Science.gov

Sample records for enhanced recombinant m-csf

  1. Crystallization of M-CSF.alpha.

    DOEpatents

    Pandit, Jayvardhan; Jancarik, Jarmila; Kim, Sung-Hou; Koths, Kirston; Halenbeck, Robert; Fear, Anna Lisa; Taylor, Eric; Yamamoto, Ralph; Bohm, Andrew

    1999-01-01

    The present invention is directed to methods for crystallizing macrophage colony stimulating factor (M-CSF) and to a crystalline M-CSF produced thereby. The present invention is also directed to methods for designing and producing M-CSF agonists and antagonists using information derived from the crystallographic structure of M-CSF. The invention is also directed to methods for screening M-CSF agonists and antagonists. In addition, the present invention is directed to an isolated, purified, soluble and functional M-CSF receptor.

  2. Identification of M-CSF agonists and antagonists

    DOEpatents

    Pandit, Jayvardhan; Jancarik, Jarmila; Kim, Sung-Hou; Koths, Kirston; Halenbeck, Robert; Fear, Anna Lisa; Taylor, Eric; Yamamoto, Ralph; Bohm, Andrew

    2000-02-15

    The present invention is directed to methods for crystallizing macrophage colony stimulating factor. The present invention is also directed to methods for designing and producing M-CSF agonists and antagonists using information derived from the crystallographic structure of M-CSF. The invention is also directed to methods for screening M-CSF agonists and antagonists. In addition, the present invention is directed to an isolated, purified, soluble and functional M-CSF receptor.

  3. Bisphosphonate- and statin-induced enhancement of OPG expression and inhibition of CD9, M-CSF, and RANKL expressions via inhibition of the Ras/MEK/ERK pathway and activation of p38MAPK in mouse bone marrow stromal cell line ST2.

    PubMed

    Tsubaki, Masanobu; Satou, Takao; Itoh, Tatsuki; Imano, Motohiro; Yanae, Masashi; Kato, Chisato; Takagoshi, Risa; Komai, Makiko; Nishida, Shozo

    2012-09-25

    Osteoclast differentiation is influenced by receptor activator of the NF-κB ligand (RANKL), macrophage colony-stimulating factor (M-CSF), and CD9, which are expressed on bone marrow stromal cells and osteoblasts. In addition, osteoprotegerin (OPG) is known as an osteoclastogenesis inhibitory factor. In this study, we investigated whether bisphosphonates and statins increase OPG expression and inhibit the expression of CD9, M-CSF, and RANKL in the bone marrow-derived stromal cell line ST2. We found that bisphosphonates and statins enhanced OPG mRNA expression and inhibited the expression of CD9, M-CSF, and RANKL mRNA. Futhermore, bisphosphonates and statins decreased the membrane localization of Ras and phosphorylated ERK1/2, and activated the p38MAPK. This indicates that bisphosphonates and statins enhanced OPG expression, and inhibited the expression of CD9, M-CSF, and RANKL through blocking the Ras/ERK pathway and activating p38MAPK. Accordingly, we believe that its clinical applications will be investigated in the future for the development of osteoporosis therapy. PMID:22579611

  4. M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis.

    PubMed

    Kubota, Yoshiaki; Takubo, Keiyo; Shimizu, Takatsune; Ohno, Hiroaki; Kishi, Kazuo; Shibuya, Masabumi; Saya, Hideyuki; Suda, Toshio

    2009-05-11

    Antiangiogenic therapy for the treatment of cancer and other neovascular diseases is desired to be selective for pathological angiogenesis and lymphangiogenesis. Macrophage colony-stimulating factor (M-CSF), a cytokine required for the differentiation of monocyte lineage cells, promotes the formation of high-density vessel networks in tumors and therefore possesses therapeutic potential as an M-CSF inhibitor. However, the physiological role of M-CSF in vascular and lymphatic development, as well as the precise mechanisms underlying the antiangiogenic effects of M-CSF inhibition, remains unclear. Moreover, therapeutic potential of M-CSF inhibition in other neovascular diseases has not yet been evaluated. We used osteopetrotic (op/op) mice to demonstrate that M-CSF deficiency reduces the abundance of LYVE-1(+) and LYVE1(-) macrophages, resulting in defects in vascular and lymphatic development. In ischemic retinopathy, M-CSF was required for pathological neovascularization but was not required for the recovery of normal vasculature. In mouse osteosarcoma, M-CSF inhibition effectively suppressed tumor angiogenesis and lymphangiogenesis, and it disorganized extracellular matrices. In contrast to VEGF blockade, interruption of M-CSF inhibition did not promote rapid vascular regrowth. Continuous M-CSF inhibition did not affect healthy vascular and lymphatic systems outside tumors. These results suggest that M-CSF-targeted therapy is an ideal strategy for treating ocular neovascular diseases and cancer. PMID:19398755

  5. Interleukin-33 stimulates GM-CSF and M-CSF production by human endothelial cells.

    PubMed

    Montanari, Eliana; Stojkovic, Stefan; Kaun, Christoph; Lemberger, Christof E; de Martin, Rainer; Rauscher, Sabine; Gröger, Marion; Maurer, Gerald; Neumayer, Christoph; Huk, Ihor; Huber, Kurt; Demyanets, Svitlana; Wojta, Johann

    2016-08-01

    Interleukin (IL)-33, a member of the IL-1 family of cytokines, is involved in various inflammatory conditions targeting amongst other cells the endothelium. Besides regulating the maturation and functions of myeloid cells, granulocyte macrophage-colony stimulating factor (GM-CSF) and macrophage-CSF (M-CSF) have been shown to play a role in such pathologies too. It was the aim of our study to investigate a possible influence of IL-33 on GM-CSF and M-CSF production by human endothelial cells. IL-33, but not IL-18 or IL-37, stimulated GM-CSF and M-CSF mRNA expression and protein production by human umbilical vein endothelial cells (HUVECs) and human coronary artery ECs (HCAECs) through the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway in an IL-1-independent way. This effect was inhibited by the soluble form of ST2 (sST2), which is known to act as a decoy receptor for IL-33. The 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor fluvastatin could also be shown to moderately reduce the IL-33-mediated effect on M-CSF, but not on GM-CSF expression. In addition, IL-33, IL-1β, GM-CSF and M-CSF were detected in endothelial cells of human carotid atherosclerotic plaques using immunofluorescence. Upregulation of GM-CSF and M-CSF production by human endothelial cells, an effect that appears to be mediated by NF-κB and to be independent of IL-1, may be an additional mechanism through which IL-33 contributes to inflammatory activation of the vessel wall. PMID:27173404

  6. Follistatin-like 1 promotes osteoclast formation via RANKL-mediated NF-κB activation and M-CSF-induced precursor proliferation.

    PubMed

    Kim, Hyun-Ju; Kang, Woo Youl; Seong, Sook Jin; Kim, Shin-Yoon; Lim, Mi-Sun; Yoon, Young-Ran

    2016-09-01

    Follistatin-like 1 (FSTL1) functions as a pivotal modulator of inflammation and is implicated in many inflammatory diseases such as rheumatoid arthritis. Here, we report that FSTL1 is strongly upregulated and secreted during osteoclast differentiation of bone marrow-derived macrophages (BMMs) and that FSTL1 positively regulates osteoclast formation induced by RANKL and M-CSF. The overexpression of FSTL1 or treatment with recombinant FSTL1 (rFSTL1) in BMMs enhances the formation of multinuclear osteoclasts and the induction of c-Fos and NFATc1, transcription factors important for osteoclastogenesis. Conversely, knockdown of FSTL1 using a small hairpin RNA suppresses osteoclast formation and the expression of these transcription factors. While FSTL1 does not affect RANKL-stimulated activation of p38 MAPK, phosphorylation of IκBα, JNK, and ERK were increased by overexpression or addition of rFSTL1. Furthermore, rFSTL1 increased RANKL-induced NF-κB transcriptional activity in a dose-dependent manner. In addition to its role in osteoclastogenesis, FSTL1 promotes proliferation of osteoclast precursors by increasing M-CSF-induced ERK activation, which in turn leads to accelerated osteoclast formation. Together, our findings demonstrate that FSTL1 is a secreted osteoclastogenic factor that plays a critical role in osteoclast formation via the NF-κB and MAPKs signaling pathways. PMID:27234130

  7. IL-34 and M-CSF form a novel heteromeric cytokine and regulate the M-CSF receptor activation and localization.

    PubMed

    Ségaliny, Aude I; Brion, Régis; Brulin, Bénédicte; Maillasson, Mike; Charrier, Céline; Téletchéa, Stéphane; Heymann, Dominique

    2015-12-01

    Interleukin-34 (IL-34) is a newly-discovered homodimeric cytokine that regulates, like Macrophage Colony-Stimulating Factor (M-CSF), the differentiation of the myeloid lineage through M-CSF receptor (M-CSFR) signaling pathways. To date, both cytokines have been considered as competitive cytokines with regard to the M-CSFR. The aim of the present work was to study the functional relationships of these cytokines on cells expressing the M-CSFR. We demonstrate that simultaneous addition of M-CSF and IL-34 led to a specific activation pattern on the M-CSFR, with higher phosphorylation of the tyrosine residues at low concentrations. Similarly, both cytokines showed an additive effect on cellular proliferation or viability. In addition, BIAcore experiments demonstrated that M-CSF binds to IL-34, and molecular docking studies predicted the formation of a heteromeric M-CSF/IL-34 cytokine. A proximity ligation assay confirmed this interaction between the cytokines. Finally, co-expression of the M-CSFR and its ligands differentially regulated M-CSFR trafficking into the cell. This study establishes a new foundation for the understanding of the functional relationship between IL-34 and M-CSF, and gives a new vision for the development of therapeutic approaches targeting the IL-34/M-CSF/M-CSFR axis. PMID:26095744

  8. Hepatocyte growth factor can substitute for M-CSF to support osteoclastogenesis

    SciTech Connect

    Adamopoulos, Iannis E. . E-mail: iadamopoulos@path.wustl.edu; Xia Zhidao; Lau, Y.S.; Athanasou, Nicholas A.

    2006-11-17

    Osteopetrotic mice lacking functional macrophage-colony stimulating factor (M-CSF) recover with ageing, suggesting that alternative osteoclastogenesis pathways exist. Hepatocyte growth factor (HGF) and M-CSF signal through tyrosine kinase receptors and phosphorylate common transducers and effectors such as Src, Grb2, and PI3-Kinase. HGF is known to play a role in osteoclast formation, and in this study we have determined whether HGF could replace M-CSF to support human osteoclastogenesis. We found that the HGF receptor, c-Met, is expressed by the CD14{sup +} monocyte fraction of human peripheral blood mononuclear cells (PBMC). HGF was able to support monocyte-osteoclast differentiation in the presence of receptor activator for nuclear factor {kappa}B ligand as evidenced by the formation of numerous multinucleated tartrate-resistant acid phosphatase and vitronectin receptor positive cells which formed F-actin rings and were capable of lacunar resorption. The addition of a neutralising antibody to M-CSF did not inhibit osteoclast differentiation. HGF is a well-established survival factor and viability assays and live/dead staining showed that it promoted the survival and proliferation of monocytes and osteoclasts in a manner similar to M-CSF. Our findings indicate that HGF can substitute for M-CSF to support human osteoclast formation.

  9. Differential signaling during macropinocytosis in response to M-CSF and PMA in macrophages

    PubMed Central

    Yoshida, Sei; Gaeta, Isabella; Pacitto, Regina; Krienke, Lydia; Alge, Olivia; Gregorka, Brian; Swanson, Joel A.

    2015-01-01

    The cellular movements that construct a macropinosome have a corresponding sequence of chemical transitions in the cup-shaped region of plasma membrane that becomes the macropinosome. To determine the relative positions of type I phosphatidylinositol 3-kinase (PI3K) and phospholipase C (PLC) in this pathway, we analyzed macropinocytosis in macrophages stimulated by the growth factor macrophage-colony-stimulating factor (M-CSF) and by the diacylglycerol (DAG) analog phorbol 12-myristate 13-acetate (PMA). In cells stimulated with M-CSF, microscopic imaging of fluorescent probes for intracellular lipids indicated that the PI3K product phosphatidylinositol (3,4,5)-trisphosphate (PIP3) appeared in cups just prior to DAG. We then tested the hypothesis that PMA and DAG function after PI3K and prior to Ras and protein kinase C (PKC) during macropinosome formation in macrophages. Although the PI3K target Akt was activated by M-CSF, the Akt inhibitor MK-2206 did not inhibit macropinocytosis. The phospholipase C (PLC) inhibitor U73122 blocked macropinocytosis by M-CSF but not PMA. Macropinocytosis in response to M-CSF and PMA was inhibited by the Ras inhibitor farnesyl thiosalicylate (FTS), by the PKC inhibitor Calphostin C and by the broad specificity inhibitor rottlerin. These studies support a model in which M-CSF stimulates PI3K in macropinocytic cups, and the resulting increase in PIP3 activates PLC, which in turn generates DAG necessary for activation of PKC, Ras and the late stages of macropinosome closure. PMID:25688212

  10. Designing recombinant Pseudomonas strains to enhance biodesulfurization.

    PubMed Central

    Gallardo, M E; Ferrández, A; De Lorenzo, V; García, J L; Díaz, E

    1997-01-01

    The dsz biodesulfurization cluster from Rhodococcus erythropolis IGTS8 has been engineered under the control of heterologous broad-host-range regulatory signals to alleviate the mechanism of sulfur repression, and it was stably inserted into the chromosomes of different Pseudomonas strains. The recombinant bacteria were able to desulfurize dibenzothiophene more efficiently than the native host. Furthermore, these new biocatalysts combine relevant industrial and environmental traits, such as production of biosurfactants, with the enhanced biodesulfurization phenotype. PMID:9371464

  11. Secretory clusterin inhibits osteoclastogenesis by attenuating M-CSF-dependent osteoclast precursor cell proliferation

    SciTech Connect

    Choi, Bongkun; Kang, Soon-Suk; Kang, Sang-Wook; Min, Bon-Hong; Lee, Eun-Jin; Song, Da-Hyun; Kim, Sang-Min; Song, Youngsup; Yoon, Seung-Yong; Chang, Eun-Ju

    2014-07-18

    Highlights: • We describe the expression and secretion of clusterin in osteoclasts. • Endogenous clusterin deficiency does not affect osteoclast formation. • Exogenous treatment with secretory clusterin decreases osteoclast differentiation. • Secretory clusterin attenuates osteoclast precursor cell proliferation by inhibiting M-CSF-mediated ERK activation. - Abstract: Secretory clusterin (sCLU)/apolipoprotein J is a multifunctional glycoprotein that is ubiquitously expressed in various tissues. Reduced sCLU in the joints of patients with bone erosive disease is associated with disease activity; however, its exact role has yet to be elucidated. Here, we report that CLU is expressed and secreted during osteoclastogenesis in mouse bone marrow-derived macrophages (BMMs) that are treated with receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). CLU-deficient BMMs obtained from CLU{sup −/−} mice exhibited no significant alterations in OC differentiation in comparison with BMMs obtained from wild-type mice. In contrast, exogenous sCLU treatment significantly inhibited OC formation in both BMMs and OC precursor cultures. The inhibitory effect of sCLU was more prominent in BMMs than OC precursor cultures. Interestingly, treating BMMs with sCLU decreased the proliferative effects elicited by M-CSF and suppressed M-CSF-induced ERK activation of OC precursor cells without causing apoptotic cell death. This study provides the first evidence that sCLU reduces OC formation by inhibiting the actions of M-CSF, thereby suggesting its protective role in bone erosion.

  12. Human monocytes kill M-CSF-expressing glioma cells by BK channel activation.

    PubMed

    Hoa, Neil T; Zhang, Jian Gang; Delgado, Christina L; Myers, Michael P; Callahan, Linda L; Vandeusen, Gerald; Schiltz, Patric M; Wepsic, H Terry; Jadus, Martin R

    2007-02-01

    In this study, human monocytes/macrophages were observed to kill human U251 glioma cells expressing membrane macrophage colony-stimulating factor (mM-CSF) via a swelling and vacuolization process called paraptosis. Human monocytes responded to the mM-CSF-transduced U251 glioma cells, but not to viral vector control U251 glioma cells (U251-VV), by producing a respiratory burst within 20 min. Using patch clamp techniques, functional big potassium (BK) channels were observed on the membrane of the U251 glioma cell. It has been previously reported that oxygen indirectly regulates BK channel function. In this study, it was demonstrated that prolonged BK channel activation in response to the respiratory burst induced by monocytes initiates paraptosis in selected glioma cells. Forced BK channel opening within the glioma cells by BK channel activators (phloretin or pimaric acid) induced U251 glioma cell swelling and vacuolization occurred within 30 min. U251 glioma cell cytotoxicity, induced by using BK channel activators, required between 8 and 12 h. Swelling and vacuolization induced by phloretin and pimaric acid was prevented by iberiotoxin, a specific BK channel inhibitor. Confocal fluorescence microscopy demonstrated BK channels co-localized with the endoplasmic reticulum and mitochondria, the two targeted organelles affected in paraptosis. Iberiotoxin prevented monocytes from producing death in mM-CSF-expressing U251glioma cells in a 24 h assay. This study demonstrates a novel mechanism whereby monocytes can induce paraptosis via the disruption of internal potassium ion homeostasis. PMID:17318194

  13. Diverse in vivo effects of soluble and membrane-bound M-CSF on tumor-associated macrophages in lymphoma xenograft model

    PubMed Central

    Liao, Jinfeng; Feng, Wenli; Wang, Rong; Ma, Shihui; Wang, Lina; Yang, Xiao; Yang, Feifei; Lin, Yongmin; Ren, Qian; Zheng, Guoguang

    2016-01-01

    Macrophage colony-stimulating factor (M-CSF) is an important cytokine for monocyte/macrophage lineage. Secretory M-CSF (sM-CSF) and membrane-bound M-CSF (mM-CSF) are two major alternative splicing isoforms. The functional diversity of these isoforms in the activation of tumor-associated macrophages (TAMs), especially in lymphoma microenvironment, has not been documented. Here, we studied the effects of M-CSF isoforms on TAMs in xenograft mouse model. More infiltrating TAMs were detected in microenvironment with mM-CSF and sM-CSF. TAMs could be divided into three subpopulations based on their expression of CD206 and Ly6C. While sM-CSF had greater potential to recruit and induce differentiation of TAMs and TAM subpopulations, mM-CSF had greater potential to induce proliferation of TAMs and TAM subpopulations. Though both isoforms educated TAMs and TAM subpopulations to M2-like macrophages, mM-CSF and sM-CSF induced different spectrums of phenotype-associated genes in TAMs and TAM subpopulations. These results suggested the diverse effects of M-CSF isoforms on the activation of TAMs and TAM subpopulations in lymphoma microenvironments. PMID:26595525

  14. M-CSF Mediates Host Defense during Bacterial Pneumonia by Promoting the Survival of Lung and Liver Mononuclear Phagocytes.

    PubMed

    Bettina, Alexandra; Zhang, Zhimin; Michels, Kathryn; Cagnina, R Elaine; Vincent, Isaah S; Burdick, Marie D; Kadl, Alexandra; Mehrad, Borna

    2016-06-15

    Gram-negative bacterial pneumonia is a common and dangerous infection with diminishing treatment options due to increasing antibiotic resistance among causal pathogens. The mononuclear phagocyte system is a heterogeneous group of leukocytes composed of tissue-resident macrophages, dendritic cells, and monocyte-derived cells that are critical in defense against pneumonia, but mechanisms that regulate their maintenance and function during infection are poorly defined. M-CSF has myriad effects on mononuclear phagocytes but its role in pneumonia is unknown. We therefore tested the hypothesis that M-CSF is required for mononuclear phagocyte-mediated host defenses during bacterial pneumonia in a murine model of infection. Genetic deletion or immunoneutralization of M-CSF resulted in reduced survival, increased bacterial burden, and greater lung injury. M-CSF was necessary for the expansion of lung mononuclear phagocytes during infection but did not affect the number of bone marrow or blood monocytes, proliferation of precursors, or recruitment of leukocytes to the lungs. In contrast, M-CSF was essential to survival and antimicrobial functions of both lung and liver mononuclear phagocytes during pneumonia, and its absence resulted in bacterial dissemination to the liver and hepatic necrosis. We conclude that M-CSF is critical to host defenses against bacterial pneumonia by mediating survival and antimicrobial functions of mononuclear phagocytes in the lungs and liver. PMID:27183631

  15. Accelerating skin wound healing by M-CSF through generating SSEA-1 and -3 stem cells in the injured sites

    PubMed Central

    Li, Yunyuan; Jalili, Reza Baradar; Ghahary, Aziz

    2016-01-01

    Wound healing is a complicated process requiring the collaborative efforts of different cell lineages. Our recent studies have found that one subset of hematopoietic cells can be induced to dedifferentiate into multipotent stem cells by means of a proliferating fibroblast releasable factor, M-CSF. Understanding the importance of stem cells on skin wound healing, here we evaluate the biological significance of M-CSF on skin wound healing. In an in vivo mouse skin excisional wound model, we found that SSEA-positive stem cells were present in wounded but not normal skin. After isolating skin cells from either normal or wounded skin by collagenase digestion, and analyzing the SSEA-1 positive cells by flow cytometry, we found a significant increase in the number of SSEA-1 positive cells in wounded skin. Topical application of M-CSF in skin wounds accelerated healing remarkably, while application of M-CSF-neutralizing antibody slowed wound healing. Furthermore, injection of EGFP-labeled hematopoietic cell-derived stem cells generated from M-CSF treated splenocytes resulted in EGFP-labeled cells being enriched in the skin wound site and further differentiated into functional organ-specific cells. Together, these data demonstrated that M-CSF makes a significant contribution to the healing process by inducing hematopoietic cell dedifferentiation into stem cells. PMID:27363517

  16. Instructive role of M-CSF on commitment of bipotent myeloid cells involves ERK-dependent positive and negative signaling.

    PubMed

    Carras, Sylvain; Valayer, Alexandre; Moratal, Claudine; Weiss-Gayet, Michèle; Pages, Gilles; Morlé, François; Mouchiroud, Guy; Gobert, Stéphanie

    2016-02-01

    M-CSF and G-CSF are instructive cytokines that specifically induce differentiation of bipotent myeloid progenitors into macrophages and granulocytes, respectively. Through morphology and colony assay studies, flow cytometry analysis of specific markers, and expression of myeloid transcription factors, we show here that the Eger/Fms cell line is composed of cells whose differentiation fate is instructed by M-CSF and G-CSF, thus representing a good in vitro model of myeloid bipotent progenitors. Consistent with the essential role of ERK1/2 during macrophage differentiation and defects of macrophagic differentiation in native ERK1(-/-) progenitors, ERK signaling is strongly activated in Eger/Fms cells upon M-CSF-induced macrophagic differentiation but only to a very small extent during G-CSF-induced granulocytic differentiation. Previous in vivo studies indicated a key role of Fli-1 in myeloid differentiation and demonstrated its weak expression during macrophagic differentiation with a strong expression during granulocytic differentiation. Here, we demonstrated that this effect could be mediated by a differential regulation of protein kinase Cδ (PKCd) on Fli-1 expression in response to M-CSF and G-CSF. With the use of knockdown of PKCd by small interfering RNA, we demonstrated that M-CSF activates PKCd, which in turn, inhibits Fli-1 expression and granulocytic differentiation. Finally, we studied the connection between ERK and PKCd and showed that in the presence of the MEK inhibitor U0126, PKCd expression is decreased, and Fli-1 expression is increased in response to M-CSF. Altogether, we demonstrated that in bipotent myeloid cells, M-CSF promotes macrophagic over granulocytic differentiation by inducing ERK activation but also PKCd expression, which in turn, down-regulates Fli-1 expression and prevents granulocytic differentiation. PMID:26336156

  17. Securiosides A and B, novel acylated triterpene bisdesmosides with selective cytotoxic activity against M-CSF-stimulated macrophages.

    PubMed

    Kuroda, M; Mimaki, Y; Sashida, Y; Kitahara, M; Yamazaki, M; Yui, S

    2001-02-12

    We report the discovery of securiosides A (1) and B (2), novel acylated triterpene bisdesmosides, isolated from the roots of Securidaca inappendiculata. Securiosides A and B showed potent selective cytotoxic activity against M-CSF-stimulated macrophages and were suggested to have potential as new agents for the treatment of inflammatory diseases such as RA and atherosclerosis. PMID:11212113

  18. The Saccharomyces cerevisiae recombination enhancer biases recombination during interchromosomal mating-type switching but not in interchromosomal homologous recombination.

    PubMed Central

    Houston, Peter; Simon, Peter J; Broach, James R

    2004-01-01

    Haploid Saccharomyces can change mating type through HO-endonuclease cleavage of an expressor locus, MAT, followed by gene conversion using one of two repository loci, HML or HMR, as donor. The mating type of a cell dictates which repository locus is used as donor, with a cells using HML and alpha cells using HMR. This preference is established in part by RE, a locus on the left arm of chromosome III that activates the surrounding region, including HML, for recombination in a cells, an activity suppressed by alpha 2 protein in alpha cells. We have examined the ability of RE to stimulate different forms of interchromosomal recombination. We found that RE exerted an effect on interchromosomal mating-type switching and on intrachromosomal homologous recombination but not on interchromosomal homologous recombination. Also, even in the absence of RE, MAT alpha still influenced donor preference in interchromosomal mating-type switching, supporting a role of alpha 2 in donor preference independent of RE. These results suggest a model in which RE affects competition between productive and nonproductive recombination outcomes. In interchromosome gene conversion, RE enhances both productive and nonproductive pathways, whereas in intrachromosomal gene conversion and mating-type switching, RE enhances only the productive pathway. PMID:15082540

  19. Enhancing radiotherapy through a greater understanding of homologous recombination

    PubMed Central

    Barker, Christopher A.; Powell, Simon N.

    2016-01-01

    Radiotherapy for the treatment of cancer can cause a wide range of cellular effects, the most biologically potent of which is the double strand break in DNA. The process of repairing DNA double strand breaks involves one of two major mechanisms: non-homologous end-joining or homologous recombination. In this review, we review the molecular mechanisms of homologous recombination, in particular as it relates to the repair of DNA damage from ionizing radiation. We also present specific situations where homologous recombination may be dysfunctional in human cancers, and how this functional abnormality can be recognized. We also discuss the therapeutic opportunities that can be exploited based on deficiencies in homologous recombination at various steps in the DNA repair pathway. Side-by-side with these potential therapeutic opportunities, we review the contemporary clinical trials in which strategies to exploit these defects in homologous recombination can be enhanced by the use of radiotherapy in conjunction with biologically-targeted agents. We conclude that the field of radiation oncology has only scratched the surface of a potentially highly efficacious therapeutic strategy. PMID:20832019

  20. Adult Human Glia, Pericytes and Meningeal Fibroblasts Respond Similarly to IFNy but Not to TGFβ1 or M-CSF

    PubMed Central

    Smith, Amy M.; Graham, E. Scott; Feng, Sheryl Xia; Oldfield, Robyn L.; Bergin, Peter M.; Mee, Edward W.; Faull, Richard L. M.; Curtis, Maurice A.; Dragunow, Mike

    2013-01-01

    The chemokine Interferon gamma-induced protein 10 (IP-10) and human leukocyte antigen (HLA) are widely used indicators of glial activation and neuroinflammation and are up-regulated in many brain disorders. These inflammatory mediators have been widely studied in rodent models of brain disorders, but less work has been undertaken using human brain cells. In this study we investigate the regulation of HLA and IP-10, as well as other cytokines and chemokines, in microglia, astrocytes, pericytes, and meningeal fibroblasts derived from biopsy and autopsy adult human brain, using immunocytochemistry and a Cytometric Bead Array. Interferonγ (IFNγ) increased microglial HLA expression, but contrary to data in rodents, the anti-inflammatory cytokine transforming growth factor β1 (TGFβ1) did not inhibit this increase in HLA, nor did TGFβ1 affect basal microglial HLA expression or IFNγ-induced astrocytic HLA expression. In contrast, IFNγ-induced and basal microglial HLA expression, but not IFNγ-induced astrocytic HLA expression, were strongly inhibited by macrophage colony stimulating factor (M-CSF). IFNγ also strongly induced HLA expression in pericytes and meningeal fibroblasts, which do not basally express HLA, and this induction was completely blocked by TGFβ1, but not affected by M-CSF. In contrast, TGFβ1 did not block the IFNγ-induced increase in IP-10 in pericytes and meningeal fibroblasts. These results show that IFNγ, TGFβ1 and M-CSF have species- and cell type-specific effects on human brain cells that may have implications for their roles in adult human brain inflammation. PMID:24339874

  1. Recombinant Temporal Aberration Detection Algorithms for Enhanced Biosurveillance

    PubMed Central

    Murphy, Sean Patrick; Burkom, Howard

    2008-01-01

    Objective Broadly, this research aims to improve the outbreak detection performance and, therefore, the cost effectiveness of automated syndromic surveillance systems by building novel, recombinant temporal aberration detection algorithms from components of previously developed detectors. Methods This study decomposes existing temporal aberration detection algorithms into two sequential stages and investigates the individual impact of each stage on outbreak detection performance. The data forecasting stage (Stage 1) generates predictions of time series values a certain number of time steps in the future based on historical data. The anomaly measure stage (Stage 2) compares features of this prediction to corresponding features of the actual time series to compute a statistical anomaly measure. A Monte Carlo simulation procedure is then used to examine the recombinant algorithms’ ability to detect synthetic aberrations injected into authentic syndromic time series. Results New methods obtained with procedural components of published, sometimes widely used, algorithms were compared to the known methods using authentic datasets with plausible stochastic injected signals. Performance improvements were found for some of the recombinant methods, and these improvements were consistent over a range of data types, outbreak types, and outbreak sizes. For gradual outbreaks, the WEWD MovAvg7+WEWD Z-Score recombinant algorithm performed best; for sudden outbreaks, the HW+WEWD Z-Score performed best. Conclusion This decomposition was found not only to yield valuable insight into the effects of the aberration detection algorithms but also to produce novel combinations of data forecasters and anomaly measures with enhanced detection performance. PMID:17947614

  2. Tagging recombinant proteins to enhance solubility and aid purification.

    PubMed

    Walls, Dermot; Loughran, Sinéad T

    2011-01-01

    Protein fusion technology has enormously facilitated the efficient production and purification of individual recombinant proteins. The use of genetically engineered affinity and solubility-enhancing polypeptide "tags" has increased greatly in recent years and there now exists a considerable repertoire of these that can be used to solve issues related to the expression, stability, solubility, folding, and purification of their fusion partner. In the case of large-scale proteomic studies, the development of purification procedures tailored to individual proteins is not practicable, and affinity tags have therefore become indispensable tools for structural and functional proteomic initiatives that involve the expression of many proteins in parallel. Here, the rationale and applications of a range of established and more recently developed solubility-enhancing and affinity tags are outlined. PMID:20978965

  3. Constitutive receptor-independent low density lipoprotein uptake and cholesterol accumulation by macrophages differentiated from human monocytes with macrophage-colony-stimulating factor (M-CSF).

    PubMed

    Zhao, Bin; Li, Yifu; Buono, Chiara; Waldo, Stephen W; Jones, Nancy L; Mori, Masahiro; Kruth, Howard S

    2006-06-01

    Recently, we have shown that macrophage uptake of low density lipoprotein (LDL) and cholesterol accumulation can occur by nonreceptor mediated fluid-phase macropinocytosis when macrophages are differentiated from human monocytes in human serum and the macrophages are activated by stimulation of protein kinase C (Kruth, H. S., Jones, N. L., Huang, W., Zhao, B., Ishii, I., Chang, J., Combs, C. A., Malide, D., and Zhang, W. Y. (2005) J. Biol. Chem. 280, 2352-2360). Differentiation of human monocytes in human serum produces a distinct macrophage phenotype. In this study, we examined the effect on LDL uptake of an alternative macrophage differentiation phenotype. Differentiation of macrophages from human monocytes in fetal bovine serum with macrophage-colony-stimulating factor (M-CSF) produced a macrophage phenotype demonstrating constitutive fluid-phase uptake of native LDL leading to macrophage cholesterol accumulation. Fluid-phase endocytosis of LDL by M-CSF human macrophages showed non-saturable uptake of LDL that did not down-regulate over 48 h. LDL uptake was mediated by continuous actin-dependent macropinocytosis of LDL by these M-CSF-differentiated macrophages. M-CSF is a cytokine present within atherosclerotic lesions. Thus, macropinocytosis of LDL by macrophages differentiated from monocytes under the influence of M-CSF is a plausible mechanism to account for macrophage foam cell formation in atherosclerotic lesions. This mechanism of macrophage foam cell formation does not depend on LDL modification or macrophage receptors. PMID:16606620

  4. Inhibition of Homologous Recombination with Vorinostat Synergistically Enhances Ganciclovir Cytotoxicity

    PubMed Central

    Ladd, Brendon; Ackroyd, Jeffrey J.; Hicks, J. Kevin; Canman, Christine E.; Flanagan, Sheryl A.; Shewach, Donna S.

    2014-01-01

    The nucleoside analog ganciclovir (GCV) elicits cytotoxicity in tumor cells via a novel mechanism in which drug incorporation into DNA produces minimal disruption of replication, but numerous DNA double strand breaks occur during the second S-phase after drug exposure. We propose that homologous recombination (HR), a major repair pathway for DNA double strand breaks, can prevent GCV-induced DNA damage, and that inhibition of HR will enhance cytotoxicity with GCV. Survival after GCV treatment in cells expressing a herpes simplex virus thymidine kinase was strongly dependent on HR (>14-fold decrease in IC50 in HR-deficient vs. HR-proficient CHO cells). In a homologous recombination reporter assay, the histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA; vorinostat), decreased HR repair events up to 85%. SAHA plus GCV produced synergistic cytotoxicity in U251tk human glioblastoma cells. Elucidation of the synergistic mechanism demonstrated that SAHA produced a concentration-dependent decrease in the HR proteins Rad51 and CtIP. GCV alone produced numerous Rad51 foci, demonstrating activation of HR. However, the addition of SAHA blocked GCV-induced Rad51 foci formation completely and increased γH2AX, a marker of DNA double strand breaks. SAHA plus GCV also produced synergistic cytotoxicity in HR-proficient CHO cells, but the combination was antagonistic or additive in HR-deficient CHO cells. Collectively, these data demonstrate that HR promotes survival with GCV and compromise of HR by SAHA results in synergistic cytotoxicity, revealing a new mechanism for enhancing anticancer activity with GCV. PMID:24231389

  5. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage.

    PubMed

    Ushach, Irina; Zlotnik, Albert

    2016-09-01

    M-CSF and GM-CSF are 2 important cytokines that regulate macrophage numbers and function. Here, we review their known effects on cells of the macrophage-monocyte lineage. Important clues to their function come from their expression patterns. M-CSF exhibits a mostly homeostatic expression pattern, whereas GM-CSF is a product of cells activated during inflammatory or pathologic conditions. Accordingly, M-CSF regulates the numbers of various tissue macrophage and monocyte populations without altering their "activation" status. Conversely, GM-CSF induces activation of monocytes/macrophages and also mediates differentiation to other states that participate in immune responses [i.e., dendritic cells (DCs)]. Further insights into their function have come from analyses of mice deficient in either cytokine. M-CSF signals through its receptor (CSF-1R). Interestingly, mice deficient in CSF-1R expression exhibit a more significant phenotype than mice deficient in M-CSF. This observation was explained by the discovery of a novel cytokine (IL-34) that represents a second ligand of CSF-1R. Information about the function of these ligands/receptor system is still developing, but its complexity is intriguing and strongly suggests that more interesting biology remains to be elucidated. Based on our current knowledge, several therapeutic molecules targeting either the M-CSF or the GM-CSF pathways have been developed and are currently being tested in clinical trials targeting either autoimmune diseases or cancer. It is intriguing to consider how evolution has directed these pathways to develop; their complexity likely mirrors the multiple functions in which cells of the monocyte/macrophage system are involved. PMID:27354413

  6. Combinatorial and Computational Approaches to Identify Interactions of Macrophage Colony-stimulating Factor (M-CSF) and Its Receptor c-FMS.

    PubMed

    Rosenfeld, Lior; Shirian, Jason; Zur, Yuval; Levaot, Noam; Shifman, Julia M; Papo, Niv

    2015-10-23

    The molecular interactions between macrophage colony-stimulating factor (M-CSF) and the tyrosine kinase receptor c-FMS play a key role in the immune response, bone metabolism, and the development of some cancers. Because no x-ray structure is available for the human M-CSF · c-FMS complex, the binding epitope for this complex is largely unknown. Our goal was to identify the residues that are essential for binding of the human M-CSF to c-FMS. For this purpose, we used a yeast surface display (YSD) approach. We expressed a combinatorial library of monomeric M-CSF (M-CSFM) single mutants and screened this library to isolate variants with reduced affinity for c-FMS using FACS. Sequencing yielded a number of single M-CSFM variants with mutations both in the direct binding interface and distant from the binding site. In addition, we used computational modeling to map the identified mutations onto the M-CSFM structure and to classify the mutations into three groups as follows: those that significantly decrease protein stability; those that destroy favorable intermolecular interactions; and those that decrease affinity through allosteric effects. To validate the YSD and computational data, M-CSFM and three variants were produced as soluble proteins; their affinity and structure were analyzed; and very good correlations with both YSD data and computational predictions were obtained. By identifying the M-CSFM residues critical for M-CSF · c-FMS interactions, we have laid down the basis for a deeper understanding of the M-CSF · c-FMS signaling mechanism and for the development of target-specific therapeutic agents with the ability to sterically occlude the M-CSF·c-FMS binding interface. PMID:26359491

  7. Effect of recombinant human bone morphogenetic protein-2 on bisphosphonate-treated osteoblasts

    PubMed Central

    Kwon, Taek-Kyun; Song, Jae-Min; Kim, In-Ryoung; Park, Bong-Soo; Kim, Chul-Hoon; Cheong, In-Kyo

    2014-01-01

    Objectives Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a side effect of bisphophonate therapy that has been reported in recent years. Osteoclastic inactivity by bisphosphonate is the known cause of BRONJ. Bone morphogenetic protein-2 (BMP-2) plays an important role in the development of bone. Recombinant human BMP-2 (rhBMP-2) is potentially useful as an activation factor for bone repair. We hypothesized that rhBMP-2 would enhance the osteoclast-osteoblast interaction related to bone remodeling. Materials and Methods Human fetal osteoblast cells (hFOB 1.19) were treated with 100 µM alendronate, and 100 ng/mL rhBMP-2 was added. Cells were incubated for a further 48 hours, and cell viability was measured using an MTT assay. Expression of the three cytokines from osteoblasts, receptor activator of nuclear factor-κB ligand (RANKL), osteoprotegerin (OPG), and macrophage colony-stimulating factor (M-CSF), were analyzed by real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Results Cell viability was decreased to 82.75%±1.00% by alendronate and then increased to 110.43%±1.35% after treatment with rhBMP-2 (P<0.05, respectively). OPG, RANKL, and M-CSF expression were all decreased by alendronate treatment. RANKL and M-CSF expression were increased, but OPG was not significantly affected by rhBMP-2. Conclusion rhBMP2 does not affect OPG gene expression in hFOB, but it may increase RANKL and M-CSF gene expression. PMID:25551094

  8. slan-defined subsets of CD16-positive monocytes: impact of granulomatous inflammation and M-CSF receptor mutation.

    PubMed

    Hofer, Thomas P; Zawada, Adam M; Frankenberger, Marion; Skokann, Kerstin; Satzl, Anna A; Gesierich, Wolfgang; Schuberth, Madeleine; Levin, Johannes; Danek, Adrian; Rotter, Björn; Heine, Gunnar H; Ziegler-Heitbrock, Loems

    2015-12-10

    Human monocytes are subdivided into classical, intermediate, and nonclassical subsets, but there is no unequivocal strategy to dissect the latter 2 cell types. We show herein that the cell surface marker 6-sulfo LacNAc (slan) can define slan-positive CD14(+)CD16(++) nonclassical monocytes and slan-negative CD14(++)CD16(+) intermediate monocytes. Gene expression profiling confirms that slan-negative intermediate monocytes show highest expression levels of major histocompatibility complex class II genes, whereas a differential ubiquitin signature is a novel feature of the slan approach. In unsupervised hierarchical clustering, the slan-positive nonclassical monocytes cluster with monocytes and are clearly distinct from CD1c(+) dendritic cells. In clinical studies, we show a selective increase of the slan-negative intermediate monocytes to >100 cells per microliter in patients with sarcoidosis and a fivefold depletion of the slan-positive monocytes in patients with hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS), which is caused by macrophage colony-stimulating factor (M-CSF) receptor mutations. These data demonstrate that the slan-based definition of CD16-positive monocyte subsets is informative in molecular studies and in clinical settings. PMID:26443621

  9. M-CSF receptor mutations in hereditary diffuse leukoencephalopathy with spheroids impair not only kinase activity but also surface expression

    SciTech Connect

    Hiyoshi, Masateru; Hashimoto, Michihiro; Yukihara, Mamiko; Bhuyan, Farzana; Suzu, Shinya

    2013-11-01

    Highlights: •Many mutations were identified in Fms as a putative genetic cause of HDLS. •All of the mutations tested severely impair the kinase activity. •Most of the mutations also impair the trafficking to the cell surface. •These defects further suggest that HDLS is caused by a loss of Fms function. -- Abstract: The tyrosine kinase Fms, the cell surface receptor for M-CSF and IL-34, is critical for microglial proliferation and differentiation in the brain. Recently, a number of mutations have been identified in Fms as a putative genetic cause of hereditary diffuse leukoencephalopathy with spheroids (HDLS), implying an important role of microglial dysfunction in HDLS pathogenesis. In this study, we initially confirmed that 11 mutations, which reside within the ATP-binding or major tyrosine kinase domain, caused a severe impairment of ligand-induced Fms auto-phosphorylation. Intriguingly, we found that 10 of the 11 mutants also showed a weak cell surface expression, which was associated with a concomitant increase in the low molecular weight hypo-N-glycosylated immature gp130Fms-like species. Indeed, the mutant proteins heavily accumulated to the Golgi-like perinuclear regions. These results indicate that all of the Fms mutations tested severely impair the kinase activity and most of the mutations also impair the trafficking to the cell surface, further suggesting that HDLS is caused by the loss of Fms function.

  10. M-CSF and GM-CSF Receptor Signaling Differentially Regulate Monocyte Maturation and Macrophage Polarization in the Tumor Microenvironment.

    PubMed

    Van Overmeire, Eva; Stijlemans, Benoît; Heymann, Felix; Keirsse, Jiri; Morias, Yannick; Elkrim, Yvon; Brys, Lea; Abels, Chloé; Lahmar, Qods; Ergen, Can; Vereecke, Lars; Tacke, Frank; De Baetselier, Patrick; Van Ginderachter, Jo A; Laoui, Damya

    2016-01-01

    Tumors contain a heterogeneous myeloid fraction comprised of discrete MHC-II(hi) and MHC-II(lo) tumor-associated macrophage (TAM) subpopulations that originate from Ly6C(hi) monocytes. However, the mechanisms regulating the abundance and phenotype of distinct TAM subsets remain unknown. Here, we investigated the role of macrophage colony-stimulating factor (M-CSF) in TAM differentiation and polarization in different mouse tumor models. We demonstrate that treatment of tumor-bearing mice with a blocking anti-M-CSFR monoclonal antibody resulted in a reduction of mature TAMs due to impaired recruitment, extravasation, proliferation, and maturation of their Ly6C(hi) monocytic precursors. M-CSFR signaling blockade shifted the MHC-II(lo)/MHC-II(hi) TAM balance in favor of the latter as observed by the preferential differentiation of Ly6C(hi) monocytes into MHC-II(hi) TAMs. In addition, the genetic and functional signatures of MHC-II(lo) TAMs were downregulated upon M-CSFR blockade, indicating that M-CSFR signaling shapes the MHC-II(lo) TAM phenotype. Conversely, granulocyte macrophage (GM)-CSFR had no effect on the mononuclear tumor infiltrate or relative abundance of TAM subsets. However, GM-CSFR signaling played an important role in fine-tuning the MHC-II(hi) phenotype. Overall, our data uncover the multifaceted and opposing roles of M-CSFR and GM-CSFR signaling in governing the phenotype of macrophage subsets in tumors, and provide new insight into the mechanism of action underlying M-CSFR blockade. PMID:26573801

  11. Enhancement of spontaneous mitotic recombination by the meiotic mutant spo11-1 in Saccharomyces cerevisiae

    SciTech Connect

    Bruschi, C.V.; Esposito, M.S.

