental system changes are among the most rapid on Earth. AON data will contribute to research into understanding the causes and consequences of Arctic environmental system change and its global connections, and to improving predictive skill. AON is also a contribution to the development of a multi-nation, pan-Arctic observing network that is being discussed at the IPY 'Sustaining Arctic Observing Networks' (SAON) workshops. Enhancing Arctic observing capabilities faces many challenges, including coordination and integration of disparate observing elements and data systems that operate according to diverse policies and practices. There is wide agreement that data systems that provide archiving and discovery services are essential and integral to AON. In recognition of this, NSF is supporting the development of CADIS (Cooperative Arctic Data and Information Service) as an AON portal for data discovery, a repository for data storage, and a platform for data analysis. NSF is also supporting ELOKA (Exchange for Local Observations and Knowledge in the Arctic), a pilot project for a data management and networking service for community- based observing that keeps control of data in the hands of data providers while still allowing for broad searches and sharing of information. CADIS and ELOKA represent the application of cyberinfrastructure to meet AON data system needs that might also

  3. ATR NATIONAL SCIENTIFIC USER FACILITY INSTRUMENTATION ENHANCEMENT EFFORTS

    SciTech Connect

    Joy L. Rempe; Mitchell K. Meyer

    2009-04-01

    A key component of the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) effort is to enhance instrumentation techniques available to users conducting irradiation tests in this unique facility. In particular, development of sensors capable of providing ‘real-time’ measurements of key irradiation parameters is emphasized because of their potential to offer increased fidelity data and reduced post-test examination costs. This paper describes the strategy for identifying new instrumentation needed for ATR irradiations and the program underway to develop and evaluate new sensors to address these needs. Accomplishments from this program are illustrated by describing several new sensors now available to users of the ATR NSUF. In addition, progress is reported on current research efforts to provide users improved in-pile instrumentation.

  4. Large-Scale Testing and High-Fidelity Simulation Capabilities at Sandia National Laboratories to Support Space Power and Propulsion

    SciTech Connect

    Dobranich, Dean; Blanchat, Thomas K.

    2008-01-21

    Sandia National Laboratories, as a Department of Energy, National Nuclear Security Agency, has major responsibility to ensure the safety and security needs of nuclear weapons. As such, with an experienced research staff, Sandia maintains a spectrum of modeling and simulation capabilities integrated with experimental and large-scale test capabilities. This expertise and these capabilities offer considerable resources for addressing issues of interest to the space power and propulsion communities. This paper presents Sandia's capability to perform thermal qualification (analysis, test, modeling and simulation) using a representative weapon system as an example demonstrating the potential to support NASA's Lunar Reactor System.

  5. Transitioning Enhanced Land Surface Initialization and Model Verification Capabilities to the Kenya Meteorological Department (KMD)

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Mungai, John; Sakwa, Vincent; Zavodsky, Bradley T.; Srikishen, Jayanthi; Limaye, Ashutosh; Blankenship, Clay B.

    2016-01-01

    Flooding, severe weather, and drought are key forecasting challenges for the Kenya Meteorological Department (KMD), based in Nairobi, Kenya. Atmospheric processes leading to convection, excessive precipitation and/or prolonged drought can be strongly influenced by land cover, vegetation, and soil moisture content, especially during anomalous conditions and dry/wet seasonal transitions. It is thus important to represent accurately land surface state variables (green vegetation fraction, soil moisture, and soil temperature) in Numerical Weather Prediction (NWP) models. The NASA SERVIR and the Short-term Prediction Research and Transition (SPoRT) programs in Huntsville, AL have established a working partnership with KMD to enhance its regional modeling capabilities. SPoRT and SERVIR are providing experimental land surface initialization datasets and model verification capabilities for capacity building at KMD. To support its forecasting operations, KMD is running experimental configurations of the Weather Research and Forecasting (WRF; Skamarock et al. 2008) model on a 12-km/4-km nested regional domain over eastern Africa, incorporating the land surface datasets provided by NASA SPoRT and SERVIR. SPoRT, SERVIR, and KMD participated in two training sessions in March 2014 and June 2015 to foster the collaboration and use of unique land surface datasets and model verification capabilities. Enhanced regional modeling capabilities have the potential to improve guidance in support of daily operations and high-impact weather and climate outlooks over Eastern Africa. For enhanced land-surface initialization, the NASA Land Information System (LIS) is run over Eastern Africa at 3-km resolution, providing real-time land surface initialization data in place of interpolated global model soil moisture and temperature data available at coarser resolutions. Additionally, real-time green vegetation fraction (GVF) composites from the Suomi-NPP VIIRS instrument is being incorporated

  6. Northwest Trajectory Analysis Capability: A Platform for Enhancing Computational Biophysics Analysis

    SciTech Connect

    Peterson, Elena S.; Stephan, Eric G.; Corrigan, Abigail L.; Lins, Roberto D.; Soares, Thereza A.; Scarberry, Randall E.; Rose, Stuart J.; Williams, Leigh K.; Lai, Canhai; Critchlow, Terence J.; Straatsma, TP

    2008-07-30

    As computational resources continue to increase, the ability of computational simulations to effectively complement, and in some cases replace, experimentation in scientific exploration also increases. Today, large-scale simulations are recognized as an effective tool for scientific exploration in many disciplines including chemistry and biology. A natural side effect of this trend has been the need for an increasingly complex analytical environment. In this paper, we describe Northwest Trajectory Analysis Capability (NTRAC), an analytical software suite developed to enhance the efficiency of computational biophysics analyses. Our strategy is to layer higher-level services and introduce improved tools within the user’s familiar environment without preventing researchers from using traditional tools and methods. Our desire is to share these experiences to serve as an example for effectively analyzing data intensive large scale simulation data.

  7. The Capabilities Approach: Fostering contexts for enhancing mental health and wellbeing across the globe.

    PubMed

    White, Ross G; Imperiale, Maria Grazia; Perera, Em

    2016-01-01

    Concerted efforts have been made in recent years to achieve equity and equality in mental health for all people across the globe. This has led to the emergence of Global Mental Health as an area of study and practice. The momentum that this has created has contributed to the development, implementation and evaluation of services for priority mental disorders in many low- and middle-income countries.This paper discusses two related issues that may be serving to limit the success of mental health initiatives across the globe, and proposes potential solutions to these issues. First, there has been a lack of sophistication in determining what constitutes a 'good outcome' for people experiencing mental health difficulties. Even though health is defined and understood as a state of 'wellbeing' and not merely an absence of illness, mental health interventions tend to narrowly focus on reducing symptoms of mental illness. The need to also focus more broadly on enhancing subjective wellbeing is highlighted. The second limitation relates to the lack of an overarching theoretical framework guiding efforts to reduce inequalities and inequities in mental health across the globe. This paper discusses the potential impact that the Capabilities Approach (CA) could have for addressing both of these issues. As a framework for human development, the CA places emphasis on promoting wellbeing through enabling people to realise their capabilities and engage in behaviours that they subjectively value. The utilization of the CA to guide the development and implementation of mental health interventions can help Global Mental Health initiatives to identify sources of social inequality and structural violence that may impede freedom and individuals' opportunities to realise their capabilities. PMID:27150600

  8. The National Polar-orbiting Operational Environmental Satellite System:Capabilities for Operational Land Remote Sensing

    NASA Astrophysics Data System (ADS)

    Hoffman, C. W.; Schneider, S.; Murphy, R.

    2005-12-01

    Over the last decade, the tri-agency Integrated Program Office (IPO), comprised of the National Oceanic and Atmospheric Administration (NOAA), the Department of Defense (DoD), and the National Aeronautics and Space Administration (NASA), has been managing the development of the National Polar-orbiting Operational Environmental Satellite System (NPOESS). Once operational later this decade, NPOESS will replace NOAA's Polar-orbiting Operational Environmental Satellites (POES) and DoD's Defense Meteorological Satellite Program (DMSP) systems. The IPO, through its Acquisition and Operations contractor, Northrop Grumman, will launch NPOESS spacecraft into three orbital planes to provide a single, national system capable of satisfying both civil and national security requirements for space-based, remotely sensed environmental data. With the development of NPOESS, we are evolving the existing "weather" satellites into integrated environmental observing systems by expanding our capabilities to observe, assess, and predict the total Earth system - ocean, atmosphere, land, and the space environment. NPOESS will transform today's short-term, space-based ocean research missions into a sustained, operational ocean remote sensing observation program. Land measurements comprise seven of the fifty-five user-validated requirements for geophysical measurements that will be made by NPOESS sensors. In 1997, the IPO initiated a robust sensor risk reduction effort for early development of the critical sensor suites and algorithms necessary to support NPOESS. In 2001, preliminary design efforts were completed for the last of five critical imaging/sounding instruments for NPOESS. Land requirements have directly and substantially "driven" the design of two NPOESS sensors: the Visible/Infrared Imager Radiometer Suite (VIIRS) and the Conical-scanning Microwave Imager/Sounder (CMIS). Compared to the predecessor operational systems, NPOESS will deliver higher resolution (spatial and temporal

  9. Design Guidelines for Shielding Effectiveness, Current Carrying Capability, and the Enhancement of Conductivity of Composite Materials

    NASA Technical Reports Server (NTRS)

    Evans, R. W.

    1997-01-01

    These guidelines address the electrical properties of composite materials which may have an effect on electromagnetic compatibility (EMC). The main topics of the guidelines include the electrical shielding, fault current return, and lightning protection capabilities of graphite reinforced polymers, since they are somewhat conductive but may require enhancement to be adequate for EMC purposes. Shielding effectiveness depends heavily upon the conductivity of the material. Graphite epoxy can provide useful shielding against RF signals, but it is approximately 1,000 times more resistive than good conductive metals. The reduced shielding effectiveness is significant but is still useful in many cases. The primary concern is with gaps and seams in the material just as it is with metal. Current carrying capability of graphite epoxy is adequate for dissipation static charges, but fault currents through graphite epoxy may cause fire at the shorting contact and at joints. The effect of lightning on selected graphite epoxy material and mating surfaces is described, and protection methods are reviewed.

  10. l-Theanine prevents alcoholic liver injury through enhancing the antioxidant capability of hepatocytes.

    PubMed

    Li, Guilan; Ye, Yin; Kang, Jingjing; Yao, Xiangyang; Zhang, Yizhou; Jiang, Wei; Gao, Min; Dai, Yudong; Xin, Yinqiang; Wang, Qi; Yin, Zhimin; Luo, Lan

    2012-02-01

    l-Theanine is a unique amino acid in green tea. We here evaluated the protective effects of l-theanine on ethanol-induced liver injury in vitro and in vivo. Our results revealed that l-theanine significantly protected hepatocytes against ethanol-induced cell cytotoxicity which displayed by decrease of viability and increase of LDH and AST. Furthermore, the experiments of DAPI staining, pro-caspase3 level and PARP cleavage determination indicated that l-theanine inhibited ethanol-induced L02 cell apoptosis. Mechanically, l-theanine inhibited loss of mitochondrial membrane potential and prevented cytochrome c release from mitochondria in ethanol-treated L02 cells. l-Theanine also prevented ethanol-triggered ROS and MDA generation in L02 cells. l-Theanine restored the antioxidant capability of hepatocytes including GSH content and SOD activity which were reduced by ethanol. In vivo experiments showed that l-theanine significantly inhibited ethanol-stimulated the increase of ALT, AST, TG and MDA in mice. Histopathological examination demonstrated that l-theanine pretreated to mice apparently diminished ethanol-induced fat droplets. In accordance with the in vitro study, l-theanine significantly inhibited ethanol-induced reduction of mouse antioxidant capability which included the activities of SOD, CAT and GR, and level of GSH. These results indicated that l-theanine prevented ethanol-induced liver injury through enhancing hepatocyte antioxidant abilities. PMID:22019691

  11. Synthetic Vision Enhances Situation Awareness and RNP Capabilities for Terrain-Challenged Approaches

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Prinzel, Lawrence J., III; Bailey, Randall E.; Arthur, Jarvis J., III

    2003-01-01

    The Synthetic Vision Systems (SVS) Project of Aviation Safety Program is striving to eliminate poor visibility as a causal factor in aircraft accidents as well as enhance operational capabilities of all aircraft through the display of computer generated imagery derived from an onboard database of terrain, obstacle, and airport information. To achieve these objectives, NASA 757 flight test research was conducted at the Eagle-Vail, Colorado airport to evaluate three SVS display types (Head-Up Display, Head-Down Size A, Head-Down Size X) and two terrain texture methods (photo-realistic, generic) in comparison to the simulated Baseline Boeing-757 Electronic Attitude Direction Indicator and Navigation / Terrain Awareness and Warning System displays. These independent variables were evaluated for situation awareness, path error, and workload while making approaches to Runway 25 and 07 and during simulated engine-out Cottonwood 2 and KREMM departures. The results of the experiment showed significantly improved situation awareness, performance, and workload for SVS concepts compared to the Baseline displays and confirmed the retrofit capability of the Head-Up Display and Size A SVS concepts. The research also demonstrated that the pathway and pursuit guidance used within the SVS concepts achieved required navigation performance (RNP) criteria.

  12. National transportable telecommunications capability - Commercial satellite and cellular communications for emergency preparedness

    NASA Astrophysics Data System (ADS)

    Boheim, Kenneth B.; Council, Ronald J.

    1992-03-01

    A quick-reaction emergency satellite, cellular and microwave communications package known as the National Transportable Telecommunications Capability (NTTC) is discussed. The NTTC is designed to restore 'last mile' connectivity to remote or isolated areas in the U.S. or abroad that have been devastated by hurricanes, earthquakes, or other natural or manmade disasters. The NTTC is self-contained for rapid airlift in a single C-130 military transport, or may be transported by land or sea as appropriate. The NTTC operates over a Ku-band domestic satellite back into a gateway station and into the Public Switched Network, FTS-2000, and other military networks. Built with commercial off-the-shelf components, the NTTC is designed to respond to the telecommunication needs of critical NS/EP functions and users.

  13. Siting study for a consolidated waste capability at Los Alamos National Laboratory

    SciTech Connect

    Booth, Steven Richard

    2011-01-26

    Decision analysis was used to rank alternative sites for a new Consolidated Waste Capability (CWC) to replace current hazardous solid waste operations (hazardous/chemical, mixed lowlevel, transuranic, and low-level waste) at Los Alamos National Laboratory's TA-54 Area G. An original list of 21 site alternatives was pre-screened to ten sites that were assessed using the analytical hierarchy process with five top-level criteria and fifteen sub-criteria. Three passes of the analysis were required to assess different site scenarios: 1) a fully consolidated CWC with both transfer/storage and LL W disposal in one location (45 acre minimum), 2) CWC transfer/storage only (12 acre minimum), and 3) LLW disposal only (33 acre minimum). The top site choice for all three options is TA-63/52/46; the second choice is TA-18/36. TA-54 East, Zone 4 also deserves consideration as a LLW disposal site.

  14. Capabilities for high explosive pulsed power research at Los Alamos National Laboratory

    SciTech Connect

    Goforth, James H; Oona, Henn; Tasker, Douglas G; Kaul, A M

    2008-01-01

    Research on topics requiring high magnetic fields and high currents have been pursued using high explosive pulsed power (HEPP) techniques since the 1950s at Los Alamos National Laboratory. We have developed many sophisticated HEPr systems through the years, and most of them depend on technology available from the nuclear weapons program. Through the 1980s and 1990s, our budgets would sustain parallel efforts in zpinch research using both HEPr and capacitor banks. In recent years, many changes have occurred that are driven by concerns such as safety, security, and environment, as well as reduced budgets and downsizing of the National Nuclear Security Administration (NNSA) complex due to the end of the cold war era. In this paper, we review the teclmiques developed to date, and adaptations that are driven by changes in budgets and our changing complex. One new Ranchero-based solid liner z-pinch experimental design is also presented. Explosives that are cast to shape instead of being machined, and initiation systems that depend on arrays of slapper detonators are important new tools. Some materials that are seen as hazardous to the environment are avoided in designs. The process continues to allow a wide range of research however, and there are few, if any, experiments that we have done in the past that could not be perform today. The HErr firing facility at Los Alamos continues to have a 2000 lb. high explosive limit, and our 2.4 MJ capacitor bank remains a mainstay of the effort. Modem diagnostic and data analysis capabilities allow fewer personnel to achieve better results, and in the broad sense we continue to have a robust capability.

  15. Evaluation of National Seismograph Network detection capabilities. Annual report, July 1994--July 1995: Volume 1

    SciTech Connect

    McLaughlin, K.L.; Bennett, T.J.

    1996-03-01

    This first annual report presents detection thresholds and probabilities, and location error ellipse projects for the United States National Seismic Network (USNSN) with and without cooperative stations in the eastern US. Network simulation methods are used with spectral noise levels at stations to simulate the processes of excitation, propagation, detection, and processing of seismic phases. USNSN alone should be capable of detecting 4 or more P waves for shallow crustal earthquakes in nearly all the eastern and central US at magnitude 3.8 level. When cooperative stations are added, the network should be able to detect 4 or more P waves from events 0.2 to 0.3 magnitude units lower. Planned expansion of USNSN and cooperative stations should improve detection levels by an additional 0.2-0.3 magnitudes units in many areas. Location uncertainties for USNSN can be improved by adding real-time cooperative stations. Median error ellipses for magnitude 4.5 earthquakes depend strongly on location, but uncertainties should be less than 100 km{sup 2} in the central US and degrade to 200 km{sup 2} or more offshore and sosuth and north of the international boundaries. Close cooperation with the Canadian National Network should substantially improve detection thresholds and location uncertainties along the Canadian border.

  16. Use of Air Quality Observations by the National Air Quality Forecast Capability

    NASA Astrophysics Data System (ADS)

    Stajner, I.; McQueen, J.; Lee, P.; Stein, A. F.; Kondragunta, S.; Ruminski, M.; Tong, D.; Pan, L.; Huang, J. P.; Shafran, P.; Huang, H. C.; Dickerson, P.; Upadhayay, S.

    2015-12-01

    The National Air Quality Forecast Capability (NAQFC) operational predictions of ozone and wildfire smoke for the United States (U.S.) and predictions of airborne dust for continental U.S. are available at http://airquality.weather.gov/. NOAA National Centers for Environmental Prediction (NCEP) operational North American Mesoscale (NAM) weather predictions are combined with the Community Multiscale Air Quality (CMAQ) model to produce the ozone predictions and test fine particulate matter (PM2.5) predictions. The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model provides smoke and dust predictions. Air quality observations constrain emissions used by NAQFC predictions. NAQFC NOx emissions from mobile sources were updated using National Emissions Inventory (NEI) projections for year 2012. These updates were evaluated over large U.S. cities by comparing observed changes in OMI NO2 observations and NOx measured by surface monitors. The rate of decrease in NOx emission projections from year 2005 to year 2012 is in good agreement with the observed changes over the same period. Smoke emissions rely on the fire locations detected from satellite observations obtained from NESDIS Hazard Mapping System (HMS). Dust emissions rely on a climatology of areas with a potential for dust emissions based on MODIS Deep Blue aerosol retrievals. Verification of NAQFC predictions uses AIRNow compilation of surface measurements for ozone and PM2.5. Retrievals of smoke from GOES satellites are used for verification of smoke predictions. Retrievals of dust from MODIS are used for verification of dust predictions. In summary, observations are the basis for the emissions inputs for NAQFC, they are critical for evaluation of performance of NAQFC predictions, and furthermore they are used in real-time testing of bias correction of PM2.5 predictions, as we continue to work on improving modeling and emissions important for representation of PM2.5.

  17. Strengthening Climate Services Capabilities and Regional Engagement at NOAA's National Climatic Data Center

    NASA Astrophysics Data System (ADS)

    Shea, E.

    2008-12-01

    Information System (PaCIS) as a regional climate service prototype; and ongoing planning for enhanced climate services activities at NCDC in the context of discussions of a national climate service.

  18. Enhanced methods for determining operational capabilities and support costs of proposed space systems

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles

    1993-01-01

    This report documents the work accomplished during the first two years of research to provide support to NASA in predicting operational and support parameters and costs of proposed space systems. The first year's research developed a methodology for deriving reliability and maintainability (R & M) parameters based upon the use of regression analysis to establish empirical relationships between performance and design specifications and corresponding mean times of failure and repair. The second year focused on enhancements to the methodology, increased scope of the model, and software improvements. This follow-on effort expands the prediction of R & M parameters and their effect on the operations and support of space transportation vehicles to include other system components such as booster rockets and external fuel tanks. It also increases the scope of the methodology and the capabilities of the model as implemented by the software. The focus is on the failure and repair of major subsystems and their impact on vehicle reliability, turn times, maintenance manpower, and repairable spares requirements. The report documents the data utilized in this study, outlines the general methodology for estimating and relating R&M parameters, presents the analyses and results of application to the initial data base, and describes the implementation of the methodology through the use of a computer model. The report concludes with a discussion on validation and a summary of the research findings and results.

  19. Development and integration of Raman imaging capabilities to Sandia National Laboratories hyperspectral fluorescence imaging instrument.

    SciTech Connect

    Timlin, Jerilyn Ann; Nieman, Linda T.

