Science.gov

Sample records for enhanced serotonin transmission

  1. Enhanced serotonin and mesolimbic dopamine transmissions in a rat model of neuropathic pain.

    PubMed

    Sagheddu, Claudia; Aroni, Sonia; De Felice, Marta; Lecca, Salvatore; Luchicchi, Antonio; Melis, Miriam; Muntoni, Anna Lisa; Romano, Rosaria; Palazzo, Enza; Guida, Francesca; Maione, Sabatino; Pistis, Marco

    2015-10-01

    In humans, affective consequences of neuropathic pain, ranging from depression to anxiety and anhedonia, severely impair quality of life and are a major disease burden, often requiring specific medications. Depressive- and anxiety-like behaviors have also been observed in animal models of peripheral nerve injury. Dysfunctions in central nervous system monoamine transmission have been hypothesized to underlie depressive and anxiety disorders in neuropathic pain. To assess whether these neurons display early changes in their activity that in the long-term might lead to chronicization, maladaptive plasticity and affective consequences, we carried out in vivo extracellular single unit recordings from serotonin neurons in the dorsal raphe nucleus (DRN) and from dopamine neurons in ventral tegmental area (VTA) in the spared nerve injury (SNI) model of neuropathic pain in rats. Extracellular dopamine levels and the expression of dopamine D1, D2 receptors and tyrosine hydroxylase (TH) were measured in the nucleus accumbens. We report that, two weeks following peripheral nerve injury, discharge rate of serotonin DRN neurons and burst firing of VTA dopamine cells are enhanced, when compared with sham-operated animals. We also observed higher extracellular dopamine levels and reduced expression of D2, but not D1, receptors and TH in the nucleus accumbens. Our study confirms that peripheral neuropathy induces changes in the serotonin and dopamine systems that might be the early result of chronic maladaptation to persistent pain. The allostatic activation of these neural systems, which mirrors that already described as a consequence of stress, might lead to depression and anxiety previously observed in neuropathic animals but also an attempt to cope positively with the negative experience. PMID:26113399

  2. Differences in Anxiety-Like Behavior within a Batch of Wistar Rats Are Associated with Differences in Serotonergic Transmission, Enhanced by Acute SRI Administration, and Abolished By Serotonin Depletion

    PubMed Central

    Näslund, Jakob; Studer, Erik; Pettersson, Robert; Hagsäter, Melker; Nilsson, Staffan; Nissbrandt, Hans

    2015-01-01

    Background: The anxiety-reducing effect of long-term administration of serotonin reuptake inhibitors is usually seen only in subjects with anxiety disorders, and such patients are also abnormally inclined to experience a paradoxical anxiety-enhancing effect of acute serotonin reuptake inhibition. These unique responses to serotonin reuptake inhibitors in anxiety-prone subjects suggest, as do genetic association studies, that inter-individual differences in anxiety may be associated with differences in serotonergic transmission. Methods: The one-third of the animals within a batch of Wistar rats most inclined to spend time on open arms in the elevated plus maze were compared with the one-third most inclined to avoid them with respect to indices of brain serotonergic transmission and how their behavior was influenced by serotonin-modulating drugs. Results: “Anxious” rats displayed higher expression of the tryptophan hydroxylase-2 gene and higher levels of the tryptophan hydroxylase-2 protein in raphe and also higher levels of serotonin in amygdala. Supporting these differences to be important for the behavioral differences, serotonin depletion obtained by the tryptophan hydroxylase-2 inhibitor p-chlorophenylalanine eliminated them by reducing anxiety in “anxious” but not “non-anxious” rats. Acute administration of a serotonin reuptake inhibitor, paroxetine, exerted an anxiety-enhancing effect in “anxious” but not “non-anxious” rats, which was eliminated by long-term pretreatment with another serotonin reuptake inhibitor, escitalopram. Conclusions: Differences in an anxiogenic impact of serotonin, which is enhanced by acute serotonin reuptake inhibitor administration, may contribute to differences in anxiety-like behavior amongst Wistar rats. PMID:25716782

  3. Serotonin modulates glutamatergic transmission to neurons in the lateral habenula

    PubMed Central

    Xie, Guiqin; Zuo, Wanhong; Wu, Liangzhi; Li, Wenting; Wu, Wei; Bekker, Alex; Ye, Jiang-Hong

    2016-01-01

    The lateral habenula (LHb) is bilaterally connected with serotoninergic raphe nuclei, and expresses high density of serotonin receptors. However, actions of serotonin on the excitatory synaptic transmission to LHb neurons have not been thoroughly investigated. The LHb contains two anatomically and functionally distinct regions: lateral (LHbl) and medial (LHbm) divisions. We compared serotonin’s effects on glutamatergic transmission across the LHb in rat brains. Serotonin bi-directionally and differentially modulated glutamatergic transmission. Serotonin inhibited glutamatergic transmission in higher percentage of LHbl neurons but potentiated in higher percentage of LHbm neurons. Magnitude of potentiation was greater in LHbm than in LHbl. Type 2 and 3 serotonin receptor antagonists attenuated serotonin’s potentiation. The serotonin reuptake blocker, and the type 2 and 3 receptor agonists facilitated glutamatergic transmission in both LHbl and LHbm neurons. Thus, serotonin via activating its type 2, 3 receptors, increased glutamate release at nerve terminals in some LHb neurons. Our data demonstrated that serotonin affects both LHbm and LHbl. Serotonin might play an important role in processing information between the LHb and its downstream-targeted structures during decision-making. It may also contribute to a homeostatic balance underlying the neural circuitry between the LHb and raphe nuclei. PMID:27033153

  4. Reduced forebrain serotonin transmission is causally involved in the development of compulsive cocaine seeking in rats.

    PubMed

    Pelloux, Yann; Dilleen, Ruth; Economidou, Daina; Theobald, David; Everitt, Barry J

    2012-10-01

    Whereas the majority of cocaine users quit as they experience the negative consequences of drug use, some lose control over their drug taking and compulsively seek drugs. We report that 20% of rats compulsively seek cocaine despite intermittent negative outcomes after escalating their cocaine self-administration. This compulsive subgroup showed marked reductions in forebrain serotonin utilization; increasing serotonin transmission reduced their compulsive cocaine seeking. Depleting forebrain serotonin induced compulsive cocaine seeking in rats with a limited cocaine taking history; this was reversed by systemic treatment with a 5-hydroxytryptamine (5-HT2C) receptor agonist and mimicked by systemic treatment with a 5-HT2C receptor antagonist in intact animals. These results indicate the causal involvement of reduced serotoninergic transmission in the emergence of compulsive drug seeking after a long cocaine-taking history. PMID:22763621

  5. Bacillus licheniformis Isolated from Traditional Korean Food Resources Enhances the Longevity of Caenorhabditis elegans through Serotonin Signaling.

    PubMed

    Park, Mi Ri; Oh, Sangnam; Son, Seok Jun; Park, Dong-June; Oh, Sejong; Kim, Sae Hun; Jeong, Do-Youn; Oh, Nam Su; Lee, Youngbok; Song, Minho; Kim, Younghoon

    2015-12-01

    In this study, we investigated potentially probiotic Bacillus licheniformis strains isolated from traditional Korean food sources for ability to enhance longevity using the nematode Caenorhabditis elegans as a simple in vivo animal model. We first investigated whether B. licheniformis strains were capable of modulating the lifespan of C. elegans. Among the tested strains, preconditioning with four B. licheniformis strains significantly enhanced the longevity of C. elegans. Unexpectedly, plate counting and transmission electron microscopy (TEM) results indicated that B. licheniformis strains were not more highly attached to the C. elegans intestine compared with Escherichia coli OP50 or Lactobacillus rhamnosus GG controls. In addition, qRT-PCR and an aging assay with mutant worms showed that the conditioning of B. licheniformis strain 141 directly influenced genes associated with serotonin signaling in nematodes, including tph-1 (tryptophan hydroxylase), bas-1 (serotonin- and dopamine-synthetic aromatic amino acid decarboxylase), mod-1 (serotonin-gated chloride channel), ser-1, and ser-7 (serotonin receptors) during C. elegans aging. Our findings suggest that B. licheniformis strain 141, which is isolated from traditional Korean foods, is a probiotic generally recognized as safe (GRAS) strain that enhances the lifespan of C. elegans via host serotonin signaling. PMID:26541069

  6. Serotonin and Synaptic Transmission at Invertebrate Neuromuscular Junctions

    PubMed Central

    Wu, Wen-Hui

    2012-01-01

    The serotonergic system in vertebrates and invertebrates has been a focus for over 50 years and will likely continue in the future. Recently, genomic analysis and discovery of alternative splicing and differential expression in tissues have increased the knowledge of serotonin (5-HT) receptor types. Comparative studies can provide useful insights to the wide variety of mechanistic actions of 5-HT responsible for behaviors regulated or modified by 5-HT. To determine cellular responses and influences on neural systems as well as the efferent control of behaviors by the motor units, preparations amenable to detailed studies of synapses are beneficial as working models. The invertebrate neuromuscular junctions (NMJs) offer some unique advantages for such investigations; action of 5-HT at crustacean NMJs has been widely studied, and leech and Aplysia continue to be key organisms. However, there are few studies in insects likely due to the focus in modulation within the CNS and lack of evidence of substantial action of 5-HT at the Drosophila NMJs. There are only a few reports in gastropods and annelids as well as other invertebrates. In this review we highlight some of the key findings of 5-HT actions and receptor types associated at NMJs in a variety of invertebrate preparations in hopes that future studies will build on this knowledge base. PMID:23055788

  7. Synergistic Regulation of Glutamatergic Transmission by Serotonin and Norepinephrine Reuptake Inhibitors in Prefrontal Cortical Neurons*

    PubMed Central

    Yuen, Eunice Y.; Qin, Luye; Wei, Jing; Liu, Wenhua; Liu, Aiyi; Yan, Zhen

    2014-01-01

    The monoamine system in the prefrontal cortex has been implicated in various mental disorders and has been the major target of anxiolytics and antidepressants. Clinical studies show that serotonin and norepinephrine reuptake inhibitors (SNRIs) produce better therapeutic effects than single selective reuptake inhibitors, but the underlying mechanisms are largely unknown. Here, we found that low dose SNRIs, by acting on 5-HT1A and α2-adrenergic receptors, synergistically reduced AMPA receptor (AMPAR)-mediated excitatory postsynaptic currents and AMPAR surface expression in prefrontal cortex pyramidal neurons via a mechanism involving Rab5/dynamin-mediated endocytosis of AMPARs. The synergistic effect of SNRIs on AMPARs was blocked by inhibition of activator of G protein signaling 3, a G protein modulator that prevents reassociation of Gi protein α subunit and prolongs the βγ-mediated signaling pathway. Moreover, the depression of AMPAR-mediated excitatory postsynaptic currents by SNRIs required p38 kinase activity, which was increased by 5-HT1A and α2-adrenergic receptor co-activation in an activator of G protein signaling 3-dependent manner. These results have revealed a potential mechanism for the synergy between the serotonin and norepinephrine systems in the regulation of glutamatergic transmission in cortical neurons. PMID:25056951

  8. Depression of Serotonin Synaptic Transmission by the Dopamine Precursor L-DOPA.

    PubMed

    Gantz, Stephanie C; Levitt, Erica S; Llamosas, Nerea; Neve, Kim A; Williams, John T

    2015-08-11

    Imbalance between the dopamine and serotonin (5-HT) neurotransmitter systems has been implicated in the comorbidity of Parkinson's disease (PD) and psychiatric disorders. L-DOPA, the leading treatment of PD, facilitates the production and release of dopamine. This study assessed the action of L-DOPA on monoamine synaptic transmission in mouse brain slices. Application of L-DOPA augmented the D2-receptor-mediated inhibitory postsynaptic current (IPSC) in dopamine neurons of the substantia nigra. This augmentation was largely due to dopamine release from 5-HT terminals. Selective optogenetic stimulation of 5-HT terminals evoked dopamine release, producing D2-receptor-mediated IPSCs following treatment with L-DOPA. In the dorsal raphe, L-DOPA produced a long-lasting depression of the 5-HT1A-receptor-mediated IPSC in 5-HT neurons. When D2 receptors were expressed in the dorsal raphe, application of L-DOPA resulted in a D2-receptor-mediated IPSC. Thus, treatment with L-DOPA caused ectopic dopamine release from 5-HT terminals and a loss of 5-HT-mediated synaptic transmission. PMID:26235617

  9. Enhanced responsiveness to selective serotonin reuptake inhibitors during lactation.

    PubMed

    Jury, Nicholas J; McCormick, Betsy A; Horseman, Nelson D; Benoit, Stephen C; Gregerson, Karen A

    2015-01-01

    The physiology of mood regulation in the postpartum is poorly understood despite the fact that postpartum depression (PPD) is a common pathology. Serotonergic mechanisms and their dysfunction are widely presumed to be involved, which has led us to investigate whether lactation induces changes in central or peripheral serotonin (5-HT) systems and related affective behaviors. Brain sections from lactating (day 10 postpartum) and age-matched nulliparous (non-pregnant) C57BL/6J mice were processed for 5-HT immunohistochemistry. The total number of 5-HT immunostained cells and optical density were measured. Lactating mice exhibited lower immunoreactive 5-HT and intensity in the dorsal raphe nucleus when compared with nulliparous controls. Serum 5-HT was quantified from lactating and nulliparous mice using radioimmunoassay. Serum 5-HT concentrations were higher in lactating mice than in nulliparous controls. Affective behavior was assessed in lactating and non-lactating females ten days postpartum, as well as in nulliparous controls using the forced swim test (FST) and marble burying task (MBT). Animals were treated for the preceding five days with a selective serotonin reuptake inhibitor (SSRI, citalopram, 5mg/kg/day) or vehicle. Lactating mice exhibited a lower baseline immobility time during the FST and buried fewer marbles during the MBT as compared to nulliparous controls. Citalopram treatment changed these behaviors in lactating mice with further reductions in immobility during the FST and decreased marble burying. In contrast, the same regimen of citalopram treatment had no effect on these behaviors in either non-lactating postpartum or nulliparous females. Our findings demonstrate changes in both central and peripheral 5-HT systems associated with lactation, independent of pregnancy. They also demonstrate a significant interaction of lactation and responsiveness to SSRI treatment, which has important implications in the treatment of PPD. Although recent evidence

  10. Essential role of brain-derived neurotrophic factor in the regulation of serotonin transmission in the basolateral amygdala

    PubMed Central

    Daftary, Shabrine S.; Calderon, German; Rios, Maribel

    2012-01-01

    Human and animal model studies have linked brain-derived neurotrophic factor (BDNF) with the etiology of anxiety disorders. This pleiotropic neurotrophin and its receptor, TrkB, promote neuronal survival, differentiation and synaptic plasticity. Here we interrogated the role of BDNF in serotonergic neurotransmission in the basolateral amygdala (BLA), a limbic brain region associated with the neurobiology of anxiety. We found that both GABAergic and pyramidal projection neurons in the wild-type BLA contained TrkB receptors. Examination of BDNF2L/2LCk-cre mutant mice with brain-selective depletion of BDNF revealed mild decreases in serotonin content in the BLA. Notably, whole cell recordings in BLA pyramidal cells uncovered significant alterations in 5-HT2-mediated regulation of GABAergic and glutamatergic transmission in BDNF2L/2LCk-Cre mutant mice that result in a hyperexcitable circuit. These changes were associated with decreased expression of 5-HT2 receptors. Collectively, the results indicate a required role of BDNF in serotonin transmission in the BLA. Furthermore, they suggest a mechanism underlying the reported increase in anxiety-like behavior elicited by perturbed BDNF signaling. PMID:22917617

  11. Serotonin genes and attention deficit/hyperactivity disorder in a Brazilian sample: preferential transmission of the HTR2A 452His allele to affected boys.

    PubMed

    Guimarães, Ana Paula M; Zeni, Cristian; Polanczyk, Guilherme V; Genro, Julia P; Roman, Tatiana; Rohde, Luis A; Hutz, Mara H

    2007-01-01

    Attention-deficit hyperactivity disorder (ADHD) is one of the most common psychiatric disorders of childhood. The role of genetic factors in its etiology is strongly supported by family, adoption, and twin studies. Low serotonin activity has been associated in both animal and human studies with measures of impulsivity, aggression, and disinhibited behaviors, which make genes from the serotonin system reasonable candidates for ADHD susceptibility. In the present study, we investigated a polymorphism in the promoter region of the serotonin transporter (SLC6A4) and two polymorphisms (-1438 A > G and His452Tyr) in the serotonin 5-HTR2A receptor gene using family based association analyses in a sample of 243 Brazilian ADHD children and adolescents and their parents. No linkage disequilibrium between the two HTR2A polymorphisms was detected in this sample (P = 0.76). Considering several evidences from animal models for sexual dimorphism in serotonin genes expression, analyses were performed separately for the whole sample and for male probands. No evidences for biased transmissions of both HTR2A -1438 A > G and SLC6A4 polymorphisms to ADHD youths were observed. Preferential transmission of the HTR2A His452 allele was observed only in families with affected boys (P = 0.04). Our results suggest that findings from ADHD association studies for serotonin genes might be understood in the context of a gender effect, which may help to explain conflicting results in these association studies. PMID:16958038

  12. Chronic Enhancement of Serotonin Facilitates Excitatory Transcranial Direct Current Stimulation-Induced Neuroplasticity.

    PubMed

    Kuo, Hsiao-I; Paulus, Walter; Batsikadze, Giorgi; Jamil, Asif; Kuo, Min-Fang; Nitsche, Michael A

    2016-04-01

    Serotonin affects memory formation via modulating long-term potentiation (LTP) and depression (LTD). Accordingly, acute selective serotonin reuptake inhibitor (SSRI) administration enhanced LTP-like plasticity induced by transcranial direct current stimulation (tDCS) in humans. However, it usually takes some time for SSRI to reduce clinical symptoms such as anxiety, negative mood, and related symptoms of depression and anxiety disorders. This might be related to an at least partially different effect of chronic serotonergic enhancement on plasticity, as compared with single-dose medication. Here we explored the impact of chronic application of the SSRI citalopram (CIT) on plasticity induced by tDCS in healthy humans in a partially double-blinded, placebo (PLC)-controlled, randomized crossover study. Furthermore, we explored the dependency of plasticity induction from the glutamatergic system via N-methyl-D-aspartate receptor antagonism. Twelve healthy subjects received PLC medication, combined with anodal or cathodal tDCS of the primary motor cortex. Afterwards, the same subjects took CIT (20 mg/day) consecutively for 35 days. During this period, four additional interventions were performed (CIT and PLC medication with anodal/cathodal tDCS, CIT and dextromethorphan (150 mg) with anodal/cathodal tDCS). Plasticity was monitored by motor-evoked potential amplitudes elicited by transcranial magnetic stimulation. Chronic application of CIT increased and prolonged the LTP-like plasticity induced by anodal tDCS for over 24 h, and converted cathodal tDCS-induced LTD-like plasticity into facilitation. These effects were abolished by dextromethorphan. Chronic serotonergic enhancement results in a strengthening of LTP-like glutamatergic plasticity, which might partially explain the therapeutic impact of SSRIs in depression and other neuropsychiatric diseases. PMID:26329381

  13. The selective serotonin reuptake inhibitor sertraline enhances counterregulatory responses to hypoglycemia

    PubMed Central

    Sanders, Nicole M.; Wilkinson, Charles W.; Taborsky, Gerald J.; Al-Noori, Salwa; Daumen, Wendi; Zavosh, Aryana; Figlewicz, Dianne P.

    2008-01-01

    Selective serotonin reuptake inhibitors (SSRIs) are widely prescribed for patients with comorbid diabetes and depression. Clinical case studies in diabetic patients, however, suggest that SSRI therapy may exacerbate hypoglycemia. We hypothesized that SSRIs might increase the risk of hypoglycemia by impairing hormonal counterregulatory responses (CRR). We evaluated the effect of the SSRI sertraline on hormonal CRR to single or recurrent hypoglycemia in nondiabetic rats. Since there are time-dependent effects of SSRIs on serotonin neurotransmission that correspond with therapeutic action, we evaluated the effect of 6- or 20-day sertraline treatment on hypoglycemia CRR. We found that 6-day sertraline (SERT) treatment specifically enhanced the epinephrine response to a single bout of hypoglycemia vs. vehicle (VEH)-treated rats (t = 120: VEH, 2,573 ± 448 vs. SERT, 4,202 ± 545 pg/ml, P < 0.05). In response to recurrent hypoglycemia, VEH-treated rats exhibited the expected impairment in epinephrine secretion (t = 60: 678 ± 73 pg/ml) vs. VEH-treated rats experiencing first-time hypoglycemia (t = 60: 2,081 ± 436 pg/ml, P < 0.01). SERT treatment prevented the impaired epinephrine response in recurrent hypoglycemic rats (t = 60: 1,794 ± 276 pgl/ml). In 20-day SERT-treated rats, epinephrine, norepinephrine, and glucagon CRR were all significantly elevated above VEH-treated controls in response to hypoglycemia. Similarly to 6-day SERT treatment, 20-day SERT treatment rescued the impaired epinephrine response in recurrent hypoglycemic rats. Our data demonstrate that neither 6- nor 20-day sertraline treatment impaired hormonal CRR to hypoglycemia in nondiabetic rats. Instead, sertraline treatment resulted in an enhancement of hypoglycemia CRR and prevented the impaired adrenomedullary response normally observed in recurrent hypoglycemic rats. PMID:18334609

  14. Aortic Valve Cyclic Stretch Causes Increased Remodeling Activity and Enhanced Serotonin Receptor Responsiveness

    PubMed Central

    Balachandran, Kartik; Bakay, Marina A.; Connolly, Jeanne M.; Zhang, Xuemei; Yoganathan, Ajit P.; Levy, Robert J.

    2011-01-01

    Background Increased serotonin(5HT) receptor(5HTR) signaling has been associated with cardiac valvulopathy. Prior cell culture studies of 5HTR signaling in heart valve interstitial cells have provided mechanistic insights concerning only static conditions. We investigated the hypothesis that aortic valve biomechanics participate in the regulation of both 5HTR expression and inter-related extracellular matrix remodeling events. Methods The effects of cyclic-stretch on aortic valve 5HTR, expression, signaling and extracellular matrix remodeling were investigated using a tensile stretch bioreactor in studies which also compared the effects of adding 5HT and/or the 5HT-transporter inhibitor, Fluoxetine. Results Cyclic-stretch alone increased both proliferation and collagen in porcine aortic valve cusp samples. However, with cyclic-stretch, unlike static conditions, 5HT plus Fluoxetine caused the greatest increase in proliferation (p<0.0001), and also caused significant increases in collagen(p<0.0001) and glycosaminoglycans (p<0.0001). DNA microarray data demonstrated upregulation of 5HTR2A and 5HTR2B (>4.5 fold) for cyclic-stretch versus static (p<0.001), while expression of the 5HT transporter was not changed significantly. Extracellular matrix genes (eg. Collagen Types I,II,III, and proteoglycans) were also upregulated by cyclic-stretch. Conclusions Porcine aortic valve cusp samples subjected to cyclic stretch upregulate 5HTR2A and 2B, and also initiate remodeling activity characterized by increased proliferation and collagen production. Importantly, enhanced 5HTR responsiveness, due to increased 5HTR2A and 2B expression, results in a significantly greater response in remodeling endpoints (proliferation, collagen and GAG production) to 5HT in the presence of 5HT transporter blockade. PMID:21718840

  15. Enhanced central serotonin release from slices of rat hypothalamus following repeated nialamide administration: evidence supporting the overactive serotonin receptor theory of depression

    SciTech Connect

    Offord, S.J.

    1986-01-01

    Researchers are suggesting unipolar affective disorders may be related to an abnormality in biogenic amine receptor-sensitivity. This abnormality may be a result of a dysfunction in central serotonin (5-HT) release mechanisms. 5-HT neurotransmission is modulated by presynaptic autoreceptors, which are members of the 5-HT/sub 1/ receptor subtype. The autoreceptor is thought to play an important role in the homeostasis of the central 5-HT synapse and could be a site at which some antidepressants mediate their therapeutic effect. The number of 5-HT/sub 1/ type receptor binding sites are reduced and behavior mediated by this receptor is abolished following repeated injections of monoamine oxidase inhibitor type antidepressants. These changes did not occur following a single injection. It was hypothesized that repeated treatment with a monoamine oxidase inhibitor would reduce the sensitivity of 5-HT autoreceptors and enhance 5-HT release. Rats were pretreated with single or repeated (twice daily for 7 days) intraperitoneal injections of nialamide (40 mg/kg) or chlorimipramine (10 mg/kg) and the ability of the autoreceptor agonist to inhibit potassium-induced /sup 3/H-5-HT release was evaluated using an in vitro superfusion system. These changes in 5-HT autoreceptor activity are consistent with other reports evaluating monoamine oxidase inhibitors on 5-HT/sub 1/ type receptors. It is hypothesized that the changes in 5-HT neurotransmission are related to the antidepressant mechanism of monoamine oxidase inhibitors.

  16. Enhanced nonresonant light transmission through subwavelength slits in metal.

    PubMed

    Pors, Anders; Nerkararyan, Khachatur V; Sahakyan, Khachik; Bozhevolnyi, Sergey I

    2016-01-15

    We analytically describe light transmission through a single subwavelength slit in a thin perfect electric conductor screen for the incident polarization being perpendicular to the slit, and derive simple, yet accurate, expressions for the average electric field in the slit and the transmission efficiency. The analytic results are consistent with full-wave numerical calculations and demonstrate that slits of widths ∼100  nm in real metals may feature nonresonant (i.e., broadband) field enhancements of ∼100 and transmission efficiency of ∼10 at infrared or terahertz frequencies, with the associated metasurface-like array of slits becoming transparent to the incident light. PMID:26766684

  17. Imperfect Vaccination Can Enhance the Transmission of Highly Virulent Pathogens

    PubMed Central

    Read, Andrew F.; Baigent, Susan J.; Powers, Claire; Kgosana, Lydia B.; Blackwell, Luke; Smith, Lorraine P.; Kennedy, David A.; Walkden-Brown, Stephen W.; Nair, Venugopal K.

    2015-01-01

    Could some vaccines drive the evolution of more virulent pathogens? Conventional wisdom is that natural selection will remove highly lethal pathogens if host death greatly reduces transmission. Vaccines that keep hosts alive but still allow transmission could thus allow very virulent strains to circulate in a population. Here we show experimentally that immunization of chickens against Marek's disease virus enhances the fitness of more virulent strains, making it possible for hyperpathogenic strains to transmit. Immunity elicited by direct vaccination or by maternal vaccination prolongs host survival but does not prevent infection, viral replication or transmission, thus extending the infectious periods of strains otherwise too lethal to persist. Our data show that anti-disease vaccines that do not prevent transmission can create conditions that promote the emergence of pathogen strains that cause more severe disease in unvaccinated hosts. PMID:26214839

  18. Presynaptic inhibitory effects of fluvoxamine, a selective serotonin reuptake inhibitor, on nociceptive excitatory synaptic transmission in spinal superficial dorsal horn neurons of adult mice.

    PubMed

    Tomoyose, Orie; Kodama, Daisuke; Ono, Hideki; Tanabe, Mitsuo

    2014-01-01

    Fluvoxamine, a selective serotonin (5-HT) reuptake inhibitor, has been shown to exert analgesic effects in humans and laboratory animals. However, its effects on spinal nociceptive synaptic transmission have not been fully characterized. Here, whole-cell recordings were made from dorsal horn neurons in spinal slices with attached dorsal roots from adult mice, and the effects of fluvoxamine on monosynaptic A-fiber- and C-fiber-mediated excitatory postsynaptic currents (EPSCs) evoked in response to electrical stimulation of a dorsal root were studied. Fluvoxamine (10 - 100 μM) concentration-dependently suppressed both monosynaptic A-fiber- and C-fiber-mediated EPSCs, which were attenuated by the selective 5-HT1A receptor antagonist WAY100635. In the presence of the selective 5-HT3 receptor antagonist tropisetron, fluvoxamine hardly suppressed A-fiber-mediated EPSCs, whereas its inhibitory effect on C-fiber-mediated EPSCs was not affected. Although fluvoxamine increased the paired-pulse ratio of A-fiber-mediated EPSCs, it increased the frequency of spontaneous and miniature EPSCs (sEPSCs and mEPSCs). Since sEPSCs and mEPSCs appeared to arise largely from spinal interneurons, we then recorded strontium-evoked asynchronous events occurring after A-fiber stimulation, whose frequency was reduced by fluvoxamine. These results suggest that fluvoxamine reduces excitatory synaptic transmission from primary afferent fibers via presynaptic mechanisms involving 5-HT1A and/or 5-HT3 receptors, which may contribute to its analgesic effects. PMID:25252797

  19. An extraordinary transmission analogue for enhancing microwave antenna performance

    NASA Astrophysics Data System (ADS)

    Pushpakaran, Sarin V.; Purushothaman, Jayakrishnan M.; Chandroth, Aanandan; Pezholil, Mohanan; Kesavath, Vasudevan

    2015-10-01

    The theory of diffraction limit proposed by H.A Bethe limits the total power transfer through a subwavelength hole. Researchers all over the world have gone through different techniques for boosting the transmission through subwavelength holes resulting in the Extraordinary Transmission (EOT) behavior. We examine computationally and experimentally the concept of EOT nature in the microwave range for enhancing radiation performance of a stacked dipole antenna working in the S band. It is shown that the front to back ratio of the antenna is considerably enhanced without affecting the impedance matching performance of the design. The computational analysis based on Finite Difference Time Domain (FDTD) method reveals that the excitation of Fabry-Perot resonant modes on the slots is responsible for performance enhancement.

  20. An extraordinary transmission analogue for enhancing microwave antenna performance

    SciTech Connect

    Pushpakaran, Sarin V.; Purushothaman, Jayakrishnan M.; Chandroth, Aanandan; Pezholil, Mohanan; Kesavath, Vasudevan

    2015-10-15

    The theory of diffraction limit proposed by H.A Bethe limits the total power transfer through a subwavelength hole. Researchers all over the world have gone through different techniques for boosting the transmission through subwavelength holes resulting in the Extraordinary Transmission (EOT) behavior. We examine computationally and experimentally the concept of EOT nature in the microwave range for enhancing radiation performance of a stacked dipole antenna working in the S band. It is shown that the front to back ratio of the antenna is considerably enhanced without affecting the impedance matching performance of the design. The computational analysis based on Finite Difference Time Domain (FDTD) method reveals that the excitation of Fabry-Perot resonant modes on the slots is responsible for performance enhancement.

  1. Escherichia coli Nissle 1917 enhances bioavailability of serotonin in gut tissues through modulation of synthesis and clearance

    PubMed Central

    Nzakizwanayo, Jonathan; Dedi, Cinzia; Standen, Guy; Macfarlane, Wendy M.; Patel, Bhavik A.; Jones, Brian V.

    2015-01-01

    Accumulating evidence shows indigenous gut microbes can interact with the human host through modulation of serotonin (5-HT) signaling. Here we investigate the impact of the probiotic Escherichia coli Nissle 1917 (EcN) on 5-HT signalling in gut tissues. Ex-vivo mouse ileal tissue sections were treated with either EcN or the human gut commensal MG1655, and effects on levels of 5-HT, precursors, and metabolites, were evaluated using amperometry and high performance liquid chromatography with electrochemical detection (HPLC-EC). Exposure of tissue to EcN cells, but not MG1655 cells, was found to increase levels of extra-cellular 5-HT. These effects were not observed when tissues were treated with cell-free supernatant from bacterial cultures. In contrast, when supernatant recovered from untreated ileal tissue was pre-incubated with EcN, the derivative cell-free supernatant was able to elevate 5-HT overflow when used to treat fresh ileal tissue. Measurement of 5-HT precursors and metabolites indicated EcN also increases intracellular 5-HTP and reduces 5-HIAA. The former pointed to modulation of tryptophan hydroxylase-1 to enhance 5-HT synthesis, while the latter indicates an impact on clearance into enterocytes through SERT. Taken together, these findings show EcN is able to enhance 5-HT bioavailability in ileal tissues through interaction with compounds secreted from host tissues. PMID:26616662

  2. Escherichia coli Nissle 1917 enhances bioavailability of serotonin in gut tissues through modulation of synthesis and clearance.

    PubMed

    Nzakizwanayo, Jonathan; Dedi, Cinzia; Standen, Guy; Macfarlane, Wendy M; Patel, Bhavik A; Jones, Brian V

    2015-01-01

    Accumulating evidence shows indigenous gut microbes can interact with the human host through modulation of serotonin (5-HT) signaling. Here we investigate the impact of the probiotic Escherichia coli Nissle 1917 (EcN) on 5-HT signalling in gut tissues. Ex-vivo mouse ileal tissue sections were treated with either EcN or the human gut commensal MG1655, and effects on levels of 5-HT, precursors, and metabolites, were evaluated using amperometry and high performance liquid chromatography with electrochemical detection (HPLC-EC). Exposure of tissue to EcN cells, but not MG1655 cells, was found to increase levels of extra-cellular 5-HT. These effects were not observed when tissues were treated with cell-free supernatant from bacterial cultures. In contrast, when supernatant recovered from untreated ileal tissue was pre-incubated with EcN, the derivative cell-free supernatant was able to elevate 5-HT overflow when used to treat fresh ileal tissue. Measurement of 5-HT precursors and metabolites indicated EcN also increases intracellular 5-HTP and reduces 5-HIAA. The former pointed to modulation of tryptophan hydroxylase-1 to enhance 5-HT synthesis, while the latter indicates an impact on clearance into enterocytes through SERT. Taken together, these findings show EcN is able to enhance 5-HT bioavailability in ileal tissues through interaction with compounds secreted from host tissues. PMID:26616662

  3. 5-HT7 receptor modulates GABAergic transmission in the rat dorsal raphe nucleus and controls cortical release of serotonin

    PubMed Central

    Kusek, Magdalena; Sowa, Joanna; Kamińska, Katarzyna; Gołembiowska, Krystyna; Tokarski, Krzysztof; Hess, Grzegorz

    2015-01-01

    The 5-HT7 receptor is one of the several serotonin (5-HT) receptor subtypes that are expressed in the dorsal raphe nucleus (DRN). Some earlier findings suggested that 5-HT7 receptors in the DRN were localized on GABAergic interneurons modulating the activity of 5-HT projection neurons. The aim of the present study was to find out how the 5-HT7 receptor modulates the GABAergic synaptic input to putative 5-HT DRN neurons, and whether blockade of the 5-HT7 receptor would affect the release of 5-HT in the target structure. Male Wistar rats with microdialysis probes implanted in the prefrontal cortex (PFC) received injections of the 5-HT7 receptor antagonist (2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine hydrochloride (SB 269970), which induced an increase in the levels of 5-HT and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA) in the PFC. In another set of experiments whole-cell recordings from presumed projection neurons were carried out using DRN slices. SB 269970 application resulted in depolarization and in an increase in the firing frequency of the cells. In order to activate 5-HT7 receptors, 5-carboxamidotryptamine (5-CT) was applied in the presence of N-[2-[4-(2-methoxyphenyl)-1piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide (WAY100635). Hyperpolarization of cells and a decrease in the firing frequency were observed after activation of the 5-HT7 receptor. Blockade of 5-HT7 receptors caused a decrease in the mean frequency of spontaneous inhibitory postsynaptic currents (sIPSCs), while its activation induced an increase. The mechanism of these effects appears to involve tonically-active 5-HT7 receptors modulating firing and/or GABA release from inhibitory interneurons which regulate the activity of DRN serotonergic projection neurons. PMID:26347612

  4. Hybrid graphene/dielectric metasurfaces for enhanced transmission modulation

    NASA Astrophysics Data System (ADS)

    Argyropoulos, Christos

    All-dielectric silicon based metasurfaces are powerful platforms to enhance light-matter interactions at nanoscale regions. Their low-loss nature, CMOS processing compatibility and increased damage threshold promise to outperform the functionalities of the recently established plasmonic metallic metasurfaces. In our talk, we will demonstrate ways to hybridize all-dielectric metasurfaces with graphene in order to obtain new electro-optical devices. In particular, a hybrid graphene/dielectric metasurface design will be presented to achieve tunable and modulated transmission at near-infrared (near-IR) frequencies (C. Argyropoulos, Optics Express, vol. 23, No. 18, pp. 23787-23797, 2015). The proposed all-dielectric metasurface is composed of periodically arranged pairs of asymmetric silicon nanobars, which can sustain trapped magnetic resonances with a sharp Fano-type transmission signature. One-atom-thick graphene is placed over this dielectric metasurface and strong transmission modulation is obtained at near-IR telecom wavelengths as the doping level of graphene is increased. The enhanced in-plane fields along the all-dielectric metasurface strongly interact with the tunable properties of graphene. This leads to strong coupling between the incoming radiation and graphene. Several new integrated nanophotonic components are envisioned based on the proposed device, such as efficient electro-optical transmission modulators.

  5. Does reservoir host mortality enhance transmission of West Nile virus?

    PubMed Central

    Foppa, Ivo M; Spielman, Andrew

    2007-01-01

    Background Since its 1999 emergence in New York City, West Nile virus (WNV) has become the most important and widespread cause of mosquito-transmitted disease in North America. Its sweeping spread from the Atlantic to the Pacific coast was accompanied by widespread mortality among wild birds, especially corvids. Only sporadic avian mortality had previously been associated with this infection in the Old World. Here, we examine the possibility that reservoir host mortality may intensify transmission, both by concentrating vector mosquitoes on remaining hosts and by preventing the accumulation of "herd immunity". Results Inspection of the Ross-Macdonald expression of the basic reproductive number (R0) suggests that this quantity may increase with reservoir host mortality. Computer simulation confirms this finding and indicates that the level of virulence is positively associated with the numbers of infectious mosquitoes by the end of the epizootic. The presence of reservoir incompetent hosts in even moderate numbers largely eliminated the transmission-enhancing effect of host mortality. Local host die-off may prevent mosquitoes to "waste" infectious blood meals on immune host and may thus facilitate perpetuation and spread of transmission. Conclusion Under certain conditions, host mortality may enhance transmission of WNV and similarly maintained arboviruses and thus facilitate their emergence and spread. The validity of the assumptions upon which this argument is built need to be empirically examined. PMID:17498307

  6. Broadband enhanced transmission of acoustic waves through serrated metal gratings

    NASA Astrophysics Data System (ADS)

    Qi, Dong-Xiang; Fan, Ren-Hao; Deng, Yu-Qiang; Peng, Ru-Wen; Wang, Mu; Jiangnan University Collaboration

    In this talk, we present our studies on broadband properties of acoustic waves through metal gratings. We have demonstrated that serrated metal gratings, which introduce gradient coatings, can give rise to broadband transmission enhancement of acoustic waves. Here, we have experimentally and theoretically studied the acoustic transmission properties of metal gratings with or without serrated boundaries. The average transmission is obviously enhanced for serrated metal gratings within a wide frequency range, while the Fabry-Perot resonance is significantly suppressed. An effective medium hypothesis with varying acoustic impedance is proposed to analyze the mechanism, which was verified through comparison with finite-element simulation. The serrated boundary supplies gradient mass distribution and gradient normal acoustic impedance, which could efficiently reduce the boundary reflection. Further, by increasing the region of the serrated boundary, we present a broadband high-transmission grating for wide range of incident angle. Our results may have potential applications to broadband acoustic imaging, acoustic sensing and new acoustic devices. References: [1] Dong-Xiang Qi, Yu-Qiang Deng, Di-Hu Xu, Ren-Hao Fan, Ru-Wen Peng, Ze-Guo Chen, Ming-Hui Lu, X. R. Huang and Mu Wang, Appl. Phys. Lett. 106, 011906 (2015); [2] Dong-Xiang Qi, Ren-Hao Fan, Ru-Wen Peng, Xian-Rong Huang, Ming-Hui Lu, Xu Ni, Qing Hu, and Mu Wang, Applied Physics Letters 101, 061912 (2012).

  7. Enhancement of alcohol drinking in mice depends on alterations in RNA editing of serotonin 2C receptors

    PubMed Central

    Watanabe, Yoshihisa; Yoshimoto, Kanji; Tatebe, Harutsugu; Kita, Masakazu; Nishikura, Kazuko; Kimura, Minoru; Tanaka, Masaki

    2014-01-01

    Serotonin 2C receptors (5-HT2CR) are G-protein-coupled receptors with various actions, including involvement in drug addiction. 5-HT2CR undergoes mRNA editing, converting genomically encoded adenosine residues to inosines via adenosine deaminases acting on RNA (ADARs). Here we show that enhanced alcohol drinking behaviour in mice is associated with the degree of 5-HT2CR mRNA editing in the nucleus accumbens and dorsal raphe nuceus, brain regions important for reward and addiction. Following chronic alcohol vapour exposure, voluntary alcohol intake increased in C57BL/6J mice, but remained unchanged in C3H/HeJ and DBA/2J mice. 5-HT2CR mRNA editing frequency in both regions increased significantly in C57BL/6J mice, as did expressions of 5-HT2CR, ADAR1 and ADAR2, but not in other strains. Moreover, mice that exclusively express the unedited isoform (INI) of 5-HT2CR mRNA on a C57BL/6J background did not exhibit increased alcohol intake compared with wild-type mice. Our results indicate that alterations in 5-HT2CR mRNA editing underlie alcohol preference in mice. PMID:24345557

  8. Broadband Coherent Enhancement of Transmission and Absorption in Disordered Media

    NASA Astrophysics Data System (ADS)

    Hsu, Chia Wei; Goetschy, Arthur; Bromberg, Yaron; Stone, A. Douglas; Cao, Hui

    2015-11-01

    Spatial modulation of the incident wave front has become a powerful method for controlling the diffusive transport of light in disordered media; however, such interference-based control is intrinsically sensitive to frequency detuning. Here, we show analytically and numerically that certain wave fronts can exhibit strongly enhanced total transmission or absorption across bandwidths that are orders of magnitude broader than the spectral correlation width of the speckles. Such broadband enhancement is possible due to long-range correlations in coherent diffusion, which cause the spectral degrees of freedom to scale as the square root of the bandwidth rather than the bandwidth itself.

