Science.gov

Sample records for enhanced single base

  1. Enhanced power quality based single phase photovoltaic distributed generation system

    NASA Astrophysics Data System (ADS)

    Panda, Aurobinda; Pathak, M. K.; Srivastava, S. P.

    2016-08-01

    This article presents a novel control strategy for a 1-ϕ 2-level grid-tie photovoltaic (PV) inverter to enhance the power quality (PQ) of a PV distributed generation (PVDG) system. The objective is to obtain the maximum benefits from the grid-tie PV inverter by introducing current harmonics as well as reactive power compensation schemes in its control strategy, thereby controlling the PV inverter to achieve multiple functions in the PVDG system such as: (1) active power flow control between the PV inverter and the grid, (2) reactive power compensation, and (3) grid current harmonics compensation. A PQ enhancement controller (PQEC) has been designed to achieve the aforementioned objectives. The issue of underutilisation of the PV inverter in nighttime has also been addressed in this article and for the optimal use of the system; the PV inverter is used as a shunt active power filter in nighttime. A prototype model of the proposed system is developed in the laboratory, to validate the effectiveness of the control scheme, and is tested with the help of the dSPACE DS1104 platform.

  2. Sorting of Single Biomolecules based on Fourier Polar Representation of Surface Enhanced Raman Spectra

    NASA Astrophysics Data System (ADS)

    Leray, Aymeric; Brulé, Thibault; Buret, Mickael; Colas Des Francs, Gérard; Bouhelier, Alexandre; Dereux, Alain; Finot, Eric

    2016-02-01

    Surface enhanced Raman scattering (SERS) spectroscopy becomes increasingly used in biosensors for its capacity to detect and identify single molecules. In practice, a large number of SERS spectra are acquired and reliable ranking methods are thus essential for analysing all these data. Supervised classification strategies, which are the most effective methods, are usually applied but they require pre-determined models or classes. In this work, we propose to sort SERS spectra in unknown groups with an alternative strategy called Fourier polar representation. This non-fitting method based on simple Fourier sine and cosine transforms produces a fast and graphical representation for sorting SERS spectra with quantitative information. The reliability of this method was first investigated theoretically and numerically. Then, its performances were tested on two concrete biological examples: first with single amino-acid molecule (cysteine) and then with a mixture of three distinct odorous molecules. The benefits of this Fourier polar representation were highlighted and compared to the well-established statistical principal component analysis method.

  3. Sorting of Single Biomolecules based on Fourier Polar Representation of Surface Enhanced Raman Spectra

    PubMed Central

    Leray, Aymeric; Brulé, Thibault; Buret, Mickael; Colas des Francs, Gérard; Bouhelier, Alexandre; Dereux, Alain; Finot, Eric

    2016-01-01

    Surface enhanced Raman scattering (SERS) spectroscopy becomes increasingly used in biosensors for its capacity to detect and identify single molecules. In practice, a large number of SERS spectra are acquired and reliable ranking methods are thus essential for analysing all these data. Supervised classification strategies, which are the most effective methods, are usually applied but they require pre-determined models or classes. In this work, we propose to sort SERS spectra in unknown groups with an alternative strategy called Fourier polar representation. This non-fitting method based on simple Fourier sine and cosine transforms produces a fast and graphical representation for sorting SERS spectra with quantitative information. The reliability of this method was first investigated theoretically and numerically. Then, its performances were tested on two concrete biological examples: first with single amino-acid molecule (cysteine) and then with a mixture of three distinct odorous molecules. The benefits of this Fourier polar representation were highlighted and compared to the well-established statistical principal component analysis method. PMID:26833130

  4. Single-Phase, Turbulent Heat-Transfer Friction-Factor Data Base Flow Enhanced Tb

    Energy Science and Technology Software Center (ESTSC)

    1994-01-21

    Heat-exchanger designers need to know what type of performance improvement can be obtained before they will consider enhanced tubes. In particular, they need access to the heat-transfer coefficients and friction-factor values of enhanced tube types that are commercially available. To compile these data from the numerous publications and reports in the open literature is a formidable task that can discourage the designer from using them. A computer program that contains a comprehensive data base withmore » a search feature would be a handy tool for the designer to obtain an estimate of the performance improvement that can be obtained with a particular enhanced tube geometry. In addition, it would be a valuable tool for researchers who are developing and/or validating new prediction methods. This computer program can be used to obtain friction-factor and/or heat-transfer data for a broad range of internally enhanced tube geometries with forced-convective turbulent flow. The program has search features; that is the user can select data for tubes with a particular enhancement geometry range or data obtained from a particular source or publication. The friction factor data base contains nearly 5,000 points and the heat-transfer data base contains more than 4,700 points. About 360 different tube geometries are included from the 36 different sources. Data for tubes with similar geometries and the same and/or different types can be easily extracted with the sort feature of this data base and compared. Users of the program are heat-exchanger designers, enhanced tubing suppliers, and research organizations or academia who are developing or validating prediction methods.« less

  5. Gold Nanoplate-Based 3D Hierarchical Microparticles: A Single Particle with High Surface-Enhanced Raman Scattering Enhancement.

    PubMed

    Ma, Ying; Yung, Lin-Yue Lanry

    2016-08-01

    Formation of intended nano- and microstructures with regular building blocks has attracted much attention because of their potential applications in the fields of optics, electronics, and catalysis. Herein, we report a novel strategy to spontaneously grow three-dimensional (3D) hierarchical cabbagelike microparticles (CLMPs) constructed by individual Au nanoplates. By reducing gold precursor to gold atoms, N-(3-amidino)-aniline (NAAN) itself was oxidized to form poly(N-(3-amidino)-aniline) (PNAAN), which specifically binds on Au(111) facet as a capping agent and which leads to the formation of gold nanoplates. Because of the incomplete coverage of Au(111) facet, new gold nanoplate growth sites were spontaneously generated from the crystal plane of existing Au nanoplates for the growth of other nanoplates. This process continued until the nanoplate density reached its maximum range, eventually resulting in CLMPs with well-controlled structures. This opens a new avenue to utilize the imperfection during nanoparticle (NP) growth for the construction of microstructures. The individual CLMP shows excellent surface-enhanced Raman scattering (SERS) performance with high enhancement factor (EF) and good reproducibility as it integrates the SERS enhancement effects of individual Au nanoplate and the nanogaps formed by the uniform and hierarchical structures. PMID:27452074

  6. Enhanced terahertz source based on external cavity difference-frequency generation using monolithic single-frequency pulsed fiber lasers.

    PubMed

    Petersen, Eliot B; Shi, Wei; Nguyen, Dan T; Yao, Zhidong; Zong, Jie; Chavez-Pirson, Arturo; Peyghambarian, N

    2010-07-01

    We demonstrate a resonant external cavity approach to enhance narrowband terahertz radiation through difference-frequency generation for the first time (to our knowledge). Two nanosecond laser pulses resonant in an optical cavity interact with a nonlinear crystal to produce a factor of 7 enhancement of terahertz power compared to a single-pass orientation. This external enhancement approach shows promise to significantly increase both terahertz power and conversion efficiency through optical pump pulse enhancement and effective recycling. PMID:20596183

  7. Block copolymer based design of highly sensitive substrates for detecting single molecules by surface enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Rahman, Atikur; Black, Charles

    Surface enhanced Raman spectroscopy (SERS) relies on substrates with nanometer-scale curvature in order to concentrate and amplify the incident electromagnetic field to increase the spectroscopic signature of Raman scattering. The localization and amplification of incident light is maximum between two plasmonic nanostructures called as ``hot spot''. Here, we report a new, scalable method for fabricating high-performance SERS substrates based on self-assembly of nanostructured block copolymer thin films. Due to the high spatial density and extremely high field strengths of substrate hot spots, these substrate are capable of enhancing Raman scattering signals from target molecules by more than 10 billion times. We will describe the process of fabricating these remarkable diagnostic tools, which are ~cm2 area substrates composed of an extremely high density (~1011 /cm2) of hexagonally-arranged Au or Ag nanoparticles positioned atop ~70nm tall silicon nanopillars. Key to the substrate performance is the sub-5 nm separation between particles, which we control with nm level precision. By systematically varying the gap between nanoparticles, we demonstrate that both the high hotspot density and sub 5nm hot spot gap are necessary to achieve the highest degree of enhancement of the Raman signal. The enormous enhancements provided by these substrates make possible the detection of single molecules.

  8. Plasma enhanced multistate storage capability of single ZnO nanowire based memory

    NASA Astrophysics Data System (ADS)

    Lai, Yunfeng; Xin, Pucong; Cheng, Shuying; Yu, Jinling; Zheng, Qiao

    2015-01-01

    Multiple-state storage (MSS) is common for resistive random access memory, but the effects of plasma treatment on the MSS and the switching properties have been scarcely investigated. We have demonstrated a stable four-state storage capability of single zinc oxide nanowire (ZnO NW) treated by argon plasma. The electrical switching is attributed to the electron trapping and detrapping from the oxygen vacancies (Vos). The MSS relates to the electrical-thermal induced distribution of the Vos which determines electron transport behavior to show different resistance states. Additionally, programming (set and reset) voltages decrease with plasma treatment due to the thickness modulation of the interface barrier.

  9. Plasma enhanced multistate storage capability of single ZnO nanowire based memory

    SciTech Connect

    Lai, Yunfeng Xin, Pucong; Cheng, Shuying; Yu, Jinling; Zheng, Qiao

    2015-01-19

    Multiple-state storage (MSS) is common for resistive random access memory, but the effects of plasma treatment on the MSS and the switching properties have been scarcely investigated. We have demonstrated a stable four-state storage capability of single zinc oxide nanowire (ZnO NW) treated by argon plasma. The electrical switching is attributed to the electron trapping and detrapping from the oxygen vacancies (V{sub o}s). The MSS relates to the electrical-thermal induced distribution of the V{sub o}s which determines electron transport behavior to show different resistance states. Additionally, programming (set and reset) voltages decrease with plasma treatment due to the thickness modulation of the interface barrier.

  10. Enhanced near-infrared photoresponse of organic phototransistors based on single-component donor-acceptor conjugated polymer nanowires

    NASA Astrophysics Data System (ADS)

    Zhu, Min; Lv, Shenchen; Wang, Qinghe; Zhang, Guobing; Lu, Hongbo; Qiu, Longzhen

    2016-03-01

    Single-component near-infrared phototransistors based on ambipolar organic semiconductor nanowires have been investigated and compared with their corresponding thin-film counterparts. The nanowire organic phototransistors (NW-OPTs) showed photocurrent/dark-current ratios and photoresponsivities as high as 1.3 × 104 and 440 mA W-1 for the p-type channel, and 3.3 × 104 and 70 mA W-1 for the n-type channel, respectively, upon near-infrared illumination with an intensity of 47.1 mW cm-2. These were much higher values compared to their thin-film counterparts. The enhancement of the near-infrared photoresponse could be attributed to the larger trap density originating from the semiconductor/insulator interface and the semiconductor/air interface. The performance of NW-OPTs was demonstrated to open up new possibilities to improve the near-infrared photoresponse of single-component devices.Single-component near-infrared phototransistors based on ambipolar organic semiconductor nanowires have been investigated and compared with their corresponding thin-film counterparts. The nanowire organic phototransistors (NW-OPTs) showed photocurrent/dark-current ratios and photoresponsivities as high as 1.3 × 104 and 440 mA W-1 for the p-type channel, and 3.3 × 104 and 70 mA W-1 for the n-type channel, respectively, upon near-infrared illumination with an intensity of 47.1 mW cm-2. These were much higher values compared to their thin-film counterparts. The enhancement of the near-infrared photoresponse could be attributed to the larger trap density originating from the semiconductor/insulator interface and the semiconductor/air interface. The performance of NW-OPTs was demonstrated to open up new possibilities to improve the near-infrared photoresponse of single-component devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09003b

  11. Structure-based Molecular Simulations Reveal the Enhancement of Biased Brownian Motions in Single-headed Kinesin

    PubMed Central

    Kanada, Ryo; Kuwata, Takeshi; Kenzaki, Hiroo; Takada, Shoji

    2013-01-01

    Kinesin is a family of molecular motors that move unidirectionally along microtubules (MT) using ATP hydrolysis free energy. In the family, the conventional two-headed kinesin was experimentally characterized to move unidirectionally through “walking” in a hand-over-hand fashion by coordinated motions of the two heads. Interestingly a single-headed kinesin, a truncated KIF1A, still can generate a biased Brownian movement along MT, as observed by in vitro single molecule experiments. Thus, KIF1A must use a different mechanism from the conventional kinesin to achieve the unidirectional motions. Based on the energy landscape view of proteins, for the first time, we conducted a set of molecular simulations of the truncated KIF1A movements over an ATP hydrolysis cycle and found a mechanism exhibiting and enhancing stochastic forward-biased movements in a similar way to those in experiments. First, simulating stand-alone KIF1A, we did not find any biased movements, while we found that KIF1A with a large friction cargo-analog attached to the C-terminus can generate clearly biased Brownian movements upon an ATP hydrolysis cycle. The linked cargo-analog enhanced the detachment of the KIF1A from MT. Once detached, diffusion of the KIF1A head was restricted around the large cargo which was located in front of the head at the time of detachment, thus generating a forward bias of the diffusion. The cargo plays the role of a diffusional anchor, or cane, in KIF1A “walking.” PMID:23459019

  12. Iron-sulfur-based single molecular wires for enhancing charge transport in enzyme-based bioelectronic systems.

    PubMed

    Mahadevan, Aishwarya; Fernando, Teshan; Fernando, Sandun

    2016-04-15

    When redox enzymes are wired to electrodes outside a living cell (ex vivo), their ability to produce a sufficiently powerful electrical current diminishes significantly due to the thermodynamic and kinetic limitations associated with the wiring systems. Therefore, we are yet to harness the full potential of redox enzymes for the development of self-powering bioelectronics devices (such as sensors and fuel cells). Interestingly, nature uses iron-sulfur complexes ([Fe-S]), to circumvent these issues in vivo. Yet, we have not been able to utilize [Fe-S]-based chains ex vivo, primarily due to their instability in aqueous media. Here, a simple technique to attach iron (II) sulfide (FeS) to a gold surface in ethanol media and then complete the attachment of the enzyme in aqueous media is reported. Cyclic voltammetry and spectroscopy techniques confirmed the concatenation of FeS and glycerol-dehydrogenase/nicotinamide-adenine-dinucleotide (GlDH-NAD(+)) apoenzyme-coenzyme molecular wiring system on the base gold electrode. The resultant FeS-based enzyme electrode reached an open circuit voltage closer to its standard potential under a wide range of glycerol concentrations (0.001-1M). When probed under constant potential conditions, the FeS-based electrode was able to amplify current by over 10 fold as compared to electrodes fabricated with the conventional pyrroloquinoline quinone-based composite molecular wiring system. These improvements in current/voltage responses open up a wide range of possibilities for fabricating self-powering, bio-electronic devices. PMID:26657591

  13. Multiple enhanced self-protected spanning trees based architecture for recovery from single failure in metro ethernet

    NASA Astrophysics Data System (ADS)

    Li, Yong; Chen, Wentao; Jin, Depeng; Su, Li; Zeng, Lieguang

    2008-11-01

    Carriers and service providers are rushing to provide Ethernet-based virtual private network services in metro area network (MAN) as the most cost effective way to address the needs of the enterprise network market. To address the fast recovery from any signal failure issue in the Metro Ethernet, we propose a metro Ethernet architecture based on multiple Enhanced Self-protected Spanning Trees (ESST). The recovery mechanism, named Birthday-based Link Replacing Mechanism (BLRM), in this architecture is able to transform a self-protected spanning tree into another spanning tree after any signal link or node failure. Simulation result demonstrates the effectiveness of the BLRM in achieving fast recovery.

  14. Pre-Trial EEG-Based Single-Trial Motor Performance Prediction to Enhance Neuroergonomics for a Hand Force Task.

    PubMed

    Meinel, Andreas; Castaño-Candamil, Sebastián; Reis, Janine; Tangermann, Michael

    2016-01-01

    We propose a framework for building electrophysiological predictors of single-trial motor performance variations, exemplified for SVIPT, a sequential isometric force control task suitable for hand motor rehabilitation after stroke. Electroencephalogram (EEG) data of 20 subjects with mean age of 53 years was recorded prior to and during 400 trials of SVIPT. They were executed within a single session with the non-dominant left hand, while receiving continuous visual feedback of the produced force trajectories. The behavioral data showed strong trial-by-trial performance variations for five clinically relevant metrics, which accounted for reaction time as well as for the smoothness and precision of the produced force trajectory. 18 out of 20 tested subjects remained after preprocessing and entered offline analysis. Source Power Comodulation (SPoC) was applied on EEG data of a short time interval prior to the start of each SVIPT trial. For 11 subjects, SPoC revealed robust oscillatory EEG subspace components, whose bandpower activity are predictive for the performance of the upcoming trial. Since SPoC may overfit to non-informative subspaces, we propose to apply three selection criteria accounting for the meaningfulness of the features. Across all subjects, the obtained components were spread along the frequency spectrum and showed a variety of spatial activity patterns. Those containing the highest level of predictive information resided in and close to the alpha band. Their spatial patterns resemble topologies reported for visual attention processes as well as those of imagined or executed hand motor tasks. In summary, we identified subject-specific single predictors that explain up to 36% of the performance fluctuations and may serve for enhancing neuroergonomics of motor rehabilitation scenarios. PMID:27199701

  15. Pre-Trial EEG-Based Single-Trial Motor Performance Prediction to Enhance Neuroergonomics for a Hand Force Task

    PubMed Central

    Meinel, Andreas; Castaño-Candamil, Sebastián; Reis, Janine; Tangermann, Michael

    2016-01-01

    We propose a framework for building electrophysiological predictors of single-trial motor performance variations, exemplified for SVIPT, a sequential isometric force control task suitable for hand motor rehabilitation after stroke. Electroencephalogram (EEG) data of 20 subjects with mean age of 53 years was recorded prior to and during 400 trials of SVIPT. They were executed within a single session with the non-dominant left hand, while receiving continuous visual feedback of the produced force trajectories. The behavioral data showed strong trial-by-trial performance variations for five clinically relevant metrics, which accounted for reaction time as well as for the smoothness and precision of the produced force trajectory. 18 out of 20 tested subjects remained after preprocessing and entered offline analysis. Source Power Comodulation (SPoC) was applied on EEG data of a short time interval prior to the start of each SVIPT trial. For 11 subjects, SPoC revealed robust oscillatory EEG subspace components, whose bandpower activity are predictive for the performance of the upcoming trial. Since SPoC may overfit to non-informative subspaces, we propose to apply three selection criteria accounting for the meaningfulness of the features. Across all subjects, the obtained components were spread along the frequency spectrum and showed a variety of spatial activity patterns. Those containing the highest level of predictive information resided in and close to the alpha band. Their spatial patterns resemble topologies reported for visual attention processes as well as those of imagined or executed hand motor tasks. In summary, we identified subject-specific single predictors that explain up to 36% of the performance fluctuations and may serve for enhancing neuroergonomics of motor rehabilitation scenarios. PMID:27199701

  16. Enhanced ultraviolet-visible light responses of phototransistors based on single and a few ZrS3 nanobelts

    NASA Astrophysics Data System (ADS)

    Tao, You-Rong; Wu, Jia-Jing; Wu, Xing-Cai

    2015-08-01

    Phototransistors based on single and three ZrS3 nanobelts were fabricated on SiO2/Si wafers by photolithography and the lift-off technique, respectively, and their light-induced electric properties were investigated in detail. Both the devices demonstrate a remarkable photoresponse from ultraviolet to near infrared light. The photoswitch current ratio (PCR) of the single-nanobelt phototransistor is 13 under the illumination of 405 nm light with an optical power of 10.5 mW cm-2 at a bias of 5 V, while the PCR of the three-nanobelt device is 210 under the illumination of 405 nm light with an optical power of 5.57 mW cm-2 at a bias of 1 V. On comparison of the photoresponses under the same conditions, the latter is found to be superior to the former, and both the devices show a much better photoresponse than the reported flexible ZrS3-nanobelt-film photodetector.

  17. Enhanced ultraviolet-visible light responses of phototransistors based on single and a few ZrS₃ nanobelts.

    PubMed

    Tao, You-Rong; Wu, Jia-Jing; Wu, Xing-Cai

    2015-09-14

    Phototransistors based on single and three ZrS3 nanobelts were fabricated on SiO2/Si wafers by photolithography and the lift-off technique, respectively, and their light-induced electric properties were investigated in detail. Both the devices demonstrate a remarkable photoresponse from ultraviolet to near infrared light. The photoswitch current ratio (PCR) of the single-nanobelt phototransistor is 13 under the illumination of 405 nm light with an optical power of 10.5 mW cm(-2) at a bias of 5 V, while the PCR of the three-nanobelt device is 210 under the illumination of 405 nm light with an optical power of 5.57 mW cm(-2) at a bias of 1 V. On comparison of the photoresponses under the same conditions, the latter is found to be superior to the former, and both the devices show a much better photoresponse than the reported flexible ZrS3-nanobelt-film photodetector. PMID:26242883

  18. Can template-based protein models guide the design of sequence fitness for enhanced thermal stability of single domain antibodies?

    PubMed

    Olson, Mark A; Zabetakis, Dan; Legler, Patricia M; Turner, Kendrick B; Anderson, George P; Goldman, Ellen R

    2015-10-01

    We investigate the practical use of comparative (template-based) protein models in replica-exchange simulations of single-domain antibody (sdAb) chains to evaluate if the models can correctly predict in rank order the thermal susceptibility to unfold relative to experimental melting temperatures. The baseline model system is the recently determined crystallographic structure of a llama sdAb (denoted as A3), which exhibits an unusually high thermal stability. An evaluation of the simulation results for the A3 comparative model and crystal structure shows that, despite the overall low Cα root-mean-square deviation between the two structures, the model contains misfolded regions that yields a thermal profile of unraveling at a lower temperature. Yet comparison of the simulations of four different comparative models for sdAb A3, C8, A3C8 and E9, where A3C8 is a design of swapping the sequence of the complementarity determining regions of C8 onto the A3 framework, discriminated among the sequences to detect the highest and lowest experimental melting transition temperatures. Further structural analysis of A3 for selected alanine substitutions by a combined computational and experimental study found unexpectedly that the comparative model performed admirably in recognizing substitution 'hot spots' when using a support-vector machine algorithm. PMID:26374895

  19. Single-particle Raman measurements of gold nanoparticles used in surface-enhanced Raman scattering (SERS)-based sandwich immunoassays

    NASA Astrophysics Data System (ADS)

    Park, Hye-Young; Lipert, Robert J.; Porter, Marc D.

    2004-12-01

    The effect of particle size on the intensity of surface-enhanced Raman scattering (SERS) using labeled gold nanoparticles has been investigated. Two sets of experiments were preformed, both of which employed 632.8-nm laser excitation. The first entailed a sandwich immunoassay in which an antibody coupled to a smooth gold substrate selectively captured free-prostate specific antigen (f-PSA) from buffered aqueous solutions. The presence of captured f-PSA was then detected by the response of Raman-labeled immunogold nanoparticles with nominal diameters of 30, 40, 50, 60, or 80 nm. The resulting SERS responses were correlated to particle densities, which were determined by atomic force microscopy, by calculating the average response per particle after accounting for differences in particle surface area. This analysis showed that the magnitude of the SERS response increased with increasing particle size. The second set of experiments examined the response of individual nanoparticles. These experiments differed in that the labeled nanoparticles were coupled to the smooth gold substrate by an amine-terminated thiolate, yielding a much smaller average separation between the particles and substrate. The results revealed that particles with a diameter of ~70 nm exhibited the largest enhancement. The origin of the difference in the two sets of findings, which is attributed to the distance dependence of the plasmon coupling between the nanoparticles and underlying substrate, is briefly discussed.

  20. Microfluidic single-cell transcriptional analysis rationally identifies novel surface marker profiles to enhance cell-based therapies.

    PubMed

    Rennert, Robert C; Januszyk, Michael; Sorkin, Michael; Rodrigues, Melanie; Maan, Zeshaan N; Duscher, Dominik; Whittam, Alexander J; Kosaraju, Revanth; Chung, Michael T; Paik, Kevin; Li, Alexander Y; Findlay, Michael; Glotzbach, Jason P; Butte, Atul J; Gurtner, Geoffrey C

    2016-01-01

    Current progenitor cell therapies have only modest efficacy, which has limited their clinical adoption. This may be the result of a cellular heterogeneity that decreases the number of functional progenitors delivered to diseased tissue, and prevents correction of underlying pathologic cell population disruptions. Here, we develop a high-resolution method of identifying phenotypically distinct progenitor cell subpopulations via single-cell transcriptional analysis and advanced bioinformatics. When combined with high-throughput cell surface marker screening, this approach facilitates the rational selection of surface markers for prospective isolation of cell subpopulations with desired transcriptional profiles. We establish the usefulness of this platform in costly and highly morbid diabetic wounds by identifying a subpopulation of progenitor cells that is dysfunctional in the diabetic state, and normalizes diabetic wound healing rates following allogeneic application. We believe this work presents a logical framework for the development of targeted cell therapies that can be customized to any clinical application. PMID:27324848

  1. Using surface-enhanced Raman spectroscopy and electrochemically driven melting to discriminate Yersinia pestis from Y. pseudotuberculosis based on single nucleotide polymorphisms within unpurified polymerase chain reaction amplicons.

    PubMed

    Papadopoulou, Evanthia; Goodchild, Sarah A; Cleary, David W; Weller, Simon A; Gale, Nittaya; Stubberfield, Michael R; Brown, Tom; Bartlett, Philip N

    2015-02-01

    The development of sensors for the detection of pathogen-specific DNA, including relevant species/strain level discrimination, is critical in molecular diagnostics with major impacts in areas such as bioterrorism and food safety. Herein, we use electrochemically driven denaturation assays monitored by surface-enhanced Raman spectroscopy (SERS) to target single nucleotide polymorphisms (SNPs) that distinguish DNA amplicons generated from Yersinia pestis, the causative agent of plague, from the closely related species Y. pseudotuberculosis. Two assays targeting SNPs within the groEL and metH genes of these two species have been successfully designed. Polymerase chain reaction (PCR) was used to produce Texas Red labeled single-stranded DNA (ssDNA) amplicons of 262 and 251 bases for the groEL and metH targets, respectively. These amplicons were used in an unpurified form to hybridize to immobilized probes then subjected to electrochemically driven melting. In all cases electrochemically driven melting was able to discriminate between fully homologous DNA and that containing SNPs. The metH assay was particularly challenging due to the presence of only a single base mismatch in the middle of the 251 base long PCR amplicon. However, manipulation of assay conditions (conducting the electrochemical experiments at 10 °C) resulted in greater discrimination between the complementary and mismatched DNA. Replicate data were collected and analyzed for each duplex on different days, using different batches of PCR product and different sphere segment void (SSV) substrates. Despite the variability introduced by these differences, the assays are shown to be reliable and robust providing a new platform for strain discrimination using unpurified PCR samples. PMID:25551670

  2. Part-Per-Trillion Level SF6 Detection Using a Quartz Enhanced Photoacoustic Spectroscopy-Based Sensor with Single-Mode Fiber-Coupled Quantum Cascade Laser Excitation

    SciTech Connect

    Spagnolo, V.; Patimisco, P.; Borri, Simone; Scamarcio, G.; Bernacki, Bruce E.; Kriesel, J.M.