    2005-11-01

    Raman spectroscopic imaging is a powerful technique for visualizing chemical differences within a variety of samples based on the interaction of a substance's molecular vibrations with laser light. While Raman imaging can provide a unique view of samples such as residual stress within silicon devices, chemical degradation, material aging, and sample heterogeneity, the Raman scattering process is often weak and thus requires very sensitive collection optics and detectors. Many commercial instruments (including ones owned here at Sandia National Laboratories) generate Raman images by raster scanning a point focused laser beam across a sample--a process which can expose a sample to extreme levels of laser light and requires lengthy acquisition times. Our previous research efforts have led to the development of a state-of-the-art two-dimensional hyperspectral imager for fluorescence imaging applications such as microarray scanning. This report details the design, integration, and characterization of a line-scan Raman imaging module added to this efficient hyperspectral fluorescence microscope. The original hyperspectral fluorescence instrument serves as the framework for excitation and sample manipulation for the Raman imaging system, while a more appropriate axial transmissive Raman imaging spectrometer and detector are utilized for collection of the Raman scatter. The result is a unique and flexible dual-modality fluorescence and Raman imaging system capable of high-speed imaging at high spatial and spectral resolutions. Care was taken throughout the design and integration process not to hinder any of the fluorescence imaging capabilities. For example, an operator can switch between the fluorescence and Raman modalities without need for extensive optical realignment. The instrument performance has been characterized and sample data is presented.

  20. MAINTAINING HIGH RESOLUTION MASS SPECTROMETRY CAPABILITIES FOR NATIONAL NUCLEAR SECURITY ADMINISTRATION APPLICATIONS

    SciTech Connect

    Wyrick, S.; Cordaro, J.; Reeves, G.; Mcintosh, J.; Mauldin, C.; Tietze, K.; Varble, D.

    2011-06-06

    The Department of Energy (DOE) National Nuclear Security Administration (NNSA) has a specialized need for analyzing low mass gas species at very high resolutions. The currently preferred analytical method is electromagnetic sector mass spectrometry. This method allows the NNSA Nuclear Security Enterprise (NSE) to resolve species of similar masses down to acceptable minimum detection limits (MDLs). Some examples of these similar masses are helium-4/deuterium and carbon monoxide/nitrogen. Through the 1980s and 1990s, there were two vendors who supplied and supported these instruments. However, with declining procurements and down turns in the economy, the supply of instruments, service and spare parts from these vendors has become less available, and in some cases, nonexistent. The largest NSE user of this capability is the Savannah River Site (SRS), located near Aiken, South Carolina. The Research and Development Engineering (R&DE) Group in the Savannah River National Laboratory (SRNL) investigated the areas of instrument support that were needed to extend the life cycle of these aging instruments. Their conclusions, as to the focus areas of electromagnetic sector mass spectrometers to address, in order of priority, were electronics, software and hardware. Over the past 3-5 years, the R&DE Group has designed state of the art electronics and software that will allow high resolution legacy mass spectrometers, critical to the NNSA mission, to be operated for the foreseeable future. The funding support for this effort has been from several sources, including the SRS Defense Programs, NNSA Readiness Campaign, Pantex Plant and Sandia National Laboratory. To date, electronics systems have been upgraded on one development system at SRNL, two production systems at Pantex and one production system at Sandia National Laboratory. An NSE working group meets periodically to review strategies going forward. The R&DE Group has also applied their work to the electronics for a

  1. National Aeronautics and Space Administration (NASA) Environmental Control and Life Support (ECLS) Capability Roadmap Development for Exploration

    NASA Technical Reports Server (NTRS)

    Bagdigian, Robert M.; Carrasquillo, Robyn L.; Metcalf, Jordan; Peterson, Laurie

    2012-01-01

    NASA is considering a number of future human space exploration mission concepts. Although detailed requirements and vehicle architectures remain mostly undefined, near-term technology investment decisions need to be guided by the anticipated capabilities needed to enable or enhance the mission concepts. This paper describes a roadmap that NASA has formulated to guide the development of Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) and enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro gravity mission; 2) a long duration transit microgravity mission; and 3) a long duration surface exploration mission. To organize the effort, ECLSS was categorized into three major functional groups (atmosphere, water, and solid waste management) with each broken down into sub-functions. The ability of existing, flight-proven state-of-the-art (SOA) technologies to meet the functional needs of each of the three mission types was then assessed. When SOA capabilities fell short of meeting the needs, those "gaps" were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The resulting list of enabling and enhancing capability gaps can be used to guide future ECLSS development. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies needed to enable and enhance exploration may be developed in a manner that synergistically benefits the ISS operational capability, supports Multi-Purpose Crew Vehicle (MPCV) development, and sustains long-term technology investments for longer duration missions. This paper summarizes NASA s ECLSS capability roadmap

  2. Lawrence Livermore National Laboratory Emergency Response Capability 2009 Baseline Needs Assessment Performance Assessment

    SciTech Connect

    Sharry, J A

    2009-12-30

    This document was prepared by John A. Sharry, LLNL Fire Marshal and Division Leader for Fire Protection and was reviewed by Sandia/CA Fire Marshal, Martin Gresho. This document is the second of a two-part analysis of Emergency Response Capabilities of Lawrence Livermore National Laboratory. The first part, 2009 Baseline Needs Assessment Requirements Document established the minimum performance criteria necessary to meet mandatory requirements. This second part analyses the performance of Lawrence Livermore Laboratory Emergency Management Department to the contents of the Requirements Document. The document was prepared based on an extensive review of information contained in the 2004 BNA, a review of Emergency Planning Hazards Assessments, a review of building construction, occupancy, fire protection features, dispatch records, LLNL alarm system records, fire department training records, and fire department policies and procedures. On October 1, 2007, LLNL contracted with the Alameda County Fire Department to provide emergency response services. The level of service called for in that contract is the same level of service as was provided by the LLNL Fire Department prior to that date. This Compliance Assessment will evaluate fire department services beginning October 1, 2008 as provided by the Alameda County Fire Department.

  3. Mach Stability Improvements Using an Existing Second Throat Capability at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Chan, David T.; Balakrishna, Sundareswara; Walker, Eric L.; Goodliff, Scott L.

    2015-01-01

    Recent data quality improvements at the National Transonic Facility have an intended goal of reducing the Mach number variation in a data point to within plus or minus 0.0005, with the ultimate goal of reducing the data repeatability of the drag coefficient for full-span subsonic transport models at transonic speeds to within half a drag count. This paper will discuss the Mach stability improvements achieved through the use of an existing second throat capability at the NTF to create a minimum area at the end of the test section. These improvements were demonstrated using both the NASA Common Research Model and the NTF Pathfinder-I model in recent experiments. Sonic conditions at the throat were verified using sidewall static pressure data. The Mach variation levels from both experiments in the baseline tunnel configuration and the choked tunnel configuration will be presented and the correlation between Mach number and drag will also be examined. Finally, a brief discussion is given on the consequences of using the second throat in its location at the end of the test section.

  4. High heat flux testing capabilities at Sandia National Laboratories - New Mexico

    SciTech Connect

    Youchison, D.L.; McDonald, J.M.; Wold, L.S.

    1994-12-31

    High heat flux testing for the United States fusion power program is the primary mission of the Plasma Materials Test Facility (PMTF) located at Sandia National Laboratories - New Mexico. This facility, which is owned by the United States Department of Energy, has been in operation for over 17 years and has provided much of the high heat flux data used in the design and evaluation of plasma facing components for many of the world`s magnetic fusion, tokamak experiments. In addition to domestic tokamaks such as Tokamak Fusion Test Reactor (TFTR) at Princeton and the DIII-D tokamak at General Atomics, components for international experiments like TEXTOR, Tore-Supra, and JET also have been tested at the PMTF. High heat flux testing spans a wide spectrum including thermal shock tests on passively cooled materials, thermal response and thermal fatigue tests on actively cooled components, critical heat flux-burnout tests, braze reliability tests and safety related tests. The objective of this article is to provide a brief overview of the high heat flux testing capabilities at the PMTF and describe a few of the experiments performed over the last year.

  5. Providing the Nation a Significant "High-Test Peroxide" Propulsion Test Capability

    NASA Technical Reports Server (NTRS)

    Bruce, R.; Taylor, G.; Beckmeyer, D.; Warren, S.; Dracon, S.; Powell, B.; Goodwin, D.; Rieder, P.; Nichols, R.

    1999-01-01

    Renewed interest in high-test peroxide, as a propellant, required the development of a facility capable of testing rocket propulsion systems. The development of this capability at the NASA Stennis Space Center (SSC), MS, focused on meeting this requirement. The challenges, accomplishments, and lessons learned associated with developing the SSC E3 Test Facility's high-test peroxide capability are presented herein.

  6. FTIR (Fourier transform infrared) spectrophotometry for thin film monitors: Computer and equipment integration for enhanced capabilities

    SciTech Connect

    Cox, J.N.; Sedayao, J.; Shergill, G.; Villasol, R. ); Haaland, D.M. )

    1990-01-01

    Fourier transform infrared spectrophotometry (FTIR) is a valuable technique for monitoring thin films used in semiconductor device manufacture. Determinations of the constituent contents in borophosphosilicate (BPSG), phosphosilicate (PSG), silicon oxynitride (SiON:H,OH), and spin-on-glass (SOG) thin films are a few applications. Due to the nature of the technique, FTIR instrumentation is one of the most extensively computer-dependent pieces of equipment that is likely to be found in a microelectronics plant. In the role of fab monitor or reactor characterization tool, FTIR instruments can rapidly generate large amounts of data. By linking a local FTIR data station to a remote minicomputer its capabilities are greatly improved. We discuss three caused of enhancement. First, the FTIR in the fab area communicates and interacts in real time with the minicomputer: transferring data segments to it, instructing it to perform sophisticated processing, and returning the result to the operator in the fab. Characterizations of PSG thin films by this approach are discussed. Second, the spectra of large numbers of samples are processed locally. The large database is then transmitted to the minicomputer for study by statistical/graphics software. Results of CVD-reactor spatial profiling experiments for plasma SiON are presented. Third, processing of calibration spectra is performed on the minicomputer to optimize the accuracy and precision of a Partial Least Squares'' analysis mode. This model is then transferred to the data station in the fab. The analysis of BPSG thin films is discussed in this regard. The prospects for fully automated at-line monitoring and for real-time, in-situ monitoring will be discussed. 10 refs., 4 figs.

  7. Lawrence Livermore National Laboratory Emergency Response Capability Baseline Needs Assessment Requirement Document

    SciTech Connect

    Sharry, J A

    2009-12-30

    This revision of the LLNL Fire Protection Baseline Needs Assessment (BNA) was prepared by John A. Sharry, LLNL Fire Marshal and LLNL Division Leader for Fire Protection and reviewed by Martin Gresho, Sandia/CA Fire Marshal. The document follows and expands upon the format and contents of the DOE Model Fire Protection Baseline Capabilities Assessment document contained on the DOE Fire Protection Web Site, but only address emergency response. The original LLNL BNA was created on April 23, 1997 as a means of collecting all requirements concerning emergency response capabilities at LLNL (including response to emergencies at Sandia/CA) into one BNA document. The original BNA documented the basis for emergency response, emergency personnel staffing, and emergency response equipment over the years. The BNA has been updated and reissued five times since in 1998, 1999, 2000, 2002, and 2004. A significant format change was performed in the 2004 update of the BNA in that it was 'zero based.' Starting with the requirement documents, the 2004 BNA evaluated the requirements, and determined minimum needs without regard to previous evaluations. This 2010 update maintains the same basic format and requirements as the 2004 BNA. In this 2010 BNA, as in the previous BNA, the document has been intentionally divided into two separate documents - the needs assessment (1) and the compliance assessment (2). The needs assessment will be referred to as the BNA and the compliance assessment will be referred to as the BNA Compliance Assessment. The primary driver for separation is that the needs assessment identifies the detailed applicable regulations (primarily NFPA Standards) for emergency response capabilities based on the hazards present at LLNL and Sandia/CA and the geographical location of the facilities. The needs assessment also identifies areas where the modification of the requirements in the applicable NFPA standards is appropriate, due to the improved fire protection provided, the

  8. Automated alignment of the Advanced Radiographic Capability (ARC) target area at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Roberts, Randy S.; Awwal, Abdul A. S.; Bliss, Erlan S.; Heebner, John E.; Leach, Richard R.; Orth, Charles D.; Rushford, Michael C.; Lowe-Webb, Roger R.; Wilhelmsen, Karl C.

    2015-09-01

    The Advanced Radiographic Capability (ARC) at the National Ignition Facility (NIF) is a petawatt-class, short-pulse laser system designed to provide x-ray backlighting of NIF targets. ARC uses four NIF beamlines to produce eight beamlets to create a sequence of eight images of an imploding fuel capsule using backlighting targets and diagnostic instrumentation. ARC employs a front end that produces two pulses, chirps the pulses out to 2 ns, and then injects the pulses into the two halves of each of four NIF beamlines. These pulses are amplified by NIF pre- and main amplifiers and transported to compressor vessels located in the NIF target area. The pulses are then compressed and pointed into the NIF target chamber where they impinge upon an array of backlighters. The interaction of the ARC laser pulses and the backlighting material produces bursts of high-energy x-rays that illuminate an imploding fuel capsule. The transmitted x-rays are imaged by diagnostic instrumentation to produce a sequence of radiograph images. A key component of the success of ARC is the automatic alignment system that accomplishes the precise alignment of the beamlets to avoid damaging equipment and to ensure that the beamlets are directed onto the tens-of-microns scale backlighters. In this paper, we describe the ARC automatic alignment system, with emphasis on control loops used to align the beampaths. We also provide a detailed discussion of the alignment image processing, because it plays a critical role in providing beam centering and pointing information for the control loops.

  9. Mission Enabling and Enhancing Spacecraft Capabilities with MicroNewton Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Marrese-Reading, Colleen M.; Ziemer, John K.; Scharf, Daniel; Martin-Mur, Tomas; Thompson, Paul; Wirz, Richie; Mueller, Juergen

    2010-01-01

    The capability to significantly improve current spacecraft pointing, precision orbit maintenance and disturbance mitigation were considered using precision, quiescent microNewton electric propulsion systems. Analysis results showed that electric propulsion systems operating in the microNewton to hundreds of microNewtons thrust range can offer significant improvements over state-of-the-art mission capabilities to enable 30 m Earth-fixed orbital tubes, constellation spacecraft position control to within nanometers and exoplanet observatory pointing with 0.1 milliarcsecond precision. Specific thrust levels and profiles required to support these capabilities are discussed.

  10. Transformational Spaceport and Range Capabilities Roadmap Interim Review to National Research Council External Review Panel

    NASA Technical Reports Server (NTRS)

    Poniatowski, Karen

    2005-01-01

    Contents include the following: Overview/Introduction. Roadmap Approach/Considerations. Roadmap Timeline/Spirals. Requirements Development. Spaceport/Range Capabilities. Mixed Range Architecture. User Requirements/Customer Considerations. Manifest Considerations. Emerging Launch User Requirements. Capability Breakdown Structure/Assessment. Roadmap Team Observations. Transformational Range Test Concept. Roadmap Team Conclusions. Next Steps.

  11. ICEPOD - Developing Ice Imaging Capabilities for the New York Air National Guard's LC-130 Aircraft

    NASA Astrophysics Data System (ADS)

    Detemple, J.; Frearson, N.; Zappa, C. J.; Turrin, M.; Bell, R. E.

    2010-12-01

    The ICEPOD program is a 5-year development effort to develop a polar instrumentation suite for the New York Air National Guard’s (NYANG) LC-130’s supported by the NSF American Reinvestment and Recovery Act (ARRA) Major Research Instrumentation program. The fundamental goal of the ICEPOD program is to develop an instrumentation package that can capture the dynamics of the changing polar regions, focusing on ice and ocean targets. The vision is for this instrumentation to be operated both on routine flights of the NYANG in the polar regions, such as missions between McMurdo and South Pole Station and on targeted science missions, such as mapping the sea ice and outlet glaciers surrounding Ross Island or the draining systems from large subglacial lakes in East Antarctica. We are in the process of finalizing the science requirements for the system. To provide support to the ICEPOD development, we are defining the goals for imaging the surface of the ice sheet with a scanning laser system and stereo-photogrammetry, the temperature of the ice surface using an IR camera and the internal structure of the ice sheet using a depth-sounding radar and an accumulation radar. The instrumentation will be positioned using an IMU and differential GPS. We also are working toward two operational modes - low-altitude flight operations to optimize the surface imaging systems, specifically the scanning laser, and a high-altitude flight operation to facilitate wide use of the instrumentation suite during a routine NYANG support mission flight envelope. The ICEPOD program is seeking input on the science goals of the instrumentation suite to ensure the system meets the community’s need for observations. The ultimate goal of the ICEPOD program is to provide the community with a facility for dedicated and routine measurements over the polar regions using the suite of instruments. The final ICEPOD system will also be capable of supporting instrumentation developed by other groups. The

  12. Siting study for a consolidated waste capability at Los Alamos National Laboratory

    SciTech Connect

    Booth, Steven Richard

    2010-11-05

    Decision analysis was used to rank alternative sites for a potential Consolidated Waste Capability (CWC) to replace current hazardous solid waste operations (hazardous/chemical, mixed low-level, transuranic, and low-level waste) at Los Alamos National Laboratory's Technical Area (TA)-54. An original list of 21 site alternatives was pre-screened to seven sites that were assessed using the analytical hierarchy process with five top-level criteria and fifteen sub-criteria. The top site choice is TA-63/52/46; the second choice is TA-18/36. The seven sites are as follows. TA-18/36 (62 acres) is located on Potrillo Drive that intersects Pajarito Road at the bottom of a steep grade. It has some blast zone issues on its southwest side and some important archeological sites on the southeast section. TA-60 (50 acres) is located at the end of Eniwetok Road off Diamond Drive, east of TA-3. Most of the site is within a fifty foot-deep ravine (that may have contamination in the drainage), with a small section on the mesa above. TA-63/52/46 (110 acres) lies to the north of Pajarito Road along Puye Road. It is centrally located in a brown field industrial area, with good access to generators on a controlled road. TA-46 (22 acres) is a narrow site on the south side of Pajarito Road across from TA-46 office buildings. TA-48 (14 acres) is also narrow, and is located on the north side of Pajarito Road near the west vehicle access portal (VAP). TA-51 (19 acres) is located on the south side of Pajarito Road at the top of the hill above TA-18 near the current entrance to the TA-54. TA-54 West (16 acres) is just north of the entrance to TA-54 at Pajarito Road and is close to Zone 4. Although it is near the San Ildefonso Pueblo property line, there may be adequate set-back for sight screening.

  13. New National Capability in NIMR: Rational, Development and application of meteorological sensors for HALE UAV

    NASA Astrophysics Data System (ADS)

    Choi, Reno K. Y.; Min, Seunghyun; Klein, Marian; Ha, Jong-Chul; Cho, Young-Jun; Cho, ChunHo

    2015-04-01

    Joint Civilian-Military Committee, under Advisory Council on Science and Technology, awarded an ambitious technology demonstration project to build a HALE (High-Altitude Long Endurance) UAV (Unmanned Aerial Vehicle) till 2017. NIMR (National Institute of Meteorological Research) is responsible for developing a payload for meteorological observation, which the committee welcomed not only for technological challenges but also for scientific advances for all parties. NIMR is also responsible for providing numerical weather predictions for flight safety for overall project. HALE UAV is an aircraft that aims to operate at lower stratospheric altitudes for days and weeks. It is an altitude where air becomes thin to prevent operation of conventional jet engines and only military reconnaissance aircrafts have reached at this high or above around 18~21km Since only a couple of unmanned aircraft demonstrated its potential scientific value, atmospheric research at stratospheric altitude offers unique opportunity of monitoring complete troposphere at close range. With advantages from both satellite (consistent observation) and airborne platforms (spatial flexibility), i.e. pseudo-satellite, water content monitoring in the atmosphere enables us to improve prediction of entire life cycle of tropical storms and torrential rains and snows, in addition to better understanding of tropopause dynamics and its prediction capability. This meteorological instrument challenges very limited payload design requirements, i.e. 4kg of weight and 50W of power consumption. With such constraints, NIMR determines to develop passive microwave radiometers (15~100GHz) onboard in the interest of 3D water vapor profiles, along with optical camera for cloud observation. There are number of technical challenges to achieve the goal, such as 1) mechanical and electronic design that works in -75°C and 60hPa with weight and power constraints, and 2) miniaturisation of conventional meteorological instruments

  14. National Combustion Code Parallel Performance Enhancements

    NASA Technical Reports Server (NTRS)

    Quealy, Angela; Benyo, Theresa (Technical Monitor)

    2002-01-01

    The National Combustion Code (NCC) is being developed by an industry-government team for the design and analysis of combustion systems. The unstructured grid, reacting flow code uses a distributed memory, message passing model for its parallel implementation. The focus of the present effort has been to improve the performance of the NCC code to meet combustor designer requirements for model accuracy and analysis turnaround time. Improving the performance of this code contributes significantly to the overall reduction in time and cost of the combustor design cycle. This report describes recent parallel processing modifications to NCC that have improved the parallel scalability of the code, enabling a two hour turnaround for a 1.3 million element fully reacting combustion simulation on an SGI Origin 2000.

  15. Enhanced visible and near-infrared capabilities of the JET mirror-linked divertor spectroscopy system

    SciTech Connect

    Lomanowski, B. A. Sharples, R. M.; Meigs, A. G.; Conway, N. J.; Zastrow, K.-D.; Heesterman, P.; Kinna, D. [EURATOM Collaboration: JET-EFDA Team

    2014-11-15

    The mirror-linked divertor spectroscopy diagnostic on JET has been upgraded with a new visible and near-infrared grating and filtered spectroscopy system. New capabilities include extended near-infrared coverage up to 1875 nm, capturing the hydrogen Paschen series, as well as a 2 kHz frame rate filtered imaging camera system for fast measurements of impurity (Be II) and deuterium Dα, Dβ, Dγ line emission in the outer divertor. The expanded system provides unique capabilities for studying spatially resolved divertor plasma dynamics at near-ELM resolved timescales as well as a test bed for feasibility assessment of near-infrared spectroscopy.

