Science.gov

Sample records for enhanced resonance raman

  1. Ultraviolet Resonant Raman Enhancements in the Detection of Explosives

    SciTech Connect

    Short Jr., Billy Joe

    2009-06-01

    Raman-based spectroscopy is potentially militarily useful for standoff detection of high explosives. Normal (non-resonance) and resonance Raman spectroscopies are both light scattering techniques that use a laser to measure the vibrational spectrum of a sample. In resonance Raman, the laser is tuned to match the wavelength of a strong electronic absorbance in the molecule of interest, whereas, in normal Raman the laser is not tuned to any strong electronic absorbance bands. The selection of appropriate excitation wavelengths in resonance Raman can result in a dramatic increase in the Raman scattering efficiency of select band(s) associated with the electronic transition. Other than the excitation wavelength, however, resonance Raman is performed experimentally the same as normal Raman. In these studies, normal and resonance Raman spectral signatures of select solid high explosive (HE) samples and explosive precursors were collected at 785 nm, 244 nm and 229 nm. Solutions of PETN, TNT, and explosive precursors (DNT & PNT) in acetonitrile solvent as an internal Raman standard were quantitatively evaluated using ultraviolet resonance Raman (UVRR) microscopy and normal Raman spectroscopy as a function of power and select excitation wavelengths. Use of an internal standard allowed resonance enhancements to be estimated at 229 nm and 244 nm. Investigations demonstrated that UVRR provided ~2000-fold enhancement at 244 nm and ~800-fold improvement at 229 nm while PETN showed a maximum of ~25-fold at 244 nm and ~190-fold enhancement at 229 nm solely from resonance effects when compared to normal Raman measurements. In addition to the observed resonance enhancements, additional Raman signal enhancements are obtained with ultraviolet excitation (i.e., Raman scattering scales as !4 for measurements based on scattered photons). A model, based partly on the resonance Raman enhancement results for HE solutions, is presented for estimating Raman enhancements for solid HE samples.

  2. Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response.

    PubMed

    Dmitriev, Pavel A; Baranov, Denis G; Milichko, Valentin A; Makarov, Sergey V; Mukhin, Ivan S; Samusev, Anton K; Krasnok, Alexander E; Belov, Pavel A; Kivshar, Yuri S

    2016-05-01

    Enhancement of optical response with high-index dielectric nanoparticles is attributed to the excitation of their Mie-type magnetic and electric resonances. Here we study Raman scattering from crystalline silicon nanoparticles and reveal that magnetic dipole modes have a much stronger effect on the scattering than electric modes of the same order. We demonstrate experimentally a 140-fold enhancement of the Raman signal from individual silicon spherical nanoparticles at the magnetic dipole resonance. Our results confirm the importance of the optically-induced magnetic response of subwavelength dielectric nanoparticles for enhancing light-matter interactions. PMID:27113352

  3. Experimental evaluation of the twofold electromagnetic enhancement theory of surface-enhanced resonance Raman scattering

    SciTech Connect

    Yoshida, Ken-ichi; Itoh, Tamitake; Biju, Vasudevanpillai; Ishikawa, Mitsuru; Ozaki, Yukihiro

    2009-02-15

    We examined an electromagnetic (EM) theory of surface-enhanced resonance Raman scattering (SERRS) using single Ag nanoaggregates. The SERRS-EM theory is characterized by twofold EM enhancement induced by the coupling of plasmon resonance with both excitation and emission of Raman scattering plus fluorescence. The total emission cross-section spectra of enhanced Raman scattering and enhanced fluorescence were calculated using the following parameters: the spectrum of enhancement factor induced by plasmon resonance, resonance Raman scattering overlapped with fluorescence, and excitation wavelengths. The calculations well agreed with experimental total emission cross-section spectra, thus providing strong indications that the SERRS-EM theory is quantitatively correct.

  4. Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response

    NASA Astrophysics Data System (ADS)

    Dmitriev, Pavel A.; Baranov, Denis G.; Milichko, Valentin A.; Makarov, Sergey V.; Mukhin, Ivan S.; Samusev, Anton K.; Krasnok, Alexander E.; Belov, Pavel A.; Kivshar, Yuri S.

    2016-05-01

    Enhancement of optical response with high-index dielectric nanoparticles is attributed to the excitation of their Mie-type magnetic and electric resonances. Here we study Raman scattering from crystalline silicon nanoparticles and reveal that magnetic dipole modes have a much stronger effect on the scattering than electric modes of the same order. We demonstrate experimentally a 140-fold enhancement of the Raman signal from individual silicon spherical nanoparticles at the magnetic dipole resonance. Our results confirm the importance of the optically-induced magnetic response of subwavelength dielectric nanoparticles for enhancing light-matter interactions.Enhancement of optical response with high-index dielectric nanoparticles is attributed to the excitation of their Mie-type magnetic and electric resonances. Here we study Raman scattering from crystalline silicon nanoparticles and reveal that magnetic dipole modes have a much stronger effect on the scattering than electric modes of the same order. We demonstrate experimentally a 140-fold enhancement of the Raman signal from individual silicon spherical nanoparticles at the magnetic dipole resonance. Our results confirm the importance of the optically-induced magnetic response of subwavelength dielectric nanoparticles for enhancing light-matter interactions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07965a

  5. Resonant enhancement of Raman scattering in metamaterials with hybrid electromagnetic and plasmonic resonances

    NASA Astrophysics Data System (ADS)

    Guddala, Sriram; Narayana Rao, D.; Ramakrishna, S. Anantha

    2016-06-01

    A tri-layer metamaterial perfect absorber of light, consisting of (Al/ZnS/Al) films with the top aluminum layer patterned as an array of circular disk nanoantennas, is investigated for resonantly enhancing Raman scattering from C60 fullerene molecules deposited on the metamaterial. The metamaterial is designed to have resonant bands due to plasmonic and electromagnetic resonances at the Raman pump frequency (725 nm) as well as Stokes emission bands. The Raman scattering from C60 on the metamaterial with resonantly matched bands is measured to be enhanced by an order of magnitude more than C60 on metamaterials with off-resonant absorption bands peaking at 1090 nm. The Raman pump is significantly enhanced due to the resonance with a propagating surface plasmon band, while the highly impedance-matched electromagnetic resonance is expected to couple out the Raman emission efficiently. The nature and hybridization of the plasmonic and electromagnetic resonances to form compound resonances are investigated by numerical simulations.

  6. Electronic Resonance Enhancement in Raman and CARS Spectroscopy: Surface Enhanced Scattering of Highly Fluorescent Molecules

    NASA Astrophysics Data System (ADS)

    Lawhead, Carlos; Ujj, Laszlo

    2015-03-01

    Surface enhanced Raman spectroscopy (SERS) is an extremely useful tool in increasing sensitivity of Raman spectroscopy; this technique significantly increases the signal from vibrational resonances which can overcome background fluoresces. Silver nanoparticles coated substrates and the silver nanoparticles in solution were used on a variety of fluorescent molecules in order to overcome sample complexities and measure the vibrational spectra. The possible enhancement of SERS using a coherent Raman (CARS) method was investigated, but enhancement factors due to Surface Enhanced CARS have yet to be verified. The instrument used was developed in the University of West Florida Physics Department utilized the second harmonic of a Nd:YAG laser to provide the excitation wavelength at 532 nm and is capable of both transmission and reflection Raman measurements. Special thanks to the UWF Office of Undergraduate Research.

  7. Surface-enhanced resonance hyper-Raman scattering and surface-enhanced resonance Raman scattering of dyes adsorbed on silver electrode and silver colloid: a comparison study

    NASA Astrophysics Data System (ADS)

    Li, Wu-Hu; Li, Xiao-Yuan; Yu, Nai-Teng

    1999-10-01

    Surface-enhanced resonance hyper-Raman scattering (SERHRS) and surface-enhanced resonance Raman scattering (SERRS) of three dyes, rhodamine 6G, crystal violet and basic fuchsin, are studied comparatively on electrochemically roughened silver electrode and silver colloid, respectively. All three dyes show a better SERHRS efficiency on the silver colloid than on the silver electrode, a phenomenon just opposite to what we have recently observed for pyridine and pyrazine [Chem. Phys. Lett. 305 (1999) 303]. These results suggest that the efficiency of SEHRS depends not only on the active surfaces employed (colloidal metals versus roughened electrodes) but also on the types of the adsorbed molecules.

  8. Near-field enhanced ultraviolet resonance Raman spectroscopy using aluminum bow-tie nano-antenna.

    PubMed

    Li, Ling; Fang Lim, Shuang; Puretzky, Alexander A; Riehn, Robert; Hallen, H D

    2012-09-10

    An aluminum bow-tie nano-antenna is combined with the resonance Raman effect in the deep ultraviolet to dramatically increase the sensitivity of Raman spectra to a small volume of material, such as benzene used here. We further demonstrate gradient-field Raman peaks for several strong infrared modes. We achieve a gain of [Formula: see text] in signal intensity from the near field enhancement due to the surface plasmon resonance in the aluminum nanostructure. The on-line resonance enhancement contributes another factor of several thousands, limited by the laser line width. Thus, an overall gain of hundreds of million is achieved. PMID:23066168

  9. High-sensitivity pesticide detection using particle-enhanced resonant Raman scattering

    NASA Astrophysics Data System (ADS)

    Ranjan, Bikas; Saito, Yuika; Verma, Prabhat

    2016-03-01

    The use of pesticides in agriculture has raised concerns, as even a small residual of pesticide on food can be harmful. It is therefore of great importance to develop a robust technique to detect tiny amounts of pesticides. Although Raman spectroscopy is frequently used for chemical identification, it is not suitable for extremely low molecular concentrations. We propose a technique called particle-enhanced resonant Raman spectroscopy to detect extremely low concentrations of pesticides, where gold nanoparticles of desired plasmonic resonance are synthesized to match the resonance in Raman scattering. We successfully demonstrated the detection of extremely low amounts of pesticides on oranges.

  10. Comparative study of resonance Raman and surface-enhanced resonance Raman chlorophyll a spectra using soret and red excitation

    SciTech Connect

    Thomas, L.L.; Kim, Jaeho; Cotton, T.M. )

    1990-12-05

    Surface-enhanced resonance Raman scattering (SERRS) spectra are reported for chlorophyll a adsorbed on a silver electrode at 298 and 77 K with 406.7-, 457.9-, 514.5-, and 647.1-nm excitation. Submerging the electrode in degassed water at 298 K was found to improve the spectral quality by minimizing sample heating and photooxidation. Spectral intensities and peak resolutions were greater at all excitation wavelengths at liquid nitrogen temperature. Most significantly, roughened silver at the low temperature quenched the fluorescence accompanying red excitation and minimized sample photooxidation, resulting in richly detailed SERRS spectra of chlorophyll a. The close correspondence between chlorophyll a resonance Raman (RR) and SERRS spectra suggests that an electromagnetic mechanism is the major source of the surface enhancement, rather than a chemical mechanism (e.g. a charge-transfer complex between chlorophyll a and the metal). The spectral similarities, together with the presence of the MgN{sub 4} vibration band in the SERRS spectra, also provide evidence that structural alterations (e.g. cleavage of ring V or loss of Mg) do not occur in chlorophyll a after adsorption at the electrode surface. A distinctive SERRS spectrum was obtained for each excitation wavelength. Selective excitation within the various electronic transitions can thus be utilized to verify assignments of the vibrational modes of chlorophyll a and to monitor its interactions and photochemical behavior in biomimetic systems.

  11. Intercalation between antitumor anthracyclines and DNA as probed by resonance and surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Smulevich, G.; Mantini, A. R.; Casu, M.; Marzocchi, M. P.

    1991-05-01

    The antiturnor anthracyclincs, idarubicin (IDA ), adrianiycin (ADM), epirubicin (EPI), carminomycin (CAR) and 1 1-deoxycarminornycin (DCM), whose siructural formula includes a substituted hydroxyanthraquirionc chrornophore and a sugar residue, form intercalation complexes with DNA. The stacking interaction between the chromophore and the base-pairs of DNA gives rise to noticeable ciTects on resonance Raman (RR) and surface-enhanced resonance Raman (SERRS) scattering as well as on the absorption (ABS), its second derivative (D2) and fluorescence emission (FEM) spectra.

  12. Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model.

    PubMed

    Chu, Yizhuo; Wang, Dongxing; Zhu, Wenqi; Crozier, Kenneth B

    2011-08-01

    The strong coupling between localized surface plasmons and surface plasmon polaritons in a double resonance surface enhanced Raman scattering (SERS) substrate is described by a classical coupled oscillator model. The effects of the particle density, the particle size and the SiO2 spacer thickness on the coupling strength are experimentally investigated. We demonstrate that by tuning the geometrical parameters of the double resonance substrate, we can readily control the resonance frequencies and tailor the SERS enhancement spectrum. PMID:21934853

  13. Quantitative evaluation of proteins with bicinchoninic acid (BCA): resonance Raman and surface-enhanced resonance Raman scattering-based methods.

    PubMed

    Chen, Lei; Yu, Zhi; Lee, Youngju; Wang, Xu; Zhao, Bing; Jung, Young Mee

    2012-12-21

    A rapid and highly sensitive bicinchoninic acid (BCA) reagent-based protein quantitation tool was developed using competitive resonance Raman (RR) and surface-enhanced resonance Raman scattering (SERRS) methods. A chelation reaction between BCA and Cu(+), which is reduced by protein in an alkaline environment, is exploited to create a BCA-Cu(+) complex that has strong RR and SERRS activities. Using these methods, protein concentrations in solutions can be quantitatively measured at concentrations as low as 50 μg mL(-1) and 10 pg mL(-1). There are many advantages of using RR and SERRS-based assays. These assays exhibit a much wider linear concentration range and provide an additional one (RR method) to four (SERRS method) orders of magnitude increase in detection limits relative to UV-based methods. Protein-to-protein variation is determined using a reference to a standard curve at concentrations of BSA that exhibits excellent recoveries. These novel methods are extremely accurate in detecting total protein concentrations in solution. This improvement in protein detection sensitivity could yield advances in the biological sciences and medical diagnostic field and extend the applications of reagent-based protein assay techniques. PMID:23099478

  14. Aggregation-Induced Resonance Raman Optical Activity (AIRROA): A New Mechanism for Chirality Enhancement.

    PubMed

    Zajac, Grzegorz; Kaczor, Agnieszka; Pallares Zazo, Ana; Mlynarski, Jacek; Dudek, Monika; Baranska, Malgorzata

    2016-05-01

    Raman optical activity (ROA) spectroscopy is hampered by low sensitivity, with limited possibilities for enhancing the signal. In the present study, we report a new mechanism whereby chirality is enhanced using the resonance resulting from supramolecular aggregation. We have named this mechanism aggregation-induced resonance Raman optical activity (AIRROA). As an example, we study J-aggregates of astaxanthin (AXT), which show strong absorption of circularly polarized light in the range of ROA excitation. The implications of aggregation-induced signal enhancement for chiroptical spectroscopy are discussed. PMID:27057926

  15. Surface-Enhanced Raman Scattering Using Silica Whispering-Gallery Mode Resonators

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S.

    2013-01-01

    The motivation of this work was to have robust spectroscopic sensors for sensitive detection and chemical analysis of organic and molecular compounds. The solution is to use silica sphere optical resonators to provide surface-enhanced spectroscopic signal. Whispering-gallery mode (WGM) resonators made from silica microspheres were used for surface-enhanced Raman scattering (SERS) without coupling to a plasmonic mechanism. Large Raman signal enhancement is observed by exclusively using 5.08-micron silica spheres with 785-nm laser excitation. The advantage of this non-plasmonic approach is that the active substrate is chemically inert silica, thermally stable, and relatively simple to fabricate. The Raman signal enhancement is broadly applicable to a wide range of molecular functional groups including aliphatic hydrocarbons, siloxanes, and esters. Applications include trace organic analysis, particularly for in situ planetary instruments that require robust sensors with consistent response.

  16. Surface plasmon enhanced interfacial electron transfer and resonance Raman, surface-enhanced resonance Raman studies of cytochrome C mutants

    SciTech Connect

    Zheng, Junwei

    1999-11-08

    Surface plasmon resonance was utilized to enhance the electron transfer at silver/solution interfaces. Photoelectrochemical reductions of nitrite, nitrate, and CO{sub 2} were studied on electrochemically roughened silver electrode surfaces. The dependence of the photocurrent on photon energy, applied potential and concentration of nitrite demonstrates that the photoelectrochemical reduction proceeds via photoemission process followed by the capture of hydrated electrons. The excitation of plasmon resonances in nanosized metal structures resulted in the enhancement of the photoemission process. In the case of photoelectrocatalytic reduction of CO{sub 2}, large photoelectrocatalytic effect for the reduction of CO{sub 2} was observed in the presence of surface adsorbed methylviologen, which functions as a mediator for the photoexcited electron transfer from silver metal to CO{sub 2} in solution. Photoinduced reduction of microperoxidase-11 adsorbed on roughened silver electrode was also observed and attributed to the direct photoejection of free electrons of silver metal. Surface plasmon assisted electron transfer at nanostructured silver particle surfaces was further determined by EPR method.

  17. Resonance Raman enhancement optimization in the visible range by selecting different excitation wavelengths

    NASA Astrophysics Data System (ADS)

    Wang, Zhong; Li, Yuee

    2015-09-01

    Resonance enhancement of Raman spectroscopy (RS) has been used to significantly improve the sensitivity and selectivity of detection for specific components in complicated environments. Resonance RS gives more insight into the biochemical structure and reactivity. In this field, selecting a proper excitation wavelength to achieve optimal resonance enhancement is vital for the study of an individual chemical/biological ingredient with a particular absorption characteristic. Raman spectra of three azo derivatives with absorption spectra in the visible range are studied under the same experimental conditions at 488, 532, and 633 nm excitations. Universal laws in the visible range have been concluded by analyzing resonance Raman (RR) spectra of samples. The long wavelength edge of the absorption spectrum is a better choice for intense enhancement and the integrity of a Raman signal. The obtained results are valuable for applying RR for the selective detection of biochemical constituents whose electronic transitions take place at energies corresponding to the visible spectra, which is much friendlier to biologial samples compared to ultraviolet.

  18. Maximizing the electromagnetic and chemical resonances of surface-enhanced Raman scattering for nucleic acids.

    PubMed

    Freeman, Lindsay M; Pang, Lin; Fainman, Yeshaiahu

    2014-08-26

    Although surface-enhanced Raman spectroscopy (SERS) has previously been performed with nucleic acids, the measured intensities for each nucleic acid have varied significantly depending on the SERS substrate and excitation wavelength. We have demonstrated that the charge-transfer (CT) mechanism, also known as the chemical enhancement of SERS, is responsible for the discrepancies previously reported in literature. The electronic states of cytosine and guanine attached to silver atoms are computationally calculated and experimentally measured to be in the visible range, which leads to a resonance Raman effect at the corresponding maximum wavelengths. The resulting SERS measurements are in good agreement with the simulated values, in which cytosine-silver shows stronger enhancement at 532 nm and guanine-silver shows stronger enhancement at 785 nm. An atomic layer of aluminum oxide is deposited on substrates to prevent charge-transfer, and corresponding measurements show weaker Raman signals caused by the suppression of the chemical resonance. These findings suggest the optimal SERS signal can be achieved by tuning the excitation wavelength to match both the electromagnetic and chemical resonances, paving the way for future single molecule detection of nucleic acids other than adenine. PMID:25065837

  19. Quantitative evaluation of blinking in surface enhanced resonance Raman scattering and fluorescence by electromagnetic mechanism

    NASA Astrophysics Data System (ADS)

    Itoh, Tamitake; Iga, Mitsuhiro; Tamaru, Hiroharu; Yoshida, Ken-ichi; Biju, Vasudevanpillai; Ishikawa, Mitsuru

    2012-01-01

    We analyze blinking in surface enhanced resonance Raman scattering (SERRS) and surface enhanced fluorescence (SEF) of rhodamine 6G molecules as intensity and spectral instability by electromagnetic (EM) mechanism. We find that irradiation of intense NIR laser pulses induces blinking in SERRS and SEF. Thanks to the finding, we systematically analyze SERRS and SEF from stable to unstable using single Ag nanoparticle (NP) dimers. The analysis reveals two physical insights into blinking as follows. (1) The intensity instability is inversely proportional to the enhancement factors of decay rate of molecules. The estimation using the proportionality suggests that separation of the molecules from Ag NP surfaces is several angstroms. (2) The spectral instability is induced by blueshifts in EM enhancement factors, which have spectral shapes similar to the plasmon resonance. This analysis provides us with a quantitative picture for intensity and spectral instability in SERRS and SEF within the framework of EM mechanism.

  20. Resonant Raman scattering in nanoscale pentacene films

    NASA Astrophysics Data System (ADS)

    He, Rui; Dujovne, Irene; Chen, Liwei; Miao, Qian; Hirjibehedin, Cyrus F.; Pinczuk, Aron; Nuckolls, Colin; Kloc, Christian; Ron, Arza

    2004-02-01

    Resonant Raman scattering intensities from nanoscale films of pentacene display large resonant enhancements that enable observation of vibrational modes in monolayer cluster films. The resonant enhancements occur when the outgoing photon energy overlaps the free exciton optical transitions observed in luminescence. The results point to the significant potential of resonant Raman methods in the characterization of nanoscale structures of organic molecular semiconductors.

  1. Surface-enhanced resonance Raman spectroscopy of iron-dopamine complexes

    NASA Astrophysics Data System (ADS)

    Kowalchyk, Will K.; Davis, Kevin L.; Morris, Michael D.

    1995-01-01

    Surface-enhanced resonance Raman spectroscopy (SERRS) at silver colloids is used to detect the catecholamines, 3-hydroxytyramine (dopamine) and 3,4-dihydroxyphenylacetic acid (DOPAC), in a modified Ringer's solution. Catecholamines form very strong complexes with iron(III) in solution ( Kf > 10 40) and exhibit a broad ligand-to-metal charge-transfer (LMCT) absorption in the visible (˜ 500 nm). Resonance enhancement is achieved by excitation at 532 nm from a frequency doubled Nd:YAG laser with high quality spectra attainable in 1 s. Maximum SERRS signal is observed when basic buffer is added to a dopamine sample containing 50 × 10 -6 M ferric ion. Dopamine concentrations in the nanomolar (resting level) range are obtained using this technique.

  2. Magnetic field enriched surface enhanced resonance Raman spectroscopy for early malaria diagnosis

    NASA Astrophysics Data System (ADS)

    Yuen, Clement; Liu, Quan

    2012-01-01

    Hemozoin is a by-product of malaria infection in erythrocytes, which has been explored as a biomarker for early malaria diagnosis. We report magnetic field-enriched surface-enhanced resonance Raman spectroscopy (SERRS) of β--hematin crystals, which are the equivalent of hemozoin biocrystals in spectroscopic features, by using magnetic nanoparticles with iron oxide core and silver shell (Fe3O4@Ag). The external magnetic field enriches β--hematin crystals and enhances the binding between β--hematin crystals and magnetic nanoparticles, which provides further improvement in SERRS signals. The magnetic field-enriched SERRS signal of β--hematin crystals shows approximately five orders of magnitude enhancement in the resonance Raman signal, in comparison to about three orders of magnitude improvement in the SERRS signal without the influence of magnetic field. The improvement has led to a β--hematin detection limit at a concentration of 5 nM (roughly equivalent to 30 parasites/μl at the early stages of malaria infection), which demonstrates the potential of magnetic field-enriched SERRS technique in early malaria diagnosis.

  3. Combined dielectric and plasmon resonance for giant enhancement of Raman scattering

    NASA Astrophysics Data System (ADS)

    Kukushkin, V. I.; Grishina, Ya. V.; Egorov, S. V.; Solov'ev, V. V.; Kukushkin, I. V.

    2016-04-01

    Combined dielectric/metal resonators for colossal enhancement of inelastic light scattering are developed and their properties are investigated. It is shown that a record enhancement factor of 2 × 108 can be obtained using these structures. The dielectric resonators are fabricated on Si/SiO2 substrates where periodic arrays of square 10- to 200-nm-high dielectric pillars are produced via electron-beam lithography and plasma etching. The lateral size a of the pillars varies between 50 and 1500 nm, and their period in the array is 2 a. To make a combined dielectric/metal resonator, a nanostructured layer of silver is deposited onto the fabricated periodic dielectric structure by thermal evaporation. It is established that, for a fixed height of the dielectric pillars, the Raman scattering enhancement factor experiences pronounced oscillations as a function of the period (and size) of the pillars. It is shown that these oscillations are determined by the modes of the dielectric resonator and governed by the relation between the excitation laser wavelength and the planar size of the dielectric pillars.

  4. Surface-enhanced resonance Raman scattering of hemoproteins and those in complicated biological systems.

    PubMed

    Kitahama, Yasutaka; Ozaki, Yukihiro

    2016-08-15

    In this review article, we discuss surface-enhanced resonance Raman scattering (SERRS) studies of hemeproteins such as myoglobin, hemoglobin, and cytochrome on various metal substrates; for example, colloidal silver nanoparticles coated with and without self-assembled monolayers (SAM), a roughened silver electrode protected with and without SAM, a sharp silver tip, and colloidal gold nanoparticles coated with and without SAM. Moreover, we classify the studies in terms of an excitation wavelength; namely, excitation at the B- (Soret) band, Q- (α and β) band, and in the near infrared (NIR) range. In the SERRS studies with B band excitation, it has been shown that the hemeprotein on a silver surface takes a non-native form through detachment from the heme pocket in the protein. With Q band excitation, on the other hand, the change in SERRS has been explained by the orientation of the hemeprotein on the surface. Even by excitation in the NIR range, the peak positions are consistent with the assignment of the major vibrational modes of heme despite there being no resonance Raman effect. Thus, the SERRS of hemeproteins is influenced by a resonance Raman effect, LSPR, and interactions with the metal surface such as structural changes, orientation, and selective adsorption. Moreover, we discuss how SERRS has been applied to complicated biological systems such as living cells containing hemeprotein. For mitochondria, a change of the oxidation-state was observed by the electron transport chain in the cell and at different positions. As an example of a biomedical application of SERRS, the sensitive detection of malaria is presented. PMID:27381192

  5. Plasmon-resonant Raman spectroscopy in metallic nanoparticles: Surface-enhanced scattering by electronic excitations

    NASA Astrophysics Data System (ADS)

    Carles, R.; Bayle, M.; Benzo, P.; Benassayag, G.; Bonafos, C.; Cacciato, G.; Privitera, V.

    2015-11-01

    Since the discovery of surface-enhanced Raman scattering (SERS) 40 years ago, the origin of the "background" that is systematically observed in SERS spectra has remained questionable. To deeply analyze this phenomenon, plasmon-resonant Raman scattering was recorded under specific experimental conditions on a panel of composite multilayer samples containing noble metal (Ag and Au) nanoparticles. Stokes, anti-Stokes, and wide, including very low, frequency ranges have been explored. The effects of temperature, size (in the nm range), embedding medium (SiO2, Si3N4, or TiO2) or ligands have been successively analyzed. Both lattice (Lamb modes and bulk phonons) and electron (plasmon mode and electron-hole excitations) dynamics have been investigated. This work confirms that in Ag-based nanoplasmonics composite layers, only Raman scattering by single-particle electronic excitations accounts for the background. This latter appears as an intrinsic phenomenon independently of the presence of molecules on the metallic surface. Its spectral shape is well described by revisiting a model developed in the 1990s for analyzing electron scattering in dirty metals, and used later in superconductors. The gs factor, that determines the effective mean-free path of free carriers, is evaluated, gsexpt=0.33 ±0.04 , in good agreement with a recent evaluation based on time-dependent local density approximation gstheor=0.32 . Confinement and interface roughness effects at the nanometer range thus appear crucial to understand and control SERS enhancement and more generally plasmon-enhanced processes on metallic surfaces.

  6. Single molecule surface enhanced resonance Raman scattering (SERRS) of the enhanced green fluorescent protein (EGFP)

    NASA Astrophysics Data System (ADS)

    Hofkens, Johan; De Schryver, Frans C.; Cotlet, Mircea; Habuchi, Satoshi

    2004-06-01

    One of the most intriguing findings in single molecule spectroscopy (SMS) is the observation of Raman spectra of individual molecules, despite the small cross section of the transitions involved. The observation of the spectra can be explained by the surface enhanced Raman scattering (SERRS) effect. At the single-molecule level, the SERRS-spectra recorded as a function of time reveal inhomogeneous behaviour such as on/off blinking, spectral diffusion, intensity fluctuations of vibrational line, and even splitting of some lines within the spectrum of one molecule. Single-molecule SERRS (SM-SERRS) spectroscopy opens up exciting opportunities in the field of biophysics and biomedical spectroscopy. The first example of single protein SERRS was performed on hemoglobin. However, the possibility of extracting the heme group by silver sols can not be excluded. Here we report on SM-SERRS spectra of enhanced green fluorescent protein (EGFP) in which the chromophore is kept in the protein. The time series of SM-SERRS spectra suggest the conversion of the EGFP chromophore between the deprotonated and the protonated form. Autocorrelation analysis of SM-SERRS trajectory reveals the presence of fast dynamics taking place in the protein. Our findings show the potential of the technique to study structural dynamics of protein molecules.

  7. Auger resonant Raman spectroscopy

    SciTech Connect

    Azuma, Y.; LeBrun, T.; MacDonald, M.; Southworth, S.H.

    1995-08-01

    As noted above, traditional spectroscopy of the electronic structure of the inner shells of atoms, molecules, and solids is limited by the lifetime broadening of the core-excited states. This limitation can also be avoided with the non-radiative analog of X-ray Raman scattering - resonant Auger Raman spectroscopy. We have used this technique to study the K-shell excitation spectrum of argon as the photon energy is continuously scanned across threshold.

  8. Surface-Enhanced Resonance Raman Scattering and Visible Extinction Spectroscopy of Copper Chlorophyllin: An Upper Level Chemistry Experiment

    ERIC Educational Resources Information Center

    Schnitzer, Cheryl S.; Reim, Candace Lawson; Sirois, John J.; House, Paul G.

    2010-01-01

    Advanced chemistry students are introduced to surface-enhanced resonance Raman scattering (SERRS) by studying how sodium copper chlorophyllin (CuChl) adsorbs onto silver colloids (CuChl/Ag) as a function of pH. Using both SERRS and visible extinction spectroscopy, the extent of CuChl adsorption and colloidal aggregation are monitored. Initially at…

  9. Measurement of nitric oxide concentrations in flames by using electronic-resonance-enhanced coherent anti-Stokes Raman scattering.

    PubMed

    Kulatilaka, Waruna D; Chai, Ning; Naik, Sameer V; Laurendeau, Normand M; Lucht, Robert P; Kuehner, Joel P; Roy, Sukesh; Gord, James R

    2006-11-15

    We have measured nitric oxide (NO) concentrations in flames by using electronic-resonance-enhanced coherent anti-Stokes Raman spectroscopy (ERE-CARS). Visible pump and Stokes beams were tuned to a Q-branch vibrational Raman resonance of NO. A UV probe beam was tuned into resonance with specific rotational transitions in the (v"=1,v'=0) vibrational band in the A(2)Sigma(+)-X(2)Pi electronic transition, thus providing a substantial electronic-resonance enhancement of the resulting CARS signal. NO concentrations were measured at levels down to 50 parts in 10(6) in H(2)/air flames at atmospheric pressure. NO was also detected in heavily sooting C(2)H(2)/air flames at atmospheric pressure with minimal background interference. PMID:17072422

  10. Hollow Au/Ag nanostars displaying broad plasmonic resonance and high surface-enhanced Raman sensitivity

    NASA Astrophysics Data System (ADS)

    Garcia-Leis, Adianez; Torreggiani, Armida; Garcia-Ramos, Jose Vicente; Sanchez-Cortes, Santiago

    2015-08-01

    Bimetallic Au/Ag hollow nanostar (HNS) nanoparticles with different morphologies were prepared in this work. These nanoplatforms were obtained by changing the experimental conditions (concentration of silver and chemical reductors, hydroxylamine and citrate) and by using Ag nanostars as template nanoparticles (NPs) through galvanic replacement. The goal of this research was to create bimetallic Au/Ag star-shaped nanoparticles with advanced properties displaying a broader plasmonic resonance, a cleaner exposed surface, and a high concentration of electromagnetic hot spots on the surface provided by the special morphology of nanostars. The size, shape, and composition of Ag as well as their optical properties were studied by extinction spectroscopy, hyperspectral dark field microscopy, transmission and scanning electron microscopy (TEM and SEM), and energy dispersive X-ray spectroscopy (EDX). Finally, the surface-enhanced Raman scattering (SERS) activity of these HNS was investigated by using thioflavin T, a biomarker of the β-amyloid fibril formation, responsible for Alzheimer's disease. Lucigenin, a molecule displaying different SERS activities on Au and Ag, was also used to explore the presence of these metals on the NP surface. Thus, a relationship between the morphology, plasmon resonance and SERS activity of these new NPs was made.Bimetallic Au/Ag hollow nanostar (HNS) nanoparticles with different morphologies were prepared in this work. These nanoplatforms were obtained by changing the experimental conditions (concentration of silver and chemical reductors, hydroxylamine and citrate) and by using Ag nanostars as template nanoparticles (NPs) through galvanic replacement. The goal of this research was to create bimetallic Au/Ag star-shaped nanoparticles with advanced properties displaying a broader plasmonic resonance, a cleaner exposed surface, and a high concentration of electromagnetic hot spots on the surface provided by the special morphology of nanostars

  11. Surface-enhanced resonance Raman scattering spectroscopy of photosystem II pigment-protein complexes

    SciTech Connect

    Picorel, R. Estacion Experimental Aula Dei, Zaragoza ); Chumanov, G.; Cotton, T.M. ); Montoya, G. ); Toon, S.; Seibert, M. )

    1994-06-09

    Three different photosystem II (PSII) pigment-protein complexes (D1-D2-Cyt b[sub 559]-CP47, D1-D2-Cyt b[sub 559], and CP47) isolated from spinach were studied by surface-enhanced resonance Raman scattering (SERRS) spectroscopy. Surface-enhanced Raman scattering (SERS) is a distance sensitive (on a 5-10-[angstrom] scale) spectroscopic tool that can be used to examine structural properties of large biological molecules. It is demonstrated here that SERS can also be used to determine organizational relationships between different pigment-protein complexes. Strong SERRS spectra from the above PSII complexes before and after treatment with sodium dithionite were obtained on roughened Ag electrodes and in citrate-reduced Ag colloids. The D1-D2-Cyt b[sub 559] complex adsorbs with the Cyt b[sub 559] heme close to the surface in the colloid, whereas the complex adsorbs differently on the Ag electrode due to the differing surface properties of the two types of substrates. An analysis of the SERRS spectra led to the following conclusions: CP47 binds next to Cyt b[sub 559] in the D1-D2-Cyt b[sub 559]-CP47 complex and covers the heme, the Cyt b[sub 559] heme is located closer to one side of the complex (the stromal side in the intact thylakoid membrane), and both Chl and [beta]-carotene molecules are located closer to the opposite side of the complex. 37 refs., 7 figs.

  12. Resonant Raman scattering in antiferromagnets

    NASA Astrophysics Data System (ADS)

    Morr, Dirk K.; Chubukov, Andrey V.

    1997-10-01

    Two-magnon Raman scattering provides important information about electronic correlations in the insulating parent compounds of high-Tc materials. Recent experiments have shown a strong dependence of the Raman signal in B1g geometry on the frequency of the incoming photon. We present an analytical and numerical study of the Raman intensity in the resonant regime. It has been previously argued by Chubukov and Frenkel that the most relevant contribution to the Raman vertex at resonance is given by the triple resonance diagram. We derive an expression for the Raman intensity in which we simultaneously include the enhancement due to the triple resonance and a final-state interaction. We compute the two-magnon peak height (TMPH) as a function of incident frequency and find two maxima at ω(1)res~2Δ+3J and ω(2)res~2Δ+8J. We argue that the high-frequency maximum is cut only by a quasiparticle damping, while the low-frequency maximum has a finite amplitude even in the absence of damping. We also obtain an evolution of the Raman profile from an asymmetric form around ω(1)res to a symmetric form around ω(2)res. We further show that the TMPH depends on the fermionic quasiparticle damping, the next-nearest-neighbor hopping term t', and the corrections to the interaction vertex between light and the fermionic current. We discuss our results in the context of recent experiments by Blumberg et al. on Sr2CuO2Cl2 and YBa2Cu3O6.1 and Rübhausen et al. on PrBa2Cu3O7 and show that the triple resonance theory yields a qualitative and to some extent also quantitative understanding of the experimental data.

  13. A triple-resonance Raman chip for simultaneous enhancement of Stokes and anti-Stokes lines utilizing both localized and non-localized plasmonic resonance

    NASA Astrophysics Data System (ADS)

    Lin, Jiao; Zhang, Yuan; Lee, El-Hang; He, Sailing

    2015-10-01

    In this paper we report a triple-resonance surface-enhanced Raman scattering (SERS) chip that is able to provide simultaneous field enhancement for both the Stokes and anti-Stokes lines. The structure consists of an array of periodic gold bowties placed on the surface of a uniform gold film. It can support two localized surface plasmonic resonances (LSPRs): an electric dipole binding resonance (EDBR) and a magnetic dipole resonance (MDR). A third field enhancement peak is obtained by utilizing the strong interaction between the non-localized surface plasmonic resonance (non-localized SPR) and the LSPR, which greatly raises the field enhancement for the non-localized SPR. In addition, a gold strip-line resonator is incorporated to further enhance the local field intensity. Consequently, the field enhancement of the three peaks are all increased. Compared with the same structure without strip, the periodic bowtie-strip compound structure on gold film can gain as much as ∼22.8 times and ∼3.6 times larger Raman intensity enhancement simultaneously for both the Stokes and anti-Stokes lines.

  14. Single-molecular surface-enhanced resonance Raman scattering as a quantitative probe of local electromagnetic field: The case of strong coupling between plasmonic and excitonic resonance

    NASA Astrophysics Data System (ADS)

    Itoh, Tamitake; Yamamoto, Yuko S.; Tamaru, Hiroharu; Biju, Vasudevanpillai; Wakida, Shin-ichi; Ozaki, Yukihiro

    2014-05-01

    We investigate electromagnetic coupling between plasmonic and molecular electronic resonances using single-molecular surface-enhanced resonance Raman scattering (SERRS) from single silver nanoparticle dimers. When dimers exhibit SERRS activity, their elastic light scattering spectra show two lines, which are temporally closing toward each other. The higher energy line eventually disappears at the time of SERRS quenching. A coupled-oscillator model composed of plasmonic and molecular electronic resonances consistently reproduces the above interesting results by decreasing coupling energy, indicating that SERRS can be a quantitative probe for strong coupling between the two resonances.

  15. Localized surface plasmon resonance immunoassay and verification using surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Yonzon, Chanda R.; Zhang, Xiaoyu; Van Duyne, Richard P.

    2003-11-01

    This work exploits the localized surface plasmon resonance (LSPR) spectroscopy of noble metal nanoparticles to achieve sensitive and selective detection of biological analytes. Noble metal nanoparticles exhibit an LSPR that is strongly dependent on their size, shape, material, and the local dielectric environment. The LSPR is also responsible for the intense signals observed in surface-enhanced Raman scattering (SERS). Ag nanoparticles fabricated using the nanosphere lithography (NSL) technique exploits this LSPR sensitivity as a signal transduction method in biosensing applications. The current work implements LSPR biosensing for the anti dinitrophenyl (antiDNP) immunoassay system. Upon forming the 2,4 dinitrobenzoic acid/antiDNP complex, this system shows a large LSPR shift of 44 nm when exposed to antiDNP concentration of 1.5 x 10-6 M. In addition, due to the unique molecular characteristics of the functional groups on the biosensor, it can also be characterized using SERS. First, the nanoparticles are functionalized with a mixed self-assembled monolayer (SAM) comprised of 2:1 octanethiol and 11-amino undecanethiol. The SAM is exposed to 2,4-dinitrobenzoic acid with the 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) coupling reagent. Finally, the 2,4-dinitrophenyl terminated SAM is exposed to various concentration of antiDNP. LSPR shifts indicate the occurrence of a binding event. SER spectra confirm binding of 2,4 dinitrobenzoic acid with amine-terminated SAM. This LSPR/SERS biosensing method can be generalized to a myriad of biologically relevant systems.

  16. Exploring the Potential of Stable Isotope (Resonance) Raman Microspectroscopy and Surface-Enhanced Raman Scattering for the Analysis of Microorganisms at Single Cell Level.

    PubMed

    Kubryk, Patrick; Kölschbach, Janina S; Marozava, Sviatlana; Lueders, Tillmann; Meckenstock, Rainer U; Niessner, Reinhard; Ivleva, Natalia P

    2015-07-01

    Raman microspectroscopy is a prime tool to characterize the molecular and isotopic composition of microbial cells. However, low sensitivity and long acquisition times limit a broad applicability of the method in environmental analysis. In this study, we explore the potential, the applicability, and the limitations of stable isotope Raman microspectroscopy (SIRM), resonance SIRM, and SIRM in combination with surface-enhanced Raman scattering (SERS) for the characterization of single bacterial cells. The latter two techniques have the potential to significantly increase sensitivity and decrease measurement times in SIRM, but to date, there are no (SERS-SIRM) or only a limited number (resonance SIRM) of studies in environmental microbiology. The analyzed microorganisms were grown with substrates fully labeled with the stable isotopes (13)C or (2)H and compounds with natural abundance of atomic isotopes ((12)C 98.89% or (1)H 99.9844%, designated as (12)C or (1)H, respectively). Raman bands of bacterial cell compounds in stable isotope-labeled microorganisms exhibited a characteristic red-shift in the spectra. In particular, the sharp phenylalanine band was found to be an applicable marker band for SIRM analysis of the Deltaproteobacterium strain N47 growing anaerobically on (13)C-naphthalene. The study of G. metallireducens grown with (13)C- and (2)H-acetate showed that the information on the chromophore cytochrome c obtained by resonance SIRM at 532 nm excitation wavelength can be successfully complemented by whole-organism fingerprints of bacteria cells achieved by regular SIRM after photobleaching. Furthermore, we present here for the first time the reproducible SERS analysis of microbial cells labeled with stable isotopes. Escherichia coli strain DSM 1116 cultivated with (12)C- or (13)C-glucose was used as a model organism. Silver nanoparticles synthesized in situ were applied as SERS media. We observed a reproducible red-shift of an adenine-related marker band

  17. Silver Nanoparticle-Enhanced Resonance Raman Sensor of Chromium(III) in Seawater Samples

    PubMed Central

    Ly, Nguyễn Hoàng; Joo, Sang-Woo

    2015-01-01

    Tris(hydroxymethyl)aminomethane ethylenediaminetetraacetic acid (Tris-EDTA), upon binding Cr(III) in aqueous solutions at pH 8.0 on silver nanoparticles (AgNPs), was found to provide a sensitive and selective Raman marker band at ~563 cm−1, which can be ascribed to the metal-N band. UV-Vis absorption spectra also supported the aggregation and structural change of EDTA upon binding Cr(III). Only for Cr(III) concentrations above 500 nM, the band at ~563 cm−1 become strongly intensified in the surface-enhanced Raman scattering spectra. This band, due to the metal-EDTA complex, was not observed in the case of 50 μM of K+, Cd2+, Mg2+, Ca2+, Mn2+, Co2+, Na+, Cu2+, NH4+, Hg2+, Ni2+, Fe3+, Pb2+, Fe2+, and Zn2+ ions. Seawater samples containing K, Mg, Ca, and Na ion concentrations higher than 8 mM also showed the characteristic Raman band at ~563 cm−1 above 500 nM, validating our method. Our approach may be useful in detecting real water samples by means of AgNPs and Raman spectroscopy. PMID:25938200

  18. Magnetic immunoassay for cancer biomarker detection based on surface-enhanced resonance Raman scattering from coupled plasmonic nanostructures.

    PubMed

    Rong, Zhen; Wang, Chongwen; Wang, Junfeng; Wang, Donggen; Xiao, Rui; Wang, Shengqi

    2016-10-15

    A surface-enhanced resonance Raman scattering (SERRS) sensor was developed for the ultrasensitive detection of cancer biomarkers. Capture antibody-coated silver shell magnetic nanoparticles (Fe3O4@Ag MNPs) were utilized as the CEA enrichment platform and the SERRS signal amplification substrate. Gold nanorods (AuNRs) were coated with a thin silver shell to be in resonance with the resonant Raman dye diethylthiatricarbocyanine iodide (DTTC) and the excitation wavelength at 785nm. The silver-coated AuNRs (Au@Ag NRs) were then modified with detection antibody as the SERRS tags. Sandwich immune complexes formed in the presence of the target biomarker carcinoembryonic antigen (CEA), and this formation induced the plasmonic coupling between the Au@Ag NRs and Fe3O4@Ag MNPs. The SERRS signal of DTTC molecules located in the coupled plasmonic nanostructures was significantly enhanced. As a result, the proposed SERRS sensor was able to detect CEA with a low limit of detection of 4.75fg/mL and a wide dynamic linear range from 10fg/mL to 100ng/mL. The sensor provides a novel SERRS strategy for trace analyte detection and has a potential for clinical applications. PMID:27149164

  19. Resonant surface enhancement of Raman scattering of Ag nanoparticles on silicon substrates fabricated by dc sputtering

    SciTech Connect

    Fang Yingcui; Li Xiaxi; Blinn, Kevin; Mahmoud, Mahmoud A.; Liu Meilin

    2012-09-15

    Ag nanoparticles (AgNPs) were deposited onto silicon substrates by direct current (dc) magnetron sputtering. The influences of sputtering power and sputtering time on the AgNP film morphology were studied using atomic force microscopy. The particle size was successfully tuned from 19 nm to 53 nm by varying the sputtering time at a dc power of 10 W. When Rhodamine 6 G (R6G) was used as the probe molecule, the AgNP films showed significant surface enhanced Raman scattering effect. In particular, it is found that larger particles show stronger enhancement for lower concentrations of R6G while smaller particles display stronger enhancement for higher concentrations of R6G.

  20. Generating monomeric 5-coordinated microperoxidase-11 using carboxylic acid functionalized silver nanoparticles: A surface-enhanced resonance Raman scattering analysis.

    PubMed

    Kalaivani, Govindasamy; Sivanesan, Arumugam; Kannan, Ayyadurai; Sevvel, Ranganathan

    2016-10-01

    Microperoxidase-11 (MP-11), a heme undecapeptide obtained by proteolytic digestion of cytochrome c, resembles peroxidase enzyme when its heme center is 5-coordinated with a vacant sixth coordination site. However, MP-11 always tends to aggregate in both solution and on surface and eventually forms the 6-coordinated heme. Thus, the present study investigates the immobilization strategy of MP-11 on nanoparticle surface in order to generate monomeric 5-coordinated MP-11 and make them as an efficient biocatalyst. The powerful surface-enhanced resonance Raman scattering (SERRS) technique is being employed to attain the detailed structural information of the catalytic site i.e., the heme center. The localized surface plasmon resonance (LSPR) tuned and 6-mercaptohexanoic acid (MHA) functionalized silver nanoparticles (Ag@MHA NPs) are used as Raman signal amplifier. The outcome of the SERRS study unambiguously portrays the existence of monomeric 5-coordinated MP-11 on Ag@MHA NPs surface. Here, Ag@MHA NPs plays a dual role of providing a platform to create monomeric 5-coordinated MP-11 and to load large number of MP-11 due to its high surface to volume ratio. Further, the electrostatic interaction between Ag@MHA NPs and MP-11 leads to instantaneous SERRS signal enhancement with a Raman enhancement factor (EFSERS) of 2.36×10(6). Langmuir adsorption isotherm has been employed for the adsorption of MP-11 on Ag@MHA NPs surface, which provides the real surface coverage (ΓS(*)) and equilibrium constant (K) value of 1.54nm and 5×10(11)M(-1). Furthermore, the peroxidase activity of MP-11 has been demonstrated through electrocatalytic oxygen reduction reaction. PMID:27434160

  1. Guided-mode-resonance-coupled plasmonic-active SiO2 nanotubes for surface enhanced Raman spectroscopy

    PubMed Central

    Xu, Xiaobin; Hasan, Dihan; Wang, Lei; Chakravarty, Swapnajit; Chen, Ray T.; Fan, D. L.; Wang, Alan X.

    2012-01-01

    We demonstrate a surface enhanced Raman scattering (SERS) substrate by integrating plasmonic-active SiO2 nanotubes into Si3N4 gratings. First, the dielectric grating that is working under guided mode resonance (GMR) provides enhanced electric field for localized surface plasmon polaritons on the surface of metallic nanoparticles. Second, we use SiO2 nanotubes with densely assembled silver nanoparticles to provide a large amount of “hot spots” without significantly damping the GMR mode of the grating. Experimental measurement on Rhodamine-6G shows a constant enhancement factor of 8 ∼ 10 in addition to the existing SERS effect across the entire surface of the SiO2 nanotubes. PMID:22685345

  2. Guided-Mode Resonance Grating with Self-Assembled Silver Nanoparticles for Surface-Enhanced Raman Scattering Spectroscopy

    PubMed Central

    Chong, Xinyuan; Fan, Donglei; Chakravarty, Swapnajit; Wang, Zheng; Chen, Ray T.; Wang, Alan X.

    2016-01-01

    We designed and fabricated guided-mode resonance (GMR) gratings on indium-tin-oxide (ITO) thin film to generate a significantly enhanced local electric field for surface-enhanced Raman scattering (SERS) spectroscopy. Ag nanoparticles (NPs) were self-assembled onto the surface of the grating, which can provide a large amount of “hot-spots” for SERS sensing. The ITO gratings also exhibit excellent tolerance to fabrication deviations due to the large refractive index contrast of the ITO grating. Quantitative experimental results of 5,5’-dithiobis(2-nitrobenzoic acid) (DTNB) demonstrate the best enhancement factor of ~14× on ITO gratings when compared with Ag NPs on a flat ITO film, and the limit of detection (LOD) of DTNB is as low as 10 pM. PMID:26958546

  3. Theoretical studies of resonance enhance stimulated raman scattering (RESRS) of frequency doubled Alexandrite laser wavelengths in cesium vapor. Semiannual report

    SciTech Connect

    Lawandy, N.M.

    1986-01-01

    It is well known that the presence of a real atomic level which is nearly resonant with the pump field can greatly enhance the Raman emission cross section. In order to accurately calculate the Raman gain in systems where resonance enhancement plays a dominant role, expressions for the pump and signal susceptibilities must be derived. These expressions should be valid for arbitrary field strengths in order to allow for pump and signal saturation. In addition, the theory should allow for arbitrary longitudinal and transverse relaxation rates. This latter point is extremely vital for three level atomic systems such as the alkali earth metals since they do not have population reservoirs and can have widely varying spontaneous lifetimes on the three pertinent transitions. Moreover, the dephasing rates are strong functions of electron states and are therefore also different for the three coupled pairs of levels. These considerations are not as important when molecular systems are concerned since the large reservoir of rotational states serve to produce essentially equal longitudinal recovery rates for the population of the three levels. The three level system with three arbitrary longitudinal and transverse relaxation rates was solved. There is no need for setting either pair of rates equal and the expressions are valid for arbitrarily strong fields.

  4. Theoretical studies of Resonance Enhance Stimulated Raman Scattering (RESRS) of frequency doubled Alexandrite laser wavelengths in cesium vapor

    NASA Technical Reports Server (NTRS)

    Lawandy, N. M.

    1986-01-01

    It is well known that the presence of a real atomic level which is nearly resonant with the pump field can greatly enhance the Raman emission cross section. In order to accurately calculate the Raman gain in systems where resonance enhancement plays a dominant role, expressions for the pump and signal susceptibilities must be derived. These expressions should be valid for arbitrary field strengths in order to allow for pump and signal saturation. In addition, the theory should allow for arbitrary longitudinal and transverse relaxation rates. This latter point is extremely vital for three level atomic systems such as the alkali earth metals since they do not have population reservoirs and can have widely varying spontaneous lifetimes on the three pertinent transitions. Moreover, the dephasing rates are strong functions of electron states and are therefore also different for the three coupled pairs of levels. These considerations are not as important when molecular systems are concerned since the large reservoir of rotational states serve to produce essentially equal longitudinal recovery rates for the population of the three levels. The three level system with three arbitrary longitudinal and transverse relaxation rates was solved. There is no need for setting either pair of rates equal and the expressions are valid for arbitrarily strong fields.

  5. Fiber enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Frosch, T.; Yan, D.; Hanf, S.; Popp, J.

    2014-05-01

    Fiber enhanced Raman sensing is presented for versatile and extremely sensitive analysis of pharmaceutical drugs and biogenic gases. Elaborated micro-structured optical fibers guide the light with very low losses within their hollow core and provide at the same time a miniaturized sample container for the analytes. Thus, fiber enhanced Raman spectroscopy (FERS) allows for chemically selective detection of minimal sample amounts with high sensitivity. Two examples are presented in this contribution: (i) the detection of picomolar concentrations of pharmaceutical drugs; and (ii) the analysis of biogenic gases within a complex mixture of gases with analytical sensitivities in the ppm range.

  6. Rapid analysis of malachite green and leucomalachite green in fish muscles with surface-enhanced resonance Raman scattering.

    PubMed

    Zhang, Yuanyuan; Yu, Wansong; Pei, Lu; Lai, Keqiang; Rasco, Barbara A; Huang, Yiqun

    2015-02-15

    Surface-enhanced resonance Raman scattering (SERRS) coupled with gold nanospheres was applied for rapid analysis of the hazardous substances malachite green (MG) and leucomalachite green (LMG) in fish muscle tissues. The lowest concentration of MG that could be detected was 0.5ngmL(-1) with high linear correlation (R(2)=0.970-0.998) between MG concentration and intensities of characteristic Raman peaks. A simplified sample preparation method taking less than 1h for recovering MG and LMG in fish fillets was developed for SERRS analysis, and 4-8 samples could be handled in parallel. MG and LMG could be detected in extracts of tilapia fish fillets at as low as 2ngg(-1) with SERRS and a simple principle component analysis method. For six other fish species, the lowest detectable concentration of MG ranged from 1ngg(-1) to 10ngg(-1). This study provides a new sensitive approach for the detection of trace amounts of the prohibited drugs MG and LMG in muscle food, which has the potential for rapidly screening a large number of samples. PMID:25236201

  7. Third-order nonlinearities in molecular hydrogen - Two-photon resonance enhanced third-harmonic generation and Raman scattering

    NASA Technical Reports Server (NTRS)

    Pan, C.-L.; She, C.-Y.; Fairbank, W. M., Jr.; Billman, K. W.

    1977-01-01

    Effects of quantum mechanical interferences on third-order susceptibilities in molecules are studied. First principle calculations for molecular hydrogen are presented and shown to agree with results derived from experimental stimulated Raman gain and spontaneous Raman cross-section data. 10 percent third-harmonic conversion efficiency in H2 at 1 atm without phase matching should require a 150 MW per sq cm at 4.81 microns. As little as 5.9-MW power is sufficient when the beam is properly focused. Resonance Raman scattering (RRS) is proposed for experimentally investigating the interference effects, which tend to reduce the strength of third-order nonlinear susceptibilities.

  8. Characterization and identification of contraband using UV resonant Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lacey, Richard J.; Hayward, Ian P.; Sands, H. S.; Batchelder, David N.

    1997-02-01

    A range of explosives and narcotics have been examined using Raman spectroscopy with 244 nm excitation. This wavelength of excitation eliminates the fluorescence problems associated with excitation at visible wavelengths. Comparison with spectra obtained using visible excitation reveals that resonance Raman scattering is occurring. This results in simplified spectra, and enhanced Raman scattering efficiencies.

  9. UV resonance Raman sensing of pharmaceutical drugs in hollow fibers

    NASA Astrophysics Data System (ADS)

    Yan, D.; Popp, J.; Frosch, T.

    2014-05-01

    We report about the experimental combination of UV resonance Raman sensing (UV-RRS) and fiber enhanced Raman sensing (FERS) on pharmaceuticals. The results show that the chemical sensitivity is highly improved and at the same time the sample volume is reduced compared to conventional measurements. A hundreds-fold improvement of the limit of detection (LOD) has been achieved with the combination of resonance Raman enhancement and fiber enhancement. The enhanced Raman signal has a reliable linear relationship with the concentration of the analyte, and therefore shows great potential for quantitative analysis of pharmaceuticals.

  10. Multiple relaxation and inhomogeneous broadening in resonance enhanced Raman scattering - Application to tunable infrared generation

    NASA Technical Reports Server (NTRS)

    Ryan, J. C.; Lawandy, N. M.

    1989-01-01

    The solutions for the imaginary susceptibility of the Raman field transition with arbitrary relaxation rates and field strengths are examined for differing sets of relaxation rates with emphasis on alkali metal vapors which have spontaneous emission dominated relaxation. The model is further expanded to include Doppler broadening and used to predict the peak gain as a function of detuning for a frequency doubled alexandrite laser-pumped cesium vapor gain cell.

  11. Raman-resonance-enhanced composite nonlinearity of air-guided modes in hollow photonic-crystal fibers.

    PubMed

    Fedotov, Il'ya V; Fedotov, Andrei B; Zheltikov, Aleksei M

    2006-09-01

    Coherent anti-Stokes Raman scattering (CARS) is used to measure relations between the resonant (Raman) and nonresonant (Kerr-type) optical nonlinearities of air-guided modes in a hollow-core photonic-crystal fiber (PCF). We demonstrate that, due to its interference nature, CARS provides a convenient tool for measuring the contribution of the fiber cladding to the total nonlinearity sensed by air-guided modes in hollow PCFs. On a Raman resonance with molecular vibrations in the gas that fills the fiber core, a two-color laser field is shown to induce optical nonlinearities that are several orders of magnitude higher than the nonresonant Kerr-type nonlinearities typical of air-guided PCF modes. PMID:16902633

  12. Strong dependence of surface plasmon resonance and surface enhanced Raman scattering on the composition of Au-Fe nanoalloys.

    PubMed

    Amendola, Vincenzo; Scaramuzza, Stefano; Agnoli, Stefano; Polizzi, Stefano; Meneghetti, Moreno

    2014-01-01

    Nanoalloys of noble metals with transition metals are crucial components for the integration of plasmonics with magnetic and catalytic properties, as well as for the production of low-cost photonic devices. However, due to synthetic challenges in the realization of nanoscale solid solutions of noble metals and transition metals, very little is known about the composition dependence of plasmonic response in nanoalloys. Here we demonstrate for the first time that the elemental composition of Au-Fe nanoalloys obtained by laser ablation in liquid solution can be tuned by varying the liquid environment. Due to surface passivation and reaction with thiolated ligands, the nanoalloys obtained by our synthetic protocol are structurally and colloidally stable. Hence, we studied the dependence of the surface plasmon resonance (SPR) on the iron fraction and, for the first time, we observed surface enhanced Raman scattering (SERS) in Au-Fe nanoalloys. SPR and SERS performances are strongly affected by the iron content and are investigated using analytical and numerical models. By demonstrating the strong modification of plasmonic properties on the composition, our results provide important insights into the exploitation of Au-Fe nanoalloys in photonics, nanomedicine, magneto-plasmonic and plasmon-enhanced catalysis. Moreover, our findings show that several other plasmonic materials exist beyond gold and silver nanostructures. PMID:24309909

  13. Detection of DNA Sequences Refractory to PCR Amplification Using a Biophysical SERRS Assay (Surface Enhanced Resonant Raman Spectroscopy)

    PubMed Central

    Feuillie, Cécile; Merheb, Maxime M.; Gillet, Benjamin; Montagnac, Gilles; Daniel, Isabelle; Hänni, Catherine

    2014-01-01

    The analysis of ancient or processed DNA samples is often a great challenge, because traditional Polymerase Chain Reaction – based amplification is impeded by DNA damage. Blocking lesions such as abasic sites are known to block the bypass of DNA polymerases, thus stopping primer elongation. In the present work, we applied the SERRS-hybridization assay, a fully non-enzymatic method, to the detection of DNA refractory to PCR amplification. This method combines specific hybridization with detection by Surface Enhanced Resonant Raman Scattering (SERRS). It allows the detection of a series of double-stranded DNA molecules containing a varying number of abasic sites on both strands, when PCR failed to detect the most degraded sequences. Our SERRS approach can quickly detect DNA molecules without any need for DNA repair. This assay could be applied as a pre-requisite analysis prior to enzymatic reparation or amplification. A whole new set of samples, both forensic and archaeological, could then deliver information that was not yet available due to a high degree of DNA damage. PMID:25502338

  14. Microanalysis of organic pigments and glazes in polychrome works of art by surface-enhanced resonance Raman scattering

    PubMed Central

    Leona, Marco

    2009-01-01

    Scientific studies of works of art are usually limited by severe sampling restrictions. The identification of organic colorants, a class of compounds relevant for attribution and provenance studies, is further complicated by the low concentrations at which these compounds are used and by the interference of the protein-, gum-, or oil-binding media present in pigment and glaze samples. Surface-enhanced resonance Raman scattering (SERRS) was successfully used to identify natural organic colorants in archaeological objects, polychrome sculptures, and paintings from samples smaller than 25 μm in diameter. The key factors in achieving the necessary sensitivity were a highly active stabilized silver colloid, obtained by the reproducible microwave-supported reduction of silver sulfate with glucose and sodium citrate, and a non-extractive hydrolysis sample treatment procedure that maximizes dye adsorption on the colloid. Among the examples presented are the earliest so far found occurrence of madder lake (in a 4,000 years old Egyptian object dating to the Middle Kingdom period), and the earliest known occurrence in Europe of the South Asian dyestuff lac (in the Morgan Madonna, a 12th century polychrome sculpture from Auvergne, France). PMID:19667181

  15. Strong dependence of surface plasmon resonance and surface enhanced Raman scattering on the composition of Au-Fe nanoalloys

    NASA Astrophysics Data System (ADS)

    Amendola, Vincenzo; Scaramuzza, Stefano; Agnoli, Stefano; Polizzi, Stefano; Meneghetti, Moreno

    2014-01-01

    Nanoalloys of noble metals with transition metals are crucial components for the integration of plasmonics with magnetic and catalytic properties, as well as for the production of low-cost photonic devices. However, due to synthetic challenges in the realization of nanoscale solid solutions of noble metals and transition metals, very little is known about the composition dependence of plasmonic response in nanoalloys. Here we demonstrate for the first time that the elemental composition of Au-Fe nanoalloys obtained by laser ablation in liquid solution can be tuned by varying the liquid environment. Due to surface passivation and reaction with thiolated ligands, the nanoalloys obtained by our synthetic protocol are structurally and colloidally stable. Hence, we studied the dependence of the surface plasmon resonance (SPR) on the iron fraction and, for the first time, we observed surface enhanced Raman scattering (SERS) in Au-Fe nanoalloys. SPR and SERS performances are strongly affected by the iron content and are investigated using analytical and numerical models. By demonstrating the strong modification of plasmonic properties on the composition, our results provide important insights into the exploitation of Au-Fe nanoalloys in photonics, nanomedicine, magneto-plasmonic and plasmon-enhanced catalysis. Moreover, our findings show that several other plasmonic materials exist beyond gold and silver nanostructures.Nanoalloys of noble metals with transition metals are crucial components for the integration of plasmonics with magnetic and catalytic properties, as well as for the production of low-cost photonic devices. However, due to synthetic challenges in the realization of nanoscale solid solutions of noble metals and transition metals, very little is known about the composition dependence of plasmonic response in nanoalloys. Here we demonstrate for the first time that the elemental composition of Au-Fe nanoalloys obtained by laser ablation in liquid solution can

  16. A Poly Adenine-Mediated Assembly Strategy for Designing Surface-Enhanced Resonance Raman Scattering Substrates in Controllable Manners.

    PubMed

    Zhu, Ying; Jiang, Xiangxu; Wang, Houyu; Wang, Siyi; Wang, Hui; Sun, Bin; Su, Yuanyuan; He, Yao

    2015-07-01

    In this article, we introduce a Poly adenine (Poly A)-assisted fabrication method for rationally designing surface-enhanced resonance Raman scattering (SERRS) substrates in controllable and reliable manners, enabling construction of core-satellite SERRS assemblies in both aqueous and solid phase (e.g., symmetric core (Au)-satellite (Au) nanoassemblies (Au-Au NPs), and asymmetric Ag-Au NPs-decorated silicon wafers (Ag-Au NPs@Si)). Of particular significance, assembly density is able to be controlled by varying the length of the Poly A block (e.g., 10, 30, and 50 consecutive adenines at the 5' end of DNA sequence, Poly A10/A30/A50), producing the asymmetric core-satellite nanoassemblies with adjustable surface density of Au NPs assembly on core NPs surface. Based on quantitative interrogation of the relationship between SERRS performance and assemble density, the Ag-Au NPs@Si featuring the strongest SERRS enhancement factor (EF ≈ 10(7)) and excellent reproducibility can be achieved under optimal conditions. We further employ the resultant Ag-Au NPs@Si as a high-performance SERRS sensing platform for the selective and sensitive detection of mercury ions (Hg(2+)) in a real system, with a low detection limit of 100 fM, which is ∼5 orders of magnitude lower than the United States Environmental Protection Agency (USEPA)-defined limit (10 nM) in drinkable water. These results suggest the Poly A-mediated assembly method as new and powerful tools for designing high-performance SERRS substrates with controllable structures, facilitating improvement of sensitivity, reliability, and reproducibility of SERRS signals. PMID:26028356

  17. Resonance IR: a coherent multidimensional analogue of resonance Raman.

    PubMed

    Boyle, Erin S; Neff-Mallon, Nathan A; Handali, Jonathan D; Wright, John C

    2014-05-01

    This work demonstrates the use of triply resonant sum frequency (TRSF) spectroscopy as a "resonance IR" analogue to resonance Raman spectroscopy. TRSF is a four-wave-mixing process where three lasers with independent frequencies interact coherently with a sample to generate an output at their triple summation frequency. The first two lasers are in the infrared and result in two vibrational excitations, while the third laser is visible and induces a two-quantum anti-Stokes resonance Raman transition. The signal intensity grows when the laser frequencies are all in resonance with coupled vibrational and electronic states. The method therefore provides electronic enhancement of IR-active vibrational modes. These modes may be buried beneath solvent in the IR spectrum and also be Raman-inactive and therefore inaccessible by other techniques. The method is presented on the centrosymmetric complex copper phthalocyanine tetrasulfonate. In this study, the two vibrational frequencies were scanned across ring-breathing modes, while the visible frequency was left in resonance with the copper phthalocyanine tetrasulfonate Q band, resulting in a two-dimensional infrared plot that also reveals coupling between vibrational states. TRSF has the potential to be a very useful probe of structurally similar biological motifs such as hemes, as well as synthetic transition-metal complexes. PMID:24707979

  18. Electronic resonances in broadband stimulated Raman spectroscopy

    PubMed Central

    Batignani, G.; Pontecorvo, E.; Giovannetti, G.; Ferrante, C.; Fumero, G.; Scopigno, T.

    2016-01-01

    Spontaneous Raman spectroscopy is a formidable tool to probe molecular vibrations. Under electronic resonance conditions, the cross section can be selectively enhanced enabling structural sensitivity to specific chromophores and reaction centers. The addition of an ultrashort, broadband femtosecond pulse to the excitation field allows for coherent stimulation of diverse molecular vibrations. Within such a scheme, vibrational spectra are engraved onto a highly directional field, and can be heterodyne detected overwhelming fluorescence and other incoherent signals. At variance with spontaneous resonance Raman, however, interpreting the spectral information is not straightforward, due to the manifold of field interactions concurring to the third order nonlinear response. Taking as an example vibrational spectra of heme proteins excited in the Soret band, we introduce a general approach to extract the stimulated Raman excitation profiles from complex spectral lineshapes. Specifically, by a quantum treatment of the matter through density matrix description of the third order nonlinear polarization, we identify the contributions which generate the Raman bands, by taking into account for the cross section of each process. PMID:26728791

  19. Electronic resonances in broadband stimulated Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Batignani, G.; Pontecorvo, E.; Giovannetti, G.; Ferrante, C.; Fumero, G.; Scopigno, T.

    2016-01-01

    Spontaneous Raman spectroscopy is a formidable tool to probe molecular vibrations. Under electronic resonance conditions, the cross section can be selectively enhanced enabling structural sensitivity to specific chromophores and reaction centers. The addition of an ultrashort, broadband femtosecond pulse to the excitation field allows for coherent stimulation of diverse molecular vibrations. Within such a scheme, vibrational spectra are engraved onto a highly directional field, and can be heterodyne detected overwhelming fluorescence and other incoherent signals. At variance with spontaneous resonance Raman, however, interpreting the spectral information is not straightforward, due to the manifold of field interactions concurring to the third order nonlinear response. Taking as an example vibrational spectra of heme proteins excited in the Soret band, we introduce a general approach to extract the stimulated Raman excitation profiles from complex spectral lineshapes. Specifically, by a quantum treatment of the matter through density matrix description of the third order nonlinear polarization, we identify the contributions which generate the Raman bands, by taking into account for the cross section of each process.

  20. Resonant Raman Scattering in Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Chubukov, Andrey V.; Morr, Dirk K.

    1996-03-01

    Two-magnon Raman scattering provides important information about electronic correlations in the insulating parent compounds of high-Tc materials. Recent experiments have shown a strong dependence of the Raman signal in B_1g geometry on the frequency of the incoming photon. We present a detailed numerical study of the diagram which was previously identified(A.V. Chubukov and D.M. Frenkel, Phys. Rev. B 52), 9760 (1995) as the most relevant in the resonant regime. We found two maxima of the two-magnon peak hight at transferred frequencies of ω ≈ 3J and ω ≈ 8J. These results agree with recent experiments by Blumberg(G. Blumberg et al.), preprint et al. on Sr_2CuO_2Cl_2. Furthermore, we study how the two-magnon profile depends on a quasiparticle damping and a hopping between next-nearest neighbors. We also study resonance scattering in other scattering geometries, in particular, A_1g scattering.

  1. Single molecular detection of a perylene dye dispersed in a Langmuir-Blodgett fatty acid monolayer using surface-enhanced resonance Raman scattering

    NASA Astrophysics Data System (ADS)

    Constantino, C. J. L.; Lemma, T.; Antunes, P. A.; Aroca, R.

    2002-02-01

    The Langmuir-Blodgett (LB) monolayer technique was used to fabricate single molecule LB monolayer containing bis(phenethylimido)perylene (PhPTCD), a red dye dispersed in arachidic acid (AA) with an average doping of 1 molecule per μm 2. The monolayer was transferred onto Ag island films to obtain spatially resolved surface-enhanced resonance Raman scattering (SERRS) spectra. The mixed LB monolayers were fabricated with a concentration, on average, of 1, 6, 19 and 118 PhPTCD molecules per μm 2 in AA. The AA provides a two-dimensional host matrix whose background signal does not interfere with the detection of the probe molecule's SERRS signal. The properties of the single molecule detection were investigated using micro-Raman with a 514.5-nm laser line. The Ag island surfaces coated with the LB monolayer were mapped with spatial steps of 3 μm and global chemical imaging of the most intense SERRS band in the spectrum was also recorded. The SERRS and surface-enhanced fluorescence (SEF) of the neat and single molecule LB monolayer were recorded in a temperature range from liquid nitrogen to +200°C. Neat PhPTCD LB monolayer spectra served as reference for the identification of characteristic signatures of the single molecule behavior. The spatial resolution of Raman-microscopy experiments, the multiplicative effect of resonance Raman and SERRS, and the high sensitivity of the new dispersive Raman instruments, allow SERRS to be part of the family of single molecular spectroscopies.

  2. Theoretical studies of resonance enhanced stimulated raman scattering (RESRS) of frequency doubled Alexandrite laser wavelengths in cesium vapor. Progress report

    SciTech Connect

    Lawandy, N.M.