  9. Enhanced Wireless Power Transmission Using Strong Paramagnetic Response

    PubMed Central

    Ahn, Dukju; Kiani, Mehdi; Ghovanloo, Maysam

    2015-01-01

    A method of quasi-static magnetic resonant coupling has been presented for improving the power transmission efficiency (PTE) in near-field wireless power transmission, which improves upon the state of the art. The traditional source resonator on the transmitter side is equipped with an additional resonator with a resonance frequency that is tuned substantially higher than the magnetic field excitation frequency. This additional resonator enhances the magnetic dipole moment and the effective permeability of the power transmitter, owing to a phenomenon known as the strong paramagnetic response. Both theoretical calculations and experimental results show increased PTE due to amplification of the effective permeability. In measurements, the PTE was improved from 57.8% to 64.2% at the nominal distance of 15 cm when the effective permeability was 2.6. The power delivered to load was also improved significantly, with the same 10 V excitation voltage, from 0.38 to 5.26 W. PMID:26120144

  10. Unpredictable neonatal stress enhances adult anxiety and alters amygdala gene expression related to serotonin and GABA.

    PubMed

    Sarro, E C; Sullivan, R M; Barr, G

    2014-01-31

    Anxiety-related disorders are among the most common psychiatric illnesses, thought to have both genetic and environmental causes. Early-life trauma, such as abuse from a caregiver, can be predictable or unpredictable, each resulting in increased prevalence and severity of a unique set of disorders. In this study, we examined the influence of early unpredictable trauma on both the behavioral expression of adult anxiety and gene expression within the amygdala. Neonatal rats were exposed to unpaired odor-shock conditioning for 5 days, which produces deficits in adult behavior and amygdala dysfunction. In adulthood, we used the Light/Dark box test to measure anxiety-related behaviors, measuring the latency to enter the lit area and quantified urination and defecation. The amygdala was then dissected and a microarray analysis was performed to examine changes in gene expression. Animals that had received early unpredictable trauma displayed significantly longer latencies to enter the lit area and more defecation and urination. The microarray analysis revealed over-represented genes related to learning and memory, synaptic transmission and trans-membrane transport. Gene ontology and pathway analysis identified highly represented disease states related to anxiety phenotypes, including social anxiety, obsessive-compulsive disorders, post-traumatic stress disorder and bipolar disorder. Addiction-related genes were also overrepresented in this analysis. Unpredictable shock during early development increased anxiety-like behaviors in adulthood with concomitant changes in genes related to neurotransmission, resulting in gene expression patterns similar to anxiety-related psychiatric disorders. PMID:24240029

  11. Polarization dependent enhanced infrared transmission through complementary nanostructured gold films

    NASA Astrophysics Data System (ADS)

    Behera, Gangadhar; Ramakrishna, S. Anantha

    2016-05-01

    A pair of complementary-structured gold films, with periodic rectangular nanoscale patches and rectangular holes in the complementary layer arranged in a stretched hexagonal lattice and spaced apart by 200 nm of a photoresist film, were fabricated by laser interference lithography and subsequent physical vapor deposition of gold. The pair of complementary films showed a polarization-dependent extraordinary transmission (EOT) at mid-infrared frequencies, evidenced by a resonant dip in reflectance and strong enhancement of the transmittance for light polarized perpendicular to the long axis of the rectangular structures. Numerical simulations confirm the enhanced transmission and indicate the involvement of the TE01 wave-guide mode resonance of the rectangular structures in the resonant transmittance. The enhanced transmittance in the complementary pair of structured films separated by sub-wavelength distances, which is otherwise be expected to be opaque, is surprising. The Poynting vector maps show that the energy flow weaves across the openings in the two structured films. Dependence on the metal thickness and period of the structures have been investigated. Sensitivity of the EOT peak to the surrounding medium's refractive index is studied by simulations to reveal its potential for sensor applications.

  12. Serotonin2C receptors modulate dopamine transmission in the nucleus accumbens independently of dopamine release: behavioral, neurochemical and molecular studies with cocaine.

    PubMed

    Cathala, Adeline; Devroye, Céline; Maitre, Marlène; Piazza, Pier Vincenzo; Abrous, Djoher Nora; Revest, Jean-Michel; Spampinato, Umberto

    2015-05-01

    In keeping with its ability to control the mesoaccumbens dopamine (DA) pathway, the serotonin2C receptor (5-HT2C R) plays a key role in mediating the behavioral and neurochemical effects of drugs of abuse. Studies assessing the influence of 5-HT2C R agonists on cocaine-induced responses have suggested that 5-HT2C Rs can modulate mesoaccumbens DA pathway activity independently of accumbal DA release, thereby controlling DA transmission in the nucleus accumbens (NAc). In the present study, we assessed this hypothesis by studying the influence of the 5-HT2C R agonist Ro 60-0175 on cocaine-induced behavioral, neurochemical and molecular responses. The i.p. administration of 1 mg/kg Ro 60-0175 inhibited hyperlocomotion induced by cocaine (15 mg/kg, i.p.), had no effect on cocaine-induced DA outflow in the shell, and increased it in the core subregion of the NAc. Furthermore, Ro 60-0175 inhibited the late-onset locomotion induced by the subcutaneous administration of the DA-D2 R agonist quinpirole (0.5 mg/kg), as well as cocaine-induced increase in c-Fos immunoreactivity in NAc subregions. Finally, Ro 60-0175 inhibited cocaine-induced phosphorylation of the DA and c-AMP regulated phosphoprotein of Mr 32 kDa (DARPP-32) at threonine residues in the NAc core, this effect being reversed by the selective 5-HT2C R antagonist SB 242084 (0.5 mg/kg, i.p.). Altogether, these findings demonstrate that 5-HT2C Rs are capable of modulating mesoaccumbens DA pathway activity at post-synaptic level by specifically controlling DA signaling in the NAc core subregion. In keeping with the tight relationship between locomotor activity and NAc DA function, this interaction could participate in the inhibitory control of cocaine-induced locomotor activity. PMID:24661380

  13. Organization network enhanced detection and transmission of phase-locking

    NASA Astrophysics Data System (ADS)

    Liu, Zonghua

    2012-12-01

    Based on the recent observation that a neuron in the local network of the mouse primary visual cortex receives convergent input from nearby neurons (Nature, 471 (2011) 177), we present a hierarchical organization network model to stress the aspect of directional coupling in neurons and study how an external signal can be transmitted in this network model. By taking numerical simulations on the paradigmatic Rössler oscillator and Hindmarsh-Rose neuron, we show that the oscillators in the network will lock in phase and frequency over a range that is much larger than one driven oscillator would, indicating the enhanced signal detectability of the hierarchical organization network. To guarantee the successful transmission of phase-lockings, a self-tuning mechanism is introduced where the weights of those links along the signal transmission path will be adaptively increased, with the total weight of network keeping constant. Moreover, we find that the organization network is in favor of the phase-locking transmission than the star-like network.

  14. Enhanced Hygiene Measures and Norovirus Transmission during an Outbreak

    PubMed Central

    Teunis, Peter; Morroy, Gabriella; Wijkmans, Clementine; Oostveen, Sandy; Duizer, Erwin; Kretzschmar, Mirjam; Wallinga, Jacco

    2009-01-01

    Control of norovirus outbreaks relies on enhanced hygiene measures, such as handwashing, surface cleaning, using disposable paper towels, and using separate toilets for sick and well persons. However, little is known about their effectiveness in limiting further spread of norovirus infections. We analyzed norovirus outbreaks in 7 camps at an international scouting jamboree in the Netherlands during 2004. Implementation of hygiene measures coincided with an 84.8% (95% predictive interval 81.2%–86.6%) reduction in reproduction number. This reduction was unexpectedly large but still below the reduction needed to contain a norovirus outbreak. Even more stringent control measures are required to break the chain of transmission of norovirus. PMID:19116045

  15. Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): enhancing serotonin release by combining serotonin (5HT) transporter inhibition with actions at 5HT receptors (5HT1A, 5HT1B, 5HT1D, 5HT7 receptors).

    PubMed

    Stahl, Stephen M

    2015-04-01

    Vortioxetine is an antidepressant that targets multiple pharmacologic modes of action at sites--or nodes--where serotonergic neurons connect to various brain circuits. These multimodal pharmacologic actions of vortioxetine lead to enhanced release of various neurotransmitters, including serotonin, at various nodes within neuronal networks. PMID:25831967

  16. Transmission enhancement based on strong interference in metal-semiconductor layered film for energy harvesting

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Du, Kaikai; Mao, Kening; Fang, Xu; Zhao, Ding; Ye, Hui; Qiu, Min

    2016-07-01

    A fundamental strategy to enhance optical transmission through a continuous metallic film based on strong interference dominated by interface phase shift is developed. In a metallic film coated with a thin semiconductor film, both transmission and absorption are simultaneously enhanced as a result of dramatically reduced reflection. For a 50-nm-thick Ag film, experimental transmission enhancement factors of 4.5 and 9.5 are realized by exploiting Ag/Si non-symmetric and Si/Ag/Si symmetric geometries, respectively. These planar layered films for transmission enhancement feature ultrathin thickness, broadband and wide-angle operation, and reduced resistance. Considering one of their potential applications as transparent metal electrodes in solar cells, a calculated 182% enhancement in the total transmission efficiency relative to a single metallic film is expected. This strategy relies on no patterned nanostructures and thereby may power up a wide spectrum of energy-harvesting applications such as thin-film photovoltaics and surface photocatalysis.

  17. How serotonin shapes moral judgment and behavior

    PubMed Central

    Siegel, Jenifer Z; Crockett, Molly J

    2013-01-01

    Neuroscientists are now discovering how hormones and brain chemicals shape social behavior, opening potential avenues for pharmacological manipulation of ethical values. Here, we review recent studies showing how altering brain chemistry can alter moral judgment and behavior, focusing in particular on the neuromodulator serotonin and its role in shaping values related to harm and fairness. We synthesize previous findings and consider the potential mechanisms through which serotonin could increase the aversion to harming others. We present a process model whereby serotonin influences social behavior by shifting social preferences in the positive direction, enhancing the value people place on others’ outcomes. This model may explain previous findings relating serotonin function to prosocial behavior, and makes new predictions regarding how serotonin may influence the neural computation of value in social contexts. PMID:25627116

  18. Serotonin Syndrome in Pregnancy.

    PubMed

    Roth, Cheryl K; Hering, Sandra L; Campos, Stephanie

    2015-01-01

    Millions of people take selective serotonin reuptake inhibitors (SSRIs) for depression and anxiety, so nurses and other clinicians need to be aware of the potential for serotonin toxicity and serotonin syndrome. These conditions can occur when women taking SSRIs are given additional medications in the labor and birth or postpartum settings. Symptoms can have an acute onset and can include delirium, fever and hypertension. Understanding the mechanism and symptoms of serotonin syndrome can lead to timely treatment of this unusual condition. PMID:26264799

  19. Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): blocking 5HT3 receptors enhances release of serotonin, norepinephrine, and acetylcholine.

    PubMed

    Stahl, Stephen M

    2015-10-01

    Vortioxetine is an antidepressant with multiple pharmacologic modes of action at targets where serotonin neurons connect with other neurons. 5HT3 receptor antagonism is one of these actions, and this leads to increased release of norepinephrine (NE), acetylcholine (ACh), and serotonin (5HT) within various brain circuits. PMID:26122791

  20. Serotonin: A New Hope in Alzheimer's Disease?

    PubMed

    Claeysen, Sylvie; Bockaert, Joël; Giannoni, Patrizia

    2015-07-15

    Alzheimer's disease (AD) is the most common form of dementia affecting 35 million individuals worldwide. Current AD treatments provide only brief symptomatic relief. It is therefore urgent to replace this symptomatic approach with a curative one. Increasing serotonin signaling as well as developing molecules that enhance serotonin concentration in the synaptic cleft have been debated as possible therapeutic strategies to slow the progression of AD. In this Viewpoint, we discuss exciting new insights regarding the modulation of serotonin signaling for AD prevention and therapy. PMID:26011650

  1. Hedgehog subwavelength hole arrays: control over the THz enhanced transmission

    NASA Astrophysics Data System (ADS)

    Navarro-Cía, M.; Rodriguez-Ulibarri, Pablo; Beruete, M.

    2013-01-01

    By backing or sandwiching a holey metal layer with or between isotropic dielectric slabs, additional peaks of transmission within the long-wavelength regime arise as a result of the induced transverse magnetic (TM) or transverse electric (TE) grounded dielectric modes. A similar control of the complex surface wave modes, and thus of the extraordinary transmission (ET) peaks, is demonstrated here via anisotropic slabs in the form of a fakir's bed of nails. However, it is shown that those ET peaks formed from TE modes are suppressed because of the inherent dispersion characteristics of the free-standing grounded pins. This allows the red-shifting of the ET for the polarization parallel to the larger in-plane period of the hole array, but unlike the dielectric isotropic slab configuration, the orthogonal polarization remains inhibited. In memoriam Professor Mario Sorolla.

  2. Enhanced transmission in CO(2)-laser-aerosol interactions.

    PubMed

    Kwok, H S; Rossi, T M; Lau, W S; Shaw, D T

    1988-03-01

    The transmission characteristics of a high-power CO(2)-laser beam through a single water aerosol particle are studied. It is found that before the onset of plasma formation there is a sizable range of laser intensity where the medium becomes almost totally transparent. A plausible argument for this induced transparency is given in terms of particle disintegration. This effect may have applications in laser atmospheric propagation. PMID:19742024

  3. The Serotonin 2C Receptor Agonist Lorcaserin Attenuates Intracranial Self-Stimulation and Blocks the Reward-Enhancing Effects of Nicotine.

    PubMed

    Zeeb, Fiona D; Higgins, Guy A; Fletcher, Paul J

    2015-07-15

    Lorcaserin, a serotonin (5-hydroxytryptamine, 5-HT) 2C receptor agonist, was recently approved for the treatment of obesity. We previously suggested that 5-HT2C receptor agonists affect reward processes and reduce the rewarding effects of drugs of abuse. Here, we determined whether lorcaserin (1) decreases responding for brain stimulation reward (BSR) and (2) prevents nicotine from enhancing the efficacy of BSR. Rats were trained on the intracranial self-stimulation (ICSS) paradigm to nosepoke for BSR of either the dorsal raphé nucleus or left medial forebrain bundle. In Experiment 1, lorcaserin (0.3-1.0 mg/kg) dose-dependently reduced the efficacy of BSR. This effect was blocked by prior administration of the 5-HT2C receptor antagonist SB242084. In Experiment 2, separate groups of rats received saline or nicotine (0.4 mg/kg) for eight sessions prior to testing. Although thresholds were unaltered in saline-treated rats, nicotine reduced reward thresholds. An injection of lorcaserin (0.3 mg/kg) prior to nicotine prevented the reward-enhancing effect of nicotine across multiple test sessions. These results demonstrated that lorcaserin reduces the rewarding value of BSR and also prevents nicotine from facilitating ICSS. Hence, lorcaserin may be effective in treating psychiatric disorders, including obesity and nicotine addiction, by reducing the value of food or drug rewards. PMID:25781911

  4. Enhanced calcium responses to serotonin receptor stimulation in T-lymphocytes from schizophrenic patients--a pilot study.

    PubMed

    Genius, J; Schellenberg, A; Tchana-Duope, L; Hartmann, N; Giegling, I; Hartmann, A; Benninghoff, J; Rujescu, D

    2015-03-01

    Even if more extensively investigated in affective disorders, the serotonergic system is likely to be also implicated in modulating the pathogenesis of schizophrenia, where it closely interacts with the dopaminergic and glutamatergic system. To substantiate this notion, we studied the intensity and dynamics of cellular Ca(2+) responses to serotonin (5-hydoxytryptamine, 5-HT) in peripheral lymphocytes taken from currently non-psychotic schizophrenic patients. To this aim, peripheral lymphocytes were freshly obtained from healthy controls and a naturalistic collective of patients with schizophrenia in remission. Intracellular Ca(2+) responses were recorded in real-time by ratiometric fluorometry after 5-HT or phythaemagglutinin (PHA) stimulation, which served as an internal reference for Ca(2+) responsivity to non-specific stimulation. The intracellular Ca(2+) peak early after applying the 5-HT trigger was significantly elevated in schizophrenic patients. No significant differences of Ca(2+) peak levels were seen in response to stimulation with the mitogenic agent PHA, although responses to 5-HT and PHA were positively correlated in individual patients or controls. In conclusion, the serotonergic response patterns in peripheral lymphocytes from schizophrenic patients seem to be elevated, if employing sensitive tools like determination of intracellular Ca(2+) responses. Our observations suggest that the participation of serotonergic neurotransmitter system in the pathogenesis of schizophrenia may deserve more interest, even if it should only act as a modulator on the main pathology in the dopaminergic and glutamatergic systems. We hope that this pilot study will prompt further studies with larger patient collectives to revisit this question. PMID:25576705

  5. Disorder-assisted transmission due to charge puddles in monolayer graphene: Transmission enhancement and local currents

    NASA Astrophysics Data System (ADS)

    Lima, Leandro R. F.; Lewenkopf, Caio H.

    2016-01-01

    We investigate the contribution of charge puddles to the nonvanishing conductivity minimum in disordered graphene flakes at the charge neutrality point. For that purpose, we study systems with a geometry that suppresses the transmission due to evanescent modes allowing us to single out the effect of charge fluctuations in the transport properties. We use the recursive Green's function technique to obtain local and total transmissions through systems that mimic vanishing density of states at the charge neutrality point in the presence of a local disordered local potential to model the charge puddles. Our microscopic model includes electron-electron interactions via a spin resolved Hubbard mean field term. We establish the relationship between the charge puddle disorder potential and the electronic transmission at the charge neutrality point. We find that electronic interactions do not play a significant role in this setting. We discuss the implications of our findings to high mobility graphene samples deposited on different substrates and provide a qualitative interpretation of recent experimental results.

  6. Textile artificial magnetic conductor jacket for transmission enhancement between antennas under bending and wetness measurements

    NASA Astrophysics Data System (ADS)

    Kamardin, Kamilia; Rahim, Mohamad Kamal A.; Hall, Peter S.; Samsuri, Noor Asmawati; Latef, Tarik Abdul; Ullah, Mohammad Habib

    2016-04-01

    Textile artificial magnetic conductor (AMC) waveguide jacket for transmission enhancement between on-body antennas is proposed. Transmission characteristics between antennas with different orientations and placements are studied. Significant transmission enhancement is observed for all tested positions. Bending and wetness measurements are also conducted. Bending is found not to give significant effect to the antennas and AMC performance, while wetness yields severe performance distortion. However, the original performance is retrieved once the antennas and AMC dried. The proposed AMC jacket will act as a new approach for efficient wearable body-centric communications.

  7. Post Transmission Digital Video Enhancement for People with Visual Impairments

    PubMed Central

    Fullerton, Matthew; Peli, Eli

    2006-01-01

    Image enhancement has been shown to improve the perceived quality of images and videos for people with visual impairments. The MPEG coding scheme makes spatial filtering, likely to help those with such impairments, possible at the decoding stage. We implemented a real-time platform for testing and improving contrast enhancement algorithms for MPEG video, with controls appropriate for the target population. The necessary additional processing runs efficiently on a general-purpose PC and can be integrated easily into existing MPEG-2 decoders. The system has enabled us to substantially improve the previous filtering algorithm; reducing artifacts exhibited in the previous implementation and should facilitate individual user-selection of enhancement parameters in evaluation studies. PMID:16823464

  8. Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture

    NASA Astrophysics Data System (ADS)

    Akarca-Biyikli, S. Sena; Bulu, Irfan; Ozbay, Ekmel

    2004-08-01

    We report a theoretical and experimental demonstration of enhanced microwave transmission through subwavelength apertures in metallic structures with double-sided gratings. Three different types of aluminum gratings (sinusoidal, symmetric rectangular, and asymmetric rectangular shaped) are designed and analyzed. Our samples have a periodicity of 16mm, and a slit width of 2mm. Transmission measurements are taken in the 10-37.5GHz frequency spectrum, which corresponds to 8-30mm wavelength region. All three structures display significantly enhanced transmission around surface plasmon resonance frequencies. The experimental results agree well with finite-difference-time-domain based theoretical simulations. Asymmetric rectangular grating structure exhibits the best results with ˜50% transmission at 20.7mm, enhancement factor of ˜25, and ±4° angular divergence.

  9. Chronic treatment with the serotonin 2A/2C receptor antagonist SR 46349B enhances the retention and efficiency of rule-guided behavior in mice.

    PubMed

    Dougherty, John P; Oristaglio, Jeff

    2013-07-01

    Animal studies have established that drugs activating the serotonin 2A (5-HT2A) receptor can enhance learning and memory in a variety of classical and operant conditioning tasks. Unfortunately, long-term agonism typically results in receptor downregulation, which can negate such nootropic effects. Conversely, chronic antagonism can act to increase receptor density, an adaptation which, in principle, should enhance cognition in a manner similar to acute agonism. In this study, we questioned whether chronic treatment with the 5-HT2A receptor antagonist, SR 46349B, a drug known to increase 5-HT2A receptor density in vivo, would improve cognitive performance in normal mice. To address this question, we administered SR 46349B to mice for 4 days following initial training on a simple rule-based reward acquisition task. We subsequently tested their recall of this task and, finally, their ability to adapt to a reversal in reward contingency (reversal learning). For comparison, two additional groups were treated with the 5-HT2A/2C receptor agonist, DOI, which downregulates the 5-HT2A receptor. SR 46349B improved retention of the previously-learned task but did not affect reversal learning. Subjects treated with SR 46349B also completed trials faster and with greater motor efficiency than vehicle- or DOI-treated subjects. We hypothesize that long-term drug treatments resulting in 5-HT2A receptor up-regulation may be useful in enhancing recall of learned behaviors and, thus, may have potential for treating cognitive impairment associated with neurodegenerative disorders. PMID:23587729

  10. Nootropic dipeptide noopept enhances inhibitory synaptic transmission in the hippocampus.

    PubMed

    Povarov, I S; Kondratenko, R V; Derevyagin, V I; Ostrovskaya, R U; Skrebitskii, V G

    2015-01-01

    Application of nootropic agent Noopept on hippocampal slices from Wistar rats enhanced the inhibitory component of total current induced by stimulation of Shaffer collaterals in CA1 pyramidal neurons, but did not affect the excitatory component. A direct correlation between the increase in the amplitude of inhibitory current and agent concentration was found. The substance did not affect the release of inhibitory transmitters from terminals in the pyramidal neurons, which indicated changes in GABAergic interneurons. PMID:25573367

  11. Transmission enhancement based on strong interference in metal-semiconductor layered film for energy harvesting.

    PubMed

    Li, Qiang; Du, Kaikai; Mao, Kening; Fang, Xu; Zhao, Ding; Ye, Hui; Qiu, Min

    2016-01-01

    A fundamental strategy to enhance optical transmission through a continuous metallic film based on strong interference dominated by interface phase shift is developed. In a metallic film coated with a thin semiconductor film, both transmission and absorption are simultaneously enhanced as a result of dramatically reduced reflection. For a 50-nm-thick Ag film, experimental transmission enhancement factors of 4.5 and 9.5 are realized by exploiting Ag/Si non-symmetric and Si/Ag/Si symmetric geometries, respectively. These planar layered films for transmission enhancement feature ultrathin thickness, broadband and wide-angle operation, and reduced resistance. Considering one of their potential applications as transparent metal electrodes in solar cells, a calculated 182% enhancement in the total transmission efficiency relative to a single metallic film is expected. This strategy relies on no patterned nanostructures and thereby may power up a wide spectrum of energy-harvesting applications such as thin-film photovoltaics and surface photocatalysis. PMID:27404510

  12. Transmission enhancement based on strong interference in metal-semiconductor layered film for energy harvesting

    PubMed Central

    Li, Qiang; Du, Kaikai; Mao, Kening; Fang, Xu; Zhao, Ding; Ye, Hui; Qiu, Min

    2016-01-01

    A fundamental strategy to enhance optical transmission through a continuous metallic film based on strong interference dominated by interface phase shift is developed. In a metallic film coated with a thin semiconductor film, both transmission and absorption are simultaneously enhanced as a result of dramatically reduced reflection. For a 50-nm-thick Ag film, experimental transmission enhancement factors of 4.5 and 9.5 are realized by exploiting Ag/Si non-symmetric and Si/Ag/Si symmetric geometries, respectively. These planar layered films for transmission enhancement feature ultrathin thickness, broadband and wide-angle operation, and reduced resistance. Considering one of their potential applications as transparent metal electrodes in solar cells, a calculated 182% enhancement in the total transmission efficiency relative to a single metallic film is expected. This strategy relies on no patterned nanostructures and thereby may power up a wide spectrum of energy-harvesting applications such as thin-film photovoltaics and surface photocatalysis. PMID:27404510

  13. Activation of serotonin2A receptors in the medial septum-diagonal band of Broca complex enhanced working memory in the hemiparkinsonian rats.

    PubMed

    Li, Li-Bo; Zhang, Li; Sun, Yi-Na; Han, Ling-Na; Wu, Zhong-Heng; Zhang, Qiao-Jun; Liu, Jian

    2015-04-01

    Serotonin2A (5-HT2A) receptors are highly expressed in the medial septum-diagonal band of Broca complex (MS-DB), especially in parvalbumin (PV)-positive neurons linked to hippocampal theta rhythm, which is involved in cognition. Cognitive impairments commonly occur in Parkinson's disease. Here we performed behavioral, electrophysiological, neurochemical and immunohistochemical studies in rats with complete unilateral 6-hydroxydopamine lesions of the medial forebrain bundle (MFB) to assess the importance of dopamine (DA) depletion and MS-DB 5-HT2A receptors for working memory. The MFB lesions resulted in working memory impairment and decreases in firing rate and density of MS-DB PV-positive neurons, peak frequency of hippocampal theta rhythm, and DA levels in septohippocampal system and medial prefrontal cortex (mPFC) compared to control rats. Intra-MS-DB injection of high affinity 5-HT2A receptor agonist TCB-2 enhanced working memory, increased firing rate of PV-positive neurons and peak frequency of hippocampal theta rhythm, elevated DA levels in the hippocampus and mPFC, and decreased 5-HT level in the hippocampus in control and lesioned rats. Compared to control rats, the duration of the excitatory effect produced by TCB-2 on the firing rate of PV-positive neurons was markedly shortened in lesioned rats, indicating dysfunction of 5-HT2A receptors. These findings suggest that unilateral lesions of the MFB in rats induced working memory deficit, and activation of MS-DB 5-HT2A receptors enhanced working memory, which may be due to changes in the activity of septohippocampal network and monoamine levels in the hippocampus and mPFC. PMID:25486618

  14. An experimental verification of metamaterial coupled enhanced transmission for antenna applications

    SciTech Connect

    Pushpakaran, Sarin V.; Raj, Rohith K.; Pradeep, Anju; Ouseph, Lindo; Hari, Mridula; Chandroth, Aanandan; Pezholil, Mohanan; Kesavath, Vasudevan

    2014-02-10

    Inspired by the work of Bethe on electromagnetic transmission through subwavelength hole, there has been immense interest on the extraordinary transmission through subwavelength slot/slit on metal plates. The invention of metamaterials has boosted the extra ordinary transmission through subwavelength slots. We examine computationally and experimentally the concept of metamaterial cover using an array of split ring resonators (SRRs), for enhancing the transmission in a stacked dipole antenna working in the S band. The front to back ratio is considerably improved by enhancing the magnetic resonant strength in close proximity of the slit of the upper parasitic dipole. The effect of stacking height of the SRR monolayer on the resonant characteristics of the split ring resonators and its effect on antenna radiation characteristics has been studied.

  15. Enhanced optical transmission and Fano resonance through a nanostructured metal thin film

    NASA Astrophysics Data System (ADS)

    Xiao, Bo; Pradhan, Sangram K.; Santiago, Kevin C.; Rutherford, Gugu N.; Pradhan, Aswini K.

    2015-05-01

    Artificial and engineered nanostructures expand the degrees of freedom with which one can manipulate the intricate interplay of light and matter. Certain nanostructural arrangements in the excited state enable the efficient electromagnetic coupling of propagating light with localized fields. Here, we demonstrate that light transmitted through a nanostructured metal thin film without any apertures can be significantly enhanced. Distinct asymmetric Fano resonances are observed in the zero-order transmission spectra using an incoherent light source. The transmission efficiency surpasses that of a metal thin film with the same area and thickness at the resonance maxima. The transmission minima and the sharp resonance maxima bear a strong resemblance to the extraordinary optical transmission observed in sub-wavelength nanohole array structures The resonance wavelength closely matches the nanostructural periodicity. The sensitivity of the resonances to the surrounding medium and the transmission efficiency demonstrate the potential for use in energy harvesting, imaging, optical processing and sensing applications.

  16. Enhanced optical transmission and Fano resonance through a nanostructured metal thin film

    PubMed Central

    Xiao, Bo; Pradhan, Sangram K.; Santiago, Kevin C.; Rutherford, Gugu N.; Pradhan, Aswini K.

    2015-01-01

    Artificial and engineered nanostructures expand the degrees of freedom with which one can manipulate the intricate interplay of light and matter. Certain nanostructural arrangements in the excited state enable the efficient electromagnetic coupling of propagating light with localized fields. Here, we demonstrate that light transmitted through a nanostructured metal thin film without any apertures can be significantly enhanced. Distinct asymmetric Fano resonances are observed in the zero-order transmission spectra using an incoherent light source. The transmission efficiency surpasses that of a metal thin film with the same area and thickness at the resonance maxima. The transmission minima and the sharp resonance maxima bear a strong resemblance to the extraordinary optical transmission observed in sub-wavelength nanohole array structures The resonance wavelength closely matches the nanostructural periodicity. The sensitivity of the resonances to the surrounding medium and the transmission efficiency demonstrate the potential for use in energy harvesting, imaging, optical processing and sensing applications. PMID:25981974

  17. Enhancing data exploitation through DTN-based data transmission protocols

    NASA Astrophysics Data System (ADS)

    Daglis, Ioannis A.; Tsaoussidis, Vassilis; Rontogiannis, Athanasios; Balasis, Georgios; Keramitsoglou, Iphigenia; Paronis, Dimitrios; Sykioti, Olga; Tsinganos, Antonios

    2014-05-01

    Data distribution and data access are major issues in space sciences and geosciences as they strongly influence the degree of data exploitation. Processing and analysis of large volumes of Earth observation and space/planetary data face two major impediments: limited access capabilities due to narrow connectivity windows between spacecraft and ground receiving stations and lack of sufficient communication and dissemination mechanisms between space data receiving centres and the end-user community. Real-time data assimilation that would be critical in a number of forecasting capabilities is particularly affected by such limitations. The FP7-Space project "Space-Data Routers" (SDR) has the aim of allowing space agencies, academic institutes and research centres to disseminate/share space data generated by single or multiple missions, in an efficient, secure and automated manner. The approach of SDR relies on space internetworking - and in particular on Delay-Tolerant Networking (DTN), which marks the new era in space communications, unifies space and earth communication infrastructures and delivers a set of tools and protocols for space-data exploitation. The project includes the definition of limitations imposed by typical space mission scenarios in which the National Observatory of Athens is currently involved, including space and planetary exploration, as well as satellite-supported geoscience applications. In this paper, we present the mission scenarios, the SDR-application and the evaluation of the associated impact from the space-data router enhancements. The work leading to this paper has received funding from the European Union's Seventh Framework Programme (FP7-SPACE-2010-1) under grant agreement no. 263330 for the SDR (Space-Data Routers for Exploiting Space Data) collaborative research project. This paper reflects only the authors' views and the Union is not liable for any use that may be made of the information contained therein.

  18. An Enhanced Energy Balanced Data Transmission Protocol for Underwater Acoustic Sensor Networks.

    PubMed

    Javaid, Nadeem; Shah, Mehreen; Ahmad, Ashfaq; Imran, Muhammad; Khan, Majid Iqbal; Vasilakos, Athanasios V

    2016-01-01

    This paper presents two new energy balanced routing protocols for Underwater Acoustic Sensor Networks (UASNs); Efficient and Balanced Energy consumption Technique (EBET) and Enhanced EBET (EEBET). The first proposed protocol avoids direct transmission over long distance to save sufficient amount of energy consumed in the routing process. The second protocol overcomes the deficiencies in both Balanced Transmission Mechanism (BTM) and EBET techniques. EBET selects relay node on the basis of optimal distance threshold which leads to network lifetime prolongation. The initial energy of each sensor node is divided into energy levels for balanced energy consumption. Selection of high energy level node within transmission range avoids long distance direct data transmission. The EEBET incorporates depth threshold to minimize the number of hops between source node and sink while eradicating backward data transmissions. The EBET technique balances energy consumption within successive ring sectors, while, EEBET balances energy consumption of the entire network. In EEBET, optimum number of energy levels are also calculated to further enhance the network lifetime. Effectiveness of the proposed schemes is validated through simulations where these are compared with two existing routing protocols in terms of network lifetime, transmission loss, and throughput. The simulations are conducted under different network radii and varied number of nodes. PMID:27070605

  19. An Enhanced Energy Balanced Data Transmission Protocol for Underwater Acoustic Sensor Networks

    PubMed Central

    Javaid, Nadeem; Shah, Mehreen; Ahmad, Ashfaq; Imran, Muhammad; Khan, Majid Iqbal; Vasilakos, Athanasios V.

    2016-01-01

    This paper presents two new energy balanced routing protocols for Underwater Acoustic Sensor Networks (UASNs); Efficient and Balanced Energy consumption Technique (EBET) and Enhanced EBET (EEBET). The first proposed protocol avoids direct transmission over long distance to save sufficient amount of energy consumed in the routing process. The second protocol overcomes the deficiencies in both Balanced Transmission Mechanism (BTM) and EBET techniques. EBET selects relay node on the basis of optimal distance threshold which leads to network lifetime prolongation. The initial energy of each sensor node is divided into energy levels for balanced energy consumption. Selection of high energy level node within transmission range avoids long distance direct data transmission. The EEBET incorporates depth threshold to minimize the number of hops between source node and sink while eradicating backward data transmissions. The EBET technique balances energy consumption within successive ring sectors, while, EEBET balances energy consumption of the entire network. In EEBET, optimum number of energy levels are also calculated to further enhance the network lifetime. Effectiveness of the proposed schemes is validated through simulations where these are compared with two existing routing protocols in terms of network lifetime, transmission loss, and throughput. The simulations are conducted under different network radii and varied number of nodes. PMID:27070605

  20. Immune response and insulin signalling alter mosquito feeding behaviour to enhance malaria transmission potential.

    PubMed

    Cator, Lauren J; Pietri, Jose E; Murdock, Courtney C; Ohm, Johanna R; Lewis, Edwin E; Read, Andrew F; Luckhart, Shirley; Thomas, Matthew B

    2015-01-01

    Malaria parasites alter mosquito feeding behaviour in a way that enhances parasite transmission. This is widely considered a prime example of manipulation of host behaviour to increase onward transmission, but transient immune challenge in the absence of parasites can induce the same behavioural phenotype. Here, we show that alterations in feeding behaviour depend on the timing and dose of immune challenge relative to blood ingestion and that these changes are functionally linked to changes in insulin signalling in the mosquito gut. These results suggest that altered phenotypes derive from insulin signalling-dependent host resource allocation among immunity, blood feeding, and reproduction in a manner that is not specific to malaria parasite infection. We measured large increases in mosquito survival and subsequent transmission potential when feeding patterns are altered. Leveraging these changes in physiology, behaviour and life history could promote effective and sustainable control of female mosquitoes responsible for transmission. PMID:26153094

  1. Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens.

    PubMed

    Fan, Fei; Chen, Sai; Wang, Xiang-Hui; Chang, Sheng-Jiang

    2013-04-01

    A tunable metal/magneto-optic plasmonic lens for terahertz isolator is demonstrated. Based on the magneto-optical effect of the semiconductor material and non-symmetrical structure, this plasmonic lens has not only the focusing feature but also nonreciprocal transmission property. Moreover, a transmission enhancement through this device greatly larger than that of the ordinary metallic slit arrays is contributed by the extraordinary optical transmission effect of the magneto surface plasmon polaritons. The results show that the proposed isolator has an isolation bandwidth of larger than 0.4THz and the maximum isolation of higher than 110dB, and its operating frequency also can be broadly tuned by changing the external magnetic field or temperature. This low-loss, high isolation, broadband tunable nonreciprocal terahertz transmission mechanism has a great potential for terahertz application systems. PMID:23571951

  2. Enhanced Optical Transmission Mediated by Localized Plasmons in Anisotropic, 3D Nanohole Arrays

    PubMed Central

    Yang, Jiun-Chan; Gao, Hanwei; Suh, Jae Yong; Zhou, Wei; Lee, Min Hyung; Odom, Teri W.

    2010-01-01

    This paper describes 3D nanohole arrays whose high optical transmission is mediated more by localized surface plasmon (LSP) excitations than by surface plasmon polaritons (SPPs). First, LSPs on 3D hole arrays lead to optical transmission an order of magnitude higher than 2D planar hole arrays. Second, LSP-mediated transmission is broadband and more tunable than SPP-enhanced transmission which is restricted by Bragg coupling. Third, for the first time, two types of surface plasmons can be selectively excited and manipulated on the same plasmonic substrate. This new plasmonic substrate fabricated by high-throughput nanolithography techniques paves the way for cutting-edge optoelectronic and biomedical applications. PMID:20698633

  3. Mifepristone modulates serotonin transporter function

    PubMed Central

    Li, Chaokun; Shan, Linlin; Li, Xinjuan; Wei, Linyu; Li, Dongliang

    2014-01-01

    Regulating serotonin expression can be used to treat psychotic depression. Mifepristone, a glucocorticoid receptor antagonist, is an effective candidate for psychotic depression treatment. However, the underlying mechanism related to serotonin transporter expression is poorly understood. In this study, we cloned the human brain serotonin transporter into Xenopus oocytes, to establish an in vitro expression system. Two-electrode voltage clamp recordings were used to detect serotonin transporter activity. Our results show that mifepristone attenuates serotonin transporter activity by directly inhibiting the serotonin transporter, and suggests that the serotonin transporter is a pharmacological target of mifepristone for the treatment of psychotic depression. PMID:25206868

  4. Auditory stimuli enhance MDMA-conditioned reward and MDMA-induced nucleus accumbens dopamine, serotonin and locomotor responses

    PubMed Central

    Feduccia, Allison A.; Duvauchelle, Christine L.

    2016-01-01

    MDMA (3,4-methylenedioxymethamphetamine), also known as ecstasy, is a popular drug often taken in environments rich in audio and visual stimulation, such as clubs and dance parties. The present experiments were conducted to test the notion that auditory stimulation influences the rewarding effects of MDMA. In Experiment 1, a conditioned place preference (CPP) procedure was conducted in which rats received MDMA (1.5 mg/kg, s.c.) in a distinctive environment accompanied by music (65–75 dB), white noise (70 dB), or no added sound. Animals were pretreated with saline on alternating days in an alternate environment. Results revealed CPP in animals exposed to white noise during MDMA trials. For Experiment 2, rats from Experiment 1 had access to operant levers that delivered intravenous MDMA (0.5 mg/kg/inj) or saline (0.1 ml) on alternate days in the presence or absence of the same types of auditory stimuli as previously experienced. After three each of MDMA and non-reinforced (saline) sessions, animals were tested for NAcc DA and 5-HT responses to MDMA (1.5 mg/kg) or saline under the same stimulus conditions. Findings revealed that NAcc DA and 5-HT increased after an MDMA injection, and both DA and 5-HT were significantly highest in animals exposed to music during the test session. These results indicate that paired sensorial stimuli can engage the same systems activated during drug use and enhance neurochemical and behavioral responses to MDMA administration. PMID:18722516

  5. Transmission enhancement through deep subwavelength apertures using connected split ring resonators.

    PubMed

    Ates, Damla; Cakmak, Atilla Ozgur; Colak, Evrim; Zhao, Rongkuo; Soukoulis, C M; Ozbay, Ekmel

    2010-02-15

    We report astonishingly high transmission enhancement factors through a subwavelength aperture at microwave frequencies by placing connected split ring resonators in the vicinity of the aperture. We carried out numerical simulations that are consistent with our experimental conclusions. We experimentally show higher than 70,000-fold extraordinary transmission through a deep subwavelength aperture with an electrical size of lambda/31 x lambda/12 (width x length), in terms of the operational wavelength. We discuss the physical origins of the phenomenon. Our numerical results predict that even more improvements of the enhancement factors are attainable. Theoretically, the approach opens up the possibility for achieving very large enhancement factors by overcoming the physical limitations and thereby minimizes the dependence on the aperture geometries. PMID:20389408

  6. Minocycline enhances inhibitory transmission to substantia gelatinosa neurons of the rat spinal dorsal horn.

    PubMed

    Peng, H-Z; Ma, L-X; Lv, M-H; Hu, T; Liu, T

    2016-04-01

    Minocycline, a second-generation tetracycline, is well known for its antibiotic, anti-inflammatory, and antinociceptive effects. Modulation of synaptic transmission is one of the analgesic mechanisms of minocycline. Although it has been reported that minocycline may suppress excitatory glutamatergic synaptic transmission, it remains unclear whether it could affect inhibitory synaptic transmission, which also plays a key role in modulating pain signaling. To examine the effect of minocycline on synaptic transmission in rat spinal substantia gelatinosa (SG) neurons, we recorded spontaneous inhibitory postsynaptic currents (sIPSCs) using whole-cell patch-clamp recording at a holding potential of 0 mV. Bath application of minocycline significantly increased the frequency but not the amplitude of sIPSCs in a reversible and concentration-dependent manner with an EC50 of 85. The enhancement of inhibitory synaptic transmission produced by minocycline was not affected by the glutamate receptor antagonists CNQX and D-APV or by the voltage-gated sodium channel blocker tetrodotoxin (TTX). Moreover, the potency of minocycline for facilitating sIPSC frequency was the same in both glycinergic and GABAergic sIPSCs without changing their decay phases. However, the facilitatory effect of minocycline on sIPSCs was eliminated in a Ca(2+)-free Krebs solution or by co-administration with calcium channel blockers. In summary, our data demonstrate that baseline inhibitory synaptic transmission in SG neurons is markedly enhanced by minocycline. This may function to decrease the excitability of SG neurons, thus leading to a modulation of nociceptive transmission. PMID:26826332

  7. Enhanced Heterosexual Transmission Hypothesis for the Origin of Pandemic HIV-1

    PubMed Central

    de Sousa, João Dinis; Alvarez, Carolina; Vandamme, Anne-Mieke; Müller, Viktor

    2012-01-01

    HIV-1 M originated from SIVcpz endemic in chimpanzees from southeast Cameroon or neighboring areas, and it started to spread in the early 20th century. Here we examine the factors that may have contributed to simian-to-human transmission, local transmission between humans, and export to a city. The region had intense ape hunting, social disruption, commercial sex work, STDs, and traffic to/from Kinshasa in the period 1899–1923. Injection treatments increased sharply around 1930; however, their frequency among local patients was far lower than among modern groups experiencing parenteral HIV-1 outbreaks. Recent molecular datings of HIV-1 M fit better the period of maximal resource exploitation and trade links than the period of high injection intensity. We conclude that although local parenteral outbreaks might have occurred, these are unlikely to have caused massive transmission. World War I led to additional, and hitherto unrecognized, risks of HIV-1 emergence. We propose an Enhanced Heterosexual Transmission Hypothesis for the origin of HIV-1 M, featuring at the time and place of its origin a coincidence of favorable co-factors (ape hunting, social disruption, STDs, and mobility) for both cross-species transmission and heterosexual spread. Our hypothesis does not exclude a role for parenteral transmission in the initial viral adaptation. PMID:23202448

  8. Modulation of swimming behavior in the medicinal leech. IV. Serotonin-induced alteration of synaptic interactions between neurons of the swim circuit.