    2012-10-23

    A sensitive spectroscopic sensor based on a hollow-core fiber-coupled quantum cascade laser (QCL) emitting at 10.54 µm and quartz enhanced photoacoustic spectroscopy (QEPAS) technique is reported. The design and realization of mid-infrared fiber and coupler optics has ensured single-mode QCL beam delivery to the QEPAS sensor . The collimation optics was designed to produce a laser beam of significantly reduced beam size and waist so as to prevent illumination of the quartz tuning fork and micro-resonator tubes. SF6 was selected as the target gas. A minimum detection sensitivity of 50 parts per trillion in 1 s was achieved with a QCL power of 18 mW, corresponding to a normalized noise-equivalent absorption of 2.7x10-10 W•cm-1/Hz1/2.

  3. A Single Methylene Group in Oligoalkylamine-Based Cationic Polymers and Lipids Promotes Enhanced mRNA Delivery.

    PubMed

    Jarzębińska, Anita; Pasewald, Tamara; Lambrecht, Jana; Mykhaylyk, Olga; Kümmerling, Linda; Beck, Philipp; Hasenpusch, Günther; Rudolph, Carsten; Plank, Christian; Dohmen, Christian

    2016-08-01

    The development of chemically modified mRNA holds great promise as a new class of biologic therapeutics. However, the intracellular delivery and endosomal escape of mRNA encapsulated in nanoparticles has not been systematically investigated. Here, we synthesized a diverse set of cationic polymers and lipids from a series of oligoalkylamines and subsequently characterized their mRNA delivery capability. Notably, a structure with an alternating alkyl chain length between amines showed the highest transfection efficiency, which was linked to a high buffering capacity in a narrow range of pH 6.2 to 6.5. Variation in only one methylene group resulted in enhanced mRNA delivery to both the murine liver as well as porcine lungs after systemic or aerosol administration, respectively. These findings reveal a novel fundamental structure-activity relationship for the delivery of mRNA that is independent of the class of mRNA carrier and define a promising new path of exploration in the field of mRNA therapeutics. PMID:27376704

  4. Enhancing Problem-Based Learning Designs with a Single E-Learning Scaffolding Tool: Two Case Studies Using Challenge FRAP

    ERIC Educational Resources Information Center

    Stewart, Terry M.; MacIntyre, William R.; Galea, Victor J.; Steel, Caroline H.

    2007-01-01

    Problem-based learning (PBL) is a powerful instructional approach. By working through assessable complex problem-solving tasks learners can be encouraged to actively engage in investigation and inquiry and to use high level cognitive thought processes to solve real-life problems in professional contexts. A critical element of a successful PBL…

  5. Enhanced genetic algorithm optimization model for a single reservoir operation based on hydropower generation: case study of Mosul reservoir, northern Iraq.

    PubMed

    Al-Aqeeli, Yousif H; Lee, T S; Abd Aziz, S

    2016-01-01

    Achievement of the optimal hydropower generation from operation of water reservoirs, is a complex problems. The purpose of this study was to formulate and improve an approach of a genetic algorithm optimization model (GAOM) in order to increase the maximization of annual hydropower generation for a single reservoir. For this purpose, two simulation algorithms were drafted and applied independently in that GAOM during 20 scenarios (years) for operation of Mosul reservoir, northern Iraq. The first algorithm was based on the traditional simulation of reservoir operation, whilst the second algorithm (Salg) enhanced the GAOM by changing the population values of GA through a new simulation process of reservoir operation. The performances of these two algorithms were evaluated through the comparison of their optimal values of annual hydropower generation during the 20 scenarios of operating. The GAOM achieved an increase in hydropower generation in 17 scenarios using these two algorithms, with the Salg being superior in all scenarios. All of these were done prior adding the evaporation (Ev) and precipitation (Pr) to the water balance equation. Next, the GAOM using the Salg was applied by taking into consideration the volumes of these two parameters. In this case, the optimal values obtained from the GAOM were compared, firstly with their counterpart that found using the same algorithm without taking into consideration of Ev and Pr, secondly with the observed values. The first comparison showed that the optimal values obtained in this case decreased in all scenarios, whilst maintaining the good results compared with the observed in the second comparison. The results proved the effectiveness of the Salg in increasing the hydropower generation through the enhanced approach of the GAOM. In addition, the results indicated to the importance of taking into account the Ev and Pr in the modelling of reservoirs operation. PMID:27390638

  6. Nanochannel Based Single Molecule Recycling

    PubMed Central

    Lesoine, John F.; Venkataraman, Prahnesh A.; Maloney, Peter C.; Dumont, Mark

    2012-01-01

    We present a method for measuring the fluorescence from a single molecule hundreds of times without surface immobilization. The approach is based on the use of electroosmosis to repeatedly drive a single target molecule in a fused silica nanochannel through a stationary laser focus. Single molecule fluorescence detected during the transit time through the laser focus is used to repeatedly reverse the electrical potential controlling the flow direction. Our method does not rely on continuous observation and therefore is less susceptible to fluorescence blinking than existing fluorescence-based trapping schemes. The variation in the turnaround times can be used to measure the diffusion coefficient on a single molecule level. We demonstrate the ability to recycle both proteins and DNA in nanochannels and show that the procedure can be combined with single-pair Förster energy transfer. Nanochannel-based single molecule recycling holds promise for studying conformational dynamics on the same single molecule in solution and without surface tethering. PMID:22662745

  7. Enhancement of Single-Photon Sources with Metamaterials

    NASA Astrophysics Data System (ADS)

    Shalaginov, M. Y.; Bogdanov, S.; Vorobyov, V. V.; Lagutchev, A. S.; Kildishev, A. V.; Akimov, A. V.; Boltasseva, A.; Shalaev, V. M.

    2015-06-01

    Scientists are looking for new, breakthrough solutions that can greatly advance computing and networking systems. These solutions will involve quantum properties of matter and light as promised by the ongoing experimental and theoretical work in the areas of quantum computation and communication. Quantum photonics is destined to play a central role in the development of such technologies due to the high transmission capacity and outstanding low-noise properties of photonic information channels. Among the vital problems to be solved in this direction, are efficient generation and collection of single photons. One approach to tackle these problems is based on engineering emission properties of available single-photon sources using metamaterials. Metamaterials are artificially engineered structures with sub-wavelength features whose optical properties go beyond the limitations of conventional materials. As promising single-photon sources, we have chosen nitrogen-vacancy (NV) color centers in diamond, which are capable to operate stably in a single-photon regime at room temperature in a solid state environment. In this chapter, we report both theoretical and experimental studies of the radiation from a nanodiamond single NV center placed near a hyperbolic metamaterial (HMM). In particular, we derive the reduction of excited-state lifetime and the enhancement of collected single-photon emission rate and compare them with the experimental observations. These results could be of great impact for future integrated quantum sources, especially owing to a CMOS-compatible approach to HMM synthesis.

  8. Single-site surface-enhanced Raman scattering beyond spectroscopy

    NASA Astrophysics Data System (ADS)

    Takase, Mai; Yasuda, Satoshi; Murakoshi, Kei

    2016-04-01

    Recent progress in the observation of surface-enhanced Raman scattering (SERS) is reviewed to examine the possibility of finding a novel route for the effective photoexcitation of materials. The importance of well-controlled SERS experiments on a single molecule at a single site is discussed based on the difference in the information obtained from ensemble SERS measurements using multiple active sites with an uncontrolled number of molecules. A single-molecule SERS observation performed at a mechanically controllable breaking junction with a simultaneous conductivity measurement provides clear evidence of the drastic changes both in the intensity and in the Raman mode selectivity of the electromagnetic field generated by localized surface plasmon resonance. Careful control of the field at a few-nanometer-wide gap of a metal nanodimer results in the modification of the selection rule of electronic excitation of an isolated single-walled carbon nanotube. The examples shown in this review suggest that a single-site SERS observation could be used as a novel tool to find, develop, and implement applications of plasmon-induced photoexcitation of materials.

  9. Spatial Attention Enhances Perceptual Processing of Single-Element Displays

    NASA Technical Reports Server (NTRS)

    Bacon, William; Johnston, James C.; Remington, Roger W.; Null, Cynthia H. (Technical Monitor)

    1994-01-01

    Shiu and Pashler (1993) reported that precueing masked, single-element displays had negligible effects on identification accuracy. They argued that spatial attention does not actually enhance stimulus perceptibility, but only reduces decision noise. Alternatively, such negative results may arise if cues are sub-optimal, or if masks place an insufficient premium on timely deployment of attention. We report results showing that valid cueing enhances processing of even single-element displays. Spatial attention does indeed enhance perceptual processes.

  10. Laboratory evolution of Geobacter sulfurreducens for enhanced growth on lactate via a single-base-pair substitution in a transcriptional regulator

    PubMed Central

    Summers, Zarath M; Ueki, Toshiyuki; Ismail, Wael; Haveman, Shelley A; Lovley, Derek R

    2012-01-01

    The addition of organic compounds to groundwater in order to promote bioremediation may represent a new selective pressure on subsurface microorganisms. The ability of Geobacter sulfurreducens, which serves as a model for the Geobacter species that are important in various types of anaerobic groundwater bioremediation, to adapt for rapid metabolism of lactate, a common bioremediation amendment, was evaluated. Serial transfer of five parallel cultures in a medium with lactate as the sole electron donor yielded five strains that could metabolize lactate faster than the wild-type strain. Genome sequencing revealed that all five strains had non-synonymous single-nucleotide polymorphisms in the same gene, GSU0514, a putative transcriptional regulator. Introducing the single-base-pair mutation from one of the five strains into the wild-type strain conferred rapid growth on lactate. This strain and the five adaptively evolved strains had four to eight-fold higher transcript abundance than wild-type cells for genes for the two subunits of succinyl-CoA synthase, an enzyme required for growth on lactate. DNA-binding assays demonstrated that the protein encoded by GSU0514 bound to the putative promoter of the succinyl-CoA synthase operon. The binding sequence was not apparent elsewhere in the genome. These results demonstrate that a single-base-pair mutation in a transcriptional regulator can have a significant impact on the capacity for substrate utilization and suggest that adaptive evolution should be considered as a potential response of microorganisms to environmental change(s) imposed during bioremediation. PMID:22113376

  11. Plasmon-enhanced emission from single fluorescent proteins

    NASA Astrophysics Data System (ADS)

    Donehue, Jessica E.; Haas, Beth L.; Wertz, Esther; Talicska, Courtney N.; Biteen, Julie S.

    2013-02-01

    In this work, we use evaporated gold nanoparticle films (GNPFs) as substrates for plasmon-enhanced imaging of two fluorescent proteins (FPs): mCherry and YFP. Through single-molecule epifluorescence microscopy, we show enhancement of single FP emission in the presence of GNPFs. The gold-coupled FPs demonstrate emission up to four times brighter and seven times longer lived, yielding order-of-magnitude enhancements in total photons detected. Ultimately, this results in increased localization accuracies for single-molecule imaging. Furthermore, we introduce preliminary results for enhancement of mCherry-labeled TcpP membrane proteins inside live Vibrio cholerae cells coupled to GNPFs. Our work indicates that plasmonic substrates are uniquely advantageous for super-resolution imaging and that plasmon-enhanced imaging is a promising technique for improving live cell single-molecule microscopy.

  12. Highly sensitive impedimetric immunosensor based on single-walled carbon nanohorns as labels and bienzyme biocatalyzed precipitation as enhancer for cancer biomarker detection.

    PubMed

    Yang, Fan; Han, Jing; Zhuo, Ying; Yang, Zhehan; Chai, Yaqin; Yuan, Ruo

    2014-05-15

    A novel sandwich-type electrochemical immunosensor based on functionalized nanomaterial labels and bienzyme (horseradish peroxidase and glucose oxidase) biocatalyzed precipitation was developed for the detection of α-fetoprotein (AFP). The enzymes linked to functionalized nanomaterials as biocatalysts could accelerate the oxidation of 4-chloro-1-naphthol (4-CN) by H2O2 to yield the insoluble product on the electrode surface; the mass loading of the precipitates on the device led to a significant enhanced signal. Cyclic voltammetry and electrochemical impedance spectroscopy techniques were used to monitor the enhanced precipitation of 4-CN that accumulated on the electrode surface and subsequent decrement in the electrode surface area by monitoring the reduction process of the Fe(CN)6(4-/3-) redox couple. Under optimal conditions, the proposed immunosensor showed a high sensitivity and a wide linear range from 0.001 to 60 ng mL(-1) with a low detection limit of 0.33 pg mL(-1). Moreover, the immunosensor exhibited good selectivity, acceptable stability and reproducibility. The amplification strategy showed good promise for clinical screening of tumor biomarkers. PMID:24419078

  13. Highly enhanced gas sensing in single-walled carbon nanotube-based thin-film transistor sensors by ultraviolet light irradiation

    NASA Astrophysics Data System (ADS)

    Chen, Tingting; Wei, Liangming; Zhou, Zhihua; Shi, Diwen; Wang, Jian; Zhao, Jiang; Yu, Yuan; Wang, Ying; Zhang, Yafei

    2012-11-01

    Single-walled carbon nanotube (SWCNT) random networks are easily fabricated on a wafer scale, which provides an attractive path to large-scale SWCNT-based thin-film transistor (TFT) manufacturing. However, the mixture of semiconducting SWCNTs and metallic SWCNTs (m-SWCNTs) in the networks significantly limits the TFT performance due to the m-SWCNTs dominating the charge transport. In this paper, we have achieved a uniform and high-density SWCNT network throughout a complete 3-in. Si/SiO2 wafer using a solution-based assembly method. We further utilized UV radiation to etch m-SWCNTs from the networks, and a remarkable increase in the channel current on/off ratio ( I on/ I off) from 11 to 5.6 × 103 was observed. Furthermore, we used the SWCNT-TFTs as gas sensors to detect methyl methylphosphonate, a stimulant of benchmark threats. It was found that the SWCNT-TFT sensors treated with UV radiation show a much higher sensitivity and faster response to the analytes than those without treatment with UV radiation.

  14. Enhancing the mechanical properties of single-crystal CVD diamond.

    PubMed

    Liang, Qi; Yan, Chih-Shiue; Meng, Yufei; Lai, Joseph; Krasnicki, Szczesny; Mao, Ho-Kwang; Hemley, Russell J

    2009-09-01

    Approaches for enhancing the strength and toughness of single-crystal diamond produced by chemical vapor deposition (CVD) at high growth rates are described. CVD processes used to grow single-crystal diamond in high density plasmas were modified to incorporate boron and nitrogen. Semi-quantitative studies of mechanical properties were carried out using Vickers indentation techniques. The introduction of boron in single-crystal CVD diamond can significantly enhance the fracture toughness of this material without sacrificing its high hardness (∼78 GPa). Growth conditions were varied to investigate its effect on boron incorporation and optical properties by means of photoluminescence, infrared, and ultraviolet-visible absorption spectroscopy. Boron can be readily incorporated into single-crystal diamond by the methods used, but with nitrogen addition, the incorporation of boron was hindered. The spectroscopic measurements indicate that nitrogen and boron coexist in the diamond structure, which helps explain the origin of the enhanced fracture toughness of this material. Further, low pressure/high temperature annealing can enhance the intrinsic hardness of single-crystal CVD diamond by a factor of two without appreciable loss in fracture toughness. This doping and post-growth treatment of diamond may lead to new technological applications that require enhanced mechanical properties of diamond. PMID:21832321

  15. Enhanced photostability of an anthracene-based dye due to supramolecular encapsulation: a new type of photostable fluorophore for single-molecule study.

    PubMed

    Mitsui, Masaaki; Higashi, Koji; Takahashi, Ryoya; Hirumi, Yohei; Kobayashi, Kenji

    2014-08-01

    For single-molecule fluorescence studies, highly photostable fluorophores are absolutely imperative, because photo-induced degradation (i.e., photobleaching) limits the observation time of individual molecules. Herein, the photophysics and photostability of a highly fluorescent 9,10-bis(phenylethynyl)anthracene derivative (G) and its self-assembled boronic ester encapsulation complex (G@Cap) embedded in a glassy polymer matrix are investigated by single-molecule fluorescence spectroscopy (SMFS). The heterogeneity of the fluorescence emission wavelength and triplet blinking kinetics of the guest G are significantly decreased by supramolecular encapsulation due to conformational restriction and reduced heterogeneity in the local environment. A nearly 10-fold increase in the photostability of G due to encapsulation is quantitatively confirmed by evaluating the photobleaching yields of G and G@Cap. In addition, it is found that the G@Cap is >30-fold more photostable than rhodamine 6G, a widely used fluorescent dye in single-molecule studies. These results demonstrate that the G@Cap can serve as a very bright, long-lasting fluorescent probe for single-molecule studies. PMID:24887756

  16. SPR based fiber-optic sensor with enhanced electric field intensity and figure of merit using different single and bimetallic configurations

    NASA Astrophysics Data System (ADS)

    Tabassum, Rana; Gupta, Banshi D.

    2016-05-01

    We present numerical simulations of electric field intensity, sensitivity and figure of merit (FOM) for different single and bimetallic configured surface plasmon resonance (SPR) fiber optic sensors. The metals considered are gold (Au), silver (Ag), copper (Cu) and aluminum (Al). The overall performance of the sensor is evaluated in terms of electric field intensity, sensitivity, FOM, chemical stability and the cost of fabrication of the sensor. More specifically, in terms of the sensing parameters, Al and Cu bimetallic configuration is found to be much better than the single and the other bimetallic configured sensors. The bimetallic configuration of Al and Cu for fiber optic SPR sensor is also evaluated experimentally. Additionally, the film adhesion capability of both the materials gets improved when used in bimetallic combination which further improves the chemical stability of the sensor; this is a serious problem with Al and Cu in their single layer configuration. The combinations which possess gold as outer layer are more chemically stable but found to be weaker in terms of sensing parameters and cost of fabrication as gold is highly expensive.

  17. Mutanolysin enhancement of serogrouping of single colonies of streptococci.

    PubMed Central

    Calandra, G B; Henson, C L

    1982-01-01

    Single colonies of beta-hemolytic streptococci could be grouped by antibody-coated latex bead agglutination or coagglutination with staphylococci coated with antibody after incubation of the colonies with mutanolysin. This simple and quick procedure provided an enzymatic means of enhancing the sensitivity of tests such as Phadebact and SeroSTAT. PMID:6764770

  18. Enhancing efficiency of single, large-aperture antennas

    NASA Technical Reports Server (NTRS)

    Cohen, M.; Grimes, D. E.; Littlepage, R. S.

    1971-01-01

    Numerical analysis method provides means of describing energy distribution in focal plane of parabolic surface in terms of phase and wavelength. Two approaches for enhancing antenna efficiency include single, large reflector focused to feeding element, and array of smaller apertures whose individual outputs are summed.

  19. Relationship Enhancement for Single Females: Interpersonal Network Intervention.

    ERIC Educational Resources Information Center

    Overton, Debi H.; Avery, Arthur W.

    1984-01-01

    Assessed the effects of relationship enhancement training on the level of communication skills, amount of relationship change, and friendship strength of single female friendship pairs (N=38). Results indicated the trained experimental group increased their communication skills and amount of relationship change. (BH)

  20. Development of an enhanced bovine viral diarrhea virus subunit vaccine based on E2 glycoprotein fused to a single chain antibody which targets to antigen-presenting cells.

    PubMed

    Pecora, Andrea; Malacari, Darío A; Pérez Aguirreburualde, María S; Bellido, Demian; Escribano, José M; Dus Santos, María J; Wigdorovitz, Andrés

    2015-01-01

    Bovine viral diarrhea virus (BVDV) is an important cause of economic losses worldwide. E2 is an immunodominant protein and a promising candidate to develop subunit vaccines. To improve its immunogenicity, a truncated E2 (tE2) was fused to a single chain antibody named APCH, which targets to antigen-presenting cells. APCH-tE2 and tE2 proteins were expressed in the baculovirus system and their immunogenicity was firstly compared in guinea pigs. APCH-tE2 vaccine was the best one to evoke a humoral response, and for this reason, it was selected for a cattle vaccination experiment. All the bovines immunized with 1.5 μg of APCH-tE2 developed high levels of neutralizing antibodies against BVDV up to a year post-immunization, demonstrating its significant potential as a subunit vaccine. This novel vaccine is undergoing scale-up and was transferred to the private sector. Nowadays, it is being evaluated for registration as the first Argentinean subunit vaccine for cattle. PMID:25697468

  1. Novel Single-Tube Agar-Based Test System for Motility Enhancement and Immunocapture of Escherichia coli O157:H7 by H7 Flagellar Antigen-Specific Antibodies

    PubMed Central

    Murinda, Shelton E.; Nguyen, Lien T.; Ivey, Susan J.; Almeida, Raul A.; Oliver, Stephen P.

    2002-01-01

    This paper describes a novel single-tube agar-based technique for motility enhancement and immunoimmobilization of Escherichia coli O157:H7. Motility indole ornithine medium and agar (0.4%, wt/vol) media containing either nutrient broth, tryptone broth, or tryptic soy broth (TSBA) were evaluated for their abilities to enhance bacterial motility. Twenty-six E. coli strains, including 19 O157:H7 strains, 1 O157:H− strain, and 6 generic E. coli strains, were evaluated. Test bacteria were stab inoculated in the center of the agar column, and tubes were incubated at 37°C for 18 to 96 h. Nineteen to 24 of the 26 test strains (73.1 to 92.3%) were motile in the different media. TSBA medium performed best and was employed in subsequent studies of motility enhancement and H7 flagellar immunocapture. H7 flagellar antiserum (30 and 60 μl) mixed with TSBA was placed as a band (1 ml) in the middle of an agar column separating the top (3-ml) and bottom (3-ml) agar layers. The top agar layer was inoculated with the test bacterial strains. The tubes were incubated at 37°C for 12 to 18 h and for 18 to 96 h. The specificity and sensitivity of the H7 flagellar immunocapture tests were 75 and 100%, respectively. The procedure described is simple and sensitive and could be adapted easily for routine use in laboratories that do not have sophisticated equipment and resources for confirming the presence of H7 flagellar antigens. Accurate and rapid identification of H7 flagellar antigen is critical for the complete characterization of E. coli O157:H7, owing to the immense clinical, public health, and economic significance of this food-borne pathogen. PMID:12454173

  2. Image enhancement based on edge boosting algorithm

    NASA Astrophysics Data System (ADS)

    Ngernplubpla, Jaturon; Chitsobhuk, Orachat

    2015-12-01

    In this paper, a technique for image enhancement based on proposed edge boosting algorithm to reconstruct high quality image from a single low resolution image is described. The difficulty in single-image super-resolution is that the generic image priors resided in the low resolution input image may not be sufficient to generate the effective solutions. In order to achieve a success in super-resolution reconstruction, efficient prior knowledge should be estimated. The statistics of gradient priors in terms of priority map based on separable gradient estimation, maximum likelihood edge estimation, and local variance are introduced. The proposed edge boosting algorithm takes advantages of these gradient statistics to select the appropriate enhancement weights. The larger weights are applied to the higher frequency details while the low frequency details are smoothed. From the experimental results, the significant performance improvement quantitatively and perceptually is illustrated. It can be seen that the proposed edge boosting algorithm demonstrates high quality results with fewer artifacts, sharper edges, superior texture areas, and finer detail with low noise.

  3. Enhancing Single Molecule Imaging in Optofluidics and Microfluidics

    PubMed Central

    Vasdekis, Andreas E.; Laporte, Gregoire P.J.

    2011-01-01

    Microfluidics and optofluidics have revolutionized high-throughput analysis and chemical synthesis over the past decade. Single molecule imaging has witnessed similar growth, due to its capacity to reveal heterogeneities at high spatial and temporal resolutions. However, both resolution types are dependent on the signal to noise ratio (SNR) of the image. In this paper, we review how the SNR can be enhanced in optofluidics and microfluidics. Starting with optofluidics, we outline integrated photonic structures that increase the signal emitted by single chromophores and minimize the excitation volume. Turning then to microfluidics, we review the compatible functionalization strategies that reduce noise stemming from non-specific interactions and architectures that minimize bleaching and blinking. PMID:21954349

  4. Enhanced resistance of single-layer graphene to ion bombardment

    SciTech Connect

    Lopez, J. J.; Greer, F.; Greer, J. R.

    2010-05-15

    We report that single-layer graphene on a SiO{sub 2}/Si substrate withstands ion bombardment up to {approx}7 times longer than expected when exposed to focused Ga{sup +} ion beam. The exposure is performed in a dual beam scanning electron microscope/focused ion beam system at 30 kV accelerating voltage and 41 pA current. Ga{sup +} ion flux is determined by sputtering a known volume of hydrogenated amorphous carbon film deposited via plasma-enhanced chemical vapor deposition.

  5. Single molecule surface enhanced resonance Raman scattering (SERRS) of the enhanced green fluorescent protein (EGFP)

    NASA Astrophysics Data System (ADS)

    Hofkens, Johan; De Schryver, Frans C.; Cotlet, Mircea; Habuchi, Satoshi

    2004-06-01

    One of the most intriguing findings in single molecule spectroscopy (SMS) is the observation of Raman spectra of individual molecules, despite the small cross section of the transitions involved. The observation of the spectra can be explained by the surface enhanced Raman scattering (SERRS) effect. At the single-molecule level, the SERRS-spectra recorded as a function of time reveal inhomogeneous behaviour such as on/off blinking, spectral diffusion, intensity fluctuations of vibrational line, and even splitting of some lines within the spectrum of one molecule. Single-molecule SERRS (SM-SERRS) spectroscopy opens up exciting opportunities in the field of biophysics and biomedical spectroscopy. The first example of single protein SERRS was performed on hemoglobin. However, the possibility of extracting the heme group by silver sols can not be excluded. Here we report on SM-SERRS spectra of enhanced green fluorescent protein (EGFP) in which the chromophore is kept in the protein. The time series of SM-SERRS spectra suggest the conversion of the EGFP chromophore between the deprotonated and the protonated form. Autocorrelation analysis of SM-SERRS trajectory reveals the presence of fast dynamics taking place in the protein. Our findings show the potential of the technique to study structural dynamics of protein molecules.