  16. Technology Transfer Activities of NASA/MSFC: Enhancing the Southeast Region's Production Capabilities

    NASA Technical Reports Server (NTRS)

    Trivoli, George W.

    1998-01-01

    The researcher was charged with the task of developing a simplified model to illustrate the impact of how NASA/MSFC technology transfer activities contribute to shifting outward the Southeast region's and the nation's productive capacity. The report is a background of the impact of technological growth on the nation's production possibility frontier (ppf).

  17. Enhancements in Continuous-Energy Monte Carlo Capabilities for SCALE 6.2

    SciTech Connect

    Rearden, Bradley T; Petrie Jr, Lester M; Peplow, Douglas E.; Bekar, Kursat B; Wiarda, Dorothea; Celik, Cihangir; Perfetti, Christopher M; Dunn, Michael E

    2014-01-01

    SCALE is a widely used suite of tools for nuclear systems modeling and simulation that provides comprehensive, verified and validated, user-friendly capabilities for criticality safety, reactor physics, radiation shielding, and sensitivity and uncertainty analysis. For more than 30 years, regulators, industry, and research institutions around the world have used SCALE for nuclear safety analysis and design. SCALE provides a plug-and-play framework that includes three deterministic and three Monte Carlo radiation transport solvers that are selected based on the desired solution. SCALE includes the latest nuclear data libraries for continuous-energy and multigroup radiation transport as well as activation, depletion, and decay calculations. SCALE s graphical user interfaces assist with accurate system modeling, visualization, and convenient access to desired results. SCALE 6.2 provides several new capabilities and significant improvements in many existing features, especially with expanded continuous-energy Monte Carlo capabilities for criticality safety, shielding, depletion, sensitivity and uncertainty analysis, and improved fidelity in nuclear data libraries. A brief overview of SCALE capabilities is provided with emphasis on new features for SCALE 6.2.

  18. Enhancing Academics' Capability to Engage Multicultural Classes and Internationalize at Home

    ERIC Educational Resources Information Center

    Mak, Anita

    2010-01-01

    This paper reports the rationale, design, implementation, and outcomes of a strategic diversity course for developing the intercultural capability of academic staff at an Australian university. The interactive workshop called "Engaging and Building Alliance across Cultures" aims at developing awareness of and practical skills in facilitating the…

  19. The upgraded cold neutron triple-axis spectrometer FLEXX - enhanced capabilities by new instrumental options

    NASA Astrophysics Data System (ADS)

    Habicht, Klaus; Lucía Quintero-Castro, Diana; Toft-Petersen, Rasmus; Kure, Mathias; Mäde, Lucas; Groitl, Felix; Le, Manh Duc

    2015-01-01

    The upgrade of the cold neutron triple axis spectrometer FLEXX, a work-horse instrument for inelastic neutron scattering matching the sample environment capabilities at Helmholtz-Zentrum Berlin, has been successfully accomplished. Experiments confirmed an order of magnitude gain in flux now allowing for intensity demanding options to be fully exploited at FLEXX. In this article, we describe the layout and design of two newly available FLEXX instrument options in detail. The new Heusler analyzer gives an increase of the detected polarized neutron flux due to its superior focusing properties, significantly improving the feasibility of future polarized and neutron resonance spin echo experiments. The MultiFLEXX option provides simultaneous access to large regions in wavevector and energy space for inelastic excitations thus adding mapping capabilities to the spectrometer.

  20. An Enhanced GINGERSimulation Code with Harmonic Emission and HDF5IO Capabilities

    SciTech Connect

    Fawley, William M.

    2006-09-01

    GINGER [1] is an axisymmetric, polychromatic (r-z-t) FEL simulation code originally developed in the mid-1980's to model the performance of single-pass amplifiers. Over the past 15 years GINGER's capabilities have been extended to include more complicated configurations such as undulators with drift spaces, dispersive sections, and vacuum chamber wakefield effects; multi-pass oscillators; and multi-stage harmonic cascades. Its coding base has been tuned to permit running effectively on platforms ranging from desktop PC's to massively parallel processors such as the IBM-SP. Recently, we have made significant changes to GINGER by replacing the original predictor-corrector field solver with a new direct implicit algorithm, adding harmonic emission capability, and switching to the HDF5 IO library [2] for output diagnostics. In this paper, we discuss some details regarding these changes and also present simulation results for LCLS SASE emission at {lambda} = 0.15 nm and higher harmonics.

  1. An enhanced experimental procedure to rationalize on the impairment of perception of action capabilities.

    PubMed

    Daviaux, Yannick; Cremoux, Sylvain; Tallet, Jessica; Amarantini, David; Cornu, Christophe; Deschamps, Thibault

    2016-03-01

    It is well documented that changes in the physiological states of the perceiver-actor influence the perception of action capabilities. However, because experimental procedures of most studies involved a limitless availability for stimuli visual encoding and perceptual strategies, it remains difficult to adopt a single position among the large range of alternative interpretations for impaired perception. A reaching-to-grasp paradigm under breathing restriction was adapted from Graydon et al. (Cogn Emot 26:1301-1305, 2012) to standardize the time for encoding of stimuli information and narrowed the involvement of perceptual strategies. In the present study, we propose a highly controlled environment where the discrete information is presented during 300 ms, congruently with neurophysiological studies focused on visuomotor transformation. An underestimation of the perception of action capabilities is found under breath restriction, suggesting that 300 ms for stimuli encoding is sufficient to induce altered visuomotor brain transformations when limiting the involvement of perceptual strategies. This result suggests that such behavior could refer to an impaired brain potentiation of the perceptual occurrence, providing strong hypotheses on the brain dynamics of sensorimotor integration that underlie impaired perception of action capabilities in stressful situations. PMID:25702038

  2. DNA fragments binding CTCF in vitro and in vivo are capable of blocking enhancer activity

    PubMed Central

    2012-01-01

    Background Earlier we identified ten 100-300-bp long CTCF-binding DNA fragments selected earlier from a 1-Mb human chromosome 19 region. Here the positive-negative selection technique was used to check the ability of CTCF-binding human genomic fragments to block enhancer-promoter interaction when inserted into the genome. Results Ten CTCF-binding DNA fragments were inserted between the CMV enhancer and CMV minimal promoter driving the herpes simplex virus thymidine kinase (HSV-tk) gene in a vector expressing also the neoR gene under a separate promoter. The constructs were then integrated into the genome of CHO cells, and the cells resistant to neomycin and ganciclovir (positive-negative selection) were picked up, and their DNAs were PCR analyzed to confirm the presence of the fragments between the enhancer and promoter in both orientations. Conclusions We demonstrated that all sequences identified by their CTCF binding both in vitro and in vivo had enhancer-blocking activity when inserted between the CMV minimal promoter and enhancer in stably transfected CHO cells. PMID:22480385

  3. Wind Tunnel and Propulsion Test Facilities: An Assessment of NASA's Capabilities to Serve National Needs

    NASA Technical Reports Server (NTRS)

    Anton, Philip S.; Gritton, Eugene C.; Mesic, Richard; Steinberg, Paul; Johnson, Dana J.

    2004-01-01

    This monograph reveals and discusses the National Aeronautics and Space Administration's (NASA's) wind tunnel and propulsion test facility management issues that are creating real risks to the United States' competitive aeronautics advantage.

  4. Second-Generation Fuel Cell Stack Durability and Freeze Capability from National FCV Learning Demonstration (Presentation)

    SciTech Connect

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

    2009-11-18

    This presentation provides information about the objectives and partners of the National Fuel Cell Vehicle Learning Demonstration, the status of vehicle and station deployment, and results of vehicle and infrastructure analysis.

  5. National Research Council Dialogue to Assess Progress on NASA's Advanced Modeling, Simulation and Analysis Capability and Systems Engineering Capability Roadmap Development

    NASA Technical Reports Server (NTRS)

    Aikins, Jan

    2005-01-01

    Contents include the following: General Background and Introduction of Capability Roadmaps. Agency Objective. Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).

  6. The National Criticality Experiments Research Center at the Device Assembly Facility, Nevada National Security Site: Status and Capabilities, Summary Report

    SciTech Connect

    S. Bragg-Sitton; J. Bess; J. Werner

    2011-09-01

    The National Criticality Experiments Research Center (NCERC) was officially opened on August 29, 2011. Located within the Device Assembly Facility (DAF) at the Nevada National Security Site (NNSS), the NCERC has become a consolidation facility within the United States for critical configuration testing, particularly those involving highly enriched uranium (HEU). The DAF is a Department of Energy (DOE) owned facility that is operated by the National Nuclear Security Agency/Nevada Site Office (NNSA/NSO). User laboratories include the Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL). Personnel bring their home lab qualifications and procedures with them to the DAF, such that non-site specific training need not be repeated to conduct work at DAF. The NNSS Management and Operating contractor is National Security Technologies, LLC (NSTec) and the NNSS Safeguards and Security contractor is Wackenhut Services. The complete report provides an overview and status of the available laboratories and test bays at NCERC, available test materials and test support configurations, and test requirements and limitations for performing sub-critical and critical tests. The current summary provides a brief summary of the facility status and the method by which experiments may be introduced to NCERC.

  7. Plasma enhanced multistate storage capability of single ZnO nanowire based memory

    NASA Astrophysics Data System (ADS)

    Lai, Yunfeng; Xin, Pucong; Cheng, Shuying; Yu, Jinling; Zheng, Qiao

    2015-01-01

    Multiple-state storage (MSS) is common for resistive random access memory, but the effects of plasma treatment on the MSS and the switching properties have been scarcely investigated. We have demonstrated a stable four-state storage capability of single zinc oxide nanowire (ZnO NW) treated by argon plasma. The electrical switching is attributed to the electron trapping and detrapping from the oxygen vacancies (Vos). The MSS relates to the electrical-thermal induced distribution of the Vos which determines electron transport behavior to show different resistance states. Additionally, programming (set and reset) voltages decrease with plasma treatment due to the thickness modulation of the interface barrier.

  8. Enhanced dispersion compensation capability of angular elements based on beam expansion.

    PubMed

    Du, Rui; Jiang, Runhua; Fu, Ling

    2009-09-14

    We demonstrate that beam size manipulation plays an important role in dispersion compensation. With expanded beam, the maximal negative group delay dispersion (GDD) provided by angular elements increases by an order of magnitude compared with original beam. Both calculation and experimental results show that a modest 2 x and 4 x expanded beams can improve dispersion compensation capability of prisms or acousto-optical deflectors: the restored minimal pulse width decreases by 50% and the corresponding distance between angular elements is shortened more than 70 cm. These findings will be helpful for designing dispersion compensation schemes for femtosecond pulse laser application systems such as multiphoton microscopy or laser micromachining. PMID:19770855

  9. Enhanced EOS photovoltaic power system capability with InP solar cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Weinberg, Irving; Flood, Dennis J.

    1991-01-01

    The Earth Observing System (EOS), which is part of the International Mission to Planet Earth, is NASA's main contribution to the Global Change Research Program which opens a new era in international cooperation to study the Earth's environment. Five large platforms are to be launched into polar orbit, two by NASA, two by ESA, and one by the Japanese. In such an orbit the radiation resistance of indium phosphide solar cells combined with the potential of utilizing five micron cell structures yields an increase of 10 percent in the payload capability. If further combined with the advanced photovoltaic solar array the payload savings approaches 12 percent.

  10. Enhancing the force capability of permanent magnet latching actuators for electromechanical valve actuation systems

    NASA Astrophysics Data System (ADS)

    Rens, J.; Clark, R. E.; Jewell, G. W.; Howe, D.

    2005-05-01

    This article introduces a topology of parallel-polarized permanent magnet latching actuator for use in electromagnetic valve actuation systems for internal combustion engines. The actuator has a number of advantages over reluctance actuators, commonly employed in such systems, in terms of reduced starting currents and fail-safe capability. The influence of a number of design features on actuator performance, such as tooth tapering, additional magnets to improve the main magnet flux path and prevent the onset of saturation, and mechanical clearances required to protect the permanent magnet from shock loads are investigated. The design study findings are verified by measurements on a prototype actuator.

  11. A Decision Support Framework for Feasibility Analysis of International Space Station (ISS) Research Capability Enhancing Options

    NASA Technical Reports Server (NTRS)

    Ortiz, James N.; Scott,Kelly; Smith, Harold

    2004-01-01

    The assembly and operation of the ISS has generated significant challenges that have ultimately impacted resources available to the program's primary mission: research. To address this, program personnel routinely perform trade-off studies on alternative options to enhance research. The approach, content level of analysis and resulting outputs of these studies vary due to many factors, however, complicating the Program Manager's job of selecting the best option. To address this, the program requested a framework be developed to evaluate multiple research-enhancing options in a thorough, disciplined and repeatable manner, and to identify the best option on the basis of cost, benefit and risk. The resulting framework consisted of a systematic methodology and a decision-support toolset. The framework provides quantifiable and repeatable means for ranking research-enhancing options for the complex and multiple-constraint domain of the space research laboratory. This paper describes the development, verification and validation of this framework and provides observations on its operational use.

  12. Enhancing sample preparation capabilities for accelerator mass spectrometry radiocarbon and radiocalcium studies

    SciTech Connect

    Taylor, R.E.

    1991-08-20

    With support provided by the LLNL Accelerator Mass Spectrometry Laboratory, the UCR Radiocarbon Laboratory continued its studies involving sample pretreatment and target preparation for both AMS radiocarbon ({sup 14}C) and radiocalcium ({sup 41}Ca) involving applications to archaeologically -- and paleoanthropologically- related samples. With regard to AMS {sup 14}C-related studies, we have extended the development of a series of procedures which have, as their initial goal, the capability to combust several hundred microgram amounts of a chemically-pretreated organic sample and convert the resultant CO{sub 2} to graphitic carbon which will consistently yield relatively high {sup 13}C{sup {minus}} ion currents and blanks which will yield, on a consistent basis, {sup 14}C count rates at or below 0.20% modern, giving an 2 sigma age limit of >50,000 yr BP.

  13. Plasma enhanced multistate storage capability of single ZnO nanowire based memory

    SciTech Connect

    Lai, Yunfeng Xin, Pucong; Cheng, Shuying; Yu, Jinling; Zheng, Qiao

    2015-01-19

    Multiple-state storage (MSS) is common for resistive random access memory, but the effects of plasma treatment on the MSS and the switching properties have been scarcely investigated. We have demonstrated a stable four-state storage capability of single zinc oxide nanowire (ZnO NW) treated by argon plasma. The electrical switching is attributed to the electron trapping and detrapping from the oxygen vacancies (V{sub o}s). The MSS relates to the electrical-thermal induced distribution of the V{sub o}s which determines electron transport behavior to show different resistance states. Additionally, programming (set and reset) voltages decrease with plasma treatment due to the thickness modulation of the interface barrier.

  14. Simulation information regarding Sandia National Laboratories%3CU%2B2019%3E trinity capability improvement metric.

    SciTech Connect

    Agelastos, Anthony Michael; Lin, Paul T.

    2013-10-01

    Sandia National Laboratories, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory each selected a representative simulation code to be used as a performance benchmark for the Trinity Capability Improvement Metric. Sandia selected SIERRA Low Mach Module: Nalu, which is a uid dynamics code that solves many variable-density, acoustically incompressible problems of interest spanning from laminar to turbulent ow regimes, since it is fairly representative of implicit codes that have been developed under ASC. The simulations for this metric were performed on the Cielo Cray XE6 platform during dedicated application time and the chosen case utilized 131,072 Cielo cores to perform a canonical turbulent open jet simulation within an approximately 9-billion-elementunstructured- hexahedral computational mesh. This report will document some of the results from these simulations as well as provide instructions to perform these simulations for comparison.

  15. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities.

    PubMed

    Esnouf, R M

    1997-04-01

    Owing to its flexibility, MolScript has become one of the most widely used programs for generating publication-quality molecular graphics. Integration with the Raster3D package, to allow the production of photorealistic rendered images, has increased its popularity still further. However, this intensive use has shown the need for enhancement of some areas of the program, especially for controlling the coloring of atoms, bonds, and molecules. This work describes a heavily modified version of MolScript that has added syntax for describing complicated coloring schemes and also has new graphics commands. Enhancements include drawing split-bond ball-and-stick models, smoothly varying the color of molecules (color ramping), abrupt color changes within secondary structural units, and the creation of dashed bonds. Making use of these added features is simple because all MolScript syntax is still supported and one typically needs only to add a few control commands. The final section of this article suggests some uses for this modified MolScript and provides illustrative examples. PMID:9385560

  16. A Lactobacillus mutant capable of accumulating long-chain polyphosphates that enhance intestinal barrier function.

    PubMed

    Saiki, Asako; Ishida, Yasuaki; Segawa, Shuichi; Hirota, Ryuichi; Nakamura, Takeshi; Kuroda, Akio

    2016-05-01

    Inorganic polyphosphate (polyP) was previously identified as a probiotic-derived substance that enhances intestinal barrier function. PolyP-accumulating bacteria are expected to have beneficial effects on the human gastrointestinal tract. In this study, we selected Lactobacillus paracasei JCM 1163 as a strain with the potential to accumulate polyP, because among the probiotic bacteria stored in our laboratory, it had the largest amount of polyP. The chain length of polyP accumulated in L. paracasei JCM 1163 was approximately 700 phosphate (Pi) residues. L. paracasei JCM 1163 accumulated polyP when Pi was added to Pi-starved cells. We further improved the ability of L. paracasei JCM 1163 to accumulate polyP by nitrosoguanidine mutagenesis. The mutant accumulated polyP at a level of 1500 nmol/mg protein-approximately 190 times that of the wild-type strain. PolyP extracted from the L. paracasei JCM 1163 significantly suppressed the oxidant-induced intestinal permeability in mouse small intestine. In conclusion, we have succeeded in breeding the polyP-accumulating Lactobacillus mutant that is expected to enhance intestinal barrier function. PMID:26966939

  17. Enhanced Transport Capabilities via Nanotechnologies: Impacting Bioefficacy, Controlled Release Strategies, and Novel Chaperones

    PubMed Central

    Panagiotou, Thomai; Fisher, Robert J.

    2011-01-01

    Emerging nanotechnologies have, and will continue to have, a major impact on the pharmaceutical industry. Their influence on a drug's life cycle, inception to delivery, is rapidly expanding. As the industry moves more aggressively toward continuous manufacturing modes, utilizing Process Analytical Technology (PAT) and Process Intensification (PI) concepts, the critical role of transport phenomena becomes elucidated. The ability to transfer energy, mass, and momentum with directed purposeful outcomes is a worthwhile endeavor in establishing higher production rates more economically. Furthermore, the ability to obtain desired drug properties, such as size, habit, and morphology, through novel manufacturing strategies permits unique formulation control for optimum delivery methodologies. Bottom-up processing to obtain nano-sized crystals is an excellent example. Formulation and delivery are intimately coupled in improving bio-efficacy at reduced loading and/or better controlled release capabilities, minimizing side affects and providing improved therapeutic interventions. Innovative nanotechnology applications, such as simultaneous targeting, imaging and delivery to tumors, are now possible through use of novel chaperones. Other examples include nanoparticles attachment to T-cells, release from novel hydrogel implants, and functionalized encapsulants. Difficult tasks such as drug delivery to the brain via the blood brain barrier and/or the cerebrospinal fluid are now easier to accomplish. PMID:21603220

  18. Lithium titanium oxynitride thin film with enhanced lithium storage and rate capability

    NASA Astrophysics Data System (ADS)

    Yu, Zhaozhe; Xu, Huarui; Zhu, Guisheng; Yan, Dongliang; Yu, Aibing

    2016-04-01

    The lithium titanium oxynitride (LTON) thin film electrode was prepared by radio frequency (RF) magnetron sputtering deposition using a cubic spinel structure Li4Ti5O12 (LTO) powder target in a N2 atmosphere for lithium ion batteries. XRD and SEM test results showed that the thin film was composed of weak crystal or amorphous structure and that its surface was homogeneous. XPS analyses indicated that nitrogen atoms were actually incorporated into the LTO matrix framework. The substitution of nitrogen for oxygen in the thin film created more abundant cross-linking structures, which favored the higher mobility of lithium ions. The LTON had a high capacity of 290 mAh g-1 at 0.1C, excellent rate capability of 160 mAh g-1 at 5C and only ≈7% capacity loss after 100 cycles at 5C charge and discharge rate. These properties make this thin film electrode a promising candidate material for use in thin film lithium ion batteries.

  19. Oil-Free Turbomachinery Research Enhanced by Thrust Bearing Test Capability

    NASA Technical Reports Server (NTRS)

    Bauman, Steven W.

    2003-01-01

    NASA Glenn Research Center s Oil-Free Turbomachinery research team is developing aircraft turbine engines that will not require an oil lubrication system. Oil systems are required today to lubricate rolling-element bearings used by the turbine and fan shafts. For the Oil-Free Turbomachinery concept, researchers combined the most advanced foil (air) bearings from industry with NASA-developed high-temperature solid lubricant technology. In 1999, the world s first Oil-Free turbocharger was demonstrated using these technologies. Now we are working with industry to demonstrate Oil-Free turbomachinery technology in a small business jet engine, the EJ-22 produced by Williams International and developed during Glenn s recently concluded General Aviation Propulsion (GAP) program. Eliminating the oil system in this engine will make it simpler, lighter (approximately 15 percent), more reliable, and less costly to purchase and maintain. Propulsion gas turbines will place high demands on foil air bearings, especially the thrust bearings. Up until now, the Oil-Free Turbomachinery research team only had the capability to test radial, journal bearings. This research has resulted in major improvements in the bearings performance, but journal bearings are cylindrical, and can only support radial shaft loads. To counteract axial thrust loads, thrust foil bearings, which are disk shaped, are required. Since relatively little research has been conducted on thrust foil air bearings, their performance lags behind that of journal bearings.