    PubMed

    Mangan, P S; Cometa, A K; Friesen, W O

    1994-12-01

    Serotonin enhances the expression of swimming in the medicinal leech Hirudo medicinalis. These two reports examine the physiological causes underlying this modulation. The initial paper (Mangan et al. 1994) demonstrated that serotonin enhanced the participation of inhibitory swim motor neurons (MNs) in the generation of the swimming rhythm in the isolated nerve cord. In experiments reported here, we examined whether synaptic interactions between neurons of the swim circuit are altered by serotonin. Following exposure to 50 microM serotonin, pairwise intracellular recording revealed the presence of a time-dependent synaptic decrement. Synaptic decrement was characterized by: 1) a substantial decline in synaptic inhibition (half-decay time about 0.4 s) during constant presynaptic excitation; 2) a reduced half-time of recovery from synaptic inhibition; and 3) a strong dependence on the presynaptic neuron's membrane potential. We found little alteration in the physiology of synaptic transmission involving MNs following amine depletion in leech nerve cords. We propose that alterations in synaptic interactions resulting from exposure to elevated serotonin levels, coupled with the changes in MN cellular properties described earlier, are crucial to the increased efficacy of MNs in participating in generating and expressing the leech swimming rhythm. PMID:7807416

  9. Oral Transmissibility of Prion Disease Is Enhanced by Binding to Soil Particles

    PubMed Central

    Johnson, Christopher J; Pedersen, Joel A; Chappell, Rick J; McKenzie, Debbie; Aiken, Judd M

    2007-01-01

    Soil may serve as an environmental reservoir for prion infectivity and contribute to the horizontal transmission of prion diseases (transmissible spongiform encephalopathies [TSEs]) of sheep, deer, and elk. TSE infectivity can persist in soil for years, and we previously demonstrated that the disease-associated form of the prion protein binds to soil particles and prions adsorbed to the common soil mineral montmorillonite (Mte) retain infectivity following intracerebral inoculation. Here, we assess the oral infectivity of Mte- and soil-bound prions. We establish that prions bound to Mte are orally bioavailable, and that, unexpectedly, binding to Mte significantly enhances disease penetrance and reduces the incubation period relative to unbound agent. Cox proportional hazards modeling revealed that across the doses of TSE agent tested, Mte increased the effective infectious titer by a factor of 680 relative to unbound agent. Oral exposure to Mte-associated prions led to TSE development in experimental animals even at doses too low to produce clinical symptoms in the absence of the mineral. We tested the oral infectivity of prions bound to three whole soils differing in texture, mineralogy, and organic carbon content and found soil-bound prions to be orally infectious. Two of the three soils increased oral transmission of disease, and the infectivity of agent bound to the third organic carbon-rich soil was equivalent to that of unbound agent. Enhanced transmissibility of soil-bound prions may explain the environmental spread of some TSEs despite the presumably low levels shed into the environment. Association of prions with inorganic microparticles represents a novel means by which their oral transmission is enhanced relative to unbound agent. PMID:17616973

  10. Recent Enhancements to the NASA Langley Structural Acoustics Loads and Transmission (SALT) Facility

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Cabell, Randolph H.; Allen, Albert R.

    2013-01-01

    The Structural Acoustics Loads and Transmission (SALT) facility at the NASA Langley Research Center is comprised of an anechoic room and a reverberant room, and may act as a transmission loss suite when test articles are mounted in a window connecting the two rooms. In the latter configuration, the reverberant room acts as the noise source side and the anechoic room as the receiver side. The noise generation system used for qualification testing in the reverberant room was previously shown to achieve a maximum overall sound pressure level of 141 dB. This is considered to be marginally adequate for generating sound pressure levels typically required for launch vehicle payload qualification testing. Recent enhancements to the noise generation system increased the maximum overall sound pressure level to 154 dB, through the use of two airstream modulators coupled to 35 Hz and 160 Hz horns. This paper documents the acoustic performance of the enhanced noise generation system for a variety of relevant test spectra. Additionally, it demonstrates the capability of the SALT facility to conduct transmission loss and absorption testing in accordance with ASTM and ISO standards, respectively. A few examples of test capabilities are shown and include transmission loss testing of simple unstiffened and built up structures and measurement of the diffuse field absorption coefficient of a fibrous acoustic blanket.

  11. Enhanced GABA Transmission Drives Bradykinesia Following Loss of Dopamine D2 Receptor Signaling.

    PubMed

    Lemos, Julia C; Friend, Danielle M; Kaplan, Alanna R; Shin, Jung Hoon; Rubinstein, Marcelo; Kravitz, Alexxai V; Alvarez, Veronica A

    2016-05-18

    Bradykinesia is a prominent phenotype of Parkinson's disease, depression, and other neurological conditions. Disruption of dopamine (DA) transmission plays an important role, but progress in understanding the exact mechanisms driving slowness of movement has been impeded due to the heterogeneity of DA receptor distribution on multiple cell types within the striatum. Here we show that selective deletion of DA D2 receptors (D2Rs) from indirect-pathway medium spiny neurons (iMSNs) is sufficient to impair locomotor activity, phenocopying DA depletion models of Parkinson's disease, despite this mouse model having intact DA transmission. There was a robust enhancement of GABAergic transmission and a reduction of in vivo firing in striatal and pallidal neurons. Mimicking D2R signaling in iMSNs with Gi-DREADDs restored the level of tonic GABAergic transmission and rescued the motor deficit. These findings indicate that DA, through D2R activation in iMSNs, regulates motor output by constraining the strength of GABAergic transmission. PMID:27196975

  12. Neisseria gonorrhoeae-induced human defensins 5 and 6 increase HIV infectivity: role in enhanced transmission.

    PubMed

    Klotman, Mary E; Rapista, Aprille; Teleshova, Natalia; Micsenyi, Amanda; Jarvis, Gary A; Lu, Wuyuan; Porter, Edith; Chang, Theresa L

    2008-05-01

    Sexually transmitted infections (STIs) increase the likelihood of HIV transmission. Defensins are part of the innate mucosal immune response to STIs and therefore we investigated their role in HIV infection. We found that human defensins 5 and 6 (HD5 and HD6) promoted HIV infection, and this effect was primarily during viral entry. Enhancement was seen with primary viral isolates in primary CD4(+) T cells and the effect was more pronounced with R5 virus compared with X4 virus. HD5 and HD6 promoted HIV reporter viruses pseudotyped with vesicular stomatitis virus and murine leukemia virus envelopes, indicating that defensin-mediated enhancement was not dependent on CD4 and coreceptors. Enhancement of HIV by HD5 and HD6 was influenced by the structure of the peptides, as loss of the intramolecular cysteine bonds was associated with loss of the HIV-enhancing effect. Pro-HD5, the precursor and intracellular form of HD5, also exhibited HIV-enhancing effect. Using a cervicovaginal tissue culture system, we found that expression of HD5 and HD6 was induced in response to Neisseria gonorrhoeae (GC, for gonococcus) infection and that conditioned medium from GC-exposed cervicovaginal epithelial cells with elevated levels of HD5 also enhanced HIV infection. Introduction of small interfering RNAs for HD5 or HD6 abolished the HIV-enhancing effect mediated by GC. Thus, the induction of these defensins in the mucosa in the setting of GC infection could facilitate HIV infection. Furthermore, this study demonstrates the complexity of defensins as innate immune mediators in HIV transmission and warrants further investigation of the mechanism by which defensins modulate HIV infection. PMID:18424739

  13. Serotonin and Social Norms

    PubMed Central

    Bilderbeck, Amy C.; Brown, Gordon D. A.; Read, Judi; Woolrich, Mark; Cowen, Phillip J.; Behrens, Tim E. J.

    2014-01-01

    How do people sustain resources for the benefit of individuals and communities and avoid the tragedy of the commons, in which shared resources become exhausted? In the present study, we examined the role of serotonin activity and social norms in the management of depletable resources. Healthy adults, alongside social partners, completed a multiplayer resource-dilemma game in which they repeatedly harvested from a partially replenishable monetary resource. Dietary tryptophan depletion, leading to reduced serotonin activity, was associated with aggressive harvesting strategies and disrupted use of the social norms given by distributions of other players’ harvests. Tryptophan-depleted participants more frequently exhausted the resource completely and also accumulated fewer rewards than participants who were not tryptophan depleted. Our findings show that rank-based social comparisons are crucial to the management of depletable resources, and that serotonin mediates responses to social norms. PMID:24815611

  14. Chlamydia trachomatis Infection of Endocervical Epithelial Cells Enhances Early HIV Transmission Events

    PubMed Central

    Buckner, Lyndsey R.; Amedee, Angela M.; Albritton, Hannah L.; Kozlowski, Pamela A.; Lacour, Nedra; McGowin, Chris L.; Schust, Danny J.; Quayle, Alison J.

    2016-01-01

    Chlamydia trachomatis causes a predominantly asymptomatic, but generally inflammatory, genital infection that is associated with an increased risk for HIV acquisition. Endocervical epithelial cells provide the major niche for this obligate intracellular bacterium in women, and the endocervix is also a tissue in which HIV transmission can occur. The mechanism by which CT infection enhances HIV susceptibility at this site, however, is not well understood. Utilizing the A2EN immortalized endocervical epithelial cell line grown on cell culture inserts, we evaluated the direct role that CT-infected epithelial cells play in facilitating HIV transmission events. We determined that CT infection significantly enhanced the apical-to-basolateral migration of cell-associated, but not cell-free, HIVBaL, a CCR5-tropic strain of virus, across the endocervical epithelial barrier. We also established that basolateral supernatants from CT-infected A2EN cells significantly enhanced HIV replication in peripheral mononuclear cells and a CCR5+ T cell line. These results suggest that CT infection of endocervical epithelial cells could facilitate both HIV crossing the mucosal barrier and subsequent infection or replication in underlying target cells. Our studies provide a mechanism by which this common STI could potentially promote the establishment of founder virus populations and the maintenance of local HIV reservoirs in the endocervix. Development of an HIV/STI co-infection model also provides a tool to further explore the role of other sexually transmitted infections in enhancing HIV acquisition. PMID:26730599

  15. Influenza A virus acquires enhanced pathogenicity and transmissibility after serial passages in swine.

    PubMed

    Wei, Kai; Sun, Honglei; Sun, Zhenhong; Sun, Yipeng; Kong, Weili; Pu, Juan; Ma, Guangpeng; Yin, Yanbo; Yang, Hanchun; Guo, Xin; Chang, Kin-Chow; Liu, Jinhua

    2014-10-01

    Genetic and phylogenetic analyses suggest that the pandemic H1N1/2009 virus was derived from well-established swine influenza lineages; however, there is no convincing evidence that the pandemic virus was generated from a direct precursor in pigs. Furthermore, the evolutionary dynamics of influenza virus in pigs have not been well documented. Here, we subjected a recombinant virus (rH1N1) with the same constellation makeup as the pandemic H1N1/2009 virus to nine serial passages in pigs. The severity of infection sequentially increased with each passage. Deep sequencing of viral quasispecies from the ninth passage found five consensus amino acid mutations: PB1 A469T, PA 1129T, NA N329D, NS1 N205K, and NEP T48N. Mutations in the hemagglutinin (HA) protein, however, differed greatly between the upper and lower respiratory tracts. Three representative viral clones with the five consensus mutations were selected for functional evaluation. Relative to the parental virus, the three viral clones showed enhanced replication and polymerase activity in vitro and enhanced replication, pathogenicity, and transmissibility in pigs, guinea pigs, and ferrets in vivo. Specifically, two mutants of rH1N1 (PB1 A469T and a combination of NS1 N205K and NEP T48N) were identified as determinants of transmissibility in guinea pigs. Crucially, one mutant viral clone with the five consensus mutations, which also carried D187E, K211E, and S289N mutations in its HA, additionally was able to infect ferrets by airborne transmission as effectively as the pandemic virus. Our findings demonstrate that influenza virus can acquire viral characteristics that are similar to those of the pandemic virus after limited serial passages in pigs. Importance: We demonstrate here that an engineered reassortant swine influenza virus, with the same gene constellation pattern as the pandemic H1N1/2009 virus and subjected to only nine serial passages in pigs, acquired greatly enhanced virulence and transmissibility

  16. The serotonin transporter: Examination of the changes in transporter affinity induced by ligand binding

    SciTech Connect

    Humphreys, C.J.

    1989-01-01

    The plasmalemmal serotonin transporter uses transmembrane gradients of Na{sup +}, Cl{sup {minus}} and K{sup +} to accumulate serotonin within blood platelets. Transport is competitively inhibited by the antidepressant imipramine. Like serotonin transport, imipramine binding requires Na{sup +}. Unlike serotonin, however, imipramine does not appear to be transported. To gain insight into the mechanism of serotonin transport the author have analyzed the influences of Na{sup +} and Cl{sup {minus}}, the two ions cotransported with serotonin, on both serotonin transport and the interaction of imipramine and other antidepressant drugs with the plasmalemmal serotonin transporter of human platelets. Additionally, the author have synthesized, purified and characterized the binding of 2-iodoimipramine to the serotonin transporter. Finally, the author have conducted a preliminary study of the inhibition of serotonin transport and imipramine binding produced by dicyclohexylcarbodiimide. My results reveal many instances of positive heterotropic cooperativity in ligand binding to the serotonin transporter. Na{sup +} binding enhances the transporters affinity for imipramine and several other antidepressant drugs, and also increases the affinity for Cl{sup {minus}}. Cl{sup {minus}} enhances the transporters affinity for imipramine, as well as for Na{sup +}. At concentrations in the range of its K{sub M} for transport serotonin is a competitive inhibitor of imipramine binding. At much higher concentrations, however, serotonin also inhibits imipramines dissociation rate constant. This latter effect which is Na{sup +}-independent and species specific, is apparently produced by serotonin binding at a second, low affinity site on, or near, the transporter complex. Iodoimipramine competitively inhibit both ({sup 3}H)imipramine binding and ({sup 3}H)serotonin transport.

  17. Wood anomaly transmission enhancement in fishnet-based metamaterials at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Soltani, N.; Lheurette, É.; Lippens, D.

    2012-12-01

    On the basis of a fishnet-like structure, we analyze a metamaterial design involving dimer aperture arrays. It is shown that this approach leads to very strong Fano resonances within the transmission spectrum. The role of the Wood anomaly in the enhancement of the magnetic field is pointed out in order to explain this transmission characteristic. A sensitivity numerical analysis of this resonant feature is carried out. A figure of merit, defined as the ratio between the sensitivity and the width at half maximum of the resonance, as high as 830, is obtained. To our knowledge, this value is greater than the ones reported so far in literature using the inter-particle electromagnetic induced transparency principle. This property is of great interest for environment control applications, especially for sensing of highly diluted media, such as gaseous phase pollutants, as a complement to conventional spectroscopy techniques.

  18. Dual-band-enhanced Transmission through a Subwavelength Aperture by Coupled Metamaterial Resonators

    PubMed Central

    Guo, Yunsheng; Zhou, Ji

    2015-01-01

    In classical mechanics, it is well known that a system consisting of two identical pendulums connected by a spring will steadily oscillate with two modes: one at the fundamental frequency of a single pendulum and one in which the frequency increases with the stiffness of the spring. Inspired by this physical concept, we present an analogous approach that uses two metamaterial resonators to realize dual-band-enhanced transmission of microwaves through a subwavelength aperture. The metamaterial resonators are formed by the periodically varying and strongly localized fields that occur in the two metal split-ring resonators, which are placed gap-to-gap on either side of the aperture. The dual-band frequency separation is determined by the coupling strength between the two resonators. Measured transmission spectra, simulated field distributions, and theoretical analyses verify our approach. PMID:25634496

  19. A modified transmission tip-enhanced Raman scattering (TERS) setup provides access to opaque samples.

    PubMed

    Deckert-Gaudig, Tanja; Richter, Marc; Knebel, Detlef; Jähnke, Torsten; Jankowski, Tilo; Stock, Erik; Deckert, Volker

    2014-01-01

    The combination of scanning probe microscopy and Raman spectroscopy enables chemical characterization of surfaces at highest spatial resolution. This so-called tip-enhanced Raman scattering (TERS) can be employed for a variety of samples where a label-free characterization or identification of constituents on the nanometer scale is pursued. Present TERS setup geometries are always a compromise for specific dedicated applications and show different advantages and disadvantages: Transmission back-reflection setups, when using immersion objectives with a high numerical aperture, intrinsically provide the highest collection efficiency but cannot be applied for opaque samples. Those samples demand upright setups, at the cost of lower collection efficiency, even though very efficient systems using a parabolic mirror for illumination and collection have been demonstrated. In this contribution it is demonstrated that the incorporation of a dichroic mirror to a transmission TERS setup provides easy access to opaque samples without further modification of the setup. PMID:25061793

  20. Evidence that coded-wire-tagging procedures can enhance transmission of Renibacterium salmoninarum in chinook salmon

    USGS Publications Warehouse

    Elliott, D.G.; Pascho, R.J.

    2001-01-01

    Binary coded wire tags (CWTs) are used extensively for identification and management of anadromous salmonid populations. A study of bacterial kidney disease (BKD) in two brood year groups of hatchery-reared spring chinook salmon Oncorhynchus tshawytscha provided strong evidence that horizontal transmission of Renibacterium salmoninarum, the causative agent of BKD, might be enhanced by CWT-marking procedures. About 4 months after CWTs were implanted in the snouts of juvenile fish, 14-16 different tissues were sampled from each of 60 fish per brood year group for histological analysis. Of the fish that were positive for R. salmoninarum by histological examination, 41% (7 of 17) of the 1988 brood year fish and 24% (10 of 42) of the 1989 brood year fish had BKD lesions confined to the head near the site of tag implantation. These lesions often resulted in the destruction of tissues of one or both olfactory organs. No focal snout infections were observed in fish that had not been marked with CWTs. Further data obtained from tissue analyses by use of an enzyme-linked immunosorbent assay and a fluorescent antibody test for detection of R. salmoninarum supported the hypothesis that infections of R. salmoninarum can be initiated in the snout tissues of CWT-marked fish and then spread to other organs. The tagging procedures might promote transmission of the pathogen among fish via contaminated tagging needles, by facilitating the entry of pathogens through the injection wound, or both. Limited evidence from this study suggested that implantation of passive integrated transponder tags in the peritoneal cavities of fish might also promote the transmission of R. salmoninarum or exacerbate existing infections. The results indicated a need for strict sanitary procedures during the tagging of fish in populations positive for R. salmoninarum to reduce the probability of enhanced horizontal transmission of the pathogen.

  1. Enhanced synaptic transmission at the squid giant synapse by artificial seawater based on physically modified saline

    PubMed Central

    Choi, Soonwook; Yu, Eunah; Rabello, Guilherme; Merlo, Suelen; Zemmar, Ajmal; Walton, Kerry D.; Moreno, Herman; Moreira, Jorge E.; Sugimori, Mutsuyuki; Llinás, Rodolfo R.

    2014-01-01

    Superfusion of the squid giant synapse with artificial seawater (ASW) based on isotonic saline containing oxygen nanobubbles (RNS60 ASW) generates an enhancement of synaptic transmission. This was determined by examining the postsynaptic response to single and repetitive presynaptic spike activation, spontaneous transmitter release, and presynaptic voltage clamp studies. In the presence of RNS60 ASW single presynaptic stimulation elicited larger postsynaptic potentials (PSP) and more robust recovery from high frequency stimulation than in control ASW. Analysis of postsynaptic noise revealed an increase in spontaneous transmitter release with modified noise kinetics in RNS60 ASW. Presynaptic voltage clamp demonstrated an increased EPSP, without an increase in presynaptic ICa++ amplitude during RNS60 ASW superfusion. Synaptic release enhancement reached stable maxima within 5–10 min of RNS60 ASW superfusion and was maintained for the entire recording time, up to 1 h. Electronmicroscopic morphometry indicated a decrease in synaptic vesicle density and the number at active zones with an increase in the number of clathrin-coated vesicles (CCV) and large endosome-like vesicles near junctional sites. Block of mitochondrial ATP synthesis by presynaptic injection of oligomycin reduced spontaneous release and prevented the synaptic noise increase seen in RNS60 ASW. After ATP block the number of vesicles at the active zone and CCV was reduced, with an increase in large vesicles. The possibility that RNS60 ASW acts by increasing mitochondrial ATP synthesis was tested by direct determination of ATP levels in both presynaptic and postsynaptic structures. This was implemented using luciferin/luciferase photon emission, which demonstrated a marked increase in ATP synthesis following RNS60 administration. It is concluded that RNS60 positively modulates synaptic transmission by up-regulating ATP synthesis, thus leading to synaptic transmission enhancement. PMID:24575037

  2. Enhanced synaptic transmission at the squid giant synapse by artificial seawater based on physically modified saline.

    PubMed

    Choi, Soonwook; Yu, Eunah; Rabello, Guilherme; Merlo, Suelen; Zemmar, Ajmal; Walton, Kerry D; Moreno, Herman; Moreira, Jorge E; Sugimori, Mutsuyuki; Llinás, Rodolfo R

    2014-01-01

    Superfusion of the squid giant synapse with artificial seawater (ASW) based on isotonic saline containing oxygen nanobubbles (RNS60 ASW) generates an enhancement of synaptic transmission. This was determined by examining the postsynaptic response to single and repetitive presynaptic spike activation, spontaneous transmitter release, and presynaptic voltage clamp studies. In the presence of RNS60 ASW single presynaptic stimulation elicited larger postsynaptic potentials (PSP) and more robust recovery from high frequency stimulation than in control ASW. Analysis of postsynaptic noise revealed an increase in spontaneous transmitter release with modified noise kinetics in RNS60 ASW. Presynaptic voltage clamp demonstrated an increased EPSP, without an increase in presynaptic ICa(++) amplitude during RNS60 ASW superfusion. Synaptic release enhancement reached stable maxima within 5-10 min of RNS60 ASW superfusion and was maintained for the entire recording time, up to 1 h. Electronmicroscopic morphometry indicated a decrease in synaptic vesicle density and the number at active zones with an increase in the number of clathrin-coated vesicles (CCV) and large endosome-like vesicles near junctional sites. Block of mitochondrial ATP synthesis by presynaptic injection of oligomycin reduced spontaneous release and prevented the synaptic noise increase seen in RNS60 ASW. After ATP block the number of vesicles at the active zone and CCV was reduced, with an increase in large vesicles. The possibility that RNS60 ASW acts by increasing mitochondrial ATP synthesis was tested by direct determination of ATP levels in both presynaptic and postsynaptic structures. This was implemented using luciferin/luciferase photon emission, which demonstrated a marked increase in ATP synthesis following RNS60 administration. It is concluded that RNS60 positively modulates synaptic transmission by up-regulating ATP synthesis, thus leading to synaptic transmission enhancement. PMID:24575037

  3. Serotonin Modulates Olfactory Processing in the Antennal Lobe of Drosophila

    PubMed Central

    Dacks, Andrew M.; Green, David S.; Root, Cory M.; Nighorn, Alan J.; Wang, Jing W.

    2010-01-01

    Sensory systems must be able to extract features of environmental cues within the context of the different physiological states of the organism and often temper their activity in a state-dependent manner via the process of neuromodulation. We examined the effects of the neuromodulator serotonin on a well-characterized sensory circuit, the antennal lobe of Drosophila melanogaster, using two-photon microscopy and the genetically expressed calcium indicator, G-CaMP. Serotonin enhances sensitivity of the antennal lobe output projection neurons in an odor-specific manner. For odorants that sparsely activate the antennal lobe, serotonin enhances projection neuron responses and causes an offset of the projection neuron tuning curve, most likely by increasing projection neuron sensitivity. However, for an odorant that evokes a broad activation pattern, serotonin enhances projection neuron responses in some, but not all, glomeruli. Further, serotonin enhances the responses of inhibitory local interneurons, resulting in a reduction of neurotransmitter release from the olfactory sensory neurons via GABAB receptor-dependent presynaptic inhibition, which may be a mechanism underlying the odorant-specific modulation of projection neuron responses. Our data suggest that the complexity of serotonin modulation in the antennal lobe accommodates coding stability in a glomerular pattern and flexible projection neuron sensitivity under different physiological conditions. PMID:19863268

  4. Complementary chiral metasurface with strong broadband optical activity and enhanced transmission

    SciTech Connect

    Jia, Yan-Peng; Zhang, Yong-Liang; Dong, Xian-Zi E-mail: xmduan@mail.ipc.ac.cn; Zheng, Mei-Ling; Li, Jing; Liu, Jie; Zhao, Zhen-Sheng; Duan, Xuan-Ming E-mail: xmduan@mail.ipc.ac.cn

    2014-01-06

    We present the design and realization of ultra-thin chiral metasurfaces with giant broadband optical activity in the infrared wavelength. The chiral metasurfaces consisting of periodic hole arrays of complementary asymmetric split ring resonators are fabricated by femtosecond laser two-photon polymerization. Enhanced transmission with strong polarization conversion up to 97% is observed owing to the chiral surface plasmons resulting from mirror symmetry broken. The dependence of optical activity on the degree of structural asymmetry is investigated. This simple planar metasurface is expected to be useful for designing ultra-thin active devices and tailoring the polarization behavior of complex metallic nanostructures.

  5. Enhanced infrared transmission from gold wire-grid arrays via surface plasmons in continuous graphene (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Liu, Zizhuo; Bütün, Serkan; Palacios, Edgar; Aydin, Koray

    2015-09-01

    Enhanced transmission of light through nanostructures has always been of great interest in the field of plasmonics and nanophotonics. With the aid of near-field effects, the transmission of the electromagnetic waves can be enhanced or suppressed. Much of the work on enhanced transmission has been shown to be frequency-selective. However it is possible to increase the transmission over a large frequency range by using graphene, which has shown broadband properties in many applications. Here, we propose enhanced transmission in wire grid gold structure making use of continuous graphene sheets. We use finite-difference time-domain simulations to study the optical properties of this graphene-metal hybrid structure at mid infrared (mid-IR) wavelengths. The grating structure in wire grid gold provides an ideal platform to match the momentum and excite the surface plasmon polaritons (SPPs) in monolayer graphene. Our numerical calculations show that the local electromagnetic field around the graphene is largely enhanced due to surface plasmons. Moreover, with the highly confined SPPs coupling with the incident light, the transmission through the whole structure can be broadly enhanced in the mid infrared region. We also analyze the effect of the spectrum with different periods and gold nanowire widths to evaluate the size effects of the plasmons in graphene. In addition, by tuning the Fermi level, one can control the wavelength range at which the transmission is enhanced. The mechanism of the enhancement will be explained in the calculated electric field distribution. And we will also highlight the opportunities of graphene for applications such as tunable transmission and active photonic modulator.

  6. Serotonin and pituitary-adrenal function. [in rat under stress

    NASA Technical Reports Server (NTRS)

    Berger, P. A.; Barchas, J. D.; Vernikos-Danellis, J.

    1974-01-01

    An investigation is conducted to evaluate the response of the pituitary-adrenal system to a stress stimulus in the rat. In the investigation brain serotonin synthesis was inhibited with p-chlorophenylalanine. In other tests the concentration of serotonin was enhanced with precursors such as tryptophan or 5-hydroxytryptophan. On the basis of the results obtained in the study it is speculated that in some disease states there is a defect in serotonergic neuronal processes which impairs pituitary-adrenal feedback mechanisms.

  7. Dengue-1 Virus Clade Replacement in Thailand Associated with Enhanced Mosquito Transmission

    PubMed Central

    Fansiri, Thanyalak; Pongsiri, Arissara; Thaisomboonsuk, Butsaya; Klungthong, Chonticha; Richardson, Jason H.; Ponlawat, Alongkot; Jarman, Richard G.; Scott, Thomas W.

    2012-01-01

    Dengue viruses (DENV) are characterized by extensive genetic diversity and can be organized in multiple, genetically distinct lineages that arise and die out on a regular basis in regions where dengue is endemic. A fundamental question for understanding DENV evolution is the relative extent to which stochastic processes (genetic drift) and natural selection acting on fitness differences among lineages contribute to lineage diversity and turnover. Here, we used a set of recently collected and archived low-passage DENV-1 isolates from Thailand to examine the role of mosquito vector-virus interactions in DENV evolution. By comparing the ability of 23 viruses isolated on different dates between 1985 and 2009 to be transmitted by a present-day Aedes aegypti population from Thailand, we found that a major clade replacement event in the mid-1990s was associated with virus isolates exhibiting increased titers in the vector's hemocoel, which is predicted to result in a higher probability of transmission. This finding is consistent with the hypothesis that selection for enhanced transmission by mosquitoes is a possible mechanism underlying major DENV clade replacement events. There was significant variation in transmission potential among isolates within each clade, indicating that in addition to vector-driven selection, other evolutionary forces act to maintain viral genetic diversity. We conclude that occasional adaptive processes involving the mosquito vector can drive major DENV lineage replacement events. PMID:22130539

  8. Enhancement of transmission of laser and other radiation by soft turbid physical and biological media

    NASA Astrophysics Data System (ADS)

    Askar'yan, G. A.

    1982-07-01

    An analysis is made and experimental results are reported of studies of the transmission of laser and other radiation by turbid physical and biological media, such as layers of a scattering medium or human tissue of thickness much greater than the characteristic attenuation length. It is reported that the transmission increases strongly as a result of depression and piercing of soft scattering media. A local pressure applied to a biological tissue produces a transmission enhancement considerably greater than compression of a layer of a physically turbid medium: this is due to the displacement of blood and of muscle out of the compressed region. A reduction in the scattering and absorption is expected to occur also in the case of rf and ionizing radiations, such as charged particles, x rays, gamma rays, etc. It is pointed out that this could be useful in deep irradiation carried out with the aim of inhibiting internal morbid processes (for example, in the spinal cord) and in treatment of neuroinfectious diseases (amyotrophic lateral sclerosis, multiple sclerosis, poliomyelitis, etc.), as well as in oncological conditions, ulcers, etc.

  9. Peripherally restricted viral challenge elevates extracellular glutamate and enhances synaptic transmission in the hippocampus.

    PubMed

    Hunsberger, Holly C; Wang, Desheng; Petrisko, Tiffany J; Alhowail, Ahmad; Setti, Sharay E; Suppiramaniam, Vishnu; Konat, Gregory W; Reed, Miranda N

    2016-07-01

    Peripheral infections increase the propensity and severity of seizures in susceptible populations. We have previously shown that intraperitoneal injection of a viral mimic, polyinosinic-polycytidylic acid (PIC), elicits hypersusceptibility of mice to kainic acid (KA)-induced seizures. This study was undertaken to determine whether this seizure hypersusceptibility entails alterations in glutamate signaling. Female C57BL/6 mice were intraperitoneally injected with PIC, and after 24 h, glutamate homeostasis in the hippocampus was monitored using the enzyme-based microelectrode arrays. PIC challenge robustly increased the level of resting extracellular glutamate. While pre-synaptic potassium-evoked glutamate release was not affected, glutamate uptake was profoundly impaired and non-vesicular glutamate release was augmented, indicating functional alterations of astrocytes. Electrophysiological examination of hippocampal slices from PIC-challenged mice revealed a several fold increase in the basal synaptic transmission as compared to control slices. PIC challenge also increased the probability of pre-synaptic glutamate release as seen from a reduction of paired-pulse facilitation and synaptic plasticity as seen from an enhancement of long-term potentiation. Altogether, our results implicate a dysregulation of astrocytic glutamate metabolism and an alteration of excitatory synaptic transmission as the underlying mechanism for the development of hippocampal hyperexcitability, and consequently seizure hypersusceptibility following peripheral PIC challenge. Peripheral infections/inflammations enhance seizure susceptibility. Here, we explored the effect of peritoneal inflammation induced by a viral mimic on glutamate homeostasis and glutamatergic neurotransmission in the mouse hippocampus. We found that peritoneal inflammation elevated extracellular glutamate concentration and enhanced the probability of pre-synaptic glutamate release resulting in hyperexcitability of

  10. Slanted annular aperture arrays as enhanced-transmission metamaterials: Excitation of the plasmonic transverse electromagnetic guided mode

    SciTech Connect

    Ndao, Abdoulaye; Salut, Roland; Baida, Fadi I.; Belkhir, Abderrahmane

    2013-11-18

    We present here the fabrication and the optical characterization of slanted annular aperture arrays engraved into silver film. An experimental enhanced transmission based on the excitation of the cutoff-less plasmonic guided mode of the nano-waveguides (the transmission electron microscopy mode) is demonstrated and agrees well with the theoretical predicted results. By the way, even if it is less efficient (70% → 20%), an enhanced transmission can occur at larger wavelength value (720 nm–930 nm) compared to conventional annular aperture arrays structure by correctly setting the metal thickness.

  11. Study on Zeeman-split spoof surface plasmon polaritons by use of spin-sensitive enhanced electromagnetic transmission

    SciTech Connect

    Wu, Li-Ting; Guo, Rui-Peng; Guo, Tian-Jing; Yang, Mu; Cui, Hai-Xu; Cao, Xue-Wei; Chen, Jing

    2014-12-21

    Structured metal surfaces could support spoof surface plasmon polaritons (SPPs), the dispersion of which is determined by the cutoff condition of guided modes in the nanostructures. We show that we can achieve split spoof SPPs by breaking the degeneracy of guided helical modes in concentric nanostructures via the classic analogue of the Zeeman effect. This split effect is shown to be observable from the spectra of enhanced electromagnetic transmission. Spin-sensitive enhanced electromagnetic transmission and the associated characteristics of field are investigated. Transmission branches versus parallel wavevector can be satisfactorily fitted by using the dispersion of spoof SPPs.

  12. GluN3A promotes NMDA spiking by enhancing synaptic transmission in Huntington's disease models.

    PubMed

    Mahfooz, Kashif; Marco, Sonia; Martínez-Turrillas, Rebeca; Raja, Mathan K; Pérez-Otaño, Isabel; Wesseling, John F

    2016-09-01

    Age-inappropriate expression of juvenile NMDA receptors (NMDARs) containing GluN3A subunits has been linked to synapse loss and death of spiny projection neurons of the striatum (SPNs) in Huntington's disease (HD). Here we show that suppressing GluN3A expression prevents a multivariate synaptic transmission phenotype that precedes morphological signs at early prodromal stages. We start by confirming that afferent fiber stimulation elicits larger synaptic responses mediated by both AMPA receptors and NMDARs in SPNs in the YAC128 mouse model of HD. We then show that the enhancement mediated by both is fully prevented by suppressing GluN3A expression. Strong fiber-stimulation unexpectedly elicited robust NMDAR-mediated electrogenic events (termed "upstates" or "NMDA spikes"), and the effective threshold for induction was more than 2-fold lower in YAC128 SPNs because of the enhanced synaptic transmission. The threshold could be restored to control levels by suppressing GluN3A expression or by applying the weak NMDAR blocker memantine. However, the threshold was not affected by preventing glutamate spillover from synaptic clefts. Instead, long-lasting NMDAR responses interpreted previously as activation of extrasynaptic receptors by spilled-over glutamate were caused by NMDA spikes occurring in voltage clamp mode as escape potentials. Together, the results implicate GluN3A reactivation in a broad spectrum of early-stage synaptic transmission deficits in YAC128 mice; question the current concept that NMDAR mislocalization is the pathological trigger in HD; and introduce NMDA spikes as a new candidate mechanism for coupling NMDARs to neurodegeneration. PMID:27072890

  13. Multiphoton-Excited Serotonin Photochemistry

    PubMed Central

    Gostkowski, Michael L.; Allen, Richard; Plenert, Matthew L.; Okerberg, Eric; Gordon, Mary Jane; Shear, Jason B.

    2004-01-01

    We report photochemical and photophysical studies of a multiphoton-excited reaction of serotonin that previously has been shown to generate a photoproduct capable of emitting broadly in the visible spectral region. The current studies demonstrate that absorption of near-infrared light by an intermediate state prepared via three-photon absorption enhances the photoproduct formation yield, with the largest action cross sections (∼10−19 cm2) observed at the short-wavelength limit of the titanium:sapphire excitation source. The intermediate state is shown to persist for at least tens of nanoseconds and likely to be different from a previously reported oxygen-sensitive intermediate. In addition, the two-photon fluorescence action spectrum for the fluorescent photoproduct was determined and found to have a maximum at ∼780 nm (3.2 eV). A general mechanism for this photochemical process is proposed. PMID:15111435

  14. Aggression, suicidality, and serotonin.

    PubMed

    Linnoila, V M; Virkkunen, M

    1992-10-01

    Studies from several countries, representing diverse cultures, have reported an association between violent suicide attempts by patients with unipolar depression and personality disorders and low concentrations of the major serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the cerebrospinal fluid (CSF). Related investigations have documented a similar inverse correlation between impulsive, externally directed aggressive behavior and CSF 5-HIAA in a subgroup of violent offenders. In these individuals, low CSF 5-HIAA concentrations are also associated with a predisposition to mild hypoglycemia, a history of early-onset alcohol and substance abuse, a family history of type II alcoholism, and disturbances in diurnal activity rhythm. These data are discussed in the context of a proposed model for the pathophysiology of a postulated "low serotonin syndrome." PMID:1385390

  15. Extracts and constituents of Leontopodium alpinum enhance cholinergic transmission: Brain ACh increasing and memory improving properties

    PubMed Central

    Hornick, Ariane; Schwaiger, Stefan; Rollinger, Judith M.; Vo, Nguyen Phung; Prast, Helmut; Stuppner, Hermann

    2012-01-01

    Leontopodium alpinum (‘Edelweiss’) was phytochemically investigated for constituents that might enhance cholinergic neurotransmission. The potency to increase synaptic availability of acetylcholine (ACh) in rat brain served as key property for the bioguided isolation of cholinergically active compounds using different chromatographic techniques. The dichlormethane (DCM) extract of the root, fractions and isolated constituents were injected i.c.v. and the effect on brain ACh was detected via the push–pull technique. The DCM extract enhanced extracellular ACh concentration in rat brain and inhibited acetylcholinesterase (AChE) in vitro. The extracellular level of brain ACh was significantly increased by the isolated sesquiterpenes, isocomene and 14-acetoxyisocomene, while silphiperfolene acetate and silphinene caused a small increasing tendency. Only silphiperfolene acetate showed in vitro AChE inhibitory activity, thus suggesting the other sesquiterpenes to stimulate cholinergic transmission by an alternative mechanism of action. Isocomene was further investigated with behavioural tasks in mice. It restored object recognition in scopolamine-impaired mice and showed nootropic effects in the T-maze alternation task in normal and scopolamine-treated mice. Additionally, this sesquiterpene reduced locomotor activity of untreated mice in the open field task, while the activity induced by scopolamine was abolished. The enhancement of synaptic availability of ACh, the promotion of alternation, and the amelioration of scopolamine-induced deficit are in accordance with a substance that amplifies cholinergic transmission. Whether the mechanism of action is inhibition of AChE or another pro-cholinergic property remains to be elucidated. Taken together, isocomene and related constituents of L. alpinum deserve further interest as potential antidementia agents in brain diseases associated with cholinergic deficits. PMID:18541221

  16. Serotonin and colonic motility.

    PubMed

    Kendig, D M; Grider, J R

    2015-07-01

    The role of serotonin (5-hydroxytryptamine [5-HT]) in gastrointestinal motility has been studied for over 50 years. Most of the 5-HT in the body resides in the gut wall, where it is located in subsets of mucosal cells (enterochromaffin cells) and neurons (descending interneurons). Many studies suggest that 5-HT is important to normal and dysfunctional gut motility and drugs affecting 5-HT receptors, especially 5-HT3 and 5-HT4 receptors, have been used clinically to treat motility disorders; however, cardiovascular side effects have limited the use of these drugs. Recently studies have questioned the importance and necessity of 5-HT in general and mucosal 5-HT in particular for colonic motility. Recent evidence suggests the importance of 5-HT3 and 5-HT4 receptors for initiation and generation of one of the key colonic motility patterns, the colonic migrating motor complex (CMMC), in rat. The findings suggest that 5-HT3 and 5-HT4 receptors are differentially involved in two different types of rat CMMCs: the long distance contraction (LDC) and the rhythmic propulsive motor complex (RPMC). The understanding of the role of serotonin in colonic motility has been influenced by the specific motility pattern(s) studied, the stimulus used to initiate the motility (spontaneous vs induced), and the route of administration of drugs. All of these considerations contribute to the understanding and the controversy that continues to surround the role of serotonin in the gut. PMID:26095115

  17. Serotonin blockade delays learning performance in a cooperative fish.

    PubMed

    Soares, Marta C; Paula, José R; Bshary, Redouan

    2016-09-01

    Animals use learning and memorizing to gather information that will help them to make ecologically relevant decisions. Neuro-modulatory adjustments enable them to make associations between stimuli and appropriate behavior. A key candidate for the modulation of cooperative behavior is serotonin. Previous research has shown that modulation of the serotonergic system spontaneously affects the behavior of the cleaner wrasse Labroides dimidiatus during interactions with so-called 'client' reef fish. Here, we asked whether shifts in serotonin function affect the cleaners' associative learning abilities when faced with the task to distinguish two artificial clients that differ in their value as a food source. We found that the administration of serotonin 1A receptor antagonist significantly slowed learning speed in comparison with saline treated fish. As reduced serotonergic signaling typically enhances fear, we discuss the possibility that serotonin may affect how cleaners appraise, acquire information and respond to client-derived stimuli via manipulation of the perception of danger. PMID:27107861

  18. Acute lipopolysaccharide exposure facilitates epileptiform activity via enhanced excitatory synaptic transmission and neuronal excitability in vitro

    PubMed Central

    Gao, Fei; Liu, Zhiqiang; Ren, Wei; Jiang, Wen

    2014-01-01

    Growing evidence indicates brain inflammation has been involved in the genesis of seizures. However, the direct effect of acute inflammation on neuronal circuits is not well known. Lipopolysaccharide (LPS) has been used extensively to stimulate brain inflammatory responses both in vivo and in vitro. Here, we observed the contribution of inflammation induced by 10 μg/mL LPS to the excitability of neuronal circuits in acute hippocampal slices. When slices were incubated with LPS for 30 minutes, significant increased concentration of tumor necrosis factor α and interleukin 1β were detected by enzyme-linked immunosorbent assay. In electrophysiological recordings, we found that frequency of epileptiform discharges and spikes per burst increased 30 minutes after LPS application. LPS enhanced evoked excitatory postsynaptic currents but did not modify evoked inhibitory postsynaptic currents. In addition, exposure to LPS enhanced the excitability of CA1 pyramidal neurons, as demonstrated by a decrease in rheobase and an increase in action potential frequency elicited by depolarizing current injection. Our observations suggest that acute inflammation induced by LPS facilitates epileptiform activity in vitro and that enhancement of excitatory synaptic transmission and neuronal excitability may contribute to this facilitation. These results may provide new clues for treating seizures associated with brain inflammatory disease. PMID:25170268

  19. Leishmania chitinase facilitates colonization of sand fly vectors and enhances transmission to mice

    PubMed Central

    Rogers, Matthew E; Hajmová, Martina; Joshi, Manju B; Sadlova, Jovana; Dwyer, Dennis M; Volf, Petr; Bates, Paul A

    2008-01-01

    Chitinases of trypanosomatid parasites have been proposed to fulfil various roles in their blood-feeding arthropod vectors but so far none have been directly tested using a molecular approach. We characterized the ability of Leishmania mexicana episomally transfected with LmexCht1 (the L. mexicana chitinase gene) to survive and grow within the permissive sand fly vector, Lutzomyia longipalpis. Compared with control plasmid transfectants, the overexpression of chitinase was found to increase the average number of parasites per sand fly and accelerate the escape of parasites from the peritrophic matrix-enclosed blood meal as revealed by earlier arrival at the stomodeal valve. Such flies also exhibited increased damage to the structure of the stomodeal valve, which may facilitate transmission by regurgitation. When exposed individually to BALB/c mice, those flies with chitinase-overexpressing parasites spent on average 2.4–2.5 times longer in contact with their host during feeding, compared with flies with control infections. Furthermore, the lesions that resulted from these single fly bite infections were both significantly larger and with higher final parasite burdens than controls. These data show that chitinase is a multifunctional virulence factor for L. mexicana which assists its survival in Lu. longipalpis. Specifically, this enzyme enables the parasites to colonize the anterior midgut of the sand fly more quickly, modify the sand fly stomodeal valve and affect its blood feeding, all of which combine to enhance transmission. PMID:18284631

  20. Enhanced biofilm formation and multi-host transmission evolve from divergent genetic backgrounds in Campylobacter jejuni.