  6. Single well tracer method to evaluate enhanced recovery

    DOEpatents

    Sheely, Jr., Clyde Q.; Baldwin, Jr., David E.

    1978-01-01

    Data useful to evaluate the effectiveness of or to design an enhanced recovery process (the recovery process involving mobilizing and moving hydrocarbons through a hydrocarbon-bearing subterranean formation from an injection well to a production well by injecting a mobilizing fluid into the injection well) are obtained by a process which comprises sequentially: determining hydrocarbon saturation in the formation in a volume in the formation near a well bore penetrating the formation, injecting sufficient of the mobilizing fluid to mobilize and move hydrocarbons from a volume in the formation near the well bore penetrating the formation, and determining by the single well tracer method a hydrocarbon saturation profile in a volume from which hydrocarbons are moved. The single well tracer method employed is disclosed by U.S. Pat. No. 3,623,842. The process is useful to evaluate surfactant floods, water floods, polymer floods, CO.sub.2 floods, caustic floods, micellar floods, and the like in the reservoir in much less time at greatly reduced costs, compared to conventional multi-well pilot test.

  7. Advanced piezoelectric single crystal based actuators

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.; Smith, Edward; Dong, Shuxiang; Viehland, Dwight; Moore, Jim, Jr.; Patrick, Brian

    2005-05-01

    TRS is developing new actuators based on single crystal piezoelectric materials such as Pb(Zn1/3Nb2/3)1-xTixO3 (PZN-PT) and Pb(Mg1/3Nb2/3)x-1TixO3 (PMN-PT) which exhibit very high piezoelectric coefficients (d33 = 1800-2200 pC/N) and electromechanical coupling factors (k33 > 0.9), respectively, for a variety of applications, including active vibration damping, active flow control, high precision positioning, ultrasonic motors, deformable mirrors, and adaptive optics. The d32 cut crystal plate actuators showed d32 ~ -1600 pC/N, inter-digital electroded (IDE) plate actuators showed effective d33 ~ 1100 pC/N. Single crystal stack actuators with stroke of 10 μm-100 μm were developed and tested at both room temperature and cryogenic temperatures. Flextensional single crystal piezoelectric actuators with either stack driver or plate driver were developed with stroke 70 μm - > 250 μm. For large stroke cryogenic actuation (> 1mm), a single crystal piezomotor was developed and tested at temperature of 77 K-300K and stroke of > 10mm and step resolution of 20 nm were achieved. In order to demonstrate the significance of developed single crystal actuators, modeling on single crystal piezoelectric deformable mirrors and helicopter flap control using single crystal actuators were conducted and the modeling results show that more than 20 wavelength wavefront error could be corrected by using the single crystal deformable mirrors and +/- 5.8 ° flap deflection will be obtained for a 36" flap using single crystal stack actuators.

  8. Combination of MVDR beamforming and single-channel spectral processing for enhancing noisy and reverberant speech

    NASA Astrophysics Data System (ADS)

    Cauchi, Benjamin; Kodrasi, Ina; Rehr, Robert; Gerlach, Stephan; Jukić, Ante; Gerkmann, Timo; Doclo, Simon; Goetze, Stefan

    2015-12-01

    This paper presents a system aiming at joint dereverberation and noise reduction by applying a combination of a beamformer with a single-channel spectral enhancement scheme. First, a minimum variance distortionless response beamformer with an online estimated noise coherence matrix is used to suppress noise and reverberation. The output of this beamformer is then processed by a single-channel spectral enhancement scheme, based on statistical room acoustics, minimum statistics, and temporal cepstrum smoothing, to suppress residual noise and reverberation. The evaluation is conducted using the REVERB challenge corpus, designed to evaluate speech enhancement algorithms in the presence of both reverberation and noise. The proposed system is evaluated using instrumental speech quality measures, the performance of an automatic speech recognition system, and a subjective evaluation of the speech quality based on a MUSHRA test. The performance achieved by beamforming, single-channel spectral enhancement, and their combination are compared, and experimental results show that the proposed system is effective in suppressing both reverberation and noise while improving the speech quality. The achieved improvements are particularly significant in conditions with high reverberation times.

  9. Surface-Enhanced Raman Spectroscopy of Single Molecules and Single Nano-Aggregates

    NASA Astrophysics Data System (ADS)

    Kleinman, Samuel Louis

    Although plasmonic nanoparticles are widely utilized in spectroscopy and sensing applications, a quantitative structure-function relationship is lacking. In this dissertation, we discuss measurements of single noble metal nanoparticles using localized surface plasmon resonance spectroscopy, surface-enhanced Raman spectroscopy (SERS), and transmission electron microscopy to elucidate structure-function relationships. Correlated studies involving two or all three of these techniques relate optical properties of the same nanoparticle to its structure. Through these correlated techniques we have been able to elucidate some of the structural motifs which give rise to the largest SERS enhancements. A variety of SERS substrates are used and the strengths and weaknesses of each type are compared. This information can be applied to sensing and detection methodologies. The utility of SERS is further explored through the use of SER spectroelectrochemistry. This confluence of techniques provided unique insight into the intermolecular interactions present in self-assembled monolayers of tetrathiafulvalene-modified thiolates on gold. Both ensemble-averaged and single-molecule SERS are thoroughly explored and with their benefits and limitations used synergistically to access the most fundamental physics of the light-matter interaction.

  10. Thermoelectric ZT enhanced by asymmetric configuration in single-molecule-magnet junctions

    NASA Astrophysics Data System (ADS)

    Niu, Pengbin; Shi, Yunlong; Sun, Zhu; Nie, Yi-Hang; Luo, Hong-Gang

    2016-02-01

    In mesoscopic devices, many factors like the Coulomb and spin interactions can enhance the thermoelectric figure of merit ZT. Here we use a system consisting of a single-molecule magnet (SMM) connected to two ferromagnetic electrodes to consider the possible enhancement effects of thermoelectric efficiency. By introducing an asymmetric configuration to the transport junction, we find that this configuration can significantly enhance the thermoelectric ZT. The optimized asymmetric thermoelectric ZT is five times that of the ZT with a symmetric configuration or non-magnetic case. Due to this asymmetry, a non-zero charge thermopower at the electron-hole symmetry point is also found. These results demonstrate that the asymmetry of the transport junction helps to enhance thermoelectric efficiency and is useful for fabricating SMM-based thermoelectric devices.

  11. Nanoscale mapping of intrinsic defects in single-layer graphene using tip-enhanced Raman spectroscopy.

    PubMed

    Su, Weitao; Kumar, Naresh; Dai, Ning; Roy, Debdulal

    2016-07-01

    Non-gap mode tip-enhanced Raman spectroscopy (TERS) is used for the first time to successfully map the intrinsic defects in single-layer graphene with 20 nm spatial resolution. The nanoscale Raman mapping is enabled by an unprecedented near-field to far-field signal contrast of 8.5 at the Ag-coated TERS tip-apex. These results demonstrate the potential of TERS for characterisation of defects in single-layer graphene-based devices at the nanometre length-scale. PMID:27279142

  12. Nanoparticle Based Surface-Enhanced Raman Spectroscopy

    SciTech Connect

    Talley, C E; Huser, T R; Hollars, C W; Jusinski, L; Laurence, T; Lane, S M

    2005-01-03

    Surface-enhanced Raman scattering is a powerful tool for the investigation of biological samples. Following a brief introduction to Raman and surface-enhanced Raman scattering, several examples of biophotonic applications of SERS are discussed. The concept of nanoparticle based sensors using SERS is introduced and the development of these sensors is discussed.

  13. Surface enhanced Raman scattering detection of single R6G molecules on nanoporous gold films

    NASA Astrophysics Data System (ADS)

    Liu, Hongwen; Zhang, L.; Yamaguchi, Y.; Iwasaki, H.; Inouye, Y.; Xue, Q. K.; Chen, M. W.

    2011-03-01

    Detecting single molecules with high sensitivity and molecular specificity is of great practical interest in many fields such as chemistry, biology, medicine, and pharmacology. For this purpose, cheap and highly active substrates are of crucial importance. Recently, nanoporous metals (NPMs), with a three-dimensional continuous network structure and pore channels usually much smaller than the wavelength of visible light, revealed outstanding optical properties in surface enhanced Raman scattering (SERS). In this work, we further modify the nanoporous gold films by growing a high density of gold nano-tips on the surface. Extremely focused electromagnetic fields can be produced at the apex of the nano-tips, resulting in so-called hot spots. With this NPM-based and affordable substrate, single molecule-detection is achievable with ultrahigh enhancement in SERS.

  14. Antenna-Enhanced Photocurrent Microscopy on Single-Walled Carbon Nanotubes at 30 nm Resolution

    PubMed Central

    Rauhut, Nina; Engel, Michael; Steiner, Mathias; Krupke, Ralph; Avouris, Phaedon; Hartschuh, Achim

    2013-01-01

    We present the first photocurrent measurements along single carbon nanotube (CNT) devices with 30 nm resolution. Our technique is based on tip-enhanced near-field optical microscopy, exploiting the plasmonically enhanced absorption controlled by an optical nanoantenna. This allows for imaging of the zero-bias photocurrent caused by charge separation in local built-in electric fields at the contacts and close to charged particles that cannot be resolved using confocal microscopy. Simultaneously recorded Raman scattering images reveal the structural properties and the defect densities of the CNTs. Antenna-enhanced scanning photocurrent microscopy extends the available set of scanning-probe techniques by combining high-resolution photovoltaic and optical probing and could become a valuable tool for the characterization of nanoelectronic devices. PMID:22632038

  15. DNA Origami Nanoantennas with over 5000-fold Fluorescence Enhancement and Single-Molecule Detection at 25 μM.

    PubMed

    Puchkova, Anastasiya; Vietz, Carolin; Pibiri, Enrico; Wünsch, Bettina; Sanz Paz, María; Acuna, Guillermo P; Tinnefeld, Philip

    2015-12-01

    Optical nanoantennas are known to focus freely propagating light and reversely to mediate the emission of a light source located at the nanoantenna hotspot. These effects were previously exploited for fluorescence enhancement and single-molecule detection at elevated concentrations. We present a new generation of self-assembled DNA origami based optical nanoantennas with improved robustness, reduced interparticle distance, and optimized quantum-yield improvement to achieve more than 5000-fold fluorescence enhancement and single-molecule detection at 25 μM background fluorophore concentration. Besides outperforming lithographic optical antennas, DNA origami nanoantennas are additionally capable of incorporating single emitters or biomolecular assays at the antenna hotspot. PMID:26523768

  16. Corona Enhancement and Mosaic Architecture for Prognosis and Selection Between of Liver Resection Versus Transcatheter Arterial Chemoembolization in Single Hepatocellular Carcinomas >5 cm Without Extrahepatic Metastases: An Imaging-Based Retrospective Study.

    PubMed

    Li, Meng; Xin, Yongjie; Fu, Sirui; Liu, Zaiyi; Li, Yong; Hu, Baoshan; Chen, Shuting; Liang, Changhong; Lu, Ligong

    2016-01-01

    Corona enhancement and mosaic architecture are 2 radiologic features of hepatocellular carcinoma (HCC). However, neither their prognostic values nor their impacts on the selection of liver resection (LR) versus transcatheter arterial chemoembolization (TACE) as treatment modalities have been established.We retrospectively analyzed 275 patients with a single HCC lesion >5 cm without extrahepatic metastasis treated with LR or TACE. In LR patients, the overall survival (OS) and time to progression (TTP) were compared between corona enhancement negative (corona-) versus positive (corona+) and mosaic architecture negative (mosaic-) versus positive (mosaic+) patients. Furthermore, by the combination of corona and mosaic, LR patients were divided into negative for both corona and mosaic patterns (LR-/-), positive for only 1 feature (LR+/-), and positive for both (LR+/+); their OS and TTP were compared to those of the TACE group. Cox regression was performed to identify independent factors for OS.In the survival plots for LR, corona- had better OS and TTP than corona+, and mosaic- had better OS than mosaic+. There was no significant difference in TTP between the subgroups. On Cox regression analysis, corona enhancement, but not mosaic architecture, was a significant factor for OS, whereas neither were a significant factor for TTP. In TACE patients, neither corona nor mosaic patterns had significant correlations with OS or TTP. In the whole population, LR-/ and LR+/- subgroups had similar OS, which was better than the LR+/+ and TACE groups. Moreover, LR-/- and LR+/- patients had better TTP than TACE patients, but there were no differences between the LR-/- versus LR+/-, LR-/ versus LR+/+, LR+/- versus LR+/+, and LR+/+ versus TACE groups. On Cox regression analysis, the presence of corona/mosaic patterns was an independent prognostic factor for OS.Our results showed that, for patients with a single HCC >5 cm without extrahepatic metastasis, corona and mosaic patterns are

  17. All-Dielectric Silicon Nanogap Antennas To Enhance the Fluorescence of Single Molecules.

    PubMed

    Regmi, Raju; Berthelot, Johann; Winkler, Pamina M; Mivelle, Mathieu; Proust, Julien; Bedu, Frédéric; Ozerov, Igor; Begou, Thomas; Lumeau, Julien; Rigneault, Hervé; García-Parajó, María F; Bidault, Sébastien; Wenger, Jérôme; Bonod, Nicolas

    2016-08-10

    Plasmonic antennas have a profound impact on nanophotonics as they provide efficient means to manipulate light and enhance light-matter interactions at the nanoscale. However, the large absorption losses found in metals can severely limit the plasmonic applications in the visible spectral range. Here, we demonstrate the effectiveness of an alternative approach using all-dielectric nanoantennas based on silicon dimers to enhance the fluorescence detection of single molecules. The silicon antenna design is optimized to confine the near-field intensity in the 20 nm nanogap and reach a 270-fold fluorescence enhancement in a nanoscale volume of λ(3)/1800 with dielectric materials only. Our conclusions are assessed by combining polarization resolved optical spectroscopy of individual antennas, scanning electron microscopy, numerical simulations, fluorescence lifetime measurements, fluorescence burst analysis, and fluorescence correlation spectroscopy. This work demonstrates that all-silicon nanoantennas are a valid alternative to plasmonic devices for enhanced single molecule fluorescence sensing, with the additional key advantages of reduced nonradiative quenching, negligible heat generation, cost-efficiency, and complementary metal-oxide-semiconductor (CMOS) compatibility. PMID:27399057

  18. Maxwell's demon based on a single qubit

    NASA Astrophysics Data System (ADS)

    Pekola, J. P.; Golubev, D. S.; Averin, D. V.

    2016-01-01

    We propose and analyze Maxwell's demon based on a single qubit with avoided level crossing. Its operation cycle consists of adiabatic drive to the point of minimum energy separation, measurement of the qubit state, and conditional feedback. We show that the heat extracted from the bath at temperature T can ideally approach the Landauer limit of kBT ln2 per cycle even in the quantum regime. Practical demon efficiency is limited by the interplay of Landau-Zener transitions and coupling to the bath. We suggest that an experimental demonstration of the demon is fully feasible using one of the standard superconducting qubits.

  19. Detection of single microparticles in airflows by edge-filter enhanced self-mixing interferometry.

    PubMed

    Contreras, Victor; Lönnqvist, Jan; Toivonen, Juha

    2016-04-18

    A laser Doppler velocimetry (LDV) sensor using the edge-filter enhanced self-mixing interferometry (ESMI) is presented based on speed measurements of single microparticles. The ESMI detection utilizes an acetylene edge-filter that maps the frequency modulation of a semiconductor laser into an intensity modulation as the laser wavelength is tuned to the steep edge of the absorption profile. In this work, the ESMI signal was analyzed for aerosol particles of different sizes from 1 μm to 10 μm at a distance of 2.5 m. At this operation range, the signal from single particles of all sizes was successfully acquired enabling particle velocity measurements through the Doppler shifted frequency along the beam axis. For the particular case of 10 μm particles, single aerosol particles were still detected at an unprecedented range of 10 m. A theoretical treatment describing the relation between Mie scattering theory and the self-mixing phenomenon on single-particle detection is presented supporting the experimental results. The results show that the edge-filter enhanced self-mixing technique opens new possibilities for self-mixing detection where longer ranges, lower backscattering laser powers and higher velocities are involved. For example, it can be used as a robust and inexpensive anemometer for LDV applications for airflows with low-number density of microparticles. PMID:27137321

  20. Plasmonic nanopore-based platforms for single-molecule Raman scattering

    NASA Astrophysics Data System (ADS)

    Deng, Liang; Wang, Yixin; Liu, Chen; Hu, Dora Juan Juan; Shum, Perry Ping; Su, Lei

    2016-08-01

    We propose and demonstrate a novel plasmonic nanopore platform based on a bowtie-nanopore structure, for single-molecule sensing. In this nano-structure, nano-bowties are integrated with solid-state nanopores to provide localized surface plasmon resonances for signal enhancement. We design and optimize the nano-structure by tuning both the bowtie gap and the bowtie angle, and investigate their influences on field enhancement, thereby achieving single-molecule sensitivity. In addition, we study the field enhancement by introducing an engineered photonic nano-cavity. This further strengthens the electric enhancement. An overall Raman enhancement factor of 2×108 is achieved in our simulation. This is believed to be sufficient for single-molecule sensing. The proposed bowtie-nanopore structure can be multiplexed on a single substrate for simultaneous multi-channel detection, paving the way for demanding applications such as DNA sequencing.

  1. Enhanced single-cell printing by acoustophoretic cell focusing

    PubMed Central

    Leibacher, I.; Schoendube, J.; Dual, J.; Zengerle, R.; Koltay, P.

    2015-01-01

    Recent years have witnessed a strong trend towards analysis of single-cells. To access and handle single-cells, many new tools are needed and have partly been developed. Here, we present an improved version of a single-cell printer which is able to deliver individual single cells and beads encapsulated in free-flying picoliter droplets at a single-bead efficiency of 96% and with a throughput of more than 10 beads per minute. By integration of acoustophoretic focusing, the cells could be focused in x and y direction. This way, the cells were lined-up in front of a 40 μm nozzle, where they were analyzed individually by an optical system prior to printing. In agreement with acoustic simulations, the focusing of 10 μm beads and Raji cells has been achieved with an efficiency of 99% (beads) and 86% (Raji cells) to a 40 μm wide center region in the 1 mm wide microfluidic channel. This enabled improved optical analysis and reduced bead losses. The loss of beads that ended up in the waste (because printing them as single beads arrangements could not be ensured) was reduced from 52% ± 6% to 28% ± 1%. The piezoelectric transducer employed for cell focusing could be positioned on an outer part of the device, which proves the acoustophoretic focusing to be versatile and adaptable. PMID:25945135

  2. Plasmon Coupling Enhanced Raman Scattering Nanobeacon for Single-Step, Ultrasensitive Detection of Cholera Toxin.

    PubMed

    Zhang, Chong-Hua; Liu, Ling-Wei; Liang, Ping; Tang, Li-Juan; Yu, Ru-Qin; Jiang, Jian-Hui

    2016-08-01

    We report the development of a novel plasmon coupling enhanced Raman scattering (PCERS) method, PCERS nanobeacon, for ultrasensitive, single-step, homogeneous detection of cholera toxin (CT). This method relies on our design of the plasmonic nanoparticles, which have a bilayer phospholipid coating with embedded Raman indicators and CT-binding ligands of monosialoganglioside (GM1). This design allows a facile synthesis of the plasmonic nanoparticle via two-step self-assembly without any specific modification or chemical immobilization. The realization of tethering GM1 on the surface imparts the plasmonic nanoparticles with high affinity, excellent specificity, and multivalence for interaction with CT. The unique lipid-based bilayer coated structure also affords excellent biocompatibility and stability for the plasmonic nanoparticles. The plasmonic nanoparticles are able to show substantial enhancement of the surface-enhanced Raman scattering (SERS) signals in a single-step interaction with CT, because of their assembly into aggregates in response to the CT-sandwiched interactions. The results reveal that the developed nanobeacon provides a simple but ultrasensitive sensor for rapid detection of CT with a large signal-to-background ratio and excellent reproducibility in a wide dynamic range, implying its potential for point-of-care applications in preventive and diagnostic monitoring of cholera. PMID:27348262

  3. Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery

    NASA Astrophysics Data System (ADS)

    Smith, Bryan Ronain; Ghosn, Eliver Eid Bou; Rallapalli, Harikrishna; Prescher, Jennifer A.; Larson, Timothy; Herzenberg, Leonore A.; Gambhir, Sanjiv Sam

    2014-06-01

    In cancer imaging, nanoparticle biodistribution is typically visualized in living subjects using `bulk' imaging modalities such as magnetic resonance imaging, computerized tomography and whole-body fluorescence. Accordingly, nanoparticle influx is observed only macroscopically, and the mechanisms by which they target cancer remain elusive. Nanoparticles are assumed to accumulate via several targeting mechanisms, particularly extravasation (leakage into tumour). Here, we show that, in addition to conventional nanoparticle-uptake mechanisms, single-walled carbon nanotubes are almost exclusively taken up by a single immune cell subset, Ly-6Chi monocytes (almost 100% uptake in Ly-6Chi monocytes, below 3% in all other circulating cells), and delivered to the tumour in mice. We also demonstrate that a targeting ligand (RGD) conjugated to nanotubes significantly enhances the number of single-walled carbon nanotube-loaded monocytes reaching the tumour (P < 0.001, day 7 post-injection). The remarkable selectivity of this tumour-targeting mechanism demonstrates an advanced immune-based delivery strategy for enhancing specific tumour delivery with substantial penetration.

  4. Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Lindsay, L.; Broido, D. A.

    2011-10-01

    The thermal conductivity, κ, of single layers of hexagonal boron nitride (h-BN), as well as that of bulk h-BN have been calculated utilizing an exact numerical solution of the phonon Boltzmann transport equation. The stronger phonon-phonon scattering in h-BN is revealed as the cause for its lower κ compared with graphite. A reduction in such scattering in the single layer arising mainly from a symmetry-based selection rule leads to a substantial increase in κ, with calculated room temperature values of more than 600 Wm-1K-1. Isotopic enrichment further increases κ, with the calculated enhancement exhibiting a peak with temperature, whose magnitude shows a dramatic sensitivity to crystallite size.

  5. Image enhancement based on gamma map processing

    NASA Astrophysics Data System (ADS)

    Tseng, Chen-Yu; Wang, Sheng-Jyh; Chen, Yi-An

    2010-05-01

    This paper proposes a novel image enhancement technique based on Gamma Map Processing (GMP). In this approach, a base gamma map is directly generated according to the intensity image. After that, a sequence of gamma map processing is performed to generate a channel-wise gamma map. Mapping through the estimated gamma, image details, colorfulness, and sharpness of the original image are automatically improved. Besides, the dynamic range of the images can be virtually expanded.

  6. Single gold nanoparticles to enhance the detection of single fluorescent molecules at micromolar concentration using fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Punj, Deep; Rigneault, Hervé; Wenger, Jérôme

    2014-05-01

    Single nanoparticles made of noble metals are strongly appealing to develop practical applications to detect fluorescent molecules in solution. Here, we detail the use of a single gold nanoparticle of 100 nm diameter to enhance the detection of single Alex Fluor 647 fluorescent molecules at high concentrations of several micromolar. We discuss the implementation of fluorescence correlation spectroscopy, and provide a new method to reliably extract the enhanced fluorescence signal stemming from the nanoparticle near-field from the background generated in the confocal volume. The applicability of our method is checked by reporting the invariance of the single molecule results as function of the molecular concentration, and the experimental data is found in good agreement with numerical simulations.

  7. Single conducting polymer nanowire based conductometric sensors

    NASA Astrophysics Data System (ADS)

    Bangar, Mangesh Ashok

    The detection of toxic chemicals, gases or biological agents at very low concentrations with high sensitivity and selectivity has been subject of immense interest. Sensors employing electrical signal readout as transduction mechanism offer easy, label-free detection of target analyte in real-time. Traditional thin film sensors inherently suffered through loss of sensitivity due to current shunting across the charge depleted/added region upon analyte binding to the sensor surface, due to their large cross sectional area. This limitation was overcome by use of nanostructure such as nanowire/tube as transducer where current shunting during sensing was almost eliminated. Due to their benign chemical/electrochemical fabrication route along with excellent electrical properties and biocompatibility, conducting polymers offer cost-effective alternative over other nanostructures. Biggest obstacle in using these nanostructures is lack of easy, scalable and cost-effective way of assembling these nanostructures on prefabricated micropatterns for device fabrication. In this dissertation, three different approaches have been taken to fabricate individual or array of single conducting polymer (and metal) nanowire based devices and using polymer by itself or after functionalization with appropriate recognition molecule they have been applied for gas and biochemical detection. In the first approach electrochemical fabrication of multisegmented nanowires with middle functional Ppy segment along with ferromagnetic nickel (Ni) and end gold segments for better electrical contact was studied. This multi-layered nanowires were used along with ferromagnetic contact electrode for controlled magnetic assembly of nanowires into devices and were used for ammonia gas sensing. The second approach uses conducting polymer, polypyrrole (Ppy) nanowires using simple electrophoretic alignment and maskless electrodeposition to anchor nanowire which were further functionalized with antibodies against

  8. Photoacoustic imaging enhanced by indocyanine green-conjugated single-wall carbon nanotubes

    PubMed Central

    Zanganeh, Saeid; Li, Hai; Kumavor, Patrick D.; Alqasemi, Umar; Aguirre, Andres; Mohammad, Innus; Stanford, Courtney; Smith, Michael B.

    2013-01-01

    Abstract. A photoacoustic contrast agent that is based on bis-carboxylic acid derivative of indocyanine green (ICG) covalently conjugated to single-wall carbon nanotubes (ICG/SWCNT) is presented. Covalently attaching ICG to the functionalized SWCNT provides a more robust system that delivers much more ICG to the tumor site. The detection sensitivity of the new contrast agent in a mouse tumor model is demonstrated in vivo by our custom-built photoacoustic imaging system. The summation of the photoacoustic tomography (PAT) beam envelope, referred to as the “PAT summation,” is used to demonstrate the postinjection light absorption of tumor areas in ICG- and ICG/SWCNT-injected mice. It is shown that ICG is able to provide 33% enhancement at approximately 20 min peak response time with reference to the preinjection PAT level, while ICG/SWCNT provides 128% enhancement at 80 min and even higher enhancement of 196% at the end point of experiments (120 min on average). Additionally, the ICG/SWCNT enhancement was mainly observed at the tumor periphery, which was confirmed by fluorescence images of the tumor samples. This feature is highly valuable in guiding surgeons to assess tumor boundaries and dimensions in vivo and to achieve clean tumor margins to improve surgical resection of tumors. PMID:24002193

  9. Surface enhanced Raman spectroscopy and quantum chemical studies on glycine single crystal

    NASA Astrophysics Data System (ADS)

    Parameswari, A.; Premkumar, S.; Premkumar, R.; Milton Franklin Benial, A.