    1986-10-01

    This work focused on understanding the effects of arbitrary transverse and longitudinal relaxation rates on the susceptibilities of coherently driven three-level systems. The approximation of a single relaxation rate often made in previous work is strongly invalidated by the variation in the spontaneous emission lifetime between various atomic level pairs in systems such as cesium. It is of great importance to the problem of nonlinear infrared generation to determine the dependence of both real and imaginary susceptibility on relaxation rates. The imaginary susceptibility on the pump transition determines the absorption of pump photons and the imaginary susceptibility on the laser transition determines the spectral dependence of the gain. This is of particular importance for pure Raman emission (i.e., absorption at linecenter of the gain transition) as it determines the tunability characteristics we are aiming to predict. The real susceptibility is important when cavities are used at the signal field as this will determine the loaded resonance of the Raman oscillator. Researchers show that in some cases which result from having different relaxation rates mode splitting may result, allowing more than one frequency to have the same Raman wavelength, possibly resulting in a temporal instability.

  3. Theoretical studies of Resonance Enhanced Stimulated Raman Scattering (RESRS) of frequency doubled Alexandrite laser wavelengths in cesium vapor

    NASA Technical Reports Server (NTRS)

    Lawandy, N. M.

    1986-01-01

    This work focused on understanding the effects of arbitrary transverse and longitudinal relaxation rates on the susceptibilities of coherently driven three-level systems. The approximation of a single relaxation rate often made in previous work is strongly invalidated by the variation in the spontaneous emission lifetime between various atomic level pairs in systems such as cesium. It is of great importance to the problem of nonlinear infrared generation to determine the dependence of both real and imaginary susceptibility on relaxation rates. The imaginary susceptibility on the pump transition determines the absorption of pump photons and the imaginary susceptibility on the laser transition determines the spectral dependence of the gain. This is of particular importance for pure Raman emission (i.e., absorption at linecenter of the gain transition) as it determines the tunability characteristics we are aiming to predict. The real susceptibility is important when cavities are used at the signal field as this will determine the loaded resonance of the Raman oscillator. Researchers show that in some cases which result from having different relaxation rates mode splitting may result, allowing more than one frequency to have the same Raman wavelength, possibly resulting in a temporal instability.

  4. Surface-Enhanced Raman Scattering and Biophysics

    NASA Astrophysics Data System (ADS)

    Kneipp, Katrin

    2001-03-01

    Surface-enhanced Raman scattering (SERS) is a phenomenon resulting in strongly increased Raman signals from molecules which have been attached to metallic nanostructures such as colloidal silver or gold particles. The effect combines the structural information content of a vibrational spectroscopy with extremely high sensitivity and in some cases, it showes promise in overcoming the low-sensitivity problems inherent in Raman spectroscopy. Cross sections effective in SERS can reach 10 16 to 10 15 cm2 per molecule corresponding to enhancement factors of about fourteen orders of magnitude compared with “normal” non-resonant Raman scattering. Such extremely large cross sections are sufficient for single molecule Raman spectroscopy. The high sensitivity and particularly the single molecule capabilities open up exciting perspectives for SERS as tool for basic research in biophysics, biochemistry and in laboratory medicine, where it allows to study extremely small amounts of biolomedically relevant molecules in order to understand development of diseases, treatment and therapy control based on molecular structural information at the single molecule level. The most spectacular applications might appear in rapidly spectroscopic characterization of specific DNA fragments down to structurally sensitive detection of single bases in order to elucidate the human genome sequence without any labeling technology. I will briefly introduce the SERS effect and report experiments with Raman scattering of single molecules. Potential and limitations of surface-enhanced Raman techniques as a tool in biophysics and biomedical spectroscopy will be considered.

  5. UV Resonant Raman Spectrometer with Multi-Line Laser Excitation

    NASA Technical Reports Server (NTRS)

    Lambert, James L.; Kohel, James M.; Kirby, James P.; Morookian, John Michael; Pelletier, Michael J.

    2013-01-01

    A Raman spectrometer employs two or more UV (ultraviolet) laser wavel engths to generate UV resonant Raman (UVRR) spectra in organic sampl es. Resonant Raman scattering results when the laser excitation is n ear an electronic transition of a molecule, and the enhancement of R aman signals can be several orders of magnitude. In addition, the Ra man cross-section is inversely proportional to the fourth power of t he wavelength, so the UV Raman emission is increased by another fact or of 16, or greater, over visible Raman emissions. The Raman-scatter ed light is collected using a high-resolution broadband spectrograph . Further suppression of the Rayleigh-scattered laser light is provi ded by custom UV notch filters.

  6. Resonant surface-enhanced Raman scattering by optical phonons in a monolayer of CdSe nanocrystals on Au nanocluster arrays

    NASA Astrophysics Data System (ADS)

    Milekhin, Alexander G.; Sveshnikova, Larisa L.; Duda, Tatyana A.; Rodyakina, Ekaterina E.; Dzhagan, Volodymyr M.; Sheremet, Evgeniya; Gordan, Ovidiu D.; Himcinschi, Cameliu; Latyshev, Alexander V.; Zahn, Dietrich R. T.

    2016-05-01

    Here we present the results on an investigation of resonant Stokes and anti- Stokes surface-enhanced Raman scattering (SERS) by optical phonons in colloidal CdSe nanocrystals (NCs) homogeneously deposited on arrays of Au nanoclusters using the Langmuir-Blodgett technology. The thickness of deposited NCs, determined by transmission and scanning electron microscopy, amounts to approximately 1 monolayer. Special attention is paid to the determination of the localized surface plasmon resonance (LSPR) energy in the arrays of Au nanoclusters as a function of the nanocluster size by means of micro-ellipsometry. SERS by optical phonons in CdSe NCs shows a significant enhancement factor with a maximal value of 2 × 103 which depends resonantly on the Au nanocluster size and thus on the LSPR energy. The deposition of CdSe NCs on the arrays of Au nanocluster dimers enabled us to study the polarization dependence of SERS. It was found that a maximal SERS signal is observed for the light polarization along the dimer axis. Finally, SERS by optical phonons was observed for CdSe NCs deposited on the structures with a single Au dimer. A difference of the LO phonon energy is observed for CdSe NCs on different single dimers. This effect is explained as the confinement-induced shift which depends on the CdSe nanocrystal size and indicates quasi-single NC Raman spectra being obtained.

  7. Near-resonance enhanced O2 detection for dual-broadband pure rotational coherent anti-Stokes Raman scattering with an ultraviolet-visible setup at 266 nm

    SciTech Connect

    Schenk, Martin; Seeger, Thomas; Leipertz, Alfred

    2005-07-01

    Broadband and dual-broadband coherent anti-Stokes Raman scattering (CARS) are widely established tools for nonintrusive gas diagnostics. Up to now the investigations have been mainly performed for electronic nonresonant conditions of the gas species of interest. We report on the enhancement of the O2-N2 detection limit of dual-broadband pure rotational CARS by shifting the wavelength of the narrowband pump laser from the commonly used 532-266 nm. This enhancement is caused when the Schumann-Runge absorption band is approached near 176 nm. The principal concept of this experiment, i.e., covering the Raman resonance with a single- or dual-broadband combination of lasers in the visible range and moving only the narrowband probe laser near or directly into electronic resonant conditions in the UV range, should also be applicable to broadband CARS experiments to directly exploit electronic resonance effects for the purpose of single-shot concentration measurements of minority species. To quantify the enhancement in O2 sensitivity, comparative measurements at both a 266 and a 532 nm narrowband pump laser wavelength are presented, employing a 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyram (DCM) dye laser as a broadband laser source at 635 nm. An increase of approximately 13% in the ratio of the rotational CARS cross sections of O2 and N2 was obtained. The broad spectral width of the CARS excitation profile was approximately equal for both setups. Further enhancement should be achievable by shifting the narrowband pump laser closer toward 176 nm, for example, with a frequency-doubled optical parametric oscillator or an excimer laser. The principal concept of this experiment should also be applicable to broadband CARS experiments to directly exploit electronic resonance effects of the narrowband pump laser with electronic transitions of minority species for the purpose of single-shot concentration measurements of those species.

  8. Application of resonance Raman LIDAR for chemical species identification

    SciTech Connect

    Chen, C.L.; Heglund, D.L.; Ray, M.D.; Harder, D.; Dobert, R.; Leung, K.P.; Wu, M.; Sedlacek, A.

    1997-07-01

    BNL has been developing a remote sensing technique for the detection of atmospheric pollutants based on the phenomenon of resonance Raman LIDAR that has also incorporated a number of new techniques/technologies designed to extend it`s performance envelope. When the excitation frequency approaches an allowed electronic transition of the molecule, an enormous enhancement of the inelastic scattering cross-section can occur, often up to 2 to 4 orders-of-magnitude, and is referred to as resonance Raman (RR), since the excitation frequency is in resonance with an allowed electronic transition. Exploitation of this enhancement along with new techniques such as pattern recognition algorithms to take advantage of the spectral fingerprint and a new laser frequency modulation technique designed to suppress broadband fluorescence, referred to as Frequency modulated Excitation Raman Spectroscopy (FreMERS) and recent developments in liquid edge filter technology, for suppression of the elastic channel, all help increase the overall performance of Raman LIDAR.

  9. Probing Nanoscale Pentacene Films by Resonant Raman Scattering

    NASA Astrophysics Data System (ADS)

    He, Rui; Dujovne, Irene; Chen, Liwei; Miao, Qian; Hirjibehedin, Cyrus F.; Pinczuk, Aron; Nuckolls, Colin; Kloc, Christian; Blanchet, Graciela B.

    2005-06-01

    Resonant enhancements of Raman scattering intensities offer the sensitivity required to study nanoscale pentacene films that reach into monolayer thickness. In the results reported here structural characterization of ultra-thin layers and of their fundamental optical properties are investigated by resonant Raman scattering from intra-molecular and inter-molecular vibrations. In this work Raman methods emerge as ideal tools for the study of physics and characterization of ultra-thin nanoscale films of molecular organic materials fabricated on diverse substrates of current and future devices.

  10. Remote sensing of the atmosphere by resonance Raman LIDAR

    SciTech Connect

    Sedlacek, A.J.; Harder, D.; Leung, K.P.; Zuhoski, P.B. Jr.; Burr, D.; Chen, C.L.

    1994-12-01

    When in resonance, Raman scattering exhibits strong enhancement ranging from four to six orders of magnitude. This physical phenomenon has been applied to remote sensing of the Earth`s atmosphere. With a 16 inch Cassegrain telescope and spectrometer/ CCD-detector system, 70-150 ppm-m of SO{sub 2} in the atmosphere has been detected at a distance of 0.5 kilometer. This system can be used to detect/monitor chemical effluence in the atmosphere by their unique Raman fingerprints. Experimental result together with detailed resonance Raman and atmospheric laser propagation effects will be discussed.

  11. Sensitive algorithm for multiple-excitation-wavelength resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Yellampalle, Balakishore; Wu, Hai-Shan; McCormick, William; Sluch, Mikhail; Martin, Robert; Ice, Robert; Lemoff, Brian E.

    2014-05-01

    Raman spectroscopy is a widely used spectroscopic technique with a number of applications. During the past few years, we explored the use of simultaneous multiple-excitation-wavelengths (MEW) in resonance Raman spectroscopy. This approach takes advantage of Raman band intensity variations across the Resonance Raman spectra obtained from two or more excitation wavelengths. Amplitude variations occur between corresponding Raman bands in Resonance Raman spectra due to complex interplay of resonant enhancement, self-absorption and laser penetration depth. We have developed a very sensitive algorithm to estimate concentration of an analyte from spectra obtained using the MEW technique. The algorithm uses correlations and least-square minimization approach to calculate an estimate for the concentration. For two or more excitation wavelengths, measured spectra were stacked in a two dimensional matrix. In a simple realization of the algorithm, we approximated peaks in the ideal library spectra as triangles. In this work, we present the performance of the algorithm with measurements obtained from a dual-excitation-wavelength Resonance Raman sensor. The novel sensor, developed at WVHTCF, detects explosives from a standoff distance. The algorithm was able to detect explosives with very high sensitivity even at signal-to-noise ratios as low as ~1.6. Receiver operating characteristics calculated using the algorithm showed a clear benefit in using the dual-excitation-wavelength technique over single-excitation-wavelength techniques. Variants of the algorithm that add more weight to amplitude variation information showed improved specificity to closely resembling spectra.

  12. Water in the hydration shell of halide ions has significantly reduced Fermi resonance and moderately enhanced Raman cross section in the OH stretch regions.

    PubMed

    Ahmed, Mohammed; Singh, Ajay K; Mondal, Jahur A; Sarkar, Sisir K

    2013-08-22

    Water in the presence of electrolytes plays an important role in biological and industrial processes. The properties of water, such as the intermolecular coupling, Fermi resonance (FR), hydrogen-bonding, and Raman cross section were investigated by measuring the Raman spectra in the OD and OH stretch regions in presence of alkali halides (NaX; X = F, Cl, Br, I). It is observed that the changes in spectral characteristics by the addition of NaX in D2O are similar to those obtained by the addition of H2O in D2O. The spectral width decreases significantly by the addition of NaX in D2O (H2O) than that in the isotopically diluted water. Quantitative estimation, on the basis of integrated Raman intensity, revealed that the relative Raman cross section, σ(H)/σ(b) (σ(H) and σ(b) are the average Raman cross section of water in the first hydration shell of X(-) and in bulk, respectively), in D2O and H2O is higher than those in the respective isotopically diluted water. These results suggest that water in the hydration shell has reduced FR and intermolecular coupling compared to those in bulk. In the isotopically diluted water, the relative Raman cross section increases with increase in size of the halide ions (σ(H)/σ(b) = 0.6, 1.1, 1.5, and 1.9 for F(-), Cl(-), Br(-), and I(-), respectively), which is assignable to the enhancement of Raman cross section by charge transfer from halide ions to the hydrating water. Nevertheless, the experimentally determined σ(H)/σ(b) is lower than the calculated values obtained on the basis of the energy of the charge transfer state of water. The weak enhancement of σ(H)/σ(b) signifies that the charge transfer transition in the hydration shell of halide ions causes little change in the OD (OH) bond lengths of hydrating water. PMID:23895453

  13. Studies on adsorption of mono- and multi-chromophoric hemicyanine dyes on silver nanoparticles by surface-enhanced resonance raman and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Biswas, Nandita; Thomas, Susy; Kapoor, Sudhir; Mishra, Amaresh; Wategaonkar, Sanjay; Mukherjee, Tulsi

    2008-11-01

    Structural and vibrational properties of mono- and multichromophoric hemicyanine (HC) dyes in solution and adsorbed on silver-coated films have been investigated using optical absorption and resonance Raman scattering techniques, with interpretations aided by theoretical calculations. This is the first report on the Raman spectroscopic studies of multichromophoric HC derivatives. The structure of the monomer, N-propyl-4-(p-N,N-dimethylamino styryl)pyridinium bromide (HC3), and its charged and neutral silver complexes (HC3-Ag) in the ground electronic (S0) state were optimized using density functional calculations with the B3LYP method using the 6-31G* and LANL2DZ basis sets. The ground state structure of N-hexyl-4-(p-N,N-dimethylamino styryl)pyridinium bromide (HC6) and multichromophoric HC dyes were computed using the HF /6-31G* method. The negligible shift or broadening observed in the electronic absorption and resonance Raman spectra in solution with increasing size of the HC chromophore suggests that the excitations are localized within individual monomer units in bis and tetra chromophores. However, in the tris chromophore, considerable redshift and broadening were observed, indicating a significant electronic interaction between the nonbonded electrons of the N atom and the aromatic π-system that is supported by the calculated excitation energies using the time-dependent density functional theory method. The effect of HC dye concentration on the electronic absorption spectra of the silver-coated film showed significant broadening, which was attributed to the formation of H- and J-aggregates in addition to the formation of a metal-molecule complex. A considerable redshift along various vibrations observed in the surface-enhanced resonance Raman scattering (SERRS) spectra of the HC derivatives indicates that adsorption on the silver surface leads to a considerable interaction of the electron rich moiety of HC derivatives with the silver surface. The

  14. Fluctuating single sp2 carbon clusters at single hotspots of silver nanoparticle dimers investigated by surface-enhanced resonance Raman scattering

    NASA Astrophysics Data System (ADS)

    Itoh, Tamitake; Yamamoto, Yuko S.; Biju, Vasudevanpillai; Tamaru, Hiroharu; Wakida, Shin-ichi

    2015-12-01

    We evaluate spectral changes in surface enhanced resonance Raman scattering (SERRS) of near-single dye molecules in hotspots of single Ag nanoparticle (NP) dimers. During the laser excitation, surface enhance florescence (SEF) of dye disappeared and the number of SERRS lines decreased until finally ca. two lines remained around 1600 and 1350 cm-1, those are evidence of G and D lines of single sp2 carbon clusters. Analysis of the G and D line intensity ratios reveals the temporal fluctuation in the crystallite size of the clusters within several angstroms; whereas, broadening and splitting in the lines enable us for identifying directly the dynamics of various defects in the clusters. This analysis reveals that the detailed fluctuations of single sp2 carbon clusters, which would be impossible to gain with other microscopic methods.

  15. Theoretical studies of Resonance Enhanced Stimulated Raman Scattering (RESRS) of frequency doubled Alexandrite laser wavelength in cesium vapor

    NASA Technical Reports Server (NTRS)

    Lawandy, Nabil M.

    1987-01-01

    The third phase of research will focus on the propagation and energy extraction of the pump and SERS beams in a variety of configurations including oscillator structures. In order to address these questions a numerical code capable of allowing for saturation and full transverse beam evolution is required. The method proposed is based on a discretized propagation energy extraction model which uses a Kirchoff integral propagator coupled to the three level Raman model already developed. The model will have the resolution required by diffraction limits and will use the previous density matrix results in the adiabatic following limit. Owing to its large computational requirements, such a code must be implemented on a vector array processor. One code on the Cyber is being tested by using previously understood two-level laser models as guidelines for interpreting the results. Two tests were implemented: the evolution of modes in a passive resonator and the evolution of a stable state of the adiabatically eliminated laser equations. These results show mode shapes and diffraction losses for the first case and relaxation oscillations for the second one. Finally, in order to clarify the computing methodology used to exploit the speed of the Cyber's computational speed, the time it takes to perform both of the computations previously mentioned to run on the Cyber and VAX 730 must be measured. Also included is a short description of the current laser model (CAVITY.FOR) and a flow chart of the test computations.

  16. Raman and surface enhanced Raman spectroscopic investigation on Lamiaceae plants

    NASA Astrophysics Data System (ADS)

    Rösch, P.; Popp, J.; Kiefer, W.

    1999-05-01

    The essential oils of Thymus vulgaris and Origanum vulgaris are studied by means of micro-Raman spectroscopy. The containing monoterpenes can be identified by their Raman spectra. Further the essential oils are investigated in their natural environment, the so-called oil cells of these Lamiaceae plants, with surface enhanced Raman spectroscopy (SERS). This method has the advantage to enhance Raman signals and furthermore the SERS effect leads to fluorescence quenching.

  17. Intensity enhancement and selective detection of proximate solvent molecules by molecular near-field effect in resonance hyper-Raman scattering

    NASA Astrophysics Data System (ADS)

    Shimada, Rintaro; Kano, Hideaki; Hamaguchi, Hiro-o.

    2008-07-01

    A new molecular phenomenon associated with resonance hyper-Raman (HR) scattering in solution has been discovered. Resonance HR spectra of all-trans-β-carotene and all-trans-lycopene in various solvents exhibited several extra bands that were not assignable to the solute but were unequivocally assigned to the solvents. Neat solvents did not show detectable HR signals under the same experimental conditions. Similar experiments with all-trans-retinal did not exhibit such enhancement either. All-trans-β-carotene and all-trans-lycopene have thus been shown to induce enhanced HR scattering of solvent molecules through a novel molecular effect that is not associated with all-trans-retinal. We call this new effect the "molecular near-field effect." In order to explain this newly found effect, an extended vibronic theory of resonance HR scattering is developed where the vibronic interaction including the proximate solvent molecule (intermolecular vibronic coupling) is explicitly introduced in the solute hyperpolarizability tensor. The potential of "molecular near-field HR spectroscopy," which selectively detects molecules existing in the close vicinity of a HR probe in complex chemical or biological systems, is discussed.

  18. Enhancing the efficiency of silicon Raman converters

    NASA Astrophysics Data System (ADS)

    Vermeulen, Nathalie; Sipe, John E.; Thienpont, Hugo

    2010-05-01

    We propose a silicon ring Raman converter in which the spatial variation of the Raman gain along the ring for TE polarization is used to quasi-phase-match the CARS process. If in addition the pump, Stokes, and anti-Stokes waves involved in the CARS interaction are resonantly enhanced by the ring structure, the Stokes-to-anti-Stokes conversion efficiency can be increased by at least four orders of magnitude over that of one-dimensional perfectly phase-matched silicon Raman converters, and can reach values larger than unity with relatively low input pump intensities. These improvements in conversion performance could substantially expand the practical applicability of the CARS process for optical wavelength conversion.

  19. Exploitation of resonance Raman spectroscopy as a remote chemical sensor

    SciTech Connect

    Sedlacek, A.J.; Chen, C.L.

    1995-08-01

    We have discussed recent experimental results using a resonance-Raman-based LIDAR system as a remote chemical sensor. This spectroscopy has the fundamental advantage that it is based on optical fingerprints that are insensitive to environmental perturbations. By taking advantage of resonance enhancement, which 6 orders-of-magnitude, can be as large as 4 to an increased sensing range for a given chemical concentration or lower detection limit for a given stand-off distance can be realized. The success discussed above can in part be traced back to the use of new state-of-the-art technologies which, only recently, have allowed the phenomenon of resonance-enhanced Raman spectroscopy to be fully exploited as a remote chemical sensor platform. Since many chemicals have electronic transitions in the UV/IS, it is expected that many will have pronounced resonance enhancements.

  20. Theoretical studies of Resonance Enhanced Stimulated Raman Scattering (RESRS) of frequency-doubled Alexandrite laser wavelength in cesium vapor

    NASA Technical Reports Server (NTRS)

    Lawandy, Nabil M.

    1987-01-01

    The solutions for the imaginary susceptibility of the Raman field transition with arbitrary relaxation rates and field strengths are examined for three different sets of relaxation rates. These rates correspond to: (1) Far Infrared (FIR) Raman lasers in the diabatic collision regime without consideration of coupled population decay in a closed system, (2) Raman FIR lasers in the diabatic collision regime with coupled population conserving decay, and (3) IR Raman gain in cesium vapor. The model is further expanded to include Doppler broadening and used to predict the peak gain as a function of detuning for a frequency doubled Alexandrite laser-pumped cesium vapor gain cell.

  1. Dual-excitation wavelength resonance Raman explosives detector

    NASA Astrophysics Data System (ADS)

    Yellampalle, Balakishore; Sluch, Mikhail; Wu, Hai-Shan; Martin, Robert; McCormick, William; Ice, Robert; Lemoff, Brian E.

    2013-05-01

    Deep-ultraviolet resonance Raman spectroscopy (DUVRRS) is a promising approach to stand-off detection of explosive traces due to: 1) resonant enhancement of Raman cross-section, 2) λ-4-cross-section enhancement, and 3) fluorescence and solar background free signatures. For trace detection, these signal enhancements more than offset the small penetration depth due to DUV absorption. A key challenge for stand-off sensors is to distinguish explosives, with high confidence, from a myriad of unknown background materials that may have interfering spectral peaks. To address this, we are developing a stand-off explosive sensor using DUVRRS with two simultaneous DUV excitation wavelengths. Due to complex interplay of resonant enhancement, self-absorption and laser penetration depth, significant amplitude variation is observed between corresponding Raman bands with different excitation wavelengths. These variations with excitation wavelength provide an orthogonal signature that complements the traditional Raman signature to improve specificity relative to single-excitation-wavelength techniques. As part of this effort, we are developing two novel CW DUV lasers, which have potential to be compact, and a compact dual-band high throughput DUV spectrometer, capable of simultaneous detection of Raman spectra in two spectral windows. We have also developed a highly sensitive algorithm for the detection of explosives under low signal-to-noise situations.

  2. Investigation of anti-Stokes Raman processes at phonon-polariton resonance: from Raman oscillation, frequency upconversion to Raman amplification.

    PubMed

    Ding, Yujie J

    2015-03-01

    Raman oscillation, frequency upconversion, and Raman amplification can be achieved in a second-order nonlinear medium at the phonon-polariton resonance. By beating two optical fields, a second-order nonlinear polarization is generated inside the medium. Such a polarization induces a spatially uniform nonpropagating electric field at the beat frequency, which in turn mixes with the input optical field at the lower frequency to generate or amplify the anti-Stokes optical field. Raman oscillation can be efficiently reached for the copropagating configuration. In comparison, efficient frequency upconversion and large amplifications are achievable for the counterpropagating configuration. These Raman processes can be used to effectively remove transverse-optical phonons before decaying to lower-frequency phonons, achieve laser cooling, and significantly enhance coherent anti-Stokes Raman scattering. The counterpropagating configuration offers advantages for amplifying extremely weak signals. PMID:25723418

  3. Proliferation detection using a remote resonance Raman chemical sensor

    SciTech Connect

    Sedlacek, A.J.; Chen, C.L.; Dougherty, D.R.

    1993-08-01

    The authors discussed the potential of the resonance Raman chemical sensor as a remote sensor that can be used for gases, liquids or solids. This spectroscopy has the fundamental advantage that it is based on optical fingerprints that are insensitive to environmental perturbations or excitation frequency. By taking advantage of resonance enhancement, the inelastic scattering cross-section can increase anywhere from 4 to 6 orders of magnitude which translates into increased sensing range or lower detection limits. It was also shown that differential cross-sections as small as 10{sup {minus}27} cm{sup 2}/sr do not preclude the use of this technique as being an important component in one`s remote-sensing arsenal. The results obtained in the early 1970s on various pollutants and the more recent work on atmospheric water cast a favorable light on the prospects for the successful development of a resonance Raman remote sensor. Currently, of the 20 CW agent-related {open_quotes}signature{close_quotes} chemicals that the authors have investigated, 18 show enhancements ranging from 3 to 6 orders of magnitude. The absolute magnitudes of the measured resonance enhanced Raman cross-sections for these 18 chemicals suggest that detection and identification of trace quantities of the {open_quotes}signature{close_quotes} chemicals, through a remote resonance Raman chemical sensor, could be achieved.

  4. Investigation of magnetic field enriched surface enhanced resonance Raman scattering performance using Fe3O4@Ag nanoparticles for malaria diagnosis

    NASA Astrophysics Data System (ADS)

    Yuen, Clement; Liu, Quan

    2014-03-01

    Recently, we have demonstrated the magnetic field-enriched surface-enhanced resonance Raman spectroscopy (SERRS) of β-hematin by using nanoparticles with iron oxide core and silver shell (Fe3O4@Ag) for the potential application in the early malaria diagnosis. In this study, we investigate the dependence of the magnetic field-enriched SERRS performance of β-hematin on the different core and shell sizes of the Fe3O4@Ag nanoparticles. We note that the core and shell parameters are critical in the realization of the optimal magnetic field-enrich SERRS β-hematin signal. These results are consistent with our simulations that will guide the optimization of the magnetic SERRS performance for the potential early diagnosis in the malaria disease.

  5. Surface-Enhanced Raman Spectroscopy.

    ERIC Educational Resources Information Center

    Garrell, Robin L.

    1989-01-01

    Reviews the basis for the technique and its experimental requirements. Describes a few examples of the analytical problems to which surface-enhanced Raman spectroscopy (SERS) has been and can be applied. Provides a perspective on the current limitations and frontiers in developing SERS as an analytical technique. (MVL)

  6. Resonant Raman spectroscopy of twisted multilayer graphene.

    PubMed

    Wu, Jiang-Bin; Zhang, Xin; Ijäs, Mari; Han, Wen-Peng; Qiao, Xiao-Fen; Li, Xiao-Li; Jiang, De-Sheng; Ferrari, Andrea C; Tan, Ping-Heng

    2014-01-01

    Graphene and other two-dimensional crystals can be combined to form various hybrids and heterostructures, creating materials on demand with properties determined by the interlayer interaction. This is the case even for a single material, where multilayer stacks with different relative orientation have different optical and electronic properties. Probing and understanding the interface coupling is thus of primary importance for fundamental science and applications. Here we study twisted multilayer graphene flakes with multi-wavelength Raman spectroscopy. We find a significant intensity enhancement of the interlayer coupling modes (C peaks) due to resonance with new optically allowed electronic transitions, determined by the relative orientation of the layers. The interlayer coupling results in a Davydov splitting of the C peak in systems consisting of two equivalent graphene multilayers. This allows us to directly quantify the interlayer interaction, which is much smaller compared with Bernal-stacked interfaces. This paves the way to the use of Raman spectroscopy to uncover the interface coupling of two-dimensional hybrids and heterostructures. PMID:25382099

  7. Structure-dependent localized surface plasmon resonance characteristics and surface enhanced Raman scattering performances of quasi-periodic nanoarrays: Measurements and analysis

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Zhou, Jun; Rippa, Massimo; Petti, Lucia

    2015-10-01

    A set of periodic and quasi-periodic Au nanoarrays with different morphologies have been fabricated by using electron beam lithography technique, and their optical properties have been examined experimentally and analyzed theoretically by scanning near-field optical microscope and finite element method, respectively. Results present that the localized surface plasmon resonance of the as-prepared Au nanoarrays exhibit the structure-depended characteristics. Comparing with the periodic nanoarrays, the quasi-periodic ones demonstrate stronger electric field enhancement, especially for Thue-Morse nanoarray. Meanwhile, the surface enhanced Raman scattering (SERS) spectra of 4-mercaptobenzoic acid molecular labeled nanoarrays show that the quasi-periodic nanoarrays exhibit distinct SERS enhancement, for example, a higher enhancement factor of ˜107 is obtained for the Thue-Morse nanoarray consisted of square pillars of 100 nm size. Therefore, it is significant to optimally design and fabricate the chip-scale quasi-periodic nanoarrays with high localized electric field enhancement for SERS applications in biosensing field.

  8. Structure-dependent localized surface plasmon resonance characteristics and surface enhanced Raman scattering performances of quasi-periodic nanoarrays: Measurements and analysis

    SciTech Connect

    Chen, Dong; Zhou, Jun; Rippa, Massimo; Petti, Lucia

    2015-10-28

    A set of periodic and quasi-periodic Au nanoarrays with different morphologies have been fabricated by using electron beam lithography technique, and their optical properties have been examined experimentally and analyzed theoretically by scanning near-field optical microscope and finite element method, respectively. Results present that the localized surface plasmon resonance of the as-prepared Au nanoarrays exhibit the structure-depended characteristics. Comparing with the periodic nanoarrays, the quasi-periodic ones demonstrate stronger electric field enhancement, especially for Thue-Morse nanoarray. Meanwhile, the surface enhanced Raman scattering (SERS) spectra of 4-mercaptobenzoic acid molecular labeled nanoarrays show that the quasi-periodic nanoarrays exhibit distinct SERS enhancement, for example, a higher enhancement factor of ∼10{sup 7} is obtained for the Thue-Morse nanoarray consisted of square pillars of 100 nm size. Therefore, it is significant to optimally design and fabricate the chip-scale quasi-periodic nanoarrays with high localized electric field enhancement for SERS applications in biosensing field.

  9. Enhanced Raman Monitor Project

    NASA Technical Reports Server (NTRS)

    Westenskow, Dwayne

    1996-01-01

    Monitoring of gaseous contaminants stems from the need to ensure a healthy and safe environment. NASA/Ames needs sensors that are able to monitor common atmospheric gas concentrations as well as trace amounts of contaminant gases. To provide an accurate assessment of air quality, a monitoring system would need to be continuous and on-line with full spectrum capabilities, allowing simultaneous detection of all gas components in a sample, including both combustible and non-combustible gases. The system demands a high degree of sensitivity to detect low gas concentrations in the low-ppm and sub-ppm regions. For clean and healthy air ('good' category), criteria established by the EPA requires that contaminant concentrations not exceed 4 ppm of carbon monoxide (CO) in an 8 hour period, 60 ppb of ozone(O3) in a one hour period and 30 ppb of sulfur dioxide (SO2) in a 24 hour period. One step below this is the National Ambient Air Quality Standard ('moderate' category) which requires that contaminant concentrations not exceed 9 ppm of carbon monoxide (CO), 120 ppb of ozone (O3) and 140 ppb of sulfur dioxide (SO2) for their respective time periods. Ideally a monitor should be able to detect the concentrations specified in the 'good' category. To benchmark current abilities of Raman technology in gas phase analysis, laboratory experiments were performed to evaluate the RASCAL II anesthetic gas monitor.

  10. Novel Raman resonance in ladder spin systems

    NASA Astrophysics Data System (ADS)

    Donkov, Alexander; Chubukov, Andrey

    2006-03-01

    We consider Raman intensity in spin S two-leg- spin-ladder, with the goal to understand recent experiments[1,2]. We argue that the Raman intensity has a pseudo-resonance peak whose width is very small at large S. The pseudo-resonance originates from the existence of a local minimum in the magnon excitation spectrum, and is located slightly below twice the magnon energy at the minimum. The physics behind the peak is surprisingly similar to that in the excitonic scenario for the neutron and Raman resonances in a d-wave superconductor. We also consider mid-infrared X-ray scattering in 2D systems and compare the results with recent measurements [3]. [1] A. Gozar et al, Phys. Rev. Lett. 87, 197202 (2001). [2] S. Sugai and M. Suzuki, Phys stat sol (b) 215, 653 (1999). [3] J. P. Hill, G Blumberg et al, [unpublished

  11. Tip enhanced Raman scattering: plasmonic enhancements for nanoscale chemical analysis

    NASA Astrophysics Data System (ADS)

    Schultz, Zachary D.; Marr, James M.; Wang, Hao

    2014-04-01

    Tip enhanced Raman scattering (TERS) is an emerging technique that uses a metalized scanning probe microscope tip to spatially localize electric fields that enhances Raman scattering enabling chemical imaging on nanometer dimensions. Arising from the same principles as surface enhanced Raman scattering (SERS), TERS offers unique advantages associated with controling the size, shape, and location of the enhancing nanostructure. In this article we discuss the correlations between current understanding of SERS and how this relates to TERS, as well as how TERS provides new understanding and insights. The relationship between plasmon resonances and Raman enhancements is emphasized as the key to obtaining optimal TERS results. Applications of TERS, including chemical analysis of carbon nanotubes, organic molecules, inorganic crystals, nucleic acids, proteins, cells and organisms, are used to illustrate the information that can be gained. Under ideal conditions TERS is capable of single molecule sensitivity and sub-nanometer spatial resolution. The ability to control plasmonic enhancements for chemical analysis suggests new experiments and opportunities to understand molecular composition and interactions on the nanoscale.

  12. Ultrafast saturation of electronic-resonance-enhanced coherent anti-Stokes Raman scattering and comparison for pulse durations in the nanosecond to femtosecond regime

    NASA Astrophysics Data System (ADS)

    Patnaik, Anil K.; Roy, Sukesh; Gord, James R.

    2016-02-01

    The saturation threshold of a probe pulse in an ultrafast electronic-resonance-enhanced (ERE) coherent anti-Stokes Raman spectroscopy (CARS) configuration is calculated. We demonstrate that while the underdamping condition is a sufficient condition for saturation of ERE-CARS with the long-pulse excitations, a transient gain must be achieved to saturate the ERE-CARS signal for the ultrafast probe regime. We identify that the area under the probe pulse can be used as a definitive parameter to determine the criterion for a saturation threshold for ultrafast ERE-CARS. From a simplified analytical solution and a detailed numerical calculation based on density-matrix equations, the saturation threshold of ERE-CARS is compared for a wide range of probe-pulse durations from the 10-ns to the 10-fs regime. The theory explains both qualitatively and quantitatively the saturation thresholds of resonant transitions and also gives a predictive capability for other pulse duration regimes. The presented criterion for the saturation threshold will be useful in establishing the design parameters for ultrafast ERE-CARS.

  13. Nanoparticle Based Surface-Enhanced Raman Spectroscopy

    SciTech Connect

    Talley, C E; Huser, T R; Hollars, C W; Jusinski, L; Laurence, T; Lane, S M

    2005-01-03

    Surface-enhanced Raman scattering is a powerful tool for the investigation of biological samples. Following a brief introduction to Raman and surface-enhanced Raman scattering, several examples of biophotonic applications of SERS are discussed. The concept of nanoparticle based sensors using SERS is introduced and the development of these sensors is discussed.

  14. UV resonance Raman analysis of trishomocubane and diamondoid dimers

    SciTech Connect

    Meinke, Reinhard Thomsen, Christian; Maultzsch, Janina; Richter, Robert; Merli, Andrea; Fokin, Andrey A.; Koso, Tetyana V.; Schreiner, Peter R.; Rodionov, Vladimir N.

    2014-01-21

    We present resonance Raman measurements of crystalline trishomocubane and diamantane dimers containing a C=C double bond. Raman spectra were recorded with excitation energies between 2.33 eV and 5.42 eV. The strongest enhancement is observed for the C=C stretch vibration and a bending mode involving the two carbon atoms of the C=C bond, corresponding to the B{sub 2g} wagging mode of ethylene. This is associated with the localization of the π-HOMO and LUMO and the elongation of the C=C bond length and a pyramidalization of the two sp{sup 2}-hybridized carbon atoms at the optical excitation. The observed Raman resonance energies of the trishomocubane and diamantane dimers are significantly lower than the HOMO-LUMO gaps of the corresponding unmodified diamondoids.

  15. Distinguishing individual vibrational fingerprints: single-molecule surface-enhanced resonance raman scattering from one-to-one binary mixtures in Langmuir-Blodgett monolayers.

    PubMed

    Goulet, Paul J G; Aroca, Ricardo F

    2007-04-01

    Here, it is demonstrated that similar chemical species within a multicomponent sample can be distinguished, down to the single-molecule level, by means of their surface-enhanced vibrational fingerprints. Surface-enhanced resonance Raman scattering spectra and 2D spatial intensity maps are recorded from thin Ag nanoparticle films coated with fatty acid Langmuir-Blodgett monolayers containing one-to-one binary mixtures, at varying concentrations, of two dye molecules of similar absorption and scattering cross section (n-pentyl-5-salicylimidoperylene and octadecylrhodamine B). The results reveal the change in the distribution of the two dyes within the monolayer, and the breakdown of ensemble spectral averaging, which occur as the single-molecule regime is approached. It is found that the unimolecular level is reached when 1-10 molecules of each dye occupy the 1-microm2 scattering areas probed by the laser. These signals are attributed to the rare spatial coincidence of isolated target analyte molecules and localized electromagnetic hot spots in the nanostructured metal film. The bianalyte nature of the samples provides strong corroborative support for the attribution of spectra to single molecules at high dilution, while the effect of domain formation/aggregation is found to be important at higher concentrations. PMID:17311464

  16. Molecular spectroscopy of uranium(IV) bis(ketimido) complexes. rare observation of resonance-enhanced raman scattering from organoactinide complexes and evidence for broken-symmetry excited states.

    PubMed

    Da Re, Ryan E; Jantunen, Kimberly C; Golden, Jeffrey T; Kiplinger, Jaqueline L; Morris, David E

    2005-01-19

    Electronic absorption and resonance-enhanced Raman spectra for ketimido (azavinylidene) complexes of tetravalent uranium, (C(5)Me(5))(2)U[-N=C(Ph)(R)](2) (R = Ph, Me, and CH(2)Ph), have been recorded. The absorption spectra exhibit four broad bands between 13 000 and 24 000 cm(-1). The highest-energy band is assigned to the ketimido-localized p( perpendicular)(N)-->pi(N=C) transition based on comparison to the spectra of (C(5)H(5))(2)Zr[-N=CPh(2)](2) and (C(5)Me(5))(2)Th[-N=CPh(2)](2). Upon excitation into any of these four absorption bands, the (C(5)Me(5))(2)U[-N=C(Ph)(R)](2) complexes exhibit resonance enhancement for several Raman bands attributable to vibrations of the ketimido ligands. Raman bands for both the symmetric and nominally asymmetric N=C stretching bands are resonantly enhanced upon excitation into the p( perpendicular)(N)-->pi(N=C) absorption bands, indicating that the excited state is localized on a single ketimido ligand. Raman excitation profiles for (C(5)Me(5))(2)U[-N=CPh(2)](2) confirm that at least one of the lower-energy electronic absorption bands (E(max) approximately 16300 cm(-1)) is a charge-transfer transition between the U(IV) center and the ketimido ligand(s). The observations of both charge-transfer transitions and resonance enhancement of Raman vibrational bands are exceedingly rare for tetravalent actinide complexes and reflect the strong bonding interactions between the uranium 5f/6d orbitals and those on the ketimido ligands. PMID:15643893

  17. Resonance Raman spectroscopy utilizing tunable deep ultraviolet excitation for materials characterization

    NASA Astrophysics Data System (ADS)

    Chadwick, Christopher Todd

    Resonance Raman spectroscopy offers some key benefits over other spectroscopy methods. In one facet, resonance Raman provides a level of specificity not present in non-resonant Raman scattering. In another facet, resonance Raman can provide increased scattering cross-sections that rival those associated with the intensities of species fluorescence. These features provide mechanisms for improved trace species detection in current Raman remote sensing applications; as well as signal level enhancement in tiny volume regimes, such as those typical in near-field optical microscopy. This dissertation presents three main thrusts that are not well documented in the previous resonance Raman studies. We demonstrate fine resolution (approx 0:1nm) resonance tuning of the excitation wavelength corresponding to sharp absorption bands in liquid benzene and liquid toluene. The Raman spectra for these materials show an appreciable increase in scattering intensity of fundamental vibrational modes and show significant enhancements in scattering intensities for overtone and combination vibrational modes not observed with non-resonant excitation. Resonantly excited fundamental modes are observed to be enhanced by 3 to 5 orders of magnitude over non-resonant excitation; and several resonantly excited overtone modes are observed for both liquid benzene and liquid toluene. We have observed, that for liquid benzene and liquid toluene, the maximum Raman scattering intensity is realized when the excitation wavelength corresponds to that of the vapor phase absorption maximum, not the liquid phase absorption maximum as expected. We present a simple model of the time-dependent energy accumulation in the scattering volume that suggests that the scattering medium is a highly disorganized fluid. The observed Raman scattering intensity originates from this metastable fluid observed during the liquid-vapor phase transition. Using different concentration solutions of liquid benzene in heptane, we

  18. Raman-assisted Rabi resonances in two-mode cavity QED

    SciTech Connect

    Gruenwald, P.; Singh, S. K.; Vogel, W.

    2011-06-15

    The dynamics of a vibronic system in a lossy two-mode cavity is studied, with the first mode being resonant to the electronic transition and the second one being nearly resonant due to Raman transitions. We derive analytical solutions for the dynamics of this system. For a properly chosen detuning of the second mode from the exact Raman resonance, we obtain conditions that are closely related to the phenomenon of Rabi resonance as it is well known in laser physics. Such resonances can be observed in the spontaneous emission spectra, where the spectrum of the second mode in the case of weak Raman coupling is enhanced substantially.

  19. X-ray resonant Raman spectroscopy

    SciTech Connect

    Cowan, P.L.; LeBrun, T.; Deslattes, R.D.

    1995-08-01

    X-ray resonant Raman scattering presents great promise as a high-resolution spectroscopic probe of the electronic structure of matter. Unlike other methods, the technique avoids the loss of energy resolution resulting from the lifetime broadening of short-lived core-excited states. In addition, measurements of polarization and angular anisotropies yield information on the symmetries of electronic states of atoms and molecules. We studied the L{sub 3} edge of xenon, where the lifetime broadening is a major feature of the spectra recorded previously. X-ray fluorescence spectra were taken of both the L{alpha}{sub l,2} and L{beta}{sub 2,15} peaks over a range of energies from 10 eV below the edge to 40 eV above. These spectra show the evolution of resonant Raman scattering into characteristic fluorescence as the photon energy is scanned across the edge, and confirm several features of these spectra such as asymmetries in resonant peak shapes due to the onset of the ionization continuum. These results constitute the most comprehensive study of X-ray resonant Raman scattering to date, and were submitted for publication. Studies of other cases are under way, and new instruments that would match the unique characteristics of the APS - and thus render a new range of experiments possible - are under consideration.

  20. Enhanced Raman scattering of biological molecules

    NASA Astrophysics Data System (ADS)

    Montoya, Joseph R.

    The results presented in this thesis, originate from the aspiration to develop an identification algorithm for Salmonella enterica Serovar Enteritidis (S. enterica), Escherichia coli (E. coli), Bacillus globigii ( B. globigii), and Bacillus megaterium ( B. megaterium) using "enhanced" Raman scattering. We realized our goal, with a method utilizing an immunoassay process in a spectroscopic technique, and the direct use of the enhanced spectral response due to bacterial surface elements. The enhanced Raman signal originates from Surface Enhanced Raman Scattering (SERS) and/or Morphological Dependent Resonances (MDR's). We utilized a modified Lee-Meisel colloidal production method to produce a SERS active substrate, which was applied to a SERS application for the amino acid Glycine. The comparison indicates that the SERS/FRACTAL/MDR process can produce an increase of 107 times more signal than the bulk Raman signal from Glycine. In the extension of the Glycine results, we studied the use of SERS related to S. enterica, where we have shown that the aromatic amino acid contribution from Phenylalanine, Tyrosine, and Tryptophan produces a SERS response that can be used to identify the associated SERS vibrational modes of a S. enterica one or two antibody complexes. The "fingerprint" associated with the spectral signature in conjunction with an enhanced Raman signal allows conclusions to be made: (1) about the orientation of the secondary structure on the metal; (2) whether bound/unbound antibody can be neglected; (3) whether we can lower the detection limit. We have lowered the detection limit of S. enterica to 106 bacteria/ml. We also show a profound difference between S. enterica and E. coli SERS spectra even when there exists non-specific binding on E. coli indicating a protein conformation change induced by the addition of the antigen S. enterica. We confirm TEM imagery data, indicating that the source of the aromatic amino acid SERS response is originating from

  1. Resonance Raman spectroscopic study of fused multiporphyrin linear arrays

    NASA Astrophysics Data System (ADS)

    Jeong, Dae Hong; Jang, Sung Moon; Hwang, In-Wook; Kim, Dongho; Matsuzaki, Yoichi; Tanaka, Kazuyoshi; Tsuda, Akihiko; Nakamura, Takeshi; Osuka, Atsuhiro

    2003-09-01

    For prospective applications as molecular electric wires, triply linked fused porphyrin arrays have been prepared. As expected from their completely flat molecular structures, π-electron delocalization can be extended to the whole array manifested by a continuous redshift of the HOMO-LUMO transition band to infrared region up to a few μm as the number of porphyrin units in the array increases. To gain an insight into the relationship between the molecular structures and electronic properties, we have investigated resonance Raman spectra of fused porphyrin arrays depending on the number of porphyrin pigments in the array. We have carried out the normal mode analysis of fused porphyrin dimer based on the experimental results including Raman frequency shifts of two types of 13C-isotope substituted dimers, Raman enhancement pattern by changing excitation wavelength, and depolarization ratio measurements as well as normal-mode calculations at the B3LYP/6-31G level. In order to find the origins for the resonance Raman mode enhancement mechanism, we have predicted both the excited state geometry changes (A-term) and the vibronic coupling efficiencies (B-term) for the relevant electronic transitions based on the INDO/S-SCI method. A detailed normal mode analysis of the fused dimer allows us to extend successfully our exploration to longer fused porphyrin arrays. Overall, our investigations have provided a firm basis in understanding the molecular vibrations of fused porphyrin arrays in relation to their unique flat molecular structures and rich electronic transitions.

  2. Pre-resonance Raman spectra of some simple gases. [sulfur oxides, hydrogen sulfide, and nitrogen oxides

    NASA Technical Reports Server (NTRS)

    Low, P. W.

    1974-01-01

    The pre-resonance Raman spectra of SO2, N2O, and H2S were investigated using the 4880 A, 4727 A, and 4579 A lines of the argon ion laser. Although these molecules have electronic absorption bands in the near ultraviolet, none exhibit any pre-resonance enhancement within our experimental error of + or - 10%. Possible explanations taking into account the current theories for resonance Raman are discussed.

  3. UV-resonance Raman spectroscopy of amino acids

    NASA Astrophysics Data System (ADS)

    Höhl, Martin; Meinhardt-Wollweber, Merve; Schmitt, Heike; Lenarz, Thomas; Morgner, Uwe

    2016-03-01

    Resonant enhancement of Raman signals is a useful method to increase sensitivity in samples with low concentration such as biological tissue. The investigation of resonance profiles shows the optimal excitation wavelength and yields valuable information about the molecules themselves. However careful characterization and calibration of all experimental parameters affecting quantum yield is required in order to achieve comparability of the single spectra recorded. We present an experimental technique for measuring the resonance profiles of different amino acids. The absorption lines of these molecules are located in the ultraviolet (UV) wavelength range. One limitation for broadband measurement of resonance profiles is the limited availability of Raman filters in certain regions of the UV for blocking the Rayleigh scattered light. Here, a wavelength range from 244.8 nm to 266.0 nm was chosen. The profiles reveal the optimal wavelength for recording the Raman spectra of amino acids in aqueous solutions in this range. This study provides the basis for measurements on more complex molecules such as proteins in the human perilymph. The composition of this liquid in the inner ear is essential for hearing and cannot be analyzed non-invasively so far. The long term aim is to implement this technique as a fiber based endoscope for non-invasive measurements during surgeries (e. g. cochlear implants) making it available as a diagnostic tool for physicians. This project is embedded in the interdisciplinary cluster of excellence "Hearing for all" (H4A).

  4. Plasmon enhanced Raman scattering effect for an atom near a carbon nanotube.

    PubMed

    Bondarev, I V

    2015-02-23

    Quantum electrodynamics theory of the resonance Raman scattering is developed for an atom in a close proximity to a carbon nanotube. The theory predicts a dramatic enhancement of the Raman intensity in the strong atomic coupling regime to nanotube plasmon near-fields. This resonance scattering is a manifestation of the general electromagnetic surface enhanced Raman scattering effect, and can be used in designing efficient nanotube based optical sensing substrates for single atom detection, precision spontaneous emission control, and manipulation. PMID:25836436

  5. Graphene-Enhanced Raman Scattering from the Adenine Molecules.

    PubMed

    Dolgov, Leonid; Pidhirnyi, Denys; Dovbeshko, Galyna; Lebedieva, Tetiana; Kiisk, Valter; Heinsalu, Siim; Lange, Sven; Jaaniso, Raivo; Sildos, Ilmo

    2016-12-01

    An enhanced Raman scattering from a thin layer of adenine molecules deposited on graphene substrate was detected. The value of enhancement depends on the photon energy of the exciting light. The benzene ring in the structure of adenine molecule suggests π-stacking of adenine molecule on top of graphene. So, it is proposed that the enhancement in the adenine Raman signal is explained by the resonance electron transfer from the Fermi level of graphene to the lowest unoccupied molecular orbital (LUMO) level of adenine. PMID:27075339

  6. Graphene-Enhanced Raman Scattering from the Adenine Molecules

    NASA Astrophysics Data System (ADS)

    Dolgov, Leonid; Pidhirnyi, Denys; Dovbeshko, Galyna; Lebedieva, Tetiana; Kiisk, Valter; Heinsalu, Siim; Lange, Sven; Jaaniso, Raivo; Sildos, Ilmo

    2016-04-01

    An enhanced Raman scattering from a thin layer of adenine molecules deposited on graphene substrate was detected. The value of enhancement depends on the photon energy of the exciting light. The benzene ring in the structure of adenine molecule suggests π-stacking of adenine molecule on top of graphene. So, it is proposed that the enhancement in the adenine Raman signal is explained by the resonance electron transfer from the Fermi level of graphene to the lowest unoccupied molecular orbital (LUMO) level of adenine.

  7. Resonance and Variable Temperature Raman Studies of Chloroperoxidase and Methemoglobin.

    NASA Astrophysics Data System (ADS)

    Remba, Ronald David

    1980-12-01

    Raman spectra of the heme proteins chloroperoxidase and methemoglobin, chemically and temperature modified, are obtained for laser excitation near the Soret absorption band. Numerous biochemical and physical results are obtained. The following observations for chloroperoxidase have been made. The scattered intensity for resonance (406.7 nm) excitation is at least twenty times that for near resonance (457.9 nm) excitation. In resonance only totally symmetric modes are enhanced. The positions of marker band I ((TURN) 1370 cm(' -1)) for both the native and reduced enzymes are lower than expected for high-spin heme proteins indicating a strongly electron donating axial ligand. From shifts in spin-sensitive Raman peaks as the temperature is lowered, a high-spin to low-spin transition of the heme iron is inferred. Raman spectra of chloroperoxidase liganded with small ions indicate that there is a second anion binding site near the heme. Photo-dissociation of CO from reduced chloroperoxidase is observed. The position of marker band I in the CO complex indicates that electron density is transferred from the heme onto the CO. The resonance Raman spectra of chloroperoxidase and cytochrome P-450 are nearly identical and are very different from those of horseradish peroxidase and cytochrome c. These results, particularly for the reduced enzymes, indicate that the heme sites in chloroperoxidase and P -450 are essentially the same. Raman spectra of a number of methemoglobins complexed with various small ions are obtained as a function of temperature in the region of spin-sensitive marker band (II) ((TURN) 1500 cm('-1)) for laser excitation near the Soret absorption band. For certain ligands, H(,2)O, N(,3)('-), OCN('-), OH('-) and SCN('-), the iron spin state changes from high spin to low spin with decreasing temperature. The relative spin concentrations are monitored by measuring the Raman intensity ratio, I(,h)/I(,1), of the high-spin and low -spin versions of marker band (II

  8. Nanopillars array for surface enhanced Raman scattering

    SciTech Connect

    S.P. Chang, A; Bora, M; Nguyen, H T; Behymer, E M; Larson, C C; Britten, J A; Carter, J C; Bond, T C

    2011-04-14

    The authors present a new class of surface-enhanced Raman scattering (SERS) substrates based on lithographically-defined two-dimensional rectangular array of nanopillars. Two types of nanopillars within this class are discussed: vertical pillars and tapered pillars. For the vertical pillars, the gap between each pair of nanopillars is small enough (< 50 nm) such that highly confined plasmonic cavity resonances are supported between the pillars when light is incident upon them, and the anti-nodes of these resonances act as three-dimensional hotspots for SERS. For the tapered pillars, SERS enhancement arises from the nanofocusing effect due to the sharp tip on top. SERS experiments were carried out on these substrates using various concentrations of 1,2 bis-(4-pyridyl)-ethylene (BPE), benzenethiol (BT) monolayer and toluene vapor. The results show that SERS enhancement factor of over 0.5 x 10{sup 9} can be achieved, and BPE can be detected down to femto-molar concentration level. The results also show promising potential for the use of these substrates in environmental monitoring of gases and vapors such as volatile organic compounds.

  9. Resonance Raman spectroscopy of volatile organics -- Carbon tetrachloride

    SciTech Connect

    Barletta, R.E.; Veligdan, J.T.

    1994-09-01

    Volatile organic chemicals are a class of pollutants which are regulated at very low levels by the EPA. Consequently a need exists as a part of site remediation efforts within DOE to develop technologies which will allow for the in situ monitoring of these chemicals. Resonance Raman spectroscopy is a potential technique to accomplish this if the resonance enhancement is sufficiently high. Carbon tetrachloride was selected as a test case. Measurements under resonance conditions at 248 nm showed an enhancement factor of 2 {times} 10{sup 4}. Using this value an estimate of the sensitivity for both in situ and remote monitoring of CCl{sup 4} was made. It was concluded that resonance Raman could be used to detect these chemicals at levels of regulatory interest. Future effort directed towards the development of a suitable probe as well as a field-portable system would be desirable. Such effort could be directed towards the solution of a particular monitoring problem within a DOE waste remediation project. Once developed, however, it should be easily generalized to the analysis of other VOC`s in other environments.

  10. Resonant Raman scattering background in XRF spectra of binary samples

    NASA Astrophysics Data System (ADS)

    Sánchez, Héctor Jorge; Leani, Juan José

    2015-02-01

    In x-ray fluorescence analysis, spectra present singular characteristics produced by the different scattering processes. When atoms are irradiated with incident energy lower and close to an absorption edge, scattering peaks appear due to an inelastic process known as resonant Raman scattering. In this work we present theoretical calculations of the resonant Raman scattering contributions to the background of x-ray fluorescence spectra of binary samples of current technological or biological interest. On one hand, a binary alloy of Fe with traces of Mn (Mn: 0.01%, Fe: 99.99%) was studied because of its importance in the stainless steels industries. On the second hand a pure sample of Ti with V traces (Ti: 99%, V: 1%) was analyzed due to the current relevance in medical applications. In order to perform the calculations the Shiraiwa and Fujino's model was used to calculate characteristic intensities and scattering interactions. This model makes certain assumptions and approximations to achieve the calculations, especially in the case of the geometrical conditions and the incident and take-off beams. For the binary sample studied in this work and the considered experimental conditions, the calculations show that the resonant Raman scattering background is significant under the fluorescent peak, affects the symmetry of the peaks and, depending on the concentrations, overcomes the enhancements contributions (secondary fluorescence).

  11. Wavelength dependent resonance Raman band intensity of broadband stimulated Raman spectroscopy of malachite green in ethanol

    NASA Astrophysics Data System (ADS)

    Cen, Qiongyan; He, Yuhan; Xu, Mei; Wang, Jingjing; Wang, Zhaohui

    2015-03-01

    Resonance broadband stimulated Raman spectroscopy of malachite green in ethanol has been performed. With a tuning picosecond visible laser source and a broadband Raman probe, the Raman gain and loss spectra have been measured simultaneously. By scanning the Raman pump across the first absorption band of the molecule, we found that the resonant Raman bands could be only seen when the pump laser tuned in the range of the red edge of the S1←S0 transition. Dispersive lineshapes of resonant Raman bands have been observed in the Raman loss spectra, while the line shape is normal (same as spontaneous Raman) in the Raman gain spectra. Although, the resonant bands in the loss spectrum are usually stronger than that in the gain spectrum, the band intensities of both loss and gain linearly increase with the pump energy. The relative magnitude of each corresponding resonant band in the Raman loss and gain varies with the pump wavelength. Mode specified Raman excitation profiles have been obtained through broadband stimulated Raman measurement.

  12. Deep ultraviolet Raman spectroscopy: A resonance-absorption trade-off illustrated by diluted liquid benzene

    NASA Astrophysics Data System (ADS)

    Chadwick, C. T.; Willitsford, A. H.; Philbrick, C. R.; Hallen, H. D.

    2015-12-01

    The magnitude of resonance Raman intensity, in terms of the real signal level measured on-resonance compared to the signal level measured off-resonance for the same sample, is investigated using a tunable laser source. Resonance Raman enhancements, occurring as the excitation energy is tuned through ultraviolet absorption lines, are used to examine the 1332 cm-1 vibrational mode of diamond and the 992 cm-1 ring-breathing mode of benzene. Competition between the wavelength dependent optical absorption and the magnitude of the resonance enhancement is studied using measured signal levels as a function of wavelength. Two system applications are identified where the resonance Raman significantly increases the real signal levels despite the presence of strong absorption: characterization of trace species in laser remote sensing and spectroscopy of the few molecules in the tiny working volumes of near-field optical microscopy.

  13. Surface-enhanced hyper-Raman and Raman hyperspectral mapping.

    PubMed

    Gühlke, Marina; Heiner, Zsuzsanna; Kneipp, Janina

    2016-06-01

    We investigate distributions of crystal violet and malachite green on plasmonic surfaces by principal component analysis (PCA) imaging of surface-enhanced hyper-Raman scattering (SEHRS) data. As a two-photon excited Raman scattering process, SEHRS provides chemical structure information based on molecular vibrations, but follows different selection rules than the normal, one-photon excited surface-enhanced Raman scattering (SERS). Therefore, simultaneous hyperspectral mapping using SEHRS excited at 1064 nm and SERS excited at 532 nm improves spatially resolved multivariate discrimination based on complementary vibrational information. The possibility to map distributions of the structurally similar dyes crystal violet and malachite green demonstrates the potential of this approach for multiplex imaging of complex systems. PMID:27166200

  14. Preventing Raman Lasing in High-Q WGM Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry; Maleki, Lute

    2007-01-01

    A generic design has been conceived to suppress the Raman effect in whispering- gallery-mode (WGM) optical resonators that have high values of the resonance quality factor (Q). Although it is possible to exploit the Raman effect (even striving to maximize the Raman gain to obtain Raman lasing), the present innovation is intended to satisfy a need that arises in applications in which the Raman effect inhibits the realization of the full potential of WGM resonators as frequency-selection components. Heretofore, in such applications, it has been necessary to operate high-Q WGM resonators at unattractively low power levels to prevent Raman lasing. (The Raman-lasing thresholds of WGM optical resonators are very low and are approximately proportional to Q(sup -2)). Heretofore, two ways of preventing Raman lasting at high power levels have been known, but both entail significant disadvantages: A resonator can be designed so that the optical field is spread over a relatively large mode volume to bring the power density below the threshold. For any given combination of Q and power level, there is certain mode volume wherein Raman lasing does not start. Unfortunately, a resonator that has a large mode volume also has a high spectral density, which is undesirable in a typical photonic application. A resonator can be cooled to the temperature of liquid helium, where the Raman spectrum is narrower and, therefore, the Raman gain is lower. However, liquid-helium cooling is inconvenient. The present design overcomes these disadvantages, making it possible to operate a low-spectral-density (even a single-mode) WGM resonator at a relatively high power level at room temperature, without risk of Raman lasing.

  15. Franck-Condon processes in pentacene monolayers revealed in resonance Raman scattering

    NASA Astrophysics Data System (ADS)

    He, Rui; Tassi, Nancy G.; Blanchet, Graciela B.; Pinczuk, Aron

    2011-03-01

    Franck-Condon processes in pentacene monolayers are revealed in resonance Raman scattering from intramolecular vibrations. The Raman intensities from a totally symmetric vibrational mode display resonance enhancement double peaks when incident or scattered photon energies overlap the free exciton (FE) optical emission. The two resonances are of about equal strength. This remarkable symmetry in the resonance Raman profile suggests that Franck-Condon overlap integrals for the respective vibronic transitions have the same magnitude, which could be explained by the small displacement of potential energy curves along the configuration coordinate upon the FE excitation. The interference between scattering amplitudes in the Raman resonance reveals quantum coherence of the symmetry-split states (Davydov doublet) of the lowest intrinsic singlet exciton in pentacene monolayers.

  16. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

    SciTech Connect

    Meyer, Matthew W.

    2013-01-01

    This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.

  17. Resonance Raman Optical Activity of Single Walled Chiral Carbon Nanotubes.

    PubMed

    Nagy, Péter R; Koltai, János; Surján, Péter R; Kürti, Jenő; Szabados, Ágnes

    2016-07-21

    Resonance (vibrational) Raman Optical Activity (ROA) spectra of six chiral single-walled carbon nanotubes (SWCNTs) are studied by theoretical means. Calculations are performed imposing line group symmetry. Polarizability tensors, computed at the π-electron level, are differentiated with respect to DFT normal modes to generate spectral intensities. This computational protocol yields a ROA spectrum in good agreement with the only experiment on SWCNT, available at present. In addition to the conventional periodic electric dipole operator we introduce magnetic dipole and electric quadrupole operators, suitable for conventional k-space calculations. Consequences of the complex nature of the wave function on the scattering cross section are discussed in detail. The resonance phenomenon is accounted for by the short time approximation. Involvement of fundamental vibrations in the region of the intermediate frequency modes is found to be more notable in ROA than in Raman spectra. Calculations indicate exceptionally strong resonance enhancement of SWCNT ROA signals. Resonance ROA profile of the (6,5) tube shows an interesting sign change that may be exploited experimentally for SWCNT identification. PMID:27315548

  18. Brain metastasis detection by resonant Raman optical biopsy method

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-hui; Cheng, Gangge; Zhou, Lixin; Zhang, Chunyuan; Pu, Yang; Li, Zhongwu; Liu, Yulong; Li, Qingbo; Wang, Wei; Alfano, Robert R.

    2014-03-01

    Resonant Raman (RR) spectroscopy provides an effective way to enhance Raman signal from particular bonds associated with key molecules due to changes on a molecular level. In this study, RR is used for detection of human brain metastases of five kinds of primary organs of lung, breast, kidney, rectal and orbital in ex-vivo. The RR spectra of brain metastases cancerous tissues were measured and compared with those of normal brain tissues and the corresponding primary cancer tissues. The differences of five types of brain metastases tissues in key bio-components of carotene, tryptophan, lactate, alanine and methyl/methylene group were investigated. The SVM-KNN classifier was used to categorize a set of RR spectra data of brain metastasis of lung cancerous tissues from normal brain tissue, yielding diagnostic sensitivity and specificity at 100% and 75%, respectively. The RR spectroscopy may provide new moleculebased optical probe tools for diagnosis and classification of brain metastatic of cancers.

  19. Resonant Raman scattering and luminescence in CuInS{sub 2} crystals

    SciTech Connect

    Wakita, K.; Hirooka, H.; Yasuda, S.; Fujita, F.; Yamamoto, N.

    1998-01-01

    Resonant Raman scattering and luminescence have been examined for CuInS{sub 2} crystals grown by the traveling heater method (THM) and the iodine vapor transport method (IT). Resonant Raman spectra of CuInS{sub 2} have been observed, and the spectra show seven single-phonon peaks and one two-phonon peak. Among them, three single-phonon modes have been found in the low-Raman-shift region because of resonant enhancement of phonon modes. The enhancement of these phonon modes is caused by incoming resonance mediated by bound excitons on the THM crystal, while it is attributed to outgoing resonance due to intermediate states of free excitons on the IT crystal. {copyright} {ital 1998 American Institute of Physics.}

  20. Resonance Raman excitation profiles of lycopene

    NASA Astrophysics Data System (ADS)

    Hoskins, L. C.

    1981-01-01

    The resonance Raman spectrum of lycopene has been examined in acetone solvent and excitation profiles of the three fundamentals ν1, ν2, and ν3 have been determined. The excitation data and the visible spectrum have been analyzed using two-mode and three-mode vibrational models, with the two-mode model involving virtual states of ν1 and ν2 giving the best fit to the data. This mode mixing or Duskinsky effect was not observed for β-carotene. The single-mode and three-mode theories which have been used to explain the corresponding data for β-carotene are shown to be inconsistent with the experimental data of lycopene. Equations for calculating excitation profiles and visible spectra are given.

  1. A new SERS: scattering enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Bixler, Joel N.; Yakovlev, Vladislav V.

    2014-03-01

    Raman spectroscopy is a powerful technique that can be used to obtain detailed chemical information about a system without the need for chemical markers. It has been widely used for a variety of applications such as cancer diagnosis and material characterization. However, Raman scattering is a highly inefficient process, where only one in 1011 scattered photons carry the needed information. Several methods have been developed to enhance this inherently weak effect, including surface enhanced Raman scattering and coherent anti-Stokes Raman scattering. These techniques suffer from drawbacks limiting their commercial use, such as the need for spatial localization of target molecules to a `hot spot', or the need for complex laser systems. Here, we present a simple instrument to enhance spontaneous Raman scattering using elastic light scattering. Elastic scattering is used to substantially increase the interaction volume. Provided that the scattering medium exhibits very low absorption in the spectral range of interest, a large enhancement factor can be attained in a simple and inexpensive setting. In our experiments, we demonstrate an enhancement of 107 in Raman signal intensity. The proposed novel device is equally applicable for analyzing solids, liquids, and gases.

  2. High fidelity nanohole enhanced Raman spectroscopy.

    SciTech Connect

    Bahns, J. T.; Guo, Q.; Gray, S. K.; Jaeger, H. M.; Chen, L.; Montgomery, J. M.; Univ. of Chicago

    2009-01-01

    Surface enhanced Raman spectroscopy (SERS) is a sensitive technique that can even detect single molecules. However, in many SERS applications, the strongly inhomogeneous distribution of intense local fields makes it very difficult for a quantitive assessment of the fidelity, or reproducibility of the signal, which limits the application of SERS. Herein, we report the development of exceptionally high-fidelity hole-enhanced Raman spectroscopy (HERS) from ordered, 2D hexagonal nanohole arrays. We take the fidelity f to be a measure of the percent deviation of the Raman peaks from measurement to measurement. Overall, area averaged fidelities for 12 gold array samples ranged from f {approx} 2-15% for HERS using aqueous R6G molecules. Furthermore, intensity modulations of the enhanced Raman spectra were measured for the first time as a function of polarization angle. The best of these measurements, which focus on static laser spots on the sample, could be consistent with even higher fidelities than the area-averaged results. Nanohole arrays in silver provided supporting polarization measurements and a more complete enhanced Raman fingerprint for phenylalanine molecules. We also carried out finite-difference time-domain calculations to assist in the interpretation of the experiments, identifying the polarization dependence as possibly arising from hole-hole interactions. Our results represent a step toward making quantitative and reproducible enhanced Raman measurements possible and also open new avenues for a large-scale source of highly uniform hot spots.

  3. Recent topics on single-molecule fluctuation analysis using blinking in surface-enhanced resonance Raman scattering: clarification by the electromagnetic mechanism.

    PubMed

    Itoh, Tamitake; Yamamoto, Yuko S

    2016-08-15

    Surface-enhanced Raman scattering (SERS) spectroscopy has become an ultrasensitive tool for clarifying molecular functions on plasmonic metal nanoparticles (NPs). SERS has been used for in situ probing of detailed behaviors of few or single molecules (SMs) at plasmonic NP junctions. SM SERS signals are commonly observed with temporal and spectral changes known as "blinking", which are related to various physical and chemical interactions between molecules and NP junctions. These temporal and spectral changes simultaneously take place, therefore resulting in serious complexities in interpretations of the SM SERS results. Dual contributions of Raman enhancement mechanisms in SERS (i.e., electromagnetic (EM) and chemical enhancements) also make interpretations more difficult. To resolve these issues and reduce the degree of complexities in SM SERS analyses, the present review is focused on the recent studies of probing SM behaviors using SERS exclusively within the framework of the EM mechanism. The EM mechanism is briefly introduced, and several recent topics on SM SERS blinking analysis are discussed in light of the EM mechanism. This review will provide a basis for clarification of complex SERS fluctuations of various molecules. PMID:27241875

  4. Resonance Raman Probes for Organelle-Specific Labeling in Live Cells.

    PubMed

    Kuzmin, Andrey N; Pliss, Artem; Lim, Chang-Keun; Heo, Jeongyun; Kim, Sehoon; Rzhevskii, Alexander; Gu, Bobo; Yong, Ken-Tye; Wen, Shangchun; Prasad, Paras N

    2016-01-01

    Raman microspectroscopy provides for high-resolution non-invasive molecular analysis of biological samples and has a breakthrough potential for dissection of cellular molecular composition at a single organelle level. However, the potential of Raman microspectroscopy can be fully realized only when novel types of molecular probes distinguishable in the Raman spectroscopy modality are developed for labeling of specific cellular domains to guide spectrochemical spatial imaging. Here we report on the design of a next generation Raman probe, based on BlackBerry Quencher 650 compound, which provides unprecedentedly high signal intensity through the Resonance Raman (RR) enhancement mechanism. Remarkably, RR enhancement occurs with low-toxic red light, which is close to maximum transparency in the biological optical window. The utility of proposed RR probes was validated for targeting lysosomes in live cultured cells, which enabled identification and subsequent monitoring of dynamic changes in this organelle by Raman imaging. PMID:27339882

  5. Resonance Raman Probes for Organelle-Specific Labeling in Live Cells

    NASA Astrophysics Data System (ADS)

    Kuzmin, Andrey N.; Pliss, Artem; Lim, Chang-Keun; Heo, Jeongyun; Kim, Sehoon; Rzhevskii, Alexander; Gu, Bobo; Yong, Ken-Tye; Wen, Shangchun; Prasad, Paras N.