    PubMed

    Pascoe, Ben; Méric, Guillaume; Murray, Susan; Yahara, Koji; Mageiros, Leonardos; Bowen, Ryan; Jones, Nathan H; Jeeves, Rose E; Lappin-Scott, Hilary M; Asakura, Hiroshi; Sheppard, Samuel K

    2015-11-01

    Multicellular biofilms are an ancient bacterial adaptation that offers a protective environment for survival in hostile habitats. In microaerophilic organisms such as Campylobacter, biofilms play a key role in transmission to humans as the bacteria are exposed to atmospheric oxygen concentrations when leaving the reservoir host gut. Genetic determinants of biofilm formation differ between species, but little is known about how strains of the same species achieve the biofilm phenotype with different genetic backgrounds. Our approach combines genome-wide association studies with traditional microbiology techniques to investigate the genetic basis of biofilm formation in 102 Campylobacter jejuni isolates. We quantified biofilm formation among the isolates and identified hotspots of genetic variation in homologous sequences that correspond to variation in biofilm phenotypes. Thirteen genes demonstrated a statistically robust association including those involved in adhesion, motility, glycosylation, capsule production and oxidative stress. The genes associated with biofilm formation were different in the host generalist ST-21 and ST-45 clonal complexes, which are frequently isolated from multiple host species and clinical samples. This suggests the evolution of enhanced biofilm from different genetic backgrounds and a possible role in colonization of multiple hosts and transmission to humans. PMID:26373338

  1. Subwavelength acoustic focusing by surface-wave-resonance enhanced transmission in doubly negative acoustic metamaterials

    SciTech Connect

    Zhou, Xiaoming; Badreddine Assouar, M. Oudich, Mourad

    2014-11-21

    We present analytical and numerical analyses of a yet unseen lensing paradigm that is based on a solid metamaterial slab in which the wave excitation source is attached. We propose and demonstrate sub-diffraction-limited acoustic focusing induced by surface resonant states in doubly negative metamaterials. The enhancement of evanescent waves across the metamaterial slab produced by their resonant coupling to surface waves is evidenced and quantitatively determined. The effect of metamaterial parameters on surface states, transmission, and wavenumber bandwidth is clearly identified. Based on this concept consisting of a wave source attached on the metamaterial, a high resolution of λ/28.4 is obtained with the optimum effective physical parameters, opening then an exciting way to design acoustic metamaterials for ultrasonic focused imaging.

  2. Concepts of static VAR system control for enhancing power transfer in long transmission lines

    SciTech Connect

    Padiyar, K.R. . Dept. of Electrical Communication Engineering); Varma, R.K. . Dept. of Electrical Engineering)

    1990-01-01

    This paper is conserved with the influence of different levels of complexity in modelling various constituent subsystems on the dynamic stability of power systems compensated by static var systems (SVS) operating on pure voltage control. The system components investigated include thyristor controlled reactor (TCR) transients, SVS delays, network transients, the synchronous generator and automatic voltage regulator (AVR). An overall model is proposed which adequately describes the system performance for small signal perturbations. The SVS performance is validated through detailed nonlinear simulation on a physical simulator. Static VAR systems are finding increased application in present day power systems due to their fast controllability for enhancement of dynamic and transient stability limits, control of dynamic overvoltages, damping of torsional oscillations, improvement in HVDC converter terminal performance, etc. In long transmission lines, a significant improvement in power transfer can be achieved by connecting an SVS at the midpoint, which is actuated by a control signal derived from local bus voltage.

  3. Enhanced responsivity with skew ray excitation of reflection- and transmission-type refractometric sensors.

    PubMed

    Chen, George Y; Codemard, Christophe A; Lewis, Richard J; Jankowski, Lukasz; Chan, Jaclyn S; Gorman, Philip M; Zervas, Michalis N

    2014-07-01

    The responsivity of optical fibers to refractive index can be enhanced using high-order skew rays compared with using meridional rays. Skew rays can have a much higher number of reflections with increased interaction length along the core-cladding interface, which gives rise to stronger interactions with the external medium. Reflection/transmission-type refractometric sensors based on twin-coupled-core and multimode fibers showed one/two orders of magnitude increase in responsivity with skew ray excitation. The responsivity and sensitivity for the two types are ~2000%/RIU, ~1400%/RIU, and 4.9×10⁻⁵  RIU, 7.0×10⁻⁵  RIU, respectively. PMID:24978746

  4. Acoustic transmission enhancement through a soft interlayer with a reactance boundary.

    PubMed

    Quan, Li; Qian, Feng; Liu, Xiaozhou; Gong, Xiufen

    2015-08-01

    Research has shown that acoustic transmission enhancement (ATE) can occur in stiff materials with high acoustic impedance that include a soft interlayer with low acoustic impedance inserted between them without any opening (i.e., without any links between the two stiff materials). Previously, ATE was induced either by coupling acoustic surface waves or Love waves with the Fabry-Perot resonant modes inside the apertures or by the locally resonant modes of the structure. However, in this article ATE is achieved using wave-vector redistribution induced by a reactance boundary. An optimal boundary was designed to adjust the wave vector in the propagation direction, decreasing reflection caused by impedance differences. The role of boundary conditions on ATE was also clarified. PMID:26328694

  5. Taurine-Induced Long-Lasting Enhancement of Synaptic Transmission in Mice: Role of Transporters

    PubMed Central

    Sergeeva, O A; Chepkova, A N; Doreulee, N; Eriksson, K S; Poelchen, W; Mönnighoff, I; Heller-Stilb, B; Warskulat, U; Häussinger, D; Haas, H L

    2003-01-01

    Taurine, a major osmolyte in the brain evokes a long-lasting enhancement (LLETAU) of synaptic transmission in hippocampal and cortico-striatal slices. Hippocampal LLETAU was abolished by the GABA uptake blocker nipecotic acid (NPA) but not by the taurine-uptake inhibitor guanidinoethyl sulphonate (GES). Striatal LLETAU was sensitive to GES but not to NPA. Semiquantitative PCR analysis and immunohistochemistry revealed that taurine transporter expression is significantly higher in the striatum than in the hippocampus. Taurine transporter-deficient mice displayed very low taurine levels in both structures and a low ability to develop LLETAU in the striatum, but not in the hippocampus. The different mechanisms of taurine-induced synaptic plasticity may reflect the different vulnerabilities of these brain regions under pathological conditions that are accompanied by osmotic changes such as hepatic encephalopathy. PMID:12824447

  6. Enhancing transmission efficiency of bending waveguide based on graded sonic crystals using antireflection structures

    NASA Astrophysics Data System (ADS)

    Wu, Liang-Yu; Chen, Lien-Wen

    2012-06-01

    The conventional antireflection coating (ARC) structure for sonic crystal devices is to place the cylinders at the interface between a sonic crystal device and a background medium. The radius of ARC cylinders and the distance between the ARC and the sonic crystal device are adjusted to obtain an optimal antireflection effect. We propose that ARC structures are directly designed by using the conventional ARC theory instead of scanning the geometric and spatial parameters of the conventional ARC structures. According to the concept of the effective refractive index of sonic crystals, the exact ARC structures can be implemented by sonic crystals. The transmission efficiency of a bending waveguide designed by graded sonic crystals can be enhanced by introducing the ARC structures based on sonic crystals. The performances of different ARC structure designs are compared and discussed.

  7. Serotonin involvement in pituitary-adrenal function

    NASA Technical Reports Server (NTRS)

    Vernikos-Danellis, J.; Kellar, K. J.; Kent, D.; Gonzales, C.; Berger, P. A.; Barchas, J. D.

    1977-01-01

    Experiments clarifying the effects of serotonin (5-HT) in the regulation of the hypothalamic-pituitary-adrenocortical system are surveyed. Lesion experiments which seek to determine functional maps of serotonergic input to areas involved in regulation are reported. Investigations of the effects of 5-HT levels on the plasma ACTH response to stress and the diurnal variation in basal plasma corticosterone are summarized, and the question of whether serotonergic transmission is involved in the regulation of all aspects of pituitary-adrenal function is considered with attention to the stimulatory and inhibitory action of 5-HT.

  8. Serotonin: from top to bottom.

    PubMed

    Fidalgo, Sara; Ivanov, Dobril K; Wood, Shona H

    2013-02-01

    Serotonin is a monoamine neurotransmitter, which is phylogenetically conserved in a wide range of species from nematodes to humans. In mammals, age-related changes in serotonin systems are known risk factors of age-related diseases, such as diabetes, faecal incontinence and cardiovascular diseases. A decline in serotonin function with aging would be consistent with observations of age-related changes in behaviours, such as sleep, sexual behaviour and mood all of which are linked to serotonergic function. Despite this little is known about serotonin in relation to aging. This review aims to give a comprehensive analysis of the distribution, function and interactions of serotonin in the brain; gastrointestinal tract; skeletal; vascular and immune systems. It also aims to demonstrate how the function of serotonin is linked to aging and disease pathology in these systems. The regulation of serotonin via microRNAs is also discussed, as are possible applications of serotonergic drugs in aging research and age-related diseases. Furthermore, this review demonstrates that serotonin is potentially involved in whole organism aging through its links with multiple organs, the immune system and microRNA regulation. Methods to investigate these links are discussed. PMID:23100172

  9. Radioenzymatic microassay for picogram quantities of serotonin or acetylserotonin in biological fluids and tissues

    SciTech Connect

    Hussain, M.N.; Benedict, C.R.

    1987-06-01

    This paper describes several modifications of the original radioenzymatic assay for serotonin which increase the sensitivity of the assay 20-fold as well as enhance its reliability. Using this method serotonin concentrations can be directly measured in biological examples without precleaning the sample. When compared to currently available methods this assay is specific and sensitive to approximately 1 pg of serotonin and can be used to measure serotonin levels in individual brain nuclei or microliter quantities of biological fluids. This assay can be easily adapted for the direct measurement of N-acetylserotonin. A large number of samples can be assayed in a single working day.

  10. Serotonin in the inferior colliculus.

    PubMed

    Hurley, Laura M; Thompson, Ann M; Pollak, George D

    2002-06-01

    It has been recognized for some time that serotonin fibers originating in raphe nuclei are present in the inferior colliculi of all mammalian species studied. More recently, serotonin has been found to modulate the responses of single inferior colliculus neurons to many types of auditory stimuli, ranging from simple tone bursts to complex species-specific vocalizations. The effects of serotonin are often quite strong, and for some neurons are also highly specific. A dramatic illustration of this is that serotonin can change the selectivity of some neurons for sounds, including species-specific vocalizations. These results are discussed in light of several theories on the function of serotonin in the IC, and of outstanding issues that remain to be addressed. PMID:12117504

  11. No SEVI-mediated enhancement of rectal HIV-1 transmission of HIV-1 in two humanized mouse cohorts.

    PubMed

    Van Dis, Erik S; Moore, Tyler C; Lavender, Kerry J; Messer, Ronald J; Keppler, Oliver T; Verheyen, Jens; Dittmer, Ulf; Hasenkrug, Kim J

    2016-01-15

    Amyloid fibrils from semen-derived peptide (SEVI) enhance HIV-1 infectivity in vitro but the ability of SEVI to mediate enhancement of HIV infection in vivo has not been tested. In this study we used immunodeficient mice reconstituted with human immune systems to test for in vivo enhancement of HIV-1 transmission. This mouse model supports mucosal transmission of HIV-1 via the intrarectal route leading to productive infection. In separate experiments with humanized mouse cohorts reconstituted with two different donor immune systems, high dose HIV-1JR-CSF that had been incubated with SEVI amyloid fibrils at physiologically relevant concentrations did not show an increased incidence of infection compared to controls. In addition, SEVI failed to enhance rectal transmission with a reduced concentration of HIV-1. Although we confirmed potent SEVI-mediated enhancement of HIV infectivity in vitro, this model showed no evidence that it plays a role in the much more complex situation of in vivo transmission. PMID:26609939

  12. Serotonin transporter deficiency in rats contributes to impaired object memory.

    PubMed

    Olivier, J D A; Jans, L A W; Blokland, A; Broers, N J; Homberg, J R; Ellenbroek, B A; Cools, A R

    2009-11-01

    Serotonin is well known for its role in affection, but less known for its role in cognition. The serotonin transporter (SERT) has an essential role in serotonergic neurotransmission as it determines the magnitude and duration of the serotonin signal in the synaptic cleft. There is evidence to suggest that homozygous SERT knockout rats (SERT(-/-)), as well as humans with the short SERT allele, show stronger cognitive effects than wild-type control rats (SERT(+/+)) and humans with the long SERT allele after acute tryptophan depletion. In rats, SERT genotype is known to affect brain serotonin levels, with SERT(-/-) rats having lower intracellular basal serotonin levels than wild-type rats in several brain areas. In the present study, it was investigated whether SERT genotype affects memory performance in an object recognition task with different inter-trial intervals. SERT(-/-), heterozygous SERT knockout (SERT(+/-)) and SERT(+/+) rats were tested in an object recognition test applying an inter-trial interval of 2, 4 and 8 h. SERT(-/-) and SERT(+/-) rats showed impaired object memory with an 8 h inter-trial interval, whereas SERT(+/+) rats showed intact object memory with this inter-trial interval. Although brain serotonin levels cannot fully explain the SERT genotype effect on object memory in rats, these results do indicate that serotonin is an important player in object memory in rats, and that lower intracellular serotonin levels lead to enhanced memory loss. Given its resemblance with the human SERT-linked polymorphic region and propensity to develop depression-like symptoms, our findings may contribute to further understanding of mechanisms underlying cognitive deficits in depression. PMID:19740092

  13. A Au nanoparticle-incorporated sponge as a versatile transmission surface-enhanced Raman scattering substrate.

    PubMed

    Shin, Kayeong; Chung, Hoeil

    2015-08-01

    We report a sponge-based transmission surface-enhanced Raman scattering (TSERS) substrate that combines the bulk sampling capabilities of a transmission measurement to improve the quantitative representation of sample concentration with several sponge properties useful for analysis such as fast sample uptake, easy sample enrichment, and a stable polymeric structure. Among nine commercially available sponges made of different materials, a melamine sponge was ultimately selected for this study because it provided the fastest sample uptake and a low background Raman signal. Simultaneously, the amino groups and three-nitrogen hybrid rings in its structure could easily hold Au nanoparticles (AuNPs) inside the sponge. AuNP-incorporated sponges (AuNP sponges) were prepared by simply soaking a melamine sponge in a AuNP solution; these sponges were initially used to measure 4-nitrobenzenethiol (4-NBT) samples with different concentrations in order to evaluate their ability as TSERS substrates. The intensities of the 4-NBT peaks clearly varied according to changes in the concentration, and the relative standard deviation (RSD) of the peak intensity estimated by the measurements of five independently prepared AuNP sponges was 10.0%. Sample enrichment was easily completed by repeated suctioning of the sample into the AuNP sponges followed by depletion of the solvent, so three-time enrichment doubled the intensity. Furthermore, paraquat samples were prepared in diverse matrices (de-ionized water, tap water, river water, and orange juice) and measured using the AuNP sponges. The paraquat peaks were clearly observed from these samples and their peak intensities became smaller with the increased compositional complexity of the matrices. Our overall results demonstrate that the TSERS sponge substrates are easy to prepare and practically versatile for SERS analysis of diverse samples. PMID:26079472

  14. Neuronal serotonin in the regulation of maternal behavior in rodents

    PubMed Central

    Angoa-Pérez, Mariana; Kuhn, Donald M.

    2016-01-01

    Maternal behavior is probably the most important pro-social behavior in female mammals, ensuring both the development and survival of her offspring. Signals driving maternal behaviors are complex and involve several brain areas, most of which are innervated by serotonin. Serotonin transmission influences maternal processes indirectly through release of maternally-relevant hormones such as prolactin, oxytocin and vasopressin, but it can also have more direct effects on survival and the growth rate of offspring, as well as on maternal care, aggression and pup killing. This article aims to examine the basics of the components of maternal behaviors in rodents and the neural systems underpinning these maternal responses with special emphasis on the role of neural serotonin in the regulation of these behaviors. PMID:27148594

  15. Mechanism underlying unaltered cortical inhibitory synaptic transmission in contrast with enhanced excitatory transmission in CaV2.1 knockin migraine mice.

    PubMed

    Vecchia, Dania; Tottene, Angelita; van den Maagdenberg, Arn M J M; Pietrobon, Daniela

    2014-09-01

    Familial hemiplegic migraine type 1 (FHM1), a monogenic subtype of migraine with aura, is caused by gain-of-function mutations in CaV2.1 (P/Q-type) calcium channels. In FHM1 knockin mice, excitatory neurotransmission at cortical pyramidal cell synapses is enhanced, but inhibitory neurotransmission at connected pairs of fast-spiking (FS) interneurons and pyramidal cells is unaltered, despite being initiated by CaV2.1 channels. The mechanism underlying the unaltered GABA release at cortical FS interneuron synapses remains unknown. Here, we show that the FHM1 R192Q mutation does not affect inhibitory transmission at autapses of cortical FS and other types of multipolar interneurons in microculture from R192Q knockin mice, and investigate the underlying mechanism. Lowering the extracellular [Ca(2+)] did not reveal gain-of-function of evoked transmission neither in control nor after prolongation of the action potential (AP) with tetraethylammonium, indicating unaltered AP-evoked presynaptic calcium influx at inhibitory autapses in FHM1 KI mice. Neither saturation of the presynaptic calcium sensor nor short duration of the AP can explain the unaltered inhibitory transmission in the mutant mice. Recordings of the P/Q-type calcium current in multipolar interneurons in microculture revealed that the current density and the gating properties of the CaV2.1 channels expressed in these interneurons are barely affected by the FHM1 mutation, in contrast with the enhanced current density and left-shifted activation gating of mutant CaV2.1 channels in cortical pyramidal cells. Our findings suggest that expression of specific CaV2.1 channels differentially sensitive to modulation by FHM1 mutations in inhibitory and excitatory cortical neurons underlies the gain-of-function of excitatory but unaltered inhibitory synaptic transmission and the likely consequent dysregulation of the cortical excitatory-inhibitory balance in FHM1. PMID:24907493

  16. The effect of low estrogen state on serotonin transporter function in mouse hippocampus: a behavioral and electrochemical study.

    PubMed

    Bertrand, Paul P; Paranavitane, Udeni T; Chavez, Carolina; Gogos, Andrea; Jones, Margaret; van den Buuse, Maarten

    2005-12-01

    Defects in serotonergic transmission, including serotonin transporter (SERT) function, have been implicated in depression, anxiety disorders and some aspects of schizophrenia. The sex steroid hormone estrogen is known to modulate functional SERT activity, but whether it is up- or down-regulated is unclear. The aim of the present study was to examine the effect of a low estrogen state in mice on the behavioral effect of drugs acting through the SERT, serotonin uptake kinetics and SERT density in the hippocampus. We compared control mice, ovariectomized (OVX) C57BL/6J mice and aromatase knockout (ArKO) mice that are unable to produce estrogen. Fluoxetine treatment, but not fenfluramine treatment, significantly increased prepulse inhibition (PPI), a measure of sensorimotor gating, in C57BL/6J mice. The effect of fluoxetine was greater in OVX compared to sham-operated mice. In ArKO and J129 wild-type mice, fluoxetine increased PPI to the same extent while fenfluramine increased PPI more in ArKO mice compared to controls. Measurement of the time-course for diffusion and reuptake of exogenous serotonin in the CA3 region of the hippocampus showed that, in OVX mice, the fluoxetine-induced slowing of signal decay after application of serotonin was enhanced when compared to sham-operated controls. Similarly, in ArKO mice, the effect of fluoxetine was enhanced, suggesting that SERT function was greater than in J129 wild-type controls. Measurement of SERT density by [3H]-citalopram autoradiography, revealed an 18% decrease in hippocampus of OVX mice compared to intact controls. SERT density was also significantly reduced in nucleus accumbens (26%) but not in other regions, such as the raphe nuclei. Together, these results suggest that a low estrogen state increases SERT activity in the hippocampus despite an apparent reduction in SERT density. The behavioral consequences of these changes depend on the model of estrogen state used. PMID:16298349

  17. Genetic linkage study of bipolar disorder and the serotonin transporter

    SciTech Connect

    Kelsoe, J.R.; Morison, M.; Mroczkowski-Parker, Z.; Bergesch, P.; Rapaport, M.H.; Mirow, A.L.

    1996-04-09

    The serotonin transporter (HTT) is an important candidate gene for the genetic transmission of bipolar disorder. It is the site of action of many antidepressants, and plays a key role in the regulation of serotonin neurotransmission. Many studies of affectively ill patients have found abnormalities in serotonin metabolism, and dysregulation of the transporter itself. The human serotonin transporter has been recently cloned and mapped to chromosome 17. We have identified a PstI RFLP at the HTT locus, and here report our examination of this polymorphism for possible linkage to bipolar disorder. Eighteen families were examined from three populations: the Old Order Amish, Iceland, and the general North American population. In addition to HTT, three other microsatellite markers were examined, which span an interval known to contain HTT. Linkage analyses were conducted under both dominant and recessive models, as well as both narrow (bipolar only) and broad (bipolar + recurrent unipolar) diagnostic models. Linkage could be excluded to HTT under all models examined. Linkage to the interval spanned by the microsatellites was similarly excluded under the dominant models. In two individual families, maximum lod scores of 1.02 and 0.84 were obtained at D17S798 and HTT, respectively. However, these data overall do not support the presence of a susceptibility locus for bipolar disorder near the serotonin transporter. 20 refs., 2 tabs.

  18. Subanesthetic doses of ketamine transiently decrease serotonin transporter activity: a PET study in conscious monkeys.

    PubMed

    Yamamoto, Shigeyuki; Ohba, Hiroyuki; Nishiyama, Shingo; Harada, Norihiro; Kakiuchi, Takeharu; Tsukada, Hideo; Domino, Edward F

    2013-12-01

    Subanesthetic doses of ketamine, an N-methyl-D-aspartic acid (NMDA) antagonist, have a rapid antidepressant effect which lasts for up to 2 weeks. However, the neurobiological mechanism regarding this effect remains unclear. In the present study, the effects of subanesthetic doses of ketamine on serotonergic systems in conscious monkey brain were investigated. Five young monkeys underwent four positron emission tomography measurements with [(11)C]-3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)benzonitrile ([(11)C]DASB) for the serotonin transporter (SERT), during and after intravenous infusion of vehicle or ketamine hydrochloride in a dose of 0.5 or 1.5 mg/kg for 40 min, and 24 h post infusion. Global reduction of [(11)C]DASB binding to SERT was observed during ketamine infusion in a dose-dependent manner, but not 24 h later. The effect of ketamine on the serotonin 1A receptor (5-HT1A-R) and dopamine transporter (DAT) was also investigated in the same subjects studied with [(11)C]DASB. No significant changes were observed in either 5-HT1A-R or DAT binding after ketamine infusion. Microdialysis analysis indicated that ketamine infusion transiently increased serotonin levels in the extracellular fluid of the prefrontal cortex. The present study demonstrates that subanesthetic ketamine selectively enhanced serotonergic transmission by inhibition of SERT activity. This action coexists with the rapid antidepressant effect of subanesthetic doses of ketamine. Further studies are needed to investigate whether the transient combination of SERT and NMDA reception inhibition enhances each other's antidepressant actions. PMID:23880871

  19. Enhancement of synaptic transmission induced by BDNF in cultured cortical neurons

    NASA Astrophysics Data System (ADS)

    He, Jun; Gong, Hui; Zeng, Shaoqun; Li, Yanling; Luo, Qingming

    2005-03-01

    Brain-derived neurotrophic factor (BDNF), like other neurotrophins, has long-term effects on neuronal survival and differentiation; furthermore, BDNF has been reported to exert an acute potentiation of synaptic activity and are critically involved in long-term potentiation (LTP). We found that BDNF rapidly induced potentiation of synaptic activity and an increase in the intracellular Ca2+ concentration in cultured cortical neurons. Within minutes of BDNF application to cultured cortical neurons, spontaneous firing rate was dramatically increased as were the frequency and amplitude of excitatory spontaneous postsynaptic currents (EPSCs). Fura-2 recordings showed that BDNF acutely elicited an increase in intracellular calcium concentration ([Ca2+]c). This effect was partially dependent on [Ca2+]o; The BDNF-induced increase in [Ca2+]c can not be completely blocked by Ca2+-free solution. It was completely blocked by K252a and partially blocked by Cd2+ and TTX. The results demonstrate that BDNF can enhances synaptic transmission and that this effect is accompanied by a rise in [Ca2+]c that requires two route: the release of Ca2+ from intracellular calcium stores and influx of extracellular Ca2+ through voltage-dependent Ca2+ channels in cultured cortical neurons.

  20. Smaller Dendritic Spines, Weaker Synaptic Transmission, but Enhanced Spatial Learning in Mice Lacking Shank1

    PubMed Central

    Hung, Albert Y.; Futai, Kensuke; Sala, Carlo; Valtschanoff, Juli G.; Ryu, Jubin; Woodworth, Mollie A.; Kidd, Fleur L.; Sung, Clifford C.; Miyakawa, Tsuyoshi; Bear, Mark F.; Weinberg, Richard J.; Sheng, Morgan

    2009-01-01

    Experience-dependent changes in the structure of dendritic spines may contribute to learning and memory. Encoded by three genes, the Shank family of postsynaptic scaffold proteins are abundant and enriched in the postsynaptic density (PSD) of central excitatory synapses. When expressed in cultured hippocampal neurons, Shank promotes the maturation and enlargement of dendritic spines. Recently, Shank3 has been genetically implicated in human autism, suggesting an important role for Shank proteins in normal cognitive development. Here, we report the phenotype of Shank1 knock-out mice. Shank1 mutants showed altered PSD protein composition; reduced size of dendritic spines; smaller, thinner PSDs; and weaker basal synaptic transmission. Standard measures of synaptic plasticity were normal. Behaviorally, they had increased anxiety-related behavior and impaired contextual fear memory. Remarkably, Shank1-deficient mice displayed enhanced performance in a spatial learning task; however, their long-term memory retention in this task was impaired. These results affirm the importance of Shank1 for synapse structure and function in vivo, and they highlight a differential role for Shank1 in specific cognitive processes, a feature that may be relevant to human autism spectrum disorders. PMID:18272690

  1. Combating error bursts for enhanced video transmission using cross-packet FEC and description interleaving

    NASA Astrophysics Data System (ADS)

    Tesanovic, Milos; Bull, David R.; Doufexi, Angela

    2008-01-01

    This paper demonstrates the effectiveness of employing MDC (multiple-description coding) as a video decomposition for transmission in the presence of error bursts, with application to both SISO and MIMO-STBC (space-time block coding) systems envisaged. Various trade-offs involving video encoding parameters are investigated that offer improved performance and reduce the decoding delay for the given channel conditions, based on the Gilbert-Elliot channel model. This results in a joint source-channel coding approach that significantly enhances the quality of the transmitted video. While interleaving without the use of MDC does yield improvements in average PSNR of up to 1dB, these may not be justified given the high decoding delay incurred. The use of MDC increases these improvements to over 2dB, and also outperforms SDC coupled with cross-packet FEC. In addition, when FEC is combined with MDC, a gain of up to 2dB is obtained compared to the equivalent SDC+FEC scheme (for average PERs above 5%), and up to 5dB compared to the values obtained from simple SDC interleaving. Unlike simple interleaving, the use of MDC and FEC entails some increased complexity and a decrease in error-free quality. Simple interleaving, however, cannot achieve the gains available from MDC/FEC in the presence of error bursts, irrespective of the interleaving depth employed and the resulting decoding delay.

  2. Ozone Exposure Alters Serotonin and Serotonin Receptor Expression in the Developing Lung

    PubMed Central

    Van Winkle, Laura S.

    2013-01-01

    Ozone, a pervasive environmental pollutant, adversely affects functional lung growth in children. Animal studies demonstrate that altered lung development is associated with modified signaling within the airway epithelial mesenchymal trophic unit, including mediators that can change nerve growth. We hypothesized that ozone exposure alters the normal pattern of serotonin, its transporter (5-HTT), and two key receptors (5-HT2A and 5-HT4), a pathway involved in postnatal airway neural, epithelial, and immune processes. We exposed monkeys to acute or episodic ozone during the first 2 or 6 months of life. There were three exposure groups/age: (1) filtered air, (2) acute ozone challenge, and (3) episodic ozone + acute ozone challenge. Lungs were prepared for compartment-specific qRT-PCR, immunohistochemistry, and stereology. Airway epithelial serotonin immunopositive staining increased in all exposure groups with the most prominent in 2-month midlevel and 6-month distal airways. Gene expression of 5-HTT, 5-HT2AR, and 5-HT4R increased in an age-dependent manner. Overall expression was greater in distal compared with midlevel airways. Ozone exposure disrupted both 5-HT2AR and 5-HT4R protein expression in airways and enhanced immunopositive staining for 5-HT2AR (2 months) and 5-HT4R (6 months) on smooth muscle. Ozone exposure increases serotonin in airway epithelium regardless of airway level, age, and exposure history and changes the spatial pattern of serotonin receptor protein (5-HT2A and 5-HT4) and 5-HTT gene expression depending on compartment, age, and exposure history. Understanding how serotonin modulates components of reversible airway obstruction exacerbated by ozone exposure sets the foundation for developing clinically relevant therapies for airway disease. PMID:23570994

  3. Depressing Antidepressant: Fluoxetine Affects Serotonin Neurons Causing Adverse Reproductive Responses in Daphnia magna.

    PubMed

    Campos, Bruno; Rivetti, Claudia; Kress, Timm; Barata, Carlos; Dircksen, Heinrich

    2016-06-01

    Selective serotonin reuptake inhibitors (SSRIs) are widely used antidepressants. As endocrine disruptive contaminants in the environment, SSRIs affect reproduction in aquatic organisms. In the water flea Daphnia magna, SSRIs increase offspring production in a food ration-dependent manner. At limiting food conditions, females exposed to SSRIs produce more but smaller offspring, which is a maladaptive life-history strategy. We asked whether increased serotonin levels in newly identified serotonin-neurons in the Daphnia brain mediate these effects. We provide strong evidence that exogenous SSRI fluoxetine selectively increases serotonin-immunoreactivity in identified brain neurons under limiting food conditions thereby leading to maladaptive offspring production. Fluoxetine increases serotonin-immunoreactivity at low food conditions to similar maximal levels as observed under high food conditions and concomitantly enhances offspring production. Sublethal amounts of the neurotoxin 5,7-dihydroxytryptamine known to specifically ablate serotonin-neurons markedly decrease serotonin-immunoreactivity and offspring production, strongly supporting the effect to be serotonin-specific by reversing the reproductive phenotype attained under fluoxetine. Thus, SSRIs impair serotonin-regulation of reproductive investment in a planktonic key organism causing inappropriately increased reproduction with potentially severe ecological impact. PMID:27128505

  4. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin.

    PubMed

    Ripken, Dina; van der Wielen, Nikkie; Wortelboer, Heleen M; Meijerink, Jocelijn; Witkamp, Renger F; Hendriks, Henk F J

    2016-06-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis for the current study was that nutrient-induced GLP-1 release from EECs is modulated by serotonin through a process involving serotonin receptor interaction. This was studied by assessing the effects of serotonin reuptake inhibition by fluoxetine on nutrient-induced GLP-1, PYY and CCK release from isolated pig intestinal segments. Next, serotonin-induced GLP-1 release was studied in enteroendocrine STC-1 cells, where effects of serotonin receptor inhibition were studied using specific and non-specific antagonists. Casein (1% w/v), safflower oil (3.35% w/v), sucrose (50mM) and rebaudioside A (12.5mM) stimulated GLP-1 release from intestinal segments, whereas casein only stimulated PYY and CCK release. Combining nutrients with fluoxetine further increased nutrient-induced GLP-1, PYY and CCK release. Serotonin release from intestinal tissue segments was stimulated by casein and safflower oil while sucrose and rebaudioside A had no effect. The combination with fluoxetine (0.155μM) further enhanced casein and safflower oil induced-serotonin release. Exposure of ileal tissue segments to serotonin (30μM) stimulated GLP-1 release whereas it did not induce PYY and CCK release. Serotonin (30 and 100μM) also stimulated GLP-1 release from STC-1 cells, which was inhibited by the non-specific 5HT receptor antagonist asenapine (1 and 10μM). These data suggest that nutrient-induced GLP-1 release is modulated by serotonin through a receptor mediated process. PMID:27142747

  5. Two-Stage Design Method for Enhanced Inductive Energy Transmission with Q-Constrained Planar Square Loops.

    PubMed

    Eteng, Akaa Agbaeze; Abdul Rahim, Sharul Kamal; Leow, Chee Yen; Chew, Beng Wah; Vandenbosch, Guy A E

    2016-01-01

    Q-factor constraints are usually imposed on conductor loops employed as proximity range High Frequency Radio Frequency Identification (HF-RFID) reader antennas to ensure adequate data bandwidth. However, pairing such low Q-factor loops in inductive energy transmission links restricts the link transmission performance. The contribution of this paper is to assess the improvement that is reached with a two-stage design method, concerning the transmission performance of a planar square loop relative to an initial design, without compromise to a Q-factor constraint. The first stage of the synthesis flow is analytical in approach, and determines the number and spacing of turns by which coupling between similar paired square loops can be enhanced with low deviation from the Q-factor limit presented by an initial design. The second stage applies full-wave electromagnetic simulations to determine more appropriate turn spacing and widths to match the Q-factor constraint, and achieve improved coupling relative to the initial design. Evaluating the design method in a test scenario yielded a more than 5% increase in link transmission efficiency, as well as an improvement in the link fractional bandwidth by more than 3%, without violating the loop Q-factor limit. These transmission performance enhancements are indicative of a potential for modifying proximity HF-RFID reader antennas for efficient inductive energy transfer and data telemetry links. PMID:26890878

  6. Two-Stage Design Method for Enhanced Inductive Energy Transmission with Q-Constrained Planar Square Loops

    PubMed Central

    Eteng, Akaa Agbaeze; Abdul Rahim, Sharul Kamal; Leow, Chee Yen; Chew, Beng Wah; Vandenbosch, Guy A. E.

    2016-01-01

    Q-factor constraints are usually imposed on conductor loops employed as proximity range High Frequency Radio Frequency Identification (HF-RFID) reader antennas to ensure adequate data bandwidth. However, pairing such low Q-factor loops in inductive energy transmission links restricts the link transmission performance. The contribution of this paper is to assess the improvement that is reached with a two-stage design method, concerning the transmission performance of a planar square loop relative to an initial design, without compromise to a Q-factor constraint. The first stage of the synthesis flow is analytical in approach, and determines the number and spacing of turns by which coupling between similar paired square loops can be enhanced with low deviation from the Q-factor limit presented by an initial design. The second stage applies full-wave electromagnetic simulations to determine more appropriate turn spacing and widths to match the Q-factor constraint, and achieve improved coupling relative to the initial design. Evaluating the design method in a test scenario yielded a more than 5% increase in link transmission efficiency, as well as an improvement in the link fractional bandwidth by more than 3%, without violating the loop Q-factor limit. These transmission performance enhancements are indicative of a potential for modifying proximity HF-RFID reader antennas for efficient inductive energy transfer and data telemetry links. PMID:26890878

  7. Epigenetic Mechanisms of Serotonin Signaling.

    PubMed

    Holloway, Terrell; González-Maeso, Javier

    2015-07-15

    Histone modifications and DNA methylation represent central dynamic and reversible processes that regulate gene expression and contribute to cellular phenotypes. These epigenetic marks have been shown to play fundamental roles in a diverse set of signaling and behavioral outcomes. Serotonin is a monoamine that regulates numerous physiological responses including those in the central nervous system. The cardinal signal transduction mechanisms via serotonin and its receptors are well established, but fundamental questions regarding complex interactions between the serotonin system and heritable epigenetic modifications that exert control on gene function remain a topic of intense research and debate. This review focuses on recent advances and contributions to our understanding of epigenetic mechanisms of serotonin receptor-dependent signaling, with focus on psychiatric disorders such as schizophrenia and depression. PMID:25734378

  8. Enhanced Optical Transmission and Sensing of a Thin Metal Film Perforated with a Compound Subwavelength Circular Hole Array

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangnan; Liu, Guiqiang; Liu, Zhengqi; Hu, Ying; Cai, Zhengjie

    2015-12-01

    We propose and numerically investigate the optical transmission behaviors of a sub-wavelength metal film perforated with a two-dimensional square array of compound circular holes. Enhanced optical transmission is obtained by using the finite-difference time-domain (FDTD) method, which can be mainly attributed to the excitation and coupling of localized surface plasmon resonances (LSPRs) and surface plasmon polaritons (SPPs), and Fano Resonances. The redshift of the transmission peak can be achieved by enlarging the size and number of small holes, the environmental dielectric constant. These indicate that the proposed structure has potential applications in integrated optoelectronic devices such as plasmonic filters and sensors. supported by National Natural Science Foundation of China (Nos. 11464019, 11264017, 11004088), Young Scientist Development Program of China (No. 20142BCB23008) and the Natural Science Foundation of Jiangxi Province, China (Nos. 2014BAB212001, 20112BBE5033)

  9. Mechanism of Paroxetine (Paxil) Inhibition of the Serotonin Transporter

    PubMed Central

    Davis, Bruce A.; Nagarajan, Anu; Forrest, Lucy R.; Singh, Satinder K.

    2016-01-01

    The serotonin transporter (SERT) is an integral membrane protein that exploits preexisting sodium-, chloride-, and potassium ion gradients to catalyze the thermodynamically unfavorable movement of synaptic serotonin into the presynaptic neuron. SERT has garnered significant clinical attention partly because it is the target of multiple psychoactive agents, including the antidepressant paroxetine (Paxil), the most potent selective serotonin reuptake inhibitor known. However, the binding site and orientation of paroxetine in SERT remain controversial. To provide molecular insight, we constructed SERT homology models based on the Drosophila melanogaster dopamine transporter and docked paroxetine to these models. We tested the predicted binding configurations with a combination of radioligand binding and flux assays on wild-type and mutant SERTs. Our data suggest that the orientation of paroxetine, specifically its fluorophenyl ring, in SERT’s substrate binding site directly depends on this pocket’s charge distribution, and thereby provide an avenue toward understanding and enhancing high-affinity antidepressant activity. PMID:27032980

  10. Mechanism of Paroxetine (Paxil) Inhibition of the Serotonin Transporter.

    PubMed

    Davis, Bruce A; Nagarajan, Anu; Forrest, Lucy R; Singh, Satinder K

    2016-01-01

    The serotonin transporter (SERT) is an integral membrane protein that exploits preexisting sodium-, chloride-, and potassium ion gradients to catalyze the thermodynamically unfavorable movement of synaptic serotonin into the presynaptic neuron. SERT has garnered significant clinical attention partly because it is the target of multiple psychoactive agents, including the antidepressant paroxetine (Paxil), the most potent selective serotonin reuptake inhibitor known. However, the binding site and orientation of paroxetine in SERT remain controversial. To provide molecular insight, we constructed SERT homology models based on the Drosophila melanogaster dopamine transporter and docked paroxetine to these models. We tested the predicted binding configurations with a combination of radioligand binding and flux assays on wild-type and mutant SERTs. Our data suggest that the orientation of paroxetine, specifically its fluorophenyl ring, in SERT's substrate binding site directly depends on this pocket's charge distribution, and thereby provide an avenue toward understanding and enhancing high-affinity antidepressant activity. PMID:27032980

  11. Proposal for enhancing the transmission efficiency of photonic crystal 60° waveguide bends by means of optofluidic infiltration.