    2016-07-01

    Adsorption characteristics of glycine (Gly) on silver surface were investigated based on density functional theory calculations and surface enhanced Raman spectroscopy (SERS) technique. The single crystals of Gly were grown by slow evaporation method and characterized by single crystal X-ray diffraction (XRD) technique. Silver nanoparticles (Ag NPs) were prepared by solution combustion method using Gly as fuel. The Ag NPs were characterized by XRD, ultraviolet-visible spectroscopy and high-resolution transmission electron microscopy techniques. The calculated structural parameters of Gly molecule were compared with the experimental observed single crystal XRD data. The structural parameters of Gly after adsorption on silver surface show the slight deviation, which indicates the interaction between the Gly and Ag3 cluster. Raman and SERS spectra for Gly single crystal were studied experimentally. Raman frequencies were calculated for Gly and Gly adsorbed on a silver surface. Raman and SERS frequencies were assigned on the basis of potential energy distribution calculation and compared with the experimental values. Frontier molecular orbital analysis was carried out for Gly and Gly adsorbed on a silver surface. The band gap value was significantly reduced for Gly after adsorption on the silver surface. The reduction in band gap indicates the delocalization of electrons, which leads to the higher bioactivity of the title molecule. SERS spectral analysis reveals that the Gly adsorbed as a stand-on orientation on the silver surface. Hence, the present investigation has been developed as a model system to understand the interaction of Ag NPs with amino acids.

  10. Reproducing kernel hilbert space based single infrared image super resolution

    NASA Astrophysics Data System (ADS)

    Chen, Liangliang; Deng, Liangjian; Shen, Wei; Xi, Ning; Zhou, Zhanxin; Song, Bo; Yang, Yongliang; Cheng, Yu; Dong, Lixin

    2016-07-01

    The spatial resolution of Infrared (IR) images is limited by lens optical diffraction, sensor array pitch size and pixel dimension. In this work, a robust model is proposed to reconstruct high resolution infrared image via a single low resolution sampling, where the image features are discussed and classified as reflective, cooled emissive and uncooled emissive based on infrared irradiation source. A spline based reproducing kernel hilbert space and approximative heaviside function are deployed to model smooth part and edge component of image respectively. By adjusting the parameters of heaviside function, the proposed model can enhance distinct part of images. The experimental results show that the model is applicable on both reflective and emissive low resolution infrared images to improve thermal contrast. The overall outcome produces a high resolution IR image, which makes IR camera better measurement accuracy and observes more details at long distance.

  11. Enhanced oil recovery projects data base

    SciTech Connect

    Pautz, J.F.; Sellers, C.A.; Nautiyal, C.; Allison, E.

    1992-04-01

    A comprehensive enhanced oil recovery (EOR) project data base is maintained and updated at the Bartlesville Project Office of the Department of Energy. This data base provides an information resource that is used to analyze the advancement and application of EOR technology. The data base has extensive information on 1,388 EOR projects in 569 different oil fields from 1949 until the present, and over 90% of that information is contained in tables and graphs of this report. The projects are presented by EOR process, and an index by location is provided.

  12. Localized surface plasmon resonance enhanced ultraviolet emission and F-P lasing from single ZnO microflower

    NASA Astrophysics Data System (ADS)

    Lin, Yi; Li, Jitao; Xu, Chunxiang; Fan, Xuemei; Wang, Baoping

    2014-10-01

    In this work, monodispersed ZnO microflowers are fabricated by a vapor phase transport method, and Au nanoparticles (NPs) are directly decorated on the surface of the ZnO microflowers. The micro-photoluminescence of a single ZnO microflower demonstrates that the near band-edge emission is tremendously enhanced while the defect-related emission is completely suppressed after Au decoration. The average enhancement factor reaches up to 65 fold. The enhancement mechanism is assumed to be the electron transfer from excited Au NPs to the ZnO microflower induced by the localized surface plasmon resonance based on the time-resolved photoluminescence. The enhanced F-P lasing from a single ZnO sample is further realized.

  13. Localized surface plasmon resonance enhanced ultraviolet emission and F-P lasing from single ZnO microflower

    SciTech Connect

    Lin, Yi; Li, Jitao; Xu, Chunxiang Fan, Xuemei; Wang, Baoping

    2014-10-06

    In this work, monodispersed ZnO microflowers are fabricated by a vapor phase transport method, and Au nanoparticles (NPs) are directly decorated on the surface of the ZnO microflowers. The micro-photoluminescence of a single ZnO microflower demonstrates that the near band-edge emission is tremendously enhanced while the defect-related emission is completely suppressed after Au decoration. The average enhancement factor reaches up to 65 fold. The enhancement mechanism is assumed to be the electron transfer from excited Au NPs to the ZnO microflower induced by the localized surface plasmon resonance based on the time-resolved photoluminescence. The enhanced F-P lasing from a single ZnO sample is further realized.

  14. Exploiting motion-based redundancy to enhance microgrid polarimeter imagery

    NASA Astrophysics Data System (ADS)

    Ratliff, Bradley M.; Tyo, J. Scott; Black, Wiley T.; LaCasse, Charles F.

    2009-08-01

    Microgrid polarimeters are a type of division of focal plane (DoFP) imaging polarimeter that contains a mosaic of pixel-wise micropolarizing elements superimposed upon an FPA sensor. Such a device measures a slightly different polarized state at each pixel. These measurements are combined to estimate the Stokes vector at each pixel in the image. DoFP devices have the advantage that they can obtain Stokes vector image estimates for an entire scene from a single frame capture. However, they suffer from the disadvantage that the neighboring measurements that are used to estimate the Stokes vector images are acquired at differing instantaneous fields of view (IFOV). This IFOV issue leads to false polarization signatures that significantly degrade the Stokes vector images. Interpolation and other image processing strategies can be employed to reduce IFOV artifacts; however these techniques have a limit to the amount of enhancement they can provide on a single microgrid image. Here we investigate algorithms that use multiple microgrid images that contain frame-to-frame global motion to further enhance the Stokes vector image estimates. Motion-based imagery provides additional redundancy that can be exploited to recover information that is "missing" from a single microgrid frame capture. We have found that IFOV and aliasing artifacts can be defeated entirely when these types of algorithms are applied to the data prior to Stokes vector estimation. We demonstrate results on real LWIR microgrid data using a particular resolution enhancement technique from the literature.

  15. A single bout of resistance exercise can enhance episodic memory performance

    PubMed Central

    Weinberg, Lisa; Hasni, Anita; Shinohara, Minoru; Duarte, Audrey

    2014-01-01

    Acute aerobic exercise can be beneficial to episodic memory. This benefit may occur because exercise produces a similar physiological response as physical stressors. When administered during consolidation, acute stress, both physical and psychological, consistently enhances episodic memory, particularly memory for emotional materials. Here we investigated whether a single bout of resistance exercise performed during consolidation can produce episodic memory benefits 48 hours later. We used a one-leg knee extension/flexion task for the resistance exercise. To assess the physiological response to the exercise, we measured salivary alpha amylase (a biomarker of central norepinephrine), heart rate, and blood pressure. To test emotional episodic memory, we used a remember-know recognition memory paradigm with equal numbers of positive, negative, and neutral IAPS images as stimuli. The group that performed the exercise, the active group, had higher overall recognition accuracy than the group that did not exercise, the passive group. We found a robust effect of valence across groups, with better performance on emotional items as compared to neutral items and no difference between positive and negative items. This effect changed based on the physiological response to the exercise. Within the active group, participants with a high physiological response to the exercise were impaired for neutral items as compared to participants with a low physiological response to the exercise. Our results demonstrate that a single bout of resistance exercise performed during consolidation can enhance episodic memory and that the effect of valence on memory depends on the physiological response to the exercise. PMID:25262058

  16. Speech Enhancement based on Compressive Sensing Algorithm

    NASA Astrophysics Data System (ADS)

    Sulong, Amart; Gunawan, Teddy S.; Khalifa, Othman O.; Chebil, Jalel

    2013-12-01

    There are various methods, in performance of speech enhancement, have been proposed over the years. The accurate method for the speech enhancement design mainly focuses on quality and intelligibility. The method proposed with high performance level. A novel speech enhancement by using compressive sensing (CS) is a new paradigm of acquiring signals, fundamentally different from uniform rate digitization followed by compression, often used for transmission or storage. Using CS can reduce the number of degrees of freedom of a sparse/compressible signal by permitting only certain configurations of the large and zero/small coefficients, and structured sparsity models. Therefore, CS is significantly provides a way of reconstructing a compressed version of the speech in the original signal by taking only a small amount of linear and non-adaptive measurement. The performance of overall algorithms will be evaluated based on the speech quality by optimise using informal listening test and Perceptual Evaluation of Speech Quality (PESQ). Experimental results show that the CS algorithm perform very well in a wide range of speech test and being significantly given good performance for speech enhancement method with better noise suppression ability over conventional approaches without obvious degradation of speech quality.

  17. Dark States in Single DNA Bases and DNA Base Polymers

    NASA Astrophysics Data System (ADS)

    Kohler, Bern; Hare, Patrick M.; Middleton, Chris T.

    2009-06-01

    DNA is vulnerable to photochemical modification by UV light. The excited electronic states that initiate DNA damage have been difficult to characterize due to their ultrashort lifetimes, and most excitations in single DNA bases decay to the electronic ground state in hundreds of femtoseconds. Although many workers have now located conical intersections between various electronic states of the nucleobases, there is still confusion over the precise dynamics that lead to deactivation. This is especially true for the pyrimidine bases where the initial Franck-Condon population bifurcates with some molecules decaying to the ground state and others relaxing to a relatively long-lived ^1nπ* state. Results from UV/UV and UV/mid-IR transient absorption experiments will be presented that illustrate these dual decay pathways. Evidence suggests that the ^1nπ* state mediates intersystem crossing to the triplet state. Finally, current understanding of how these single-base decay pathways are modified by interactions in DNA polymers will be discussed.

  18. Enhanced Raman Microprobe Imaging of Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Hadjiev, V. G.; Arepalli, S.; Nikolaev, P.; Jandl, S.; Yowell, L.

    2003-01-01

    We explore Raman microprobe capabilities to visualize single wall carbon nanotubes (SWCNTs). Although this technique is limited to a micron scale, we demonstrate that images of individual SWCNTs, bundles or their agglomerates can be generated by mapping Raman active elementary excitations. We measured the Raman response from carbon vibrations in SWCNTs excited by confocal scanning of a focused laser beam. Carbon vibrations reveal key characteristics of SWCNTs as nanotube diameter distribution (radial breathing modes, RBM, 100-300 cm(exp -1)), presence of defects and functional groups (D-mode, 1300-1350 cm(exp -1)), strain and oxidation states of SWCNTs, as well as metallic or semiconducting character of the tubes encoded in the lineshape of the G-modes at 1520-1600 cm(exp - 1). In addition, SWCNTs are highly anisotropic scatterers. The Raman response from a SWCNT is maximal for incident light polarization parallel to the tube axis and vanishing for perpendicular directions. We show that the SWCNT bundle shape or direction can be determined, with some limitations, from a set of Raman images taken at two orthogonal directions of the incident light polarization.

  19. Enhancing atlas based segmentation with multiclass linear classifiers

    SciTech Connect

    Sdika, Michaël

    2015-12-15

    Purpose: To present a method to enrich atlases for atlas based segmentation. Such enriched atlases can then be used as a single atlas or within a multiatlas framework. Methods: In this paper, machine learning techniques have been used to enhance the atlas based segmentation approach. The enhanced atlas defined in this work is a pair composed of a gray level image alongside an image of multiclass classifiers with one classifier per voxel. Each classifier embeds local information from the whole training dataset that allows for the correction of some systematic errors in the segmentation and accounts for the possible local registration errors. The authors also propose to use these images of classifiers within a multiatlas framework: results produced by a set of such local classifier atlases can be combined using a label fusion method. Results: Experiments have been made on the in vivo images of the IBSR dataset and a comparison has been made with several state-of-the-art methods such as FreeSurfer and the multiatlas nonlocal patch based method of Coupé or Rousseau. These experiments show that their method is competitive with state-of-the-art methods while having a low computational cost. Further enhancement has also been obtained with a multiatlas version of their method. It is also shown that, in this case, nonlocal fusion is unnecessary. The multiatlas fusion can therefore be done efficiently. Conclusions: The single atlas version has similar quality as state-of-the-arts multiatlas methods but with the computational cost of a naive single atlas segmentation. The multiatlas version offers a improvement in quality and can be done efficiently without a nonlocal strategy.

  20. Enhancement of textural differences based on morphological component analysis.

    PubMed

    Chi, Jianning; Eramian, Mark

    2015-09-01

    This paper proposes a new texture enhancement method which uses an image decomposition that allows different visual characteristics of textures to be represented by separate components in contrast with previous methods which either enhance texture indirectly or represent all texture information using a single image component. Our method is intended to be used as a preprocessing step prior to the use of texture-based image segmentation algorithms. Our method uses a modification of morphological component analysis (MCA) which allows texture to be separated into multiple morphological components each representing a different visual characteristic of texture. We select four such texture characteristics and propose new dictionaries to extract these components using MCA. We then propose procedures for modifying each texture component and recombining them to produce a texture-enhanced image. We applied our method as a preprocessing step prior to a number of texture-based segmentation methods and compared the accuracy of the results, finding that our method produced results superior to comparator methods for all segmentation algorithms tested. We also demonstrate by example the main mechanism by which our method produces superior results, namely that it causes the clusters of local texture features of each distinct image texture to mutually diverge within the multidimensional feature space to a vastly superior degree versus the comparator enhancement methods. PMID:25935032

  1. Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond

    PubMed Central

    Toyli, David M.; de las Casas, Charles F.; Christle, David J.; Dobrovitski, Viatcheslav V.; Awschalom, David D.

    2013-01-01

    We demonstrate fluorescence thermometry techniques with sensitivities approaching 10 mK⋅Hz−1/2 based on the spin-dependent photoluminescence of nitrogen vacancy (NV) centers in diamond. These techniques use dynamical decoupling protocols to convert thermally induced shifts in the NV center's spin resonance frequencies into large changes in its fluorescence. By mitigating interactions with nearby nuclear spins and facilitating selective thermal measurements, these protocols enhance the spin coherence times accessible for thermometry by 45-fold, corresponding to a 7-fold improvement in the NV center’s temperature sensitivity. Moreover, we demonstrate these techniques can be applied over a broad temperature range and in both finite and near-zero magnetic field environments. This versatility suggests that the quantum coherence of single spins could be practically leveraged for sensitive thermometry in a wide variety of biological and microscale systems. PMID:23650364

  2. Single mode waveguide platform for spontaneous and surface-enhanced on-chip Raman spectroscopy.

    PubMed

    Dhakal, Ashim; Peyskens, Frédéric; Clemmen, Stéphane; Raza, Ali; Wuytens, Pieter; Zhao, Haolan; Le Thomas, Nicolas; Baets, Roel

    2016-08-01

    We review an on-chip approach for spontaneous Raman spectroscopy and surface-enhanced Raman spectroscopy based on evanescent excitation of the analyte as well as evanescent collection of the Raman signal using complementary metal oxide semiconductor (CMOS)-compatible single mode waveguides. The signal is either directly collected from the analyte molecules or via plasmonic nanoantennas integrated on top of the waveguides. Flexibility in the design of the geometry of the waveguide, and/or the geometry of the antennas, enables optimization of the collection efficiency. Furthermore, the sensor can be integrated with additional functionality (sources, detectors, spectrometers) on the same chip. In this paper, the basic theoretical concepts are introduced to identify the key design parameters, and some proof-of-concept experimental results are reviewed. PMID:27499842

  3. A proposal and a theoretical analysis of an enhanced surface plasmon coupled emission structure for single molecule detection

    NASA Astrophysics Data System (ADS)

    Uddin, Shiekh Zia; Tanvir, Mukhlasur Rahman; Talukder, Muhammad Anisuzzaman

    2016-05-01

    We propose a structure that can be used for enhanced single molecule detection using surface plasmon coupled emission (SPCE). In the proposed structure, instead of a single metal layer on the glass prism of a typical SPCE structure for fluorescence microscopy, a metal-dielectric-metal structure is used. We theoretically show that the proposed structure significantly decreases the excitation volume of the fluorescently labeled sample, and simultaneously increases the peak SPCE intensity and SPCE power. Therefore, the signal-to-noise ratio and sensitivity of an SPCE based fluorescence microscopy system can be significantly increased using the proposed structure, which will be helpful for enhanced single molecule detection, especially, in a less pure biological sample.

  4. Tailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Nanocrystals

    PubMed Central

    Wang, Ya-Lan; Mohammadi Estakhri, Nasim; Johnson, Amber; Li, Hai-Yang; Xu, Li-Xiang; Zhang, Zhenyu; Alù, Andrea; Wang, Qu-Quan; Shih, Chih-Kang (Ken)

    2015-01-01

    By using silver nanoplatelets with a widely tunable localized surface plasmon resonance (LSPR), and their corresponding local field enhancement, here we show large manipulation of plasmonic enhanced upconversion in NaYF4:Yb3+/Er3+ nanocrystals at the single particle level. In particular, we show that when the plasmonic resonance of silver nanolplatelets is tuned to 656 nm, matching the emission wavelength, an upconversion enhancement factor ~5 is obtained. However, when the plasmonic resonance is tuned to 980 nm, matching the nanocrystal absorption wavelength, we achieve an enhancement factor of ~22 folds. The precise geometric arrangement between fluorescent nanoparticles and silver nanoplatelets allows us to make, for the first time, a comparative analysis between experimental results and numerical simulations, yielding a quantitative agreement at the single particle level. Such a comparison lays the foundations for a rational design of hybrid metal-fluorescent nanocrystals to harness the upconversion enhancement for biosensing and light harvesting applications. PMID:25976870

  5. Tailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb(3+)/Er(3+) Nanocrystals.

    PubMed

    Wang, Ya-Lan; Mohammadi Estakhri, Nasim; Johnson, Amber; Li, Hai-Yang; Xu, Li-Xiang; Zhang, Zhenyu; Alù, Andrea; Wang, Qu-Quan; Shih, Chih-Kang Ken

    2015-01-01

    By using silver nanoplatelets with a widely tunable localized surface plasmon resonance (LSPR), and their corresponding local field enhancement, here we show large manipulation of plasmonic enhanced upconversion in NaYF4:Yb(3+)/Er(3+) nanocrystals at the single particle level. In particular, we show that when the plasmonic resonance of silver nanolplatelets is tuned to 656 nm, matching the emission wavelength, an upconversion enhancement factor ~5 is obtained. However, when the plasmonic resonance is tuned to 980 nm, matching the nanocrystal absorption wavelength, we achieve an enhancement factor of ~22 folds. The precise geometric arrangement between fluorescent nanoparticles and silver nanoplatelets allows us to make, for the first time, a comparative analysis between experimental results and numerical simulations, yielding a quantitative agreement at the single particle level. Such a comparison lays the foundations for a rational design of hybrid metal-fluorescent nanocrystals to harness the upconversion enhancement for biosensing and light harvesting applications. PMID:25976870

  6. Graphene-enhanced Raman spectroscopy of thymine adsorbed on single-layer graphene

    NASA Astrophysics Data System (ADS)

    Fesenko, Olena; Dovbeshko, Galyna; Dementjev, Andrej; Karpicz, Renata; Kaplas, Tommi; Svirko, Yuri

    2015-04-01

    Graphene-enhanced Raman scattering (GERS) spectra and coherent anti-Stokes Raman scattering (CARS) of thymine molecules adsorbed on a single-layer graphene were studied. The enhancement factor was shown to depend on the molecular groups of thymine. In the GERS spectra of thymine, the main bands are shifted with respect to those for molecules adsorbed on a glass surface, indicating charge transfer for thymine on graphene. The probable mechanism of the GERS enhancement is discussed. CARS spectra are in accord with the GERS results, which indicates similar benefit from the chemical enhancement.

  7. Nanofluidic channel based biosensor using surface enhanced raman spectroscopy (SERS)

    NASA Astrophysics Data System (ADS)

    Chou, I.-Hsien; Beier, Hope T.; Wang, Maio; Jing, Nan; Kameoka, Jun; Coté, Gerard L.

    2007-02-01

    The Raman scattering signature of molecules has been demonstrated to be greatly enhanced, on the order of 10 6-10 12 times, on roughened metal surfaces and clustered structures such as aggregated colloidal gold. Here we describe a method that improves reproducibility and sensitivity of the substrate for surface enhanced Raman spectroscopy (SERS) by using a nanofluidic trapping device. This nanofluidic device has a bottle neck shape composed of a microchannel leading into a nano channel that causes size-dependent trapping of nanoparticles. The analyte and Au nanoparticles, 60 nm in diameter, in aqueous solution was pumped into the channel. The nanoparticles which were larger than the narrow channel are trapped at the edge of the channel to render an enhancement of the Raman signal. We have demonstrated that the Raman scattering signal enhancement on a nanochannel-based colloidal gold cluster is able to detect 10 pM of adenine, the test analyte, without chemical modification. The efficiency and robustness of the device suggests potential for single molecule detection and multicomponent detection for biological applications and/or biotoxins.

  8. Study of single walled carbon nanotube functionalization by means of surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ceponkus, Justinas; Velicka, Martynas; Pucetaite, Milda; Sablinskas, Valdas

    2015-09-01

    Raman spectroscopy is known to provide information about the quality of the single walled carbon nanotubes (SWCNT). The information is based on the intensity ratio of D and G spectral modes and the frequency of RBM modes. However due to resonance nature of Raman spectrum of the nanotubes this method is not suitable to detect functionalization of the nanotubes. Surface enhanced Raman spectroscopy (SERS) is known to enhance the Raman bands up to fourteen orders of magnitude. Preferable adsorption sites for small silver nanoparticles are expected to be the functional groups of SWCNT; therefore SERS technique allows detecting small amounts of functional groups despite strong resonance Raman from backbone of SWCNT. In this study functionalized nanotubes were dispersed in silver colloid and dried on the standard silver plate for Raman measurements. Spectra of SWCNT without colloid in the spectral range between 50 and 1800 cm-1 exhibit only four main spectral features: G, D, and RBM modes between 200 and 400 cm-1. Spectra of SWCNT with the colloid exhibit several additional spectral bands which do not belong to the colloid. These bands attributed to vibrations of C-O, C-C and O-H from the functional groups and the carbon atom of the SWCNT attached to the corresponding group. The bands associated with the vibrations involving O atom is an indication that silver nanoparticles interact with the functional group attached to SWCNT.

  9. Classification of single particle optical scattering patterns by the spectrum enhancement algorithm

    NASA Astrophysics Data System (ADS)

    Crosta, Giovanni F.

    2005-11-01

    Airborne material particles in the 5μm size range have been collected, resuspended and analyzed by the TAOS (two-dimensional angular optical scattering) technique. The corresponding patterns of light intensity scattered by single particles have been automatically classified by an algorithm based on "spectrum enhancement", multivariate statistics and supervised optimization. The enhanced spectrum has resulted from some non-linear operations on fractional spatial derivatives of the pattern. It has yielded morphological descriptors of the pattern. A multiobjective optimization algorithm has included principal components analysis and has maximized pairwise discrimination between classes. The classifier has been trained by TAOS patterns from 10μm polystyrene spheres (P) and background aerosol particles (B). Then it has been applied to recognize patterns from airborne debris (A) sampled on a car racing track. Training with at least 10 patterns per class has discriminated P and B from A at confidence levels >=90%. Training by samples of smaller sizes (e.g., 5P and 12B patterns) has obviously yielded lower confidence levels (65% in B-A discrimination).

  10. Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots

    PubMed Central

    Alonso-González, P.; Albella, P.; Schnell, M.; Chen, J.; Huth, F.; García-Etxarri, A.; Casanova, F.; Golmar, F.; Arzubiaga, L.; Hueso, L.E.; Aizpurua, J.; Hillenbrand, R.

    2012-01-01

    Light scattering at nanoparticles and molecules can be dramatically enhanced in the 'hot spots' of optical antennas, where the incident light is highly concentrated. Although this effect is widely applied in surface-enhanced optical sensing, spectroscopy and microscopy, the underlying electromagnetic mechanism of the signal enhancement is challenging to trace experimentally. Here we study elastically scattered light from an individual object located in the well-defined hot spot of single antennas, as a new approach to resolve the role of the antenna in the scattering process. We provide experimental evidence that the intensity elastically scattered off the object scales with the fourth power of the local field enhancement provided by the antenna, and that the underlying electromagnetic mechanism is identical to the one commonly accepted in surface-enhanced Raman scattering. We also measure the phase shift of the scattered light, which provides a novel and unambiguous fingerprint of surface-enhanced light scattering. PMID:22353715

  11. Enhanced photoabsorption in front-tapered single-nanowire solar cells.

    PubMed

    Zhan, Yaohui; Li, Xiaofeng; Wu, Shaolong; Li, Ke; Yang, Zhenhai; Shang, Aixue

    2014-10-01

    Vertically aligned single-nanowire is verified to be a unique building block to realize the high-efficiency solar cell beyond Schockley-Queisser limit. We proposed a front-tapered vertically aligned single-nanowire solar cell (V-SNSC) and investigated numerically the possibility of this configuration to improve the photoabsorption efficiency compared to the conventional designs, by using 2.5D full-wave finite-element method. The influences of the feature sizes of aspect ratio, bottom radius, and nanowire length on the light-trapping properties were explored; the detailed field distribution and carrier generation rate were revealed as well based on the theory of dielectric resonant antenna, in order to elucidate the underlying physical mechanism. Results showed that, compared with the cylindrical counterparts, the absorption capability of V-SNSCs could be greatly enhanced by using a front-tapered configuration with less material utilized, and that such a positive effect can be further strengthened by increasing the nanowire length. The proposed configuration provides a promising approach to engineer the photoabsorption in the photovoltaic and other optoelectronic devices. PMID:25360977

  12. Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Broido, David; Lindsay, Lucas

    2012-02-01

    We have calculated the lattice thermal conductivity, k, of both naturally occurring and isotopically enriched single layers of hexagonal boron nitride (h-BN) as well as bulk h-BN using an exact numerical solution of the Boltzmann transport equation for phonons [1]. Good agreement is obtained with measured bulk h-BN data [2], and the stronger phonon-phonon scattering identified in these systems explains why their k values are significantly lower than those in graphene and graphite. A reduction in such scattering in the single layer arising mainly from a symmetry-based selection rule leads to a substantial increase in k, with calculated room temperature values of more than 600 W/m-K. Additional enhancement is obtained from isotopic enrichment, which exhibits a strong peak as a function of temperature, with magnitude growing rapidly with crystallite size. [1] L. Lindsay and D. A. Broido, Phys. Rev. B 84, 155421 (2011). [2] E. K. Sichel, R. E. Miller, M. S. Abrahams, and C. J. Buiocchi, Phys. Rev. B 13, 4607 (1976).