  20. Status and capabilities of the National Full Scale Facility 40- by 80-foot wind tunnel modification

    NASA Technical Reports Server (NTRS)

    Mort, K. W.; Engelbert, D. F.; Dusterberry, J. C.

    1982-01-01

    The background, requirements, and aerodynamic design of the modified NASA Ames 40 x 80 ft wind tunnel are reviewed, along with the systems integration and systems test results. Advancing vehicle sizes and airspeeds required a larger wind tunnel test section and a capability for 100 and 300 knots airspeed simulation. Acoustic mufflers at the inlet and exit of the nonreturn circuit provide noise suppression. The enlarged test section is intended to accomodate the complex flowfields of wings with high lift coefficients, and the drive system is designed with minimum residual swirl. Features of the fan blades are examined, along with characteristics of the test channels, control vanes and louvers, the exit, circuit losses, temperature rises during operation of the nonreturn circuit, and the facility acoustics. Specific construction problems and solutions for the conversion process are outlined, and it is noted that operational status is expected at the end of 1982.

  1. Co-sensitized natural dyes potentially used to enhance light harvesting capability

    NASA Astrophysics Data System (ADS)

    Amelia, R.; Sawitri, D.; Risanti, D. D.

    2015-01-01

    We present the photoelectrochemical properties of dye-sensitized solar cells using natural pigments containing anthocyanins, betalains, and caroteins. The dyes were adsorbed by a photoanode that was fabricated from nanocrystalline TiO2 on transparent conductive glass. TiO2 comprises of 100% anatase and 90:10 anatase:rutile fraction. The dyes extracted from mangosteen pericarp, Musa aromatica pericarp, Celosia cristata flower and red beet root were characterized through UV-vis and IPCE. The effectiveness of the dyes was explained through photocurrent as a function of incident light power. It was found that the cocktail and multilayered dyes comprised of anthocyanins and caroteins is beneficial to obtain high photocurrent, whereas betalains is not recommended to be applied on untreated TiO2. Due to the bandgap properties of rutile and anatase, the presence of 10% rutile in TiO2 is favourable to further enhance the electron transport.

  2. Enhancing the absorption capabilities of thin-film solar cells using sandwiched light trapping structures.

    PubMed

    Abdellatif, S; Kirah, K; Ghannam, R; Khalil, A S G; Anis, W

    2015-06-10

    A novel structure for thin-film solar cells is simulated with the purpose of maximizing the absorption of light in the active layer and of reducing the parasitic absorption in other layers. In the proposed structure, the active layer is formed from an amorphous silicon thin film sandwiched between silicon nanowires from above and photonic crystal structures from below. The upper electrical contact consists of an indium tin oxide layer, which serves also as an antireflection coating. A metal backreflector works additionally as the other contact. The simulation was done using a new reliable, efficient and generic optoelectronic approach. The suggested multiscale simulation model integrates the finite-difference time-domain algorithm used in solving Maxwell's equation in three dimensions with a commercial simulation platform based on the finite element method for carrier transport modeling. The absorption profile, the external quantum efficient, and the power conversion efficiency of the suggested solar cell are calculated. A noticeable enhancement is found in all the characteristics of the novel structure with an estimated 32% increase in the total conversion efficiency over a cell without any light trapping mechanisms. PMID:26192857

  3. NTR-Enhanced Lunar-Base Supply using Existing Launch Fleet Capabilities

    SciTech Connect

    John D. Bess; Emily Colvin; Paul G. Cummings

    2009-06-01

    During the summer of 2006, students at the Center for Space Nuclear Research sought to augment the current NASA lunar exploration architecture with a nuclear thermal rocket (NTR). An additional study investigated the possible use of an NTR with existing launch vehicles to provide 21 metric tons of supplies to the lunar surface in support of a lunar outpost. Current cost estimates show that the complete mission cost for an NTR-enhanced assembly of Delta-IV and Atlas V vehicles may cost 47-86% more than the estimated Ares V launch cost of $1.5B; however, development costs for the current NASA architecture have not been assessed. The additional cost of coordinating the rendezvous of four to six launch vehicles with an in-orbit assembly facility also needs more thorough analysis and review. Future trends in launch vehicle use will also significantly impact the results from this comparison. The utility of multiple launch vehicles allows for the development of a more robust and lower risk exploration architecture.

  4. Enhancing RHIC luminosity capabilities with in-situ beam piple coating

    SciTech Connect

    Herschcovitch,A.; Blaskiewicz, M.; Fischer, W.; Poole, H. J.

    2009-05-04

    Electron clouds have been observed in many accelerators, including the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory (BNL). They can limit the machine performance through pressure degradation, beam instabilities or incoherent emittance growth. The formation of electron clouds can be suppressed with beam pipe surfaces that have low secondary electron yield. At the same time, high wall resistivity in accelerators can result in levels of ohmic heating unacceptably high for superconducting magnets. This is a concern for the RHIC machine, as its vacuum chamber in the superconducting dipoles is made from relatively high resistivity 316LN stainless steel. The high resistivity can be addressed with a copper (Cu) coating; a reduction in the secondary electron yield can be achieved with a titanium nitride (TiN) or amorphous carbon (a-C) coating. Applying such coatings in an already constructed machine is rather challenging. We started developing a robotic plasma deposition technique for in-situ coating of long, small diameter tubes. The technique entails fabricating a device comprised of staged magnetrons and/or cathodic arcs mounted on a mobile mole for deposition of about 5 {micro}m (a few skin depths) of Cu followed by about 0.1 {micro}m of TiN (or a-C).

  5. Recent Enhancements to the National Transonic Facility (Mixed Mode Operations)

    NASA Technical Reports Server (NTRS)

    Kilgore, W. Allen; Chan, David; Balakrishna, S.; Wahls, Richard A.

    2006-01-01

    The U.S. National Transonic Facility continues to make enhancements to provide quality data in a safe, efficient and cost effective method for aerodynamic ground testing. Recent enhancements discussed in this paper include the development of a Mixed-mode of operations that combine Air-mode operations with Nitrogen-mode operations. This implementation and operational results of this new Mixed-mode expands the ambient temperature transonic region of testing beyond the Air-mode limitations at a significantly reduced cost over Nitrogen Mode operation.

  6. Extending i-line capabilities through variance characterization and tool enhancement

    NASA Astrophysics Data System (ADS)

    Miller, Dan; Salinas, Adrian; Peterson, Joel; Vickers, David; Williams, Dan

    2006-03-01

    Continuous economic pressures have moved a large percent of integrated device manufacturing (IDM) operations either overseas or to foundry operations over the last 10 years. These pressures have left the IDM fabs in the U.S. with required COO improvements in order to maintain operations domestically. While the assets of many of these factories are at a very favorable point in the depreciation life cycle, the equipment and processes are constrained to the quality of the equipment in its original state and the degradation over its installed life. With the objective to enhance output and improve process performance, this factory and their primary lithography process tool supplier have been able to extend the usable life of the existing process tools, increase the output of the tool base, and improve the distribution of the CDs on the product produced. Texas Instruments Incorporated lead an investigation with the POLARIS ® Systems & Services business of FSI International to determine the sources of variance in the i-line processing of a wide array of IC device types. Data from the sources of variance were investigated such as PEB temp, PEB delay time, develop recipe, develop time, and develop programming. While PEB processes are a primary driver of acid catalyzed resists, the develop mode is shown in this work to have an overwhelming impact on the wafer to wafer and across wafer CD performance of these i-line processes. These changes have been able to improve the wafer to wafer CD distribution by more than 80 %, and the within wafer CD distribution by more than 50 % while enabling a greater than 50 % increase in lithography cluster throughput. The paper will discuss the contribution from each of the sources of variance and their importance in overall system performance.

  7. Enhanced drug delivery capabilities from stents coated with absorbable polymer and crystalline drug

    PubMed Central

    Carlyle, Wenda C.; McClain, James B.; Tzafriri, Abraham R.; Bailey, Lynn; Zani, Brett G.; Markham, Peter M.; Stanley, James R.L.; Edelman, Elazer R.

    2015-01-01

    Current drug eluting stent (DES) technology is not optimized with regard to the pharmacokinetics of drug delivery. A novel, absorbable-coating sirolimus-eluting stent (AC-SES) was evaluated for its capacity to deliver drug more evenly within the intimal area rather than concentrating drug around the stent struts and for its ability to match coating erosion with drug release. The coating consisted of absorbable poly-lactide-co-glycolic acid (PLGA) and crystalline sirolimus deposited by a dry-powder electrostatic process. The AC-SES demonstrated enhanced drug stability under simulated use conditions and consistent drug delivery balanced with coating erosion in a porcine coronary implant model. The initial drug burst was eliminated and drug release was sustained after implantation. The coating was absorbed within 90 days. Following implantation into porcine coronary arteries the AC-SES coating is distributed in the surrounding intimal tissue over the course of several weeks. Computational modeling of drug delivery characteristics demonstrates how distributed coating optimizes the load of drug immediately around each stent strut and extends drug delivery between stent struts. The result was a highly efficient arterial uptake of drug with superior performance to a clinical bare metal stent (BMS). Neointimal thickness (0.17±0.07 mm vs. 0.28±0.11 mm) and area percent stenosis (22±9% vs. 35±12%) were significantly reduced (p<0.05) by the AC-SES compared to the BMS 30 days after stent implantation in an overlap configuration in porcine coronary arteries. Inflammation was significantly reduced in the AC-SES compared to the BMS at both 30 and 90 days after implantation. Biocompatible, rapidly absorbable stent coatings enable the matching of drug release with coating erosion and provide for the controlled migration of coating material into tissue to reduce vicissitudes in drug tissue levels, optimizing efficacy and reducing potential toxicity. PMID:22800575

  8. Nonbinding Site-Directed Mutants of Transferrin Binding Protein B Exhibit Enhanced Immunogenicity and Protective Capabilities

    PubMed Central

    Frandoloso, Rafael; Martínez-Martínez, Sonia; Calmettes, Charles; Fegan, Jamie; Costa, Estela; Curran, Dave; Yu, Rong-hua; Gutiérrez-Martín, César B.; Rodríguez-Ferri, Elías F.; Moraes, Trevor F.

    2014-01-01

    Host-adapted Gram-negative bacterial pathogens from the Pasteurellaceae, Neisseriaceae, and Moraxellaceae families normally reside in the upper respiratory or genitourinary tracts of their hosts and rely on utilizing iron from host transferrin (Tf) for growth and survival. The surface receptor proteins that mediate this critical iron acquisition pathway have been proposed as ideal vaccine targets due to the critical role that they play in survival and disease pathogenesis in vivo. In particular, the surface lipoprotein component of the receptor, Tf binding protein B (TbpB), had received considerable attention as a potential antigen for vaccines in humans and food production animals but this has not translated into the series of successful vaccine products originally envisioned. Preliminary immunization experiments suggesting that host Tf could interfere with development of the immune response prompted us to directly address this question with site-directed mutant proteins defective in binding Tf. Site-directed mutants with dramatically reduced binding of porcine transferrin and nearly identical structure to the native proteins were prepared. A mutant Haemophilus parasuis TbpB was shown to induce an enhanced B-cell and T-cell response in pigs relative to native TbpB and provide superior protection from infection than the native TbpB or a commercial vaccine product. The results indicate that binding of host transferrin modulates the development of the immune response against TbpBs and that strategies designed to reduce or eliminate binding can be used to generate superior antigens for vaccines. PMID:25547790

  9. Additive manufacturing capabilities applied to inertial confinement confusion at Los Alamos National Laboratory

    DOE PAGESBeta

    Cardenas, Tana; Schmidt, Derek William; Peterson, Dominic S.

    2016-06-30

    We describe the use at Los Alamos National Laboratory of additive manufacturing (AM) for a variety of jigs and coating, assembly, and radiography fixtures. Additive manufacturing has also been used to produce shipping containers of complex design that would be too costly to have fabricated using traditional techniques. The current goal for AM use in target fabrication is to increase target accuracy and rigidity. This has been realized by implementing AM into target stalk fabrication, allowing increased complexity to address target strength and the addition of features for alignment at facilities. As a result, we will describe the fabrication ofmore » these components and our plans to utilize AM in the future.« less

  10. National Research Council Dialogue to Assess Progress on NASA's Transformational Spaceport and Range Technologies Capability Roadmap Development: General Background and Introduction

    NASA Technical Reports Server (NTRS)

    Skelly, Darin M.

    2005-01-01

    Viewgraphs on the National Research Council's diaglog to assess progress on NASA's transformational spaceport and range technologies capability roadmap development is presented. The topics include: 1) Agency Goals and Objectives; 2) Strategic Planning Transformation; 3) Advanced Planning Organizational Roles; 4) Public Involvement in Strategic Planning; 5) Strategic Roadmaps; 6) Strategic Roadmaps Schedule; 7) Capability Roadmaps; 8) Capability Charter; 9) Process for Team Selection; 10) Capability Roadmap Development Schedule Overview; 11) Purpose of NRC Review; 12) Technology Readiness Levels; 13) Capability Readiness Levels; 14) Crosswalk Matrix Trans Spaceport & Range; 15) Example linkage to other roadmaps; 16) Capability Readiness Levels Defined; and 17) Crosswalk Matrix Ratings Work In-progress.

  11. Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities

    SciTech Connect

    Schoenberg, Kurt F

    2010-12-15

    This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

  12. The National Teacher Enhancement Program (K-8) coordinated by the Oak Ridge National Laboratory

    SciTech Connect

    Richmond, C.R.

    1991-01-01

    Teachers need help, not harassment. So do the establishments in which teachers practice their profession. Community resources must be marshalled to provide help to local schools and teachers. In 1990 the National Science Foundation (NSF) established a unique educational activity named the National Teacher Enhancement Program (NTEP). NSF took advantage of the Department of Energy (DOE) sponsored educational programs and resources at several large DOE contractor labs that had had prior experience with DOE supported teacher enhancement programs. While DOE concentrated on teacher enhancement activities for secondary teachers, the NSF concentrated on teachers from grades K-8. The Oak Ridge National Laboratory (ORNL) is the lead organization for both administering and coordinating the grant. Other participating laboratories are Argonne National Laboratory (ANL), Fermi National Accelerator Laboratory (FERMI), Battelle-Pacific Northwest Laboratory (PNL), Lawrence Livermore Laboratory (LLNL) with some support functions provided by Brookhaven National Laboratory (BNL) and the Oak Ridge Associated Universities (ORAU). The program calls for a three week duration workshop to be conducted at each lab followed by in-service training and other activities during the year. The NSF/NTEP protocol calls for networking among the participating organizations and some of the teachers. An assessment effort is also an integral part of the program. 2 refs.

  13. Demonstration of the Capabilities of CometCIEF: A Web-based Image Enhancement Facility to Enhance Images of Cometary Comae

    NASA Astrophysics Data System (ADS)

    Martin, Michael Patrick; Samarasinha, Nalin; Larson, Steve

    2014-11-01

    Accurate identifications and measurements of spatial information related to coma structures of comets are an essential component of realistic quantitative interpretation of coma observations. For this purpose, there is a number of image enhancement techniques used by cometary scientists. Despite this, the wider applicability of many advanced enhancement techniques is limited due to the non-availability of relevant software as open source. We are making available a number of such techniques using a user-friendly web interface.In this image enhancement facility available at http://www.psi.edu/research/cometimen one can upload a FITS format image of a cometary coma and digitally enhance it using an image enhancement technique of the user’s choice. The user can then download the enhanced image as well as any associated images generated during the enhancement as FITS files for detailed analysis later at the user’s institution. The available image enhancement techniques at the facility are:(a) division by azimuthal average,(b) division by azimuthal median,(c) azimuthal renormalization,(d) division by 1/ρ profile, where ρ is the skyplane projected distance from the nucleus, and(e) radially variable spatial filtering.The site provides documentation describing the above enhancement techniques as well as a tutorial showing the application of the enhancement techniques to actual cometary images and how the results may vary with different input parameters. In addition, the source codes as well as the executables are available for the user to download. To provide a secure facility, all the images uploaded by the users as well as the images created at the facility are deleted using a script that runs every hour.At the Division for Planetary Sciences 2014 meeting, we will present a description of CometCIEF and its capabilities, as well as a live demonstration of the facility that includes a question-answer session.Acknowledgements: We thank the NASA Planetary Atmospheres

  14. Idaho National Laboratory Ten-year Site Plan (2012 through 2021) -- DOE-NE's National Nuclear Capability -- Developing and Maintaining the INL Infrastructure

    SciTech Connect

    Cal Ozaki

    2010-06-01

    To meet long-term objectives to transform the Idaho National Laboratory (INL), we are providing an integrated, long-term vision of infrastructure requirements that support research, development and demonstration (RD&D) goals outlined in the DOE strategic plans, including the NE Roadmap and reports such as Facilities for the Future of Nuclear Energy Research: A Twenty-year Outlook. The goal of the INL Ten-year Site Plan (TYSP) is to clearly link RD&D mission goals and INL core capabilities with infrastructure requirements (single and multi-program), establish the 10-year end-state vision for INL complexes, identify and prioritize infrastructure and capability gaps, as well as the most efficient and economic approaches to closing those gaps.

  15. A Description of the Development, Capabilities, and Operational Status of the Test SLATE Data Acquisition System at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Cramer, Christopher J.; Wright, James D.; Simmons, Scott A.; Bobbitt, Lynn E.; DeMoss, Joshua A.

    2015-01-01

    The paper will present a brief background of the previous data acquisition system at the National Transonic Facility (NTF) and the reasoning and goals behind the upgrade to the current Test SLATE (Test Software Laboratory and Automated Testing Environments) data acquisition system. The components, performance characteristics, and layout of the Test SLATE system within the NTF control room will be discussed. The development, testing, and integration of Test SLATE within NTF operations will be detailed. The operational capabilities of the system will be outlined including: test setup, instrumentation calibration, automatic test sequencer setup, data recording, communication between data and facility control systems, real time display monitoring, and data reduction. The current operational status of the Test SLATE system and its performance during recent NTF testing will be highlighted including high-speed, frame-by-frame data acquisition with conditional sampling post-processing applied. The paper concludes with current development work on the system including the capability for real-time conditional sampling during data acquisition and further efficiency enhancements to the wind tunnel testing process.

  16. Peptide nucleic acid (PNA) is capable of enhancing hammerhead ribozyme activity with long but not with short RNA substrates.

    PubMed Central

    Jankowsky, E; Strunk, G; Schwenzer, B

    1997-01-01

    Long RNA substrates are inefficiently cleaved by hammerhead ribozymes in trans. Oligonucleotide facilitators capable of affecting the ribozyme activity by interacting with the substrates at the termini of the ribozyme provide a possibility to improve ribozyme mediated cleavage of long RNA substrates. We have examined the effect of PNA as facilitator in vitro in order to test if even artificial compounds have facilitating potential. Effects of 12mer PNA- (peptide nucleic acid), RNA- and DNA-facilitators of identical sequence were measured with three substrates containing either 942, 452 or 39 nucleotides. The PNA facilitator enhances the ribozyme activity with both, the 942mer and the 452mer substrate to a slightly smaller extent than RNA and DNA facilitators. This effect was observed up to PNA facilitator:substrate ratios of 200:1. The enhancement becomes smaller as the PNA facilitator:substrate ratio exceeds 200:1. With the 39mer substrate, the PNA facilitator decreases the ribozyme activity by more than 100-fold, even at PNA facilitator:substrate ratios of 1:1. Although with long substrates the effect of the PNA facilitator is slightly smaller than the effect of identical RNA or DNA facilitators, PNA may be a more practical choice for potential applications in vivo because PNA is much more resistant to degradation by cellular enzymes. PMID:9207013

  17. Conceptual Evaluation for the Installation of Treatment Capability for Mixed Low Level Waste at the Nevada National Security Site

    SciTech Connect

    NSTec Environmental Management

    2010-11-24

    National Security Technologies, LLC, initiated an evaluation of treatment technologies that they would manage and operate as part of the mixed low-level waste (MLLW) disposal facilities at the Nevada National Security Site (NNSS). The NNSS Disposal Facility has been receiving radioactive waste from the U.S. Department of Energy (DOE) complex since the 1960s, and since 2005 the NNSS Disposal Facility has been receiving radioactive and MLLW for disposal only. In accordance with the Resource Conservation and Recovery Act (RCRA), all mixed waste must meet land disposal restrictions (LDRs) prior to disposal. Compliance with LDRs is attained through treatment of the waste to mitigate the characteristics of the listed waste hazard. Presently, most generators utilize commercial capacity for waste treatment prior to shipment to the NNSS Disposal Facility. The objectives of this evaluation are to provide a conceptual study of waste treatment needs (i.e., demand), identify potential waste treatment technologies to meet demand, and analyze implementation considerations for initiating MLLW treatment capacity at the NNSS Disposal Facility. A review of DOE complex waste generation forecast data indicates that current and future Departmental demand for mixed waste treatment capacity will remain steady and strong. Analysis and screening of over 30 treatment technologies narrowed the field of treatment technologies to four: • Macroencapsulation • Stabilization/microencapsulation • Sort and segregation • Bench-scale mercury amalgamation The analysis of treatment technologies also considered existing permits, current the NNSS Disposal Facility infrastructure such as utilities and procedures, and past experiences such as green-light and red-light lessons learned. A schedule duration estimate has been developed for permitting, design, and construction of onsite treatment capability at the NNSS Disposal Facility. Treatment capability can be ready in 20 months.