    PubMed

    Bakhshi, Sarah; Moravvej-Farshi, Mohammad K; Ebnali-Heidari, Majid

    2011-07-20

    We are proposing a procedure to enhance the transmission efficiency of 60° photonic crystal (PhC) waveguide bends by means of selective optofluidic infiltration of an air hole, which is created as a point defect at the center of the conventional 60° PhC bend. Numerical studies demonstrate that by varying the defect radius and indices of optical fluids, one may enhance the bend transmission level and tune its 3 dB bandwidth over a substantial range of 88-138 nm. In order to perform the numerical simulations, we have used two-dimensional (2D) finite difference time domain plane wave method, keeping in mind that the spectral features obtained by these 2D calculations are about 15% redshifted from those of real three-dimensional structures. PMID:21772391

  12. Endurance training in Wistar rats decreases receptor sensitivity to a serotonin agonist.

    PubMed

    Dwyer, D; Browning, J

    2000-11-01

    There is mounting evidence that increased brain serotonin during exercise is associated with the onset of CNS-mediated fatigue. Serotonin receptor sensitivity is likely to be an important determinant of this fatigue. Alterations in brain serotonin receptor sensitivity were examined in Wistar rats throughout 6 weeks of endurance training, running on a treadmill four times a week with two exercise tests per week to exhaustion. Receptor sensitivity was determined indirectly as the reduction in exercise time in response to a dose of a serotonin (1A) agonist, m-chlorophenylpiperazine (m-CPP). The two groups of controls were used to examine (i) the effect of the injection per se on exercise performance and (ii) changes in serotonin receptor sensitivity associated with maturation. In the test group, undrugged exercise performance significantly improved by 47% after 6 weeks of training (4518 +/- 729 to 6640 +/- 903 s, P=0.01). Drugged exercise performance also increased significantly from week 1 to week 6 (306 +/- 69-712 +/- 192 s, P = 0.04). Control group results indicated that the dose of m-CPP alone caused fatigue during exercise tests and that maturation was not responsible for any decrease in receptor sensitivity. Improved resistance to the fatiguing effects of the serotonin agonist suggests desensitization of central serotonin receptors, probably the 5-HT1A receptors. Endurance training appears to stimulate an adaptive response to the fatiguing effects of increased brain serotonin, which may enhance endurance exercise performance. PMID:11167306

  13. Activation of serotonin receptors promotes microglial injury-induced motility but attenuates phagocytic activity.

    PubMed

    Krabbe, Grietje; Matyash, Vitali; Pannasch, Ulrike; Mamer, Lauren; Boddeke, Hendrikus W G M; Kettenmann, Helmut

    2012-03-01

    Microglia, the brain immune cell, express several neurotransmitter receptors which modulate microglial functions. In this project we studied the impact of serotonin receptor activation on distinct microglial properties as serotonin deficiency not only has been linked to a number of psychiatric disease like depression and anxiety but may also permeate from the periphery through blood-brain barrier openings seen in neurodegenerative disease. First, we tested the impact of serotonin on the microglial response to an insult caused by a laser lesion in the cortex of acute slices from Cx3Cr1-GFP-/+ mice. In the presence of serotonin the microglial processes moved more rapidly towards the laser lesion which is considered to be a chemotactic response to ATP. Similarly, the chemotactic response of cultured microglia to ATP was also enhanced by serotonin. Quantification of phagocytic activity by determining the uptake of microspheres showed that the amoeboid microglia in slices from early postnatal animals or microglia in culture respond to serotonin application with a decreased phagocytic activity whereas we could not detect any significant change in ramified microglia in situ. The presence of microglial serotonin receptors was confirmed by patch-clamp experiments in culture and amoeboid microglia and by qPCR analysis of RNA isolated from primary cultured and acutely isolated adult microglia. These data suggest that microglia express functional serotonin receptors linked to distinct microglial properties. PMID:22198120

  14. Tick Saliva Enhances Powassan Virus Transmission to the Host, Influencing Its Dissemination and the Course of Disease

    PubMed Central

    Hermance, Meghan E.

    2015-01-01

    ABSTRACT Powassan virus (POWV) is an encephalitic tick-borne flavivirus which can result in serious neuroinvasive disease with up to a 10% case fatality rate. The study objective was to determine whether the salivary gland extract (SGE) from Ixodes scapularis ticks facilitates the transmission and dissemination of POWV in a process known as saliva-activated transmission. Groups of BALB/c mice were footpad inoculated with either a high dose of POWV with and without SGE or a low dose of POWV with and without SGE. Mice from each group were sacrificed daily. Organ viral loads and gene expression profiles were evaluated by quantitative real-time PCR. Both groups of mice infected with high-dose POWV showed severe neurological signs of disease preceding death. The presence of SGE did not affect POWV transmission or disease outcome for mice infected with the high dose of POWV. Neuroinvasion, paralysis, and death occurred for all mice infected with the low dose of POWV plus SGE; however, for mice infected with the low dose of POWV in the absence of SGE, there were no clinical signs of infection and no mice succumbed to disease. Although this group displayed low-level viremias, all mice were completely healthy, and it was the only group in which POWV was cleared from the lymph nodes. We conclude that saliva-activated transmission occurs in mice infected with a low dose of POWV. Our study is the first to demonstrate virus dose-dependent saliva-activated transmission, warranting further investigation of the specific salivary factors responsible for enhancing POWV transmission. IMPORTANCE Powassan virus (POWV) is a tick-borne flavivirus that continues to emerge in the United States, as is evident by the surge in number and expanding geographic range of confirmed cases in the past decade. This neuroinvasive virus is transmitted to humans by infected tick bites. Successful tick feeding is facilitated by a collection of pharmacologically active factors in tick saliva. In a process

  15. Perinatal vs Genetic Programming of Serotonin States Associated with Anxiety

    PubMed Central

    Altieri, Stefanie C; Yang, Hongyan; O'Brien, Hannah J; Redwine, Hannah M; Senturk, Damla; Hensler, Julie G; Andrews, Anne M

    2015-01-01

    Large numbers of women undergo antidepressant treatment during pregnancy; however, long-term consequences for their offspring remain largely unknown. Rodents exposed to serotonin transporter (SERT)-inhibiting antidepressants during development show changes in adult emotion-like behavior. These changes have been equated with behavioral alterations arising from genetic reductions in SERT. Both models are highly relevant to humans yet they vary in their time frames of SERT disruption. We find that anxiety-related behavior and, importantly, underlying serotonin neurotransmission diverge between the two models. In mice, constitutive loss of SERT causes life-long increases in anxiety-related behavior and hyperserotonemia. Conversely, early exposure to the antidepressant escitalopram (ESC; Lexapro) results in decreased anxiety-related behavior beginning in adolescence, which is associated with adult serotonin system hypofunction in the ventral hippocampus. Adult behavioral changes resulting from early fluoxetine (Prozac) exposure were different from those of ESC and, although somewhat similar to SERT deficiency, were not associated with changes in hippocampal serotonin transmission in late adulthood. These findings reveal dissimilarities in adult behavior and neurotransmission arising from developmental exposure to different widely prescribed antidepressants that are not recapitulated by genetic SERT insufficiency. Moreover, they support a pivotal role for serotonergic modulation of anxiety-related behavior. PMID:25523893

  16. Perinatal vs genetic programming of serotonin states associated with anxiety.

    PubMed

    Altieri, Stefanie C; Yang, Hongyan; O'Brien, Hannah J; Redwine, Hannah M; Senturk, Damla; Hensler, Julie G; Andrews, Anne M

    2015-05-01

    Large numbers of women undergo antidepressant treatment during pregnancy; however, long-term consequences for their offspring remain largely unknown. Rodents exposed to serotonin transporter (SERT)-inhibiting antidepressants during development show changes in adult emotion-like behavior. These changes have been equated with behavioral alterations arising from genetic reductions in SERT. Both models are highly relevant to humans yet they vary in their time frames of SERT disruption. We find that anxiety-related behavior and, importantly, underlying serotonin neurotransmission diverge between the two models. In mice, constitutive loss of SERT causes life-long increases in anxiety-related behavior and hyperserotonemia. Conversely, early exposure to the antidepressant escitalopram (ESC; Lexapro) results in decreased anxiety-related behavior beginning in adolescence, which is associated with adult serotonin system hypofunction in the ventral hippocampus. Adult behavioral changes resulting from early fluoxetine (Prozac) exposure were different from those of ESC and, although somewhat similar to SERT deficiency, were not associated with changes in hippocampal serotonin transmission in late adulthood. These findings reveal dissimilarities in adult behavior and neurotransmission arising from developmental exposure to different widely prescribed antidepressants that are not recapitulated by genetic SERT insufficiency. Moreover, they support a pivotal role for serotonergic modulation of anxiety-related behavior. PMID:25523893

  17. Giant-enhancement of extraordinary optical transmission through nanohole arrays blocked by plasmonic gold mushroom caps

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Hu, Pidong; Liu, Chengpu

    2015-01-01

    An improved plasmonic hole array nanostructure model with the holes blocked by gold mushroom caps is proposed and it can realize a giant transmission with efficiency up to 65%, 182% larger than the unblocked nanohole array, due to the strong coupling between caps and holes, which plays the role of a cavity antenna. Moreover, the numerical investigation confirms that it provides more consistency with the practical experimental situations, than the nanodisk model instead. As expected, the light transmission sensitively depends on the geometric parameters of this new nanostructure; as the cap-hole's gap or cap's diameter vary, there always exists an optimal transmission efficiency. More interesting is that the corresponding optimal wavelength decreases with the gap's increment or the diameter's decrement, particularly in an exponential decaying way, and the decay rate is obviously influenced by the cap's parameters.

  18. Equalization enhanced phase noise in Nyquist-spaced superchannel transmission systems using multi-channel digital back-propagation

    PubMed Central

    Xu, Tianhua; Liga, Gabriele; Lavery, Domaniç; Thomsen, Benn C.; Savory, Seb J.; Killey, Robert I.; Bayvel, Polina

    2015-01-01

    Superchannel transmission spaced at the symbol rate, known as Nyquist spacing, has been demonstrated for effectively maximizing the optical communication channel capacity and spectral efficiency. However, the achievable capacity and reach of transmission systems using advanced modulation formats are affected by fibre nonlinearities and equalization enhanced phase noise (EEPN). Fibre nonlinearities can be effectively compensated using digital back-propagation (DBP). However EEPN which arises from the interaction between laser phase noise and dispersion cannot be efficiently mitigated, and can significantly degrade the performance of transmission systems. Here we report the first investigation of the origin and the impact of EEPN in Nyquist-spaced superchannel system, employing electronic dispersion compensation (EDC) and multi-channel DBP (MC-DBP). Analysis was carried out in a Nyquist-spaced 9-channel 32-Gbaud DP-64QAM transmission system. Results confirm that EEPN significantly degrades the performance of all sub-channels of the superchannel system and that the distortions are more severe for the outer sub-channels, both using EDC and MC-DBP. It is also found that the origin of EEPN depends on the relative position between the carrier phase recovery module and the EDC (or MC-DBP) module. Considering EEPN, diverse coding techniques and modulation formats have to be applied for optimizing different sub-channels in superchannel systems. PMID:26365422

  19. Equalization enhanced phase noise in Nyquist-spaced superchannel transmission systems using multi-channel digital back-propagation

    NASA Astrophysics Data System (ADS)

    Xu, Tianhua; Liga, Gabriele; Lavery, Domaniç; Thomsen, Benn C.; Savory, Seb J.; Killey, Robert I.; Bayvel, Polina

    2015-09-01

    Superchannel transmission spaced at the symbol rate, known as Nyquist spacing, has been demonstrated for effectively maximizing the optical communication channel capacity and spectral efficiency. However, the achievable capacity and reach of transmission systems using advanced modulation formats are affected by fibre nonlinearities and equalization enhanced phase noise (EEPN). Fibre nonlinearities can be effectively compensated using digital back-propagation (DBP). However EEPN which arises from the interaction between laser phase noise and dispersion cannot be efficiently mitigated, and can significantly degrade the performance of transmission systems. Here we report the first investigation of the origin and the impact of EEPN in Nyquist-spaced superchannel system, employing electronic dispersion compensation (EDC) and multi-channel DBP (MC-DBP). Analysis was carried out in a Nyquist-spaced 9-channel 32-Gbaud DP-64QAM transmission system. Results confirm that EEPN significantly degrades the performance of all sub-channels of the superchannel system and that the distortions are more severe for the outer sub-channels, both using EDC and MC-DBP. It is also found that the origin of EEPN depends on the relative position between the carrier phase recovery module and the EDC (or MC-DBP) module. Considering EEPN, diverse coding techniques and modulation formats have to be applied for optimizing different sub-channels in superchannel systems.

  20. Age-dependent enhancement of inhibitory synaptic transmission in CA1 pyramidal neurons via GluR5 kainate receptors.

    PubMed

    Xu, Changqing; Cui, Changhai; Alkon, Daniel L

    2009-08-01

    Changes in hippocampal synaptic networks during aging may contribute to age-dependent compromise of cognitive functions such as learning and memory. Previous studies have demonstrated that GABAergic synaptic transmission exhibits age-dependent changes. To better understand such age-dependent changes of GABAergic synaptic inhibition, we performed whole-cell recordings from pyramidal cells in the CA1 area of acute hippocampal slices on aged (24-26 months old) and young (2-4 months old) Brown-Norway rats. We found that the frequency and amplitude of spontaneous inhibitory postsynaptic current (IPSCs) were significantly increased in aged rats, but the frequency and amplitude of mIPSCs were decreased. Furthermore, the regulation of GABAergic synaptic transmission by GluR5 containing kainate receptors was enhanced in aged rats, which was revealed by using LY382884 (a GluR5 kainate receptor antagonist) and ATPA (a GluR5 kainate receptor agonist). Moreover, we demonstrated that vesicular glutamate transporters are involved in the kainate receptor dependent regulation of sIPSCs. Taken together, these results suggest that GABAergic synaptic transmission is potentiated in aged rats, and GluR5 containing kainate receptors regulate the inhibitory synaptic transmission through endogenous glutamate. These alterations of GABAergic input with aging could contribute to age-dependent cognitive decline. PMID:19123252

  1. The tryptophan pathway is involved in the defense responses of rice against pathogenic infection via serotonin production.

    PubMed

    Ishihara, Atsushi; Hashimoto, Yumi; Tanaka, Chihiro; Dubouzet, Joseph G; Nakao, Takahito; Matsuda, Fumio; Nishioka, Takaaki; Miyagawa, Hisashi; Wakasa, Kyo

    2008-05-01

    The upregulation of the tryptophan (Trp) pathway in rice leaves infected by Bipolaris oryzae was indicated by: (i) enhanced enzyme activity of anthranilate synthase (AS), which regulates metabolic flux in the Trp pathway; (ii) elevated levels of the AS (OASA2, OASB1, and OASB2) transcripts; and (iii) increases in the contents of anthranilate, indole, and Trp. The measurement of the contents of Trp-derived metabolites by high-performance liquid chromatography coupled with tandem mass spectrometry revealed that serotonin and its hydroxycinnamic acid amides were accumulated in infected leaves. Serotonin accumulation was preceded by a transient increase in the tryptamine content and by marked activation of Trp decarboxylase, indicating that enhanced Trp production is linked to the formation of serotonin from Trp via tryptamine. Feeding of radiolabeled serotonin to inoculated leaves demonstrated that serotonin is incorporated into the cell walls of lesion tissue. The leaves of a propagating-type lesion mimic mutant (sl, Sekiguchi lesion) lacked both serotonin production and deposition of unextractable brown material at the infection sites, and showed increased susceptibility to B. oryzae infection. Treating the mutant with serotonin restored deposition of brown material at the lesion site. In addition, the serotonin treatment suppressed the growth of fungal hyphae in the leaf tissues of the sl mutant. These findings indicated that the activation of the Trp pathway is involved in the establishment of effective physical defenses by producing serotonin in rice leaves. PMID:18266919

  2. Combination therapy counteracts the enhanced transmission of drug-resistant malaria parasites to mosquitoes.

    PubMed

    Hallett, Rachel L; Sutherland, Colin J; Alexander, Neal; Ord, Rosalynn; Jawara, Musa; Drakeley, Chris J; Pinder, Margaret; Walraven, Gijs; Targett, Geoffrey A T; Alloueche, Ali

    2004-10-01

    Malaria parasites carrying genes conferring resistance to antimalarials are thought to have a selective advantage which leads to higher rates of transmissibility from the drug-treated host. This is a likely mechanism for the increasing prevalence of parasites with resistance to chloroquine (CQ) and sulfadoxine-pyrimethamine in sub-Saharan Africa. Combination therapy is the key strategy being implemented to reduce the impact of resistance, but its effect on the transmission of genetically resistant parasites from treated patients to mosquito vectors has not been measured directly. In a trial comparing CQ monotherapy to the combination CQ plus artesunate (AS) in Gambian children with uncomplicated falciparum malaria, we measured transmissibility by feeding Anopheles gambiae mosquitoes with blood from 43 gametocyte-positive patients through a membrane. In the CQ-treated group, gametocytes from patients carrying parasites with the CQ resistance-associated allele pfcrt-76T prior to treatment produced infected mosquitoes with 38 times higher Plasmodium falciparum oocyst burdens than mosquitoes fed on gametocytes from patients infected with sensitive parasites (P < 0.001). Gametocytes from parasites carrying the resistance-associated allele pfmdr1-86Y produced 14-fold higher oocyst burdens than gametocytes from patients infected with sensitive parasites (P = 0.011). However, parasites carrying either of these resistance-associated alleles pretreatment were not associated with higher mosquito oocyst burdens in the CQ-AS-treated group. Thus, combination therapy overcomes the transmission advantage enjoyed by drug-resistant parasites. PMID:15388456

  3. Enhancing sound absorption and transmission through flexible multi-layer micro-perforated structures.

    PubMed

    Bravo, Teresa; Maury, Cédric; Pinhède, Cédric

    2013-11-01

    Theoretical and experimental results are presented into the sound absorption and transmission properties of multi-layer structures made up of thin micro-perforated panels (ML-MPPs). The objective is to improve both the absorption and insulation performances of ML-MPPs through impedance boundary optimization. A fully coupled modal formulation is introduced that predicts the effect of the structural resonances onto the normal incidence absorption coefficient and transmission loss of ML-MPPs. This model is assessed against standing wave tube measurements and simulations based on impedance translation method for two double-layer MPP configurations of relevance in building acoustics and aeronautics. Optimal impedance relationships are proposed that ensure simultaneous maximization of both the absorption and the transmission loss under normal incidence. Exhaustive optimization of the double-layer MPPs is performed to assess the absorption and/or transmission performances with respect to the impedance criterion. It is investigated how the panel volumetric resonances modify the excess dissipation that can be achieved from non-modal optimization of ML-MPPs. PMID:24180777

  4. Influenza A virus nucleoprotein selectively decreases neuraminidase gene-segment packaging while enhancing viral fitness and transmissibility

    PubMed Central

    Brooke, Christopher B.; Ince, William L.; Wei, Jiajie; Bennink, Jack R.; Yewdell, Jonathan W.

    2014-01-01

    The influenza A virus (IAV) genome is divided into eight distinct RNA segments believed to be copackaged into virions with nearly perfect efficiency. Here, we describe a mutation in IAV nucleoprotein (NP) that enhances replication and transmission in guinea pigs while selectively reducing neuraminidase (NA) gene segment packaging into virions. We show that incomplete IAV particles lacking gene segments contribute to the propagation of the viral population through multiplicity reactivation under conditions of widespread coinfection, which we demonstrate commonly occurs in the upper respiratory tract of guinea pigs. NP also dramatically altered the functional balance of the viral glycoproteins on particles by selectively decreasing NA expression. Our findings reveal novel functions for NP in selective control of IAV gene packaging and balancing glycoprotein expression and suggest a role for incomplete gene packaging during host adaptation and transmission. PMID:25385602

  5. Serotonin and CGRP in migraine.

    PubMed

    Aggarwal, Milan; Puri, Veena; Puri, Sanjeev

    2012-04-01

    Migraine is defined as recurrent attack of headache that are commonly unilateral and accompanied by gastrointestinal and visual disorders. Migraine is more prevalent in females than males with a ratio of 3:1. It is primarily a complex neurovascular disorder involving local vasodilation of intracranial, extracerebral blood vessels and simultaneous stimulation of surrounding trigeminal sensory nervous pain pathway that results in headache. The activation of 'trigeminovascular system' causes release of various vasodilators, especially calcitonin gene-related peptide (CGRP) that induces pain response. At the same time, decreased levels of neurotransmitter, serotonin have been observed in migraineurs. Serotonin receptors have been found on the trigeminal nerve and cranial vessels and their agonists especially triptans prove effective in migraine treatment. It has been found that triptans act on trigeminovascular system and bring the elevated serum levels of key molecules like calcitonin gene related peptide (CGRP) to normal. Currently CGRP receptor antagonists, olcegepant and telcagepant are under consideration for antimigraine therapeutics. It has been observed that varying levels of ovarian hormones especially estrogen influence serotonin neurotransmission system and CGRP levels making women more predisposed to migraine attacks. This review provides comprehensive information about the role of serotonin and CGRP in migraine, specifically the menstrual migraine. PMID:25205974

  6. Serotonin and Blood Pressure Regulation

    PubMed Central

    Morrison, Shaun F.; Davis, Robert Patrick; Barman, Susan M.

    2012-01-01

    5-Hydroxytryptamine (5-HT; serotonin) was discovered more than 60 years ago as a substance isolated from blood. The neural effects of 5-HT have been well investigated and understood, thanks in part to the pharmacological tools available to dissect the serotonergic system and the development of the frequently prescribed selective serotonin-reuptake inhibitors. By contrast, our understanding of the role of 5-HT in the control and modification of blood pressure pales in comparison. Here we focus on the role of 5-HT in systemic blood pressure control. This review provides an in-depth study of the function and pharmacology of 5-HT in those tissues that can modify blood pressure (blood, vasculature, heart, adrenal gland, kidney, brain), with a focus on the autonomic nervous system that includes mechanisms of action and pharmacology of 5-HT within each system. We compare the change in blood pressure produced in different species by short- and long-term administration of 5-HT or selective serotonin receptor agonists. To further our understanding of the mechanisms through which 5-HT modifies blood pressure, we also describe the blood pressure effects of commonly used drugs that modify the actions of 5-HT. The pharmacology and physiological actions of 5-HT in modifying blood pressure are important, given its involvement in circulatory shock, orthostatic hypotension, serotonin syndrome and hypertension. PMID:22407614

  7. Serotonin and Aggressiveness in Chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serotonin (5-HT) regulates aggressive behavior in animals. This study examined if 5-HT regulation of aggressiveness is gene-dependent. Chickens from two divergently selected lines KGB and MBB (Kind Gentle Birds and Mean Bad Birds displaying low and high aggressiveness, respectively) and DXL (Dekalb ...

  8. Serotonin release varies with brain tryptophan levels

    NASA Technical Reports Server (NTRS)

    Schaechter, Judith D.; Wurtman, Richard J.

    1990-01-01

    This study examines directly the effects on serotonin release of varying brain tryptophan levels within the physiologic range. It also addresses possible interactions between tryptophan availability and the frequency of membrane depolarization in controlling serotonin release. We demonstrate that reducing tryptophan levels in rat hypothalamic slices (by superfusing them with medium supplemented with 100 microM leucine) decreases tissue serotonin levels as well as both the spontaneous and the electrically-evoked serotonin release. Conversely, elevating tissue tryptophan levels (by superfusing slices with medium supplemented with 2 microM tryptophan) increases both the tissue serotonin levels and the serotonin release. Serotonin release was found to be affected independently by the tryptophan availability and the frequency of electrical field-stimulation (1-5 Hz), since increasing both variables produced nearly additive increases in release. These observations demonstrate for the first time that both precursor-dependent elevations and reductions in brain serotonin levels produce proportionate changes in serotonin release, and that the magnitude of the tryptophan effect is unrelated to neuronal firing frequency. The data support the hypothesis that serotonin release is proportionate to intracellular serotonin levels.

  9. Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons

    NASA Astrophysics Data System (ADS)

    Nikitin, A. Yu.; Guinea, F.; Garcia-Vidal, F. J.; Martin-Moreno, L.

    2012-02-01

    Resonance diffraction in the periodic array of graphene microribbons is theoretically studied following a recent experiment [L. Ju , Nature Nanotech.1748-338710.1038/nnano.2011.146 6, 630 (2011)]. Systematic studies over a wide range of parameters are presented. It is shown that a much richer resonant picture would be observable for higher relaxation times of charge carriers: More resonances appear and transmission can be totally suppressed. The comparison with the absorption cross-section of a single ribbon shows that the resonant features of the periodic array are associated with leaky plasmonic modes. The longest-wavelength resonance provides the highest visibility of the transmission dip and has the strongest spectral shift and broadening with respect to the single-ribbon resonance, due to collective effects.

  10. A Robust Control for Engine and Transmission Systems:Enhancement of Shift Quality

    NASA Astrophysics Data System (ADS)

    Yang, Kyung-Jinn; Hong, Keum-Shik; Cho, Dong-Il “Dan”

    In this paper, a robust integrated control for engine and automatic transmission systems is investigated. The modeling of powertrain system is split into five subparts including an engine, a torque converter, an automatic transmission, clutch torque generation, and a drivetrain. For improving the ride quality, a two-stage control strategy, torque phase and inertia phase, is proposed. During the torque phase, the slip in first gear is maintained to near zero, while the reaction carrier speed and turbine speed during the inertia phase are controlled to track their desired speeds. The reaction carrier speed is adjusted by the second clutch torque, and the turbine speed is controlled by engine throttle angle and spark advance. Due to the uncertainty and unmodelled dynamics of the system, the uniform ultimate boundedness of the error signals is assured by applying the Lyapunov stability analysis. Simulation results are provided.

  11. Scrambled coherent superposition for enhanced optical fiber communication in the nonlinear transmission regime.

    PubMed

    Liu, Xiang; Chandrasekhar, S; Winzer, P J; Chraplyvy, A R; Tkach, R W; Zhu, B; Taunay, T F; Fishteyn, M; DiGiovanni, D J

    2012-08-13

    Coherent superposition of light waves has long been used in various fields of science, and recent advances in digital coherent detection and space-division multiplexing have enabled the coherent superposition of information-carrying optical signals to achieve better communication fidelity on amplified-spontaneous-noise limited communication links. However, fiber nonlinearity introduces highly correlated distortions on identical signals and diminishes the benefit of coherent superposition in nonlinear transmission regime. Here we experimentally demonstrate that through coordinated scrambling of signal constellations at the transmitter, together with appropriate unscrambling at the receiver, the full benefit of coherent superposition is retained in the nonlinear transmission regime of a space-diversity fiber link based on an innovatively engineered multi-core fiber. This scrambled coherent superposition may provide the flexibility of trading communication capacity for performance in future optical fiber networks, and may open new possibilities in high-performance and secure optical communications. PMID:23038549

  12. Selective serotonin reuptake inhibitor exposure.

    PubMed

    Fitzgerald, Kevin T; Bronstein, Alvin C

    2013-02-01

    Many antidepressants inhibit serotonin or norepinephrine reuptake or both to achieve their clinical effect. The selective serotonin reuptake inhibitor class of antidepressants (SSRIs) includes citalopram, escitalopram (active enantiomer of citalopram), fluoxetine, fluvoxamine, paroxetine, and sertraline. The SSRIs are as effective as tricyclic antidepressants in treatment of major depression with less significant side effects. As a result, they have become the largest class of medications prescribed to humans for depression. They are also used to treat obsessive-compulsive disorder, panic disorders, alcoholism, obesity, migraines, and chronic pain. An SSRI (fluoxetine) has been approved for veterinary use in treatment of canine separation anxiety. SSRIs act specifically on synaptic serotonin concentrations by blocking its reuptake in the presynapse and increasing levels in the presynaptic membrane. Clinical signs of SSRI overdose result from excessive amounts of serotonin in the central nervous system. These signs include nausea, vomiting, mydriasis, hypersalivation, and hyperthermia. Clinical signs are dose dependent and higher dosages may result in the serotonin syndrome that manifests itself as ataxia, tremors, muscle rigidity, hyperthermia, diarrhea, and seizures. Current studies reveal no increase in appearance of any specific clinical signs of serotonin toxicity with regard to any SSRI medication. In people, citalopram has been reported to have an increased risk of electrocardiographic abnormalities. Diagnosis of SSRI poisoning is based on history, clinical signs, and response to therapy. No single clinical test is currently available to confirm SSRI toxicosis. The goals of treatment in this intoxication are to support the animal, prevent further absorption of the drug, support the central nervous system, control hyperthermia, and halt any seizure activity. The relative safety of the SSRIs in overdose despite the occurrence of serotonin syndrome makes them

  13. Series-capacitor compensated shield scheme for enhanced mitigation of transmission line magnetic fields

    SciTech Connect

    Walling, R.A.; Paserba, J.J. ); Burns, C.W. )

    1993-01-01

    This paper presents a new magnetic field mitigation concept involving a series-compensated shield circuit paralleling a transmission line between the line and the right-of-way edge. An evaluation methodology is proposed which is valid for analyzing magnetic field mitigation concepts in general. The research discussed in this paper identifies the shield circuit and compensation requirements and shows the effectiveness of the scheme. Practical implementation considerations are included.

  14. Tunable 3D extended self-assembled gold metamaterials with enhanced light transmission.

    PubMed

    Salvatore, Stefano; Demetriadou, Angela; Vignolini, Silvia; Oh, Sang Soon; Wuestner, Sebastian; Yufa, Nataliya A; Stefik, Morgan; Wiesner, Ulrich; Baumberg, Jeremy J; Hess, Ortwin; Steiner, Ullrich

    2013-05-21

    The optical properties of metamaterials made by block copolymer self-assembly are tuned by structural and environmental variations. The plasma frequency red-shifts with increasing lattice constant and blue-shifts as the network filling fraction increases. Infiltration with dielectric liquids leads also to a red-shift of the plasma edge. A 300 nm-thick slab of gyroid-structured gold has a remarkable transmission of 20%. PMID:23553887

  15. Role of serotonin in fish reproduction

    PubMed Central

    Prasad, Parvathy; Ogawa, Satoshi; Parhar, Ishwar S.

    2015-01-01

    The neuroendocrine mechanism regulates reproduction through the hypothalamo-pituitary-gonadal (HPG) axis which is evolutionarily conserved in vertebrates. The HPG axis is regulated by a variety of internal as well as external factors. Serotonin, a monoamine neurotransmitter, is involved in a wide range of reproductive functions. In mammals, serotonin regulates sexual behaviors, gonadotropin release and gonadotropin-release hormone (GnRH) secretion. However, the serotonin system in teleost may also play unique role in the control of reproduction as the mechanism of reproductive control in teleosts is not always the same as in the mammalian models. In fish, the serotonin system is also regulated by natural environmental factors as well as chemical substances. In particular, selective serotonin reuptake inhibitors (SSRIs) are commonly detected as pharmaceutical contaminants in the natural environment. Those factors may influence fish reproductive functions via the serotonin system. This review summarizes the functional significance of serotonin in the teleosts reproduction. PMID:26097446

  16. Exercise and sleep in aging: emphasis on serotonin.

    PubMed

    Melancon, M O; Lorrain, D; Dionne, I J

    2014-10-01

    Reductions in central serotonin activity with aging might be involved in sleep-related disorders in later life. Although the beneficial effects of aerobic exercise on sleep are not new, sleep represents a complex recurring state of unconsciousness involving many lines of transmitters which remains only partly clear despite intense ongoing research. It is known that serotonin released into diencephalon and cerebrum might play a key inhibitory role to help promote sleep, likely through an active inhibition of supraspinal neural networks. Several lines of evidence support the stimulatory effects of exercise on higher serotonergic pathways. Hence, exercise has proved to elicit acute elevations in forebrain serotonin concentrations, an effect that waned upon cessation of exercise. While adequate exercise training might lead to adaptations in higher serotonergic networks (desensitization of forebrain receptors), excessive training has been linked to serious brain serotonergic maladaptations accompanied by insomnia. Dietary supplementation of tryptophan (the only serotonin precursor) is known to stimulate serotonergic activity and promote sleep, whereas acute tryptophan depletion causes deleterious effects on sleep. Regarding sleep-wake regulation, exercise has proved to accelerate resynchronization of the biological clock to new light-dark cycles following imposition of phase shifts in laboratory animals. Noteworthy, the effect of increased serotonergic transmission on wake state appears to be biphasic, i.e. promote wake and thereafter drowsiness. Therefore, it might be possible that acute aerobic exercise would act on sleep by increasing activity of ascending brain serotonergic projections, though additional work is warranted to better understand the implication of serotonin in the exercise-sleep axis. PMID:25104243

  17. Association between serotonin transporter gene polymorphism and recurrent aphthous stomatitis

    PubMed Central

    Manchanda, Aastha; Iyengar, Asha R.; Patil, Seema

    2016-01-01

    Background: Anxiety-related traits have been attributed to sequence variability in the genes coding for serotonin transmission in  the brain. Two alleles, termed long (L) and short (S) differing by 44 base pairs, are found in a polymorphism identified in the promoter region of serotonin transporter gene. The presence of the short allele  and SS and LS genotypes is found to be associated with the reduced expression of this gene decreasing the uptake of serotonin in the brain leading to various anxiety-related traits. Recurrent aphthous stomatitis (RAS) is an oral mucosal disease with varied etiology including the presence of stress, anxiety, and genetic influences. The present study aimed to determine this serotonin transporter gene polymorphism in patients with RAS and compare it with normal individuals. Materials and Methods: This study included 20 subjects with various forms of RAS and 20 normal healthy age- and gender-matched individuals. Desquamated oral mucosal cells were collected for DNA extraction and subjected to polymerase chain reaction for studying insertion/deletion in the 5-HTT gene-linked polymorphic region. Cross tabulations followed by Chi-square tests were performed to compare the significance of findings, P < 0.05 was considered statistically significant. Results: The LS genotype was the most common genotype found in the subjects with aphthous stomatitis (60%) and controls (40%). The total percentage of LS and SS genotypes and the frequency of S allele were found to be higher in the subjects with aphthous stomatitis as compared to the control group although a statistically significant correlation could not be established, P = 0.144 and 0.371, respectively. Conclusion: Within the limitations of this study, occurrence of RAS was not found to be associated with polymorphic promoter region in serotonin transporter gene. PMID:27274339

  18. Serotonin selectively influences moral judgment and behavior through effects on harm aversion.

    PubMed

    Crockett, Molly J; Clark, Luke; Hauser, Marc D; Robbins, Trevor W

    2010-10-01

    Aversive emotional reactions to real or imagined social harms infuse moral judgment and motivate prosocial behavior. Here, we show that the neurotransmitter serotonin directly alters both moral judgment and behavior through increasing subjects' aversion to personally harming others. We enhanced serotonin in healthy volunteers with citalopram (a selective serotonin reuptake inhibitor) and contrasted its effects with both a pharmacological control treatment and a placebo on tests of moral judgment and behavior. We measured the drugs' effects on moral judgment in a set of moral 'dilemmas' pitting utilitarian outcomes (e.g., saving five lives) against highly aversive harmful actions (e.g., killing an innocent person). Enhancing serotonin made subjects more likely to judge harmful actions as forbidden, but only in cases where harms were emotionally salient. This harm-avoidant bias after citalopram was also evident in behavior during the ultimatum game, in which subjects decide to accept or reject fair or unfair monetary offers from another player. Rejecting unfair offers enforces a fairness norm but also harms the other player financially. Enhancing serotonin made subjects less likely to reject unfair offers. Furthermore, the prosocial effects of citalopram varied as a function of trait empathy. Individuals high in trait empathy showed stronger effects of citalopram on moral judgment and behavior than individuals low in trait empathy. Together, these findings provide unique evidence that serotonin could promote prosocial behavior by enhancing harm aversion, a prosocial sentiment that directly affects both moral judgment and moral behavior. PMID:20876101

  19. Enhanced protocol for real-time transmission of echocardiograms over wireless channels.

    PubMed

    Cavero, Eva; Alesanco, Alvaro; García, Jose

    2012-11-01

    This paper presents a methodology to transmit clinical video over wireless networks in real-time. A 3-D set partitioning in hierarchical trees compression prior to transmission is proposed. In order to guarantee the clinical quality of the compressed video, a clinical evaluation specific to each video modality has to be made. This evaluation indicates the minimal transmission rate necessary for an accurate diagnosis. However, the channel conditions produce errors and distort the video. A reliable application protocol is therefore proposed using a hybrid solution in which either retransmission or retransmission combined with forward error correction (FEC) techniques are used, depending on the channel conditions. In order to analyze the proposed methodology, the 2-D mode of an echocardiogram has been assessed. A bandwidth of 200 kbps is necessary to guarantee its clinical quality. The transmission using the proposed solution and retransmission and FEC techniques working separately have been simulated and compared in high-speed uplink packet access (HSUPA) and worldwide interoperability for microwave access (WiMAX) networks. The proposed protocol achieves guaranteed clinical quality for bit error rates higher than with the other protocols, being for a mobile speed of 60 km/h up to 3.3 times higher for HSUPA and 10 times for WiMAX. PMID:22801481

  20. Enhancing immunogenicity and transmission-blocking activity of malaria vaccines by fusing Pfs25 to IMX313 multimerization technology

    PubMed Central

    Li, Yuanyuan; Leneghan, Darren B.; Miura, Kazutoyo; Nikolaeva, Daria; Brian, Iona J.; Dicks, Matthew D. J.; Fyfe, Alex J.; Zakutansky, Sarah E.; de Cassan, Simone; Long, Carole A.; Draper, Simon J.; Hill, Adrian V. S.; Hill, Fergal; Biswas, Sumi

    2016-01-01

    Transmission-blocking vaccines (TBV) target the sexual-stages of the malaria parasite in the mosquito midgut and are widely considered to be an essential tool for malaria elimination. High-titer functional antibodies are required against target antigens to achieve effective transmission-blocking activity. We have fused Pfs25, the leading malaria TBV candidate antigen to IMX313, a molecular adjuvant and expressed it both in ChAd63 and MVA viral vectors and as a secreted protein-nanoparticle. Pfs25-IMX313 expressed from viral vectors or as a protein-nanoparticle is significantly more immunogenic and gives significantly better transmission-reducing activity than monomeric Pfs25. In addition, we demonstrate that the Pfs25-IMX313 protein-nanoparticle leads to a qualitatively improved antibody response in comparison to soluble Pfs25, as well as to significantly higher germinal centre (GC) responses. These results demonstrate that antigen multimerization using IMX313 is a very promising strategy to enhance antibody responses against Pfs25, and that Pfs25-IMX313 is a highly promising TBV candidate vaccine. PMID:26743316

  1. Elimination of Mother-To-Child Transmission of HIV Infection: The Drug Resource Enhancement against AIDS and Malnutrition Model.

    PubMed

    Liotta, Giuseppe; Marazzi, Maria Cristina; Mothibi, Khethimipilo E; Zimba, Ines; Amangoua, Evelyne E; Bonje, Esther K; Bossiky, Bernard N B; Robinson, Precious A; Scarcella, Paola; Musokotwane, Kebby; Palombi, Leonardo; Germano, Paola; Narciso, Pasquale; de Luca, Andrea; Alumando, Elard; Mamary, Sangare H; Magid, Nurja A; Guidotti, Giovanni; Mancinelli, Sandro; Orlando, Stefano; Peroni, Marco; Buonomo, Ersilia; Nielsen-Saines, Karin

    2015-10-01

    The Drug Resource Enhancement against AIDS and Malnutrition Program (DREAM) gathered professionals in the field of Elimination of HIV-Mother-To-Child Transmission (EMTCT) in Maputo in 2013 to discuss obstacles and solutions for the elimination of HIV vertical transmission in sub-Saharan Africa. During this workshop, the benefits of administrating combined antiretroviral therapy (cART) to HIV positive women from pregnancy throughout breastfeeding were reviewed. cART is capable of reducing vertical transmission to less than 5% at 24 months of age, as well as maternal mortality and infant mortality in both HIV infected and exposed populations to levels similar to those of uninfected individuals. The challenge for programs targeting eMTCT in developing countries is retention in care and treatment adherence. Both are intrinsically related to the model of care. The drop-out from eMTCT programs before cART initiation ranges from 33%-88% while retention rates at 18-24 months are less than 50%. Comprehensive strategies including peer-to-peer education, social support and laboratory monitoring can reduce refusals to less than 5% and attain retention rates approaching 90%. Several components of the model of care for reduction of HIV-1 MTCT are feasible and implementable in scale-up strategies. A review of this model of care for HIV eMTCT is provided. PMID:26506365

  2. Enhancing immunogenicity and transmission-blocking activity of malaria vaccines by fusing Pfs25 to IMX313 multimerization technology.