  13. Single Amino Acid Substitution in the Pullulanase of Klebsiella variicola for Enhancing Thermostability and Catalytic Efficiency.

    PubMed

    Mu, Guo Cui; Nie, Yao; Mu, Xiao Qing; Xu, Yan; Xiao, Rong

    2015-07-01

    Based on conserved sites and homology modeling analysis, the residue Phe581 in the Klebsiella variicola SHN-1 pullulanase was selected as the potential thermostability-related site and its role on thermostability and activity was investigated by site-saturated mutagenesis. Compared with the wild-type pullulanase, the optimum temperature of the mutants including F581L, F581Q, F581R, F581T, F581V, and F581Y was increased from 53 to 56 °C, and correspondingly the half lives of these mutants at 55 °C were increased by 4.20, 3.70, 1.90, 7.16, 3.01, and 1.75 min, respectively. By modeling the structure of the pullulanase, formation of more hydrogen bonds by single-site substitution was supposed to be responsible for the improvement of thermostability. Of these mutants, furthermore, F581L and F581V exhibited higher values of V max and k cat/K m, compared with the wild-type enzyme. Therefore, the residue Phe581 was identified as an important site relevant to the activity and thermostability of the pullulanase of K. variicola, and by mutation at this single site, the mutated enzymes with enhanced thermostability and catalytic efficiency were achieved consequently. PMID:26018345

  14. Glucocorticoids enhance extinction-based psychotherapy

    PubMed Central

    de Quervain, Dominique J.-F.; Bentz, Dorothée; Michael, Tanja; Bolt, Olivia C.; Wiederhold, Brenda K.; Margraf, Jürgen; Wilhelm, Frank H.

    2011-01-01

    Behavioral exposure therapy of anxiety disorders is believed to rely on fear extinction. Because preclinical studies have shown that glucocorticoids can promote extinction processes, we aimed at investigating whether the administration of these hormones might be useful in enhancing exposure therapy. In a randomized, double-blind, placebo-controlled study, 40 patients with specific phobia for heights were treated with three sessions of exposure therapy using virtual reality exposure to heights. Cortisol (20 mg) or placebo was administered orally 1 h before each of the treatment sessions. Subjects returned for a posttreatment assessment 3–5 d after the last treatment session and for a follow-up assessment after 1 mo. Adding cortisol to exposure therapy resulted in a significantly greater reduction in fear of heights as measured with the acrophobia questionnaire (AQ) both at posttreatment and at follow-up, compared with placebo. Furthermore, subjects receiving cortisol showed a significantly greater reduction in acute anxiety during virtual exposure to a phobic situation at posttreatment and a significantly smaller exposure-induced increase in skin conductance level at follow-up. The present findings indicate that the administration of cortisol can enhance extinction-based psychotherapy. PMID:21444799

  15. Microprocessor-based single particle calibration of scintillation counter

    NASA Technical Reports Server (NTRS)

    Mazumdar, G. K. D.; Pathak, K. M.

    1985-01-01

    A microprocessor-base set-up is fabricated and tested for the single particle calibration of the plastic scintillator. The single particle response of the scintillator is digitized by an A/D converter, and a 8085 A based microprocessor stores the pulse heights. The digitized information is printed. Facilities for CRT display and cassette storing and recalling are also made available.

  16. Room-temperature single-photon sources based on nanocrystal fluorescence in photonic/plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Lukishova, S. G.; Winkler, J. M.; Bissell, L. J.; Mihaylova, D.; Liapis, Andreas C.; Shi, Z.; Goldberg, D.; Menon, V. M.; Boyd, R. W.; Chen, G.; Prasad, P.

    2014-10-01

    Results are presented here towards robust room-temperature SPSs based on fluorescence in nanocrystals: colloidal quantum dots, color-center diamonds and doped with trivalent rare-earth ions (TR3+). We used cholesteric chiral photonic bandgap and Bragg-reflector microcavities for single emitter fluorescence enhancement. We also developed plasmonic bowtie nanoantennas and 2D-Si-photonic bandgap microcavities. The paper also provides short outlines of other technologies for room-temperature single-photon sources.

  17. Reactive ion etching-assisted surface-enhanced Raman scattering measurements on the single nanoparticle level

    SciTech Connect

    Wang, Si-Yi; Jiang, Xiang-Xu; Wei, Xin-Pan; Lee, Shuit-Tong E-mail: yaohe@suda.edu.cn; He, Yao E-mail: yaohe@suda.edu.cn; Xu, Ting-Ting

    2014-06-16

    Single-nanoparticle surface-enhanced Raman scattering (SERS) measurement is of essential importance for both fundamental research and practical applications. In this work, we develop a class of single-particle SERS approaches, i.e., reactive ion etching (RIE)-assisted SERS measurements correlated with scanning electron microscopy (SEM) strategy (RIE/SERS/SEM), enabling precise and high-resolution identification of single gold nanoparticle (AuNP) in facile and reliable manners. By using AuNP-coated silicon wafer and quartz glass slide as models, we further employ the developed RIE/SERS/SEM method for interrogating the relationship between SERS substrates and enhancement factor (EF) on the single particle level. Together with theoretical calculation using an established finite-difference-time-domain (FDTD) method, we demonstrate silicon wafer as superior SERS substrates, facilitating improvement of EF values.

  18. Direct Measurement of Single-Molecule DNA Hybridization Dynamics with Single-Base Resolution.

    PubMed

    He, Gen; Li, Jie; Ci, Haina; Qi, Chuanmin; Guo, Xuefeng

    2016-07-25

    Herein, we report label-free detection of single-molecule DNA hybridization dynamics with single-base resolution. By using an electronic circuit based on point-decorated silicon nanowires as electrical probes, we directly record the folding/unfolding process of individual hairpin DNAs with sufficiently high signal-to-noise ratio and bandwidth. These measurements reveal two-level current oscillations with strong temperature dependence, enabling us to determine the thermodynamic and kinetic properties of hairpin DNA hybridization. More importantly, successive, stepwise increases and decreases in device conductance at low temperature on a microsecond timescale are successfully observed, indicating a base-by-base unfolding/folding process. The process demonstrates a kinetic zipper model for DNA hybridization/dehybridization at the single base-pair level. This measurement capability promises a label-free single-molecule approach to probe biomolecular interactions with fast dynamics. PMID:27272178

  19. Enhancement of single motor unit inhibitory responses to transcranial magnetic stimulation in amyotrophic lateral sclerosis.

    PubMed

    Schmied, Annie; Attarian, Shahram

    2008-08-01

    In healthy human subjects, transcranial magnetic stimulation (TMS) applied to the motor cortex induces concurrent inhibitory and excitatory effects on motoneurone activity. In amyotrophic lateral sclerosis (ALS), a neurodegenerative disease affecting both cortical and spinal motor neurons, paired-pulse studies based on electromyographic (EMG) recording have revealed a decrease in TMS-induced inhibition. This suggested that inhibition loss may promote excito-toxicity in this disease. Against this hypothesis, an abnormally high incidence of inhibitory responses to TMS has been observed in the peristimulus time histograms (PSTHs) in ALS single motor unit studies. The disappearance of cortico-motoneuronal excitatory inputs might, however, have facilitated the detection of single motor unit inhibitory responses in the PSTHs. This question was addressed here using a new approach, where the strength of the excitatory and inhibitory effects of TMS on motoneurone activity was assessed from the duration of inter-spike intervals (ISIs). This analysis was conducted on single motor unit (MU), tested on healthy subjects and patients with ALS or Kennedy's disease (KD), a motor neuron disease which unlike ALS, spares the cortico-spinal pathway. MUs tested on KD patients behaved like those of healthy subjects unlike those tested on ALS patients. The present data reveal that in ALS, the TMS-induced inhibitory effects are truly enhanced during voluntary contractions and not reduced, as observed in paired-pulse TMS studies under resting conditions. The possible contribution of inhibitory loss to the physiopathology of ALS therefore needs to be reconsidered. The present data do not support the idea that inhibition loss may underlie excito-toxicity in ALS. PMID:18496679

  20. Single-point mutation-mediated local amphipathic adjustment dramatically enhances antibacterial activity of a fungal defensin.

    PubMed

    Wu, Jiajia; Gao, Bin; Zhu, Shunyi

    2016-07-01

    The emergence and rapid spread of multiresistant bacteria has lead to an urgent need for novel antimicrobials. Based on single-point substitutions, we generated a series of mutants of micasin, a dermatophytic defensin, with enhanced activities against multiple clinical isolates of Staphylococcus species, including 4 antibiotic-resistant strains. We first mapped the functional surface of micasin by alanine-scanning mutational analysis of its highly exposed residues, through which we found that substitution of site 8 (acidic Glu) dramatically enhanced bacterial killing of this peptide. Structural analysis indicates that this single point mutation could result in a functional local amphipathic architecture. Four different types of side chains (hydrophobic, cationic polar, neutral polar, and acidic polar) were introduced at site 8 to clarify the role of this local architecture in micasin function. The results show that all mutants displayed increased antibacterial activity with the exception of the acidic replacement. These mutants with enhanced activity exhibited low hemolysis and cytotoxicity and showed high serum stability, indicating their therapeutic potential. Our work represents the first example of structural fine-tuning to largely improve the antibacterial potency of a dermatophytic defensin.-Wu, J., Gao, B., Zhu, S. Single-point mutation-mediated local amphipathic adjustment dramatically enhances antibacterial activity of a fungal defensin. PMID:27084888

  1. Chemical Cytometry: Fluorescence-Based Single-Cell Analysis

    NASA Astrophysics Data System (ADS)

    Cohen, Daniella; Dickerson, Jane A.; Whitmore, Colin D.; Turner, Emily H.; Palcic, Monica M.; Hindsgaul, Ole; Dovichi, Norman J.

    2008-07-01

    Cytometry deals with the analysis of the composition of single cells. Flow and image cytometry employ antibody-based stains to characterize a handful of components in single cells. Chemical cytometry, in contrast, employs a suite of powerful analytical tools to characterize a large number of components. Tools have been developed to characterize nucleic acids, proteins, and metabolites in single cells. Whereas nucleic acid analysis employs powerful polymerase chain reaction-based amplification techniques, protein and metabolite analysis tends to employ capillary electrophoresis separation and ultrasensitive laser-induced fluorescence detection. It is now possible to detect yoctomole amounts of many analytes in single cells.

  2. Strongly enhanced Raman scattering of graphene by a single gold nanorod

    SciTech Connect

    He, Yingbo; Shen, Hongming; Cheng, Yuqing; Lu, Guowei Gong, Qihuang

    2015-08-03

    Individual gold nanorods (AuNRs) and monolayer graphene hybrid system is investigated experimentally. Surface enhanced Raman scattering (SERS) signal of the graphene is observed due to a single AuNR with enhancement factor up to ∼1000-fold. The SERS intensity is strongly polarization dependent and the enhancement effect varies with the detuning between the excitation laser and the AuNR resonance. The SERS effect is highest when the resonant wavelength of the AuNRs matches well with the excitation light. By correlating the scattering and photoluminescence, it is demonstrated that the conventional background in SERS ascribes to the photon emission of metallic nanostructures.

  3. Electromagnetic enhancement by a single nano-groove in metallic substrate.

    PubMed

    Zhang, Siwen; Liu, Haitao; Mu, Guoguang

    2010-07-01

    We propose systematic investigations of the electromagnetic enhancement by a single nano-groove in gold substrate. The impacts of the groove parameters and of the illumination conditions on the enhanced intensity are explored using a fully vectorial numerical method. The obtained data can be well predicted and explained by a simple Fabry-Perot model. By virtue of the semi-analytical model, we identify two main factors that enable giant electric-field enhancement in very narrow grooves: the Fabry-Perot resonance and the large wave impedance of the fundamental mode in the groove. PMID:20596141

  4. Enhancement of spin polarization in transport through protein-like single-helical molecules

    NASA Astrophysics Data System (ADS)

    Wu, Hai-Na; Wang, Xiao; Zhang, Ya-Jing; Yi, Guang-Yu; Gong, Wei-Jiang

    2016-06-01

    We investigate the spin-polarized electron transport through the single-helical molecules connected with two normal metallic leads. On the basis of an effective model Hamiltonian, influences of the structural parameters on the conductance and the spin polarization are calculated by using the Landauer-Büttiker formula. The optimal structural parameters for the maximal spin polarization are analyzed. Our results show that the dephasing term is an important factor to enhance the spin polarization, in addition to the intrinsic parameters of the single-helical molecule. This work can be helpful in optimizing the spin polarization in the protein-like single-helical molecules.

  5. Feasibility of Single Molecule DNA Sequencing using Surface-Enhanced Raman Scattering

    SciTech Connect

    Talley, C E; Reboredo, F; Chan, J; Lane, S M

    2006-02-03

    We have used a combined theoretical and experimental approach in order to assess the feasibility of using surface-enhanced Raman scattering (SERS) for DNA sequencing at the single molecule level. We have developed a numerical tool capable of calculating the E-field and resulting SERS enhancement factors for metallic structures of arbitrary size and shape. Measurements of the additional SERS enhancement by combining SERS with coherent antistokes Raman scattering (CARS) show that only modest increases in the signal are achievable due to thermal damage at higher laser powers. Finally, measurements of the SERS enhancement from nanoparticles coated with an insulating layer show that the SERS enhancement is decreased by as much as two orders of magnitude when the molecule is not in contact with the metal surface.

  6. Fluorescence enhancement on silver nanoplates at the single- and sub-nanoparticle level

    NASA Astrophysics Data System (ADS)

    Shen, Yangbin; He, Ting; Wang, Wenhui; Zhan, Yulu; Hu, Xin; Yuan, Binfang; Zhou, Xiaochun

    2015-11-01

    The fluorescence intensity of a fluorescent molecule can be strongly enhanced when the molecule is near a metal nanoparticle. Hence, fluorescence enhancement has a lot of applications in the fields of biology and medical science. It is necessary to understand the mechanism for such an attractive effect, if we intend to develop better materials to improve the enhancement. In this paper, we directly image the diverse patterns of fluorescence enhancement on single Ag nanoplates by super-resolution microscopy. The research reveals that the edges or tips of the Ag nanoplate usually show a much higher ability of fluorescence enhancement than the mid part. The spatial distribution of fluorescence enhancement strongly depends on the size of the Ag nanoplate as well as the angle between the Ag nanoplate and the incident light. The experimental results above are essentially consistent with the simulated electric field by the theory of localized surface plasmon resonance (LSPR), but some irregularities still exist. We also find that fluorescence enhancement on small Ag nanoplates is mainly due to in-plane dipole plasmon resonance, while the enhancement on large Ag nanoplates is mainly due to in-plane quadrupole plasmon resonance. Furthermore, in-plane quadrupole resonance of large plates has a higher ability to enhance the fluorescence signal than the in-plane dipole plasmon resonance. This research provides many valuable insights into the fluorescence enhancement at the single- and sub-nanoparticle level, and will be very helpful in developing better relevant materials.The fluorescence intensity of a fluorescent molecule can be strongly enhanced when the molecule is near a metal nanoparticle. Hence, fluorescence enhancement has a lot of applications in the fields of biology and medical science. It is necessary to understand the mechanism for such an attractive effect, if we intend to develop better materials to improve the enhancement. In this paper, we directly image the

  7. Fluorescence signals of core-shell quantum dots enhanced by single crystalline gold caps on silicon nanowires

    NASA Astrophysics Data System (ADS)

    Christiansen, S. H.; Chou, J. W.; Becker, M.; Sivakov, V.; Ehrhold, K.; Berger, A.; Chou, W. C.; Chuu, D. S.; Gösele, U.

    2009-04-01

    We use nanoscale (20-300 nm in diameter) single crystalline gold (Au)-caps on silicon nanowires (NWs) grown by the vapor-liquid-solid (VLS) growth mechanism to enhance the fluorescence photoluminescence (PL) signals of highly dilute core/shell CdSeTe/ZnS quantum dots (QDs) in aqueous solution (10-5 M). For NWs without Au-caps, as they appear, for example, after Au etching in aqua regia or buffered KI/I2-solution, essentially no fluorescence signal of the same diluted QDs could be observed. Fluorescence PL signals were measured using excitation with a laser wavelength of 633 nm. The signal enhancement by single crystalline, nanoscale Au-caps is discussed and interpreted based on finite element modeling (FEM).

  8. Refractive index sensing characteristic of single-mode-multimode-single-mode fiber structure based on self-imaging effect

    NASA Astrophysics Data System (ADS)

    Bai, Xuekun; Wang, Haotian; Wang, Shaofei; Pu, Shengli; Zeng, Xianglong

    2015-10-01

    We research the refractive index (RI) sensing characteristic based on the bandpass spectrum caused by the self-imaging effect in the single-mode-multimode-single-mode (SMS) fiber structure theoretically and experimentally. A new selectable parameter, i.e., no-core fiber (NCF) length, is investigated for improving the sensitivity of the sensor. The results show that the sensor's sensitivity will be enhanced by shortening the NCF length when the self-imaging number remains constant. Experimentally, a maximum sensitivity of 1923 nm/RIU (RI unit) has been achieved when the RI ranges from 1.334 to 1.434. This work demonstrates a method to improve the sensitivity of SMS-fiber-structure-based RI sensors featuring a low cost, compact size, low insert loss, and high sensitivity optical fiber RI sensor.

  9. Single crystalline tantalum oxychloride microcubes: controllable synthesis, formation mechanism and enhanced photocatalytic hydrogen production activity.

    PubMed

    Tu, Hao; Xu, Leilei; Mou, Fangzhi; Guan, Jianguo

    2015-08-11

    Single crystalline microcubes of a new tantalum compound, tantalum oxychloride (TaO2.18Cl0.64), have been fabricated hydrothermally in a concentrated aqueous solution of hydrochloric acid and acetic acid. They contain a superstructure and exhibit remarkably enhanced photocatalytic activities for hydrogen production due to the improved light harvest and facilitated charge transport. PMID:26143863

  10. Evaluation of a Single-Session Brief Motivational Enhancement Intervention for Partner Abusive Men

    ERIC Educational Resources Information Center

    Crane, Cory A.; Eckhardt, Christopher I.

    2013-01-01

    The current study evaluated the efficacy of a single-session brief motivational enhancement (BME) interview to increase treatment compliance and reduce recidivism rates in a sample of 82 recently adjudicated male perpetrators of intimate partner violence (IPV). Batterer intervention program attendance and completion as well as re-arrest records…

  11. Enhancement of single-walled nanotubes luminescence intensity upon dithiothreitol doping

    NASA Astrophysics Data System (ADS)

    Kurnosov, N. V.; Linnik, A. S.; Leontiev, V. S.; Karachevtsev, V. A.

    2014-09-01

    In the present work the influence of reducing agent dithiothreitol doping on photoluminescence spectra of nanotubes with adsorbed biopolymers (single-stranded DNA and polyC) in aqueous suspensions and films was studied. It is revealed that greater intensity enhancement at 10-3 mol/L dithiothreitol concentration is observed for (7,5) and (6,5) nanotubes in suspension with single-stranded DNA (by more than 150% of initial intensity) comparing to polyC suspension (less than 60%) while for (6,4) and (9,1) nanotubes enhancement is less than 50% for both suspensions. Photoluminescence intensity increasing for nanotube film with DNA is less than 50% without noticeable dependence on nanotube chirality. It is assumed, that different influence of biopolymers on nanotube luminescence intensity enhancement is due to their different coverage of nanotube surface.

  12. Gabor filter based fingerprint image enhancement

    NASA Astrophysics Data System (ADS)

    Wang, Jin-Xiang

    2013-03-01

    Fingerprint recognition technology has become the most reliable biometric technology due to its uniqueness and invariance, which has been most convenient and most reliable technique for personal authentication. The development of Automated Fingerprint Identification System is an urgent need for modern information security. Meanwhile, fingerprint preprocessing algorithm of fingerprint recognition technology has played an important part in Automatic Fingerprint Identification System. This article introduces the general steps in the fingerprint recognition technology, namely the image input, preprocessing, feature recognition, and fingerprint image enhancement. As the key to fingerprint identification technology, fingerprint image enhancement affects the accuracy of the system. It focuses on the characteristics of the fingerprint image, Gabor filters algorithm for fingerprint image enhancement, the theoretical basis of Gabor filters, and demonstration of the filter. The enhancement algorithm for fingerprint image is in the windows XP platform with matlab.65 as a development tool for the demonstration. The result shows that the Gabor filter is effective in fingerprint image enhancement technology.

  13. A microcontroller-based failsafe for single photon counting modules

    NASA Astrophysics Data System (ADS)

    Gordon, Matthew P.; Selvin, Paul R.

    2003-02-01

    Avalanche photodiode-based single photon counting modules (SPCMs) can be damaged by exposure to excessive light levels. A flexible and inexpensive failsafe is presented which has been shown to protect SPCMs from light levels far exceeding the damage threshold.

  14. Goethite colloid enhanced Pu transport through a single saturated fracture in granite.

    PubMed

    Lin, Jianfeng; Dang, Haijun; Xie, Jinchuan; Li, Mei; Zhou, Guoqing; Zhang, Jihong; Zhang, Haitao; Yi, Xiaowei

    2014-08-01

    α-FeOOH, a stable iron oxide in nature, can strongly absorb the low-solubility plutonium (Pu) in aquifers. However, whether Pu transports though a single saturated fracture can be enhanced in the presence of α-FeOOH colloids remains unknown. Experimental studies were carried out to evaluate Pu mobilization at different water flow velocity, as affected by goethite colloids with various concentrations. Goethite nanorods were used to prepare (α-FeOOH)-associated Pu suspensions with α-FeOOH concentration of (0-150) mgL(-1). The work experimentally evidenced that α-FeOOH colloid does enhance transport of Pu through fractured granites. The fraction of mobile (239)Pu (RPu, m=41.5%) associated with the α-FeOOH of an extremely low colloid concentration (0.2mgL(-1)) is much larger than that in absence of α-FeOOH (RPu, m=6.98%). However, plutonium mobility began to decrease when α-FeOOH concentration was increased to 1.0mgL(-1). On the other hand, the fraction of mobile Pu increased gradually with the water flow velocity. Based on the experimental data, the mechanisms underlying the (α-FeOOH)-associated plutonium transport are comprehensively discussed in view of its dynamic deposition onto the granite surfaces, which is decided mainly by the relative interaction between the colloid particle and the immobile surface. This interaction is a balance of electrostatic force (may be repulsive or attractive), the van der Walls force, and the shear stress of flow. PMID:25016587

  15. Single charge detection in capacitively coupled integrated single electron transistors based on single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Ishibashi, Koji

    2012-09-01

    Single charge detection is demonstrated in the capacitively coupled integrated single electron transistors (SETs) in single-walled carbon nanotubes (SWCNTs) quantum dots. Two SETs are fabricated based on two different SWCNTs aligned in parallel, by taking advantage of the aligned growth of SWCNTs and subsequent transfer-printed techniques. In order to make both two SETs be capacitively coupled, a metal finger is fabricated on the top of them. The charge sensing is proved by the response of a detector current in one SWCNT-SET when the number of electrons in the other SWCNT-SET is changed by sweeping the corresponding gate voltages. In this integrated device, shifts of Coulomb oscillation peaks due to the single electron event are also observed.

  16. Enhanced permeation of single-file water molecules across a noncylindrical nanochannel

    NASA Astrophysics Data System (ADS)

    Meng, X. W.; Huang, J. P.

    2013-07-01

    We utilize molecular dynamics simulations to study the effect of noncylindrical shapes of a nanochannel (which are inspired from the shape of real biological water nanochannels) on the permeation of single-file water molecules across the nanochannel. Compared with the cylindrical shape that has been tremendously adopted in the literature, the noncylindrical shapes play a crucial role in enhancing water permeation. Remarkably, the maximal enhancement ratio reaches a value of 6.28 (enhancement behavior). Meanwhile, the enhancement becomes saturated when the volume of the noncylindrical shape continues to increase (saturation behavior). The analysis of average diffusivity of water molecules helps to reveal the mechanism underlying the two behaviors whereas Poiseuille's law fails to explain them. These results pave a way for designing high-flow nanochannels and provide insight into water permeation across biological water nanochannels.

  17. Purity-enhanced bulk synthesis of thin single-wall carbon nanotubes using iron-copper catalysts.

    PubMed

    Lim, H E; Miyata, Y; Nakayama, T; Chen, S; Kitaura, R; Shinohara, H

    2011-09-30

    We report high purity and high yield synthesis of single-wall carbon nanotubes (SWCNTs) of narrow diameter from iron-copper bimetal catalysts. The SWCNTs with diameter of 0.8-1.2 nm are synthesized using the zeolite-supported alcohol chemical vapour deposition method. Single metal and bimetal catalysts are systematically investigated to achieve both the enhancement of SWCNT yield and the suppression of the undesired formation of graphitic impurities. The relative yield and purity of SWCNTs are quantified using optical absorption spectroscopy with an ultracentrifuge-based purification technique. For the single metal catalyst, iron shows the highest catalytic activity compared with the other metals such as cobalt, nickel, molybdenum, copper, and platinum. It has been found that the addition of copper to iron results in the suppression of carbonaceous impurity formation without decreasing the SWCNT yield. The purity-enhanced SWCNT shows fairly low sheet resistance due to the improvement of inter-nanotube contacts. This scalable design of SWCNT synthesis with enhanced purity is therefore a promising tool for shaping future high performance devices. PMID:21891846

  18. Purity-enhanced bulk synthesis of thin single-wall carbon nanotubes using iron-copper catalysts

    NASA Astrophysics Data System (ADS)

    Lim, H. E.; Miyata, Y.; Nakayama, T.; Chen, S.; Kitaura, R.; Shinohara, H.