  18. Dust events in Arizona: Long-term satellite and surface observations, and the National Air Quality Forecasting Capability CMAQ simulations

    NASA Astrophysics Data System (ADS)

    Huang, M.; Tong, D.; Lee, P.; Pan, L.; Tang, Y.; Stajner, I.; Pierce, R. B.; McQueen, J.

    2015-12-01

    Dust events in Arizona: An analysis integrating satellite and surface weather and aerosol measurements, and National Air Quality Forecasting Capability CMAQ simulations Dust records in Arizona during 2005-2013 are developed using multiple observation datasets, including level 2 deep blue aerosol product by the Moderate Resolution Imaging Spectroradiometer (MODIS) and the in-situ measurements at the surface Air Quality System (AQS) and Interagency Monitoring of Protected Visual Environments (IMPROVE) sites in Phoenix. The satellite and surface aerosol observations were anti-correlated with three drought indicators (i.e., MODIS vegetation index, a European satellite soil moisture dataset, and Palmer Drought Severity Index). During the dusty year of 2007, we show that the dust events were stronger and more frequent in the afternoon hours than in the morning due to faster winds and drier soil, and the Sonoran and Chihuahuan deserts were important dust source regions during identified dust events in Phoenix as indicated by NOAA's Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) Model calculations. Based on these findings, we suggested a potential for use of satellite soil moisture and vegetation index products to interpret and predict dust activity. We also emphasized the importance of using hourly observations for better capturing dust events, and expect the hourly geostationary satellite observations in the future to well complement the current surface PM and meteorological observations considering their broader spatial coverage. Additionally, the performance of the National Air Quality Forecasting Capability (NAQFC) 12 km CMAQ model simulation is evaluated during a recent strong dust event in the western US accompanied by stratospheric ozone intrusion. The current modeling system well captured the temporal variability and the magnitude of aerosol concentrations during this event. Directions of integrating satellite weather and vegetation observations

  19. Alignment mask design and image processing for the Advanced Radiographic Capability (ARC) at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Leach, Richard R.; Awwal, Abdul; Cohen, Simon; Lowe-Webb, Roger; Roberts, Randy; Salmon, Thad; Smauley, David; Wilhelmsen, Karl

    2015-09-01

    The Advance Radiographic Capability (ARC) at the National Ignition Facility (NIF) is a laser system that employs up to four petawatt (PW) lasers to produce a sequence of short pulses that generate X-rays which backlight high-density inertial confinement fusion (ICF) targets. ARC is designed to produce multiple, sequential X-ray images by using up to eight back lighters. The images will be used to examine the compression and ignition of a cryogenic deuterium-tritium target with tens-of-picosecond temporal resolution during the critical phases of an ICF shot. Multi-frame, hard-X-ray radiography of imploding NIF capsules is a capability which is critical to the success of NIF's missions. As in the NIF system, ARC requires an optical alignment mask that can be inserted and removed as needed for precise positioning of the beam. Due to ARC's split beam design, inserting the nominal NIF main laser alignment mask in ARC produced a partial blockage of the mask pattern. Requirements for a new mask design were needed. In this paper we describe the ARC mask requirements, the resulting mask design pattern, and the image analysis algorithms used to detect and identify the beam and reference centers required for ARC alignment.

  20. Introductory materials for committee members: 1) instructions for the Los Alamos National Laboratory fiscal year 2010 capability reviews 2) NPAC strategic capability planning 3) Summary self-assessment for the nuclear and particle physics, astrophysics an

    SciTech Connect

    Redondo, Antonio

    2010-01-01

    Los Alamos National Laboratory (LANL) uses external peer review to measure and continuously improve the quality of its science, technology and engineering (STE). LANL uses capability reviews to assess the STE quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. STE capabilities are define to cut across directorates providing a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. LANL plans to perform a complete review of the Laboratory's STE capabilities (hence staff) in a three-year cycle. The principal product of an external review is a report that includes the review committee's assessments, commendations, and recommendations for STE. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). This report will be used by Laboratory Management for STE assessment and planning. The report is also provided to the Department of Energy (DOE) as part of LANL's Annual Performance Plan and to the Los Alamos National Security (LANS) LLC's Science and Technology Committee (STC) as part of its responsibilities to the LANS Board of Governors.

  1. Enhanced capacity and rate capability of carbon nanotube based anodes with titanium contacts for lithium ion batteries.

    PubMed

    DiLeo, Roberta A; Castiglia, Anthony; Ganter, Matthew J; Rogers, Reginald E; Cress, Cory D; Raffaelle, Ryne P; Landi, Brian J

    2010-10-26

    Carbon nanotubes are being considered for adoption in lithium ion batteries as both a current collector support for high-capacity active materials (replacing traditional metal foils) and as free-standing electrodes where they simultaneously store lithium ions. The necessity to establish good electrical contact to these novel electrode designs is critical for success. In this work, application of nickel and titanium as both separable and thin film electrical contacts to free-standing single-wall carbon nanotube (SWCNT) electrodes is shown to dramatically enhance both the reversible lithium ion capacity and rate capability in comparison with stainless steel. Scanning electron microscopy showed that evaporation of Ni and Ti can effectively coat the SWCNT bundles in a bulk electrode which is capable of providing an improved electrical contact. A thin film of titanium emerged as the preferred electrical contact promoting the highest capacity ever measured for a SWCNT free-standing electrode of 1250 mAh/g. In addition, the titanium contacting approach demonstrated a 5-fold improvement in lithium ion capacity at extraction rates greater than 1C for a high-energy density Ge-SWCNT electrode. The overall performance improvement with Ti contacts is attributed to a lower contact resistance, nanoscale "wetting" of SWCNT bundles to improve contact uniformity, and effective electron coupling between Ti and SWCNTs due to work function-energy level alignment. The experimental results provide the basis for a Ragone analysis (power vs energy parameters), whereby Ge-SWCNT-Ti anodes paired with a LiFePO(4) cathode can lead to a 60% improvement over conventional graphite anodes in both power and energy density for a complete battery. PMID:20857949

  2. Toward enhanced capability for detecting and predicting dust events in the western United States: the Arizona case study

    NASA Astrophysics Data System (ADS)

    Huang, M.; Tong, D.; Lee, P.; Pan, L.; Tang, Y.; Stajner, I.; Pierce, R. B.; McQueen, J.; Wang, J.

    2015-11-01

    Dust aerosols affect human life, ecosystems, atmospheric chemistry and climate in various aspects. Some studies have revealed intensified dust activity in the western US during the past decades despite the weaker dust activity in non-US regions. It is important to extend the historical dust records, to better understand their temporal changes, and to use such information to improve the daily dust forecasting skill as well as the projection of future dust activity under the changing climate. This study develops dust records in Arizona in 2005-2013 using multiple observation data sets, including in situ measurements at the surface Air Quality System (AQS) and Interagency Monitoring of Protected Visual Environments (IMPROVE) sites, and level 2 deep blue aerosol product by the Moderate Resolution Imaging Spectroradiometer. The diurnal and inter-annual variability of identified dust events are shown related to observed weather patterns (e.g., wind and soil moisture) and surface conditions (e.g., land cover type and vegetation conditions), suggesting a potential for use of satellite soil moisture and land products to help interpret and predict dust activity. Backtrajectories computed using NOAA's Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model indicate that the Sonoran and Chihuahuan deserts are important dust source regions during identified dust events in Phoenix, Arizona. Finally, we assess the impact of a recent strong dust event on western US air quality, using various observational and modeling data sets, during a period with a stratospheric ozone intrusion event. The capability of the current US National Air Quality Forecasting Capability (NAQFC) Community Multi-scale Air Quality (CMAQ) modeling system to represent the magnitude and the temporal variability of aerosol concentrations is evaluated for this event. Directions for integrating observations to further improve dust emission modeling in CMAQ are also suggested.

  3. Development of Commercial-Length Nuclear Fuel Post-Irradiation Examination Capabilities at the Oak Ridge National Laboratory

    SciTech Connect

    Ott, Larry J; Spellman, Donald J; Bevard, Bruce Balkcom; Chesser, Joel B; Morris, Robert Noel

    2009-01-01

    The U.S. Department of Energy Fissile Materials Disposition Program is pursuing disposal of surplus weapons-usable plutonium by reactor irradiation as the fissile constituent of mixed oxide (MOX) fuel. Lead test assemblies (LTAs) have been irradiated for approximately 36 months in Duke Energy s Catawba-1 nuclear power plant. Per the MOX fuel qualification plan, destructive post-irradiation examinations (PIEs) are to be performed on second-cycle rods (irradiated to an average burnup of approximately 42 GWd/MTHM). These LTA bundles are planned to be returned to the reactor and further irradiated to approximately 52 GWd/MTHM. Nondestructive and destructive PIEs of these commercially irradiated weapons-derived MOX fuel rods will be conducted at the Oak Ridge National Laboratory (ORNL) in the Irradiated Fuels Examination Laboratory (IFEL). PIE began in early 2009. In order to support the examination of the irradiated full-length (~3.66 m) MOX fuel rods, ORNL in 2004 began to develop the necessary infrastructure and equipment for the needed full-scope PIE capabilities. The preparations included modifying the IFEL building to handle a commercial spent-fuel shipping cask; procurement of cask-handling equipment and a skid to move the cask inside the building; development of in-cell handling equipment for cask unloading; and design, fabrication, and testing of the automated, state-of-the-art PIE examination equipment. This paper describes these activities and the full-scope PIE capabilities available at ORNL for commercial full-length fuel rods.

  4. Final Technical Report - 300°C Capable Electronics Platform and Temperature Sensor System For Enhanced Geothermal Systems

    SciTech Connect

    Chen, Cheng-Po; Shaddock, David; Sandvik, Peter; Saia, Rich; Amita Patil, Alexey Vert; Zhang, Tan

    2012-11-30

    A silicon carbide (SiC) based electronic temperature sensor prototype has been demonstrated to operate at 300°C. We showed continuous operation of 1,000 hours with SiC operational amplifier and surface mounted discreet resistors and capacitors on a ceramic circuit board. This feasibility demonstration is a major milestone in the development of high temperature electronics in general and high temperature geothermal exploration and well management tools in particular. SiC technology offers technical advantages that are not found in competing technologies such as silicon-on-insulator (SOI) at high temperatures of 200°C to 300°C and beyond. The SiC integrated circuits and packaging methods can be used in new product introduction by GE Oil and Gas for high temperature down-hole tools. The existing SiC fabrication facility at GE is sufficient to support the quantities currently demanded by the marketplace, and there are other entities in the United States and other countries capable of ramping up SiC technology manufacturing. The ceramic circuit boards are different from traditional organic-based electronics circuit boards, but the fabrication process is compatible with existing ceramic substrate manufacturing. This project has brought high temperature electronics forward, and brings us closer to commercializing tools that will enable and reduce the cost of enhanced geothermal technology to benefit the public in terms of providing clean renewable energy at lower costs.

  5. Fe2O3 Nanoparticles Wrapped in Multi-walled Carbon Nanotubes With Enhanced Lithium Storage Capability

    PubMed Central

    Yan, Nan; Zhou, Xuhui; Li, Yan; Wang, Fang; Zhong, Hao; Wang, Hui; Chen, Qianwang

    2013-01-01

    We have designed a novel hybrid nanostructure by coating Fe2O3 nanoparticles with multi-walled carbon nanotubes to enhance the lithium storage capability of Fe2O3. The strategy to prepare Fe2O3@MWCNTs involves the synthesis of Fe nanoparticles wrapped in MWCNTs, followed by the oxidation of Fe nanoparticles under carbon dioxide. When used as the anode in a Li-ion battery, this hybrid material (70.32 wt% carbon nanotubes, 29.68 wt% Fe2O3) showed a reversible discharge capacity of 515 mAhg−1 after 50 cycles at a density of 100 mAg−1 and the capacity based on Fe2O3 nanoparticles was calculated as 1147 mAhg−1, Three factors are responsibile for the superior performance: (1) The hollow interiors of MWCNTs provide enough spaces for the accommodation of large volume expansion of inner Fe2O3 nanoparticles, which can improving the stability of electrode; (2) The MWCNTs increase the overall conductivity of the anode; (3) A stable solid electrolyte interface film formed on the surface of MWCNTs may reduce capacity fading. PMID:24292097

  6. Extending enhanced-vision capabilities by integration of advanced surface movement guidance and control systems (A-SMGCS)

    NASA Astrophysics Data System (ADS)

    Hecker, Peter; Doehler, Hans-Ullrich; Korn, Bernd; Ludwig, T.

    2001-08-01

    DLR has set up a number of projects to increase flight safety and economics of aviation. Within these activities one field of interest is the development and validation of systems for pilot assistance in order to increase the situation awareness of the aircrew. All flight phases ('gate-to-gate') are taken into account, but as far as approaches, landing and taxiing are the most critical tasks in the field of civil aviation, special emphasis is given to these operations. As presented in previous contributions within SPIE's Enhanced and Synthetic Vision Conferences, DLR's Institute of Flight Guidance has developed an Enhanced Vision System (EVS) as a tool assisting especially approach and landing by improving the aircrew's situational awareness. The combination of forward looking imaging sensors (such as EADS's HiVision millimeter wave radar), terrain data stored in on-board databases plus information transmitted from ground or other aircraft via data link is used to help pilots handling these phases of flight especially under adverse weather conditions. A second pilot assistance module being developed at DLR is the Taxi And Ramp Management And Control - Airborne System (TARMAC-AS), which is part of an Advanced Surface Management Guidance and Control System (ASMGCS). By means of on-board terrain data bases and navigation data a map display is generated, which helps the pilot performing taxi operations. In addition to the pure map function taxi instructions and other traffic can be displayed as the aircraft is connected to TARMAC-planning and TARMAC-communication, navigation and surveillance modules on ground via data-link. Recent experiments with airline pilots have shown, that the capabilities of taxi assistance can be extended significantly by integrating EVS- and TARMAC-AS-functionalities. Especially an extended obstacle detection and warning coming from the Enhanced Vision System increases the safety of ground operations. The presented paper gives an overview

  7. Lawrence Livermore National Laboratory interests and capabilities for research on the ecological effects of global climatic and atmospheric change

    SciTech Connect

    Amthor, J.S.; Houpis, J.L.; Kercher, J.R.; Ledebuhr, A.; Miller, N.L.; Penner, J.E.; Robison, W.L.; Taylor, K.E.

    1994-09-01

    The Lawrence Livermore National Laboratory (LLNL) has interests and capabilities in all three types of research that must be conducted in order to understand and predict effects of global atmospheric and climatic (i.e., environmental) changes on ecological systems and their functions (ecosystem function is perhaps most conveniently defined as mass and energy exchange and storage). These three types of research are: (1) manipulative experiments with plants and ecosystems; (2) monitoring of present ecosystem, landscape, and global exchanges and pools of energy, elements, and compounds that play important roles in ecosystem function or the physical climate system, and (3) mechanistic (i.e., hierarchic and explanatory) modeling of plant and ecosystem responses to global environmental change. Specific experimental programs, monitoring plans, and modeling activities related to evaluation of ecological effects of global environmental change that are of interest to, and that can be carried out by LLNL scientists are outlined. Several projects have the distinction of integrating modeling with empirical studies resulting in an Integrated Product (a model or set of models) that DOE or any federal policy maker could use to assess ecological effects. The authors note that any scheme for evaluating ecological effects of atmospheric and climatic change should take into account exceptional or sensitive species, in particular, rare, threatened, or endangered species.

  8. Image analysis algorithms for the advanced radiographic capability (ARC) grating tilt sensor at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Roberts, Randy S.; Bliss, Erlan S.; Rushford, Michael C.; Halpin, John M.; Awwal, Abdul A. S.; Leach, Richard R.

    2014-09-01

    The Advance Radiographic Capability (ARC) at the National Ignition Facility (NIF) is a laser system designed to produce a sequence of short pulses used to backlight imploding fuel capsules. Laser pulses from a short-pulse oscillator are dispersed in wavelength into long, low-power pulses, injected in the NIF main laser for amplification, and then compressed into high-power pulses before being directed into the NIF target chamber. In the target chamber, the laser pulses hit targets which produce x-rays used to backlight imploding fuel capsules. Compression of the ARC laser pulses is accomplished with a set of precision-surveyed optical gratings mounted inside of vacuum vessels. The tilt of each grating is monitored by a measurement system consisting of a laser diode, camera and crosshair, all mounted in a pedestal outside of the vacuum vessel, and a mirror mounted on the back of a grating inside the vacuum vessel. The crosshair is mounted in front of the camera, and a diffraction pattern is formed when illuminated with the laser diode beam reflected from the mirror. This diffraction pattern contains information related to relative movements between the grating and the pedestal. Image analysis algorithms have been developed to determine the relative movements between the gratings and pedestal. In the paper we elaborate on features in the diffraction pattern, and describe the image analysis algorithms used to monitor grating tilt changes. Experimental results are provided which indicate the high degree of sensitivity provided by the tilt sensor and image analysis algorithms.

  9. National Research Council Dialogue to Assess Progress on NASA's Human Health & Support Systems Capability Roadmap Development: General Background and Introduction

    NASA Technical Reports Server (NTRS)

    Aikins, Jan

    2005-01-01

    Contents include the following: General Background and Introduction of Capability Roadmaps. Agency Objective. Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).

  10. National Research Council Dialogue to Assess Progress on NASA's Title of CRM Capability Roadmap Development: General Background and Introduction

    NASA Technical Reports Server (NTRS)

    Crooke, Julie A.

    2005-01-01

    Contents include the following: General Background and Introduction of Capability Roadmaps "Title." Agency Objective. Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).

  11. Induced overexpression of Oct4A in human dental pulp cells enhances pluripotency and multilineage differentiation capability.

    PubMed

    Liu, Lu; Wu, Lijing; Wei, Xi; Ling, Junqi

    2015-04-15

    Octamer-binding transcription factor 4A (Oct4A), one of the three spliced variants of the class V of POU transcription factor family, is mainly expressed in the nucleus of undifferentiated cells and serves as the key regulator for the maintenance of pluripotency and self-renewal. However, its specific role in regulating pluripotency and multilineage differentiation potential of dental pulp cells (DPCs) remains unknown. To explore the effect of Oct4A on pluripotency and multilineage differentiation capability of DPCs, expression of Oct4A in human dental pulp tissue and pluripotent markers Oct4A, Sox2, c-Myc, Nanog, and Klf4 in DPCs with prolonged in vitro culture were examined by immunohistochemistry and immunofluorescent staining. Oct4A transfection rate in DPCs with lentivirus was evaluated by real-time polymerase chain reaction (PCR) and western blot. Cell proliferation, multilineage differentiation, and the expression of Oct4B1, Sox2, Nanog, Klf4, c-Myc, and Utf1 in DPCs after Oct4A transfection were detected by cell counting kit-8, Alizarin red/Oil red O staining, immunofluorescent staining, alkaline phosphatase analysis, and real-time PCR. We demonstrated that Oct4A was mainly expressed in the nucleus of odontoblasts in dental pulp tissue. Oct4A, Sox2, c-Myc, Nanog, and Klf4 were primarily located in the nucleus of DPCs at early passage (passage 1) and translocated to cytoplasm at late passage (passage 7). In DPCs with Oct4A overexpression, Oct4A, Oct4B1, Sox2, Nanog, Klf4, c-Myc, and Utf1 were significantly upregulated (p<0.05) and the cell proliferation (p<0.05), odontogenic and adipogenic differentiation were significantly enhanced. Taken together, Oct4A plays a critical role in regulation of cell proliferation, pluripotency, and multilineage differentiation potential of DPCs. PMID:25422984

  12. Specificity and Strain-Typing Capabilities of Nanorod Array-Surface Enhanced Raman Spectroscopy for Mycoplasma pneumoniae Detection

    PubMed Central

    Henderson, Kelley C.; Benitez, Alvaro J.; Ratliff, Amy E.; Crabb, Donna M.; Sheppard, Edward S.; Winchell, Jonas M.; Dluhy, Richard A.; Waites, Ken B.; Atkinson, T. Prescott; Krause, Duncan C.

    2015-01-01

    Mycoplasma pneumoniae is a cell wall-less bacterial pathogen of the human respiratory tract that accounts for > 20% of all community-acquired pneumonia (CAP). At present the most effective means for detection and strain-typing is quantitative polymerase chain reaction (qPCR), which can exhibit excellent sensitivity and specificity but requires separate tests for detection and genotyping, lacks standardization between available tests and between labs, and has limited practicality for widespread, point-of-care use. We have developed and previously described a silver nanorod array-surface enhanced Raman Spectroscopy (NA-SERS) biosensing platform capable of detecting M. pneumoniae with statistically significant specificity and sensitivity in simulated and true clinical throat swab samples, and the ability to distinguish between reference strains of the two main genotypes of M. pneumoniae. Furthermore, we have established a qualitative lower endpoint of detection for NA-SERS of < 1 genome equivalent (cell/μl) and a quantitative multivariate detection limit of 5.3 ± 1 cells/μl. Here we demonstrate using partial least squares- discriminatory analysis (PLS-DA) of sample spectra that NA-SERS correctly identified M. pneumoniae clinical isolates from globally diverse origins and distinguished these from a panel of 12 other human commensal and pathogenic mycoplasma species with 100% cross-validated statistical accuracy. Furthermore, PLS-DA correctly classified by strain type all 30 clinical isolates with 96% cross-validated accuracy for type 1 strains, 98% cross-validated accuracy for type 2 strains, and 90% cross-validated accuracy for type 2V strains. PMID:26121242

  13. Gigapixel panoramas of Glacier National Park create enhanced education experiences

    NASA Astrophysics Data System (ADS)

    Fagre, D. B.; McKeon, L. A.