    1983-12-01

    Both nonreciprocal and reciprocal mitotic recombination are enhanced by the recessive mutant spo11-1, which was previously shown to affect meiosis by decreasing recombination and increasing nondisjunction. The mitotic effects are not distributed equally in all chromosomal regions. The genotypes of mitotic recombinants in spo11-1/spo11-1 diploid cells provide further evidence that widely spaced chromosomal markers undergo coincident conversion in mitosis.

  12. A novel liposomal recombinant lipoimmunogen enhances anti-tumor immunity.

    PubMed

    Shen, Kuan-Yin; Liu, Hsin-Yu; Li, Hui-Ju; Wu, Chiao-Chieh; Liou, Gunn-Guang; Chang, Yuan-Chih; Leng, Chih-Hsiang; Liu, Shih-Jen

    2016-07-10

    Synthetic liposomes provide a biocompatible and biodegradable approach for delivering drugs and antigens. In addition, self-adjuvanting recombinant lipoproteins (rlipoproteins) can enhance Th1 anti-tumor immune responses via the TLR2 signaling pathway. To generate a liposomal rlipoprotein for a cancer immunotherapeutic vaccine, we assessed 3 types of synthetic liposomes for use with the rlipoproteins rlipoE7m and rlipoOVA. We determined that the cationic liposome DOTAP could stabilize anionic rlipoproteins and delay rlipoprotein release. Surprisingly, rlipoproteins and DOTAP could synergistically up-regulate CD83 expression in bone marrow-derived dendritic cells (BMDCs). Compared with other liposome formulations, the rlipoprotein/DOTAP formulation elicited higher cytotoxic T-lymphocyte (CTL) responses. To explore the mechanism of BMDC activation by rlipoprotein/DOTAP, we assessed the production of reactive oxygen species (ROS) and the TNF-α secretion of BMDCs. We observed that rlipoprotein/DOTAP induced ROS to the same extent as DOTAP did. In addition, TLR2 signaling was also required for the TNF-α secretion of rlipoprotein/DOTAP-treated BMDCs. Moreover, compared with rlipoOVA-treated BMDCs, rlipoOVA/DOTAP-treated BMDCs increased the levels of IFN-γ produced by OVA-specific T cells. We also observed that rlipoE7m/DOTAP treatment but not rlipoE7m treatment delayed tumor growth. These results indicate that the rlipoprotein/DOTAP formulation can synergistically activate BMDCs via ROS and the TLR2 signaling pathway. In summary, rlipoprotein/DOTAP is a novel and stable formulation for cancer immunotherapy. PMID:27164542

  13. Strongly Enhanced Recombination via Two-Center Electronic Correlations

    SciTech Connect

    Mueller, C.; Voitkiv, A. B.; Lopez-Urrutia, J. R. Crespo; Harman, Z.

    2010-06-11

    In the presence of a neighboring atom, electron-ion recombination can proceed resonantly via excitation of an electron in the atom, with subsequent relaxation through radiative decay. It is shown that this two-center dielectronic process can largely dominate over single-center radiative recombination at internuclear distances as large as several nanometers. The relevance of the predicted process is demonstrated by using examples of water-dissolved alkali cations and warm dense matter.

  14. Macrophages at the fetal-maternal interface express markers of alternative activation and are induced by M-CSF and IL-10.

    PubMed

    Svensson, Judit; Jenmalm, Maria C; Matussek, Andreas; Geffers, Robert; Berg, Göran; Ernerudh, Jan

    2011-10-01

    During pregnancy, the maternal immune system is challenged by the presence of the fetus, which must be tolerated despite being semiallogeneic. Uterine mucosal (or decidual) macrophages (M), one of the major leukocyte populations at the fetal-maternal interface, have been implicated in fetal tolerance, but information regarding their regulation is scarce. In this study, we investigated the role of several factors potentially involved in the differentiation and polarization of decidual M with an in vitro M differentiation model. By using flow cytometry, we showed that M-CSF and IL-10 were potent inducers of M2 (immunoregulatory) M markers expressed on human decidual M (CD14, CD163, CD206, CD209). In contrast, proinflammatory stimuli, and unexpectedly also the Th2-associated IL-4 and IL-13, induced different patterns of expression, indicating that a Th2-dominated environment is not required for decidual M polarization. M-CSF/IL-10-stimulated and decidual M also showed similar cytokine secretion patterns, with production of IL-10 as well as IL-6, TNF, and CCL4. Conversely, the proinflammatory, LPS/IFN-γ-stimulated M produced significantly higher levels of TNF and no IL-10. We also used a gene array with 420 M-related genes, of which 100 were previously reported to be regulated in a global gene expression profiling of decidual M, confirming that M-CSF/IL-10-induced M are closely related to decidual M. Taken together, our results consistently point to a central role for M-CSF and in particular IL-10 in the shaping of decidual M with regulatory properties. These cytokines may therefore play an important role in supporting the homeostatic and tolerant immune milieu required for a successful pregnancy. PMID:21890660

  15. Effects of intermedin on proliferation, apoptosis and the expression of OPG/RANKL/M-CSF in the MC3T3-E1 osteoblast cell line

    PubMed Central

    REN, HONGFEI; REN, HONGYU; LI, XUE; YU, DONGDONG; MU, SHUAI; CHEN, ZHIGUANG; FU, QIN

    2015-01-01

    Bone remodeling is a vital physiological process of healthy bone tissue in humans. It is characterized by the formation of bone by osteoblasts and its resorption by osteoclasts, and the bone resorbed by osteoclasts is replaced through the differentiation and activity of osteoblasts. Imbalances in this vital process lead to pathological conditions, including osteoporosis. Intermedin (IMD) as a newly discovered peptide in the calcitonin (CT) family of peptides, which shares similar functions with CT, calcitonin gene-related peptide and amylin in bone resorption. However, the mechanism underlying its effect remains to be elucidated. This was investigated in the present study using the osteoblastic MC3T3-E1 cell line, which was treated with different doses of IMD (0, 1, 10 and 100 nM). Cell proliferation, apoptosis and the expression of receptor activator of NF-κB ligand (RANKL), osteoprotegerin (OPG) and macrophage colony-stimulating factor (M-CSF) were measured following treatment using multiple detection techniques, including an MTT assay, flow cytometry, reverse transcription-quantitative polymerase chain reaction and western blot analysis. The resulting data demonstrated that IMD significantly inhibited the apoptosis of MC3T3-E1 cells induced by serum-free culture and dexamethasone, however, no significant effects on MC3T3-E1 cell proliferation were observed. IMD had additional functions on the MC3T3-E1 cells, including inhibition of the expression of RANKL and M-CSF, and promotion of the expression of OPG. Previous studies have also demonstrated that RANKL and M-CSF are two vital factor produced by osteoblasts to promote the maturation and differentiation of osteoclasts, and it has been reported that IMD can inhibit the osteoclast formation stimulated by RANKL and M-CSF. Together with these findings, the present study concluded that IMD reduces bone resorption by inhibiting osteoblast apoptosis, decreasing the RANKL/OPG ratio and the expression of M-CSF, and

  16. Genetically enhanced cellulase production in Pseudomonas cellulosa using recombinant DNA technology

    DOEpatents

    Dees, H. Craig

    1999-01-01

    An enhanced strain of Pseudomonas celllulosa was obtained by introducing a recombinant genetic construct comprising a heterologous cellulase gene operably connected to a promoter into ATCC 55702, mutagenizing the transformants by treatment with MNNG, and selecting a high cellulase producing transformant. The transformant, designated Pseudomonas cellulosa ATCC XXXX, exhibits enhanced levels of cellulase production relative to the untransformed Pseudomonas cellulosa strain #142 ATCC 55702.

  17. Enhanced Proteolytic Processing of Recombinant Human Coagulation Factor VIII B-Domain Variants by Recombinant Furins.

    PubMed

    Demasi, Marcos A; de S Molina, Erika; Bowman-Colin, Christian; Lojudice, Fernando H; Muras, Angelita; Sogayar, Mari C

    2016-06-01

    Recombinant human factor VIII (rFVIII) is used in replacement therapy for hemophilia A. Current research efforts are focused on bioengineering rFVIII molecules to improve its secretion efficiency and stability, limiting factors for its efficient production. However, high expression yield in mammalian cells of these rFVIII variants is generally associated with limited proteolytic processing. Non-processed single-chain polypeptides constitute non-natural FVIII molecule configurations with unpredictable toxicity and/or antigenicity. Our main objective was to demonstrate the feasibility of promoting full-proteolytic processing of an rFVIII variant retaining a portion of the B-domain, converting it into the smallest natural activatable form of rFVIII, while keeping its main advantage, i.e., improved secretion efficiency. We generated and employed a CHO-DG44 cell clone producing an rFVIII variant retaining a portion of the B-domain and the FVIII native cleavage site between Arg(1648) and Glu(1649). By bioengineering CHO-DG44 cells to express stably the recombinant human endoproteases PACE, PACE-SOL, PCSK5, PCSK6, or PCKS7, we were able to achieve complete intra- or extracellular proteolytic processing of this rFVIII variant. Additionally, our quantitative data indicated that removal of the B-domain segment by intracellular proteolytic processing does not interfere with this rFVIII variant secretion efficiency. This work also provides the first direct evidence of (1) intracellular cleavage at the Arg(1648) FVIII processing site promoted by wild-type PACE and PCSK7 and (2) proteolytic processing at the Arg(1648) FVIII processing site by PCSK6. PMID:27126696

  18. BRCA1-directed, enhanced and aberrant homologous recombination

    PubMed Central

    Dever, Seth M; White, E Railey; Hartman, Matthew CT

    2012-01-01

    Despite intense studies, questions still remain regarding the molecular mechanisms leading to the development of hereditary breast and ovarian cancers. Research focused on elucidating the role of the breast cancer susceptibility gene 1 (BRCA1) in the DNA damage response may be of the most critical importance to understanding these processes. The BRCA1 protein has an N-terminal RING domain possessing E3 ubiquitin-ligase activity and a C-terminal BRCT domain involved in binding specific phosphoproteins. These domains are involved directly or indirectly in DNA double-strand break (DSB) repair. As the two terminal domains of BRCA1 represent two separate entities, understanding how these domains communicate and are functionally altered in regards to DSB repair is critical for understanding the development of BRCA1-related breast and ovarian cancers and for developing novel therapeutics. Herein, we review recent findings of how altered functions of these domains might lead to cancer through a mechanism of increased aberrant homologous recombination and possible implications for the development of BRCA1 inhibitors. PMID:22306997

  19. Allele mining and enhanced genetic recombination for rice breeding.

    PubMed

    Leung, Hei; Raghavan, Chitra; Zhou, Bo; Oliva, Ricardo; Choi, Il Ryong; Lacorte, Vanica; Jubay, Mona Liza; Cruz, Casiana Vera; Gregorio, Glenn; Singh, Rakesh Kumar; Ulat, Victor Jun; Borja, Frances Nikki; Mauleon, Ramil; Alexandrov, Nickolai N; McNally, Kenneth L; Sackville Hamilton, Ruaraidh

    2015-12-01

    Traditional rice varieties harbour a large store of genetic diversity with potential to accelerate rice improvement. For a long time, this diversity maintained in the International Rice Genebank has not been fully used because of a lack of genome information. The publication of the first reference genome of Nipponbare by the International Rice Genome Sequencing Project (IRGSP) marked the beginning of a systematic exploration and use of rice diversity for genetic research and breeding. Since then, the Nipponbare genome has served as the reference for the assembly of many additional genomes. The recently completed 3000 Rice Genomes Project together with the public database (SNP-Seek) provides a new genomic and data resource that enables the identification of useful accessions for breeding. Using disease resistance traits as case studies, we demonstrated the power of allele mining in the 3,000 genomes for extracting accessions from the GeneBank for targeted phenotyping. Although potentially useful landraces can now be identified, their use in breeding is often hindered by unfavourable linkages. Efficient breeding designs are much needed to transfer the useful diversity to breeding. Multi-parent Advanced Generation InterCross (MAGIC) is a breeding design to produce highly recombined populations. The MAGIC approach can be used to generate pre-breeding populations with increased genotypic diversity and reduced linkage drag. Allele mining combined with a multi-parent breeding design can help convert useful diversity into breeding-ready genetic resources. PMID:26606925

  20. Mutational analysis of a prokaryotic recombinational enhancer element with two functions.

    PubMed Central

    Hübner, P; Arber, W

    1989-01-01

    The site-specific DNA inversion system Cin encoded by the bacteriophage P1 consists of a recombinase, two inverted crossing-over sites and a recombinational enhancer. The latter approximately 75 bp long genetic element is bifunctional due to its location within the 5' part of the cin gene encoding the recombinase. In order to determine the essential nucleotides for each of its two biological functions we randomly mutated the recombinational enhancer sequence sis(P1) and analysed both functions of the mutants obtained. Three distinct regions of this sequence were found to be important for the enhancer activity. One of them occupies the middle third of the enhancer sequence and it can suffer a number of functionally neutral base substitutions, while others are detrimental. The other two regions occupy the two flanking thirds of the enhancer. They coincide with binding sites of the host-coded protein FIS (Factor for Inversion Stimulation) needed for efficient DNA inversion in vitro. These sequences appear to be highly evolved allowing only a few mutations without affecting either of the biological functions. Taking the effect of mutations within these FIS binding sites into account a consensus sequence for the interaction with FIS was compiled. This FIS consensus implies a palindromic structure for the recombinational enhancer. This is in line with the orientation independence of enhancer action with respect to the crossing-over sites. Images PMID:2656257

  1. Hyper-Enhanced Production of Foreign Recombinant Protein by Fusion with the Partial Polyhedrin of Nucleopolyhedrovirus

    PubMed Central

    Bae, Sung Min; Kim, Hee Jung; Lee, Jun Beom; Choi, Jae Bang; Shin, Tae Young; Koo, Hyun Na; Choi, Jae Young; Lee, Kwang Sik; Je, Yeon Ho; Jin, Byung Rae; Yoo, Sung Sik; Woo, Soo Dong

    2013-01-01

    To enhance the production efficiency of foreign protein in baculovirus expression systems, the effects of polyhedrin fragments were investigated by fusion expressing them with the enhanced green fluorescent protein (EGFP). Recombinant viruses were generated to express EGFP fused with polyhedrin fragments based on the previously reported minimal region for self-assembly and the KRKK nuclear localization signal (NLS). Fusion expressions with polyhedrin amino acids 19 to 110 and 32 to 110 lead to localization of recombinant protein into the nucleus and mediate its assembly. The marked increase of EGFP by these fusion expressions was confirmed through protein and fluorescence intensity analyses. The importance of nuclear localization for enhanced production was shown by the mutation of the NLS within the fused polyhedrin fragment. In addition, when the polyhedrin fragment fused with EGFP was not localized in the nucleus, some fragments increased the production of protein. Among these fragments, some degradation of only the fused polyhedrin was observed in the fusion of amino acids 19 to 85 and 32 to 85. The fusion of amino acids 32 to 85 may be more useful for the enhanced and intact production of recombinant protein. The production of E2 protein, which is a major antigen of classical swine fever virus, was dramatically increased by fusion expression with polyhedrin amino acids 19 to 110, and its preliminary immunogenicity was verified using experimental guinea pigs. This study suggests a new option for higher expression of useful foreign recombinant protein by using the partial polyhedrin in baculovirus. PMID:23593321

  2. Alleviation of Proteolytic Sensitivity To Enhance Recombinant Lipase Production in Escherichia coli▿

    PubMed Central

    Narayanan, Niju; Chou, C. Perry

    2009-01-01

    Two amino acids, Leu149 and Val223, were identified as proteolytically sensitive when Pseudozyma antarctica lipase (PalB) was heterologously expressed in Escherichia coli. The functional expression was enhanced using the double mutant for cultivation. However, the recombinant protein production was still limited by PalB misfolding, which was resolved by DsbA coexpression. PMID:19542329

  3. RIG-I ligand enhances the immunogenicity of recombinant H7HA protein.

    PubMed

    Cao, Weiping; Liepkalns, Justine S; Kamal, Ram P; Reber, Adrian J; Kim, Jin Hyang; Hofstetter, Amelia R; Amoah, Samuel; Stevens, James; Ranjan, Priya; Gangappa, Shivaprakash; York, Ian A; Sambhara, Suryaprakash

    2016-01-01

    Avian H7N9 influenza virus infection with fatal outcomes continues to pose a pandemic threat and highly immunogenic vaccines are urgently needed. In this report we show that baculovirus-derived recombinant H7 hemagglutinin protein, when delivered with RIG-I ligand, induced enhanced antibody and T cell responses and conferred protection against lethal challenge with a homologous H7N9 virus. These findings indicate the potential utility of RIG-I ligands as vaccine adjuvants to increase the immunogenicity of recombinant H7 hemagglutinin. PMID:27106062

  4. [Dual promoters enhance heterologous enzyme production from bacterial phage based recombinant Bacillus subtilis].

    PubMed

    Liu, Gang; Zhang, Yan; Xing, Miao

    2006-03-01

    The effect of dual promoters on recombinant protein production from bacterial phage based Bacillus subtilis expression system was investigated. Alpha amylase (from Bacillus amyloliquefaciens) and penicillin acylase (from Bacillus megaterium) were selected as the indicating enzymes. Both the promoterless genes and the promoter-bearing genes were isolated through PCR amplification with properly designed primers, and were inserted into plasmid pSG703 that contains the lacZ-cat expression cartridge. The lysogenic B. subtilis (phi105 MU331) was transformed with the resultant recombinant plasmids, and the heterologous genes were thereby integrated into the chromosommal DNA of B. subtilis via homologous recombination. The transformants were designated as B. subtilis AMY1, B. subtilis AMY2, B. subtilis PA1, and B. subtilis PA2, respectively. In the recombinant B. subtilis strains, the inserted sequences were located down stream of a strong phage promoter that could be activated by thermal induction. In B. subtilis AMY1 and B. subtilis PA1, transcription of the heterologous genes was only initiated by the phage promoter after heat shock, whereas in B. subtilis AMY2 and B. subtilis PA2, transcription of the heterologous genes was initiated by dual promoters, the phage promoter and the native promoter. The application of dual promoters increased the productivity of both enzymes, with 133% enhancement for alpha-amylase production and 113% enhancement for penicillin acylase production. PMID:16607942

  5. Model based engineering of Pichia pastoris central metabolism enhances recombinant protein production

    PubMed Central

    Nocon, Justyna; Steiger, Matthias G.; Pfeffer, Martin; Sohn, Seung Bum; Kim, Tae Yong; Maurer, Michael; Rußmayer, Hannes; Pflügl, Stefan; Ask, Magnus; Haberhauer-Troyer, Christina; Ortmayr, Karin; Hann, Stephan; Koellensperger, Gunda; Gasser, Brigitte; Lee, Sang Yup; Mattanovich, Diethard

    2014-01-01

    The production of recombinant proteins is frequently enhanced at the levels of transcription, codon usage, protein folding and secretion. Overproduction of heterologous proteins, however, also directly affects the primary metabolism of the producing cells. By incorporation of the production of a heterologous protein into a genome scale metabolic model of the yeast Pichia pastoris, the effects of overproduction were simulated and gene targets for deletion or overexpression for enhanced productivity were predicted. Overexpression targets were localized in the pentose phosphate pathway and the TCA cycle, while knockout targets were found in several branch points of glycolysis. Five out of 9 tested targets led to an enhanced production of cytosolic human superoxide dismutase (hSOD). Expression of bacterial β-glucuronidase could be enhanced as well by most of the same genetic modifications. Beneficial mutations were mainly related to reduction of the NADP/H pool and the deletion of fermentative pathways. Overexpression of the hSOD gene itself had a strong impact on intracellular fluxes, most of which changed in the same direction as predicted by the model. In vivo fluxes changed in the same direction as predicted to improve hSOD production. Genome scale metabolic modeling is shown to predict overexpression and deletion mutants which enhance recombinant protein production with high accuracy. PMID:24853352

  6. Surface modifications of photoanodes in dye sensitized solar cells: enhanced light harvesting and reduced recombination

    NASA Astrophysics Data System (ADS)

    Saxena, Vibha; Aswal, D. K.

    2015-06-01

    In a quest to harvest solar power, dye-sensitized solar cells (DSSCs) have potential for low-cost eco-friendly photovoltaic devices. The major processes which govern the efficiency of a DSSC are photoelectron generation, injection of photo-generated electrons to the conduction band (CB) of the mesoporous nanocrystalline semiconductor (nc-SC); transport of CB electrons through nc-SC and subsequent collection of CB electrons at the counter electrode (CE) through the external circuit; and dye regeneration by redox couple or hole transport layer (HTL). Most of these processes occur at various interfaces of the photoanode. In addition, recombination losses of photo-generated electrons with either dye or redox molecules take place at the interfaces. Therefore, one of the key requirements for high efficiency is to improve light harvesting of the photoanode and to reduce the recombination losses at various interfaces. In this direction, surface modification of the photoanode is the simplest method among the various other approaches available in the literature. In this review, we present a comprehensive discussion on surface modification of the photoanode, which has been adopted in the literature for not only enhancing light harvesting but also reducing recombination. Various approaches towards surface modification of the photoanode discussed are (i) fluorine-doped tin oxide (FTO)/nc-SC interface modified via a compact layer of semiconductor material which blocks exposed sites of FTO to electrolyte (or HTL), (ii) nc-SC/dye interface modification either through acid treatment resulting in enhanced dye loading due to a positively charged surface or by depositing insulating/semiconducting blocking layer on the nc-SC surface, which acts as a tunneling barrier for recombination, (iii) nc-SC/dye interface modified by employing co-adsorbents which helps in reducing the dye aggregation and thereby recombination, and (iv) dye/electrolyte (or dye/HTL) interface modification using

  7. Directed Evolution of RecA Variants with Enhanced Capacity for Conjugational Recombination

    PubMed Central

    Kim, Taejin; Chitteni-Pattu, Sindhu; Cox, Benjamin L.; Wood, Elizabeth A.; Sandler, Steven J.; Cox, Michael M.

    2015-01-01

    The recombination activity of Escherichia coli (E. coli) RecA protein reflects an evolutionary balance between the positive and potentially deleterious effects of recombination. We have perturbed that balance, generating RecA variants exhibiting improved recombination functionality via random mutagenesis followed by directed evolution for enhanced function in conjugation. A recA gene segment encoding a 59 residue segment of the protein (Val79-Ala137), encompassing an extensive subunit-subunit interface region, was subjected to degenerate oligonucleotide-mediated mutagenesis. An iterative selection process generated at least 18 recA gene variants capable of producing a higher yield of transconjugants. Three of the variant proteins, RecA I102L, RecA V79L and RecA E86G/C90G were characterized based on their prominence. Relative to wild type RecA, the selected RecA variants exhibited faster rates of ATP hydrolysis, more rapid displacement of SSB, decreased inhibition by the RecX regulator protein, and in general displayed a greater persistence on DNA. The enhancement in conjugational function comes at the price of a measurable RecA-mediated cellular growth deficiency. Persistent DNA binding represents a barrier to other processes of DNA metabolism in vivo. The growth deficiency is alleviated by expression of the functionally robust RecX protein from Neisseria gonorrhoeae. RecA filaments can be a barrier to processes like replication and transcription. RecA regulation by RecX protein is important in maintaining an optimal balance between recombination and other aspects of DNA metabolism. PMID:26047498

  8. mCSF1, a nucleus-encoded CRM protein required for the processing of many mitochondrial introns, is involved in the biogenesis of respiratory complexes I and IV in Arabidopsis.

    PubMed

    Zmudjak, Michal; Colas des Francs-Small, Catherine; Keren, Ido; Shaya, Felix; Belausov, Eduard; Small, Ian; Ostersetzer-Biran, Oren

    2013-07-01

    The coding regions of many mitochondrial genes in plants are interrupted by intervening sequences that are classified as group II introns. Their splicing is essential for the expression of the genes they interrupt and hence for respiratory function, and is facilitated by various protein cofactors. Despite the importance of these cofactors, only a few of them have been characterized. CRS1-YhbY domain (CRM) is a recently recognized RNA-binding domain that is present in several characterized splicing factors in plant chloroplasts. The Arabidopsis genome encodes 16 CRM proteins, but these are largely uncharacterized. Here, we analyzed the intracellular location of one of these hypothetical proteins in Arabidopsis, mitochondrial CAF-like splicing factor 1 (mCSF1; At4 g31010), and analyzed the growth phenotypes and organellar activities associated with mcsf1 mutants in plants. Our data indicated that mCSF1 resides within mitochondria and its functions are essential during embryogenesis. Mutant plants with reduced mCSF1 displayed inhibited germination and retarded growth phenotypes that were tightly associated with reduced complex I and IV activities. Analogously to the functions of plastid-localized CRM proteins, analysis of the RNA profiles in wildtype and mcsf1 plants showed that mCSF1 acts in the splicing of many of the group II intron RNAs in Arabidopsis mitochondria. PMID:23646912

  9. Overexpression of microRNAs enhances recombinant protein production in Chinese hamster ovary cells.

    PubMed

    Loh, Wan Ping; Loo, Bernard; Zhou, Lihan; Zhang, Peiqing; Lee, Dong-Yup; Yang, Yuansheng; Lam, Kong Peng

    2014-09-01

    MicroRNAs (miRNAs) are short, non-coding RNAs that can negatively regulate expression of multiple genes at post-transcriptional levels. Using miRNAs to target multiple genes and pathways is a promising cell-engineering strategy to increase recombinant protein production in mammalian cells. Here, we identified miRs-17, -19b, -20a, and -92a to be differentially expressed between high- and low- monoclonal antibody-producing Chinese hamster ovary (CHO) cell clones using next-generation sequencing and quantitative real-time PCR. These miRNAs were stably overexpressed individually and in combination in a high-producing clone to assess their effects on CHO cell growth, recombinant protein productivity and product quality. Stably transfected pools demonstrated 24-34% increases in specific productivity (qP) and 21-31% increases in titer relative to the parental clone, without significant alterations in proliferation rates. The highest protein-producing clones isolated from these pools exhibited 130-140% increases in qP and titer compared to the parental clone, without major changes in product aggregation and N-glycosylation profile. From our clonal data, correlations between enhanced qP/titer and increased levels of miRs-17, -19b, and -92a were observed. Our results demonstrate the potential of miRs-17, -19b, and -92a as cell-engineering targets to increase recombinant protein production in mammalian cells. PMID:24819042

  10. Enhanced charge recombination due to surfaces and twin defects in GaAs nanostructures

    SciTech Connect

    Brown, Evan; Sheng, Chunyang; Nakano, Aiichiro; Shimamura, Kohei; Shimojo, Fuyuki

    2015-02-07

    Power conversion efficiency of gallium arsenide (GaAs) nanowire (NW) solar cells is severely limited by enhanced charge recombination (CR) at sidewall surfaces, but its atomistic mechanisms are not well understood. In addition, GaAs NWs usually contain a high density of twin defects that form a twin superlattice, but its effects on CR dynamics are largely unknown. Here, quantum molecular dynamics (QMD) simulations reveal the existence of an intrinsic type-II heterostructure at the (110) GaAs surface. Nonadiabatic quantum molecular dynamics (NAQMD) simulations show that the resulting staggered band alignment causes a photoexcited electron in the bulk to rapidly transfer to the surface. We have found orders-of-magnitude enhancement of the CR rate at the surface compared with the bulk value. Furthermore, QMD and NAQMD simulations show unique surface electronic states at alternating (111)A and (111)B sidewall surfaces of a twinned [111]-oriented GaAs NW, which act as effective CR centers. The calculated large surface recombination velocity quantitatively explains recent experimental observations and provides microscopic understanding of the underlying CR processes.

  11. Mutant strains of Pichia pastoris with enhanced secretion of recombinant proteins.

    PubMed

    Larsen, Sasha; Weaver, Jun; de Sa Campos, Katherine; Bulahan, Rhobe; Nguyen, Jackson; Grove, Heather; Huang, Amy; Low, Lauren; Tran, Namphuong; Gomez, Seth; Yau, Jennifer; Ilustrisimo, Thomas; Kawilarang, Jessica; Lau, Jonathan; Tranphung, Maivi; Chen, Irene; Tran, Christina; Fox, Marcia; Lin-Cereghino, Joan; Lin-Cereghino, Geoff P

    2013-11-01

    Although Pichia pastoris is a popular protein expression system, it exhibits limitations in its ability to secrete heterologous proteins. Therefore, a REMI (restriction enzyme mediated insertion) strategy was utilized to select mutant beta-g alactosidase s upersecretion (bgs) strains that secreted increased levels of a β-galactosidase reporter. Many of the twelve BGS genes may have functions in intracellular signaling or vesicle transport. Several of these strains also appeared to contain a more permeable cell wall. Preliminary characterization of four bgs mutants showed that they differed in the ability to enhance the export of other reporter proteins. bgs13, which has a disruption in a gene homologous to Saccharomyces cerevisiae protein kinase C (PKC1), gave enhanced secretion of most recombinant proteins that were tested, raising the possibility that it has the universal super-secreter phenotype needed in an industrial production strain of P. pastoris. PMID:23881328

  12. CTLA-4 recombinant protein genetically fused to canine Fcepsilon receptor Ialpha enhances allergen specific lymphocyte responses in experimentally sensitized dogs.

    PubMed

    Yasunaga, Sho; Tsukui, Toshihiro; Masuda, Kenichi; Ohno, Koichi; Tsujimoto, Hajime

    2004-06-01

    Vaccination with a recombinant antigen fused to a targeting molecule is a potential strategy for inducing efficient immune responses. For the therapeutic purpose of allergic diseases in dogs, a DNA construct which expresses recombinant fusion protein with two functional domains, cytotoxic T lymphocyte antigen (CTLA-4) and Fcepsilon receptor Ialpha, was developed to bridge antigen-presenting cells and IgE-allergen complex. The recombinant fusion protein expressed by the DNA construct was demonstrated to retain the ability to bind monocytes in PBMC and dog IgE, respectively. Additionally, the recombinant protein induced enhancement of allergen-induced lymphoproliferation in experimentally sensitized dogs under conditions of suboptimal allergen stimulation. These results indicated that the DNA construct could enhance allergen-induced immune responses in vivo, implying its usefulness for perspective application in immunotherapy in dogs. PMID:15240934

  13. Increasing pentose phosphate pathway flux enhances recombinant protein production in Pichia pastoris.

    PubMed

    Nocon, Justyna; Steiger, Matthias; Mairinger, Teresa; Hohlweg, Jonas; Rußmayer, Hannes; Hann, Stephan; Gasser, Brigitte; Mattanovich, Diethard

    2016-07-01

    Production of heterologous proteins in Pichia pastoris (syn. Komagataella sp.) has been shown to exert a metabolic burden on the host metabolism. This burden is associated with metabolite drain, which redirects nucleotides and amino acids from primary metabolism. On the other hand, recombinant protein production affects energy and redox homeostasis of the host cell. In a previous study, we have demonstrated that overexpression of single genes of the oxidative pentose phosphate pathway (PPP) had a positive influence on recombinant production of cytosolic human superoxide dismutase (hSOD). In this study, different combinations of these genes belonging to the oxidative PPP were generated and analyzed. Thereby, a 3.8-fold increase of hSOD production was detected when glucose-6-phosphate dehydrogenase (ZWF1) and 6-gluconolactonase (SOL3) were simultaneously overexpressed, while the combinations of other genes from PPP had no positive effect on protein production. By measuring isotopologue patterns of (13)C-labelled metabolites, we could detect an upshift in the flux ratio of PPP to glycolysis upon ZWF1 and SOL3 co-overexpression, as well as increased levels of 6-phosphogluconate. The substantial improvement of hSOD production by ZWF1 and SOL3 co-overexpression appeared to be connected to an increase in PPP flux. In conclusion, we show that overexpression of SOL3 together with ZWF1 enhanced both the PPP flux ratio and hSOD accumulation, providing evidence that in P. pastoris Sol3 limits the flux through PPP and recombinant protein production. PMID:27020289

  14. Significantly enhanced production of recombinant nitrilase by optimization of culture conditions and glycerol feeding.

    PubMed

    Liu, Jun-Feng; Zhang, Zhi-Jun; Li, Ai-Tao; Pan, Jiang; Xu, Jian-He

    2011-02-01

    The production of a recombinant nitrilase expressed in Escherichia coli JM109/pNLE was optimized in the present work. Various culture conditions and process parameters, including medium composition, inducer, induction condition, pH and temperature, were systematically examined. The results showed that nitrilase production in E. coli JM109/pNLE was greatly affected by the pH condition and the temperature in batch culture, and the highest nitrilase production was obtained when the fermentation was carried out at 37°C, initial pH 7.0 without control and E. coli was induced with 0.2 mM isopropyl-β-D-thiogalactoside at 4.0 h. Furthermore, enzyme production could be significantly enhanced by adopting the glycerol feeding strategy with lower flow rate. The enzyme expression was also authenticated by sodium dodecyl phosphate polyacrylamide gel electrophoresis analysis. Finally, under the optimized conditions for fed-batch culture, cell growth, specific activity and nitrilase production of the recombinant E. coli were increased by 9.0-, 5.5-, and 50-fold, respectively. PMID:20862583

  15. Influence of receptor activator of nuclear factor (NF)-kappaB ligand (RANKL), macrophage-colony stimulating factor (M-CSF) and fetal calf serum on human osteoclast formation and activity.

    PubMed

    Kreja, Ludwika; Liedert, Astrid; Schmidt, Carla; Claes, Lutz; Ignatius, Anita

    2007-10-01

    Human osteoclast (OC) formation and activity was studied in cultures of peripheral blood mononuclear cells (PBMNC) from six healthy donors after stimulation with fetal calf serum (FCS), under the influence of the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) and the macrophage-colony stimulating factor (M-CSF). The results showed that selected FCS could stimulate OC formation without any medium supplementation with osteoclastogenic factors. The OC formation, investigated by quantification of multinucleated tartrate-resistant acid phosphatase-positive cells (TRAP+ cells), and the sensitivity of OC progenitors to RANKL and M-CSF, varied widely between individual donors. The OC resorption activity, measured in the "pit-assay" on dentine, was strictly dependent on the presence of RANKL and M-CSF in the medium and was also donor dependent. The considerable donor variability should be considered in culture studies investigating, e.g. the interactions of OC with biomaterials or the influence of cytokines, growth factors and drugs on osteoclastogenesis. PMID:18161075

  16. FOXN1 recombinant protein enhances T-cell regeneration after hematopoietic stem cell transplantation in mice.

    PubMed

    Song, Yinhong; Su, Min; Zhu, Jing; Di, Wen; Liu, Yalan; Hu, Rong; Rood, Debra; Lai, Laijun

    2016-06-01

    A prolonged period of T-cell recovery is the major challenge in hematopoietic stem cell transplantation (HSCT). Thymic epithelial cells (TECs) are the major component of the thymic microenvironment for T-cell generation. However, TECs undergo degeneration over time. FOXN1 plays a critical role in TEC development and is required to maintain adult TECs for thymopoiesis. To investigate the potential application of FOXN1, we have cloned and expressed recombinant FOXN1 protein (rFOXN1) that was fused with cell-penetrating peptides. We show here that the rFOXN1 protein can translocate from the cell surface into the cytoplasm and nucleus. Administration of rFOXN1 into both congenic and allogeneic HSCT recipient mice increased the number of TECs, resulting in enhanced thymopoiesis that led to an increased number of functional T cells in the periphery. The increased number of TECs is due to the enhanced survival and proliferation of TECs. Our results suggest that rFOXN1 has the potential to be used in enhancing T-cell regeneration in patients following HSCT. PMID:27125859

  17. Blocking autophagy enhanced leukemia cell death induced by recombinant human arginase.

    PubMed

    Li, Yubin; Zeng, Xian; Wang, Shaofei; Fan, Jiajun; Wang, Ziyu; Song, Ping; Mei, Xiaobin; Ju, Dianwen

    2016-05-01

    Recombinant human arginase (rhArg) is an arginine-degrading enzyme that has been evaluated as effective therapeutics for varieties of malignant tumors and is in clinical trials for hepatocellular carcinoma (HCC) treatment nowadays. Our previous studies have reported that rhArg could induce autophagy and apoptosis in lymphoma cells and inhibiting autophagy could enhance the efficacy of rhArg on lymphoma. However, whether rhArg could induce autophagy and what roles autophagy plays in leukemia cells are unclear. In this study, we demonstrated that rhArg treatment could lead to the formation of autophagosomes and the upregulation of microtubule-associated protein light chain 3 II (LC3-II) in human promyelocytic leukemia HL-60 cells and human acute T cell leukemia Jurkat cells. Furthermore, inhibiting autophagy using 3-methyladenine (3-MA) or chloroquine (CQ) could significantly enhance rhArg-induced cell growth inhibition and apoptosis. Taken together, these findings indicated that rhArg induced autophagy in leukemia cells and inhibiting autophagy enhanced anti-leukemia effect of rhArg, which might encourage the treatment of leukemia by targeting arginine depletion and autophagy in clinics. PMID:26643895

  18. RNA Recombination Enhances Adaptability and Is Required for Virus Spread and Virulence.

    PubMed

    Xiao, Yinghong; Rouzine, Igor M; Bianco, Simone; Acevedo, Ashley; Goldstein, Elizabeth Faul; Farkov, Mikhail; Brodsky, Leonid; Andino, Raul

    2016-04-13

    Mutation and recombination are central processes driving microbial evolution. A high mutation rate fuels adaptation but also generates deleterious mutations. Recombination between two different genomes may resolve this paradox, alleviating effects of clonal interference and purging deleterious mutations. Here we demonstrate that recombination significantly accelerates adaptation and evolution during acute virus infection. We identified a poliovirus recombination determinant within the virus polymerase, mutation of which reduces recombination rates without altering replication fidelity. By generating a panel of variants with distinct mutation rates and recombination ability, we demonstrate that recombination is essential to enrich the population in beneficial mutations and purge it from deleterious mutations. The concerted activities of mutation and recombination are key to virus spread and virulence in infected animals. These findings inform a mathematical model to demonstrate that poliovirus adapts most rapidly at an optimal mutation rate determined by the trade-off between selection and accumulation of detrimental mutations. PMID:27078068

  19. Enhancing the Yield of Active Recombinant Chitobiase by Physico-Chemical and In Vitro Refolding Studies.

    PubMed

    Dangi, Arun Kumar; Rishi, Praveen; Tewari, Rupinder

    2016-02-01

    Chitobiase (CHB) is an important enzyme for the production of N-acetyl-D-glucosamine from the chitin biopolymer in the series of chitinolytic enzymes. Majority of over-expressed CHB (58%) in E. coli expression system led to formation of inclusion bodies. The production and soluble yield of active CHB was enhanced by co-expression with GroEL/ES chaperonin, optimizing culture conditions and solubilization followed by refolding of remaining inactive chitobiase present in the form of inclusion bodies. The growth of recombinant E. coli produced 42% CHB in soluble form and the rest (~58%) as inclusion bodies. The percentage of active CHB was enhanced to 71% by co-expression with GroEL/ES chaperonin system and optimizing culture conditions (37 °C, 200 rpm, IPTG--0.5 mM, L-arabinose--13.2 mM). Of the remaining inactive CHB present in inclusion bodies, 37% could be recovered in active form using pulsatile dilution method involving denaturants (2 M urea, pH 12.5) and protein refolding studies (1.0 M L-arginine, 5% glycerol). Using combinatorial approach, 80% of the total CHB expressed, could be recovered from cells grown in one litre of LB medium is a step forward in replacing hazardous chemical technology by biotechnological process for the production of NAG from chitinous waste. PMID:26831864

  20. Enhanced wound healing by recombinant Escherichia coli Nissle 1917 via human epidermal growth factor receptor in human intestinal epithelial cells: therapeutic implication using recombinant probiotics.

    PubMed

    Choi, Hye Jin; Ahn, Jung Hoon; Park, Seong-Hwan; Do, Kee Hun; Kim, Juil; Moon, Yuseok

    2012-03-01

    The gastrointestinal mucosa has a remarkable ability to repair damage with the support of epidermal growth factor (EGF), which stimulates epithelial migration and proliferative reepithelialization. For the treatment of mucosal injuries, it is important to develop efficient methods for the localized delivery of mucoactive biotherapeutics. The basic idea in the present study came from the assumption that an intestinal probiotic vehicle can carry and deliver key recombinant medicinal proteins to the injured epithelial target in patients with intestinal ulcerative diseases, including inflammatory bowel disease. The study was focused on the use of the safe probiotic E. coli Nissle 1917, which was constructed to secrete human EGF in conjunction with the lipase ABC transporter recognition domain (LARD). Using the in vitro physically wounded monolayer model, ABC transporter-mediated EGF secretion by probiotic E. coli Nissle 1917 was demonstrated to enhance the wound-healing migration of human enterocytes. Moreover, the epithelial wound closure was dependent on EGF receptor-linked activation, which exclusively involved the subsequent signaling pathway of the mitogen-activated protein kinase kinase (MEK) extracellular-related kinases 1 and 2 (ERK1/2). In particular, the migrating frontier of the wounded edge displayed the strongest EGF receptor-linked signaling activation in the presence of the recombinant probiotic. The present study provides a basis for the clinical application of human recombinant biotherapeutics via an efficient, safe probiotic vehicle. PMID:22184415

  1. Recombinant BCG Expressing Mycobacterium ulcerans Ag85A Imparts Enhanced Protection against Experimental Buruli ulcer

    PubMed Central

    Hart, Bryan E.; Hale, Laura P.; Lee, Sunhee

    2015-01-01

    Buruli ulcer, an emerging tropical disease caused by Mycobacterium ulcerans (MU), is characterized by disfiguring skin necrosis and high morbidity. Relatively little is understood about the mode of transmission, pathogenesis, or host immune responses to MU infection. Due to significant reduction in quality of life for patients with extensive tissue scarring, and that a disproportionately high percentage of those affected are disadvantaged children, a Buruli ulcer vaccine would be greatly beneficial to the worldwide community. Previous studies have shown that mice inoculated with either M. bovis bacille Calmette–Guérin (BCG) or a DNA vaccine encoding the M. ulcerans mycolyl transferase, Ag85A (MU-Ag85A), are transiently protected against pathology caused by intradermal challenge with MU. Building upon this principle, we have generated quality-controlled, live-recombinant strains of BCG and M. smegmatis which express the immunodominant MU Ag85A. Priming with rBCG MU-Ag85A followed by an M. smegmatis MU-Ag85A boost strongly induced murine antigen-specific CD4+ T cells and elicited functional IFNγ-producing splenocytes which recognized MU-Ag85A peptide and whole M. ulcerans better than a BCG prime-boost vaccination. Strikingly, mice vaccinated with a single subcutaneous dose of BCG MU-Ag85A or prime-boost displayed significantly enhanced survival, reduced tissue pathology, and lower bacterial load compared to mice vaccinated with BCG. Importantly, this level of superior protection against experimental Buruli ulcer compared to BCG has not previously been achieved. These results suggest that use of BCG as a recombinant vehicle expressing MU antigens represents an effective Buruli ulcer vaccine strategy and warrants further antigen discovery to improve vaccine efficacy. PMID:26393347

  2. Recombinant BCG Expressing Mycobacterium ulcerans Ag85A Imparts Enhanced Protection against Experimental Buruli ulcer.