    2016-06-01

    Raman microspectroscopy provides for high-resolution non-invasive molecular analysis of biological samples and has a breakthrough potential for dissection of cellular molecular composition at a single organelle level. However, the potential of Raman microspectroscopy can be fully realized only when novel types of molecular probes distinguishable in the Raman spectroscopy modality are developed for labeling of specific cellular domains to guide spectrochemical spatial imaging. Here we report on the design of a next generation Raman probe, based on BlackBerry Quencher 650 compound, which provides unprecedentedly high signal intensity through the Resonance Raman (RR) enhancement mechanism. Remarkably, RR enhancement occurs with low-toxic red light, which is close to maximum transparency in the biological optical window. The utility of proposed RR probes was validated for targeting lysosomes in live cultured cells, which enabled identification and subsequent monitoring of dynamic changes in this organelle by Raman imaging.

  6. Resonance Raman Probes for Organelle-Specific Labeling in Live Cells

    PubMed Central

    Kuzmin, Andrey N.; Pliss, Artem; Lim, Chang-Keun; Heo, Jeongyun; Kim, Sehoon; Rzhevskii, Alexander; Gu, Bobo; Yong, Ken-Tye; Wen, Shangchun; Prasad, Paras N.

    2016-01-01

    Raman microspectroscopy provides for high-resolution non-invasive molecular analysis of biological samples and has a breakthrough potential for dissection of cellular molecular composition at a single organelle level. However, the potential of Raman microspectroscopy can be fully realized only when novel types of molecular probes distinguishable in the Raman spectroscopy modality are developed for labeling of specific cellular domains to guide spectrochemical spatial imaging. Here we report on the design of a next generation Raman probe, based on BlackBerry Quencher 650 compound, which provides unprecedentedly high signal intensity through the Resonance Raman (RR) enhancement mechanism. Remarkably, RR enhancement occurs with low-toxic red light, which is close to maximum transparency in the biological optical window. The utility of proposed RR probes was validated for targeting lysosomes in live cultured cells, which enabled identification and subsequent monitoring of dynamic changes in this organelle by Raman imaging. PMID:27339882

  7. Characterization of the Electrochemical Interface by Surface Enhanced Raman Scattering

    NASA Astrophysics Data System (ADS)

    Roy, Dipankar

    The electronic and structural properties of an enhanced raman sensitive interface are investigated. As a model system, the Ag (polycrystalline) electrode/electrolyte interface is chosen. Electrochemical control of the interface is used to establish and influence the conditions for surface enhanced Raman scattering (SERS). The molecule and site specific electronic component of SERS is studied under experimental control. This resonance is responsible for enhancement beyond that caused by electromagnetic effects at the surface and is promoted by the presence of the so -called "SERS active sites" (surface defect sites of atomic scale roughness). The results suggest that, these sites are positively charged, resonant Raman active Ag clusters, most likely with the identity of Ag(,4)('+). A partial contribution to the observed electronic enhancement comes from the intrinsic resonance of the clusters. At a given SERS sensitive Ag electrode, this contribution is superimposed on that from the photon driven charge transfer excitation (CTE) resonance, provided the latter is operative in that particular case. In SERS of Cl('-) (a prototypical probe) on Ag, the internal resonance of Ag(,4)('+) appears to be the primary source of the electronic enhancement detected. By noting the known importance of Ag(,4)('+) in silver-halide photography, it is possible to explain the "photoactivation effect" in SERS in terms of the Ag(,4)('+) identity of SERS active sites. These observations indicate how, by SERS, it may be possible to bridge the gap between the catalytic and optical aspects of small metal clusters. The chemisorbed anions which coexist with the active sites at a SERS sensitive interface, are tested for their effects in SERS from Cl('-) and I('-) on Ag. Evidence is presented for mutual "depolarization" effect of the adsorbates. Under voltage control of these interfaces, this depolarization process dominates the Stark effect and bond perturbation. The results point out how the

  8. Isotopic gas analysis through Purcell cavity enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Petrak, B.; Cooper, J.; Konthasinghe, K.; Peiris, M.; Djeu, N.; Hopkins, A. J.; Muller, A.

    2016-02-01

    Purcell enhanced Raman scattering (PERS) by means of a doubly resonant Fabry-Perot microcavity (mode volume ≈ 100 μm3 and finesse ≈ 30 000) has been investigated as a technique for isotopic ratio gas analysis. At the pump frequency, the resonant cavity supports a buildup of circulating power while simultaneously enabling Purcell spontaneous emission rate enhancement at the resonant Stokes frequency. The three most common isotopologues of CO2 gas were quantified, and a signal was obtained from 13C16O2 down to a partial pressure of 2 Torr. Due to its small size and low pump power needed (˜10 mW) PERS lends itself to miniaturization. Furthermore, since the cavity is resonant with the emission frequency, future improvements could allow it to serve as its own spectral analyzer and no separate spectroscopic device would be needed.

  9. Resonance Raman spectra of. cap alpha. -copper phthalocyanine

    SciTech Connect

    Bovill, A.J.; McConnell, A.A.; Nimmo, J.A.; Smith, W.E.

    1986-02-13

    Raman spectra of ..cap alpha..-copper phthalocyanine (..cap alpha..-CuPc) were recorded at room temperature and at 10 K with excitation wavelengths between 457 and 714 nm. Resonance enhancement was greatest for modes for which the largest displacements were on either the inner five-membered ring of the isoindole groups or the inner macrocycle and consequently assignment of the bands to modes of the entire molecule was possible by comparison with nickel octaethylporphyrin. Four out of five bands resonant in the Q band region and preresonant near the B band absorption region are totally symmetric modes. B band preresonance occurs more strongly with high-frequency modes. At low temperatures, multimode interactions are reduced and profiles were obtained which can be compared with solution profiles of porphyrins. Both Q/sub x/ and Q/sub y/ 0-0 scattering can be identified and a helper mode is evident. A term enhancement predominates, with B/sub 1g/ and B/sub 2g/ modes enhanced because of a Jahn-Teller distortion of the excited state. The resonance studies, together with electronic absorption spectra and published theoretical studies, confirm that the Q band in ..cap alpha..-CuPc is largely due to an allowed ..pi..-..pi..* transition associated mainly with the macrocycle and inner five-membered rings of the isoindole groups. 25 references, 5 figures, 2 tables.

  10. Cavity-Enhanced Room-Temperature Broadband Raman Memory.

    PubMed

    Saunders, D J; Munns, J H D; Champion, T F M; Qiu, C; Kaczmarek, K T; Poem, E; Ledingham, P M; Walmsley, I A; Nunn, J

    2016-03-01

    Broadband quantum memories hold great promise as multiplexing elements in future photonic quantum information protocols. Alkali-vapor Raman memories combine high-bandwidth storage, on-demand readout, and operation at room temperature without collisional fluorescence noise. However, previous implementations have required large control pulse energies and have suffered from four-wave-mixing noise. Here, we present a Raman memory where the storage interaction is enhanced by a low-finesse birefringent cavity tuned into simultaneous resonance with the signal and control fields, dramatically reducing the energy required to drive the memory. By engineering antiresonance for the anti-Stokes field, we also suppress the four-wave-mixing noise and report the lowest unconditional noise floor yet achieved in a Raman-type warm vapor memory, (15±2)×10^{-3} photons per pulse, with a total efficiency of (9.5±0.5)%. PMID:26991164

  11. Cavity-Enhanced Room-Temperature Broadband Raman Memory

    NASA Astrophysics Data System (ADS)

    Saunders, D. J.; Munns, J. H. D.; Champion, T. F. M.; Qiu, C.; Kaczmarek, K. T.; Poem, E.; Ledingham, P. M.; Walmsley, I. A.; Nunn, J.

    2016-03-01

    Broadband quantum memories hold great promise as multiplexing elements in future photonic quantum information protocols. Alkali-vapor Raman memories combine high-bandwidth storage, on-demand readout, and operation at room temperature without collisional fluorescence noise. However, previous implementations have required large control pulse energies and have suffered from four-wave-mixing noise. Here, we present a Raman memory where the storage interaction is enhanced by a low-finesse birefringent cavity tuned into simultaneous resonance with the signal and control fields, dramatically reducing the energy required to drive the memory. By engineering antiresonance for the anti-Stokes field, we also suppress the four-wave-mixing noise and report the lowest unconditional noise floor yet achieved in a Raman-type warm vapor memory, (15 ±2 )×10-3 photons per pulse, with a total efficiency of (9.5 ±0.5 )%.

  12. Transform analysis of the resonance Raman excitation profile of lycopene

    NASA Astrophysics Data System (ADS)

    Hoskins, L. C.

    1992-10-01

    The resonance Raman excitation profiles (RREPs) of the ν 1, ν 2 and ν 3 vibrations of lycopene in acetone, ethyl alcohol, toluene and carbon disulphide solvents have been analyzed using the transform method for calculating resonance Raman excitation profiles. The tests show excellent agreement between the calculated and observed profiles for the ν 2 and ν 3 RREPs, but greater difference between experiment and theory occurs for the ν 1 RREP, especially in carbon disulphide solvent.

  13. Detection Of Biochips By Raman And Surface Enhanced Raman Spectroscopies

    NASA Astrophysics Data System (ADS)

    Kantarovich, Keren; Tsarfati, Inbal; Gheber, Levi A.; Haupt, Karsten; Bar, Ilana

    2010-08-01

    Biochips constitute a rapidly increasing research field driven by the versatility of sensing devices and the importance of their applications in the bioanalytical field, drug development, environmental monitoring, food analysis, etc. Common strategies used for creating biochips and for reading them have extensive limitations, motivating development of miniature biochips and label-free formats. To achieve these goals we combined the nano fountain pen method, for printing microscale features with Raman spectroscopy or surface enhanced Raman spectroscopy (SERS) for reading droplets of synthetic receptors. These receptors include molecularly imprinted polymers (MIPs), which are obtained by polymerization of suitable functional and cross-linking monomers around molecular templates. MIPs are characterized by higher physical and chemical stability than biomacromolecules, and therefore are potentially very suitable as recognition elements for biosensors, or biochips. The monitored bands in the Raman and SERS spectra could be related to the taken up compound, allowing direct detection of the template, i.e., the β-blocking drug propranolol in the imprinted droplets, as well as imaging of individual and multiple dots in an array. This study shows that the combination of nanolithography techniques with SERS might open the possibility of miniaturized arrayed MIP sensors with label-free, specific and quantitative detection.

  14. Human brain cancer studied by resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-Hui; Sun, Yi; Pu, Yang; Boydston-White, Susie; Liu, Yulong; Alfano, Robert R.

    2012-11-01

    The resonance Raman (RR) spectra of six types of human brain tissues are examined using a confocal micro-Raman system with 532-nm excitation in vitro. Forty-three RR spectra from seven subjects are investigated. The spectral peaks from malignant meningioma, stage III (cancer), benign meningioma (benign), normal meningeal tissues (normal), glioblastoma multiforme grade IV (cancer), acoustic neuroma (benign), and pituitary adenoma (benign) are analyzed. Using a 532-nm excitation, the resonance-enhanced peak at 1548 cm-1 (amide II) is observed in all of the tissue specimens, but is not observed in the spectra collected using the nonresonance Raman system. An increase in the intensity ratio of 1587 to 1605 cm-1 is observed in the RR spectra collected from meningeal cancer tissue as compared with the spectra collected from the benign and normal meningeal tissue. The peak around 1732 cm-1 attributed to fatty acids (lipids) are diminished in the spectra collected from the meningeal cancer tumors as compared with the spectra from normal and benign tissues. The characteristic band of spectral peaks observed between 2800 and 3100 cm-1 are attributed to the vibrations of methyl (-CH3) and methylene (-CH2-) groups. The ratio of the intensities of the spectral peaks of 2935 to 2880 cm-1 from the meningeal cancer tissues is found to be lower in comparison with that of the spectral peaks from normal, and benign tissues, which may be used as a distinct marker for distinguishing cancerous tissues from normal meningeal tissues. The statistical methods of principal component analysis and the support vector machine are used to analyze the RR spectral data collected from meningeal tissues, yielding a diagnostic sensitivity of 90.9% and specificity of 100% when two principal components are used.

  15. Theoretical studies of resonance enhanced stimulated raman scattering (RESRS) of frequency doubled Alexandrite laser wavelength in cesium vapor. Progress report, July-December 1987

    SciTech Connect

    Lawandy, N.M.

    1987-01-01

    The third phase of research will focus on the propagation and energy extraction of the pump and SERS beams in a variety of configurations including oscillator structures. In order to address these questions a numerical code capable of allowing for saturation and full transverse beam evolution is required. The method proposed is based on a discretized propagation energy extraction model which uses a Kirchoff integral propagator coupled to the three level Raman model already developed. The model will have the resolution required by diffraction limits and will use the previous density matrix results in the adiabatic following limit. Owing to its large computational requirements, such a code must be implemented on a vector array processor. One code on the Cyber is being tested by using previously understood two-level laser models as guidelines for interpreting the results. Two tests were implemented: the evolution of modes in a passive resonator and the evolution of a stable state of the adiabatically eliminated laser equations. These results show mode shapes and diffraction losses for the first case and relaxation oscillations for the second one. Finally, in order to clarify the computing methodology used to exploit the speed of the Cyber's computational speed, the time it takes to perform both of the computations previously mentioned to run on the Cyber and VAX 730 must be measured. Also included is a short description of the current laser model (CAVITY.FOR) and a flow chart of the test computations.

  16. Resonance Raman spectra of some radiolytically prepared halogen derivatives of para-benzosemiquinone radical anion

    SciTech Connect

    Tripathi, G.N.R.; Schuler, R.H.

    1982-03-01

    The resonance Raman spectra have been obtained on radiolytically and chemically prepared halogen derivatives (chloro-, bromo-, 2.5 dichloro-, tetra chloro-, and tetra bromo-) of p-benzosemiquinone radical anion. Excitation is in the moderately intense absorption band at 430--460 nm. All Raman spectra show a strongly resonance enhanced and polarized line corresponding to a vibrational frequency of 1590--1620 cm/sup -1/ which is assigned to the Wilson phenyl mode 8a (CC stretch). A number of weaker lines are also observed and their assignment discussed. The electronic transitions in resonance are identified as /sup 2/B/sub 3g/--/sup 2/B/sub 1u/ (in D/sub 2h/ point group) in view of the resonance Raman band intensities. This supports the assignment by Harada based on ASMO CI calculations which has recently been in dispute.

  17. Surface enhanced Raman spectroscopy of neurotransmitters

    NASA Astrophysics Data System (ADS)

    McGlashen, Michael L.; Davis, Kevin L.; Morris, Michael D.

    1989-10-01

    The surface-enhanced Raman spectra (SERS) of neurotransmitters in biological matrices and synthetic solutions are described. The effects of protein adsorption on cathecholamine SERS intensity are discussed. Techniques for obtaining dopamine SERS spectra in cerebrospinal fluid and rat brain dialysate are demonstrated. Preliminary SERS of histamine and tel-methylhistamine are presented.

  18. Theoretical studies of Resonance Enhanced Stimulated Raman Scattering (RESRS) of frequency-doubled Alexandrite laser wavelength in cesium vapor. Progress report, January-June 1987

    SciTech Connect

    Lawandy, N.M.

    1987-01-01

    The solutions for the imaginary susceptibility of the Raman field transition with arbitrary relaxation rates and field strengths are examined for three different sets of relaxation rates. These rates correspond to: (1) Far Infrared (FIR) Raman lasers in the diabatic collision regime without consideration of coupled population decay in a closed system, (2) Raman FIR lasers in the diabatic collision regime with coupled population conserving decay, and (3) IR Raman gain in cesium vapor. The model is further expanded to include Doppler broadening and used to predict the peak gain as a function of detuning for a frequency doubled Alexandrite laser-pumped cesium vapor gain cell.

  19. The theory of surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Lombardi, John R.; Birke, Ronald L.

    2012-04-01

    By considering the molecule and metal to form a conjoined system, we derive an expression for the observed Raman spectrum in surface-enhanced Raman scattering. The metal levels are considered to consist of a continuum with levels filled up to the Fermi level, and empty above, while the molecule has discrete levels filled up to the highest occupied orbital, and empty above that. It is presumed that the Fermi level of the metal lies between the highest filled and the lowest unfilled level of the molecule. The molecule levels are then coupled to the metal continuum both in the filled and unfilled levels, and using the solutions to this problem provided by Fano, we derive an expression for the transition amplitude between the ground stationary state and some excited stationary state of the molecule-metal system. It is shown that three resonances contribute to the overall enhancement; namely, the surface plasmon resonance, the molecular resonances, as well as charge-transfer resonances between the molecule and metal. Furthermore, these resonances are linked by terms in the numerator, which result in SERS selection rules. These linked resonances cannot be separated, accounting for many of the observed SERS phenomena. The molecule-metal coupling is interpreted in terms of a deformation potential which is compared to the Herzberg-Teller vibronic coupling constant. We show that one term in the sum involves coupling between the surface plasmon transition dipole and the molecular transition dipole. They are coupled through the deformation potential connecting to charge-transfer states. Another term is shown to involve coupling between the charge-transfer transition and the molecular transition dipoles. These are coupled by the deformation potential connecting to plasmon resonance states. By applying the selection rules to the cases of dimer and trimer nanoparticles we show that the SERS spectrum can vary considerably with excitation wavelength, depending on which plasmon and

  20. Directional surface enhanced Raman scattering on gold nano-gratings

    NASA Astrophysics Data System (ADS)

    Gillibert, Raymond; Sarkar, Mitradeep; Bryche, Jean-François; Yasukuni, Ryohei; Moreau, Julien; Besbes, Mondher; Barbillon, Grégory; Bartenlian, Bernard; Canva, Michael; Lamy de la Chapelle, Marc

    2016-03-01

    Directional plasmon excitation and surface enhanced Raman scattering (SERS) emission were demonstrated for 1D and 2D gold nanostructure arrays deposited on a flat gold layer. The extinction spectrum of both arrays exhibits intense resonance bands that are redshifted when the incident angle is increased. Systematic extinction analysis of different grating periods revealed that this band can be assigned to a propagated surface plasmon of the flat gold surface that fulfills the Bragg condition of the arrays (Bragg mode). Directional SERS measurements demonstrated that the SERS intensity can be improved by one order of magnitude when the Bragg mode positions are matched with either the excitation or the Raman wavelengths. Hybridized numerical calculations with the finite element method and Fourier modal method also proved the presence of the Bragg mode plasmon and illustrated that the enhanced electric field of the Bragg mode is particularly localized on the nanostructures regardless of their size.

  1. Directional surface enhanced Raman scattering on gold nano-gratings.

    PubMed

    Gillibert, Raymond; Sarkar, Mitradeep; Bryche, Jean-François; Yasukuni, Ryohei; Moreau, Julien; Besbes, Mondher; Barbillon, Grégory; Bartenlian, Bernard; Canva, Michael; Chapelle, Marc Lamy de la

    2016-03-18

    Directional plasmon excitation and surface enhanced Raman scattering (SERS) emission were demonstrated for 1D and 2D gold nanostructure arrays deposited on a flat gold layer. The extinction spectrum of both arrays exhibits intense resonance bands that are redshifted when the incident angle is increased. Systematic extinction analysis of different grating periods revealed that this band can be assigned to a propagated surface plasmon of the flat gold surface that fulfills the Bragg condition of the arrays (Bragg mode). Directional SERS measurements demonstrated that the SERS intensity can be improved by one order of magnitude when the Bragg mode positions are matched with either the excitation or the Raman wavelengths. Hybridized numerical calculations with the finite element method and Fourier modal method also proved the presence of the Bragg mode plasmon and illustrated that the enhanced electric field of the Bragg mode is particularly localized on the nanostructures regardless of their size. PMID:26872242

  2. Time-resolved resonance Raman observation of tetrafluoro-p-benzosemiquinone anion radical. [Pulse radiolysis

    SciTech Connect

    Tripathi, G.N.R.; Schuler, R.H.

    1983-08-04

    Time-resolved resonance Raman spectroscopy has been used to examine tetrafluoro-p-benzosemiquinone radical anion produced in the pulse radiolytic oxidation of tetrafluorohydroquinone in aqueous solution. This radical is much more reactive than p-benzosemiquinone and is observed to decay on the millisecond time scale in both Raman and pulse radiolytic experiments. For the Raman experiments excitation was on the red edge of the moderately strong absorption band of this radical at 430 nm. Two resonance-enhanced Raman bands are exhibited at 1556 and 1677 cm/sup -1/ and are assigned to the in-phase CO and symmetrical CC stretch vibrations. These frequencies are considerably higher than the corresponding values of 1435 and 1620 cm/sup -1/ observed in this radical's protonated counterpart. The relatively large increase in the CO stretch frequency, in particular, indicates that fluorination induces a substantial increase in the quinoid character of this radical. 3 figures, 1 table.

  3. Raman albedo and deep-UV resonance Raman signatures of explosives

    NASA Astrophysics Data System (ADS)

    Yellampalle, Balakishore; Lemoff, Brian E.

    2013-05-01

    Deep-ultraviolet resonance Raman spectroscopy (DUVRRS) is a promising approach to stand-off detection of explosive traces due to large Raman cross-section and background free signatures. In order to design an effective sensor, one must be able to estimate the signal level of the DUVRRS signature for solid-phase explosive residues. The conventional approach to signal estimation uses scattering cross-sections and molar absorptivity, measured on solutions of explosives dissolved in an optically-transparent solvent. Only recently have researchers started to measure solid-state cross-sections. For most solid-phase explosives and explosive mixtures, neither the DUV Raman scattering cross sections nor the optical absorption coefficient are known, and they are very difficult to separately measure. Therefore, for a typical solid explosive mixture, it is difficult to accurately estimate Raman signal strength using conventional approaches. To address this issue, we have developed a technique to measure the Raman scattering strength of optically-thick (opaque) materials, or "Raman Albedo", defined as the total power of Raman-scattered light per unit frequency per unit solid angle divided by the incident power of the excitation source. We have measured Raman Albedo signatures for a wide range of solid explosives at four different DUV excitation wavelengths. These results will be presented, and we will describe the use of Raman Albedo measurements in the design and current construction of a novel stand-off explosive sensor, based on dual-excitation-wavelength DUVRRS.

  4. Periodontitis diagnostics using resonance Raman spectroscopy on saliva

    NASA Astrophysics Data System (ADS)

    Gonchukov, S.; Sukhinina, A.; Bakhmutov, D.; Biryukova, T.; Tsvetkov, M.; Bagratashvily, V.

    2013-07-01

    In view of its wealth of molecular information, Raman spectroscopy has been the subject of active biomedical research. The aim of this work is Raman spectroscopy (RS) application for the determination of molecular biomarkers in saliva with the objective of early periodontitis detection. As was shown in our previous study, carotenoids contained in saliva can be molecular fingerprint information for the periodontitis level. It is shown here that the carotenoid RS lines at wavenumbers of 1156 and 1524 cm-1 can be easily detected and serve as reliable biomarkers of periodontitis using resonance Raman spectroscopy of dry saliva.

  5. Remote detection of trace effluents using Resonance Raman spectroscopy: Field results and evaluation

    SciTech Connect

    Sedlacek, A.J.; Chen, C.L.

    1995-10-01

    Resonance Raman spectroscopy (RRS) possesses many characteristics that are important for detecting, identifying and monitoring chemical effluents. Raman scattering is a coherent, inelastic, two-photon scattering process where an exciting photon of energy h{nu} promotes a molecule to a virtual level and the subsequently emitted photon is shifted in frequency in accordance with the rotational-vibrational structure of the irradiated species, thereby providing a unique fingerprint of the molecule. Under resonance enhancement, the Raman scattering cross-sections have been observed to increase up to 6 orders of magnitude above the normal scattering cross-sections, thereby providing the practical basis for a remote chemical sensor. Some of the other advantages that a Raman sensor possesses are: (1) very high selectivity (chemical specific fingerprints), (2) independence of the spectral fingerprint on the excitation wavelength (ability to monitor in the solar blind region), (3) chemical mixture fingerprints are the sum of its individual components (no spectral cross-talk), (4) near independence of the Raman fingerprint to its physical state (very similar spectra for gas, liquid, solid or solutions), (5) no absolute calibration is necessary because all Raman signals observed from a given species can be compared with the Raman signal for N{sub 2}, whose concentration is known very accurately, and (6) insensitivity of the Raman signature to environmental conditions (no quenching, or interference from water vapor). In this presentation, the technology of resonance Raman spectroscopy as applied to the detection of narcotics production activities will be presented along with some recent experimental results.

  6. Plasmonic nanostructures for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Ruiqian

    In the last three decades, a large number of different plasmonic nanostructures have attracted much attention due to their unique optical properties. Those plasmonic nanostructures include nanoparticles, nanoholes and metal nanovoids. They have been widely utilized in optical devices and sensors. When the plasmonic nanostructures interact with the electromagnetic wave and their surface plasmon frequency match with the light frequency, the electrons in plasmonic nanostructures will resonate with the same oscillation as incident light. In this case, the plasmonic nanostructures can absorb light and enhance the light scattering. Therefore, the plasmonic nanostructures can be used as substrate for surface-enhanced Raman spectroscopy to enhance the Raman signal. Using plasmonic nanostructures can significantly enhance Raman scattering of molecules with very low concentrations. In this thesis, two different plasmonic nanostructures Ag dendrites and Au/Ag core-shell nanoparticles are investigated. Simple methods were used to produce these two plasmonic nanostructures. Then, their applications in surface enhanced Raman scattering have been explored. Ag dendrites were produced by galvanic replacement reaction, which was conducted using Ag nitrate aqueous solution and copper metal. Metal copper layer was deposited at the bottom side of anodic aluminum oxide (AAO) membrane. Silver wires formed inside AAO channels connected Ag nitrate on the top of AAO membrane and copper layer at the bottom side of AAO. Silver dendrites were formed on the top side of AAO. The second plasmonic nanostructure is Au/Ag core-shell nanoparticles. They were fabricated by electroless plating (galvanic replacement) reaction in a silver plating solution. First, electrochemically evolved hydrogen bubbles were used as template through electroless deposition to produce hollow Au nanoparticles. Then, the Au nanoparticles were coated with Cu shells in a Cu plating solution. In the following step, a Ag

  7. Interference-enhanced Raman scattering of F16CuPc thin films

    NASA Astrophysics Data System (ADS)

    Solonenko, D.; Gordan, O. D.; Milekhin, A.; Panholzer, M.; Hingerl, K.; Zahn, D. R. T.

    2016-03-01

    Interference-enhanced Raman scattering (IERS) was observed for thin films of copper(II) hexadecafluorophthalocyanine (F16CuPc) deposited on SiO2 layers on a Si substrate. The enhancement of the Raman scattering originates from the interference of the light in the transparent SiO2 layer. Stripes of SiO2/Si with gradually varying oxide layer thickness were used as IERS substrates for a systematic study of the enhancement parameters. Raman measurements were carried out using three laser lines (325, 514.7, and 632.8 nm) in order to probe the F16CuPc thin films at non-resonant and resonant Raman conditions. Spectroscopic ellipsometry was used to determine both the SiO2 layer and thin film thicknesses. The intensity enhancement of the F16CuPc Raman peaks occurs periodically, corresponding to the alternating interference conditions for the Raman scattered light with increasing SiO2 layer thickness. The enhancement factors were calculated using the optical constants of the layers involved and the geometric parameters. This allows a straightforward application of IERS for optical studies of thin films and interfaces by calculating the dielectric thickness where maximum Raman enhancement is expected.

  8. Surface-enhanced Raman spectroscopy of pterins

    NASA Astrophysics Data System (ADS)

    Smyth, Ciarán A.; Mirza, Inam; Lunney, James G.; McCabe, Eithne M.

    2012-03-01

    Raman spectroscopy is a useful technique in the identification and characterisation of compounds, but in terms of sensitivity its application is limited. With respect to this the discovery of the surface-enhanced Raman scattering (SERS) phenomenon has proved monumental, and much research has been carried out over the past 30 years developing the technique. Pterins are biological compounds that are found in nature in colour pigmentation and in mammalian metabolic pathways. Moreover, they have been identified in abnormal concentrations in cancer patients, suggesting potential applications in cancer diagnostics. SERS is an ideal technique to identify these compounds, and both nanoparticle suspensions and pulsed laser deposited nanoparticle substrates have been used to examine the spectra of xanthopterin, both in aqueous solution and in different pH environments.

  9. Resonance-Enhanced Raman Scattering of Ring-Involved Vibrational Modes in the (1)B(2u) Absorption Band of Benzene, Including the Kekule Vibrational Modes ν(9) and ν(10).

    PubMed

    Willitsford, Adam H; Chadwick, C Todd; Kurtz, Stewart; Philbrick, C Russell; Hallen, Hans

    2016-02-01

    Resonance Raman spectroscopy provides much stronger Raman signal levels than its off-resonant counterpart and adds selectivity by excitation tuning. Raman preresonance of benzene has been well studied. On-resonance studies, especially at phonon-allowed absorptions, have received less attention. In this case, we observe resonance of many of the vibration modes associated motion of the carbons in the ring while tuning over the (1)B2u absorption, including the related ν9 (CC stretch Herzberg notation, ν14 Wilson notation) and ν10 (CH-parallel bend Herzberg notation, ν15 Wilson notation) vibrational modes along with the ν2 (CC-stretch or ring-breathing Herzberg notation, ν1 Wilson notation) mode and multiples of the ν18 (CCC-parallel bend Herzberg notation, ν6 Wilson notation) vibrational mode. The ring-breathing mode is found to mix with the b2u modes creating higher frequency composites. Through the use of an optical parametric oscillator (OPO) to tune through the (1)B2u absorption band of liquid benzene, a stiffening (increase in energy) of the vibrational modes is observed as the excitation wavelength nears the (1)B2u absorption peak of the isolated molecule (vapor) phase. The strongest resonance amplitude observed is in the 2 × ν18 (e2g) mode, with nearly twice the intensity of the ring-breathing mode, ν2. Several overtones and combination modes, especially with ν2 (a1g), are also observed to resonate. Raman resonances on phonon-allowed excitations are narrow and permit the measurement of vibrations not Raman-active in the ground state. PMID:26731431

  10. Resonant Raman Scattering as a Probe of Intrinsic Defects in Gallium-Arsenide

    NASA Astrophysics Data System (ADS)

    Berg, Robert Scott

    This thesis presents a series of Raman scattering measurements performed on GaAs samples that have been irradiated with either high energy electrons or neutrons. The irradiation creates fairly high concentrations (10('17) - 10('18) cm(' -3)) of intrinsic defects. It is demonstrated that Raman scattering can give useful information about such defects. One important result of this work is the observation of new and relatively sharp peaks in the Raman spectra of the irradiated samples. These are attributed to vibrational modes of a specific point defect created by the irradiation. On the basis of annealing experiments it is concluded that one of thes modes is most likely associated with an As vacancy. The observed polarization dependence suggests that this can be a "breathing" vibration of the atoms surrounding the vacancy. In addition, experiments were performed that measured the lineshape of the enhancement of the Raman cross section of both the intrinsic and extrinsic modes near the band gap of GaAs using a tunable near infra-red laser. It was observed that the enhancement of the defect introduced modes was strong relative to the enhancement of the allowed TO phonon, which itself exhibits a strong enhancement. The observed enhancement lineshape can be explained by assuming that the scattering involving the defect induced modes occurs via a fourth order process. During this process quasi-momentum conservation is relaxed when electrons or holes scatter elastically from defects. On the basis of this model it is concluded that the strong resonant enhancement occurs when the vibrational modes involved have a component that is well localized around a defect. Thus resonant Raman scattering has greater sensitivity to motion within the first few lattice constants surrounding a point defect and is well suited to provide microscopic information about such defects. Another important conclusion is that the strong enhancement of the Raman cross section of the defect induced

  11. Structural resonances in the Raman spectrum of glass microsphere

    NASA Astrophysics Data System (ADS)

    Wang, Ji-You; Xu, Xiao xuan; Zhang, Cun zhou

    2000-10-01

    Structural resonances have been found in the Raman spectrum of an optically levitated TiBa glass microsphere. The observed resonances could be assigned by using the well-known Lorenz-Mie Formalism. It was found that the diameter of the TiBa glass microsphere is 24.490micrometers , and the refractive index of TiBa glass is 1.895 at about 645nm.

  12. Resonance Raman spectra of carotenoid molecules: influence of methyl substitutions.

    PubMed

    Macernis, Mindaugas; Galzerano, Denise; Sulskus, Juozas; Kish, Elizabeth; Kim, Young-Hun; Koo, Sangho; Valkunas, Leonas; Robert, Bruno

    2015-01-01

    We report here the resonance Raman spectra and the quantum chemical calculations of the Raman spectra for β-carotene and 13,13'-diphenyl-β-carotene. The first aim of this approach was to test the robustness of the method used for modeling β-carotene, and assess whether it could accurately predict the vibrational properties of derivatives in which conjugated substituents had been introduced. DFT calculations, using the B3LYP functional in combination with the 6-311G(d,p) basis set, were able to accurately predict the influence of two phenyl substituents connected to the β-carotene molecule, although these deeply perturb the vibrational modes. This experimentally validated modeling technique leads to a fine understanding of the origin of the carotenoid resonance Raman bands, which are widely used for assessing the properties of these molecules, and in particular in complex media, such as binding sites provided by biological macromolecules. PMID:25476500

  13. Resonance Raman Studies of Azulene and the Permanganate Ion.

    NASA Astrophysics Data System (ADS)

    Khodadoost, Baback

    This dissertation will present resonance Raman studies of the azulene molecule and the permanganate ion. Experimental measurements of the optical absorption spectra and the resonance Raman excitation profiles will be used along with the recently developed transform analysis. In the first part we have extended the frequency range of the previously measured resonance Raman profiles of azulene in solution. We have also measured, for the first time, profiles of two new Raman lines. Using transform techniques, we have calculated resonance Raman profile line shapes directly from our measured optical absorption spectra and the excited state vibrational frequencies. Our overall good profile line shape fits suggest that our model assumptions are basically correct for all the modes studied. Stokes loss analysis based on the good line shape fits indicates that possible deviations from these assumptions may be different for different modes. In the second part we have measured the visible absorption spectra of the permanganate ion with potassium perchlorate used as the host material as a function of pressure. These measurements indicate a blue shift of the absorption. The frequency of the breathing mode in the excited state increases with the pressure. From our absorption measurements we have also inferred a decrease in the Stokes loss parameter for this mode. We have also measured room temperature resonance Raman excitation profiles for the fundamental and the first two harmonics of the breathing mode, both at atmospheric and high pressures. Our Raman measurements indicate a linear increase in the ground state frequency of the breathing mode as a function of pressure. The use of the transform technique which relates absorption to resonance Raman profile line shape produces good agreements with our experimental data in all cases. As previously observed in the low pressure case we show that at high pressures it also is essential to use the excited state frequency in the

  14. Pressure-induced depolarization and resonance in Raman scattering of single-crystalline boron carbide

    SciTech Connect

    Guo Junjie; Zhang Ling; Fujita, Takeshi; Chen Mingwei; Goto, Takashi

    2010-02-01

    We report polarized and resonant Raman scattering of single-crystal boron carbide (B{sub 4}C) at high pressures. Significant intensity enhancements of 270 and 1086 cm{sup -1} Raman bands of B{sub 4}C have been observed at quasihydrostatic pressures higher than approx20 GPa. The pressure-induced intensity change of the 1086 cm{sup -1} band is mainly due to the resonance between excitation energy and electronic transition, whereas the intensity change of 270 cm{sup -1} band is caused by the depolarization effect. Importantly, the first-order phase transition has not been found at high quasihydrostatic pressures and all the Raman intensity changes along with the corresponding high-pressure lattice distortion can be recovered during unloading.

  15. Shape-dependent surface-enhanced Raman scattering in gold-Raman-probe-silica sandwiched nanoparticles for biocompatible applications

    NASA Astrophysics Data System (ADS)

    Li, Ming; Cushing, Scott K.; Zhang, Jianming; Lankford, Jessica; Aguilar, Zoraida P.; Ma, Dongling; Wu, Nianqiang

    2012-03-01

    To meet the requirement of Raman probes (labels) for biocompatible applications, a synthetic approach has been developed to sandwich the Raman-probe (malachite green isothiocyanate, MGITC) molecules between the gold core and the silica shell in gold-SiO2 composite nanoparticles. The gold-MGITC-SiO2 sandwiched structure not only prevents the Raman probe from leaking out but also improves the solubility of the nanoparticles in organic solvents and in aqueous solutions even with high ionic strength. To amplify the Raman signal, three types of core, gold nanospheres, nanorods and nanostars, have been chosen as the substrates of the Raman probe. The effect of the core shape on the surface-enhanced Raman scattering (SERS) has been investigated. The colloidal nanostars showed the highest SERS enhancement factor while the nanospheres possessed the lowest SERS activity under excitation with 532 and 785 nm lasers. Three-dimensional finite-difference time domain (FDTD) simulation showed significant differences in the local electromagnetic field distributions surrounding the nanospheres, nanorods, and nanostars, which were induced by the localized surface plasmon resonance (LSPR). The electromagnetic field was enhanced remarkably around the two ends of the nanorods and around the sharp tips of the nanostars. This local electromagnetic enhancement made the dominant contribution to the SERS enhancement. Both the experiments and the simulation revealed the order nanostars > nanorods > nanospheres in terms of the enhancement factor. Finally, the biological application of the nanostar-MGITC-SiO2 nanoparticles has been demonstrated in the monitoring of DNA hybridization. In short, the gold-MGITC-SiO2 sandwiched nanoparticles can be used as a Raman probe that features high sensitivity, good water solubility and stability, low-background fluorescence, and the absence of photobleaching for future biological applications.

  16. Resonance raman spectroscopy of an ultraviolet-sensitive insect rhodopsin

    SciTech Connect

    Pande, C.; Deng, H.; Rath, P.; Callender, R.H.; Schwemer, J.

    1987-11-17

    The authors present the first visual pigment resonance Raman spectra from the UV-sensitive eyes of an insect, Ascalaphus macaronius (owlfly). This pigment contains 11-cis-retinal as the chromophore. Raman data have been obtained for the acid metarhodopsin at 10/sup 0/C in both H/sub 2/O and D/sub 2/O. The C=N stretching mode at 1660 cm/sup -1/ in H/sub 2/O shifts to 1631 cm/sup -1/ upon deuteriation of the sample, clearly showing a protonated Schiff base linkage between the chromophore and the protein. The structure-sensitive fingerprint region shows similarities to the all-trans-protonated Schiff base of model retinal chromophores, as well as to the octopus acid metarhodopsin and bovine metarhodopsin I. Although spectra measured at -100/sup 0/C with 406.7-nm excitation, to enhance scattering from rhodopsin (lambda/sub max/ 345 nm), contain a significant contribution from a small amount of contaminants (cytochrome(s) and/or accessory pigment) in the sample, the C=N stretch at 1664 cm/sup -1/ suggests a protonated Schiff base linkage between the chromophore and the protein in rhodopsin as well. For comparison, this mode also appears at approx. 1660 cm/sup -1/ in both the vertebrate (bovine) and the invertebrate (octopus) rhodopsins. These data are particularly interesting since the absorption maximum of 345 nm for rhodopsin might be expected to originate from an unprotonated Schiff base linkage. That the Schiff base linkage in the owlfly rhodopsin, like in bovine and in octopus, is protonated suggests that a charged chromophore is essential to visual transduction.

  17. Raman beam combining for laser brightness enhancement

    SciTech Connect

    Dawson, Jay W.; Allen, Graham S.; Pax, Paul H.; Heebner, John E.; Sridharan, Arun K.; Rubenchik, Alexander M.; Barty, Chrisopher B. J.

    2015-10-27

    An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.

  18. Monitoring and trace detection of hazardous waste and toxic chemicals using resonance Raman spectroscopy

    SciTech Connect

    Sedlacek, A.J. III; Dougherty, D.R.; Chen, C.L.

    1993-04-01

    Raman scattering is a coherent, inelastic, two-photon process, which shifts the frequency of an outgoing photon according to the vibrational structure of the irradiated species, thereby providing a unique fingerprint of the molecule. When involving an allowed electronic transition (resonance Raman), this scattering cross section can be enhanced by 10{sup 4} to 10{sup 6} and provides the basis for a viable technique that can monitor and detect trace quantities of hazardous wastes and toxic chemicals. Resonance Raman spectroscopy (RRS) possesses many of the ideal characteristics for monitoring and detecting of hazardous waste and toxic chemicals. Some of these traits are: (1) very high selectivity (chemical specific fingerprints); (2) independence from the excitation wavelength (ability to monitor in the solar blind region); (3) chemical mixture fingerprints are the sum of its individual components (no spectral cross-talk); (4) near independence of the Raman fingerprint to its physical state (very similar spectra for gas, liquid, solid and solutions -- either bulk or aerosols); and (5) insensitivity of the Raman signature to environmental conditions (no quenching). Data from a few chemicals will be presented which illustrate these features. In cases where background fluorescence accompanies the Raman signals, an effective frequency modulation technique has been developed, which can completely eliminate this interference.

  19. Monitoring and trace detection of hazardous waste and toxic chemicals using resonance Raman spectroscopy

    SciTech Connect

    Sedlacek, A.J. III; Dougherty, D.R.; Chen, C.L.

    1993-01-01

    Raman scattering is a coherent, inelastic, two-photon process, which shifts the frequency of an outgoing photon according to the vibrational structure of the irradiated species, thereby providing a unique fingerprint of the molecule. When involving an allowed electronic transition (resonance Raman), this scattering cross section can be enhanced by 10[sup 4] to 10[sup 6] and provides the basis for a viable technique that can monitor and detect trace quantities of hazardous wastes and toxic chemicals. Resonance Raman spectroscopy (RRS) possesses many of the ideal characteristics for monitoring and detecting of hazardous waste and toxic chemicals. Some of these traits are: (1) very high selectivity (chemical specific fingerprints); (2) independence from the excitation wavelength (ability to monitor in the solar blind region); (3) chemical mixture fingerprints are the sum of its individual components (no spectral cross-talk); (4) near independence of the Raman fingerprint to its physical state (very similar spectra for gas, liquid, solid and solutions -- either bulk or aerosols); and (5) insensitivity of the Raman signature to environmental conditions (no quenching). Data from a few chemicals will be presented which illustrate these features. In cases where background fluorescence accompanies the Raman signals, an effective frequency modulation technique has been developed, which can completely eliminate this interference.

  20. Shedding Light on the Extinction-Enhancement Duality in Gold Nanostar-Enhanced Raman Spectroscopy**

    PubMed Central

    Li, Ming; Kang, Jeon Woong; Dasari, Ramachandra Rao

    2015-01-01

    Surface-enhanced Raman spectroscopy (SERS) has evolved from an esoteric physical phenomenon to a robust and effective analytical method recently. The need of addressing both the field enhancement and the extinction of nanoparticle suspensions, however, has been underappreciated despite its substantive impact on the sensing performance. A systematic experimental investigation of SERS enhancement and attenuation is performed in suspensions of gold nanostars, which exhibit a markedly different behavior in relation to conventional nanoparticles. The relationship is elucidated between the SERS enhancement and the localized surface plasmon resonance band, and the effect of the concentration of the gold nanostars on the signal propagation is investigated. It is shown that an optimal concentration of gold nanostars exists to maximize the enhancement factor (EF), and the maximum EF occurs when the LSPR band is blue-shifted from the excitation wavelength rather than at the on-resonance position. PMID:25331156

  1. Surface enhanced Raman scattering of light by ZnO nanostructures

    SciTech Connect

    Milekhin, A. G. Yeryukov, N. A.; Sveshnikova, L. L.; Duda, T. A.; Zenkevich, E. I.; Kosolobov, S. S.; Latyshev, A. V.; Himcinski, C.; Surovtsev, N. V.; Adichtchev, S. V.; Feng, Zhe Chuan; Wu, Chia Cheng; Wuu, Dong Sing; Zahn, D. R. T.

    2011-12-15

    Raman scattering (including nonresonant, resonant, and surface enhanced scattering) of light by optical and surface phonons of ZnO nanocrystals and nanorods has been investigated. It has been found that the nonresonant and resonant Raman scattering spectra of the nanostructures exhibit typical vibrational modes, E{sub 2}(high) and A{sub 1}(LO), respectively, which are allowed by the selection rules. The deposition of silver nanoclusters on the surface of nanostructures leads either to an abrupt increase in the intensity (by a factor of 10{sup 3}) of Raman scattering of light by surface optical phonons or to the appearance of new surface modes, which indicates the observation of the phenomenon of surface enhanced Raman light scattering. It has been demonstrated that the frequencies of surface optical phonon modes of the studied nanostructures are in good agreement with the theoretical values obtained from calculations performed within the effective dielectric function model.

  2. Surface enhanced Raman spectroscopy on a flat graphene surface

    PubMed Central

    Xu, Weigao; Ling, Xi; Xiao, Jiaqi; Dresselhaus, Mildred S.; Kong, Jing; Xu, Hongxing; Liu, Zhongfan; Zhang, Jin

    2012-01-01

    Surface enhanced Raman spectroscopy (SERS) is an attractive analytical technique, which enables single-molecule sensitive detection and provides its special chemical fingerprints. During the past decades, researchers have made great efforts towards an ideal SERS substrate, mainly including pioneering works on the preparation of uniform metal nanostructure arrays by various nanoassembly and nanotailoring methods, which give better uniformity and reproducibility. Recently, nanoparticles coated with an inert shell were used to make the enhanced Raman signals cleaner. By depositing SERS-active metal nanoislands on an atomically flat graphene layer, here we designed a new kind of SERS substrate referred to as a graphene-mediated SERS (G-SERS) substrate. In the graphene/metal combined structure, the electromagnetic “hot” spots (which is the origin of a huge SERS enhancement) created by the gapped metal nanoislands through the localized surface plasmon resonance effect are supposed to pass through the monolayer graphene, resulting in an atomically flat hot surface for Raman enhancement. Signals from a G-SERS substrate were also demonstrated to have interesting advantages over normal SERS, in terms of cleaner vibrational information free from various metal-molecule interactions and being more stable against photo-induced damage, but with a comparable enhancement factor. Furthermore, we demonstrate the use of a freestanding, transparent and flexible “G-SERS tape” (consisting of a polymer-layer-supported monolayer graphene with sandwiched metal nanoislands) to enable direct, real time and reliable detection of trace amounts of analytes in various systems, which imparts high efficiency and universality of analyses with G-SERS substrates. PMID:22623525

  3. Enhancement of Raman light scattering in dye-labeled cell membrane on metal-containing conducting polymer film

    NASA Astrophysics Data System (ADS)

    Grushevskaya, H. V.; Krylova, N. G.; Lipnevich, I. V.; Orekhovskaja, T. I.; Egorova, V. P.; Shulitski, B. G.

    2016-03-01

    An enhanced Raman spectroscopy method based on a plasmon resonance in ultrathin metal-containing LB-film deposited on nanoporous anodic alumina supports has been proposed. This material has been utilized to enhance Raman scattering of light in fluorescent-labeled subcellular membrane structures. It has been shown that the plasmon resonance between vibrational modes of the organometallic complexes monolayers and dye-labeled subcellular structures happens. It makes possible to detect interactions between living cell monolayers and an extracellular matrix.

  4. Resonance electronic Raman scattering in rare earth crystals

    SciTech Connect

    Williams, G.M.

    1988-11-10

    The intensities of Raman scattering transitions between electronic energy levels of trivalent rare earth ions doped into transparent crystals were measured and compared to theory. A particle emphasis was placed on the examination of the effect of intermediate state resonances on the Raman scattering intensities. Two specific systems were studied: Ce/sup 3 +/(4f/sup 1/) in single crystals of LuPO/sub 4/ and Er/sup 3 +/(4f/sup 11/) in single crystals of ErPO/sub 4/. 134 refs., 92 figs., 33 tabs.

  5. Cavity-enhanced Raman microscopy of individual carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hümmer, Thomas; Noe, Jonathan; Hofmann, Matthias S.; Hänsch, Theodor W.; Högele, Alexander; Hunger, David

    2016-07-01

    Raman spectroscopy reveals chemically specific information and provides label-free insight into the molecular world. However, the signals are intrinsically weak and call for enhancement techniques. Here, we demonstrate Purcell enhancement of Raman scattering in a tunable high-finesse microcavity, and utilize it for molecular diagnostics by combined Raman and absorption imaging. Studying individual single-wall carbon nanotubes, we identify crucial structural parameters such as nanotube radius, electronic structure and extinction cross-section. We observe a 320-times enhanced Raman scattering spectral density and an effective Purcell factor of 6.2, together with a collection efficiency of 60%. Potential for significantly higher enhancement, quantitative signals, inherent spectral filtering and absence of intrinsic background in cavity-vacuum stimulated Raman scattering render the technique a promising tool for molecular imaging. Furthermore, cavity-enhanced Raman transitions involving localized excitons could potentially be used for gaining quantum control over nanomechanical motion and open a route for molecular cavity optomechanics.

  6. Surface-enhanced Raman scattering from finite arrays of gold nano-patches

    SciTech Connect

    Vincenti, M. A.; Ceglia, D. de; Grande, M.; Petruzzelli, V.; D'Orazio, A.; Bianco, G. V.; Bruno, G.; Stomeo, T.; De Vittorio, M.; Scalora, M.

    2013-01-07

    We experimentally investigate the surface-enhanced Raman scattering (SERS) response of a 2D-periodic array of square gold nano-patches, functionalized by means of a conjugated, rigid thiol. We measure a Raman signal enhancement up to 200 times more intense compared to other plasmon-based nanostructures functionalized with the same molecule, and show that the enhancement is not strictly correlated to the presence of plasmonic resonances. The agreement between experimental and theoretical results reveals the importance of a full-wave analysis based on the inclusion of the actual scattering cross section of the molecule. The proposed numerical approach may serve not only as a tool to predict the enhancement of Raman signal scattered from strongly resonant nanostructure but also as an effective instrument to engineer SERS platforms that target specific molecules.

  7. Can surface-enhanced Raman scattering serve as a channel for strong optical pumping?

    NASA Astrophysics Data System (ADS)

    Haslett, T. L.; Tay, L.; Moskovits, M.

    2000-07-01

    The surface-enhanced Raman scattering spectra of a number of dye and colorless molecules adsorbed on deposited coloidal silver films were systematically studied as a function of power and position using a Raman microscope. The anti-Stokes portions of the spectra of the dyes reproducibly show line intensities much greater than what is expected on the basis of the equilibrium population of the excited vibrational states, even at the lowest incident light intensities used. This behavior was observed previously and attributed to optical pumping of vibrationally excited states of the molecules by unusually intense surface-enhanced Raman transitions, [Phys. Rev. Lett. 76, 2444 (1996)] suggesting either uncommonly large Raman cross-sections or very intense local field strengths exceeding those encountered in the most powerful currently available lasers. Based on this work, however, we ascribe the apparently large anti-Stokes intensities primarily to a difference in the Stokes and anti-Stokes Raman cross-sections resulting from resonance or pre-resonance Raman processes in the adsorbate-surface complex rather than to strongly nonequilibrium populations in the molecular vibrational states. Finally, we observed no significant inhomogeneity in the Raman enhancement in the images of the deposited silver coloid samples down to spatial resolutions of ˜1 μm.

  8. Raman Scattering at Resonant or Near-Resonant Conditions: A Generalized Short-Time Approximation

    NASA Astrophysics Data System (ADS)

    Mohammed, Abdelsalam; Sun, Yu-Ping; Miao, Quan; Ågren, Hans; Gel'mukhanov, Faris

    2012-02-01

    We investigate the dynamics of resonant Raman scattering in the course of the frequency detuning. The dephasing in the time domain makes the scattering fast when the photon energy is tuned from the absorption resonance. This makes frequency detuning to act as a camera shutter with a regulated scattering duration and provides a practical tool of controlling the scattering time in ordinary stationary measurements. The theory is applied to resonant Raman spectra of a couple of few-mode model systems and to trans-1,3,5-hexatriene and guanine-cytosine (G-C) Watson-Crick base pairs (DNA) molecules. Besides some particular physical effects, the regime of fast scattering leads to a simplification of the spectrum as well as to the scattering theory itself. Strong overtones appear in the Raman spectra when the photon frequency is tuned in the resonant region, while in the mode of fast scattering, the overtones are gradually quenched when the photon frequency is tuned more than one vibrational quantum below the first absorption resonance. The detuning from the resonant region thus leads to a strong purification of the Raman spectrum from the contamination by higher overtones and soft modes and purifies the spectrum also in terms of avoidance of dissociation and interfering fluorescence decay of the resonant state. This makes frequency detuning a very useful practical tool in the analysis of the resonant Raman spectra of complex systems and considerably improves the prospects for using the Raman effect for detection of foreign substances at ultra-low concentrations.

  9. Surface Enhanced Raman Spectroscopy on tunable plasmonic substrates

    NASA Astrophysics Data System (ADS)

    Jackson, Joseph

    2004-03-01

    Thirty years after its initial discovery, Surface Enhanced Raman Scattering (SERS) is still not well understood. The relative contributions of electromagnetic fields at the substrate surface, controlled by its nanoscale topology, and chemical effects, which include resonances of the adsorbate molecules or the formation of new resonant states due to substrate-adsorbate complex formation, can vary uncontrollably in any given substrate-adsorbate combination. The first step towards unraveling the mystery of SERS is precise control of the optical near field at the substrate surface. Recently we have shown that systematic variation in the geometry of a dielectric core-metal shell nanoparticle, or nanoshell, allows its plasmon resonance frequency to be controllably tuned. The electromagnetic fields induced by the plasmon resonance in the vicinity of this simple, symmetric geometry can be calculated straightforwardly, and the fabrication of this core-shell nanoparticle has been experimentally realized in a controlled and reproducible manner. This allows us to systematically investigate the relative contributions of electromagnetic and chemical enhancement to the SERS effect. We have recently shown that variation of the core and shell dimensions on isolated nanoshells in solution for the nonresonant molecule para-mercaptoaniline (pMA) yield a SERS response with excellent agreement between theory and experiment [1]. We extend these studies to examine the SERS response on nanoshell aggregate films, addressing the relative contributions of the single nanoparticle plasmon and dimer or higher order aggregate plasmons to the overall SERS response. This system can also be used to examine the relative contribution of resonant or near-resonant adsorbate molecules to the overall SERS response, and to follow molecular assembly events on the nanoparticle substrate surface. [1] J. B. Jackson et al., Appl. Phys. Lett., 82 (2003) 257.

  10. Resonance Raman Scattering of Rhodamine 6G as Calculated Using Time-Dependent Density Functional Theory

    SciTech Connect

    Jensen, Lasse; Schatz, George C.

    2006-03-27

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. In this work, we present the first calculation of the resonance Raman scattering (RRS) spectrum of rhodamine 6G (R6G) which is a prototype molecule in surface-enhanced Raman scattering (SERS). The calculation is done using a recently developed time-dependent density functional theory (TDDFT) method, which uses a short-time approximation to evaluate the Raman scattering cross section. The normal Raman spectrum calculated with this method is in good agreement with experimental results. The calculated RRS spectrum shows qualitative agreement with SERS results at a wavelength that corresponds to excitation of the S1 state, but there are significant differences with the measured RRS spectrum at wavelengths that correspond to excitation of the vibronic sideband of S1. Although the agreement with the experiments is not perfect, the results provide insight into the RRS spectrum of R6G at wavelengths close to the absorption maximum where experiments are hindered due to strong fluorescence. The calculated resonance enhancements are found to be on the order of 105. This indicates that a surface enhancement factor of about 1010 would be required in SERS in order to achieve single-molecule detection of R6G.

  11. Resonance Raman based skin carotenoid measurements in newborns and infants

    PubMed Central

    Ermakov, Igor V.; Ermakova, Maia R.; Bernstein, Paul S.; Chan, Gary M.; Gellermann, Werner

    2014-01-01

    We describe Resonance Raman based skin carotenoid measurements in newborns and infants. Skin- and serum carotenoid levels correlate with high statistical significance in healthy newborns and infants, and with reduced accuracy also in prematurely born infants, who in general feature very low carotenoid levels and thin transparent skin giving rise to large background absorption effects. Skin carotenoid levels can be easily compared among subjects and/or tracked in longitudinal studies with the highly molecule-specific Raman method. It therefore holds promise as a rapid, non-invasive, carotenoid antioxidant assessment method for newborns and infants in the field of pediatrics. Photograph of an infant’s skin carotenoid measurement via Resonance Raman spectroscopy. The instrument’s fiber-coupled light delivery and collection module is held against the foot, exposing the heel skin to weak 488 nm laser light for 20 seconds. From spectral analysis of the Raman scattered light intensities, which occur in the green wavelength region, the carotenoid levels in the heel skin are obtained in a rapid, non-invasive, and painless fashion. PMID:23193015

  12. Raman resonance in iron-based superconductors: The magnetic scenario

    NASA Astrophysics Data System (ADS)

    Hinojosa, Alberto; Cai, Jiashen; Chubukov, Andrey V.

    2016-02-01

    We perform theoretical analysis of polarization-sensitive Raman spectroscopy on NaFe1 -xCoxAs , EuFe 2 As2 , SrFe2As2 , and Ba (Fe1 -xCox )2As2 , focusing on two features seen in the B1 g symmetry channel (in one Fe unit cell notation): the strong temperature dependence of the static, uniform Raman response in the normal state and the existence of a collective mode in the superconducting state. We show that both features can be explained by the coupling of fermions to pairs of magnetic fluctuations via the Aslamazov-Larkin process. We first analyze magnetically mediated Raman intensity at the leading two-loop order and then include interactions between pairs of magnetic fluctuations. We show that the full Raman intensity in the B1 g channel can be viewed as the result of the coupling of light to Ising-nematic susceptibility via Aslamazov-Larkin process. We argue that the singular temperature dependence in the normal state is the combination of the temperature dependencies of the Aslamazov-Larkin vertex and of Ising-nematic susceptibility. We discuss two scenario for the resonance below Tc. One is the resonance due to development of a pole in the fully renormalized Ising-nematic susceptibility. Another is orbital excitonic scenario, in which spin fluctuations generate attractive interaction between low-energy fermions.

  13. Spatial resolution of tip-enhanced Raman spectroscopy - DFT assessment of the chemical effect.

    PubMed

    Latorre, Federico; Kupfer, Stephan; Bocklitz, Thomas; Kinzel, Daniel; Trautmann, Steffen; Gräfe, Stefanie; Deckert, Volker

    2016-05-21

    Experimental evidence of extremely high spatial resolution of tip-enhanced Raman scattering (TERS) has been recently demonstrated. Here, we present a full quantum chemical description (at the density functional level of theory) of the non-resonant chemical effects on the Raman spectrum of an adenine molecule mapped by a tip, modeled as a single silver atom or a small silver cluster. We show pronounced changes in the Raman pattern and its intensities depending on the conformation of the nanoparticle-substrate system, concluding that the spatial resolution of the chemical contribution of TERS can be in the sub-nm range. PMID:27123952

  14. Surface enhanced Raman scattering in a hollow core microstructured optical fiber.

    PubMed

    Cox, Felicity M; Argyros, Alexander; Large, Maryanne C J; Kalluri, Srinath

    2007-10-17

    Improvement of surface enhanced resonant Raman scattering (SERRS) signals is demonstrated by confining the scattering event to the core of a hollow core microstructured optical fiber. The analyte solution fills the entire microstructure. The pump light is guided in the liquid core and the Raman scattered signal is efficiently collected by the fiber and transmitted to the detector. Rhodamine 6G (210nM) adsorbed on silver nanoparticles in aqueous solution is used as a demonstration system and it was found that it is possible to collect usable Raman signals from the solution filled optical fiber well beyond the detection limit of an equivalent free-space system. PMID:19550638

  15. Acid Cleavable Surface enhanced Raman Tagging for Protein Detection

    PubMed Central

    Zhang, Dongmao; Vangala, Karthikeshwar; Li, Shaoyong; Yanney, Michael; Xia, Hao; Zou, Sige; Sygula, Andrzej

    2010-01-01

    Dye conjugation is a common strategy improving the surface enhanced Raman detection sensitivity of biomolecules. Reported is a proof-of-concept study of a novel surface enhanced Raman spectroscopic tagging strategy termed as acid-cleavable SERS tag (ACST) method. Using Rhodamine B as the starting material, we prepared the first ACST prototype that consisted of, from the distal end, a SERS tag moiety (STM), an acid-cleavable linker, and a protein reactive moiety. Complete acid cleavage of the ACST tags was achieved at a very mild condition that is 1.5% trifluoroacetic acid (TFA) aqueous solution at room temperature. SERS detection of this ACST tagged protein was demonstrated using bovine serum albumin (BSA) as the model protein. While the SERS spectrum of intact ACST-BSA was entirely dominated by the fluorescent signal of STM, quality SERS spectra can be readily obtained with the acid cleaved ACST-BSA conjugates. Separation of the acid cleaved STM from protein further enhances the SERS sensitivity. Current SERS detection sensitivity, achieved with the acid cleaved ACST-BSA conjugate is ~5 nM in terms of the BSA concentration and ~1.5 nM in ACST content. The linear dynamic range of the cleaved ACST-BSA conjugate spans four orders of magnitudes from ~10 nM to ~100 μM in protein concentrations. Further improvement in the SERS sensitivity can be achieved with resonance Raman acquisition. This cleavable tagging strategy may also be used for elimination of protein interference in fluorescence based biomolecule detection. PMID:21109888

  16. Resonant electronic Raman scattering: A BCS-like system

    NASA Astrophysics Data System (ADS)

    Rodrigues, Leonarde N.; Arantes, A.; Schüller, C.; Bell, M. J. V.; Anjos, V.

    2016-05-01

    In this paper we investigate the resonant intersubband Raman scattering of two-dimensional electron systems in GaAs-AlGaAs single quantum wells. Self-consistent calculations of the polarized and depolarized Raman cross sections show that the appearance of excitations at the unrenormalized single-particle energy are related to three factors: the extreme resonance regime, the existence of degeneracy in intersubband excitations of the electron gas, and, finally, degeneracy in the interactions between pairs of excitations. It is demonstrated that the physics that governs the problem is similar to the one that gives rise to the formation of the superconducting state in the BCS theory of normal metals. Comparison between experiment and theory shows an excellent agreement.

  17. Surface-enhanced Raman spectroscopy of peptides

    NASA Astrophysics Data System (ADS)

    Garrell, Robin L.; Herne, Tonya M.; Ahern, Angela M.; Sullenberger, Eve L.

    1990-07-01

    Surface-enhanced Raman (SER) spectroscopy has been used to probe the adsorption, surface interactions, and orientations of peptides on metal surfaces. Amino acids in homodipeptides give SER spectra with unique features that can be used to characterize the surface interactions of specific functional groups in more complicated peptides. In heterodipeptides, there is a hierarchy of functional group-surface interactions that prescribe their orientation and conformation on metal surfaces. By establishing this hierarchy, it is now possible to predict the interactions that occur between larger peptides and surfaces. Furthermore, the observed trends suggest that it should be possible to control these interactions by varying the solution pH, the charge on the surface, and other parameters of the measurement in order to adsorb species selectively from mixtures of peptides in solution. Potential biomedical applications of this technique will be described.

  18. Surface enhanced Raman scattering spectroscopic waveguide

    DOEpatents

    Lascola, Robert J; McWhorter, Christopher S; Murph, Simona H

    2015-04-14

    A waveguide for use with surface-enhanced Raman spectroscopy is provided that includes a base structure with an inner surface that defines a cavity and that has an axis. Multiple molecules of an analyte are capable of being located within the cavity at the same time. A base layer is located on the inner surface of the base structure. The base layer extends in an axial direction along an axial length of an excitation section. Nanoparticles are carried by the base layer and may be uniformly distributed along the entire axial length of the excitation section. A flow cell for introducing analyte and excitation light into the waveguide and a method of applying nanoparticles may also be provided.

  19. Suppression and enhancement of dye lasing and stimulated Raman scattering from various dye-doped liquid spheres.

    PubMed

    Taniguchi, H; Tomisawa, H

    1994-09-15

    The observation of suppression or enhancement of dye lasing and stimulated Raman scattering (SRS) from various dye-doped liquid droplets, in which SRS from the initial pumping wavelength appeared in shorter and longer wavelengths of various dye fluorescence regions, is reported; SRS from the dye-lasing wavelengths (double resonances) and stimulated resonance Raman scattering of dyes are included. Furthermore, the contribution to SRS of the dye fluorescence (depending on dye concentration and different dyes) and dye-lasing suppression that is due to stimulated resonance Raman scattering is also described. PMID:19855533

  20. Plasmonic dimer antennas for surface enhanced Raman scattering.

    PubMed

    Höflich, Katja; Becker, Michael; Leuchs, Gerd; Christiansen, Silke

    2012-05-11

    Electron beam induced deposition (EBID) has recently been developed into a method to directly write optically active three-dimensional nanostructures. For this purpose a metal-organic precursor gas (here dimethyl-gold(III)-acetylacetonate) is introduced into the vacuum chamber of a scanning electron microscope where it is cracked by the focused electron beam. Upon cracking the aforementioned precursor gas, 3D deposits are realized, consisting of gold nanocrystals embedded in a carbonaceous matrix. The carbon content in the deposits hinders direct plasmonic applications. However, it is possible to activate the deposited nanostructures for plasmonics by coating the EBID structures with a continuous silver layer of a few nanometers thickness. Within this silver layer collective motions of the free electron gas can be excited. In this way, EBID structures with their intriguing precision at the nanoscale have been arranged in arrays of free-standing dimer antenna structures with nanometer sized gaps between the antennas that face each other with an angle of 90°. These dimer antenna ensembles can constitute a reproducibly manufacturable substrate for exploiting the surface enhanced Raman effect (SERS). The achieved SERS enhancement factors are of the order of 10⁴ for the incident laser light polarized along the dimer axes. To prove the signal enhancement in a Raman experiment we used the dye methyl violet as a robust test molecule. In future applications the thickness of such a silver layer on the dimer antennas can easily be varied for tuning the plasmonic resonances of the SERS substrate to match the resonance structure of the analytes to be detected. PMID:22498764

  1. Quantitative resonance Raman spectroscopy of N-acetylpyrrolidine in aqueous solution

    SciTech Connect

    Harhay, G.P.; Hudson, B.S. )

    1993-08-05

    The resonance Raman spectra of aqueous solutions of N-acetylpyrrolidine are determined at seven excitation frequencies from 40 660 to 53 130 cm[sup [minus]1] spanning the first strong absorption band which is broad and diffuse The resonance Raman spectra are dominated by the single amide II[prime]-like vibration at 1485 cm[sup [minus]1] and its overtones of up to five quanta. Absolute resonance Raman cross sections are determined for these fundamental and overtone transitions at each excitation wavelength by reference to an internal standard of sodium perchlorate. A quantitative analysis of these data and the broad absorption spectrum is made on the basis of a model for the electronic excitation that includes the effects of inhomogeneous broadening. The observation of only a single enhanced vibrational normal mode, with the assumption that there is no Duschinsky rotation upon electronic excitation, makes this a particularly simple case for detailed analysis. A reasonably good fit to the experimental data is obtained using standard assumptions of Lorentzian inhomogeneous broadening and A-term (Condom) Raman scattering. In this fitting procedure, the integrated absorption spectrum determines the transition dipole length. 43 refs., 4 figs., 2 tabs.

  2. Enhanced spontaneous Raman scattering using a photonic crystal fiber

    SciTech Connect

    Buric, M.P.; Falk, J.; Chen, K.; Woodruff, S.D.

    2008-07-22

    The output power from spontaneous gas-phase Raman scattering is enhanced using a hollow-core photonic crystal fiber for the gas cell and Stokes light collector, yielding >100 times enhancement over a free-space configuration.

  3. Enhanced Spontaneous Raman Scattering using a Photonic Crystal Fiber

    SciTech Connect

    M.P. Buric; J. Fal; K. Chen; S. Woodruff1

    2007-10-01

    The output power from spontaneous gas-phase Raman scattering is enhanced using a hollow-core photonic crystal fiber for the gas cell and Stokes light collector, yielding >100 times enhancement over a free-space configuration.

  4. Raman Spectroscopy.

    ERIC Educational Resources Information Center

    Gerrard, Donald L.

    1984-01-01

    Reviews literature on Raman spectroscopy from late 1981 to late 1983. Topic areas include: instrumentation and sampling; liquids and solutions; gases and matrix isolation; biological molecules; polymers; high-temperature and high-pressure studies; Raman microscopy; thin films and surfaces; resonance-enhanced and surface-enhanced spectroscopy; and…

  5. Atypical Exciton-Phonon Interactions in WS2 and WSe2 Monolayers Revealed by Resonance Raman Spectroscopy.

    PubMed

    Del Corro, E; Botello-Méndez, A; Gillet, Y; Elias, A L; Terrones, H; Feng, S; Fantini, C; Rhodes, Daniel; Pradhan, N; Balicas, L; Gonze, X; Charlier, J-C; Terrones, M; Pimenta, M A

    2016-04-13

    Resonant Raman spectroscopy is a powerful tool for providing information about excitons and exciton-phonon coupling in two-dimensional materials. We present here resonant Raman experiments of single-layered WS2 and WSe2 using more than 25 laser lines. The Raman excitation profiles of both materials show unexpected differences. All Raman features of WS2 monolayers are enhanced by the first-optical excitations (with an asymmetric response for the spin-orbit related XA and XB excitons), whereas Raman bands of WSe2 are not enhanced at XA/B energies. Such an intriguing phenomenon is addressed by DFT calculations and by solving the Bethe-Salpeter equation. These two materials are very similar. They prefer the same crystal arrangement, and their electronic structure is akin, with comparable spin-orbit coupling. However, we reveal that WS2 and WSe2 exhibit quite different exciton-phonon interactions. In this sense, we demonstrate that the interaction between XC and XA excitons with phonons explains the different Raman responses of WS2 and WSe2, and the absence of Raman enhancement for the WSe2 modes at XA/B energies. These results reveal unusual exciton-phonon interactions and open new avenues for understanding the two-dimensional materials physics, where weak interactions play a key role coupling different degrees of freedom (spin, optic, and electronic). PMID:26998817

  6. Multimodality Raman and photoacoustic imaging of surface-enhanced-Raman-scattering-targeted tumor cells

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Paproski, Robert J.; Shao, Peng; Forbrich, Alexander; Lewis, John D.; Zemp, Roger J.

    2016-02-01

    A multimodality Raman and photoacoustic imaging system is presented. This system has ultralow background and can detect tumor cells labeled with modified surface-enhanced-Raman-scattering (SERS) nanoparticles in vivo. Photoacoustic imaging provides microvascular context and can potentially be used to guide magnetic trapping of circulating tumor cells for SERS detection in animal models.

  7. Towards improved precision in the quantification of surface-enhanced Raman scattering (SERS) enhancement factors: a renewed approach.