    2010-12-01

    Repeat photography has proven to be an effective means to communicate the pace and scope of climate change impacts to Glacier National Park, Montana for broad audiences. The repeat photographs of glaciers vividly document their rate of disappearance and have been used in books, magazines, TV documentaries, on websites, and in several art museum exhibits. In our ongoing efforts to enhance information transfer about climate change to audiences, we have capitalized on an emerging technology by partnering with GigaPan Systems to test the effectiveness of a Gigapan camera system. A Gigapan camera system is a robotically controlled DSLR camera mount that is programmed to take multiple high-resolution digital photographs of objects or entire landscapes in sequence and with overlap between adjoining photographs. The multiple (e.g. 800) photographs are digitally stitched with post production software into one large merged image and served online as a gigapixel panorama. Key objects or parts of the image can be zoomed into at great detail and highlighted as “snapshots”. The snapshot images retain high image resolution and can then be annotated and information such as datasets, maps, or additional images can be linked to that part of the image. GigaPan images can be georeferenced in Google Earth and embedded in websites. We have used this visually compelling technology to photograph alpine glaciers in Glacier Park and create interactive experiences for online users. Results are available at: http://gigapan.org/ Gigapan system with robotically controlled camera

  14. Document Delivery Capabilities of Major Biomedical Libraries in 1968: Results of a National Survey Employing Standardized Tests *

    PubMed Central

    Orr, Richard H.; Schless, Arthur P.

    1972-01-01

    The standardized Document Delivery Tests (DDT's) developed earlier (Bulletin 56: 241-267, July 1968) were employed to assess the capability of ninety-two medical school libraries for meeting the document needs of biomedical researchers, and the capability of fifteen major resource libraries for filling I-L requests from biomedical libraries. The primary test data are summarized as statistics on the observed availability status of the 300 plus documents in the test samples, and as measures expressing capability as a function of the mean time that would be required for users to obtain test sample documents. A mathematical model is developed in which the virtual capability of a library, as seen by its users, equals the algebraic sum of the basic capability afforded by its holdings; the combined losses attributable to use of its collection, processing, relative inacessibility, and housekeeping problems; and the gain realized by coupling with other resources (I-L borrowing). For a particular library, or group of libraries, empirical values for each of these variables can be calculated easily from the capability measures and the status statistics. Regression equations are derived that provide useful predictions of basic capability from collection size. The most important result of this work is that cost-effectiveness analyses can now be used as practical decision aids in managing a basic library service. A program of periodic surveys and further development of DDT's is recommended as appropriate for the Medical Library Association. PMID:5054305

  15. Enhancing The National Map Through Tactical Planning and Performance Monitoring

    USGS Publications Warehouse

    U.S. Geological Survey

    2008-01-01

    Tactical planning and performance monitoring are initial steps toward improving 'the way The National Map works' and supporting the U.S. Geological Survey (USGS) Science Strategy. This Tactical Performance Planning Summary for The National Map combines information from The National Map 2.0 Tactical Plan and The National Map Performance Milestone Matrix. The National Map 2.0 Tactical Plan is primarily a working document to guide The National Map program's execution, production, and metrics monitoring for fiscal years (FY) 2008 and 2009. The Tactical Plan addresses data, products, and services, as well as supporting and enabling activities. The National Map's 2-year goal for FY 2008 and FY 2009 is to provide a range of geospatial products and services that further the National Spatial Data Infrastructure and underpin USGS science. To do this, the National Geospatial Program will develop a renewed understanding during FY 2008 of key customer needs and requirements, develop the infrastructure to support The National Map business model, modernize its business processes, and reengineer its workforce. Priorities for The National Map will be adjusted if necessary to respond to changes to the project that may impact resources, constrain timeframes, or change customer needs. The supporting and enabling activities that make it possible to produce the products and services of The National Map will include partnership activities, improved compatibility of systems, outreach, and integration of data themes.

  16. A Study of Surface Directional Reflectance Properties To Enhance Aerosol Retrieval Capability Over Land Using MISR Data

    NASA Astrophysics Data System (ADS)

    Martonchik, J.; Bull, M.; Dang, V. T.

    2007-12-01

    AERONET data provide an independent and better contrained determination of the aerosol properties at a site during the overpass, which then is used to correct the associated MISR top-of atmosphere imagery for atmospheric effects, resulting in the best estimates of the AERONET site surface spectral directional reflectance at 1.1 km resolution. To understand how the similarity of the angular shape depends on spatial scale, the directional reflectance was retrieveded at a variety of spatial resolutions, starting at 1.1 km pixel centered at the AERONET site and was systematically increased by pixel averaging around the site to 17.6 km resolution, the spatial scale used by the current MISR operational aerosol retrieval. A wide variety of AERONET sites were analyzed to provide information on how the degree of spectral reflectance similarity may relate to surface type. Because MISR data has been available since early 2000 to the present, seasonal and secular trends in surface reflectance variability also were investigated. The similarity condition was quantified at each site by the use of various semi-empirical directional reflectance models which allowed spectral albedo effects to be explicitly taken into account. It is expected that the results of this study will improve the current capability of the MISR aerosol retrieval algorithm over land. This work was performed at the Jet Propulsion Laboratory, California Institute ofTechnology under contract with the National Aeronautics and Space Administration.

  17. ADAPTIVE MONITORING TO ENHANCE WATER SENSOR CAPABILITIES FOR CHEMICAL AND BIOLOGICAL CONTAMINANT DETECTION IN DRINKING WATER SYSTEMS

    EPA Science Inventory

    Optoelectronic and other conventional water quality sensors offer a potential for real-time online detection of chemical and biological contaminants in a drinking water supply and distribution system. The nature of the application requires sensors of detection capabilities at lo...

  18. Enhancing the Educational Potential of Non-Oral Children through Matching Communication Device Capabilities to Children's Needs. Final Report.

    ERIC Educational Resources Information Center

    Coleman, Colette L.; And Others

    The report describes activities and results of a project to identify communication characteristics that would help match augmentative communication system (ACS) capabilities to the needs of nonoral children. Ss had a variety of handicapping conditions, including cerebral palsy and other developmental disabilities. Introductory sections cover the…

  19. Implementation of the Enhanced Flight Termination System at National Aeronautics and Space Administration Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Tow, David

    2010-01-01

    This paper discusses the methodology, requirements, tests, and results of the implementation of the current operating capability for the Enhanced Flight Termination System (EFTS) at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC). The implementation involves the development of the EFTS at NASA DFRC starting from the requirements to system safety review to full end to end system testing, and concluding with the acceptance of the system as an operational system. The paper discusses the first operational usage and subsequent flight utilizing EFTS successfully.

  20. Peripheral Social Learning in the Workplace and the Development of Corporate Capability: The Role of National Vocational Qualifications.

    ERIC Educational Resources Information Center

    Cairns, Len; Stephenson, John

    2001-01-01

    Interviews with over 200 people in 8 British and 2 Australian organizations identified 8 features of a healthy learning environment that contributes to organizational capability. Differences emerged between organization-driven and learner-driven learning activities. (Conains 74 references.) (SK)

  1. Enhanced defect detection capability using learning system for extreme ultraviolet lithography mask inspection tool with projection electron microscope optics

    NASA Astrophysics Data System (ADS)

    Hirano, Ryoichi; Hatakeyama, Masahiro; Terao, Kenji; Watanabe, Hidehiro

    2016-04-01

    Extreme ultraviolet lithography (EUVL) patterned mask defect detection is a major issue that must be addressed to realize EUVL-based device fabrication. We have designed projection electron microscope (PEM) optics for integration into a mask inspection system, and the resulting PEM system performs well in half-pitch (hp) 16-nm-node EUVL patterned mask inspection applications. A learning system has been used in this PEM patterned mask inspection tool. The PEM identifies defects using the "defectivity" parameter that is derived from the acquired image characteristics. The learning system has been developed to reduce the labor and the costs associated with adjustment of the PEM's detection capabilities to cope with newly defined mask defects. The concepts behind this learning system and the parameter optimization flow are presented here. The learning system for the PEM is based on a library of registered defects. The learning system then optimizes the detection capability by reconciling previously registered defects with newly registered defects. Functional verification of the learning system is also described, and the system's detection capability is demonstrated by applying it to the inspection of hp 11-nm EUV masks. We can thus provide a user-friendly mask inspection system with reduced cost of ownership.

  2. Enhanced Lithium-Ion Storage Capability of a Bismuth Sulfide/Graphene Oxide/Poly(3,4-ethylenedioxythiophene) Composite.

    PubMed

    Mukkabla, Radha; Deepa, Melepurath; Srivastava, Avanish Kumar

    2015-10-26

    A Bi2 S3 /graphene oxide (GO) composite enwrapped by a poly(3,4-ethylenedioxythiophene) (PEDOT) coating was prepared for the first time for use as an anode in Li-ion batteries. Pristine Bi2 S3 nanoflowers and composites of Bi2 S3 /GO and Bi2 S3 /GO/PEDOT were assembled into half cells with Li metal as the counter electrode, and initial discharge capacities of 833, 1020, and 1300 mAh g(-1) , respectively, were obtained. Composites of Bi2 S3 /GO/PEDOT and Bi2 S3 /GO showed superior cycling stability and better rate capability than pristine Bi2 S3 . GO provides highly conducting interconnections, which allow facile propagation of electrons during charge/discharge, and this improves the ion-uptake capability of the Bi2 S3 nanoflowers and also increases the rate capability. PEDOT furnishes a protective coating that prevents detachment of the material from the current collector during cycling, and it also imparts better cycling stability to the Bi2 S3 /GO/PEDOT composite. PMID:26247745

  3. Enhancing Both Cooperative Extension and National Environmental Education Resources

    ERIC Educational Resources Information Center

    Monroe, Martha C.

    2012-01-01

    State Extension programs can contribute to the successful adoption of national environmental education programs by making locally relevant resources available, creating reference materials to bridge between 4-H project books and other resources, and developing companion materials that supplement national materials with local issues and resources.…

  4. National Infrastructure Protection Plan: Partnering to Enhance Protection and Resiliency

    ERIC Educational Resources Information Center

    US Department of Homeland Security, 2009

    2009-01-01

    The overarching goal of the National Infrastructure Protection Plan (NIPP) is to build a safer, more secure, and more resilient America by preventing, deterring, neutralizing, or mitigating the effects of deliberate efforts by terrorists to destroy, incapacitate, or exploit elements of our Nation's critical infrastructure and key resources (CIKR)…

  5. FORMAT FOR ACQUIRING RAPID DATA ANALYSIS CAPABILITIES OF STORET DATA: MANIPULATION OF NATIONAL EUTROPHICATION SURVEY WATER QUALITY DATA

    EPA Science Inventory

    As an integral part of the National Eutrophication Survey, a program initiated in 1972 to investigate the threat of accelerated eutrophication to freshwater lakes and reservoirs, the Environmental Monitoring and Support Laboratory, Las Vegas, the collected water quality informati...

  6. Enhancement of process capability for strip force of tight sets of optical fiber using Taguchi's Quality Engineering

    NASA Astrophysics Data System (ADS)

    Lin, Wen-Tsann; Wang, Shen-Tsu; Li, Meng-Hua; Huang, Chiao-Tzu

    2012-03-01

    Strip force is the key to identifying the quality of product during manufacturing tight sets of fiber. This study used Integrated computer-aided manufacturing DEFinition 0 (IDEF0) modeling to discuss detailed cladding processes of tight sets of fiber in transnational optical connector manufacturing. The results showed that, the key factor causing an instable interface connection is the extruder adjustment process. The factors causing improper strip force were analyzed through literature, practice, and gray relational analysis. The parameters design method of Taguchi's Quality Engineering was used to determine the optimal experimental combinations for processes of tight sets of fiber. This study employed case empirical analysis to obtain a model for improving the process of strip force of tight sets of fiber, and determines the correlation factors that affect the processes of quality for tight sets of fiber. The findings indicated that, process capability index (CPK) increased significantly, which can facilitate improvement of the product process capability and quality. The empirical results can serve as a reference for improving the product quality of the optical fiber industry.

  7. Enhanced Electron Extraction Capability of Polymer Solar Cells via Employing Electrostatically Self-Assembled Molecule on Cathode Interfacial Layer.

    PubMed

    Li, Zhiqi; Zhang, Xinyuan; Liu, Chunyu; Zhang, Zhihui; Li, Jinfeng; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2016-03-01

    In this paper, high-performance inverted polymer solar cells (PSCs) with a modified cathode buffer layer, titanium dioxide:polyethylenimine (TiO2:PEI), are demonstrated. The TiO2-O-PEI transport layer was fabricated by electrostatically self-assembled monolayers (ESAM) of PEI molecules. Protonated amine functional groups of PEI can combine protons (H(+)) hydrolyzing from its aqueous solution. Also, PEI could produce ESAM on the surface of hydroxylated TiO2 because of its cationic characteristics. The incorporation of the TiO2-O-PEI layer enhances the photocurrent and power conversion efficiency (PCE) due to the improved interfacial electron transport and extraction of the TiO2-O-PEI surface and the increased light absorption of the active layer. The enhanced PCE, low-cost materials, and solution process of TiO2-O-PEI buffer layers provide a promising method for highly efficient PSCs. PMID:26955888

  8. Second-order sliding mode control for DFIG-based wind turbines fault ride-through capability enhancement.

    PubMed

    Benbouzid, Mohamed; Beltran, Brice; Amirat, Yassine; Yao, Gang; Han, Jingang; Mangel, Hervé

    2014-05-01

    This paper deals with the fault ride-through capability assessment of a doubly fed induction generator-based wind turbine using a high-order sliding mode control. Indeed, it has been recently suggested that sliding mode control is a solution of choice to the fault ride-through problem. In this context, this paper proposes a second-order sliding mode as an improved solution that handle the classical sliding mode chattering problem. Indeed, the main and attractive features of high-order sliding modes are robustness against external disturbances, the grids faults in particular, and chattering-free behavior (no extra mechanical stress on the wind turbine drive train). Simulations using the NREL FAST code on a 1.5-MW wind turbine are carried out to evaluate ride-through performance of the proposed high-order sliding mode control strategy in case of grid frequency variations and unbalanced voltage sags. PMID:24530194

  9. validation and Enhancement of Computational Fluid Dynamics and Heat Transfer Predictive Capabilities for Generation IV Reactor Systems

    SciTech Connect

    Robert E. Spall; Barton Smith; Thomas Hauser

    2008-12-08

    Nationwide, the demand for electricity due to population and industrial growth is on the rise. However, climate change and air quality issues raise serious questions about the wisdom of addressing these shortages through the construction of additional fossil fueled power plants. In 1997, the President's Committee of Advisors on Science and Technology Energy Research and Development Panel determined that restoring a viable nuclear energy option was essential and that the DOE should implement a R&D effort to address principal obstacles to achieving this option. This work has addressed the need for improved thermal/fluid analysis capabilities, through the use of computational fluid dynamics, which are necessary to support the design of generation IV gas-cooled and supercritical water reactors.

  10. Enhancing army analysis capability for warfighter protection: TRADOC-RDECOM M&S decision support environment collaboration

    NASA Astrophysics Data System (ADS)

    Athmer, Keith; Gaughan, Chris; McDonnell, Joseph S.; Leach, Robert; Davis, Bert; Truong, Kiet; Borum, Howard; Leslie, Richard; Ma, Lein

    2012-05-01

    The development of an Integrated Base Defense (IBD) is a significant challenge for the Army with many analytical gaps. The IBD problem space is complex, with evolving requirements and a large stakeholder base. In order to evaluate and analyze IBD decisions, the Training & Doctrine Command (TRADOC) Maneuver Support Center of Excellence (MSCoE) led and continues to lead a series of IBD focused experiments and wargames. Modeling and Simulation (M&S) significantly contributes to this effort. To improve IBD M&S capabilities, a collaborative demonstration with the Research, Development and Engineering Command's (RDECOM's) M&S Decision Support Environment (MSDSE) was held in September 2011. The results of this demonstration provided key input to MSCoE IBD related concepts and technologies. Moreover, it established an initial M&S toolset that will significantly improve force protection in combat zones and Army installations worldwide by providing leaders a capability to conduct analysis of defense and mission rehearsals. The demonstration was executed with a "human in the loop" Battle Captain, who was aided by mission command assets such as Base Expeditionary Targeting and Surveillance Sensors-Combined (BETSS-C). The Common Operating Picture was populated and stimulated using Science & Technology (S&T) M&S, allowing for a realistic representation of physical phenomena without the need for real systems. Novel methods were used for simulation orchestration, and for initializing the simulations and Opposing Force (OPFOR) activities. Ultimately, this demonstration showed that the MSDSE is suitable to support TRADOC IBD analyses and that S&T M&S is ready to be used in a demanding simulation environment. This paper will highlight the event's outcomes and lessons identified.

  11. Strain Effects on Enhanced Hydrogen Sulphide Detection Capability of Ag-DECORATED Defective Graphene: a First-Principles Investigation

    NASA Astrophysics Data System (ADS)

    Qin, Xian; Meng, Qingyuan; Feng, Yuan Ping

    2012-10-01

    Strain effects on hydrogen sulphide (H2S) adsorption on Ag-decorated Stone-Wales (SW) defect in graphene were investigated by density functional theory calculations. The results indicate that an Ag adatom is easily pinned chemically on the top of the most stretched C-C bond at the SW defect in graphene without mechanical strains. A modest uniform tensile strain (8%) applied in defective graphene greatly increases the binding energy of Ag by 44%, indicating the strain enhanced stabilization of Ag on SW defect. Using the resulting Ag-decorated defective graphene (Ag-SW-g) composite as a model for H2S molecule detection, we found that the tensile strain has little effects on the interaction between the molecule and the composite, and the adsorption energies of H2S around 1.6 eV which is six times larger than that on pristine graphene are produced. The enhanced H2S adsorption on Ag-SW-g is attributed to charge transfer from the molecule to the graphene through the bridge-like Ag adatom. In addition, the electronic property of the Ag-SW-g under different strains changes from a metallic state to a semiconductor state upon H2S adsorption, which should lead to an observable change in its conductivity. These findings pave the way for future development of graphene-based gas sensor.

  12. 77 FR 41190 - Office of Clinical and Preventive Services Funding Opportunity: National HIV Program for Enhanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... June 19, 2012, in FR DOC 2012-14891, on page 36550, in the third column, under the heading ``Dates: Key...: National HIV Program for Enhanced HIV/AIDS Screening and Engagement in Care AGENCY: Indian Health...

  13. Enhancement of the Wear Particle Monitoring Capability of Oil Debris Sensors Using a Maximal Overlap Discrete Wavelet Transform with Optimal Decomposition Depth

    PubMed Central

    Li, Chuan; Peng, Juan; Liang, Ming

    2014-01-01

    Oil debris sensors are effective tools to monitor wear particles in lubricants. For in situ applications, surrounding noise and vibration interferences often distort the oil debris signature of the sensor. Hence extracting oil debris signatures from sensor signals is a challenging task for wear particle monitoring. In this paper we employ the maximal overlap discrete wavelet transform (MODWT) with optimal decomposition depth to enhance the wear particle monitoring capability. The sensor signal is decomposed by the MODWT into different depths for detecting the wear particle existence. To extract the authentic particle signature with minimal distortion, the root mean square deviation of kurtosis value of the segmented signal residue is adopted as a criterion to obtain the optimal decomposition depth for the MODWT. The proposed approach is evaluated using both simulated and experimental wear particles. The results show that the present method can improve the oil debris monitoring capability without structural upgrade requirements. PMID:24686730

  14. 2D wax-printed paper substrates with extended solvent supply capabilities allow enhanced ion signal in paper spray ionization.

    PubMed

    Damon, Deidre E; Maher, Yosef S; Yin, Mengzhen; Jjunju, Fred P M; Young, Iain S; Taylor, Stephen; Maher, Simon; Badu-Tawiah, Abraham K

    2016-06-21

    Paper-based microfluidic channels were created from solid wax printing, and the resultant 2D wax-printed paper substrates were used for paper spray (PS) mass spectrometry (MS) analysis of small organic compounds. Controlling fluid flow at the tip of the wax-printed paper triangles enabled the use of lower spray voltages (0.5-1 kV) and extended signal lifetime (10 minutes) in PS-MS. High sensitivity (sub ng mL(-1) levels) and quantitation precision (<10% RSD) have been achieved in the analysis of illicit drugs in 4 μL of raw urine (fresh and dry), as well as corrosion inhibitors and pesticides in water samples. The reported study encourages the future development of disposable 3D microfluidic paper-based analytical devices, which function with simple operation but capable of on-chip analyte detection by MS; such a device can replace the traditional complex laboratory procedures for MS analysis to enable on-site in situ sampling with portable mass spectrometers. PMID:27121269

  15. Enhanced pulseshaping capabilities and reduction of non-linear effects in all-fiber MOPA pulsed system

    NASA Astrophysics Data System (ADS)

    Morasse, Bertrand; Chatigny, Stéphane; Gagnon, Éric; de Sandro, Jean-Philippe; Desrosiers, Cynthia

    2009-02-01

    Pulseshaping is important in high energy pulsed fiber MOPA system to mitigate non-linear effects and optimize the processing of different materials. However, pulseshaping is greatly limited by the spectral features of the semiconductor seed source commonly used as the master oscillator. Through the appropriate design of an external fiber Bragg grating (FBG) and adequate current modulation, the spectrum of the fiber-coupled seed laser was broadened to suppress stimulated Brillouin scattering occurring in the amplifier chain and the central emission wavelength and bandwidth were controlled. Pulseshaping is also quickly limited by the saturation energy and doping level of standard aluminosilicate ytterbium doped fibers used in the power amplifier even with large core diameter. Co-doping the fiber with phosphorus greatly increases the saturation energy of the system, which gives smoother pulseshape and significantly lower stimulated Raman scattering (SRS). It is shown that going from 1060 nm to longer emission wavelength at 1090 nm with this fiber increases further the pulseshaping capabilities and reduces SRS. The phosphorus codoping also allows higher ytterbium doping level without photo-degradation, which decreases nonlinear effects generation during the amplification while giving more flexible pump wavelength choice and efficiency.