    PubMed

    Hart, Bryan E; Hale, Laura P; Lee, Sunhee

    2015-09-01

    Buruli ulcer, an emerging tropical disease caused by Mycobacterium ulcerans (MU), is characterized by disfiguring skin necrosis and high morbidity. Relatively little is understood about the mode of transmission, pathogenesis, or host immune responses to MU infection. Due to significant reduction in quality of life for patients with extensive tissue scarring, and that a disproportionately high percentage of those affected are disadvantaged children, a Buruli ulcer vaccine would be greatly beneficial to the worldwide community. Previous studies have shown that mice inoculated with either M. bovis bacille Calmette-Guérin (BCG) or a DNA vaccine encoding the M. ulcerans mycolyl transferase, Ag85A (MU-Ag85A), are transiently protected against pathology caused by intradermal challenge with MU. Building upon this principle, we have generated quality-controlled, live-recombinant strains of BCG and M. smegmatis which express the immunodominant MU Ag85A. Priming with rBCG MU-Ag85A followed by an M. smegmatis MU-Ag85A boost strongly induced murine antigen-specific CD4+ T cells and elicited functional IFNγ-producing splenocytes which recognized MU-Ag85A peptide and whole M. ulcerans better than a BCG prime-boost vaccination. Strikingly, mice vaccinated with a single subcutaneous dose of BCG MU-Ag85A or prime-boost displayed significantly enhanced survival, reduced tissue pathology, and lower bacterial load compared to mice vaccinated with BCG. Importantly, this level of superior protection against experimental Buruli ulcer compared to BCG has not previously been achieved. These results suggest that use of BCG as a recombinant vehicle expressing MU antigens represents an effective Buruli ulcer vaccine strategy and warrants further antigen discovery to improve vaccine efficacy. PMID:26393347

  3. Non-Radiative Carrier Recombination Enhanced by Two-Level Process: A First-Principles Study

    PubMed Central

    Yang, Ji-Hui; Shi, Lin; Wang, Lin-Wang; Wei, Su-Huai

    2016-01-01

    Non-radiative recombination plays an important role in the performance of optoelectronic semiconductor devices such as solar cells and light-emitting diodes. Most textbook examples assume that the recombination process occurs through a single defect level, where one electron and one hole are captured and recombined. Based on this simple picture, conventional wisdom is that only defect levels near the center of the bandgap can be effective recombination centers. Here, we present a new two-level recombination mechanism: first, one type of carrier is captured through a defect level forming a metastable state; then the local defect configuration rapidly changes to a stable state, where the other type of carrier is captured and recombined through another defect level. This novel mechanism is applied to the recombination center in CdTe. We show that this two-level process can significantly increase the recombination rate (by three orders of magnitude) in agreement with experiments. We expect that this two-level recombination process can exist in a wide range of semiconductors, so its effect should be carefully examined in characterizing optoelectronic materials. PMID:26880667

  4. Non-Radiative Carrier Recombination Enhanced by Two-Level Process: A First-Principles Study

    NASA Astrophysics Data System (ADS)

    Yang, Ji-Hui; Shi, Lin; Wang, Lin-Wang; Wei, Su-Huai

    2016-02-01

    Non-radiative recombination plays an important role in the performance of optoelectronic semiconductor devices such as solar cells and light-emitting diodes. Most textbook examples assume that the recombination process occurs through a single defect level, where one electron and one hole are captured and recombined. Based on this simple picture, conventional wisdom is that only defect levels near the center of the bandgap can be effective recombination centers. Here, we present a new two-level recombination mechanism: first, one type of carrier is captured through a defect level forming a metastable state; then the local defect configuration rapidly changes to a stable state, where the other type of carrier is captured and recombined through another defect level. This novel mechanism is applied to the recombination center in CdTe. We show that this two-level process can significantly increase the recombination rate (by three orders of magnitude) in agreement with experiments. We expect that this two-level recombination process can exist in a wide range of semiconductors, so its effect should be carefully examined in characterizing optoelectronic materials.

  5. Non-Radiative Carrier Recombination Enhanced by Two-Level Process: A First-Principles Study.

    PubMed

    Yang, Ji-Hui; Shi, Lin; Wang, Lin-Wang; Wei, Su-Huai

    2016-01-01

    Non-radiative recombination plays an important role in the performance of optoelectronic semiconductor devices such as solar cells and light-emitting diodes. Most textbook examples assume that the recombination process occurs through a single defect level, where one electron and one hole are captured and recombined. Based on this simple picture, conventional wisdom is that only defect levels near the center of the bandgap can be effective recombination centers. Here, we present a new two-level recombination mechanism: first, one type of carrier is captured through a defect level forming a metastable state; then the local defect configuration rapidly changes to a stable state, where the other type of carrier is captured and recombined through another defect level. This novel mechanism is applied to the recombination center Te(cd)(2+) in CdTe. We show that this two-level process can significantly increase the recombination rate (by three orders of magnitude) in agreement with experiments. We expect that this two-level recombination process can exist in a wide range of semiconductors, so its effect should be carefully examined in characterizing optoelectronic materials. PMID:26880667

  6. Non-radiative carrier recombination enhanced by two-level process: A first-principles study

    DOE PAGESBeta

    Yang, Ji -Hui; Shi, Lin; Wang, Lin -Wang; Wei, Su -Huai

    2016-02-16

    In this study, non-radiative recombination plays an important role in the performance of optoelectronic semiconductor devices such as solar cells and light-emitting diodes. Most textbook examples assume that the recombination process occurs through a single defect level, where one electron and one hole are captured and recombined. Based on this simple picture, conventional wisdom is that only defect levels near the center of the bandgap can be effective recombination centers. Here, we present a new two-level recombination mechanism: first, one type of carrier is captured through a defect level forming a metastable state; then the local defect configuration rapidly changesmore » to a stable state, where the other type of carrier is captured and recombined through another defect level. This novel mechanism is applied to the recombination center Te2+cd in CdTe. We show that this two-level process can significantly increase the recombination rate (by three orders of magnitude) in agreement with experiments. We expect that this two-level recombination process can exist in a wide range of semiconductors, so its effect should be carefully examined in characterizing optoelectronic materials.« less

  7. Enhanced effect of fluorescent whitening agent on peroral infection for recombinant baculovirus in the host Bombyx mori L.

    PubMed

    Wang, Bing; Shang, Jinyan; Liu, Xunli; Cui, Weizheng; Wu, Xiaofeng; Zhao, Na

    2007-01-01

    The low efficiency of the oral infectivity of recombinant polyhedrin-negative baculovirus is a major bottleneck in the application of the baculovirus expression system in the silkworm (Bombyx mori L). In this study, the effects of a fluorescent whitening agent on improving the oral infection for the recombinant Bombyx mori nuclear polyhedrosis virus in silkworm larva and their possible mechanism were investigated. The results showed that the peroral infection can be remarkably enhanced by adding VBL into the larval artificial diet. The maximum infection rate reached as high as 90% with the concentration of VBL (1%), which was then considered as optimal. The total protease activity and pH value of the larval intestinal juice were found to be lower when compared to the control, indicating an abnormal physiological change of the larval digestive system by VBL, which, in turn, resulted in improved peroral infection of recombinant virus. PMID:17160363

  8. Automated microinjection of recombinant BCL-X into mouse zygotes enhances embryo development.

    PubMed

    Liu, Xinyu; Fernandes, Roxanne; Gertsenstein, Marina; Perumalsamy, Alagammal; Lai, Ingrid; Chi, Maggie; Moley, Kelle H; Greenblatt, Ellen; Jurisica, Igor; Casper, Robert F; Sun, Yu; Jurisicova, Andrea

    2011-01-01

    Progression of fertilized mammalian oocytes through cleavage, blastocyst formation and implantation depends on successful implementation of the developmental program, which becomes established during oogenesis. The identification of ooplasmic factors, which are responsible for successful embryo development, is thus crucial in designing possible molecular therapies for infertility intervention. However, systematic evaluation of molecular targets has been hampered by the lack of techniques for efficient delivery of molecules into embryos. We have developed an automated robotic microinjection system for delivering cell impermeable compounds into preimplantation embryos with a high post-injection survival rate. In this paper, we report the performance of the system on microinjection of mouse embryos. Furthermore, using this system we provide the first evidence that recombinant BCL-XL (recBCL-XL) protein is effective in preventing early embryo arrest imposed by suboptimal culture environment. We demonstrate that microinjection of recBCL-XL protein into early-stage embryos repairs mitochondrial bioenergetics, prevents reactive oxygen species (ROS) accumulation, and enhances preimplantation embryo development. This approach may lead to a possible treatment option for patients with repeated in vitro fertilization (IVF) failure due to poor embryo quality. PMID:21799744

  9. Efficient perovskite/fullerene planar heterojunction solar cells with enhanced charge extraction and suppressed charge recombination.

    PubMed

    Li, Cong; Wang, Fuzhi; Xu, Jia; Yao, Jianxi; Zhang, Bing; Zhang, Chunfeng; Xiao, Min; Dai, Songyuan; Li, Yongfang; Tan, Zhan'ao

    2015-06-01

    Alcohol soluble titanium chelate TIPD (titanium (diisopropoxide) bis(2,4-pentanedionate)) was used as an electron transporting layer to form an ohmic contact with the negative electrode, aiming to enhance the charge extraction and suppress the charge recombination for high performance CH3NH3PbI3/PCBM-based PHJ perovskite solar cells. The TIPD layer shows excellent suitability to CH3NH3PbI3 perovskite synthesized by different methods. For one-step synthesized CH3NH3PbI3, the power conversion efficiency (PCE) of the device with the TIPD buffer reaches 8.75%, with a nearly 33% increase in comparison with the device without the buffer layer (6.58%). For two-step synthesized CH3NH3PbI3, an open-circuit voltage (Voc) of 0.89 V, a short-circuit current density (Jsc) of 22.57 mA cm(-2), and a fill factor (FF) of 64.5%, corresponding to a PCE of 12.95% for the device with a TIPD buffer layer were achieved, which is among the best performances reported in the literature for CH3NH3PbI3/PCBM-based PHJ perovskite solar cells. PMID:25962479

  10. Disorder strongly enhances Auger recombination in conductive quantum-dot solids

    PubMed Central

    Gao, Yunan; Sandeep, C. S. Suchand; Schins, Juleon M.; Houtepen, Arjan J.; Siebbeles, Laurens D. A.

    2013-01-01

    Auger recombination (AR) can be an important loss mechanism for optoelectronic devices, but it is typically not very efficient at low excitation densities. Here we show that in conductive quantum-dot solids, AR is the dominant charge carrier decay path even at excitation densities as low as 10−3 per quantum dot, and that AR becomes faster as the charge carrier mobility increases. Monte Carlo simulations reveal that this efficient AR results from charge carrier congregation in ‘Auger hot spots’: lower-energy sites that are present because of energy disorder. Disorder-enhanced AR is a general effect that is expected to be active in all disordered materials. The observed efficient AR is an issue of concern for devices that work at charge carrier densities in excess of ~10−3 charge carriers per quantum dot. At the same time, efficient carrier congregation could be exploited for fast optical switching or to achieve optical gain in the near infrared. PMID:24029819

  11. Design and characterization of novel recombinant listeriolysin O-protamine fusion proteins for enhanced gene delivery.

    PubMed

    Kim, Na Hyung; Provoda, Chester; Lee, Kyung-Dall

    2015-02-01

    To improve the efficiency of gene delivery for effective gene therapy, it is essential that the vector carries functional components that can promote overcoming barriers in various steps leading to the transport of DNA from extracellular to ultimately nuclear compartment. In this study, we designed genetically engineered fusion proteins as a platform to incorporate multiple functionalities in one chimeric protein. Prototypes of such a chimera tested here contain two domains: one that binds to DNA; the other that can facilitate endosomal escape of DNA. The fusion proteins are composed of listeriolysin O (LLO), the endosomolytic pore-forming protein from Listeria monocytogenes, and a 22 amino acid sequence of the DNA-condensing polypeptide protamine (PN), singly or as a pair: LLO-PN and LLO-PNPN. We demonstrate dramatic enhancement of the gene delivery efficiency of protamine-condensed DNA upon incorporation of a small amount of LLO-PN fusion protein and further improvement with LLO-PNPN in vitro using cultured cells. Additionally, the association of anionic liposomes with cationic LLO-PNPN/protamine/DNA complexes, yielding a net negative surface charge, resulted in better in vitro transfection efficiency in the presence of serum. An initial, small set of data in mice indicated that the observed enhancement in gene expression could also be applicable to in vivo gene delivery. This study suggests that incorporation of a recombinant fusion protein with multiple functional components, such as LLO-protamine fusion protein, in a nonviral vector is a promising strategy for various nonviral gene delivery systems. PMID:25521817

  12. Discovery of enhanced radiative recombination continua of He-like iron and calcium from IC 443 and its implications

    SciTech Connect

    Ohnishi, Takao; Uchida, Hiroyuki; Tsuru, Takeshi Go; Koyama, Katsuji; Masai, Kuniaki; Sawada, Makoto

    2014-03-20

    We present deep observations of the Galactic supernova remnant IC 443 with the Suzaku X-ray satellite. We find prominent K-shell lines from iron and nickel, together with a triangle residual at 8-10 keV, which corresponds to the energy of the radiative recombination continuum (RRC) of He-like iron. In addition, the wavy residuals have been seen at ∼5.1 and ∼5.5 keV. We confirm that the residuals show the first enhanced RRCs of He- and H-like calcium found in supernova remnants. These facts provide robust evidence for the recombining plasma. We reproduce the plasma in the 3.7-10 keV band using a recombining plasma model at the electron temperature 0.65 keV. The recombination parameter n {sub e} t (n {sub e} is electron density and t is elapsed time after formation of a recombining plasma) and abundances of iron and nickel are strongly correlated, and hence the errors are large. On the other hand, the ratio of nickel to iron relative to the solar abundances is well constrained to 11{sub −3}{sup +4} (1σ). A possibility is that the large abundance ratio is a result of an asymmetric explosion of the progenitor star.

  13. Enhanced production of recombinant Mycobacterium tuberculosis antigens in Escherichia coli by replacement of low-usage codons.

    PubMed

    Lakey, D L; Voladri, R K; Edwards, K M; Hager, C; Samten, B; Wallis, R S; Barnes, P F; Kernodle, D S

    2000-01-01

    A major obstacle to development of subunit vaccines and diagnostic reagents for tuberculosis is the inability to produce large quantities of these proteins. To test the hypothesis that poor expression of some mycobacterial genes in Escherichia coli is due, in part, to the presence of low-usage E. coli codons, we used site-directed mutagenesis to convert low-usage codons to high-usage codons for the same amino acid in the Mycobacterium tuberculosis genes for antigens 85A and 85B and superoxide dismutase. Replacement of five codons in the wild-type gene for antigen 85B increased recombinant protein production in E. coli 54-fold. The recombinant antigen elicited proliferation and gamma interferon production by lymphocytes from healthy tuberculin reactors and was recognized by monoclonal antibodies to native antigen 85, indicating that the recombinant antigen contained T-cell and B-cell epitopes. Northern blotting demonstrated only a 1.7- to 2.5-fold increase in antigen 85B mRNA, suggesting that the enhanced protein production was due primarily to enhanced efficiency of translation. Codon replacement in the genes encoding antigen 85A and superoxide dismutase yielded four- to sixfold increases in recombinant protein production, suggesting that this strategy may be generally applicable to overexpression of mycobacterial genes in E. coli. PMID:10603393

  14. Sequences affecting the V(D)J recombinational activity of the IgH intronic enhancer in a transgenic substrate.

    PubMed Central

    Fernex, C; Caillol, D; Capone, M; Krippl, B; Ferrier, P

    1994-01-01

    The immunoglobulin heavy chain intronic transcriptional enhancer (E mu) is part of a complex cis-regulatory DNA region which has notably been shown to modulate V(D)J rearrangements of associated variable gene segments. We have used recombination substrates comprised of the E mu enhancer together with various lengths of additional downstream mu sequences to assess the individual contribution of those sequences to the V(D)J recombinational regulatory activity. Surprisingly, in the absence of large amounts of mu sequences, substrate rearrangements were not detected in Southern blot analyses of the lymphoid tissues from independent transgenic mice, but were readily detectable following transfection into cultured pre-B cells. A short mu segment which includes matrix association regions (MARs) was not sufficient to restore high levels of rearrangements within the reporter transgenes. However, additional experiments demonstrated that the mu sequences are dispensable for V(D)J recombination in transgenic thymuses, implying a suppressive effect exerted by the vector sequences left in the transgenic insert, when they are attached near the E mu regulatory region. This suppression of V(D)J recombination, which correlates with an hypermethylation of the transgenes, is discussed in view of previously reported transgenic and gene targeting experiments. Images PMID:8139920

  15. Efficient perovskite/fullerene planar heterojunction solar cells with enhanced charge extraction and suppressed charge recombination

    NASA Astrophysics Data System (ADS)

    Li, Cong; Wang, Fuzhi; Xu, Jia; Yao, Jianxi; Zhang, Bing; Zhang, Chunfeng; Xiao, Min; Dai, Songyuan; Li, Yongfang; Tan, Zhan'ao

    2015-05-01

    Alcohol soluble titanium chelate TIPD (titanium (diisopropoxide) bis(2,4-pentanedionate)) was used as an electron transporting layer to form an ohmic contact with the negative electrode, aiming to enhance the charge extraction and suppress the charge recombination for high performance CH3NH3PbI3/PCBM-based PHJ perovskite solar cells. The TIPD layer shows excellent suitability to CH3NH3PbI3 perovskite synthesized by different methods. For one-step synthesized CH3NH3PbI3, the power conversion efficiency (PCE) of the device with the TIPD buffer reaches 8.75%, with a nearly 33% increase in comparison with the device without the buffer layer (6.58%). For two-step synthesized CH3NH3PbI3, an open-circuit voltage (Voc) of 0.89 V, a short-circuit current density (Jsc) of 22.57 mA cm-2, and a fill factor (FF) of 64.5%, corresponding to a PCE of 12.95% for the device with a TIPD buffer layer were achieved, which is among the best performances reported in the literature for CH3NH3PbI3/PCBM-based PHJ perovskite solar cells.Alcohol soluble titanium chelate TIPD (titanium (diisopropoxide) bis(2,4-pentanedionate)) was used as an electron transporting layer to form an ohmic contact with the negative electrode, aiming to enhance the charge extraction and suppress the charge recombination for high performance CH3NH3PbI3/PCBM-based PHJ perovskite solar cells. The TIPD layer shows excellent suitability to CH3NH3PbI3 perovskite synthesized by different methods. For one-step synthesized CH3NH3PbI3, the power conversion efficiency (PCE) of the device with the TIPD buffer reaches 8.75%, with a nearly 33% increase in comparison with the device without the buffer layer (6.58%). For two-step synthesized CH3NH3PbI3, an open-circuit voltage (Voc) of 0.89 V, a short-circuit current density (Jsc) of 22.57 mA cm-2, and a fill factor (FF) of 64.5%, corresponding to a PCE of 12.95% for the device with a TIPD buffer layer were achieved, which is among the best performances reported in the literature

  16. Supplementation transgenic cow's milk containing recombinant human lactoferrin enhances systematic and intestinal immune responses in piglets.

    PubMed

    Li, Qiuling; Hu, Wenping; Zhao, Jie; Wang, Jianwu; Dai, Yunping; Zhao, Yaofeng; Meng, Qingyong; Li, Ning

    2014-01-01

    Lactoferrin (LF) plays an important role in the body's immune system. However, the immunomodulatory effects of supplementation transgenic cow's milk containing recombinant human LF (rhLF) on the systemic and intestinal immune systems in infants remain unclear. Our laboratory has used genetic engineer to produce transgenic cow secreted rhLF. To assess the immune responses we took piglets as an animal model for infants. Eighteen piglets at 7 days of age were fed ordinary milk, 1:1 mix of ordinary and rhLF milk, or rhLF milk (LFM) for 30 days. The incidence of diarrhea in piglets in natural condition was observed. The protein abundances of immunoglobulin (Ig)G, IgA, IgM, IgE, histamine, interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-8, IL-10, IL-12 interferon, tumor necrosis factor in the plasma, spleen or intestine were measured by enzyme-linked immunosorbent assay. Intestinal structure was assessed by hematoxylin and eosin. The mRNA levels of immune and allergy-related genes were measured by quantitative reverse transcription-polymerase chain reaction. The results showed that LFM-fed significantly reduced incidence of diarrhea, enhanced humoral immunity, T helper (Th) 1, and Th2 cell responses, improved the structure of the intestinal mucosal and did not induce food allergy. LFM increased mRNA levels of toll-like receptor 2 and nuclear factor-κB p65 and decreased that of FCεRI β. In conclusion, rhLF-enriched formula could improve systematic and intestinal immune responses and did not elicit food allergies in neonatal piglets. PMID:24420858

  17. Recombinant TIMP-1-GPI inhibits growth of fibrosarcoma and enhances tumor sensitivity to doxorubicin.

    PubMed

    Bao, Q; Niess, H; Djafarzadeh, R; Zhao, Y; Schwarz, B; Angele, M K; Jauch, K-W; Nelson, P J; Bruns, C J

    2014-09-01

    Fibrosarcomas show a high incidence of recurrence and general resistance to apoptosis. Limiting tumor regrowth and increasing their sensitivity to chemotherapy and apoptosis represent key issues in developing more effective treatments of these tumors. Tissue inhibitor of metalloproteinase 1 (TIMP-1) broadly blocks matrix metalloproteinase (MMP) activity and can moderate tumor growth and metastasis. We previously described generation of a recombinant fusion protein linking TIMP-1 to glycosylphophatidylinositol (GPI) anchor (TIMP-1-GPI) that efficiently directs the inhibitor to cell surfaces. In the present report, we examined the effect of TIMP-1-GPI treatment on fibrosarcoma biology. Exogenously applied TIMP-1-GPI efficiently incorporated into surface membranes of human HT1080 fibrosarcoma cells. It inhibited their proliferation, migration, suppressed cancer cell clone formation, and enhanced apoptosis. Doxorubicin, the standard chemotherapeutic drug for fibrosarcoma, was tested alone or in combination with TIMP-1-GPI. In parallel, the influence of treatment on HT1080 side population cells (exhibiting tumor stem cell-like characteristics) was investigated using Hoechst 33342 staining. The sequential combination of TIMP-1-GPI and doxorubicin showed more than additive effects on apoptosis, while TIMP-1-GPI treatment alone effectively decreased "stem-cell like" side population cells of HT1080. TIMP-1-GPI treatment was validated using HT1080 fibrosarcoma murine xenografts. Growing tumors treated with repeated local injections of TIMP-1-GPI showed dramatically inhibited fibrosarcoma growth and reduced angiogenesis. Intraoperative peritumoral application of GPI-anchored TIMP-1 as an adjuvant to surgery may help maintain tumor control by targeting microscopic residual fibrosarcoma cells and increasing their sensitivity to chemotherapy. PMID:23934106

  18. Suberoylanilide Hydroxamic Acid (SAHA) enhances olaparib activity by targeting homologous recombination DNA repair in ovarian cancer

    PubMed Central

    Konstantinopoulos, Panagiotis A.; Wilson, Andrew J.; Saskowski, Jeanette; Wass, Erica; Khabele, Dineo

    2015-01-01

    Objectives Approximately 50% of serous epithelial ovarian cancers (EOC) contain molecular defects in homologous recombination (HR) DNA repair pathways. Poly(ADP-ribose) polymerase inhibitors (PARPi) have efficacy in HR-deficient, but not HR-proficient, EOC tumors as a single agent. Our goal was to determine whether the histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), can sensitize HR-proficient ovarian cancer cells to the PARPi AZD-2281 (olaparib). Methods Ovarian cancer cell lines (SKOV-3, OVCAR-8, NCI/ADR-Res, UWB1.289 BRCA1null and UWB1.289 + BRCA1 wild-type) were treated with saline vehicle, olaparib, SAHA or olaparib/SAHA. Sulforhodamine B (SRB) assessed cytotoxicity and immunofluorescence and Western blot assays assessed markers of apoptosis (cleaved PARP) and DNA damage (pH2AX and RAD51). Drug effects were also tested in SKOV-3 xenografts in Nude mice. Affymetrix microarray experiments were performed in vehicle and SAHA-treated SKOV-3 cells. Results In a microarray analysis, SAHA induced coordinated down-regulation of HR pathway genes, including RAD51 and BRCA1. Nuclear co-expression of RAD51 and pH2AX, a marker of efficient HR repair, was reduced approximately 40% by SAHA treatment alone and combined with olaparib. SAHA combined with olaparib induced apoptosis and pH2AX expression to a greater extent than either drug alone. Olaparib reduced cell viability at increasing concentrations and SAHA enhanced these effects in 4 of 5 cell lines, including BRCA1 null and wild-type cells, in vitro and in SKOV-3 xenografts in vivo. Conclusions These results provide preclinical rationale for targeting DNA damage response pathways by combining small molecule PARPi with HDACi as a mechanism for reducing HR efficiency in ovarian cancer. PMID:24631446

  19. The ecto-ATPDase CD39 is involved in the acquisition of the immunoregulatory phenotype by M-CSF-macrophages and ovarian cancer tumor-associated macrophages: Regulatory role of IL-27.

    PubMed

    d'Almeida, Sènan M; Kauffenstein, Gilles; Roy, Charlotte; Basset, Laetitia; Papargyris, Loukas; Henrion, Daniel; Catros, Véronique; Ifrah, Norbert; Descamps, Philippe; Croue, Anne; Jeannin, Pascale; Grégoire, Marc; Delneste, Yves; Tabiasco, Julie

    2016-07-01

    Tumor-associated macrophages (TAM) are immunosuppressive cells that can massively accumulate in the tumor microenvironment. In patients with ovarian cancer, their density is correlated with poor prognosis. Targeting mediators that control the generation or the differentiation of immunoregulatory macrophages represents a therapeutic challenge to overcome tumor-associated immunosuppression. The ectonucleotidase CD39 hydrolyzes ATP into extracellular adenosine that exhibits potent immunosuppressive properties when signaling through the A2A adenosine receptor. We report here that CD14(+) CD163(+) TAM isolated from ovarian cancer patients and macrophages generated in vitro with M-CSF, express high levels of the membrane ectonucleotidase CD39 compared to classically activated macrophages. The CD39 inhibitor POM-1 and adenosine deaminase (ADA) diminished some of the immunosuppressive functions of CD14(high) CD163(high) CD39(high) macrophages, such as IL-10 secretion. We identified the cytokine IL-27, secreted by tumor-infiltrating neutrophils, located close to infiltrating CD163(+) macrophages, as a major rheostat of CD39 expression and consequently, on the acquisition of immunoregulatory properties by macrophages. Accordingly, the depletion of IL-27 downregulated CD39 and PD-L1 expression as well as IL-10 secretion by M-CSF-macrophages. Collectively, these data suggest that CD39, drived by IL-27 and CD115 ligands in ovarian cancer, maintains the immunosuppressive phenotype of TAM. This work brings new information on the acquisition of immunosuppressive properties by tumor-infiltrating macrophages. PMID:27622030

  20. Enhancement of xylose utilization from corn stover by a recombinant bacterium for ethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant ethanologenic Escherichia coli ferments glucose, xylose and arabinose to ethanol. However, the bacterium preferentially utilizes glucose first, then arabinose and finally xylose (sequential utilization of sugars) during fermentation of lignocellulosic hydrolyzates to ethanol making the p...

  1. Response to stimulation with recombinant cytokines and synthesis of cytokines by murine intestinal macrophages infected with the Mycobacterium avium complex.

    PubMed Central

    Hsu, N; Young, L S; Bermudez, L E

    1995-01-01

    Current evidence suggests that the gut is the chief portal of entry for organisms of the Mycobacterium avium complex (MAC) in AIDS patients. Bacterial invasion of intestinal mucosa presumably occurs through epithelial cells, and M cells in the Peyer's patches, where the bacteria have contact with immunocompetent cells such as macrophages and T and B lymphocytes. As mucosal macrophages are probably the first line of defense against MAC, we examined their ability to inhibit intracellular growth of MAC when properly stimulated. Mouse intestinal macrophages were purified, infected with MAC 101, serovar 1, and MAC 86-2686, serovar 16, and subsequently stimulated with recombinant tumor necrosis factor alpha (TNF-alpha), gamma interferon (IFN-gamma), granulocyte-macrophage colony-stimulating factor (GM-CSF), or macrophage colony-stimulating factor (M-CSF). Viable intracellular bacteria were quantitated at 24 h after infection and again after 4 days of infection. Stimulation with TNF-alpha, IFN-gamma, and GM-CSF, but not M-CSF, was associated with mycobacteriostatic and/or mycobactericidal activity in macrophages. Treatment with 10(3) U of TNF-alpha, GM-CSF, and IFN-gamma per ml at 24 h prior to infection with MAC resulted in a significant enhancement in killing of MAC at 4 days after infection, compared with that observed for macrophages exposed to cytokines after infection. When stimulated with lipopolysaccharide or live MAC, intestinal macrophages had produced significantly less TNF-alpha and transforming growth factor beta than had splenic and peritoneal macrophages, although the levels of production of interleukin 6 and interleukin 10 among the three populations of cells were similar. Intestinal macrophages can be stimulated with cytokines to inhibit the intracellular growth of MAC, but they have differentiated abilities to produce cytokines which can modulate the anti-MAC immune response. PMID:7822018

  2. Interfamilial recombination between viruses led to acquisition of a novel translation-enhancing RNA element that allows resistance breaking

    PubMed Central

    Miras, Manuel; Sempere, Raquel N.; Kraft, Jelena J.; Miller, W. Allen; Aranda, Miguel A.; Truniger, Veronica

    2015-01-01

    Summary Many plant viruses depend on functional RNA elements, called 3′-UTR cap-independent translation enhancers (3′-CITEs), for translation of their RNAs. In this manuscript we provide direct proof for the existing hypothesis that 3′-CITEs are modular and transferable by recombination in nature, and that this is associated with an advantage for the created virus. By characterizing a newly identified Melon necrotic spot virus (MNSV; Tombusviridae) isolate, which is able to overcome eukaryotic translation initiation factor 4E (eIF4E)-mediated resistance, we found that it contains a 55 nucleotide insertion in its 3′-UTR. We provide strong evidence that this insertion was acquired by interfamilial recombination with the 3′-UTR of an Asiatic Cucurbit aphid-borne yellows virus (CABYV; Luteoviridae). By constructing chimeric viruses, we showed that this recombined sequence is responsible for resistance breaking. Analysis of the translational efficiency of reporter constructs showed that this sequence functions as a novel 3′-CITE in both resistant and susceptible plants, being essential for translation control in resistant plants. In conclusion, we showed that a recombination event between two clearly identified viruses from different families led to the transfer of exactly the sequence corresponding to a functional RNA element, giving rise to a new isolate with the capacity to infect an otherwise non-susceptible host. PMID:24372390

  3. Saccharomyces forkhead protein Fkh1 regulates donor preference during mating-type switching through the recombination enhancer

    PubMed Central

    Sun, Kaiming; Coïc, Eric; Zhou, Zhiqi; Durrens, Pascal; Haber, James E.

    2002-01-01

    Saccharomyces mating-type switching results from replacement by gene conversion of the MAT locus with sequences copied from one of two unexpressed donor loci, HML or HMR. MATa cells recombine with HMLα ∼90% of the time, whereas MATα cells choose HMRa 80%–90% of the time. HML preference in MATa is controlled by the cis-acting recombination enhancer (RE) that regulates recombination along the entire left arm of chromosome III. Comparison of RE sequences between S. cerevisiae, S. carlsbergensis, and S. bayanus defines four highly conserved regions (A, B, C, and D) within a 270-bp minimum RE. An adjacent E region enhances RE activity. Multimers of region A, D, or E are sufficient to promote selective use of HML. Regions A, D, and E each bind in vivo the transcription activator forkhead proteins Fkh1p and Fkh2p and their associated Ndd1p, although there are no adjacent open reading frames (ORFs). Deletion of FKH1 significantly reduces MATa's use of HML, as does mutation of the Fkh1/Fkh2-binding sites in a multimer of region A. We conclude that Fkh1p regulates MATa donor preference through direct interaction with RE. PMID:12183363

  4. Saccharomyces forkhead protein Fkh1 regulates donor preference during mating-type switching through the recombination enhancer.

    PubMed

    Sun, Kaiming; Coïc, Eric; Zhou, Zhiqi; Durrens, Pascal; Haber, James E

    2002-08-15

    Saccharomyces mating-type switching results from replacement by gene conversion of the MAT locus with sequences copied from one of two unexpressed donor loci, HML or HMR. MATa cells recombine with HMLalpha approximately 90% of the time, whereas MATalpha cells choose HMRa 80%-90% of the time. HML preference in MATa is controlled by the cis-acting recombination enhancer (RE) that regulates recombination along the entire left arm of chromosome III. Comparison of RE sequences between S. cerevisiae, S. carlsbergensis, and S. bayanus defines four highly conserved regions (A, B, C, and D) within a 270-bp minimum RE. An adjacent E region enhances RE activity. Multimers of region A, D, or E are sufficient to promote selective use of HML. Regions A, D, and E each bind in vivo the transcription activator forkhead proteins Fkh1p and Fkh2p and their associated Ndd1p, although there are no adjacent open reading frames (ORFs). Deletion of FKH1 significantly reduces MATa's use of HML, as does mutation of the Fkh1/Fkh2-binding sites in a multimer of region A. We conclude that Fkh1p regulates MATa donor preference through direct interaction with RE. PMID:12183363

  5. Field-enhanced recombination at low temperatures in an organic photovoltaic blend

    NASA Astrophysics Data System (ADS)

    Athanasopoulos, S.; Greenham, N. C.; Friend, R. H.; Chepelianskii, A. D.

    2015-09-01

    We report on the nontrivial field dependence of charge-carrier recombination in an organic blend at low temperatures. A new microwave resonance technique for monitoring charge recombination in organic semiconductors at low temperatures is applied in bulk heterojunction poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester blends with results showing that an external electric field can in fact increase recombination. Monte Carlo simulations suggest that this contradiction to conventional wisdom relates to electron-hole pairs that are separated at donor-acceptor interfaces where the electric field acts in synergy with their Coulomb attraction. For this behavior to occur a critical initial separation of ˜5 nm between the carriers is required.

  6. Enhanced translation initiation factor 4G levels correlate with production levels of monoclonal antibodies in recombinant CHO cell lines.

    PubMed

    Pavitt, Graham D

    2016-03-15

    Using cells to manufacture protein-based therapeutics or biopharmaceuticals is a rapidly expanding industrial activity. Chinese hamster ovary (CHO) cells are the most frequently used mammalian host-expression system for the manufacture of biopharmaceuticals. Over the past ∼30 years academic and industrial researchers have studied cell expression characteristics with aims to improve product yield, quality, scalability and reproducibility. Although many steps in the gene expression and secretion pathways have been optimized, little attention has been paid to optimizing protein synthesis factors and regulators during this process. A new study in Biochemical Journal by Mead et al., provides a first systematic study of several protein synthesis factors and finds that the expression level of eIF4G1 correlates with the level of recombinant protein expressed in cultures. Optimizing levels and activities of protein synthesis factors may help to enhance recombinant protein expression of biopharmaceuticals. PMID:26965386

  7. Highly Charged Ions from Laser-Cluster Interactions: Local-Field-Enhanced Impact Ionization and Frustrated Electron-Ion Recombination

    SciTech Connect

    Fennel, Thomas; Ramunno, Lora; Brabec, Thomas

    2007-12-07

    Our molecular dynamics analysis of Xe{sub 147-5083} clusters identifies two mechanisms that contribute to the yet unexplained observation of extremely highly charged ions in intense laser cluster experiments. First, electron impact ionization is enhanced by the local cluster electric field, increasing the highest charge states by up to 40%; a corresponding theoretical method is developed. Second, electron-ion recombination after the laser pulse is frustrated by acceleration electric fields typically used in ion detectors. This increases the highest charge states by up to 90%, as compared to the usual assumption of total recombination of all cluster-bound electrons. Both effects together augment the highest charge states by up to 120%, in reasonable agreement with experiments.

  8. Enhanced metastable population through evaporation cooling and recombination in the argon afterglow

    NASA Astrophysics Data System (ADS)

    Czarnetzki, Uwe; Celik, Yusuf; Tsankov, Tsanko; Aramaki, Mitsutoshi; Yoshimura, Shinji; Luggenholscher, Dirk

    2011-10-01

    Measurements, modelling and numerical simulations performed in a pulsed inductively coupled argon plasma at low pressures (1-5 Pa) show that very low electron temperatures are achieved on a characteristic time scale of a few tens of micro seconds through evaporation cooling. This allows for recombination resulting in the observed increase of the metastable density in the afterglow phase. The previously observed super-linear scaling with the electron density of the electron decay time is well reproduced analytically by assuming that microfield limited electron-stabilized three-body recombination into highly excited Rydberg states takes place. This hypothesis is strongly supported by experimental results from various diagnostic techniques.

  9. Enhancement of extracellular expression of Bacillus naganoensis pullulanase from recombinant Bacillus subtilis: Effects of promoter and host.

    PubMed

    Song, Wan; Nie, Yao; Mu, Xiao Qing; Xu, Yan

    2016-08-01

    Pullulanase plays an important role in industrial applications of starch processing. However, extracellular production of pullulanase from recombinant Bacillus subtilis is yet limited due to the issues on regulatory elements of B. subtilis expression system. In this study, the gene encoding B. naganoensis pullulanase (PUL) was expressed in B. subtilis WB800 under the promoter PHpaII in the shuttle vector pMA0911. The extracellular activity of expressed pullulanase was 3.9 U ml(-1) from the recombinant B. subtilis WB800/pMA0911-PHpaII-pul. To further enhance the yield of PUL, the promoter PHpaII in pMA0911 was replaced by a stronger constitutive promoter P43. Then the activity was increased to 8.7 U ml(-1) from the recombinant B. subtilis WB800/pMA0911-P43-pul. Effect of host on pullulanase expression was further investigated by comparison between B. subtilis WB600 and B. subtilis WB800. In addition to the available B. subtilis WB800 recombinants, the constructed plasmids pMA0911-PHpaII-pul and pMA0911-P43-pul were transformed into B. subtilis WB600, respectively. Consequently, the extracellular production of PUL was significantly enhanced by B. subtilis WB600/pMA0911-P43-pul, resulting in the extracellular pullulanase activity of 24.5 U ml(-1). Therefore, promoter and host had an impact on pullulanase expression and their optimization would be useful to improve heterologous protein expression in B. subtilis. PMID:27109467

  10. Enhanced transformation by a simian virus 40 recombinant virus containing a Harvey murine sarcoma virus long terminal repeat.

    PubMed Central

    Kriegler, M; Botchan, M

    1983-01-01

    We have constructed a recombinant simian virus 40 (SV40) DNA containing a copy of the Harvey murine sarcoma virus long terminal repeat (LTR). This recombinant viral DNA was converted into an infectious SV40 virus particle and subsequently infected into NIH 3T3 cells (either uninfected or previously infected with Moloney leukemia virus). We found that this hybrid virus, SVLTR1, transforms cells with 10 to 20 times the efficiency of SV40 wild type. Southern blot analysis of these transformed cell genomic DNAs revealed that simple integration of the viral DNA within the retrovirus LTR cannot account for the enhanced transformation of the recombinant virus. A restriction fragment derived from the SVLTR-1 virus which contains an intact LTR was readily identified in a majority of the transformed cell DNAs. These results suggest that the LTR fragment which contains the attachment sites and flanking sequences for the proviral DNA duplex may be insufficient by itself to facilitate correct retrovirus integration and that some other functional element of the LTR is responsible for the increased transformation potential of this virus. We have found that a complete copy of the Harvey murine sarcoma virus LTR linked to well-defined structural genes lacking their own promoters (SV40 early region, thymidine kinase, and G418 resistance) can be effectively used to promote marker gene expression. To determine which element of the LTR served to enhance the biological activity of the recombinant virus described above, we deleted DNA sequences essential for promoter activity within the LTR. SV40 virus stocks reconstructed with this mutated copy of the Harvey murine sarcoma virus LTR still transform mouse cells at an enhanced frequency. We speculate that when the LTR is placed more than 1.5 kilobases from the SV40 early promoter, the cis-acting enhancer element within the LTR can increase the ability of the SV40 promoter to effectively operate when integrated in a murine chromosome

  11. Enhancement of human granulocyte-colony stimulating factor production in recombinant E. coli using batch cultivation.

    PubMed

    Babaeipour, Valiollah; Abbas, Mahdi Pesaran Haji; Sahebnazar, Zahra; Alizadeh, Reza

    2010-06-01

    Development of inexpensive and simple culture media is always favorable for recombinant protein over-expression in E. coli. The effects of medium composition on the production of recombinant human granulocyte-colony stimulating factor (rh-GCSF) were investigated in batch culture of E. coli BL21 (DE3) [pET23a-hgcsf]. First, the optimum medium for production of rh-GCSF was determined; and, then it was shown that mixture of amino acid addition at induction time, which was determined on the basis of amino acids frequency in the recombinant protein, increases recombinant protein expression level significantly. Furthermore, the effect of glucose concentration on productivity of rh-GCSF was investigated; 20 g/l of glucose will result in maximum attainable biomass and rh-GCSF in this process. At optimum conditions, a cell dry weight of 10.5 g/l, an expression level of about 35% of total cellular protein, rh-GCSF concentration of 1.75 +/- 0.1 g/l, and overall rh-GCSF yield of 165 +/- 5 mg/g were obtained. PMID:19859744

  12. Overexpression of Cytochrome c by a Recombinant Rabies Virus Attenuates Pathogenicity and Enhances Antiviral Immunity

    PubMed Central

    Pulmanausahakul, Rojjanaporn; Faber, Milosz; Morimoto, Kinjiro; Spitsin, Sergei; Weihe, Eberhard; Hooper, D. Craig; Schnell, Matthias J.; Dietzschold, Bernhard

    2001-01-01

    The pathogenicity of individual rabies virus strains appears to correlate inversely with the extent of apoptotic cell death they induce and with the expression of rabies virus glycoprotein, a major inducer of an antiviral immune response. To determine whether the induction of apoptosis by rabies virus contributes to a decreased pathogenicity by stimulating antiviral immunity, we have analyzed these parameters in tissue cultures and in mice infected with a recombinant rabies virus construct that expresses the proapoptotic protein cytochrome c. The extent of apoptosis was strongly increased in primary neuron cultures infected with the recombinant virus carrying the active cytochrome c gene [SPBN-Cyto c(+)], compared with cells infected with the recombinant virus containing the inactive cytochrome c gene [SPBN-Cyto c(−)]. Mortality in mice infected intranasally with SPBN-Cyto c(+) was substantially lower than in SPBN-Cyto c(−)-infected mice. Furthermore, virus-neutralizing antibody (VNA) titers were significantly higher in mice immunized with SPBN-Cyto c(+) at the same dose. The VNA titers induced by these recombinant viruses paralleled their protective activities against a lethal rabies virus challenge infection, with SPBN-Cyto c(+) revealing an effective dose 20 times lower than that of SPBN-Cyto c(−). The strong increase in immunogenicity, coupled with the marked reduction in pathogenicity, identifies the SPBN-Cyto c(+) construct as a candidate for a live rabies virus vaccine. PMID:11602721

  13. Enhanced production of recombinant nattokinase in Bacillus subtilis by the elimination of limiting factors.

    PubMed

    Chen, Po Ting; Chao, Yun-Peng

    2006-10-01

    By systematic investigation, glutamate and a mixture of metal ions were identified as factors limiting the production of nattokinase in Bacillus subtilis. Consequently, in medium supplemented with these materials, the recombinant strain secreted 4 times more nattokinase (260 mg l(-1)) than when grown in the unsupplemented medium. PMID:16937250

  14. Enhancement of xylose utilization from corn stover by a recombinant bacterium for ethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of substrate-selective inoculum prepared by growing on glucose, xylose, arabinose, GXA (glucose, xylose, arabinose, 1:1:1) and corn stover hydrolyzate (dilute acid pretreated and enzymatically hydrolyzed, CSH) on ethanol production from CSH by a mixed sugar utilizing recombinant Escherichia ...

  15. Recombinant Secreted Antigens from Mycoplasma hyopneumoniae Delivered as a Cocktail Vaccine Enhance the Immune Response of Mice

    PubMed Central

    Galli, Vanessa; Simionatto, Simone; Marchioro, Silvana Beutinger; Klabunde, Gustavo Henrique Ferrero; Conceição, Fabricio Rochedo

    2013-01-01

    Mycoplasma hyopneumoniae is the etiological agent of porcine enzootic pneumonia (EP), which is a respiratory disease responsible for huge economic losses in the pig industry worldwide. The commercially available vaccines provide only partial protection and are expensive. Thus, the development of alternatives for the prophylaxis of EP is critical for improving pig health. The use of multiple antigens in the same immunization may represent a promising alternative. In the present study, seven secreted proteins of M. hyopneumoniae were cloned, expressed in Escherichia coli, and evaluated for antigenicity using serum from naturally and experimentally infected pigs. In addition, the immunogenicity of the seven recombinant proteins delivered individually or in protein cocktail vaccines was evaluated in mice. In Western blot assays and enzyme-linked immunosorbent assays, most of the recombinant proteins evaluated were recognized by convalescent-phase serum from the animals, indicating that they are expressed during the infectious process. The recombinant proteins were also immunogenic, and most induced a mixed IgG1/IgG2a humoral immune response. The use of these proteins in a cocktail vaccine formulation enhanced the immune response compared to their use as antigens delivered individually, providing evidence of the efficacy of the multiple-antigen administration strategy for the induction of an immune response against M. hyopneumoniae. PMID:23803903

  16. Biocatalytic properties of a recombinant Fusarium proliferatum lactonase with significantly enhanced production by optimal expression in Escherichia coli.