    PubMed

    Sivanesan, Arumugam; Adamkiewicz, Witold; Kalaivani, Govindasamy; Kamińska, Agnieszka; Waluk, Jacek; Hołyst, Robert; Izake, Emad L

    2015-01-21

    This paper demonstrates a renewed procedure for the quantification of surface-enhanced Raman scattering (SERS) enhancement factors with improved precision. The principle of this method relies on deducting the resonance Raman scattering (RRS) contribution from surface-enhanced resonance Raman scattering (SERRS) to end up with the surface enhancement (SERS) effect alone. We employed 1,8,15,22-tetraaminophthalocyanato-cobalt(II) (4α-Co(II)TAPc), a resonance Raman- and electrochemically redox-active chromophore, as a probe molecule for RRS and SERRS experiments. The number of 4α-Co(II)TAPc molecules contributing to RRS and SERRS phenomena on plasmon inactive glassy carbon (GC) and plasmon active GC/Au surfaces, respectively, has been precisely estimated by cyclic voltammetry experiments. Furthermore, the SERS substrate enhancement factor (SSEF) quantified by our approach is compared with the traditionally employed methods. We also demonstrate that the present approach of SSEF quantification can be applied for any kind of different SERS substrates by choosing an appropriate laser line and probe molecule. PMID:25374971

  8. Electrochemical Tip-Enhanced Raman Spectroscopy.

    PubMed

    Zeng, Zhi-Cong; Huang, Sheng-Chao; Wu, De-Yin; Meng, Ling-Yan; Li, Mao-Hua; Huang, Teng-Xiang; Zhong, Jin-Hui; Wang, Xiang; Yang, Zhi-Lin; Ren, Bin

    2015-09-23

    Interfacial properties are highly important to the performance of some energy-related systems. The in-depth understanding of the interface requires highly sensitive in situ techniques that can provide fingerprint molecular information at nanometer resolution. We developed an electrochemical tip-enhanced Raman spectroscopy (EC-TERS) by introduction of the light horizontally to the EC-STM cell to minimize the optical distortion and to keep the TERS measurement under a well-controlled condition. We obtained potential-dependent EC-TERS from the adsorbed aromatic molecule on a Au(111) surface and observed a substantial change in the molecule configuration with potential as a result of the protonation and deprotonation of the molecule. Such a change was not observable in EC-SERS (surface-enhanced), indicating EC-TERS can more faithfully reflect the fine interfacial structure than EC-SERS. This work will open a new era for using EC-TERS as an important nanospectroscopy tool for the molecular level and nanoscale analysis of some important electrochemical systems including solar cells, lithium ion batteries, fuel cells, and corrosion. PMID:26351986

  9. Titanium-enhanced Raman microcavity laser.

    PubMed

    Deka, Nishita; Maker, Ashley J; Armani, Andrea M

    2014-03-15

    Whispering gallery mode microcavities are ideally suited to form microlaser devices because the high circulating intensity within the cavity results in ultralow lasing thresholds. However, to achieve low-threshold Raman lasing in silica devices, it is necessary to have quality factors above 100 million. One approach to circumvent this restriction is to intercalate a sensitizer into the silica, which increases the Raman gain. In the present work, we demonstrate a Raman laser based on a titanium sensitized silica solgel coated toroidal microcavity. By tuning the concentration of the Ti, the Raman efficiency improves over 3× while maintaining sub-mW thresholds. PMID:24690786

  10. ARTICLES: Stimulated Raman scattering in resonant nonequilibrium media

    NASA Astrophysics Data System (ADS)

    Khasanov, O. Kh

    1980-12-01

    An analysis is made of the propagation of a short coherent optical pulse in a three-level resonant medium with an essentially nonequidistant spectrum as a function of the degree of preexcitation of the medium. It is found that in addition to self-induced transparency and resonance scattering, stimulated Raman scattering (Stokes or anti-Stokes) should be observed under certain spatial phase-matching conditions. The area theorem is formulated for all radiation components. An analysis is made of the case of propagation of a resonant electromagnetic pulse of frequency ω in a system of three-level atoms having an equidistant spectrum. Under conditions of preexcitation of the medium at the frequency 2ω by longitudinal acoustic pulses, a scattered transverse acoustic wave at the frequency ω may be observed.

  11. The short-range mechanism of surface enhanced raman scattering

    NASA Astrophysics Data System (ADS)

    Furtak, T. E.; Roy, D.

    1985-07-01

    In addition to the electromagnetic influences which increase the local field at the surface of suitably rough free-electron-like metals, molecule and site specific electronic resonances are also frequently operative. This leads to enhanced scattering beyond that caused by the electromagnetic mechanism alone. The electronic resonances involve charge-transfer excitation between members of an active complex M wAg xCl y(H 2O) z which involves the probe molecule M and, in the electrochemical environment, the constituents of the solution. These complexes allow the resonance to be communicated to Raman transitions in all members of the complex. The stability of the complexes are sensitive to changes in the environment, such as the applied voltage and to the presence of foreign metal ions, through induced changes in y, the number of halide or pseudo-halide ions in the complex. Through analysis of the vibrational signature of the probe molecule under various environmental influences we are able to observe subtle changes in the character of the bonding between that molecule and the rest of the complex. These changes can also be interpreted as indirect results of changes in the value of y.

  12. Surface enhanced coherent anti-stokes Raman scattering on nanostructured gold surfaces.

    PubMed

    Steuwe, Christian; Kaminski, Clemens F; Baumberg, Jeremy J; Mahajan, Sumeet

    2011-12-14

    Coherent anti-Stokes Raman spectroscopy (CARS) is a well-known tool in multiphoton imaging and nonlinear spectroscopy. In this work we combine CARS with plasmonic surface enhancement on reproducible nanostructured surfaces. We demonstrate strong correlation between plasmon resonances and surface-enhanced CARS (SECARS) intensities on our nanostructured surfaces and show that an enhancement of ∼10(5) can be obtained over standard CARS. Furthermore, we find SECARS to be >10(3) times more sensitive than surface-enhanced Raman Spectroscopy (SERS). We also demonstrate SECARS imaging of molecular monolayers. Our work paves the way for reliable single molecule Raman spectroscopy and fast molecular imaging on plasmonic surfaces. PMID:22074256

  13. Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals

    SciTech Connect

    Michaels, A.M.; Nirmal, M.; Brus, L.E.

    1999-11-03

    To explore the relationship between local electromagnetic field enhancement and the large SERS (surface enhanced Raman scattering) enhancement that enables the observation of single molecule Raman spectra, they measure both resonant Rayleigh scattering spectra and rhodamine 6G Raman spectra from single Ag particles. The apparatus combines the techniques of dark-field optical microscopy for resonant Rayleigh measurements, and grazing incidence Raman spectroscopy. The Rayleigh spectra show that the citrate-reduced Ag colloid is extremely heterogeneous. Only the larger particles, in part created by salt induced aggregation, show a large SERS effect. In agreement with the work of Nie and Emory, a few nanocrystals show huge single molecule R6G SERS intensities. While all SERS active particles have some resonant Rayleigh scattering at the 514.5 nm laser wavelength, there is no correlation between the resonant Rayleigh spectra and the SERS intensity. A model is discussed in which huge SERS intensities result from single chemisorbed molecules interacting with ballistic electrons in optically excited large Ag particles. This model is a natural consequence of the standard local electromagnetic field model for SERS and the high surface sensitivity of plasmon dephasing in the noble metals.

  14. Resonance Raman Spectroscopy of Armchair Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Haroz, Erik; Rice, William; Lu, Benjamin; Hauge, Robert; Magana, Donny; Doorn, Stephen; Nikolaev, Pasha; Arepalli, Sivaram; Kono, Junichiro

    2009-03-01

    We performed resonance Raman spectroscopy studies of metallic single-walled carbon nanotubes (SWNTs), including armchair SWNTs from (6,6) through (10,10). The measurements were carried out with excitation of 440-850 nm on aqueous ensemble samples of SWNTs enriched in metallic species. From this, we generated Raman excitation profiles (REPs) of the radial breathing mode and compare the REPs of armchairs and other metallic species. Additionally, we measured REPs of the G-band mode and observed how the Breit-Wigner-Fano line shape of the G^- peak evolves in peak position, width and intensity relative to the G^+ peak as different metallic nanotubes are excited. By combining these studies with absorption and photoluminescence excitation spectroscopy studies, we present a comprehensive examination of the optical signatures of metallic SWNTs.

  15. Single-site surface-enhanced Raman scattering beyond spectroscopy

    NASA Astrophysics Data System (ADS)

    Takase, Mai; Yasuda, Satoshi; Murakoshi, Kei

    2016-04-01

    Recent progress in the observation of surface-enhanced Raman scattering (SERS) is reviewed to examine the possibility of finding a novel route for the effective photoexcitation of materials. The importance of well-controlled SERS experiments on a single molecule at a single site is discussed based on the difference in the information obtained from ensemble SERS measurements using multiple active sites with an uncontrolled number of molecules. A single-molecule SERS observation performed at a mechanically controllable breaking junction with a simultaneous conductivity measurement provides clear evidence of the drastic changes both in the intensity and in the Raman mode selectivity of the electromagnetic field generated by localized surface plasmon resonance. Careful control of the field at a few-nanometer-wide gap of a metal nanodimer results in the modification of the selection rule of electronic excitation of an isolated single-walled carbon nanotube. The examples shown in this review suggest that a single-site SERS observation could be used as a novel tool to find, develop, and implement applications of plasmon-induced photoexcitation of materials.

  16. Surface-enhanced Raman scattering (SERS) study of anthocyanidins

    NASA Astrophysics Data System (ADS)

    Zaffino, Chiara; Russo, Bianca; Bruni, Silvia

    2015-10-01

    Anthocyanins are an important class of natural compounds responsible for the red, purple and blue colors in a large number of flowers, fruits and cereal grains. They are polyhydroxy- and polymethoxy-derivatives of 2-phenylbenzopyrylium (flavylium) salts, which are present in nature as glycosylated molecules. The aim of the present study is to assess the identification of anthocyanidins, i.e. anthocyanins without the glycosidic moiety, by means of surface-enhanced Raman spectroscopy (SERS), a very chemically-specific technique which is moreover sensitive to subtle changes in molecular structures. These features can lead to elect SERS, among the spectroscopic tools currently at disposal of scientists, as a technique of choice for the identification of anthocyanidins, since: (1) anthocyanidins structurally present the same benzopyrylium moiety and differentiate only for the substitution pattern on their phenyl ring, (2) different species are present in aqueous solution depending on the pH. It will be demonstrated that, while resonance Raman spectra of anthocyanidins are very similar to one another, SER spectra show greater differences, leading to a further step in the identification of such important compounds in diluted solutions by means of vibrational spectroscopy. Moreover, the dependence on the pH of the six most common anthocyanidins, i.e. cyanidin, delphinidin, pelargonidin, peonidin, malvidin and petunidin, is studied. To the best of the authors' knowledge, a complete SERS study of such important molecules is reported in the present work for the first time.

  17. Study of single walled carbon nanotube functionalization by means of surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ceponkus, Justinas; Velicka, Martynas; Pucetaite, Milda; Sablinskas, Valdas

    2015-09-01

    Raman spectroscopy is known to provide information about the quality of the single walled carbon nanotubes (SWCNT). The information is based on the intensity ratio of D and G spectral modes and the frequency of RBM modes. However due to resonance nature of Raman spectrum of the nanotubes this method is not suitable to detect functionalization of the nanotubes. Surface enhanced Raman spectroscopy (SERS) is known to enhance the Raman bands up to fourteen orders of magnitude. Preferable adsorption sites for small silver nanoparticles are expected to be the functional groups of SWCNT; therefore SERS technique allows detecting small amounts of functional groups despite strong resonance Raman from backbone of SWCNT. In this study functionalized nanotubes were dispersed in silver colloid and dried on the standard silver plate for Raman measurements. Spectra of SWCNT without colloid in the spectral range between 50 and 1800 cm-1 exhibit only four main spectral features: G, D, and RBM modes between 200 and 400 cm-1. Spectra of SWCNT with the colloid exhibit several additional spectral bands which do not belong to the colloid. These bands attributed to vibrations of C-O, C-C and O-H from the functional groups and the carbon atom of the SWCNT attached to the corresponding group. The bands associated with the vibrations involving O atom is an indication that silver nanoparticles interact with the functional group attached to SWCNT.

  18. Spatial resolution of tip-enhanced Raman spectroscopy - DFT assessment of the chemical effect

    NASA Astrophysics Data System (ADS)

    Latorre, Federico; Kupfer, Stephan; Bocklitz, Thomas; Kinzel, Daniel; Trautmann, Steffen; Gräfe, Stefanie; Deckert, Volker

    2016-05-01

    Experimental evidence of extremely high spatial resolution of tip-enhanced Raman scattering (TERS) has been recently demonstrated. Here, we present a full quantum chemical description (at the density functional level of theory) of the non-resonant chemical effects on the Raman spectrum of an adenine molecule mapped by a tip, modeled as a single silver atom or a small silver cluster. We show pronounced changes in the Raman pattern and its intensities depending on the conformation of the nanoparticle-substrate system, concluding that the spatial resolution of the chemical contribution of TERS can be in the sub-nm range.Experimental evidence of extremely high spatial resolution of tip-enhanced Raman scattering (TERS) has been recently demonstrated. Here, we present a full quantum chemical description (at the density functional level of theory) of the non-resonant chemical effects on the Raman spectrum of an adenine molecule mapped by a tip, modeled as a single silver atom or a small silver cluster. We show pronounced changes in the Raman pattern and its intensities depending on the conformation of the nanoparticle-substrate system, concluding that the spatial resolution of the chemical contribution of TERS can be in the sub-nm range. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00093b

  19. Molecular selectivity of graphene-enhanced Raman scattering.

    PubMed

    Huang, Shengxi; Ling, Xi; Liang, Liangbo; Song, Yi; Fang, Wenjing; Zhang, Jin; Kong, Jing; Meunier, Vincent; Dresselhaus, Mildred S

    2015-05-13

    Graphene-enhanced Raman scattering (GERS) is a recently discovered Raman enhancement phenomenon that uses graphene as the substrate for Raman enhancement and can produce clean and reproducible Raman signals of molecules with increased signal intensity. Compared to conventional Raman enhancement techniques, such as surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS), in which the Raman enhancement is essentially due to the electromagnetic mechanism, GERS mainly relies on a chemical mechanism and therefore shows unique molecular selectivity. In this paper, we report graphene-enhanced Raman scattering of a variety of different molecules with different molecular properties. We report a strong molecular selectivity for the GERS effect with enhancement factors varying by as much as 2 orders of magnitude for different molecules. Selection rules are discussed with reference to two main features of the molecule, namely its molecular energy levels and molecular structures. In particular, the enhancement factor involving molecular energy levels requires the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies to be within a suitable range with respect to graphene's Fermi level, and this enhancement effect can be explained by the time-dependent perturbation theory of Raman scattering. The enhancement factor involving the choice of molecular structures indicates that molecular symmetry and substituents similar to that of the graphene structure are found to be favorable for GERS enhancement. The effectiveness of these factors can be explained by group theory and the charge-transfer interaction between molecules and graphene. Both factors, involving the molecular energy levels and structural symmetry of the molecules, suggest that a remarkable GERS enhancement requires strong molecule-graphene coupling and thus effective charge transfer between the molecules and graphene. These conclusions are further

  20. Surface-Enhanced Raman Spectroscopy Sensors From Nanobiosilica With Self-Assembled Plasmonic Nanoparticles

    PubMed Central

    Ren, Fanghui; Campbell, Jeremy; Rorrer, Gregory L.; Wang, Alan X.

    2014-01-01

    We present an innovative surface-enhanced Raman spectroscopy (SERS) sensor based on a biological-plasmonic hybrid nanostructure by self-assembling silver (Ag) nanoparticles into diatom frustules. The photonic-crystal-like diatom frustules provide a spatially confined electric field with enhanced intensity that can form hybrid photonic-plasmonic modes through the optical coupling with Ag nanoparticles. The experimental results demonstrate 4–6× and 9–12× improvement of sensitivities to detect the Raman dye for resonance and nonresonance SERS sensing, respectively. Such low-cost and high-sensitivity SERS sensors have significant potentials for label-free biosensing. PMID:25309113

  1. Mechanical Coupling in Gold Nanoparticles Supermolecules Revealed by Plasmon-Enhanced Ultralow Frequency Raman Spectroscopy.

    PubMed

    Girard, A; Gehan, H; Crut, A; Mermet, A; Saviot, L; Margueritat, J

    2016-06-01

    Acoustic vibrations of assemblies of gold nanoparticles were investigated using ultralow frequency micro-Raman scattering and finite element simulations. When exciting the assemblies resonantly with the surface plasmon resonance of electromagnetically coupled nanoparticles, Raman spectra present an ultralow frequency band whose frequency lies below the lowest Raman active Lamb mode of single nanoparticles that was observed. This feature was ascribed to a Raman vibration mode of gold nanoparticle "supermolecules", that is, nanoparticles mechanically coupled by surrounding polymer molecules. Its measured frequency is inversely proportional to the nanoparticle diameter and sensitive to the elastic properties of the interstitial polymer. The latter dependence as well as finite element simulations suggest that this mode corresponds to the out-of-phase semirigid translation (l = 1 Lamb mode) of each nanoparticle of a dimer inside the matrix, activated by the mechanical coupling between the nanoparticles. These observations were permitted only thanks to the resonant excitation with the coupling plasmon excitation, leading to an enhancement up to 10(4) of the scattering by these vibrations. This enhanced ultralow frequency Raman scattering thus opens a new route to probe the local elastic properties of the surrounding medium. PMID:27176093

  2. The study of near-resonance Raman scattering of AlInN/AlN/GaN heterostructure

    NASA Astrophysics Data System (ADS)

    Liu, Yanli; Yang, Lianhong; Chen, Dunjun; Zhang, Li; Lu, Hai; Zhang, Rong; Zheng, Youdou

    2015-07-01

    The visible and ultraviolet (UV) Raman scattering of an AlInN/AlN/GaN heterostructure were measured under z (x, _) z bar configuration at room temperature. Compared with the visible Raman spectrum, three new peaks at 609, 700, and 840 cm-1 occurred in the UV Raman spectrum and were verified to result from the resonance enhanced Raman effect. The near-resonance Raman scattering is stimulated by the electron transition process between the valence band and subband of triangular quantum well located at the interface of AlN/GaN because this transition process has a near equal energy with the 325 nm excitation light. According to the calculated dispersion relations of interface phonon modes in the AlInN/AlN/GaN heterostructure and the 2DEG-related resonance enhanced effect, these new Raman peaks were mainly attributed to the interface phonon modes and disorder-activated mode. The contributions from the bulk phonon modes of AlN and AlInN layers play a very minor role.

  3. Molecular imaging with surface-enhanced Raman spectroscopy nanoparticle reporters

    PubMed Central

    Jokerst, Jesse V.; Pohling, Christoph; Gambhir, Sanjiv S.

    2013-01-01

    Molecular imaging scans cellular and molecular targets in living subjects through the introduction of imaging agents that bind to these targets and report their presence through a measurable signal. The picomolar sensitivity, signal stability, and high multiplexing capacity of Raman spectroscopy satisfies important needs within the field of molecular imaging, and several groups now utilize Raman and surface-enhanced Raman spectroscopy to image molecular targets in small animal models of human disease. This article details the role of Raman spectroscopy in molecular imaging, describes some substrates and imaging agents used in animal models, and illustrates some examples. PMID:24293809

  4. Monitoring LED-induced carotenoid increase in grapes by Transmission Resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Gonzálvez, Alicia G.; Martínez, Nerea L.; Telle, Helmut H.; Ureña, Ángel González

    2013-02-01

    Transmission Resonance Raman (TRR) spectroscopy combines increased signal-to-noise ratio with enhanced analytical sensibility. TRR was applied to directly monitor, without any sample preparation, the enhancement of β-carotene content in table grapes when they are irradiated by low power UV-LEDs. It was shown that, with respect to control samples, the carotenoid content in the grapes increased about five-fold, using UV-LED irradiation doses being two orders of magnitude lower than the maximum limit allowed by United States Food and Drug Administration. These promising results may pave the way for the development of easy, non-invasive techniques to improve food quality.

  5. Strongly enhanced Raman scattering of graphene by a single gold nanorod

    SciTech Connect

    He, Yingbo; Shen, Hongming; Cheng, Yuqing; Lu, Guowei Gong, Qihuang

    2015-08-03

    Individual gold nanorods (AuNRs) and monolayer graphene hybrid system is investigated experimentally. Surface enhanced Raman scattering (SERS) signal of the graphene is observed due to a single AuNR with enhancement factor up to ∼1000-fold. The SERS intensity is strongly polarization dependent and the enhancement effect varies with the detuning between the excitation laser and the AuNR resonance. The SERS effect is highest when the resonant wavelength of the AuNRs matches well with the excitation light. By correlating the scattering and photoluminescence, it is demonstrated that the conventional background in SERS ascribes to the photon emission of metallic nanostructures.

  6. Resonance Raman spectroscopic studies of enzymesubstrate intermediates at 5 K

    NASA Astrophysics Data System (ADS)

    Kim, Munsok; Carey, Paul R.

    1991-01-01

    A simple and versatile system for resonance Raman (RR) spectroscopic analysis of enzymesubstrate complexes at liquid helium temperatures is described. The system allows us to record high-quality RR spectra for dithioacyl papain intermediates (MeO-Phe-Gly- and MeO-Gly-Gly-Phe-Gly-C (dbnd S)S-papain) in ice matrices at 5 K. Based on established structure-spectra correlations, it is concluded that the active-site conformation of the intermediates about the φ', ψ' glycinic linkages and cysteine-25 side chain is B-G+-PH both in ice matrices at 5 K and in solution at room temperature.

  7. Resonant impulsive-stimulated Raman scattering on malachite green

    SciTech Connect

    Chesnoy, J.; Mokhtari, A.

    1988-10-01

    We have studied in the femtosecond regime the transient dynamics of dichroism (anisotropic absorption), birefringence, and frequency shift induced by an intense femtosecond pump beam in the dye malachite green in solution. Vibrational quantum beats were observed superimposed on the saturated absorption and dispersion signals and quantitatively explained in terms of impulsive-stimulated Raman scattering close to an electronic resonance. The selectivity for observation of the vibrations in the two electronic states is described for the different experimental schemes. We discuss the access to vibrational and electronic dynamics in both ground and excited electronic states and compare the possibilities to those of previous techniques.

  8. Hadronic resonances enhanced by thresholds

    NASA Astrophysics Data System (ADS)

    Caramés, T. F.; Valcarce, A.

    2016-07-01

    We present a neat example of a meson-baryon system where the vicinity of two different thresholds enhances the binding of a hadronic resonance, a pentaquark. As a consequence the pattern of states may change when moving among different flavor sectors, what poses a warning on naive extrapolations to heavy flavor sectors based on systematic expansions. For this purpose we simultaneously analyze the N D bar and NB two-hadron systems looking for possible bound states or resonances. When a resonance is controlled by a coupled-channel effect, going to a different flavor sector may enhance or diminish the binding. This effect may, for example, generate significant differences between the charmonium and bottomonium spectra above open-flavor thresholds or pentaquark states in the open-charm and open-bottom sectors.

  9. Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption.

    PubMed

    Le, Fei; Brandl, Daniel W; Urzhumov, Yaroslav A; Wang, Hui; Kundu, Janardan; Halas, Naomi J; Aizpurua, Javier; Nordlander, Peter

    2008-04-01

    Nanoshell arrays have recently been found to possess ideal properties as a substrate for combining surface enhanced raman scattering (SERS) and surface enhanced infrared absorption (SEIRA) spectroscopies, with large field enhancements at the same spatial locations on the structure. For small interparticle distances, the multipolar plasmon resonances of individual nanoshells hybridize and form red-shifted bands, a relatively narrow band in the near-infrared (NIR) originating from quadrupolar nanoshell resonances enhancing SERS, and a very broadband in the mid-infrared (MIR) arising from dipolar resonances enhancing SEIRA. The large field enhancements in the MIR and at longer wavelengths are due to the lightning-rod effect and are well described with an electrostatic model. PMID:19206602

  10. Surface plasmon near-field back-action and displacement of enhanced Raman scattering spectrum in graphene

    NASA Astrophysics Data System (ADS)

    Ghamsari, Behnood G.; Berini, Pierre

    2016-07-01

    It has been recently observed that plasmonic nanoantennas tuned to the Stokes wavelengths associated with the G and 2D Raman bands of graphene, rather than the laser pump, not only enhance Raman scattering in graphene but also displace and broaden the Raman spectra Ghamsari et al (2015 Phys. Rev. B 91 201408(R)). This paper presents a model to explain the frequency pulling and lineshape broadening effects based on the back-action of surface plasmons near-field on the induced microscopic Raman dipoles in graphene. The model provides the relation among Raman enhancement factor, Raman frequency displacement, and broadening caused by Stokes-tuned resonant nanoantennas and compares the results to the previously reported experimental data.

  11. Surface and waveguide collection of Raman emission in waveguide-enhanced Raman spectroscopy.

    PubMed

    Wang, Zilong; Zervas, Michalis N; Bartlett, Philip N; Wilkinson, James S

    2016-09-01

    We demonstrate Raman spectroscopy on a high index thin film tantalum pentoxide waveguide and compare collection of Raman emission from the waveguide end with that from the waveguide surface. Toluene was used as a convenient model analyte, and a 40-fold greater signal was collected from the waveguide end. Simulations of angular and spatial Raman emission distributions showed good agreement with experiments, with the enhancement resulting from efficient collection of power from dipoles near the surface into the high-index waveguide film and substrate, combined with long interaction length. The waveguide employed was optimized at the excitation wavelength but not at emission wavelengths, and full optimization is expected to lead to enhancements comparable to surface-enhanced Raman spectroscopy in robust low-cost metal-free and nanostructure-free chips. PMID:27607994

  12. Ultrafast and nonlinear surface-enhanced Raman spectroscopy.

    PubMed

    Gruenke, Natalie L; Cardinal, M Fernanda; McAnally, Michael O; Frontiera, Renee R; Schatz, George C; Van Duyne, Richard P

    2016-04-21

    Ultrafast surface-enhanced Raman spectroscopy (SERS) has the potential to study molecular dynamics near plasmonic surfaces to better understand plasmon-mediated chemical reactions such as plasmonically-enhanced photocatalytic or photovoltaic processes. This review discusses the combination of ultrafast Raman spectroscopic techniques with plasmonic substrates for high temporal resolution, high sensitivity, and high spatial resolution vibrational spectroscopy. First, we introduce background information relevant to ultrafast SERS: the mechanisms of surface enhancement in Raman scattering, the characterization of plasmonic materials with ultrafast techniques, and early complementary techniques to study molecule-plasmon interactions. We then discuss recent advances in surface-enhanced Raman spectroscopies with ultrafast pulses with a focus on the study of molecule-plasmon coupling and molecular dynamics with high sensitivity. We also highlight the challenges faced by this field by the potential damage caused by concentrated, highly energetic pulsed fields in plasmonic hotspots, and finally the potential for future ultrafast SERS studies. PMID:26848784

  13. Cold atom Raman spectrography using velocity-selective resonances.

    PubMed

    Fatemi, Fredrik K; Terraciano, Matthew L; Bashkansky, Mark; Dutton, Zachary

    2009-07-20

    We have studied velocity-selective resonances in the presence of a uniform magnetic field and shown how they can be used for rapid, single-shot assessment of the ground state magnetic sublevel spectrum in a cold atomic vapor. Cold atoms are released from a magneto-optical trap in the presence of a small bias magnetic field ( approximately 300 mG) and exposed to a laser field comprised of two phase-locked counterpropagating beams connecting the two ground state hyperfine manifolds. An image of the expanded cloud shows the velocity-selected resonances as distinct features, each corresponding to specific magnetic sublevel, in a direct, intuitive manner. We demonstrate the technique with both 87Rb and 85Rb, and show the utility of the technique by optically pumping into particular magnetic sublevels. The results are shown to agree with a theoretical model, and are compared to traditional Raman spectroscopy. PMID:19654701

  14. Multiphonon resonant Raman scattering in MoS{sub 2}

    SciTech Connect

    Gołasa, K. Grzeszczyk, M.; Wysmołek, A.; Babiński, A.; Leszczyński, P.; Faugeras, C.; Nicolet, A. A. L.; Potemski, M.

    2014-03-03

    Optical emission spectrum of a resonantly (λ = 632.8 nm) excited molybdenum disulfide (MoS{sub 2}) is studied at liquid helium temperature. More than 20 peaks in the energy range spanning up to 1400 cm{sup −1} from the laser line, which are related to multiphonon resonant Raman scattering processes, are observed. The attribution of the observed lines involving basic lattice vibrational modes of MoS{sub 2} and both the longitudinal (LA(M)) and the transverse (TA(M) and/or ZA(M)) acoustic phonons from the vicinity of the high-symmetry M point of the MoS{sub 2} Brillouin zone is proposed.

  15. Application of resonance Raman spectroscopy as a nuclear proliferation detection technology

    SciTech Connect

    Sedlacek, A.J. III; Chen, C.L.; Dougherty, D.R.

    1993-03-01

    Resonance Raman spectroscopy (RRS) potentially possesses many of the characteristics of an ideal verification technology. Some of these ideal traits are: very high selectivity and specificity to allow the deconvolution of a mixture of the chemicals of interest, high sensitivity in order to measure a species at trace levels, high reliability and long-term durability, applicability to a wide range of chemicals capability for sensing in a variety of environmental conditions, independence of the physical state of the chemical capability for quantitative analysis, and finally, but no less important capability for full signal development within seconds. In this presentation, the potential of RRS as a detection/identification technology for chemicals pertinent to nuclear materials production and processing will be assessed. A review of the basic principles behind this technique, both theoretical and experimental, will be discussed along with some recent results obtained in this laboratory. Raman scattering is a coherent, inelastic, two-photon scattering process where an exciting photon of energy hv promotes a molecule to a virtual level and the subsequently emitted photon is shifted in frequency in accordance with the rotational-vibrational structure of the irradiated species, therefore providing a unique fingerprint of the molecule. The enhancement of a Raman signal occurs when the excitation frequency is isoenergetic with an allowed electronic transition. Under resonance conditions, scattering cross-sections have been enhanced up to 6 orders of magnitude, thereby allowing the measurement of resonance Raman spectra from concentrations as dilute as 20 ppb for PAHs (with the potential of pptr). In detection/verification programs, this condition translates to increased sensitivity (ppm/ppb) and increased probing distance (m/km).

  16. Application of resonance Raman spectroscopy as a nuclear proliferation detection technology

    SciTech Connect

    Sedlacek, A.J. III; Chen, C.L.; Dougherty, D.R.

    1993-01-01

    Resonance Raman spectroscopy (RRS) potentially possesses many of the characteristics of an ideal verification technology. Some of these ideal traits are: very high selectivity and specificity to allow the deconvolution of a mixture of the chemicals of interest, high sensitivity in order to measure a species at trace levels, high reliability and long-term durability, applicability to a wide range of chemicals capability for sensing in a variety of environmental conditions, independence of the physical state of the chemical capability for quantitative analysis, and finally, but no less important capability for full signal development within seconds. In this presentation, the potential of RRS as a detection/identification technology for chemicals pertinent to nuclear materials production and processing will be assessed. A review of the basic principles behind this technique, both theoretical and experimental, will be discussed along with some recent results obtained in this laboratory. Raman scattering is a coherent, inelastic, two-photon scattering process where an exciting photon of energy hv promotes a molecule to a virtual level and the subsequently emitted photon is shifted in frequency in accordance with the rotational-vibrational structure of the irradiated species, therefore providing a unique fingerprint of the molecule. The enhancement of a Raman signal occurs when the excitation frequency is isoenergetic with an allowed electronic transition. Under resonance conditions, scattering cross-sections have been enhanced up to 6 orders of magnitude, thereby allowing the measurement of resonance Raman spectra from concentrations as dilute as 20 ppb for PAHs (with the potential of pptr). In detection/verification programs, this condition translates to increased sensitivity (ppm/ppb) and increased probing distance (m/km).

  17. Surface-enhanced Raman scattering (SERS) dosimeter and probe

    DOEpatents

    Vo-Dinh, T.

    1995-03-21

    A dosimeter and probe for measuring exposure to chemical and biological compounds is disclosed. The dosimeter or probe includes a collector which may be analyzed by surface-enhanced Raman spectroscopy. The collector comprises a surface-enhanced Raman scattering-active material having a coating applied thereto to improve the adsorption properties of the collector. The collector may also be used in automated sequential devices, in probe array devices. 10 figures.

  18. Surface-enhanced Raman scattering (SERS) dosimeter and probe

    DOEpatents

    Vo-Dinh, Tuan

    1995-01-01

    A dosimeter and probe for measuring exposure to chemical and biological compounds is disclosed. The dosimeter or probe includes a collector which may be analyzed by surface-enhanced Raman spectroscopy. The collector comprises a surface-enhanced Raman scattering-active material having a coating applied thereto to improve the adsorption properties of the collector. The collector may also be used in automated sequential devises, in probe array devices.

  19. UV resonance Raman study of model complexes of the Cu B site of cytochrome c oxidase

    NASA Astrophysics Data System (ADS)

    Nagano, Yasutomo; Liu, Jin-Gang; Naruta, Yoshinori; Kitagawa, Teizo

    2005-02-01

    A newly designed model complex for the CuB site of cytochrome c oxidase (CcO), that is, Cu coordinated by two free imidazoles and an imidazole covalently linked to p-cresol [CuIIBIAIPBr]Br, (BIAIP =2-[4-[[Bis(1-methyl-1H-imidazol-2-ylmethyl)amino]methyl]-1H-imidazol-1-yl]-4-methylphenol), and related molecules have been investigated with absorption and ultraviolet resonance Raman (UVRR) spectroscopy employing the excitation wavelengths between 220 and 290 nm. Attention was focused on the electron delocalization through the cross-linkage between the phenol and imidazole rings, and the influences by the coordination of CuII to imidazole. In addition to the ν8a and ν8b modes of p-cresol, a number of Raman bands involving vibrations of the imidazole moiety have been intensity-enhanced despite Raman excitation in resonance with the π-π* transition of phenol, indicating appreciable mixing of the π systems of imidazole and phenol rings. Furthermore, two kinds of imidazoles seem to be differential; one is the imidazole linked to p-cresol which yielded Raman bands at 1249, 1191, and 1141 cm-1 for protonated CuII-BIAIP, and the other is one not linked to p-cresol, which yielded an intense band at 1488 cm-1 band. Raman enhancement of the latter mode seems to be caused by preresonance to the lowest π-π* transition of imidazole via the A-term mechanism. The Raman excitation profile (REP) of ν8a mode for the deprotonated phenol of the CuII-complex revealed a weak local maximum corresponding to the La band around 240 nm. Raman enhancement by the La band was relatively weaker for the CuII-complex than for the ZnII-complex and metal-free ligand, suggesting the more extensive mixing of π systems of p-cresol-imidazole through the cross-linkage for the Cu II-complex.

  20. Chemical mechanism of surface-enhanced Raman scattering via charge transfer in fluorenone-Ag complex.

    PubMed

    Wang, Jing; Li, Yafei; Wu, Shiwei; Song, Peng; Xia, Lixin

    2016-06-01

    The intermolecular interaction between fluorenone (FN) and silver surfaces was investigated experimentally and theoretically. The structural, electronic and optical properties of the FN-Ag complex indicate that the carbonyl group O atom in FN molecules is the adsorbed position site to attach the silver substrate through the weak bond O…Ag. The analysis of vibrational modes and Raman activity of the largely enhanced Raman peaks using two FN-Ag4-x (x  =  l, s) complex models reveals that only the a1 vibrational modes with C 2v symmetry are selectively enhanced, from the point view of the change of dipole moment and polarizability induced by the interaction between FN and Ag4 substrate. Furthermore, the direct visualized evidence of the surface-enhanced Raman scattering (SERS) chemical enhancement mechanism for the FN-Ag complex is presented. The results reveal that only the intermolecular charge transfer with π-π transition characterization between FN and an Ag4 cluster facilitates the resonance Raman process and is directly responsible for chemical enhancement of Raman scattering of the FN-Ag complex. PMID:27147706

  1. Chemical mechanism of surface-enhanced Raman scattering via charge transfer in fluorenone–Ag complex

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Li, Yafei; Wu, Shiwei; Song, Peng; Xia, Lixin

    2016-06-01

    The intermolecular interaction between fluorenone (FN) and silver surfaces was investigated experimentally and theoretically. The structural, electronic and optical properties of the FN–Ag complex indicate that the carbonyl group O atom in FN molecules is the adsorbed position site to attach the silver substrate through the weak bond O…Ag. The analysis of vibrational modes and Raman activity of the largely enhanced Raman peaks using two FN–Ag4-x (x  =  l, s) complex models reveals that only the a1 vibrational modes with C 2v symmetry are selectively enhanced, from the point view of the change of dipole moment and polarizability induced by the interaction between FN and Ag4 substrate. Furthermore, the direct visualized evidence of the surface-enhanced Raman scattering (SERS) chemical enhancement mechanism for the FN–Ag complex is presented. The results reveal that only the intermolecular charge transfer with π–π transition characterization between FN and an Ag4 cluster facilitates the resonance Raman process and is directly responsible for chemical enhancement of Raman scattering of the FN–Ag complex.

  2. Carotenoid Analysis of Halophilic Archaea by Resonance Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Marshall, Craig P.; Leuko, Stefan; Coyle, Candace M.; Walter, Malcolm R.; Burns, Brendan P.; Neilan, Brett A.

    2007-08-01

    Recently, halite and sulfate evaporate rocks have been discovered on Mars by the NASA rovers, Spirit and Opportunity. It is reasonable to propose that halophilic microorganisms could have potentially flourished in these settings. If so, biomolecules found in microorganisms adapted to high salinity and basic pH environments on Earth may be reliable biomarkers for detecting life on Mars. Therefore, we investigated the potential of Resonance Raman (RR) spectroscopy to detect biomarkers derived from microorganisms adapted to hypersaline environments. RR spectra were acquired using 488.0 and 514.5 nm excitation from a variety of halophilic archaea, including Halobacterium salinarum NRC-1, Halococcus morrhuae, and Natrinema pallidum. It was clearly demonstrated that RR spectra enhance the chromophore carotenoid molecules in the cell membrane with respect to the various protein and lipid cellular components. RR spectra acquired from all halophilic archaea investigated contained major features at approximately 1000, 1152, and 1505 cm-1. The bands at 1505 cm-1 and 1152 cm-1 are due to in-phase C=C (ν1 ) and C-C stretching ( ν2 ) vibrations of the polyene chain in carotenoids. Additionally, in-plane rocking modes of CH3 groups attached to the polyene chain coupled with C-C bonds occur in the 1000 cm-1 region. We also investigated the RR spectral differences between bacterioruberin and bacteriorhodopsin as another potential biomarker for hypersaline environments. By comparison, the RR spectrum acquired from bacteriorhodopsin is much more complex and contains modes that can be divided into four groups: the C=C stretches (1600-1500 cm-1), the CCH in-plane rocks (1400-1250 cm-1), the C-C stretches (1250-1100 cm-1), and the hydrogen out-of-plane wags (1000-700 cm-1). RR spectroscopy was shown to be a useful tool for the analysis and remote in situ detection of carotenoids from halophilic archaea without the need for large sample sizes and complicated extractions, which are

  3. Tip-enhanced Raman spectroscopy and near-field polarization

    NASA Astrophysics Data System (ADS)

    Saito, Yuika; Mino, Toshihiro; Verma, Prabhat

    2015-12-01

    Tip-enhanced Raman spectroscopy (TERS) is a powerful tool for High-resolution Raman spectroscopy. In this method, a metal coated nano-tip acts as a plasmonic antenna to enhance the originally weak Raman scattering from a nanometric volume of a sample. The technique enables to detect Raman scattering light from nano-scale area and also enhance the light intensity with combination of near-filed light and localized surface plasmon generated at a metallized tip apex. Nowadays TERS is used to investigate various nano-scale samples, for examples, carbon nanotubes, graphenes DNA and biomaterials. As the TERS developed, there is high demand to investigate the properties of near-field light e.g. polarization properties. We have analyzed the polarization properties of near-field light in TERS and successfully realized the quantitative nano-imaging by visible light.

  4. Raman and surface-enhanced Raman spectroscopy for renal condition monitoring

    NASA Astrophysics Data System (ADS)

    Li, Jingting; Li, Ming; Du, Yong; Santos, Greggy M.; Mohan, Chandra; Shih, Wei-Chuan

    2016-03-01

    Non- and minimally-invasive techniques can provide advantages in the monitoring and clinical diagnostics in renal diseases. Although renal biopsy may be useful in establishing diagnosis in several diseases, it is an invasive approach and impractical for longitudinal disease monitoring. To address this unmet need, we have developed two techniques based on Raman spectroscopy. First, we have investigated the potential of diagnosing and staging nephritis by analyzing kidney tissue Raman spectra using multivariate techniques. Secondly, we have developed a urine creatinine sensor based on surface-enhanced Raman spectroscopy with performance near commercial assays which require relatively laborious sample preparation and longer time.

  5. Probing the spatial extension of light trapping-induced enhanced Raman scattering in high-density Si nanowire arrays

    NASA Astrophysics Data System (ADS)

    Bontempi, Nicolò; Salmistraro, Marco; Ferroni, Matteo; Depero, Laura E.; Alessandri, Ivano

    2014-11-01

    This paper reports an experimental investigation of surface-enhanced Raman scattering in high-density Si nanowire arrays obtained by electroless etching. A direct relationship between light trapping capabilities of Si nanowires and enhanced Raman scattering was demonstrated. Optimized arrays allowed for a remarkable increase of Raman sensitivity in comparison to reference planar samples. As a result, the detection limit of molecular probes under resonant excitation (e.g. methylene blue) can be extended by three orders of magnitude. In addition, continuous ultrathin films, that cannot be analyzed in conventional Raman experiments, are made detectable. In the case of anatase thin films, the detection limit of 5 nm was reached. Raman spectra of Si/TiO2 core/shell heterostructures demonstrate that the enhanced field resulting from surface multiple scattering is characterized by a large spatial extension (about fifty nanometers), making these materials a potential alternative to plasmonic metals for SERS experiments.

  6. A comparative study of Raman enhancement in capillaries

    NASA Astrophysics Data System (ADS)

    Eftekhari, Fatemeh; Irizar, Juan; Hulbert, Laila; Helmy, Amr S.

    2011-06-01

    This work reports on the comparative studies of Raman enhancement in liquid core waveguides (LCWs). The theoretical considerations that describe Raman enhancement in LCWs is adapted to analyze and compare the performance of hollow core photonic crystal fibers (HCPCFs) to conventional Teflon capillary tubes. The optical losses in both platforms are measured and used to predict their performance for different lengths. The results show that for an optimal waveguide length, two orders of magnitude enhancement in the Raman signal can be achieved for aqueous solutions using HCPCFs. This length, however, cannot be achieved using normal capillary effects. By integrating the interface of the fluidic pump and the HCPCF into a microfluidic chip, we are able to control fluid transport and fill longer lengths of HCPCFs regardless of the viscosity of the sample. The long-term stability and reproducibility of Raman spectra attained through this platform are demonstrated for naphthalenethiol, which is a well-studied organic compound. Using the HCPCF platform, the detection limit of normal Raman scattering in the range of micro-molars has been achieved. In addition to the higher signal-to-noise ratio of the Raman signal from the HCPCF-platform, more Raman modes of naphthalenethiol are revealed using this platform.

  7. Cavity-enhanced Raman microscopy of individual carbon nanotubes

    PubMed Central

    Hümmer, Thomas; Noe, Jonathan; Hofmann, Matthias S.; Hänsch, Theodor W.; Högele, Alexander; Hunger, David

    2016-01-01

    Raman spectroscopy reveals chemically specific information and provides label-free insight into the molecular world. However, the signals are intrinsically weak and call for enhancement techniques. Here, we demonstrate Purcell enhancement of Raman scattering in a tunable high-finesse microcavity, and utilize it for molecular diagnostics by combined Raman and absorption imaging. Studying individual single-wall carbon nanotubes, we identify crucial structural parameters such as nanotube radius, electronic structure and extinction cross-section. We observe a 320-times enhanced Raman scattering spectral density and an effective Purcell factor of 6.2, together with a collection efficiency of 60%. Potential for significantly higher enhancement, quantitative signals, inherent spectral filtering and absence of intrinsic background in cavity-vacuum stimulated Raman scattering render the technique a promising tool for molecular imaging. Furthermore, cavity-enhanced Raman transitions involving localized excitons could potentially be used for gaining quantum control over nanomechanical motion and open a route for molecular cavity optomechanics. PMID:27402165

  8. Cavity-enhanced Raman microscopy of individual carbon nanotubes.

    PubMed

    Hümmer, Thomas; Noe, Jonathan; Hofmann, Matthias S; Hänsch, Theodor W; Högele, Alexander; Hunger, David

    2016-01-01

    Raman spectroscopy reveals chemically specific information and provides label-free insight into the molecular world. However, the signals are intrinsically weak and call for enhancement techniques. Here, we demonstrate Purcell enhancement of Raman scattering in a tunable high-finesse microcavity, and utilize it for molecular diagnostics by combined Raman and absorption imaging. Studying individual single-wall carbon nanotubes, we identify crucial structural parameters such as nanotube radius, electronic structure and extinction cross-section. We observe a 320-times enhanced Raman scattering spectral density and an effective Purcell factor of 6.2, together with a collection efficiency of 60%. Potential for significantly higher enhancement, quantitative signals, inherent spectral filtering and absence of intrinsic background in cavity-vacuum stimulated Raman scattering render the technique a promising tool for molecular imaging. Furthermore, cavity-enhanced Raman transitions involving localized excitons could potentially be used for gaining quantum control over nanomechanical motion and open a route for molecular cavity optomechanics. PMID:27402165

  9. Molecule-surface interactions probed by optimized surface-enhanced coherent Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Voronine, Dmitri; Sinyukov, Alexander; Hua, Xia; Zhang, Guowan; Yang, Wenlong; Wang, Kai; Jha, Pankaj; Welch, George; Sokolov, Alexei; Scully, Marlan

    2012-06-01

    Nanoscale molecular sensing is carried out using a time-resolved coherent anti-Stokes Raman scattering (CARS) spectroscopy with optimized laser pulse configurations. This novel technique combines the advantages of an improved spectral resolution, suppressed non-resonant background and near-field surface enhancement of the Raman signal. We detect two species of pyridine in a vicinity of aggregated gold nanoparticles and measure their vibrational dephasing times which reveal the effects of surface environment and molecule-surface interactions on the ultrafast molecular dynamics. This technique may be applied to a variety of artificial and biological systems and complex molecular mixtures and has a potential for nanophotonic sensing applications.

  10. Surface-enhanced Raman spectroscopy of creatinine in silver colloid

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Chen, Jiesi; Wu, Yanan; Chen, Yanping; Pan, Jianji; Lei, Jinping; Chen, Yongjian; Sun, Liqing; Feng, Shangyuan; Chen, Rong

    2011-11-01

    Surface enhanced Raman spectroscopy (SERS) technology has already made great progress in bio-molecule detection. It can make the target molecules strongly absorbed onto the surface of metal nanoparticles, and then the Raman signal of its own has been greatly enhanced through physical and chemical enhancement mechanisms. We report the SERS spectra of creatinine in silver colloid, and study the silver colloid enhanced effects on the Raman scattering of creatinine. We can also find that creatinine concentration is linearly related to its SERS peak intensity and the detection limit of creatinine silver sol is found to be 10 mg/dl. In conclusion, we can observe that the silver colloid has very good enhanced effects for the creatinine. The potential applications of SERS in quantitative measurement of the creatinine liquor are demonstrated. The result shows that the SERS approach would provide a unique and fast test method for creatinine detection.

  11. Surface-enhanced Raman spectroscopy of creatinine in silver colloid

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Chen, Jiesi; Wu, Yanan; Chen, Yanping; Pan, Jianji; Lei, Jinping; Chen, Yongjian; Sun, Liqing; Feng, Shangyuan; Chen, Rong

    2012-03-01

    Surface enhanced Raman spectroscopy (SERS) technology has already made great progress in bio-molecule detection. It can make the target molecules strongly absorbed onto the surface of metal nanoparticles, and then the Raman signal of its own has been greatly enhanced through physical and chemical enhancement mechanisms. We report the SERS spectra of creatinine in silver colloid, and study the silver colloid enhanced effects on the Raman scattering of creatinine. We can also find that creatinine concentration is linearly related to its SERS peak intensity and the detection limit of creatinine silver sol is found to be 10 mg/dl. In conclusion, we can observe that the silver colloid has very good enhanced effects for the creatinine. The potential applications of SERS in quantitative measurement of the creatinine liquor are demonstrated. The result shows that the SERS approach would provide a unique and fast test method for creatinine detection.

  12. The confinement induced resonance in spin-orbit coupled cold atoms with Raman coupling

    PubMed Central

    Zhang, Yi-Cai; Song, Shu-Wei; Liu, Wu-Ming

    2014-01-01

    The confinement induced resonance provides an indispensable tool for the realization of the low-dimensional strongly interacting quantum system. Here, we investigate the confinement induced resonance in spin-orbit coupled cold atoms with Raman coupling. We find that the quasi-bound levels induced by the spin-orbit coupling and Raman coupling result in the Feshbach-type resonances. For sufficiently large Raman coupling, the bound states in one dimension exist only for sufficiently strong attractive interaction. Furthermore, the bound states in quasi-one dimension exist only for sufficient large ratio of the length scale of confinement to three dimensional s-wave scattering length. The Raman coupling substantially changes the confinement-induced resonance position. We give a proposal to realize confinement induced resonance through increasing Raman coupling strength in experiments. PMID:24862314

  13. Resonance Raman Spectroscopy of Purple Membrane from Halobacterium Halobium.

    NASA Astrophysics Data System (ADS)

    Argade, Pramod Vasant

    Purple membrane from the halophilic bacteria, Halobacterium halobium, contains the protein, bacteriorhodopsin, which functions as a light transducing proton pump. Understanding the molecular mechanism underlying the functioning of bacteriorhodopsin is a key problem in membrane biophysics. After absorbing a photon, this protein cycles through a series of characteristic intermeidate states and pumps H('+) ions across the membrane. In this way, the energy of the absorbed photon is stored in the electrochemical potential gradient formed across the membrane. This energy is subsequently available for metabolism by the bacterium. Bacteriorhodopsin consists of a retinal chromophore (which is responsible for the purple color) bound to the protein, bacterioopsin, whose sequence is known and consists of 248 amino acid residues. There is evidence that conformational changes in the chromophore may contribute to the proton pumping action. Resonance Raman light scattering provides a selective tool to monitor the conformational changes in the chromophore during the proton pumping cycle. This dissertation consists of applying resonance Raman light scattering in conjunction with a variety of newly developed experimental techniques to gain information about the mode of action of bacteriorhodopsin. By selective isotopic labelling of (epsilon)-amino nitrogen of the lysine residues of the protein, the site of attachment of the chromophore with the protein was verified by in situ measurements. Also, a model proposing a secondary interaction of the chromophore with a lysine residue other than the binding site of the chromophore was tested using this method. Furthermore, by selective isotopic labelling of only a part of the protein the location of the lysine on the protein to which the chromophore is bound, was found by in situ measurements to be the fragment consisting of amino acid residues 72 through 248 of the protein. This is inconsistent with the previously reported binding site at

  14. Al-doped MgB2 materials studied using electron paramagnetic resonance and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bateni, Ali; Erdem, Emre; Repp, Sergej; Weber, Stefan; Somer, Mehmet

    2016-05-01

    Undoped and aluminum (Al) doped magnesium diboride (MgB2) samples were synthesized using a high-temperature solid-state synthesis method. The microscopic defect structures of Al-doped MgB2 samples were systematically investigated using X-ray powder diffraction, Raman spectroscopy, and electron paramagnetic resonance. It was found that Mg-vacancies are responsible for defect-induced peculiarities in MgB2. Above a certain level of Al doping, enhanced conductive properties of MgB2 disappear due to filling of vacancies or trapping of Al in Mg-related vacancy sites.

  15. Power Budget Analysis for Waveguide-Enhanced Raman Spectroscopy.

    PubMed

    Wang, Zilong; Pearce, Stuart J; Lin, Yung-Chun; Zervas, Michalis N; Bartlett, Philip N; Wilkinson, James S

    2016-08-01

    Waveguide-enhanced Raman spectroscopy (WERS) is emerging as an attractive alternative to plasmonic surface-enhanced Raman spectroscopy approaches as it can provide more reproducible quantitative spectra on a robust chip without the need for nanostructured plasmonic materials. Realizing portable WERS systems with high sensitivity using low-cost laser diodes and compact spectrometers requires a detailed analysis of the power budget from laser to spectrometer chip. In this paper, we describe theoretical optimization of planar waveguides for maximum Raman excitation efficiency, demonstrate WERS for toluene on a silicon process compatible high index contrast tantalum pentoxide waveguide, measure the absolute conversion efficiency from pump power to received power in an individual Raman line, and compare this with a power budget analysis of the complete system including collection with an optical fiber and interfacing to a compact spectrometer. Optimized 110 nm thick Ta2O5 waveguides on silica substrates excited at a wavelength of 637 nm are shown experimentally to yield overall system power conversion efficiency of ∼0.5 × 10(-12) from the pump power in the waveguide to the collected Raman power in the 1002 cm(-1) Raman line of toluene, in comparison with a calculated efficiency of 3.9 × 10(-12) Collection efficiency is dictated by the numerical and physical apertures of the spectral detection system but may be improved by further engineering the spatial and angular Raman scattering distributions. PMID:27301326

  16. Surface-enhanced Raman microspectroscopy at electrode surfaces

    SciTech Connect

    Hembree D.M. Jr.; Oswald, J.C.; Smyrl, N.R.

    1987-02-01

    Surface-enhanced Raman microspectroscopy has been developed as a technique for characterizing processes occurring at the electrode/electrolyte interface. A spectroelectrochemical cell was designed to obtain Raman spectra of electrochemical species with the use of microscope optics, which allowed unambiguous placement of laser focus at the electrode surface with spatial resolution on the order of 1 ..mu..m. It was also possible to visually inspect the surface morphology of the electrode with the use of the Raman microscope in the reflected-light mode. The capabilities of the spectroelectrochemical cell were demonstrated by observation of surface-enhanced Raman scattering (SERS) for a variety of model systems (pyridine, pyridinium ion, potassium cyanide) with the use of silver, copper, and nickel electrodes. The electrochemical behavior of a commercially important gold electroplating process is also reported.

  17. Stimulated Stokes and Antistokes Raman Scattering in Microspherical Whispering Gallery Mode Resonators.

    PubMed

    Farnesi, Daniele; Berneschi, Simone; Cosi, Franco; Righini, Giancarlo C; Soria, Silvia; Nunzi Conti, Gualtiero

    2016-01-01

    Dielectric microspheres can confine light and sound for a length of time through high quality factor whispering gallery modes (WGM). Glass microspheres can be thought as a store of energy with a huge variety of applications: compact laser sources, highly sensitive biochemical sensors and nonlinear phenomena. A protocol for the fabrication of both the microspheres and coupling system is given. The couplers described here are tapered fibers. Efficient generation of nonlinear phenomena related to third order optical non-linear susceptibility Χ((3)) interactions in triply resonant silica microspheres is presented in this paper. The interactions here reported are: Stimulated Raman Scattering (SRS), and four wave mixing processes comprising Stimulated Anti-stokes Raman Scattering (SARS). A proof of the cavity-enhanced phenomenon is given by the lack of correlation among the pump, signal and idler: a resonant mode has to exist in order to obtain the pair of signal and idler. In the case of hyperparametric oscillations (four wave mixing and stimulated anti-stokes Raman scattering), the modes must fulfill the energy and momentum conservation and, last but not least, have a good spatial overlap. PMID:27078752

  18. Resonance Raman studies of bathorhodopsin: evidence for a protonated Schiff base linkage.

    PubMed

    Eyring, G; Mathies, R

    1979-01-01

    A dual beam pump/probe technique has been used with a 585-nm probe wavelength to obtain maximal resonance enhancement of the Raman lines of bathorhodopsin in a photostationary steady-state mixture at -160 degrees C. These studies show that bathorhodopsin has a protonated Schiff base vibration at 1657 cm(-1) which shifts upon deuteration to 1625 cm(-1). Within our experimental error (+/-2 cm(-1)) these frequencies are identical to those observed in rhodopsin and isorhodopsin. These effects show that the strength of the C=N bond and the degree of protonation of the Schiff base nitrogen are the same in bathorhodopsin, rhodopsin, and isorhodopsin. The implication of these results for the structure of the retinal chromophore in bathorhodopsin are discussed. The resonance Raman spectrum of pure bathorhodopsin has been generated by accurately subtracting the residual contributions of rhodopsin and isorhodopsin from spectra of the low temperature photostationary mixture. Bathorhodopsin is found to have lines at 853, 875, 920, 1006, 1166, 1210, 1278, 1323, 1536, and 1657 cm(-1). Also, by using an intensified vidicon detector, we have observed Raman scattering from bathorhodopsin at room temperature by generating a photostationary steady state with pulsed laser excitation. At room temperature the three characteristic lines of bathorhodopsin are found at 858, 873, and 920 cm(-1). The fact that the frequencies of these bathorhodopsin lines are nearly identical at both temperatures implies that the retinal conformation in bathorhodopsin formed at -160 degrees C is the same as that formed at room temperature. PMID:284349

  19. Origin invariance in vibrational resonance Raman optical activity.

    PubMed

    Vidal, Luciano N; Egidi, Franco; Barone, Vincenzo; Cappelli, Chiara

    2015-05-01

    A theoretical investigation on the origin dependence of the vibronic polarizabilities, isotropic and anisotropic rotational invariants, and scattering cross sections in Resonance Raman Optical Activity (RROA) spectroscopy is presented. Expressions showing the origin dependence of these polarizabilities were written in the resonance regime using the Franck-Condon (FC) and Herzberg-Teller (HT) approximations for the electronic transition moments. Differently from the far-from-resonance scattering regime, where the origin dependent terms cancel out when the rotational invariants are calculated, RROA spectrum can exhibit some origin dependence even for eigenfunctions of the electronic Hamiltonian. At the FC level, the RROA spectrum is completely origin invariant if the polarizabilities are calculated using a single excited state or for a set of degenerate states. Otherwise, some origin effects can be observed in the spectrum. At the HT level, RROA spectrum is origin dependent even when the polarizabilities are evaluated from a single excited state but the origin effect is expected to be small in this case. Numerical calculations performed for (S)-methyloxirane, (2R,3R)-dimethyloxirane, and (R)-4-F-2-azetidinone at both FC and HT levels using the velocity representation of the electric dipole and quadrupole transition moments confirm the predictions of the theory and show the extent of origin effects and the effectiveness of suggested ways to remove them. PMID:25956084

  20. Origin invariance in vibrational resonance Raman optical activity

    NASA Astrophysics Data System (ADS)

    Vidal, Luciano N.; Egidi, Franco; Barone, Vincenzo; Cappelli, Chiara

    2015-05-01

    A theoretical investigation on the origin dependence of the vibronic polarizabilities, isotropic and anisotropic rotational invariants, and scattering cross sections in Resonance Raman Optical Activity (RROA) spectroscopy is presented. Expressions showing the origin dependence of these polarizabilities were written in the resonance regime using the Franck-Condon (FC) and Herzberg-Teller (HT) approximations for the electronic transition moments. Differently from the far-from-resonance scattering regime, where the origin dependent terms cancel out when the rotational invariants are calculated, RROA spectrum can exhibit some origin dependence even for eigenfunctions of the electronic Hamiltonian. At the FC level, the RROA spectrum is completely origin invariant if the polarizabilities are calculated using a single excited state or for a set of degenerate states. Otherwise, some origin effects can be observed in the spectrum. At the HT level, RROA spectrum is origin dependent even when the polarizabilities are evaluated from a single excited state but the origin effect is expected to be small in this case. Numerical calculations performed for (S)-methyloxirane, (2R,3R)-dimethyloxirane, and (R)-4-F-2-azetidinone at both FC and HT levels using the velocity representation of the electric dipole and quadrupole transition moments confirm the predictions of the theory and show the extent of origin effects and the effectiveness of suggested ways to remove them.

  1. Origin invariance in vibrational resonance Raman optical activity

    SciTech Connect

    Vidal, Luciano N. Cappelli, Chiara; Egidi, Franco; Barone, Vincenzo

    2015-05-07

    A theoretical investigation on the origin dependence of the vibronic polarizabilities, isotropic and anisotropic rotational invariants, and scattering cross sections in Resonance Raman Optical Activity (RROA) spectroscopy is presented. Expressions showing the origin dependence of these polarizabilities were written in the resonance regime using the Franck-Condon (FC) and Herzberg-Teller (HT) approximations for the electronic transition moments. Differently from the far-from-resonance scattering regime, where the origin dependent terms cancel out when the rotational invariants are calculated, RROA spectrum can exhibit some origin dependence even for eigenfunctions of the electronic Hamiltonian. At the FC level, the RROA spectrum is completely origin invariant if the polarizabilities are calculated using a single excited state or for a set of degenerate states. Otherwise, some origin effects can be observed in the spectrum. At the HT level, RROA spectrum is origin dependent even when the polarizabilities are evaluated from a single excited state but the origin effect is expected to be small in this case. Numerical calculations performed for (S)-methyloxirane, (2R,3R)-dimethyloxirane, and (R)-4-F-2-azetidinone at both FC and HT levels using the velocity representation of the electric dipole and quadrupole transition moments confirm the predictions of the theory and show the extent of origin effects and the effectiveness of suggested ways to remove them.

  2. Large Format Surface-Enhanced Raman Spectroscopy Substrate Optimized for Enhancement and Uniformity.

    PubMed

    Kanipe, Katherine N; Chidester, Philip P F; Stucky, Galen D; Moskovits, Martin

    2016-08-23

    Gratings have been widely investigated both theoretically and experimentally as surface-enhanced Raman spectroscopy (SERS) substrates, exhibiting, under appropriate circumstances, increased far-field extinctions and near-field intensities over those of an appropriately equivalent number of isolated particles. When the grating order transitions from evanescent to radiative, narrow resonance peaks are observed in the extinction spectrum whose properties can be manipulated by controlling the grating's geometric parameters. Here we report the application of the architectural principles of grating fabrication using a square two-dimensional array of gold-coated nanostructures that achieves SERS enhancements of 10(7) uniformly over areas of square centimeters. The high-performance grating substrates were fabricated using commonly available foundry-based techniques that have been chosen for their applicability to large-scale wafer processing. Additionally, we restricted ourselves to a parametric regime that optimizes SERS performance in a repeatable and reproducible manner. PMID:27482725

  3. Gain enhancement in a XeCl-pumped Raman amplifier

    SciTech Connect

    Rifkin, J.; Bernt, M.L.; MacPherson, D.C.; Carlsten, J.L.

    1988-08-01

    A comparison of the theoretical predictions of a multimode broadband model with the experimentally measured gain enhancement in a Raman amplifier is presented. The results show that the multimode theory with fixed and totally random phases is in agreement with the data obtained from an excimer-laser-pumped Raman amplifier. Additionally, this theory indicates that the correlated gain can be larger than the gain for a monochromatic laser, as might be expected for a model with amplitude modulation.

  4. Temperature dependence of resonance Raman spectra of carotenoids

    NASA Astrophysics Data System (ADS)

    Andreeva, A.; Apostolova, I.; Velitchkova, M.

    2011-04-01

    To understand the mechanism of the photoprotective and antioxidative functions of carotenoids, it is essential to have a profound knowledge of their excited electronic and vibronic states. In the present study we investigate the most powerful antioxidants: β-carotene and lutein by means of resonance Raman spectroscopy. The aim was to study in detail their Raman spectra in solution at room temperature and their changes as a function of temperature. To measure the spectra in their natural environment pyridine has been used as a solvent. It has been chosen because of its polarizability ( n = 1.5092) which is close to that of membrane lipids and proteins. The temperature dependence of the most intensive ν1 band in the range from 77 K to 295 K at 514.5 nm excitation has been obtained. It was found that in pyridine the C dbnd C stretching frequency, its intensity, line shape, and line width are very sensitive to the temperature (the sensitivity being different for the two studied carotenoids). The observed linear temperature dependence of the C dbnd C stretching frequency is explained by a mechanism involving changes of the vibronic coupling and the extent of π-electron delocalization. The different behavior of the temperature-induced broadening of the ν1 band and its intensity for the two studied carotenoids can be associated with the different nature of their solid matrices: glassy for β-carotene and crystalline-like for lutein, owing to their different chemical structures.

  5. Residual pesticide detection on food with particle-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Ranjan, Bikas; Huang, LiChuan; Masui, Kyoko; Saito, Yuika; Verma, Prabhat

    2014-08-01

    Modern farming relies highly on pesticides to protect agricultural food items from insects for high yield and better quality. Increasing use of pesticide has raised concern about its harmful effects on human health and hence it has become very important to detect even small amount of pesticide residues. Raman spectroscopy is a suitable nondestructive method for pesticide detection, however, it is not very effective for low concentration of pesticide molecules. Here, we report an approach based on plasmonic enhancement, namely, particle enhanced Raman spectroscopy (PERS), which is rapid, nondestructive and sensitive. In this technique, Raman signals are enhanced via the resonance excitation of localized plasmons in metallic nanoparticles. Gold nanostructures are promising materials that have ability to tune surface plasmon resonance frequency in visible to near-IR, which depends on shape and size of nanostructures. We synthesized gold nanorods (GNRs) with desired shape and size by seed mediated growth method, and successfully detected very tiny amount of pesticide present on food items. We also conformed that the detection of pesticide was not possible by usual Raman spectroscopy.

  6. Enhanced Raman Scattering on In-plane Anisotropic Layered Materials

    SciTech Connect

    Liang, Liangbo; Meunier, Vincent; Sumpter, Bobby G.; Ling, Xi; Lin, Jingjing; Zhang, Shuqing; Mao, Nannan; Zhang, Na; Tong, Lianming; Zhang, Jin

    2015-11-19

    Surface-enhanced Raman scattering (SERS) on two-dimensional (2D) layered materials has provided a unique platform to study the chemical mechanism (CM) of the enhancement due to its natural separation from electromagnetic enhancement. The CM stems from the basic charge interactions between the substrate and molecules. Despite the extensive studies of the energy alignment between 2D materials and molecules, an understanding of how the electronic properties of the substrate are explicitly involved in the charge interaction is still unclear. Lately, a new group of 2D layered materials with anisotropic structure, including orthorhombic black phosphorus (BP) and triclinic rhenium disulphide (ReS2), has attracted great interest due to their unique anisotropic electrical and optical properties. Herein, we report a unique anisotropic Raman enhancement on few-layered BP and ReS2 using copper phthalocyanine (CuPc) molecules as a Raman probe, which is absent on isotropic graphene and h-BN. According to detailed Raman tensor analysis and density functional theory calculations, anisotropic charge interactions due to the anisotropic carrier mobilities of the 2D materials are responsible for the angular dependence of the Raman enhancement. Our findings not only provide new insights into the CM process in SERS, but also open up new avenues for the exploration and application of the electronic properties of anisotropic 2D layered materials.

  7. Enhanced Raman Scattering on In-plane Anisotropic Layered Materials

    DOE PAGESBeta

    Liang, Liangbo; Meunier, Vincent; Sumpter, Bobby G.; Ling, Xi; Lin, Jingjing; Zhang, Shuqing; Mao, Nannan; Zhang, Na; Tong, Lianming; Zhang, Jin

    2015-11-19

    Surface-enhanced Raman scattering (SERS) on two-dimensional (2D) layered materials has provided a unique platform to study the chemical mechanism (CM) of the enhancement due to its natural separation from electromagnetic enhancement. The CM stems from the basic charge interactions between the substrate and molecules. Despite the extensive studies of the energy alignment between 2D materials and molecules, an understanding of how the electronic properties of the substrate are explicitly involved in the charge interaction is still unclear. Lately, a new group of 2D layered materials with anisotropic structure, including orthorhombic black phosphorus (BP) and triclinic rhenium disulphide (ReS2), has attractedmore » great interest due to their unique anisotropic electrical and optical properties. Herein, we report a unique anisotropic Raman enhancement on few-layered BP and ReS2 using copper phthalocyanine (CuPc) molecules as a Raman probe, which is absent on isotropic graphene and h-BN. According to detailed Raman tensor analysis and density functional theory calculations, anisotropic charge interactions due to the anisotropic carrier mobilities of the 2D materials are responsible for the angular dependence of the Raman enhancement. Our findings not only provide new insights into the CM process in SERS, but also open up new avenues for the exploration and application of the electronic properties of anisotropic 2D layered materials.« less

  8. Enhanced Raman Scattering on In-Plane Anisotropic Layered Materials.

    PubMed

    Lin, Jingjing; Liang, Liangbo; Ling, Xi; Zhang, Shuqing; Mao, Nannan; Zhang, Na; Sumpter, Bobby G; Meunier, Vincent; Tong, Lianming; Zhang, Jin

    2015-12-16

    Surface-enhanced Raman scattering (SERS) on two-dimensional (2D) layered materials has provided a unique platform to study the chemical mechanism (CM) of the enhancement due to its natural separation from electromagnetic enhancement. The CM stems from the charge interactions between the substrate and molecules. Despite the extensive studies of the energy alignment between 2D materials and molecules, an understanding of how the electronic properties of the substrate are explicitly involved in the charge interaction is still unclear. Lately, a new group of 2D layered materials with anisotropic structures, including orthorhombic black phosphorus (BP) and triclinic rhenium disulfide (ReS2), has attracted great interest due to their unique anisotropic electrical and optical properties. Herein, we report a unique anisotropic Raman enhancement on few-layered BP and ReS2 using copper phthalocyanine (CuPc) molecules as a Raman probe, which is absent on isotropic graphene and h-BN. According to detailed Raman tensor analysis and density functional theory calculations, anisotropic charge interactions between the 2D materials and molecules are responsible for the angular dependence of the Raman enhancement. Our findings not only provide new insights into the CM process in SERS, but also open up new avenues for the exploration and application of the electronic properties of anisotropic 2D layered materials. PMID:26583533

  9. Surface-enhanced Raman scattering as a higher-order Raman process

    NASA Astrophysics Data System (ADS)

    Mueller, Niclas S.; Heeg, Sebastian; Reich, Stephanie

    2016-08-01

    We propose to understand surface-enhanced Raman scattering (SERS) as a higher-order Raman process that contains the plasmonic excitation. The SERS amplitudes are calculated with third- and fourth-order perturbation theory. Treating the plasmonic excitation as a quasiparticle, we derive analytic expressions for all coupling matrix elements. This leads to a general theory of plasmonic enhancement in SERS that can be applied to arbitrary plasmonic nanostructures. We obtain the plasmon eigenvectors of a gold nanosphere and a nanosphere dimer. They are used to calculate the enhancement of the Raman cross section of a molecule coupled to the dipole plasmon mode. The enhancement of the cross section is up to three orders of magnitude stronger than predicted by the theory of electromagnetic enhancement. The difference is most pronounced in vacuum and decreases with increasing dielectric constant of the embedding medium. The predictions from understanding SERS as a higher-order Raman process agree well with recent experiments; they highlight the dominance of plasmonic enhancement in SERS.

  10. Double resonance Raman modes in monolayer and few-layer MoTe2

    NASA Astrophysics Data System (ADS)

    Guo, Huaihong; Yang, Teng; Yamamoto, Mahito; Zhou, Lin; Ishikawa, Ryo; Ueno, Keiji; Tsukagoshi, Kazuhito; Zhang, Zhidong; Dresselhaus, Mildred S.; Saito, Riichiro

    2015-05-01

    We study the second-order Raman process of mono- and few-layer MoTe2, by combining ab initio density functional perturbation calculations with experimental Raman spectroscopy using 532, 633, and 785 nm excitation lasers. The calculated electronic band structure and the density of states show that the resonance Raman process occurs at the M point in the Brillouin zone, where a strong optical absorption occurs due to a logarithmic Van Hove singularity of the electronic density of states. The double resonance Raman process with intervalley electron-phonon coupling connects two of the three inequivalent M points in the Brillouin zone, giving rise to second-order Raman peaks due to the M -point phonons. The calculated vibrational frequencies of the second-order Raman spectra agree with the observed laser-energy-dependent Raman shifts in the experiment.