  16. Solid-state synthesis of Ti2Nb10O29/reduced graphene oxide composites with enhanced lithium storage capability

    NASA Astrophysics Data System (ADS)

    Wang, Wan Lin; Oh, Byeong-Yun; Park, Ju-Young; Ki, Hangil; Jang, Jaewon; Lee, Gab-Yong; Gu, Hal-Bon; Ham, Moon-Ho

    2015-12-01

    Owing to their multiple redox couples, titanium-niobium-based oxides are still considered promising candidates for use as anodes for safe, rechargeable lithium ion batteries with high energy and power densities. Titanium-niobium-based oxide electrodes have, however, exhibited relatively poor cycling performance as a result of pulverization. In this study, we report on a simple two-step solid-state reaction route for producing hybrid composites of Ti2Nb10O29 (TNO) anchored on reduced graphene oxide (RGO), and the electrochemical performance of the resulting TNO/RGO composites. Solid-state reactions enable both the formation of TNO and the uniform distribution of RGO in the TNO/RGO composites. The TNO/RGO composites exhibited discharge and charge capacities of 261 and 256 mAh g-1, respectively, with much better cycling performance (182 mAh g-1 after the 50th cycles) and rate capability (165 mAh g-1 at a current density of 500 mA g-1) compared to the pure TNO.

  17. Enhanced electron extraction capability of polymer solar cells via modifying the cathode buffer layer with inorganic quantum dots.

    PubMed

    Li, Zhiqi; Li, Shujun; Zhang, Zhihui; Zhang, Xinyuan; Li, Jingfeng; Liu, Chunyu; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2016-04-20

    Enhanced performance of polymer solar cells (PSCs) based on the blend of poly[N-9''-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT):[6,6]-phenyl-C70-butyric acid methyl ester (PC71BM) is demonstrated by titanium dioxide (TiO2) interface modification via CuInS2/ZnS quantum dots (CZdots). Devices with a TiO2/CZdots composite buffer layer exhibit both a high short-circuit current density (Jsc) and fill factor (FF), leading to a power conversion efficiency (PCE) up to 7.01%. The charge transport recombination mechanisms are investigated by an impedance behavior model, which indicates that TiO2 interfacial modification results in not only increasing the electron extraction but also reducing impedance. This study provides an important and beneficial approach to develop high efficiency PSCs. PMID:27055908

  18. Physician-directed software design: the role of utilization statistics and user input in enhancing HELP results review capabilities.

    PubMed Central

    Michael, P. A.

    1993-01-01

    The M.D. Rounds Report program was developed and implemented in June of 1992 as an adjunct to the HELP System at Rex Hospital. The program facilitates rapid access to information on allergies and current medications, laboratory results, radiology reports and therapist notes for a list of patients without physicians having to make additional menu or submenu selections. In planning for an upgrade of the program, utilization statistics and user feedback provided valuable information in terms of frequency of access, features used and unused, and the value of the program as a reporting tool in comparison to other online results reporting applications. A brief description of the functionality of the M.D. Rounds Report, evaluation of the program audit trail and user feedback, planned enhancements to the program, and a discussion of the prototyping and monitoring experience and the impact on future physician subsystem development will be presented. PMID:8130443

  19. Multifunctional non-viral gene vectors with enhanced stability, improved cellular and nuclear uptake capability, and increased transfection efficiency

    NASA Astrophysics Data System (ADS)

    Yang, Zhe; Jiang, Zhaozhong; Cao, Zhong; Zhang, Chao; Gao, Di; Luo, Xingen; Zhang, Xiaofang; Luo, Huiyan; Jiang, Qing; Liu, Jie

    2014-08-01

    We have developed a new multifunctional, non-viral gene delivery platform consisting of cationic poly(amine-co-ester) (PPMS) for DNA condensation, PEG shell for nanoparticle stabilization, poly(γ-glutamic acid) (γ-PGA) and mTAT (a cell-penetrating peptide) for accelerated cellular uptake, and a nuclear localization signal peptide (NLS) for enhanced intracellular transport of DNA to the nucleus. In vitro study showed that coating of the binary PPMS/DNA polyplex with γ-PGA promotes cellular uptake of the polyplex particles, particularly by γ-glutamyl transpeptidase (GGT)-positive cells through the GGT-mediated endocytosis pathway. Conjugating PEG to the γ-PGA led to the formation of a ternary PPMS/DNA/PGA-g-PEG polyplex with decreased positive charges on the surface of the polyplex particles and substantially higher stability in serum-containing aqueous medium. The cellular uptake rate was further improved by incorporating mTAT into the ternary polyplex system. Addition of the NLS peptide was designed to facilitate intracellular delivery of the plasmid to the nucleus--a rate-limiting step in the gene transfection process. As a result, compared with the binary PPMS/LucDNA polyplex, the new mTAT-quaternary PPMS/LucDNA/NLS/PGA-g-PEG-mTAT system exhibited reduced cytotoxicity, remarkably faster cellular uptake rate, and enhanced transport of DNA to the nucleus. All these advantageous functionalities contribute to the remarkable gene transfection efficiency of the mTAT-quaternary polyplex both in vitro and in vivo, which exceeds that of the binary polyplex and commercial Lipofectamine™ 2000/DNA lipoplex. The multifunctional mTAT-quaternary polyplex system with improved efficiency and reduced cytotoxicity represents a new type of promising non-viral vectors for the delivery of therapeutic genes to treat tumors.We have developed a new multifunctional, non-viral gene delivery platform consisting of cationic poly(amine-co-ester) (PPMS) for DNA condensation, PEG shell

  20. South Fork Clearwater River Habitat Enhancement, Nez Perce National Forest.

    SciTech Connect

    Siddall, Phoebe

    1992-04-01

    In 1984, the Nez Perce National forest and the Bonneville Power Administration entered into a contractual agreement which provided for improvement of spring chinook salmon and summer steelhead trout habitat in south Fork Clearwater River tributaries. Project work was completed in seven main locations: Crooked River, Red River, Meadow Creek Haysfork Gloryhole, Cal-Idaho Gloryhole, Fisher Placer and Leggett Placer. This report describes restoration activities at each of these sites.

  1. Hollow-spherical composites of Polyaniline/Cobalt Sulfide/Carbon nanodots with enhanced magnetocapacitance and electromagnetic wave absorption capabilities

    NASA Astrophysics Data System (ADS)

    Ge, Chuanjun; Zhang, Xiang; Liu, Jian; Jin, Feng; Liu, Jichang; Bi, Hong

    2016-08-01

    Hollow-spherical composites of polyaniline/cobalt sulfide/carbon nanodots (PANI/CoS/CDs-0.5T) have been synthesized by in situ polymerization under an applied magnetic field (MF) of 0.5 T. As a control, PANI/CoS/CDs-0T composites have been synthesized without a MF. Both composites acting as electrodes present obvious magnetocapacitances at a scan rate of 100 mV s-1 while the electrochemical cell tested under an external MF of 0.5 T. Notably, PANI/CoS/CDs-0.5T composites show larger magnetocapacitances than PANI/CoS/CDs-0T composites at different scan rates from 5 to 100 mV s-1. Electrochemical impedance spectroscopy (EIS) results indicate that MF can reduce charge transfer resistance at electrode/electrolyte interface. More importantly, PANI/CoS/CDs-0.5T composites show a much stronger electromagnetic wave (EMW) absorbing capability than PANI/CoS/CDs-0T in the range of 2-18 GHz which is attributed to an increased dielectric loss and a magnetic loss in low frequency range of 2-12.5 GHz. MF-induced ferromagnetic nanodomains of Co2+ clusters in the PANI/CoS/CDs-0.5T composites increase the complex permittivity and create more interfacial polarizations or the Maxwell-Wagner effect, which leads to increased dielectric loss. Compared with PANI/CoS/CDs-0T composites with diamagnetic behaviour, MF-induced weak ferromagnetism of CoS in the PANI/CoS/CDs-0.5T composites has caused additional magnetic loss. This work provides an efficient way for modulating electrochemical or electromagnetic properties of inorganic/polymer nanocomposites by employing an external MF.

  2. Soluble (pro)renin receptor via β-catenin enhances urine concentration capability as a target of liver X receptor.

    PubMed

    Lu, Xiaohan; Wang, Fei; Xu, Chuanming; Soodvilai, Sunny; Peng, Kexin; Su, Jiahui; Zhao, Long; Yang, Kevin T; Feng, Yumei; Zhou, Shu-Feng; Gustafsson, Jan-Åke; Yang, Tianxin

    2016-03-29

    The extracellular domain of the (pro)renin receptor (PRR) is cleaved to produce a soluble (pro)renin receptor (sPRR) that is detected in biological fluid and elevated under certain pathological conditions. The present study was performed to define the antidiuretic action of sPRR and its potential interaction with liver X receptors (LXRs), which are known regulators of urine-concentrating capability. Water deprivation consistently elevated urinary sPRR excretion in mice and humans. A template-based algorithm for protein-protein interaction predicted the interaction between sPRR and frizzled-8 (FZD8), which subsequently was confirmed by coimmunoprecipitation. A recombinant histidine-tagged sPRR (sPRR-His) in the nanomolar range induced a remarkable increase in the abundance of renal aquaporin 2 (AQP2) protein in primary rat inner medullary collecting duct cells. The AQP2 up-regulation relied on sequential activation of FZD8-dependent β-catenin signaling and cAMP-PKA pathways. Inhibition of FZD8 or tankyrase in rats induced polyuria, polydipsia, and hyperosmotic urine. Administration of sPRR-His alleviated the symptoms of diabetes insipidus induced in mice by vasopressin 2 receptor antagonism. Administration of the LXR agonist TO901317 to C57/BL6 mice induced polyuria and suppressed renal AQP2 expression associated with reduced renal PRR expression and urinary sPRR excretion. Administration of sPRR-His reversed most of the effects of TO901317. In cultured collecting duct cells, TO901317 suppressed PRR protein expression, sPRR release, and PRR transcriptional activity. Overall we demonstrate, for the first time to our knowledge, that sPRR exerts antidiuretic action via FZD8-dependent stimulation of AQP2 expression and that inhibition of this pathway contributes to the pathogenesis of diabetes insipidus induced by LXR agonism. PMID:26984496

  3. Enhanced Accident Tolerant LWR Fuels National Metrics Workshop Report

    SciTech Connect

    Lori Braase

    2013-01-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), in collaboration with the nuclear industry, has been conducting research and development (R&D) activities on advanced Light Water Reactor (LWR) fuels for the last few years. The emphasis for these activities was on improving the fuel performance in terms of increased burnup for waste minimization and increased power density for power upgrades, as well as collaborating with industry on fuel reliability. After the events at the Fukushima Nuclear Power Plant in Japan in March 2011, enhancing the accident tolerance of LWRs became a topic of serious discussion. In the Consolidated Appropriations Act, 2012, Conference Report 112-75, the U.S. Congress directed DOE-NE to: • Give “priority to developing enhanced fuels and cladding for light water reactors to improve safety in the event of accidents in the reactor or spent fuel pools.” • Give “special technical emphasis and funding priority…to activities aimed at the development and near-term qualification of meltdown-resistant, accident-tolerant nuclear fuels that would enhance the safety of present and future generations of light water reactors.” • Report “to the Committee, within 90 days of enactment of this act, on its plan for development of meltdown-resistant fuels leading to reactor testing and utilization by 2020.” Fuels with enhanced accident tolerance are those that, in comparison with the standard UO2-zirconium alloy system currently used by the nuclear industry, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, and operational transients, as well as design-basis and beyond design-basis events. The overall draft strategy for development and demonstration is comprised of three phases: Feasibility Assessment and Down-selection; Development and Qualification; and

  4. 77 FR 70414 - White River National Forest; Eagle County, CO; Vail Mountain Recreation Enhancements Projects EIS

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ...Vail Mountain Ski Resort (Vail) recently submitted a proposal to the White River National Forest (WRNF) for new and enhanced activities within its Forest Service-administered Special Use Permit (SUP) area. The WRNF has accepted this proposal, and is initiating a National Environmental Policy Act (NEPA) analysis to document and disclose potential impacts. The Proposed Action--the Vail Mountain......

  5. Final Environmental Impact Statement for the Proposed Relocation of Technical Area 18 Capabilities and Materials at the Los Alamos National Laboratory

    SciTech Connect

    N /A

    2002-09-20

    The National Nuclear Security Administration, a separately organized agency within DOE, is responsible for providing the Nation with nuclear weapons, ensuring the safety and reliability of those nuclear weapons, and supporting programs that reduce global nuclear proliferation. These missions are accomplished with a core team of highly trained nuclear experts. One of the major training facilities for these personnel is located at Technical Area 18 (TA-18), within the Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. Principal TA-18 operational activities involve research in and the design, development, construction, and application of experiments on nuclear criticality. Though TA-18 is judged to be secure by DOE's independent inspection office, its buildings and infrastructure are from 30 to more than 50 years old and are increasingly expensive to maintain and operate. Additionally, the TA-18 operations are located in a relatively isolated area, resulting in increasingly high costs to maintain a security Category I infrastructure. NNSA wishes to maintain the important capabilities currently provided at TA-18 in a manner that reduces the long-term costs for safeguards and security. NNSA proposes to accomplish this by relocating the TA-18 security Category I/II capabilities and materials to new locations. The TA-18 Relocation EIS evaluates the potential direct, indirect, and cumulative environmental impacts associated with this proposed action at the following DOE sites: (1) a different site at LANL at Los Alamos, New Mexico; (2) the Sandia National Laboratories/New Mexico at Albuquerque, New Mexico; (3) the Nevada Test Site near Las Vegas, Nevada (the Preferred Alternative); and (4) the Argonne National Laboratory-West near Idaho Falls, Idaho. The EIS also analyzes the alternatives of upgrading the existing TA-18 facilities and the No Action Alternative of maintaining the operations at the current TA-18 location.

  6. Nanocomposite semi-solid redox ionic liquid electrolytes with enhanced charge-transport capabilities for dye-sensitized solar cells.

    PubMed

    Rutkowska, Iwona A; Marszalek, Magdalena; Orlowska, Justyna; Ozimek, Weronika; Zakeeruddin, Shaik M; Kulesza, Pawel J; Grätzel, Michael

    2015-08-10

    The ability of Pt nanostructures to induce the splitting of the II bond in iodine (triiodide) molecules is explored here to enhance electron transfer in the iodine/iodide redox couple. Following the dispersal of Pt nanoparticles at 2 % (weight) level, charge transport was accelerated in triiodide/iodide-containing 1,3-dialkylimidazolium room-temperature ionic liquid. If both Pt nanoparticles and multi-walled carbon nanotubes were introduced into the ionic-liquid-based system, a solid-type (nonfluid) electrolyte was obtained. By using solid-state voltammetric (both sandwich-type and microelectrode-based) methodology, the apparent diffusion coefficients for charge transport increased to approximately 1×10(-6)  cm(2)  s(-1) upon the incorporation of the carbon-nanotube-supported iodine-modified Pt nanostructures. A dye-sensitized solar cell comprising TiO2 covered with a heteroleptic Ru(II) -type sensitizer (dye) and the semisolid triiodide/iodide ionic liquid electrolyte admixed with carbon-nanotube-supported Pt nanostructures yielded somewhat higher power conversion efficiencies (up to 7.9 % under standard reporting conditions) than those of the analogous Pt-free system. PMID:26119519

  7. Enhanced speech perception capabilities in a blind listener are associated with activation of fusiform gyrus and primary visual cortex.

    PubMed

    Hertrich, Ingo; Dietrich, Susanne; Moos, Anja; Trouvain, Jürgen; Ackermann, Hermann

    2009-01-01

    Blind individuals may learn to understand ultra-fast synthetic speech at a rate of up to about 25 syllables per second (syl)/s, an accomplishment by far exceeding the maximum performance level of normal-sighted listeners (8-10 syl/s). The present study indicates that this exceptional skill engages distinct regions of the central-visual system. Hemodynamic brain activation during listening to moderately- (8 syl/s) and ultra-fast speech (16 syl/s) was measured in a blind individual and six normal-sighted controls. Moderately-fast speech activated posterior and anterior 'language zones' in all subjects. Regarding ultra-fast tokens, the controls showed exclusive activation of supratemporal regions whereas the blind participant exhibited enhanced left inferior frontal and temporoparietal responses as well as significant hemodynamic activation of left fusiform gyrus (FG) and right primary visual cortex. Since left FG is known to be involved in phonological processing, this structure, presumably, provides the functional link between the central-auditory and -visual systems. PMID:19241219

  8. National plan to enhance aviation safety through human factors improvements

    NASA Technical Reports Server (NTRS)

    Foushee, Clay

    1990-01-01

    The purpose of this section of the plan is to establish a development and implementation strategy plan for improving safety and efficiency in the Air Traffic Control (ATC) system. These improvements will be achieved through the proper applications of human factors considerations to the present and future systems. The program will have four basic goals: (1) prepare for the future system through proper hiring and training; (2) develop a controller work station team concept (managing human errors); (3) understand and address the human factors implications of negative system results; and (4) define the proper division of responsibilities and interactions between the human and the machine in ATC systems. This plan addresses six program elements which together address the overall purpose. The six program elements are: (1) determine principles of human-centered automation that will enhance aviation safety and the efficiency of the air traffic controller; (2) provide new and/or enhanced methods and techniques to measure, assess, and improve human performance in the ATC environment; (3) determine system needs and methods for information transfer between and within controller teams and between controller teams and the cockpit; (4) determine how new controller work station technology can optimally be applied and integrated to enhance safety and efficiency; (5) assess training needs and develop improved techniques and strategies for selection, training, and evaluation of controllers; and (6) develop standards, methods, and procedures for the certification and validation of human engineering in the design, testing, and implementation of any hardware or software system element which affects information flow to or from the human.

  9. Chemically primed bone-marrow derived mesenchymal stem cells show enhanced expression of chemokine receptors contributed to their migration capability

    PubMed Central

    Bidkhori, Hamid Reza; Ahmadiankia, Naghmeh; Matin, Maryam Moghaddam; Heirani-tabasi, Asieh; Farshchian, Moein; Naderi-meshkin, Hojjat; Shahriyari, Mina; Dastpak, Mahtab; Bahrami, Ahmad Reza

    2016-01-01

    Objective(s): The limited homing potential of bone-marrow-derived mesenchymal stem cells (BM-MSC) is the key obstacle in MSC-based therapy. It is believed that chemokines and chemokine receptor interactions play key roles in cellular processes associated with migration. Meanwhile, MSCs express a low level of distinct chemokine receptors and they even lose these receptors on their surface after a few passages which influence their therapeutic applications negatively. This study investigated whether treatment of BM-MSCs with hypoxia-mimicking agents would increase expression of some chemokine receptors and cell migration. Materials and Methods: BM-MSCs were treated at passage 2 for our gene expression profiling. All qPCR experiments were performed by SYBR Green method in CFX-96 Bio-Rad Real-Time PCR. The Boyden chamber assay was utilized to investigate BM-MSC homing. Results: Possible approaches to increasing the expression level of chemokine receptors by different hypoxia-mimicking agents such as valproic acid (VPA), CoCl2, and desferrioxamine (DFX) are described. Results show DFX efficiently up-regulate the CXCR7 and CXCR4 gene expression while VPA increase only the CXCR7 gene expression and no significant change in expression level of CXCR4 and the CXCR7 gene was detectable by CoCl2 treatment. Chemotaxis assay results show that pre-treatment with DFX, VPA, and Cocl2 enhances significantly the migration ability of BM-MSCs compared with the untreated control group and DFX treatment accelerates MSCs homing significantly with a higher rate than VPA and Cocl2 treatments. Conclusion: Our data supports the notion that pretreatment of MSC with VPA and DFX improves the efficiency of MSC therapy by triggering homing regulatory signaling pathways. PMID:27096059

  10. Integrated battlefield-effects research for the National Training Center. Appendix B. Requirements design specification for the addition of nuclear and chemical capabilities to the National Training Center (NTC) Core Instrumentation Subsystem (CIS). Technical report, 13 June 1983-30 December 1984

    SciTech Connect

    Erickson, D.; Ickler, J.; McKeown, P.; Metzger, L.; Plock, R.

    1984-12-31

    Research performed to evaluate and develop enhancements for integrated battlefield training at the U.S. Army National Training Center is described. These enhancements had been identified and concepts developed for their application in earlier phases of this research. This report consists of the basic volume summarizing the research tasks, approach, results, conclusions, and recommendations; plus twelve appendices. This document assumes that the requirements specified in the Core Instrumentation Subsystem Requirements Design Specification (RDS) dated 24 May 1982 with Live-Fire Supplement dated 1 December 1982 would be effective in the operational system used when implementing the requirements specified for nuclear/chemical processing. All basic requirements of the current 500 Player System with Live Fire enhancements, which accommodates a total of 400 players and 75 units per history (with a total of 1023 players across all histories) will be maintained in the 500 Player System which incorporates NBC capabilities.

  11. GMI Capabilities

    NASA Technical Reports Server (NTRS)

    Strode, Sarah; Rodriguez, Jose; Steenrod, Steve; Liu, Junhua; Strahan, Susan; Nielsen, Eric

    2015-01-01

    We describe the capabilities of the Global Modeling Initiative (GMI) chemical transport model (CTM) with a special focus on capabilities related to the Atmospheric Tomography Mission (ATom). Several science results based on GMI hindcast simulations and preliminary results from the ATom simulations are highlighted. We also discuss the relationship between GMI and GEOS-5.