    PubMed

    Chen, Bing; Fan, Li-Qiang; Xu, Jian-He; Zhao, Jian; Zhang, Xian; Ouyang, Li-Ming

    2010-10-01

    The levo-lactonase gene of Fusarium proliferatum ECU2002 (EC3.1.1.25) was cloned and expressed in Escherichia coli JM109 (DE3) for biocatalytic resolution of industrially important chiral lactones, including DL-pantoyl lactone which was a key precursor to calcium D-pantothenate. By increasing the biomass concentration and lowering the inducer (isopropyl-beta-D-thiogalactoside) concentration and induction temperature, the lactonase production was significantly enhanced up to 20 kU/L, which was 20 times higher than that of wild-type strain F. proliferatum ECU2002. The recombinant Fusarium lactonase was purified using immobilized metal affinity chromatography, and its SDS-PAGE revealed a molecular mass of 50 kDa for the recombinant protein, suggesting that the enzyme was a simplex protein. Furthermore, biocatalytic properties of the recombinant lactonase were investigated, including kinetic parameters, additive's effect, and substrate specificity. The results reported in this paper provide a feasible method to make the whole cells of E. coli JM109 (DE3) expressing lactonase gene to be a highly efficient and easy-to-make biocatalyst for asymmetric synthesis of chiral compounds. PMID:19876606

  17. Enhanced homologous recombination is induced by alpha-particle radiation in somatic cells of Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Bian, Po; Liu, Ping; Wu, Yuejin

    Almost 9 percent of cosmic rays which strike the earth's atmosphere are alpha particles. As one of the ionizing radiations (IR), its biological effects have been widely studied. However, the plant genomic instability induced by alpha-particle radiation was not largely known. In this research, the Arabidopsis thaliana transgenic for GUS recombination substrate was used to evaluate the genomic instability induced by alpha-particle radiation (3.3MeV). The pronounced effects of systemic exposure to alpha-particle radiation on the somatic homologous recombination frequency (HRF) were found at different doses. The 10Gy dose of radiation induced the maximal HRF which was 1.9-fold higher than the control. The local radiation of alpha-particle (10Gy) on root also resulted in a 2.5-fold increase of somatic HRF in non-radiated aerial plant, indicating that the signal(s) of genomic instability was transferred to non-radiated parts and initiated their genomic instability. Concurrent treatment of seedlings of Arabidopsis thaliana with alpha-particle and DMSO(ROS scavenger) both in systemic and local radiation signifi- cantly suppressed the somatic HR, indicating that the free radicals produced by alpha-particle radiation took part in the production of signal of genomic instability rather than the signal transfer. Key words: alpha-particle radiation, somatic homologous recombination, genomic instability

  18. Enhancement of recombinant human serum albumin in transgenic rice cell culture system by cultivation strategy.

    PubMed

    Liu, Yu-Kuo; Li, Yu-Teng; Lu, Ching-Fan; Huang, Li-Fen

    2015-05-25

    Fusion of the sugar-starvation-induced αAmy3 promoter with its signal peptide has enabled secretion of recombinant human serum albumin (rHSA) into the culture medium. To simplify the production process and increase the rHSA yield in rice suspension cells, a one-step strategem without medium change was adopted. The yield of rHSA was increased sixfold by this one-step approach compared with the two-step recombinant protein process, in which a change of the culture medium to sugar-free medium is required. The one-step strategem was applied to check repeated cycle of rHSA production, and the production of rHSA was also higher in each cycle in the one-step, as opposed to the two-step, production process. The use of the one-step process resulted in fewer damaged cells during the cell sugar starvation phase for recombinant protein production. Furthermore, we scaled up the rHSA production in a 2-L airlift and a 2-L stirred tank bioreactor by the one-step approach, and concluded that rHSA can be enriched to 45 mg L(-1) in plant culture commonly used MS medium by the airlift-type bioreactor. Our results suggest that rHSA production can be enriched by this optimized cultivation strategem. PMID:25765580

  19. Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease.

    PubMed Central

    Puchta, H; Dujon, B; Hohn, B

    1993-01-01

    Induction of double strand breaks (DSBs) is coupled to meiotic and mitotic recombination in yeast. We show that also in a higher eukaryote induction of DSBs is directly correlated with a strong enhancement of recombination frequencies. We cotransfected Nicotiana plumbaginifolia protoplasts with a plasmid carrying a synthetic I-SceI gene, coding for a highly sequence specific endonuclease, together with recombination substrates carrying an I-SceI-site adjacent to their homologous sequences. We measured efficiencies of extrachromosomal recombination, using a well established transient beta-glucuronidase (GUS) assay. GUS enzyme activities were strongly increased when a plasmid carrying the I-SceI gene in sense but not in antisense orientation with respect to the promoter was included in the transfections. The in vivo induced DSBs were detected in the recombination substrates by Southern blotting, demonstrating that the yeast enzyme is functional in plant cells. At high ratios of transfected I-SceI-genes to I-SceI-sites the majority of the I-SceI-sites in the recombination substrates are cleaved, indicating that the induction of the DSBs is the rate limiting step in the described recombination reaction. These results imply that in vivo induction of transient breaks at specific sites in the plant genome could allow foreign DNA to be targeted to these sites via homologous recombination. Images PMID:8255757

  20. Enhanced production of β-carotene by recombinant industrial wine yeast using grape juice as substrate.

    PubMed

    Yan, Guo-liang; Liang, Heng-yu; Duan, Chang-qing; Han, Bei-zhong

    2012-02-01

    In this study, both recombinant Saccharomyces cerevisiae T73-63 and FY-09 derived from the industrial wine yeast T73-4 and laboratory yeast FY1679-01B, respectively, were constructed and compared for their β-carotene production in real grape juice. The results showed that highest β-carotene content (5.89 mg/g) was found in strain T73-63, which was 2.1 fold higher than that of strain FY-09. Although the cell growth was inhibited by the metabolic burden induced by the production of heterogeneous β-carotene, the pigment yield in T73-63 was still 1.7 fold higher than that of FY-09. Furthermore, high contents of ergosterol and fatty acid were also observed in T73-63. These results suggest that industrial wine yeast has highly active metabolic flux in mevalonate pathway, which leads to more carbon flux into carotenoid branch compared to that of laboratory yeast. The results of this study collectively suggest that in the application of recombinant strains to produce carotenoid using agro-industrial by-products as substrate, the suitable host strains should have active mevalonate pathway. For this purpose, the industrial wine yeast is a suitable candidate. PMID:22080204

  1. Magnetic field enhancement of generation-recombination and shot noise in organic light emitting diodes

    SciTech Connect

    Djidjou, T. K.; Basel, Tek; Rogachev, A.; Chen, Ying; Shinar, J.

    2015-03-21

    We have studied the effect of magnetic field on noise in series of 2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene-based organic light emitting diodes with dominant hole injection, dominant electron injection, and balanced electron and hole injection. The noise spectra of the balanced devices revealed the generation-recombination (g-r) noise term, which we associated with bimolecular electron-hole recombination. The presence of the g-r noise term is correlated with the strong organic magnetoresistance (up to 25%) observed in the balanced devices. The noise spectra also have the shot noise contribution with the Fano factor 0.25–0.4. We found that time constant of the g-r term decreases and the magnitude of shot noise increases when magnetic field is applied. This behavior can be consistently explained within the polaron-polaron model of organic magnetoresistance. We have not found any evidence that the magnetoresistance in studied devices is affected by traps.

  2. Comparison of two codon optimization strategies enhancing recombinant Sus scrofa lysozyme production in Pichia pastoris.

    PubMed

    Zhu, D; Cai, G; Wu, D; Lu, J

    2015-01-01

    Lysozyme has played an important role in animal feed additive industry, food additive industry and biological engineering. For improving expression efficiency of recombinant lysozyme from Sus scrofa, two genes respectively designed by the most used codon optimization strategies, "one amino acid one codon" and "codon randomization", were synthesized and expressed in Pichia pastoris X—33. At shaking flask level, Sus scrofa lysozyme (SSL) under two conditions had a highest activity of 153.33±10.41 and 538.33±15.18 U/mL after a 5 days induction of 1% methanol, with secreted protein concentration 80.03±1.94 and 239.60±4.16 mg/L, respectively. Compared with the original SSL gene, the expression of optimized SSL gene by the second strategy showed a 2.6 fold higher level, while the first method had no obvious improvement in production. In total secreted protein, the proportions of recombinant SSL encoded by the original gene, first method optimized gene and the second—strategy optimized one were 75.06±0.25%, 74.56±0.14% and 79.00±0.14%, respectively, with the same molecular weight about 18 kDa, optimum acidity pH 6.0 and optimum temperature 35degC. PMID:26025401

  3. Magnetic field enhancement of generation-recombination and shot noise in organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Djidjou, T. K.; Chen, Ying; Basel, Tek; Shinar, J.; Rogachev, A.

    2015-03-01

    We have studied the effect of magnetic field on noise in series of 2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene-based organic light emitting diodes with dominant hole injection, dominant electron injection, and balanced electron and hole injection. The noise spectra of the balanced devices revealed the generation-recombination (g-r) noise term, which we associated with bimolecular electron-hole recombination. The presence of the g-r noise term is correlated with the strong organic magnetoresistance (up to 25%) observed in the balanced devices. The noise spectra also have the shot noise contribution with the Fano factor 0.25-0.4. We found that time constant of the g-r term decreases and the magnitude of shot noise increases when magnetic field is applied. This behavior can be consistently explained within the polaron-polaron model of organic magnetoresistance. We have not found any evidence that the magnetoresistance in studied devices is affected by traps.

  4. Enhancement of human gamma-interferon production in recombinant E. coli using batch cultivation.

    PubMed

    Babaeipour, Valiollah; Shojaosadati, Seyed Abbas; Khalilzadeh, Rasoul; Maghsoudi, Nader; Farnoud, Amir Mohammad

    2010-04-01

    Development of inexpensive and simple culture media and appropriate induction conditions are always favorable for industry. In this research, chemical composition and stoichiometric data for gamma-interferon production and recombinant Escherichia coli growth were used in order to achieve a simple medium and favorable induction conditions. To achieve this goal, the effects of medium composition and induction conditions on the production of gamma-interferon were investigated in batch culture of E. coli BL21 (DE3) [pET3a-ifngamma]. These conditions were considered as suitable conditions for the production of gamma-interferon: 2.5x M9 medium, supplemented with a mixture of amino acids (milligram per liter), including glutamic acid 215, aspartic acid 250, lysine 160, and phenylalanine 90, and induction at late-log phase (OD(600) = 4.5). Under these conditions, dry cell weight of 6 +/- 0.2 g/l and gamma-interferon concentration of 2.15 +/- 0.1 g/l were obtained. Later, without changing the concentration ratio of amino acids and glucose, the effect of increase in the primary glucose concentration on productivity of gamma-interferon was investigated. It was found that 25 g/l glucose will result in maximum attainable biomass and recombinant human gamma-interferon. At improved conditions, a dry cell weight of 14 +/- 0.2 g/l, concentration and overall productivity of gamma-interferon 4.2 +/- 0.1 g/l and 420 +/- 10 mg/l h, respectively, were obtained. PMID:19655276

  5. Promotion of Homologous Recombination and Genomic Stability byRAD51AP1 via RAD51 Recombinase Enhancement

    SciTech Connect

    Wiese, Claudia; Dray, Eloise; Groesser, Torsten; San Filippo,Joseph; Shi, Idina; Collins, David W.; Tsai, Miaw-Sheue; Williams,Gareth; Rydberg, Bjorn; Sung, Patrick; Schild, David

    2007-04-11

    Homologous recombination (HR) repairs chromosome damage and is indispensable for tumor suppression in humans. RAD51 mediates the DNA strand pairing step in HR. RAD51AP1 (RAD51 Associated Protein 1) is a RAD51-interacting protein whose function has remained elusive. Knockdown of RAD51AP1 in human cells by RNA interference engenders sensitivity to different types of genotoxic stress. Moreover, RAD51AP1-depleted cells are impaired for the recombinational repair of a DNA double-strand break and exhibit chromatid breaks both spontaneously and upon DNA damaging treatment. Purified RAD51AP1 binds dsDNA and RAD51, and it greatly stimulates the RAD51-mediated D-loop reaction. Biochemical and cytological results show that RAD51AP1 functions at a step subsequent to the assembly of the RAD51-ssDNA nucleoprotein filament. Our findings provide the first evidence that RAD51AP1 helps maintain genomic integrity via RAD51 recombinase enhancement.

  6. Promotion of Homologous Recombination and Genomic Stability by RAD51AP1 via RAD51 Recombinase Enhancement

    PubMed Central

    Wiese, Claudia; Dray, Eloïse; Groesser, Torsten; Filippo, Joseph San; Shi, Idina; Collins, David W.; Tsai, Miaw-Sheue; Williams, Gareth; Rydberg, Bjorn; Sung, Patrick; Schild, David

    2007-01-01

    Summary Homologous recombination (HR) repairs chromosome damage and is indispensable for tumor suppression in humans. RAD51 mediates the DNA strand pairing step in HR. RAD51AP1 (RAD51 Associated Protein 1) is a RAD51-interacting protein whose function has remained elusive. Knockdown of RAD51AP1 in human cells by RNA interference engenders sensitivity to different types of genotoxic stress, and RAD51AP1 is epistatic to the HR protein XRCC3. Moreover, RAD51AP1-depleted cells are impaired for the recombinational repair of a DNA double-strand break and exhibit chromatid breaks both spontaneously and upon DNA damaging treatment. Purified RAD51AP1 binds both dsDNA and a D-loop structure, and, only when able to interact with RAD51, greatly stimulates the RAD51-mediated D-loop reaction. Biochemical and cytological results show that RAD51AP1 functions at a step subsequent to the assembly of the RAD51-ssDNA nucleoprotein filament. Our findings provide evidence that RAD51AP1 helps maintain genomic integrity via RAD51 recombinase enhancement. PMID:17996711

  7. Development of Genetically Modified Chinese Hamster Ovary Host Cells for the Enhancement of Recombinant Tissue Plasminogen Activator Expression

    PubMed Central

    Rahimpour, Azam; Ahani, Roshanak; Najaei, Azita; Adeli, Ahmad; Barkhordari, Farzaneh; Mahboudi, Fereidoun

    2016-01-01

    Background Chinese hamster ovary (CHO) cells are the most commonly used host system for the expression of high quality recombinant proteins. However, the development of stable, high-yielding CHO cell lines is a major bottleneck in the industrial manufacturing of therapeutic proteins. Therefore, different strategies such as the generation of more efficient expression vectors and establishment of genetically engineered host cells have been employed to increase the efficiency of cell line development. In order to examine the possibility of generating improved CHO host cells, cell line engineering approaches were developed based on ceramide transfer protein (CERT), and X-box binding protein 1s (XBP1s). Methods CHO cells were transfected with CERT S132A, a mutant variant of CERT which is resistant to phosphorylation, or XBP1s expression plasmids, and then stable cell pools were generated. Transient expression of t-PA was examined in engineered cell pools in comparison to un-modified CHO host cells. Results Overexpression of CERT S132A led to the enhancement of recombinant tissue plasminogen activator (t-PA) expression in transient expression by 50%. On the other hand, it was observed that the ectopic expression of the XBP1s, did not improve the t-PA expression level. Conclusion The results obtained in this study indicate successful development of the improved CHO host cells through CERT S132A overexpression. PMID:27547109

  8. Adjuvant-Enhanced Antibody Responses to Recombinant Proteins Correlates with Protection of Mice and Monkeys to Orthopoxvirus Challenges

    PubMed Central

    Fogg, Christiana N.; Americo, Jeffrey L.; Lustig, Shlomo; Huggins, John W.; Smith, Scott K.; Damon, Inger; Resch, Wolfgang; Earl, Patricia L.; Klinman, Dennis M.; Moss, Bernard

    2007-01-01

    Recombinant proteins are being evaluated as smallpox and monkeypox vaccines because of their perceived safety compared to live vaccinia virus. Previously, we demonstrated that three or more injections of a Ribi-type adjuvant with a combination of three proteins from the outer membranes of intracellular (L1 protein) and extracellular (A33 and B5 proteins) forms of vaccinia virus protected mice against a lethal intranasal challenge with vaccinia virus. Here, we compared several adjuvants and found that QS-21 and to a lesser extent alum plus CpG oligodeoxynucleotides accelerated and enhanced neutralizing antibody responses to a mixture of L1 and A33 proteins, provided the highest ratio of IgG2a to IgG1 isotype response, and protected mice against disease and death after only two immunizations three weeks apart. In addition, sera of monkeys immunized with recombinant vaccinia virus proteins and QS-21 neutralized monkeypox virus in vitro and reduced monkeypox virus load, skin lesions, and morbidity compared to the non-immunized group following challenge. PMID:17229505

  9. Enhancement of humoral immunity in mice by coupling pUCpGs10 and aluminium to the HCV recombinant immunogen

    PubMed Central

    2011-01-01

    Aim To investigate the enhancement of humoral immunity when CpG ODN (cytidine phosphate guanosine oligodeoxynucleotides) and aluminium adjuvants are complexed with the HCV (Hepatitis C virus) recombinant immunogen in mice. Methods After immunizing Balb/c mice with the recombination HCV antigen adjuvanted with pUCpGs10 and/or aluminium(antigen+CpG+alum, antigen+CpG, antigen+alum, antigen+PBS), enzyme-linked immunosorbent assay (ELISA) was used to measure the specific serum antibody titers of IgG, to determine the neutralization response to various peptide genotypes, and to determine the concentration of IL-6 and IL-10 in supernatants of in vitro cultured splenic lymphocytes. Enzyme-linked immunospot assay (ELISPOT) was used to quantify the non-specific and specific splenic antibody-secreting cells (ASCs), and flow cytometry (FCM) determined the ratio of different splenic lymphocytes. The serum of rabbits immunized with the recombinant pBVGST/HVR1 antigen immunoprecipitated the HCV isolated from 12 patients' serum. Results The sera antibody titers were 1:51200, 1:9051, 1:18102, 1:6400 respectively after the final immunization and demonstrated good neutralization responses to the six gene peptide containing 1a, 1b, 2a, 3a, 4a and 6a. The aluminum adjuvant increased the population of both specific ASCs (P < 0.01) and total ASCs(P < 0.05), with a proportional rise in concentrations of CD19+CD27+ (P < 0.05), as well as levels of IL-6, IL-10 (P < 0.05) in splenic lymphocytes. The results clearly indicated a significantly higher number of CD19+CD38+ splenic lymphocytes with the aluminum and pUCpGs10 adjuvant present compared to the control group(P < 0.05). Anti-HVR1 antibody in induced mice can cross-reactively capture HCV particles (10/12). Conclusions 1. The aluminum adjuvant induces a potent Th2-biased immune response by increasing both the populations of specific and total ASCs and the ratio of CD19+CD27+ cells. 2. The pUCpGs10 complexed with the aluminum adjuvant

  10. The conformation of yeast chromosome III is mating type-dependent and controlled by the recombination enhancer

    PubMed Central

    Belton, Jon-Matthew; Lajoie, Bryan R.; Audibert, Sylvain; Cantaloube, Sylvain; Lassadi, Imen; Goiffon, Isabelle; Baù, Davide; Marti-Renom, Marc A.; Bystricky, Kerstin; Dekker, Job

    2015-01-01

    Summary Mating type switching in yeast occurs through gene conversion between the MAT locus and one of two silent loci (HML or HMR) on opposite ends of the chromosome. MATa cells choose HML as template, while MATα cells use HMR. The Recombination Enhancer (RE), located on the left arm regulates this process. One long-standing hypothesis is that switching is guided by mating type-specific, and possibly RE-dependent chromosome folding. Here we use Hi-C, 5C, and live cell imaging to characterize the conformation of chromosome III in both mating types. We discovered a mating type-specific conformational difference in the left arm. Deletion of a 1 kb subregion within the RE, which is not necessary during switching, abolished mating type-dependent chromosome folding. The RE is therefore a composite element with one subregion essential for donor selection during switching, and a separate region involved in modulating chromosome conformation. PMID:26655901

  11. Human U251MG glioma cells expressing the membrane form of macrophage colony-stimulating factor (mM-CSF) are killed by human monocytes in vitro and are rejected within immunodeficient mice via paraptosis that is associated with increased expression of three different heat shock proteins.

    PubMed

    Jadus, Martin R; Chen, Yijun; Boldaji, Mehrdokht Tarbiyat; Delgado, Christina; Sanchez, Ramon; Douglass, Thomas; Al-Atar, Usama; Schulz, William; Lloyd, Cheri; Wepsic, H Terry

    2003-05-01

    Human U251MG glioma cells retrovirally transduced with the human gene for the membrane form of macrophage colony-stimulating factor (mM-CSF) were investigated. The clones, MG-2F11 and MG-2C4, that expressed the most mM-CSF, but not the viral vector or the parental U251MG cells, were killed by both murine and human monocyte/macrophages in cytotoxicity assays. MG-2F11 cells failed to form subcutaneous tumors in either nude or NIH-bg-nu-xidBR mice, while mice inoculated with the U251MG viral vector (MG-VV) cells developed tumors. Electron microscopy studies showed that 4 hours after subcutaneous injection, the mM-CSF-transduced cells began dying of a process that resembled paraptosis. The dying tumor cells were swollen and had extensive vacuolization of their mitochondria and endoplasm reticulum. This killing process was complete within 24 hours. Macrophage-like cells were immediately adjacent to the killed MG-2F11 cells. Immunohistological staining for the heat shock proteins HSP60, HSP70 and GRP94 (gp96) showed that 18 hours after inoculation into nude mice, the MG-2F11 injection site was two to four times more intensely stained than the MG-VV cells. This study shows that human gliomas transduced with mM-CSF have the potential to be used as a safe live tumor cell vaccine. PMID:12719711

  12. Enhanced sialylation and in vivo efficacy of recombinant human α-galactosidase through in vitro glycosylation

    PubMed Central

    Sohn, Youngsoo; Lee, Jung Mi; Park, Heung-Rok; Jung, Sung-Chul; Park, Tai Hyun; Oh, Doo-Byoung

    2013-01-01

    Human α-galactosidase A (GLA) has been used in enzyme replacement therapy for patients with Fabry disease. We expressed recombinant GLA from Chinese hamster ovary cells with very high productivity. When compared to an approved GLA (agalsidase beta), its size and charge were found to be smaller and more neutral. These differences resulted from the lack of terminal sialic acids playing essential roles in the serum half-life and proper tissue targeting. Because a simple sialylation reaction was not enough to increase the sialic acid content, a combined reaction using galactosyltransferase, sialyltransferase, and their sugar substrates at the same time was developed and optimized to reduce the incubation time. The product generated by this reaction had nearly the same size, isoelectric points, and sialic acid content as agalsidase beta. Furthermore, it had better in vivo efficacy to degrade the accumulated globotriaosylceramide in target organs of Fabry mice compared to an unmodified version. [BMB Reports 2013; 46(3): 157-162] PMID:23527859

  13. Recombinant rabies virus expressing IFNα1 enhanced immune responses resulting in its attenuation and stronger immunogenicity.

    PubMed

    Wang, Yifei; Tian, Qin; Xu, Xiaojuan; Yang, Xianfeng; Luo, Jun; Mo, Weiyu; Peng, Jiaojiao; Niu, Xuefeng; Luo, Yongwen; Guo, Xiaofeng

    2014-11-01

    Several studies have shown that type 1 interferons (IFNs) exert multiple biological effects on both innate and adaptive immune responses. Here, we investigated the pathogenicity and immunogenicity of recombinant rabies virus (RABV) expressing canine interferon α1 (rHEP-CaIFNα1). It was shown that Kun Ming (KM) mice that received a single intramuscular immunization with rHEP-CaIFNα1 had an earlier increase and a higher level of virus-neutralizing antibody titers compared with immunization of the parent HEP-Flury. A challenge experiment further confirmed that more mice that were immunized with rHEP-CaIFNα1 survived compared with mice immunized with the parent virus. Quantitative real-time PCR indicated that rHEP-CaIFNα1 induced a stronger innate immune response, especially the type 1 IFN response. Flow cytometry was conducted to show that rHEP-CaIFNα1 recruited more activated B cells in lymph nodes and CD8 T cells in the peripheral blood, which is beneficial to achieve virus clearance in the early infective stage. PMID:25310498

  14. Recombinant truncated tilapia growth hormone enhances growth and innate immunity in tilapia fry (Oreochromis sp.).

    PubMed

    Acosta, Jannel; Carpio, Yamila; Besada, Vladimir; Morales, Reynold; Sánchez, Aniel; Curbelo, Yosvel; Ayala, Julio; Estrada, Mario P

    2008-05-15

    Pichia pastoris cells transformed with a plasmid engineered for the expression of tilapia growth hormone as a secreted product produced a proteolytically cleaved form of the recombinant protein. The sequence of this truncated variant was obtained by mass spectrometry analysis. The cleavage site was determined to be between residues Tyr 158 and Tyr 159. The resulting truncated tilapia growth hormone was a single chain protein lacking 46 amino acids of the C-terminal portion. In this study, we showed that the truncated growth hormone produced in the P. pastoris culture supernatant has growth promoting effects and stimulates innate immune parameters (lysozyme and lectins) in tilapia larvae. These results suggest that the C-terminal portion of growth hormone is not required for its growth promoting activity and the innate immune functions studied herein in fish. In addition, we found that the culture supernatant containing truncated tilapia growth hormone has a stronger effect over growth and immune system than cells lysate containing intact tilapia growth hormone expressed in P. pastoris. PMID:18471813

  15. Enhanced riboflavin production by recombinant Bacillus subtilis RF1 through the optimization of agitation speed.

    PubMed

    Man, Zai-wei; Rao, Zhi-ming; Cheng, Yi-peng; Yang, Tao-wei; Zhang, Xian; Xu, Mei-juan; Xu, Zheng-hong

    2014-02-01

    Dissolved oxygen is one of the most important bioprocess parameters that could affect cell growth and product formation, and it is easy to control by changing agitation speed. In this work, the effects of agitation speed on the performance of riboflavin production by recombinant Bacillus subtilis RF1 was investigated in fed-batch fermentation. The lower agitation speed (600 rpm) was beneficial for cell growth and riboflavin biosynthesis in the initial phase of fermentation process. While, during the later phase, higher agitation speed (900 rpm) was favor for cell growth and riboflavin biosynthesis. Thus, a two-stage agitation speed control strategy was proposed based on kinetic analysis, in which the agitation speed was controlled at 600 rpm in the first 26 h and then switched to 900 rpm to maintain high μ for cell growth and high q(p) for riboflavin production during the entire fermentation process. However, it was observed that a sharp increase of agitation speed resulted in an adverse effect on cell growth and riboflavin synthesis within a short time. To avoid this phenomenon, a multi-stage agitation speed control strategy was set up based on the two-stage control strategy, the maximum concentration of riboflavin reached 9.4 g l(-1) in 48 h with the yield of 0.051 g g(-1) by applying this strategy, which were 20.5 and 21.4% over the best results controlled by constant agitation speeds. PMID:24068533

  16. Optimized Condition for Enhanced Soluble-Expression of Recombinant Mutant Anabaena Variabilis Phenylalanine Ammonia Lyase

    PubMed Central

    Zarei Jaliani, Hossein; Farajnia, Safar; Safdari, Yaghoub; Mohammadi, Seyyed Abolghasem; Barzegar, Abolfazl; Talebi, Saeed

    2014-01-01

    Purpose: Recently discovered Anabaena variabilis phenylalanine ammonia lyase (AvPAL) proved to be a good candidate for enzyme replacement therapy of phenylketonuria. Outstanding stability properties of a mutant version of this enzyme, produced already in our laboratory, have led us to the idea of culture conditions optimization for soluble expression of this therapeutically valuable enzyme in E. coli. Methods: In the present study, the gene encoding mutant version of AvPAL was cloned into the pET28a expression vector. Different concentrations of IPTG, induction period, growth temperature, shaking speed, as well as different types of culture media were examined with respect to the amount of recombinant protein produced and specific activity of the enzyme. Results: Based upon our findings, maximum amount of active mutant enzyme was attained by addition of 0.5 mM IPTG at 150 rpm to the TB culture media. The yield of active enzyme at cluture tempreature of 25 °C and induction period of 18 hour was the highest. Conclusion: The results of this study indicated that the yield of mutant AvPAL production in E. coli can be affected mainly by culture temperature and inducer concentration. PMID:24754010

  17. Low levels of aflatoxin B1, ricin and milk enhance recombinant protein production in mammalian cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changing the optimal tissue culture medium by adding low levels of environmental stress such as 1 µM of the fungal toxin aflatoxin B1 (AFB1), 1 ng of the castor bean protein toxin ricin in transduced mammalian cells or 1% reconstituted milk enhances transcription and increases production of the foll...

  18. Transduction of Recombinant M3-p53-R12 Protein Enhances Human Leukemia Cell Apoptosis

    PubMed Central

    Lu, Tsung Chi; Zhao, Guan- Hao; Chen, Yao Yun; Chien, Chia-Ying; Huang, Chi-Hung; Lin, Kwang Hui; Chen, Shen Liang

    2016-01-01

    Tumor suppressor protein p53 plays important roles in initiating cell cycle arrest and promoting tumor cell apoptosis. Previous studies have shown that p53 is either mutated or defective in approximately 50% of human cancers; therefore restoring normal p53 activity in cancer cells might be an effective anticancer therapeutic approach. Herein, we designed a chimeric p53 protein flanked with the MyoD N-terminal transcriptional activation domain (amino acids 1-62, called M3) and a poly-arginine (R12) cell penetrating signal in its N-and C-termini respectively. This chimeric protein, M3-p53-R12, can be expressed in E. coli and purified using immobilized metal ion chromatography followed by serial refolding dialysis. The purified M3-p53-R12 protein retains DNA-binding activity and gains of cell penetrating ability. Using MTT assay, we demonstrated that M3-p53-R12 inhibited the growth of K562, Jurkat as well as HL-60 leukemia cells carrying mutant p53 genes. Results from FACS analysis also demonstrated that transduction of M3-p53-R12 protein induced cell cycle arrest of these leukemia cells. Of special note, M3-p53-R12 has no apoptotic effect on normal mesenchymal stem cells (MSC) and leukocytes, highlighting its differential effects on normal and tumor cells. To sum up, our results reveal that purified recombinant M3-p53-R12 protein has functions of suppressing the leukemia cell lines' proliferation and launching cell apoptosis, suggesting the feasibility of using M3-p53-R12 protein as an anticancer drug. In the future we will test whether this chimeric protein can preferentially trigger the death of malignant cancer cells without affecting normal cells in animals carrying endogenous or xenographic tumors. PMID:27390612

  19. Light-enhanced bioaccumulation of molybdenum by nitrogen-deprived recombinant anoxygenic photosynthetic bacterium Rhodopseudomonas palustris.

    PubMed

    Naito, Taki; Sachuronggui; Ueki, Masayoshi; Maeda, Isamu

    2016-01-01

    As molybdenum (Mo) is an indispensable metal for plant nitrogen metabolisms, accumulation of dissolved Mo into bacterial cells may connect to the development of bacterial fertilizers that promote plant growth. In order to enhance Mo bioaccumulation, nitrogen removal and light illumination were examined in anoxygenic photosynthetic bacteria (APB) because APB possess Mo nitrogenase whose synthesis is strictly regulated by ammonium ion concentration. In addition, an APB, Rhodopseudomonas palustris, transformed with a gene encoding Mo-responsive transcriptional regulator ModE was constructed. Mo content was most markedly enhanced by the removal of ammonium ion from medium and light illumination while their effects on other metal contents were limited. Increases in contents of trace metals including Mo by the genetic modification were observed. Thus, these results demonstrated an effective way to enrich Mo in the bacterial cells by the culture conditions and genetic modification. PMID:26376718

  20. Human parainfluenza virus type 3 (HPIV-3); Construction and rescue of an infectious, recombinant virus expressing the enhanced green fluorescent protein (EGFP).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability to rescue an infectious, recombinant, RNA virus from a cDNA clone, has led to new opportunities for measuring viral replication from a viral expressed reporter gene. In this protocol, the process of inserting enhanced green fluorescent protein (EGFP) gene into the human parainfluenza vi...

  1. Enhancing Transgene Expression from Recombinant AAV8 Vectors in Different Tissues Using Woodchuck Hepatitis Virus Post-Transcriptional Regulatory Element

    PubMed Central

    Wang, Lizheng; Wang, Zixuan; Zhang, Fangfang; Zhu, Rui; Bi, Jinpeng; Wu, Jiaxin; Zhang, Haihong; Wu, Hui; Kong, Wei; Yu, Bin; Yu, Xianghui

    2016-01-01

    Adeno-associated virus (AAV) vectors have been utilized extensively in gene therapy and gene function studies, as strong transgene expression is a prerequisite for positive outcomes. AAV8 was reported as the most efficient AAV serotype for transduction of the liver, brain and muscle compared with other serotypes. However, AAV8-mediated transduction of human hepatocytes is rather poor with approximately 20-fold lower efficiency compared with that of mouse hepatocytes. Therefore, we applied the woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) to enhance AAV8-mediated transgene expression driven by a combination promoter (CAG promoter) with a CMV-IE enhancer and chicken beta-actin promoter for a more efficient viral vector. Transgene expression from recombinant AAV8 (rAAV8) vectors harboring a red fluorescent protein (RFP) reporter gene with or without WPRE were evaluated in vitro and in vivo. The results demonstrated that WPRE improved AAV8-mediated RFP expression in different cell lines with clear increases of transgene expression in the liver, brain or muscle of animals. The findings of this study will help to substantially reduce the quantity of viral particles that must be injected in order to reach a therapeutic level of transgene expression in gene therapy. Consequently, such dose reductions may lessen the potential risks associated with high doses of viral vectors. PMID:27076785

  2. Enhanced production of 3-hydroxypropionic acid from glycerol by modulation of glycerol metabolism in recombinant Escherichia coli.

    PubMed

    Kim, Kwangwook; Kim, Sun-Ki; Park, Yong-Cheol; Seo, Jin-Ho

    2014-03-01

    3-Hydroxypropionic acid (3-HP) is a valuable biochemical with high potential for bioplastic manufacturing. The endogenous glycerol metabolism and by-product formation pathway in Escherichia coli were modulated to enhance 3-HP production from glycerol. Double deletion of glpK and yqhD directed the glycerol flux to 3-HP biosynthesis and reduced the formation of 1,3-propanediol. Since 3-hydroxypropionaldehyde (3-HPA), a precursor of 3-HP, is toxic to cell growth, the gene encoding Pseudomonas aeruginosa semialdehyde dehydrogenase (PSALDH) highly active on 3-HPA was expressed in E. coli. Finally, fed-batch culture of recombinant E. coli BL21star(DE3) without glpK and yqhD, and expressing Lactobacillus brevis DhaB-DhaR, and P. aeruginosa PSALDH resulted in 57.3g/L 3-HP concentration, 1.59g/L-h productivity and 0.88g/g yield. In conclusion, modulation of the glycerol metabolism in combination with enhanced activity of 3-HPA dehydrogenation improved the production of 3-HP from glycerol. PMID:24502915

  3. Recombinant bovine interleukin 2 enhances immunity and protection induced by Brucella abortus vaccines in cattle.

    PubMed

    Wyckoff, John H; Howland, Jeri L; Scott, Catherine M O'Connell; Smith, Robert A; Confer, Anthony W

    2005-11-30

    Augmentation of immunization of cattle Brucella abortus S19 or a B. abortus soluble protein extract (SPEBA) vaccine through administration of recombinant bovine IL 2 (rBoIL 2) was evaluated. Seventy-five heifers were divided among 6 groups that were treated with the following: Group 1, no treatment; Group 2, rBoIL 2 (1microg/kg) on day 0; Group 3, SPEBA (2 mg) on day 0 and week 9; Group 4, SPEBA + rBoIL 2 on day 0, SPEBA on week 9; Group 5, S19 (10(7) CFU) on day 0 and week 9; Group 6, S19 + rBoIL 2 on day 0, S19 only on week 9. Approximately, 6 months after vaccination, cattle were bred by natural service, and at mid-gestation pregnant cattle were challenged intraconjunctivally with 9.1 x 10(5) CFU of virulent B. abortus S2308. Pre- and post-challenge antibody responses were measured by an enzyme-linked immunosorbent assay, a particle concentration fluorescence assay, and the card test. Lymphoproliferation (LP) responses to gamma-irradiated B. abortus and SPEBA antigens were measured in peripheral blood mononuclear cells. After vaccination, antibody responses to B. abortus elevated rapidly in SPEBA- and S19-vaccinates with and without rBoIL 2, however, these responses were significantly (P < 0.05) higher in vaccinates which also received rBoIL 2. Antibody levels for all vaccinated groups had returned to those of negative control groups by the challenge date with the exception of the SPEBA/rBoIL 2 group. In general, LP responses were higher in vaccinated or rBoIL 2-treated cattle than for unvaccinated controls. Challenge of 48 pregnant heifers resulted in abortions in 4/9 of Group 1, 0/9 of Group 2, 4/8 of Group 3, 2/9 of Group 4, 1/7 of Group 5, and 0/6 of Group 6 cattle. Treatment with rBoIL 2 alone (Group 2) provided significant (P < 0.05) protection from infection, abortions and induction of sero-positive status compared to untreated (Group 1) cattle. Co-administration of rBoIL 2 with S19 resulted in significant (P < 0.05) augmentation in onset, duration and

  4. Recombination in electron coolers

    NASA Astrophysics Data System (ADS)

    Wolf, A.; Gwinner, G.; Linkemann, J.; Saghiri, A. A.; Schmitt, M.; Schwalm, D.; Grieser, M.; Beutelspacher, M.; Bartsch, T.; Brandau, C.; Hoffknecht, A.; Müller, A.; Schippers, S.; Uwira, O.; Savin, D. W.

    2000-02-01

    An introduction to electron-ion recombination processes is given and recent measurements are described as examples, focusing on low collision energies. Discussed in particular are fine-structure-mediated dielectronic recombination of fluorine-like ions, the moderate recombination enhancement by factors of typically 1.5-4 found for most ion species at relative electron-ion energies below about 10 meV, and the much larger enhancement occurring for specific highly charged ions of complex electronic structure, apparently caused by low-energy dielectronic recombination resonances. Recent experiments revealing dielectronic resonances with very large natural width are also described.

  5. Improved photovoltaic performance and stability of quantum dot sensitized solar cells using Mn-ZnSe shell structure with enhanced light absorption and recombination control

    NASA Astrophysics Data System (ADS)

    Gopi, Chandu V. V. M.; Venkata-Haritha, M.; Kim, Soo-Kyoung; Kim, Hee-Je

    2015-07-01

    To make quantum-dot-sensitized solar cells (QDSSCs) competitive, photovoltaic parameters comparable to those of other emerging solar cell technologies are necessary. In the present study, ZnSe was used as an alternative to ZnS, one of the most widely used passivation materials in QDSSCs. ZnSe was deposited on a TiO2-CdS-CdSe photoanode to form a core-shell structure, which was more efficient in terms of reducing the electron recombination in QDSSCs. The development of an efficient passivation layer is a requirement for preventing recombination processes in order to attain high-performance and stable QDSSCs. A layer of inorganic Mn-ZnSe was applied to a QD-sensitized photoanode to enhance the adsorption and strongly inhibit interfacial recombination processes in QDSSCs, which greatly improved the power conversion efficiency. Impedance spectroscopy revealed that the combined Mn doping with ZnSe treatment reduces interfacial recombination and increases charge collection efficiency compared with Mn-ZnS, ZnS, and ZnSe. A solar cell based on the CdS-CdSe-Mn-ZnSe photoanode yielded excellent performance with a solar power conversion efficiency of 5.67%, Voc of 0.584 V, and Jsc of 17.59 mA cm-2. Enhanced electron transport and reduced electron recombination are responsible for the improved Jsc and Voc of the QDSSCs. The effective electron lifetime of the device with Mn-ZnSe was higher than those with Mn-ZnS, ZnSe, and ZnS, leading to more efficient electron-hole separation and slower electron recombination.To make quantum-dot-sensitized solar cells (QDSSCs) competitive, photovoltaic parameters comparable to those of other emerging solar cell technologies are necessary. In the present study, ZnSe was used as an alternative to ZnS, one of the most widely used passivation materials in QDSSCs. ZnSe was deposited on a TiO2-CdS-CdSe photoanode to form a core-shell structure, which was more efficient in terms of reducing the electron recombination in QDSSCs. The development of an

  6. Enhancement of recombination process using silver and graphene quantum dot embedded intermediate layer for efficient organic tandem cells.

    PubMed

    Ho, Nhu Thuy; Tien, Huynh Ngoc; Jang, Se-Joeng; Senthilkumar, Velusamy; Park, Yun Chang; Cho, Shinuk; Kim, Yong Soo

    2016-01-01

    High performance of organic tandem solar cell is largely dependent on transparent and conductive intermediate layer (IML). The current work reports the design and fabrication of an IML using a simple solution process. The efficiency of a homo-tandem device with poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester as an active layer and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/poly(ethylenimine) as an IML was initially found to be 3.40%. Further enhancement of the cell efficiency was achieved using silver nanoparticles (Ag-NPs) of different sizes and graphene quantum dot embedded IML. A maximum efficiency of 4.03% was achieved using 7 nm Ag-NPs that contribute to a better recombination process. Also, the performance of the tandem cell was solely based on the electrical improvements indicated by the current - voltage measurements, external quantum efficiency and impedance analysis. The use of Ag-NPs in the IML has been shown to lengthen the life time of electron-hole pairs in the device. This study thus paves way to develop such efficient IMLs for more efficient tandem solar cells. PMID:27453530

  7. Enhancement of recombination process using silver and graphene quantum dot embedded intermediate layer for efficient organic tandem cells

    PubMed Central

    Ho, Nhu Thuy; Tien, Huynh Ngoc; Jang, Se-Joeng; Senthilkumar, Velusamy; Park, Yun Chang; Cho, Shinuk; Kim, Yong Soo

    2016-01-01

    High performance of organic tandem solar cell is largely dependent on transparent and conductive intermediate layer (IML). The current work reports the design and fabrication of an IML using a simple solution process. The efficiency of a homo-tandem device with poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester as an active layer and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/poly(ethylenimine) as an IML was initially found to be 3.40%. Further enhancement of the cell efficiency was achieved using silver nanoparticles (Ag-NPs) of different sizes and graphene quantum dot embedded IML. A maximum efficiency of 4.03% was achieved using 7 nm Ag-NPs that contribute to a better recombination process. Also, the performance of the tandem cell was solely based on the electrical improvements indicated by the current - voltage measurements, external quantum efficiency and impedance analysis. The use of Ag-NPs in the IML has been shown to lengthen the life time of electron-hole pairs in the device. This study thus paves way to develop such efficient IMLs for more efficient tandem solar cells. PMID:27453530

  8. Enhancement of recombination process using silver and graphene quantum dot embedded intermediate layer for efficient organic tandem cells

    NASA Astrophysics Data System (ADS)

    Ho, Nhu Thuy; Tien, Huynh Ngoc; Jang, Se-Joeng; Senthilkumar, Velusamy; Park, Yun Chang; Cho, Shinuk; Kim, Yong Soo

    2016-07-01

    High performance of organic tandem solar cell is largely dependent on transparent and conductive intermediate layer (IML). The current work reports the design and fabrication of an IML using a simple solution process. The efficiency of a homo-tandem device with poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester as an active layer and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/poly(ethylenimine) as an IML was initially found to be 3.40%. Further enhancement of the cell efficiency was achieved using silver nanoparticles (Ag-NPs) of different sizes and graphene quantum dot embedded IML. A maximum efficiency of 4.03% was achieved using 7 nm Ag-NPs that contribute to a better recombination process. Also, the performance of the tandem cell was solely based on the electrical improvements indicated by the current - voltage measurements, external quantum efficiency and impedance analysis. The use of Ag-NPs in the IML has been shown to lengthen the life time of electron-hole pairs in the device. This study thus paves way to develop such efficient IMLs for more efficient tandem solar cells.