  11. UV resonance Raman and DFT studies of arginine side chains in peptides: insights into arginine hydration.

    PubMed

    Hong, Zhenmin; Wert, Jonathan; Asher, Sanford A

    2013-06-20

    We examined the UV resonance Raman (UVRR) spectra of four models of the Arg side chain, guanidinium (Gdn), ethylguanidinium (EG), arginine (Arg), and Ac-Arg-OMe (AAO) in H2O and D2O, in order to identify spectral markers that report on the environment of the Arg side chain. To elucidate the resonance Raman enhancement mechanism of the Arg side chain, we used density functional theory (DFT) to calculate the equilibrium geometries of the electronic ground state and the first excited state. We determined the vibrational mode frequencies of the ground state and the first derivative of the first electronic excited state potential energy with respect to each vibrational normal mode of the electronic ground state at the electronic ground state equilibrium geometry. The DFT calculations and the potential energy distributions reveal that, in addition to the Gdn group C-N stretching vibrations, the C-N bond stretching vibration of the Gdn group-methylene linkage is also strongly resonance-enhanced in EG, Arg, and AAO. From the UVRR spectra, we find that the Raman cross section and frequency of the ~1170 cm(-1) vibration of the Arg side chain depends on its hydration state and can be used to determine the hydration state of the Arg side chain in peptides and proteins. We examined the hydration of the Arg side chain in two polyAla peptides and found that in the α-helical conformation the Arg side chain in the AEP peptide (sequence: A9RA3EA4RA2) is less hydrated than that in the AP peptide (sequence: A8RA4RA4RA2). PMID:23676082

  12. UV Resonance Raman and DFT Studies of Arginine Side Chains in Peptides: Insights into Arginine Hydration

    PubMed Central

    Hong, Zhenmin; Wert, Jonathan; Asher, Sanford A.

    2013-01-01

    We examined the UV resonance Raman (UVRR) spectra of four models of the arg side chain, guanidinium (gdn), ethylguanidinium (EG), arginine (arg) and Ac-arg-OMe (AAO) in H2O and D2O, in order to identify spectral markers that report on the environment of the arg side chain. To elucidate the resonance Raman enhancement mechanism of the arg side chain, we used DFT to calculate the equilibrium geometries of the electronic ground state and the first excited state. We determined the vibrational mode frequencies of the ground state and the first derivative of the first electronic excited state potential energy with respect to each vibrational normal mode of the electronic ground state at the electronic ground state equilibrium geometry. The DFT calculations and the potential energy distributions reveal that, in addition to the gdn group C-N stretching vibrations, the C-N bond stretching vibration of the gdn group-methylene linkage is also strongly resonance enhanced in EG, arg and AAO. From the UVRR spectra, we find that the Raman cross section and frequency of the ~1170 cm−1 vibration of the arg side chain depends on its hydration state and can be used to determine the hydration state of the arg side chain in peptides and proteins. We examined the hydration of the arg side chain in two polyala peptides and found that in the α-helical conformation the arg side chain in the AEP peptide (sequence: A9RA3EA4RA2) is less hydrated than that in the AP peptide (sequence: A8RA4RA4RA2). PMID:23676082

  13. Intracavity CH4 Raman laser using negative-branch unstable resonator

    NASA Astrophysics Data System (ADS)

    Zhou, Dongjian; Guo, Jingwei; Zhou, Canhua; Liu, Jinbo; Liu, Dong; Jin, Yuqi

    2015-12-01

    An intracavity Q-switched Nd:YAG/CH4 Raman laser is realized based on the configuration of a negative-branch confocal unstable resonator. A numerical model of the bare resonator was introduced to simulate the fundamental transverse mode and calculate the loss of the fundamental resonator. With different magnifications of the fundamental resonator, the first Stokes output energy was presented as a function of the discharge voltage. The influence of the Stokes resonator on Raman conversion was analyzed. With a fundamental resonator magnification of 1.1, a maximum output energy of 58 mJ was obtained, and the corresponding photon conversion efficiency was 48%.

  14. Effects of corner radius on periodic nanoantenna for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Chao, Bo-Kai; Lin, Shih-Che; Nien, Li-Wei; Li, Jia-Han; Hsueh, Chun-Hway

    2015-12-01

    Corner radius is a concept to approximate the fabrication limitation due to the effective beam broadening at the corner in using electron-beam lithography. The purpose of the present study is to investigate the effects of corner radius on the electromagnetic field enhancement and resonance wavelength for three periodic polygon dimers of bowtie, twin square, and twin pentagon. The enhancement factor of surface-enhanced Raman spectroscopy due to the localized surface plasmon resonances in fabricated gold bowtie nanostructures was investigated using both Raman spectroscopy and finite-difference time-domain simulations. The simulated enhancement factor versus corner radius relation was in agreement with measurements and it could be fitted by a power-law relation. In addition, the resonance wavelength showed blue shift with the increasing corner radius because of the distribution of concentrated charges in a larger area. For different polygons, the corner radius instead of the tip angle is the dominant factor of the electromagnetic field enhancement because the surface charges tend to localize at the corner. Greater enhancements can be obtained by having both the smaller gap and sharper corner although the corner radius effect on intensity enhancement is less than the gap size effect.

  15. Exploring the potential of Raman and resonance Raman spectroscopy for quantitative analysis of duplex DNA

    NASA Astrophysics Data System (ADS)

    Schulze, H. G.; Bass, A.; Addison, C.; Hughesman, C.; So, A. P.; Haynes, C. A.; Blades, M. W.; Turner, R. F. B.

    2005-09-01

    Advances in DNA microarray fabrication technologies, expanding probe libraries, and new bioinformatics methods and resources have firmly established array-based techniques as mainstream bioanalytical tools and the application space is proliferating rapidly. However, the capability of these tools to yield truly quantitative information remains limited, primarily due to problems inherent to the use of fluorescence imaging for reading the hybridized arrays. The obvious advantages of fluorescence are the unrivaled sensitivity and simplicity of the instrumentation. There are disadvantages of this approach, however, such as difficulties in achieving optimal labeling of targets and reproducible signals (due to quenching, resonance energy transfer, photobleaching effects, etc.) that undermine precision. We are exploring alternative approaches, based mainly on Raman and resonance Raman spectroscopy, that in principle permit direct analysis of structural differences between hybridized and unhybridized probes, thereby eliminating the need for labeling the target analytes. We report here on the status of efforts to evaluate the potential of these methods based on a combination of measured data and simulated experiments involving short (12-mer) ssDNA oligomer probes with varying degrees of hybridized target DNA. Preliminary results suggest that it may be possible to determine the fraction of duplex probes within a single register on a DNA microarray from 100% down to 10% (or possibly less) with a precision of +/-2 5%. Details of the methods used, their implementation, and their potential advantages and limitations are presented, along with discussion of the utility of using 2DCOS methods to emphasize small spectral changes sensitive to interstrand H bonding, backbone flexibility, hypochromicity due to base-stacking in duplex structures and solvation effects.

  16. Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Roelli, Philippe; Galland, Christophe; Piro, Nicolas; Kippenberg, Tobias J.

    2016-02-01

    The exceptional enhancement of Raman scattering by localized plasmonic resonances in the near field of metallic nanoparticles, surfaces or tips (SERS, TERS) has enabled spectroscopic fingerprinting down to the single molecule level. The conventional explanation attributes the enhancement to the subwavelength confinement of the electromagnetic field near nanoantennas. Here, we introduce a new model that also accounts for the dynamical nature of the plasmon-molecule interaction. We thereby reveal an enhancement mechanism not considered before: dynamical backaction amplification of molecular vibrations. We first map the system onto the canonical Hamiltonian of cavity optomechanics, in which the molecular vibration and the plasmon are parametrically coupled. We express the vacuum optomechanical coupling rate for individual molecules in plasmonic ‘hot-spots’ in terms of the vibrational mode's Raman activity and find it to be orders of magnitude larger than for microfabricated optomechanical systems. Remarkably, the frequency of commonly studied molecular vibrations can be comparable to or larger than the plasmon's decay rate. Together, these considerations predict that an excitation laser blue-detuned from the plasmon resonance can parametrically amplify the molecular vibration, leading to a nonlinear enhancement of Raman emission that is not predicted by the conventional theory. Our optomechanical approach recovers known results, provides a quantitative framework for the calculation of cross-sections, and enables the design of novel systems that leverage dynamical backaction to achieve additional, mode-selective enhancements. It also provides a quantum mechanical framework to analyse plasmon-vibrational interactions in terms of molecular quantum optomechanics.

  17. Imaging EGFR distribution using surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lucas, L.; Chen, X. K.; Smith, A.; Korbelik, M.; Zeng, H.; Lee, P. W. K.; Hewitt, K. C.

    2009-02-01

    The purpose of this study is to explore the feasibility of using Surface Enhanced Raman Spectroscopy (SERS) to image the distribution of Epidermal Growth Factor Receptor (EGFR) in cells. To accomplish this task, 30 nm gold nanoparticles (AuNPs) tagged with antibodies to EGFR (1012 per ml) are incubated with cells (106 per ml) of the A431 human epidermoid carcinoma cell line and normal human bronchial epithelial (NHBE) cells. Using the 632.8 nm excitation line of a He-Ne laser, Raman spectroscopy measurements are performed using a point mapping scheme. SERS signals are observed with an overall enhancement of 4-7 orders of magnitude. Raman intensity maps of the 1480 and 1583 cm-1 peaks correlate well with the expected distribution of AuNPs and EGFR. Normal cells show little to no enhancement. The results therefore present a simple yet effective means to image EGFR over-expression.

  18. Wavefront shaping enhanced Raman scattering in a turbid medium.

    PubMed

    Thompson, Jonathan V; Throckmorton, Graham A; Hokr, Brett H; Yakovlev, Vladislav V

    2016-04-15

    Spontaneous Raman scattering is a powerful tool for chemical sensing and imaging but suffers from a weak signal. In this Letter, we present an application of adaptive optics to enhance the Raman scattering signal detected through a turbid, optically thick material. This technique utilizes recent advances in wavefront shaping techniques for focusing light through a turbid media and applies them to chemical detection to achieve a signal enhancement with little sacrifice to the overall simplicity of the experimental setup. With this technique, we demonstrate an enhancement in the Raman signal from titanium dioxide particles through a highly scattering material. This technique may pave the way to label-free tracking using the optical memory effect. PMID:27082341

  19. Nanoscale Analysis of Interwall Interaction in a Multiwalled Carbon Nanotube by Tip-Enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chaunchaiyakul, Songpol; Yano, Takeshi; Khoklang, Kamonchanok; Krukowski, Pawel; Akai-Kasaya, Megumi; Saito, Akira; Kuwahara, Yuji

    Raman spectroscopy is a useful tool for the study of carbon materials, but its spatial resolution is limited by the optical diffraction limit. Recently, we constructed a scanning tunneling microscope-based tip-enhanced Raman spectroscopy (STM-TERS) system in ultrahigh vacuum, which overcomes the optical diffraction limit, and enables the investigation of single-molecular Raman spectra simultaneously with topographic imaging. We have investigated position-sensitive Raman spectra along the tube axis of an isolated multiwalled carbon nanotube, which is a result of the different number of nanotube walls at each location. We found that the intensity ratio between the 2D to the G band increases with the number of walls. This indicates that the quantum interference between Raman scattering pathways affects each Raman mode differently. The interaction between nanotube walls induces splitting of the π and π* bands which increases the number of the 2D band scattering pathways owing to double resonance, eventually increasing the probability of scattering for the 2D band relative to the G band. These results provide a deeper understanding of the single-molecule interaction of carbon materials in the nanoscale.

  20. Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering

    SciTech Connect

    Ye Jian; Lodewijks, Kristof; Lagae, Liesbet; Van Dorpe, Pol; Shioi, Masahiko; Kawamura, Tatsuro

    2010-10-18

    We investigate the plasmonic properties of gold nanorings in close proximity to a gold film. The rings have been fabricated using nanosphere lithography and are optimized to boost their near-infrared surface enhanced Raman scattering (SERS) effects. A SERS enhancement factor as large as 1.4x10{sup 7} has been achieved by tuning the separation between the gold nanorings and the gold film. In addition, we have numerically and experimentally demonstrated an enhanced tunability of the plasmon resonance wavelength and a narrowing of the plasmon linewidth for increasing ring-film interaction.

  1. Resonance Raman spectroscopy for human cancer detection of key molecules with clinical diagnosis

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-hui; Li, Jiyou; Zhou, Lixin; He, Jingsheng; Sun, Yi; Pu, Yang; Zhu, Ke; Liu, Yulong; Li, Qingbo; Cheng, Gangge; Alfano, Robert R.

    2013-03-01

    Resonance Raman (RR) has the potential to reveal the differences between cancerous and normal breast and brain tissues in vitro. This differences caused by the changes of specific biomolecules in the tissues were displayed in resonance enhanced of vibrational fingerprints. It observed that the changes of reduced collagen contents and the number of methyl may show the sub-methylation of DNA in cancer cells. Statistical theoretical models of Bayesian, principal component analysis (PCA) and support vector machine (SVM) were used for distinguishing cancer from normal based on the RR spectral data of breast and meninges tissues yielding the diagnostic sensitivity of 80% and 90.9%, and specificity of 100% and 100%, respectively. The results demonstrated that the RR spectroscopic technique could be applied as clinical optical pathology tool with a high accuracy and reliability.

  2. Plasmonic-enhanced Raman scattering of graphene on growth substrates and its application in SERS

    NASA Astrophysics Data System (ADS)

    Zhao, Yuan; Chen, Guanxiong; Du, Yuanxin; Xu, Jin; Wu, Shuilin; Qu, Yan; Zhu, Yanwu

    2014-10-01

    We detail a facile method for enhancing the Raman signals of as-grown graphene on Cu foils by depositing gold nanoislands (Au Nis) onto the surface of graphene. It is found that an enhancement of up to 49 fold in the graphene Raman signal has been achieved by depositing a 4 nm thick Au film. The enhancement is considered to be related to the coupling between graphene and the plasmon modes of Au Nis, as confirmed by the finite element simulations. The plasmonic effect of the Au/graphene/Cu hybrid platform leads to a strong absorption at the resonant wavelength whose position shifts from visible light (640 nm) to near-infrared (1085 nm) when the thickness of Au films is increased from 2 nm to 18 nm. Finally, we demonstrate that hybrid substrates are reliable surface-enhanced Raman scattering (SERS) systems, showing an enhancement factor of ~106 for dye molecules Rhodamine B and Rhodamine 6G with uniform and stable response and a detection limit of as low as 0.1 nM for Sudan III and Sudan IV.We detail a facile method for enhancing the Raman signals of as-grown graphene on Cu foils by depositing gold nanoislands (Au Nis) onto the surface of graphene. It is found that an enhancement of up to 49 fold in the graphene Raman signal has been achieved by depositing a 4 nm thick Au film. The enhancement is considered to be related to the coupling between graphene and the plasmon modes of Au Nis, as confirmed by the finite element simulations. The plasmonic effect of the Au/graphene/Cu hybrid platform leads to a strong absorption at the resonant wavelength whose position shifts from visible light (640 nm) to near-infrared (1085 nm) when the thickness of Au films is increased from 2 nm to 18 nm. Finally, we demonstrate that hybrid substrates are reliable surface-enhanced Raman scattering (SERS) systems, showing an enhancement factor of ~106 for dye molecules Rhodamine B and Rhodamine 6G with uniform and stable response and a detection limit of as low as 0.1 nM for Sudan III and

  3. Calculation of intensity of a resonant Raman effect by organic molecules

    NASA Astrophysics Data System (ADS)

    Schelokov, R. V.; Yatsishen, V. V.

    2006-03-01

    There is a set of definition methods of the molecular substances composition and molecules performances, but the most sensing and in too time not influencing an explored sample is the method of resonant Raman effect (resonant Raman scattering, RRS). In the present work we viewed RRS on one of the most toxic substances - monomethyihydrazine. Result of the done work became an electronic absorption spectrum, an oscillatory spectrum and spectra of a resonant Raman scattering monomethylhydrazine without taking into account and taking into account of an interference of bands.

  4. Improving resolution in quantum subnanometre-gap tip-enhanced Raman nanoimaging

    NASA Astrophysics Data System (ADS)

    Zhang, Yingchao; Voronine, Dmitri V.; Qiu, Shangran; Sinyukov, Alexander M.; Hamilton, Mary; Liege, Zachary; Sokolov, Alexei V.; Zhang, Zhenrong; Scully, Marlan O.

    2016-05-01

    Two-dimensional (2D) materials beyond graphene such as transition metal dichalcogenides (TMDs) have unique mechanical, optical and electronic properties with promising applications in flexible devices, catalysis and sensing. Optical imaging of TMDs using photoluminescence and Raman spectroscopy can reveal the effects of structure, strain, doping, edge states, and surface functionalization from materials to bioscience. However, Raman signals are inherently weak and so far have been limited in spatial resolution in TMDs to a few hundred nanometres which is much larger than the intrinsic scale of these effects. Here we overcome the diffraction limit by using resonant tip-enhanced Raman scattering (TERS) of few-layer MoS2, and obtain nanoscale optical images with ~20 nm spatial resolution. This becomes possible due to electric field enhancement in an optimized subnanometre-gap resonant tip-substrate configuration. We investigate the limits of signal enhancement by varying the tip-sample gap with sub-Angstrom precision and observe a quantum quenching behavior, as well as a Schottky-Ohmic transition, for subnanometre gaps, which enable surface mapping based on this new contrast mechanism. This quantum regime of plasmonic gap-mode enhancement with a few nanometre thick MoS2 junction may be used for designing new quantum optoelectronic devices and sensors with a wide range of applications.

  5. Improving resolution in quantum subnanometre-gap tip-enhanced Raman nanoimaging.

    PubMed

    Zhang, Yingchao; Voronine, Dmitri V; Qiu, Shangran; Sinyukov, Alexander M; Hamilton, Mary; Liege, Zachary; Sokolov, Alexei V; Zhang, Zhenrong; Scully, Marlan O

    2016-01-01

    Two-dimensional (2D) materials beyond graphene such as transition metal dichalcogenides (TMDs) have unique mechanical, optical and electronic properties with promising applications in flexible devices, catalysis and sensing. Optical imaging of TMDs using photoluminescence and Raman spectroscopy can reveal the effects of structure, strain, doping, edge states, and surface functionalization from materials to bioscience. However, Raman signals are inherently weak and so far have been limited in spatial resolution in TMDs to a few hundred nanometres which is much larger than the intrinsic scale of these effects. Here we overcome the diffraction limit by using resonant tip-enhanced Raman scattering (TERS) of few-layer MoS2, and obtain nanoscale optical images with ~20 nm spatial resolution. This becomes possible due to electric field enhancement in an optimized subnanometre-gap resonant tip-substrate configuration. We investigate the limits of signal enhancement by varying the tip-sample gap with sub-Angstrom precision and observe a quantum quenching behavior, as well as a Schottky-Ohmic transition, for subnanometre gaps, which enable surface mapping based on this new contrast mechanism. This quantum regime of plasmonic gap-mode enhancement with a few nanometre thick MoS2 junction may be used for designing new quantum optoelectronic devices and sensors with a wide range of applications. PMID:27220882

  6. Improving resolution in quantum subnanometre-gap tip-enhanced Raman nanoimaging

    PubMed Central

    Zhang, Yingchao; Voronine, Dmitri V.; Qiu, Shangran; Sinyukov, Alexander M.; Hamilton, Mary; Liege, Zachary; Sokolov, Alexei V.; Zhang, Zhenrong; Scully, Marlan O.

    2016-01-01

    Two-dimensional (2D) materials beyond graphene such as transition metal dichalcogenides (TMDs) have unique mechanical, optical and electronic properties with promising applications in flexible devices, catalysis and sensing. Optical imaging of TMDs using photoluminescence and Raman spectroscopy can reveal the effects of structure, strain, doping, edge states, and surface functionalization from materials to bioscience. However, Raman signals are inherently weak and so far have been limited in spatial resolution in TMDs to a few hundred nanometres which is much larger than the intrinsic scale of these effects. Here we overcome the diffraction limit by using resonant tip-enhanced Raman scattering (TERS) of few-layer MoS2, and obtain nanoscale optical images with ~20 nm spatial resolution. This becomes possible due to electric field enhancement in an optimized subnanometre-gap resonant tip-substrate configuration. We investigate the limits of signal enhancement by varying the tip-sample gap with sub-Angstrom precision and observe a quantum quenching behavior, as well as a Schottky-Ohmic transition, for subnanometre gaps, which enable surface mapping based on this new contrast mechanism. This quantum regime of plasmonic gap-mode enhancement with a few nanometre thick MoS2 junction may be used for designing new quantum optoelectronic devices and sensors with a wide range of applications. PMID:27220882

  7. Nanoparticle Properties and Synthesis Effects on Surface-Enhanced Raman Scattering Enhancement Factor: An Introduction

    PubMed Central

    2015-01-01

    Raman spectroscopy has enabled researchers to map the specific chemical makeup of surfaces, solutions, and even cells. However, the inherent insensitivity of the technique makes it difficult to use and statistically complicated. When Raman active molecules are near gold or silver nanoparticles, the Raman intensity is significantly amplified. This phenomenon is referred to as surface-enhanced Raman spectroscopy (SERS). The extent of SERS enhancement is due to a variety of factors such as nanoparticle size, shape, material, and configuration. The choice of Raman reporters and protective coatings will also influence SERS enhancement. This review provides an introduction to how these factors influence signal enhancement and how to optimize them during synthesis of SERS nanoparticles. PMID:25884017

  8. Status of miniature integrated UV resonance fluorescence and Raman sensors for detection and identification of biochemical warfare agents

    NASA Astrophysics Data System (ADS)

    Hug, William F.; Bhartia, Rohit; Taspin, Alexandre; Lane, Arthur; Conrad, Pamela; Sijapati, Kripa; Reid, Ray D.

    2005-11-01

    Laser induced native fluorescence (LINF) is the most sensitive method of detection of biological material including microorganisms, virus', and cellular residues. LINF is also a sensitive method of detection for many non-biological materials as well. The specificity with which these materials can be classified depends on the excitation wavelength and the number and location of observation wavelengths. Higher levels of specificity can be obtained using Raman spectroscopy but a much lower levels of sensitivity. Raman spectroscopy has traditionally been employed in the IR to avoid fluorescence. Fluorescence rarely occurs at wavelength below about 270nm. Therefore, when excitation occurs at a wavelength below 250nm, no fluorescence background occurs within the Raman fingerprint region for biological materials. When excitation occurs within electronic resonance bands of the biological target materials, Raman signal enhancement over one million typically occurs. Raman sensitivity within several hundred times fluorescence are possible in the deep UV where most biological materials have strong absorption. Since the Raman and fluorescence emissions occur at different wavelength, both spectra can be observed simultaneously, thereby providing a sensor with unique sensitivity and specificity capability. We will present data on our integrated, deep ultraviolet, LINF/Raman instruments that are being developed for several applications including life detection on Mars as well as biochemical warfare agents on Earth. We will demonstrate the ability to discriminate organic materials based on LINF alone. Together with UV resonance Raman, higher levels of specificity will be demonstrated. In addition, these instruments are being developed as on-line chemical sensors for industrial and municipal waste streams and product quality applications.

  9. Doubly resonant Raman electron paramagnetic transitions of Cr{sup 3+} in ruby (Al{sub 2}O{sub 3}:Cr{sup 3+}).

    SciTech Connect

    Lu, X.; Venugopalan, S.; Kim, H.; Grimsditch, M.; Rodriguez, S.; Ramdas, A. K.; Materials Science Division; Purdue Univ.; State Univ. of New York at Binghamton; Sogang Univ.

    2009-06-01

    We report the Raman electron paramagnetic resonance (EPR) of Cr{sup 3+} in ruby (Al{sub 2}O{sub 3}:Cr{sup 3+}) in the {sup 4}A{sub 2} (ground) and E{sup -} (excited) states of its well-known R{sub 1} emission line. Using tunable dye laser excitation within the range of the Zeeman components of R{sub 1}, we observe highly selective doubly resonant enhancements of the Raman EPR lines. The double resonances confirm the assignments of the Raman EPR lines, and they underscore the simultaneous occurrence of both 'in resonance' and 'out resonance' as visualized in the Kramers-Heisenberg quantum-mechanical picture of inelastic light scattering. The g factors of the {sup 4}A{sub 2} and E{sup -} states are consistent with the observed magnetic field dependence of the Raman EPR shifts. Through the interplay of Raman effect and the sharp Zeeman components of R{sub 1}, the results provide clear insights into the underlying microscopic mechanism of these resonant Raman EPR spectra of ruby.

  10. Resonance Raman Spectra of o-Safranin Dye, Free and Adsorbed on Silver Nanoparticles: Experiment and Density Functional Theory Calculation.

    PubMed

    Ricci, Marilena; Platania, Elena; Lofrumento, Cristiana; Castellucci, Emilio M; Becucci, Maurizio

    2016-07-14

    The properties of o-Safranin (SO) dye in the first electronic excited state were studied with combined experimental and theoretical methods. The electronic absorption spectra of SO molecules are measured in water solution and in the presence of silver nanoparticles. The normal Raman (NRS) and resonance Raman (RR) spectra of solid SO and the surface enhanced Raman (SERS) and surface enhanced resonance Raman (SE[R]RS) spectra of SO adsorbed on silver nanoparticles are measured at different excitation energies. The enhancement factors for selected vibrational bands of the RR, SERS, and SE[R]RS spectra of SO have been obtained with respect to the NRS spectra of the solid after a careful evaluation of the experimental conditions. The data furnished useful information on the excited electronic states and the interactions of SO with silver nanoparticles. The experimental results are discussed on the basis of DFT and TD-DFT calculations (B3LYP/6-311+G(d,p)) on the isolated SO molecule. PMID:27139691

  11. Distinguishing Cancerous Liver Cells Using Surface-Enhanced Raman Spectroscopy.

    PubMed

    Huang, Jing; Liu, Shupeng; Chen, Zhenyi; Chen, Na; Pang, Fufei; Wang, Tingyun

    2016-02-01

    Raman spectroscopy has been widely used in biomedical research and clinical diagnostics. It possesses great potential for the analysis of biochemical processes in cell studies. In this article, the surface-enhanced Raman spectroscopy (SERS) of normal and cancerous liver cells incubated with SERS active substrates (gold nanoparticle) was measured using confocal Raman microspectroscopy technology. The chemical components of the cells were analyzed through statistical methods for the SERS spectrum. Both the relative intensity ratio and principal component analysis (PCA) were used for distinguishing the normal liver cells (QSG-7701) from the hepatoma cells (SMMC-7721). The relative intensity ratio of the Raman spectra peaks such as I937/I1209, I1276/I1308, I1342/I1375, and I1402/I1435 was set as the judge boundary, and the sensitivity and the specificity using PCA method were calculated. The results indicated that the surface-enhanced Raman spectrum could provide the chemical information for distinguishing the normal cells from the cancerous liver cells and demonstrated that SERS technology possessed the possible applied potential for the diagnosis of liver cancer. PMID:25432931

  12. Nanofluidic channel based biosensor using surface enhanced raman spectroscopy (SERS)

    NASA Astrophysics Data System (ADS)

    Chou, I.-Hsien; Beier, Hope T.; Wang, Maio; Jing, Nan; Kameoka, Jun; Coté, Gerard L.

    2007-02-01

    The Raman scattering signature of molecules has been demonstrated to be greatly enhanced, on the order of 10 6-10 12 times, on roughened metal surfaces and clustered structures such as aggregated colloidal gold. Here we describe a method that improves reproducibility and sensitivity of the substrate for surface enhanced Raman spectroscopy (SERS) by using a nanofluidic trapping device. This nanofluidic device has a bottle neck shape composed of a microchannel leading into a nano channel that causes size-dependent trapping of nanoparticles. The analyte and Au nanoparticles, 60 nm in diameter, in aqueous solution was pumped into the channel. The nanoparticles which were larger than the narrow channel are trapped at the edge of the channel to render an enhancement of the Raman signal. We have demonstrated that the Raman scattering signal enhancement on a nanochannel-based colloidal gold cluster is able to detect 10 pM of adenine, the test analyte, without chemical modification. The efficiency and robustness of the device suggests potential for single molecule detection and multicomponent detection for biological applications and/or biotoxins.

  13. Asphaltene detection using surface enhanced Raman scattering (SERS).

    PubMed

    Alabi, O O; Edilbi, A N F; Brolly, C; Muirhead, D; Parnell, J; Stacey, R; Bowden, S A

    2015-04-28

    Surface enhanced Raman spectroscopy using a gold substrate and excitation at 514 nm can detect sub parts per million quantities of asphaltene and thereby petroleum. This simple format and sensitivity make it transformative for applications including sample triage, flow assurance, environmental protection and analysis of unique one of a kind materials. PMID:25812164

  14. Alkyne-Modulated Surface-Enhanced Raman Scattering-Palette for Optical Interference-Free and Multiplex Cellular Imaging.

    PubMed

    Chen, Yong; Ren, Jia-Qiang; Zhang, Xia-Guang; Wu, De-Yin; Shen, Ai-Guo; Hu, Ji-Ming

    2016-06-21

    The alkyne tags possess unique interference-free Raman emissions but are still hindered for further application in the field of biochemical labels due to its extremely weak spontaneous Raman scattering. With the aid of computational chemistry, herein, an alkyne-modulated surface-enhanced Raman scattering (SERS) palette is constructed based on rationally designed 4-ethynylbenzenethiol derivatives for spectroscopic signature, Au@Ag core for optical enhancement and an encapsulating polyallylamine shell for protection and conjugation. Even for the pigment rich plant cell (e.g., pollen), the alkyne-coded SERS tag can be highly discerned on two-dimension distribution impervious to strong organic interferences originating from resonance-enhanced Raman scattering or autofluorescence. In addition, the alkynyl-containing Raman reporters contribute especially narrow emission, band shift-tunable (2100-2300 cm(-1)) and tremendously enhanced Raman signals when the alkynyl group locates at para position of mercaptobenzene ring. Depending on only single Raman band, the suggested alkyne-modulated SERS-palette potentially provides a more effective solution for multiplex cellular imaging with vibrant colors, when the hyperspectral and fairly intense optical noises originating from lower wavenumber region (<1800 cm(-1)) are inevitable under complex ambient conditions. PMID:27223333

  15. Resonance Raman studies of substituent effects on the electronic structure of phenoxyl radicals

    SciTech Connect

    Tripathi, G.N.R.; Schuler, R.H.

    1988-09-08

    The resonance Raman spectra of para-substituted phenoxyl radicals (XC/sub 6/H/sub 4/O/center dot/; X = CH/sub 3/, F, Cl, Br, OCH/sub 3/, OH) observed by time-resolved techniques in aqueous medium, exhibit a wide variation in spectral features intermediate between phenoxyl and /rho/-benzosemiquinone anion radicals. The ..nu../sub 7a/ (CO stretch) vibration, which is strongly enhanced on Raman excitation in resonance with the electronic transition in the approx. 400-nm region, appears in a narrow frequency range 1511-1518 cm/sup /minus/1/, indicating that the CO bond in the ground electronic state of these radicals is very similar to that of phenoxyl (..nu../sub 7a/ at 1505 cm/sup /minus/1/). The relative intensities of the ..nu../sub 8a/ bands (CC stretch), observed in the 1552-1613-cm/sup /minus/1/ region, change dramatically with the electronic properties of the substituent group. This vibration, which is not apparent in the Raman spectrum of phenoxyl excited at 400 nm, is observed with an intensity comparable to the of the ..nu../sub 7a/ vibration in the /rho/-bromo, /rho/-methoxy, and /rho/-hydroxy derivatives. The Raman intensities show that the electronic structures in the excited states of the /rho/-methoxy and /rho/-fluoro-, and p-chloro-substituted radicals are essentially phenoxyl like, while the structures in p-methoxy and p-hydroxy derivatives approach that of /rho/-benzosemiquinone anion radical as a result of strong interaction of the substituent's p..pi.. electrons with the phenoxyl ..pi.. system. The excited state of /rho/-bromophenoxyl radical represents an important intermediate case. The resonance enhancement of the ..nu../sub 9a/ CH bending vibration, observed at approx. 1160 cm/sup /minus/1/, parallels that of the ..nu../sub 8a/ phenyl mode and provides an important diagnostic for assignment of the latter vibration.

  16. Theoretical study of the resonance Raman spectra for meso-tetrakis(3,5-di-tertiarybutylphenyl)-porphyrin

    NASA Astrophysics Data System (ADS)

    Zheng, Ren-hui; Wei, Wen-mei; Zhu, Li-li; Shi, Qiang

    2014-12-01

    Applying time-dependent density functional theory (TDDFT), we study the resonance Raman spectra for the Q and B bands of the meso-tetrakis(3,5-di-tertiarybutylphenyl)-porphyrin (H2TBPP) molecule including both Raman A term (Franck-Condon term) and Raman B term (Herzberg-Teller term) contributions. It is found that Raman B term can be one order of magnitude larger than Raman A term and dominates resonance Raman for the Q band resonance. In comparison with the recent experimental Raman spectra of H2TBPP with incident light frequency 532 nm, we predict the absence of 1580 cm-1 band in the resonance Raman spectra which agrees well with the experimental results, whereas the previous theoretical calculation using non-resonance strategy failed to do so.

  17. Enhancement of Raman scattering signal of a few molecules using photonic nanojet mediated SERS technique

    NASA Astrophysics Data System (ADS)

    Das, G. M.; Parit, M. K.; Laha, R.; Dantham, V. R.

    2016-05-01

    Now a days, single molecule surface enhanced Raman spectroscopy (SMSERS) has become a fascinating tool for studying the structural properties, static and dynamic events of single molecules (instead of ensemble average), with the help of efficient plasmonic nanostructures. This is extremely useful in the field of proteomics because the structural properties of protein molecules are heterogeneous. Even though, SMSERS provides wealthy information about single molecules, it demands high quality surface enhanced Raman scattering (SERS) substrates. So far, a very few researchers succeeded in demonstrating the single molecule Raman scattering using conventional SERS technique. However, the experimental S/N of the Raman signal has been found to be very poor. Recently, with the help of photonic nanojet of an optical microsphere, we were able to enhance the SERS signal of a few molecules adsorbed on the SERS substrates (gold symmetric and asymmetric nanodimers and trimers dispersed on a glass slide). Herein, we report a few details about photonic nanojet mediated SERS technique, a few experimental results and a detailed theoretical study on symmetric and asymmetric nanosphere dimers to understand the dependence of localised surface plasmon resonance (LSPR) wavelength of a nanodimer on the nanogap size and polarization of the excitation light.

  18. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOEpatents

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2014-07-22

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  19. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOEpatents

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2015-07-14

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  20. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    SciTech Connect

    Bond, Tiziana C; Miles, Robin; Davidson, James; Liu, Gang Logan

    2015-11-03

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  1. Enhancing surface plasmon resonances of metallic nanoparticles by diatom biosilica.

    PubMed

    Ren, Fanghui; Campbell, Jeremy; Wang, Xiangyu; Rorrer, Gregory L; Wang, Alan X

    2013-07-01

    Diatoms are single-celled algaes that make photonic-crystal-like silica shells or frustules with hierarchical micro- & nano-scale features consisting of two-dimensional periodic pores. This article reports the use of diatom frustules as an integration platform to enhance localized surface plasmon resonances of self-assembled silver nanoparticles (NPs) on the surface of diatom frustules. Theoretical and experimental results show enhanced localized surface plasmons due to the coupling with the guided-mode resonances of the frustules. We observed 2 × stronger optical extinction and over 4 × higher sensitivity of surface-enhanced Raman scattering of Rhodmine 6G from the NPs-on-diatom than the NPs-on-glass structure. PMID:23842317

  2. Profiling an electrospray plume using surface-enhanced Raman spectroscopy.

    PubMed

    Davis, Douglas; Portelius, Erik; Zhu, Yu; Feigerle, Charles; Cook, Kelsey D

    2005-12-15

    We report the use of silver nanoparticles to obtain surface-enhanced Raman spectra of Crystal Violet in an electrospray plume. Surface enhancement allowed detection at low concentrations with the high specificity afforded by vibrational spectroscopy. SERS spectra were used to obtain an axial concentration profile closely matching that obtained in previous fluorescence experiments. SERS can provide more analyte structural information than has been obtainable from fluorescence studies of the plume. PMID:16351168

  3. Site selective surface enhanced Raman on nanostructured cavities

    NASA Astrophysics Data System (ADS)

    Lordan, Frances; Rice, James H.; Jose, Bincy; Forster, Robert J.; Keyes, Tia E.

    2011-07-01

    Presented here are angle dependence studies on the surface enhanced Raman (SER) signal obtained from dye placed on plasmon active nanocavity arrays. A comparative study was carried out between two modified array supports. One array had dye placed only on the interior walls of the cavities in the array. The other array had dye placed only on its top flat surface. Results show that Raman intensities as a function of angle depend on the location of the dye on the array; this was interpreted to arise from the presence of different plasmon polariton modes in these sites.

  4. Structural Raman enhancement in graphite nano-discs

    NASA Astrophysics Data System (ADS)

    Cardenas, J. F.; Chakarov, D.; Kasemo, B.

    2016-04-01

    Raman scattering in disc-shaped graphite nanostructures, etched out of bulk HOPG, are investigated using an excitation wavelength of 532 nm at different laser power. The G-band is fitted using two Lorentzian functions, GL and GH. The difference of Raman shift between the two Lorentzian functions increase with laser power as a consequence of selective absorption and heating of the discs. Further, the G-band from the nanostructured HOPG reveal a Raman enhancement (RE) of ~2.2 and ~1.5 for the components associated with the discs (GL) and the supporting substrate (GH), respectively. The quantitative agreement between the experimental results and performed finite difference time domain calculations make possible to conclude that electromagnetic energy penetrates considerably into the discs from the circular periphery probably due to multiple scattering. In addition, the dependence of RE of the GL component on the laser power is attributed to a temperature dependent electron-phonon coupling.

  5. Quantitative Surface-Enhanced Raman for Gene Expression Estimation

    PubMed Central

    Sun, Lan; Irudayaraj, Joseph

    2009-01-01

    We demonstrate for the first time, to our knowledge, a unique gene expression assay by surface-enhanced Raman scattering (SERS) using nonfluorescent Raman labels to quantify gene expression at the resolution of alternative splicing using RNA extracted from cancer cells without any amplification steps. Our approach capitalizes on the inherent plasmon-phonon mode of SERS substrates as a self-referencing standard for the detection and quantification of genetic materials. A strategy integrating S1 nuclease digestion with SERS detection was developed to quantify the expression levels of splice junction Δ(9,10), a segment of the breast cancer susceptibility gene 1 (BRCA1) from MCF-7 and MDA-MB-231 cells. Quantification results were cross-validated using two Raman tags and qualitatively confirmed by RT-PCR. Our methodology based on SERS technology provides reliable gene expression data with high sensitivity, bypassing the intricacies involved in fabricating a consistent SERS substrate. PMID:19486693

  6. Principle, system, and applications of tip-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, MingQian; Wang, Rui; Wu, XiaoBin; Wang, Jia

    2012-08-01

    Raman spectroscopy is a powerful technique in chemical information characterization. However, this spectral method is subject to two obstacles in nano-material detection. One is diffraction limited spatial resolution, and the other is its inherent small Raman cross section and weak signaling. To resolve these problems, a new approach has been developed, denoted as tip-enhanced Raman spectroscopy (TERS). TERS is capable of high-resolution and high-sensitivity detection and demonstrated to be a promising spectroscopic and micro-topographic method to characterize nano-materials and nanostructures. In this paper, the principle and experimental system of TERS are discussed. The latest application of TERS in molecule detection, biological specimen identification, nanao-material characterization, and semi-conductor material determination with some specific experimental examples are presented.

  7. Resonant Raman and micro-Raman scattering from Si matrix with unburied beta-FeSi2 nanolayers.

    PubMed

    Marinova, M; Baleva, M; Zlateva, G

    2008-02-01

    Samples, representing Si matrix with nanolayers of the semiconducting beta-FeSi2 silicide are studied by Raman scattering. The unpolarized Raman spectra of the samples are measured in two different configurations. It is found that the characteristic beta-FeSi2 Raman modes are seen in the spectra, taken at incident angle of about 45 degrees , while only comparatively intensive broad feature is detected in a back-scattering geometry. The difference in the spectra is interpreted with the appearance of surface polariton modes of the optical phonons in the nanosized layers in near back-scattering geometry. The resonant Raman scattering is investigated at incident light angle of about 45 degrees and the energies of the interband transitions in the investigated energy range are determined. It is known that the resonant Raman scattering appears to be even more precise method for the determination of the interband transitions energies than the modulation spectroscopy. Thus we claim that the energies determined here are firstly determined with such a precision. PMID:18464405

  8. Plasmonic Enhancement of Raman Signal using Complex Metallic Nanostructures based on DNA Origami

    NASA Astrophysics Data System (ADS)

    Finkelstein, Gleb

    2015-03-01

    DNA-based nanostructures, such as ``DNA origami,'' have recently emerged as one of the leading techniques for precise positioning of nanoscale materials in fields ranging from computer science to biomedical engineering. The origami is composed of a single scaffold DNA strand to which smaller ``staple`` strands are attached through DNA complementarity. The staples help to fold the scaffold strand into the designed structure of a predetermined shape. The resulting templates are highly addressable and have proven to be versatile tools for site-specific placement of various nanocomponents, such as metallic nanoparticles, quantum dots, fluorophores, etc. Building upon massively paralleled assembly mechanism of the origami and its ability to position nanocomponents, one may hope to utilize it for biosensing purposes. One attractive goal is the Raman spectroscopy, which provides a highly specific chemical fingerprint. Unfortunately, the Raman scattering cross section is small; Surface Enhanced Raman Spectroscopy (SERS) enhances the otherwise weak Raman signal by trapping the analyte molecules in the regions of intense electric field produced near rough metallic surfaces. These ``hot spots`` can be understood as resulting from localized surface plasmon modes resonantly exited by the incident laser excitation. We have earlier shown that metallic nanoparticles controllably attached to DNA origami can be further enlarged via an in-solution metallization; this technique allowed us to build metallic structures of complex topology. Recently, we have performed Raman spectroscopy of molecules attached to these metallic assemblies. Specifically, DNA origami is first used to organize the metallic structures, followed by a covalent attachment of Raman-active molecules to the metal. We found that the substrates with four nanoparticles per origami produce a strongly enhanced Raman signal compared to the control samples with only one nanoparticle per origami for the same particle

  9. Rich variety of substrates for surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Nguyen, Bich Ha; Hieu Nguyen, Van; Nhung Tran, Hong

    2016-09-01

    The efficiency of the application of surface enhanced Raman spectroscopy (SERS) technique to each specified purpose significantly depends on the choice of the SERS substrate with an appropriate structure as well as on its performance. Until the present time a rich variety of SERS substrates was fabricated. They can be classified according to their structures. The present work is a review of main types of SERS substrates for using in the trace analysis application. They can be classified into 4 groups: (1) Substrates using gold nanoparticles (AuNPs) with spherical shape such as colloidal AuNPs, AuNPs fabricated by pulsed laser deposition, by sputtering or by capillary force assembly (CFA), substrates fabricated by electrospinning technique, substrates using metallic nanoparticle arrays fabricated by electron beam lithography combined with CFA method, substrates using silver nanoparticle (AgNP) arrays grain by chemical seeded method, substrates with tunable surface plasmon resonance, substrates based on precies subnanometer plasmonic junctions within AuNP assemblies, substrates fabricated by simultaneously immobilizing both AuNPs and AgNPs on the same glass sides etc. (2) Substrates using nanostructures with non-spherical shapes such as gold nanowire (NW), or highly anisotropic nickel NW together with large area, free-standing carpets, substrates with obviously angular, quasi-vertically aligned cuboid-shaped TiO2 NW arrays decorated with AgNPs, substrates using gold nanoprism monolayer films, substrates using silver nanocube dimmers or monodisperse close-packed gold nanotriangle monolayers. (3) Substrates using multiparticle complex nanostructure such as nanoparticle cluster arrays, gold nanoflowers and nanodendrites. (4) Flexible substrate such as paper-based swab with gold nanorods, adhesive polymer tapes fabricated by inkjet printing method and flexible and adhesive SERS tapes fabricated by decorating AuNPs via the conventional drop-dry method.

  10. Surface- and Tip-Enhanced Raman Spectroscopy in Catalysis.

    PubMed

    Hartman, Thomas; Wondergem, Caterina S; Kumar, Naresh; van den Berg, Albert; Weckhuysen, Bert M

    2016-04-21

    Surface- and tip-enhanced Raman spectroscopy (SERS and TERS) techniques exhibit highly localized chemical sensitivity, making them ideal for studying chemical reactions, including processes at catalytic surfaces. Catalyst structures, adsorbates, and reaction intermediates can be observed in low quantities at hot spots where electromagnetic fields are the strongest, providing ample opportunities to elucidate reaction mechanisms. Moreover, under ideal measurement conditions, it can even be used to trigger chemical reactions. However, factors such as substrate instability and insufficient signal enhancement still limit the applicability of SERS and TERS in the field of catalysis. By the use of sophisticated colloidal synthesis methods and advanced techniques, such as shell-isolated nanoparticle-enhanced Raman spectroscopy, these challenges could be overcome. PMID:27075515

  11. Surface- and Tip-Enhanced Raman Spectroscopy in Catalysis

    PubMed Central

    2016-01-01

    Surface- and tip-enhanced Raman spectroscopy (SERS and TERS) techniques exhibit highly localized chemical sensitivity, making them ideal for studying chemical reactions, including processes at catalytic surfaces. Catalyst structures, adsorbates, and reaction intermediates can be observed in low quantities at hot spots where electromagnetic fields are the strongest, providing ample opportunities to elucidate reaction mechanisms. Moreover, under ideal measurement conditions, it can even be used to trigger chemical reactions. However, factors such as substrate instability and insufficient signal enhancement still limit the applicability of SERS and TERS in the field of catalysis. By the use of sophisticated colloidal synthesis methods and advanced techniques, such as shell-isolated nanoparticle-enhanced Raman spectroscopy, these challenges could be overcome. PMID:27075515

  12. Intensity Ratio of Resonant Raman Modes for (n , m) Enriched Semiconducting Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Piao, Yanmei; Simpson, Jeffrey; Streit, Jason; Ao, Geyou; Fagan, Jeffrey; Hight Walker, Angela

    Relative intensities of resonant Raman spectral features, specifically the radial breathing mode (RBM) and G modes, of eleven, chirality-enriched, single-wall carbon nanotube (SWCNT) species were established under second-order optical transition excitation. The results demonstrate a significantly under-recognized complexity in the evaluation of Raman spectra for the assignment of (n , m) population distributions. Strong chiral angle and mod dependencies affect the intensity ratio of the RBM to G modes and can result in misleading interpretations. Furthermore, we report five additional values for chirality dependent G+ and G- Raman peak positions and intensities, supporting accuracy in literature values, and extending the available data to cover more of the small diameter regime by including the first (5,4) second-order, resonance Raman spectra. Together, the Raman spectral library is demonstrated to be sufficient for decoupling multiple species via a spectral fitting process, and enable fundamental characterization even in mixed chiral population samples.

  13. Role of Raman spectroscopy and surface enhanced Raman spectroscopy in colorectal cancer

    PubMed Central

    Jenkins, Cerys A; Lewis, Paul D; Dunstan, Peter R; Harris, Dean A

    2016-01-01

    Colorectal cancer (CRC) is the fourth most common cancer in the United Kingdom and is the second largest cause of cancer related death in the United Kingdom after lung cancer. Currently in the United Kingdom there is not a diagnostic test that has sufficient differentiation between patients with cancer and those without cancer so the current referral system relies on symptomatic presentation in a primary care setting. Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) are forms of vibrational spectroscopy that offer a non-destructive method to gain molecular information about biological samples. The techniques offer a wide range of applications from in vivo or in vitro diagnostics using endoscopic probes, to the use of micro-spectrometers for analysis of biofluids. The techniques have the potential to detect molecular changes prior to any morphological changes occurring in the tissue and therefore could offer many possibilities to aid the detection of CRC. The purpose of this review is to look at the current state of diagnostic technology in the United Kingdom. The development of Raman spectroscopy and SERS in clinical applications relation for CRC will then be discussed. Finally, future areas of research of Raman/SERS as a clinical tool for the diagnosis of CRC are also discussed. PMID:27190582

  14. Optimal coherent control of coherent anti-Stokes Raman scattering: Signal enhancement and background elimination

    NASA Astrophysics Data System (ADS)

    Gao, Fang; Shuang, Feng; Shi, Junhui; Rabitz, Herschel; Wang, Haifeng; Cheng, Ji-Xin

    2012-04-01

    The ability to enhance resonant signals and eliminate the non-resonant background is analyzed for coherent anti-Stokes Raman scattering (CARS). The analysis is done at a specific frequency as well as for broadband excitation using femtosecond pulse-shaping techniques. An appropriate objective functional is employed to balance resonant signal enhancement against non-resonant background suppression. Optimal enhancement of the signal and minimization of the background can be achieved by shaping the probe pulse alone while keeping the pump and Stokes pulses unshaped. In some cases analytical forms for the probe pulse can be found, and numerical simulations are carried out for other circumstances. It is found that a good approximate optimal solution for resonant signal enhancement in two-pulse CARS is a superposition of linear and arctangent-type phases for the pump. The well-known probe delay method is shown to be a quasi-optimal scheme for broadband background suppression. The results should provide a basis to improve the performance of CARS spectroscopy and microscopy.

  15. Time-resolved resonance Raman spectroscopy of radiation-chemical processes. [Pulsed irradiation

    SciTech Connect

    Tripathi, G.N.R.

    1983-01-01

    A tunable pulsed laser Raman spectrometer for time resolved Raman studies of radiation-chemical processes is described. This apparatus utilizes the state of art optical multichannel detection and analysis techniques for data acquisition and electron pulse radiolysis for initiating the reactions. By using this technique the resonance Raman spectra of intermediates with absorption spectra in the 248-900 nm region, and mean lifetimes > 30 ns can be examined. This apparatus can be used to time resolve the vibrational spectral overlap between transients absorbing in the same region, and to follow their decay kinetics by monitoring the well resolved Raman peaks. For kinetic measurements at millisecond time scale, the Raman technique is preferable over optical absorption method where low frequency noise is quite bothersome. A time resolved Raman study of the pulse radiolytic oxidation of aqueous tetrafluorohydroquinone and p-methoxyphenol is briefly discussed. 15 references, 5 figures.

  16. Elevated gold ellipse nanoantenna dimers as sensitive and tunable surface enhanced Raman spectroscopy substrates

    NASA Astrophysics Data System (ADS)

    Jubb, A. M.; Jiao, Y.; Eres, G.; Retterer, S. T.; Gu, B.

    2016-03-01

    We demonstrate large area arrays of elevated gold ellipse dimers with precisely controlled gaps for use as sensitive and highly controllable surface enhanced Raman scattering (SERS) substrates. The enhanced Raman signal observed with SERS arises from both localized and long range plasmonic effects. By controlling the geometry of a SERS substrate, in this case the size and aspect ratio of individual ellipses, the plasmon resonance can be tuned in a broad wavelength range, providing a method for designing the response of SERS substrates at different excitation wavelengths. Plasmon effects exhibited by the elevated gold ellipse dimer substrates are also demonstrated and confirmed through finite difference time domain (FDTD) simulations. A plasmon resonance red shift with an increase of the ellipse aspect ratio is observed, allowing systematic control of the resulting SERS signal intensity. Optimized elevated ellipse dimer substrates with 10 +/- 2 nm gaps exhibit uniform SERS enhancement factors on the order of 109 for adsorbed p-mercaptoaniline molecules.We demonstrate large area arrays of elevated gold ellipse dimers with precisely controlled gaps for use as sensitive and highly controllable surface enhanced Raman scattering (SERS) substrates. The enhanced Raman signal observed with SERS arises from both localized and long range plasmonic effects. By controlling the geometry of a SERS substrate, in this case the size and aspect ratio of individual ellipses, the plasmon resonance can be tuned in a broad wavelength range, providing a method for designing the response of SERS substrates at different excitation wavelengths. Plasmon effects exhibited by the elevated gold ellipse dimer substrates are also demonstrated and confirmed through finite difference time domain (FDTD) simulations. A plasmon resonance red shift with an increase of the ellipse aspect ratio is observed, allowing systematic control of the resulting SERS signal intensity. Optimized elevated ellipse

  17. Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film.

    PubMed

    Li, Kuanguo; Jiang, Kang; Zhang, Lan; Wang, Yong; Mao, Lei; Zeng, Jie; Lu, Yonghua; Wang, Pei

    2016-04-22

    Enhanced electromagnetic field in the tiny gaps between metallic nanostructures holds great promise in optical applications. Herein, we report novel out-of-plane nanogaps composed of micrometer-sized Ag triangular nanoplates (AgTN) on Ag films. Notably, the new coupled plasmonic structure can dramatically enhance the surface-enhanced Raman scattering (SERS) by visible laser excitation, although the micrometer-sized AgTN has localized plasmon resonance at infrared wavelength. This enhancement is derived from the gap plasmon polariton between the AgTN and Ag film, which is excited via the antenna effect of the corner and edge of the AgTN. Systematic SERS studies indicated that the plasmon enhancement was on the order of corner > edge > face. These results were further verified by theoretical simulations. Our device paves the way for rational design of sensitive SERS substrates by judiciously choosing appropriate nanoparticles and optimizing the gap distance. PMID:26939539

  18. Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film

    NASA Astrophysics Data System (ADS)

    Li, Kuanguo; Jiang, Kang; Zhang, Lan; Wang, Yong; Mao, Lei; Zeng, Jie; Lu, Yonghua; Wang, Pei

    2016-04-01

    Enhanced electromagnetic field in the tiny gaps between metallic nanostructures holds great promise in optical applications. Herein, we report novel out-of-plane nanogaps composed of micrometer-sized Ag triangular nanoplates (AgTN) on Ag films. Notably, the new coupled plasmonic structure can dramatically enhance the surface-enhanced Raman scattering (SERS) by visible laser excitation, although the micrometer-sized AgTN has localized plasmon resonance at infrared wavelength. This enhancement is derived from the gap plasmon polariton between the AgTN and Ag film, which is excited via the antenna effect of the corner and edge of the AgTN. Systematic SERS studies indicated that the plasmon enhancement was on the order of corner > edge > face. These results were further verified by theoretical simulations. Our device paves the way for rational design of sensitive SERS substrates by judiciously choosing appropriate nanoparticles and optimizing the gap distance.

  19. Surface-Enhanced Raman Optical Data Storage system

    DOEpatents

    Vo-Dinh, T.

    1991-03-12

    A method and apparatus for a Surface-Enhanced Raman Optical Data Storage (SERODS) System are disclosed. A medium which exhibits the Surface Enhanced Raman Scattering (SERS) phenomenon has data written onto its surface of microenvironment by means of a write-on procedure which disturbs the surface or microenvironment of the medium and results in the medium having a changed SERS emission when excited. The write-on procedure is controlled by a signal that corresponds to the data to be stored so that the disturbed regions on the storage device (e.g., disk) represent the data. After the data is written onto the storage device it is read by exciting the surface of the storage device with an appropriate radiation source and detecting changes in the SERS emission to produce a detection signal. The data is then reproduced from the detection signal. 5 figures.

  20. Surface-enhanced raman optical data storage system

    DOEpatents

    Vo-Dinh, Tuan

    1991-01-01

    A method and apparatus for a Surface-Enhanced Raman Optical Data Storage (SERODS) System is disclosed. A medium which exhibits the Surface Enhanced Raman Scattering (SERS) phenomenon has data written onto its surface of microenvironment by means of a write-on procedure which disturbs the surface or microenvironment of the medium and results in the medium having a changed SERS emission when excited. The write-on procedure is controlled by a signal that corresponds to the data to be stored so that the disturbed regions on the storage device (e.g., disk) represent the data. After the data is written onto the storage device it is read by exciting the surface of the storage device with an appropriate radiation source and detecting changes in the SERS emission to produce a detection signal. The data is then reproduced from the detection signal.

  1. Toward Surface-Enhanced Raman Imaging of Latent Fingerprints

    SciTech Connect

    Connatser, Raynella M; Prokes, Sharka M.; Glembocki, Orest; Schuler, Rebecca A.; Gardner, Charles W.; Lewis Sr, Samuel Arthur; Lewis, Linda A

    2010-01-01

    Exposure to light or heat, or simply a dearth of fingerprint material, renders some latent fingerprints undetectable using conventional methods. We begin to address such elusive fingerprints using detection targeting photo- and thermally stable fingerprint constituents: surface-enhanced Raman spectroscopy (SERS). SERS can give descriptive vibrational spectra of amino acids, among other robust fingerprint constituents, and good sensitivity can be attained by improving metal-dielectric nanoparticle substrates. With SERS chemical imaging, vibrational bands intensities recreate a visual of fingerprint topography. The impact of nanoparticle synthesis route, dispersal methodology-deposition solvent, and laser wavelength are discussed, as are data from enhanced vibrational spectra of fingerprint components. SERS and Raman chemical images of fingerprints and realistic contaminants are shown. To our knowledge, this represents the first SERS imaging of fingerprints. In conclusion, this work progresses toward the ultimate goal of vibrationally detecting latent prints that would otherwise remain undetected using traditional development methods.

  2. Surface-enhanced Raman spectroscopy applied to food safety.

    PubMed

    Craig, Ana Paula; Franca, Adriana S; Irudayaraj, Joseph

    2013-01-01

    Surface-enhanced Raman spectroscopy (SERS) is an advanced Raman technique that enhances the vibrational spectrum of molecules adsorbed on or in the vicinity of metal particles and/or surfaces. Because of its readiness, sensitivity, and minimum sample preparation requirements, SERS is being considered as a powerful technique for food inspection. Key aspects of food-safety assurance, spectroscopy methods, and SERS are briefly discussed in an extended introduction of this review. The recent and potential advances in SERS are highlighted in sections that deal with the (a) detection of food-borne pathogenic microorganisms and (b) the detection of food contaminants and adulteration, concentrated specifically on antibiotics, drugs, hormones, melamine, and pesticides. This review provides an outlook of the work done and a perspective on the future directions of SERS as a reliable tool for food-safety assessment. PMID:23297774

  3. Determination of nicotine by surface-enhanced Raman scattering (SERS)

    SciTech Connect

    Barber, T.E.; List, M.S.; Haas, J.W. III; Wachter, E.A. )

    1994-11-01

    The analytical application of surface-enhanced Raman spectroscopy (SERS) to the determination of nicotine is demonstrated. A simple spectroelectrochemical method using a copper or silver electrode as the SERS substrate has been developed, consisting of three steps: polishing a working electrode to a mirror finish; roughening the electrode in an electrolyte solution; and, finally, depositing the nicotine analyte onto the roughened electrode after immersion in a sample solution. During the reduction cycle, a large enhancement in nicotine Raman scattering is observed at the electrode surface. The intensity of the SERS signal on a silver electrode is linear with concentration from 10 to 900 ppb, with an estimated detection limit of 7 ppb. The total analysis time per sample is approximately five minutes. This procedure has been used to analyze the extract from a cigarette side-stream smoke sample (environmental tobacco smoke); the SERS results agree well with those of conventional gas chromatographic analysis.

  4. Surface-enhanced Raman for monitoring toxins in water

    NASA Astrophysics Data System (ADS)

    Spencer, Kevin M.; Sylvia, James M.; Clauson, Susan L.; Bertone, Jane F.; Christesen, Steven D.

    2004-02-01

    Protection of the drinking water supply from a terrorist attack is of critical importance. Since the water supply is vast, contamination prevention is difficult. Therefore, rapid detection of contaminants, whether a military chemical/biological threat, a hazardous chemical spill, naturally occurring toxins, or bacterial build-up is a priority. The development of rapid environmentally portable and stable monitors that allow continuous monitoring of the water supply is ideal. EIC Laboratories has been developing Surface-Enhanced Raman Spectroscopy (SERS) to detect chemical agents, toxic industrial chemicals (TICs), viruses, cyanotoxins and bacterial agents. SERS is an ideal technique for the Joint Service Agent Water Monitor (JSAWM). SERS uses the enhanced Raman signals observed when an analyte adsorbs to a roughened metal substrate to enable trace detection. Proper development of the metal substrate will optimize the sensitivity and selectivity towards the analytes of interest.

  5. Towards field malaria diagnosis using surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Keren; Xiong, Aoli; Yuen, Clement; Preiser, Peter; Liu, Quan

    2016-04-01

    We report three strategies of surface enhanced Raman spectroscopy (SERS) for β-hematin and hemozoin detection in malaria infected human blood, which can be potentially developed for field malaria diagnosis. In the first strategy, we used silver coated magnetic nanoparticles (Fe3O4@Ag) in combination with an external magnetic field to enhance the Raman signal of β-hematin. Then we developed two SERS methods without the requirement of magnetic field for malaria infection diagnosis. In Method 1, silver nanoparticles were synthesized separately and then mixed with lysed blood just like in traditional SERS measurements; while in Method 2, we developed an ultrasensitive SERS method by synthesizing silver nanoparticles directly inside the parasites of Plasmodium falciparum. Method 2 can be also used to detect single parasites in the ring stage.

  6. Nematic Resonance in the Raman Response of Iron-Based Superconductors.

    PubMed

    Gallais, Yann; Paul, Indranil; Chauvière, Ludivine; Schmalian, Jörg

    2016-01-01

    In a fully gapped superconductor the electronic Raman response has a pair-breaking peak at twice the superconducting gap Δ, if the Bogoliubov excitations are uncorrelated. Motivated by the iron based superconductors, we study how this peak is modified if the superconducting phase hosts a nematic-structural quantum critical point. We show that, upon approaching this point by tuning, e.g., doping, the growth of nematic correlations between the quasiparticles transforms the pair-breaking peak into a nematic resonance. The mode energy is below 2Δ, and stays finite at the quantum critical point, where its spectral weight is sharply enhanced. The latter is consistent with recent experiments on electron-doped iron based superconductors and provides direct evidence of nematic correlations in their superconducting phases. PMID:26799039

  7. A resonance raman scattering study of vibrational dephasing in the mixed crystal of pentacene in naphthalene

    NASA Astrophysics Data System (ADS)

    de Bree, Philippus; Wiersma, Douwe A.

    1982-04-01

    Resonance Raman scattering is used to investigate vibrational dephasing in the mixed crystal of pentacene in naphthalene. It is shown that, as for the pure electronic transition, uncorrelated resonant phonon scattering processes in the ground and vibrationally excited state induce vibrational dephasing in this system.

  8. Surface-enhanced Raman spectroscopy of surfactants on silver electrodes

    SciTech Connect

    Sun, Soncheng; Birke, R.L.; Lombardi, J.R. )

    1990-03-08

    Surface-enhanced Raman spectroscopy (SERS) has been used to study different kinds of surfactants (cationic, anionic, and nonionic surfactants) adsorbed on a roughened Ag electrode. Spectral assignments are made for the SERS spectrum of cetylpyridinium chloride (CPC), and it is shown that the molecule is oriented with its pyridinium ring end-on at the electrode surface at potentials positive to the point of zero charge (pzc) on Ag.

  9. High-resolution inverse Raman and resonant-wave-mixing spectroscopy

    SciTech Connect

    Rahn, L.A.

    1993-12-01

    These research activities consist of high-resolution inverse Raman spectroscopy (IRS) and resonant wave-mixing spectroscopy to support the development of nonlinear-optical techniques for temperature and concentration measurements in combustion research. Objectives of this work include development of spectral models of important molecular species needed to perform coherent anti-Stokes Raman spectroscopy (CARS) measurements and the investigation of new nonlinear-optical processes as potential diagnostic techniques. Some of the techniques being investigated include frequency-degenerate and nearly frequency-degenerate resonant four-wave-mixing (DFWM and NDFWM), and resonant multi-wave mixing (RMWM).

  10. Plasmonic lens focused longitudinal field excitation for tip-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Mingqian; Wang, Jia

    2015-04-01

    A novel tip-enhanced Raman spectroscopy setup with longitudinal field excitation generated by a plasmonic lens is investigated. A symmetry-breaking structure plasmonic lens that is expected to realize a strong longitudinal electric field focus has been designed to generate suitable excitation for enhancement in a tip antenna. The focusing performance of the plasmonic lens is theoretically simulated by the finite-difference time-domain method and experimentally verified by the detection of optical near-field distribution. A plasmonic lens assisted tip-enhanced Raman spectroscopy setup has been constructed and used to investigate specimens of carbon nanotubes. Tip-enhanced Raman spectra with distinct excitation wavelengths show similar Raman shifts but different intensities. Experimental results presented in this paper demonstrate that the Raman signal is considerably enhanced. It indicates that the novel tip-enhanced Raman spectroscopy configuration is feasible and is a promising technique for tip-enhanced Raman spectroscopy measurements and characterizations.

  11. Plasmonic lens focused longitudinal field excitation for tip-enhanced Raman spectroscopy.

    PubMed

    Zhang, Mingqian; Wang, Jia

    2015-01-01

    A novel tip-enhanced Raman spectroscopy setup with longitudinal field excitation generated by a plasmonic lens is investigated. A symmetry-breaking structure plasmonic lens that is expected to realize a strong longitudinal electric field focus has been designed to generate suitable excitation for enhancement in a tip antenna. The focusing performance of the plasmonic lens is theoretically simulated by the finite-difference time-domain method and experimentally verified by the detection of optical near-field distribution. A plasmonic lens assisted tip-enhanced Raman spectroscopy setup has been constructed and used to investigate specimens of carbon nanotubes. Tip-enhanced Raman spectra with distinct excitation wavelengths show similar Raman shifts but different intensities. Experimental results presented in this paper demonstrate that the Raman signal is considerably enhanced. It indicates that the novel tip-enhanced Raman spectroscopy configuration is feasible and is a promising technique for tip-enhanced Raman spectroscopy measurements and characterizations. PMID:25977661

  12. FT-Raman, surface-enhanced Raman spectroscopy and theoretical investigations of diclofenac sodium

    NASA Astrophysics Data System (ADS)

    Iliescu, T.; Baia, M.; Kiefer, W.

    2004-03-01

    Raman and surface-enhanced Raman (SER) spectroscopies have been applied to the vibrational characterization of diclofenac sodium (DCF-Na). Theoretical calculations (DFT and ab initio) of two DCF-Na conformers have been performed to find the optimized structure and computed vibrational wavenumbers of the most stable one. SER spectra in silver colloid at different pH values have been also recorded and analyzed. Good SER spectra have been obtained in acidic and neutral environments, proving the chemisorption of the DCF-Na molecule on the silver surface. In the investigated pH range the carboxylate anion has been bonded to the silver surface through the lone pair oxygen electrons. The phenyl rings' orientation with respect to the silver surface changed on passing from acidic to neutral pH from a tilted close to flat to a more perpendicular one.

  13. Raman and surface-enhanced Raman spectroscopy evidence for oxidation-induced decomposition of graphite

    NASA Astrophysics Data System (ADS)

    Owens, Frank J.

    2015-06-01

    It has been proposed that reduction of exfoliated graphite oxide could be a potential method for producing large quantities of graphene. Raman and surface-enhanced Raman spectroscopy are used to show that oxidation of graphite and exfoliated graphite significantly increases the defect structure of both materials. This would likely lead to a heavily defected graphene structure when oxygen is removed. To insure the observed decomposition is not due to the laser light, the effect of laser intensity on the materials was investigated. It was found that at the highest laser intensity (1.4 × 108 W/M2) there was a significant increase in defects. However, lower laser intensity was found which did not produce defects and was used in the studies of the effect of oxidation on the spectra.

  14. Surface enhanced Raman scattering for detection of Pseudomonas aeruginosa quorum sensing compounds

    NASA Astrophysics Data System (ADS)

    Thrift, Will; Bhattacharjee, Arunima; Darvishzadeh-Varcheie, Mahsa; Lu, Ying; Hochbaum, Allon; Capolino, Filippo; Whiteson, Katrine; Ragan, Regina

    2015-08-01

    Pseudomonas aeruginosa (PA), a biofilm forming bacterium, commonly affects cystic fibrosis, burn victims, and immunocompromised patients. PA produces pyocyanin, an aromatic, redox active, secondary metabolite as part of its quorum sensing signaling system activated during biofilm formation. Surface enhanced Raman scattering (SERS) sensors composed of Au nanospheres chemically assembled into clusters on diblock copolymer templates were fabricated and the ability to detect pyocyanin to monitor biofilm formation was investigated. Electromagnetic full wave simulations of clusters observed in scanning electron microcopy images show that the localized surface plasmon resonance wavelength is 696 nm for a dimer with a gap spacing of 1 nm in an average dielectric environment of the polymer and analyte; the local electric field enhancement is on the order of 400 at resonance, relative to free space. SERS data acquired at 785 nm excitation from a monolayer of benzenethiol on fabricated samples was compared with Raman data of pure benzenethiol and enhancement factors as large as 8×109 were calculated that are consistent with simulated field enhancements. Using this system, the limit of detection of pyocyanin in pure gradients was determined to be 10 parts per billion. In SERS data of the supernatant from the time dependent growth of PA shaking cultures, pyocyanin vibrational modes were clearly observable during the logarithmic growth phase corresponding to activation of genes related to biofilm formation. These results pave the way for the use of SERS sensors for the early detection of biofilm formation, leading to reduced healthcare costs and better patient outcomes.

  15. Ultrasonic signal enhancement by resonator techniques

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1973-01-01

    Ultrasonic resonators increase experimental sensitivity to acoustic dispersion and changes in attenuation. Experimental sensitivity enhancement line shapes are presented which were obtained by modulating the acoustic properties of a CdS resonator with a light beam. Small changes in light level are made to produce almost pure absorptive or dispersive changes in the resonator signal. This effect is due to the coupling of the ultrasonic wave to the CdS conductivity which is proportional to incident light intensity. The resonator conductivity is adjusted in this manner to obtain both dispersive and absorptive sensitivity enhancement line shapes. The data presented verify previous thoretical calculations based on a propagating wave model.

  16. Speciation of aqueous gold(III) chlorides from ultraviolet/visible absorption and Raman/resonance Raman spectroscopies

    SciTech Connect

    Peck, J.A.; Brown, G.E. Jr. ); Tait, C.D.; Swanson, B.I. )

    1991-03-01

    Gold(III) speciation in a one molar NaCl aqueous solution at ambient temperature and pressure was determined as a function of pH using ultraviolet/visible (UV/vis) absorption and Raman/resonance Raman (RR) spectroscopies. Gold concentrations in the solutions studies by UV/vis spectroscopy were {approximately}10{sup {minus}4} M whereas those studied by Raman spectroscopy were {approximately}10{sup {minus}2} M. Changes in the intensity and positions of ligand-to-metal charge transfer bands in the UV/vis spectra of the Au(III) chloride solutions with increasing pH are consistent with replacement of chloride by hydroxide ligands. Changes in the number, position, and intensity of Raman and RR spectra of the same solutions are also consistent with successive replacement of chloride by hydroxide ligands in the first coordination sphere of four-coordinated Au(III) with increasing pH. The Raman and UV/vis data are broadly consistent with earlier speciation predictions based on a variety of chemical measurements, but demonstrate that the mixed chloro-hydroxo complexes are more stable than predicted on the basis of theoretically estimated stability constants.

  17. Surface enhanced Raman scattering as a probe of the cholesterol oxidase enzyme

    NASA Astrophysics Data System (ADS)

    Wojnarowska, R.; Polit, J.; Broda, D.; Gonchar, M.; Sheregii, E. M.