  12. SPARROW MODELING - Enhancing Understanding of the Nation's Water Quality

    USGS Publications Warehouse

    Preston, Stephen D.; Alexander, Richard B.; Woodside, Michael D.; Hamilton, Pixie A.

    2009-01-01

    The information provided here is intended to assist water-resources managers with interpretation of the U.S. Geological Survey (USGS) SPARROW model and its products. SPARROW models can be used to explain spatial patterns in monitored stream-water quality in relation to human activities and natural processes as defined by detailed geospatial information. Previous SPARROW applications have identified the sources and transport of nutrients in the Mississippi River basin, Chesapeake Bay watershed, and other major drainages of the United States. New SPARROW models with improved accuracy and interpretability are now being developed by the USGS National Water Quality Assessment (NAWQA) Program for six major regions of the conterminous United States. These new SPARROW models are based on updated geospatial data and stream-monitoring records from local, State, and other federal agencies.

  13. Enhancement of the national strong-motion network in Turkey

    USGS Publications Warehouse

    Gulkan, Polat; Ceken, U.; Colakoglu, Z.; Ugras, T.; Kuru, T.; Apak, A.; Anderson, J.G.; Sucuoglu, H.; Celebi, M.; Akkar, D.S.; Yazgan, U.; Denizlioglu, A.Z.

    2007-01-01

    Two arrays comprising 20 strong-motion sensors were established in western Turkey. The 14 stations of BYTNet follow a N-S trending line about 65 km in length, normal to strands of the North Anatolian fault that runs between the cities of Bursa and Yalova. Here the dominant character of the potential fault movement is a right-lateral transform slip. The DATNet array, comprising a total of eight stations, is arranged along a 110-km-long E-W trending direction along the Menderes River valley between Denizli and Aydin. (Two stations in this array were incorporated from the existing Turkish national strong-motion network.) This is an extensional tectonic environment, and the network mornitors potential large normal-faulting earthquakes on the faults in the valley. The installation of the arrays was supported by the North Atlantic Treaty Organization (NATO) under its Science for Peace Program. Maintenance and calibration is performed by the General Directorate of Disaster Affairs (GDDA) according to a protocol between Middle East Technical University (METU) and GDDA. Many young engineers and scientists have been trained in network operation and evaluation during the course of the project, and an international workshop dealing with strong-motion instrumentation has been organized as part of the project activities.

  14. Metrology measurement capabilities

    SciTech Connect

    Shroyer, K.

    1997-02-01

    Since 1958, the AlliedSignal Federal Manufacturing and Technologies (FM and T) Metrology Department has developed measurement technology and calibration capability in four major areas of measurement: (1) mechanical; (2) environmental, gas, liquid; (3) electrical (D.C., A.C., RF/Microwave); and (4) optical and radiation. The capabilities developed include unique capabilities in many areas of measurement and engineering expertise to develop measurement techniques and resolve measurement problems in these major areas. A strong audit function has been developed to provide a means to evaluate the calibration programs of the suppliers and internal calibration organizations. This evaluation includes measurement audits and technical surveys. The requirements placed on metrology require traceability of measurements to the National Institute of Standards and Technology or to nationally recognized methods or natural phenomena. A description of Metrology capabilities, traceability flow charts, and the measurement uncertainty of each of the measurement capabilities is contained in the report.

  15. LOFT Augmented Operator Capability Program

    SciTech Connect

    Hollenbeck, D.A.; Krantz, E.A.; Hunt, G.L.; Meyer, O.R.

    1980-01-01

    The outline of the LOFT Augmented Operator Capability Program is presented. This program utilizes the LOFT (Loss-of-Fluid Test) reactor facility which is located at the Idaho National Engineering Laboratory and the LOFT operational transient experiment series as a test bed for methods of enhancing the reactor operator's capability for safer operation. The design of an Operational Diagnotics and Display System is presented which was backfit to the existing data acquisition computers. Basic color-graphic displays of the process schematic and trend type are presented. In addition, displays were developed and are presented which represent safety state vector information. A task analysis method was applied to LOFT reactor operating procedures to test its usefulness in defining the operator's information needs and workload.

  16. LANL Analytical and Radiochemistry Capabilities

    SciTech Connect

    Steiner, Robert E.; Burns, Carol J.; Lamont, Stephen P.; Tandon, Lav

    2012-07-27

    The overview of this presentation is: (1) Introduction to nonproliferation efforts; (2) Scope of activities Los Alamos National Laboratory; (3) Facilities for radioanalytical work at LANL; (4) Radiochemical characterization capabilities; and (5) Bulk chemical and materials analysis capabilities.

  17. Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability

    PubMed Central

    Lee, By Junghan; Zhang, Zhuo; Baek, Seunghyun; Kim, Sangkuk; Kim, Donghyung; Yong, Kijung

    2016-01-01

    Drag reduction has become a serious issue in recent years in terms of energy conservation and environmental protection. Among diverse approaches for drag reduction, superhydrophobic surfaces have been mainly researched due to their high drag reducing efficiency. However, due to limited lifetime of plastron (i.e., air pockets) on superhydrophobic surfaces in underwater, the instability of dewetted surfaces has been a sticking point for practical applications. This work presents a breakthrough in improving the underwater stability of superhydrophobic surfaces by optimizing nanoscale surface structures using SiC/Si interlocked structures. These structures have an unequaled stability of underwater superhydrophobicity and enhance drag reduction capabilities,with a lifetime of plastron over 18 days and maximum velocity reduction ratio of 56%. Furthermore, through photoelectrochemical water splitting on a hierarchical SiC/Si nanostructure surface, the limited lifetime problem of air pockets was overcome by refilling the escaping gas layer, which also provides continuous drag reduction effects. PMID:27095674

  18. Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability.

    PubMed

    Lee, By Junghan; Zhang, Zhuo; Baek, Seunghyun; Kim, Sangkuk; Kim, Donghyung; Yong, Kijung

    2016-01-01

    Drag reduction has become a serious issue in recent years in terms of energy conservation and environmental protection. Among diverse approaches for drag reduction, superhydrophobic surfaces have been mainly researched due to their high drag reducing efficiency. However, due to limited lifetime of plastron (i.e., air pockets) on superhydrophobic surfaces in underwater, the instability of dewetted surfaces has been a sticking point for practical applications. This work presents a breakthrough in improving the underwater stability of superhydrophobic surfaces by optimizing nanoscale surface structures using SiC/Si interlocked structures. These structures have an unequaled stability of underwater superhydrophobicity and enhance drag reduction capabilities,with a lifetime of plastron over 18 days and maximum velocity reduction ratio of 56%. Furthermore, through photoelectrochemical water splitting on a hierarchical SiC/Si nanostructure surface, the limited lifetime problem of air pockets was overcome by refilling the escaping gas layer, which also provides continuous drag reduction effects. PMID:27095674

  19. Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability

    NASA Astrophysics Data System (ADS)

    Lee, By Junghan; Zhang, Zhuo; Baek, Seunghyun; Kim, Sangkuk; Kim, Donghyung; Yong, Kijung

    2016-04-01

    Drag reduction has become a serious issue in recent years in terms of energy conservation and environmental protection. Among diverse approaches for drag reduction, superhydrophobic surfaces have been mainly researched due to their high drag reducing efficiency. However, due to limited lifetime of plastron (i.e., air pockets) on superhydrophobic surfaces in underwater, the instability of dewetted surfaces has been a sticking point for practical applications. This work presents a breakthrough in improving the underwater stability of superhydrophobic surfaces by optimizing nanoscale surface structures using SiC/Si interlocked structures. These structures have an unequaled stability of underwater superhydrophobicity and enhance drag reduction capabilities,with a lifetime of plastron over 18 days and maximum velocity reduction ratio of 56%. Furthermore, through photoelectrochemical water splitting on a hierarchical SiC/Si nanostructure surface, the limited lifetime problem of air pockets was overcome by refilling the escaping gas layer, which also provides continuous drag reduction effects.

  20. The National Polar-orbiting Operational Environmental Satellite System: Capabilities for Atmospheric Remote Sensing for NWP and Climate -- Moving Towards a Global Earth Observation System of Systems

    NASA Astrophysics Data System (ADS)

    Mango, S. A.; Hinnant, F.; Hoffman, C. W.; Smehil, D. L.; Schneider, S. R.; Simione, S.; Needham, B.; Stockton, D.

    2005-12-01

    Over the last decade, the tri-agency Integrated Program Office (IPO), comprised of the National Oceanic and Atmospheric Administration (NOAA), the Department of Defense (DoD), and the National Aeronautics and Space Administration (NASA), has been managing the development of the National Polar-orbiting Operational Environmental Satellite System (NPOESS). Once operational later this decade, NPOESS will replace NOAA's Polar-orbiting Operational Environmental Satellites (POES) and DoD's Defense Meteorological Satellite Program (DMSP) systems. The IPO, through its Acquisition and Operations contractor, Northrop Grumman, will launch NPOESS spacecraft into three orbital planes to provide a single, national system capable of satisfying both civil and national security requirements for space-based, remotely sensed environmental data. With the development of NPOESS, we are evolving the existing "weather" satellites into integrated environmental observing systems by expanding our capabilities to observe, assess, and predict the total Earth system - ocean, atmosphere, land, and the space environment. The NPOESS will enable more accurate short-term weather forecasts and severe storm warnings and improved monitoring of atmospheric phenomena. NPOESS will also provide continuity of critical data for monitoring, understanding, and predicting climate change and assessing the impacts of climate change on seasonal and longer time scales. For these purposes, the NPOESS Integrated Program Office [IPO] is developing a suite of advanced, atmospheric sounding/probing instruments as a major part of the next generation meteorological, environmental and climate operational satellite system in polar, low earth orbit [LEO]. The IPO is developing the CrIS, Cross-track Infrared Sounder, an Ozone Mapping & Profiler Suite [OMPS]and a Visible and Infrared Imager and Radiometer Suite [VIIRS] and NASA is developing an Advanced Technology Microwave Sounder [ATMS]. These four instruments will be key

  1. Community psychology and the capabilities approach.

    PubMed

    Shinn, Marybeth

    2015-06-01

    What makes for a good life? The capabilities approach to this question has much to offer community psychology, particularly with respect to marginalized groups. Capabilities are freedoms to engage in valued social activities and roles-what people can do and be given both their capacities, and environmental opportunities and constraints. Economist Amartya Sen's focus on freedoms and agency resonates with psychological calls for empowerment, and philosopher Martha Nussbaum's specification of requirements for a life that is fully human provides an important guide for social programs. Community psychology's focus on mediating structures has much to offer the capabilities approach. Parallels between capabilities, as enumerated by Nussbaum, and settings that foster positive youth development, as described in a National Research Council Report (Eccles and Gootman (Eds) in Community programs to promote youth development. National Academy Press, Washington, 2002) suggest extensions of the approach to children. Community psychologists can contribute to theory about ways to create and modify settings to enhance capabilities as well as empowerment and positive youth development. Finally, capabilities are difficult to measure, because they involve freedoms to choose but only choices actually made or enacted can be observed. The variation in activities or goals across members of a setting provides a measure of the capabilities that the setting fosters. PMID:25822113

  2. Isolation of Bacillus sp. strains capable of decomposing alkali lignin and their application in combination with lactic acid bacteria for enhancing cellulase performance.

    PubMed

    Chang, Young-Cheol; Choi, Dubok; Takamizawa, Kazuhiro; Kikuchi, Shintaro

    2014-01-01

    Effective biological pretreatment method for enhancing cellulase performance was investigated. Two alkali lignin-degrading bacteria were isolated from forest soils in Japan and named CS-1 and CS-2. 16S rDNA sequence analysis indicated that CS-1 and CS-2 were Bacillus sp. Strains CS-1 and CS-2 displayed alkali lignin degradation capability. With initial concentrations of 0.05-2.0 g L(-1), at least 61% alkali lignin could be degraded within 48 h. High laccase activities were observed in crude enzyme extracts from the isolated strains. This result indicated that alkali lignin degradation was correlated with laccase activities. Judging from the net yields of sugars after enzymatic hydrolysis, the most effective pretreatment method for enhancing cellulase performance was a two-step processing procedure (pretreatment using Bacillus sp. CS-1 followed by lactic acid bacteria) at 68.6%. These results suggest that the two-step pretreatment procedure is effective at accelerating cellulase performance. PMID:24316485

  3. National Research Council Dialogue to Assess Progress on NASA's Systems Engineering Cost/Risk Analysis Capability Roadmap Development: General Background and Introduction

    NASA Technical Reports Server (NTRS)

    Regenie, Victoria

    2005-01-01

    Contents include the following: General Background and Introduction of Capability. Roadmaps for Systems Engineering Cost/Risk Analysis. Agency Objectives. Strategic Planning Transformation. Review Capability Roadmaps and Schedule. Review Purpose of NRC Review. Capability Roadmap Development (Progress to Date).

  4. Analysis of the confluence of three patterns using the Centering and Pointing System (CAPS) images for the Advanced Radiographic Capability (ARC) at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Leach, Richard R.; Awwal, Abdul; Bliss, Erlan; Roberts, Randy; Rushford, Michael; Wilhelmsen, Karl; Zobrist, Thomas

    2014-09-01

    The Advance Radiographic Capability (ARC) at the National Ignition Facility (NIF) is a laser system that employs up to four petawatt (PW) lasers to produce a sequence of short pulses that generate X-rays which backlight highdensity internal confinement fusion (ICF) targets. Employing up to eight backlighters, ARC can produce an X-ray "motion picture" to diagnose the compression and ignition of a cryogenic deuterium-tritium target with tens-ofpicosecond temporal resolution during the critical phases of an ICF shot. Multi-frame, hard-X-ray radiography of imploding NIF capsules is a capability which is critical to the success of NIF's missions. The function of the Centering and Pointing System (CAPS) in ARC is to provide superimposed near-field and far-field images on a common optical path. The Images are then analyzed to extract beam centering and pointing data for the control system. The images contain the confluence of pointing, centering, and reference patterns. The patterns may have uneven illumination, particularly when the laser is misaligned. In addition, the simultaneous appearance of three reference patterns may be co-incidental, possibly masking one or more of the patterns. Image analysis algorithms have been developed to determine the centering and pointing position of ARC from these images. In the paper we describe the image analysis algorithms used to detect and identify the centers of these patterns. Results are provided, illustrating how well the process meets system requirements.

  5. NEW GUN CAPABILITY WITH INTERCHANGABLE BARRELS TO INVESTIGATE LOW VELOCITY IMPACT REGIMES AT THE LAWRENCE LIVERMORE NATIONAL LABORATORY HIGH EXPLOSIVES APPLICATIONS FACILITY

    SciTech Connect

    Vandersall, K S; Behn, A; Gresshoff, M; Jr., L F; Chiao, P I

    2009-09-16

    A new gas gun capability is being activated at Lawrence Livermore National Laboratories located in the High Explosives Applications Facility (HEAF). The single stage light gas (dry air, nitrogen, or helium) gun has interchangeable barrels ranging from 25.4 mm to 76.2 mm in diameter with 1.8 meters in length and is being fabricated by Physics Applications, Inc. Because it is being used for safety studies involving explosives, the gun is planned for operation inside a large enclosed firing tank, with typical velocities planned in the range of 10-300 m/s. Three applications planned for this gun include: low velocity impact of detonator or detonator/booster assemblies with various projectile shapes, the Steven Impact test that involves impact initiation of a cased explosive target, and the Taylor impact test using a cylindrical explosive sample impacted onto a rigid anvil for fracture studies of energetic materials. A highlight of the gun features, outline on work in progress for implementing this capability, and discussion of the planned areas of research will be included.

  6. Enhanced binding capability of nuclear factor-κB with demethylated P2X3 receptor gene contributes to cancer pain in rats.

    PubMed

    Zhou, You-Lang; Jiang, Guo-Qin; Wei, Jinrong; Zhang, Hong-Hong; Chen, Wei; Zhu, Hongyan; Hu, Shufen; Jiang, Xinghong; Xu, Guang-Yin

    2015-10-01

    Nuclear factor-kappa B (NF-κB) signaling is implicated in both cancer development and inflammation processes. However, the roles and mechanisms of NF-κB signaling in the development of cancer-induced pain (CIP) remain unknown. This study was designed to investigate the roles of the p65 subunit of NF-κB in regulation of the purinergic receptor (P2X3R) plasticity in dorsal root ganglion (DRG) of CIP rats. We showed here that tumor cell injection produced mechanical and thermal hyperalgesia, and an enhanced body weight-bearing difference, which was correlated with an upregulation of p65 and P2X3R expression in lumber DRGs and a potentiation of ATP-evoked responses of tibia-innervating DRG neurons. Inhibition of NF-κB signaling using p65 inhibitor pyrrolidine dithiocarbamate, BAY-11-7082, or lentiviral-p65 short-hairpin RNA significantly attenuated CIP and reversed the activities of P2X3R. Interestingly, tumor cell injection led to a significant demethylation of CpG island in p2x3r gene promoter and enhanced ability of p65 to bind the promoter of p2x3r gene. Our findings suggest that upregulation of P2X3R expression was mediated by the enhanced binding capability of p65 with demethylated promoter of p2x3r gene, thus contributing to CIP. NF-κBp65 might be a potential target for treating CIP, a neuropathic pain generated by tumor cell-induced injury to nerves that innervate the skin. PMID:26049406

  7. Enhanced binding capability of nuclear factor-κB with demethylated P2X3 receptor gene contributes to cancer pain in rats

    PubMed Central

    Zhou, You-Lang; Jiang, Guo-Qin; Wei, Jinrong; Zhang, Hong-Hong; Chen, Wei; Zhu, Hongyan; Hu, Shufen; Jiang, Xinghong; Xu, Guang-Yin

    2015-01-01

    Abstract Nuclear factor-kappa B (NF-κB) signaling is implicated in both cancer development and inflammation processes. However, the roles and mechanisms of NF-κB signaling in the development of cancer-induced pain (CIP) remain unknown. This study was designed to investigate the roles of the p65 subunit of NF-κB in regulation of the purinergic receptor (P2X3R) plasticity in dorsal root ganglion (DRG) of CIP rats. We showed here that tumor cell injection produced mechanical and thermal hyperalgesia, and an enhanced body weight–bearing difference, which was correlated with an upregulation of p65 and P2X3R expression in lumber DRGs and a potentiation of ATP-evoked responses of tibia-innervating DRG neurons. Inhibition of NF-κB signaling using p65 inhibitor pyrrolidine dithiocarbamate, BAY-11-7082, or lentiviral-p65 short-hairpin RNA significantly attenuated CIP and reversed the activities of P2X3R. Interestingly, tumor cell injection led to a significant demethylation of CpG island in p2x3r gene promoter and enhanced ability of p65 to bind the promoter of p2x3r gene. Our findings suggest that upregulation of P2X3R expression was mediated by the enhanced binding capability of p65 with demethylated promoter of p2x3r gene, thus contributing to CIP. NF-κBp65 might be a potential target for treating CIP, a neuropathic pain generated by tumor cell–induced injury to nerves that innervate the skin. PMID:26049406

  8. The National Polar-orbiting Operational Environmental Satellite System: Capabilities for Operational Space Environment In Situ and Remote Sensing and Solar Irradiance

    NASA Astrophysics Data System (ADS)

    Mango, S. A.; Denig, W. F.; Hoffman, C. W.; Furlong, D.; Haas, J. M.

    2005-12-01

    Over the last decade, the tri-agency Integrated Program Office (IPO), comprised of the National Oceanic and Atmospheric Administration (NOAA), the Department of Defense (DoD), and the National Aeronautics and Space Administration (NASA), has been managing the development of the National Polar-orbiting Operational Environmental Satellite System (NPOESS). Once operational later this decade, NPOESS will replace NOAA's Polar-orbiting Operational Environmental Satellites (POES) and DoD's Defense Meteorological Satellite Program (DMSP) systems. The IPO, through its Acquisition and Operations contractor, Northrop Grumman, will launch NPOESS spacecraft into three orbital planes to provide a single, national system capable of satisfying both civil and national security requirements for space-based, remotely sensed environmental data. With the development of NPOESS, we are evolving the existing "weather" satellites into integrated environmental observing systems by expanding our capabilities to observe, assess, and predict the total Earth system - ocean, atmosphere, land, and the space environment. NPOESS will transform today's short-term, space-based space environment research missions and the previous operational missions into a sustained, operational space environment remote sensing observation program. A major portion of NPOESS is dedicated to the space environment missions of our users. Fourteen of the fifty-five NPOESS mission environmental data record [EDR] products address various aspects of the solar-geophysical parameters needed to characterize the space environment and solar irradiance. Three factors of our users' requirements present significant challenges for properly sampling the space environment spatial-temporal-spectral characteristics: 1.) the vast volume of the space environment to be covered on both regional and global scales 2.) the large range of natural time scales for the space environment phenomenology to be covered, especially the challenging

  9. Management Enhancement Team Approach (META) for the Australian National Training Authority. An Evaluation Report.

    ERIC Educational Resources Information Center

    Foreman, David J.; Dunn, John G.

    The management enhancement team approach (META) is a team-driven management development program designed for managers within Australia's National Vocational Education and Training Sector (NVETS). META, which has been piloted at more than 70 sites across Australia, is designed to identify and address management development needs within the context…

  10. 77 FR 36550 - Office of Clinical and Preventive Services Funding Opportunity: National HIV Program for Enhanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-19

    ..., day care, health care, or early childhood development services are provided to children. This is...: National HIV Program for Enhanced HIV/AIDS Screening and Engagement in Care Announcement Type: New. Funding... Screening and Engagement in Care. This program is authorized under: the Snyder Act, 25 U.S.C. 13;...