  9. A novel recombinant BCG-expressing pro-apoptotic protein BAX enhances Th1 protective immune responses in mice.

    PubMed

    Li, Guanghua; Liu, Guoyuan; Song, Na; Kong, Cong; Huang, Qi; Su, Haibo; Bi, Aixiao; Luo, Liulin; Zhu, Lin; Xu, Ying; Wang, Honghai

    2015-08-01

    One-third of the world's population is infected with Mycobacterium tuberculosis (MTB). The protective efficacy of bacille Calmette Guérin (BCG) vaccine against tuberculosis (TB) in adults is highly controversial even though the BCG vaccine has been available for more than 90 years. Because BCG is effective against infantile tuberculosis meningitis and miliary tuberculosis in young children and provides cost-effective prevention from tuberculosis for developing countries, it would be desirable to modify the existing BCG vaccine to provide more comprehensive protection. In our study, we constructed a novel recombinant BCG strain expressing pro-apoptotic BAX (rBCG::BAX) and demonstrated that it significantly induced the apoptosis of macrophages infected with rBCG::BAX both in vitro and in vivo. In addition, it significantly enhanced Ag85B-specific IFN-γ enzyme-linked immunospot responses, IFN-γ secretion, IL-2 secretion and the ratio of Ag85B-specific IgG2b/IgG1, and it significantly decreased Ag85B-specific IL-4. Furthermore, it presumably facilitated antigen presentation by inducing a significant up-regulation in the expression of MHC-II and B7.1 (CD80) co-stimulatory molecules on macrophages. In conclusion, these results suggest that the rBCG::BAX strain elicited predominantly a Th1 protective immune responses and might be a potential tuberculosis vaccine candidate for further study. PMID:25942359

  10. Enhancement of extracellular pullulanase production from recombinant Escherichia coli by combined strategy involving auto-induction and temperature control.

    PubMed

    Chen, Wen-Bo; Nie, Yao; Xu, Yan; Xiao, Rong

    2014-04-01

    Pullulanase was extracellularly produced with an engineered Escherichia coli with a combined strategy. When auto-induction instead of isopropyl β-D-1-thiogalactopyranoside (IPTG) induction method was implemented, we observed increased extracellular activity (4.2 U ml(-1)) and cell biomass (7.95 g DCW l(-1)). Subsequent investigation of temperature effect on fermentation showed cultivation performed at 25 °C presented the highest extracellular titer and cell biomass. In order to reduce the extended production period, we developed a two-stage temperature control strategy. Its application not only reduced the production period from 72 to 36 h, but also further enhanced the yield of extracellular pullulanase. Finally, with a view to releasing more intracellular pullulanase, we altered cell membrane permeability with various medium additives. As a result, extracellular titer was elevated to 68.23 U ml(-1), nearly 35-fold higher than that with IPTG induction method. The combined strategy developed here may be useful for the production of other extracellular proteins by recombinant E. coli. PMID:23912330

  11. Biological insights into the expression of translation initiation factors from recombinant CHOK1SV cell lines and their relationship to enhanced productivity.

    PubMed

    Mead, Emma J; Masterton, Rosalyn J; Feary, Marc; Obrezanova, Olga; Zhang, Lin; Young, Robert; Smales, C Mark

    2015-12-15

    Translation initiation is on the critical pathway for the production of monoclonal antibodies (mAbs) by mammalian cells. Formation of a closed loop structure comprised of mRNA, a number of eukaryotic initiation factors (eIFs) and ribosomal proteins has been proposed to aid re-initiation of translation and therefore increase global translational efficiency. We have determined mRNA and protein levels of the key components of the closed loop, eIFs (eIF3a, eIF3b, eIF3c, eIF3h, eIF3i and eIF4G1), poly(A)-binding protein (PABP) 1 and PABP-interacting protein 1 (PAIP1), across a panel of 30 recombinant mAb-producing GS-CHOK1SV cell lines with a broad range of growth characteristics and production levels of a model recombinant mAb. We have used a multi-level statistical approach to investigate the relationship between key performance indicators (cell growth and recombinant antibody productivity) and the intracellular amounts of target translation initiation factor proteins and the mRNAs encoding them. We show that high-producing cell lines maintain amounts of the translation initiation factors involved in the formation of the closed loop mRNA, maintaining these proteins at appropriate levels to deliver enhanced recombinant protein production. We then utilize knowledge of the amounts of these factors to build predictive models for and use cluster analysis to identify, high-producing cell lines. The present study therefore defines the translation initiation factor amounts that are associated with highly productive recombinant GS-CHOK1SV cell lines that may be targets for screening highly productive cell lines or to engineer new host cell lines with the potential for enhanced recombinant antibody productivity. PMID:26420881

  12. Enhanced expression of recombinant beta toxin of Clostridium perfringens type B using a commercially available Escherichia coli strain.

    PubMed

    Bakhshi, Fatemah; Pilehchian Langroudi, Reza; Imani, Bahram Golestani

    2016-01-01

    Clostridium perfringens beta toxin is only produced by types B and C and plays an important role in many human and animal diseases, causing fatal conditions that originate in the intestines. We compared the expression of C. perfringens type B vaccine strain recombinant beta toxin gene in the Escherichia coli strains RosettaTM(DE3) and BL21(DE3). The beta toxin gene was extracted from pJETβ and ligated with pET22b(+). pET22β was transformed into E. coli strains BL21(DE3) and RosettaTM(DE3). Recombinant protein was expressed as a soluble protein after isopropyl β-D-1-thiogalactopyranoside (IPTG) induction in strain RosettaTM(DE3) but not in BL21(DE3). Expression was optimised by growing recombinant cells at 37 °C and at an induction of 0.5 mM, 1 mM, 1.5 mM IPTG. Expression was evaluated using sodium dodecyl sulfate Polyacrylamide gel electrophoresis (SDS-PAGE). The recombinant protein was purified via Ni-NTA and was analysed using western blot. We concluded that E. coli strain RosettaTM(DE3) can enhance the expression of C. perfringens recombinant beta toxin. PMID:27543150

  13. λ Recombination and Recombineering.

    PubMed

    Murphy, Kenan C

    2016-05-01

    The bacteriophage λ Red homologous recombination system has been studied over the past 50 years as a model system to define the mechanistic details of how organisms exchange DNA segments that share extended regions of homology. The λ Red system proved useful as a system to study because recombinants could be easily generated by co-infection of genetically marked phages. What emerged from these studies was the recognition that replication of phage DNA was required for substantial Red-promoted recombination in vivo, and the critical role that double-stranded DNA ends play in allowing the Red proteins access to the phage DNA chromosomes. In the past 16 years, however, the λ Red recombination system has gained a new notoriety. When expressed independently of other λ functions, the Red system is able to promote recombination of linear DNA containing limited regions of homology (∼50 bp) with the Escherichia coli chromosome, a process known as recombineering. This review explains how the Red system works during a phage infection, and how it is utilized to make chromosomal modifications of E. coli with such efficiency that it changed the nature and number of genetic manipulations possible, leading to advances in bacterial genomics, metabolic engineering, and eukaryotic genetics. PMID:27223821

  14. Identifying a Threshold Impurity Level for Organic Solar Cells: Enhanced First-Order Recombination Via Well-Defined PC84BM Traps in Organic Bulk Heterojunction Solar Cells

    SciTech Connect

    Cowan, Sarah R.; Leong, Wei Lin; Banerji, Natalie; Dennler, Gilles; Heeger, Alan J.

    2011-06-21

    Small amounts of impurity, even one part in one thousand, in polymer bulk heterojunction solar cells can alter the electronic properties of the device, including reducing the open circuit voltage, the short circuit current and the fill factor. Steady state studies show a dramatic increase in the trap-assisted recombination rate when [6,6]-phenyl C₈₄ butyric acid methyl ester (PC₈₄BM) is introduced as a trap site in polymer bulk heterojunction solar cells made of a blend of the copolymer poly[N-9"-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole) (PCDTBT) and the fullerene derivative [6,6]-phenyl C₆₁ butyric acid methyl ester (PC₆₀BM). The trap density dependent recombination studied here can be described as a combination of bimolecular and Shockley–Read–Hall recombination; the latter is dramatically enhanced by the addition of the PC₈₄BM traps. This study reveals the importance of impurities in limiting the efficiency of organic solar cell devices and gives insight into the mechanism of the trap-induced recombination loss.

  15. Structural characterization of low molecular weight polysaccharide from Astragalus membranaceus and its immunologic enhancement in recombinant protein vaccine against systemic candidiasis.

    PubMed

    Yang, Fan; Xiao, Chunyu; Qu, Jing; Wang, Guiyun

    2016-07-10

    Structure and immunologic enhancement of low molecular weight polysaccharide (LMW-ASP) isolated from the root of Astragalus membranaceus (Fisch) Bge. Were detected in recombinant protein vaccine. Structure analysis of LMW-ASP revealed that LMW-ASP (Mw=5.6kDa) was an acid heteropolysaccharide, which consisted of Glc, Gal, Ara, Xyl and GalA in ratio of 10.0:1.3:1.7:1.0:0.9. Recombinant protein (rP-HSP90C) contained epitope C (LKVIRK) from heat shock protein 90 (HSP90) of Candida albicans was used as a vaccine. The results indicated that LMW-ASP significantly promoted specific antibody titers IgG, IgG1, IgG2b, and IL-2, IL-4, IL-10, IL-12 in sera of mice immunized with rP-HSP90C (p<0.05). It was also found LMW-ASP improved DTH response in HSP90C-injceted mice. More importantly, the mice immunized with rP-HSP90C/LMW-ASP had fewer CFU (colony forming unites) in the kidneys compared to the mice immunized with rP-HSP90C (p<0.05). Therefore, LMW-ASP could be exploited into the novel adjuvant to enhance the efficacy of recombinant protein vaccine. PMID:27106150

  16. Combined Approach to Lysis Utilizing Eptifibatide and Recombinant Tissue Plasminogen Activator in Acute Ischemic Stroke–Enhanced Regimen Stroke Trial

    PubMed Central

    Pancioli, Arthur M.; Adeoye, Opeolu; Schmit, Pamela A.; Khoury, Jane; Levine, Steven R.; Tomsick, Thomas A.; Sucharew, Heidi; Brooks, Claudette E.; Crocco, Todd J.; Gutmann, Laurie; Hemmen, Thomas M.; Kasner, Scott E.; Kleindorfer, Dawn; Knight, William A.; Martini, Sharyl; McKinney, James S.; Meurer, William J.; Meyer, Brett C.; Schneider, Alexander; Scott, Phillip A.; Starkman, Sidney; Warach, Steven; Broderick, Joseph P.

    2014-01-01

    Background and Purpose In a previous study, 0.3 and 0.45 mg/kg of intravenous recombinant tissue plasminogen activator (rt-PA) were safe when combined with eptifibatide 75 mcg/kg bolus and a 2-hour infusion (0.75 mcg/kg per minute). The Combined Approach to Lysis Utilizing Eptifibatide and rt-PA in Acute Ischemic Stroke–Enhanced Regimen (CLEAR-ER) trial sought to determine the safety of a higher-dose regimen and to establish evidence for a phase III trial. Methods CLEAR-ER was a multicenter, double-blind, randomized safety study. Ischemic stroke patients were randomized to 0.6 mg/kg rt-PA plus eptifibatide (135 mcg/kg bolus and a 2-hour infusion at 0.75 mcg/kg per minute) versus standard rt-PA (0.9 mg/kg). The primary safety end point was the incidence of symptomatic intracranial hemorrhage within 36 hours. The primary efficacy outcome measure was the modified Rankin Scale (mRS) score ≤1 or return to baseline mRS at 90 days. Analysis of the safety and efficacy outcomes was done with multiple logistic regression. Results Of 126 subjects, 101 received combination therapy, and 25 received standard rt-PA. Two (2%) patients in the combination group and 3 (12%) in the standard group had symptomatic intracranial hemorrhage (odds ratio, 0.15; 95% confidence interval, 0.01–1.40; P=0.053). At 90 days, 49.5% of the combination group had mRS ≤1 or return to baseline mRS versus 36.0% in the standard group (odds ratio, 1.74; 95% confidence interval, 0.70–4.31; P=0.23). After adjusting for age, baseline National Institutes of Health Stroke Scale, time to intravenous rt-PA, and baseline mRS, the odds ratio was 1.38 (95% confidence interval, 0.51–3.76; P=0.52). Conclusions The combined regimen of intravenous rt-PA and eptifibatide studied in this trial was safe and provides evidence that a phase III trial is warranted to determine efficacy of the regimen. PMID:23887841

  17. Type III Restriction Is Alleviated by Bacteriophage (RecE) Homologous Recombination Function but Enhanced by Bacterial (RecBCD) Function

    PubMed Central

    Handa, Naofumi; Kobayashi, Ichizo

    2005-01-01

    Previous works have demonstrated that DNA breaks generated by restriction enzymes stimulate, and are repaired by, homologous recombination with an intact, homologous DNA region through the function of lambdoid bacteriophages lambda and Rac. In the present work, we examined the effect of bacteriophage functions, expressed in bacterial cells, on restriction of an infecting tester phage in a simple plaque formation assay. The efficiency of plaque formation on an Escherichia coli host carrying EcoRI, a type II restriction system, is not increased by the presence of Rac prophage—presumably because, under the single-infection conditions of the plaque assay, a broken phage DNA cannot find a homologue with which to recombine. To our surprise, however, we found that the efficiency of plaque formation in the presence of a type III restriction system, EcoP1 or EcoP15, is increased by the bacteriophage-mediated homologous recombination functions recE and recT of Rac prophage. This type III restriction alleviation does not depend on lar on Rac, unlike type I restriction alleviation. On the other hand, bacterial RecBCD-homologous recombination function enhances type III restriction. These results led us to hypothesize that the action of type III restriction enzymes takes place on replicated or replicating DNA in vivo and leaves daughter DNAs with breaks at nonallelic sites, that bacteriophage-mediated homologous recombination reconstitutes an intact DNA from them, and that RecBCD exonuclease blocks this repair by degradation from the restriction breaks. PMID:16237019

  18. An efficient protocol to enhance the extracellular production of recombinant protein from Escherichia coli by the synergistic effects of sucrose, glycine, and Triton X-100.

    PubMed

    Bao, Ru-Meng; Yang, Hong-Ming; Yu, Chang-Mei; Zhang, Wei-Fen; Tang, Jin-Bao

    2016-10-01

    Targeting recombinant proteins at highly extracellular production in the culture medium of Escherichia coli presents a significant advantage over cytoplasmic or periplasmic expression. In this work, a recombinant protein between ZZ protein and alkaline phosphatase (rZZ-AP) was constructed. Because rZZ-AP has the IgG-binding capacity and enzymatic activity, it can serve as an immunoreagent in immunoassays. However, only a very small portion of rZZ-AP is generally secreted into the aqueous medium under conventional cultivation procedure. Hence, we emphasized on the optimization of the culture procedures and attempted to dramatically enhance the yield of extracellular rZZ-AP from E. coli HB101 host cells by adding sucrose, glycine, and Triton X-100 in the culture medium. Results showed that the extracellular production of rZZ-AP in the culture medium containing 5% sucrose, 1% glycine, and 1% Triton X-100 was 18.6 mg/l, which was 18.6-fold higher than that without the three chemicals. And the β-galactosidase activity test showed that the increased extracellular rZZ-AP was not due to cell lysis. Further analysis suggested a significant interaction effect among the three chemicals for the enhancement of extracellular production. Ultrastructural analysis indicated that the enhancement may be due to the influence of sucrose, glycine, and Triton X-100 on the periplasmic osmolality, permeability, or integrity of the cell wall, respectively. This proposed approach presents a simple strategy to enhance the extracellular secretion of recombinant proteins in the E. coli system at the process of cell cultivation. PMID:27189822

  19. Enhanced immune responses against Japanese encephalitis virus using recombinant adenoviruses coexpressing Japanese encephalitis virus envelope and porcine interleukin-6 proteins in mice.

    PubMed

    Liu, Hanyang; Wu, Rui; Liu, Kai; Yuan, Lei; Huang, Xiaobo; Wen, Yiping; Ma, Xiaoping; Yan, Qigui; Zhao, Qin; Wen, Xintian; Cao, Sanjie

    2016-08-15

    Japanese encephalitis is a reproductive disorder caused by Japanese encephalitis virus (JEV) in swine. Previous studies have demonstrated that recombinant adenovirus serotype 5 (Ad5) may be a potential vaccine candidate because it can express JEV envelope epitopes and induce immune responses against JEV. Still, it will be necessary to develop an adjuvant that can enhance both humoral and cellular immune responses to the recombinant antigen delivered by non-replicating Ad5. In this study, we investigated the systemic immune responses of BALB/c mice immunized with recombinant adenovirus expressing JEV envelope epitopes in combination with porcine interleukin-6 (rAdE-IL-6).The rAdE-IL-6 immunized group had the highest titers of anti-JEV antibody as detected by an enzyme-linked immunosorbent assay (ELISA), as well as the highest levels of neutralizing antibody (1:75) as detected by a serum neutralization test. Similarly, higher concentrations of interferon-gamma (834.7pg/ml) and interleukin-6 (IL-6) (229.7pg/ml) were detected in the rAdE-IL-6 group using an ELISA assay. These data indicate that immunized BALB/c induce a strong cellular response against rAdE-IL-6. Furthermore, after challenge with the virulent JEV SCYA201201 strain, the rAdE-IL-6 group generated an immune protective response 70% greater than that of the control group, indicating that rAdE-IL-6 induced a protective immune response against JEV challenge in mice. The results from this study demonstrated that IL-6 is a strong adjuvant that can enhance both humoral and cellular immune responses in mice. Furthermore, a recombinant adenovirus coexpressing JEV envelope epitopes and porcine IL-6 protein may be an effective vaccine in animals. PMID:27235810

  20. Recombinant oxalate decarboxylase: enhancement of a hybrid catalytic cascade for the complete electro-oxidation of glycerol.

    PubMed

    Abdellaoui, Sofiene; Hickey, David P; Stephens, Andrew R; Minteer, Shelley D

    2015-10-01

    The complete electro-oxidation of glycerol to CO2 is performed through an oxidation cascade using a hybrid catalytic system combining a recombinant enzyme, oxalate decarboxylase from Bacillus subtilis, and an organic oxidation catalyst, 4-amino-TEMPO. This system is capable of electrochemically oxidizing glycerol at a carbon electrode collecting all 14 electrons per molecule. PMID:26271633

  1. Simplified feeding strategies for the fed-batch cultivation of Kluyveromyces lactis GG799 for enhanced recombinant xylanase production.

    PubMed

    Fuzi, Siti Fatimah Zaharah Mohamad; Razali, Firdausi; Jahim, Jamaliah Md; Rahman, Roshanida A; Illias, Rosli Md

    2014-09-01

    A xylanase gene (xyn2) from Trichoderma reesei ATCC 58350 was previously cloned and expressed in Kluyveromyces lactis GG799. The production of the recombinant xylanase was conducted in a developed medium with an optimised batch and with fed-batches that were processed with glucose. The glucose served as a carbon source for cell growth and as an inducer for xylanase production. In a 1-L batch system, a glucose concentration of 20 g L(-1) and 80 % dissolved oxygen were found to provide the best conditions for the tested ranges. A xylanase activity of 75.53 U mL(-1) was obtained. However, in the batch mode, glucose depletions reduced the synthesis of recombinant xylanase by K. lactis GG799. To maximise the production of xylanase, further optimisation was performed using exponential feeding. We investigated the effects of various nitrogen sources combined with the carbon to nitrogen (C/N) molar ratio on the production of xylanase. Of the various nitrogen sources, yeast extract was found to be the most useful for recombinant xylanase production. The highest xylanase production (110.13 U mL(-1)) was measured at a C/N ratio of 50.08. These conditions led to a 45.8 % increase in xylanase activity compared with the batch cultures. Interestingly, the further addition of 500 g L(-1) glucose led to a 6.2-fold increase (465.07 U mL(-1)) in recombinant xylanase activity. These findings, together with those of the exponential feeding strategy, indicate that the composition of the C/N molar ratio has a substantial impact on recombinant protein production in K. lactis. PMID:24633311

  2. Recombination enhances HIV-1 envelope diversity by facilitating the survival of latent genomic fragments in the plasma virus population

    SciTech Connect

    Immonen, Taina T.; Conway, Jessica M.; Romero-Severson, Ethan O.; Perelson, Alan S.; Leitner, Thomas; Kouyos, Roger Dimitri

    2015-12-22

    HIV-1 is subject to immune pressure exerted by the host, giving variants that escape the immune response an advantage. Virus released from activated latent cells competes against variants that have continually evolved and adapted to host immune pressure. Nevertheless, there is increasing evidence that virus displaying a signal of latency survives in patient plasma despite having reduced fitness due to long-term immune memory. We investigated the survival of virus with latent envelope genomic fragments by simulating within-host HIV-1 sequence evolution and the cycling of viral lineages in and out of the latent reservoir. Our model incorporates a detailed mutation process including nucleotide substitution, recombination, latent reservoir dynamics, diversifying selection pressure driven by the immune response, and purifying selection pressure asserted by deleterious mutations. We evaluated the ability of our model to capture sequence evolution in vivo by comparing our simulated sequences to HIV-1 envelope sequence data from 16 HIV-infected untreated patients. Empirical sequence divergence and diversity measures were qualitatively and quantitatively similar to those of our simulated HIV-1 populations, suggesting that our model invokes realistic trends of HIV-1 genetic evolution. Moreover, reconstructed phylogenies of simulated and patient HIV-1 populations showed similar topological structures. Our simulation results suggest that recombination is a key mechanism facilitating the persistence of virus with latent envelope genomic fragments in the productively infected cell population. Recombination increased the survival probability of latent virus forms approximately 13-fold. Prevalence of virus with latent fragments in productively infected cells was observed in only 2% of simulations when we ignored recombination, while the proportion increased to 27% of simulations when we allowed recombination. We also found that the selection pressures exerted by different fitness

  3. Recombination Enhances HIV-1 Envelope Diversity by Facilitating the Survival of Latent Genomic Fragments in the Plasma Virus Population

    PubMed Central

    Immonen, Taina T.; Conway, Jessica M.; Romero-Severson, Ethan O.; Perelson, Alan S.; Leitner, Thomas

    2015-01-01

    HIV-1 is subject to immune pressure exerted by the host, giving variants that escape the immune response an advantage. Virus released from activated latent cells competes against variants that have continually evolved and adapted to host immune pressure. Nevertheless, there is increasing evidence that virus displaying a signal of latency survives in patient plasma despite having reduced fitness due to long-term immune memory. We investigated the survival of virus with latent envelope genomic fragments by simulating within-host HIV-1 sequence evolution and the cycling of viral lineages in and out of the latent reservoir. Our model incorporates a detailed mutation process including nucleotide substitution, recombination, latent reservoir dynamics, diversifying selection pressure driven by the immune response, and purifying selection pressure asserted by deleterious mutations. We evaluated the ability of our model to capture sequence evolution in vivo by comparing our simulated sequences to HIV-1 envelope sequence data from 16 HIV-infected untreated patients. Empirical sequence divergence and diversity measures were qualitatively and quantitatively similar to those of our simulated HIV-1 populations, suggesting that our model invokes realistic trends of HIV-1 genetic evolution. Moreover, reconstructed phylogenies of simulated and patient HIV-1 populations showed similar topological structures. Our simulation results suggest that recombination is a key mechanism facilitating the persistence of virus with latent envelope genomic fragments in the productively infected cell population. Recombination increased the survival probability of latent virus forms approximately 13-fold. Prevalence of virus with latent fragments in productively infected cells was observed in only 2% of simulations when we ignored recombination, while the proportion increased to 27% of simulations when we allowed recombination. We also found that the selection pressures exerted by different fitness

  4. Enhancing isomaltulose production by recombinant Escherichia coli producing sucrose isomerase: culture medium optimization containing agricultural wastes and cell immobilization.

    PubMed

    Li, Sha; Xu, Hong; Yu, Jianguang; Wang, Yanyuan; Feng, Xiaohai; Ouyang, Pingkai

    2013-10-01

    Isomaltulose is a structural isomer of sucrose commercially used in food industries. In this work, recombinant Escherichia coli producing sucrose isomerase (SIase) was used to convert sucrose into isomaltulose. To develop an economical industrial medium, untreated cane molasses (10.63 g l⁻¹), yeast extract (25.93 g l⁻¹), and corn steep liquor (10.45 g l⁻¹) were used as main culture compositions for SIase production. The relatively high SIase activity (14.50 ± 0.11 U mg DCW⁻¹) was obtained by the recombinant cells. To the best of our knowledge, this is the first investigation on SIase production by engineered E. coli using untreated cane molasses. The recombinant E. coli cells expressing the SIase gene were immobilized in calcium alginate gel in order to improve the efficiency of recycling. The immobilization was most effective with 2 % (w/v) sodium alginate and 3 % (w/v) calcium chloride. The optimal initial biomass for immobilization was 20 % (w/v, wet wt.), with a hardening time of 8 h for cell immobilization. The immobilized E. coli cells exhibited good stability for 30 batches with the productivity of 0.45 g isomaltulose g pellet⁻¹ h⁻¹. A continuous isomaltulose formation process using a column reactor remained stable for 40 days with 83 ± 2 % isomaltulose yield, which would be beneficial for economical production of isomaltulose. PMID:23300051

  5. Recombination enhances HIV-1 envelope diversity by facilitating the survival of latent genomic fragments in the plasma virus population

    DOE PAGESBeta

    Immonen, Taina T.; Conway, Jessica M.; Romero-Severson, Ethan O.; Perelson, Alan S.; Leitner, Thomas; Kouyos, Roger Dimitri

    2015-12-22

    HIV-1 is subject to immune pressure exerted by the host, giving variants that escape the immune response an advantage. Virus released from activated latent cells competes against variants that have continually evolved and adapted to host immune pressure. Nevertheless, there is increasing evidence that virus displaying a signal of latency survives in patient plasma despite having reduced fitness due to long-term immune memory. We investigated the survival of virus with latent envelope genomic fragments by simulating within-host HIV-1 sequence evolution and the cycling of viral lineages in and out of the latent reservoir. Our model incorporates a detailed mutation processmore » including nucleotide substitution, recombination, latent reservoir dynamics, diversifying selection pressure driven by the immune response, and purifying selection pressure asserted by deleterious mutations. We evaluated the ability of our model to capture sequence evolution in vivo by comparing our simulated sequences to HIV-1 envelope sequence data from 16 HIV-infected untreated patients. Empirical sequence divergence and diversity measures were qualitatively and quantitatively similar to those of our simulated HIV-1 populations, suggesting that our model invokes realistic trends of HIV-1 genetic evolution. Moreover, reconstructed phylogenies of simulated and patient HIV-1 populations showed similar topological structures. Our simulation results suggest that recombination is a key mechanism facilitating the persistence of virus with latent envelope genomic fragments in the productively infected cell population. Recombination increased the survival probability of latent virus forms approximately 13-fold. Prevalence of virus with latent fragments in productively infected cells was observed in only 2% of simulations when we ignored recombination, while the proportion increased to 27% of simulations when we allowed recombination. We also found that the selection pressures exerted by different

  6. Enhanced Protective Efficacy of Nonpathogenic Recombinant Leishmania tarentolae Expressing Cysteine Proteinases Combined with a Sand Fly Salivary Antigen

    PubMed Central

    Taheri, Tahereh; Taslimi, Yasaman; Doustdari, Fatemeh; Seyed, Negar; Torkashvand, Fatemeh; Meneses, Claudio; Papadopoulou, Barbara; Kamhawi, Shaden; Valenzuela, Jesus G.; Rafati, Sima

    2014-01-01

    Background Novel vaccination approaches are needed to prevent leishmaniasis. Live attenuated vaccines are the gold standard for protection against intracellular pathogens such as Leishmania and there have been new developments in this field. The nonpathogenic to humans lizard protozoan parasite, Leishmania (L) tarentolae, has been used effectively as a vaccine platform against visceral leishmaniasis in experimental animal models. Correspondingly, pre-exposure to sand fly saliva or immunization with a salivary protein has been shown to protect mice against cutaneous leishmaniasis. Methodology/Principal Findings Here, we tested the efficacy of a novel combination of established protective parasite antigens expressed by L. tarentolae together with a sand fly salivary antigen as a vaccine strategy against L. major infection. The immunogenicity and protective efficacy of different DNA/Live and Live/Live prime-boost vaccination modalities with live recombinant L. tarentolae stably expressing cysteine proteinases (type I and II, CPA/CPB) and PpSP15, an immunogenic salivary protein from Phlebotomus papatasi, a natural vector of L. major, were tested both in susceptible BALB/c and resistant C57BL/6 mice. Both humoral and cellular immune responses were assessed before challenge and at 3 and 10 weeks after Leishmania infection. In both strains of mice, the strongest protective effect was observed when priming with PpSP15 DNA and boosting with PpSP15 DNA and live recombinant L. tarentolae stably expressing cysteine proteinase genes. Conclusion/Significance The present study is the first to use a combination of recombinant L. tarentolae with a sand fly salivary antigen (PpSP15) and represents a novel promising vaccination approach against leishmaniasis. PMID:24675711

  7. Immuno-enhancement of Taishan Pinus massoniana pollen polysaccharides on recombinant Bordetella avium ompA expressed in Pichia pastoris.

    PubMed

    Liu, Liping; Yu, Cuilian; Wang, Chuanwen; Shao, Mingxu; Yan, Zhengui; Jiang, Xiaodong; Chi, Shanshan; Wang, Zhen; Wei, Kai; Zhu, Ruiliang

    2016-06-01

    Bordetellosis, caused by Bordetella avium, continues to be an economic problem in the poultry industry of China. Vaccines with good protective ability are lacking. Thus, developing a novel vaccine against the B. avium infection is crucial. Here, we constructed a recombinant Pichia pastoris transformant capable of expressing the outer membrane protein A (ompA) of B. avium to prepare the recombinant ompA subunit vaccine and then evaluated its immune effects. To further investigate the immunomodulation effects of Taishan Pinus massoniana pollen polysaccharides (TPPPS) on this subunit vaccine, three concentrations (20, 40, and 60 mg/mL) of TPPPS were used as the adjuvants of the ompA subunit vaccine respectively. The conventional Freund's incomplete adjuvant served as the control of TPPPS. Chickens in different groups were separately vaccinated with these vaccines thrice. During the monitoring period, serum antibody titers, concentrations of serum IL-4, percentages of CD4(+) and CD8(+) T-lymphocytes in the peripheral blood, lymphocyte transformation rate, and protection rate were detected. Results showed that the pure ompA vaccine induced the production of anti-ompA antibody, the secretion of IL-4, the increase of CD4(+) T-lymphocytes counts and lymphocyte transformation rate in the peripheral blood. Moreover, the pure ompA vaccine provided a protection rate of 71.67% after the B. avium challenge. Notably, TPPPS adjuvant vaccines induced higher levels of immune responses than the pure ompA vaccine, and 60 mg/mL TPPPS adjuvant vaccine showed optimal immune effects and had a 91.67% protection rate. Our findings indicated that this recombinant B. avium ompA subunit vaccine combined with TPPPS had high immunostimulatory potential. Results provided a new perspective for B. avium subunit vaccine research. PMID:26975477

  8. Use of a Chimeric Hsp70 to Enhance the Quality of Recombinant Plasmodium falciparum S-Adenosylmethionine Decarboxylase Protein Produced in Escherichia coli.

    PubMed

    Makhoba, Xolani Henry; Burger, Adélle; Coertzen, Dina; Zininga, Tawanda; Birkholtz, Lyn-Marie; Shonhai, Addmore

    2016-01-01

    S-adenosylmethionine decarboxylase (PfAdoMetDC) from Plasmodium falciparum is a prospective antimalarial drug target. The production of recombinant PfAdoMetDC for biochemical validation as a drug target is important. The production of PfAdoMetDC in Escherichia coli has been reported to result in unsatisfactory yields and poor quality product. The co-expression of recombinant proteins with molecular chaperones has been proposed as one way to improve the production of the former in E. coli. E. coli heat shock proteins DnaK, GroEL-GroES and DnaJ have previously been used to enhance production of some recombinant proteins. However, the outcomes were inconsistent. An Hsp70 chimeric protein, KPf, which is made up of the ATPase domain of E. coli DnaK and the substrate binding domain of P. falciparum Hsp70 (PfHsp70) has been previously shown to exhibit chaperone function when it was expressed in E. coli cells whose resident Hsp70 (DnaK) function was impaired. We proposed that because of its domain constitution, KPf would most likely be recognised by E. coli Hsp70 co-chaperones. Furthermore, because it possesses a substrate binding domain of plasmodial origin, KPf would be primed to recognise recombinant PfAdoMetDC expressed in E. coli. First, using site-directed mutagenesis, followed by complementation assays, we established that KPf with a mutation in the hydrophobic residue located in its substrate binding cavity was functionally compromised. We further co-expressed PfAdoMetDC with KPf, PfHsp70 and DnaK in E. coli cells either in the absence or presence of over-expressed GroEL-GroES chaperonin. The folded and functional status of the produced PfAdoMetDC was assessed using limited proteolysis and enzyme assays. PfAdoMetDC co-expressed with KPf and PfHsp70 exhibited improved activity compared to protein co-expressed with over-expressed DnaK. Our findings suggest that chimeric KPf may be an ideal Hsp70 co-expression partner for the production of recombinant plasmodial

  9. Use of a Chimeric Hsp70 to Enhance the Quality of Recombinant Plasmodium falciparum S-Adenosylmethionine Decarboxylase Protein Produced in Escherichia coli

    PubMed Central

    Makhoba, Xolani Henry; Burger, Adélle; Coertzen, Dina; Zininga, Tawanda; Birkholtz, Lyn-Marie; Shonhai, Addmore

    2016-01-01

    S-adenosylmethionine decarboxylase (PfAdoMetDC) from Plasmodium falciparum is a prospective antimalarial drug target. The production of recombinant PfAdoMetDC for biochemical validation as a drug target is important. The production of PfAdoMetDC in Escherichia coli has been reported to result in unsatisfactory yields and poor quality product. The co-expression of recombinant proteins with molecular chaperones has been proposed as one way to improve the production of the former in E. coli. E. coli heat shock proteins DnaK, GroEL-GroES and DnaJ have previously been used to enhance production of some recombinant proteins. However, the outcomes were inconsistent. An Hsp70 chimeric protein, KPf, which is made up of the ATPase domain of E. coli DnaK and the substrate binding domain of P. falciparum Hsp70 (PfHsp70) has been previously shown to exhibit chaperone function when it was expressed in E. coli cells whose resident Hsp70 (DnaK) function was impaired. We proposed that because of its domain constitution, KPf would most likely be recognised by E. coli Hsp70 co-chaperones. Furthermore, because it possesses a substrate binding domain of plasmodial origin, KPf would be primed to recognise recombinant PfAdoMetDC expressed in E. coli. First, using site-directed mutagenesis, followed by complementation assays, we established that KPf with a mutation in the hydrophobic residue located in its substrate binding cavity was functionally compromised. We further co-expressed PfAdoMetDC with KPf, PfHsp70 and DnaK in E. coli cells either in the absence or presence of over-expressed GroEL-GroES chaperonin. The folded and functional status of the produced PfAdoMetDC was assessed using limited proteolysis and enzyme assays. PfAdoMetDC co-expressed with KPf and PfHsp70 exhibited improved activity compared to protein co-expressed with over-expressed DnaK. Our findings suggest that chimeric KPf may be an ideal Hsp70 co-expression partner for the production of recombinant plasmodial

  10. Anti-EGFR-iRGD recombinant protein conjugated silk fibroin nanoparticles for enhanced tumor targeting and antitumor efficiency

    PubMed Central

    Bian, Xinyu; Wu, Puyuan; Sha, Huizi; Qian, Hanqing; Wang, Qing; Cheng, Lei; Yang, Yang; Yang, Mi; Liu, Baorui

    2016-01-01

    In this study, we report a novel kind of targeting with paclitaxel (PTX)-loaded silk fibroin nanoparticles conjugated with iRGD–EGFR nanobody recombinant protein (anti-EGFR-iRGD). The new nanoparticles (called A-PTX-SF-NPs) were prepared using the carbodiimide-mediated coupling procedure and their characteristics were evaluated. The cellular cytotoxicity and cellular uptake of A-PTX-SF-NPs were also investigated. The results in vivo suggested that NPs conjugated with the recombinant protein exhibited more targeting and anti-neoplastic property in cells with high EGFR expression. In the in vivo antitumor efficacy assay, the A-PTX-SF-NPs group showed slower tumor growth and smaller tumor volumes than PTX-SF-NPs in a HeLa xenograft mouse model. A real-time near-infrared fluorescence imaging study showed that A-PTX-SF-NPs could target the tumor more effectively. These results suggest that the anticancer activity and tumor targeting of A-PTX-SF-NPs were superior to those of PTX-SF-NPs and may have the potential to be used for targeted delivery for tumor therapies. PMID:27313461

  11. Enhanced cell disruption strategy in the release of recombinant hepatitis B surface antigen from Pichia pastoris using response surface methodology

    PubMed Central

    2012-01-01

    Background Cell disruption strategies by high pressure homogenizer for the release of recombinant Hepatitis B surface antigen (HBsAg) from Pichia pastoris expression cells were optimized using response surface methodology (RSM) based on the central composite design (CCD). The factors studied include number of passes, biomass concentration and pulse pressure. Polynomial models were used to correlate the above mentioned factors to project the cell disruption capability and specific protein release of HBsAg from P. pastoris cells. Results The proposed cell disruption strategy consisted of a number of passes set at 20 times, biomass concentration of 7.70 g/L of dry cell weight (DCW) and pulse pressure at 1,029 bar. The optimized cell disruption strategy was shown to increase cell disruption efficiency by 2-fold and 4-fold for specific protein release of HBsAg when compared to glass bead method yielding 75.68% cell disruption rate (CDR) and HBsAg concentration of 29.20 mg/L respectively. Conclusions The model equation generated from RSM on cell disruption of P. pastoris was found adequate to determine the significant factors and its interactions among the process variables and the optimum conditions in releasing HBsAg when validated against a glass bead cell disruption method. The findings from the study can open up a promising strategy for better recovery of HBsAg recombinant protein during downstream processing. PMID:23039947

  12. Thymosin Beta-4 Recombinant Adeno-associated Virus Enhances Human Nucleus Pulposus Cell Proliferation and Reduces Cell Apoptosis and Senescence

    PubMed Central

    Wang, Yuan-Yi; Zhu, Qing-San; Wang, Yi-Wei; Yin, Ruo-Feng

    2015-01-01

    Background: Thymosin beta-4 (TB-4) is considered key roles in tissue development, maintenance and pathological processes. The study aimed to prove TB-4 positive biological function on nucleus pulposus (NP) cell apoptosis and slowing the process of cell aging while increasing the cell proliferation. Methods: TB-4 recombinant adeno-associated virus (AAV) was constructed and induced to human NP cells. Cell of same group were cultured without gene modification as controlled group. Proliferation capacity and cell apoptosis were observed during 6 passages of the cells. Morphology and expression of the TB-4 gene were documented as parameter of cell activity during cell passage. Results: NP cells with TB-4 transfection has normal TB-4 expression and exocytosis. NP cells with TB-4 transfection performed significantly higher cell activity than that at the control group in each generation. TB-4 recombinant AAV-transfected human NP cells also show slower cell aging, lower cell apoptosis and higher cell proliferation than control group. Conclusions: TB-4 can prevent NP cell apoptosis, slow NP cell aging and promote NP cell proliferation. AAV transfection technique was able to highly and stably express TB-4 in human NP cells, which may provide a new pathway for innovation in the treatment of intervertebral disc degenerative diseases. PMID:26021512

  13. Enhanced extracellular production of recombinant Bacillus deramificans pullulanase in Escherichia coli through induction mode optimization and a glycine feeding strategy.

    PubMed

    Zou, Chun; Duan, Xuguo; Wu, Jing

    2014-11-01

    Process optimization strategies were developed to improve extracellular production of recombinant Bacillus deramificans pullulanase in Escherichia coli. Cell growth and pullulanase production in shake-flask cultures were investigated as a function of the concentration of added glycine, and the type and concentration of inducer. From the results of these experiments, a fed-batch fermentation strategy for high-cell-density cultivation was applied in a 3-L fermentor. The gradual addition of lactose was utilized for the induction of protein expression. The optimal lactose feeding rate and induction point were 0.4gL(-1)h(-1) and a dry cell weight (DCW) of 15gL(-1), respectively. Furthermore, a glycine feeding strategy was formulated to promote the secretion of recombinant protein. The optimal total and extracellular pullulanase activity were 2523.5 and 1567.9UmL(-1), respectively, which represent 1.2 and 22.6-fold increases compared with those observed under unoptimized conditions. PMID:25261864

  14. DNA replication arrest leads to enhanced homologous recombination and cell death in meristems of rice OsRecQl4 mutants

    PubMed Central

    2013-01-01

    Background Mammalian BLM helicase is involved in DNA replication, DNA repair and homologous recombination (HR). These DNA transactions are associated tightly with cell division and are important for maintaining genome stability. However, unlike in mammals, cell division in higher plants is restricted mainly to the meristem, thus genome maintenance at the meristem is critical. The counterpart of BLM in Arabidopsis (AtRecQ4A) has been identified and its role in HR and in the response to DNA damage has been confirmed. However, the function of AtRecQ4A in the meristem during replication stress has not yet been well elucidated. Results We isolated the BLM counterpart gene OsRecQl4 from rice and analyzed its function using a reverse genetics approach. Osrecql4 mutant plants showed hypersensitivity to DNA damaging agents and enhanced frequency of HR compared to wild-type (WT) plants. We further analyzed the effect of aphidicolin—an inhibitor of S-phase progression via its inhibitory effect on DNA polymerases—on genome stability in the root meristem in osrecql4 mutant plants and corresponding WT plants. The following effects were observed upon aphidicolin treatment: a) comet assay showed induction of DNA double-strand breaks (DSBs) in mutant plants, b) TUNEL assay showed enhanced DNA breaks at the root meristem in mutant plants, c) a recombination reporter showed enhanced HR frequency in mutant calli, d) propidium iodide (PI) staining of root tips revealed an increased incidence of cell death in the meristem of mutant plants. Conclusions These results demonstrate that the aphidicolin-sensitive phenotype of osrecql4 mutants was in part due to induced DSBs and cell death, and that OsRecQl4 plays an important role as a caretaker, maintaining genome stability during DNA replication stress in the rice meristem. PMID:23586618

  15. In vivo administration of recombinant growth hormone or gamma interferon activities macrophages: enhanced resistance to experimental Salmonella typhimurium infection is correlated with generation of reactive oxygen intermediates.

    PubMed Central

    Edwards, C K; Ghiasuddin, S M; Yunger, L M; Lorence, R M; Arkins, S; Dantzer, R; Kelley, K W

    1992-01-01

    Purified and recombinant forms of growth hormone (GH) as well as of recombinant rat gamma interferon (IFN-gamma) enhance the survival of rats deprived of endogenous pituitary GH secretion by hypophysectomy (HX rats) and infected with virulent Salmonella typhimurium. Macrophages obtained from rats with intact pituitaries (pituitary-intact rats) or HX rats that were treated in vivo with either GH or the closely related hormone prolactin released elevated (P less than 0.05) levels of superoxide anion (O2-) after in vitro opsonized-zymosan stimulation compared with those from placebo-treated animals. These levels of O2- release were similar in magnitude to those of macrophages from rats treated in vivo with IFN-gamma. In time course in vivo macrophage activation studies, both IFN-gamma and GH significantly increased O2- secretion within 24 h, with maximal secretion occurring at day 3. Macrophages obtained from pituitary-intact and HX rats injected in vivo with GH also released elevated (P less than 0.05) levels of hydrogen peroxide (H2O2) and displayed enhanced (P less than 0.01) phagocytic activity toward opsonized Listeria monocytogenes in vitro. The mechanism of action of GH in vivo is likely to be a direct one because resident peritoneal macrophages from rats could be primed in vitro for enhanced secretion of O2- following triggering of these cells with opsonized zymosan. These data show that in vivo administration of two closely related pituitary hormones, GH and prolactin, can effectively prime macrophages, which is consistent with the hypothesis that GH mediates resistance to S. typhimurium by a direct stimulatory action on macrophages. PMID:1316877

  16. Efficiency enhancement in dye sensitized solar cells using dual function mesoporous silica as scatterer and back recombination inhibitor

    NASA Astrophysics Data System (ADS)

    Tanvi; Mahajan, Aman; Bedi, R. K.; Kumar, Subodh; Saxena, Vibha; Aswal, D. K.