    2011-09-01

    We report high purity and high yield synthesis of single-wall carbon nanotubes (SWCNTs) of narrow diameter from iron-copper bimetal catalysts. The SWCNTs with diameter of 0.8-1.2 nm are synthesized using the zeolite-supported alcohol chemical vapour deposition method. Single metal and bimetal catalysts are systematically investigated to achieve both the enhancement of SWCNT yield and the suppression of the undesired formation of graphitic impurities. The relative yield and purity of SWCNTs are quantified using optical absorption spectroscopy with an ultracentrifuge-based purification technique. For the single metal catalyst, iron shows the highest catalytic activity compared with the other metals such as cobalt, nickel, molybdenum, copper, and platinum. It has been found that the addition of copper to iron results in the suppression of carbonaceous impurity formation without decreasing the SWCNT yield. The purity-enhanced SWCNT shows fairly low sheet resistance due to the improvement of inter-nanotube contacts. This scalable design of SWCNT synthesis with enhanced purity is therefore a promising tool for shaping future high performance devices.

  19. Effects of Chemical Enhancers on Human Epidermal Membrane: Structure-Enhancement Relationship based on Maximum Enhancement (Emax)

    PubMed Central

    IBRAHIM, SARAH A.; LI, S. KEVIN

    2008-01-01

    Chemical penetration enhancers are widely used in transdermal pharmaceuticals as well as cosmetic products. Selection of suitable enhancers in topical formulations requires an understanding of the mechanism of action of these enhancers. The objective of the present study was to evaluate the enhancement effects of a number of commonly known enhancers and cosmetic ingredients on permeation across human epidermal membrane (HEM). The potencies of these chemical enhancers—maximum enhancement, Emax—were compared at their highest thermodynamic activity in equilibrium with HEM (i.e., solubility equilibrium). This was achieved by the treatment of HEM with the enhancer or phosphate buffered saline (PBS) saturated with the enhancer. Passive transport experiments were then conducted with a model permeant corticosterone to determine the effects of these enhancers on the lipoidal pathway of HEM. The results suggest that Emax of an enhancer is related to its octanol/water partition coefficient and its solubility in the HEM lipid domain. A relationship between enhancer Emax and its solubility in silicone elastomer was also observed, suggesting the use of silicone solubility to predict enhancer potency. Based on the Emax results, some common topical ingredients were found to be more potent enhancers than a number of well-known chemical enhancers. PMID:18623209

  20. Enhancing the Scientific Credibility of Single-Case Intervention Research: Randomization to the Rescue

    ERIC Educational Resources Information Center

    Kratochwill, Thomas R.; Levin, Joel R.

    2010-01-01

    In recent years, single-case designs have increasingly been used to establish an empirical basis for evidence-based interventions and techniques in a variety of disciplines, including psychology and education. Although traditional single-case designs have typically not met the criteria for a randomized controlled trial relative to conventional…

  1. Single-molecule spectroscopic study of enhanced intrinsic phycoerythrin fluorescence on silver nanostructured surfaces.

    PubMed

    Ray, Krishanu; Chowdhury, Mustafa H; Lakowicz, Joseph R

    2008-09-15

    In this paper, we report on steady-state and time-resolved single-molecule fluorescence measurements performed on a phycobiliprotein, R-phycoerythrin (RPE), assembled on silver nanostructures. Single-molecule measurements clearly show that RPE molecules display a 10-fold increase in fluorescence intensity, with a 7-fold decrease in lifetime when they are assembled on silver nanostructured surfaces, as compared to control glass slides. The emission spectrum of individual RPE molecules also displays a significant fluorescence enhancement on silver nanostructures as compared to glass. From intensity and lifetime histograms, it is clear that the intensities as well as lifetimes of individual RPE molecules on silver nanostructures are more heterogeneously distributed than that on glass. This single-molecule study provides further insight on the heterogeneity in the fluorescence intensity and lifetimes of the RPE molecules on both glass and SiFs surfaces, which is otherwise not possible to observe using ensemble measurements. Finite-difference time-domain calculations have been performed to study the enhanced near-fields induced around silver nanoparticles by a radiating excited-state fluorophore, and the effect of such enhanced fields on the fluorescence enhancement observed is discussed. PMID:18690697

  2. Enhancement of multiphoton emission from single CdSe quantum dots coupled to gold films.

    PubMed

    LeBlanc, Sharonda J; McClanahan, Mason R; Jones, Marcus; Moyer, Patrick J

    2013-04-10

    Single molecule time-resolved fluorescence spectroscopy of CdSe/ZnS core-shell quantum dots (QDs) localized near a rough gold thin film demonstrates significant enhancement of multiphoton emission while at the same time showing a decrease in single photon emission. A rigorous analysis of time-resolved photon correlation spectroscopy and fluorescence lifetime data on single quantum dots at room temperature reveals an increase in radiative recombination rate of multiexcitons that is much higher than expected and, perhaps more significantly, is not correlated with concomitant increases in single exciton recombination rates. We believe that these results confirm a stronger coupling of multiexcitons to plasmon modes via a coupling to plasmon multipole modes. PMID:23510412

  3. Variable-Temperature Tip-Enhanced Raman Spectroscopy of Single-Molecule Fluctuations and Dynamics.

    PubMed

    Park, Kyoung-Duck; Muller, Eric A; Kravtsov, Vasily; Sass, Paul M; Dreyer, Jens; Atkin, Joanna M; Raschke, Markus B

    2016-01-13

    Structure, dynamics, and coupling involving single-molecules determine function in catalytic, electronic or biological systems. While vibrational spectroscopy provides insight into molecular structure, rapid fluctuations blur the molecular trajectory even in single-molecule spectroscopy, analogous to spatial averaging in measuring large ensembles. To gain insight into intramolecular coupling, substrate coupling, and dynamic processes, we use tip-enhanced Raman spectroscopy (TERS) at variable and cryogenic temperatures, to slow and control the motion of a single molecule. We resolve intrinsic line widths of individual normal modes, allowing detailed and quantitative investigation of the vibrational modes. From temperature dependent line narrowing and splitting, we quantify ultrafast vibrational dephasing, intramolecular coupling, and conformational heterogeneity. Through statistical correlation analysis of fluctuations of individual modes, we observe rotational motion and spectral fluctuations of the molecule. This work demonstrates single-molecule vibrational spectroscopy beyond chemical identification, opening the possibility for a complete picture of molecular motion ranging from femtoseconds to minutes. PMID:26679007

  4. Observation of Single Pt Nanoparticle Collisions: Enhanced Electrocatalytic Activity on a Pd Ultramicroelectrode.

    PubMed

    Shin, Changhwan; Park, Tae Eun; Park, Changki; Kwon, Seong Jung

    2016-06-01

    Single Pt nanoparticle (NP) collisions on an electrode surface were detected by using an electrocatalytic amplification method with a Pd ultramicroelectrode (UME). Pd is not a preferred material for UMEs for the detection of single Pt NP collisions, because Pd shows similar electrocatalytic activity compared with Pt for hydrazine oxidation, thus resulting in a high background current level. However, a Pt NP colliding on the Pd UME shows greatly enhanced activity compared with a Pt NP on an inert UME, such as a Au UME, which is usually used for the detection of single Pt NP collisions. The use of an electroactive UME material instead of an inert one facilitated the study of single-NP activity on the various solid supports, which is important in many NP applications. PMID:26955784

  5. Elucidating the localized plasmonic enhancement effects from a single Ag nanowire in organic solar cells.

    PubMed

    Liu, Xinfeng; Wu, Bo; Zhang, Qing; Yip, Jing Ngei; Yu, Guannan; Xiong, Qihua; Mathews, Nripan; Sum, Tze Chien

    2014-10-28

    The origins of performance enhancement in hybrid plasmonic organic photovoltaic devices are often embroiled in a complex interaction of light scattering, localized surface plasmon resonances, exciton-plasmon energy transfer and even nonplasmonic effects. To clearly deconvolve the plasmonic contributions from a single nanostructure, we herein investigate the influence of a single silver nanowire (NW) on the charge carriers in bulk heterojunction polymer solar cells using spatially resolved optical spectroscopy, and correlate to electrical device characterization. Polarization-dependent photocurrent enhancements with a maximum of ∼ 36% over the reference are observed when the transverse mode of the plasmonic excitations in the Ag NW is activated. The ensuing higher absorbance and light scattering induced by the electronic motion perpendicular to the NW long axis lead to increased exciton and polaron densities instead of direct surface plasmon-exciton energy transfer. Finite-difference time-domain simulations also validate these findings. Importantly, our study at the single nanostructure level explores the fundamental limits of plasmonic enhancement achievable in organic solar cells with a single plasmonic nanostructure. PMID:25198060

  6. Super-resolved enhancing and edge deghosting (SEED) for spatiotemporally encoded single-shot MRI.

    PubMed

    Chen, Lin; Li, Jing; Zhang, Miao; Cai, Shuhui; Zhang, Ting; Cai, Congbo; Chen, Zhong

    2015-07-01

    Spatiotemporally encoded (SPEN) single-shot MRI is an ultrafast MRI technique proposed recently, which utilizes quadratic rather than linear phase profile to extract the spatial information. Compared to the echo planar imaging (EPI), this technique has great advantages in resisting field inhomogeneity and chemical shift effects. Super-resolved (SR) reconstruction is adopted to compensate the inherent low resolution of SPEN images. Due to insufficient sampling rate, the SR image is challenged by aliasing artifacts and edge ghosts. The existing SR algorithms always compromise in spatial resolution to suppress these undesirable artifacts. In this paper, we proposed a novel SR algorithm termed super-resolved enhancing and edge deghosting (SEED). Different from artifacts suppression methods, our algorithm aims at exploiting the relationship between aliasing artifacts and real signal. Based on this relationship, the aliasing artifacts can be eliminated without spatial resolution loss. According to the trait of edge ghosts, finite differences and high-pass filter are employed to extract the prior knowledge of edge ghosts. By combining the prior knowledge with compressed sensing, our algorithm can efficiently reduce the edge ghosts. The robustness of SEED is demonstrated by experiments under various situations. The results indicate that the SEED can provide better spatial resolution compared to state-of-the-art SR reconstruction algorithms in SPEN MRI. Theoretical analysis and experimental results also show that the SR images reconstructed by SEED have better spatial resolution than the images obtained with conventional k-space encoding methods under similar experimental condition. PMID:25910683

  7. Single-Photon Avalanche Diode with Enhanced NIR-Sensitivity for Automotive LIDAR Systems.

    PubMed

    Takai, Isamu; Matsubara, Hiroyuki; Soga, Mineki; Ohta, Mitsuhiko; Ogawa, Masaru; Yamashita, Tatsuya

    2016-01-01

    A single-photon avalanche diode (SPAD) with enhanced near-infrared (NIR) sensitivity has been developed, based on 0.18 μm CMOS technology, for use in future automotive light detection and ranging (LIDAR) systems. The newly proposed SPAD operating in Geiger mode achieves a high NIR photon detection efficiency (PDE) without compromising the fill factor (FF) and a low breakdown voltage of approximately 20.5 V. These properties are obtained by employing two custom layers that are designed to provide a full-depletion layer with a high electric field profile. Experimental evaluation of the proposed SPAD reveals an FF of 33.1% and a PDE of 19.4% at 870 nm, which is the laser wavelength of our LIDAR system. The dark count rate (DCR) measurements shows that DCR levels of the proposed SPAD have a small effect on the ranging performance, even if the worst DCR (12.7 kcps) SPAD among the test samples is used. Furthermore, with an eye toward vehicle installations, the DCR is measured over a wide temperature range of 25-132 °C. The ranging experiment demonstrates that target distances are successfully measured in the distance range of 50-180 cm. PMID:27043569

  8. Single-Photon Avalanche Diode with Enhanced NIR-Sensitivity for Automotive LIDAR Systems

    PubMed Central

    Takai, Isamu; Matsubara, Hiroyuki; Soga, Mineki; Ohta, Mitsuhiko; Ogawa, Masaru; Yamashita, Tatsuya

    2016-01-01

    A single-photon avalanche diode (SPAD) with enhanced near-infrared (NIR) sensitivity has been developed, based on 0.18 μm CMOS technology, for use in future automotive light detection and ranging (LIDAR) systems. The newly proposed SPAD operating in Geiger mode achieves a high NIR photon detection efficiency (PDE) without compromising the fill factor (FF) and a low breakdown voltage of approximately 20.5 V. These properties are obtained by employing two custom layers that are designed to provide a full-depletion layer with a high electric field profile. Experimental evaluation of the proposed SPAD reveals an FF of 33.1% and a PDE of 19.4% at 870 nm, which is the laser wavelength of our LIDAR system. The dark count rate (DCR) measurements shows that DCR levels of the proposed SPAD have a small effect on the ranging performance, even if the worst DCR (12.7 kcps) SPAD among the test samples is used. Furthermore, with an eye toward vehicle installations, the DCR is measured over a wide temperature range of 25–132 °C. The ranging experiment demonstrates that target distances are successfully measured in the distance range of 50–180 cm. PMID:27043569

  9. Label-free mapping of single bacterial cells using surface-enhanced Raman spectroscopy.

    PubMed

    Wang, Panxue; Pang, Shintaro; Chen, Juhong; McLandsborough, Lynne; Nugen, Sam R; Fan, Mingtao; He, Lili

    2016-02-01

    Here we presented a simple, rapid and label-free surface-enhanced Raman spectroscopy (SERS) based mapping method for the detection and discrimination of Salmonella enterica and Escherichia coli on silver dendrites. The sample preparation was first optimized to maximize sensitivity. The mapping method was then used to scan through the bacterial cells adsorbed on the surface of silver dendrites. The intrinsic and distinct SERS signals of bacterial cells were used as the basis for label-free detection and discrimination. The results show the developed method is able to detect single bacterial cells adsorbed on the silver dendrites with a limit of detection as low as 10(4) CFU mL(-1), which is two orders of magnitude lower than the traditional SERS method under the same experimental condition. The time needed for collecting a 225 points map was approximately 24 minutes. Moreover, the developed SERS mapping method can realize simultaneous detection and identification of Salmonella enterica subsp. enterica BAA1045 and Escherichia coli BL21 from a mixture sample using principle component analysis. Our results demonstrate the great potential of the label-free SERS mapping method to detect, identify and quantify bacteria and bacterial mixtures simultaneously. PMID:26750611

  10. Expressly fabricated molar tube bases: enhanced adhesion.

    PubMed

    Sharma, Tarun; Phull, Tarun Singh; Rana, Tarun; Kumar, Varun

    2014-06-01

    Clinicians, Orthodontists and their patients' parents often expect the best results in the shortest time span possible. Orthodontic bonding of molar tubes has been an acceptable risk in a modern era of refined biomaterials and instrumentation. Although many orthodontists still prefer banding to bonding, it is the failure rate of the tubes on molars which accounts to an impedance in molar bonding. One of the reasons for molar attachment failures is attributed to improper adaptation of the buccal tube base with or without increased thickness of composite. Merits of banding the second molars especially when these are the terminal teeth for anchorage have been overemphasized in the literature. The present article presents a simple and relatively less time consuming technique of preparing molar tubes to be bonded on tooth surfaces which may be quite difficult to isolate especially for bonding, for example, mandibular second molars. The increased surface area of the composite scaffold helps not only in enhanced bond strength but also serves to reduce the incidence of plaque accumulation given the dexterity of invitro preparation. The removal of the occlusal part of the molar tube scaffold helps in prevention of open / raised bite tendencies. The present innovation, therefore, is not merely serendipity but a structured technique to overcome a common dilemma for the clinical orthodontist. The present dictum of banding being superior to molar tube bonding may prove to be futile with trendsetting molar attachments. It is also an established fact that bonding proves to be a lesser expensive modality when compared to banding procedures. PMID:25121070

  11. Plasmon-enhanced upconversion luminescence in single nanophosphor-nanorod heterodimers formed through template-assisted self-assembly.

    PubMed

    Greybush, Nicholas J; Saboktakin, Marjan; Ye, Xingchen; Della Giovampaola, Cristian; Oh, Soong Ju; Berry, Nathaniel E; Engheta, Nader; Murray, Christopher B; Kagan, Cherie R

    2014-09-23

    We demonstrate plasmonic enhancement of upconversion luminescence in individual nanocrystal heterodimers formed by template-assisted self-assembly. Lithographically defined, shape-selective templates were used to deterministically coassemble single Au nanorods in proximity to single hexagonal (β-phase) NaYF4:Yb(3+),Er(3+) upconversion nanophosphors. By tailoring the dimensions of the rods to spectrally tune their longitudinal surface plasmon resonance to match the 977 nm excitation wavelength of the phosphors and by spatially localizing the phosphors in the intense near-fields surrounding the rod tips, several-fold luminescence enhancements were achieved. The enhancement effects exhibited a strong dependence on the excitation light's polarization relative to the rod axis. In addition, greater enhancement was observed at lower excitation power densities due to the nonlinear behavior of the upconversion process. The template-based coassembly scheme utilized here for plasmonic coupling offers a versatile platform for improving our understanding of optical interactions among individual chemically prepared nanocrystal components. PMID:25182662

  12. Mobility enhancement and temperature dependence in top-gated single-layer MoS2

    NASA Astrophysics Data System (ADS)

    Ong, Zhun-Yong; Fischetti, Massimo V.

    2013-10-01

    The deposition of a high-κ oxide overlayer is known to significantly enhance the room-temperature electron mobility in single-layer MoS2 (SLM) but not in single-layer graphene. We give a quantitative account of how this mobility enhancement is due to the nondegeneracy of the two-dimensional electron gas system in SLM at accessible temperatures. Using our charged impurity scattering model [Ong and Fischetti, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.86.121409 86, 121409 (2012)] and temperature-dependent polarizability, we calculate the charged impurity-limited mobility (μimp) in SLM with and without a high-κ (HfO2) top-gate oxide at different electron densities and temperatures. We find that the mobility enhancement is larger at low electron densities and high temperatures because of finite-temperature screening, thus explaining the enhancement of the mobility observed at room temperature. μimp is shown to decrease significantly with increasing temperature, suggesting that the strong temperature dependence of measured mobilities should not be interpreted as being solely due to inelastic scattering with phonons. We also reproduce the recently seen experimental trend in which the temperature scaling exponent (γ) of μimp∝T-γ is smaller in top-gated SLM than in bare SLM. Finally, we show that ˜37% mobility enhancement can be achieved by reducing the HfO2 thickness from 20 to 2 nm.

  13. OVERVIEW OF ENHANCED HANFORD SINGLE-SHELL TANK (SST) INTEGRITY PROJECT - 12128

    SciTech Connect

    VENETZ TJ; BOOMER KD; WASHENFELDER DJ; JOHNSON JB

    2012-01-25

    To improve the understanding of the single-shell tanks integrity, Washington River Protection Solutions, LLC, the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank (SST) Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The change package identified two phases of work for SST integrity. The initial phase has been focused on efforts to envelope the integrity of the tanks. The initial phase was divided into two primary areas of investigation: structural integrity and leak integrity. If necessary based on the outcome from the initial work, a second phase would be focused on further definition of the integrity of the concrete and liners. Combined these two phases are designed to support the formal integrity assessment of the Hanford SSTs in 2018 by Independent Qualified Registered Engineer. The work to further define the DOE's understanding of the structural integrity SSTs involves preparing a modern Analysis of Record using a finite element analysis program. Structural analyses of the SSTs have been conducted since 1957, but these analyses used analog calculation, less rigorous models, or focused on individual structures. As such, an integrated understanding of all of the SSTs has not been developed to modern expectations. In support of this effort, other milestones will address the visual inspection of the tank concrete and the collection of concrete core samples from the tanks for analysis of

  14. Single-scan coherent detection with enhanced time resolution for arbitrarily polarized terahertz wave

    NASA Astrophysics Data System (ADS)

    Lv, Zhihui; Zhang, Dongwen; Meng, Chao; Sun, Lin; Zhou, Zhaoyan; Zhao, Zengxiu; Yuan, Jianmin

    2012-12-01

    We present an enhanced scheme of polarization-sensitive THz-ABCD which can provide about twice broader bandwidth than the conventional method. In our experiment using a 26 fs laser pulse, compared with 0.3~40 THz in the conventional scheme, bandwidth coverage from 0.3 to 80 THz has been achieved in the resolution-enhanced scheme. It also should have to be noted the terahertz source may also restrict the detection bandwidth. Employing the polarizationsensitive technology, the polarization in time domain, as well as the field amplitude, can be achieved with just one single scan.

  15. Strong antenna-enhanced fluorescence of a single light-harvesting complex shows photon antibunching

    PubMed Central

    Wientjes, Emilie; Renger, Jan; Curto, Alberto G.; Cogdell, Richard; van Hulst, Niek F.

    2014-01-01

    The nature of the highly efficient energy transfer in photosynthetic light-harvesting complexes is a subject of intense research. Unfortunately, the low fluorescence efficiency and limited photostability hampers the study of individual light-harvesting complexes at ambient conditions. Here we demonstrate an over 500-fold fluorescence enhancement of light-harvesting complex 2 (LH2) at the single-molecule level by coupling to a gold nanoantenna. The resonant antenna produces an excitation enhancement of circa 100 times and a fluorescence lifetime shortening to ~\

  16. Non-Debye enhancements in the Mie scattering of light from a single water droplet.

    PubMed

    Lock, J A; Woodruff, J R

    1989-02-01

    The glare spots usually seen on a single water droplet which has been illuminated by a plane wave are produced by geometrical rays which correspond to the different terms of the Debye series expansion of the Mie scattered field. Recently other glare spot enhancements have been predicted which correspond to scattering resonances coupling to the orbiting rays associated with high-order geometrical rainbows. We observed the non-Debye enhancement of the eleventh-order rainbow glare spot at an observation angle of 90 degrees on a 3.5-mm water droplet illuminated by polarized He-Ne laser light. PMID:20548514

  17. Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface

    PubMed Central

    Wang, Libo; Li, Lianlin; Li, Yunbo; Zhang, Hao Chi; Cui, Tie Jun

    2016-01-01

    Real-time high-resolution (including super-resolution) imaging with low-cost hardware is a long sought-after goal in various imaging applications. Here, we propose broadband single-shot and single-sensor high-/super-resolution imaging by using a spatio-temporal dispersive metasurface and an imaging reconstruction algorithm. The metasurface with spatio-temporal dispersive property ensures the feasibility of the single-shot and single-sensor imager for super- and high-resolution imaging, since it can convert efficiently the detailed spatial information of the probed object into one-dimensional time- or frequency-dependent signal acquired by a single sensor fixed in the far-field region. The imaging quality can be improved by applying a feature-enhanced reconstruction algorithm in post-processing, and the desired imaging resolution is related to the distance between the object and metasurface. When the object is placed in the vicinity of the metasurface, the super-resolution imaging can be realized. The proposed imaging methodology provides a unique means to perform real-time data acquisition, high-/super-resolution images without employing expensive hardware (e.g. mechanical scanner, antenna array, etc.). We expect that this methodology could make potential breakthroughs in the areas of microwave, terahertz, optical, and even ultrasound imaging. PMID:27246668

  18. Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface.

    PubMed

    Wang, Libo; Li, Lianlin; Li, Yunbo; Zhang, Hao Chi; Cui, Tie Jun

    2016-01-01

    Real-time high-resolution (including super-resolution) imaging with low-cost hardware is a long sought-after goal in various imaging applications. Here, we propose broadband single-shot and single-sensor high-/super-resolution imaging by using a spatio-temporal dispersive metasurface and an imaging reconstruction algorithm. The metasurface with spatio-temporal dispersive property ensures the feasibility of the single-shot and single-sensor imager for super- and high-resolution imaging, since it can convert efficiently the detailed spatial information of the probed object into one-dimensional time- or frequency-dependent signal acquired by a single sensor fixed in the far-field region. The imaging quality can be improved by applying a feature-enhanced reconstruction algorithm in post-processing, and the desired imaging resolution is related to the distance between the object and metasurface. When the object is placed in the vicinity of the metasurface, the super-resolution imaging can be realized. The proposed imaging methodology provides a unique means to perform real-time data acquisition, high-/super-resolution images without employing expensive hardware (e.g. mechanical scanner, antenna array, etc.). We expect that this methodology could make potential breakthroughs in the areas of microwave, terahertz, optical, and even ultrasound imaging. PMID:27246668

  19. Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface

    NASA Astrophysics Data System (ADS)

    Wang, Libo; Li, Lianlin; Li, Yunbo; Zhang, Hao Chi; Cui, Tie Jun

    2016-06-01

    Real-time high-resolution (including super-resolution) imaging with low-cost hardware is a long sought-after goal in various imaging applications. Here, we propose broadband single-shot and single-sensor high-/super-resolution imaging by using a spatio-temporal dispersive metasurface and an imaging reconstruction algorithm. The metasurface with spatio-temporal dispersive property ensures the feasibility of the single-shot and single-sensor imager for super- and high-resolution imaging, since it can convert efficiently the detailed spatial information of the probed object into one-dimensional time- or frequency-dependent signal acquired by a single sensor fixed in the far-field region. The imaging quality can be improved by applying a feature-enhanced reconstruction algorithm in post-processing, and the desired imaging resolution is related to the distance between the object and metasurface. When the object is placed in the vicinity of the metasurface, the super-resolution imaging can be realized. The proposed imaging methodology provides a unique means to perform real-time data acquisition, high-/super-resolution images without employing expensive hardware (e.g. mechanical scanner, antenna array, etc.). We expect that this methodology could make potential breakthroughs in the areas of microwave, terahertz, optical, and even ultrasound imaging.

  20. Nanoimplantation and Purcell enhancement of single nitrogen-vacancy centers in photonic crystal cavities in diamond

    SciTech Connect

    Riedrich-Möller, Janine; Becher, Christoph; Pezzagna, Sébastien; Meijer, Jan; Pauly, Christoph; Mücklich, Frank; Markham, Matthew; Edmonds, Andrew M.

    2015-06-01

    We present the controlled creation of single nitrogen-vacancy (NV) centers via ion implantation at the center of a photonic crystal cavity which is fabricated in an ultrapure, single crystal diamond membrane. High-resolution placement of NV centers is achieved using collimation of a 5 keV-nitrogen ion beam through a pierced tip of an atomic force microscope. We demonstrate coupling of the implanted NV centers' broad band fluorescence to a cavity mode and observe Purcell enhancement of the spontaneous emission. The results are in good agreement with a master equation model for the cavity coupling.