    PubMed

    Li, Yuanyuan; Leneghan, Darren B; Miura, Kazutoyo; Nikolaeva, Daria; Brian, Iona J; Dicks, Matthew D J; Fyfe, Alex J; Zakutansky, Sarah E; de Cassan, Simone; Long, Carole A; Draper, Simon J; Hill, Adrian V S; Hill, Fergal; Biswas, Sumi

    2016-01-01

    Transmission-blocking vaccines (TBV) target the sexual-stages of the malaria parasite in the mosquito midgut and are widely considered to be an essential tool for malaria elimination. High-titer functional antibodies are required against target antigens to achieve effective transmission-blocking activity. We have fused Pfs25, the leading malaria TBV candidate antigen to IMX313, a molecular adjuvant and expressed it both in ChAd63 and MVA viral vectors and as a secreted protein-nanoparticle. Pfs25-IMX313 expressed from viral vectors or as a protein-nanoparticle is significantly more immunogenic and gives significantly better transmission-reducing activity than monomeric Pfs25. In addition, we demonstrate that the Pfs25-IMX313 protein-nanoparticle leads to a qualitatively improved antibody response in comparison to soluble Pfs25, as well as to significantly higher germinal centre (GC) responses. These results demonstrate that antigen multimerization using IMX313 is a very promising strategy to enhance antibody responses against Pfs25, and that Pfs25-IMX313 is a highly promising TBV candidate vaccine. PMID:26743316

  3. Elimination of Mother-To-Child Transmission of HIV Infection: The Drug Resource Enhancement against AIDS and Malnutrition Model

    PubMed Central

    Liotta, Giuseppe; Marazzi, Maria Cristina; Mothibi, Khethimipilo E.; Zimba, Ines; Amangoua, Evelyne E.; Bonje, Esther K.; Bossiky, Bernard N. B.; Robinson, Precious A.; Scarcella, Paola; Musokotwane, Kebby; Palombi, Leonardo; Germano, Paola; Narciso, Pasquale; de Luca, Andrea; Alumando, Elard; Mamary, Sangare H.; Magid, Nurja A.; Guidotti, Giovanni; Mancinelli, Sandro; Orlando, Stefano; Peroni, Marco; Buonomo, Ersilia; Nielsen-Saines, Karin

    2015-01-01

    The Drug Resource Enhancement against AIDS and Malnutrition Program (DREAM) gathered professionals in the field of Elimination of HIV-Mother-To-Child Transmission (EMTCT) in Maputo in 2013 to discuss obstacles and solutions for the elimination of HIV vertical transmission in sub-Saharan Africa. During this workshop, the benefits of administrating combined antiretroviral therapy (cART) to HIV positive women from pregnancy throughout breastfeeding were reviewed. cART is capable of reducing vertical transmission to less than 5% at 24 months of age, as well as maternal mortality and infant mortality in both HIV infected and exposed populations to levels similar to those of uninfected individuals. The challenge for programs targeting eMTCT in developing countries is retention in care and treatment adherence. Both are intrinsically related to the model of care. The drop-out from eMTCT programs before cART initiation ranges from 33%–88% while retention rates at 18–24 months are less than 50%. Comprehensive strategies including peer-to-peer education, social support and laboratory monitoring can reduce refusals to less than 5% and attain retention rates approaching 90%. Several components of the model of care for reduction of HIV-1 MTCT are feasible and implementable in scale-up strategies. A review of this model of care for HIV eMTCT is provided. PMID:26506365

  4. Enhanced GABAergic synaptic transmission at VLPAG neurons and potent modulation by oxycodone in a bone cancer pain model

    PubMed Central

    Takasu, Keiko; Ogawa, Koichi; Nakamura, Atsushi; Kanbara, Tomoe; Ono, Hiroko; Tomii, Takako; Morioka, Yasuhide; Hasegawa, Minoru; Shibasaki, Masahiro; Mori, Tomohisa; Suzuki, Tsutomu; Sakaguchi, Gaku

    2015-01-01

    Background and Purpose We demonstrated previously that oxycodone has potent antinociceptive effects at supraspinal sites. In this study, we investigated changes in neuronal function and antinociceptive mechanisms of oxycodone at ventrolateral periaqueductal gray (VLPAG) neurons, which are a major site of opioid action, in a femur bone cancer (FBC) model with bone cancer-related pain. Experimental Approach We characterized the supraspinal antinociceptive profiles of oxycodone and morphine on mechanical hypersensitivity in the FBC model. Based on the disinhibition mechanism underlying supraspinal opioid antinociception, the effects of oxycodone and morphine on GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) in VLPAG neurons were evaluated in slices from the FBC model. Key Results The supraspinal antinociceptive effects of oxycodone, but not morphine, were abolished by blocking G protein-gated inwardly rectifying potassium1 (Kir3.1) channels. In slices from the FBC model, GABAergic synaptic transmission at VLPAG neurons was enhanced, as indicated by a leftward shift of the input–output relationship curve of evoked IPSCs, the increased paired-pulse facilitation and the enhancement of miniature IPSC frequency. Following treatment with oxycodone and morphine, IPSCs were reduced in the FBC model, and the inhibition of presynaptic GABA release by oxycodone, but not morphine was enhanced and dependent on Kir3.1 channels. Conclusion and Implications Our results demonstrate that Kir3.1 channels are important for supraspinal antinociception and presynaptic GABA release inhibition by oxycodone in the FBC model. Enhanced GABAergic synaptic transmission at VLPAG neurons in the FBC model is an important site of supraspinal antinociception by oxycodone via Kir3.1 channel activation. PMID:25521524

  5. Experimental evidence of cut-wire-induced enhanced transmission of transverse-electric fields through sub-wavelength slits in a thin metallic screen

    NASA Astrophysics Data System (ADS)

    di Gennaro, Emiliano; Gallina, Ilaria; Andreone, Antonello; Castaldi, Giuseppe; Galdi, Vincenzo

    2010-12-01

    Recent numerical studies have demonstrated the possibility of achieving substantial enhancements in the transmission of transverse-electric-polarized electromagnetic fields through subwavelength slits in a thin metallic screen by placing single or paired metallic cut-wire arrays at a close distance from the screen. In this Letter, we report on the first experimental evidence of such extraordinary transmission phenomena, via microwave (X/Ku-band) measurements on printed-circuit-board prototypes. Experimental results agree very well with full-wave numerical predictions, and indicate an intrinsic robustness of the enhanced transmission phenomena with respect to fabrication tolerances and experimental imperfections.

  6. Enhancement by citral of glutamatergic spontaneous excitatory transmission in adult rat substantia gelatinosa neurons.

    PubMed

    Zhu, Lan; Fujita, Tsugumi; Jiang, Chang-Yu; Kumamoto, Eiichi

    2016-02-10

    Although citral, which is abundantly present in lemongrass, has various actions including antinociception, how citral affects synaptic transmission has not been examined as yet. Citral activates in heterologous cells transient receptor potential vanilloid-1, ankyrin-1, and melastatin-8 (TRPV1, TRPA1, and TRPM8, respectively) channels, the activation of which in the spinal lamina II [substantia gelatinosa (SG)] increases the spontaneous release of L-glutamate from nerve terminals. It remains to be examined what types of transient receptor potential channel in native neurons are activated by citral. With a focus on transient receptor potential activation, we examined the effect of citral on glutamatergic spontaneous excitatory transmission using the whole-cell patch-clamp technique to SG neurons in adult rat spinal cord slices. Bath-applied citral for 3 min increased the frequency of spontaneous excitatory postsynaptic current in a concentration-dependent manner (half-maximal effective concentration=0.58 mM), with a small increase in its amplitude. The spontaneous excitatory postsynaptic current frequency increase produced by citral was repeated at a time interval of 30 min, albeit this action recovered with a slow time course after washout. The presynaptic effect of citral was inhibited by TRPA1 antagonist HC-030031, but not by voltage-gated Na-channel blocker tetrodotoxin, TRPV1 antagonist capsazepine, and TRPM8 antagonist BCTC. It is concluded that citral increases spontaneous L-glutamate release in SG neurons by activating TRPA1 channels. Considering that the SG plays a pivotal role in modulating nociceptive transmission from the periphery, the citral activity could contribute toward at least a part of the modulation. PMID:26720890

  7. A neurobiological hypothesis of treatment-resistant depression - mechanisms for selective serotonin reuptake inhibitor non-efficacy.

    PubMed

    Coplan, Jeremy D; Gopinath, Srinath; Abdallah, Chadi G; Berry, Benjamin R

    2014-01-01

    First-line treatment of major depression includes administration of a selective serotonin reuptake inhibitor (SSRI), yet studies suggest that remission rates following two trials of an SSRI are <50%. The authors examine the putative biological substrates underlying "treatment resistant depression (TRD)" with the goal of elucidating novel rationales to treat TRD. We look at relevant articles from the preclinical and clinical literature combined with clinical exposure to TRD patients. A major focus was to outline pathophysiological mechanisms whereby the serotonin system becomes impervious to the desired enhancement of serotonin neurotransmission by SSRIs. A complementary focus was to dissect neurotransmitter systems, which serve to inhibit the dorsal raphe. We propose, based on a body of translational studies, TRD may not represent a simple serotonin deficit state but rather an excess of midbrain peri-raphe serotonin and subsequent deficit at key fronto-limbic projection sites, with ultimate compromise in serotonin-mediated neuroplasticity. Glutamate, serotonin, noradrenaline, and histamine are activated by stress and exert an inhibitory effect on serotonin outflow, in part by "flooding" 5-HT1A autoreceptors by serotonin itself. Certain factors putatively exacerbate this scenario - presence of the short arm of the serotonin transporter gene, early-life adversity and comorbid bipolar disorder - each of which has been associated with SSRI-treatment resistance. By utilizing an incremental approach, we provide a system for treating the TRD patient based on a strategy of rescuing serotonin neurotransmission from a state of SSRI-induced dorsal raphe stasis. This calls for "stacked" interventions, with an SSRI base, targeting, if necessary, the glutamatergic, serotonergic, noradrenergic, and histaminergic systems, thereby successively eliminating the inhibitory effects each are capable of exerting on serotonin neurons. Future studies are recommended to test this

  8. A Neurobiological Hypothesis of Treatment-Resistant Depression – Mechanisms for Selective Serotonin Reuptake Inhibitor Non-Efficacy

    PubMed Central

    Coplan, Jeremy D.; Gopinath, Srinath; Abdallah, Chadi G.; Berry, Benjamin R.

    2014-01-01

    First-line treatment of major depression includes administration of a selective serotonin reuptake inhibitor (SSRI), yet studies suggest that remission rates following two trials of an SSRI are <50%. The authors examine the putative biological substrates underlying “treatment resistant depression (TRD)” with the goal of elucidating novel rationales to treat TRD. We look at relevant articles from the preclinical and clinical literature combined with clinical exposure to TRD patients. A major focus was to outline pathophysiological mechanisms whereby the serotonin system becomes impervious to the desired enhancement of serotonin neurotransmission by SSRIs. A complementary focus was to dissect neurotransmitter systems, which serve to inhibit the dorsal raphe. We propose, based on a body of translational studies, TRD may not represent a simple serotonin deficit state but rather an excess of midbrain peri-raphe serotonin and subsequent deficit at key fronto-limbic projection sites, with ultimate compromise in serotonin-mediated neuroplasticity. Glutamate, serotonin, noradrenaline, and histamine are activated by stress and exert an inhibitory effect on serotonin outflow, in part by “flooding” 5-HT1A autoreceptors by serotonin itself. Certain factors putatively exacerbate this scenario – presence of the short arm of the serotonin transporter gene, early-life adversity and comorbid bipolar disorder – each of which has been associated with SSRI-treatment resistance. By utilizing an incremental approach, we provide a system for treating the TRD patient based on a strategy of rescuing serotonin neurotransmission from a state of SSRI-induced dorsal raphe stasis. This calls for “stacked” interventions, with an SSRI base, targeting, if necessary, the glutamatergic, serotonergic, noradrenergic, and histaminergic systems, thereby successively eliminating the inhibitory effects each are capable of exerting on serotonin neurons. Future studies are recommended to test

  9. Enhanced Mammalian Transmissibility of Seasonal Influenza A/H1N1 Viruses Encoding an Oseltamivir-Resistant Neuraminidase

    PubMed Central

    Rahmat, Saad; Pica, Natalie

    2012-01-01

    Between 2007 and 2009, oseltamivir resistance developed among seasonal influenza A/H1N1 (sH1N1) virus isolates at an exponential rate, without a corresponding increase in oseltamivir usage. We hypothesized that the oseltamivir-resistant neuraminidase (NA), in addition to being relatively insusceptible to the antiviral effect of oseltamivir, might confer an additional fitness advantage on these viruses by enhancing their transmission efficiency among humans. Here we demonstrate that an oseltamivir-resistant clinical isolate, an A/Brisbane/59/2007(H1N1)-like virus isolated in New York State in 2008, transmits more efficiently among guinea pigs than does a highly similar, contemporaneous oseltamivir-sensitive isolate. With reverse genetics reassortants and point mutants of the two clinical isolates, we further show that expression of the oseltamivir-resistant NA in the context of viral proteins from the oseltamivir-sensitive virus (a 7:1 reassortant) is sufficient to enhance transmissibility. In the guinea pig model, the NA is the critical determinant of transmission efficiency between oseltamivir-sensitive and -resistant Brisbane/59-like sH1N1 viruses, independent of concurrent drift mutations that occurred in other gene products. Our data suggest that the oseltamivir-resistant NA (specifically, one or both of the companion mutations, H275Y and D354G) may have allowed resistant Brisbane/59-like viruses to outtransmit sensitive isolates. These data provide in vivo evidence of an evolutionary mechanism that would explain the rapidity with which oseltamivir resistance achieved fixation among sH1N1 isolates in the human reservoir. PMID:22532693

  10. Serotonin activates cell survival and apoptotic death responses in cultured epithelial thyroid cells.

    PubMed

    Cerulo, Giuliana; Tafuri, Simona; De Pasquale, Valeria; Rea, Silviana; Romano, Simona; Costagliola, Anna; Della Morte, Rossella; Avallone, Luigi; Pavone, Luigi Michele

    2014-10-01

    Anatomic and physiological interactions between central serotonergic system and thyroid gland are well established. However, the effects of locally available serotonin on the thyroid functions are poorly known. Here, we first demonstrate the expression of serotonin transporter SERT and 5-HT2A receptor subtype in rat thyroid epithelial cell line FRT both at mRNA and protein levels. In order to investigate the molecular mechanisms of serotonin action, FRT cells were exposed to increasing concentrations of the amine. Low concentrations of serotonin (up to 5 μM) enhanced FRT cell growth, and ERK1/2 and SMAD2/3 phosphorylation. Cell exposure to the selective 5-HT2A receptor agonist DOI recapitulated the effects of 5-HT on ERK1/2 phosphorylation. By contrast, administration of M100907, a specific 5-HT2A receptor inhibitor, prevented 5-HT induced ERK1/2 activation. On the other hand, high doses of serotonin (50 μM up to 1 mM) activated a caspase-3 mediated apoptosis of cells. Overall, our findings demonstrate that low levels of serotonin, interacting with 5-HT2A receptor, are able to activate proliferative signals in the thyroid epithelial cells, while high levels of serotonin cause pro-apoptotic responses, thus suggesting an active role of the amine in the thyroid functions and disorders. PMID:24997405

  11. The Effect of Antibody-Dependent Enhancement on the Transmission Dynamics and Persistence of Multiple-Strain Pathogens

    NASA Astrophysics Data System (ADS)

    Ferguson, Neil; Anderson, Roy; Gupta, Sunetra

    1999-01-01

    Cross-reactive antibodies produced by a mammalian host during infection by a particular microparasitic strain usually have the effect of reducing the probability of the host being infected by a different, but closely related, pathogen strain. Such cross-reactive immunological responses thereby induce between-strain competition within the pathogen population. However, in some cases such as dengue virus, evidence suggests that cross-reactive antibodies act to enhance rather than restrict the severity of a subsequent infection by another strain. This cooperative mechanism is thought to explain why pre-existing immunity to dengue virus is an important risk factor for the development of severe disease (i.e., dengue shock syndrome and dengue hemorrhagic fever). In this paper, we explore the effect of antibody-dependent enhancement on the transmission dynamics of multistrain pathogen populations. We show that enhancement frequently may generate complex and persistent cyclical or chaotic epidemic behavior. Furthermore, enhancement acts to permit the coexistence of all strains where in its absence only one or a subset would persist.

  12. Hypolocomotion, anxiety and serotonin syndrome-like behavior contribute to the complex phenotype of serotonin transporter knockout mice.

    PubMed

    Kalueff, A V; Fox, M A; Gallagher, P S; Murphy, D L

    2007-06-01

    Although mice with a targeted disruption of the serotonin transporter (SERT) have been studied extensively using various tests, their complex behavioral phenotype is not yet fully understood. Here we assess in detail the behavior of adult female SERT wild type (+/+), heterozygous (+/-) and knockout (-/-) mice on an isogenic C57BL/6J background subjected to a battery of behavioral paradigms. Overall, there were no differences in the ability to find food or a novel object, nest-building, self-grooming and its sequencing, and horizontal rod balancing, indicating unimpaired sensory functions, motor co-ordination and behavioral sequencing. In contrast, there were striking reductions in exploration and activity in novelty-based tests (novel object, sticky label and open field tests), accompanied by pronounced thigmotaxis, suggesting that combined hypolocomotion and anxiety (rather than purely anxiety) influence the SERT -/- behavioral phenotype. Social interaction behaviors were also markedly reduced. In addition, SERT -/- mice tended to move close to the ground, frequently displayed spontaneous Straub tail, tics, tremor and backward gait - a phenotype generally consistent with 'serotonin syndrome'-like behavior. In line with replicated evidence of much enhanced serotonin availability in SERT -/- mice, this serotonin syndrome-like state may represent a third factor contributing to their behavioral profile. An understanding of the emerging complexity of SERT -/- mouse behavior is crucial for a detailed dissection of their phenotype and for developing further neurobehavioral models using these mice. PMID:16939636

  13. Serotonergic responses to stress are enhanced in the central amygdala and inhibited in the ventral hippocampus during amphetamine withdrawal

    PubMed Central

    Li, Hao; Scholl, Jamie L.; Tu, Wenyu; Hassell, James; Watt, Michael J.; Forster, Gina L.; Renner, Kenneth J.

    2014-01-01

    Withdrawal from amphetamine increases anxiety and reduces the ability to cope with stress, factors that are believed to contribute to drug relapse. Stress-induced serotonergic transmission in the central nucleus of the amygdala is associated with anxiety states and fear. Conversely, increases in stress-induced ventral hippocampal serotonin have been linked to coping mechanisms. The goal of this study is to understand neurobiological changes induced by amphetamine that contribute to stress-sensitivity during withdrawal. We tested the hypothesis that limbic serotonergic responses to restraint stress would be altered in male Sprague-Dawley rats chronically pre-treated with amphetamine (2.5 mg/kg, ip.) followed by two weeks withdrawal. Amphetamine withdrawal resulted in increased stress-induced behavioral arousal relative to control treatment, suggesting that drug withdrawal induced a greater sensitivity to the stressor. When microdialysis was used to determine the effects of restraint on extracellular serotonin, stress-induced increases in serotonin were abolished in the ventral hippocampus and augmented in the central amygdala during amphetamine withdrawal. Reverse dialysis of the glucocorticoid receptor antagonist mifepristone into the ventral hippocampus blocked the stress-induced serotonin increase in saline pre-treated rats, suggesting that glucocorticoid receptors mediate stress-induced serotonin increases in the ventral hippocampus. However, mifepristone had no effect on stress-induced serotonin increases in the central amygdala, indicating that stress increases serotonin in this region independent of glucocorticoid receptors. During amphetamine withdrawal, the absence of stress-induced increases in ventral hippocampus serotonin combined with enhanced stress-induced serotonergic responses in the central amygdala may contribute to drug relapse by decreasing stress-coping ability and heightening stress responsiveness. PMID:25234335

  14. Paramecium caudatum enhances transmission and infectivity of Mycobacterium marinum and Mycobacterium chelonae in zebrafish (Danio rerio)

    PubMed Central

    Peterson, Tracy S.; Ferguson, Jayde A.; Watral, Virginia G.; Mutoji, K. Nadine; Ennis, Don G.; Kent, Michael L.

    2014-01-01

    Mycobacterial infections in laboratory zebrafish (Danio rerio) are common and widespread in research colonies. Mycobacteria within free living amoebae have been shown to be transmission vectors for mycobacteriosis. Paramecium caudatum are commonly used as a first food for zebrafish, and we investigated this ciliate’s potential to serve as a vector of Mycobacterium marinum and M. chelonae. The ability of live P. caudatum to transmit these mycobacteria to larval, juvenile and adult zebrafish was evaluated. Infections were defined by histologic observation of granulomas containing acid-fast bacteria in extraintestinal locations. In both experiments, fish fed paramecia containing mycobacteria became infected at a higher incidence than controls. Larvae (exposed at 4 days post hatch) fed paramecia with M. marinum exhibited an incidence of 30% (24/80) and juveniles (exposed at 21 days post hatch) showed 31% incidence (14/45). Adult fish fed a gelatin food matrix containing mycobacteria within paramecia or mycobacteria alone for 2 wk resulted in infections when examined 8 wk after exposure as follows: M. marinum OSU 214 47% (21/45), M. marinum CH 47% (9/19), M. chelonae 38% (5/13). In contrast, fish feed mycobacteria alone in this diet did not become infected, except for 2 fish (5%) in the M. marinum OSU 214 low dose group. These results demonstrate that Paramecium caudatum can act as a vector for mycobacteria. This provides a useful animal model for evaluation of natural mycobacterial infections and demonstrates the possibility of mycobacterial transmission in zebrafish facilities via contaminated paramecia cultures. PMID:24192000

  15. A Plant Virus Manipulates the Behavior of Its Whitefly Vector to Enhance Its Transmission Efficiency and Spread

    PubMed Central

    Moreno-Delafuente, Ana; Garzo, Elisa; Moreno, Aranzazu; Fereres, Alberto

    2013-01-01

    Plant viruses can produce direct and plant-mediated indirect effects on their insect vectors, modifying their life cycle, fitness and behavior. Viruses may benefit from such changes leading to enhanced transmission efficiency and spread. In our study, female adults of Bemisia tabaci were subjected to an acquisition access period of 72 h in Tomato yellow leaf curl virus (TYLCV)-infected and non-infected tomato plants to obtain viruliferous and non-viruliferous whiteflies, respectively. Insects that were exposed to virus-infected plants were checked by PCR to verify their viruliferous status. Results of the Ethovision video tracking bioassays indicated that TYLCV induced an arrestant behavior of B. tabaci, as viruliferous whitefly adults remained motionless for more time and moved slower than non-viruliferous whiteflies after their first contact with eggplant leaf discs. In fact, Electrical Penetration Graphs showed that TYLCV-viruliferous B. tabaci fed more often from phloem sieve elements and made a larger number of phloem contacts (increased number of E1, E2 and sustained E2 per insect, p<0.05) in eggplants than non-viruliferous whiteflies. Furthermore, the duration of the salivation phase in phloem sieve elements (E1) preceding sustained sap ingestion was longer in viruliferous than in non-viruliferous whiteflies (p<0.05). This particular probing behavior is known to significantly enhance the inoculation efficiency of TYLCV by B. tabaci. Our results show evidence that TYLCV directly manipulates the settling, probing and feeding behavior of its vector B. tabaci in a way that enhances virus transmission efficiency and spread. Furthermore, TYLCV-B. tabaci interactions are mutually beneficial to both the virus and its vector because B. tabaci feeds more efficiently after acquisition of TYLCV. This outcome has clear implications in the epidemiology and management of the TYLCV-B. tabaci complex. PMID:23613872

  16. A plant virus manipulates the behavior of its whitefly vector to enhance its transmission efficiency and spread.

    PubMed

    Moreno-Delafuente, Ana; Garzo, Elisa; Moreno, Aranzazu; Fereres, Alberto

    2013-01-01

    Plant viruses can produce direct and plant-mediated indirect effects on their insect vectors, modifying their life cycle, fitness and behavior. Viruses may benefit from such changes leading to enhanced transmission efficiency and spread. In our study, female adults of Bemisia tabaci were subjected to an acquisition access period of 72 h in Tomato yellow leaf curl virus (TYLCV)-infected and non-infected tomato plants to obtain viruliferous and non-viruliferous whiteflies, respectively. Insects that were exposed to virus-infected plants were checked by PCR to verify their viruliferous status. Results of the Ethovision video tracking bioassays indicated that TYLCV induced an arrestant behavior of B. tabaci, as viruliferous whitefly adults remained motionless for more time and moved slower than non-viruliferous whiteflies after their first contact with eggplant leaf discs. In fact, Electrical Penetration Graphs showed that TYLCV-viruliferous B. tabaci fed more often from phloem sieve elements and made a larger number of phloem contacts (increased number of E1, E2 and sustained E2 per insect, p<0.05) in eggplants than non-viruliferous whiteflies. Furthermore, the duration of the salivation phase in phloem sieve elements (E1) preceding sustained sap ingestion was longer in viruliferous than in non-viruliferous whiteflies (p<0.05). This particular probing behavior is known to significantly enhance the inoculation efficiency of TYLCV by B. tabaci. Our results show evidence that TYLCV directly manipulates the settling, probing and feeding behavior of its vector B. tabaci in a way that enhances virus transmission efficiency and spread. Furthermore, TYLCV-B. tabaci interactions are mutually beneficial to both the virus and its vector because B. tabaci feeds more efficiently after acquisition of TYLCV. This outcome has clear implications in the epidemiology and management of the TYLCV-B. tabaci complex. PMID:23613872

  17. Serotonin controlling feeding and satiety.

    PubMed

    Voigt, Jörg-Peter; Fink, Heidrun

    2015-01-15

    Serotonin has been implicated in the control of satiety for almost four decades. Historically, the insight that the appetite suppressant effect of fenfluramine is linked to serotonin has stimulated interest in and research into the role of this neurotransmitter in satiety. Various rodent models, including transgenic models, have been developed to identify the involved 5-HT receptor subtypes. This approach also required the availability of receptor ligands of different selectivity, and behavioural techniques had to be developed simultaneously which allow differentiating between unspecific pharmacological effects of these ligands and 'true' satiation and satiety. Currently, 5-HT1B, 5-HT2C and 5-HT6 receptors have been identified to mediate serotonergic satiety in different ways. The recently approved anti-obesity drug lorcaserin is a 5-HT2C receptor agonist. In brain, both hypothalamic (arcuate nucleus, paraventricular nucleus) and extrahypothalamic sites (parabrachial nucleus, nucleus of the solitary tract) have been identified to mediate the serotonergic control of satiety. Serotonin interacts within the hypothalamus with endogenous orexigenic (Neuropeptide Y/Agouti related protein) and anorectic (α-melanocyte stimulating hormone) peptides. In the nucleus of the solitary tract serotonin integrates peripheral satiety signals. Here, the 5-HT3, but possibly also the 5-HT2C receptor play a role. It has been found that 5-HT acts in concert with such peripheral signals as cholecystokinin and leptin. Despite the recent advances of our knowledge, many of the complex interactions between 5-HT and other satiety factors are not fully understood yet. Further progress in research will also advance the development of new serotonergic anti-obesity drugs. PMID:25217810

  18. Serotonin norepinephrine reuptake inhibitors: a pharmacological comparison.

    PubMed

    Sansone, Randy A; Sansone, Lori A

    2014-03-01

    The serotonin norepinephrine reuptake inhibitors are a family of antidepressants that inhibit the reuptake of both serotonin and norepinephrine. While these drugs are traditionally considered a group of inter-related antidepressants based upon reuptake inhibition, they generally display different chemical structures as well as different pharmacological properties. In this article, we discuss these and other differences among the serotonin norepinephrine reuptake inhibitors, including the year of approval by the United States Food and Drug Administration, generic availability, approved clinical indications, half-lives, metabolism and excretion, presence or not of active metabolites, dosing schedules, proportionate effects on serotonin and norepinephrine, and the timing of serotonin and norepinephrine reuptake (i.e., sequential or simultaneous). Again, while serotonin norepinephrine reuptake inhibitors are grouped as a family of antidepressants, they exhibit a surprising number of differences- differences that may ultimately relate to clinical nuances in patient care. PMID:24800132

  19. Facilitation of serotonin signaling by SSRIs is attenuated by social isolation.

    PubMed

    Dankoski, Elyse C; Agster, Kara L; Fox, Megan E; Moy, Sheryl S; Wightman, R Mark

    2014-12-01

    Hypofunction of the serotonergic system is often associated with major depression and obsessive compulsive disorder (OCD). Selective serotonin reuptake inhibitors (SSRIs) are commonly prescribed to treat these disorders, and require 3-6 weeks of chronic treatment before improvements in the symptoms are observed. SSRIs inhibit serotonin's transporter, and in doing so, increase extracellular serotonin concentrations. Thus, efficacy of SSRIs likely depends upon the brain's adaptive response to sustained increases in serotonin levels. Individual responsiveness to SSRI treatment may depend on a variety of factors that influence these changes, including ongoing stress. Social isolation is a passive, naturalistic form of chronic mild stress that can model depression in rodents. In this study, we examined how 20-day treatment with the SSRI citalopram (CIT) alters marble-burying (MB), open field behavior, and serotonin signaling in single- vs pair-housed animals. We used in vivo voltammetry to measure electrically evoked serotonin, comparing release rate, net overflow, and clearance. Pair-housed mice were significantly more responsive to CIT treatment, exhibiting reduced MB and facilitation of serotonin release that positively correlated with the frequency of electrical stimulation. These effects of CIT treatment were attenuated in single-housed mice. Notably, although CIT treatment enhanced serotonin release in pair-housed mice, it did not significantly alter uptake rate. In summary, we report that chronic SSRI treatment facilitates serotonin release in a frequency-dependent manner, and this effect is blocked by social isolation. These findings suggest that the efficacy of SSRIs in treating depression and OCD may depend on ongoing stressors during treatment. PMID:24981046

  20. Serotonin syndrome probably triggered by a morphine-phenelzine interaction.

    PubMed

    Mateo-Carrasco, Hector; Muñoz-Aguilera, Eva María; García-Torrecillas, Juan Manuel; Abu Al-Robb, Hiba

    2015-06-01

    Serotonin syndrome is a potentially life-threatening condition caused by excessive central and peripheral stimulation of serotonin brainstem receptors, usually triggered by inadvertent interactions between agents with serotonergic activity. Evidence supporting an association between nonserotonergic opiates, such as oxycodone or morphine, and serotonin syndrome is very limited and even contradictory. In this case report, we describe a patient who developed serotonergic-adverse effects likely precipitated by an interaction between morphine and phenelzine. A 57-year-old woman presented to the emergency department with complaints of increasing visual hallucinations, restlessness, photophobia, dizziness, neck stiffness, occipital headache, confusion, sweating, tachycardia, and nausea over the previous week. On admission, her blood pressure was 185/65 mm Hg, and clonus was noted in the lower extremities. The patient was hospitalized 10 days earlier for cellulitis of the left breast secondary to a left mastectomy 5 months earlier, and a short course of oral morphine was prescribed for pain control. Her routine medications consisted of aspirin, atorvastatin, bisoprolol, clopidogrel, gabapentin, omeprazole, phenelzine, and ramipril. Supportive measures were initiated on admission. Phenelzine and morphine were discontinued immediately, leading to a progressive resolution of symptoms over the next 48 hours. Phenelzine was restarted on discharge without further complications. Use of the Drug Interaction Probability Scale indicated a probable relationship (score of 6) between the patient's development of serotonin syndrome and the combination of morphine and phenelzine. The mechanism underlying this interaction, however, remains unclear and warrants further investigation. Clinicians should carefully weigh the risk and benefits of initiating morphine in patients taking monoamine oxidase inhibitors or any other serotonin-enhancing drugs. PMID:25903219

  1. Transmission Cost Allocation Methodologies for Regional Transmission Organizations

    SciTech Connect

    Fink, S.; Rogers, J.; Porter, K.

    2010-07-01

    This report describes transmission cost allocation methodologies for transmission projects developed to maintain or enhance reliability, to interconnect new generators, or to access new resources and enhance competitive bulk power markets, otherwise known as economic transmission projects.

  2. Design and Development of Layered Security: Future Enhancements and Directions in Transmission.

    PubMed

    Shahzad, Aamir; Lee, Malrey; Kim, Suntae; Kim, Kangmin; Choi, Jae-Young; Cho, Younghwa; Lee, Keun-Kwang

    2016-01-01

    Today, security is a prominent issue when any type of communication is being undertaken. Like traditional networks, supervisory control and data acquisition (SCADA) systems suffer from a number of vulnerabilities. Numerous end-to-end security mechanisms have been proposed for the resolution of SCADA-system security issues, but due to insecure real-time protocol use and the reliance upon open protocols during Internet-based communication, these SCADA systems can still be compromised by security challenges. This study reviews the security challenges and issues that are commonly raised during SCADA/protocol transmissions and proposes a secure distributed-network protocol version 3 (DNP3) design, and the implementation of the security solution using a cryptography mechanism. Due to the insecurities found within SCADA protocols, the new development consists of a DNP3 protocol that has been designed as a part of the SCADA system, and the cryptographically derived security is deployed within the application layer as a part of the DNP3 stack. PMID:26751443

  3. Mucosal Glycan Foraging Enhances Fitness and Transmission of a Saccharolytic Human Gut Bacterial Symbiont

    PubMed Central

    Martens, Eric C.; Chiang, Herbert C.; Gordon, Jeffrey I.

    2008-01-01

    Summary The distal human gut is a microbial bioreactor that digests complex carbohydrates. The strategies evolved by gut microbes to sense and process diverse glycans have important implications for the assembly and operations of this ecosystem. The human gut bacterium Bacteroides thetaiotaomicron forages on host and dietary glycans. Its ability to target these substrates resides in 88 polysaccharide utilization loci (PULs), encompassing 18% of its genome. In this report, whole-genome transcriptional profiling and genetic tests are used to define the mechanisms underlying host glycan foraging in vivo and in vitro. PULs that target all major classes of host glycans were identified. Mucin O-glycans are the principal substrate foraged in vivo. Simultaneous deletion of five ECF-σ transcription factors that activate mucin O-glycan utilization produces defects in bacterial persistence in the gut and in mother-to-offspring transmission. Thus, PUL-mediated glycan catabolism is an important factor in gut colonization and likely impacts gut ecology. PMID:18996345

  4. Design and Development of Layered Security: Future Enhancements and Directions in Transmission

    PubMed Central

    Shahzad, Aamir; Lee, Malrey; Kim, Suntae; Kim, Kangmin; Choi, Jae-Young; Cho, Younghwa; Lee, Keun-Kwang

    2016-01-01

    Today, security is a prominent issue when any type of communication is being undertaken. Like traditional networks, supervisory control and data acquisition (SCADA) systems suffer from a number of vulnerabilities. Numerous end-to-end security mechanisms have been proposed for the resolution of SCADA-system security issues, but due to insecure real-time protocol use and the reliance upon open protocols during Internet-based communication, these SCADA systems can still be compromised by security challenges. This study reviews the security challenges and issues that are commonly raised during SCADA/protocol transmissions and proposes a secure distributed-network protocol version 3 (DNP3) design, and the implementation of the security solution using a cryptography mechanism. Due to the insecurities found within SCADA protocols, the new development consists of a DNP3 protocol that has been designed as a part of the SCADA system, and the cryptographically derived security is deployed within the application layer as a part of the DNP3 stack. PMID:26751443

  5. On an Aerodynamic Mechanism to Enhance Ion Transmission and Sensitivity of FAIMS for Nano-Electrospray Ionization-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Prasad, Satendra; Belford, Michael W.; Dunyach, Jean-Jacques; Purves, Randy W.

    2014-12-01

    Simulations show that significant ion losses occur within the commercial electrospray ionization-field asymmetric waveform ion mobility spectrometer (ESI-FAIMS) interface owing to an angular desolvation gas flow and because of the impact of the FAIMS carrier gas onto the inner rf (radio frequency) electrode. The angular desolvation gas flow diverts ions away from the entrance plate orifice while the carrier gas annihilates ions onto the inner rf electrode. A novel ESI-FAIMS interface is described that optimizes FAIMS gas flows resulting in large improvements in transmission. Simulations with the bromochloroacetate anion showed an improvement of ~9-fold to give ~70% overall transmission). Comparable transmission improvements were attained experimentally for six peptides (2+) in the range of m/z 404.2 to 653.4 at a chromatographic flow rate of 300 nL/min. Selected ion chromatograms (SIC) from nano-LC-FAIMS-MS analyses showed 71% (HLVDEPQNLIK, m/z 653.4, 2+) to 95% (LVNELTEFAK, m/z 582.3, 2+) of ion signal compared with ion signal in the SIC from LC-MS analysis. IGSEVYHNLK (580.3, 2+) showed 24% more ion signal compared with LC-MS and is explained by enhanced desolvation in FAIMS. A 3-10 times lower limits of quantitation (LOQ) (<15% RSD) was achieved for chemical noise limited peaks with FAIMS. Peaks limited by ion statistics showed subtle improvement in RSD and yielded comparable LOQ to that attained with nano-LC-MS (without FAIMS). These improvements were obtained using a reduced FAIMS separation gap (from 2.5 to 1.5 mm) that results in a shorter residence time (13.2 ms ± 3.9 ms) and enables the use of a helium free transport gas (100% nitrogen).

  6. Enhanced biofilm formation and multi‐host transmission evolve from divergent genetic backgrounds in C ampylobacter jejuni

    PubMed Central

    Pascoe, Ben; Méric, Guillaume; Murray, Susan; Yahara, Koji; Mageiros, Leonardos; Bowen, Ryan; Jones, Nathan H.; Jeeves, Rose E.; Lappin‐Scott, Hilary M.; Asakura, Hiroshi

    2015-01-01

    Summary Multicellular biofilms are an ancient bacterial adaptation that offers a protective environment for survival in hostile habitats. In microaerophilic organisms such as C ampylobacter, biofilms play a key role in transmission to humans as the bacteria are exposed to atmospheric oxygen concentrations when leaving the reservoir host gut. Genetic determinants of biofilm formation differ between species, but little is known about how strains of the same species achieve the biofilm phenotype with different genetic backgrounds. Our approach combines genome‐wide association studies with traditional microbiology techniques to investigate the genetic basis of biofilm formation in 102 C ampylobacter jejuni isolates. We quantified biofilm formation among the isolates and identified hotspots of genetic variation in homologous sequences that correspond to variation in biofilm phenotypes. Thirteen genes demonstrated a statistically robust association including those involved in adhesion, motility, glycosylation, capsule production and oxidative stress. The genes associated with biofilm formation were different in the host generalist ST‐21 and ST‐45 clonal complexes, which are frequently isolated from multiple host species and clinical samples. This suggests the evolution of enhanced biofilm from different genetic backgrounds and a possible role in colonization of multiple hosts and transmission to humans. PMID:26373338

  7. Slowly emerging glycinergic transmission enhances inhibition in the sound localization pathway of the avian auditory system

    PubMed Central

    Fischl, Matthew J.; Weimann, Sonia R.; Kearse, Michael G.

    2013-01-01

    Localization of low-frequency acoustic stimuli is processed in dedicated neural pathways where coincidence-detecting neurons compare the arrival time of sound stimuli at the two ears, or interaural time disparity (ITD). ITDs occur in the submillisecond range, and vertebrates have evolved specialized excitatory and inhibitory circuitry to compute these differences. Glycinergic inhibition is a computationally significant and prominent component of the mammalian ITD pathway. However, evidence for glycinergic transmission is limited in birds, where GABAergic inhibition has been thought to be the dominant or exclusive inhibitory transmitter. Indeed, previous work showed that GABA antagonists completely eliminate inhibition in avian nuclei specialized for processing temporal features of sound, nucleus magnocellularis (NM) and nucleus laminaris (NL). However, more recent work shows that glycine is coexpressed with GABA in synaptic terminals apposed to neurons in both nuclei (Coleman WL, Fischl MJ, Weimann SR, Burger RM. J Neurophysiol 105: 2405–2420, 2011; Kuo SP, Bradley LA, Trussell LO. J Neurosci 29: 9625–9634, 2009). Here we show complementary evidence of functional glycine receptor (GlyR) expression in NM and NL. Additionally, we show that glycinergic input can be evoked under particular stimulus conditions. Stimulation at high but physiologically relevant rates evokes a slowly emerging glycinergic response in NM and NL that builds over the course of the stimulus. Glycinergic response magnitude was stimulus rate dependent, representing 18% and 7% of the total inhibitory current in NM and NL, respectively, at the end of the 50-pulse, 200-Hz stimulus. Finally, we show that the glycinergic component is functionally relevant, as its elimination reduced inhibition of discharges evoked by current injection into NM neurons. PMID:24198323

  8. Surface transmission enhancement of ZnS via continuous-wave laser microstructuring

    NASA Astrophysics Data System (ADS)

    Major, Kevin J.; Florea, Catalin M.; Poutous, Menelaos K.; Busse, Lynda E.; Sanghera, Jasbinder S.; Aggarwal, Ishwar D.

    2014-03-01

    Fresnel reflectivity at dielectric boundaries between optical components, lenses, and windows is a major issue for the optics community. The most common method to reduce the index mismatch and subsequent surface reflection is to apply a thin film or films of intermediate indices to the optical materials. More recently, surface texturing or roughening has been shown to approximate a stepwise refractive index thin-film structure, with a gradient index of refraction transition from the bulk material to the surrounding medium. Short-pulse laser ablation is a recently-utilized method to produce such random anti-reflective structured surfaces (rARSS). Typically, high-energy femtosecond pulsed lasers are focused on the surface of the desired optical material to produce periodic or quasi-periodic assemblies of nanostructures which provide reduced surface reflection. This technique is being explored to generate a variety of structures across multiple optical materials. However, femtosecond laser systems are relatively expensive and more difficult to maintain. We present here a low power and low-cost alternative to femtosecond laser ablation, demonstrating random antireflective structures on the surface of Cleartran ZnS windows produced with a continuous-wave laser. In particular, we find that irradiation with a low-powered (<10 mW), defocused, CW 325nm-wavelength laser produces a random surface with significant roughness on ZnS substrates. The transmission through the structured ZnS windows is shown to increase by up to 9% across a broad wavelength range from the visible to the near-infrared.