    2016-08-01

    In the present work, we report the usage of mesoporous silica for improving light harvesting as well as for suppression of back recombination without affecting the extent of dye loading on TiO2 films. Synthesized mesoporous SiO2 was characterized by X-ray photoelectron spectroscopy, X-ray diffraction, Brunauer Emmett and Teller measurement, Scanning electron microscopy and Transmission electron microscopy. DSSCs were fabricated by incorporating different wt% of mesoporous SiO2 in TiO2 paste. An improvement of 50% was observed for devices fabricated using 0.75 wt% of mesoporous SiO2. The mechanism behind the improvement was investigated using electrochemical impedance spectroscopy and UV-Vis spectroscopy.

  17. Enhanced cofermentation of glucose and xylose by recombinant Saccharomyces yeast strains in batch and continuous operating modes

    SciTech Connect

    Toon, S.T.; Riley, C.J.; Ho, N.W.Y.; Chen, ZhengDao

    1997-12-31

    Agricultural residues, such as grain by-products, are rich in the hydrolyzable carbohydrate polymers hemicellulose and cellulose; hence, they represent a readily available source of the fermentable sugars xylose and glucose. The biomass-to-ethanol technology is now a step closer to commercialization because a stable recombinant yeast strain has been developed that can efficiently ferment glucose and xylose simultaneously (coferment) to ethanol. This strain, LNH-ST, is a derivative of Saccharomyces yeast strain 1400 that carries the xylose-catabolism encoding genes of Pichia stipitis in its chromosome. Continuous pure sugar cofermentation studies with this organism resulted in promising steady-state ethanol yields (70.4% of theoretical based on available sugars) at a residence time of 48 h. 17 refs., 4 figs., 3 tabs.

  18. Antibacterial activity of recombinant murine beta interferon.

    PubMed Central

    Fujiki, T; Tanaka, A

    1988-01-01

    Recombinant murine beta interferon was protective and therapeutic for mice against Listeria monocytogenes infection in vivo. The recombinant murine beta interferon caused enhanced H2O2 release by macrophages in vivo, but not in vitro. PMID:3343048

  19. Genetic Recombination

    ERIC Educational Resources Information Center

    Whitehouse, H. L. K.

    1973-01-01

    Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)

  20. Enhanced immune response by amphotericin B following NS1 protein prime-oral recombinant Salmonella vaccine boost vaccination protects mice from dengue virus challenge.

    PubMed

    Liu, Wen-Tssann; Lin, Wei-Ting; Tsai, Chung-Chin; Chuang, Chuan-Chang; Liao, Chin-Len; Lin, Huang-Chi; Hung, Yao-Wen; Huang, Shih-Shiung; Liang, Chung-Chih; Hsu, Hui-Ling; Wang, Hsian-Jenn; Liu, Yu-Tien

    2006-07-26

    A recombinant vaccine strain SL3261/pLT105 of attenuated aroA Salmonella enterica serovar Typhimurium SL3261 strain expressing a secreted dengue virus type 2 non-structural NS1 and Yersinia pestis F1 (Caf1) fusion protein, rNS1:Caf1, was generated. Immunological evaluation was performed by prime-boost vaccine regimen. Oral immunization of mice with 1 x 10(9)cfu of SL3261/pLT105 only induced low levels of NS1-specific antibody response and protective immunity following dengue virus challenge. The parenteral NS1 protein priming-oral Salmonella boosting protocol enhanced both NS1-specific serum IgG response and protective efficacy as compared to mice immunized with each type vaccine alone. Addition of an antifungal antibiotic amphotericin B (AmB) to Salmonella vaccine further enhanced the synergic effects of prime-boost vaccine regimen on the elicited NS1-specific serum IgG response and the protective efficacy. Together, the results demonstrated that the rNS1:Caf1 producing Salmonella SL3261/pLT105 strain fails to provide effective protection as an oral vaccine alone despite co-administration of AmB as an adjuvant capable of enhancing the immune responses, and moreover, the protein priming-oral Salmonella vaccine boosting approach in combination with AmB as an immunization regimen may have the potential to be further explored as an alternative approach for dengue vaccine development. PMID:16759760

  1. Recombinant Subgroup B Human Respiratory Syncytial Virus Expressing Enhanced Green Fluorescent Protein Efficiently Replicates in Primary Human Cells and Is Virulent in Cotton Rats

    PubMed Central

    Lemon, Ken; Nguyen, D. Tien; Ludlow, Martin; Rennick, Linda J.; Yüksel, Selma; van Amerongen, Geert; McQuaid, Stephen; Rima, Bert K.; de Swart, Rik L.

    2014-01-01

    ABSTRACT Human respiratory syncytial virus (HRSV) is the most important viral cause of severe respiratory tract disease in infants. Two subgroups (A and B) have been identified, which cocirculate during, or alternate between, yearly epidemics and cause indistinguishable disease. Existing in vitro and in vivo models of HRSV focus almost exclusively on subgroup A viruses. Here, a recombinant (r) subgroup B virus (rHRSVB05) was generated based on a consensus genome sequence obtained directly from an unpassaged clinical specimen from a hospitalized infant. An additional transcription unit containing the gene encoding enhanced green fluorescent protein (EGFP) was introduced between the phosphoprotein and matrix genes (position 5) of the genome to generate rHRSVB05EGFP(5). The recombinant viruses replicated efficiently in both HEp-2 cells and in well-differentiated normal human bronchial cells grown at air-liquid interface. Intranasal infection of cotton rats (Sigmodon hispidus) resulted in high numbers of EGFP+ cells in epithelia of the nasal septum and conchae. When administered in a relatively large inoculum volume, the virus also replicated efficiently in bronchiolar epithelial cells and spread extensively in both the upper and lower respiratory tracts. Virus replication was not observed in ciliated epithelial cells of the trachea. This is the first virulent rHRSV strain with the genetic composition of a currently circulating wild-type virus. In vivo tracking of infected cells by means of EGFP fluorescence in the absence of cytopathic changes increases the sensitivity of virus detection in HRSV pathogenesis studies. IMPORTANCE Virology as a discipline has depended on monitoring cytopathic effects following virus culture in vitro. However, wild-type viruses isolated from patients often do not cause significant changes to infected cells, necessitating blind passage. This can lead to genetic and phenotypic changes and the generation of high-titer, laboratory

  2. The combined use of Paracoccidioides brasiliensis Pb40 and Pb27 recombinant proteins enhances chemotherapy effects in experimental paracoccidioidomycosis.

    PubMed

    Fernandes, Viviane C; Martins, Estefânia M N; Boeloni, Jankerle N; Coitinho, Juliana B; Serakides, Rogéria; Goes, Alfredo M

    2011-11-01

    Paracoccidioides brasiliensis is the etiological agent of paracoccidioidomycosis (PCM), a chronic granulomatous mycosis prevalent in Latin America, and cell-mediated immunity represents the main mode of protection against this fungal infection. The conventional treatment for this mycosis involves long periods of therapy resulting in sequels and a high frequency of relapse. The search for new alternative methods of treatment is thus necessary. With this aim, the objective of this work was to evaluate the potential of rPb27 and rPb40 immunization to reduce treatment length and the frequency of relapse when used as an adjuvant to fluconazole chemotherapy in experimental PCM. Combined treatment with the drug and the two proteins reduced CFUs in the lung, liver and spleen to undetectable levels and largely preserved the tissue structure of these organs. At the same time, IFN-γ and TNF-α levels were higher in mice treated as described above than in infected-only mice, while very low production of IL-10 and TGF-β was observed in this treated group. Thus, the combined treatment, using immunization with the two recombinant proteins in addition to fluconazole chemotherapy, showed an additive protective effect after intratracheal challenge. These results provide new prospects for immunotherapy as a treatment for PCM. PMID:21726659

  3. Enhanced production of recombinant Escherichia coli glutamate decarboxylase through optimization of induction strategy and addition of pyridoxine.

    PubMed

    Su, Lingqia; Huang, Yan; Wu, Jing

    2015-12-01

    This report describes the optimization of recombinant Escherichia coli glutamate decarboxylase (GAD) production from engineered E. coli BL21(DE3) in a 3-L fermentor. Investigation of different induction strategies revealed that induction was optimal when the temperature was maintained at 30°C, the inducer (lactose) was fed at a rate of 0.2 g L(-1)h(-1), and protein expression was induced when the cell density (OD600) reached 50. Under these conditions, the GAD activity of 1273.8 U mL(-1) was achieved. Because GAD is a pyridoxal 5'-phosphate (PLP)-dependent enzyme, the effect of supplementing the medium with pyridoxine hydrochloride (PN), a cheap and stable PLP precursor, on GAD production was also investigated. When the culture medium was supplemented with PN to a concentration of 2mM at the initiation of protein expression, and then again 10h later, the GAD activity reached 3193.4 U mL(-1), which represented the highest GAD production ever reported. PMID:26364229

  4. Rational plasmid design and bioprocess optimization to enhance recombinant adeno-associated virus (AAV) productivity in mammalian cells.

    PubMed

    Emmerling, Verena V; Pegel, Antje; Milian, Ernest G; Venereo-Sanchez, Alina; Kunz, Marion; Wegele, Jessica; Kamen, Amine A; Kochanek, Stefan; Hoerer, Markus

    2016-02-01

    Viral vectors used for gene and oncolytic therapy belong to the most promising biological products for future therapeutics. Clinical success of recombinant adeno-associated virus (rAAV) based therapies raises considerable demand for viral vectors, which cannot be met by current manufacturing strategies. Addressing existing bottlenecks, we improved a plasmid system termed rep/cap split packaging and designed a minimal plasmid encoding adenoviral helper function. Plasmid modifications led to a 12-fold increase in rAAV vector titers compared to the widely used pDG standard system. Evaluation of different production approaches revealed superiority of processes based on anchorage- and serum-dependent HEK293T cells, exhibiting about 15-fold higher specific and volumetric productivity compared to well-established suspension cells cultivated in serum-free medium. As for most other viral vectors, classical stirred-tank bioreactor production is thus still not capable of providing drug product of sufficient amount. We show that manufacturing strategies employing classical surface-providing culture systems can be successfully transferred to the new fully-controlled, single-use bioreactor system Integrity(TM) iCELLis(TM) . In summary, we demonstrate substantial bioprocess optimizations leading to more efficient and scalable production processes suggesting a promising way for flexible large-scale rAAV manufacturing. PMID:26284700

  5. Recombinant HBV vaccine enhances the rate of sustained virological response when early initiated after anti-HCV combination therapy.

    PubMed

    Hanafy, Amr Shaaban; Farag, Alaa Ahmad; Hassanin, Hassan Mahmoud; Hassaneen, Ahmad Mahmoud

    2016-01-01

    The overall SVR rate for chronic hepatitis C genotype 4 using the Standard of care is 54.3%. HBV infection can be prevented by the administration of effective and safe vaccine. Evaluation of the vaccination-induced anti-HBs response rates in a cohort of HCV Egyptian patients after being exposed to antiviral combination therapy and the magnitude of its effect on the rate of SVR through its putative role in induction of crossed immunity. (A) 500 HCV patients who had completed the course of antiviral therapy and achieved ETR were retrospectively analyzed and received 20 μg of recombinant DNA vaccine for hepatitis B at time intervals (0, 1, and 4 months). The first dose of the vaccine was initiated one month post treatment. (B) Laboratory analysis: Included routine preliminary investigations to anti viral therapy and specific investigations as determination of anti-HBs antibodies 2 months following the third dose of vaccine. 433 patients showed protective response (86.6%), 67 patients were non-responders (13.4%) (P = 0.003). Adding HBV vaccine 1 month post-treatment increased SVR (400 patients, 80%) (χ(2)  = 40.3, P = 0.000). Diabetes affect response to HBV vaccine (P = 0.0001). Adding HBV vaccine to the post treatment care of patients with HCV after termination of antiviral therapy gain two benefits; protection from HBV and significant increase in rates of SVR. PMID:26147509

  6. Recombinant Dengue 2 Virus NS3 Helicase Protein Enhances Antibody and T-Cell Response of Purified Inactivated Vaccine

    PubMed Central

    Simmons, Monika; Sun, Peifang; Putnak, Robert

    2016-01-01

    Dengue virus purified inactivated vaccines (PIV) are highly immunogenic and protective over the short term, but may be poor at inducing cell-mediated immune responses and long-term protection. The dengue nonstructural protein 3 (NS3) is considered the main target for T-cell responses during viral infection. The amino (N)-terminal protease and the carboxy (C)-terminal helicase domains of DENV-2 NS3 were expressed in E. coli and analyzed for their immune-potentiating capacity. Mice were immunized with DENV-2 PIV with and without recombinant NS3 protease or NS3 helicase proteins, and NS3 proteins alone on days 0, 14 and 28. The NS3 helicase but not the NS3 protease was effective in inducing T-cell responses quantified by IFN-γ ELISPOT. In addition, markedly increased total IgG antibody titer against virus antigen was seen in mice immunized with the PIV/NS3 helicase combination in the ELISA, as well as increased neutralizing antibody titer measured by the plaque reduction neutralization test. These results indicate the potential immunogenic properties of the NS3 helicase protein and its use in a dengue vaccine formulation. PMID:27035715

  7. Evidence of enhanced recombinant interleukin-2 sensitivity in thymic lymphocytes from patients with myasthenia gravis: possible role in autoimmune pathogenesis.

    PubMed

    Cohen-Kaminsky, S; Levasseur, P; Binet, J P; Berrih-Aknin, S

    1989-09-01

    We evaluated the activation state of thymic lymphocytes in patients with myasthenia gravis (MG) by cytofluorographic analysis of CD25 expression and by testing their sensitivity to recombinant interleukin-2 (rIL-2) in the absence of any known previous stimulation. We detected no phenotypic signs of activation in fresh MG thymic lymphocyte suspensions, while functional signs of activation were reflected in a significantly higher sensitivity to rIL-2 in MG patients than in controls. The responses to rIL-2 were time- and dose-dependent, were inhibited by a blocking anti-IL-2 receptor antibody, and were associated with an increase in CD25+ T cells in both patients and controls. The T cells with functional signs of previous activation may represent autoreactive cells involved in the autoimmune process and confirm thymus gland hyperactivity in MG. These cells could result from primary autosensitization against the thymic acetylcholine receptor (AChR)-like molecule or from altered migration of peripheral activated cells into an abnormal thymic environment. Our results also provide a clue for understanding the effect of thymectomy in myasthenia gravis. PMID:2808688

  8. Cationic Liposomes Enhance the Rate of Transduction by a Recombinant Retroviral Vector In Vitro and In Vivo

    PubMed Central

    Porter, Colin D.; Lukacs, Katalin V.; Box, Gary; Takeuchi, Yasuhiro; Collins, Mary K. L.

    1998-01-01

    Cationic liposomes enhanced the rate of transduction of target cells with retroviral vectors. The greatest effect was seen with the formulation DC-Chol/DOPE, which gave a 20-fold increase in initial transduction rate. This allowed an efficiency of transduction after brief exposure of target cells to virus plus liposome that could be achieved only after extensive exposure to virus alone. Enhancement with DC-Chol/DOPE was optimal when stable virion-liposome complexes were preformed. The transduction rate for complexed virus, as for virus used alone or with the polycation Polybrene, showed first-order dependence on virus concentration. Cationic liposomes, but not Polybrene, were able to mediate envelope-independent transduction, but optimal efficiency required envelope-receptor interaction. When virus complexed with DC-Chol/DOPE was used to transduce human mesothelioma xenografts, transduction was enhanced four- to fivefold compared to that for virus alone. Since the efficacy of gene therapy is dependent on the number of cells modified, which is in turn dependent upon the balance between transduction and biological clearance of the vector, the ability of cationic liposomes to form stable complexes with retroviral vectors and enhance their rate of infection is likely to be important for in vivo application. PMID:9573249

  9. Enhancing the selective extracellular location of a recombinant E. coli domain antibody by management of fermentation conditions.

    PubMed

    Voulgaris, Ioannis; Finka, Gary; Uden, Mark; Hoare, Mike

    2015-10-01

    The preparation of a recombinant protein using Escherichia coli often involves a challenging primary recovery sequence. This is due to the inability to secrete the protein to the extracellular space without a significant degree of cell lysis. This results in the release of nucleic acids, leading to a high viscosity, difficulty to clarify, broth and also to contamination with cell materials such as lipopolysaccharides and host cell proteins. In this paper, we present different fermentation strategies to facilitate the recovery of a V H domain antibody (13.1 kDa) by directing it selectively to the extracellular space and changing the balance between domain antibody to nucleic acid release. The manipulation of the cell growth rate in order to increase the outer cell membrane permeability gave a small ~1.5-fold improvement in released domain antibody to nucleic acid ratio without overall loss of yield. The introduction during fermentation of release agents such as EDTA gave no improvement in the ratio of released domain antibody to nucleic acid and a loss of overall productivity. The use of polyethyleneimine (PEI) during fermentation was with the aim to (a) permeabilise the outer bacterial membrane to release selectively domain antibody and (b) remove selectively by precipitation nucleic acids released during cell lysis. This strategy resulted in up to ~4-fold increase in the ratio of domain antibody to soluble nucleic acid with no reduction in domain antibody overall titre. In addition, a reduction in host cell protein contamination was achieved and there was no increase in endotoxin levels. Similar results were demonstrated with a range of other antibody products prepared in E. coli. PMID:26184976

  10. Recombinant human bone morphogenetic protein-2 suspended in fibrin glue enhances bone formation during distraction osteogenesis in rabbits

    PubMed Central

    Li, Yunfeng; Li, Rui; Hu, Jing; Song, Donghui; Jiang, Xiaowen

    2016-01-01

    Introduction Bone morphogenetic protein-2 (BMP-2) has high potential for bone formation, but its in vivo effects are unpredictable due to the short life time. This study was designed to evaluate the effects of recombinant human (rh) BMP-2 suspended in fibrin on bone formation during distraction osteogenesis (DO) in rabbits. Material and methods The in vitro release kinetics of rhBMP-2 suspended in fibrin was tested using an enzyme-linked immunosorbent assay. Unilateral tibial lengthening for 10 mm was achieved in 48 rabbits. At the completion of osteodistraction, vehicle, fibrin, rhBMP-2 or rhBMP-2 suspended in fibrin (rhBMP-2 + fibrin) was injected into the center of the lengthened gap, with 12 animals in each group. Eight weeks later, the distracted callus was examined by histology, micro-CT and biomechanical testing. Radiographs of the distracted tibiae were taken at both 4 and 8 weeks after drug treatment. Results It was found that fibrin prolonged the life span of rhBMP-2 in vitro with sustained release during 17 days. The rhBMP-2 + fibrin treated animals showed the best results in bone mineral density, bone volume fraction, cortical bone thickness by micro-CT evaluation and mechanical properties by the three-point bending test when compared to the other groups (p < 0.05). In histological images, rhBMP-2 + fibrin treatment showed increased callus formation and better gap bridging compared to the other groups. Conclusions The results of this study suggest that fibrin holds promise to be a good carrier of rhBMP-2, and rhBMP-2 suspended in fibrin showed a stronger promoting effect on bone formation during DO in rabbits. PMID:27279839

  11. miR-3940-5p enhances homologous recombination after DSB in Cr(VI) exposed 16HBE cell.

    PubMed

    Li, Yang; Hu, Guiping; Li, Ping; Tang, Shichuan; Zhang, Ji; Jia, Guang

    2016-02-17

    Hexavalent chromium (Cr(VI)) is a well-recognized human carcinogen, yet the molecular mechanisms by which cause human cancer are still not well understood. MicroRNAs (miRNAs), which are small non-coding RNAs, are involved in carcinogenesis and DNA damage repair. Previous occupational population study showed that hexavalent chromium (Cr(VI)) downregulated plasma miR-3940-5p level, and a low miR-3940-5p level was associated with high XRCC2 expression in lymphocytes, indicating that miR-3940-5p maybe play a protective effect in Cr(VI) induced DNA damage. Here we investigated miR-3940-5p expression and its roles in DNA repair in Cr(VI)-treated 16HBE cells. miR-3940-5p change was detected by qRT-PCR. Rad51 foci formation and double strand break (DSB) were investigated to assess homologous recombination repair (HR) capacity by Immunofluorescent assay and Neutral Comet assay. XRCC2 expression was also evaluated after miRNA oligonucleotides transfection using Western blot. Cr(VI) treatment suppressed miR-3940-5p level in 16HBE cells. miR-3904-5p mimic downregulated XRCC2 expression. As a result, the formation of Rad51-foci was inhibited and DSB repair was prolonged. The results indicate that miR-3940-5p plays a protective effect in Cr(VI) induced DNA damage. PMID:26860703

  12. Enhancement of Recombinant Adeno-Associated Virus Type 2-Mediated Transgene Expression in a Lung Epithelial Cell Line by Inhibition of the Epidermal Growth Factor Receptor

    PubMed Central

    Smith, Andrew D.; Collaco, Roy F.; Trempe, James P.

    2003-01-01

    Recombinant adeno-associated viruses (rAAVs) have attracted considerable interest as gene delivery systems because they show long-term expression in vivo and transduce numerous cell types. Limitations to successful gene transduction from rAAVs have prompted investigations of a variety of treatments to enhance transgene expression from rAAV vectors. Tyrphostin-1, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, dramatically enhances rAAV transgene expression. Elegant studies have demonstrated that a single-strand D-sequence-binding protein (ssDBP) is phosphorylated by EGFR and binds to the D sequence element in the AAV terminal repeat (TR). Binding of the Tyr-phosphorylated ssDBP prevents conversion of single-stranded vector DNA to a double-strand conformation. We observed dramatic increases in transgene expression in lung epithelial cells (IB3) with tyrphostin treatment. Gel shift analysis of ssDBP revealed that its DNA binding characteristics were unchanged after tyrphostin treatment or adenovirus infection. Tyrphostin stimulated rAAV transgene expression to a greater extent than adenovirus coinfection. Southern hybridizations revealed that the vector DNA remained in the single-strand conformation in tyrphostin-treated cells but double-stranded replicative form monomer DNA was most abundant in adenovirus-infected cells. Northern analyses revealed that tyrphostin treatment enhanced mRNA accumulation more than in adenovirus-infected cultures even though replicative form DNA was undetectable. Analysis of the JNK, ERK, and p38K mitogen-activated protein kinase pathways revealed that tyrphostin treatment stimulated the activity of JNK and p38K. Our data suggest that tyrphostin-induced alteration of stress response pathways results in dramatic enhancement of transcription on linear vector DNA templates in the IB3 cell line. These results expand the downstream targets of the EGFR in regulating rAAV transduction. PMID:12743297

  13. Translational enhancement of recombinant protein synthesis in transgenic silkworms by a 5'-untranslated region of polyhedrin gene of Bombyx mori Nucleopolyhedrovirus.

    PubMed

    Iizuka, Masashi; Tomita, Masahiro; Shimizu, Katsuhiko; Kikuchi, Yutaka; Yoshizato, Katsutoshi

    2008-06-01

    Previously, we established a method to produce recombinant proteins (r-proteins) in cocoons of germline transgenic silkworms, and showed that a step(s) in post-transcription processes was rate-limiting in obtaining a high yield of r-proteins. In this study, we examined whether the 5'-untranslated region (5'-UTR) of the polyhedrin gene (pol) of nucleopolyhedrovirus (NPV) has a translational enhancer activity in the r-protein expression by middle silk gland (MSG) cells of silkworm Bombyx mori (Bm). Sericin 1 gene (ser1) promoter-driven transformation vectors were constructed in which pol5'-UTRs of NPVs isolated from four different species, Bm, Spodoptera frugiperda, Ectropis oblique, and Malacosoma neustria, were each placed upstream of a reporter gene. Transient expression assays in MSGs showed that these pol5'-UTRs all enhanced the protein expression of reporter genes, and the pol5'-UTR of Bm NPV (pol5'-UTR/Bm) was the most effective among them. Thus, transgenic silkworms were generated, which bore the ser1 promoter-driven His-tagged secretory EGFP (sEGFP-His) gene under the control of pol5'-UTR/Bm. The synthesis of sEGFP-His proteins in MSGs of the transgenic worms was approximately 1.5-fold higher than that in those bearing null vectors. However, its mRNA expression levels were 67% of the control worms, indicating that the pol5'-UTR/Bm specifically enhanced the translational level. In conclusion, pol5'-UTR/Bm increased the yield of r-protein production in transgenic silkworms by enhancing the translational activity and this 5'-UTR could be useful for the mass production of r-proteins in germline transgenic silkworms. PMID:18640598

  14. Vaccine self-assembling immune matrix is a new delivery platform that enhances immune responses to recombinant HBsAg in mice.

    PubMed

    Grenfell, Rafaella F Q; Shollenberger, Lisa M; Samli, E Farah; Harn, Donald A

    2015-03-01

    Vaccination remains the most effective public health tool to prevent infectious diseases. Many vaccines are marginally effective and need enhancement for immunocompromised, elderly, and very young populations. To enhance immunogenicity, we exploited the biphasic property of the (RADA)4 synthetic oligopeptide to create VacSIM (vaccine self-assembling immune matrix), a new delivery method. VacSIM solution can easily be mixed with antigens, organisms, and adjuvants for injection. Postinjection, the peptides self-assemble into hydrated nanofiber gel matrices, forming a depot with antigens and adjuvants in the aqueous phase. We believe the depot provides slow release of immunogens, leading to increased activation of antigen-presenting cells that then drive enhanced immunogenicity. Using recombinant hepatitis B virus surface antigen (rHBsAg) as a model immunogen, we compared VacSIM delivery to delivery in alum or complete Freund's adjuvant (CFA). Delivery of the rHBsAg antigen to mice via VacSIM without adjuvant elicited higher specific IgG responses than when rHBsAg was delivered in alum or CFA. Evaluating IgG subtypes showed a mixed Th1/Th2 type response following immunization with VacSIM, which was driven further toward Th1 with addition of CpG as the adjuvant. Increased specific IgG endpoint titers were observed in both C57BL/6 and BALB/c mice, representative of Th1 and Th2 environments, respectively. Restimulation of splenocytes suggests that VacSIM does not cause an immediate proinflammatory response in the host. Overall, these results suggest that VacSIM, as a new delivery method, has the potential to enhance immunogenicity and efficacy of numerous vaccines. PMID:25609075

  15. Simultaneous inhibition of sulfate-reducing bacteria, removal of H2S and production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl: Applications for microbial enhanced oil recovery.

    PubMed

    Zhao, Feng; Zhou, Ji-Dong; Ma, Fang; Shi, Rong-Jiu; Han, Si-Qin; Zhang, Jie; Zhang, Ying

    2016-05-01

    Sulfate-reducing bacteria (SRB) are widely existed in oil production system, and its H2S product inhibits rhamnolipid producing bacteria. In-situ production of rhamnolipid is promising for microbial enhanced oil recovery. Inhibition of SRB, removal of H2S and production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl were investigated. Strain Rhl can simultaneously remove S(2-) (>92%) and produce rhamnolipid (>136mg/l) under S(2-) stress below 33.3mg/l. Rhl reduced the SRB numbers from 10(9) to 10(5)cells/ml, and the production of H2S was delayed and decreased to below 2mg/l. Rhl also produced rhamnolipid and removed S(2-) under laboratory simulated oil reservoir conditions. High-throughput sequencing data demonstrated that addition of strain Rhl significantly changed the original microbial communities of oilfield production water and decreased the species and abundance of SRB. Bioaugmentation of strain Rhl in oilfield is promising for simultaneous control of SRB, removal of S(2-) and enhance oil recovery. PMID:26868152

  16. Molecular identification and expression analysis of a natural killer cell enhancing factor (NKEF) from rock bream Oplegnathus fasciatus and the biological activity of its recombinant protein

    PubMed Central

    Kim, Ju-Won; Choi, Hye-Sung; Kwon, Mun-Gyeong; Park, Myoung-Ae; Hwang, Jee-Youn; Kim, Do-Hyung; Park, Chan-Il

    2011-01-01

    Natural killer cell enhancing factor (NKEF) belongs to the defined peroxiredoxin (Prx) family. Rock bream NKEF cDNA was identified by expressed sequence tag (EST) analysis of rock bream liver that was stimulated with the LPS. The full-length RbNKEF cDNA (1062 bp) contained an open reading frame (ORF) of 594 bp encoding 198 amino acids. RbNKEF was significantly expressed in the gill, liver, and intestine. mRNA expression of NKEF in the head kidney was examined under viral and bacterial challenge via real-time RT-PCR. Experimental challenge of rock bream with Edwardsiella tarda, Streptococcus iniae, and RSIV resulted in significant increases in RbNKEF mRNA in the head kidney. To obtain a recombinant NKEF, the RbNKEF ORF was expressed in Escherichia coli BL21 (DE3), and the purified soluble protein exhibited a single band corresponding to the predicted molecular mass. When kidney leucocytes were treated with a high concentration of rRbNKEF (10 μg/mL), they exhibited significantly enhanced cell proliferation and viability under oxidative stress. PMID:24371552

  17. Enhanced transient recombinant protein production in CHO cells through the co-transfection of the product gene with Bcl-xL

    PubMed Central

    Zustiak, Matthew P.; Jose, Lisa; Xie, Yueqing; Zhu, Jianwei; Betenbaugh, Micheal J.

    2014-01-01

    Transient gene expression is gaining popularity as a method to rapidly produce recombinant proteins in mammalian cells. Although significant improvements have been made, in terms of expression, more improvements are needed to compete with the yields achievable in stable gene expression. Much progress has come from optimization of transfection media and parameters, as well as altering culturing conditions to enhance productivity. Recent studies have included using cell lines engineered for apoptosis resistance through the constitutive expression of an anti-apoptotic protein, Bcl-xL. In this study we examine an alternative method of using the benefits of anti-apoptotic gene expression to enhance the transient expression of biotherapeutics, namely, through the co-transfection of bcl-xL and the product-coding gene. CHO-S cells were co-transfected with the product-coding gene and a vector containing Bcl-xL using polyethylenimine. Cells co-transfected with Bcl-xL showed reduced levels of apoptosis, increased specific productivity, and an overall increase in product yield of approximately 100%. Similar results were produced by employing another anti-apoptotic protein, Bcl-2 delta in CHO cells, or through the co-transfection with bcl-xL using HEK-293E cells. This work provides an alternative method for increasing yields of therapeutic proteins in TGE applications without generating a prior stable cell line and subsequent screening which are both time and resource consuming. PMID:24604826

  18. Interleukin-1 interaction with neuroregulatory systems: selective enhancement by recombinant human and mouse interleukin-1 of in vitro opioid peptide receptor binding in rat brain.

    PubMed

    Wiedermann, C J

    1989-02-01

    Interleukin-1 (IL-1) exerts a wide variety of biological effects on various cell types and may be regarded as a pleiotropic peptide hormone. Biological evidence suggests that IL-1 participates in the modulation of central nervous system physiology and behaviour in a fashion characteristic of neuroendocrine hormones. In this investigation, recombinant (r) human (h) IL-1 and r mouse (m) IL-1 were examined for their modulation of opioid peptide receptor binding in vitro. Experiments were performed on frozen sections of rat brain. Receptor binding of radiolabeled substance P and of radiolabeled neurotensin were not significantly affected by the presence of rIL-1s. Recombinant IL-1s, however, significantly enhanced specific binding of 125I-beta-endorphin (125I-beta-END) and of D-ala2-(tyrosyl-3,5-3H)enkephalin-(5-D-leucine) (3H-D-ALA), equipotently and in a concentration-dependent manner with maximal activity occurring at a concentration of 10 LAF units/ml. The increased binding of 125I-beta-END and 3H-D-ALA was blocked steroselectively by (-)-naloxone and by etorphine, suggesting detection of opiate receptors. In addition, brain distribution patterns of receptors labeled in the presence of rIL-1s corresponded to patterns previously published for opiate receptors. Autoradiographic visualization of receptors revealed that rIL-1s in the different areas of the brain exert their effect on opioid binding with comparable potencies. The data suggest that certain central nervous system effects of IL-1s may be mediated by their selective interaction with opiatergic systems at the receptor level.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2468786

  19. Interleukin-1 interaction with neuroregulatory systems: selective enhancement by recombinant human and mouse interleukin-1 of in vitro opioid peptide receptor binding in rat brain

    SciTech Connect

    Wiedermann, C.J.

    1989-02-01

    Interleukin-1 (IL-1) exerts a wide variety of biological effects on various cell types and may be regarded as a pleiotropic peptide hormone. Biological evidence suggests that IL-1 participates in the modulation of central nervous system physiology and behavior in a fashion characteristic of neuroendocrine hormones. In this investigation, recombinant (r) human (h) IL-1 and r mouse (m) IL-1 were examined for their modulation of opioid peptide receptor binding in vitro. Experiments were performed on frozen sections of rat brain. Receptor binding of radiolabeled substance P and of radiolabeled neurotensin were not significantly affected by the presence of rIL-1s. Recombinant IL-1s, however, significantly enhanced specific binding of 125I-beta-endorphin (125I-beta-END) and of D-ala2-(tyrosyl-3,5-3H)enkephalin-(5-D-leucine) (3H-D-ALA), equipotently and in a concentration-dependent manner with maximal activity occurring at a concentration of 10 LAF units/ml. The increased binding of 125I-beta-END and 3H-D-ALA was blocked steroselectively by (-)-naloxone and by etorphine, suggesting detection of opiate receptors. In addition, brain distribution patterns of receptors labeled in the presence of rIL-1s corresponded to patterns previously published for opiate receptors. Autoradiographic visualization of receptors revealed that rIL-1s in the different areas of the brain exert their effect on opioid binding with comparable potencies. The data suggest that certain central nervous system effects of IL-1s may be mediated by their selective interaction with opiatergic systems at the receptor level.

  20. Enhanced L-phenylalanine production by recombinant Escherichia coli BR-42 (pAP-B03) resistant to bacteriophage BP-1 via a two-stage feeding approach.

    PubMed

    Zhou, Haiyan; Liao, Xianyan; Liu, Long; Wang, Tianwen; Du, Guocheng; Chen, Jian

    2011-09-01

    The L-phenylalanine (L-Phe) production by Escherichia coli WSH-Z06 (pAP-B03) was frequently prevented by bacteriophage BP-1 infestation. To cope with the bacteriophage BP-1 problem for an improved L-Phe production, one bacteriophage BP-1-resistant mutant, E. coli BR-42, was obtained from 416 mutant colonies of E. coli WSH-Z06 after N-methyl-N'-nitro-N-nitrosoguanidine (NTG) mutagenesis by selection for resistance to bacteriophage BP-1. The recombinant E. coli BR-42-carrying plasmid pAP-B03 had a high capacity in L-Phe production and a remarkable tolerance to 1 × 10(10) pfu (plaque-forming unit)/ml bacteriophage stock. For an enhanced L-Phe production by E. coli BR-42 (pAP-B03), the effects of different feeding strategies including pH-stat, constant rate feeding, linear decreasing rate feeding, and exponential feeding on L-Phe production were investigated; and a two-stage feeding strategy, namely exponential feeding at μ (set) = 0.18 h(-1) in the first 20 h and a following linear varying rate feeding with F = (-0.55 × t + 18.6) ml/h, was developed to improve L-Phe production. With this two-stage feeding approach, a maximum L-Phe titer of 57.63 g/l with a high L-Phe productivity (1.15 g/l/h) was achieved, which was 15% higher than the highest level (50 g/l) reported so far according to our knowledge. The recombinant E. coli BR-42 (pAP-B03) is a potential L-Phe over-producer in substantial prevention of bacteriophage BP-1 infestation compared to its parent strain WSH-Z06 (pAP-B03). PMID:21104105

  1. Adsorption of recombinant poxvirus L1-protein to aluminum hydroxide/CpG vaccine adjuvants enhances immune responses and protection of mice from vaccinia virus challenge

    PubMed Central

    Xiao, Yuhong; Zeng, Yuhong; Alexander, Edward; Mehta, Shyam; Joshi, Sangeeta B.; Buchman, George W.; Volkin, David B.; Middaugh, C. Russell; Isaacs, Stuart N.

    2012-01-01

    The stockpiling of live vaccinia virus vaccines has enhanced biopreparedness against the intentional or accidental release of smallpox. Ongoing research on future generation smallpox vaccines is providing key insights into protective immune responses as well as important information about subunit vaccine design strategies. For protein-based recombinant subunit vaccines, the formulation and stability of candidate antigens with different adjuvants are important factors to consider for vaccine design. In this work, a non-tagged secreted L1-protein, a target antigen on mature virus, was expressed using recombinant baculovirus technology and purified. To identify optimal formulation conditions for L1, a series of biophysical studies was performed over a range of pH and temperature conditions. The overall physical stability profile was summarized in an empirical phase diagram. Another critical question to address for development of an adjuvanted-vaccine was if immunogenicity and protection could be affected by the interactions and binding of L1 to aluminum salts (Alhydrogel) with and without a second adjuvant, CpG. We thus designed a series of vaccine formulations with different binding interactions between the L1 and the two adjuvants, and then performed a series of vaccination-challenge experiments in mice including measurement of antibody responses and post-challenge weight-loss and survival. We found that better humoral responses and protection were conferred with vaccine formulations when the L1-protein was adsorbed to Alhydrogel. These data demonstrate that designing vaccine formulation conditions to maximize antigen-adjuvant interactions is a key factor in smallpox subunit vaccine immunogenicity and protection. PMID:23153450

  2. Expression of rabbit IL-4 by recombinant myxoma viruses enhances virulence and overcomes genetic resistance to myxomatosis.

    PubMed

    Kerr, P J; Perkins, H D; Inglis, B; Stagg, R; McLaughlin, E; Collins, S V; Van Leeuwen, B H

    2004-06-20

    Rabbit IL-4 was expressed in the virulent standard laboratory strain (SLS) and the attenuated Uriarra (Ur) strain of myxoma virus with the aim of creating a Th2 cytokine environment and inhibiting the development of an antiviral cell-mediated response to myxomatosis in infected rabbits. This allowed testing of a model for genetic resistance to myxomatosis in wild rabbits that have undergone 50 years of natural selection for resistance to myxomatosis. Expression of IL-4 significantly enhanced virulence of both virulent and attenuated virus strains in susceptible (laboratory) and resistant (wild) rabbits. SLS-IL-4 completely overcame genetic resistance in wild rabbits. The pathogenesis of SLS-IL-4 was compared in susceptible and resistant rabbits. The results support a model for resistance to myxomatosis of an enhanced innate immune response controlling virus replication and allowing an effective antiviral cell-mediated immune response to develop in resistant rabbits. Expression of IL-4 did not overcome immunity to myxomatosis induced by immunization. PMID:15183059

  3. Enhanced protective immune response to PCV2 subunit vaccine by co-administration of recombinant porcine IFN-γ in mice.

    PubMed

    Wang, Yi-Ping; Liu, Dan; Guo, Long-Jun; Tang, Qing-Hai; Wei, Yan-Wu; Wu, Hong-Li; Liu, Jian-Bo; Li, Sheng-Bin; Huang, Li-Ping; Liu, Chang-Ming

    2013-01-21

    The capsid (Cap) protein of PCV2 is the major immunogenic protein that is crucial to induce PCV2-specific neutralizing antibodies and protective immunity; thus, it is a suitable target antigen for the research and development of genetically engineered vaccines against PCV2 infection. IFN-γ has exhibited potential efficacy as an immune adjuvant that enhances the immunogenicity of certain vaccines in experimental animal models. In this study, three recombinant proteins: PCV2-Cap protein, porcine IFN-γ (PoIFN-γ), and the fusion protein (Cap-PoIFN-γ) of PCV2-Cap protein and PoIFN-γ were respectively expressed in the baculovirus system, and analyzed by Western blot and indirect ELISA. Additionally, we evaluated the enhancement of the protective immune response to the Cap protein-based PCV2 subunit vaccine elicited by co-administration of PoIFN-γ in mice. Vaccination of mice with the PCV2-Cap+PoIFN-γ vaccine elicited significantly higher levels of PCV2-specific IPMA antibodies, neutralizing antibodies, and lymphocyte proliferative responses compared to the Cap-PoIFN-γ vaccine, the PCV2-Cap vaccine, and LG-strain. Following virulent PCV2 challenge, no viraemia was detected in all immunized groups, and the viral loads in lungs of the PCV2-Cap+PoIFN-γ group were significantly lower compared to the Cap-PoIFN-γ group, the LG-strain group, and the mock group, but slightly lower compared to the PCV2-Cap group. These findings suggested that PoIFN-γ substantially enhanced the protective immune response to the Cap protein-based PCV2 subunit vaccine, and that the PCV2-Cap+PoIFN-γ subunit vaccine potentially serves as an attractive candidate vaccine for the prevention and control of PCV2-associated diseases. PMID:23219694

  4. Hyperthermia adds to trabectedin effectiveness and thermal enhancement is associated with BRCA2 degradation and impairment of DNA homologous recombination repair.

    PubMed

    Harnicek, Dominique; Kampmann, Eric; Lauber, Kirsten; Hennel, Roman; Cardoso Martins, Ana Sofia; Guo, Yang; Belka, Claus; Mörtl, Simone; Gallmeier, Eike; Kanaar, Roland; Mansmann, Ulrich; Hucl, Tomas; Lindner, Lars H; Hiddemann, Wolfgang; Issels, Rolf D

    2016-07-15

    The tetrahydroisoquinoline trabectedin is a marine compound with approved activity against human soft-tissue sarcoma. It exerts antiproliferative activity mainly by specific binding to the DNA and inducing DNA double-strand breaks (DSB). As homologous recombination repair (HRR)-deficient tumors are more susceptible to trabectedin, hyperthermia-mediated on-demand induction of HRR deficiency represents a novel and promising strategy to boost trabectedin treatment. For the first time, we demonstrate enhancement of trabectedin effectiveness in human sarcoma cell lines by heat and characterize cellular events and molecular mechanisms related to heat-induced effects. Hyperthermic temperatures (41.8 or 43°C) enhanced significantly trabectedin-related clonogenic cell death and G2/M cell cycle arrest followed by cell type-dependent induction of apoptosis or senescence. Heat combination increased accumulation of γH2AX foci as key marker of DSBs. Expression of BRCA2 protein, an integral protein of the HRR machinery, was significantly decreased by heat. Consequently, recruitment of downstream RAD51 to γH2AX-positive repair foci was almost abolished indicating relevant impairment of HRR by heat. Accordingly, enhancement of trabectedin effectiveness was significantly augmented in BRCA2-proficient cells by hyperthermia and alleviated in BRCA2 knockout or siRNA-transfected BRCA2 knockdown cells. In peripheral blood mononuclear cells isolated from sarcoma patients, increased numbers of nuclear γH2AX foci were detected after systemic treatment with trabectedin and hyperthermia of the tumor region. The findings establish BRCA2 degradation by heat as a key factor for a novel treatment strategy that allows targeted chemosensitization to trabectedin and other DNA damaging antitumor drugs by on-demand induction of HRR deficiency. PMID:26933761

  5. Cosmological Recombination

    NASA Astrophysics Data System (ADS)

    Wong, Wan Yan

    2008-11-01

    In this thesis we focus on studying the physics of cosmological recombination and how the details of recombination affect the Cosmic Microwave Background (CMB) anisotropies. We present a detailed calculation of the spectral line distortions on the CMB spectrum arising from the Lyman-alpha and the lowest two-photon transitions in the recombination of hydrogen (H), and the corresponding lines from helium (He). The peak of these distortions mainly comes from the Lyman-alpha transition and occurs at about 170 microns, which is the Wien part of the CMB. The major theoretical limitation for extracting cosmological parameters from the CMB sky lies in the precision with which we can calculate the cosmological recombination process. With this motivation, we perform a multi-level calculation of the recombination of H and He with the addition of the spin-forbidden transition for neutral helium (He I), plus the higher order two-photon transitions for H and among singlet states of He I. We find that the inclusion of the spin-forbidden transition results in more than a percent change in the ionization fraction, while the other transitions give much smaller effects. Last we modify RECFAST by introducing one more parameter to reproduce recent numerical results for the speed-up of helium recombination. Together with the existing hydrogen `fudge factor', we vary these two parameters to account for the remaining dominant uncertainties in cosmological recombination. By using a Markov Chain Monte Carlo method with Planck forecast data, we find that we need to determine the parameters to better than 10% for He I and 1% for H, in order to obtain negligible effects on the cosmological parameters.