  1. Introducing an enhanced recovery after surgery program in colorectal surgery: A single center experience

    PubMed Central

    Bona, Stefano; Molteni, Mattia; Rosati, Riccardo; Elmore, Ugo; Bagnoli, Pietro; Monzani, Roberta; Caravaca, Monica; Montorsi, Marco

    2014-01-01

    AIM: To study the implementation of an enhanced recovery after surgery (ERAS) program at a large University Hospital from “pilot study” to “standard of care”. METHODS: The study was designed as a prospective single centre cohort study. A prospective evaluation of compliance to a protocol based on full application of all ERAS principles, through the progressive steps of its implementation, was performed. Results achieved in the initial pilot study conducted by a dedicated team (n = 47) were compared to those achieved in the shared protocol phase (n = 143) three years later. Outcomes were length of postoperative hospital stay, readmission rate, compliance to the protocol and morbidity. Primary endpoint was the description of the results and the identification of critical issues of large scale implementation of an ERAS program in colorectal surgery emerged in the experience of a single center. Secondary endpoint was the identification of interventions that have been proven to be effective for facilitating the transition from traditional care pathways to a multimodal management protocol according to ERAS principles in colorectal surgery at a single center. RESULTS: During the initial pilot study (March 2009 to December 2010; 47 patients) conducted by a dedicated multidisciplinary team, compliance to the items of ERAS protocol was 93%, with a median length of hospital stay (LOS) of 3 d. Early anastomotic fistulas were observed in 2 cases (4.2%), which required reoperation (Clavien-Dindo grade IIIb). None of the patients had been discharged before the onset of the complication, which could therefore receive prompt treatment. There were also four (8.5%) minor complications (Clavien-Dindo grade II). Thirty days readmission rate was 4%. Perioperative mortality was nil. After implementation of the protocol throughout the Hospital in unselected patients (May 2012 to December 2012; 147 patients) compliance was 74%, with a median LOS of 6 d. Early anastomotic fistulas

  2. Enhancement of data rates by single and double cavity holographic recording

    NASA Astrophysics Data System (ADS)

    Miller, Bo E.; Takashima, Yuzuru

    2015-08-01

    To satisfy the growing need for faster archival data storage and retrieval, we proposed an improvement to the read and write data transfer rates of Holographic Data Storage Systems (HDSS). Conventionally, reading and writing of data utilize only a fraction of the available light. Our techniques apply a resonator cavity to the readout and recording of holograms so that more of the available light is used. Functionally, more power is used than what is provided without violating energy conservation. Thus, data rates and/or capacities can be increased due to enhanced power. These improvements are also inversely related to the diffraction efficiency of a hologram, which makes these cavity enhanced techniques well suited to HDSS where large numbers of multiplexed holograms require low diffraction efficiencies. Previously, we presented the theory of cavity enhanced HDSS, the experimental effect of enhancement on readout, and the lack of effects on Bragg Selectivity. We have now formalized the enhancement in writing power and experimentally evaluated the improvement in writing speed over conventional means for writing a single plane wave hologram in Fe:LiNbO3 with a 532 nm wavelength, CW, single mode, DPSS, Nd:YAG, laser with a cavity on one of the writing arms. The diffraction efficiency was read during the recording by using a 632.8 nm wavelength HeNe Laser. We found that the enhancement of recording power for this configuration asymptotically approaches a factor of two, while the use of cavities in both writing arms provides a power enhancement which is limited only by the losses in the cavities.

  3. Rapid, green synthesis and surface-enhanced Raman scattering effect of single-crystal silver nanocubes

    NASA Astrophysics Data System (ADS)

    Mao, Aiqin; Jin, Xia; Gu, Xiaolong; Wei, Xiaoqing; Yang, Guojing

    2012-08-01

    Single-crystal silver (Ag) nanocubes have been synthesized by a rapid and green method at room temperature by adding sodium hydroxide solution to the mixed solutions of silver nitrate, glucose and polyvinylpyrrolidone (PVP). The X-ray diffraction (XRD), ultraviolet-visible (UV-visible) and transmission electron microscopy (TEM) were used to characterize the phase composition and morphology. The results showed that the as-prepared particles were single-crystal Ag nanocubes with edge lengths of around 77 nm and a growing direction along {1 0 0} facets. As substrates for surface-enhanced Raman scattering (SERS) experiment on crystal violet (CV), the SERS enhancement factor of the as-prepared Ag nanocubes were measured to be 5.5 × 104, indicating potential applications in chemical and biological analysis.

  4. Enhancing traditional behavioral parent training for single mothers of children with ADHD.

    PubMed

    Chacko, Anil; Wymbs, Brian T; Wymbs, Frances A; Pelham, William E; Swanger-Gagne, Michelle S; Girio, Erin; Pirvics, Lauma; Herbst, Laura; Guzzo, Jamie; Phillips, Carlie; O'Connor, Briannon

    2009-03-01

    Behavioral parent training is an efficacious treatment for attention-deficit/hyperactivity disorder (ADHD). However, single-mother households are at high risk for poor outcomes during and following behavioral parent training. This study randomly assigned cohorts of 120 single mothers of children (ages 5-12 years) with ADHD to a waitlist control group, a traditional behavioral parent training program, or an enhanced behavioral parent training program -- the Strategies to Enhance Positive Parenting (STEPP) program. Intent-to-treat analysis demonstrated benefits of participating in behavioral parent training, in general, and the STEPP program more specifically at immediate posttreatment on child and parental functioning. Moreover, the STEPP program resulted in increased engagement to treatment. However, results indicated that behavioral parent training does not normalize behavior for most children and treatment gains are not maintained. PMID:19283599

  5. Double tube heat exchanger with novel enhancement: part II—single phase convective heat transfer

    NASA Astrophysics Data System (ADS)

    Tiruselvam, R.; Chin, W. M.; Raghavan, Vijay R.

    2012-08-01

    The study is conducted to evaluate the heat transfer characteristics of two new and versatile enhancement configurations in a double tube heat exchanger annulus. The novelty is that they are usable in single phase forced convection, evaporation and condensation. Heat transfer coefficients are determined by the Wilson Plot technique in laminar and turbulent flow and correlations are proposed for Nusselt numbers. Comparisons are then made between heat transfer and flow friction.

  6. Contrast Enhancement Algorithm Based on Gap Adjustment for Histogram Equalization.

    PubMed

    Chiu, Chung-Cheng; Ting, Chih-Chung

    2016-01-01

    Image enhancement methods have been widely used to improve the visual effects of images. Owing to its simplicity and effectiveness histogram equalization (HE) is one of the methods used for enhancing image contrast. However, HE may result in over-enhancement and feature loss problems that lead to unnatural look and loss of details in the processed images. Researchers have proposed various HE-based methods to solve the over-enhancement problem; however, they have largely ignored the feature loss problem. Therefore, a contrast enhancement algorithm based on gap adjustment for histogram equalization (CegaHE) is proposed. It refers to a visual contrast enhancement algorithm based on histogram equalization (VCEA), which generates visually pleasing enhanced images, and improves the enhancement effects of VCEA. CegaHE adjusts the gaps between two gray values based on the adjustment equation, which takes the properties of human visual perception into consideration, to solve the over-enhancement problem. Besides, it also alleviates the feature loss problem and further enhances the textures in the dark regions of the images to improve the quality of the processed images for human visual perception. Experimental results demonstrate that CegaHE is a reliable method for contrast enhancement and that it significantly outperforms VCEA and other methods. PMID:27338412

  7. Contrast Enhancement Algorithm Based on Gap Adjustment for Histogram Equalization

    PubMed Central

    Chiu, Chung-Cheng; Ting, Chih-Chung

    2016-01-01

    Image enhancement methods have been widely used to improve the visual effects of images. Owing to its simplicity and effectiveness histogram equalization (HE) is one of the methods used for enhancing image contrast. However, HE may result in over-enhancement and feature loss problems that lead to unnatural look and loss of details in the processed images. Researchers have proposed various HE-based methods to solve the over-enhancement problem; however, they have largely ignored the feature loss problem. Therefore, a contrast enhancement algorithm based on gap adjustment for histogram equalization (CegaHE) is proposed. It refers to a visual contrast enhancement algorithm based on histogram equalization (VCEA), which generates visually pleasing enhanced images, and improves the enhancement effects of VCEA. CegaHE adjusts the gaps between two gray values based on the adjustment equation, which takes the properties of human visual perception into consideration, to solve the over-enhancement problem. Besides, it also alleviates the feature loss problem and further enhances the textures in the dark regions of the images to improve the quality of the processed images for human visual perception. Experimental results demonstrate that CegaHE is a reliable method for contrast enhancement and that it significantly outperforms VCEA and other methods. PMID:27338412

  8. On the low-temperature growth mechanism of single walled carbon nanotubes in plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Shariat, M.; Shokri, B.; Neyts, E. C.

    2013-12-01

    Despite significant progress in single walled carbon nanotube (SWCNT) production by plasma enhanced chemical vapor deposition (PECVD), the growth mechanism in this method is not clearly understood. We employ reactive molecular dynamics simulations to investigate how plasma-based deposition allows growth at low temperature. We first investigate the SWCNT growth mechanism at low and high temperatures under conditions similar to thermal CVD and PECVD. We then show how ion bombardment during the nucleation stage increases the carbon solubility in the catalyst at low temperature. Finally, we demonstrate how moderate energy ions sputter amorphous carbon allowing for SWCNT growth at 500 K.

  9. Fluorescence enhancement of radix angelica dahurica by binding to single silver sphere

    NASA Astrophysics Data System (ADS)

    Wang, Qing-Ru; Shi, Qiang; Li, Shu-Hong; Wang, Wen-Jun

    2015-05-01

    We present a theoretical study of the influence of a single silver sphere on the fluorescence of radix angelica dahurica, which is a kind of traditional Chinese medicine. The enhancement factors of the excitation and the relaxation processes are deduced. The excitation can be enhanced more than 100 times at 315 nm. The enhancement factor of the emission can reach up to 9 at a center wavelength of 400 nm. Project supported by the National Natural Science Foundation of China (Grant Nos. 61405085 and 61275147), the Research Fund for the Doctoral Program of Liaocheng University, China, the Key Project of Science and Technology of Shandong Province of China (Grant No. 2010GGX10127), and the Shandong Province Natural Science Foundation of China (Grant Nos. ZR2013EML006 and ZR2012AL11).

  10. Genome-wide mapping of promoter-anchored interactions with close to single-enhancer resolution.

    PubMed

    Sahlén, Pelin; Abdullayev, Ilgar; Ramsköld, Daniel; Matskova, Liudmila; Rilakovic, Nemanja; Lötstedt, Britta; Albert, Thomas J; Lundeberg, Joakim; Sandberg, Rickard

    2015-01-01

    Although the locations of promoters and enhancers have been identified in several cell types, we still have limited information on their connectivity. We developed HiCap, which combines a 4-cutter restriction enzyme Hi-C with sequence capture of promoter regions. Applying the method to mouse embryonic stem cells, we identified promoter-anchored interactions involving 15,905 promoters and 71,984 distal regions. The distal regions were enriched for enhancer marks and transcription, and had a mean fragment size of only 699 bp--close to single-enhancer resolution. High-resolution maps of promoter-anchored interactions with HiCap will be important for detailed characterizations of chromatin interaction landscapes. PMID:26313521

  11. Enhancement of monoclonal antibody binding to melanoma with single dose radiation or hyperthermia

    SciTech Connect

    Stickney, D.R.; Gridley, D.S.; Kirk, G.A.; Slater, J.M.

    1987-01-01

    We undertook this study to determine whether radiation (10 Gray, single dose) or water bath hyperthermia (41 degrees C, 45 min) could enhance binding of /sup 111/In-labeled anti-p97a monoclonal antibody (MAb) to human melanoma tumors transplanted subcutaneously into nude mice. Sixty animals were given injections of 1-2 X 10(7) Brown C5513 melanoma cells. At 1-2 weeks postinjection, two-thirds of the mice were treated (one-third served as controls). Within 3 hours after treatment, each animal was given iv 2 muCi /sup 111/In-anti-p97a MAb. At 24 and 48 hours thereafter, whole-body scans were done with the use of a MaxiCamera 300 A/M unit, and the ratio of activity at the tumor and liver was determined. Some animals were kept for 7 days posttreatment, whereas others were taken after the 48-hour scan for determination of biodistribution of the radiolabeled complex. Enhancement of MAb binding was demonstrated by either modality, although enhancement was more consistent with radiation. The therapeutic efficacy of MAb may be enhanced with increased binding of radioactive MAb complexes through single dose radiation or hyperthermia.

  12. Enhancement of beam pulse controllability for a single-pulse formation system of a cyclotron.

    PubMed

    Kurashima, Satoshi; Miyawaki, Nobumasa; Kashiwagi, Hirotsugu; Okumura, Susumu; Taguchi, Mitsumasa; Fukuda, Mitsuhiro

    2015-07-01

    The single-pulse formation technique using a beam chopping system consisting of two types of high-voltage beam kickers was improved to enhance the quality and intensity of the single-pulse beam with a pulse interval over 1 μs at the Japan Atomic Energy Agency cyclotron facility. A contamination rate of neighboring beam bunches in the single-pulse beam was reduced to less than 0.1%. Long-term purification of the single pulse beam was guaranteed by the well-controlled magnetic field stabilization system for the cyclotron magnet. Reduction of the multi-turn extraction number for suppressing the neighboring beam bunch contamination was achieved by restriction of a beam phase width and precise optimization of a particle acceleration phase. In addition, the single-pulse beam intensity was increased by a factor of two or more by a combination of two types of beam bunchers using sinusoidal and saw-tooth voltage waveforms. Provision of the high quality intense single-pulse beam contributed to improve the accuracy of experiments for investigation of scintillation light time-profile and for neutron energy measurement by a time-of-flight method. PMID:26233376

  13. Enhancement of beam pulse controllability for a single-pulse formation system of a cyclotron

    SciTech Connect

    Kurashima, Satoshi Miyawaki, Nobumasa; Kashiwagi, Hirotsugu; Okumura, Susumu; Taguchi, Mitsumasa; Fukuda, Mitsuhiro

    2015-07-15

    The single-pulse formation technique using a beam chopping system consisting of two types of high-voltage beam kickers was improved to enhance the quality and intensity of the single-pulse beam with a pulse interval over 1 μs at the Japan Atomic Energy Agency cyclotron facility. A contamination rate of neighboring beam bunches in the single-pulse beam was reduced to less than 0.1%. Long-term purification of the single pulse beam was guaranteed by the well-controlled magnetic field stabilization system for the cyclotron magnet. Reduction of the multi-turn extraction number for suppressing the neighboring beam bunch contamination was achieved by restriction of a beam phase width and precise optimization of a particle acceleration phase. In addition, the single-pulse beam intensity was increased by a factor of two or more by a combination of two types of beam bunchers using sinusoidal and saw-tooth voltage waveforms. Provision of the high quality intense single-pulse beam contributed to improve the accuracy of experiments for investigation of scintillation light time-profile and for neutron energy measurement by a time-of-flight method.

  14. Surface enhanced Raman scattering of single 1,4-Benzenedithiol molecular junction

    NASA Astrophysics Data System (ADS)

    Kaneko, S.; Murai, D.; Fujii, Sh.; Kiguchi, M.

    2016-03-01

    Here, we present simultaneous electronic and optical measurements of a single 1,4-benzenedithiol (BDT) molecular junctions to investigate the electronic and structural details in the molecular junction and to understand the charge transport property at the single molecular scale. The electronic property was investigated by DC conductance measurement while structural property was characterized using surface enhanced Raman scattering (SERS) measurement. The single BDT junctions sandwiched between Au nanogap-electrodes were prepared by the mechanically controllable break junction method at ambient conditions. The simultaneous conductance and SERS measurements demonstrate that ring deformation mode coupled to C-S stretching mode, ring breathing mode, and C=C stretching mode are detectable for the single BDT molecular junctions with electronic conductance of 0.01G0 (G0 = 2e2/h). The single molecule origin is supported by the characteristic variability of SERS within samples. Time evolution of the conductance and SERS signals indicated that the molecular conductance and the vibrational energy of the ring breathing mode exhibits anti-correlated relationship. This relationship can be mediated by time evolution of structural change in the single molecular junction and corresponding change in strength of metal-molecular coupling. The larger metal-molecular coupling causes higher electronic conductance of the molecular junction while charge transfer effect leads to weakening of molecular bonds and thus a resulting decrease in the vibration energy of the ring breathing mode.

  15. Enhanced Student Learning with Problem Based Learning

    ERIC Educational Resources Information Center

    Hollenbeck, James

    2008-01-01

    Science educators define a learning environment in which the problem drives the learning as problem based learning (PBL). Problem based learning can be a learning methodology/process or a curriculum based on its application by the teacher. This paper discusses the basic premise of Problem base learning and successful applications of such learning.…

  16. Wavelet-Based Speech Enhancement Using Time-Adapted Noise Estimation

    NASA Astrophysics Data System (ADS)

    Lei, Sheau-Fang; Tung, Ying-Kai

    Spectral subtraction is commonly used for speech enhancement in a single channel system because of the simplicity of its implementation. However, this algorithm introduces perceptually musical noise while suppressing the background noise. We propose a wavelet-based approach in this paper for suppressing the background noise for speech enhancement in a single channel system. The wavelet packet transform, which emulates the human auditory system, is used to decompose the noisy signal into critical bands. Wavelet thresholding is then temporally adjusted with the noise power by time-adapted noise estimation. The proposed algorithm can efficiently suppress the noise while reducing speech distortion. Experimental results, including several objective measurements, show that the proposed wavelet-based algorithm outperforms spectral subtraction and other wavelet-based denoising approaches for speech enhancement for nonstationary noise environments.

  17. Enhancement of critical current density and mechanism of vortex pinning in H+-irradiated FeSe single crystal

    NASA Astrophysics Data System (ADS)

    Sun, Yue; Pyon, Sunseng; Tamegai, Tsuyoshi; Kobayashi, Ryo; Watashige, Tatsuya; Kasahara, Shigeru; Matsuda, Yuji; Shibauchi, Takasada; Kitamura, Hisashi

    2015-11-01

    We report a comprehensive study of the effect of H+ irradiation on the critical current density Jc and vortex pinning in an FeSe single crystal. The value of Jc for FeSe is enhanced by more than a factor of 2 after 3-MeV H+ irradiation, which is explained by the introduction of point pinning centers. Vortex creep rates are found to be strongly suppressed after irradiation. Detailed analyses of the pinning energy based on collective-creep-theory and an extended Maley’s method show that the H+ irradiation enhances the value of Jc before the flux creep and also reduces the size of the flux bundle, which suppresses the field dependence of Jc owing to vortex motion.

  18. Plasmonically enhanced hot electron based photovoltaic device.

    PubMed

    Atar, Fatih B; Battal, Enes; Aygun, Levent E; Daglar, Bihter; Bayindir, Mehmet; Okyay, Ali K

    2013-03-25

    Hot electron photovoltaics is emerging as a candidate for low cost and ultra thin solar cells. Plasmonic means can be utilized to significantly boost device efficiency. We separately form the tunneling metal-insulator-metal (MIM) junction for electron collection and the plasmon exciting MIM structure on top of each other, which provides high flexibility in plasmonic design and tunneling MIM design separately. We demonstrate close to one order of magnitude enhancement in the short circuit current at the resonance wavelengths. PMID:23546103

  19. Growth kinetics of low temperature single-wall and few walled carbon nanotubes grown by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Gohier, A.; Minea, T. M.; Djouadi, M. A.; Jiménez, J.; Granier, A.

    2007-03-01

    Single-wall, double walled or few walled nanotubes (FWNT) are grown by electron cyclotron resonance plasma enhanced chemical vapor deposition (ECR-PECVD) at temperature as low as 600 °C. Most of these structures are isolated and self-oriented perpendicular to the substrate. The growth mechanism observed for single-wall and few walled (less than seven walls) nanotubes is the “base-growth” mode. Their grow kinetics is investigated regarding two parameters namely the growth time and the synthesis temperature. It is shown that nucleation and growth rate is correlated with the number of walls into FWNT. It also provides an evidence of a critical temperature for FWNT synthesis.

  20. Enhanced genetic analysis of single human bioparticles recovered by simplified micromanipulation from forensic 'touch DNA' evidence.

    PubMed

    Farash, Katherine; Hanson, Erin K; Ballantyne, Jack

    2015-01-01

    DNA profiles can be obtained from 'touch DNA' evidence, which comprises microscopic traces of human biological material. Current methods for the recovery of trace DNA employ cotton swabs or adhesive tape to sample an area of interest. However, such a 'blind-swabbing' approach will co-sample cellular material from the different individuals, even if the individuals' cells are located in geographically distinct locations on the item. Thus, some of the DNA mixtures encountered in touch DNA samples are artificially created by the swabbing itself. In some instances, a victim's DNA may be found in significant excess thus masking any potential perpetrator's DNA. In order to circumvent the challenges with standard recovery and analysis methods, we have developed a lower cost, 'smart analysis' method that results in enhanced genetic analysis of touch DNA evidence. We describe an optimized and efficient micromanipulation recovery strategy for the collection of bio-particles present in touch DNA samples, as well as an enhanced amplification strategy involving a one-step 5 µl microvolume lysis/STR amplification to permit the recovery of STR profiles from the bio-particle donor(s). The use of individual or few (i.e., "clumps") bioparticles results in the ability to obtain single source profiles. These procedures represent alternative enhanced techniques for the isolation and analysis of single bioparticles from forensic touch DNA evidence. While not necessary in every forensic investigation, the method could be highly beneficial for the recovery of a single source perpetrator DNA profile in cases involving physical assault (e.g., strangulation) that may not be possible using standard analysis techniques. Additionally, the strategies developed here offer an opportunity to obtain genetic information at the single cell level from a variety of other non-forensic trace biological material. PMID:25867046

  1. Heat transfer enhancement due to a longitudinal vortex produced by a single winglet in a pipe

    SciTech Connect

    Oyakawa, Kenyu; Senaha, Izuru; Ishikawa, Shuji; Hokama, Mashashige

    1999-07-01

    Longitudinal vortices were artificially generated by a single winglet vortex generator in a pipe. The purpose of this study is to analyze the motion of longitudinal vortices and their effects on heat transfer enhancement. The flow pattern was visualized by means of both fluorescein and rhodamine B as traces in a water flow. The main vortex was moved spirally along the circumference and the behavior of the other vortices was observed. Streamwise and circumferential heat transfer coefficients on the wall, wall static pressure, and velocity distribution in an overall cross section were also measured for the air flow in a range of Reynolds numbers from 18,800 to 62,400. The distributions of the streamwise heat transfer coefficient had a periodic pattern, and the peaks in the distribution were circumferentially moved due to the spiral motion of the main vortex. Lastly, the relationships between the iso-velocity distribution, wall static pressure, and heat transfer characteristics was shown. In the process of forming the vortex behind the winglet vortex generator, behaviors of both the main vortex and the corner vortex were observed as streak lines. The vortex being raised along the end of the winglet, and the vortex ring being rolled up to the main vortex were newly observed. Both patterns of the streamwise velocity on a cross-section and the static pressure on the wall show good correspondences to phenomena of the main vortex spirally flowing downstream. The increased ratio of the heat transfer is similar to that of the friction factor based on the shear stress on the wall surface of the pipe. The quantitative analogy between the heat transfer and the shear stress is confirmed except for some regions, where the effects of the down-wash or blow-away of the secondary flows is caused due to the main vortex.

  2. Framework for single input single output nanonetwork-based realistic molecular communication.

    PubMed

    Abd El-Atty, Saied M; Gharsseldien, Zakaria M; Lizos, Konstantinos A

    2015-12-01

    Mobile ad hoc molecular nanonetwork (MAMNET) is a new paradigm for the realisation of future nanonetworks. In MAMNET, transmission of nanoscale information from nanomachine to infostation is based on collision and adhesion. In this study, the authors develop a realistic framework for encompassing the electronic structure of the neurotransmitter in the process of transmitting nanoscale information at a single input single output nanonetwork. Nanonetwork performance is evaluated in terms of average packet delay, throughput and incurred traffic rate. Numerical results demonstrate the influence of the neurotransmitter's electronic structure over the performance of nanonetworks. PMID:26647808

  3. [Single-acupoint electroacupuncture based on traditional acupuncture becomes true].

    PubMed

    Liu, Tang-Yi; Yang, Hua-Yuan; Gao, Ming; Xu, Gang; Tang, Wen-Chao

    2010-10-01

    [ In current clinical acupuncture practice, many exiting problems including changes in the treated region, simultaneous covering two meridians of the two stimulating electrodes (acupuncture needles), inability to realize the reinforcing-reducing functions of the traditional acupuncture, etc. during application of electroacupuncture (EA) could be found, which may affect the therapeutic results or lead to failure in playing EA's functions. For this reason, the authors of the present paper put forward a concept of "single acupoint EA". Base on the design of "double electrodes of two acupuncture needles" of the conventional EA therapeutic apparatus, a "single acupoint EA therapy" was put forward and a single acupoint EA electronic apparatus (stimulating needle electrode) was manufactured. It not only realizes single acupoint stimulation, but also corresponds to the features of traditional EA therapy, avoiding some problems in currently-used EA therapy. It may be helpful to raising clinical therapeutic effect. PMID:21235069

  4. Fiber optic SERS-based plasmonics nanobiosensing in single living cells

    NASA Astrophysics Data System (ADS)

    Scaffidi, Jonathan P.; Gregas, Molly K.; Seewaldt, Victoria; Vo-Dinh, Tuan

    2009-05-01

    We describe the development of small molecule-sensitive plasmonics-active fiber-optic nanoprobes suitable for intracellular bioanalysis in single living human cells using surface-enhanced Raman scattering (SERS) detection. The practical utility of SERS-based fiber-optic nanoprobes is illustrated by measurements of intracellular pH in HMEC- 15/hTERT immortalized "normal" human mammary epithelial cells and PC-3 human prostate cancer cells. The results indicate that fiber-optic nanoprobe insertion and interrogation provide a sensitive and selective means to monitor biologically-relevant small molecules at the single cell level.