    2015-03-01

    In this work, we present a sensitive method for the determination of the enzyme concentration of cholesterol oxidase, which is one of the most important analytical enzymes. Although the method is affected by sensitivity limitations, recently the Raman scattering experimental data carried out on cholesterol oxidase conjugated via a 16-mercaptohexadecanoic acid organic linker with gold nanoparticles due to the surface plasmon resonance confirmed the observation of surface enhanced Raman scattering, which enables us to detect the vibrational lines belonging to PO and C=C bonds assigned to the flavin prosthetic group. This means there is a stable binding of the enzyme with nanoparticles as well as the enzyme remaining active and substantiates the possibility that prepared bio-nanosystems can be used for analytical purposes as a sensing element.

  18. Surface-enhanced Raman scattering of crystal violets from periodic array of gold nanocylinders

    NASA Astrophysics Data System (ADS)

    Bi, Gang; Wang, Li; Cai, Chunfeng; Ueno, Kosei; Misawa, Hiroaki; Qiu, Jianrong

    2014-09-01

    The periodic arrays of gold nanocylinder with 121 nm in diameter, 6.3 nm in gap, and 34 nm in thickness are fabricated on glass by electron-beam lithography and lift-off techniques. Some crystal violet molecules are coated on the array by using the dipping and drawing method. In addition, the surface-enhanced Raman scattering (SERS) spectra of these samples with and without gold nanocylinder arrays are characterized specifically. The largest enhancement factor is obtained when the excitation wavelength corresponds to the peak wavelength of localized surface plasmon resonance (LSPR). The density functional theory and the finite-difference time-domain method are used for the calculations of the extinction spectrum of the arrays and Raman spectra of the crystal violet, respectively. These results unambiguously demonstrate that the periodic arrays of gold nanocylinder have good and effective surface-enhanced properties for Raman scattering of crystal violets, and they also show that the excitation wavelength corresponding to the peak one of the LSPR is one of the major reasons causing SERS.

  19. Engineering plasmonic nanoparticles for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Pinkhasova, Polina

    This dissertation focuses on the development of novel nanotags encapsulated in an intricate Au-Ag nanostructure that uniquely functions both as a reporter and ultra-sensitive substrate for surface-enhanced Raman scattering (SERS) measurements. Hollow Au-Ag alloy nanoshells with a porous wall were synthesized by galvanic replacement reaction, and were subsequently loaded with Raman-active label molecules. The open structure of the nanoshells was filled with Ag via citrate reduction, entrapping label molecules in the process. The resultant nanotags have been shown to be individually SERS-active for the entrapped label molecules and robust for SERS measurements of analytes. We have shown that the SERS intensity of the molecular beacon is insensitive to environmental variants such as an external analyte 1,2-Di-(4-pyridyl)ethylene (BPE) and can be reliably used as an internal reference for quantitative measurements. Theoretical quantum chemical calculations and experimental studies revealed that surface-adsorbed poly(vinyl pyrrolidone) (PVP) used during nanotag formation which provides steric hindrance to promote colloidal stability actually enables highly selective SERS detection of analytes of various types and surface charge with enhancement factors as high as 108, depending on pH. Fully characterized nanotags were immobilized in the cladding air channels of suspended core photonic crystal fiber (PCF) to assess critical parameters such as nanoparticle coverage density and fiber length, both of which play an important role in the competitive interplay between accumulative Raman signal gain and attenuation loss, in order for the development of optimal SERS-active PCF optofluidic platform. We show that in the region where accumulative Raman gain dominates, the length of PCF can be exploited for enhanced measurement sensitivity.

  20. Surface-enhanced Raman scattering on diatom biosilica photonic crystals

    NASA Astrophysics Data System (ADS)

    Ren, Fanghui; Campbell, Jeremy; Hasan, Dihan; Wang, Xiangyu; Rorrer, Gregory L.; Wang, Alan X.

    Diatoms are a group of single-celled photosynthetic algae that make skeletal shells of hydrated amorphous silica, called frustules, which possess hierarchical nanoscale photonic crystal features made by a bottom-up approach at ambient temperature and pressure. In this paper, we theoretically investigate electric field enhancements of plasmonic nanoparticles coated on the surface of diatom skeletal shells. Surface-Enhanced Raman Scattering substrates are prepared by evaporating 10 nm thick silver film and self-assembling silver nanoparticles on diatom surfaces, which show significantly better SERS signals than silver nanoparticles on flat glass substrates.

  1. Surface-enhanced Raman spectrometry of organophosphorus chemical agents

    SciTech Connect

    Alak, A.M.; Vo-Dinh, T.

    1987-09-01

    Organophosphorus chemical agents have been analyzed by surface-enhanced Raman scattering (SERS) spectrometry. Significant spectral enhancement was achieved with special substrates that were prepared with silver-coated microspheres. Organophosphorus compounds were easily and rapidly measured at nanogram levels. The SERS spectra of eight of these organophosphorus chemical agents are presented. The sensitivity and spectral selectivity of this new spectrochemical technique for trace organic analysis of toxic chemical agents are discussed. Analyses of a two-component mixture and contaminated soil sample extract are illustrated.

  2. Liquid cell with plasmon lenses for surface enhanced raman spectroscopy.

    SciTech Connect

    Vlasko-Vlasov, V.; Joshi-Imre, A.; Bahns, J. T.; Chen, L.; Ocola, L.; Welp, U.

    2010-05-17

    High-fidelity surface enhanced Raman spectra (SERS) of Rhodamine 6G and 2-mercaptopyrimidine liquid solutions are measured using a microfluidic delivery system constructed on a flat silver substrate. Microscopic plasmon lenses patterned in the silver film focus surface plasmons into a subwavelength spot which yields the light amplification required for SERS. The system provides an efficiency similar to traditional colloidal substrates, and allows multiple sample loading. We find that the main contribution to the spectra comes from the molecules directly attached to the silver surface, which gives strong evidence for the chemical enhancement of SERS.

  3. Interface Coupling in Twisted Multilayer Graphene by Resonant Raman Spectroscopy of Layer Breathing Modes.

    PubMed

    Wu, Jiang-Bin; Hu, Zhi-Xin; Zhang, Xin; Han, Wen-Peng; Lu, Yan; Shi, Wei; Qiao, Xiao-Fen; Ijiäs, Mari; Milana, Silvia; Ji, Wei; Ferrari, Andrea C; Tan, Ping-Heng

    2015-07-28

    Raman spectroscopy is the prime nondestructive characterization tool for graphene and related layered materials. The shear (C) and layer breathing modes (LBMs) are due to relative motions of the planes, either perpendicular or parallel to their normal. This allows one to directly probe the interlayer interactions in multilayer samples. Graphene and other two-dimensional (2d) crystals can be combined to form various hybrids and heterostructures, creating materials on demand with properties determined by the interlayer interaction. This is the case even for a single material, where multilayer stacks with different relative orientations have different optical and electronic properties. In twisted multilayer graphene there is a significant enhancement of the C modes due to resonance with new optically allowed electronic transitions, determined by the relative orientation of the layers. Here we show that this applies also to the LBMs, which can be now directly measured at room temperature. We find that twisting has a small effect on LBMs, quite different from the case of the C modes. This implies that the periodicity mismatch between two twisted layers mostly affects shear interactions. Our work shows that ultralow-frequency Raman spectroscopy is an ideal tool to uncover the interface coupling of 2d hybrids and heterostructures. PMID:26062640

  4. Photoreductive titration of the resonance Raman spectra of cytochrome oxidase in whole mitochondria.

    PubMed

    Adar, F; Erecińska, M

    1979-05-01

    A photoreductive titration of the resonance Raman (RR) spectra of cytochrome c oxidase in whole mitochondria was recorded by exploiting the preferential enhancement of the Raman signals of reduced cytochrome oxidase excited at 441.6 nm. When the sample was cooled to about--10 degrees C, it was possible to slow down the photoreductive effect of the laser and to record RR spectra at various states of reduction. Compared to the earliest recorded scan (most oxidized), the dithionite-reduced sample shows the appearance of new bands at 216, 363, 560, and 1665 cm-1. At intermediate stages of photoreduction, the 216- and 560-cm-1 bands appear before the 363- and 1665-cm-1 bands; photoreduction induces full intensity in the former bands, whereas the latter bands are photoreduced to 50% of the dithionite-reduced intensity. The relative intensities of a doublet at 1609--1623 cm-1 are affected by reduction: the band at 1609 cm-1 is weaker in the earlier scans; in later scans this band has grown to equal intensity with the 1623-cm-1 band. We conclude that this reductive titration of the RR spectrum of cytochrome c oxidase reflects three states in its reduction. The behavior of the doublet at 1609--1623 cm-1 suggests that the two hemes are nonequivalent but interacting. The band at 216 cm-1 may be indicative of an iron-copper interaction that is affected by the presence of external ligands. PMID:219887

  5. Raman scattering enhanced by plasmonic clusters and its application to single-molecule imaging

    SciTech Connect

    Yasuike, Tomokazu; Nobusada, Katsuyuki

    2015-12-31

    The optical response of the linear Au{sub 8} cluster is investigated by the linear response theory based on the density functional theory. It is revealed that the observed many peaks in the visible region originate from the interaction of the ideal plasmonic excitation along the molecular axis with the background d-electron excitations, i.e., the Landau damping. In spite of the existence of the damping, the Raman scattering is shown to be enhanced remarkably by the incident light resonant to the visible excitations. The novel imaging experiment with the atomic resolution is proposed by utilizing a plasmonic cluster as the probing tip.

  6. Flexible and Transparent Surface-Enhanced Raman Scattering (SERS)-Active Metafilm for Visualizing Trace Molecules via Raman Spectral Mapping.

    PubMed

    Liu, Xiangjiang; Wang, Jingjing; Wang, Jiajun; Tang, Longhua; Ying, Yibin

    2016-06-21

    Raman spectral mapping is a powerful tool for directly visualizing the composition, structure, and distribution of molecules on any surface of interest. However, one major limitation of Raman mapping is its overlong imaging time caused by the intrinsic weak Raman signal. Here, we developed a fast Raman imaging approach based on a flexible and transparent surface-enhanced Raman scattering (SERS)-active metafilm. This particular SERS substrate can be conformably attached to a sample surface to enhance the Raman signal of analytes and the good optical transparency allow excitation and collection of signal from the backside of the substrate. Therefore, by simply attaching it to the surface of interest, a fast Raman imaging can be realized. We noticed that the imaging speed can be increased by several orders of magnitude, compared to a conventional Raman mapping approach. Importantly, the proposed approach required little or no sample preparation and exhibited good generalizability that can be performed perfectly on different surfaces. It is believed that the proposed methodology will provide new trends for chemical imaging using Raman microscopy. PMID:27219332

  7. Magnetic-Polaron-Induced Enhancement of Surface Raman Scattering.

    PubMed

    Shao, Qi; Liao, Fan; Ruotolo, Antonio

    2016-01-01

    The studies of the effects of magnetic field on surface enhanced Raman scattering (SERS) have been so far limited to the case of ferromagnetic/noble-metal, core/shell nano-particles, where the influence was always found to be negative. In this work, we investigate the influence of magnetic field on a diluted magnetic semiconductor/metal SERS system. Guided by three dimensional finite-difference time-domain simulations, a high efficient SERS substrate was obtained by diluting Mn into Au-capped ZnO, which results in an increase of the dielectric constant and, therefore, an enhancement of Raman signals. More remarkably, an increase of intensities as well as a reduction of the relative standard deviation (RSD) of Raman signals have been observed as a function of the external magnetic strength. We ascribe these positive influences to magnetic-field induced nucleation of bound magnetic polarons in the Mn doped ZnO. The combination of diluted magnetic semiconductors and SERS may open a new avenue for future magneto-optical applications. PMID:26754049

  8. Magnetic-Polaron-Induced Enhancement of Surface Raman Scattering

    PubMed Central

    Shao, Qi; Liao, Fan; Ruotolo, Antonio

    2016-01-01

    The studies of the effects of magnetic field on surface enhanced Raman scattering (SERS) have been so far limited to the case of ferromagnetic/noble-metal, core/shell nano-particles, where the influence was always found to be negative. In this work, we investigate the influence of magnetic field on a diluted magnetic semiconductor/metal SERS system. Guided by three dimensional finite-difference time-domain simulations, a high efficient SERS substrate was obtained by diluting Mn into Au-capped ZnO, which results in an increase of the dielectric constant and, therefore, an enhancement of Raman signals. More remarkably, an increase of intensities as well as a reduction of the relative standard deviation (RSD) of Raman signals have been observed as a function of the external magnetic strength. We ascribe these positive influences to magnetic-field induced nucleation of bound magnetic polarons in the Mn doped ZnO. The combination of diluted magnetic semiconductors and SERS may open a new avenue for future magneto-optical applications. PMID:26754049

  9. Nanogap structures: combining enhanced Raman spectroscopy and electronic transport.

    PubMed

    Natelson, Douglas; Li, Yajing; Herzog, Joseph B

    2013-04-21

    Surface-enhanced Raman spectroscopy (SERS) is an experimental tool for accessing vibrational and chemical information, down to the single molecule level. SERS typically relies on plasmon excitations in metal nanostructures to concentrate the incident radiation and to provide an enhanced photon density of states to couple emitted radiation to the far field. Many common SERS platforms involve metal nanoparticles to generate the required electromagnetic enhancements. Here we concentrate on an alternative approach, in which the relevant plasmon excitations are supported at a truly nanoscale gap between extended electrodes, rather than discrete subwavelength nanoparticles. The ability to fabricate precise gaps on demand, and in some cases to tune the gap size in situ, combined with the additional capability of simultaneous electronic transport measurements of the nanogap, provides access to information not previously available in standard SERS. We summarize the rich plasmonic physics at work in these extended systems and highlight the recent state of the art including tip-enhanced Raman spectroscopy (TERS) and the application of mechanical break junctions and electromigrated junctions. We describe in detail how we have performed in situ gap-enhanced Raman measurements of molecular-scale junctions while simultaneously subjecting these structures to electronic transport. These extended electrode structures allow us to study the pumping of vibrational modes by the flow of tunneling electrons, as well as the shifting of vibrational energies due to the applied bias. These experiments extend SERS into a tool for examining fundamental processes of dissipation, and provide insight into the mechanisms behind SERS spectral diffusion. We conclude with a brief discussion of future directions. PMID:23385304

  10. Enhanced Raman Scattering from Aromatic Dithiols Electrosprayed into Plasmonic Nanojunctions

    SciTech Connect

    El-Khoury, Patrick Z.; Johnson, Grant E.; Novikova, Irina V.; Gong, Yu; Joly, Alan G.; Evans, James E.; Zamkov, Mikhail; Laskin, Julia; Hess, Wayne P.

    2015-12-01

    We describe surface enhanced Raman spectroscopy (SERS) experiments in which molecular coverage is systematically varied from 3.8 x 105 to 3.8 x 102 to 0.38 molecules/μm2 using electrospray deposition of ethanolic 4,4’-dimercaptostilbene (DMS) solutions. The plasmonic SERS substrate used herein consists of a well-characterized 2-dimensional (2D) array of silver nanospheres [see El-Khoury et al., J. Chem. Phys., 2014, 141, 214308], previously shown to feature uniform topography and plasmonic response, as well as intense SERS activity. When compared to their ensemble averaged analogues, the spatially and temporally averaged spectra of a single molecule exhibit several unique features including: (i) distinct relative intensities of the observable Raman-active vibrational states, (ii) more pronounced SERS backgrounds, and (iii) broader Raman lines indicative of faster vibrational dephasing. The first observation may be understood on the basis of an intuitive physical picture in which removal of averaging over multiple molecules exposes the tensorial nature of Raman scattering. When an oriented single molecule gives rise to the recorded SERS spectra, the relative orientation of the molecule with respect to vector components of the local electric field determines the relative intensities of the observable vibrational states. Using a single molecule SERS framework described herein, we derive a unique molecular orientation in which a single DMS molecule is isolated at a nanojunction formed between two silver nanospheres in the 2D array. The DMS molecule is found lying nearly flat with respect to the metal surface. The derived orientation of a single molecule at a plasmonic nanojunction is consistent with observations (ii) and (iii). In particular, a careful inspection of the temporal spectral variations along the recorded single molecule SERS time sequences reveals that the time-averaged SERS backgrounds arise from individual molecular events, marked by broadened SERS

  11. Fano resonance of Li-doped KTa1−xNbxO3 single crystals studied by Raman scattering

    PubMed Central

    Rahaman, M. M.; Imai, T.; Sakamoto, T.; Tsukada, S.; Kojima, S.

    2016-01-01

    The enhancement of functionality of perovskite ferroelectrics by local structure is one of current interests. By the Li-doping to KTa1−xNbxO3 (KTN), the large piezoelectric and electro-optic effects were reported. In order to give new insights into the mechanism of doping, the microscopic origin of the Fano resonance induced by the local structure was investigated in 5%Li-doped KTN single crystals by Raman scattering. The coupling between the continuum states and the transverse optical phonon near 196 cm−1 (Slater mode) caused a Fano resonance. In the vicinity of the cubic-tetragonal phase transition temperature, TC-T = 31 °C, the almost disappearance of the Fano resonance and the remarkable change of the central peak (CP) intensity were observed upon heating. The local symmetry of the polar nanoregions (PNRs), which was responsible for the symmetry breaking in the cubic phase, was determined to E(x, y) symmetry by the angular dependence of Raman scattering. The electric field induced the significant change in the intensity of both CP and Fano resonance. From these experimental results, it is concluded that the origin of the Fano resonance in Li-doped KTN crystals is the coupling between polarization fluctuations of PNRs and the Slater mode, both belong to the E(x, y) symmetry. PMID:27049847

  12. Fano resonance of Li-doped KTa1-xNbxO3 single crystals studied by Raman scattering.

    PubMed

    Rahaman, M M; Imai, T; Sakamoto, T; Tsukada, S; Kojima, S

    2016-01-01

    The enhancement of functionality of perovskite ferroelectrics by local structure is one of current interests. By the Li-doping to KTa1-xNbxO3 (KTN), the large piezoelectric and electro-optic effects were reported. In order to give new insights into the mechanism of doping, the microscopic origin of the Fano resonance induced by the local structure was investigated in 5%Li-doped KTN single crystals by Raman scattering. The coupling between the continuum states and the transverse optical phonon near 196 cm(-1) (Slater mode) caused a Fano resonance. In the vicinity of the cubic-tetragonal phase transition temperature, TC-T = 31 °C, the almost disappearance of the Fano resonance and the remarkable change of the central peak (CP) intensity were observed upon heating. The local symmetry of the polar nanoregions (PNRs), which was responsible for the symmetry breaking in the cubic phase, was determined to E(x, y) symmetry by the angular dependence of Raman scattering. The electric field induced the significant change in the intensity of both CP and Fano resonance. From these experimental results, it is concluded that the origin of the Fano resonance in Li-doped KTN crystals is the coupling between polarization fluctuations of PNRs and the Slater mode, both belong to the E(x, y) symmetry. PMID:27049847

  13. Fano resonance of Li-doped KTa1‑xNbxO3 single crystals studied by Raman scattering

    NASA Astrophysics Data System (ADS)

    Rahaman, M. M.; Imai, T.; Sakamoto, T.; Tsukada, S.; Kojima, S.

    2016-04-01

    The enhancement of functionality of perovskite ferroelectrics by local structure is one of current interests. By the Li-doping to KTa1‑xNbxO3 (KTN), the large piezoelectric and electro-optic effects were reported. In order to give new insights into the mechanism of doping, the microscopic origin of the Fano resonance induced by the local structure was investigated in 5%Li-doped KTN single crystals by Raman scattering. The coupling between the continuum states and the transverse optical phonon near 196 cm‑1 (Slater mode) caused a Fano resonance. In the vicinity of the cubic-tetragonal phase transition temperature, TC-T = 31 °C, the almost disappearance of the Fano resonance and the remarkable change of the central peak (CP) intensity were observed upon heating. The local symmetry of the polar nanoregions (PNRs), which was responsible for the symmetry breaking in the cubic phase, was determined to E(x, y) symmetry by the angular dependence of Raman scattering. The electric field induced the significant change in the intensity of both CP and Fano resonance. From these experimental results, it is concluded that the origin of the Fano resonance in Li-doped KTN crystals is the coupling between polarization fluctuations of PNRs and the Slater mode, both belong to the E(x, y) symmetry.

  14. Tip-enhanced Raman spectroscopy: From concepts to practical applications

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Kurouski, Dmitry; Pozzi, Eric A.; Chiang, Naihao; Hersam, Mark C.; Van Duyne, Richard P.

    2016-08-01

    Tip-enhanced Raman spectroscopy (TERS) is a powerful technique that integrates the vibrational fingerprinting of Raman spectroscopy and the sub-nanometer resolution of scanning probe microscopy (SPM). As a result, TERS is capable of obtaining chemical maps of analyzed specimens with exceptional lateral resolution. This is extremely valuable for the study of interactions between molecules and substrates, in addition to structural characterization of biological objects, such as viruses and amyloid fibrils, 2D polymeric materials, and monitoring electrochemical and photo-catalytic processes. In this mini-review, we discuss the most significant advances of TERS, including: super high resolution chemical imaging, monitoring of catalytic processes, incorporation of pulsed-excitation techniques, single-site electrochemistry, biosensing, and art conservation. We begin with a short overview of TERS, comparing it with other surface analytical techniques, followed by an overview of recent developments and future applications in TERS.

  15. Smart surface-enhanced Raman scattering traceable drug delivery systems.

    PubMed

    Liu, Lei; Tang, Yonghong; Dai, Sheng; Kleitz, Freddy; Qiao, Shi Zhang

    2016-07-01

    A novel smart nanoparticle-based system has been developed for tracking intracellular drug delivery through surface-enhanced Raman scattering (SERS). This new drug delivery system (DDS) shows targeted cytotoxicity towards cancer cells via pH-cleavable covalent carboxylic hydrazone links and the SERS tracing capability based on gold@silica nanocarriers. Doxorubicin, as a model anticancer drug, was employed to compare SERS with conventional fluorescence tracing approaches. It is evident that SERS demonstrates higher sensitivity and resolution, revealing intracellular details, as the strengths of the original Raman signals can be amplified by SERS. Importantly, non-destructive SERS will provide the designed DDS with great autonomy and potential to study the dynamic procedures of non-fluorescent drug delivery into living cells. PMID:27297745

  16. Spatial correlation between chemical and topological defects in vitreous silica: UV-resonance Raman study

    SciTech Connect

    Saito, M. D’Amico, F.; Bencivenga, F.; Cucini, R.; Gessini, A.; Principi, E.; Masciovecchio, C.

    2014-06-28

    A spatial correlation between chemical and topological defects in the tetrahedron network in vitreous silica produced by a fusion process of natural quartz crystals was found by synchrotron-based UV resonance Raman experiments. Furthermore, a quantitative correlation between these defects was obtained by comparing visible Raman and UV absorption spectra. These results indicate that in vitreous silica produced by the fusion process the topological defects disturb the surrounding tetrahedral silica network and induce further disorder regions with sub nanometric sizes.

  17. Elevated gold ellipse nanoantenna dimers as sensitive and tunable surface enhanced Raman spectroscopy substrates.

    PubMed

    Jubb, A M; Jiao, Y; Eres, G; Retterer, S T; Gu, B

    2016-03-01

    We demonstrate large area arrays of elevated gold ellipse dimers with precisely controlled gaps for use as sensitive and highly controllable surface enhanced Raman scattering (SERS) substrates. The enhanced Raman signal observed with SERS arises from both localized and long range plasmonic effects. By controlling the geometry of a SERS substrate, in this case the size and aspect ratio of individual ellipses, the plasmon resonance can be tuned in a broad wavelength range, providing a method for designing the response of SERS substrates at different excitation wavelengths. Plasmon effects exhibited by the elevated gold ellipse dimer substrates are also demonstrated and confirmed through finite difference time domain (FDTD) simulations. A plasmon resonance red shift with an increase of the ellipse aspect ratio is observed, allowing systematic control of the resulting SERS signal intensity. Optimized elevated ellipse dimer substrates with 10 ± 2 nm gaps exhibit uniform SERS enhancement factors on the order of 10(9) for adsorbed p-mercaptoaniline molecules. PMID:26893035

  18. Elevated gold ellipse nanoantenna dimers as sensitive and tunable surface enhanced Raman spectroscopy substrates

    DOE PAGESBeta

    Jubb, A. M.; Jiao, Y.; Eres, Gyula; Retterer, Scott T.; Gu, Baohua

    2016-02-15

    Here we demonstrate large area arrays of elevated gold ellipse dimers with precisely controlled gaps for use as sensitive and highly controllable surface enhanced Raman scattering (SERS) substrates. The significantly enhanced Raman signal observed with SERS arises from both localized and long range plasmonic effects. By controlling the geometry of a SERS substrate, in this case the size and aspect ratio of individual ellipses, the plasmon resonance can be tuned in a broad wavelength range, providing a method for designing the response of SERS substrates at different excitation wavelengths. Plasmon effects exhibited by the elevated gold ellipse dimer substrates aremore » also demonstrated and confirmed through finite difference time domain (FDTD) simulations. A plasmon resonance red shift with an increase of the ellipse aspect ratio is observed, allowing systematic control of the resulting SERS signal intensity. Optimized elevated ellipse dimer substrates with 10±2 nm gaps exhibit uniform SERS enhancement factors on the order of 109 for adsorbed p-mercaptoaniline molecules.« less

  19. Enhancement of Magnetic Resonance Imaging with Metasurfaces.

    PubMed

    Slobozhanyuk, Alexey P; Poddubny, Alexander N; Raaijmakers, Alexander J E; van den Berg, Cornelis A T; Kozachenko, Alexander V; Dubrovina, Irina A; Melchakova, Irina V; Kivshar, Yuri S; Belov, Pavel A

    2016-03-01

    It is revealed that the unique properties of ultrathin metasurface resonators can improve magnetic resonance imaging dramatically. A metasurface formed when an array of metallic wires is placed inside a scanner under the studied object and a substantial enhancement of the radio-frequency magnetic field is achieved by means of subwavelength manipulation with the metasurface, also allowing improved image resolution. PMID:26754827

  20. Spectroscopic characterization of biological agents using FTIR, normal Raman and surface-enhanced Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Luna-Pineda, Tatiana; Soto-Feliciano, Kristina; De La Cruz-Montoya, Edwin; Pacheco Londoño, Leonardo C.; Ríos-Velázquez, Carlos; Hernández-Rivera, Samuel P.

    2007-04-01

    FTIR, Raman spectroscopy and Surface Enhanced Raman Scattering (SERS) requires a minimum of sample allows fast identification of microorganisms. The use of this technique for characterizing the spectroscopic signatures of these agents and their stimulants has recently gained considerable attention due to the fact that these techniques can be easily adapted for standoff detection from considerable distances. The techniques also show high sensitivity and selectivity and offer near real time detection duty cycles. This research focuses in laying the grounds for the spectroscopic differentiation of Staphylococcus spp., Pseudomonas spp., Bacillus spp., Salmonella spp., Enterobacter aerogenes, Proteus mirabilis, Klebsiella pneumoniae, and E. coli, together with identification of their subspecies. In order to achieve the proponed objective, protocols to handle, cultivate and analyze the strains have been developed. Spectroscopic similarities and marked differences have been found for Spontaneous or Normal Raman spectra and for SERS using silver nanoparticles have been found. The use of principal component analysis (PCA), discriminate factor analysis (DFA) and a cluster analysis were used to evaluate the efficacy of identifying potential threat bacterial from their spectra collected on single bacteria. The DFA from the bacteria Raman spectra show a little discrimination between the diverse bacterial species however the results obtained from the SERS demonstrate to be high discrimination technique. The spectroscopic study will be extended to examine the spores produced by selected strains since these are more prone to be used as Biological Warfare Agents due to their increased mobility and possibility of airborne transport. Micro infrared spectroscopy as well as fiber coupled FTIR will also be used as possible sensors of target compounds.

  1. Applications of Raman and Surface-Enhanced Raman Scattering to the Analysis of Eukaryotic Samples

    NASA Astrophysics Data System (ADS)

    Schulte, Franziska; Joseph, Virginia; Panne, Ulrich; Kneipp, Janina

    In this chapter, we discuss Raman scattering and surface-enhanced Raman scattering (SERS) for the analysis of cellular samples of plant and animal origin which are several tens to hundreds of microns in size. As was shown in the past several years, the favorable properties of noble metal nanostructures can be used to generate SERS signals in very complex biological samples such as cells, and result in an improved sensitivity and spatial resolution. Pollen grains, the physiological containers that produce the male gametes of seed plants, consist of a few vegetative cells and one generative cell, surrounded by a biopolymer shell. Their chemical composition has been a subject of research of plant physiologists, biochemists [1, 2], and lately even materials scientists [3, 4] for various reasons. In spite of a multitude of applied analytical approaches it could not be elucidated in its entirety yet. Animal cells from cell cultures have been a subject of intense studies due to their application in virtually all fields of biomedical research, ranging from studies of basic biological mechanisms to models for pharmaceutical and diagnostic research. Many aspects of all kinds of cellular processes including signalling, transport, and gene regulation have been elucidated, but many more facts about cell biology will need to be understood in order to efficiently address issues such as cancer, viral infection or genetic disorder. Using the information from spectroscopic methods, in particular combining normal Raman spectroscopy and SERS may open up new perspectives on cellular biochemistry. New sensitive Raman-based tools are being developed for the biochemical analysis of cellular processes [5-8].

  2. Smart surface-enhanced Raman scattering traceable drug delivery systems

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Tang, Yonghong; Dai, Sheng; Kleitz, Freddy; Qiao, Shi Zhang

    2016-06-01

    A novel smart nanoparticle-based system has been developed for tracking intracellular drug delivery through surface-enhanced Raman scattering (SERS). This new drug delivery system (DDS) shows targeted cytotoxicity towards cancer cells via pH-cleavable covalent carboxylic hydrazone links and the SERS tracing capability based on gold@silica nanocarriers. Doxorubicin, as a model anticancer drug, was employed to compare SERS with conventional fluorescence tracing approaches. It is evident that SERS demonstrates higher sensitivity and resolution, revealing intracellular details, as the strengths of the original Raman signals can be amplified by SERS. Importantly, non-destructive SERS will provide the designed DDS with great autonomy and potential to study the dynamic procedures of non-fluorescent drug delivery into living cells.A novel smart nanoparticle-based system has been developed for tracking intracellular drug delivery through surface-enhanced Raman scattering (SERS). This new drug delivery system (DDS) shows targeted cytotoxicity towards cancer cells via pH-cleavable covalent carboxylic hydrazone links and the SERS tracing capability based on gold@silica nanocarriers. Doxorubicin, as a model anticancer drug, was employed to compare SERS with conventional fluorescence tracing approaches. It is evident that SERS demonstrates higher sensitivity and resolution, revealing intracellular details, as the strengths of the original Raman signals can be amplified by SERS. Importantly, non-destructive SERS will provide the designed DDS with great autonomy and potential to study the dynamic procedures of non-fluorescent drug delivery into living cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03869g

  3. Investigation of the impact of fiber Bragg grating bandwidth on the efficiency of a Raman resonator

    NASA Astrophysics Data System (ADS)

    Henry, Leanne J.; Klopfer, Michael; Jain, Ravinder K.

    2015-03-01

    Significant spectral power leakage was found to occur around the high reflectivity fiber Bragg gratings (FBGs) defining a 1121 nm Raman resonator cavity comprised of PM 10/125 germanosilicate fiber. This cavity was part of a Raman system pumped with broad linewidth 1069 nm and seeded with narrow linewidth 1178 nm. The 1069 nm upon entering the resonator cavity was Raman converted to 1121 nm which then amplified the 1178 nm as it passed through the cavity. Spectral leakage of 1121 nm light from the resonator cavity resulted in sub-optimal amplification of 1178 nm which forced usage of longer resonator cavities having a decreased threshold for Stimulated Brillouin Scattering. Upon study of 1121 nm linewidth broadening as a function of resonator length for cavities employing 3 nm FBGs, differences in the percentage of 1121 nm power spectrally leaking past the output FBG as a function of the 1121 nm intracavity power propagating in the forward direction are not experimentally discernible for resonator cavities longer than 40 m. But, for cavity's shorter than 40 m, the percentage of 1121 nm power spectrally leaking past the output FBG decreased significantly for similar 1121 nm intracavity power levels. For all cavity lengths, a nearly linear relationship exists between percent 1121 nm power leakage and intracavity power levels. Also, cavities employing broader bandwidth FBGs experience less 1121 nm power leakage for similar 1121 nm intracavity power levels. Finally, modeling predictions of Raman system performance are greatly improved upon usage of experimentally derived effective FBG reflectivities.

  4. Solvatochromism of 9,10-phenanthrenequinone: An electronic and resonance Raman spectroscopic study

    SciTech Connect

    Ravi Kumar, Venkatraman; Rajkumar, Nagappan; Umapathy, Siva

    2015-01-14

    Solvent effects play a vital role in various chemical, physical, and biological processes. To gain a fundamental understanding of the solute-solvent interactions and their implications on the energy level re-ordering and structure, UV-VIS absorption, resonance Raman spectroscopic, and density functional theory calculation studies on 9,10-phenanthrenequinone (PQ) in different solvents of diverse solvent polarity has been carried out. The solvatochromic analysis of the absorption spectra of PQ in protic dipolar solvents suggests that the longest (1n-π{sup 1}*; S{sub 1} state) and the shorter (1π-π{sup 1}*; S{sub 2} state) wavelength band undergoes a hypsochromic and bathochromic shift due to intermolecular hydrogen bond weakening and strengthening, respectively. It also indicates that hydrogen bonding plays a major role in the differential solvation of the S{sub 2} state relative to the ground state. Raman excitation profiles of PQ (400–1800 cm{sup −1}) in various solvents followed their corresponding absorption spectra therefore the enhancements on resonant excitation are from single-state rather than mixed states. The hyperchromism of the longer wavelength band is attributed to intensity borrowing from the nearby allowed electronic transition through vibronic coupling. Computational calculation with C{sub 2ν} symmetry constraint on the S{sub 2} state resulted in an imaginary frequency along the low-frequency out-of-plane torsional modes involving the C=O site and therefore, we hypothesize that this mode could be involved in the vibronic coupling.

  5. Identifying or measuring selected substances or toxins in a subject using resonant raman signals

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)

    2005-01-01

    Methods and systems of the present invention identify the presence of and/or the concentration of a selected analyte in a subject by: (a) illuminating a selected region of the eye of a subject with an optical excitation beam, wherein the excitation beam wavelength is selected to generate a resonant Raman spectrum of the selected analyte with a signal strength that is at least 100 times greater than Raman spectrums generated by non-resonant wavelengths and/or relative to signals of normal constituents present in the selected region of the eye; (b) detecting a resonant Raman spectrum corresponding to the selected illuminated region of the eye; and (c) identifying the presence, absence and/or the concentration of the selected analyte in the subject based on said detecting step. The apparatus may also be configured to be able to obtain biometric data of the eye to identify (confirm the identity of) the subject.

  6. Multi-wavelength resonance Raman spectroscopy of bacteria to study the effects of growth condition

    NASA Astrophysics Data System (ADS)

    Kunapareddy, Nagapratima; Grun, Jacob; Lunsford, Robert; Gillis, David; Nikitin, Sergei; Wang, Zheng

    2012-06-01

    We will examine the use of multi-wavelength UV resonance-Raman signatures to identify the effects of growth phase on different types of bacteria. Gram positive and gram-negative species, Escherichia coli, Bacillus cereus, Citrobacter koseri and Citrobacter braakii were grown to logarithmic and stationary phases in different culture media. Raman spectra of bacteria were obtained by sequential illumination of samples between 220 and 260 nm; a range which encompasses the resonance frequencies of cellular components. In addition to the information contained in the single spectrum, this two-dimensional signature contains information reflecting variations in resonance cross sections with illumination wavelength. Results of our algorithms in identifying the differences between these germs are discussed. Preliminary results indicate that growth affects the Raman signature, but not to an extent that would negate identification of the species.

  7. Resonance effects in the Raman scattering of monolayer and few-layer MoSe2

    NASA Astrophysics Data System (ADS)

    Soubelet, P.; Bruchhausen, A. E.; Fainstein, A.; Nogajewski, K.; Faugeras, C.

    2016-04-01

    Using resonant Raman scattering spectroscopy with 25 different laser lines, we describe the Raman scattering spectra of monolayer and multilayer 2H-molybdenum diselenide (MoSe2) as well as the different resonances affecting the most pronounced features. For high-energy phonons, both A - and E -symmetry type phonons present resonances with A and B excitons of MoSe2 together with a marked increase of intensity when exciting at higher energy, close to the C -exciton energy. We observe symmetry-dependent exciton-phonon coupling affecting mainly the low-energy rigid layer phonon modes. The shear mode for multilayer displays a pronounced resonance with the C exciton while the breathing mode has an intensity that grows with the excitation laser energy, indicating a resonance with electronic excitations at energies higher than that of the C exciton.

  8. Atomic-layer-deposited silver and dielectric nanostructures for plasmonic enhancement of Raman scattering from nanoscale ultrathin films.

    PubMed

    Ko, Chung-Ting; Yang, Po-Shuan; Han, Yin-Yi; Wang, Wei-Cheng; Huang, Jhih-Jie; Lee, Yen-Hui; Tsai, Yi-Jen; Shieh, Jay; Chen, Miin-Jang

    2015-07-01

    Plasmonic silver nanostructures and a precise ZnO cover layer prepared by capacitively coupled plasma atomic layer deposition (ALD) were exploited to enhance the Raman scattering from nanoscale ultrathin films on a Si substrate. The plasmonic activity was supported by a nanostructured Ag (nano-Ag) layer, and a ZnO cover layer was introduced upon the nano-Ag layer to spectrally tailor the localized surface plasmon resonance to coincide with the laser excitation wavelength. Because of the optimized dielectric environment provided by the precise growth of ZnO cover layer using ALD, the intensity of Raman scattering from nanoscale ultrathin films was significantly enhanced by an additional order of magnitude, leading to the observation of the monoclinic and tetragonal phases in the nanoscale ZrO2 high-K gate dielectric as thin as ∼6 nm on Si substrate. The excellent agreement between the finite-difference time-domain simulation and experimental measurement further confirms the so-called [absolute value]E(->)[absolute value](4) dependence of the surface-enhanced Raman scattering. This technique of plasmonic enhancement of Raman spectroscopy, assisted by the nano-Ag layer and optimized dielectric environment prepared by ALD, can be applied to characterize the structures of ultrathin films in a variety of nanoscale materials and devices, even on a Si substrate with overwhelming Raman background. PMID:26057412

  9. Photoacoustic imaging and surface-enhanced Raman spectroscopy using dual modal contrast agents

    NASA Astrophysics Data System (ADS)

    Park, Sungjo; Lee, Seunghyun; Cha, Myeonggeun; Jeong, Cheolhwan; Kang, Homan; Park, So Yeon; Lee, Yoon-sik; Jeong, Daehong; Kim, Chulhong

    2016-03-01

    Recently, photoacoustic tomography (PAT) has emerged as a remarkable non-invasive imaging modality that provides a strong optical absorption contrast, high ultrasonic resolution, and great penetration depth. Thus, PAT has been widely used as an in vivo preclinical imaging tool. Surface-enhanced Raman spectroscopy (SERS) is another attractive sensing technology in biological research because it offers highly sensitive chemical analyses and multiplexed detection. By performing dual-modal imaging of SERS and PAT, high-resolution structural PAT imaging and high-sensitivity SERS sensing can be achieved. At the same time, it is equally important to develop a dual modal contrast agent for this purpose. To perform both PAT and SERS, we synthesized PEGylated silver bumpy nanoshells (AgBSs). The AgBSs generate strong PA signals owing to their strong optical absorption properties as well as sensitive SERS signals because of the surface plasmon resonance effect. Then, multiplexed Raman chemicals were synthesized to enhance the sensitivity of Raman. We have photoacoustically imaged the sentinel lymph nodes of small animals after intradermal injection of multiplexed agents. Furthermore, the chemical composition of each agent has been distinguished through SERS.

  10. Surface-Enhanced Raman Scattering of Silicon Nanocrystals in a Silica Film

    NASA Astrophysics Data System (ADS)

    Novikov, Sergei; Khriachtchev, Leonid

    2016-06-01

    Surface-enhanced Raman scattering (SERS) is an intriguing effect, efficiency of which depends on many factors and whose applicability to a given system is not obvious before the experiment. The motivation of the present work is to demonstrate the SERS effect on silicon nanocrystals (Si-nc) embedded in silica, the material of high technological importance. Using the Ag overlayer method, we have found the SERS effect for this material. The best result is obtained for Ag layers of a weight thickness of 12 nm, whose surface plasmons are in a resonance with the laser wavelength (488 nm). The enhancement obtained for the Raman signal from 3–4-nm Si-nc in a 40-nm SiOx film is above 100. The SERS effect is about twice stronger for ultra-small Si-nc (~1 nm) and/or disordered silicon compared to Si-nc with sizes of 3–4 nm. The SERS measurements with an Ag overlayer allow detecting silicon crystallization for ultra-thin SiOx films and/or for very low Si excess and suppress the Raman signal from the substrate and the photoluminescence of the film.

  11. Surface-Enhanced Raman Scattering of Silicon Nanocrystals in a Silica Film.

    PubMed

    Novikov, Sergei; Khriachtchev, Leonid

    2016-01-01

    Surface-enhanced Raman scattering (SERS) is an intriguing effect, efficiency of which depends on many factors and whose applicability to a given system is not obvious before the experiment. The motivation of the present work is to demonstrate the SERS effect on silicon nanocrystals (Si-nc) embedded in silica, the material of high technological importance. Using the Ag overlayer method, we have found the SERS effect for this material. The best result is obtained for Ag layers of a weight thickness of 12 nm, whose surface plasmons are in a resonance with the laser wavelength (488 nm). The enhancement obtained for the Raman signal from 3-4-nm Si-nc in a 40-nm SiOx film is above 100. The SERS effect is about twice stronger for ultra-small Si-nc (~1 nm) and/or disordered silicon compared to Si-nc with sizes of 3-4 nm. The SERS measurements with an Ag overlayer allow detecting silicon crystallization for ultra-thin SiOx films and/or for very low Si excess and suppress the Raman signal from the substrate and the photoluminescence of the film. PMID:27256615

  12. Surface-Enhanced Raman Scattering of Silicon Nanocrystals in a Silica Film

    PubMed Central

    Novikov, Sergei; Khriachtchev, Leonid

    2016-01-01

    Surface-enhanced Raman scattering (SERS) is an intriguing effect, efficiency of which depends on many factors and whose applicability to a given system is not obvious before the experiment. The motivation of the present work is to demonstrate the SERS effect on silicon nanocrystals (Si-nc) embedded in silica, the material of high technological importance. Using the Ag overlayer method, we have found the SERS effect for this material. The best result is obtained for Ag layers of a weight thickness of 12 nm, whose surface plasmons are in a resonance with the laser wavelength (488 nm). The enhancement obtained for the Raman signal from 3–4-nm Si-nc in a 40-nm SiOx film is above 100. The SERS effect is about twice stronger for ultra-small Si-nc (~1 nm) and/or disordered silicon compared to Si-nc with sizes of 3–4 nm. The SERS measurements with an Ag overlayer allow detecting silicon crystallization for ultra-thin SiOx films and/or for very low Si excess and suppress the Raman signal from the substrate and the photoluminescence of the film. PMID:27256615

  13. Surface enhanced Raman scattering (SERS) of silver ions embedded nanocomposite glass.

    PubMed

    Manikandan, Pitchamuthu; Manikandan, Durgachalam; Manikandan, Elayaperumal; Ferdinand, Arumainathan Christy

    2014-04-24

    Silver nanocomposites (Ag-NCs) glasses are formed by the ion exchange technique of dipping the host matrix in the molten metal salt bath. These ions exchanged glasses are then annealed at different temperatures in air for one hour. They exhibit striking linear and nonlinear optical properties with potential applications in the field of photonics materials. The optical absorption spectra of Ag ion exchanged and annealed glasses confirm the presence of the nano sized metal (Ag) cluster embedded inside the glass matrix. The size and morphology of the embedded silver nanoclusters are studied from their surface plasmon resonance (SPR) and surface enhanced Raman spectroscopy (SERS). Post Ag ion exchange made some structural changes in the soda lime glass which can be observed from Raman spectroscopy. It is observed that diffusion process lead to depolymerization of the glass network as it determined by analyzing the various peaks of SERS spectra. Significant enhancement in the Raman signal by these Ag-NCs, prove them as effective SERS substrates. PMID:24486788

  14. A surface enhanced Raman spectroscopy platform based on nanoshells for detection of β-amyloid

    NASA Astrophysics Data System (ADS)

    Beier, Hope T.; Cowan, Christopher B.; Good, Theresa A.; Coté, Gerard L.

    2008-02-01

    A major limitation of many surfaced enhanced Raman spectroscopy (SERS) approaches is the dependence of the Raman enhancement on the local nanostructure. While these local "hot spots" may provide areas of extremely strong enhancement, which make trace analyte detection possible, they also make quantitative measurements problematic. Gold nanoshells however, with the ratio of the radius of their silica core to gold shell tuned to the near infrared excitation wavelength, have been used as a platform for uniform SERS enhancement. By using nanoshells, the SERS enhancement is dependent on the resonance of single nanoshells, without relying on the uncontrolled contribution from localized "hot spots". The nanoshell platform is functionalized with sialic acid to mimic neuronal cells surfaces to allow for the specific binding of β-amyloid, the primary protein component of the senile plaques found in Alzheimer's disease patients. We ultimately hope that this mechanism will provide insight into the relationship between the progression of Alzheimer's disease and β-amyloid through detection of the toxic form of the protein with structural and concentration information. With this approach, we have obtained concentration dependent spectra, consistent across the platform surface, which indicate the feasibility of detecting β-amyloid oligomers into the picomolar range. Additionally, by monitoring SERS spectra as β-amyloid changes its structural conformation from monomer to fibril, we have demonstrated conformational dependence of the SERS signals.

  15. Effects of inhomogeneous broadening on the resonance Raman excitation profile of lycopene

    NASA Astrophysics Data System (ADS)

    Cotting, J. E.; Hoskins, L. C.; Levan, M. E.

    1982-08-01

    The resonance Raman excitation profiles for the ν1, ν2, and ν3 vibrations of lycopene in ethyl alcohol, toluene, and carbon disulfide solvents have been measured. The results are interpreted in terms of a three-mode vibrational theory which includes both homogeneous and inhomogeneous broadening effects. Excellent agreement between calculated and observed excitation profiles and visible spectra was found, thus emphasizing the need to interpret resonance Raman data using a multimode vibrational model. The results indicate that the major broadening mechanism is homogeneous broadening, with about a 25% contribution from inhomogeneous broadening. The excitation profiles in carbon disulfide gave the largest inhomogeneous broadening.

  16. High-speed tip-enhanced Raman imaging (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Chaigneau, Marc; Krayez, Andrey V.; Lancry, Ophélie; Saunin, Sergey A.

    2015-10-01

    Tip Enhanced Raman Scattering (TERS), a technique that provides molecular information on the nanometer scale, has been a subject of great scientific interest for 15 years. But regardless of the recent achievements and applications of TERS, ranging from material science and nanotechnology, strain measurement in semiconductors, to cell biological applications, the TERS technique has been hampered by extremely long acquisition times, measured in hours, required for collection of reasonably high pixel density TERS maps. In this talk, specifics of the TERS setup that enable fast, high pixel density nano-Raman imaging will be discussed: The innovative integration of technologies brings high-throughput optics and high-resolution scanning for high-speed imaging without interferences between the techniques. The latest developments in near-field optical probes also provide reliable solutions for academic and industrial researchers alike to easily get started with nanoscale Raman spectroscopy. Thanks to those latest instrumental developments, we will present the nanoscale imaging of chemical and physical properties of graphene, carbone nanotubes and self-assembled monolayers of organic molecules, with a spatial resolution routinely obtained in TERS maps in the 15 - 20 nm range and a best resolution achieved being of 7 nm

  17. Tip-enhanced Raman scattering of bacillus subtilis spores

    NASA Astrophysics Data System (ADS)

    Rusciano, G.; Zito, G.; Pesce, G.; Sasso, A.; Isticato, R.; Ricca, E.

    2015-07-01

    Understanding of the complex interactions of molecules at biological interfaces is a fundamental issue in biochemistry, biotechnology as well as biomedicine. A plethora of biological processes are ruled by the molecular texture of cellular membrane: cellular communications, drug transportations and cellular recognition are just a few examples of such chemically-mediated processes. Tip-Enhanced Raman Scattering (TERS) is a novel, Raman-based technique which is ideally suited for this purpose. TERS relies on the combination of scanning probe microscopy and Raman spectroscopy. The basic idea is the use of a metalled tip as a sort of optical nano-antenna, which gives place to SERS effect close to the tip end. Herein, we present the application of TERS to analyze the surface of Bacillus subtilis spores. The choice of this biological systems is related to the fact that a number of reasons support the use of spores as a mucosal delivery system. The remarkable and well-documented resistance of spores to various environmental and toxic effects make them clear potentials as a novel, surface-display system. Our experimental outcomes demonstrate that TERS is able to provide a nano-scale chemical imaging of spore surface. Moreover, we demonstrate that TERS allows differentiation between wilde-type spore and genetically modified strains. These results hold promise for the characterization and optimization of spore surface for drug-delivery applications.

  18. Rapid surface enhanced Raman scattering detection method for chloramphenicol residues.

    PubMed

    Ji, Wei; Yao, Weirong

    2015-06-01

    Chloramphenicol (CAP) is a widely used amide alcohol antibiotics, which has been banned from using in food producing animals in many countries. In this study, surface enhanced Raman scattering (SERS) coupled with gold colloidal nanoparticles was used for the rapid analysis of CAP. Density functional theory (DFT) calculations were conducted with Gaussian 03 at the B3LYP level using the 3-21G(d) and 6-31G(d) basis sets to analyze the assignment of vibrations. Affirmatively, the theoretical Raman spectrum of CAP was in complete agreement with the experimental spectrum. They both exhibited three strong peaks characteristic of CAP at 1104 cm(-1), 1344 cm(-1), 1596 cm(-1), which were used for rapid qualitative analysis of CAP residues in food samples. The use of SERS as a method for the measurements of CAP was explored by comparing use of different solvents, gold colloidal nanoparticles concentration and absorption time. The method of the detection limit was determined as 0.1 μg/mL using optimum conditions. The Raman peak at 1344 cm(-1) was used as the index for quantitative analysis of CAP in food samples, with a linear correlation of R(2)=0.9802. Quantitative analysis of CAP residues in foods revealed that the SERS technique with gold colloidal nanoparticles was sensitive and of a good stability and linear correlation, and suited for rapid analysis of CAP residue in a variety of food samples. PMID:25754387

  19. Rapid surface enhanced Raman scattering detection method for chloramphenicol residues

    NASA Astrophysics Data System (ADS)

    Ji, Wei; Yao, Weirong

    2015-06-01

    Chloramphenicol (CAP) is a widely used amide alcohol antibiotics, which has been banned from using in food producing animals in many countries. In this study, surface enhanced Raman scattering (SERS) coupled with gold colloidal nanoparticles was used for the rapid analysis of CAP. Density functional theory (DFT) calculations were conducted with Gaussian 03 at the B3LYP level using the 3-21G(d) and 6-31G(d) basis sets to analyze the assignment of vibrations. Affirmatively, the theoretical Raman spectrum of CAP was in complete agreement with the experimental spectrum. They both exhibited three strong peaks characteristic of CAP at 1104 cm-1, 1344 cm-1, 1596 cm-1, which were used for rapid qualitative analysis of CAP residues in food samples. The use of SERS as a method for the measurements of CAP was explored by comparing use of different solvents, gold colloidal nanoparticles concentration and absorption time. The method of the detection limit was determined as 0.1 μg/mL using optimum conditions. The Raman peak at 1344 cm-1 was used as the index for quantitative analysis of CAP in food samples, with a linear correlation of R2 = 0.9802. Quantitative analysis of CAP residues in foods revealed that the SERS technique with gold colloidal nanoparticles was sensitive and of a good stability and linear correlation, and suited for rapid analysis of CAP residue in a variety of food samples.

  20. Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo.

    PubMed

    McVeigh, Patrick Z; Mallia, Rupananda J; Veilleux, Israel; Wilson, Brian C

    2013-04-01

    In recent years numerous studies have shown the potential advantages of molecular imaging in vitro and in vivo using contrast agents based on surface enhanced Raman scattering (SERS), however the low throughput of traditional point-scanned imaging methodologies have limited their use in biological imaging. In this work we demonstrate that direct widefield Raman imaging based on a tunable filter is capable of quantitative multiplex SERS imaging in vivo, and that this imaging is possible with acquisition times which are orders of magnitude lower than achievable with comparable point-scanned methodologies. The system, designed for small animal imaging, has a linear response from (0.01 to 100 pM), acquires typical in vivo images in <10 s, and with suitable SERS reporter molecules is capable of multiplex imaging without compensation for spectral overlap. To demonstrate the utility of widefield Raman imaging in biological applications, we show quantitative imaging of four simultaneous SERS reporter molecules in vivo with resulting probe quantification that is in excellent agreement with known quantities (R²>0.98). PMID:23591913

  1. Protected Plasmonic Nanostructures for High Resolution Chemical Imaging using Tip Enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Butt, Rebecca; Barrios, Carlos; Malkovskiy, Andrey; Kisliuk, Alexander; Sokolov, Alexei; Foster, Mark

    2009-03-01

    Tip enhanced Raman spectroscopy (TERS), an emerging technique that combines optical microscopy and scanning probe microscopy, provides the sensitivity and selectivity necessary for high-resolution chemical imaging of polymer surfaces. An unprecedented 20 nm lateral resolution for the chemical imaging has been achieved. Unfortunately, the fragile plasmonic structures used to enhance the electric field are prone to mechanical, chemical, and thermal degradation. Developing robust noble metal nanostructures with stable plasmonic resonance is essential to reliable high resolution chemical imaging. Covering the metal layer with organic and inorganic ultrathin coatings is being investigated to extend the plasmonic activity of the engineered nanostructures. Addition of an ultrathin aluminum oxide (Al2O3) coating to a silver-coated scanning probe microscopy tip for TERS significantly improves plasmonic structure stability without sacrificing the initial TERS efficiency. This ultrathin coating provides wear resistance and stops chemical degradation responsible for the loss of signal enhancement.

  2. 3D Ag/ZnO hybrids for sensitive surface-enhanced Raman scattering detection

    NASA Astrophysics Data System (ADS)

    Huang, Chenyue; Xu, Chunxiang; Lu, Junfeng; Li, Zhaohui; Tian, Zhengshan

    2016-03-01

    To combine the surface plasma resonance of metal and local field enhancement in metal/semiconductor interface, Ag nanoparticles (NPs) were assembled on a ZnO nanorod array which was grown by hydrothermally on carbon fibers. The construction of dimensional (3D) Surface-Enhanced Raman Scattering (SERS) substrate is used for the sensitive detection of organic pollutants with the advantages such as facile synthesis, short detection time and low cost. The hybrid substrate was manifested a high sensitivity to phenol red at a lower concentration of 1 × 10-9 M and a higher enhancement factor of 3.18 × 109. Moreover, the ZnO nanostructures decorated with Ag NPs were demonstrated self-cleaning function under UV irradiation via photocatalytic degradation of the analytic molecules. The fabrication process of the materials and sensors, optimization of the SERS behaviors for different sized Ag NPs, the mechanism of SERS and recovery were presented with a detailed discussion.

  3. Femtosecond laser induced nanostructuring for surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Messaoudi, H.; Das, S. K.; Lange, J.; Heinrich, F.; Schrader, S.; Frohme, M.; Grunwald, R.

    2014-03-01

    The formation of periodical nanostructures with femtosecond laser pulses was used to create highly efficient substrates for surface-enhanced Raman spectroscopy (SERS). We report about the structuring of silver and copper substrates and their application to the SERS of DNA (herring sperm) and protein molecules (egg albumen). The maximum enhancement factors were found on Ag substrates processed with the second harmonic generation (SHG) of a 1-kHz Ti:sapphire laser and structure periods near the SHG wavelength. In the case of copper, however, the highest enhancement was obtained with long-period ripples induced with at fundamental wavelength. This is explained by an additional significant influence of nanoparticles on the surface. Nanostructured areas in the range of 1.25 mm2 were obtained in 10 s. The surfaces were characterized by scanning electron microscopy, Fast Fourier Transform and Raman spectroscopy. Moreover, the role of the chemical modification of the metal structures is addressed. Thin oxide layers resulting from working in atmosphere which improve the biocompatibility were indicated by vibration spectra. It is expected that the detailed study of the mechanisms of laser-induced nanostructure formation will stimulate further applications of functionalized surfaces like photocatalysis, selective chemistry and nano-biology.

  4. Nanotextured surfaces for surface enhanced Raman spectroscopy and sensors

    NASA Astrophysics Data System (ADS)

    Balčytis, Armandas; JuodkazytÄ--, Jurga; Seniutinas, Gediminas; Li, Xijun; Niaura, Gediminas; Juodkazis, Saulius

    2016-03-01

    Nanotextured surfaces which have surface features spanning 10-100 nm in length and height scales are among the most promising for surface enhanced Raman scattering/spectroscopy (SERS). Randomness of the feature sizes and surface morphology of such sensors brings an added benefit of spectrally broadband action and, consequently, augmented SERS intensity. Surfaces which are most promising for high sensitivity yet cost efficient for large scale production are overviewed with black CuO, which is made by chemical oxidation of Cu foil, as a representative example. Application potential and challenges to establishing quantitative SERS measurements are outlined.

  5. Bandwidth enhancement of dielectric resonator antennas

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Simons, Rainee N.

    1993-01-01

    An experimental investigation of bandwidth enhancement of dielectric resonator antennas (DRA) using parasitic elements is reported. Substantial bandwidth enhancement for the HE(sub 11delta) mode of the stacked geometry and for the HE(sub 13delta) mode of the coplanar collinear geometry was demonstrated. Excellent radiation patterns for the HE(sub 11delta) mode were also recorded.

  6. A computational study on surface-enhanced Raman spectroscopy of para-substituted Benzenethiol derivatives adsorbed on gold nanoclusters.

    PubMed

    You, Tingting; Liang, Xiu; Gao, Yukun; Yin, Penggang; Guo, Lin; Yang, Shihe

    2016-01-01

    We presented a computational study on para-substituted Benzenethiol (x-BT, x=H, F, Cl, Br, OH, SH, SeH, NH2, CH3) derivatives interacting with gold cluster for chemical effects related to surface-enhanced Raman spectroscopy (SERS). Density functional theory (DFT) calculations were performed on a series of bridge-type and vertex type x-BT/Au13 complexes for geometric, electronic and excitation properties to determine the key factor in spectral enhancement. Results indicated that off-resonance enhancement factors of bridge-type and vertex-type complexes exhibited different dependency on substitutions, which was greatly influenced by molecule-cluster transitions instead of properties such as interaction energy and charge transfer due to same origination for off-resonance and resonance chemical enhancement. PMID:26231778

  7. A computational study on surface-enhanced Raman spectroscopy of para-substituted Benzenethiol derivatives adsorbed on gold nanoclusters

    NASA Astrophysics Data System (ADS)

    You, Tingting; Liang, Xiu; Gao, Yukun; Yin, Penggang; Guo, Lin; Yang, Shihe

    2016-01-01

    We presented a computational study on para-substituted Benzenethiol (x-BT, x = H, F, Cl, Br, OH, SH, SeH, NH2, CH3) derivatives interacting with gold cluster for chemical effects related to surface-enhanced Raman spectroscopy (SERS). Density functional theory (DFT) calculations were performed on a series of bridge-type and vertex type x-BT/Au13 complexes for geometric, electronic and excitation properties to determine the key factor in spectral enhancement. Results indicated that off-resonance enhancement factors of bridge-type and vertex-type complexes exhibited different dependency on substitutions, which was greatly influenced by molecule-cluster transitions instead of properties such as interaction energy and charge transfer due to same origination for off-resonance and resonance chemical enhancement.

  8. Boosting the Quantitative Inorganic Surface-Enhanced Raman Scattering Sensing to the Limit: The Case of Nitrite/Nitrate Detection.

    PubMed

    Correa-Duarte, Miguel A; Pazos Perez, Nicolas; Guerrini, Luca; Giannini, Vincenzo; Alvarez-Puebla, Ramon A

    2015-03-01

    A high-performance ionic-sensing platform has been developed by an interdisciplinary approach, combining the classical colorimetric Griess reaction and new concepts of nanotechnology, such as plasmonic coupling of nanoparticles and surface-enhanced Raman scattering (SERS) spectroscopy. This approach exploits the advantages of combined SERS/surface-enhanced resonant Raman Scattering (SERRS) by inducing the formation of homogeneous hot spots and a colored complex in resonance with the laser line, to yield detection limits for nitrite down to the subpicomolar level. The performance of this new method was compared with the classical Griess reaction and ionic chromatography showing detection limits about 6 and 3 orders of magnitude lower, respectively. PMID:26262665

  9. Nanocap array of Au:Ag composite for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Zhang, Yongjun; Wang, Cong; Wang, Jinpeng; Chen, Lei; Li, Jia; Liu, Yang; Zhao, Xiaoyu; Wang, Yaxin; Yang, Jinghai

    2016-01-01

    We fabricated Au:Ag nanocap arrays by co-sputtering Au and Ag onto two-dimensional polystyrene (PS) colloidal sphere templates in a magnetron sputtering system for the surface-enhanced Raman scattering (SERS) substrate. In contrast to the bilayer Au/Ag, the co-sputtering Au:Ag bimetal array formed the protrusion network of Ag and Au nanoparticles, which contributed to Raman enhancement in the waxberry-like structure. The metal protrusions formed waxberry-like shell in which the PS beads were encapsulated. At the same time, the Au:Ag bimetal arrays exhibit 4-fold more enhancement in the SERS signal intensity of Rhodamine 6G at the 1649 cm-1 than Au/Ag bilayer array, which is ascribed to the plasmon coupling between the nanoparticles of Au and Ag on the sample. When the PS colloidal particle templates were etched by O2-plasma before sputtering process, the nanogaps affected the surface plasmon resonance (SPR), and the optimal gaps between adjacent Au:Ag nanocaps generated even stronger SERS enhancements. This SERS substrate of Au:Ag showed high sensitivity and reproducibility. The EF of Au:Ag nanocap array substrate onto which Rhodamine 6G (R6G) were adsorbed was evaluated as 6.72 × 1010.

  10. Nanocap array of Au:Ag composite for surface-enhanced Raman scattering.

    PubMed

    Zhang, Yongjun; Wang, Cong; Wang, Jinpeng; Chen, Lei; Li, Jia; Liu, Yang; Zhao, Xiaoyu; Wang, Yaxin; Yang, Jinghai

    2016-01-01

    We fabricated Au:Ag nanocap arrays by co-sputtering Au and Ag onto two-dimensional polystyrene (PS) colloidal sphere templates in a magnetron sputtering system for the surface-enhanced Raman scattering (SERS) substrate. In contrast to the bilayer Au/Ag, the co-sputtering Au:Ag bimetal array formed the protrusion network of Ag and Au nanoparticles, which contributed to Raman enhancement in the waxberry-like structure. The metal protrusions formed waxberry-like shell in which the PS beads were encapsulated. At the same time, the Au:Ag bimetal arrays exhibit 4-fold more enhancement in the SERS signal intensity of Rhodamine 6G at the 1649cm(-1) than Au/Ag bilayer array, which is ascribed to the plasmon coupling between the nanoparticles of Au and Ag on the sample. When the PS colloidal particle templates were etched by O2-plasma before sputtering process, the nanogaps affected the surface plasmon resonance (SPR), and the optimal gaps between adjacent Au:Ag nanocaps generated even stronger SERS enhancements. This SERS substrate of Au:Ag showed high sensitivity and reproducibility. The EF of Au:Ag nanocap array substrate onto which Rhodamine 6G (R6G) were adsorbed was evaluated as 6.72×10(10). PMID:26253437

  11. Resonance Raman Spectroscopy of Extreme Nanowires and Other 1D Systems

    PubMed Central

    Smith, David C.; Spencer, Joseph H.; Sloan, Jeremy; McDonnell, Liam P.; Trewhitt, Harrison; Kashtiban, Reza J.; Faulques, Eric

    2016-01-01

    This paper briefly describes how nanowires with diameters corresponding to 1 to 5 atoms can be produced by melting a range of inorganic solids in the presence of carbon nanotubes. These nanowires are extreme in the sense that they are the limit of miniaturization of nanowires and their behavior is not always a simple extrapolation of the behavior of larger nanowires as their diameter decreases. The paper then describes the methods required to obtain Raman spectra from extreme nanowires and the fact that due to the van Hove singularities that 1D systems exhibit in their optical density of states, that determining the correct choice of photon excitation energy is critical. It describes the techniques required to determine the photon energy dependence of the resonances observed in Raman spectroscopy of 1D systems and in particular how to obtain measurements of Raman cross-sections with better than 8% noise and measure the variation in the resonance as a function of sample temperature. The paper describes the importance of ensuring that the Raman scattering is linearly proportional to the intensity of the laser excitation intensity. It also describes how to use the polarization dependence of the Raman scattering to separate Raman scattering of the encapsulated 1D systems from those of other extraneous components in any sample. PMID:27168195

  12. Characterization of the pigment xanthomonadin in the bacterial genus Xanthomonas using micro- and resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Paret, Mathews L.; Sharma, Shiv K.; Misra, Anupam K.; Acosta, Tayro; deSilva, Asoka S.; Vowell, Tomie; Alvarez, Anne M.

    2012-06-01

    We used micro- and resonance Raman spectroscopy with 785 nm and 514.5 nm laser excitation, respectively, to characterize a plant pathogenic bacteria, Xanthomonas axonopodis pv. dieffenbachiae D150. The bacterial genus Xathomonas is closely related to bacterial genus Stenotrophomonas that causes an infection in humans. This study has identified for the first time the unique Raman spectra of the carotenoid-like pigment xanthomonadin of the Xanthomonas strain. Xanthomonadin is a brominated aryl-polyene pigment molecule similar to carotenoids. Further studies were conducted using resonance Raman spectroscopy with 514.5 nm laser excitation on several strains of the bacterial genus Xanthomonas isolated from numerous plants from various geographical locations. The current study revealed that the Raman bands representing the vibrations (v1, v2, v3) of the polyene chain of xanthomonadin are 1003-1005 (v3), 1135-1138 (v2), and 1530 (v1). Overtone bands representing xanthomonadin were identified as 2264-2275 (2v2), and combinational bands at 2653-2662 (v1+ v2). The findings from this study validate our previous finding that the Raman fingerprints of xanthomonadin are unique for the genus Xanthomonas. This facilitates rapid identification (~5 minutes) of Xanthomonas spp. from bacterial culture plates. The xanthomonadin marker is different from Raman markers of many other bacterial genus including Agrobacterium, Bacillus, Clavibacter, Enterobacter, Erwinia, Microbacterium, Paenibacillus, and Ralstonia. This study also identified Xanthomonas spp. from bacterial strains isolated from a diseased wheat sample on a culture plate.

  13. Resonance Raman Spectroscopy of Extreme Nanowires and Other 1D Systems.

    PubMed

    Smith, David C; Spencer, Joseph H; Sloan, Jeremy; McDonnell, Liam P; Trewhitt, Harrison; Kashtiban, Reza J; Faulques, Eric

    2016-01-01

    This paper briefly describes how nanowires with diameters corresponding to 1 to 5 atoms can be produced by melting a range of inorganic solids in the presence of carbon nanotubes. These nanowires are extreme in the sense that they are the limit of miniaturization of nanowires and their behavior is not always a simple extrapolation of the behavior of larger nanowires as their diameter decreases. The paper then describes the methods required to obtain Raman spectra from extreme nanowires and the fact that due to the van Hove singularities that 1D systems exhibit in their optical density of states, that determining the correct choice of photon excitation energy is critical. It describes the techniques required to determine the photon energy dependence of the resonances observed in Raman spectroscopy of 1D systems and in particular how to obtain measurements of Raman cross-sections with better than 8% noise and measure the variation in the resonance as a function of sample temperature. The paper describes the importance of ensuring that the Raman scattering is linearly proportional to the intensity of the laser excitation intensity. It also describes how to use the polarization dependence of the Raman scattering to separate Raman scattering of the encapsulated 1D systems from those of other extraneous components in any sample. PMID:27168195

  14. Coupled wave equations theory of surface-enhanced femtosecond stimulated Raman scattering.

    PubMed

    McAnally, Michael O; McMahon, Jeffrey M; Van Duyne, Richard P; Schatz, George C

    2016-09-01

    We present a coupled wave semiclassical theory to describe plasmonic enhancement effects in surface-enhanced femtosecond stimulated Raman scattering (SE-FSRS). A key result is that the plasmon enhanced fields which drive the vibrational equation of motion for each normal mode results in dispersive lineshapes in the SE-FSRS spectrum. This result, which reproduces experimental lineshapes, demonstrates that plasmon-enhanced stimulated Raman methods provide unique sensitivity to a plasmonic response. Our derived SE-FSRS theory shows a plasmonic enhancement of |gpu|(2)ImχR(ω)gst (2)/ImχR(ω), where |gpu|(2) is the absolute square of the plasmonic enhancement from the Raman pump, χR(ω) is the Raman susceptibility, and gst is the plasmonic enhancement of the Stokes field in SE-FSRS. We conclude with a discussion on potential future experimental and theoretical directions for the field of plasmonically enhanced coherent Raman scattering. PMID:27608988

  15. Modulating the Morphology of Gold Graphitic Nanocapsules for Plasmon Resonance-Enhanced Multimodal Imaging.

    PubMed

    Lai, Xiao-Fang; Zou, Yu-Xiu; Wang, Shan-Shan; Zheng, Meng-Jie; Hu, Xiao-Xiao; Liang, Hao; Xu, Yi-Ting; Wang, Xue-Wei; Ding, Ding; Chen, Long; Chen, Zhuo; Tan, Weihong

    2016-05-17

    With their unique optical properties and distinct Raman signatures, graphitic nanomaterials can serve as substrates for surface-enhanced Raman spectroscopy (SERS) or provide signal amplification for bioanalysis and detection. However, a relatively weak Raman signal has limited further biomedical applications. This has been addressed by encapsulating gold nanorods (AuNRs) in a thin graphitic shell to form gold graphitic nanocapsules. This step improves plasmon resonance, which enhances Raman intensity, and has the potential for integrating two-photon luminescence (TPL) imaging capability. However, changing the morphology of gold graphitic nanocapsules such that high quality and stability are achieved remains a challenge. To address this task, we herein report a confinement chemical vapor deposition (CVD) method to prepare the construction of AuNR-encapsulated graphitic nanocapsules with these properties. Specifically, through morphological modulation, we (1) achieved higher plasmon resonance with near-IR incident light, thus achieving greater Raman intensity, and (2) successfully integrated two-photon luminescence dual-modal (Raman/TPL) bioimaging capabilities. Cancer-cell-specific aptamers were further modified on the AuNR@G graphitic surface through simple, but strong, π-π interactions to achieve imaging selectivity through differential cancer cell recognition. PMID:27089383

  16. Phase-locking transition in Raman combs generated with whispering gallery mode resonators.

    PubMed

    Lin, Guoping; Chembo, Yanne K

    2016-08-15

    We investigate the mechanisms leading to phase locking in Raman optical frequency combs generated with ultrahigh Q crystalline whispering gallery mode disk resonators. We show that several regimes can be triggered depending on the pumping conditions, such as single-frequency Raman lasing, multimode operation involving more than one family of cavity eigenmodes, and Kerr-assisted Raman frequency comb generation. The phase locking and coherence of the combs are experimentally monitored through the measurement of beat signal spectra. These phase-locked combs, which feature high coherence and wide spectral spans, are obtained with pump powers in the range of a few tens of mW. In particular, Raman frequency combs with multiple free-spectral range spacings are reported, and the measured beat signal in the microwave domain features a 3 dB linewidth smaller than 50 Hz, thereby indicating phase locking. PMID:27519071

  17. Surface-enhanced raman optical data storage system

    DOEpatents

    Vo-Dinh, Tuan

    1994-01-01

    An improved Surface-Enhanced Raman Optical Data Storage System (SERODS) is disclosed. In the improved system, entities capable of existing in multiple reversible states are present on the storage device. Such entities result in changed Surface-Enhanced Raman Scattering (SERS) when localized state changes are effected in less than all of the entities. Therefore, by changing the state of entities in localized regions of a storage device, the SERS emissions in such regions will be changed. When a write-on device is controlled by a data signal, such a localized regions of changed SERS emissions will correspond to the data written on the device. The data may be read by illuminating the surface of the storage device with electromagnetic radiation of an appropriate frequency and detecting the corresponding SERS emissions. Data may be deleted by reversing the state changes of entities in regions where the data was initially written. In application, entities may be individual molecules which allows for the writing of data at the molecular level. A read/write/delete head utilizing near-field quantum techniques can provide for a write/read/delete device capable of effecting state changes in individual molecules, thus providing for the effective storage of data at the molecular level.