  6. Inclusion of a furin-sensitive spacer enhances the cytotoxicity of ribotoxin restrictocin containing recombinant single-chain immunotoxins.

    PubMed

    Goyal, A; Batra, J K

    2000-01-15

    Chimaeric toxins have considerable therapeutic potential to treat various malignancies. We have previously used the fungal ribonucleolytic toxin restrictocin to make chimaeric toxins in which the ligand was fused at either the N-terminus or the C-terminus of the toxin. Chimaeric toxins containing ligand at the C-terminus of restrictocin were shown to be more active than those having ligand at the N-terminus of the toxin. Here we describe the further engineering of restrictocin-based chimaeric toxins, anti-TFR(scFv)-restrictocin and restrictocin-anti-TFR(scFv), containing restrictocin and a single chain fragment variable (scFv) of a monoclonal antibody directed at the human transferrin receptor (TFR), to enhance their cell-killing activity. To promote the independent folding of the two proteins in the chimaeric toxin, a linear flexible peptide, Gly-Gly-Gly-Gly-Ser, was inserted between the toxin and the ligand to generate restrictocin-linker-anti-TFR(scFv) and anti-TFR(scFv)-linker-restrictocin. A 12-residue spacer, Thr-Arg-His-Arg-Gln-Pro-Arg-Gly-Trp-Glu-Gln-Leu, containing the recognition site for the protease furin, was incorporated between the toxin and the ligand to generate restrictocin-spacer-anti-TFR(scFv) and anti-TFR(scFv)-spacer-restrictocin. The incorporation of the proteolytically cleavable spacer enhanced the cell-killing activity of both constructs by 2-30-fold depending on the target cell line. However, the introduction of linker improved the cytotoxic activity only for anti-TFR(scFv)-linker-restrictocin. The proteolytically cleavable spacer-containing chimaeric toxins had similar cytotoxic activities irrespective of the location of the ligand on the toxin and they were found to release the restrictocin fragment efficiently on proteolysis in vitro. PMID:10620501

  7. Silica Gel for Enhanced Activity and Hypochlorite Protection of Cyanuric Acid Hydrolase in Recombinant Escherichia coli

    PubMed Central

    Radian, Adi; Aukema, Kelly G.; Aksan, Alptekin

    2015-01-01

    ABSTRACT Chlorinated isocyanuric acids are widely used water disinfectants that generate hypochlorite, but with repeated application, they build up cyanuric acid (CYA) that must be removed to maintain disinfection. 3-Aminopropyltriethoxysilane (APTES)-treated Escherichia coli cells expressing cyanuric acid hydrolase (CAH) from Moorella thermoacetica exhibited significantly high CYA degradation rates and provided protection against enzyme inactivation by hypochlorite (chlorine). APTES coating or encapsulation of cells had two benefits: (i) overcoming diffusion limitations imposed by the cell wall and (ii) protecting against hypochlorite inactivation of CAH activity. Cells encapsulated in APTES gels degraded CYA three times faster than nonfunctionalized tetraethoxysilane (TEOS) gels, and cells coated with APTES degraded CYA at a rate of 29 µmol/min per mg of CAH protein, similar to the rate with purified enzyme. UV spectroscopy, fluorescence spectroscopy, and scanning electron microscopy showed that the higher rates were due to APTES increasing membrane permeability and enhancing cyanuric acid diffusion into the cytoplasm to reach the CAH enzyme. Purified CAH enzyme was shown to be rapidly inactivated by hypochlorite. APTES aggregates surrounding cells protected via the amine groups reacting with hypochlorite as shown by pH changes, zeta potential measurements, and infrared spectroscopy. APTES-encapsulated E. coli cells expressing CAH degraded cyanuric acid at high rates in the presence of 1 to 10 ppm hypochlorite, showing effectiveness under swimming pool conditions. In contrast, CAH activity in TEOS gels or free cells was completely inactivated by hypochlorite. These studies show that commercially available silica materials can selectively enhance, protect, and immobilize whole-cell biocatalysts for specialized applications. PMID:26530383

  8. Small-molecule survivin inhibitor YM155 enhances radiosensitization in esophageal squamous cell carcinoma by the abrogation of G2 checkpoint and suppression of homologous recombination repair

    PubMed Central

    2014-01-01

    Background Survivin is overexpressed in cancer cells and plays a crucial role in apoptosis evasion. YM155, a small-molecule inhibitor of survivin, could enhance the cytotoxicity of various DNA-damaging agents. Here, we evaluated the radiosensitizaion potential of YM155 in human esophageal squamous cell carcinoma (ESCC). Methods Cell viability was determined by CCK8 assay. The radiosensitization effect of YM155 was evaluated by clonogenic survival and progression of tumor xenograft. Cell cycle progression was determined by flow cytometric analysis. Radiation-induced DNA double strand break (DSB) and homologous recombination repair (HRR) were detected by the staining of γ-H2AX and RAD51, respectively. Expression of survivin and cell cycle regulators was detected by Western blot analysis. Results YM155 induced radiosensitization in ESCC cell lines Eca109 and TE13, associated with the abrogation of radiation induced G2/M checkpoint, impaired Rad51 focus formation, and the prolongation of γ-H2AX signaling. G2/M transition markers, including the activation of cyclinB1/Cdc2 kinase and the suppression of Cdc2 Thr14/Tyr15 phosphorylation were induced by YM155 in irradiated cells. The combination of YM155 plus irradiation delayed the growth of ESCC tumor xenografts to a greater extent compared with either treatment modality alone. Conclusions Our findings suggest that the abrogation of G2 checkpoint and the inhibition of HRR contribute to radiosensitization by YM155 in ESCC cells. PMID:25139395

  9. A Recombinant G Protein Plus Cyclosporine A-Based Respiratory Syncytial Virus Vaccine Elicits Humoral and Regulatory T Cell Responses against Infection without Vaccine-Enhanced Disease.

    PubMed

    Li, Chaofan; Zhou, Xian; Zhong, Yiwei; Li, Changgui; Dong, Aihua; He, Zhonghuai; Zhang, Shuren; Wang, Bin

    2016-02-15

    Respiratory syncytial virus (RSV) infection can cause severe disease in the lower respiratory tract of infants and older people. Vaccination with a formalin-inactivated RSV vaccine (FI-RSV) and subsequent RSV infection has led to mild to severe pneumonia with two deaths among vaccinees. The vaccine-enhanced disease (VED) was recently demonstrated to be due to an elevated level of Th2 cell responses following loss of regulatory T (Treg) cells from the lungs. To induce high levels of neutralizing Abs and minimize pathogenic T cell responses, we developed a novel strategy of immunizing animals with a recombinant RSV G protein together with cyclosporine A. This novel vaccine induced not only a higher level of neutralizing Abs against RSV infection, but, most importantly, also significantly higher levels of Treg cells that suppressed VED in the lung after RSV infection. The induced responses provided protection against RSV challenge with no sign of pneumonia or bronchitis. Treg cell production of IL-10 was one of the key factors to suppress VED. These finding indicate that G protein plus cyclosporine A could be a promising vaccine against RSV infection in children and older people. PMID:26792805

  10. In Vitro Infectivity Assessment by Drug Susceptibility Comparison of Recombinant Leishmania major Expressing Enhanced Green Fluorescent Protein or EGFP-Luciferase Fused Genes with Wild-Type Parasite

    PubMed Central

    Sadeghi, Somayeh; Seyed, Negar; Etemadzadeh, Mohammad-Hossein; Abediankenari, Saeid; Rafati, Sima; Taheri, Tahereh

    2015-01-01

    Leishmaniasis is a worldwide uncontrolled parasitic disease due to the lack of effective drug and vaccine. To speed up effective drug development, we need powerful methods to rapidly assess drug effectiveness against the intracellular form of Leishmania in high throughput assays. Reporter gene technology has proven to be an excellent tool for drug screening in vitro. The effects of reporter proteins on parasite infectivity should be identified both in vitro and in vivo. In this research, we initially compared the infectivity rate of recombinant Leishmania major expressing stably enhanced green fluorescent protein (EGFP) alone or EGFP-luciferase (EGFP-LUC) with the wild-type strain. Next, we evaluated the sensitivity of these parasites to amphotericin B (AmB) as a standard drug in 2 parasitic phases, promastigote and amastigote. This comparison was made by MTT and nitric oxide (NO) assay and by quantifying the specific signals derived from reporter genes like EGFP intensity and luciferase activity. To study the amastigote form, both B10R and THP-1 macrophage cell lines were infected in the stationary phase and were exposed to AmB at different time points. Our results clearly revealed that the 3 parasite lines had similar in vitro infectivity rates with comparable parasite-induced levels of NO following interferon-γ/lipopolysaccharide induction. Based on our results we proposed the more reporter gene, the faster and more sensitive evaluation of the drug efficiency. PMID:26323836

  11. A low dose euglycemic infusion of recombinant human insulin-like growth factor I rapidly suppresses fasting-enhanced pulsatile growth hormone secretion in humans.

    PubMed Central

    Hartman, M L; Clayton, P E; Johnson, M L; Celniker, A; Perlman, A J; Alberti, K G; Thorner, M O

    1993-01-01

    To determine if insulin-like growth factor I (IGF-I) inhibits pulsatile growth hormone (GH) secretion in man, recombinant human IGF-I (rhIGF-I) was infused for 6 h at 10 micrograms.kg-1.h-1 during a euglycemic clamp in 10 normal men who were fasted for 32 h to enhance GH secretion. Saline alone was infused during an otherwise identical second admission as a control. As a result of rhIGF-I infusion, total and free IGF-I concentrations increased three- and fourfold, respectively. Mean GH concentrations fell from 6.3 +/- 1.6 to 0.59 +/- 0.07 micrograms/liter after 120 min. GH secretion rates, calculated by a deconvolution algorithm, decreased with a t 1/2 of 16.6 min and remained suppressed thereafter. Suppression of GH secretion rates occurred within 60 min when total and free IGF-I concentrations were 1.6-fold and 2-fold above baseline levels, respectively, and while glucose infusion rates were < 1 mumol.kg-1.min-1. During saline infusion, GH secretion rates remained elevated. Infusion of rhIGF-I decreased the mass of GH secreted per pulse by 84% (P < 0.01) and the number of detectable GH secretory pulses by 32% (P < 0.05). Plasma insulin and glucagon decreased to nearly undetectable levels after 60 min of rhIGF-I. Serum free fatty acids, beta-hydroxybutyrate, and acetoacetate were unaffected during the first 3 h of rhIGF-I but decreased thereafter to 52, 32, and 50% of levels observed during saline. We conclude that fasting-enhanced GH secretion is rapidly suppressed by a low-dose euglycemic infusion of rhIGF-I. This effect of rhIGF-I is likely mediated through IGF-I receptors independently of its insulin-like metabolic actions. PMID:8514857

  12. Optimization of Recombinant Adeno-Associated Virus-Mediated Expression for Large Transgenes, Using a Synthetic Promoter and Tandem Array Enhancers.

    PubMed

    Yan, Ziying; Sun, Xingshen; Feng, Zehua; Li, Guiying; Fisher, John T; Stewart, Zoe A; Engelhardt, John F

    2015-06-01

    The packaging capacity of recombinant adeno-associated viral (rAAV) vectors limits the size of the promoter that can be used to express the 4.43-kb cystic fibrosis transmembrane conductance regulator (CFTR) cDNA. To circumvent this limitation, we screened a set of 100-mer synthetic enhancer elements, composed of ten 10-bp repeats, for their ability to augment CFTR transgene expression from a short 83-bp synthetic promoter in the context of an rAAV vector designed for use in the cystic fibrosis (CF) ferret model. Our initial studies assessing transcriptional activity in monolayer (nonpolarized) cultures of human airway cell lines and primary ferret airway cells revealed that three of these synthetic enhancers (F1, F5, and F10) significantly promoted transcription of a luciferase transgene in the context of plasmid transfection. Further analysis in polarized cultures of human and ferret airway epithelia at an air-liquid interface (ALI), as well as in the ferret airway in vivo, demonstrated that the F5 enhancer produced the highest level of transgene expression in the context of an AAV vector. Furthermore, we demonstrated that increasing the size of the viral genome from 4.94 to 5.04 kb did not significantly affect particle yield of the vectors, but dramatically reduced the functionality of rAAV-CFTR vectors because of small terminal deletions that extended into the CFTR expression cassette of the 5.04-kb oversized genome. Because rAAV-CFTR vectors greater than 5 kb in size are dramatically impaired with respect to vector efficacy, we used a shortened ferret CFTR minigene with a 159-bp deletion in the R domain to construct an rAAV vector (AV2/2.F5tg83-fCFTRΔR). This vector yielded an ∼17-fold increase in expression of CFTR and significantly improved Cl(-) currents in CF ALI cultures. Our study has identified a small enhancer/promoter combination that may have broad usefulness for rAAV-mediated CF gene therapy to the airway. PMID:25763813

  13. Cooperation between two ClpB isoforms enhances the recovery of the recombinant {beta}-galactosidase from inclusion bodies

    SciTech Connect

    Guenther, Izabela; Zolkiewski, Michal; Kedzierska-Mieszkowska, Sabina

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer An important role of synergistic cooperation between the two ClpB isoforms. Black-Right-Pointing-Pointer Both ClpB isoforms are associated with IBs of {beta}-galactosidase. Black-Right-Pointing-Pointer ClpB is a key chaperone in IB protein release. -- Abstract: Bacterial ClpB is a molecular chaperone that solubilizes and reactivates aggregated proteins in cooperation with the DnaK chaperone system. The mechanism of protein disaggregation mediated by ClpB is linked to translocation of substrates through the central channel within the ring-hexameric structure of ClpB. Two isoforms of ClpB are produced in vivo: the full-length ClpB95 and the truncated ClpB80 (ClpB{Delta}N), which does not contain the N-terminal domain. The functional specificity of the two ClpB isoforms and the biological role of the N-terminal domain are still not fully understood. Recently, it has been demonstrated that ClpB may achieve its full potential as an aggregate-reactivating chaperone through the functional interaction and synergistic cooperation of its two isoforms. It has been found that the most efficient resolubilization and reactivation of stress-aggregated proteins occurred in the presence of both ClpB95 and ClpB80. In this work, we asked if the two ClpB isoforms functionally cooperate in the solubilization and reactivation of proteins from insoluble inclusion bodies (IBs) in Escherichia coli cells. Using the model {beta}-galactosidase fusion protein (VP1LAC), we found that solubilization and reactivation of enzymes entrapped in IBs occurred more efficiently in the presence of ClpB95 with ClpB80 than with either ClpB95 or ClpB80 alone. The two isoforms of ClpB chaperone acting together enhanced the solubility and enzymatic activity of {beta}-galactosidase sequestered into IBs. Both ClpB isoforms were associated with IBs of {beta}-galactosidase, what demonstrates their affinity to this type of aggregates. These results demonstrate a synergistic

  14. Spectrum Recombination.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  15. Multiplex PCR Method for Identifying Recombinant Vaccine-Related Polioviruses

    PubMed Central

    Kilpatrick, David R.; Ching, Karen; Iber, Jane; Campagnoli, Ray; Freeman, Christopher J.; Mishrik, Nada; Liu, Hong-Mei; Pallansch, Mark A.; Kew, Olen M.

    2004-01-01

    The recent discovery of recombinant circulating vaccine-derived poliovirus (recombinant cVDPV) has highlighted the need for enhanced global poliovirus surveillance to assure timely detection of any future cVDPV outbreaks. Six pairs of Sabin strain-specific recombinant primers were designed to permit rapid screening for VDPV recombinants by PCR. PMID:15365031

  16. Administration of an immunomodulatory azaspirane, SK F 105685, or human recombinant interleukin 1 stimulates myelopoiesis and enhances survival from lethal irradiation in C57Bl/6 mice

    SciTech Connect

    King, A.G.; Badger, A.M. )

    1991-08-01

    The immunomodulatory azaspirane SK F 105685 has immunosuppressive activity in animal models of autoimmune disease such as adjuvant-induced arthritis and experimental autoimmune encephalomyelitis. The mechanism of SK F 105685 appears to be the induction of nonspecific suppressor cell (SC) activity. SC appear to be null cells, that is, cells that lack specific cell surface markers of mature B cells, T cells, natural killer (NK) cells, or macrophages. Because the authors hypothesized that the induction of SC was associated with enhanced hematopoiesis, they sought to determine the hematopoietic potential of SK F 105685. Recombinant interleukin 1 alpha (rIL-1) was included as a positive control for hematopoietic stimulation in their studies. They demonstrate here that administration of SK F 105685 increases the number of granulocyte-macrophage colony-forming units (CFU-GM) within the bone marrow 24 h after injection in a dose-dependent manner. In addition, the percentage of CFU-GM in S-phase of the cell cycle was significantly increased, as was colony-stimulating activity (CSA) present in the serum of treated animals. In their experiments IL-1 did not increase marrow CFU-GM; however, splenic CFU-GM, the proportion of CFU-GM in S-phase of the cell cycle, and serum CSA were all increased 24 h after a single treatment. Administration of SK F 105685 24 h prior to lethal irradiation resulted in a dose-related increase in the number of surviving mice. These results demonstrate that SK F 105685 and rIL-1 stimulate myelopoiesis in vivo and suggest a mechanism by which prophylactic treatment with these agents protects mice from otherwise lethal irradiation.

  17. Pleurocidin Peptide Enhances Grouper Anti-Vibrio harveyi Immunity Elicited by Poly(lactide-co-glycolide)-Encapsulated Recombinant Glyceraldehyde-3-phosphate Dehydrogenase

    PubMed Central

    Chuang, Shu-Chun; Huang, Wan-Ling; Kau, Sau-Wei; Yang, Yun-Pei; Yang, Chung-Da

    2014-01-01

    Outer membrane proteins, such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH), are considered immunodominant antigens for eliciting protective immunity against Vibrio harveyi, the main etiological agent of vibriosis in fish. Cationic antimicrobial peptides (AMPs), such as pleurocidin (PLE), play important roles in activating and recruiting immune cells, thereby contributing to subsequent innate and adaptive immune responses. In the present study, we aimed to use PLE peptide as a potent adjuvant to improve the immunogenicity of V. harveyi recombinant GAPDH (rGAPDH). In order to prepare a controlled-release vaccine, PLE peptide and rGAPDH protein were simultaneously encapsulated into polymeric microparticles made from the biodegradable poly(lactide-co-glycolide) (PLG) polymer. The resulting PLG-encapsulated PLE plus rGAPDH (PLG-PLE/rGAPDH) microparticles, 3.21–6.27 μm in diameter, showed 72%–83% entrapment efficiency and durably released both PLE and rGAPDH for a long 30-day period. Following peritoneal immunization in grouper (Epinephelus coioides), PLG-PLE/rGAPDH microparticles resulted in significantly higher (p < 0.05, nested design) long-lasting GAPDH-specific immunity (serum titers and lymphocyte proliferation) than PLG-encapsulated rGAPDH (PLG-rGAPDH) microparticles. After an experimental challenge of V. harveyi, PLG-PLE/rGAPDH microparticles conferred a high survival rate (85%), which was significantly higher (p < 0.05, chi-square test) than that induced by PLG-rGAPDH microparticles (67%). In conclusion, PLE peptide exhibits an efficacious adjuvant effect to elicit not only improved immunity, but also enhanced protection against V. harveyi in grouper induced by rGAPDH protein encapsulated in PLG microparticles. PMID:26344624

  18. Pleurocidin Peptide Enhances Grouper Anti-Vibrio harveyi Immunity Elicited by Poly(lactide-co-glycolide)-Encapsulated Recombinant Glyceraldehyde-3-phosphate Dehydrogenase.

    PubMed

    Chuang, Shu-Chun; Huang, Wan-Ling; Kau, Sau-Wei; Yang, Yun-Pei; Yang, Chung-Da

    2014-01-01

    Outer membrane proteins, such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH), are considered immunodominant antigens for eliciting protective immunity against Vibrio harveyi, the main etiological agent of vibriosis in fish. Cationic antimicrobial peptides (AMPs), such as pleurocidin (PLE), play important roles in activating and recruiting immune cells, thereby contributing to subsequent innate and adaptive immune responses. In the present study, we aimed to use PLE peptide as a potent adjuvant to improve the immunogenicity of V. harveyi recombinant GAPDH (rGAPDH). In order to prepare a controlled-release vaccine, PLE peptide and rGAPDH protein were simultaneously encapsulated into polymeric microparticles made from the biodegradable poly(lactide-co-glycolide) (PLG) polymer. The resulting PLG-encapsulated PLE plus rGAPDH (PLG-PLE/rGAPDH) microparticles, 3.21-6.27 μm in diameter, showed 72%-83% entrapment efficiency and durably released both PLE and rGAPDH for a long 30-day period. Following peritoneal immunization in grouper (Epinephelus coioides), PLG-PLE/rGAPDH microparticles resulted in significantly higher (p < 0.05, nested design) long-lasting GAPDH-specific immunity (serum titers and lymphocyte proliferation) than PLG-encapsulated rGAPDH (PLG-rGAPDH) microparticles. After an experimental challenge of V. harveyi, PLG-PLE/rGAPDH microparticles conferred a high survival rate (85%), which was significantly higher (p < 0.05, chi-square test) than that induced by PLG-rGAPDH microparticles (67%). In conclusion, PLE peptide exhibits an efficacious adjuvant effect to elicit not only improved immunity, but also enhanced protection against V. harveyi in grouper induced by rGAPDH protein encapsulated in PLG microparticles. PMID:26344624

  19. Single-cell protein diet of a novel recombinant vitellogenin yeast enhances growth and survival of first-feeding tilapia (Oreochromis mossambicus) larvae.

    PubMed

    Lim, E H; Lam, T J; Ding, J L

    2005-03-01

    Yeast single-cell protein (SCP) is a high-nutrient feed substitute. This study evaluates the dual applications of a novel recombinant Pichia pastoris SMD1168H (SMD) yeast, expressing a tilapia vitellogenin protein (rVtg), as an SCP diet for Artemia and the first-feeding fish larvae. Instar II Artemia fed rVtg, rVtg precultured in 5% fish oil (rVtg-FO), Saccharomyces cerevisiae (SC), or native SMD had greater lipid contents (P < 0.05) than the freshly hatched. Lipid deposition in the Artemia fed rVtg or rVtg-FO was greater (P < 0.05) than in those fed SMD or SC. Diet-induced accumulation of low levels of docosahexaenoic acid [22:6(n-3)] was detected only in Artemia fed the rVtg-based diets. Tilapia (Oreochromis mossambicus) larvae were fed solely yeast diets singly or in combination (d 3-22), or a staggered regimen of yeast (d 3-12) followed by unenriched or yeast-enriched Artemia (d 13-22). The larvae fed rVtg for 22 d increased in length and weight (P < 0.05), whereas those fed SC or SMD suffered growth suppression and high mortality. Such adverse consequences were ameliorated when 50% of SC was substituted with rVtg. The larvae prefed rVtg followed by a dietary switch to Artemia preenriched for 48 h with rVtg or rVtg-FO were greatest in length, had the highest weight gain, and lived the longest. Besides delivering rVtg protein, essential fatty acids and amino acids, rVtg may have probiotic effects in enhancing larval survival. This study suggests the feasibility of using the rVtg yeast as an Artemia booster and an SCP first feed for larvae. PMID:15735086

  20. Improved production of recombinant human Fas ligand extracellular domain in Pichia pastoris: yield enhancement using disposable culture-bag and its application to site-specific chemical modifications

    PubMed Central

    2014-01-01

    Background A useful heterologous production system is required to obtain sufficient amounts of recombinant therapeutic proteins, which are often necessary for chemical characterization and engineering studies on the development of molecules with improved properties. Human Fas ligand extracellular domain (hFasLECD) is an agonistic death ligand protein that has potential applications for medical purposes. Site-specific chemical modifications can provide a powerful means for the development of engineered proteins with beneficial functions. This study aimed to enhance the yield of hFasLECD using a Pichia pastoris secretory expression system suitable for efficient production on a small laboratory scale, and further to provide procedures for its site-specific chemical modification without impairing the biological functions based on the developed production system. Results A convenient cultivation system using a disposable plastic bag provided a three-fold increase in purification yield of tag-free hFasLECD as compared with the conventional system using a baffled glass flask. The system was further applied to the production of a mutant, which contains an additional reactive cysteine residue in the N-terminal tag-sequence region. Site-specific conjugations and cross-linking without impairing biological functions were achieved by reaction of the mutant hFasLECD with single maleimide group containing compounds and a linear polyethylene glycol derivative containing two maleimide groups at either end, respectively. All purified tag-free and chemically modified hFasLECDs showed an evident receptor binding activity in co-immunoprecipitation experiments mediated by wild-type and N-glycosylation site deficient mutant human Fas receptor extracellular domain derivatives. An N-Ethylmaleimide conjugated hFasLECD derivative demonstrated a significant cytotoxic activity against human HT-29 colorectal cancer cells. Conclusions A new, efficient cultivation system for enhanced secretory

  1. Site directed recombination

    DOEpatents

    Jurka, Jerzy W.

    1997-01-01

    Enhanced homologous recombination is obtained by employing a consensus sequence which has been found to be associated with integration of repeat sequences, such as Alu and ID. The consensus sequence or sequence having a single transition mutation determines one site of a double break which allows for high efficiency of integration at the site. By introducing single or double stranded DNA having the consensus sequence flanking region joined to a sequence of interest, one can reproducibly direct integration of the sequence of interest at one or a limited number of sites. In this way, specific sites can be identified and homologous recombination achieved at the site by employing a second flanking sequence associated with a sequence proximal to the 3'-nick.

  2. Clearance and Toxicity of Recombinant Methionyl Human Glial Cell Line-Derived Neurotrophic Factor (r-metHu GDNF) Following Acute Convection-Enhanced Delivery into the Striatum

    PubMed Central

    Taylor, Hannah; Barua, Neil; Bienemann, Alison; Wyatt, Marcella; Castrique, Emma; Foster, Rebecca; Luz, Matthias; Fibiger, Christian; Mohr, Erich; Gill, Steven

    2013-01-01

    Background Despite promising early results, clinical trials involving the continuous delivery of recombinant methionyl human glial cell line-derived neurotrophic factor (r-metHuGDNF) into the putamen for the treatment of Parkinson's disease have shown evidence of poor distribution and toxicity due to point-source accumulation. Convection-enhanced delivery (CED) has the potential to facilitate more widespread and clinically effective drug distribution. Aims We investigated acute CED of r-metHuGDNF into the striatum of normal rats in order to assess tissue clearance, toxicity (neuron loss, gliosis, microglial activation, and decreases in synaptophysin), synaptogenesis and neurite-outgrowth. We investigated a range of clinically relevant infused concentrations (0.1, 0.2, 0.6 and 1.0 µg/µL) and time points (2 and 4 weeks) in order to rationalise a dosing regimen suitable for clinical translation. Results Two weeks after single dose CED, r-metHuGDNF was below the limit of detection by ELISA but detectable by immunohistochemistry when infused at low concentrations (0.1 and 0.2 µg/µL). At these concentrations, there was no associated neuronal loss (neuronal nuclei, NeuN, immunohistochemistry) or synaptic toxicity (synaptophysin ELISA). CED at an infused concentration of 0.2 µg/µL was associated with a significant increase in synaptogenesis (p<0.01). In contrast, high concentrations of r-metHuGDNF (above 0.6 µg/µL) were associated with neuronal and synaptic toxicity (p<0.01). Markers for gliosis (glial fibrillary acidic protein, GFAP) and microglia (ionized calcium-binding adapter molecule 1, Iba1) were restricted to the needle track and the presence of microglia had diminished by 4 weeks post-infusion. No change in neurite outgrowth (Growth associated protein 43, GAP43, mRNA) compared to artificial cerebral spinal fluid (aCSF) control was observed with any infused concentration. Conclusion The results of this study suggest that acute CED of low concentrations of

  3. A Novel Neurotoxin Gene ar1b Recombination Enhances the Efficiency of Helicoverpa armigera Nucleopolyhedrovirus as a Pesticide by Inhibiting the Host Larvae Ability to Feed and Grow.

    PubMed

    Yu, Huan; Meng, Jiao; Xu, Jian; Liu, Tong-Xian; Wang, Dun

    2015-01-01

    A recombinant Helicoverpa armigera nucleopolyhedrovirus (HearNPV), Ar1b-HearNPV, was constructed and identified as an improved bio-control agent of Helicoverpa armigera larvae. The HearNPV polyhedrin promoter was used to express the insect-specific neurotoxin gene, ar1b, which was originally isolated from the Australian funnel-web spider (Atrax robustus). RT-PCR and Western blotting analysis showed that both the ar1b transcript and protein were produced successfully in Ar1b-HearNPV-infected HzAM1 cells. In order to investigate the influence of foreign gene insertion in HearNPV, including the ar1b gene, chloramphenicol resistance gene, lacZ, kanamycin resistance gene, and the gentamicin resistance gene, two virus strains (HZ8-HearNPV and wt-HearNPV) were used as controls in the cell transfection analysis. As expected, foreign gene insertion had no impact on budded virus production and viral DNA replication. Both optical microscopy and electron microscopy observations indicated that the formation of the occlusion bodies of recombinant virus was similar to wild type virus. The Ar1b-HearNPV-infected H. armigera larvae exhibited paralysis and weight loss before dying. This recombinant virus also showed a 32.87% decrease in LT50 assays compared with the wild type virus. Besides, Ar1b-HearNPV also inhibited host larval growth and diet consumption. This inhibition was still significant in the older instar larvae treated with the recombinant virus. All of these positive properties of this novel recombinant HearNPV provide a further opportunity to develop this virus strain into a commercial product to control the cotton bollworm. PMID:26296090

  4. A Novel Neurotoxin Gene ar1b Recombination Enhances the Efficiency of Helicoverpa armigera Nucleopolyhedrovirus as a Pesticide by Inhibiting the Host Larvae Ability to Feed and Grow

    PubMed Central

    Yu, Huan; Meng, Jiao; Xu, Jian; Liu, Tong-xian; Wang, Dun

    2015-01-01

    A recombinant Helicoverpa armigera nucleopolyhedrovirus (HearNPV), Ar1b-HearNPV, was constructed and identified as an improved bio-control agent of Helicoverpa armigera larvae. The HearNPV polyhedrin promoter was used to express the insect-specific neurotoxin gene, ar1b, which was originally isolated from the Australian funnel-web spider (Atrax robustus). RT-PCR and Western blotting analysis showed that both the ar1b transcript and protein were produced successfully in Ar1b-HearNPV-infected HzAM1 cells. In order to investigate the influence of foreign gene insertion in HearNPV, including the ar1b gene, chloramphenicol resistance gene, lacZ, kanamycin resistance gene, and the gentamicin resistance gene, two virus strains (HZ8-HearNPV and wt-HearNPV) were used as controls in the cell transfection analysis. As expected, foreign gene insertion had no impact on budded virus production and viral DNA replication. Both optical microscopy and electron microscopy observations indicated that the formation of the occlusion bodies of recombinant virus was similar to wild type virus. The Ar1b-HearNPV-infected H. armigera larvae exhibited paralysis and weight loss before dying. This recombinant virus also showed a 32.87% decrease in LT50 assays compared with the wild type virus. Besides, Ar1b-HearNPV also inhibited host larval growth and diet consumption. This inhibition was still significant in the older instar larvae treated with the recombinant virus. All of these positive properties of this novel recombinant HearNPV provide a further opportunity to develop this virus strain into a commercial product to control the cotton bollworm. PMID:26296090

  5. Ethanol production by recombinant hosts

    DOEpatents

    Ingram, Lonnie O.; Beall, David S.; Burchhardt, Gerhard F. H.; Guimaraes, Walter V.; Ohta, Kazuyoshi; Wood, Brent E.; Shanmugam, Keelnatham T.

    1995-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  6. Ethanol production by recombinant hosts

    DOEpatents

    Fowler, David E.; Horton, Philip G.; Ben-Bassat, Arie

    1996-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  7. Booster immunization with a partially purified citrus tristeza virus (CTV) preparation after priming with recombinant CTV coat protein enhances the binding capacity of capture antibodies by ELISA.

    PubMed

    Bar-Joseph, M; Filatov, V; Gofman, R; Guang, Y; Hadjinicolis, A; Mawassi, M; Gootwine, E; Weisman, Y; Malkinson, M

    1997-08-01

    Groups of rabbits and young lambs were immunized subcutaneously and intramuscularly with a recombinant citrus tristeza virus (CTV) coat protein (rCTV-CP) antigen. Three weeks after primary immunization the animals were divided into two groups that were boosted either with rCTV-CP or with a partially purified preparation of CTV particles (ppCTV). Twelve and 15 days after the last injection, the animals were bled and the binding capacity of the antisera for CTV detection was examined for capture antibodies by the indirect ELISA. Considerably higher ELISA titers were obtained from animals that were boosted with ppCTV than with rCP. Boosting with partially purified native antigens after priming with recombinant antigens is expected to extend the applicability of the antisera for detecting other structural and non-structural viral antigens by trapping ELISA. PMID:9274814

  8. The PiggyBac transposon enhances the frequency of CHO stable cell line generation and yields recombinant lines with superior productivity and stability.

    PubMed

    Matasci, Mattia; Baldi, Lucia; Hacker, David L; Wurm, Florian M

    2011-09-01

    Generating stable, high-producing mammalian cell lines is a major bottleneck in the manufacture of recombinant therapeutic proteins. Conventional gene transfer methods for cell line generation rely on random plasmid integration, resulting in unpredictable and highly variable levels of transgene expression. As a consequence, a large number of stably transfected cells must be analyzed to recover a few high-producing clones. Here we present an alternative gene transfer method for cell line generation based on transgene integration mediated by the piggyBac (PB) transposon. Recombinant Chinese hamster ovary (CHO) cell lines expressing a tumor necrosis factor receptor:Fc fusion protein were generated either by PB transposition or by conventional transfection. Polyclonal populations and isolated clonal cell lines were characterized for the level and stability of transgene expression for up to 3 months in serum-free suspension culture. Pools of transposed cells produced up to fourfold more recombinant protein than did the pools generated by standard transfection. For clonal cell lines, the frequency of high-producers was greater following transposition as compared to standard transfection, and these clones had a higher volumetric productivity and a greater number of integrated transgenes than did those generated by standard transfection. In general, the volumetric productivity of the cell pools and individual cell lines generated by transposition was stable for up to 3 months in the absence of selection. Our results indicate that the PB transposon supports the generation of cell lines with high and stable transgene expression at an elevated frequency relative to conventional transfection. Thus, PB-mediated gene delivery is expected to reduce the extent of recombinant cell line screening. PMID:21495018

  9. Improving the performance of quantum dot sensitized solar cells through CdNiS quantum dots with reduced recombination and enhanced electron lifetime.

    PubMed

    Gopi, Chandu V V M; Venkata-Haritha, Mallineni; Seo, Hyunwoong; Singh, Saurabh; Kim, Soo-Kyoung; Shiratani, Masaharu; Kim, Hee-Je

    2016-05-28

    To make quantum dot-sensitized solar cells (QDSSCs) competitive, we investigated the effect of Ni(2+) ion incorporation into a CdS layer to create long-lived charge carriers and reduce the electron-hole recombination. The Ni(2+)-doped CdS (simplified as CdNiS) QD layer was introduced to a TiO2 surface via the simple successive ionic layer adsorption and reaction (SILAR) method in order to introduce intermediate-energy levels in the QDs. The effects of different Ni(2+) concentrations (5, 10, 15, and 20 mM) on the physical, chemical, and photovoltaic properties of the QDSSCs were investigated. The Ni(2+) dopant improves the light absorption of the device, accelerates the electron injection kinetics, and reduces the charge recombination, which results in improved charge transfer and collection. The 15% CdNiS cell exhibits the best photovoltaic performance with a power conversion efficiency (η) of 3.11% (JSC = 8.91 mA cm(-2), VOC = 0.643 V, FF = 0.543) under one full sun illumination (AM 1.5 G). These results are among the best achieved for CdS-based QDSSCs. Electrochemical impedance spectroscopy (EIS) and open circuit voltage decay (OCVD) measurements confirm that the Ni(2+) dopant can suppress charge recombination, prolong the electron lifetime, and improve the power conversion efficiency of the cells. PMID:27111597

  10. Co-expression of chaperones from P. furiosus enhanced the soluble expression of the recombinant hyperthermophilic α-amylase in E. coli.

    PubMed

    Peng, Shuaiying; Chu, Zhongmei; Lu, Jianfeng; Li, Dongxiao; Wang, Yonghong; Yang, Shengli; Zhang, Yi

    2016-05-01

    The extracellular α-amylase from the hyperthermophilic archaeum Pyrococcus furiosus (PFA) is extremely thermostable and of an industrial importance and interest. PFA aggregates and accumulates as insoluble inclusion bodies when expressed as a heterologous protein at a high level in Escherichia coli. In the present study, we investigated the roles of chaperones from P. furiosus in the soluble expression of recombinant PFA in E. coli. The results indicate that co-expression of PFA with the molecular chaperone prefoldin alone significantly increased the soluble expression of PFA. Although, co-expression of other main chaperone components from P. furiosus, such as the small heat shock protein (sHSP) or chaperonin (HSP60), was also able to improve the soluble expression of PFA to a certain extent. Co-expression of chaperonin or sHSP in addition to prefoldin did not further increase the soluble expression of PFA. This finding emphasizes the biotechnological potentials of the molecular chaperone prefoldin from P. furiosus, which may facilitate the production of recombinant PFA. PMID:26862080

  11. Biological synthesis of Au nanoparticles using liquefied mash of cassava starch and their functionalization for enhanced hydrolysis of xylan by recombinant xylanase.

    PubMed

    Zeng, Sumei; Du, Liangwei; Huang, Meiying; Feng, Jia-Xun

    2016-05-01

    Au nanoparticles (AuNPs) have shown the potential for a variety of applications due to their unique physical and chemical properties. In this study, a facile and affordable method for the synthesis of AuNPs via the liquefied mash of cassava starch has been described and the functionalized AuNPs by L-cysteine improved activity of recombinant xylanase was demonstrated. UV-Vis absorption spectroscopy, transmission electron microscopy, and zeta potential measurements were performed to characterize the AuNPs and monitor their synthesis. The presence of Au was confirmed by energy-dispersive X-ray spectroscopy (EDX) and the X-ray diffraction patterns showed that Au nanocrystals were face-centered cubic. The C=O stretching vibration in the Fourier transform infrared spectrum of AuNPs suggested that the hemiacetal C-OH of sugar molecules performed the reduction of Au³⁺ to Au⁰. The presence of C and O in the EDX spectrum and the negative zeta potential of AuNPs suggested that the biomolecules present in liquefied cassava mash were responsible for the stabilization of AuNPs. The surface of AuNPs was easily functionalized by L-cysteine, which improved the stability of AuNPs. Moreover, cysteine-functionalized AuNPs could significantly improve recombinant xylanase efficiency and stability. PMID:26864877

  12. Enhanced and durable protective immune responses induced by a cocktail of recombinant BCG strains expressing antigens of multistage of Mycobacterium tuberculosis.

    PubMed

    Liang, Jinping; Teng, Xindong; Yuan, Xuefeng; Zhang, Ying; Shi, Chunwei; Yue, Tingting; Zhou, Lei; Li, Jianrong; Fan, Xionglin

    2015-08-01

    Although Bacillus Calmette-Guérin (BCG) vaccine confers protection from Mycobacterium tuberculosis infection in children, its immune protection gradually wanes over time, and consequently leads to an inability to prevent the reactivation of latent infection of M. tuberculosis. Therefore, improving BCG for better control of tuberculosis (TB) is urgently needed. We thus hypothesized that recombinant BCG overexpressing immunodominant antigens expressed at different growth stages of M. tuberculosis could provide a more comprehensive protection against primary and latent M. tuberculosis infection. Here, a novel cocktail of recombinant BCG (rBCG) strains, namely ABX, was produced by combining rBCG::85A, rBCG::85B, and rBCG::X, which overexpressed respective multistage antigens Ag85A, Ag85B, and HspX of M. tuberculosis. Our results showed that ABX was able to induce a stronger immune protection than individual rBCGs or BCG against primary TB infection in C57BL/6 mice. Mechanistically, the immune protection was attributed to stronger antigen-specific CD4(+) Th1 responses, higher numbers of IFN-γ(+) CD4(+) TEM and IL-2(+) CD8(+) TCM cells elicited by ABX. These findings thus provide a novel strategy for the improvement of BCG efficacy and potentially a promising prophylactic TB vaccine candidate, warranting further investigation. PMID:25974877

  13. Pilot Study on the Use of DNA Priming Immunization to Enhance Y. pestis LcrV-Specific B Cell Responses Elicited by a Recombinant LcrV Protein Vaccine

    PubMed Central

    Li, Wei; Wang, Shixia; Lu, Shan

    2013-01-01

    Recent studies indicate that DNA immunization is powerful in eliciting antigen-specific antibody responses in both animal and human studies. However, there is limited information on the mechanism of this effect. In particular, it is not known whether DNA immunization can also enhance the development of antigen-specific B cell development. In this report, a pilot study was conducted using plague LcrV immunogen as a model system to determine whether DNA immunization is able to enhance LcrV-specific B cell development in mice. Plague is an acute and often fatal infectious disease caused by Yersinia pestis (Y. pestis). Humoral immune responses provide critical protective immunity against plague. Previously, we demonstrated that a DNA vaccine expressing LcrV antigen can protect mice from lethal mucosal challenge. In the current study, we further evaluated whether the use of a DNA priming immunization is able to enhance the immunogenicity of a recombinant LcrV protein vaccine, and in particular, the development of LcrV-specific B cells. Our data indicate that DNA immunization was able to elicit high-level LcrV antibody responses when used alone or as part of a prime-boost immunization approach. Most significantly, DNA immunization was also able to increase the levels of LcrV-specific B cell development. The finding that DNA immunization can enhance antigen-specific B cell responses is highly significant and will help guide similar studies in other model antigen systems. PMID:26344467

  14. The use of halloysite clay and carboxyl-functionalised multi-walled carbon nanotubes for recombinant LipL32 antigen delivery enhanced the IgG response

    PubMed Central

    Hartwig, Daiane D; Bacelo, Kátia L; Oliveira, Thaís L; Schuch, Rodrigo; Seixas, Fabiana K; Collares, Tiago; Rodrigues, Oscar; Hartleben, Cláudia P; Dellagostin, Odir A

    2015-01-01

    We studied the feasibility of using halloysite clay nanotubes (HNTs) and carboxyl-functionalised multi-walled carbon nanotubes (COOH-MWCNTs) as antigen carriers to improve immune responses against a recombinant LipL32 protein (rLipL32). Immunisation using the HNTs or COOH-MWCNTs significantly increased the rLipL32-specific IgG antibody titres (p < 0.05) of Golden Syrian hamsters. None of the vaccines tested conferred protection against a challenge using a virulent Leptospira interrogans strain. These results demonstrated that nanotubes can be used as antigen carriers for delivery in hosts and the induction of a humoral immune response against purified leptospiral antigens used in subunit vaccine preparations. PMID:25742273

  15. Identification of metabolic engineering targets for the enhancement of 1,4-butanediol production in recombinant E. coli using large-scale kinetic models.