  9. The Effects of Glycogen Synthase Kinase-3beta in Serotonin Neurons

    PubMed Central

    Zhou, Wenjun; Chen, Ligong; Paul, Jodi; Yang, Sufen; Li, Fuzeng; Sampson, Karen; Woodgett, Jim R.; Beaulieu, Jean Martin; Gamble, Karen L.; Li, Xiaohua

    2012-01-01

    Glycogen synthase kinase-3 (GSK3) is a constitutively active protein kinase in brain. Increasing evidence has shown that GSK3 acts as a modulator in the serotonin neurotransmission system, including direct interaction with serotonin 1B (5-HT1B) receptors in a highly selective manner and prominent modulating effect on 5-HT1B receptor activity. In this study, we utilized the serotonin neuron-selective GSK3β knockout (snGSK3β-KO) mice to test if GSK3β in serotonin neurons selectively modulates 5-HT1B autoreceptor activity and function. The snGSK3β-KO mice were generated by crossbreeding GSK3β-floxed mice and ePet1-Cre mice. These mice had normal growth and physiological characteristics, similar numbers of tryptophan hydroxylase-2 (TpH2)-expressing serotonin neurons, and the same brain serotonin content as in littermate wild type mice. However, the expression of GSK3β in snGSK3β-KO mice was diminished in TpH2-expressing serotonin neurons. Compared to littermate wild type mice, snGSK3β-KO mice had a reduced response to the 5-HT1B receptor agonist anpirtoline in the regulation of serotonergic neuron firing, cAMP production, and serotonin release, whereas these animals displayed a normal response to the 5-HT1A receptor agonist 8-OH-DPAT. The effect of anpirtoline on the horizontal, center, and vertical activities in the open field test was differentially affected by GSK3β depletion in serotonin neurons, wherein vertical activity, but not horizontal activity, was significantly altered in snGSK3β-KO mice. In addition, there was an enhanced anti-immobility response to anpirtoline in the tail suspension test in snGSK3β-KO mice. Therefore, results of this study demonstrated a serotonin neuron-targeting function of GSK3β by regulating 5-HT1B autoreceptors, which impacts serotonergic neuron firing, serotonin release, and serotonin-regulated behaviors. PMID:22912839

  10. Serotonin Attenuates Feedback Excitation onto O-LM Interneurons

    PubMed Central

    Böhm, Claudia; Pangalos, Maria; Schmitz, Dietmar; Winterer, Jochen

    2015-01-01

    The serotonergic system is a subcortical neuromodulatory center that controls cortical information processing in a state-dependent manner. In the hippocampus, serotonin (5-HT) is released by ascending serotonergic fibers from the midbrain raphe nuclei, thereby mediating numerous modulatory functions on various neuronal subtypes. Here, we focus on the neuromodulatory effects of 5-HT on GABAergic inhibitory oriens lacunosum-moleculare (O-LM) cells in the hippocampal area CA1 of the rat. These interneurons are thought to receive primarily local excitatory input and are, via their axonal projections to stratum lacunosum-moleculare, ideally suited to control entorhinal cortex input. We show that 5-HT reduces excitatory glutamatergic transmission onto O-LM interneurons. By means of paired recordings from synaptically connected CA1 pyramidal cells and O-LM interneurons we reveal that this synapse is modulated by 5-HT. Furthermore, we demonstrate that the reduction of glutamatergic transmission by serotonin is likely to be mediated via a decrease of calcium influx into presynaptic terminals of CA1 pyramidal cells. This modulation of excitatory synaptic transmission onto O-LM interneurons by 5-HT might be a mechanism to vary the activation of O-LM interneurons during ongoing network activity and serve as a brain state-dependent switch gating the efficiency of entorhinal cortex input to CA1 pyramidal neurons. PMID:26021702

  11. Revisiting the Serotonin Hypothesis: Implications for Major Depressive Disorders.

    PubMed

    Fakhoury, Marc

    2016-07-01

    Major depressive disorder (MDD) is a heritable neuropsychiatric disease associated with severe changes at cellular and molecular levels. Its diagnosis mainly relies on the characterization of a wide range of symptoms including changes in mood and behavior. Despite the availability of antidepressant drugs, 10 to 30 % of patients fail to respond after a single or multiple treatments, and the recurrence of depression among responsive patients is very high. Evidence from the past decades suggests that the brain neurotransmitter serotonin (5-HT) is incriminated in MDD, and that a dysfunction of 5-HT receptors may play a role in the genesis of this disease. The 5-HT membrane transporter protein (SERT), which helps regulate the serotonergic transmission, is also implicated in MDD and is one of the main targets of antidepressant therapy. Although a number of behavioral tests and animal models have been developed to study depression, little is known about the neurobiological bases of MDD. Understanding the role of the serotonergic pathway will significantly help improve our knowledge of the pathophysiology of depression and may open up avenues for the development of new antidepressant drugs. The overarching goal of this review is to present recent findings from studies examining the serotonergic pathway in MDD, with a focus on SERT and the serotonin 1A (5-HT1A), serotonin 1B (5-HT1B), and serotonin 2A (5-HT2A) receptors. This paper also describes some of the main molecules involved in the internalization of 5-HT receptors and illustrates the changes in 5-HT neurotransmission in knockout mice and animal model of depression. PMID:25823514

  12. Serotonin competence of mouse beta cells during pregnancy.

    PubMed

    Goyvaerts, Lotte; Schraenen, Anica; Schuit, Frans

    2016-07-01

    Pregnancy is a key mammalian reproductive event in which growth and differentiation of the fetus imposes extra metabolic and hormonal demands on the mother. Its successful outcome depends on major changes in maternal blood circulation, metabolism and endocrine function. One example is the endocrine pancreas, where beta cells undergo a number of changes in pregnancy that result in enhanced functional beta cell mass in order to compensate for the rising metabolic needs for maternal insulin. During the last 5 years, a series of studies have increased our understanding of the molecular events involved in this functional adaptation. In the mouse, a prominent functional change during pregnancy is the capacity of some beta cells to produce serotonin. In this review we will discuss the mechanism and potential effects of pregnancy-related serotonin production in beta cells, considering functional consequences at the local intra-islet and systemic level. PMID:27056372

  13. Alcohol enhances GABAergic transmission to cerebellar granule cells via an increase in Golgi cell excitability.

    PubMed

    Carta, Mario; Mameli, Manuel; Valenzuela, C Fernando

    2004-04-14

    Alcohol intoxication alters coordination and motor skills, and this is responsible for a significant number of traffic accident-related deaths around the world. Although the precise mechanism of action of ethanol (EtOH) is presently unknown, studies suggest that it acts, in part, by interfering with normal cerebellar functioning. An important component of cerebellar circuits is the granule cell. The excitability of these abundantly expressed neurons is controlled by the Golgi cell, a subtype of GABAergic interneuron. Granule cells receive GABAergic input in the form of phasic and tonic currents that are mediated by synaptic and extrasynaptic receptors, respectively. Using the acute cerebellar slice preparation and patch-clamp electrophysiological techniques, we found that ethanol induces a parallel increase in both the frequency of spontaneous IPSCs and the magnitude of the tonic current. EtOH (50 mm) did not produce this effect when spontaneous action potentials were blocked with tetrodotoxin. Recordings in the loose-patch cell-attached configuration demonstrated that ethanol increases the frequency of spontaneous action potentials in Golgi cells. Taken together, these findings indicate that ethanol enhances GABAergic inhibition of granule cells via a presynaptic mechanism that involves an increase in action potential-dependent GABA release from Golgi cells. This effect is likely to have an impact on the flow of information through the cerebellar cortex and may contribute to the mechanism by which acute ingestion of alcoholic beverages induces motor impairment. PMID:15084654

  14. Protein-nanoparticle interaction in bioconjugated silver nanoparticles: A transmission electron microscopy and surface enhanced Raman spectroscopy study

    NASA Astrophysics Data System (ADS)

    Reymond-Laruinaz, Sébastien; Saviot, Lucien; Potin, Valérie; Marco de Lucas, María del Carmen

    2016-12-01

    Understanding the mechanisms of interaction between proteins and noble metal nanoparticles (NPs) is crucial to extend the use of NPs in biological applications and nanomedicine. We report the synthesis of Ag-NPs:protein bioconjugates synthesized in total absence of citrates or other stabilizing agents in order to study the NP-protein interaction. Four common proteins (lysozyme, bovine serum albumin, cytochrome-C and hemoglobin) were used in this work. Transmission electron microscopy (TEM) and surface enhanced Raman spectroscopy (SERS) were mainly used to study these bioconjugated NPs. TEM images showed Ag NPs with sizes in the 5-40 nm range. The presence of a protein layer surrounding the Ag NPs was also observed by TEM. Moreover, the composition at different points of single bioconjugated NPs was probed by electron energy loss spectroscopy (EELS). The thickness of the protein layer varies in the 3-15 nm range and the Ag NPs are a few nanometers away. This allowed to obtain an enhancement of the Raman signal of the proteins in the analysis of water suspensions of bioconjugates. SERS results showed a broadening of the Raman bands of the proteins which we attribute to the contribution of different configurations of the proteins adsorbed on the Ag NPs surface. Moreover, the assignment of an intense and sharp peak in the low-frequency range to Ag-N vibrations points to the chemisorption of the proteins on the Ag-NPs surface.

  15. Serotonin modulates insect hemocyte phagocytosis via two different serotonin receptors

    PubMed Central

    Qi, Yi-xiang; Huang, Jia; Li, Meng-qi; Wu, Ya-su; Xia, Ren-ying; Ye, Gong-yin

    2016-01-01

    Serotonin (5-HT) modulates both neural and immune responses in vertebrates, but its role in insect immunity remains uncertain. We report that hemocytes in the caterpillar, Pieris rapae are able to synthesize 5-HT following activation by lipopolysaccharide. The inhibition of a serotonin-generating enzyme with either pharmacological blockade or RNAi knock-down impaired hemocyte phagocytosis. Biochemical and functional experiments showed that naive hemocytes primarily express 5-HT1B and 5-HT2B receptors. The blockade of 5-HT1B significantly reduced phagocytic ability; however, the blockade of 5-HT2B increased hemocyte phagocytosis. The 5-HT1B-null Drosophila melanogaster mutants showed higher mortality than controls when infected with bacteria, due to their decreased phagocytotic ability. Flies expressing 5-HT1B or 5-HT2B RNAi in hemocytes also showed similar sensitivity to infection. Combined, these data demonstrate that 5-HT mediates hemocyte phagocytosis through 5-HT1B and 5-HT2B receptors and serotonergic signaling performs critical modulatory functions in immune systems of animals separated by 500 million years of evolution. DOI: http://dx.doi.org/10.7554/eLife.12241.001 PMID:26974346

  16. Serotonin: Modulator of a Drive to Withdraw

    ERIC Educational Resources Information Center

    Tops, Mattie; Russo, Sascha; Boksem, Maarten A. S.; Tucker, Don M.

    2009-01-01

    Serotonin is a fundamental neuromodulator in both vertebrate and invertebrate nervous systems, with a suspected role in many human mental disorders. Yet, because of the complexity of serotonergic function, researchers have been unable to agree on a general theory. One function suggested for serotonin systems is the avoidance of threat. We propose…

  17. Space-Data Routers: Enhancing Deep Space communications for scientific data transmission and exploitation from Mars through Space Internetworking

    NASA Astrophysics Data System (ADS)

    Sykioti, Olga; Daglis, Ioannis; Rontogiannis, Athanasios; Tsaoussidis, Vassilis; Diamantopoulos, Sotirios

    2014-05-01

    Dissemination and exploitation of data from Deep Space missions, such as planetary missions, face two major impediments: limited access capabilities due to narrow connectivity window via satellites (thus, resulting to confined scientific capacity) and lack of sufficient communication and dissemination mechanisms between deep space missions such the current missions to Mars, space data receiving centers, space-data collection centers and the end-user community. Although large quantities of data have to be transferred from deep space to the operation centers and then to the academic foundations and research centers, due to the aforementioned impediments more and more stored space data volumes remain unexploited, until they become obsolete or useless and are consequently removed. In the near future, these constraints on space and ground segment resources will rapidly increase due to the launch of new missions. The Space-Data Routers (SDR) project aims into boosting collaboration and competitiveness between the European Space Agency, the European Space Industry and the European Academic Institutions towards meeting these new challenges through Space Internetworking. Space internetworking gradually replaces or assists traditional telecommunication protocols. Future deep space operations, such as those to Mars, are scheduled to be more dynamic and flexible; many of the procedures, which are now human-operated, will become automated, interoperable and collaborative. As a consequence, space internetworking will bring a revolution in space communications. For this purpose, one of the main scientific objectives of the project is, through the examination of a specific scenario, the enhanced transmission and dissemination of Deep Space data from Mars, through unified communication channels. Specifically, the scenario involves enhanced data transmission acquired by the OMEGA sensor on-board ESA's Mars Express satellite. We consider two separate issues considering the

  18. Noise in any frequency range can enhance information transmission in a sensory neuron

    NASA Astrophysics Data System (ADS)

    Levin, Jacob E.

    1997-05-01

    The effect of noise on the neural encoding of broadband signals was investigated in the cricket cercal system, a mechanosensory system sensitive to small near-field air particle disturbances. Known air current stimuli were presented to the cricket through audio speakers in a controlled environment in a variety of background noise conditions. Spike trains from the second layer of neuronal processing, the primary sensory interneurons, were recorded with intracellular Electrodes and the performance of these neurons characterized with the tools of information theory. SNR, mutual information rates, and other measures of encoding accuracy were calculated for single frequency, narrowband, and broadband signals over the entire amplitude sensitivity range of the cells, in the presence of uncorrelated noise background also spanning the cells' frequency and amplitude sensitivity range. Significant enhancements of transmitted information through the addition of external noise were observed regardless of the frequency range of either the signal or noise waveforms, provided both were within the operating range of the cell. Considerable improvements in signal encoding were observed for almost an entire order of magnitude of near-threshold signal amplitudes. This included sinusoidal signals embedded in broadband white noise, broadband signals in broadband noise, and even broadband signals presented with narrowband noise in a completely non-overlapping frequency range. The noise related increases in mutual information rate for broadband signals were as high as 150%, and up to 600% increases in SNR were observed for sinusoidal signals. Additionally, it was shown that the amount of information about the signal carried, on average, by each spike was INCREASED for small signals when presented with noise—implying that added input noise can, in certain situations, actually improve the accuracy of the encoding process itself.

  19. Schistosoma mansoni: effects of in vitro serotonin (5-HT) on aerobic and anaerobic carbohydrate metabolism.

    PubMed

    Rahman, M S; Mettrick, D F; Podesta, R B

    1985-08-01

    The effect of Serotonin on carbohydrate metabolism, excreted end products, and adenine nucleotide pools in Schistosoma mansoni was determined following 60 min in vitro incubations under air (= 21% O2) and anaerobic (95% N2:5% CO2) conditions. In the presence of 0.25 mM Serotonin, glucose uptake increased by 82-84% and lactate excretion increased by 77-78%; levels of excreted lactate were significantly higher under aerobic than under anaerobic conditions. The tissue pools of glucose, hexosephosphates, fructose 1,6-bisphosphate, pyruvate, and lactate were significantly increased under anaerobic conditions compared to air incubation; the presence of Serotonin decreased tissue glucose pools and increased the size of the pyruvate and lactate tissue pools. The glycolytic carbon pool was significantly greater under anaerobic than under aerobic conditions, irrespective of Serotonin. Serotonin increased adenosine 5'-diphosphate and adenosine 5'-monophosphate levels under aerobic conditions; neither Serotonin nor gas phase significantly affected total adenine nucleotide levels or the adenylate energy charge. Serotonin increased energy requirements by S. mansoni due to increased muscle contractions; demand was met by enhanced rates of carbohydrate metabolism. Irrespective of gas phase, 74-78% of available carbohydrate was converted to lactate. In the presence of Serotonin, conversion of glucose to lactate was reduced to 63-67%. In view of the requirements by S. mansoni for an abundant supply of glycoprotein and glycolipid precursors for surface membrane renewal, it is suggested that carbohydrate (glucose and glycogen) that was not converted to lactate may have been incorporated into biosynthetic processes leading to membrane synthesis. PMID:4018216

  20. Effects of fentanyl on serotonin syndrome-like behaviors in rats.

    PubMed

    Kitamura, Sonoe; Kawano, Takashi; Kaminaga, Satomi; Yamanaka, Daiki; Tateiwa, Hiroki; Locatelli, Fabricio M; Yokoyama, Masataka

    2016-02-01

    Emerging evidence from case reports suggests that fentanyl may precipitate potentially life-threatening serotonin syndrome in patients taking serotonergic drugs. However, the underlying mechanism of the association between serotonin syndrome and fentanyl remains under investigation. We therefore investigated the pharmacological effects of an analgesic dose of fentanyl (0.2 mg/kg) injected subcutaneously (s.c.) on serotonergic toxicity-like responses in rats. Rats were s.c. injected with 0.75 mg/kg 8-OH-DPAT, a full 5-HT1A agonist, as an animal model of serotonin syndrome. The 8-OH-DPAT-treated rats showed well-characterized serotonin syndrome-like behaviors (low body posture, forepaw treading), hyperlocomotion, and decreased body temperature. Rats injected s.c. with fentanyl alone showed no significant changes in any of the parameters measured, while concomitant administration of fentanyl + 8-OH-DPAT resulted in exaggerated 8-OH-DPAT-induced serototoxic responses. A separate dose-response experiment showed that the serototoxic effect of fentanyl was dose-dependent. Pretreatment with naloxone [2.0 mg/kg, intraperitoneal (i.p.) injection], an opioid receptor antagonist, failed to antagonize the fentanyl-induced exaggerated serotonin syndrome-like behaviors. In contrast, pretreatment with WAY-100653, a serotonin 5-HT1A receptor antagonist (0.5 mg/kg, i.p. injection) completely inhibited all responses. Our findings provide preclinical proof-of-concept that an analgesic dose of fentanyl enhances serotonin toxicity, likely via its serotonin-reuptake inhibitory activity, independently of interaction with the opioid receptors. PMID:26499475

  1. Serotonin, neural markers, and memory

    PubMed Central

    Meneses, Alfredo

    2015-01-01

    Diverse neuropsychiatric disorders present dysfunctional memory and no effective treatment exits for them; likely as result of the absence of neural markers associated to memory. Neurotransmitter systems and signaling pathways have been implicated in memory and dysfunctional memory; however, their role is poorly understood. Hence, neural markers and cerebral functions and dysfunctions are revised. To our knowledge no previous systematic works have been published addressing these issues. The interactions among behavioral tasks, control groups and molecular changes and/or pharmacological effects are mentioned. Neurotransmitter receptors and signaling pathways, during normal and abnormally functioning memory with an emphasis on the behavioral aspects of memory are revised. With focus on serotonin, since as it is a well characterized neurotransmitter, with multiple pharmacological tools, and well characterized downstream signaling in mammals' species. 5-HT1A, 5-HT4, 5-HT5, 5-HT6, and 5-HT7 receptors as well as SERT (serotonin transporter) seem to be useful neural markers and/or therapeutic targets. Certainly, if the mentioned evidence is replicated, then the translatability from preclinical and clinical studies to neural changes might be confirmed. Hypothesis and theories might provide appropriate limits and perspectives of evidence. PMID:26257650

  2. On the role of brain serotonin in expression of genetic predisposition to catalepsy in animal models

    SciTech Connect

    Popova, N.K.; Kulikov, A.V.

    1995-06-19

    The activity of the rate-limiting enzyme of serotonin biosynthesis, tryptophan hydroxylase, in the striatum but not in the hippocampus and midbrain of rats bred for predisposition to catalepsy was higher than in nonselected rats. Mice of the highly susceptible to catalepsy CBA strain also differed from other noncataleptic mouse strains by the highest tryptophan hydroxylase activity in the striatum. Inhibition of tryptophan hydroxylase with p-chlorophenylalanine and p-chloromethamphetamine drastically decreased immobility time in hereditary predisposed to catalepsy animals. A decrease in the {sup 3}H-ketanserin specific binding in the striatum of cataleptic rats and CBA mice was found. It was suggested that this decrease in 5-HT2A serotonin receptor density represented a down regulation of the receptors due to an activation of serotonergic transmission in striatum. It is suggested that hereditary catalepsy may be resulted from genetic changes in the regulation of serotonin metabolism in striatum. 32 refs., 6 figs.

  3. Reducing central serotonin in adulthood promotes hippocampal neurogenesis

    PubMed Central

    Song, Ning-Ning; Jia, Yun-Fang; Zhang, Lei; Zhang, Qiong; Huang, Ying; Liu, Xiao-Zhen; Hu, Ling; Lan, Wei; Chen, Ling; Lesch, Klaus-Peter; Chen, Xiaoyan; Xu, Lin; Ding, Yu-Qiang

    2016-01-01

    Chronic administration of selective serotonin reuptake inhibitors (SSRIs), which up-regulates central serotonin (5-HT) system function, enhances adult hippocampal neurogenesis. However, the relationship between central 5-HT system and adult neurogenesis has not fully been understood. Here, we report that lowering 5-HT level in adulthood is also able to enhance adult hippocampal neurogenesis. We used tamoxifen (TM)-induced Cre in Pet1-CreERT2 mice to either deplete central serotonergic (5-HTergic) neurons or inactivate 5-HT synthesis in adulthood and explore the role of central 5-HT in adult hippocampal neurogenesis. A dramatic increase in hippocampal neurogenesis is present in these two central 5-HT-deficient mice and it is largely prevented by administration of agonist for 5-HTR2c receptor. In addition, the survival of new-born neurons in the hippocampus is enhanced. Furthermore, the adult 5-HT-deficient mice showed reduced depression-like behaviors but enhanced contextual fear memory. These findings demonstrate that lowering central 5-HT function in adulthood can also enhance adult hippocampal neurogenesis, thus revealing a new aspect of central 5-HT in regulating adult neurogenesis. PMID:26839004

  4. Mutation of the Dyslexia-Associated Gene Dcdc2 Enhances Glutamatergic Synaptic Transmission Between Layer 4 Neurons in Mouse Neocortex.

    PubMed

    Che, Alicia; Truong, Dongnhu T; Fitch, R Holly; LoTurco, Joseph J

    2016-09-01

    Variants in DCDC2 have been associated with reading disability in humans, and targeted mutation of Dcdc2 in mice causes impairments in both learning and sensory processing. In this study, we sought to determine whether Dcdc2 mutation affects functional synaptic circuitry in neocortex. We found mutation in Dcdc2 resulted in elevated spontaneous and evoked glutamate release from neurons in somatosensory cortex. The probability of release was decreased to wild-type level by acute application of N-methyl-d-aspartate receptor (NMDAR) antagonists when postsynaptic NMDARs were blocked by intracellular MK-801, and could not be explained by elevated ambient glutamate, suggesting altered, nonpostsynaptic NMDAR activation in the mutants. In addition, we determined that the increased excitatory transmission was present at layer 4-layer 4 but not thalamocortical connections in Dcdc2 mutants, and larger evoked synaptic release appeared to enhance the NMDAR-mediated effect. These results demonstrate an NMDAR activation-gated, increased functional excitatory connectivity between layer 4 lateral connections in somatosensory neocortex of the mutants, providing support for potential changes in cortical connectivity and activation resulting from mutation of dyslexia candidate gene Dcdc2. PMID:26250775

  5. Binding of serotonin and N1-benzenesulfonyltryptamine-related analogs at human 5-HT6 serotonin receptors: receptor modeling studies.

    PubMed

    Dukat, Małgorzata; Mosier, Philip D; Kolanos, Renata; Roth, Bryan L; Glennon, Richard A

    2008-02-14

    A population of 100 graphics models of the human 5-HT6 serotonin receptor was constructed based on the structure of bovine rhodopsin. The endogenous tryptamine-based agonist serotonin (5-HT; 1) and the benzenesulfonyl-containing tryptamine-derived 5-HT6 receptor antagonist MS-245 (4a) were automatically docked with each of the 100 receptor models using a genetic algorithm approach. Similar studies were conducted with the more selective 5-HT6 receptor agonist EMDT (5) and optical isomers of EMDT-related analog 8, as well as with optical isomers of MS-245 (4a)-related and benzenesulfonyl-containing pyrrolidine 6 and aminotetralin 7. Although associated with the same general aromatic/hydrophobic binding cluster, 5-HT (1) and MS-245 (4a) were found to preferentially bind with distinct receptor conformations, and did so with different binding orientations (i.e., poses). A 5-HT pose/model was found to be common to EMDT (5) and its analogs, whereas that identified for MS-245 (4a) was found common to benzenesulfonyl-containing compounds. Specific amino acid residues were identified that can participate in binding, and evaluation of a sulfenamide analog of MS-245 indicates for the first time that the presence of the sulfonyl oxygen atoms enhances receptor affinity. The results indicate that the presence or absence of an N1-benzenesulfonyl group is a major determinant of the manner in which tryptamine-related agents bind at 5-HT6 serotonin receptors. PMID:18201064

  6. Review article: serotonin receptors and transporters -- roles in normal and abnormal gastrointestinal motility.

    PubMed

    Gershon, M D

    2004-11-01

    The gut is the only organ that can display reflexes and integrative neuronal activity even when isolated from the central nervous system. This activity can be triggered by luminal stimuli that are detected by nerves via epithelial intermediation. Epithelial enterochromaffin cells act as sensory transducers that activate the mucosal processes of both intrinsic and extrinsic primary afferent neurones through their release of 5-hydroxytryptamine (5-HT). Intrinsic primary afferent neurones are present in both the submucosal and myenteric plexuses. Peristaltic and secretory reflexes are initiated by submucosal intrinsic primary afferent neurones, which are stimulated by 5-HT acting at 5-HT(1P) receptors. 5-HT acting at 5-HT4 receptors enhances the release of transmitters from their terminals and from other terminals in prokinetic reflex pathways. Signalling to the central nervous system is predominantly 5-HT3 mediated, although serotonergic transmission within the enteric nervous system and the activation of myenteric intrinsic primary afferent neurones are also 5-HT3 mediated. The differential distribution of 5-HT receptor subtypes makes it possible to use 5-HT3 antagonists and 5-HT4 agonists to treat intestinal discomfort and motility. 5-HT3 antagonists alleviate the nausea and vomiting associated with cancer chemotherapy and the discomfort from the bowel in irritable bowel syndrome; however, because 5-HT-mediated fast neurotransmission within the enteric nervous system and the stimulation of mucosal processes of myenteric intrinsic primary afferent neurones are 5-HT3 mediated, 5-HT3 antagonists tend to be constipating and should be used only when pre-existing constipation is not a significant component of the problem to be treated. In contrast, 5-HT4 agonists, such as tegaserod, are safe and effective in the treatment of irritable bowel syndrome with constipation and chronic constipation. They do not stimulate nociceptive extrinsic nerves nor initiate peristaltic and

  7. Characterization of the effects of serotonin on the release of (/sup 3/H)dopamine from rat nucleus accumbens and striatal slices

    SciTech Connect

    Nurse, B.; Russell, V.A.; Taljaard, J.J.

    1988-05-01

    The effect of serotonin agonists on the depolarization (K+)-induced, calcium-dependent, release of (/sup 3/H)dopamine (DA) from rat nucleus accumbens and striatal slices was investigated. Serotonin enhanced basal /sup 3/H overflow and reduced K+-induced release of (/sup 3/H)DA from nucleus accumbens slices. The effect of serotonin on basal /sup 3/H overflow was not altered by the serotonin antagonist, methysergide, or the serotonin re-uptake blocker, chlorimipramine, but was reversed by the DA re-uptake carrier inhibitors nomifensine and benztropine. With the effect on basal overflow blocked, serotonin did not modulate K+-induced release of (/sup 3/H)DA in the nucleus accumbens or striatum. The serotonin agonists, quipazine (in the presence of nomifensine) and 5-methoxytryptamine, did not significantly affect K+-induced release of (/sup 3/H)DA in the nucleus accumbens. This study does not support suggestions that serotonin receptors inhibit the depolarization-induced release of dopamine in the nucleus accumbens or striatum of the rat brain. The present results do not preclude the possibility that serotonin may affect the mesolimbic reward system at a site which is post-synaptic to dopaminergic terminals in the nucleus accumbens.

  8. Serotonin increases synaptic activity in olfactory bulb glomeruli.

    PubMed

    Brill, Julia; Shao, Zuoyi; Puche, Adam C; Wachowiak, Matt; Shipley, Michael T

    2016-03-01

    Serotoninergic fibers densely innervate olfactory bulb glomeruli, the first sites of synaptic integration in the olfactory system. Acting through 5HT2A receptors, serotonin (5HT) directly excites external tufted cells (ETCs), key excitatory glomerular neurons, and depolarizes some mitral cells (MCs), the olfactory bulb's main output neurons. We further investigated 5HT action on MCs and determined its effects on the two major classes of glomerular interneurons: GABAergic/dopaminergic short axon cells (SACs) and GABAergic periglomerular cells (PGCs). In SACs, 5HT evoked a depolarizing current mediated by 5HT2C receptors but did not significantly impact spike rate. 5HT had no measurable direct effect in PGCs. Serotonin increased spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) in PGCs and SACs. Increased sEPSCs were mediated by 5HT2A receptors, suggesting that they are primarily due to enhanced excitatory drive from ETCs. Increased sIPSCs resulted from elevated excitatory drive onto GABAergic interneurons and augmented GABA release from SACs. Serotonin-mediated GABA release from SACs was action potential independent and significantly increased miniature IPSC frequency in glomerular neurons. When focally applied to a glomerulus, 5HT increased MC spontaneous firing greater than twofold but did not increase olfactory nerve-evoked responses. Taken together, 5HT modulates glomerular network activity in several ways: 1) it increases ETC-mediated feed-forward excitation onto MCs, SACs, and PGCs; 2) it increases inhibition of glomerular interneurons; 3) it directly triggers action potential-independent GABA release from SACs; and 4) these network actions increase spontaneous MC firing without enhancing responses to suprathreshold sensory input. This may enhance MC sensitivity while maintaining dynamic range. PMID:26655822

  9. Preferential enhancement of dopamine transmission within the nucleus accumbens shell by cocaine is attributable to a direct increase in phasic dopamine release events.

    PubMed

    Aragona, Brandon J; Cleaveland, Nathan A; Stuber, Garret D; Day, Jeremy J; Carelli, Regina M; Wightman, R Mark

    2008-08-27

    Preferential enhancement of dopamine transmission within the nucleus accumbens (NAc) shell is a fundamental aspect of the neural regulation of cocaine reward. Despite its importance, the nature of this effect is poorly understood. Here, we used fast-scan cyclic voltammetry to examine specific transmission processes underlying cocaine-evoked increases in dopamine transmission within the NAc core and shell. Initially, we examined altered terminal dopamine concentrations after global autoreceptor blockade. This was the first examination of autoreceptor regulation of naturally occurring phasic dopamine transmission and provided a novel characterization of specific components of dopamine neurotransmission. Comparison of increased dopamine signaling evoked by autoreceptor blockade and cocaine administration allowed robust resolution between increased frequency, concentration, and duration of phasic dopamine release events after cocaine delivery. Cocaine increased dopamine transmission by slowed uptake and increased concentration of dopamine released in the core and shell. However, an additional increase in the number phasic release events occurred only within the NAc shell, and this increase was eliminated by inactivation of midbrain dopaminergic neurons. This represents the first evidence that cocaine directly increases the frequency of dopamine release events and reveals that this is responsible for preferentially increased dopamine transmission within the NAc shell after cocaine administration. Additionally, cocaine administration resulted in a synergistic increase in dopamine concentration, and subregion differences were abolished when cocaine was administered in the absence of autoregulation. Together, these results demonstrate that cocaine administration results in a temporally and regionally specific increase in phasic dopamine release that is significantly regulated by dopamine autoreceptors. PMID:18753384

  10. Ghrelin- and serotonin-producing gastric carcinoid.

    PubMed

    Latta, Eleanor; Rotondo, Fabio; Leiter, Lawrence A; Horvath, Eva; Kovacs, Kalman

    2012-06-01

    We report the case of a 57-year-old woman with gastric carcinoid. The tumor was surgically removed and immunohistochemical investigation demonstrated a rare combination: ghrelin and serotonin in the cytoplasm of the tumor cells. The functional significance of simultaneous production of ghrelin and serotonin is not clear. It may be that an autocrine/paracrine interaction exists between these two different hormones. PMID:21424696

  11. Serotonin modulation of caudal photoreceptor in crayfish.

    PubMed

    Rodríguez-Sosa, Leonardo; Calderón-Rosete, Gabina; Porras Villalobos, Mercedes Graciela; Mendoza Zamora, Elena; Anaya González, Víctor

    2006-01-01

    The sixth abdominal ganglion (6th AG) of the crayfish contains two photosensitive neurons. This caudal photoreceptor (CPR) displays spontaneous electrical activity and phasic-tonic responses to light pulses. In this paper, we analyzed the presence of serotonin in the 6th AG and its effects in the modulation of the activity of CPR. In the first part of our study, we identified serotonergic neurons in the 6th AG by immunostaining using an antibody against serotonin. Next, we quantified the serotonin contents in the 6th AG by using liquid chromatography. Finally, we searched for serotonergic modulation of the CPR electrical activity by using conventional extracellular recordings. We found 13 immunopositive neurons located in the ventral side of the 6th AG. The mean diameter of their somata was 23+/-9 microm. In addition, there was immunopositive staining in neuropilar fibers and varicosities. The contents of serotonin and its precursors in the 6th AG varied along the 24-h cycle. Its maximum value was reached by midday. Topic application of serotonin to ganglia kept in darkness increased the CPR spontaneous firing rate and reduced its light responsiveness. Both effects were dose-dependent within ED(50) approximately 1 microM and were blocked by the 5-HT antagonist methysergide. These observations support the role of serotonin as a neurotransmitter or neuromodulator in the CPR of the two species of crayfish Procambarus clarkii and Cherax quadricarinatus. PMID:16298168

  12. Short-term repeated corticosterone administration enhances glutamatergic but not GABAergic transmission in the rat motor cortex.

    PubMed

    Kula, Joanna; Blasiak, Anna; Czerw, Anna; Tylko, Grzegorz; Sowa, Joanna; Hess, Grzegorz

    2016-04-01

    It has been demonstrated that stress impairs performance of skilled reaching and walking tasks in rats due to the action of glucocorticoids involved in the stress response. Skilled reaching and walking are controlled by the primary motor cortex (M1); however, it is not known whether stress-related impairments in skilled motor tasks are related to functional and/or structural alterations within the M1. We studied the effects of single and repeated injections of corticosterone (twice daily for 7 days) on spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) recorded from layer II/III pyramidal neurons in ex vivo slices of the M1, prepared 2 days after the last administration of the hormone. We also measured the density of dendritic spines on pyramidal cells and the protein levels of selected subunits of AMPA, NMDA, and GABAA receptors after repeated corticosterone administration. Repeatedly administered corticosterone induced an increase in the frequency but not in the amplitude of sEPSCs, while a single administration had no effect on the recorded excitatory currents. The frequency and amplitude of sIPSCs as well as the excitability of pyramidal cells were changed neither after single nor after repeated corticosterone administration. Treatment with corticosterone for 7 days did not modify the density of dendritic spines on pyramidal neurons. Corticosterone influenced neither the protein levels of GluA1, GluA2, GluN1, GluN2A, and GluN2B subunits of glutamate receptors nor those of α1, β2, and γ2 subunits of the GABAA receptor. The increase in sEPSCs frequency induced by repeated corticosterone administration faded out within 7 days. These data indicate that prolonged administration of exogenous corticosterone selectively and reversibly enhances glutamatergic, but not GABAergic transmission in the rat motor cortex. Our results suggest that corticosterone treatment results in an enhancement of spontaneous glutamate release from

  13. Effect of Serotonin on Paired Associative Stimulation-Induced Plasticity in the Human Motor Cortex

    PubMed Central

    Batsikadze, Giorgi; Paulus, Walter; Kuo, Min-Fang; Nitsche, Michael A

    2013-01-01

    Serotonin modulates diverse brain functions. Beyond its clinical antidepressant effects, it improves motor performance, learning and memory formation. These effects might at least be partially caused by the impact of serotonin on neuroplasticity, which is thought to be an important foundation of the respective functions. In principal accordance, selective serotonin reuptake inhibitors enhance long-term potentiation-like plasticity induced by transcranial direct current stimulation (tDCS) in humans. As other neuromodulators have discernable effects on different kinds of plasticity in humans, here we were interested to explore the impact of serotonin on paired associative stimulation (PAS)-induced plasticity, which induces a more focal kind of plasticity, as compared with tDCS, shares some features with spike timing-dependent plasticity, and is thought to be relative closely related to learning processes. In this single-blinded, placebo-controlled, randomized crossover study, we administered a single dose of 20 mg citalopram or placebo medication and applied facilitatory- and excitability-diminishing PAS to the left motor cortex of 14 healthy subjects. Cortico-spinal excitability was explored via single-pulse transcranial magnetic stimulation-elicited MEP amplitudes up to the next evening after plasticity induction. After citalopram administration, inhibitory PAS-induced after-effects were abolished and excitatory PAS-induced after-effects were enhanced trendwise, as compared with the respective placebo conditions. These results show that serotonin modulates PAS-induced neuroplasticity by shifting it into the direction of facilitation, which might help to explain mechanism of positive therapeutic effects of serotonin in learning and medical conditions characterized by enhanced inhibitory or reduced facilitatory plasticity, including depression and stroke. PMID:23680943

  14. Cortical serotonin and norepinephrine denervation in parkinsonism: Preferential loss of the beaded serotonin innervation

    PubMed Central

    Nayyar, Tultul; Bubser, Michael; Ferguson, Marcus C.; Neely, M. Diana; Goodwin, J. Shawn; Montine, Thomas J.; Deutch, Ariel Y.; Ansah, Twum A.

    2009-01-01

    Parkinson’s Disease (PD) is marked by prominent motor symptoms that reflect striatal dopamine insufficiency. However, non-motor symptoms, including depression, are common in PD. These changes have been suggested to reflect pathological involvement of non-dopaminergic systems. We examined regional changes in serotonin and norepinephrine systems in mice treated with two different 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment paradigms and that survived for 3 or 16 weeks after the last MPTP injection. MPTP caused a decrease in striatal dopamine concentration, the magnitude of which depended on the treatment regimen and survival interval after MPTP treatment. There was significant involvement of other subcortical areas receiving a dopamine innervation, but no consistent changes in serotonin or norepinephrine levels in subcortical sites. In contrast, we observed an enduring decrease in serotonin and norepinephrine concentrations in both the somatosensory and medial prefrontal (PFC) cortex. Immunohistochemical studies also revealed a decrease in the density of PFC norepinephrine and serotonin axons. The decrease in the cortical serotonergic innervation preferentially involved the thick beaded but not smooth fine serotonin axons. Similar changes in the serotonin innervation of postmortem samples of the prefrontal cortex from idiopathic PD cases were seen. Our findings point to a major loss of the serotonin and norepinephrine innervations of the cortex in MPTP-induced parkinsonism, and suggest that loss of the beaded cortical serotonin innervation is associated with a predisposition to the development of depression in PD. PMID:19659923

  15. Turn-On Near-Infrared Fluorescent Sensor for Selectively Imaging Serotonin.

    PubMed

    Hettie, Kenneth S; Glass, Timothy E

    2016-01-20

    A molecular imaging tool that provides for the direct visualization of serotonin would significantly aid in the investigation of neuropsychiatric disorders that are attributed to its neuronal dysregulation. Here, the design, synthesis, and evaluation of NeuroSensor 715 (NS715) is presented. NS715 is the first molecular sensor that exhibits a turn-on near-infrared fluorescence response toward serotonin. Density functional theory calculations facilitated the design of a fluorophore based on a coumarin-3-aldehyde scaffold that derives from an electron-rich 1,2,3,4-tetrahydroquinoxaline framework, which provides appropriate energetics to prevent the hydroxyindole moiety of serotonin from quenching its fluorescence emission. Spectroscopic studies revealed that NS715 produces an 8-fold fluorescence enhancement toward serotonin with an emission maximum at 715 nm. Accompanying binding studies indicated NS715 displays a 19-fold selective affinity for serotonin and a modest affinity for catecholamines over other primary-amine neurotransmitters. The utility of NS715 toward neuroimaging applications was validated by selectively labeling and directly imaging norepinephrine within secretory vesicles using live chromaffin cells, which serve as a model system for specialized neurons that synthesize, package, and release only a single, unique type of neurotransmitter. In addition, NS715 effectively differentiated between cell populations that express distinct neurotransmitter phenotypes. PMID:26521705

  16. Paired Cut-Wire Arrays for Enhanced Transmission of Transverse-Electric Fields Through Subwavelength Slits in a Thin Metallic Screen

    NASA Astrophysics Data System (ADS)

    Gallina, Ilaria; Castaldi, Giuseppe; Galdi, Vincenzo; Di Gennaro, Emiliano; Andreone, Antonello

    It has recently been shown that the transmission of electromagnetic fields through sub-wavelength slits (parallel to the electric field direction) in a thin metallic screen can be greatly enhanced by covering one side of the screen with a metallic cut-wire array laid on a dielectric layer. In this Letter, we show that a richer phenomenology (which involves both electric- and magnetic-type resonances) can be attained by pairing a second cut-wire array at the other side of the screen. Via a full-wave comprehensive parametric study, we illustrate the underlying mechanisms and explore the additional degrees of freedom endowed, as well as their possible implications in the engineering of enhanced transmission phenomena.

  17. Direct effects of serotonin and ketanserin on the functional morphology of embryonic chick skin in vitro

    SciTech Connect

    Beele, H.; Thierens, H.; de Ridder, L. )

    1989-10-01

    Different organotypical culture methods are used to test direct effects of serotonin and ketanserin, a S2, alpha 1, and H1 receptor antagonist in vascular tissue, on fibroblasts and epidermal cells of embryonic chick skin in vitro. From light microscopic and electron microscopic analyses, we learn that serotonin enhances keratinization and differentiation, whereas ketanserin reduces differentiation in comparison to the control cultures. Incorporation data of fragments cultured with (3H)thymidine show that ketanserin, within a dose range from 0.05 to 5 micrograms/ml, stimulates proliferation. Serotonin at a concentration of 10 micrograms/ml slightly slows down proliferation, whereas lower doses of 0.1 and 1 microgram/ml result in tritium activities that do not differ from control cultures.

  18. Increased release of brain serotonin reduces vulnerability to ventricular fibrillation in the cat

    NASA Technical Reports Server (NTRS)

    Lehnert, Hendrik; Lombardi, Federico; Raeder, Ernst A.; Lorenzo, Antonio V.; Verrier, Richard L.; Lown, Bernard; Wurtman, Richard J.

    1987-01-01

    The effect of administering the serotonin precursor 5-l-hydroxytryptophan, in conjunction with a monamine oxidase inhibitor phenelzine and a l-amino acid decarboxylase inhibitor carbidopa, on neurochemical changes in the concentrations of serotonin and 5-hydroxyindoleacetic acid (5-HIAA) in the cerebrospinal fluid of the cat were investigated. Results showed that this drug regimen led to increases of serotonin and 5-hydroxyindoleacetic acid (5-HIAA) concentrations in the cerebrospinal fluid by 330 and 830 percent, respectively. Concomitantly, the threshold of ventricular fibrillation was found to be elevated by 42 percent and the effective refractory period was prolonged by 7 percent; the efferent sympathetic neural activity was suppressed in the normal heart. The results indicate that the enhancement of central serotoninergic neurotransmission can reduce the susceptibility of the heart to ventricular fibrillation mediated through a decline in sympathetic neural traffic to the heart.