  18. Surface-Enhanced Raman Optical Data Storage system

    DOEpatents

    Vo-Dinh, T.

    1994-06-28

    An improved Surface-Enhanced Raman Optical Data Storage System (SERODS) is disclosed. In the improved system, entities capable of existing in multiple reversible states are present on the storage device. Such entities result in changed Surface-Enhanced Raman Scattering (SERS) when localized state changes are effected in less than all of the entities. Therefore, by changing the state of entities in localized regions of a storage device, the SERS emissions in such regions will be changed. When a write-on device is controlled by a data signal, such a localized regions of changed SERS emissions will correspond to the data written on the device. The data may be read by illuminating the surface of the storage device with electromagnetic radiation of an appropriate frequency and detecting the corresponding SERS emissions. Data may be deleted by reversing the state changes of entities in regions where the data was initially written. In application, entities may be individual molecules which allows for the writing of data at the molecular level. A read/write/delete head utilizing near-field quantum techniques can provide for a write/read/delete device capable of effecting state changes in individual molecules, thus providing for the effective storage of data at the molecular level. 18 figures.

  19. Trace drug analysis by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Farquharson, Stuart; Lee, Vincent Y.

    2000-12-01

    Drug overdose involves more than 10 percent of emergency room (ER) cases, and a method to rapidly identify and quantify the abused drug is critical to the ability of the ER physician to administer the appropriate care. To this end, we have been developing a surface-enhanced Raman (SER) active material capable of detecting target drugs at physiological concentrations in urine. The SER-active material consists of a metal-doped sol-gel that provides not only a million fold increase in sensitivity but also reproducible measurements. The porous silica network offers a unique environment for stabilizing SER active metal particles and the high surface area increase the interaction between the analyte and metal particles. The sol-gel has been coated on the inside walls of glass samples vials, such that urine specimens may simply be introduced for analysis. Here we present the surface-enhanced Raman spectra of a series of barbiturates, actual urine specimens, and a drug 'spiked' urine specimen. The utility of pH adjustment to suppress dominant biochemicals associated with urine is also presented.

  20. Surface-enhanced Raman spectroscopy in 3D electrospun nanofiber mats coated with gold nanorods.

    PubMed

    Camposeo, Andrea; Spadaro, Donatella; Magrì, Davide; Moffa, Maria; Gucciardi, Pietro G; Persano, Luana; Maragò, Onofrio M; Pisignano, Dario

    2016-02-01

    Nanofibers functionalized by metal nanostructures and particles are exploited as effective flexible substrates for surface-enhanced Raman scattering (SERS) analysis. Their complex three-dimensional structure may provide Raman signals enhanced by orders of magnitude compared to untextured surfaces. Understanding the origin of such improved performances is therefore very important for pushing nanofiber-based analytical technologies to their upper limit. Here, we report on polymer nanofiber mats which can be exploited as substrates for enhancing the Raman spectra of adsorbed probe molecules. The increased surface area and the scattering of light in the nanofibrous system are individually analyzed as mechanisms to enhance Raman scattering. The deposition of gold nanorods on the fibers further amplifies Raman signals due to SERS. This study suggests that Raman signals can be finely tuned in intensity and effectively enhanced in nanofiber mats and arrays by properly tailoring the architecture, composition, and light-scattering properties of the complex networks of filaments. PMID:26670770

  1. A UV resonance Raman (UVRR) spectroscopic study on the extractable compounds of Scots pine ( Pinus sylvestris) wood . Part I: Lipophilic compounds

    NASA Astrophysics Data System (ADS)

    Nuopponen, M.; Willför, S.; Jääskeläinen, A.-S.; Sundberg, A.; Vuorinen, T.

    2004-11-01

    The wood resin in Scots pine ( Pinus sylvestris) stemwood and branch wood were studied using UV resonance Raman (UVRR) spectroscopy. UVRR spectra of the sapwood and heartwood hexane extracts, solid wood samples and model compounds (six resin acids, three fatty acids, a fatty acid ester, sitosterol and sitosterol acetate) were collected using excitation wavelengths of 229, 244 and 257 nm. In addition, visible Raman spectra of the fatty and resin acids were recorded. Resin compositions of heartwood and sapwood hexane extracts were determined using gas chromatography. Raman signals of both conjugated and isolated double bonds of all the model compounds were resonance enhanced by UV excitation. The oleophilic structures showed strong bands in the region of 1660-1630 cm -1. Distinct structures were enhanced depending on the excitation wavelength. The UVRR spectra of the hexane extracts showed characteristic bands for resin and fatty acids. It was possible to identify certain resin acids from the spectra. UV Raman spectra collected from the solid wood samples containing wood resin showed a band at ˜1650 cm -1 due to unsaturated resin components. The Raman signals from extractives in the resin rich branch wood sample gave even more strongly enhanced signals than the aromatic lignin.

  2. A UV resonance Raman (UVRR) spectroscopic study on the extractable compounds of Scots pine (Pinus sylvestris) wood. Part I: lipophilic compounds.

    PubMed

    Nuopponen, M; Willför, S; Jääskeläinen, A-S; Sundberg, A; Vuorinen, T

    2004-11-01

    The wood resin in Scots pine (Pinus sylvestris) stemwood and branch wood were studied using UV resonance Raman (UVRR) spectroscopy. UVRR spectra of the sapwood and heartwood hexane extracts, solid wood samples and model compounds (six resin acids, three fatty acids, a fatty acid ester, sitosterol and sitosterol acetate) were collected using excitation wavelengths of 229, 244 and 257 nm. In addition, visible Raman spectra of the fatty and resin acids were recorded. Resin compositions of heartwood and sapwood hexane extracts were determined using gas chromatography. Raman signals of both conjugated and isolated double bonds of all the model compounds were resonance enhanced by UV excitation. The oleophilic structures showed strong bands in the region of 1660-1630 cm(-1). Distinct structures were enhanced depending on the excitation wavelength. The UVRR spectra of the hexane extracts showed characteristic bands for resin and fatty acids. It was possible to identify certain resin acids from the spectra. UV Raman spectra collected from the solid wood samples containing wood resin showed a band at approximately 1650 cm(-1) due to unsaturated resin components. The Raman signals from extractives in the resin rich branch wood sample gave even more strongly enhanced signals than the aromatic lignin. PMID:15477130

  3. Microsystem light source at 488 nm for shifted excitation resonance Raman difference spectroscopy.

    PubMed

    Maiwald, Martin; Schmidt, Heinar; Sumpf, Bernd; Güther, Reiner; Erbert, Götz; Kronfeldt, Heinz-Detlef; Tränkle, Günther

    2009-11-01

    A microsystem light source emitting at 488 nm was tested and applied as a light source for shifted excitation resonance Raman difference spectroscopy (SERRDS). A nonlinear frequency conversion using a distributed feedback (DFB) diode laser emission at 976 nm and a periodically poled lithium niobate (PPLN) waveguide crystal was realized on a micro-optical bench with a footprint of 25 mm x 5 mm. Joint temperature management via the microbench is used for wavelength tuning. Two emission lines at 487.61 nm and 487.91 nm are used for the SERRDS experiments. The Raman spectra of the test sample polystyrene demonstrate that a laser bandpass filter did not need to be implemented. Resonance Raman spectra of Tartrazine (FD&C Yellow 5, E 102) in distilled water are presented to demonstrate the suitability of this light source for SERRDS in, e.g., food safety control. PMID:19891837

  4. Raman and surface-enhanced Raman spectroscopy of amino acids and nucleotide bases for target bacterial vibrational mode identification

    NASA Astrophysics Data System (ADS)

    Guicheteau, Jason; Argue, Leanne; Hyre, Aaron; Jacobson, Michele; Christesen, Steven D.

    2006-05-01

    Raman and surface-enhanced Raman spectroscopy (SERS) studies of bacteria have reported a wide range of vibrational mode assignments associated with biological material. We present Raman and SER spectra of the amino acids phenylalanine, tyrosine, tryptophan, glutamine, cysteine, alanine, proline, methionine, asparagine, threonine, valine, glycine, serine, leucine, isoleucine, aspartic acid and glutamic acid and the nucleic acid bases adenosine, guanosine, thymidine, and uridine to better characterize biological vibrational mode assignments for bacterial target identification. We also report spectra of the bacteria Bacillus globigii, Pantoea agglomerans, and Yersinia rhodei along with band assignments determined from the reference spectra obtained.

  5. Detection of volatile organic compounds using surface enhanced Raman scattering

    SciTech Connect

    Chang, A S; Maiti, A; Ileri, N; Bora, M; Larson, C C; Britten, J A; Bond, T C

    2012-03-22

    The authors present the detection of volatile organic compounds directly in their vapor phase by surface-enhanced Raman scattering (SERS) substrates based on lithographically-defined two-dimensional rectangular array of nanopillars. The type of nanopillars is known as the tapered pillars. For the tapered pillars, SERS enhancement arises from the nanofocusing effect due to the sharp tip on top. SERS experiments were carried out on these substrates using various concentrations of toluene vapor. The results show that SERS signal from a toluene vapor concentration of ppm level can be achieved, and the toluene vapor can be detected within minutes of exposing the SERS substrate to the vapor. A simple adsorption model is developed which gives results matching the experimental data. The results also show promising potential for the use of these substrates in environmental monitoring of gases and vapors.

  6. Nanosensors based on functionalized nanoparticles and surface enhanced raman scattering

    DOEpatents

    Talley, Chad E.; Huser, Thomas R.; Hollars, Christopher W.; Lane, Stephen M.; Satcher, Jr., Joe H.; Hart, Bradley R.; Laurence, Ted A.

    2007-11-27

    Surface-Enhanced Raman Spectroscopy (SERS) is a vibrational spectroscopic technique that utilizes metal surfaces to provide enhanced signals of several orders of magnitude. When molecules of interest are attached to designed metal nanoparticles, a SERS signal is attainable with single molecule detection limits. This provides an ultrasensitive means of detecting the presence of molecules. By using selective chemistries, metal nanoparticles can be functionalized to provide a unique signal upon analyte binding. Moreover, by using measurement techniques, such as, ratiometric received SERS spectra, such metal nanoparticles can be used to monitor dynamic processes in addition to static binding events. Accordingly, such nanoparticles can be used as nanosensors for a wide range of chemicals in fluid, gaseous and solid form, environmental sensors for pH, ion concentration, temperature, etc., and biological sensors for proteins, DNA, RNA, etc.

  7. Femtoliter silver cups as surface enhanced Raman scattering active containers.

    PubMed

    Bhuvana, T; Kulkarni, G U

    2009-01-28

    Femtoliter capacity Ag cups formed by the pulsed laser ablation of an Ag foil have been tried out as substrates for surface enhanced Raman scattering (SERS) measurements. The cups are formed as the impinging droplets from the laser plume undergo a flow pattern before freezing into cup-like structures, resulting in a surface roughness (approximately 35 nm) that makes them ideal for SERS studies. The internal volume of the cups is in the femtoliter (10(-15) l) range, well suited for small-scale reactions, particularly in biological studies. The cups exhibit enhancement factors of the order of 10(6) with the analyte molecule thiophenol. Individual cups have been dosed attoliter quantities (10(-18) l) of the analyte and detected. PMID:19417320

  8. Simulation of the resonance Raman spectra for 5-halogenated (F, Cl, and Br) uracils.

    PubMed

    Sun, Shuai; Brown, Alex

    2015-04-30

    The resonance Raman spectra of the 5-halogenated (F, Cl, and Br) uracils are simulated via the Herzberg-Teller (HT) short-time dynamics formalism. The gradient of the S1 excited state is computed at the CAMB3LYP/aug-cc-pVTZ level of theory in the conductor-like polarizable continuum model for water (C-PCM, H2O), based on the equilibrium geometry determined using PBE0/aug-cc-pVTZ in H2O (C-PCM). The simulated resonance Raman spectra show good agreement with the experimental spectra in terms of both peak positions and intensities. The differences between the resonance Raman spectra of the three 5-halogenated uracils, caused by the effect of halogen substitution, are examined in terms of ground-state normal-mode eigenvectors and excited-state Cartesian gradients, according to the HT formalism. The differences in the normal-mode eigenvectors and excited-state Cartesian gradients between 5-fluorouracil and 5-chlorouracil are used to interpret the dissimilarity between their resonance Raman spectra. Meanwhile, the similarity between the spectra of 5-chlorouracil and 5-bromouracil is explained by the correspondence between their normal modes and excited-state gradients. PMID:25856119

  9. Resonance Raman spectroscopic evaluation of skin carotenoids as a biomarker of carotenoid status for human studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resonance Raman Spectroscopy (RRS) is a non-invasive method that has been developed to assess carotenoid status in human tissues including human skin in vivo. Skin carotenoid status, as assessed by RRS, has been suggested as a promising biomarker for use in human studies. This manuscript describes...

  10. On the Increasing Fragility of Human Teeth with Age: ADeep-Ultraviolet Resonance Raman Study

    SciTech Connect

    Ager III, J.W.; Nalla, R.K.; Balooch, G.; Kim, G.; Pugach, M.; Habelitz, S.; Marshall, G.W.; Kinney, J.H.; Ritchie, R.O.

    2006-07-14

    Ultraviolet resonance Raman spectroscopy (UVRRS) using 244nm excitation was used to investigate the impact of aging on humandentin. The intensity of a spectroscopic feature from the peptide bondsin the collagen increases with tissue age, similar to a finding reportedpreviously for human cortical bone.

  11. Resonance Raman Spectroscopy of Beta-Carotene and Lycopene: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Hoskins, L. C.

    1984-01-01

    Discusses the theory of resonance Raman (RR) spectroscopy as it applies to beta-carotene and lycopene pigments (found in tomatoes and carrots, respectively). Also discusses an experiment which demonstrates the theoretical principles involved. The experiment has been tested over a three-year period and has received excellent acceptance by physical…

  12. Combined quantum mechanics (TDDFT) and classical electrodynamics (Mie theory) methods for calculating surface enhanced Raman and hyper-Raman spectra.

    PubMed

    Mullin, Jonathan; Valley, Nicholas; Blaber, Martin G; Schatz, George C

    2012-09-27

    Multiscale models that combine quantum mechanics and classical electrodynamics are presented, which allow for the evaluation of surface-enhanced Raman (SERS) and hyper-Raman scattering spectra (SEHRS) for both chemical (CHEM) and electrodynamic (EM) enhancement mechanisms. In these models, time-dependent density functional theory (TDDFT) for a system consisting of the adsorbed molecule and a metal cluster fragment of the metal particle is coupled to Mie theory for the metal particle, with the surface of the cluster being overlaid with the surface of the metal particle. In model A, the electromagnetic enhancement from plasmon-excitation of the metal particle is combined with the chemical enhancement associated with a static treatment of the molecule-metal structure to determine overall spectra. In model B, the frequency dependence of the Raman spectrum of the isolated molecule is combined with the enhancements determined in model A to refine the enhancement estimate. An equivalent theory at the level of model A is developed for hyper-Raman spectra calculations. Application to pyridine interacting with a 20 nm diameter silver sphere is presented, including comparisons with an earlier model (denoted G), which combines plasmon enhanced fields with gas-phase Raman (or hyper-Raman) spectra. The EM enhancement factor for spherical particles at 357 nm is found to be 10(4) and 10(6) for SERS and SEHRS, respectively. Including both chemical and electromagnetic mechanisms at the level of model A leads to enhancements on the order of 10(4) and 10(9) for SERS and SEHRS. PMID:22946645

  13. Monostable array-enhanced stochastic resonance.

    PubMed

    Lindner, J F; Breen, B J; Wills, M E; Bulsara, A R; Ditto, W L

    2001-05-01

    We present a simple nonlinear system that exhibits multiple distinct stochastic resonances. By adjusting the noise and coupling of an array of underdamped, monostable oscillators, we modify the array's natural frequencies so that the spectral response of a typical oscillator in an array of N oscillators exhibits N-1 different stochastic resonances. Such families of resonances may elucidate and facilitate a variety of noise-mediated cooperative phenomena, such as noise-enhanced propagation, in a broad class of similar nonlinear systems. PMID:11414887

  14. Trampoline metamaterial: Local resonance enhancement by springboards

    NASA Astrophysics Data System (ADS)

    Bilal, Osama R.; Hussein, Mahmoud I.

    2013-09-01

    We investigate the dispersion characteristics of locally resonant elastic metamaterials formed by the erection of pillars on the solid regions in a plate patterned by a periodic array of holes. We show that these solid regions effectively act as springboards leading to an enhanced resonance behavior by the pillars when compared to the nominal case of pillars with no holes. This local resonance amplification phenomenon, which we define as the trampoline effect, is shown to cause subwavelength bandgaps to increase in size by up to a factor of 4. This outcome facilitates the utilization of subwavelength metamaterial properties over exceedingly broad frequency ranges.

  15. Optimizing surface-enhanced Raman scattering by template guided assembling of closely spaced silver nanocluster arrays

    NASA Astrophysics Data System (ADS)

    Xu, C. H.; Xie, B.; Liu, Y. J.; He, L. B.; Han, M.

    2009-04-01

    We present an easy approach to synthesize closely spaced regular arrays of silver nanoclusters, which are self-assembled by depositing gas-phase synthesized metal nanoclusters onto pre-patterned triblock copolymer templates. The array has a high particle density of about 2 ×103 particles per μm2, and an average interparticle space of about 20 nm. The surface plasmon resonance wavelength of the array is tuned due to the interparticle plasmon coupling. High SERS sensitivity for less than one layer trans-1,2-bi-(4-pyridyl) ethylene (BPE) molecule detection, with an enhancement factor of 2.6 ×106, has been demonstrated for a substrate with this array. The enhanced Raman signal was found to be 5 times higher than that measured from the substrate with randomly distributed silver nanoparticles.

  16. Tip-enhanced Raman spectroscopy: tip-related issues.

    PubMed

    Huang, Teng-Xiang; Huang, Sheng-Chao; Li, Mao-Hua; Zeng, Zhi-Cong; Wang, Xiang; Ren, Bin

    2015-11-01

    After over 15 years of development, tip-enhanced Raman spectroscopy (TERS) is now facing a very important stage in its history. TERS offers high detection sensitivity down to single molecules and a high spatial resolution down to sub-nanometers, which make it an unprecedented nanoscale analytical technique offering molecular fingerprint information. The tip is the core element in TERS, as it is the only source through which to support the enhancement effect and provide the high spatial resolution. However, TERS suffers and will continue to suffer from the limited availability of TERS tips with a high enhancement, good stability, and high reproducibility. This review focuses on the tip-related issues in TERS. We first discuss the parameters that influence the enhancement and spatial resolution of TERS and the possibility to optimize the performance of a TERS system via an in-depth understanding of the enhancement mechanism. We then analyze the methods that have been developed for producing TERS tips, including vacuum-based deposition, electrochemical etching, electrodeposition, electroless deposition, and microfabrication, with discussion on the advantages and weaknesses of some important methods. We also tackle the issue of lifetime and protection protocols of TERS tips which are very important for the stability of a tip. Last, some fundamental problems and challenges are proposed, which should be addressed before this promising nanoscale characterization tool can exert its full potential. Graphical Abstract ᅟ. PMID:26314483

  17. A practical method to fabricate gold substrates for surface-enhanced Raman spectroscopy.

    PubMed

    Tantra, Ratna; Brown, Richard J C; Milton, Martin J T; Gohil, Dipak

    2008-09-01

    We describe a practical method of fabricating surface-enhanced Raman spectroscopy (SERS) substrates based on dip-coating poly-L-lysine derivatized microscope slides in a gold colloidal suspension. The use of only commercially available starting materials in this preparation is particularly advantageous, aimed at both reducing time and the inconsistency associated with surface modification of substrates. The success of colloid deposition has been demonstrated by scanning electron microscopy (SEM) and the corresponding SERS response (giving performance comparable to the corresponding traditional colloidal SERS substrates). Reproducibility was evaluated by conducting replicate measurements across six different locations on the substrate and assessing the extent of the variability (standard deviation values of spectral parameters: peak width and height), in response to either Rhodamine 6G or Isoniazid. Of particular interest is the observation of how some peaks in a given spectrum are more susceptible to data variability than others. For example, in a Rhodamine 6G SERS spectrum, spectral parameters of the peak at 775 cm(-1) were shown to have a relative standard deviation (RSD) % of <10%, while the peak at 1573 cm(-1) has a RSD of >or=10%. This observation is best explained by taking into account spectral variations that arise from the effect of a chemisorption process and the local nature of chemical enhancement mechanisms, which affects the enhancement of some spectral peaks but not others (analogous to resonant Raman phenomenon). PMID:18801238

  18. Electrochemical tip-enhanced Raman spectroscopy (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Zeng, Zhicong; Huang, Shengchao; Huang, Tengxiang; Li, Maohua; Ren, Bin

    2015-08-01

    Tip-enhanced Raman spectroscopy (TERS) can not only provide very high sensitivity but also high spatial resolution, and has found applications in various fields, including surface science, materials, and biology. Most of previous TERS studies were performed in air or in the ultrahigh vacuum. If TERS study can be performed in the electrochemical environment, the electronic properties of the surface can be well controlled so that the interaction of the molecules with the substrate and the configuration of the molecules on the surface can also be well controlled. However, the EC-TERS is not just a simple combination of electrochemistry with TERS, or the combination of EC-STM with Raman. It is a merge of STM, electrochemistry and Raman spectroscopy, and the mutual interference among these techniques makes the EC-TERS particularly challenge: the light distortion in EC system, the sensitivity, the tip coating to work under EC-STM and retain the TERS activity and cleanliness. We designed a special spectroelectrochemical cell to eliminate the distortion of the liquid layer to the optical path and obtain TER spectra of reasonably good signal to noise ratio for surface adsorbed molecules under electrochemical potential control. For example, potential dependent TERS signal have been obtained for adsorbed aromatic thiol molecule, and much obvious signal change compared with SERS has been found, manifesting the importance of EC-TERS to reveal the interfacial structure of an electrochemical system. We further extended EC-TERS to electrochemical redox system, and clear dependence of the species during redox reaction can be identified.

  19. Kinetic Enhancement of Raman Backscatter, and Electron Acoustic Thomson Scatter

    SciTech Connect

    Strozzi, D J; Williams, E A; Langdon, A B; Bers, A

    2006-09-01

    1-D Eulerian Vlasov-Maxwell simulations are presented which show kinetic enhancement of stimulated Raman backscatter (SRBS) due to electron trapping in regimes of heavy linear Landau damping. The conventional Raman Langmuir wave is transformed into a set of beam acoustic modes [L. Yin et al., Phys. Rev. E 73, 025401 (2006)]. For the first time, a low phase velocity electron acoustic wave (EAW) is seen developing from the self-consistent Raman physics. Backscatter of the pump laser off the EAW fluctuations is reported and referred to as electron acoustic Thomson scatter. This light is similar in wavelength to, although much lower in amplitude than, the reflected light between the pump and SRBS wavelengths observed in single hot spot experiments, and previously interpreted as stimulated electron acoustic scatter [D. S. Montgomery et al., Phys. Rev. Lett. 87, 155001 (2001)]. The EAW observed in our simulations is strongest well below the phase-matched frequency for electron acoustic scatter, and therefore the EAW is not produced by it. The beating of different beam acoustic modes is proposed as the EAW excitation mechanism, and is called beam acoustic decay. Supporting evidence for this process, including bispectral analysis, is presented. The linear electrostatic modes, found by projecting the numerical distribution function onto a Gauss-Hermite basis, include beam acoustic modes (some of which are unstable even without parametric coupling to light waves) and a strongly-damped EAW similar to the observed one. This linear EAW results from non-Maxwellian features in the electron distribution, rather than nonlinearity due to electron trapping.

  20. Multidimensional resonance Raman spectroscopy by six-wave mixing in the deep UV.

    PubMed

    Molesky, Brian P; Giokas, Paul G; Guo, Zhenkun; Moran, Andrew M

    2014-09-21

    Two-dimensional (2D) resonance Raman spectroscopies hold great potential for uncovering photoinduced relaxation processes in molecules but are not yet widely applied because of technical challenges. Here, we describe a newly developed 2D resonance Raman experiment operational at the third-harmonic of a Titanium-Sapphire laser. High-sensitivity and rapid data acquisition are achieved by combining spectral interferometry with a background-free (six-pulse) laser beam geometry. The third-harmonic laser pulses are generated in a filament produced by the fundamental and second-harmonic pulses in neon gas at pressures up to 35 atm. The capabilities of the setup are demonstrated by probing ground-state wavepacket motions in triiodide. The information provided by the experiment is explored with two different representations of the signal. In one representation, Fourier transforms are carried out with respect to the two experimentally controlled delay times to obtain a 2D Raman spectrum. Further insights are derived in a second representation by dispersing the signal pulse in a spectrometer. It is shown that, as in traditional pump-probe experiments, the six-wave mixing signal spectrum encodes the wavepacket's position by way of the (time-evolving) emission frequency. Anharmonicity additionally induces dynamics in the vibrational resonance frequency. In all cases, the experimental signals are compared to model calculations based on a cumulant expansion approach. This study suggests that multi-dimensional resonance Raman spectroscopies conducted on systems with Franck-Condon active modes are fairly immune to many of the technical issues that challenge off-resonant 2D Raman spectroscopies (e.g., third-order cascades) and photon-echo experiments in the deep UV (e.g., coherence spikes). The development of higher-order nonlinear spectroscopies operational in the deep UV is motivated by studies of biological systems and elementary organic photochemistries. PMID:25240351

  1. Multidimensional resonance raman spectroscopy by six-wave mixing in the deep UV

    SciTech Connect

    Molesky, Brian P.; Giokas, Paul G.; Guo, Zhenkun; Moran, Andrew M.

    2014-09-21

    Two-dimensional (2D) resonance Raman spectroscopies hold great potential for uncovering photoinduced relaxation processes in molecules but are not yet widely applied because of technical challenges. Here, we describe a newly developed 2D resonance Raman experiment operational at the third-harmonic of a Titanium-Sapphire laser. High-sensitivity and rapid data acquisition are achieved by combining spectral interferometry with a background-free (six-pulse) laser beam geometry. The third-harmonic laser pulses are generated in a filament produced by the fundamental and second-harmonic pulses in neon gas at pressures up to 35 atm. The capabilities of the setup are demonstrated by probing ground-state wavepacket motions in triiodide. The information provided by the experiment is explored with two different representations of the signal. In one representation, Fourier transforms are carried out with respect to the two experimentally controlled delay times to obtain a 2D Raman spectrum. Further insights are derived in a second representation by dispersing the signal pulse in a spectrometer. It is shown that, as in traditional pump-probe experiments, the six-wave mixing signal spectrum encodes the wavepacket's position by way of the (time-evolving) emission frequency. Anharmonicity additionally induces dynamics in the vibrational resonance frequency. In all cases, the experimental signals are compared to model calculations based on a cumulant expansion approach. This study suggests that multi-dimensional resonance Raman spectroscopies conducted on systems with Franck-Condon active modes are fairly immune to many of the technical issues that challenge off-resonant 2D Raman spectroscopies (e.g., third-order cascades) and photon-echo experiments in the deep UV (e.g., coherence spikes). The development of higher-order nonlinear spectroscopies operational in the deep UV is motivated by studies of biological systems and elementary organic photochemistries.

  2. Modulated Raman Spectroscopy for Enhanced Cancer Diagnosis at the Cellular Level

    PubMed Central

    De Luca, Anna Chiara; Dholakia, Kishan; Mazilu, Michael

    2015-01-01

    Raman spectroscopy is emerging as a promising and novel biophotonics tool for non-invasive, real-time diagnosis of tissue and cell abnormalities. However, the presence of a strong fluorescence background is a key issue that can detract from the use of Raman spectroscopy in routine clinical care. The review summarizes the state-of-the-art methods to remove the fluorescence background and explores recent achievements to address this issue obtained with modulated Raman spectroscopy. This innovative approach can be used to extract the Raman spectral component from the fluorescence background and improve the quality of the Raman signal. We describe the potential of modulated Raman spectroscopy as a rapid, inexpensive and accurate clinical tool to detect the presence of bladder cancer cells. Finally, in a broader context, we show how this approach can greatly enhance the sensitivity of integrated Raman spectroscopy and microfluidic systems, opening new prospects for portable higher throughput Raman cell sorting. PMID:26110401

  3. Resonance modes, cavity field enhancements, and long-range collective photonic effects in periodic bowtie nanostructures

    SciTech Connect

    Hsueh, Chun-Hway; Li, Jia-Han; Hatab, Nahla A.; Gu, Baohua

    2011-01-01

    The discovery of single-molecule sensitivity via surfaceenhanced Raman scattering on resonantly excited noble metal nanoparticles has brought an increasing interest in its applications to the molecule detection and identification. Periodic gold bowtie nanostructures have recently been shown to give a large enhancement factor sufficient for single molecule detection. In this work, we simulate the plasmon resonance for periodic gold bowtie nanostructures. The difference between the dipole and the quadrupole resonances is described by examining the magnitude and phase of electric field, the bound surface charge, and the polarization. The gap size dependence of the field enhancement can be interpreted by considering cavity field enhancement. Also, additional enhancement is obtained through the long-range collective photonic effect when the bowtie array periodicity matches the resonance wavelength.

  4. Detection of Protein Glycosylation Using Tip-Enhanced Raman Scattering.

    PubMed

    Cowcher, David P; Deckert-Gaudig, Tanja; Brewster, Victoria L; Ashton, Lorna; Deckert, Volker; Goodacre, Royston

    2016-02-16

    The correct glycosylation of biopharmaceutical glycoproteins and their formulations is essential for them to have the desired therapeutic effect on the patient. It has recently been shown that Raman spectroscopy can be used to quantify the proportion of glycosylated protein from mixtures of native and glycosylated forms of bovine pancreatic ribonuclease (RNase). Here we show the first steps toward not only the detection of glycosylation status but the characterization of glycans themselves from just a few protein molecules at a time using tip-enhanced Raman scattering (TERS). While this technique generates complex data that are very dependent on the protein orientation, with the careful development of combined data preprocessing, univariate and multivariate analysis techniques, we have shown that we can distinguish between the native and glycosylated forms of RNase. Many glycoproteins contain populations of subtly different glycoforms; therefore, with stricter orientation control, we believe this has the potential to lead to further glycan characterization using TERS, which would have use in biopharmaceutical synthesis and formulation research. PMID:26813024

  5. Distinction of nucleobases – a tip-enhanced Raman approach

    PubMed Central

    Treffer, Regina; Lin, Xiumei; Bailo, Elena; Deckert-Gaudig, Tanja

    2011-01-01

    Summary The development of novel DNA sequencing methods is one of the ongoing challenges in various fields of research seeking to address the demand for sequence information. However, many of these techniques rely on some kind of labeling or amplification steps. Here we investigate the intrinsic properties of tip-enhanced Raman scattering (TERS) towards the development of a novel, label-free, direct sequencing method. It is known that TERS allows the acquisition of spectral information with high lateral resolution and single-molecule sensitivity. In the presented experiments, single stranded adenine and uracil homopolymers were immobilized on different kinds of substrates (mica and gold nanoplates) and TERS experiments were conducted, which demonstrated the reproducibility of the technique. To elucidate the signal contributions from the specific nucleobases, TERS spectra were collected on single stranded calf thymus DNA with arbitrary sequence. The results show that, while the Raman signals with respect to the four nucleobases differ remarkably, specific markers can be determined for each respective base. The combination of sensitivity and reproducibility shows that the crucial demands for a sequencing procedure are met. PMID:22003468

  6. Rapid chemical agent identification by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Yuan-Hsiang; Farquharson, Stuart

    2001-08-01

    Although the Chemical Weapons Convention prohibits the development, production, stockpiling, and use of chemical warfare agents (CWAs), the use of these agents persists due to their low cost, simplicity in manufacturing and ease of deployment. These attributes make these weapons especially attractive to low technology countries and terrorists. The military and the public at large require portable, fast, sensitive, and accurate analyzers to provide early warning of the use of chemical weapons. Traditional laboratory analyzers such as the combination of gas chromatography and mass spectroscopy, although sensitive and accurate, are large and require up to an hour per analysis. New, chemical specific analyzers, such as immunoassays and molecular recognition sensors, are portable, fast, and sensitive, but are plagued by false-positives (response to interferents). To overcome these limitations, we have been investigating the potential of surface-enhanced Raman spectroscopy (SERS) to identify and quantify chemical warfare agents in either the gas or liquid phase. The approach is based on the extreme sensitivity of SERS demonstrated by single molecule detection, a new SERS material that we have developed to allow reproducible and reversible measurements, and the molecular specific information provided by Raman spectroscopy. Here we present SER spectra of chemical agent simulants in both the liquid and gas phase, as well as CWA hydrolysis phase.

  7. Assessing Telomere Length Using Surface Enhanced Raman Scattering

    NASA Astrophysics Data System (ADS)

    Zong, Shenfei; Wang, Zhuyuan; Chen, Hui; Cui, Yiping

    2014-11-01

    Telomere length can provide valuable insight into telomeres and telomerase related diseases, including cancer. Here, we present a brand-new optical telomere length measurement protocol using surface enhanced Raman scattering (SERS). In this protocol, two single strand DNA are used as SERS probes. They are labeled with two different Raman molecules and can specifically hybridize with telomeres and centromere, respectively. First, genome DNA is extracted from cells. Then the telomere and centromere SERS probes are added into the genome DNA. After hybridization with genome DNA, excess SERS probes are removed by magnetic capturing nanoparticles. Finally, the genome DNA with SERS probes attached is dropped onto a SERS substrate and subjected to SERS measurement. Longer telomeres result in more attached telomere probes, thus a stronger SERS signal. Consequently, SERS signal can be used as an indicator of telomere length. Centromere is used as the inner control. By calibrating the SERS intensity of telomere probe with that of the centromere probe, SERS based telomere measurement is realized. This protocol does not require polymerase chain reaction (PCR) or electrophoresis procedures, which greatly simplifies the detection process. We anticipate that this easy-operation and cost-effective protocol is a fine alternative for the assessment of telomere length.

  8. Fingerprinting CBRNE materials using surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Bertone, Jane F.; Spencer, Kevin M.; Sylvia, James M.

    2008-04-01

    One approach to CBRNE detection is analytical monitoring with portable spectroscopy systems. Such a technique needs to work in adverse environments, be amenable to use by field operators, and, given the sensitive nature of the target materials, should have an extremely rapid response time with no false negatives. This research demonstrates that surface-enhanced Raman scattering (SERS) is capable of detecting ppb levels of CBRNE materials with high sensitivity and no false positives. We present reproducible and selective detection using novel SERS structures that exhibit an inherently uniform surface morphology, leading to rapid, reproducible manufacturing. Our work includes receiver-operator characteristic (ROC) curves for the detection of both conventional and improvised nitro explosives at low signal-to-noise ratios. We also present the detection of added CBRNE materials including chemical and biological agents as well as nuclear enriching materials. Our expertise extends to instrumentation of portable, robust Raman spectrographs that can be packaged with our sensors for a versatile security tool with applications extending from points of entry to points of production, from people to objects and freight.

  9. Intensity Ratio of Resonant Raman Modes for (n,m) Enriched Semiconducting Carbon Nanotubes.

    PubMed

    Piao, Yanmei; Simpson, Jeffrey R; Streit, Jason K; Ao, Geyou; Zheng, Ming; Fagan, Jeffrey A; Hight Walker, Angela R

    2016-05-24

    Relative intensities of resonant Raman spectral features, specifically the radial breathing mode (RBM) and G modes, of 11, chirality-enriched, single-wall carbon nanotube (SWCNT) species were established under second-order optical transition excitation. The results demonstrate an under-recognized complexity in the evaluation of Raman spectra for the assignment of (n,m) population distributions. Strong chiral angle and mod dependencies affect the intensity ratio of the RBM to G modes and can result in misleading interpretations. Furthermore, we report five additional (n,m) values for the chirality-dependent G(+) and G(-) Raman peak positions and intensity ratios; thereby extending the available data to cover more of the smaller diameter regime by including the (5,4) second-order, resonance Raman spectra. Together, the Raman spectral library is demonstrated to be sufficient for decoupling G peaks from multiple species via a spectral fitting process, and enables fundamental characterization even in mixed chiral population samples. PMID:27128733

  10. Time-gated pre-resonant femtosecond stimulated Raman spectroscopy of diethylthiatricarbocyanine iodide.

    PubMed

    Kim, Hyung Min; Kim, Hyunmin; Yang, Ilseung; Jin, Seung Min; Suh, Yung Doug

    2014-03-21

    We present time-gated femtosecond stimulated Raman spectroscopy (fSRS) under the pre-resonance Raman conditions of diethylthiatricarbocyanine (DTTC) iodide. A 'pseudo emission-free' condition is achieved by delivering the probe beam ahead of the pump beam. Regeneratively amplified pulse trains are employed to create an angle-geometry (non-collimated) mixing between the pump and probe beams, leading to highly sensitive measurement of the stimulated Raman gain. Time-integrated spectroscopy allows for a more quantitative distinction between the contributions of stimulated Raman scattering and stimulated emission. We successfully obtain a highly sensitive (signal-to-noise ratio >100) stimulated Raman spectrum under the optimized conditions, which compares favourably to results obtained using two-dimensional correlation spectroscopy (2DCOS). Given the optical pre-resonance of ∼0.1 eV, the background signals mostly originate from the stimulated emission of excited electrons and are significantly reduced by partial overlapping of the pump and probe beams; a genuine fSRS spectral profile is obtained for a temporal delay of ∼0.2 ps between the two beams. PMID:24496293

  11. Resonance Raman spectroscopic and density functional theory study of p-nitroacetophenone (PNAP)

    NASA Astrophysics Data System (ADS)

    Pei, Kemei; Ma, Yufang; Zheng, Xuming; Li, Haiyang

    2007-03-01

    Resonance Raman spectra of p-nitroacetophenone(PNAP) have been obtained in resonance with the charge-transfer (CT) band using 252.7, 266 and 273.9 nm in methanol solvent. The spectra indicate that the Franck-Condon region photodissociation dynamics have multidimensional character with motion mainly along the C dbnd O stretching ν8(1691 cm -1) and the benzene ring stretch ν10(1593 cm -1). A preliminary resonance Raman intensity analysis was done and the results for PNAP were compared with nitrobenzene and aceptophenone. Our results indicate that -NO 2 is more photoactive than -COCH 3. The isomerization process of PNAP takes place somewhere after the wave packet leaves the Franck-Condon region.

  12. Effect of atomic diffusion on the Raman-Ramsey coherent population trapping resonances

    NASA Astrophysics Data System (ADS)

    Kuchina, Elena; Mikhailov, Eugeniy E.; Novikova, Irina

    2016-04-01

    We experimentally investigated the characteristics of two-photon transmission resonances in Rb vapor cells with different amount of buffer gas under the conditions of steady-state coherent population trapping (CPT) and pulsed Raman-Ramsey (RR-) CPT interrogation scheme. We particularly focused on the influence of the Rb atoms diffusing in and out of the laser beam. We showed that this effect modifies the shape of both CPT and Raman-Ramsey resonances, as well as their projected performance for CPT clock applications. In particular we found that at moderate buffer gas pressures RR-CPT did not improved the projected atomic clock stability compare to the regular steady-state CPT resonance.

  13. High Sensitivity Surface Enhanced Raman Scattering Detection of Tryptophan

    NASA Astrophysics Data System (ADS)

    Kandakkathara, Archana

    Raman spectroscopy has the capability of providing detailed information about molecular structure, but the extremely small cross section of Raman scattering prevents this technique from applications requiring high sensitivity. Surface enhanced Raman scattering (SERS) on the other hand provides strongly increased Raman signal from molecules attached to metallic nanostructures. SERS is thus a promising technique for high sensitivity analytical applications. One particular area of interest is the application of such techniques for the analysis of the composition of biological cells. However, there are issues which have to be addressed in order to make SERS a reliable technique such as the optimization of conditions for any given analyte, understanding the kinetic processes of binding of the target molecules to the nanostructures and understanding the evolution and coagulation of the nanostructures, in the case of colloidal solutions. The latter processes introduce a delay time for the observation of maximum enhancement factors which must be taken into account for any given implementation of SERS. In the present thesis the goal was to develop very sensitive SERS techniques for the measurement of biomolecules of interest for analysis of the contents of cells. The techniques explored could be eventually be applicable to microfluidic systems with the ultimate goal of analyzing the molecular constituents of single cells. SERS study of different amino acids and organic dyes were performed during the course of this thesis. A high sensitivity detection system based on SERS has been developed and spectrum from tryptophan (Trp) amino acid at very low concentration (10-8 M) has been detected. The concentration at which good quality SERS spectra could be detected from Trp is 4 orders of magnitude smaller than that previously reported in literature. It has shown that at such low concentrations the SERS spectra of Trp are qualitatively distinct from the spectra commonly reported in

  14. Davydov Splitting and Excitonic Resonance Effects in Raman Spectra of Few-Layer MoSe2.

    PubMed

    Kim, Kangwon; Lee, Jae-Ung; Nam, Dahyun; Cheong, Hyeonsik

    2016-08-23

    Raman spectra of few-layer MoSe2 were measured with eight excitation energies. New peaks that appear only near resonance with various exciton states are analyzed, and the modes are assigned. The resonance profiles of the Raman peaks reflect the joint density of states for optical transitions, but the symmetry of the exciton wave functions leads to selective enhancement of the A1g mode at the A exciton energy and the shear mode at the C exciton energy. We also find Davydov splitting of intralayer A1g, E1g, and A2u modes due to interlayer interaction for some excitation energies near resonances. Furthermore, by fitting the spectral positions of interlayer shear and breathing modes and Davydov splitting of intralayer modes to a linear chain model, we extract the strength of the interlayer interaction. We find that the second-nearest-neighbor interlayer interaction amounts to about 30% of the nearest-neighbor interaction for both in-plane and out-of-plane vibrations. PMID:27479147

  15. Hierarchical electrohydrodynamic structures for surface-enhanced Raman scattering.

    PubMed

    Goldberg-Oppenheimer, Pola; Mahajan, Sumeet; Steiner, Ullrich

    2012-06-19

    Surface enhanced Raman scattering (SERS) is a well-established spectroscopic technique that requires nanoscale metal structures to achieve high signal sensitivity. While most SERS substrates are manufactured by conventional lithographic methods, the development of a cost-effective approach to create nanostructured surfaces is a much sought-after goal in the SERS community. Here, a method is established to create controlled, self-organized, hierarchical nanostructures using electrohydrodynamic (HEHD) instabilities. The created structures are readily fine-tuned, which is an important requirement for optimizing SERS to obtain the highest enhancements. HEHD pattern formation enables the fabrication of multiscale 3D structured arrays as SERS-active platforms. Importantly, each of the HEHD-patterned individual structural units yield a considerable SERS enhancement. This enables each single unit to function as an isolated sensor. Each of the formed structures can be effectively tuned and tailored to provide high SERS enhancement, while arising from different HEHD morphologies. The HEHD fabrication of sub-micrometer architectures is straightforward and robust, providing an elegant route for high-throughput biological and chemical sensing. PMID:22488810

  16. Long-Lived Raman Resonance Amid Incoherence Above T_c

    NASA Astrophysics Data System (ADS)

    Klein, Miles V.

    1998-03-01

    Electronic Raman scattering from high and low energy excitations was studied as a function of temperature, hole doping, and energy of the incident photons in Bi_2Sr_2CaCu_2O8 ± δ superconductors. Short range antiferromagnetic correlations were found to persist when holes were doped into the insulating state, and excitations of the holes were found to be incoherent. Above the superconducting transition temperature Tc the system exhibits a sharp Raman resonance of B_1g symmetry and 75 meV energy with a pseudogap (PG) for electron-hole excitations below 75 meV.(G. Blumberg et al.), Science 278, 1427 (1997);

  17. Resonance Raman spectroscopy of 2H-labelled spheroidenes in petroleum ether and in the Rhodobacter sphaeroides reaction centre.

    PubMed

    Kok, P; Köhler, J; Groenen, E J; Gebhard, R; van der Hoef, I; Lugtenburg, J; Farhoosh, R; Frank, H A

    1997-03-01

    As a step towards the structural analysis of the carotenoid spheroidene in the Rhodobacter sphaeroides reaction centre, we present the resonance Raman spectra of 14-2H, 15-2H, 15'-2H, 14'-2H, 14,15'-2H2 and 15-15'-2H2 spheroidenes in petroleum ether and, except for 14,15'-2H2 spheroidene, in the Rb. sphaeroides R26 reaction center (RC). Analysis of the spectral changes upon isotopic substitution allows a qualitative assignment of most of the vibrational bands to be made. For the all-trans spheroidenes in solution the resonance enhancement of the Raman bands is determined by the participation of carbon carbon stretching modes in the centre of the conjugated chain, the C9 to C15' region. For the RC-bound 15,15'-cis spheroidenes, enhancement is determined by the participation of carbon-carbon stretching modes in the centre of the molecule, the C13 to C13' region. Comparison of the spectra in solution and in the RC reveals evidence for an out-of-plane distortion of the RC-bound spheroidene in the central C14 to C14' region of the carotenoid. The characteristic 1240 cm-1 band in the spectrum of the RC-bound spheroidene has been assigned to a normal mode that contains the coupled C12-C13 and C13'-C12' stretch vibrations. PMID:9177038

  18. Schumann-Runge resonance Raman scattering of O sub 2 : A rotationally resolved excitation profile study

    SciTech Connect

    Zhang, Y.P.; Ziegler, L.D. )

    1989-09-07

    Rotationally resolved resonance Raman spectra and excitation profiles of O{sub 2} excited with narrow-band radiation tunable throughout the {nu}{prime} = 5 absorption band of the Schumann-Runge (SR) region (190-192 nm) are reported. The pressure dependence and scattering polarization unambiguously identify all the observed resonant emission intensity as Raman scattering (both resonant and off-resonant), not resonance fluorescence. This characterization is in contrast to the description of the resonant emission of the SR absorption bands offered in recent laser-excited studies. Excitation profile analysis determines rotationally specific lifetimes of the {nu}{prime} = 5 level. A homogeneous line width of 2.05 {plus minus} 0.10 cm{sup {minus}1} is determined for the rotational levels of this vibronic band. Within experimental uncertainty, this line width/lifetime is independent of the rotational angular momentum of the resonant predissociative rovibronic levels of the {nu}{prime} = 5 band. This value is in excellent agreement with the results of the most recent SR absorption contour analysis but is not in quantitative agreement with the most recent theoretical modeling of the rovibronic dynamics of the SR absorption bands.

  19. Surface enhanced Raman gene probe and methods thereof

    DOEpatents

    Vo-Dinh, T.

    1998-02-24

    The subject invention disclosed is a new gene probe biosensor and methods based on surface enhanced Raman scattering (SERS) label detection. The SER gene probe biosensor comprises a support means, a SER gene probe having at least one oligonucleotide strand labeled with at least one SERS label, and a SERS active substrate disposed on the support means and having at least one of the SER gene probes adsorbed thereon. Biotargets such as bacterial and viral DNA, RNA and PNA are detected using a SER gene probe via hybridization to oligonucleotide strands complementary to the SER gene probe. The support means includes a fiberoptic probe, an array of fiberoptic probes for performance of multiple assays and a waveguide microsensor array with charge-coupled devices or photodiode arrays. 18 figs.

  20. Towards ultrasensitive malaria diagnosis using surface enhanced Raman spectroscopy

    PubMed Central

    Chen, Keren; Yuen, Clement; Aniweh, Yaw; Preiser, Peter; Liu, Quan

    2016-01-01

    We report two methods of surface enhanced Raman spectroscopy (SERS) for hemozoin detection in malaria infected human blood. In the first method, silver nanoparticles were synthesized separately and then mixed with lysed blood; while in the second method, silver nanoparticles were synthesized directly inside the parasites of Plasmodium falciparum. It was observed that the first method yields a smaller variation in SERS measurements and stronger correlation between the estimated contribution of hemozoin and the parasitemia level, which is preferred for the quantification of the parasitemia level. In contrast, the second method yields a higher sensitivity to a low parasitemia level thus could be more effective in the early malaria diagnosis to determine whether a given blood sample is positive. PMID:26858127

  1. Surface-enhanced Raman fiberoptic sensors for remote monitoring

    SciTech Connect

    Stokes, D.L.; Alarie, J.P.; Vo-Dinh, T.

    1995-09-01

    A new sensor design for remote surface-enhanced Raman scattering (SERS) measurements has been developed for environmental applications. The design features the modification of an optical fiber using layers of alumina microparticles and silver coatings for inducing the SERS effect at the sensing probe. A single fiber carries both the laser excitation and the SERS signal radiation, keeping optical parameters at the remote tip simple and consistent. The small tip size achievable with this configuration also demonstrates potential of this new design as a microsensor for in-situ measurement in microenvironments. Details of sensor tip fabrication and optical system design are described. SERS spectra of aqueous environmental samples acquired in-situ using the SERS sensor are also presented to illustrate the effectiveness of the SERS sensor.

  2. Direct surface-enhanced Raman scattering analysis of DNA duplexes.

    PubMed

    Guerrini, Luca; Krpetić, Željka; van Lierop, Danny; Alvarez-Puebla, Ramon A; Graham, Duncan

    2015-01-19

    The exploration of the genetic information carried by DNA has become a major scientific challenge. Routine DNA analysis, such as PCR, still suffers from important intrinsic limitations. Surface-enhanced Raman spectroscopy (SERS) has emerged as an outstanding opportunity for the development of DNA analysis, but its application to duplexes (dsDNA) has been largely hampered by reproducibility and/or sensitivity issues. A simple strategy is presented to perform ultrasensitive direct label-free analysis of unmodified dsDNA with the means of SERS by using positively charged silver colloids. Electrostatic adhesion of DNA promotes nanoparticle aggregation into stable clusters yielding intense and reproducible SERS spectra at nanogram level. As potential applications, we report the quantitative recognition of hybridization events as well as the first examples of SERS recognition of single base mismatches and base methylations (5-methylated cytosine and N6-methylated Adenine) in duplexes. PMID:25414148

  3. Surface-enhanced Raman scattering of rat tissues.

    PubMed

    Aydin, Omer; Kahraman, Mehmet; Kiliç, Ertuğul; Culha, Mustafa

    2009-06-01

    Surface-enhanced Raman scattering (SERS) is proven to be a powerful tool for investigation of biological structures. In this study, tissues obtained from different rat organs are examined using SERS. The tissue samples are crushed with a pestle after sudden freezing in liquid nitrogen and mixed with a concentrated colloidal silver nanoparticle suspension. The reproducibility of SERS spectra acquired from several tissue samples from different organs is demonstrated. The collected spectra are comparatively evaluated based on the physiological function of the organ from which the tissue is obtained. The spectra from the tissues show significant differences and indicate that they can be used for tissue characterization and differentiation. The identification of the origins of the bands on the spectra is also attempted. This study suggests that SERS can be used to monitor the changes at the molecular level during metabolic changes in an organ or tissue as a result of a disease or another cause. PMID:19531293

  4. Surface enhanced Raman gene probe and methods thereof

    DOEpatents

    Vo-Dinh, Tuan

    1998-01-01

    The subject invention disclosed herein is a new gene probe biosensor and methods thereof based on surface enhanced Raman scattering (SERS) label detection. The SER gene probe biosensor comprises a support means, a SER gene probe having at least one oligonucleotide strand labeled with at least one SERS label, and a SERS active substrate disposed on the support means and having at least one of the SER gene probes adsorbed thereon. Biotargets such as bacterial and viral DNA, RNA and PNA are detected using a SER gene probe via hybridization to oligonucleotide strands complementary to the SER gene probe. The support means supporting the SERS active substrate includes a fiberoptic probe, an array of fiberoptic probes for performance of multiple assays and a waveguide microsensor array with charge-coupled devices or photodiode arrays.

  5. Surface enhanced Raman gene probe and methods thereof

    DOEpatents

    Vo-Dinh, T.

    1998-09-29

    The subject invention disclosed herein is a new gene probe biosensor and methods based on surface enhanced Raman scattering (SERS) label detection. The SER gene probe biosensor comprises a support means, a SER gene probe having at least one oligonucleotide strand labeled with at least one SERS label, and a SERS active substrate disposed on the support means and having at least one of the SER gene probes adsorbed thereon. Biotargets such as bacterial and viral DNA, RNA and PNA are detected using a SER gene probe via hybridization to oligonucleotide strands complementary to the SER gene probe. The support means supporting the SERS active substrate includes a fiberoptic probe, an array of fiberoptic probes for performance of multiple assays and a waveguide microsensor array with charge-coupled devices or photodiode arrays. 18 figs.

  6. Surface enhanced Raman gene probe and methods thereof

    DOEpatents

    Vo-Dinh, T.

    1998-07-21

    The subject invention disclosed is a new gene probe biosensor and methods based on surface enhanced Raman scattering (SERS) label detection. The SER gene probe biosensor comprises a support means, a SER gene probe having at least one oligonucleotide strand labeled with at least one SERS label, and a SERS active substrate disposed on the support means and having at least one of the SER gene probes adsorbed. Biotargets such as bacterial and viral DNA, RNA and PNA are detected using a SER gene probe via hybridization to oligonucleotide strands complementary to the SER gene probe. The support means supporting the SERS active substrate includes a fiberoptic probe, an array of fiberoptic probes for performance of multiple assays and a waveguide microsensor array with charge-coupled devices or photodiode arrays. 18 figs.

  7. Towards ultrasensitive malaria diagnosis using surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Keren; Yuen, Clement; Aniweh, Yaw; Preiser, Peter; Liu, Quan

    2016-02-01

    We report two methods of surface enhanced Raman spectroscopy (SERS) for hemozoin detection in malaria infected human blood. In the first method, silver nanoparticles were synthesized separately and then mixed with lysed blood; while in the second method, silver nanoparticles were synthesized directly inside the parasites of Plasmodium falciparum. It was observed that the first method yields a smaller variation in SERS measurements and stronger correlation between the estimated contribution of hemozoin and the parasitemia level, which is preferred for the quantification of the parasitemia level. In contrast, the second method yields a higher sensitivity to a low parasitemia level thus could be more effective in the early malaria diagnosis to determine whether a given blood sample is positive.

  8. Enhanced Raman spectroscopic study of rotational isomers on metal surfaces

    NASA Technical Reports Server (NTRS)

    Loo, B. H.; Lee, Y. G.; Frazier, D. O.

    1986-01-01

    Surfaced-enhanced Raman spectroscopy has been used to study rotational isomers of succinonitrile and N-methyl-thioacetamide on Cu and Ag surfaces. Both the gauche and trans conformers of succinonitrile are found to chemisorb on the metal surface. The doubly degenerate nu(C-triple bond-N) in the free molecules is removed when succinonitrile adsorbs on copper, which indicates that the two (C-triple bond-N) groups are no longer chemically equivalent. Both conformers are found to coordinate to the copper surface through the pi system of one of the two (C-triple bond-N) groups. In the case of N-methyl-thioacetamide, the population of the cis isomer is greatly increased on Cu and Ag surfaces. This is probably due to surface-induced cis-trans isomerization, in which the predominant trans isomer is converted to the cis isomer.

  9. Ultrasensitive surface-enhanced Raman scattering detection in common fluids

    PubMed Central

    Yang, Shikuan; Dai, Xianming; Stogin, Birgitt Boschitsch; Wong, Tak-Sing

    2016-01-01

    Detecting target analytes with high specificity and sensitivity in any fluid is of fundamental importance to analytical science and technology. Surface-enhanced Raman scattering (SERS) has proven to be capable of detecting single molecules with high specificity, but achieving single-molecule sensitivity in any highly diluted solutions remains a challenge. Here we demonstrate a universal platform that allows for the enrichment and delivery of analytes into the SERS-sensitive sites in both aqueous and nonaqueous fluids, and its subsequent quantitative detection of Rhodamine 6G (R6G) down to ∼75 fM level (10−15 mol⋅L−1). Our platform, termed slippery liquid-infused porous surface-enhanced Raman scattering (SLIPSERS), is based on a slippery, omniphobic substrate that enables the complete concentration of analytes and SERS substrates (e.g., Au nanoparticles) within an evaporating liquid droplet. Combining our SLIPSERS platform with a SERS mapping technique, we have systematically quantified the probability, p(c), of detecting R6G molecules at concentrations c ranging from 750 fM (p > 90%) down to 75 aM (10−18 mol⋅L−1) levels (p ≤ 1.4%). The ability to detect analytes down to attomolar level is the lowest limit of detection for any SERS-based detection reported thus far. We have shown that analytes present in liquid, solid, or air phases can be extracted using a suitable liquid solvent and subsequently detected through SLIPSERS. Based on this platform, we have further demonstrated ultrasensitive detection of chemical and biological molecules as well as environmental contaminants within a broad range of common fluids for potential applications related to analytical chemistry, molecular diagnostics, environmental monitoring, and national security. PMID:26719413

  10. Ultrasensitive surface-enhanced Raman scattering detection in common fluids.

    PubMed

    Yang, Shikuan; Dai, Xianming; Stogin, Birgitt Boschitsch; Wong, Tak-Sing

    2016-01-12

    Detecting target analytes with high specificity and sensitivity in any fluid is of fundamental importance to analytical science and technology. Surface-enhanced Raman scattering (SERS) has proven to be capable of detecting single molecules with high specificity, but achieving single-molecule sensitivity in any highly diluted solutions remains a challenge. Here we demonstrate a universal platform that allows for the enrichment and delivery of analytes into the SERS-sensitive sites in both aqueous and nonaqueous fluids, and its subsequent quantitative detection of Rhodamine 6G (R6G) down to ∼75 fM level (10(-15) mol⋅L(-1)). Our platform, termed slippery liquid-infused porous surface-enhanced Raman scattering (SLIPSERS), is based on a slippery, omniphobic substrate that enables the complete concentration of analytes and SERS substrates (e.g., Au nanoparticles) within an evaporating liquid droplet. Combining our SLIPSERS platform with a SERS mapping technique, we have systematically quantified the probability, p(c), of detecting R6G molecules at concentrations c ranging from 750 fM (p > 90%) down to 75 aM (10(-18) mol⋅L(-1)) levels (p ≤ 1.4%). The ability to detect analytes down to attomolar level is the lowest limit of detection for any SERS-based detection reported thus far. We have shown that analytes present in liquid, solid, or air phases can be extracted using a suitable liquid solvent and subsequently detected through SLIPSERS. Based on this platform, we have further demonstrated ultrasensitive detection of chemical and biological molecules as well as environmental contaminants within a broad range of common fluids for potential applications related to analytical chemistry, molecular diagnostics, environmental monitoring, and national security. PMID:26719413

  11. Correction: Towards improved precision in the quantification of surface-enhanced Raman scattering (SERS) enhancement factors: a renewed approach.

    PubMed

    Sivanesan, Arumugam; Adamkiewicz, Witold; Kalaivani, Govindasamy; Kamińska, Agnieszka; Waluk, Jacek; Hołyst, Robert; Izake, Emad L

    2015-01-21

    Correction for 'Towards improved precision in the quantification of surface-enhanced Raman scattering (SERS) enhancement factors: a renewed approach' by Arumugam Sivanesan et al., Analyst, 2015, DOI:10.1039/c4an01778a PMID:25453040

  12. [Research on Quantitative Analytical Model for Determination of Phosmet by Using Surface Enhanced Raman Spectroscopy].

    PubMed

    Hao, Yong; Chen, Bin

    2015-09-01

    Raman spectroscopy combined with surface enhanced technology was adopted for analysis of phosmet pesticide. Continuous wavelet transforms (CWT) and successive projections algorithm (SPA) were used for Raman spectral preprocess and characteristic Raman shifts selection, respectively. Multi-linear regression (MLR) was used for spectral modeling. It is shown that enhanced chips can achieve enhanced Raman spectral signal for low concentration of pesticides. CWT can improve spectral resolution and smoothness, and remove translation error. Characteristic Raman shifts selection method of SPA can improve analytical precision, and simplify modeling variables of MLR. CWT-SPA-MLR model can improve correlation coefficient (r) of prediction from 0.823 to 0.903, and reduce root mean square error of prediction (RMSEP) from 1.640 to 1.122. CWT-SPA-MLR method can be used for constructing analytical models for Raman spectra and has good interpretability and repeatability. PMID:26669168

  13. High-density metallic nanogaps fabricated on solid substrates used for surface enhanced Raman scattering.

    PubMed

    Lu, Gang; Li, Hai; Wu, Shixin; Chen, Peng; Zhang, Hua

    2012-02-01

    The Raman signal of adsorbed molecules can be significantly enhanced by utilizing metallic structures with high-density Raman hot spots used as surface enhanced Raman scattering (SERS) substrates. In this work, we develop a simple, convenient and tunable method to fabricate high-density Ag or Au nanogaps on Si wafers. These nanogaps can serve as Raman hot spots, leading to dramatic enhancement of the Raman signal. The high-density nanogaps can be formed by repeating the electroless deposition of Ag NPs (or Au NPs) and coating of p-aminothiophenol (PATP, a Raman probe) on the deposited Ag NPs (or Au NPs) through the self-assembly process. After removal of PATP by O(2) plasma, the as-fabricated SERS substrate can be reused for the detection of other molecules. PMID:22159183

  14. New Insight into Erythrocyte through In Vivo Surface-Enhanced Raman Spectroscopy

    PubMed Central

    Brazhe, Nadezda A.; Abdali, Salim; Brazhe, Alexey R.; Luneva, Oksana G.; Bryzgalova, Nadezda Y.; Parshina, Eugenia Y.; Sosnovtseva, Olga V.; Maksimov, Georgy V.

    2009-01-01

    Abstract The article presents a noninvasive approach to the study of erythrocyte properties by means of a comparative analysis of signals obtained by surface-enhanced Raman spectroscopy (SERS) and resonance Raman spectroscopy (RS). We report step-by-step the procedure for preparing experimental samples containing erythrocytes in their normal physiological environment in a mixture of colloid solution with silver nanoparticles and the procedure for the optimization of SERS conditions to achieve high signal enhancement without affecting the properties of living erythrocytes. By means of three independent techniques, we demonstrate that under the proposed conditions a colloid solution of silver nanoparticles does not affect the properties of erythrocytes. For the first time to our knowledge, we describe how to use the SERS-RS approach to study two populations of hemoglobin molecules inside an intact living erythrocyte: submembrane and cytosolic hemoglobin (Hbsm and Hbc). We show that the conformation of Hbsm differs from the conformation of Hbc. This finding has an important application, as the comparative study of Hbsm and Hbc could be successfully used in biomedical research and diagnostic tests. PMID:20006958

  15. Versatile Side-Illumination Geometry for Tip-Enhanced Raman Spectroscopy at Solid/Liquid Interfaces.

    PubMed

    Martín Sabanés, Natalia; Driessen, Leonie M A; Domke, Katrin F

    2016-07-19

    In situ characterization of surfaces with tip-enhanced Raman spectroscopy (TERS) provides chemical and topographic information with high spatial resolution and submonolayer chemical sensitivity. To further the versatility of the TERS approach toward more complex systems such as biological membranes or energy conversion devices, adaptation of the technique to solid/liquid working conditions is essential. Here, we present a home-built side-illumination TERS setup design based on a commercial scanning tunneling microscope (STM) as a versatile, cost-efficient solution for TERS at solid/liquid interfaces. Interestingly, the results obtained from showcase resonant dye and nonresonant thiophenol monolayers adsorbed on Au single crystals suggest that excitation beam aberrations due to the presence of the aqueous phase are small enough not to limit TER signal detection. The STM parameters are found to play a crucial role for solid/liquid TERS sensitivity. Raman enhancement factors of 10(5) at μW laser power demonstrate the great potential the presented experimental configuration holds for solid/liquid interfacial spectroscopic studies. PMID:27299508

  16. Surface-enhanced Raman scattering substrates fabricated using electroless plating on polymer-templated nanostructures.

    PubMed

    Bantz, Kyle C; Haynes, Christy L

    2008-06-01

    Surface-enhanced Raman scattering (SERS) has great potential as an analytical technique based on the unique molecular signatures presented even by structurally similar analyte species and the minimal interference of scattering from water when sampling in aqueous environments. Unfortunately, analytical SERS applications have been restricted on the basis of limitations in substrate design. Herein, we present a simple SERS substrate that exploits electroless deposition onto a nanoparticle-seeded polymer scaffold that can be fabricated quickly and without specialized equipment. The polymer-templated nanostructures have stable enhancement factors that are comparable to the traditional silver film over nanospheres (AgFON) substrate, broad localized surface plasmon resonance spectra that allow various Raman excitation wavelengths to be utilized, and tolerance for both aqueous and organic environments, even after 5 day exposure. These polymer-templated nanostructures have an advantage over the AgFON substrate based on the ease of fabrication; specifically, the ability to generate fresh SERS substrates outside the laboratory environment will facilitate the application of SERS to new analytical spectroscopy applications. PMID:18461977

  17. Growth and surface-enhanced Raman scattering of Ag nanoparticle assembly in agarose gel

    NASA Astrophysics Data System (ADS)

    Keating, M.; Chen, Y.; Larmour, I. A.; Faulds, K.; Graham, D.

    2012-08-01

    Agarose gel loaded with silver nanoparticles has attracted a lot of attention recently due to its excellent molecular trapping capabilities and strong surface-enhanced Raman scattering (SERS). Despite its potential, the influence of the growth condition on the gel structure and resultant SERS intensity and reproducibility is not clear. In this work, we examine the effect of silver nitrate feed solution concentration, the precursor to neutral silver nanoparticles, on the resultant nanoparticle morphology, gel homogeneity, SERS signal intensity and reproducibility. SERS of trans-1,2-bis-(4-pyridyl) ethylene, a non-resonant molecule, was conducted. A substantial rise in SERS signal strength with increasing feed concentration was observed, accompanied by a modest increase in average particle size as disclosed by TEM analysis. At higher concentrations, gels possessed larger particles from broader size distributions which had a higher tendency to aggregate. This created a higher density of SERS ‘hotspots’, regions of intense electromagnetic field crucial for maximal enhancement of the Raman signal, but also led to increased spot-to-spot signal variation due to a marked change in nanoparticle morphology and gel homogeneity. Beyond an optimal feed concentration, no further increase in overall signal strength was evident, correlating with no appreciable rise in the number of larger particles.

  18. Surface-enhanced Raman scattering of carbon nanotubes by decoration of ZnS nanoparticles.

    PubMed

    Chang, Jingbo; Lee, Jae-Hyeok; Najeeb, Choolakadavil Khalid; Kim, Jae-Ho

    2011-07-01

    ZnS nanoparticles anchored on the single-walled carbon nanotubes (SWNTs) were fabricated by a chemical vapor deposition (CVD) method. The CVD method shows no selectivity for growth of ZnS nanoparticles on types and defects of the SWNTs, and thus ensures the uniform decoration of all SWNTs on the substrate. ZnS nanoparticles with a diameter of 10 nm were decorated on the SWNTs surface with an interparticle distance of about 20 nm. This method provides the possibility to realize the optimal configurations of ZnS nanoparticles on SWNTs for obtaining surface-enhanced Raman spectroscopy (SERS) of SWNTs. Investigations of mechanism reveal that charge transfer (a small amount of excitation electrons) from ZnS nanoparticles to SWNTs weakly affects Raman intensity, and the coupled surface plasmon resonance (SPR) formed from plenty of excitation electrons on the surface of ZnS nanoparticles contributes to the strong surface enhancement. It would be an alternative approach for SERS after metal (normally gold or silver) nanoparticles' decoration on the SWNTs surface. PMID:22121696

  19. Directly probing redox-linked quinones in photosystem II membrane fragments via UV resonance Raman scattering.

    PubMed

    Chen, Jun; Yao, Mingdong; Pagba, Cynthia V; Zheng, Yang; Fei, Liping; Feng, Zhaochi; Barry, Bridgette A

    2015-01-01

    In photosynthesis, photosystem II (PSII) harvests sunlight with bound pigments to oxidize water and reduce quinone to quinol, which serves as electron and proton mediators for solar-to-chemical energy conversion. At least two types of quinone cofactors in PSII are redox-linked: QA, and QB. Here, we for the first time apply 257-nm ultraviolet resonance Raman (UVRR) spectroscopy to acquire the molecular vibrations of plastoquinone (PQ) in PSII membranes. Owing to the resonance enhancement effect, the vibrational signal of PQ in PSII membranes is prominent. A strong band at 1661 cm(-1) is assigned to ring CC/CO symmetric stretch mode (ν8a mode) of PQ, and a weak band at 469 cm(-1) to ring stretch mode. By using a pump-probe difference UVRR method and a sample jet technique, the signals of QA and QB can be distinguished. A frequency difference of 1.4 cm(-1) in ν8a vibrational mode between QA and QB is observed, corresponding to ~86 mV redox potential difference imposed by their protein environment. In addition, there are other PQs in the PSII membranes. A negligible anharmonicity effect on their combination band at 2130 cm(-1) suggests that the 'other PQs' are situated in a hydrophobic environment. The detection of the 'other PQs' might be consistent with the view that another functional PQ cofactor (not QA or QB) exists in PSII. This UVRR approach will be useful to the study of quinone molecules in photosynthesis or other biological systems. PMID:25791219

  20. Resonance Raman scattering of perovskite-type relaxor ferroelectrics under nonambient conditions

    NASA Astrophysics Data System (ADS)

    de la Flor, G.; Wehber, M.; Rohrbeck, A.; Aroyo, M. I.; Bismayer, U.; Mihailova, B.

    2014-08-01

    Resonance Raman scattering (RRS) of two model perovskite-type (ABO3) relaxor compounds PbSc0.5Ta0.5O3 (PST) and PbSc0.5Nb0.5O3 (PSN) excited with a laser wavelength of 325 nm (3.8 eV) is studied at different temperatures and ambient pressure as well as at high pressures and room temperature (for PST). The origin of the observed RRS is reinspected by applying group-theory analysis of phonons compatible with symmetry-allowed electron transitions in cubic and possible polar and nonpolar rhombohedral ferroic structures. It is shown that the simultaneous enhancement of first- and second-order RRS generated by antisymmetric BO6 bending and stretching modes under resonance conditions when the photon energy is slightly above the energy gap Eg˜3.2eV results exclusively from spatial regions with coherent polar structural distortions. Upon cooling RRS appears in the vicinity of the characteristic temperature T*, and its total intensity significantly increases upon further temperature decrease. The predominate type of BO6 polarity changes from related to difference in B-O bonds to related to distorted O-B-O bond angles. At room temperature and high pressures RRS drops in intensity above the critical pressure of development of long-range antiphase octahedral tilting. However it persists up to 8.3 GPa, which is the highest pressure reached in the experiment, indicating that the high-pressure phase is polar due to the slight BO6 distortions accompanying the tilt order.