    PubMed

    Andreozzi, Stefano; Chakrabarti, Anirikh; Soh, Keng Cher; Burgard, Anthony; Yang, Tae Hoon; Van Dien, Stephen; Miskovic, Ljubisa; Hatzimanikatis, Vassily

    2016-05-01

    Rational metabolic engineering methods are increasingly employed in designing the commercially viable processes for the production of chemicals relevant to pharmaceutical, biotechnology, and food and beverage industries. With the growing availability of omics data and of methodologies capable to integrate the available data into models, mathematical modeling and computational analysis are becoming important in designing recombinant cellular organisms and optimizing cell performance with respect to desired criteria. In this contribution, we used the computational framework ORACLE (Optimization and Risk Analysis of Complex Living Entities) to analyze the physiology of recombinant Escherichia coli producing 1,4-butanediol (BDO) and to identify potential strategies for improved production of BDO. The framework allowed us to integrate data across multiple levels and to construct a population of large-scale kinetic models despite the lack of available information about kinetic properties of every enzyme in the metabolic pathways. We analyzed these models and we found that the enzymes that primarily control the fluxes leading to BDO production are part of central glycolysis, the lower branch of tricarboxylic acid (TCA) cycle and the novel BDO production route. Interestingly, among the enzymes between the glucose uptake and the BDO pathway, the enzymes belonging to the lower branch of TCA cycle have been identified as the most important for improving BDO production and yield. We also quantified the effects of changes of the target enzymes on other intracellular states like energy charge, cofactor levels, redox state, cellular growth, and byproduct formation. Independent earlier experiments on this strain confirmed that the computationally obtained conclusions are consistent with the experimentally tested designs, and the findings of the present studies can provide guidance for future work on strain improvement. Overall, these studies demonstrate the potential and

  16. P212A Mutant of Dihydrodaidzein Reductase Enhances (S)-Equol Production and Enantioselectivity in a Recombinant Escherichia coli Whole-Cell Reaction System.

    PubMed

    Lee, Pyung-Gang; Kim, Joonwon; Kim, Eun-Jung; Jung, EunOk; Pandey, Bishnu Prasad; Kim, Byung-Gee

    2016-04-01

    (S)-Equol, a gut bacterial isoflavone derivative, has drawn great attention because of its potent use for relieving female postmenopausal symptoms and preventing prostate cancer. Previous studies have reported on the dietary isoflavone metabolism of several human gut bacteria and the involved enzymes for conversion of daidzein to (S)-equol. However, the anaerobic growth conditions required by the gut bacteria and the low productivity and yield of (S)-equol limit its efficient production using only natural gut bacteria. In this study, the low (S)-equol biosynthesis of gut microorganisms was overcome by cloning the four enzymes involved in the biosynthesis from Slackia isoflavoniconvertens into Escherichia coli BL21(DE3). The reaction conditions were optimized for (S)-equol production from the recombinant strain, and this recombinant system enabled the efficient conversion of 200 μM and 1 mM daidzein to (S)-equol under aerobic conditions, achieving yields of 95% and 85%, respectively. Since the biosynthesis of trans-tetrahydrodaidzein was found to be a rate-determining step for (S)-equol production, dihydrodaidzein reductase (DHDR) was subjected to rational site-directed mutagenesis. The introduction of the DHDR P212A mutation increased the (S)-equol productivity from 59.0 mg/liter/h to 69.8 mg/liter/h in the whole-cell reaction. The P212A mutation caused an increase in the (S)-dihydrodaidzein enantioselectivity by decreasing the overall activity of DHDR, resulting in undetectable activity for (R)-dihydrodaidzein, such that a combination of the DHDR P212A mutant with dihydrodaidzein racemase enabled the production of (3S,4R)-tetrahydrodaidzein with an enantioselectivity of >99%. PMID:26801575

  17. The requirement for potent adjuvants to enhance the immunogenicity and protective efficacy of protein vaccines can be overcome by prior immunization with a recombinant adenovirus

    PubMed Central

    de Cassan, Simone C.; Forbes, Emily K.; Douglas, Alexander D.; Milicic, Anita; Singh, Bijender; Gupta, Puneet; Chauhan, Virander S.; Chitnis, Chetan E.; Gilbert, Sarah C.; Hill, Adrian V. S.; Draper, Simon J.

    2011-01-01

    A central goal in vaccinology is the induction of high and sustained antibody responses. Protein-in-adjuvant formulations are commonly used to achieve such responses. However, their clinical development can be limited by the reactogenicity of some of the most potent pre-clinical adjuvants and the cost and complexity of licensing new adjuvants for human use. Also, few adjuvants induce strong cellular immunity which is important for protection against many diseases, such as malaria. We compared classical adjuvants such as alum to new pre-clinical adjuvants and adjuvants in clinical development such as Abisco®100, CoVaccine HT™, Montanide®ISA720 and SE-GLA, for their ability to induce high and sustained antibody responses and T cell responses. These adjuvants induced a broad range of antibody responses when used in a three-shot protein-in-adjuvant regime using the model antigen ovalbumin and leading blood-stage malaria vaccine candidate antigens. Surprisingly, this range of antibody immunogenicity was greatly reduced when a protein-in-adjuvant vaccine was used to boost antibody responses primed by a human adenovirus serotype 5 (AdHu5) vaccine recombinant for the same antigen. This AdHu5-protein regime also induced a more cytophilic antibody response and demonstrated improved efficacy of merozoite surface protein-1 (MSP-1) protein vaccines against a Plasmodium yoelii blood-stage challenge. This indicates that the differential immunogenicity of protein vaccine adjuvants may be largely overcome by prior immunization with recombinant adenovirus, especially for adjuvants that are traditionally considered poorly immunogenic in the context of subunit vaccination, and may circumvent the need for more potent chemical adjuvants. PMID:21813775

  18. Recombinant protein production technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant protein production is an important technology for antibody production, biochemical activity study, and structural determination during the post-genomic era. Limiting factors in recombinant protein production include low-level protein expression, protein precipitation, and loss of protein...

  19. Therapeutic Recombinant Monoclonal Antibodies

    ERIC Educational Resources Information Center

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  20. Recombineering homologous recombination constructs in Drosophila.

    PubMed

    Carreira-Rosario, Arnaldo; Scoggin, Shane; Shalaby, Nevine A; Williams, Nathan David; Hiesinger, P Robin; Buszczak, Michael

    2013-01-01

    The continued development of techniques for fast, large-scale manipulation of endogenous gene loci will broaden the use of Drosophila melanogaster as a genetic model organism for human-disease related research. Recent years have seen technical advancements like homologous recombination and recombineering. However, generating unequivocal null mutations or tagging endogenous proteins remains a substantial effort for most genes. Here, we describe and demonstrate techniques for using recombineering-based cloning methods to generate vectors that can be used to target and manipulate endogenous loci in vivo. Specifically, we have established a combination of three technologies: (1) BAC transgenesis/recombineering, (2) ends-out homologous recombination and (3) Gateway technology to provide a robust, efficient and flexible method for manipulating endogenous genomic loci. In this protocol, we provide step-by-step details about how to (1) design individual vectors, (2) how to clone large fragments of genomic DNA into the homologous recombination vector using gap repair, and (3) how to replace or tag genes of interest within these vectors using a second round of recombineering. Finally, we will also provide a protocol for how to mobilize these cassettes in vivo to generate a knockout, or a tagged gene via knock-in. These methods can easily be adopted for multiple targets in parallel and provide a means for manipulating the Drosophila genome in a timely and efficient manner. PMID:23893070

  1. An enhanced surface passivation effect in InGaN/GaN disk-in-nanowire light emitting diodes for mitigating Shockley-Read-Hall recombination

    NASA Astrophysics Data System (ADS)

    Zhao, Chao; Ng, Tien Khee; Prabaswara, Aditya; Conroy, Michele; Jahangir, Shafat; Frost, Thomas; O'Connell, John; Holmes, Justin D.; Parbrook, Peter J.; Bhattacharya, Pallab; Ooi, Boon S.

    2015-10-01

    We present a detailed study of the effects of dangling bond passivation and the comparison of different sulfide passivation processes on the properties of InGaN/GaN quantum-disk (Qdisk)-in-nanowire based light emitting diodes (NW-LEDs). Our results demonstrated the first organic sulfide passivation process for nitride nanowires (NWs). The results from Raman spectroscopy, photoluminescence (PL) measurements, and X-ray photoelectron spectroscopy (XPS) showed that octadecylthiol (ODT) effectively passivated the surface states, and altered the surface dynamic charge, and thereby recovered the band-edge emission. The effectiveness of the process with passivation duration was also studied. Moreover, we also compared the electro-optical performance of NW-LEDs emitting at green wavelength before and after ODT passivation. We have shown that the Shockley-Read-Hall (SRH) non-radiative recombination of NW-LEDs can be greatly reduced after passivation by ODT, which led to a much faster increasing trend of quantum efficiency and higher peak efficiency. Our results highlighted the possibility of employing this technique to further design and produce high performance NW-LEDs and NW-lasers.

  2. Enhancement of β-carotene production by over-expression of HMG-CoA reductase coupled with addition of ergosterol biosynthesis inhibitors in recombinant Saccharomyces cerevisiae.

    PubMed

    Yan, Guo-liang; Wen, Ke-rui; Duan, Chang-qing

    2012-02-01

    In this study, the synergistic effect of overexpressing the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase gene and adding ergosterol synthesis inhibitor, ketoconazole, on β-carotene production in the recombinant Saccharomyces cerevisiae was investigated. The results showed that the over-expression of HMG-CoA reductase gene and adding 100 mg/l ketoconazole alone can result in 135.1 and 15.6% increment of β-carotene concentration compared with that of the control (2.05 mg/g dry weight of cells), respectively. However, the combination of overexpressing HMG-CoA reductase gene and adding ketoconazole can achieve a 206.8% increment of pigment content (6.29 mg/g dry weight of cells) compared with that of the control. Due to the fact that over-expression of the HMG-CoA reductase gene can simultaneously improve the flux of the sterol and carotenoid biosynthetic pathway, it can be concluded that under the circumstances of blocking sterol biosynthesis, increasing the activity of HMG-CoA reductase can result in more precursors FPP fluxing into carotenoid branch and obtain a high increment of β-carotene production. The results of this study collectively suggest that the combination of overexpressing HMG-CoA reductase gene and supplying ergosterol synthesis inhibitor is an effective strategy to improve the production of desirable isoprenoid compounds such as carotenoids. PMID:22086347

  3. Expression of recombinant human α-lactalbumin in milk of transgenic cloned pigs is sufficient to enhance intestinal growth and weight gain of suckling piglets.

    PubMed

    Ma, Jin; Li, Qiuyan; Li, Yan; Wen, Xiao; Li, Zhiyuan; Zhang, Zaihu; Zhang, Jiuming; Yu, Zhengquan; Li, Ning

    2016-06-10

    Human α-lactalbumin (HLA) has very high nutritional value and important physiological functions during the neonatal period. The peptides derived from HLA provide diverse health benefits including antimicrobial, antiviral, immune-modulating, and antihypertensive effects. Thus, it is worth investigating the effects on offspring development of increasing HLA in milk. In this study, we found that recombinant human α-lactalbumin (rHLA) exhibits efficient inhibition of dipeptidyl peptidase-IV (DPP-IV) activity in an in vitro simulated gastrointestinal digestion system. Using a BAC clone containing the complete HLA gene as a candidate vector, we generated two lines of transgenic cloned sows via somatic cell nuclear transfer that over-expressed rHLA. The average concentrations of rHLA in milk from the two lines of transgenic cloned sows were 2.24 ± 0.71 mg/ml and 2.67 ± 1.29 mg/ml. The feeding experiments revealed that rHLA represses dipeptidyl peptidase-IV (DPP-IV) activity in vivo. Furthermore, the piglets reared by rHLA transgenic cloned sows exhibit better performance in gain of body weight and intestine growth than the control piglets reared by non-transgenic sows. Therefore, these findings indicate that rHLA could serve as a natural precursor for a DPP-IV inhibitor, and the transgenic technology that produced the over-expression of rHLA could be a useful method for pig breeders to improve lactation performance. PMID:26899869

  4. Enhancement in production of recombinant two-chain Insulin Glargine by over-expression of Kex2 protease in Pichia pastoris.

    PubMed

    Sreenivas, Suma; Krishnaiah, Sateesh M; Govindappa, Nagaraja; Basavaraju, Yogesh; Kanojia, Komal; Mallikarjun, Niveditha; Natarajan, Jayaprakash; Chatterjee, Amarnath; Sastry, Kedarnath N

    2015-01-01

    Glargine is an analog of Insulin currently being produced by recombinant DNA technology using two different hosts namely Escherichia coli and Pichia pastoris. Production from E. coli involves the steps of extraction of inclusion bodies by cell lysis, refolding, proteolytic cleavage and purification. In P. pastoris, a single-chain precursor with appropriate disulfide bonding is secreted to the medium. Downstream processing currently involves use of trypsin which converts the precursor into two-chain final product. The use of trypsin in the process generates additional impurities due to presence of Lys and Arg residues in the Glargine molecule. In this study, we describe an alternate approach involving over-expression of endogenous Kex2 proprotein convertase, taking advantage of dibasic amino acid sequence (Arg-Arg) at the end of B-chain of Glargine. KEX2 gene over-expression in Pichia was accomplished by using promoters of varying strengths to ensure production of greater levels of fully functional two-chain Glargine product, confirmed by HPLC and mass analysis. In conclusion, this new production process involving Kex2 protease over-expression improves the downstream process efficiency, reduces the levels of impurities generated and decreases the use of raw materials. PMID:25239036

  5. Administration of recombinant Reishi immunomodulatory protein (rLZ-8) diet enhances innate immune responses and elicits protection against nervous necrosis virus in grouper Epinephelus coioides.

    PubMed

    Kuan, Yen-Chou; Sheu, Fuu; Lee, Guo-Chi; Tsai, Ming-Wei; Hung, Chih-Liang; Nan, Fan-Hua

    2012-06-01

    Nervous necrosis virus (NNV) infection during larvae and juvenile stage in grouper (Epinephelus coioides) has caused severe economic losses in the aquaculture industry in Asia. The aims of this study were to evaluate the influence of recombinant Reishi protein, rLZ-8, on the innate immune responses and the viral resisting ability in fish. Groupers were fed with rLZ-8 supplemented diet (1.25-37.5 mg (rLZ-8)/kg(diet)), and the cytokine gene expression, innate immune responses, and survival rate after NNV challenge were examined. The fish fed with rLZ-8 diet showed 6- to 11-fold upregulated TNF-α and IL-1β gene expression, along with significant increased respiratory burst and phagocytic activity. Moreover, feeding the fish with 37.5 mg/kg rLZ-8 diet elicited significant improvement in post viral challenge survival rate (85.7%). These discoveries indicated that rLZ-8 could be utilized as an ant-pathogen immunostimulant, and provided a new candidate to fight against NNV infection in fish. PMID:22366063

  6. Charge recombination and thermoluminescence in photosystem II.

    PubMed

    Rappaport, Fabrice; Cuni, Aude; Xiong, Ling; Sayre, Richard; Lavergne, Jérôme

    2005-03-01

    In the recombination process of Photosystem II (S(2)Q(A)(-)-->S(1)Q(A)) the limiting step is the electron transfer from the reduced primary acceptor pheophytin Ph(-) to the oxidized primary donor P(+) and the rate depends on the equilibrium constant between states S(2)PPhQ(A)(-) and S(1)P(+)Ph(-)Q(A). Accordingly, mutations that affect the midpoint potential of Ph or of P result in a modified recombination rate. A strong correlation is observed between the effects on the recombination rate and on thermoluminescence (TL, the light emission from S(2)Q(A)(-) during a warming ramp): a slower recombination corresponds to a large enhancement and higher temperature of the TL peak. The current theory of TL does not account for these effects, because it is based on the assumption that the rate-limiting step coincides with the radiative process. When implementing the known fact that the radiative pathway represents a minor leak, the modified TL theory readily accounts qualitatively for the observed behavior. However, the peak temperature is still lower than predicted from the temperature-dependence of recombination. We argue that this reflects the heterogeneity of the recombination process combined with the enhanced sensitivity of TL to slower components. The recombination kinetics are accurately fitted as a sum of two exponentials and we show that this is not due to a progressive stabilization of the charge-separated state, but to a pre-existing conformational heterogeneity. PMID:15653722

  7. High efficiency recombineering in lactic acid bacteria

    PubMed Central

    van Pijkeren, Jan-Peter; Britton, Robert A.

    2012-01-01

    The ability to efficiently generate targeted point mutations in the chromosome without the need for antibiotics, or other means of selection, is a powerful strategy for genome engineering. Although oligonucleotide-mediated recombineering (ssDNA recombineering) has been utilized in Escherichia coli for over a decade, the successful adaptation of ssDNA recombineering to Gram-positive bacteria has not been reported. Here we describe the development and application of ssDNA recombineering in lactic acid bacteria. Mutations were incorporated in the chromosome of Lactobacillus reuteri and Lactococcus lactis without selection at frequencies ranging between 0.4% and 19%. Whole genome sequence analysis showed that ssDNA recombineering is specific and not hypermutagenic. To highlight the utility of ssDNA recombineering we reduced the intrinsic vancomymycin resistance of L. reuteri >100-fold. By creating a single amino acid change in the d-Ala-d-Ala ligase enzyme we reduced the minimum inhibitory concentration for vancomycin from >256 to 1.5 µg/ml, well below the clinically relevant minimum inhibitory concentration. Recombineering thus allows high efficiency mutagenesis in lactobacilli and lactococci, and may be used to further enhance beneficial properties and safety of strains used in medicine and industry. We expect that this work will serve as a blueprint for the adaptation of ssDNA recombineering to other Gram-positive bacteria. PMID:22328729

  8. Photoionization and Recombination

    NASA Technical Reports Server (NTRS)

    Nahar, Sultana N.

    2000-01-01

    Theoretically self-consistent calculations for photoionization and (e + ion) recombination are described. The same eigenfunction expansion for the ion is employed in coupled channel calculations for both processes, thus ensuring consistency between cross sections and rates. The theoretical treatment of (e + ion) recombination subsumes both the non-resonant recombination ("radiative recombination"), and the resonant recombination ("di-electronic recombination") processes in a unified scheme. In addition to the total, unified recombination rates, level-specific recombination rates and photoionization cross sections are obtained for a large number of atomic levels. Both relativistic Breit-Pauli, and non-relativistic LS coupling, calculations are carried out in the close coupling approximation using the R-matrix method. Although the calculations are computationally intensive, they yield nearly all photoionization and recombination parameters needed for astrophysical photoionization models with higher precision than hitherto possible, estimated at about 10-20% from comparison with experimentally available data (including experimentally derived DR rates). Results are electronically available for over 40 atoms and ions. Photoionization and recombination of He-, and Li-like C and Fe are described for X-ray modeling. The unified method yields total and complete (e+ion) recombination rate coefficients, that can not otherwise be obtained theoretically or experimentally.

  9. Combined IL-12 Plasmid and Recombinant SjGST Enhance the Protective and Anti-pathology Effect of SjGST DNA Vaccine Against Schistosoma japonicum.

    PubMed

    Cheng, Po-Ching; Lin, Ching-Nan; Peng, Shih-Yi; Kang, Tsung-Fu; Lee, Kin-Mu

    2016-02-01

    Schistosomiasis is listed as one of most important tropical diseases and more than 200 million people are estimated to be infected. Development of a vaccine is thought to be the most effective way to control this disease. Recombinant 26-kDa glutathione S-transferase (rSjGST) has previously been reported to achieve a worm reduction rate of 42-44%. To improve the efficiency of the vaccine against Schistosoma japonicum, we immunized mice with a combination of pcDNA vector-encoded 26-kDa SjGST (pcDNA/SjGST), IL-12 expressing-plasmid (pIL-12), and rSjGST. Co-vaccination with pcDNA/SjGST, pIL-12, and rSjGST led to a reduction in worm burden, hepatic egg burden, and the size of liver tissue granulomas than that in the untreated infection controls. In addition, we detected high levels of specific IgG, IgG1, and IgG2a against the rSjGST antigen in infected mice vaccinated with this combination of pcDNA/SjGST, pIL-12, and rSjGST. Moreover, high expression levels of Th2 cytokines, including IL-4 and IL-10, were also detected in this group, without diminished levels of IL-12, INF-γ, and TNF-α cytokines that are related to parasite killing. In conclusion, we have developed a new vaccination regimen against S. japonicum infection and shown that co-immunization with pcDNA/SjGST vaccine, pIL-12, and rSjGST has significant anti-parasite, anti-hepatic egg and anti-pathology effects in mice. The efficacy of this vaccination method should be further validated in large animals such as water buffalo. This method may help to reduce the transmission of zoonotic schistosomiasis japonica. PMID:26891172

  10. Combined IL-12 Plasmid and Recombinant SjGST Enhance the Protective and Anti-pathology Effect of SjGST DNA Vaccine Against Schistosoma japonicum

    PubMed Central

    Cheng, Po-Ching; Lin, Ching-Nan; Peng, Shih-Yi; Kang, Tsung-Fu; Lee, Kin-Mu

    2016-01-01

    Schistosomiasis is listed as one of most important tropical diseases and more than 200 million people are estimated to be infected. Development of a vaccine is thought to be the most effective way to control this disease. Recombinant 26-kDa glutathione S-transferase (rSjGST) has previously been reported to achieve a worm reduction rate of 42–44%. To improve the efficiency of the vaccine against Schistosoma japonicum, we immunized mice with a combination of pcDNA vector-encoded 26-kDa SjGST (pcDNA/SjGST), IL-12 expressing-plasmid (pIL-12), and rSjGST. Co-vaccination with pcDNA/SjGST, pIL-12, and rSjGST led to a reduction in worm burden, hepatic egg burden, and the size of liver tissue granulomas than that in the untreated infection controls. In addition, we detected high levels of specific IgG, IgG1, and IgG2a against the rSjGST antigen in infected mice vaccinated with this combination of pcDNA/SjGST, pIL-12, and rSjGST. Moreover, high expression levels of Th2 cytokines, including IL-4 and IL-10, were also detected in this group, without diminished levels of IL-12, INF-γ, and TNF-α cytokines that are related to parasite killing. In conclusion, we have developed a new vaccination regimen against S. japonicum infection and shown that co-immunization with pcDNA/SjGST vaccine, pIL-12, and rSjGST has significant anti-parasite, anti-hepatic egg and anti-pathology effects in mice. The efficacy of this vaccination method should be further validated in large animals such as water buffalo. This method may help to reduce the transmission of zoonotic schistosomiasis japonica. PMID:26891172

  11. Enhanced Th1-biased immune efficacy of porcine circovirus type 2 Cap-protein-based subunit vaccine when coadministered with recombinant porcine IL-2 or GM-CSF in mice.

    PubMed

    Wang, Yiping; Lu, Yuehua; Liu, Dan; Wei, Yanwu; Guo, Longjun; Wu, Hongli; Huang, Liping; Liu, Jianbo; Liu, Changming

    2015-02-01

    Porcine circovirus type 2 (PCV2) capsid (Cap) protein is the primary protective antigen responsible for inducing PCV2-specific protective immunity, so it is a desirable target for the development of recombinant subunit vaccines to prevent PCV2-associated diseases. Interleukin 2 (IL-2) and granulocyte-macrophage colony-stimulating factor (GM-CSF), used as immune adjuvants, have been shown to enhance the immunogenicity of certain antigens or vaccines in various experimental models. In this study, five different subunit vaccines (the PCV2-Cap, Cap-PoIL-2, PCV2-Cap + PoIL-2, Cap-PoGM-CSF, and PCV2-Cap + PoGM-CSF vaccines) were prepared based on baculovirus-expressed recombinant proteins. The immunogenicity of these vaccines was evaluated to identify the immunoenhancement by PoIL-2 and PoGM-CSF of the Cap-protein-based PCV2 subunit vaccine in mice. The PCV2-Cap + PoIL-2, Cap-PoGM-CSF, PCV2-Cap + PoGM-CSF, and PCV2-Cap vaccines induced significantly higher levels of PCV2-specific antibodies than the Cap-PoIL-2 vaccine, whereas there was no apparent difference between these four vaccines. Our results indicate that neither PoIL-2 nor PoGM-CSF had effect on the enhancement of the humoral immunity induced by the PCV2-Cap vaccine. Furthermore, the PCV2-Cap + PoIL-2, Cap-PoGM-CSF, and PCV2-Cap + PoGM-CSF vaccines elicited stronger lymphocyte proliferative responses and greater IL-2 and interferon gamma (IFN-γ) secretion. This suggests that PoIL-2 and PoGM-CSF substantially augmented the Th1-biased immune response to the PCV2-Cap vaccine. Following challenge, the viral loads in the lungs of the PCV2-Cap + PoIL-2-, Cap-PoGM-CSF-, and PCV2-Cap + PoGM-CSF-treated groups were dramatically lower than those in the Cap-PoIL-2- and PCV2-Cap-treated groups, indicating that the three vaccines induced stronger protective effects against challenge. These findings show that PoIL-2 and PoGM-CSF essentially enhanced the Th1-biased protective efficacy of the

  12. The extradomain A of fibronectin (EDA) combined with poly(I:C) enhances the immune response to HIV-1 p24 protein and the protection against recombinant Listeria monocytogenes-Gag infection in the mouse model.

    PubMed

    San Román, Beatriz; De Andrés, Ximena; Muñoz, Pilar-María; Obregón, Patricia; Asensio, Aaron-C; Garrido, Victoria; Mansilla, Cristina; Arribillaga, Laura; Lasarte, Juan-José; De Andrés, Damián; Amorena, Beatriz; Grilló, María-Jesús

    2012-03-28

    The development of effective vaccines against HIV-1 infection constitutes one of the major challenges in viral immunology. One of the protein candidates in vaccination against this virus is p24, since it is a conserved HIV antigen that has cytotoxic and helper T cell epitopes as well as B cell epitopes that may jointly confer enhanced protection against infection when used in immunization-challenge approaches. In this context, the adjuvant effect of EDA (used as EDAp24 fusion protein) and poly(I:C), as agonists of TLR4 and TLR3, respectively, was assessed in p24 immunizations using a recombinant Listeria monocytogenes HIV-1 Gag proteins (Lm-Gag, where p24 is the major antigen) for challenge in mice. Immunization with EDAp24 fusion protein together with poly(I:C) adjuvant induced a specific p24 IFN-γ production (Th1 profile) as well as protection against a Lm-Gag challenge, suggesting an additive or synergistic effect between both adjuvants. The combination of EDA (as a fusion protein with the antigen, which may favor antigen targeting to dendritic cells through TLR4) and poly(I:C) could thus be a good adjuvant candidate to enhance the immune response against HIV-1 proteins and its use may open new ways in vaccine investigations on this virus. PMID:22326778

  13. Inclusion of a universal tetanus toxoid CD4+ T cell epitope P2 significantly enhanced the immunogenicity of recombinant rotavirus ΔVP8* subunit parenteral vaccines

    PubMed Central

    Wen, Xiaobo; Wen, Ke; Cao, Dianjun; Li, Guohua; Jones, Ronald W.; Li, Jianping; Szu, Shousun; Hoshino, Yasutaka; Yuan, Lijuan

    2014-01-01

    Currently available live oral rotavirus vaccines, Rotarix® and RotaTeq®, are highly efficacious in developed countries. However, the immunogenicity and efficacy of such vaccines in some developing countries are low. We reported previously that bacterially-expressed rotavirus ΔVP8* subunit vaccine candidates with P[8], P[4] or P[6] specificity elicited high-titer virus neutralizing antibodies in animals immunized intramuscularly. Of note was the finding that antibodies induced with the P[8]ΔVP8* vaccine neutralized both homotypic P[8] and heterotypic P[4] rotavirus strains to high titer. To further improve its vaccine potential, a tetanus toxoid universal CD4+ T cell epitope P2 was introduced into P[8] or P[6]ΔVP8* construct. The resulting recombinant fusion proteins expressed in Escherichia coli were of high solubility and were produced with high yield. Two doses (10 or 20μg/dose) of the P2-P[8]ΔVP8* vaccine or P2-P[6]ΔVP8* vaccine with aluminum phosphate adjuvant elicited significantly higher geometric mean homologous neutralizing antibody titers than the vaccines without P2 in intramuscularly immunized guinea pigs. Interestingly, high levels of neutralizing antibody responses induced in guinea pigs with 3 doses of the P2-P[8]ΔVP8* vaccine persisted for at least 6 months. Furthermore, in the gnotobiotic piglet challenge study, three intramuscular doses (50μg/dose) of the P2-P[8]ΔVP8* vaccine with aluminum phosphate adjuvant significantly delayed the onset of diarrhea and significantly reduced the duration of diarrhea and the cumulative diarrhea score after oral challenge with virulent human rotavirus Wa (G1P[8]) strain. The P2-P[8]ΔVP8* vaccine induced serum virus neutralizing antibody and VP4-specific IgG antibody production prechallenge, and primed the pigs for higher antibody and intestinal and systemic virus-specific IFN-γ producing CD4+ T cell responses postchallenge. These two subunit vaccines could be used at a minimum singly or preferably in

  14. Surface recombination statistics at traps

    NASA Astrophysics Data System (ADS)

    Landsberg, P. T.; Abrahams, M. S.

    1983-09-01

    The Shockley-Read-Hall recombination statistics was recently generalised by Dhariwal, Kothari and Jain to include the effect of a finite time of relaxation before the captured carrier settles into its ground state, and by Landsberg to allow for Auger effects and so-called "extra" carriers supplied to the semiconductor from the outside. The combined result of these effects is studied here theoretically, together with the consideration of a simple distribution of trap states. It is found that the surface recombination velocity s has the usual minimum in the near intrinsic state and that s passes through a maximum as a function of excess electron concentration. Both extrema are enhanced if the trap states are distributed over an energy range. Experimental plots of s as a function of excess electron and hole concentrations should yield insight concerning the numerical importance of (a) Auger effects with the participation of traps and (b) relaxation times.

  15. Recombination Catalysts for Hypersonic Fuels

    NASA Technical Reports Server (NTRS)

    Chinitz, W.

    1998-01-01

    The goal of commercially-viable access to space will require technologies that reduce propulsion system weight and complexity, while extracting maximum energy from the products of combustion. This work is directed toward developing effective nozzle recombination catalysts for the supersonic and hypersonic aeropropulsion engines used to provide such access to space. Effective nozzle recombination will significantly reduce rk=le length (hence, propulsion system weight) and reduce fuel requirements, further decreasing the vehicle's gross lift-off weight. Two such catalysts have been identified in this work, barium and antimony compounds, by developing chemical kinetic reaction mechanisms for these materials and determining the engine performance enhancement for a typical flight trajectory. Significant performance improvements are indicated, using only 2% (mole or mass) of these compounds in the combustor product gas.

  16. Recombination of cluster ions

    NASA Technical Reports Server (NTRS)

    Johnsen, Rainer

    1993-01-01

    Some of our recent work on molecular band emissions from recombination of molecular dimer ions (N4(+) and CO(+) CO) is discussed. Much of the experimental work was done by Y. S. Cao; the results on N4(+) recombination have been published. A brief progress report is given on our ongoing measurements of neutral products of recombination using the flowing-afterglow Langmuir-probe technique in conjunction with laser-induced fluorescence.

  17. A tumor-penetrating recombinant protein anti-EGFR-iRGD enhance efficacy of paclitaxel in 3D multicellular spheroids and gastric cancer in vivo.

    PubMed

    Sha, Huizi; Li, Rutian; Bian, Xinyu; Liu, Qin; Xie, Chen; Xin, Xiaoyan; Kong, Weiwei; Qian, Xiaoping; Jiang, Xiqun; Hu, Wenjing; Liu, Baorui

    2015-09-18

    It has been a major challenge for drug penetration in solid tumor tissues because of the complicated tumor microenvironment. We have previously constructed a protein of bispecific targets and high permeability named anti-EGFR-iRGD and investigated its inhibiting cell proliferation of gastric cancer. Paclitaxel (PTX) is widely used for treating various kinds of cancer. In this paper, we investigated the effects of anti-EGFR-iRGD in combination with chemotherapeutic drugs including PTX in epidermal growth factor receptor highly expressing gastric cancer. We demonstrated the therapeutic efficacy of PTX combined with anti-EGFR-iRGD on monolayer cells (2D), multicellular spheroids (3D) and tumor-bearing mice for the first time and investigated the mechanism of this synergy effect. Our results provide impetus for further studies to use anti-EGFR-iRGD with standard cytotoxic treatment regimens for enhancing therapy of gastric cancer patients. PMID:25998561

  18. Enhanced cell surface expression, immunogenicity and genetic stability resulting from a spontaneous truncation of HIV Env expressed by a recombinant MVA

    SciTech Connect

    Wyatt, Linda S. Belyakov, Igor M.; Earl, Patricia L.; Berzofsky, Jay A.; Moss, Bernard

    2008-03-15

    During propagation of modified vaccinia virus Ankara (MVA) encoding HIV 89.6 Env, a few viral foci stained very prominently. Virus cloned from such foci replicated to higher titers than the parent and displayed enhanced genetic stability on passage. Sequence analysis showed a single nucleotide deletion in the 89.6 env gene of the mutant that caused a frame shift and truncation of 115 amino acids from the cytoplasmic domain. The truncated Env was more highly expressed on the cell surface, induced higher antibody responses than the full-length Env, reacted with HIV neutralizing monoclonal antibodies and mediated CD4/co-receptor-dependent fusion. Intramuscular (IM), intradermal (ID) needleless, and intrarectal (IR) catheter inoculations gave comparable serum IgG responses. However, intraoral (IO) needleless injector route gave the highest IgA in lung washings and IR gave the highest IgA and IgG responses in fecal extracts. Induction of CTL responses in the spleens of individual mice as assayed by intracellular cytokine staining was similar with both the full-length and truncated Env constructs. Induction of acute and memory CTL in the spleens of mice immunized with the truncated Env construct by ID, IO, and IR routes was comparable and higher than by the IM route, but only the IR route induced CTL in the gut-associated lymphoid tissue. Thus, truncation of Env enhanced genetic stability as well as serum and mucosal antibody responses, suggesting the desirability of a similar modification in MVA-based candidate HIV vaccines.

  19. SURVIVAL AND EFFECTS OF WILD-TYPE, MUTANT, AND RECOMBINANT STREPTOMYCES IN A SOIL ECOSYSTEM

    EPA Science Inventory

    In a laboratory simulation, selected wild-type, mutant, and recombinant Streptomyces were released into a silt loam soil. trains included genetically enhanced lignin decomposers and those expressing recombinant plasmids. heir survival and effects on soil organic carbon mineraliza...

  20. Detection of UV-induced activation of NF-kappaB in a recombinant human cell line by means of Enhanced Green Fluorescent Protein (EGFP).

    PubMed

    Hellweg, Christine E; Baumstark-Khan, Christa

    2007-08-01

    The cellular protection reaction known as ultraviolet (UV) response leads to increased transcription of several genes. Parts of this transcriptional response are transmitted via activation of the Nuclear factor kappaB (NF-kappaB). The contribution of different UV radiation qualities to this process is not yet known. In a previous work, a stably transfected human cell line was developed which indicates activation of the NF-kappaB pathway by fluorescence of the reporters Enhanced Green Fluorescent Protein (EGFP) and its destabilized variant (d2EGFP) thereby allowing a fast and reliable monitoring of UV effects on the NF-kappaB pathway. Cells were exposed to a mercury low-pressure lamp or to simulated sunlight of different wavelength ranges and subjected to flow cytometric analysis after different post-irradiation periods. Growth capacity of cells after UV irradiation was quantified using a luminance measurement of crystal violet stained cell layers. In contrast to UVC and UVB, UVA radiation induced d2EGFP expression and NF-kappaB activation in a non-cytotoxic dose range. These results show that NF-kappaB plays a role in the UVA-induced gene activation in a non-cytotoxic dose range in a human epithelial cell line. PMID:17429671

  1. Oral administration recombinant porcine epidermal growth factor enhances the jejunal digestive enzyme genes expression and activity of early-weaned piglets.

    PubMed

    Lee, D N; Chuang, Y S; Chiou, H Y; Wu, F Y; Yen, H T; Weng, C F

    2008-08-01

    This study attempted to determine ingested porcine epidermal growth factor (pEGF) on the gastrointestinal tract development of early-weaned piglets. Thirty-two piglets (14-day weaned) were randomly allotted to supplemented with 0 (control), 0.5, 1.0, or 1.5 mg pEGF/kg diet. Each treatment consisted of four replicates with two pigs per pen for a 14 days experimental period. Piglets were sacrificed and gastrointestinal tract samples were collected to measure mucosa morphology, mRNA expression and activities of digestive enzymes in the gastrointestinal tract of piglets at the end of the experiment. Diets supplemented with pEGF failed to influence growth performance but tended to increase jejunal mucosa weight (p < 0.09) and protein content (p < 0.07). Piglets supplemental pEGF induced incrementally the gastric pepsin activity (p < 0.05) and stimulated jejunal alkaline phosphatase (ALP) and lactase activities accompanied with the increase of jejunal ALP and maltase mRNA expression. No effect of pEGF on the activities of all enzymes in ileum except the stimulation of ileal aminopeptide N mRNA expression. These results reveal that dietary pEGF supplementation might enhance gene expression and activities of digestive enzymes in the stomach and jejunum of piglets. PMID:18662356

  2. Genetic recombination. [Escherichia coli

    SciTech Connect

    Stahl, F.W.

    1987-02-01

    The molecular pathways of gene recombination are explored and compared in studies of the model organisms, Escherichia coli and phase lambda. In the discussion of data from these studies it seems that recombination varies with the genetic idiosyncrasies of the organism and may also vary within a single organism.

  3. Improvement of FK506 production in Streptomyces tsukubaensis by genetic enhancement of the supply of unusual polyketide extender units via utilization of two distinct site-specific recombination systems.

    PubMed

    Chen, Dandan; Zhang, Qi; Zhang, Qinglin; Cen, Peilin; Xu, Zhinan; Liu, Wen

    2012-08-01

    FK506 is a potent immunosuppressant that has a wide range of clinical applications. Its 23-member macrocyclic scaffold, mainly with a polyketide origin, features two methoxy groups at C-13 and C-15 and one allyl side chain at C-21, due to the region-specific incorporation of two unusual extender units derived from methoxymalonyl-acyl carrier protein (ACP) and allylmalonyl-coenzyme A (CoA), respectively. Whether their intracellular formations can be a bottleneck for FK506 production remains elusive. In this study, we report the improvement of FK506 yield in the producing strain Streptomyces tsukubaensis by the duplication of two sets of pathway-specific genes individually encoding the biosyntheses of these two extender units, thereby providing a promising approach to generate high-FK506-producing strains via genetic manipulation. Taking advantage of the fact that S. tsukubaensis is amenable to two actinophage (ΦC31 and VWB) integrase-mediated recombination systems, we genetically enhanced the biosyntheses of methoxymalonyl-ACP and allylmalonyl-CoA, as indicated by transcriptional analysis. Together with the optimization of glucose supplementation, the maximal FK506 titer eventually increased by approximately 150% in comparison with that of the original strain. The strategy of engineering the biosynthesis of unusual extender units described here may be applicable to improving the production of other polyketide or nonribosomal peptide natural products that contain pathway-specific building blocks. PMID:22582065

  4. Expression and purification of recombinant nattokinase in Spodoptera frugiperda cells.

    PubMed

    Li, Xiaoxiang; Wang, Xiaoli; Xiong, Shaoling; Zhang, Jing; Cai, Litao; Yang, Yanyan

    2007-10-01

    A recombinant baculovirus, rv-egfp-NK, containing a reporter gene encoding the enhanced green fluorescent protein (EGFP), was used to express nattokinase (NK), a fibrinolytic enzyme, in Spodoptera frugiperda (SF-9) cells. The recombinant protein also included a histidine tag for purification using Ni(2+) resins. The recombinant NK, approximately 30 kDa, retained fibrinolytic activity (60 U/ml). The integration of the EGFP expression cassette in the Bac-to-Bac system is thus an effective method for the expression and purification of recombinant NK protein in Spodoptera frugiperda insect cells. PMID:17581705

  5. Differential Requirements of Singleplex and Multiplex Recombineering of Large DNA Constructs

    PubMed Central

    Reddy, Thimma R.; Kelsall, Emma J.; Fevat, Léna M. S.; Munson, Sarah E.; Cowley, Shaun M.

    2015-01-01

    Recombineering is an in vivo genetic engineering technique involving homologous recombination mediated by phage recombination proteins. The use of recombineering methodology is not limited by size and sequence constraints and therefore has enabled the streamlined construction of bacterial strains and multi-component plasmids. Recombineering applications commonly utilize singleplex strategies and the parameters are extensively tested. However, singleplex recombineering is not suitable for the modification of several loci in genome recoding and strain engineering exercises, which requires a multiplex recombineering design. Defining the main parameters affecting multiplex efficiency especially the insertion of multiple large genes is necessary to enable efficient large-scale modification of the genome. Here, we have tested different recombineering operational parameters of the lambda phage Red recombination system and compared singleplex and multiplex recombineering of large gene sized DNA cassettes. We have found that optimal multiplex recombination required long homology lengths in excess of 120 bp. However, efficient multiplexing was possible with only 60 bp of homology. Multiplex recombination was more limited by lower amounts of DNA than singleplex recombineering and was greatly enhanced by use of phosphorothioate protection of DNA. Exploring the mechanism of multiplexing revealed that efficient recombination required co-selection of an antibiotic marker and the presence of all three Red proteins. Building on these results, we substantially increased multiplex efficiency using an ExoVII deletion strain. Our findings elucidate key differences between singleplex and multiplex recombineering and provide important clues for further improving multiplex recombination efficiency. PMID:25954970

  6. [Recombinant antibodies against bioweapons].

    PubMed

    Thullier, Philippe; Pelat, Thibaut; Vidal, Dominique

    2009-12-01

    The threat posed by bioweapons (BW) could lead to the re-emergence of such deadly diseases as plague or smallpox, now eradicated from industrialized countries. The development of recombinant antibodies allows tackling this risk because these recombinant molecules are generally well tolerated in human medicine, may be utilized for prophylaxis and treatment, and because antibodies neutralize many BW. Recombinant antibodies neutralizing the lethal toxin of anthrax, botulinum toxins and the smallpox virus have in particular been isolated recently, with different technologies. Our approach, which uses phage-displayed immune libraries built from non-human primates (M. fascicularis) to obtain recombinant antibodies, which may later be super-humanized (germlinized), has allowed us to obtain such BWs-neutralizing antibodies. PMID:20035695

  7. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, C.W.; Mangel, W.F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  8. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  9. An improved recombineering approach by adding RecA to lambda Red recombination.

    PubMed

    Wang, Junping; Sarov, Mihail; Rientjes, Jeanette; Fu, Jun; Hollak, Heike; Kranz, Harald; Xie, Wei; Stewart, A Francis; Zhang, Youming

    2006-01-01

    Recombineering is the use of homologous recombination in Escherichia coli for DNA engineering. Of several approaches, use of the lambda phage Red operon is emerging as the most reliable and flexible. The Red operon includes three components: Redalpha, a 5' to 3' exonuclease, Redbeta, an annealing protein, and Redgamma, an inhibitor of the major E. coli exonuclease and recombination complex, RecBCD. Most E. coli cloning hosts are recA deficient to eliminate recombination and therefore enhance the stability of cloned DNAs. However, loss of RecA also impairs general cellular integrity. Here we report that transient RecA co-expression enhances the total number of successful recombinations in bacterial artificial chromosomes (BACs), mostly because the E. coli host is more able to survive the stresses of DNA transformation procedures. We combined this practical improvement with the advantages of a temperature-sensitive version of the low copy pSC101 plasmid to develop a protocol that is convenient and more efficient than any recombineering procedure, for use of either double- or single-stranded DNA, published to date. PMID:16382181

  10. Resonant phenomena in laser-assisted radiative attachment or recombination

    NASA Astrophysics Data System (ADS)

    Zheltukhin, A. N.; Flegel, A. V.; Frolov, M. V.; Manakov, N. L.; Starace, Anthony F.

    2012-04-01

    Resonant enhancements are predicted in cross sections σn for laser-assisted radiative attachment or electron-ion recombination accompanied by absorption of n laser photons. These enhancements occur for incoming electron energies at which the electron can be attached or recombined by emitting μ laser photons followed by emission of a spontaneous photon upon absorbing n + μ laser photons. The close similarity between rescattering plateaus in spectra of resonant attachment/recombination and of high-order harmonic generation is shown based on a general parametrization for σn and on numerical results for e - H attachment.