  19. Low melatonin production by suppression of either serotonin N-acetyltransferase or N-acetylserotonin methyltransferase in rice causes seedling growth retardation with yield penalty, abiotic stress susceptibility, and enhanced coleoptile growth under anoxic conditions.

    PubMed

    Byeon, Yeong; Back, Kyoungwhan

    2016-04-01

    Serotonin N-acetyltransferase (SNAT) and N-acetylserotonin methyltransferase (ASMT) are the last two key enzymes for melatonin biosynthesis in living organisms. In this study, we demonstrated that transgenic rice (Oryza sativa L.) plants, in which expression of either endogenous SNAT or ASMT was suppressed, had reduced melatonin synthesis, confirming that both SNAT and ASMT are functionally involved in melatonin synthesis. The melatonin-deficient SNAT rice had retarded seedling growth, which was partially restored by exogenous melatonin application, suggesting melatonin's role in seedling growth. In addition, the plants were more sensitive to various abiotic stresses, including salt and cold, compared with the wild type. Melatonin-deficient SNAT rice had increased coleoptile growth under anoxic conditions, indicating that melatonin also inversely regulates plant growth under anaerobic conditions with the concomitant high expression of alcohol dehydrogenase genes. Similarly, the melatonin-deficient ASMT rice exhibited accelerated senescence in detached flag leaves, as well as significantly reduced yield. These loss-of-function studies on the melatonin biosynthetic genes confirmed most previous pharmacological reports that melatonin not only promotes plant growth but also mitigates various abiotic stresses. PMID:26919041

  20. Immunomodulatory Effects Mediated by Serotonin

    PubMed Central

    Arreola, Rodrigo; Becerril-Villanueva, Enrique; Cruz-Fuentes, Carlos; Velasco-Velázquez, Marco Antonio; Garcés-Alvarez, María Eugenia; Hurtado-Alvarado, Gabriela; Quintero-Fabian, Saray; Pavón, Lenin

    2015-01-01

    Serotonin (5-HT) induces concentration-dependent metabolic effects in diverse cell types, including neurons, entherochromaffin cells, adipocytes, pancreatic beta-cells, fibroblasts, smooth muscle cells, epithelial cells, and leukocytes. Three classes of genes regulating 5-HT function are constitutively expressed or induced in these cells: (a) membrane proteins that regulate the response to 5-HT, such as SERT, 5HTR-GPCR, and the 5HT3-ion channels; (b) downstream signaling transduction proteins; and (c) enzymes controlling 5-HT metabolism, such as IDO and MAO, which can generate biologically active catabolites, including melatonin, kynurenines, and kynurenamines. This review covers the clinical and experimental mechanisms involved in 5-HT-induced immunomodulation. These mechanisms are cell-specific and depend on the expression of serotonergic components in immune cells. Consequently, 5-HT can modulate several immunological events, such as chemotaxis, leukocyte activation, proliferation, cytokine secretion, anergy, and apoptosis. The effects of 5-HT on immune cells may be relevant in the clinical outcome of pathologies with an inflammatory component. Major depression, fibromyalgia, Alzheimer disease, psoriasis, arthritis, allergies, and asthma are all associated with changes in the serotonergic system associated with leukocytes. Thus, pharmacological regulation of the serotonergic system may modulate immune function and provide therapeutic alternatives for these diseases. PMID:25961058

  1. Switching brain serotonin with oxytocin

    PubMed Central

    Mottolese, Raphaelle; Redouté, Jérôme; Costes, Nicolas; Le Bars, Didier; Sirigu, Angela

    2014-01-01

    Serotonin (5-HT) and oxytocin (OXT) are two neuromodulators involved in human affect and sociality and in disorders like depression and autism. We asked whether these chemical messengers interact in the regulation of emotion-based behavior by administering OXT or placebo to 24 healthy subjects and mapping cerebral 5-HT system by using 2′-methoxyphenyl-(N-2′-pyridinyl)-p-[18F]fluoro-benzamidoethylpiperazine ([18F]MPPF), an antagonist of 5-HT1A receptors. OXT increased [18F]MPPF nondisplaceable binding potential (BPND) in the dorsal raphe nucleus (DRN), the core area of 5-HT synthesis, and in the amygdala/hippocampal complex, insula, and orbitofrontal cortex. Importantly, the amygdala appears central in the regulation of 5-HT by OXT: [18F]MPPF BPND changes in the DRN correlated with changes in right amygdala, which were in turn correlated with changes in hippocampus, insula, subgenual, and orbitofrontal cortex, a circuit implicated in the control of stress, mood, and social behaviors. OXT administration is known to inhibit amygdala activity and results in a decrease of anxiety, whereas high amygdala activity and 5-HT dysregulation have been associated with increased anxiety. The present study reveals a previously unidentified form of interaction between these two systems in the human brain, i.e., the role of OXT in the inhibitory regulation of 5-HT signaling, which could lead to novel therapeutic strategies for mental disorders. PMID:24912179

  2. Brain serotonin, psychoactive drugs, and effects on reproduction.

    PubMed

    Ayala, María Elena

    2009-12-01

    Serotonin, a biogenic amine, is present in significant amounts in many structures of the CNS. It is involved in regulation of a wide variety of physiological functions, such as sensory and motor functions, memory, mood, and secretion of hormones including reproductive hormones. It has also been implicated in the etiology of a range of psychiatric disorders such as anxiety, depression, and eating disorders, along with other conditions such as obesity and migraine. While some drugs that affect serotonin, such as fenfluramine and fluoxetine, have been successfully used in treatment of a range of psychiatric diseases, others, such as the amphetamine analogues MDMA and METH, are potent psychostimulant drugs of abuse. Alterations in serotonergic neurons caused by many of these drugs are well characterized; however, little is known about the reproductive consequences of such alterations. This review evaluates the effects of drugs such as MDMA, pCA, fenfluramine, and fluoxetine on serotonergic transmission in the brain, examines the relationships of these drug effects with the neuroendocrine mechanisms modulating reproductive events such as gonadotropin secretion, ovulation, spermatogenesis, and sexual behavior in animal models, and discusses possible reproductive implications of these drugs in humans. PMID:20021359

  3. Transmission of group II heteronymous pathways is enhanced in rigid lower limb of de novo patients with Parkinson's disease.

    PubMed

    Simonetta Moreau, M; Meunier, S; Vidailhet, M; Pol, S; Galitzky, M; Rascol, O

    2002-09-01

    A potent heteronymous excitation of quadriceps motoneurones via common peroneal group II afferents has recently been demonstrated in normal subjects. The aim of this study was to investigate whether this group II excitation contributes to rigidity in Parkinson's disease. The early and late facilitations of the quadriceps H reflex elicited by a conditioning volley to the common peroneal nerve (CPN) at twice motor threshold, attributed to non-monosynaptic group I and group II excitations, respectively, were investigated. The comparison was drawn between results obtained in 20 "de novo" patients with Parkinson's disease (hemiparkinsonian, 17; bilateral, three) and 20 age-matched normal subjects. There was no statistically significant effect of "group" (patients/controls), "duration", "global severity" [Unified Parkinson's Disease Rating Scale (UPDRS)] or "side" (unilaterally versus bilaterally affected) factors on either group I or group II facilitations. To further the analysis, the factors of status (affected or non-affected limb), akinesia (lower limb akinesia score) and rigidity (lower limb rigidity score) were entered in a general linear model to explain the variations of the quadriceps H reflex facilitation. Rigidity was the only factor useful in predicting the value of the group II facilitation of the quadriceps H reflex (P < 0.007). Group I and group II facilitation was then compared between the rigid, non-rigid and control lower limbs [multivariate analysis of variance (MANOVA)]. Results are represented as mean +/- SEM (standard error of the mean). Group II facilitation was enhanced in the rigid lower limb of unilaterally affected patients (153.2 +/- 7% of control H reflex) compared with non-rigid lower limbs (124 +/- 4% of control H reflex; P < 0.007) or control lower limbs (126.1 +/- 4.1%; P < 0.01). There was no difference between the non-rigid lower limbs of the unilaterally affected patients and the control lower limbs, but a difference was observed

  4. In Vitro Evolution of Bovine Foamy Virus Variants with Enhanced Cell-Free Virus Titers and Transmission

    PubMed Central

    Bao, Qiuying; Hipp, Michaela; Hugo, Annette; Lei, Janet; Liu, Yang; Kehl, Timo; Hechler, Torsten; Löchelt, Martin

    2015-01-01

    Virus transmission is essential for spreading viral infections and is a highly coordinated process which occurs by cell-free transmission or cell–cell contact. The transmission of Bovine Foamy Virus (BFV) is highly cell-associated, with undetectable cell-free transmission. However, BFV particle budding can be induced by overexpression of wild-type (wt) BFV Gag and Env or artificial retargeting of Gag to the plasma membrane via myristoylation membrane targeting signals, closely resembling observations in other foamy viruses. Thus, the particle release machinery of wt BFV appears to be an excellent model system to study viral adaption to cell-free transmission by in vitro selection and evolution. Using selection for BFV variants with high cell-free infectivity in bovine and non-bovine cells, infectivity dramatically increased from almost no infectious units to about 105–106 FFU (fluorescent focus forming units)/mL in both cell types. Importantly, the selected BFV variants with high titer (HT) cell-free infectivity could still transmit via cell-cell contacts and were neutralized by serum from naturally infected cows. These selected HT–BFV variants will shed light into virus transmission and potential routes of intervention in the spread of viral infections. It will also allow the improvement or development of new promising approaches for antiretroviral therapies. PMID:26569290

  5. In Vitro Evolution of Bovine Foamy Virus Variants with Enhanced Cell-Free Virus Titers and Transmission.

    PubMed

    Bao, Qiuying; Hipp, Michaela; Hugo, Annette; Lei, Janet; Liu, Yang; Kehl, Timo; Hechler, Torsten; Löchelt, Martin

    2015-11-01

    Virus transmission is essential for spreading viral infections and is a highly coordinated process which occurs by cell-free transmission or cell-cell contact. The transmission of Bovine Foamy Virus (BFV) is highly cell-associated, with undetectable cell-free transmission. However, BFV particle budding can be induced by overexpression of wild-type (wt) BFV Gag and Env or artificial retargeting of Gag to the plasma membrane via myristoylation membrane targeting signals, closely resembling observations in other foamy viruses. Thus, the particle release machinery of wt BFV appears to be an excellent model system to study viral adaption to cell-free transmission by in vitro selection and evolution. Using selection for BFV variants with high cell-free infectivity in bovine and non-bovine cells, infectivity dramatically increased from almost no infectious units to about 105-106 FFU (fluorescent focus forming units)/mL in both cell types. Importantly, the selected BFV variants with high titer (HT) cell-free infectivity could still transmit via cell-cell contacts and were neutralized by serum from naturally infected cows. These selected HT-BFV variants will shed light into virus transmission and potential routes of intervention in the spread of viral infections. It will also allow the improvement or development of new promising approaches for antiretroviral therapies. PMID:26569290

  6. Enhancement of noradrenergic neural transmission: an effective therapy of myasthenia gravis: a report on 52 consecutive patients.

    PubMed

    Lechin, F; van der Dijs, B; Pardey-Maldonado, B; John, E; Jimenez, V; Orozco, B; Baez, S; Lechin, M E

    2000-01-01

    Neurochemical, neuroautonomic and neuropharmacological assessments carried out on all our myasthenia gravis (MG) patients showed that they presented a neural sympathetic deficit plus excessive adrenal-sympathetic activity. These abnormalities were registered during the basal (supine-resting) state, as well as after several stress tests (orthostasis, exercise, oral glucose and buspirone). In addition, MG patients showed increased levels of free-serotonin (f5HT) in the plasma, supposedly associated with the increased platelet aggregability which we found in all MG patients. As the above trio of neurochemical disorders (low noradrenergic-activity + high adrenergic-activity + increased f-5HT plasma levels) is known to favor Th-1 immunosuppression + Th-2 predominance, we outlined a neuropharmacological strategy for reverting the above neurochemical disorder. This treatment provoked sudden (acute), and late sustained improvements. Acute effects have been attributed to the increase of alpha-1 activity at the spinal motoneuron level. Late improvements always paralleled a significant normalization of immunological disorders. Complete normalization was registered only in non-thymectomized MG patients. PMID:11508327

  7. Tryptophan: the key to boosting brain serotonin synthesis in depressive illness.

    PubMed

    Badawy, Abdulla A-B

    2013-10-01

    It has been proposed that focusing on brain serotonin synthesis can advance antidepressant drug development. Biochemical aspects of the serotonin deficiency in major depressive disorder (MDD) are discussed here in detail. The deficiency is caused by a decreased availability of the serotonin precursor tryptophan (Trp) to the brain. This decrease is caused by accelerated Trp degradation, most likely induced by enhancement of the hepatic enzyme tryptophan 2,3-dioxygenase (TDO) by glucocorticoids and/or catecholamines. Induction of the extrahepatic Trp-degrading enzyme indolylamine 2,3-dioxygenase (IDO) by the modest immune activation in MDD has not been demonstrated and, if it occurs, is unlikely to make a significant contribution. Liver TDO appears to be a target of many antidepressants, the mood stabilisers Li(+) and carbamazepine and possibly other adjuncts to antidepressant therapy. The poor, variable and modest antidepressant efficacy of Trp is due to accelerated hepatic Trp degradation, and efficacy can be restored or enhanced by combination with antidepressants or other existing or new TDO inhibitors. Enhancing Trp availability to the brain is thus the key to normalisation of serotonin synthesis and could form the basis for future antidepressant drug development. PMID:23904410

  8. High-performance liquid chromatography with diode array detection method for the simultaneous determination of seven selected phosphodiesterase-5 inhibitors and serotonin reuptake inhibitors used as male sexual enhancers.

    PubMed

    Baker, Mostafa M; Belal, Tarek S; Mahrous, Mohamed S; Ahmed, Hytham M; Daabees, Hoda G

    2016-05-01

    This work presents a simple, sensitive and generic high-performance liquid chromatography with diode array detection method for the simultaneous determination of seven drugs prescribed for the treatment of erectile dysfunction and premature ejaculation. Investigated drugs include the phosphodiesterase-5 inhibitors: sildenafil, tadalafil, and vardenafil, in addition to the selective serotonin reuptake inhibitors: dapoxetine, duloxetine, fluoxetine, and paroxetine. The drugs were separated using a Waters C8 column (4.6 × 250 mm, 5 μm) with the mobile phase consisting of phosphate buffer pH 3, acetonitrile and methanol in the ratio 60:33:7. The flow rate was 1.2 mL/min, and quantification was based on measuring peak areas at 225 nm. Peaks were perfectly resolved with retention times 3.3, 3.9, 6.4, 7.5, 9.5, 10.7, and 13.4 min for vardenafil, sildenafil, paroxetine, duloxetine, dapoxetine, fluoxetine, and tadalafil, respectively. The developed method was validated with respect to system suitability, linearity, ranges, accuracy, precision, robustness, and limits of detection and quantification. The proposed method showed good linearity in the ranges 5-500, 2-200, 2-200, 3-300, 1.5-150, 2-200, and 2-200 μg/mL for sildenafil, tadalafil, vardenafil, dapoxetine, duloxetine fluoxetine, and paroxetine, respectively. The limits of detection were 0.18-0.38 μg/mL for the analyzed compounds. The applicability of the proposed method to real life situations was assessed through the analysis of commercial tablets, and satisfactory results were obtained. PMID:26970347

  9. Serotonin and the Australian connection: the science and the people.

    PubMed

    Mylecharane, Ewan J

    2013-01-16

    This contribution to "Putting the pieces together: Proceedings from the International Society for Serotonin Research (aka Serotonin Club)" encapsulates a brief history of serotonin beginning with its discovery in 1946 by Maurice Rapport, Arda Green, and Irvine Page. The first 40 years of serotonin research culminated in the inaugural Serotonin Club meeting held on Heron Island, Australia, in 1987. In light of the silver anniversary of the Serotonin Club and its Australian beginnings, it is timely to highlight some of the contributions made to serotonin research by Australian scientists, which I shared with participants at the 2012 meeting of the Serotonin Club, in Montpellier, France as the honoree of the Maurice Rapport Lectureship. PMID:23336042

  10. Serotonin and the Australian Connection: The Science and the People

    PubMed Central

    2013-01-01

    This contribution to “Putting the pieces together: Proceedings from the International Society for Serotonin Research (aka Serotonin Club)” encapsulates a brief history of serotonin beginning with its discovery in 1946 by Maurice Rapport, Arda Green, and Irvine Page. The first 40 years of serotonin research culminated in the inaugural Serotonin Club meeting held on Heron Island, Australia, in 1987. In light of the silver anniversary of the Serotonin Club and its Australian beginnings, it is timely to highlight some of the contributions made to serotonin research by Australian scientists, which I shared with participants at the 2012 meeting of the Serotonin Club, in Montpellier, France as the honoree of the Maurice Rapport Lectureship. PMID:23336042

  11. Carbamazepine and oxcarbazepine, but not eslicarbazepine, enhance excitatory synaptic transmission onto hippocampal CA1 pyramidal cells through an antagonist action at adenosine A1 receptors.

    PubMed

    Booker, Sam A; Pires, Nuno; Cobb, Stuart; Soares-da-Silva, Patrício; Vida, Imre

    2015-06-01

    This study assessed the anticonvulsant and seizure generation effects of carbamazepine (CBZ), oxcarbazepine (OXC) and eslicarbazepine (S-Lic) in wild-type mice. Electrophysiological recordings were made to discriminate potential cellular and synaptic mechanisms underlying anti- and pro-epileptic actions. The anticonvulsant and pro-convulsant effects were evaluated in the MES, the 6-Hz and the Irwin tests. Whole-cell patch-clamp recordings were used to investigate the effects on fast excitatory and inhibitory synaptic transmission in hippocampal area CA1. The safety window for CBZ, OXC and eslicarbazepine (ED50 value against the MES test and the dose that produces grade 5 convulsions in all mice), was 6.3, 6.0 and 12.5, respectively. At high concentrations the three drugs reduced synaptic transmission. CBZ and OXC enhanced excitatory postsynaptic currents (EPSCs) at low, therapeutically-relevant concentrations. These effects were associated with no change in inhibitory postsynaptic currents (IPSCs) resulting in altered balance between excitation and inhibition. S-Lic had no effect on EPSC or IPSC amplitudes over the same concentration range. The CBZ mediated enhancement of EPSCs was blocked by DPCPX, a selective antagonist, and occluded by CCPA, a selective agonist of the adenosine A1 receptor. Furthermore, reduction of endogenous adenosine by application of the enzyme adenosine deaminase also abolished the CBZ- and OXC-induced increase of EPSCs, indicating that the two drugs act as antagonists at native adenosine receptors. In conclusion, CBZ and OXC possess pro-epileptic actions at clinically-relevant concentrations through the enhancement of excitatory synaptic transmission. S-Lic by comparison has no such effect on synaptic transmission, explaining its lack of seizure exacerbation. PMID:25656478

  12. Selective Serotonin Reuptake Inhibitor Suppression of HIV Infectivity and Replication

    PubMed Central

    Benton, Tami; Lynch, Kevin; Dubé, Benoit; Gettes, David R.; Tustin, Nancy B.; Lai, Jian Ping; Metzger, David S.; Blume, Joshua; Douglas, Steven D.; Evans, Dwight L.

    2010-01-01

    Objective To test the hypothesis that the selective serotonin reuptake inhibitor (SSRI) citalopram would down regulate HIV infectivity and that the greatest effects would be seen in people with depression. Depression is a risk factor for morbidity and mortality in HIV/AIDS. Serotonin (5-HT) neurotransmission has been implicated in the pathobiology of depression, and pharmacologic therapies for depression target this system. The 5-HT transporter and 5-HT receptors are widely distributed throughout the central nervous and immune systems. Depression has been associated with suppression of natural killer cells (NK) cells and CD8+ lymphocytes, key regulators of HIV infection. Methods Ex-vivo models for acute and chronic HIV infection were used to study the effects of citalopram on HIV viral infection and replication, in 48 depressed and non-depressed women. For both the acute and chronic infection models, HIV reverse transcriptase (RT) activity was measured in the citalopram treatment condition and the control condition. Results The SSRI significantly downregulated the RT response in both the acute and chronic infection models. Specifically, citalopram significantly decreased the acute HIV infectivity of macrophages. Citalopram also significantly decreased HIV viral replication in the latently infected T-cell line and in the latently infected macrophage cell line. There was no difference in down-regulation by depression status. Conclusions These studies suggest that an SSRI enhances NK/CD8 non-cytolytic HIV suppression in HIV/AIDS and decreases HIV viral infectivity of macrophages, ex vivo, suggesting the need for in vivo studies to determine a potential role for agents targeting serotonin in the host defense against HIV. PMID:20947783

  13. Bioisosteric matrices for ligands of serotonin receptors.

    PubMed

    Warszycki, Dawid; Mordalski, Stefan; Staroń, Jakub; Bojarski, Andrzej J

    2015-04-01

    The concept of bioisosteric replacement matrices is applied to explore the chemical space of serotonin receptor ligands, aiming to determine the most efficient ways of manipulating the affinity for all 5-HT receptor subtypes. Analysis of a collection of over 1 million bioisosteres of compounds with measured activity towards serotonin receptors revealed that an average of 31 % of the ligands for each target are mutual bioisosteres. In addition, the collected dataset allowed the development of bioisosteric matrices-qualitative and quantitative descriptions of the biological effects of each predefined type of bioisosteric substitution, providing favored paths of modifying the compounds. The concept exemplified here for serotonin receptor ligands can likely be more broadly applied to other target classes, thus representing a useful guide for medicinal chemists designing novel ligands. PMID:25772514

  14. Enhancement of resident education in sonography using high-speed PACS/ATM image transmission: work in progress

    NASA Astrophysics Data System (ADS)

    Duerinckx, Andre J.; Grant, Edward G.; Melany, Michelle; Narin, Sherelle L.; Hayrapetian, Alek S.; Valentino, Daniel J.

    1996-05-01

    Transmission of high quality images between hospitals would be of value by exposing residents at individual institutions to a greater mix of disease processes. This problem is particularly serious in ultrasound where individual hospitals may not perform the entire range of examinations. We undertook this study to assess the effectiveness of image transmission via a PACS/ATM global network in improving ultrasound education among residents at affiliated hospitals. Image management was performed by AGFA PACS; global network was Asynchronous Transfer Mode. Selected cases from the two hospitals (OB/GYN cases at one, vascular at the other) were transmitted. Readout/teaching sessions included cases performed at base hospital and those received via network. Evaluation forms were collected from participants at both institutions. No image degradation occurred with transmission. Residents' exposure to ultrasound cases increased at the two hospitals. The system was considered an excellent teaching tool by all faculty and residents surveyed.

  15. Electroless deposition of Ag through-void arrays for integrated extraordinary optical transmission-based plasmonic sensing and surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Xu, Die; Chen, Shu; Li, Huanhuan; Yang, Zhilin; Hu, Jiawen

    2015-09-01

    This work reports the use of monolayer colloidal crystal of polystyrene spheres as a template combined with electroless deposition to fabricate Ag through-sphere segment void (SSV) arrays. Experimental and theoretical (finite-difference time-domain) results reveal that the structured Ag through-SSV arrays create extraordinary optical transmission (EOT) and largely enhanced localized fields, thereby enabling EOT-based plasmonic sensing with a sensitivity of 295.38 nm/RIU (RIU = refractive index unit) and reproducible enhanced Raman signal with an enhancement factor of about 104, respectively. These results suggest a low cost, feasible way to integrate plasmonic sensing and molecule-specified Raman detection on a single biochip.

  16. Selective serotonin reuptake inhibitor discontinuation during pregnancy

    PubMed Central

    Ejaz, Resham; Leibson, Tom; Koren, Gideon

    2014-01-01

    Abstract Question I have a patient who discontinued her selective serotonin reuptake inhibitor in pregnancy against my advice owing to fears it might affect the baby. She eventually attempted suicide. How can we deal effectively with this situation? Answer The “cold turkey” discontinuation of needed antidepressants is a serious public health issue strengthened by fears and misinformation. It is very important for physicians to ensure that evidence-based information is given to women in a way that is easy to understand. The risks of untreated moderate to severe depression far outweigh the theoretical risks of taking selective serotonin reuptake inhibitors. PMID:25642484

  17. Regulatory roles of serotonin and melatonin in abiotic stress tolerance in plants.

    PubMed

    Kaur, Harmeet; Mukherjee, Soumya; Baluska, Frantisek; Bhatla, Satish C

    2015-01-01

    Understanding the physiological and biochemical basis of abiotic stress tolerance in plants has always been one of the major aspects of research aiming to enhance plant productivity in arid and semi-arid cultivated lands all over the world. Growth of stress-tolerant transgenic crops and associated agricultural benefits through increased productivity, and related ethical issues, are also the major concerns of current research in various laboratories. Interesting data on the regulation of abiotic stress tolerance in plants by serotonin and melatonin has accumulated in the recent past. These two indoleamines possess antioxidative and growth-inducing properties, thus proving beneficial for stress acclimatization. Present review shall focus on the modes of serotonin and melatonin-induced regulation of abiotic stress tolerance in plants. Complex molecular interactions of serotonin and auxin-responsive genes have suggested their antagonistic nature. Data from genomic and metabolomic analyses of melatonin-induced abiotic stress signaling have lead to an understanding of the regulation of stress tolerance through the modulation of transcription factors, enzymes and various signaling molecules. Melatonin, nitric oxide (NO) and calmodulin interactions have provided new avenues for research on the molecular aspects of stress physiology in plants. Investigations on the characterization of receptors associated with serotonin and melatonin responses, are yet to be undertaken in plants. Patenting of biotechnological inventions pertaining to serotonin and melatonin formulations (through soil application or foliar spray) are expected to be some of the possible ways to regulate abiotic stress tolerance in plants. The present review, thus, summarizes the regulatory roles of serotonin and melatonin in modulating the signaling events accompanying abiotic stress in plants. PMID:26633566

  18. Regulatory roles of serotonin and melatonin in abiotic stress tolerance in plants

    PubMed Central

    Kaur, Harmeet; Mukherjee, Soumya; Baluska, Frantisek; Bhatla, Satish C

    2015-01-01

    Understanding the physiological and biochemical basis of abiotic stress tolerance in plants has always been one of the major aspects of research aiming to enhance plant productivity in arid and semi-arid cultivated lands all over the world. Growth of stress-tolerant transgenic crops and associated agricultural benefits through increased productivity, and related ethical issues, are also the major concerns of current research in various laboratories. Interesting data on the regulation of abiotic stress tolerance in plants by serotonin and melatonin has accumulated in the recent past. These two indoleamines possess antioxidative and growth-inducing properties, thus proving beneficial for stress acclimatization. Present review shall focus on the modes of serotonin and melatonin-induced regulation of abiotic stress tolerance in plants. Complex molecular interactions of serotonin and auxin-responsive genes have suggested their antagonistic nature. Data from genomic and metabolomic analyses of melatonin-induced abiotic stress signaling have lead to an understanding of the regulation of stress tolerance through the modulation of transcription factors, enzymes and various signaling molecules. Melatonin, nitric oxide (NO) and calmodulin interactions have provided new avenues for research on the molecular aspects of stress physiology in plants. Investigations on the characterization of receptors associated with serotonin and melatonin responses, are yet to be undertaken in plants. Patenting of biotechnological inventions pertaining to serotonin and melatonin formulations (through soil application or foliar spray) are expected to be some of the possible ways to regulate abiotic stress tolerance in plants. The present review, thus, summarizes the regulatory roles of serotonin and melatonin in modulating the signaling events accompanying abiotic stress in plants. PMID:26633566

  19. Hindbrain serotonin and the rapid induction of sodium appetite

    NASA Technical Reports Server (NTRS)

    Menani, J. V.; De Luca, L. A. Jr; Thunhorst, R. L.; Johnson, A. K.

    2000-01-01

    Both systemically administered furosemide and isoproterenol produce water intake (i.e., thirst). Curiously, however, in light of the endocrine and hemodynamic effects produced by these treatments, they are remarkably ineffective in eliciting intake of hypertonic saline solutions (i.e., operationally defined as sodium appetite). Recent work indicates that bilateral injections of the serotonin receptor antagonist methysergide into the lateral parabrachial nuclei (LPBN) markedly enhance a preexisting sodium appetite. The present studies establish that a de novo sodium appetite can be induced with LPBN-methysergide treatment under experimental conditions in which only water is typically ingested. The effects of bilateral LPBN injections of methysergide were studied on the intake of water and 0. 3 M NaCl following acute (beginning 1 h after treatment) diuretic (furosemide)-induced sodium and water depletion and following subcutaneous isoproterenol treatment. With vehicle injected into the LPBN, furosemide treatment and isoproterenol injection both caused water drinking but essentially no intake of hypertonic saline. In contrast, bilateral treatment of the LPBN with methysergide induced the intake of 0.3 M NaCl after subcutaneous furosemide and isoproterenol. Water intake induced by subcutaneous furosemide or isoproterenol was not changed by LPBN-methysergide injections. The results indicate that blockade of LPBN-serotonin receptors produces a marked intake of hypertonic NaCl (i.e., a de novo sodium appetite) after furosemide treatment as well as subcutaneous isoproterenol.

  20. Measuring the serotonin uptake site using (/sup 3/H)paroxetine--a new serotonin uptake inhibitor

    SciTech Connect

    Gleiter, C.H.; Nutt, D.J.

    1988-01-01

    Serotonin is an important neurotransmitter that may be involved in ethanol preference and dependence. It is possible to label the serotonin uptake site in brain using the tricyclic antidepressant imipramine, but this also binds to other sites. We have used the new high-affinity uptake blocker paroxetine to define binding to this site and report it to have advantages over imipramine as a ligand.

  1. Serotonin in Autism and Pediatric Epilepsies

    ERIC Educational Resources Information Center

    Chugani, Diane C.

    2004-01-01

    Serotonergic abnormalities have been reported in both autism and epilepsy. This association may provide insights into underlying mechanisms of these disorders because serotonin plays an important neurotrophic role during brain development--and there is evidence for abnormal cortical development in both autism and some forms of epilepsy. This…

  2. A current view of serotonin transporters.

    PubMed

    De Felice, Louis J

    2016-01-01

    Serotonin transporters (SERTs) are largely recognized for one aspect of their function-to transport serotonin back into the presynaptic terminal after its release. Another aspect of their function, however, may be to generate currents large enough to have physiological consequences. The standard model for electrogenic transport is the alternating access model, in which serotonin is transported with a fixed ratio of co-transported ions resulting in net charge per cycle. The alternating access model, however, cannot account for all the observed currents through SERT or other monoamine transporters.  Furthermore, SERT agonists like ecstasy or antagonists like fluoxetine generate or suppress currents that the standard model cannot support.  Here we survey evidence for a channel mode of transport in which transmitters and ions move through a pore. Available structures for dopamine and serotonin transporters, however, provide no evidence for a pore conformation, raising questions of whether the proposed channel mode actually exists or whether the structural data are perhaps missing a transient open state. PMID:27540474

  3. A current view of serotonin transporters

    PubMed Central

    De Felice, Louis J.

    2016-01-01

    Serotonin transporters (SERTs) are largely recognized for one aspect of their function—to transport serotonin back into the presynaptic terminal after its release. Another aspect of their function, however, may be to generate currents large enough to have physiological consequences. The standard model for electrogenic transport is the alternating access model, in which serotonin is transported with a fixed ratio of co-transported ions resulting in net charge per cycle. The alternating access model, however, cannot account for all the observed currents through SERT or other monoamine transporters.  Furthermore, SERT agonists like ecstasy or antagonists like fluoxetine generate or suppress currents that the standard model cannot support.  Here we survey evidence for a channel mode of transport in which transmitters and ions move through a pore. Available structures for dopamine and serotonin transporters, however, provide no evidence for a pore conformation, raising questions of whether the proposed channel mode actually exists or whether the structural data are perhaps missing a transient open state. PMID:27540474

  4. Enhanced cellular responses and environmental sampling within inner foreskin explants: implications for the foreskin’s role in HIV transmission

    PubMed Central

    Fahrbach, KM; Barry, SM; Anderson, MR; Hope, TJ

    2012-01-01

    The decrease in HIV acquisition after circumcision suggests a role for the foreskin in HIV transmission. However, the mechanism leading to protection remains undefined. Using tissue explant cultures we found that Langerhans cells (LCs) in foreskin alter their cellular protein expression in response to external stimuli. Furthermore, we observe that upon treatment with TNF-α, tissue-resident LCs became activated and that stimulatory cytokines can specifically cause an influx of CD4+ T-cells into the epithelial layer. Importantly, both of these changes are significant in the inner, but not outer, foreskin. In addition, we find that LCs in the inner foreskin have increased ability to sample environmental proteins. These results suggest differences in permeability between the inner and outer foreskin and indicate that HIV target cells in the inner foreskin have increased interaction with external factors. This increased responsiveness and sampling provides novel insights into the underlying mechanism of how circumcision can decrease HIV transmission. PMID:20410876

  5. Enhanced cellular responses and environmental sampling within inner foreskin explants: implications for the foreskin's role in HIV transmission.

    PubMed

    Fahrbach, K M; Barry, S M; Anderson, M R; Hope, T J

    2010-07-01

    The decrease in HIV acquisition after circumcision suggests a role for the foreskin in HIV transmission. However, the mechanism leading to protection remains undefined. Using tissue explant cultures we found that Langerhans cells (LCs) in foreskin alter their cellular protein expression in response to external stimuli. Furthermore, we observe that upon treatment with TNF-alpha, tissue-resident LCs became activated and that stimulatory cytokines can specifically cause an influx of CD4+ T-cells into the epithelial layer. Importantly, both of these changes are significant in the inner, but not outer, foreskin. In addition, we find that LCs in the inner foreskin have increased ability to sample environmental proteins. These results suggest differences in permeability between the inner and outer foreskin and indicate that HIV target cells in the inner foreskin have increased interaction with external factors. This increased responsiveness and sampling provides novel insights into the underlying mechanism of how circumcision can decrease HIV transmission. PMID:20410876

  6. Gold Nanohole Array with Sub-1 nm Roughness by Annealing for Sensitivity Enhancement of Extraordinary Optical Transmission Biosensor

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Irannejad, Mehrdad; Yavuz, Mustafa; Cui, Bo

    2015-05-01

    Nanofabrication technology plays an important role in the performance of surface plasmonic devices such as extraordinary optical transmission (EOT) sensor. In this work, a double liftoff process was developed to fabricate a series of nanohole arrays of a hole diameter between 150 and 235 nm and a period of 500 nm in a 100-nm-thick gold film on a silica substrate. To improve the surface quality of the gold film, thermal annealing was conducted, by which an ultra-smooth gold film with root-mean-square (RMS) roughness of sub-1 nm was achieved, accompanied with a hole diameter shrinkage. The surface sensitivity of the nanohole arrays was measured using a monolayer of 16-mercaptohexadecanoic acid (16-MHA) molecule, and the surface sensitivity was increased by 2.5 to 3 times upon annealing the extraordinary optical transmission (EOT) sensor.

  7. Modulation of defensive reflex conditioning in snails by serotonin.

    PubMed

    Andrianov, Vyatcheslav V; Bogodvid, Tatiana K; Deryabina, Irina B; Golovchenko, Aleksandra N; Muranova, Lyudmila N; Tagirova, Roza R; Vinarskaya, Aliya K; Gainutdinov, Khalil L

    2015-01-01

    Highlights Daily injection of serotonin before a training session accelerated defensive reflex conditioning in snails.Daily injection of 5-hydroxytryptophan before a training session in snails with a deficiency of serotonin induced by the "neurotoxic" analog of serotonin 5,7-dihydroxytryptamine, restored the ability of snails to learn.After injection of the "neurotoxic" analogs of serotonin 5,6- and 5,7-dihydroxytryptamine as well as serotonin, depolarization of the membrane and decrease of the threshold potential of premotor interneurons was observed. We studied the role of serotonin in the mechanisms of learning in terrestrial snails. To produce a serotonin deficit, the "neurotoxic" analogs of serotonin, 5,6- or 5,7-dihydroxytryptamine (5,6/5,7-DHT) were used. Injection of 5,6/5,7-DHT was found to disrupt defensive reflex conditioning. Within 2 weeks of neurotoxin application, the ability to learn had recovered. Daily injection of serotonin before a training session accelerated defensive reflex conditioning and daily injections of 5-HTP in snails with a deficiency of serotonin induced by 5,7-DHT restored the snail's ability to learn. We discovered that injections of the neurotoxins 5,6/5,7-DHT as well as serotonin, caused a decrease in the resting and threshold potentials of the premotor interneurons LPa3 and RPa3. PMID:26557063

  8. Modulation of defensive reflex conditioning in snails by serotonin

    PubMed Central

    Andrianov, Vyatcheslav V.; Bogodvid, Tatiana K.; Deryabina, Irina B.; Golovchenko, Aleksandra N.; Muranova, Lyudmila N.; Tagirova, Roza R.; Vinarskaya, Aliya K.; Gainutdinov, Khalil L.

    2015-01-01

    Highlights Daily injection of serotonin before a training session accelerated defensive reflex conditioning in snails.Daily injection of 5-hydroxytryptophan before a training session in snails with a deficiency of serotonin induced by the “neurotoxic” analog of serotonin 5,7-dihydroxytryptamine, restored the ability of snails to learn.After injection of the “neurotoxic” analogs of serotonin 5,6- and 5,7-dihydroxytryptamine as well as serotonin, depolarization of the membrane and decrease of the threshold potential of premotor interneurons was observed. We studied the role of serotonin in the mechanisms of learning in terrestrial snails. To produce a serotonin deficit, the “neurotoxic” analogs of serotonin, 5,6- or 5,7-dihydroxytryptamine (5,6/5,7-DHT) were used. Injection of 5,6/5,7-DHT was found to disrupt defensive reflex conditioning. Within 2 weeks of neurotoxin application, the ability to learn had recovered. Daily injection of serotonin before a training session accelerated defensive reflex conditioning and daily injections of 5-HTP in snails with a deficiency of serotonin induced by 5,7-DHT restored the snail's ability to learn. We discovered that injections of the neurotoxins 5,6/5,7-DHT as well as serotonin, caused a decrease in the resting and threshold potentials of the premotor interneurons LPa3 and RPa3. PMID:26557063

  9. Enhanced correlation between quantitative ultrasound and structural and mechanical properties of bone using combined transmission-reflection measurement

    PubMed Central

    Lin, Liangjun; Lin, Wei; Qin, Yi-Xian

    2015-01-01

    Quantitative ultrasound (QUS) is capable of predicting the principal structural orientation of trabecular bone; this orientation is highly correlated with the mechanical strength of trabecular bone. Irregular shape of bone, however, would increase variation in such a prediction, especially under human in vivo measurement. This study was designed to combine transmission and reflection modes of QUS measurement to improve the prediction for the structural and mechanical properties of trabecular bone. QUS, mechanical testing, and micro computed tomography (μCT) scanning were performed on 24 trabecular bone cubes harvested from a bovine distal femur to obtain the mechanical and structural parameters. Transmission and reflection modes of QUS measurement in the transverse and frontal planes were performed in a confined 60° angle range with 5° increment. The QUS parameters, attenuation (ATT) and velocity (UV), obtained from transmission mode, were normalized to the specimen thickness acquired from reflection mode. Analysis of covariance showed that the combined transmission-reflection modes improved prediction for the structural and Young's modulus of bone in comparison to the traditional QUS measurement performed only in the medial-lateral orientation. In the transverse plane, significant improvement between QUS and μCT was found in ATT vs bone surface density (BS/BV) (p < 0.05), ATT vs trabecular thickness (Tb.Th) (p < 0.01), ATT vs degree of anisotropy (DA) (p < 0.05), UV vs trabecular bone number (Tb.N) (p < 0.05), and UV vs Tb.Th (p < 0.001). In the frontal plane, significant improvement was found in ATT vs structural model index (SMI) (p < 0.01), ATT vs bone volume fraction (BV/TV) (p < 0.01), ATT vs BS/BV (p < 0.001), ATT vs Tb.Th (p < 0.001), ATT vs DA (p < 0.001), and ATT vs modulus (p < 0.001), UV vs SMI (p < 0.01), UV vs BV/TV (p < 0.05), UV vs BS/BV (p < 0.05), UV vs Tb.Th (p < 0.01), UV vs

  10. Dorsal Raphe Serotonin Neurons in Mice: Immature Hyperexcitability Transitions to Adult State during First Three Postnatal Weeks Suggesting Sensitive Period for Environmental Perturbation

    PubMed Central

    Rood, Benjamin D.; Calizo, Lyngine H.; Piel, David; Spangler, Zachary P.; Campbell, Kaitlin

    2014-01-01

    Trauma during early life is a major risk factor for the development of anxiety disorders and suggests that the developing brain may be particularly sensitive to perturbation. Increased vulnerability most likely involves altering neural circuits involved in emotional regulation. The role of serotonin in emotional regulation is well established, but little is known about the postnatal development of the raphe where serotonin is made. Using whole-cell patch-clamp recording and immunohistochemistry, we tested whether serotonin circuitry in the dorsal and median raphe was functionally mature during the first 3 postnatal weeks in mice. Serotonin neurons at postnatal day 4 (P4) were hyperexcitable. The increased excitability was due to depolarized resting membrane potential, increased resistance, increased firing rate, lack of 5-HT1A autoreceptor response, and lack of GABA synaptic activity. Over the next 2 weeks, membrane resistance decreased and resting membrane potential hyperpolarized due in part to potassium current activation. The 5-HT1A autoreceptor-mediated inhibition did not develop until P21. The frequency of spontaneous inhibitory and excitatory events increased as neurons extended and refined their dendritic arbor. Serotonin colocalized with vGlut3 at P4 as in adulthood, suggesting enhanced release of glutamate alongside enhanced serotonin release. Because serotonin affects circuit development in other brain regions, altering the developmental trajectory of serotonin neuron excitability and release could have many downstream consequences. We conclude that serotonin neuron structure and function change substantially during the first 3 weeks of life during which external stressors could potentially alter circuit formation. PMID:24695701