  1. Enhancement of artificial magnetism via resonant bianisotropy.

    PubMed

    Markovich, Dmitry; Baryshnikova, Kseniia; Shalin, Alexander; Samusev, Anton; Krasnok, Alexander; Belov, Pavel; Ginzburg, Pavel

    2016-01-01

    All-dielectric "magnetic light" nanophotonics based on high refractive index nanoparticles allows controlling magnetic component of light at nanoscale without having high dissipative losses. The artificial magnetic optical response of such nanoparticles originates from circular displacement currents excited inside those structures and strongly depends on geometry and dispersion of optical materials. Here an approach for enhancing of magnetic response via resonant bianisotropy effect is proposed and analyzed. The key mechanism of enhancement is based on electric-magnetic interaction between two electrically and magnetically resonant nanoparticles of all-dielectric dimer. It was shown that proper geometrical arrangement of the dimer in respect to the incident illumination direction allows flexible control over all vectorial components of the magnetic moment, tailoring the latter in the dynamical range of 100% and delivering enhancement up to 36% relative to performances of standalone spherical particles. The proposed approach provides pathways for designs of all-dielectric metamaterials and metasurfaces with strong magnetic responses. PMID:26941126

  2. Enhancement of artificial magnetism via resonant bianisotropy

    NASA Astrophysics Data System (ADS)

    Markovich, Dmitry; Baryshnikova, Kseniia; Shalin, Alexander; Samusev, Anton; Krasnok, Alexander; Belov, Pavel; Ginzburg, Pavel

    2016-03-01

    All-dielectric “magnetic light” nanophotonics based on high refractive index nanoparticles allows controlling magnetic component of light at nanoscale without having high dissipative losses. The artificial magnetic optical response of such nanoparticles originates from circular displacement currents excited inside those structures and strongly depends on geometry and dispersion of optical materials. Here an approach for enhancing of magnetic response via resonant bianisotropy effect is proposed and analyzed. The key mechanism of enhancement is based on electric-magnetic interaction between two electrically and magnetically resonant nanoparticles of all-dielectric dimer. It was shown that proper geometrical arrangement of the dimer in respect to the incident illumination direction allows flexible control over all vectorial components of the magnetic moment, tailoring the latter in the dynamical range of 100% and delivering enhancement up to 36% relative to performances of standalone spherical particles. The proposed approach provides pathways for designs of all-dielectric metamaterials and metasurfaces with strong magnetic responses.

  3. Measurement of sex steroids and analogs with a fiber optic probe using pulsed ultraviolet resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Schulze, H. Georg; Greek, L. Shane; Blades, Michael W.; Bree, Alan V.; Gorzalka, Boris B.; Turner, Robin F. B.

    1997-05-01

    Resonance Raman spectroscopy, performed via an optical fiber probe, can be used in aqueous samples to detect a wide variety of chemical species in situ. It offers a potentially rapid, on-site alternative to the high performance chromatography/mass spectrometry methods currently considered definitive for the detection of sex steroids in human urine. As a first step in the development of a resonance Raman instrument for the rapid detection of sex steroids in biological samples, it had to be shown that these substances, their analogs, and the major components of human urine can be differentiated on the basis of their resonance Raman spectra. A fiber-optic linked Raman and tunable ultraviolet resonance Raman system was assembled with custom designed optical fiber probes. The ultraviolet absorption spectra of some sex steroids, analogs, and components of human urine were measured in order to determine feasible excitation light frequencies. We present here for the first time the UV resonance Raman spectra of these substances obtained via our novel fiber probes. These results indicate that some of the steroids tested can be differentiated from each other and from the major components of human urine on the basis of their resonance Raman spectra.

  4. G-band resonant Raman study of 62 isolated single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Jorio, A.; Souza Filho, A. G.; Dresselhaus, G.; Dresselhaus, M. S.; Swan, A. K.; Ünlü, M. S.; Goldberg, B. B.; Pimenta, M. A.; Hafner, J. H.; Lieber, C. M.; Saito, R.

    2002-04-01

    We report G-band resonance Raman spectra of single-wall carbon nanotubes (SWNTs) at the single-nanotube level. By measuring 62 different isolated SWNTs resonant with the incident laser, and having diameters dt ranging between 0.95 nm and 2.62 nm, we have conclusively determined the dependence of the two most intense G-band features on the nanotube structure. The higher-frequency peak is not diameter dependent (ω+G=1591 cm-1), while the lower-frequency peak is given by ω-G=ω+G-C/d2t, with C being different for metallic and semiconducting SWNTs (CM>CS). The peak frequencies do not depend on nanotube chiral angle. The intensity ratio between the two most intense features is in the range 0.1resonance conditions, i.e., SWNTs for which the incident photons are in resonance with the ES44 interband transition and scattered photons are in resonance with ES33. Since the Eii values depend sensitively on both nanotube diameter and chirality, the (n,m) SWNTs that should exhibit such a special G-band spectra can be predicted by resonance Raman theory. The agreement between theoretical predictions and experimental observations about these special G-band phenomena gives additional support for the (n,m) assignment from resonance Raman spectroscopy.

  5. Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering.

    PubMed

    Zheng, Peng; Cushing, Scott K; Suri, Savan; Wu, Nianqiang

    2015-09-01

    The wide plasmonic tuning range of nanotriangle and nanohole array patterns fabricated by nanosphere lithography makes them promising in surface-enhanced Raman scattering (SERS) sensors. Unfortunately, it is challenging to optimize these patterns for SERS sensing because their optical response is a complex mixture of localized surface plasmon resonance (SPR) and propagating surface plasmon polariton (SPP). In this paper, transmission and reflection measurements are combined with finite difference time domain simulations to identify and separate each plasmonic mode, discerning which resonance leads to the electromagnetic field enhancement. The SERS enhancement is found to be dominated by the absorption, which is shifted from the transmission and reflection dips usually used as tuning points, and by the 'gap' defects formed within the pattern. These effects have different spectral and geometric dependences, forming two optimization curves which can be used to predict the best performance for a given excitation wavelength. The developed model is verified with experimental SERS measurements for several nanohole sizes and periodicities, and then used to give optimal fabrication parameters for a range of measurement conditions. The results will promote the application of two-dimensional plasmonic nanoarrays in SERS sensors. PMID:25586930

  6. Surface-enhanced Raman imaging of cell membrane by a highly homogeneous and isotropic silver nanostructure

    NASA Astrophysics Data System (ADS)

    Zito, Gianluigi; Rusciano, Giulia; Pesce, Giuseppe; Dochshanov, Alden; Sasso, Antonio

    2015-04-01

    Label-free chemical imaging of live cell membranes can shed light on the molecular basis of cell membrane functionalities and their alterations under membrane-related diseases. In principle, this can be done by surface-enhanced Raman scattering (SERS) in confocal microscopy, but requires engineering plasmonic architectures with a spatially invariant SERS enhancement factor G(x, y) = G. To this end, we exploit a self-assembled isotropic nanostructure with characteristics of homogeneity typical of the so-called near-hyperuniform disorder. The resulting highly dense, homogeneous and isotropic random pattern consists of clusters of silver nanoparticles with limited size dispersion. This nanostructure brings together several advantages: very large hot spot density (~104 μm-2), superior spatial reproducibility (SD < 1% over 2500 μm2) and single-molecule sensitivity (Gav ~ 109), all on a centimeter scale transparent active area. We are able to reconstruct the label-free SERS-based chemical map of live cell membranes with confocal resolution. In particular, SERS imaging is here demonstrated on red blood cells in vitro in order to use the Raman-resonant heme of the cell as a contrast medium to prove spectroscopic detection of membrane molecules. Numerical simulations also clarify the SERS characteristics of the substrate in terms of electromagnetic enhancement and distance sensitivity range consistently with the experiments. The large SERS-active area is intended for multi-cellular imaging on the same substrate, which is important for spectroscopic comparative analysis of complex organisms like cells. This opens new routes for in situ quantitative surface analysis and dynamic probing of living cells exposed to membrane-targeting drugs.Label-free chemical imaging of live cell membranes can shed light on the molecular basis of cell membrane functionalities and their alterations under membrane-related diseases. In principle, this can be done by surface-enhanced Raman

  7. Guiding Brain Tumor Resection Using Surface-Enhanced Raman Scattering Nanoparticles and a Hand-Held Raman Scanner

    PubMed Central

    2015-01-01

    The current difficulty in visualizing the true extent of malignant brain tumors during surgical resection represents one of the major reasons for the poor prognosis of brain tumor patients. Here, we evaluated the ability of a hand-held Raman scanner, guided by surface-enhanced Raman scattering (SERS) nanoparticles, to identify the microscopic tumor extent in a genetically engineered RCAS/tv-a glioblastoma mouse model. In a simulated intraoperative scenario, we tested both a static Raman imaging device and a mobile, hand-held Raman scanner. We show that SERS image-guided resection is more accurate than resection using white light visualization alone. Both methods complemented each other, and correlation with histology showed that SERS nanoparticles accurately outlined the extent of the tumors. Importantly, the hand-held Raman probe not only allowed near real-time scanning, but also detected additional microscopic foci of cancer in the resection bed that were not seen on static SERS images and would otherwise have been missed. This technology has a strong potential for clinical translation because it uses inert gold–silica SERS nanoparticles and a hand-held Raman scanner that can guide brain tumor resection in the operating room. PMID:25093240

  8. Hybrid plasmonic platforms based on silica-encapsulated gold nanorods as effective spectroscopic enhancers for Raman and fluorescence spectroscopy.

    PubMed

    Gabudean, A M; Biro, D; Astilean, S

    2012-12-01

    Surface-enhanced Raman scattering (SERS) nano-tags are of increasing interest in biomedical research as viable alternatives to bio-imaging techniques based on semiconductor quantum dots or fluorescent molecules. In this work, we fabricate silica-coated gold nanorods (AuNRs) encoded with two molecular labels to operate as highly effective spectroscopic nano-tags in near-infrared SERS (NIR-SERS) and surface-enhanced resonance Raman scattering combined with metal-enhanced fluorescence (SERRS-MEF), respectively. Specifically, a non-fluorescent molecule with strong affinity for a gold surface (para-aminothiophenol, p-ATP) and a common dye (Nile Blue, NB) with lower affinity have been successfully tested as NIR-SERS nano-tags under laser excitation at 785 nm. Moreover, as a result of designing AuNRs with a plasmon resonance band overlapping the electronic absorption band of the encoded NB molecule, a dual SERRS and MEF performance has been devised under resonant excitation at 633 nm. We explain this result by considering a partial desorption of NB molecules from the metal surface and their trapping into the silica shell at favorable distances to avoid quenching and enhance the fluorescence signal. Finally, we prove that the silica shell prevents the desorption or chemical transformation of p-ATP into p,p'-dimercaptoazobenzene species, as previously noticed, thus providing a highly stable SERRS signal, which is crucial for imaging applications. PMID:23138835

  9. Hybrid plasmonic platforms based on silica-encapsulated gold nanorods as effective spectroscopic enhancers for Raman and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Gabudean, A. M.; Biro, D.; Astilean, S.

    2012-12-01

    Surface-enhanced Raman scattering (SERS) nano-tags are of increasing interest in biomedical research as viable alternatives to bio-imaging techniques based on semiconductor quantum dots or fluorescent molecules. In this work, we fabricate silica-coated gold nanorods (AuNRs) encoded with two molecular labels to operate as highly effective spectroscopic nano-tags in near-infrared SERS (NIR-SERS) and surface-enhanced resonance Raman scattering combined with metal-enhanced fluorescence (SERRS-MEF), respectively. Specifically, a non-fluorescent molecule with strong affinity for a gold surface (para-aminothiophenol, p-ATP) and a common dye (Nile Blue, NB) with lower affinity have been successfully tested as NIR-SERS nano-tags under laser excitation at 785 nm. Moreover, as a result of designing AuNRs with a plasmon resonance band overlapping the electronic absorption band of the encoded NB molecule, a dual SERRS and MEF performance has been devised under resonant excitation at 633 nm. We explain this result by considering a partial desorption of NB molecules from the metal surface and their trapping into the silica shell at favorable distances to avoid quenching and enhance the fluorescence signal. Finally, we prove that the silica shell prevents the desorption or chemical transformation of p-ATP into p,p‧-dimercaptoazobenzene species, as previously noticed, thus providing a highly stable SERRS signal, which is crucial for imaging applications.

  10. Excitons in one-phonon resonant Raman scattering: Fröhlich and interference effects

    NASA Astrophysics Data System (ADS)

    Cantarero, A.; Trallero-Giner, C.; Cardona, M.

    1989-12-01

    A theoretical model of resonant Raman scattering including excitons as intermediate states in the process is compared with recent experimental results in some III-V compound semiconductors where the Raman polarizability was obtained in absolute value for several scattering configurations. In particular, Fröhlich (F) interaction and its interference with the deformation potential (DP) one is analyzed in the E0+Δ0 critical point (CP) of GaAs at three different temperatures. Also the E0 and E0+Δ0 CP of GaP and E0+Δ0 of GaSb are analyzed. We show that the inclusion of impurity-induced forbidden LO-phonon Raman scattering is not necessary when excitonic effects are considered. The experimental data of GaAs corresponding to F interaction can be fitted by assuming a Fröhlich constant cF=0.14 eV Aṥ/2. Lifetime broadenings of 12 meV (10 K), 14 meV (100 K), and 28 meV (300 K) are deduced. The lifetime broadening of GaAs and GaSb at 100 K are taken from two-phonon Raman scattering spectra where the incoming and outgoing resonances are well defined. The general features in the comparison with the experiment is that the measured spectra corresponding to F interaction are well fitted; however, the theoretical interference is stronger than the measured one.

  11. Resonance Raman Spectroscopy of the T1 Triplet Excited State of Oligothiophenes.

    PubMed

    Wang, Chen; Angelella, Maria; Doyle, Samantha J; Lytwak, Lauren A; Rossky, Peter J; Holliday, Bradley J; Tauber, Michael J

    2015-09-17

    The characterization of triplet excited states is essential for research on organic photovoltaics and singlet fission. We report resonance Raman spectra of two triplet oligothiophenes with n-alkyl substituents, a tetramer and hexamer. The spectra of the triplets are more complex than the ground state, and we find that density functional theory calculations are a useful starting point for characterizing the bands. The spectra of triplet tetrathiophene and hexathiophene differ significantly from one another. This observation is consistent with a T1 excitation that is delocalized over at least five rings in long oligomers. Bands in the 500-800 cm(-1) region are greatly diminished for an aggregated sample of hexathiophene, likely caused by fast electronic dephasing. These experiments highlight the potential of resonance Raman spectroscopy to unequivocally detect and characterize triplets in thiophene materials. The vibrational spectra can also serve as rigorous standards for evaluating computational methods for excited-state molecules. PMID:26291623

  12. The Detection of Protein via ZnO Resonant Raman Scattering Signal

    NASA Astrophysics Data System (ADS)

    Shan, Guiye; Yang, Guoliang; Wang, Shuang; Liu, Yichun

    2008-03-01

    Detecting protein with high sensitivity and specificity is essential for disease diagnostics, drug screening and other application. Semiconductor nanoparticles show better properties than organic dye molecules when used as markers for optical measurements. We used ZnO nanoparticles as markers for detecting protein in resonant Raman scattering measurements. The highly sensitive detection of proteins was achieved by an antibody-based sandwich assay. A probe for the target protein was constructed by binding the ZnO/Au nanoparticles to a primary antibody by eletrostatic interaction between Au and the antibody. A secondary antibody, which could be specifically recognized by target protein, was attached to a solid surface. The ZnO/Au-antibody probe could specifically recognize and bind to the complex of the target protein and secondary antibody. Our measurements using the resonant Raman scattering signal of ZnO nanoparticles showed good selectivity and sensitivity for the target protein.

  13. Characterization of bundled and individual triple-walled carbon nanotubes by resonant Raman spectroscopy.

    PubMed

    Hirschmann, Thomas Ch; Araujo, Paulo T; Muramatsu, Hiroyuki; Zhang, Xu; Nielsch, Kornelius; Kim, Yoong Ahm; Dresselhaus, Mildred S

    2013-03-26

    The optical characterization of bundled and individual triple-walled carbon nanotubes was studied for the first time in detail by using resonant Raman spectroscopy. In our approach, the outer tube of a triple-walled carbon nanotube system protects the two inner tubes (or equivalently the inner double-walled carbon nanotube) from external environment interactions making them a partially isolated system. Following the spectral changes and line-widths of the radial breathing modes and G-band by performing laser energy dependent Raman spectroscopy, it is possible to extract important information as regards to the electronic and vibrational properties, tube diameters, wall-to-wall distances, radial breathing mode, and G-band resonance evolutions as well as high-curvature intertube interactions in isolated double- and triple-walled carbon nanotube systems. PMID:23311296

  14. A Nanoplasmonic Strategy for Precision in-situ Measurements of Tip-enhanced Raman and Fluorescence Spectroscopy.

    PubMed

    Meng, Lingyan; Sun, Mengtao; Chen, Jianing; Yang, Zhilin

    2016-01-01

    We theoretically investigate an optimized tip-film system that supports in-situ measurement of tip-enhanced Raman spectroscopy (TERS) and tip-enhanced fluorescence (TEF) of dye molecules. A scanning tunneling microscope (STM) is proposed to precisely control the tip-film distance, and thus in-situ measurement of TERS and TEF can be realized utilizing the specific surface plasmon resonance (SPR) properties of the tip-film system. Our calculations show that the optimized tip-film distance of 2 nm suggests a possibility of efficient acquisition of TERS and TEF in-situ. The calculated spatial resolution of TERS and spectral resolution of TEF can be down to 6.5 nm and 10 nm, respectively. Our theoretical results may find promising application in developing multiple functional nano-spectroscopy through which Raman and fluorescence can be measured in-situ at the nanoscale level. PMID:26780882

  15. A Nanoplasmonic Strategy for Precision in-situ Measurements of Tip-enhanced Raman and Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Meng, Lingyan; Sun, Mengtao; Chen, Jianing; Yang, Zhilin

    2016-01-01

    We theoretically investigate an optimized tip-film system that supports in-situ measurement of tip-enhanced Raman spectroscopy (TERS) and tip-enhanced fluorescence (TEF) of dye molecules. A scanning tunneling microscope (STM) is proposed to precisely control the tip-film distance, and thus in-situ measurement of TERS and TEF can be realized utilizing the specific surface plasmon resonance (SPR) properties of the tip-film system. Our calculations show that the optimized tip-film distance of 2 nm suggests a possibility of efficient acquisition of TERS and TEF in-situ. The calculated spatial resolution of TERS and spectral resolution of TEF can be down to 6.5 nm and 10 nm, respectively. Our theoretical results may find promising application in developing multiple functional nano-spectroscopy through which Raman and fluorescence can be measured in-situ at the nanoscale level.

  16. Photonic crystals with SiO2-Ag ``post-cap'' nanostructure coatings for surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Seok-min; Zhang, Wei; Cunningham, Brian T.

    2008-10-01

    We demonstrate that the resonant near fields of a large-area replica molded photonic crystal (PC) slab can efficiently couple light from a laser to SiO2-Ag "post-cap" nanostructures deposited on the PC surface by a glancing angle evaporation technique for achieving high surface enhanced Raman spectroscopy (SERS) enhancement factor. To examine the feasibility of the PC-SERS substrate, the simulated electric field around individual Ag particles and the measured Raman spectrum of trans-1,2-bis(4pyridyl)ethane on the PC-SERS substrate were compared with those from an ordinary glass substrate coated with the same SiO2-Ag nanostructures.

  17. A Nanoplasmonic Strategy for Precision in-situ Measurements of Tip-enhanced Raman and Fluorescence Spectroscopy

    PubMed Central

    Meng, Lingyan; Sun, Mengtao; Chen, Jianing; Yang, Zhilin

    2016-01-01

    We theoretically investigate an optimized tip-film system that supports in-situ measurement of tip-enhanced Raman spectroscopy (TERS) and tip-enhanced fluorescence (TEF) of dye molecules. A scanning tunneling microscope (STM) is proposed to precisely control the tip-film distance, and thus in-situ measurement of TERS and TEF can be realized utilizing the specific surface plasmon resonance (SPR) properties of the tip-film system. Our calculations show that the optimized tip-film distance of 2 nm suggests a possibility of efficient acquisition of TERS and TEF in-situ. The calculated spatial resolution of TERS and spectral resolution of TEF can be down to 6.5 nm and 10 nm, respectively. Our theoretical results may find promising application in developing multiple functional nano-spectroscopy through which Raman and fluorescence can be measured in-situ at the nanoscale level. PMID:26780882

  18. Nanoparticles and intracellular applications of surface-enhanced Raman spectroscopy.

    PubMed

    Taylor, Jack; Huefner, Anna; Li, Li; Wingfield, Jonathan; Mahajan, Sumeet

    2016-08-15

    Surface-enhanced Raman spectrocopy (SERS) offers ultrasensitive vibrational fingerprinting at the nanoscale. Its non-destructive nature affords an ideal tool for interrogation of the intracellular environment, detecting the localisation of biomolecules, delivery and monitoring of therapeutics and for characterisation of complex cellular processes at the molecular level. Innovations in nanotechnology have produced a wide selection of novel, purpose-built plasmonic nanostructures capable of high SERS enhancement for intracellular probing while microfluidic technologies are being utilised to reproducibly synthesise nanoparticle (NP) probes at large scale and in high throughput. Sophisticated multivariate analysis techniques unlock the wealth of previously unattainable biomolecular information contained within large and multidimensional SERS datasets. Thus, with suitable combination of experimental techniques and analytics, SERS boasts enormous potential for cell based assays and to expand our understanding of the intracellular environment. In this review we trace the pathway to utilisation of nanomaterials for intracellular SERS. Thus we review and assess nanoparticle synthesis methods, their toxicity and cell interactions before presenting significant developments in intracellular SERS methodologies and how identified challenges can be addressed. PMID:27479539

  19. Silicon nanohybrid-based surface-enhanced Raman scattering sensors.

    PubMed

    Wang, Houyu; Jiang, Xiangxu; Lee, Shuit-Tong; He, Yao

    2014-11-01

    Nanomaterial-based surface-enhanced Raman scattering (SERS) sensors are highly promising analytical tools, capable of ultrasensitive, multiplex, and nondestructive detection of chemical and biological species. Extensive efforts have been made to design various silicon nanohybrid-based SERS substrates such as gold/silver nanoparticle (NP)-decorated silicon nanowires, Au/Ag NP-decorated silicon wafers (AuNP@Si), and so forth. In comparison to free AuNP- and AgNP-based SERS sensors, the silicon nanohybrid-based SERS sensors feature higher enhancement factors (EFs) and excellent reproducibility, since SERS hot spots are efficiently coupled and stabilized through interconnection to the semiconducting silicon substrates. Consequently, in the past decade, giant advancements in the development of silicon nanohybrid-based SERS sensors have been witnessed for myriad sensing applications. In this review, the representative achievements related to the design of high-performance silicon nanohybrid-based SERS sensors and their use for chemical and biological analysis are reviewed in a detailed way. Furthermore, the major opportunities and challenges in this field are discussed from a broad perspective and possible future directions. PMID:25243935

  20. Resonance Raman Spectroscopy of Single-Wall Carbon Nanotubes Separated via Aqueous Two-Phase Extraction

    NASA Astrophysics Data System (ADS)

    Simpson, J. R.; Fagan, J. A.; Hight Walker, A. R.

    2014-03-01

    We report Resonance Raman Spectroscopy (RRS) measurements of single-wall carbon nanotube (SWCNT) samples dispersed in aqueous solutions via surfactant wrapping and separated using aqueous two-phase extraction (ATPE) into chirality-enriched semiconducting and metallic SWCNT species. ATPE provides a rapid, robust, and remarkably tunable separation technique that allows isolation of high-purity, individual SWCNT chiralities via modification of the surfactant environment. We report RRS measurements of individual SWCNT species of various chiral index including, armchair and zigzag metals. Raman provides a powerful technique to quantify the metallic SWCNTs in ATPE fractions separated for metallicity. We measure Raman spectra over a wide range of excitation wavelengths from 457 nm to 850 nm using a series of discrete and continuously tunable laser sources coupled to a triple-grating spectrometer with a liquid-nitrogen-cooled detector. The spectra reveal Raman-active vibrational modes, including the low-frequency radial breathing mode (RBM) and higher-order modes. SWCNT chiral vectors are determined from the Raman spectra, specifically the RBM frequencies and corresponding energy excitation profiles, together with input from theoretical models.

  1. Resonance Raman Spectroscopy of Single-Wall Carbon Nanotubes Separated via Aqueous Two-Phase Extraction

    NASA Astrophysics Data System (ADS)

    Simpson, J. R.; Fagan, J. A.; Hight Walker, A. R.

    2015-03-01

    We report resonance Raman Spectroscopy measurements of single-wall carbon nanotube (SWCNT) samples dispersed in aqueous solutions via surfactant wrapping and separated using aqueous two-phase extraction (ATPE) into chirality-enriched semiconducting and metallic SWCNT species. ATPE provides a rapid, robust, and remarkably tunable separation technique that allows isolation of high-purity, individual SWCNT chiralities via modification of the surfactant environment. We report RRS measurements of individual SWCNT species of various chiral index including, semiconductors, armchair and zigzag metals. Raman provides a powerful technique to quantify the metallic SWCNTs in ATPE fractions separated for metallicity. We measure Raman spectra over a wide range of excitation wavelengths from (457 to 850) nm using a series of discrete and continuously tunable laser sources coupled to a triple-grating spectrometer. The spectra reveal Raman-active vibrational modes, including the low-frequency radial breathing mode (RBM) and higher-order modes. SWCNT chiral vectors are determined from Raman spectra, specifically the RBM frequencies and corresponding energy excitation profiles, together with input from theoretical models.

  2. Quantitative detection of astaxanthin and cantaxanthin in Atlantic salmon by resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ermakov, Igor V.; Ermakova, Maia R.; Gellermann, Werner

    2006-02-01

    Two major carotenoids species found in salmonids muscle tissues are astaxanthin and cantaxanthin. They are taken up from fish food and are responsible for the attractive red-orange color of salmon filet. Since carotenoids are powerful antioxidants and biomarkers of nutrient consumption, they are thought to indicate fish health and resistance to diseases in fish farm environments. Therefore, a rapid, accurate, quantitative optical technique for measuring carotenoid content in salmon tissues is of economic interest. We demonstrate the possibility of using fast, selective, quantitative detection of astaxanthin and cantaxanthin in salmon muscle tissues, employing resonance Raman spectroscopy. Analyzing strong Raman signals originating from the carbon-carbon double bond stretch vibrations of the carotenoid molecules under blue laser excitation, we are able to characterize quantitatively the concentrations of carotenoids in salmon muscle tissue. To validate the technique, we compared Raman data with absorption measurements of carotenoid extracts in acetone. A close correspondence was observed in absorption spectra for tissue extract in acetone and a pure astaxanthin solution. Raman results show a linear dependence between Raman and absorption data. The proposed technique holds promise as a method of rapid screening of carotenoid levels in fish muscle tissues and may be attractive for the fish farm industry to assess the dietary status of salmon, risk for infective diseases, and product quality control.

  3. Advances in fiber optic-based UV resonance Raman spectroscopy techniques for anatomical and physiological investigations

    NASA Astrophysics Data System (ADS)

    Schulze, H. Georg; Barbosa, Christopher J.; Greek, L. Shane; Turner, Robin F. B.; Haynes, C. A.; Klein, Karl-Friedrich; Blades, Michael W.

    1999-04-01

    UV resonance Raman spectroscopy (UVRRS) is becoming a very popular spectroscopic method for bioanalytical investigations due to its high sensitivity, lack of fluorescence, and suitability for use in aqueous solutions. We have made a number of technological advances, especially the development of fiber-optic-based technologies, which permit the performance of remote/in-situ UVRRS measurements. We will be reporting on improved optical fiber probes and demonstrate their benefits in performing UVRRS on neurotransmitters, saliva, and urine.

  4. UV-Enhanced IR Raman System for Identifying Biohazards

    NASA Technical Reports Server (NTRS)

    Stirbl, Robert; Moynihan, Philip; Lane, Arthur

    2003-01-01

    An instrumentation system that would include an ultraviolet (UV) laser or light-emitting diode, an infrared (IR) laser, and the equivalent of an IR Raman spectrometer has been proposed to enable noncontact identification of hazardous biological agents and chemicals. In prior research, IR Raman scattering had shown promise as a means of such identification, except that the Raman-scattered light was often found to be too weak to be detected or to enable unambiguous identification in practical applications. The proposed system would utilize UV illumination as part of a two-level optical-pumping scheme to intensify the Raman signal sufficiently to enable positive identification.

  5. η collective mode as A1 g Raman resonance in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Montiel, X.; Kloss, T.; Pépin, C.; Benhabib, S.; Gallais, Y.; Sacuto, A.

    2016-01-01

    We discuss the possible existence of a spin singlet excitation with charge ±2 (η mode) originating the A1 g Raman resonance in cuprate superconductors. This η mode relates the d -wave superconducting singlet pairing channel to a d -wave charge channel. We show that the η boson forms a particle-particle bound state below the 2 Δ threshold of the particle-hole continuum where Δ is the maximum d -wave gap. Within a generalized random phase approximation and Bethe-Salpeter approximation study, we find that this mode has energies similar to the resonance observed with inelastic neutron scattering below the superconducting (SC) coherent peak at 2 Δ in various SC cuprate compounds. We show that it is a very good candidate for the resonance observed in Raman scattering below the 2 Δ peak in the A1 g symmetry. Since the η mode sits in the S =0 channel, it may be observable via Raman, x-ray, or electron energy loss spectroscopy probes.

  6. Solitons and frequency combs in silica microring resonators: Interplay of the Raman and higher-order dispersion effects

    NASA Astrophysics Data System (ADS)

    Milián, C.; Gorbach, A. V.; Taki, M.; Yulin, A. V.; Skryabin, D. V.

    2015-09-01

    The influence of Raman scattering and higher order dispersions on solitons and frequency comb generation in silica microring resonators is investigated. The Raman effect introduces a threshold value in the resonator quality factor above which the frequency-locked solitons cannot exist, and instead, a rich dynamics characterized by generation of self-frequency-shifting solitons and dispersive waves is observed. A mechanism for broadening the Cherenkov radiation through Hopf instability of the frequency-locked solitons is also reported.

  7. Resonantly-enhanced axion-photon regeneration

    SciTech Connect

    Mueller, Guido; Sikivie, Pierre; Tanner, David B.; Bibber, Karl van

    2010-08-30

    A resonantly-enhanced photon-regeneration experiment to search for the axion or axion-like particles is discussed. Photons enter a strong magnetic field and some are converted to axions; the axions can pass through an opaque wall and some may convert back to photons in a second high-field region. The photon regeneration is enhanced by employing matched Fabry-Perot optical cavities, with one cavity within the axion generation magnet and the second within the photon regeneration magnet. The optics for this experiment are discussed, with emphasis on the alignment of the two cavities.

  8. Plasmon resonance enhanced multicolour photodetection by graphene

    PubMed Central

    Liu, Yuan; Cheng, Rui; Liao, Lei; Zhou, Hailong; Bai, Jingwei; Liu, Gang; Liu, Lixin; Huang, Yu; Duan, Xiangfeng

    2012-01-01

    Graphene has the potential for high-speed, wide-band photodetection, but only with very low external quantum efficiency and no spectral selectivity. Here we report a dramatic enhancement of the overall quantum efficiency and spectral selectivity that enables multicolour photodetection, by coupling graphene with plasmonic nanostructures. We show that metallic plasmonic nanostructures can be integrated with graphene photodetectors to greatly enhance the photocurrent and external quantum efficiency by up to 1,500%. Plasmonic nanostructures of variable resonance frequencies selectively amplify the photoresponse of graphene to light of different wavelengths, enabling highly specific detection of multicolours. Being atomically thin, graphene photodetectors effectively exploit the local plasmonic enhancement effect to achieve a significant enhancement factor not normally possible with traditional planar semiconductor materials. PMID:22146398

  9. Surface enhanced Raman spectroelectrochemistry of a μ-oxo triruthenium acetate cluster: an experimental and theoretical approach.

    PubMed

    Santos, Jonnatan J; Ando, Romulo A; Toma, Sergio H; Corio, Paola; Araki, Koiti; Toma, Henrique E

    2015-10-01

    Surface enhanced Raman spectroelectrochemistry (SERS) spectroelectrochemistry provides a very sensitive technique to investigate the vibrational characteristics of coordination compounds and their particular behavior under the influence of plasmonic surfaces, concomitant with the exploitation of their redox properties and electronic spectra. The results, however, depend upon the mechanisms involved in the intensification of Raman spectra associated with the electromagnetic, resonance Raman and charge-transfer excitation at the Fermi levels. By probing the model complex [(Ru3O)(CH3COO)6(4,4'-bipy)3](n) (n = 1, 0, -1) adsorbed onto rough gold electrode surfaces, contrasting SERS profiles were obtained at several successive redox potentials and oxidation states, which enables a critical discussion on the role of the complex interaction with the gold surface, and the influence of the specific electronic bands in the triruthenium acetate cluster. Density functional theory (DFT) and time-dependent DFT calculations were carried out for the complex bound to an Au20 cluster to show the participation of active lowest unoccupied molecular orbital levels centered on the gold atoms. The corresponding charge-transfer band was predicted around 1200 nm, which supports a charge-transfer interpretation for the SERS response observed at λexc = 1064 nm. The selective enhancement of the vibrational modes was discussed based on the Raman theoretical calculations. PMID:26393946

  10. Three dimensional design of silver nanoparticle assemblies embedded in dielectrics for Raman spectroscopy enhancement and dark-field imaging.

    PubMed

    Carles, Robert; Farcau, Cosmin; Bonafos, Caroline; Benassayag, Gérard; Bayle, Maxime; Benzo, Patrizio; Groenen, Jesse; Zwick, Antoine

    2011-11-22

    A strategy to design and fabricate hybrid metallic-dielectric substrates for optical spectroscopy and imaging is proposed. Different architectures consisting of three-dimensional patterns of metallic nanoparticles embedded in dielectric layers are conceived to simultaneously exploit the optical interference phenomenon in stratified media and localized surface plasmon resonances on metal nanoparticles. These structures are based on a simultaneous control of opto-electronic properties at three scales (3S) (~2/20/200 nm) and along three directions (3D). By ultralow energy ion implantation through a microfabricated stencil we precisely control the size, density, and location of silver nanoparticles embedded in silica/silicon thin films. Elastic (Rayleigh) and inelastic (Raman) scattering imaging assisted by simulations were used to analyze the optical response of these "3S-3D" patterned layers. The reflectance contrast is strongly enhanced when resonance conditions between the stationary electromagnetic field in the dielectric matrix and the localized plasmon resonance in the silver nanoparticles are realized. The potential of these 3S-3D metal-dielectric structures as surface-enhanced Raman scattering substrates is demonstrated. These novel kinds of plasmonic-photonic architectures are reproducible and stable; they preserve flat and chemically uniform surfaces, offering opportunities for the development of efficient and reusable substrates for optical spectroscopy and imaging enhancement. PMID:21988138

  11. A new class of nontoxic nanoparticle tags based on surface enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Qian, X.-M.; Ansari, D.; Nie, Shuming

    2007-02-01

    The advance of nanotechnology has boosted the development of ultra-sensitive biosensors for biomedical applications. Most recently, optical detection based biosensors have been demonstrated in medical imaging and diagnosis employing nanocrystals such as fluorescent quantum dots (QDs) and plasmon resonant metal nanoparticles to achieve femto-molar detection. An intriguing but far less explored approach for biological diagnostics relies on an emerging ultrasensitive technology -- surface enhanced Raman scattering (SERS) spectroscopy. We have developed a stable SERS nano-tag by grafting hydrophilic polymer to gold nanoparticle-dye molecule complexes to preserve the spectral signature and fully control the aggregation states. The light-emitting power and scattered light of both QDs and SERS nano-tags have been recorded under the same experimental conditions using dark field microscope, fluorometer, and Raman instrument. A comparison in brightness, sensitivity level, and quantum efficiency between SERS nano-tags and near infrared (NIR) QDs has been assessed on both bulk colloidal solution and single particle measurements. Well-designed SERS nano-tags exhibit excellent advantages over NIR QDs.

  12. Noise Suppression and Enhanced Focusability in Plasma Raman Amplifier with Multi-frequency Pump

    SciTech Connect

    A.A. Balakin; G.M. Fraiman; N.J. Fisch; V.M. Malkin

    2003-06-16

    Laser pulse compression/amplification through Raman backscattering in plasmas can be facilitated by using multi-frequency pump laser beams. The efficiency of amplification is increased by suppressing the Raman instability of thermal fluctuations and seed precursors. Also the focusability of the amplified radiation is enhanced due to the suppression of large-scale longitudinal speckles in the pump wave structure.

  13. Development of a drug assay using surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Angel, S. M.; Roe, Jeffrey N.; Andresen, Brian D.; Myrick, Michael L.; Milanovich, Fred P.

    1990-07-01

    Surface-enhanced Raman spectroscopy has been used to detect low levels of several chemical compounds, including the drugs of abuse -cocaine hydrochloride and methamphetamme hydrochloride. Raman spectra of these substances have also been taken over optical fibers using red-wavelength excitation. These measurements demonstrate the feasibility of the remote determination of various target chemicals using diode laser excitation and diode array detection.

  14. Excitons and exciton-phonon interactions in 2D MoS2 , WS2 and WSe2 studied by resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Pimenta, Marcos; Del Corro, Elena; Carvalho, Bruno; Malard, Leandro; Alves, Juliana; Fantini, Cristiano; Terrones, Humberto; Elias, Ana Laura; Terrones, Mauricio

    The 2D materials exhibit a very strong exciton binding energy, and the exciton-phonon coupling plays an important role in their optical properties. Resonance Raman spectroscopy (RRS) is a very useful tool to provide information about excitons and their couplings with phonons. We will present in this work a RRS study of different samples of 2D transition metal dichalcogenides (MoS2, WS2 and WSe2) with one, two and three layers (1L, 2L, 3L) and bulk samples, using more than 30 different laser excitation lines covering the visible range. We have observed that all Raman features are enhanced by resonances with excitonic transitions. From the laser energy dependence of the Raman excitation profile (REP) we obtained the energies of the excitonic states and their dependence with the number of atomic layers.. In the case of MoS2, we observed that the electron-phonon coupling is symmetry dependent, and our results provide experimental evidence of the C exciton recently predicted theoretically. The RRS results WSe2 show that the Raman modes are enhanced by the excited excitonic states and we will present the dependence of the excited states energies on the number of layers.

  15. Urine surface-enhanced Raman spectroscopy for non-invasive diabetic detection based on a portable Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Zou, Ye; Huang, Meizhen; Wang, Kehui; Song, Biao; Wang, Yang; Chen, Jie; Liu, Xi; Li, Xia; Lin, Lulu; Huang, Gaozhong

    2016-06-01

    A feasibility study for non-invasive diabetic detection based on a low cost portable Raman spectrometer and urine surface-enhanced Raman spectroscopy (SERS) is presented. SERS of 41 urine samples (20 diabetic patients and 21 healthy volunteers) mixed with silver nanoparticles are measured by a self-developed portable Raman spectrometer (Hx-Spec) which is excited by a 785 nm diode laser and the spectrum range is 200–2700 cm‑1 with a resolution (FWHM) of 6 cm‑1. By methods of principal components analysis and linear discriminant analysis, a diagnostic sensitivity of 85% and a specificity of 90.5% are achieved in separating diabetic samples from normal urine specimens. The corresponding receiver operating characteristic is 0.836, indicting the accuracy of the predictive model.

  16. Interaction of anthranilic acid with silver nanoparticles: A Raman, surface-enhanced Raman scattering and density functional theoretical study

    NASA Astrophysics Data System (ADS)

    Chadha, Ridhima; Maiti, Nandita; Kapoor, Sudhir

    2014-11-01

    Raman and surface-enhanced Raman scattering (SERS) studies of anthranilic acid have been investigated in solid, aqueous solution and on silver colloid. Anthranilic acid plays a key role in the brain in the production of quinolinic acid which is a powerful excitant and convulsant substance. Due to its medicinal importance, the surface adsorption properties of anthranilic acid have been studied. The experimental Raman and SERS data is supported with DFT calculations using B3LYP functional with aug-cc-pvdz and LANL2DZ basis sets. The comparison of experimental and theoretical results infers that anthranilate is chemisorbed to the silver surface directly through the carboxylate group with a perpendicular orientation. The time-dependent SERS spectrum of anthranilate showed no observable change indicating no structural transformation with time. The SERS spectrum recorded at different excitation wavelengths helped in understanding the origin of the SERS mechanism.

  17. High vacuum tip-enhanced Raman spectroscope based on a scanning tunneling microscope.

    PubMed

    Fang, Yurui; Zhang, Zhenglong; Sun, Mengtao

    2016-03-01

    In this paper, we present the construction of a high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) system that allows in situ sample preparation and measurement. A detailed description of the prototype instrument is presented with experimental validation of its use and novel ex situ experimental results using the HV-TERS system. The HV-TERS system includes three chambers held under a 10(-7) Pa vacuum. The three chambers are an analysis chamber, a sample preparation chamber, and a fast loading chamber. The analysis chamber is the core chamber and contains a scanning tunneling microscope (STM) and a Raman detector coupled with a 50 × 0.5 numerical aperture objective. The sample preparation chamber is used to produce single-crystalline metal and sub-monolayer molecular films by molecular beam epitaxy. The fast loading chamber allows ex situ preparation of samples for HV-TERS analysis. Atomic resolution can be achieved by the STM on highly ordered pyrolytic graphite. We demonstrate the measurement of localized temperature using the Stokes and anti-Stokes TERS signals from a monolayer of 1,2-benzenedithiol on a gold film using a gold tip. Additionally, plasmonic catalysis can be monitored label-free at the nanoscale using our device. Moreover, the HV-TERS experiments show simultaneously activated infrared and Raman vibrational modes, Fermi resonance, and some other non-linear effects that are not observed in atmospheric TERS experiments. The high spatial and spectral resolution and pure environment of high vacuum are beneficial for basic surface studies. PMID:27036755

  18. High vacuum tip-enhanced Raman spectroscope based on a scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Fang, Yurui; Zhang, Zhenglong; Sun, Mengtao

    2016-03-01

    In this paper, we present the construction of a high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) system that allows in situ sample preparation and measurement. A detailed description of the prototype instrument is presented with experimental validation of its use and novel ex situ experimental results using the HV-TERS system. The HV-TERS system includes three chambers held under a 10-7 Pa vacuum. The three chambers are an analysis chamber, a sample preparation chamber, and a fast loading chamber. The analysis chamber is the core chamber and contains a scanning tunneling microscope (STM) and a Raman detector coupled with a 50 × 0.5 numerical aperture objective. The sample preparation chamber is used to produce single-crystalline metal and sub-monolayer molecular films by molecular beam epitaxy. The fast loading chamber allows ex situ preparation of samples for HV-TERS analysis. Atomic resolution can be achieved by the STM on highly ordered pyrolytic graphite. We demonstrate the measurement of localized temperature using the Stokes and anti-Stokes TERS signals from a monolayer of 1,2-benzenedithiol on a gold film using a gold tip. Additionally, plasmonic catalysis can be monitored label-free at the nanoscale using our device. Moreover, the HV-TERS experiments show simultaneously activated infrared and Raman vibrational modes, Fermi resonance, and some other non-linear effects that are not observed in atmospheric TERS experiments. The high spatial and spectral resolution and pure environment of high vacuum are beneficial for basic surface studies.

  19. THz-Raman: accessing molecular structure with Raman spectroscopy for enhanced chemical identification, analysis, and monitoring

    NASA Astrophysics Data System (ADS)

    Heyler, Randy A.; Carriere, James T. A.; Havermeyer, Frank

    2013-05-01

    Structural analysis via spectroscopic measurement of rotational and vibrational modes is of increasing interest for many applications, since these spectra can reveal unique and important structural and behavioral information about a wide range of materials. However these modes correspond to very low frequency (~5cm-1 - 200cm-1, or 150 GHz-6 THz) emissions, which have been traditionally difficult and/or expensive to access through conventional Raman and Terahertz spectroscopy techniques. We report on a new, inexpensive, and highly efficient approach to gathering ultra-low-frequency Stokes and anti-Stokes Raman spectra (referred to as "THz-Raman") on a broad range of materials, opening potential new applications and analytical tools for chemical and trace detection, identification, and forensics analysis. Results are presented on explosives, pharmaceuticals, and common elements that show strong THz-Raman spectra, leading to clear discrimination of polymorphs, and improved sensitivity and reliability for chemical identification.

  20. Polarization rotation under two-photon Raman resonance for magnetometry

    SciTech Connect

    Pradhan, S.; Behera, R.; Das, A. K.

    2012-04-23

    The polarization rotation and coherent population trapping signal arising due to two photon process using linearly polarized light are found to be significantly enhanced for a Zeeman degenerate system. The zero crossing of the dispersive profile is found to be shifting proportional to the applied magnetic field, albeit the absorptive profile position remains invariant for a slightly imbalanced orthogonal circular polarization component. It provides an alternative method for precise measurement of vector magnetic field without requirement of a bias field. The use of polarization rotation signal for magnetic field measurement offers added advantage due to improved signal to noise ratio.

  1. Surface enhanced Raman spectroscopy for microfluidic pillar arrayed separation chips

    SciTech Connect

    Taylor, Lisa; Kirchner, Teresa B; Lavrik, Nickolay V; Sepaniak, Michael

    2012-01-01

    Numerous studies have addressed the challenges of implementing miniaturized microfluidic platforms for chemical and biological separation applications. However, the integration of real time detection schemes capable of providing valuable sample information under continuous, ultra low volume flow regimes has not fully been addressed. In this report we present a chip based chromatography system comprising of a pillar array separation column followed by a reagent channel for passive mixing of a silver colloidal solution into the eluent stream to enable surface enhanced Raman spectroscopy (SERS) detection. Our design is the first integrated chip based microfluidic device to combine pressure driven separation capability with real time SERS detection. With this approach we demonstrate the ability to collect distinctive SERS spectra with or without complete resolution of chromatographic bands. Computational fluidic dynamic (CFD) simulations are used to model the diffusive mixing behavior and velocity profiles of the two confluent streams in the microfluidic channels. We evaluate the SERS spectral band intensity and chromatographic efficiency of model analytes with respect to kinetic factors as well as signal acquisition rates. Additionally, we discuss the use of a pluronic modified silver colloidal solution as a means of eliminating contamination generally caused by nanoparticle adhesion to channel surfaces.

  2. Isomerization of one molecule observed through tip enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yanxing; Lee, Joonhee; Apkarian, Vartkess A.; Wu, Ruqian; Ruqian Wu, Yanxing Zhang Team; Joonhee Lee, Vartkess A. Apkarian Team

    While exploring photoisomerization of azobenzyl thiols (ABT) adsorbed on Au(111), through joint scanning tunneling microscopy (STM) and tip-enhanced Raman scattering (TERS) studies, the reversible photoisomerization of one molecule is captured in TERS trajectories. The apparently heterogeneously photo-catalyzed reaction is assigned to cis-trans isomerization of an outlier, which is chemisorbed on the silver tip of the STM. In order to clarify the role of the silver tip of the STM, we perform systematic density functional theory (DFT) calculations. The results show that compared with the case on the flat Ag(111) surface, the energy difference between trans and cis states of ABT decrease as we add one silver atom or a tetrahedron silver cluster on Ag(111) surface which mimic the geometry of a silver tip. In particular, the trans stretches away from the surface on the tetrahedral silver cluster, and the energy difference between trans and cis decreases to 0.27 eV, from ~1 eV for ABT on the flat Ag(111) surface. This significantly increases the possibility of cis-trans isomerization, as observed in our experiments. Work was supported by the National Science Foundation Center for Chemical Innovation on Chemistry at the Space-Time Limit (CaSTL) under Grant No. CHE-1414466.

  3. Chemical agent detection by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Farquharson, Stuart; Gift, Alan; Maksymiuk, Paul; Inscore, Frank E.; Smith, Wayne W.; Morrisey, Kevin; Christesen, Steven D.

    2004-03-01

    In the past decade, the Unites States and its allies have been challenged by a different kind of warfare, exemplified by the terrorist attacks of September 11, 2001. Although suicide bombings are the most often used form of terror, military personnel must consider a wide range of attack scenarios. Among these is the intentional poisoning of water supplies to obstruct military operations in Afghanistan and Iraq. To counter such attacks, the military is developing portable analyzers that can identify and quantify potential chemical agents in water supplies at microgram per liter concentrations within 10 minutes. To aid this effort we have been investigating the value of a surface-enhanced Raman spectroscopy based portable analyzer. In particular we have been developing silver-doped sol-gels to generate SER spectra of chemical agents and their hydrolysis products. Here we present SER spectra of several chemical agents measured in a generic tap water. Repeat measurements were performed to establish statistical error associated with SERS obtained using the sol-gel coated vials.

  4. Spectroscopic fingerprint of tea varieties by surface enhanced Raman spectroscopy.

    PubMed

    Buyukgoz, Guluzar Gorkem; Soforoglu, Mehmet; Basaran Akgul, Nese; Boyaci, Ismail Hakki

    2016-03-01

    The fingerprinting method is generally performed to determine specific molecules or the behavior of specific molecular bonds in the desired sample content. A novel, robust and simple method based on surface enhanced Raman spectroscopy (SERS) was developed to obtain the full spectrum of tea varieties for detection of the purity of the samples based on the type of processing and cultivation. For this purpose, the fingerprint of seven different varieties of tea samples (herbal tea (rose hip, chamomile, linden, green and sage tea), black tea and earl grey tea) combined with silver colloids was obtained by SERS in the range of 200-2000 cm(-1) with an analysis time of 20 s. Each of the thirty-nine tea samples tested showed its own specific SERS spectra. Principal Component Analysis (PCA) was also applied to separate of each tea variety and different models developed for tea samples including three different models for the herbal teas and two different models for black and earl grey tea samples. Herbal tea samples were separated using mean centering, smoothing and median centering pre-processing steps while baselining and derivatisation pre-processing steps were applied to SERS data of black and earl grey tea. The novel spectroscopic fingerprinting technique combined with PCA is an accurate, rapid and simple methodology for the assessment of tea types based on the type of processing and cultivation differences. This method is proposed as an alternative tool in order to determine the characteristics of tea varieties. PMID:27570296

  5. Sputtered gold films for surface-enhanced Raman scattering

    SciTech Connect

    Maya, L.; Vallet, C.E.; Lee, Y.H.

    1997-03-01

    Sputtered gold films in a pure form or as nanocomposites in silica or silicon nitride were screened for surface-enhanced Raman scattering (SERS) activity using Rhodamine 6G as a probe. The films were prepared by sputtering pure gold or solidified Au{endash}Si alloys in plasmas generated in a dc glow discharge apparatus. The plasmas were produced with argon, nitrogen, or argon{endash}oxygen as the sputtering gas to directly deposit gold films or in the latter case a gold oxide intermediate. The alloys produce nanocomposite films in a silicon nitride or silica matrix depending on the plasma gas. SERS activity was detected in some of the films thus leading to a search for the critical parameters that controlled this phenomenon. The films were characterized by profilometry, x-ray diffraction, and atomic force microscopy. SERS activity was found to be correlated to crystallite size in the 10{endash}25 nm range and to roughness larger than 15 nm, and it was independent of film thickness. Sputtered gold films, particularly those containing the gold as a nanocomposite in silica are attractive media for SERS because of excellent adherence, ruggedness, and simplicity in preparation. {copyright} {ital 1997 American Vacuum Society.}

  6. Krypton isotope analysis using near-resonant stimulated Raman spectroscopy

    SciTech Connect

    Whitehead, C.A.; Cannon, B.D.; Wacker, J.F.

    1994-12-01

    A method for measuring low relative abundances of {sup 85}Kr in one liter or less samples of air has been under development here at Pacific Northwest Laboratory. The goal of the Krypton Isotope Laser Analysis (KILA) method is to measure ratios of 10{sup {minus}10} or less of {sup 85}Kr to more abundant stable krypton. Mass spectrometry and beta counting are the main competing technologies used in rare-gas trace analysis and are limited in application by such factors as sample size, counting times, and selectivity. The use of high-resolution lasers to probe hyperfine levels to determine isotopic abundance has received much attention recently. In this study, we report our progress on identifying and implementing techniques for trace {sup 85}Kr analysis on small gas samples in a static cell as well as limitations on sensitivity and selectivity for the technique. High-resolution pulsed and cw lasers are employed in a laser-induced fluorescence technique that preserves the original sample. This technique, is based on resonant isotopic depletion spectroscopy (RIDS) in which one isotope is optically depleted while preserving the population of a less abundant isotope. The KILA method consists of three steps. In the first step, the 1s{sub 5} metastable level of krypton is populated via radiative cascade following two-photon excitation of the 2p{sub 6} energy level. Next, using RBDS, the stable krypton isotopes are optically depleted to the ground state through the 1s{sub 4} level with the bulk of the {sup 85}Kr population being preserved. Finally, the remaining metastable population is probed to determine {sup 85}Kr concentration. The experimental requirements for each of these steps are outlined below.

  7. Surface-enhanced Raman imaging of cell membrane by a highly homogeneous and isotropic silver nanostructure.

    PubMed

    Zito, Gianluigi; Rusciano, Giulia; Pesce, Giuseppe; Dochshanov, Alden; Sasso, Antonio

    2015-05-14

    Label-free chemical imaging of live cell membranes can shed light on the molecular basis of cell membrane functionalities and their alterations under membrane-related diseases. In principle, this can be done by surface-enhanced Raman scattering (SERS) in confocal microscopy, but requires engineering plasmonic architectures with a spatially invariant SERS enhancement factor G(x, y) = G. To this end, we exploit a self-assembled isotropic nanostructure with characteristics of homogeneity typical of the so-called near-hyperuniform disorder. The resulting highly dense, homogeneous and isotropic random pattern consists of clusters of silver nanoparticles with limited size dispersion. This nanostructure brings together several advantages: very large hot spot density (∼10(4) μm(-2)), superior spatial reproducibility (SD < 1% over 2500 μm(2)) and single-molecule sensitivity (Gav ∼ 10(9)), all on a centimeter scale transparent active area. We are able to reconstruct the label-free SERS-based chemical map of live cell membranes with confocal resolution. In particular, SERS imaging is here demonstrated on red blood cells in vitro in order to use the Raman-resonant heme of the cell as a contrast medium to prove spectroscopic detection of membrane molecules. Numerical simulations also clarify the SERS characteristics of the substrate in terms of electromagnetic enhancement and distance sensitivity range consistently with the experiments. The large SERS-active area is intended for multi-cellular imaging on the same substrate, which is important for spectroscopic comparative analysis of complex organisms like cells. This opens new routes for in situ quantitative surface analysis and dynamic probing of living cells exposed to membrane-targeting drugs. PMID:25898990

  8. Measurement of the surface-enhanced coherent anti-Stokes Raman scattering (SECARS) due to the 1574 cm(-1) surface-enhanced Raman scattering (SERS) mode of benzenethiol using low-power (<20 mW) CW diode lasers.

    PubMed

    Aggarwal, Roshan L; Farrar, Lewis W; Greeneltch, Nathan G; Van Duyne, Richard P; Polla, Dennis L

    2013-02-01

    The surface-enhanced coherent anti-Stokes Raman scattering (SECARS) from a self-assembled monolayer (SAM) of benzenethiol on a silver-coated surface-enhanced Raman scattering (SERS) substrate has been measured for the 1574 cm(-1) SERS mode. A value of 9.6 ± 1.7×10(-14) W was determined for the resonant component of the SECARS signal using 17.8 mW of 784.9 nm pump laser power and 7.1 mW of 895.5 nm Stokes laser power; the pump and Stokes lasers were polarized parallel to each other but perpendicular to the grooves of the diffraction grating in the spectrometer. The measured value of resonant component of the SECARS signal is in agreement with the calculated value of 9.3×10(-14) W using the measured value of 8.7 ± 0.5 cm(-1) for the SERS linewidth Γ (full width at half-maximum) and the value of 5.7 ± 1.4×10(-7) for the product of the Raman cross section σSERS and the surface concentration Ns of the benzenethiol SAM. The xxxx component of the resonant part of the third-order nonlinear optical susceptibility |3 χxxxx((3)R)| for the 1574 cm(-1) SERS mode has been determined to be 4.3 ± 1.1×10(-5) cm·g(-1)·s(2). The SERS enhancement factor for the 1574 cm(-1) mode was determined to be 3.6 ± 0.9×10(7) using the value of 1.8×10(15) molecules/cm(2) for Ns. PMID:23622430

  9. New Material for Surface-Enhanced Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Farquharson, Stuart; Nelson, Chad; Lee, Yuan

    2004-01-01

    A chemical method of synthesis and application of coating materials that are especially suitable for surface-enhanced Raman spectroscopy (SERS) has been developed. The purpose of this development is to facilitate the utilization of the inherently high sensitivity of SERS to detect chemicals of interest (analytes) in trace amounts, without need for lengthy sample preparation. Up to now, the use of SERS has not become routine because the methods available have not been able to reproduce sampling conditions and provide quantitative measurements. In contrast, the coating materials of the present method enable analysis with minimum preparation of samples, and SERS measurements made using these materials are reproducible and reversible. Moreover, unlike in methods investigated in prior efforts to implement SERS, sampling is not restricted to such specific environments as electrolytes or specific solvents. The coating materials of this method are porous glasses, formed in sol-gel processes, that contain small particles of gold or silver metal. Materials of this type can be applied to the sample-contact surfaces of a variety of sampling and sensing devices, including glass slides, glass vials, fiber-optic probes, and glass tubes. Glass vials with their insides coated according to this method are particularly convenient for SERS to detect trace chemicals in solutions: One simply puts a sample solution containing the analyte(s) into a vial, then puts the vial into a Raman spectrometer for analysis. The chemical ingredients and the physical conditions of the sol-gel process have been selected so that the porous glass formed incorporates particles of the desired metal with size(s) to match the wavelength(s) of the SERS excitation laser in order to optimize the generation of surface plasmons. The ingredients and processing conditions have further been chosen to tailor the porosity and polarity of the glass to optimize the sample flow and the interaction between the analyte

  10. Aggregated enhanced Raman scattering in Fe(III)PPIX solutions: the effects of concentration and chloroquine on excitonic interactions.

    PubMed

    Webster, Grant T; McNaughton, Don; Wood, Bayden R

    2009-05-14

    Resonance Raman spectra of hematin and hemin solutions are reported for 413 and 514 nm excitation wavelengths. Enhancement of A1g modes (1569 and 1370 cm(-1)) and B1g modes (1124 and 755 cm(-1)) as a function of increased concentration are observed when irradiating with 514 nm laser excitation but not 413 nm. This can be rationalized by considering an excitonic coupling mechanism. As the concentration of hematin increases there is an increased probability of supramolecular interactions between iron(III) protoporphyrin IX (Fe(III)PPIX) units occurring. The Fe(III)PPIX concentration reaches a saturation point in solution and excitonic coupling reaches a maximum causing the enhancement profile to plateau when applying 514 nm excitation. In contrast, when using 413 nm excitation there were no changes in band intensity with increased concentration showing that excitonic coupling through supramolecular interactions for aggregated solutions is wavelength dependent. Electronic absorption spectra show that as the concentration of Fe(III)PPIX increases in solution the Soret band is slightly blue shifted and the Q-band significantly broadens supporting the excitonic hypothesis. Understanding the mechanism that accounts for the Raman photophysical behavior of hemes at high concentrations provided an indirect method to monitor antimalarial drug interactions. A second aim was to investigate chloroquine binding to Fe(III)PPIX-OH/H2O monomers, pi-pi dimers and micro-oxo dimers formed in highly concentrated solutions approaching those of the digestive vacuole of the P. falciparum malaria parasite using excitonic Raman enhancement. It was hypothesized that the Raman excitonic enhancement mechanism could be impeded in heme aggregated solutions by the addition of chloroquine. This would result in a reduction in heme bands associated with the A1g modes including nu4. Resonance Raman spectra recorded using 514 nm excitation show that chloroquine (CQ) acts as a molecular spacer and binds

  11. Resonant Raman spectroscopy study of swift heavy ion irradiated MoS2

    NASA Astrophysics Data System (ADS)

    Guo, Hang; Sun, Youmei; Zhai, Pengfei; Zeng, Jian; Zhang, Shengxia; Hu, Peipei; Yao, Huijun; Duan, Jinglai; Hou, Mingdong; Liu, Jie

    2016-08-01

    Molybdenum disulphide (MoS2) crystal samples were irradiated by swift heavy ions (209Bi and 56Fe). Hillock-like latent tracks were observed on the surface of irradiated MoS2 by atomic force microscopy. The modifications of properties of irradiated MoS2 were investigated by resonant Raman spectroscopy and ultraviolet-visible spectroscopy (UV-Vis). A new peak (E1u2, ∼385.7 cm-1) occurs near the in-plane E2g1 peak (∼383.7 cm-1) after irradiation. The two peaks shift towards lower frequency and broaden due to structural defects and stress with increasing fluence. When irradiated with high fluence, two other new peaks appear at ∼ 190 and ∼ 230 cm-1. The peak at ∼230 cm-1 is disorder-induced LA(M) mode. The presence of this mode indicates defects induced by irradiation. The feature at ∼460 cm-1 is composed of 2LA(M) (∼458 cm-1) and A2u (∼466 cm-1) mode. With increasing fluence, the integrated intensity ratio between 2LA(M) and A2u increases. The relative enhancement of 2LA(M) mode is in agreement with the appearance of LA(M) mode, which both demonstrate structural disorder in irradiated MoS2. The ∼423-cm-1 peak shifts toward lower frequency due to the decrease in exciton energy of MoS2, and this was demonstrated by the results of UV-Vis spectra. The decrease in exciton energy could be due to introduction of defect levels into band gap.

  12. Analysis of normal and diseased colon mucosa using ultraviolet resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Boustany, Nada N.; Manoharan, Ramasamy; Dasari, Ramachandra R.; Feld, Michael S.

    1996-04-01

    Ultraviolet resonance Raman (UVRR) spectroscopy was used to characterize normal and diseased colon mucosa in vitro. A tunable mode-locked Titanium:Sapphire laser operating at 76 MHz was used to irradiate normal and diseased colon tissue samples with 251 nm light generated from the third harmonic of the fundamental radiation. The Raman scattered light was collected and analyzed using a 1 meter spectrometer fitted with a UV coated, liquid nitrogen cooled CCD detector. The measured spectra show prominent bands that correspond to those of known tissue constituents including nucleic acids, aromatic amino acids and lipids. Using the Raman lineshapes measured from pure solutions of nucleotides, tryptophan, tyrosine, FAD, and from lipid-rich serosal fat, the colon spectra were modeled by a least square fitting algorithm whereby the colon spectra were assumed to be a linear combination of the pure biochemical lineshapes. The relative Raman scattering cross section of each biochemical was determined so that the relative concentration of each compound with respect to the others, could be extracted from a given tissue spectrum.

  13. Aggregation-Induced Resonance Raman Optical Activity (AIRROA) and Time-Dependent Helicity Switching of Astaxanthin Supramolecular Assemblies.

    PubMed

    Dudek, Monika; Zajac, Grzegorz; Kaczor, Agnieszka; Baranska, Malgorzata

    2016-08-18

    New methods for enhancing the Raman optical activity (ROA) signal are desirable due to the low efficiency of ROA, demanding otherwise high sample concentrations, high laser powers, and/or long acquisition times. Previously, we have demonstrated a new phenomenon, aggregation-induced resonance ROA (AIRROA), that produces significant enhancement of the ROA signal provided that the excitation wavelength coincides with the absorption of the measured species and that the electronic circular dichroism (ECD) signal in the range of this absorption is nonzero. In this work, analyzing three very different supramolecular astaxanthin aggregates (H1, H2, and J), we confirm the phenomenon and demonstrate that aggregation itself is not enough to enhance the ROA signal and that the above-mentioned conditions are necessary for induction of the resonance ROA effect. Additionally, by analyzing the changes in the ECD spectra of the H1 assembly, we demonstrate that the supramolecular helicity sign switches with time, which is dependent on the prevalence of kinetic or thermodynamic stabilization of the obtained aggregates. PMID:27438433

  14. Resonant Raman detectors for noninvasive assessment of carotenoid antioxidants in human tissue

    NASA Astrophysics Data System (ADS)

    Gellermann, Werner; Sharifzadeh, Mohsen; Ermakova, Maia R.; Ermakov, Igor V.; Bernstein, P. S.

    2003-07-01

    Carotenoid antioxidants form an important part of the human body's anti-oxidant system and are thought to play an important role in disease prevention. Studies have shown an inverse correlation between high dietary intake of carotenoids and risk of certain cancers, heart disease and degenerative diseases. For example, the carotenoids lutein and zeaxanthin, which are present in high concentrations in the human retina, are thought to prevent age-related macular degeneration, the leading cause of blindness in the elderly in the Western world. We have developed various clinical prototype instruments, based on resonance Raman spectroscopy, that are able to measure carotenoid levels directly in the tissue of interest. At present we use the Raman technology to quantify carotenoid levels in the human retina, in skin, and in the oral cavity. We use resonant excitation of the π-conjugated molecules in the visible wavelength range and detect the molecules' carbon-carbon stretch frequencies. The spectral properties of the various carotenoids can be explored to selectively measure in some cases individual carotenoid species linked ot the prevention of cancer, in human skin. The instrumentation involves home-built, compact, high-throughput Raman systems capable of measuring physiological carotenoid concentrations in human subjects rapidly and quantitatively. The instruments have been demonstrated for field use and screening of tissue carotenoid status in large populations. In Epidemiology, the technology holds promise as a novel, noninvasive and objective biomarker of fruit and vegetable uptake.

  15. Resonant Raman spectra of grades of human brain glioma tumors reveal the content of tryptophan by the 1588 cm-1 mode

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-hui; Zhou, Lixin; Zhu, Ke; Liu, Yulong; Zhang, Lin; Boydston-White, Susie; Cheng, Gangge; Pu, Yang; Bidyut, Das; Alfano, Robert R.

    2015-03-01

    RR spectra of brain normal tissue, gliomas in low grade I and II, and malignant glioma tumors in grade III and IV were measured using a confocal micro Raman spectrometer. This report focus on the relative contents of tryptophan (W) in various grades of brain glioma tumors by the intrinsic molecular resonance Raman (RR) spectroscopy method using the 1588cm-1 of tryptophan mode by 532 nm excitation. The RR spectra of key fingerprints of tryptophan, with a main vibrational mode at 1588cm-1 (W8b), were observed. It was found that tryptophan contribution was accumulated in grade I to IV gliomas and the mode of 1588cm-1 in grade III and IV malignant gliomas were enhanced by resonance.

  16. Enhancement of artificial magnetism via resonant bianisotropy

    PubMed Central

    Markovich, Dmitry; Baryshnikova, Kseniia; Shalin, Alexander; Samusev, Anton; Krasnok, Alexander; Belov, Pavel; Ginzburg, Pavel

    2016-01-01

    All-dielectric “magnetic light” nanophotonics based on high refractive index nanoparticles allows controlling magnetic component of light at nanoscale without having high dissipative losses. The artificial magnetic optical response of such nanoparticles originates from circular displacement currents excited inside those structures and strongly depends on geometry and dispersion of optical materials. Here an approach for enhancing of magnetic response via resonant bianisotropy effect is proposed and analyzed. The key mechanism of enhancement is based on electric-magnetic interaction between two electrically and magnetically resonant nanoparticles of all-dielectric dimer. It was shown that proper geometrical arrangement of the dimer in respect to the incident illumination direction allows flexible control over all vectorial components of the magnetic moment, tailoring the latter in the dynamical range of 100% and delivering enhancement up to 36% relative to performances of standalone spherical particles. The proposed approach provides pathways for designs of all-dielectric metamaterials and metasurfaces with strong magnetic responses. PMID:26941126

  17. Electroless Gold-Modified Diatoms as Surface-Enhanced Raman Scattering Supports

    NASA Astrophysics Data System (ADS)

    Pannico, Marianna; Rea, Ilaria; Chandrasekaran, Soundarrajan; Musto, Pellegrino; Voelcker, Nicolas H.; De Stefano, Luca

    2016-06-01

    Porous biosilica from diatom frustules is well known for its peculiar optical and mechanical properties. In this work, gold-coated diatom frustules are used as low-cost, ready available, functional support for surface-enhanced Raman scattering. Due to the morphology of the nanostructured surface and the smoothness of gold deposition via an electroless process, an enhancement factor for the p-mercaptoaniline Raman signal of the order of 105 is obtained.

  18. Electroless Gold-Modified Diatoms as Surface-Enhanced Raman Scattering Supports.

    PubMed

    Pannico, Marianna; Rea, Ilaria; Chandrasekaran, Soundarrajan; Musto, Pellegrino; Voelcker, Nicolas H; De Stefano, Luca

    2016-12-01

    Porous biosilica from diatom frustules is well known for its peculiar optical and mechanical properties. In this work, gold-coated diatom frustules are used as low-cost, ready available, functional support for surface-enhanced Raman scattering. Due to the morphology of the nanostructured surface and the smoothness of gold deposition via an electroless process, an enhancement factor for the p-mercaptoaniline Raman signal of the order of 10(5) is obtained. PMID:27356562

  19. Hierarchical porous plasmonic metamaterials for reproducible ultrasensitive surface-enhanced Raman spectroscopy.

    PubMed

    Zhang, Xinyi; Zheng, Yuanhui; Liu, Xin; Lu, Wei; Dai, Jiyan; Lei, Dang Yuan; MacFarlane, Douglas R

    2015-02-11

    Hierarchical porous plasmonic metamaterials consisting of periodic nanoholes with tunable diameter and uniformly distributed mesopores over the bulk are developed as a new class of 3D surface-enhanced Raman spectroscopy (SERS) substrates. This multiscale architecture not only facilitates efficient cascaded electromagnetic enhancement but also provides an enormous number of Raman-active binding sites, exhibiting excellent reproducibility and ultrasensitive detection of aromatic molecules down to 10(-13) M. PMID:25534763

  20. Label-free surface-enhanced Raman scattering strategy for rapid detection of penicilloic acid in milk products.

    PubMed

    Qi, Meihui; Huang, Xiaoyan; Zhou, Yujie; Zhang, Liying; Jin, Yang; Peng, Yan; Jiang, Huijun; Du, Shuhu

    2016-04-15

    A label-free surface-enhanced Raman scattering (SERS) strategy based on silver-coated gold nanoparticles (Au@Ag NPs) was developed for rapid detection of penicilloic acid (PA) in milk products. It has been demonstrated that core size and shell thickness of Au@Ag NPs are two critical variants affecting enhancement of Raman signals by coupling of two plasma resonance absorption. The Au@Ag NPs with 26-nm core and 9-nm Ag shell exhibit excellent Raman enhancement, in particular, upon the formation of hot spots through NPs aggregation induced by interaction between target molecules and Au@Ag NPs. Compared to the early studies limited to laboratory settings, our analytical approach is simple (without sample pretreatment), less time-consuming (within ∼3 min) and inexpensive. The limit of detection of PA is 3.00 ppm, 3.00 ppm and 4.00 ppm in liquid milk, yogurt and milk powder, respectively. The label-free SERS technique offers a potential for the on-site monitoring of chemical contaminants in milk products. PMID:26617009