  5. Gradient-based enhancement of tubular structures in medical images.

    PubMed

    Moreno, Rodrigo; Smedby, Örjan

    2015-12-01

    Vesselness filters aim at enhancing tubular structures in medical images. The most popular vesselness filters are based on eigenanalyses of the Hessian matrix computed at different scales. However, Hessian-based methods have well-known limitations, most of them related to the use of second order derivatives. In this paper, we propose an alternative strategy in which ring-like patterns are sought in the local orientation distribution of the gradient. The method takes advantage of symmetry properties of ring-like patterns in the spherical harmonics domain. For bright vessels, gradients not pointing towards the center are filtered out from every local neighborhood in a first step. The opposite criterion is used for dark vessels. Afterwards, structuredness, evenness and uniformness measurements are computed from the power spectrum in spherical harmonics of both the original and the half-zeroed orientation distribution of the gradient. Finally, the features are combined into a single vesselness measurement. Alternatively, a structure tensor that is suitable for vesselness can be estimated before the analysis in spherical harmonics. The two proposed methods are called Ring Pattern Detector (RPD) and Filtered Structure Tensor (FST) respectively. Experimental results with computed tomography angiography data show that the proposed filters perform better compared to the state-of-the-art. PMID:26277023

  6. Vertically-Aligned Single-Crystal Nanocone Arrays: Controlled Fabrication and Enhanced Field Emission.

    PubMed

    Duan, Jing Lai; Lei, Dang Yuan; Chen, Fei; Lau, Shu Ping; Milne, William I; Toimil-Molares, M E; Trautmann, Christina; Liu, Jie

    2016-01-13

    Metal nanostructures with conical shape, vertical alignment, large ratio of cone height and curvature radius at the apex, controlled cone angle, and single-crystal structure are ideal candidates for enhancing field electron-emission efficiency with additional merits, such as good mechanical and thermal stability. However, fabrication of such nanostructures possessing all these features is challenging. Here, we report on the controlled fabrication of large scale, vertically aligned, and mechanically self-supported single-crystal Cu nanocones with controlled cone angle and enhanced field emission. The Cu nanocones were fabricated by ion-track templates in combination with electrochemical deposition. Their cone angle is controlled in the range from 0.3° to 6.2° by asymmetrically selective etching of the ion tracks and the minimum tip curvature diameter reaches down to 6 nm. The field emission measurements show that the turn-on electric field of the Cu nanocone field emitters can be as low as 1.9 V/μm at current density of 10 μA/cm(2) (a record low value for Cu nanostructures, to the best of our knowledge). The maximum field enhancement factor we measured was as large as 6068, indicating that the Cu nanocones are promising candidates for field emission applications. PMID:26666466

  7. Engineered Hematite Mesoporous Single Crystals Drive Drastic Enhancement in Solar Water Splitting.

    PubMed

    Wang, Chong Wu; Yang, Shuang; Fang, Wen Qi; Liu, Porun; Zhao, Huijun; Yang, Hua Gui

    2016-01-13

    Mesoporous single crystals (MSCs) rendering highly accessible surface area and long-range electron conductivity are extremely significant in many fields, including catalyst, solar fuel, and electrical energy storage technologies. Hematite semiconductor, whose performance has been crucially limited by its pristine poor charge separation efficiency in solar water splitting, should benefit from this strategy. Despite successful synthesis of many metal oxide MSCs, the fabrication of hematite MSCs remains to be a great challenge due to its quite slow hydrolysis rate in water. Herein, for the first time, we have developed a synthetic strategy to prepare hematite MSCs and systematically investigated their growth mechanism. The electrode fabricated with these crystals is able to achieve a photocurrent density of 0.61 mA/cm(2) at 1.23 V vs RHE under AM 1.5G simulated sunlight, which is 20 times higher than that of electrodes made of solid single crystals. The enhancement is ascribed to the superior light absorption and enhanced charges separation. Our results demonstrate the advantage of incorporation of nanopores into the large-sized hematite single crystals and provide a valuable insight for the development of high performance photoelectrodes in PEC application. PMID:26654272

  8. Quantum private query based on single-photon interference

    NASA Astrophysics Data System (ADS)

    Xu, Sheng-Wei; Sun, Ying; Lin, Song

    2016-08-01

    Quantum private query (QPQ) has become a research hotspot recently. Specially, the quantum key distribution (QKD)-based QPQ attracts lots of attention because of its practicality. Various such kind of QPQ protocols have been proposed based on different technologies of quantum communications. Single-photon interference is one of such technologies, on which the famous QKD protocol GV95 is just based. In this paper, we propose two QPQ protocols based on single-photon interference. The first one is simpler and easier to realize, and the second one is loss tolerant and flexible, and more practical than the first one. Furthermore, we analyze both the user privacy and the database privacy in the proposed protocols.

  9. Quantum private query based on single-photon interference

    NASA Astrophysics Data System (ADS)

    Xu, Sheng-Wei; Sun, Ying; Lin, Song

    2016-05-01

    Quantum private query (QPQ) has become a research hotspot recently. Specially, the quantum key distribution (QKD)-based QPQ attracts lots of attention because of its practicality. Various such kind of QPQ protocols have been proposed based on different technologies of quantum communications. Single-photon interference is one of such technologies, on which the famous QKD protocol GV95 is just based. In this paper, we propose two QPQ protocols based on single-photon interference. The first one is simpler and easier to realize, and the second one is loss tolerant and flexible, and more practical than the first one. Furthermore, we analyze both the user privacy and the database privacy in the proposed protocols.

  10. A MEMS-Based Approach to Single Nucleotide Polymorphism Genotyping

    PubMed Central

    Zhu, Jing; Palla, Mirkó; Ronca, Stefano; Warpner, Ronald; Ju, Jingyue; Lin, Qiao

    2014-01-01

    Genotyping of single nucleotide polymorphisms (SNPs) allows diagnosis of human genetic disorders associated with single base mutations. Conventional SNP genotyping methods are capable of providing either accurate or high-throughput detection, but are still labor-, time-, and resource-intensive. Microfluidics has been applied to SNP detection to provide fast, low-cost, and automated alternatives, although these applications are still limited by either accuracy or throughput issues. To address this challenge, we present a MEMS-based SNP genotyping approach that uses solid-phase-based reactions in a single microchamber on a temperature control chip. Polymerase chain reaction (PCR), allele specific single base extension (SBE), and desalting on microbeads are performed in the microchamber, which is coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze the SBE product. Experimental results from genotyping of the SNP on exon 1 of the HBB gene, which causes sickle cell anemia, demonstrate the potential of the device for rapid, accurate, multiplexed and high-throughput detection of SNPs. PMID:24729659

  11. Single-Subject Experimental Design for Evidence-Based Practice

    ERIC Educational Resources Information Center

    Byiers, Breanne J.; Reichle, Joe; Symons, Frank J.

    2012-01-01

    Purpose: Single-subject experimental designs (SSEDs) represent an important tool in the development and implementation of evidence-based practice in communication sciences and disorders. The purpose of this article is to review the strategies and tactics of SSEDs and their application in speech-language pathology research. Method: The authors…

  12. Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling

    NASA Astrophysics Data System (ADS)

    Birowosuto, Muhammad Danang; Sumikura, Hisashi; Matsuo, Shinji; Taniyama, Hideaki; van Veldhoven, Peter J.; Nötzel, Richard; Notomi, Masaya

    2012-03-01

    High-bit-rate nanocavity-based single photon sources in the 1,550-nm telecom band are challenges facing the development of fibre-based long-haul quantum communication networks. Here we report a very fast single photon source in the 1,550-nm telecom band, which is achieved by a large Purcell enhancement that results from the coupling of a single InAs quantum dot and an InP photonic crystal nanocavity. At a resonance, the spontaneous emission rate was enhanced by a factor of 5 resulting a record fast emission lifetime of 0.2 ns at 1,550 nm. We also demonstrate that this emission exhibits an enhanced anti-bunching dip. This is the first realization of nanocavity-enhanced single photon emitters in the 1,550-nm telecom band. This coupled quantum dot cavity system in the telecom band thus provides a bright high-bit-rate non-classical single photon source that offers appealing novel opportunities for the development of a long-haul quantum telecommunication system via optical fibres.

  13. The evolution of gadolinium based contrast agents: from single-modality to multi-modality.

    PubMed

    Zhang, Li; Liu, Ruiqing; Peng, Hui; Li, Penghui; Xu, Zushun; Whittaker, Andrew K

    2016-05-19

    Gadolinium-based contrast agents are extensively used as magnetic resonance imaging (MRI) contrast agents due to their outstanding signal enhancement and ease of chemical modification. However, it is increasingly recognized that information obtained from single modal molecular imaging cannot satisfy the higher requirements on the efficiency and accuracy for clinical diagnosis and medical research, due to its limitation and default rooted in single molecular imaging technique itself. To compensate for the deficiencies of single function magnetic resonance imaging contrast agents, the combination of multi-modality imaging has turned to be the research hotpot in recent years. This review presents an overview on the recent developments of the functionalization of gadolinium-based contrast agents, and their application in biomedicine applications. PMID:27159645

  14. The evolution of gadolinium based contrast agents: from single-modality to multi-modality

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Liu, Ruiqing; Peng, Hui; Li, Penghui; Xu, Zushun; Whittaker, Andrew K.

    2016-05-01

    Gadolinium-based contrast agents are extensively used as magnetic resonance imaging (MRI) contrast agents due to their outstanding signal enhancement and ease of chemical modification. However, it is increasingly recognized that information obtained from single modal molecular imaging cannot satisfy the higher requirements on the efficiency and accuracy for clinical diagnosis and medical research, due to its limitation and default rooted in single molecular imaging technique itself. To compensate for the deficiencies of single function magnetic resonance imaging contrast agents, the combination of multi-modality imaging has turned to be the research hotpot in recent years. This review presents an overview on the recent developments of the functionalization of gadolinium-based contrast agents, and their application in biomedicine applications.

  15. Metamaterial-based single pixel imaging system (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Padilla, Willie; Watts, Claire M.; Nadell, Christian; Montoya, John A.; Krishna, Sanjay

    2015-09-01

    Single pixel cameras are useful imaging devices where it is difficult or infeasible to fashion focal plan arrays. For example in the Far Infrared (FIR) it is difficult to perform imaging by conventional detector arrays, owing to the cost and size of such an array. The typical single pixel camera uses a spatial light modulator (SLM) - placed in the conjugate image plane - and is used to sample various portions of the image. The spatially modulated light emerging from the SLM is then sent to a single detector where the light is condensed with suitable optics for detection. Conventional SLMs are either based on liquid crystals or digital mirror devices. As such these devices are limited in modulation speeds of order 30 kHz. Further there is little control over the type of light that is modulated. We present metamaterial based spatial light modulators which provide the ability to digitally encode images - with various measurement matrix coefficients - thus permitting high speed and fidelity imaging capability. In particular we use the Hadamard matrix and related S-matrix to encode images for single pixel imaging. Metamaterials thus permit imaging in regimes of the electromagnetic spectrum where conventional SLMs are not available. Additionally, metamaterials offer several salient features that are not available with commercial SLMs. For example, metamaterials may be used to enable hyperspectral, polarimetric, and phase sensitive imaging. We present the theory and experimental results of single pixel imaging with digital metamaterials in the far infrared and highlight the future of this exciting field.

  16. Communication: Multiple atomistic force fields in a single enhanced sampling simulation

    NASA Astrophysics Data System (ADS)

    Hoang Viet, Man; Derreumaux, Philippe; Nguyen, Phuong H.

    2015-07-01

    The main concerns of biomolecular dynamics simulations are the convergence of the conformational sampling and the dependence of the results on the force fields. While the first issue can be addressed by employing enhanced sampling techniques such as simulated tempering or replica exchange molecular dynamics, repeating these simulations with different force fields is very time consuming. Here, we propose an automatic method that includes different force fields into a single advanced sampling simulation. Conformational sampling using three all-atom force fields is enhanced by simulated tempering and by formulating the weight parameters of the simulated tempering method in terms of the energy fluctuations, the system is able to perform random walk in both temperature and force field spaces. The method is first demonstrated on a 1D system and then validated by the folding of the 10-residue chignolin peptide in explicit water.

  17. Communication: Multiple atomistic force fields in a single enhanced sampling simulation

    SciTech Connect

    Hoang Viet, Man; Derreumaux, Philippe; Nguyen, Phuong H.

    2015-07-14

    The main concerns of biomolecular dynamics simulations are the convergence of the conformational sampling and the dependence of the results on the force fields. While the first issue can be addressed by employing enhanced sampling techniques such as simulated tempering or replica exchange molecular dynamics, repeating these simulations with different force fields is very time consuming. Here, we propose an automatic method that includes different force fields into a single advanced sampling simulation. Conformational sampling using three all-atom force fields is enhanced by simulated tempering and by formulating the weight parameters of the simulated tempering method in terms of the energy fluctuations, the system is able to perform random walk in both temperature and force field spaces. The method is first demonstrated on a 1D system and then validated by the folding of the 10-residue chignolin peptide in explicit water.

  18. Depth enhancement in spectral domain optical coherence tomography using bidirectional imaging modality with a single spectrometer

    NASA Astrophysics Data System (ADS)

    Ravichandran, Naresh Kumar; Wijesinghe, Ruchire Eranga; Shirazi, Muhammad Faizan; Park, Kibeom; Jeon, Mansik; Jung, Woonggyu; Kim, Jeehyun

    2016-07-01

    A method for depth enhancement is presented using a bidirectional imaging modality for spectral domain optical coherence tomography (SD-OCT). Two precisely aligned sample arms along with two reference arms were utilized in the optical configuration to scan the samples. Using exemplary images of the optical resolution target, Scotch tape, a silicon sheet with two needles, and a leaf, we demonstrated how the developed bidirectional SD-OCT imaging method increases the ability to characterize depth-enhanced images. The results of the developed system were validated by comparing the images with the standard OCT configuration (single-sample arm setup). Given the advantages of higher resolution and the ability to visualize deep morphological structures, this method can be utilized to increase the depth dependent fall-off in samples with limited thickness. Thus, the proposed bidirectional imaging modality is apt for cross-sectional imaging of entire samples, which has the potential capability to improve the diagnostic ability.

  19. Sensitive Detection of a Modified Base in Single-Stranded DNA by a Single-Walled Carbon Nanotube.

    PubMed

    Zhang, Shuang; Wang, Xiaofeng; Li, Tang; Liu, Lei; Wu, Hai-Chen; Luo, Mengbo; Li, Jingyuan

    2015-09-15

    In this work, we use molecular dynamics simulations to study the responses of the configuration of single-strand DNA (ssDNA) within a carbon nanotube (CNT) and the concomitant ion flow to a single modified base, i.e., benzoimidazole (Bzim)-modified 5-hydroxymethyl cytosine (5hmC). Our simulation results show the Bzim-modified 5hmC can considerably increase the ion flow through a single-walled carbon nanotube (SWCNT), despite its larger size, which is consistent with prior experimental results. This phenomenon is attributed to enhanced adsorption of DNA to the interior wall of the CNT driven by the Bzim-modified 5hmC, leading to a reduced steric effect on ion transport through the CNT. As revealed in this work, the distribution of ssDNA can be affected by limited change in the interactions with the CNT surface. Such behavior of ssDNA within small-sized CNTs can be exploited to further improve the sensitivity of nanopore detection. PMID:26259044

  20. Single-tube on-beam quartz-enhanced photoacoustic spectroscopy.

    PubMed

    Zheng, Huadan; Dong, Lei; Sampaolo, Angelo; Wu, Hongpeng; Patimisco, Pietro; Yin, Xukun; Ma, Weiguang; Zhang, Lei; Yin, Wangbao; Spagnolo, Vincenzo; Jia, Suotang; Tittel, Frank K

    2016-03-01

    Quartz-enhanced photoacoustic spectroscopy (QEPAS) with a single-tube acoustic microresonator (AmR) inserted between the prongs of a custom quartz tuning fork (QTF) was developed, investigated, and optimized experimentally. Due to the high acoustic coupling efficiency between the AmR and the QTF, the single-tube on-beam QEPAS spectrophone configuration improves the detection sensitivity by 2 orders of magnitude compared to a bare QTF. This approach significantly reduces the spectrophone size with respect to the traditional on-beam spectrophone configuration, thereby facilitating the laser beam alignment. A 1σ normalized noise equivalent absorption coefficient of 1.21×10(-8) cm(-1)·W/√Hz was obtained for dry CO2 detection at normal atmospheric pressure. PMID:26974095

  1. Progress of the Enhanced Hanford Single Shell Tank (SST) Integrity Project

    SciTech Connect

    Venetz, Theodore J.; Washenfelder, Dennis J.; Boomer, Kayle D.; Johnson, Jeremy M.; Castleberry, Jim L.

    2015-01-07

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. In late 2010, seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement.

  2. Surface enhanced Raman scattering analyses of individual silver nanoaggregates on living single yeast cell wall

    NASA Astrophysics Data System (ADS)

    Sujith, Athiyanathil; Itoh, Tamitake; Abe, Hiroko; Anas, Abdul Aziz; Yoshida, Kenichi; Biju, Vasudevanpillai; Ishikawa, Mitsuru

    2008-03-01

    We labeled the living yeast cell surface (Saccharomyces cerevisiae strain W303-1A) by silver nanoparticles which can form nanoaggregates and found to show surface enhanced Raman scattering (SERS) activity. Blinking of SERS and its polarization dependence reveal that SERS signals are from amplified electromagnetic field at nanometric Ag nanoparticles gaps with single or a few molecules sensitivity. We tentatively assigned SERS spectra from a yeast cell wall to mannoproteins. Nanoaggregate-by-nanoaggregate variations and temporal fluctuations of SERS spectra are discussed in terms of inhomogeneous mannoprotein distribution on a cell wall and possible ways of Ag nanoaggregate adsorption, respectively.

  3. Enhancement of Rydberg-mediated single-photon nonlinearities by electrically tuned Förster resonances

    PubMed Central

    Gorniaczyk, H.; Tresp, C.; Bienias, P.; Paris-Mandoki, A.; Li, W.; Mirgorodskiy, I.; Büchler, H. P.; Lesanovsky, I.; Hofferberth, S.

    2016-01-01

    Mapping the strong interaction between Rydberg atoms onto single photons via electromagnetically induced transparency enables manipulation of light at the single-photon level and few-photon devices such as all-optical switches and transistors operated by individual photons. Here we demonstrate experimentally that Stark-tuned Förster resonances can substantially increase this effective interaction between individual photons. This technique boosts the gain of a single-photon transistor to over 100, enhances the non-destructive detection of single Rydberg atoms to a fidelity beyond 0.8, and enables high-precision spectroscopy on Rydberg pair states. On top, we achieve a gain larger than 2 with gate photon read-out after the transistor operation. Theory models for Rydberg polariton propagation on Förster resonance and for the projection of the stored spin-wave yield excellent agreement to our data and successfully identify the main decoherence mechanism of the Rydberg transistor, paving the way towards photonic quantum gates. PMID:27515278

  4. Enhancement of Rydberg-mediated single-photon nonlinearities by electrically tuned Förster resonances.

    PubMed

    Gorniaczyk, H; Tresp, C; Bienias, P; Paris-Mandoki, A; Li, W; Mirgorodskiy, I; Büchler, H P; Lesanovsky, I; Hofferberth, S

    2016-01-01

    Mapping the strong interaction between Rydberg atoms onto single photons via electromagnetically induced transparency enables manipulation of light at the single-photon level and few-photon devices such as all-optical switches and transistors operated by individual photons. Here we demonstrate experimentally that Stark-tuned Förster resonances can substantially increase this effective interaction between individual photons. This technique boosts the gain of a single-photon transistor to over 100, enhances the non-destructive detection of single Rydberg atoms to a fidelity beyond 0.8, and enables high-precision spectroscopy on Rydberg pair states. On top, we achieve a gain larger than 2 with gate photon read-out after the transistor operation. Theory models for Rydberg polariton propagation on Förster resonance and for the projection of the stored spin-wave yield excellent agreement to our data and successfully identify the main decoherence mechanism of the Rydberg transistor, paving the way towards photonic quantum gates. PMID:27515278

  5. Enhancing Cultural Adaptation through Friendship Training: A Single-Case Study.

    ERIC Educational Resources Information Center

    Liu, Yi-Ching; Baker, Stanley B.

    1993-01-01

    Four-year-old girl from mainland China experienced culture shock when attending American university day-care center. Counseling intern from Taiwan designed friendship training program based on assumptions concerning adaptation, acculturation, and peer relationships. Evaluated as intensive single-case study, findings indicated the program may be…

  6. Physical modeling of interference enhanced imaging and characterization of single nanoparticles.

    PubMed

    Avci, Oguzhan; Adato, Ronen; Ozkumur, Ayca Yalcin; Ünlü, M Selim

    2016-03-21

    Interferometric imaging schemes have gained significant interest due to their superior sensitivity over imaging techniques that are solely based on scattered signal. In this study, we outline the theoretical foundations of imaging and characterization of single nanoparticles in an interferometric microscopy scheme, examine key parameters that influence the signal, and benchmark the model against experimental findings. PMID:27136804

  7. An enhanced 8086-based CAMAC crate controller

    SciTech Connect

    Dawson, J.W.; Bayer, J.B.; Chan, L.; Ciarlette, D.; Haberichter, W.N.; Stanek, R.W.

    1987-02-01

    An enhanced CAMAC crate controller (ECC) has been developed for data handling for Fermilab experiment E-704. The module also is currently used in an experiment to make a precise measurement of the weak vector coupling constant. The ECC incorporates hardware to do block transfers (DMA) of CAMAC modules within the crate at several times effective CAMAC rates, or it may e programmed to do individual CAMAC transfers. If desired, data may be rippled out an ECL port to fast ECL devices, or may be written in RAM for processing within the controller itself. The EEC is implemented with the CAMAC Request/Grant protocol for use with an A-2 crate controller, allowing the ECC to be used either as an auxiliary controller or crate controller. Trigger logic in the controller allows the device to respond to any of three triggers by initiating a DMA, or dedicated crates may be daisy-chained, one crate providing a trigger to the next at the conclusion of each DMA. The device is built as much as possible in High Performance CMOS logic using surface mount techniques, on two 8-layer printed circuit cards.

  8. Analytical assays based on detecting conformational changes of single molecules.

    PubMed

    Zocchi, Giovanni

    2006-03-13

    One common strategy for the detection of biomolecules is labeling either the target itself or an antibody that binds to it. Herein, a different approach, based on detecting the conformational change of a probe molecule induced by binding of the target is discussed. That is, what is being detected is not the presence of the target or the probe, but the conformational change of the probe. Recently, a single-molecule sensor has been developed that exploits this mechanism to detect hybridization of a single DNA oligomer to a DNA probe, as well as specific binding of a single protein to a DNA probe. Biomolecular recognition often involves large conformational changes of the molecules involved, and therefore this strategy may be applicable to other assays. PMID:16514690

  9. Techniques for Enhancing Web-Based Education.

    ERIC Educational Resources Information Center

    Barbieri, Kathy; Mehringer, Susan

    The Virtual Workshop is a World Wide Web-based set of modules on high performance computing developed at the Cornell Theory Center (CTC) (New York). This approach reaches a large audience, leverages staff effort, and poses challenges for developing interesting presentation techniques. This paper describes the following techniques with their…

  10. Enhancing Trust in SOA Based Collaborative Environments

    NASA Astrophysics Data System (ADS)

    Boursas, Latifa; Bourimi, Mohamed; Hommel, Wolfgang; Kesdogan, Dogan

    Considering trust and privacy requirements for online and collaborative distance learning environments, this paper discusses potential extensions of SOA based applications to simultaneously support authentication and authorization services, and offering mutual trust to both learners and service providers. This study shows that the security mechanisms integrated in the SOA platform can be effectively extended and correlated with a trust model.

  11. Photonic RF vector signal generation with enhanced spectral efficiency using precoded double single-sideband modulation.

    PubMed

    Wang, Yuanquan; Chien, Hung-Chang; Guo, HaiChao; Yu, Jianjun; Chang, Gee-Kung; Chi, Nan

    2016-06-01

    In this study, a novel photonic vector signal at frequency (RF) bands generation scheme based on the beating of double single sidebands (SSBs) is proposed and experimentally demonstrated. The double SSBs carry separate constant- or multi-amplitude quadrature-amplitude-modulation vector signals are generated from a single I/Q modulator. By adopting phase and amplitude precoding, different constellations can be generated, such as 3-ary phase-shift keying (PSK), 4-PSK, 7-PSK, 8-PSK, and so on. In this work, 10-Gbaud 7-PSK vector signal generation at 20 GHz enabled by two precoded 4-PSK SSB signals via a single I/Q modulator is theoretically and experimentally investigated. Compared to a single-drive Mach-Zehnder modulator or conventional I/Q modulator-based photonic vector signal generation scheme, the spectrum efficiency can be doubled. Differential coding is also implemented at the transmitter side for accurate demodulation of 7-PSK into two 4-PSK signals. The bit-error ratio for 10-Gbaud 7-PSK vector signals can be under hard-decision forward-error-correction threshold of 3.8×10-3 after 10 km standard single-mode fiber transmission. PMID:27244413

  12. Transmission enhancement based on strong interference in metal-semiconductor layered film for energy harvesting

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Du, Kaikai; Mao, Kening; Fang, Xu; Zhao, Ding; Ye, Hui; Qiu, Min

    2016-07-01

    A fundamental strategy to enhance optical transmission through a continuous metallic film based on strong interference dominated by interface phase shift is developed. In a metallic film coated with a thin semiconductor film, both transmission and absorption are simultaneously enhanced as a result of dramatically reduced reflection. For a 50-nm-thick Ag film, experimental transmission enhancement factors of 4.5 and 9.5 are realized by exploiting Ag/Si non-symmetric and Si/Ag/Si symmetric geometries, respectively. These planar layered films for transmission enhancement feature ultrathin thickness, broadband and wide-angle operation, and reduced resistance. Considering one of their potential applications as transparent metal electrodes in solar cells, a calculated 182% enhancement in the total transmission efficiency relative to a single metallic film is expected. This strategy relies on no patterned nanostructures and thereby may power up a wide spectrum of energy-harvesting applications such as thin-film photovoltaics and surface photocatalysis.

  13. Novel methods to enhance single strand conformation polymorphism (SSCP) senstivity and efficiency: Application to mutation detection in cystic fibrosis (CF)

    SciTech Connect

    Hagstrom, D.J.; Snow, K.; Yuan, Z.; Thibodeau, S.N.

    1994-09-01

    For single gene defects in which there are a variety of mutations with significant frequencies, it is a challenge to find an efficient and sensitive method for mutation detection. For example, although 70% to 75% of CF chromosomes in a North American Caucasian population have the mutation {delta}F508, more than 400 mutations (mostly single base pair substitutions) are represented on the remaining chromosomes. SSCP analysis is a relatively straightforward procedure and therefore suitable for routine use in a clinical laboratory. However, previous reports have demonstrated suboptimal sensitivity rates in screening for mutations. We have developed a novel set of conditions which greatly enhances sensitivity and efficiency of SSCP. Our protocol incorporates multiplex PCR, stepping of wattages during electrophoresis and increased salt concentration at the anode relative to the gel. To screen for mutations in the CFTR gene, three multiplex PCR reactions are performed using identical thermocycler parameters. Sizes of PCR products range from 441 bp to 196 bp: size differences of > 30 bp are necessary to ensure separation during electrophoresis. All PCR products are separated by electrophoresis at room temperature on a single gel containing 8% (37.5:1) polyacrylamide, 5% glycerol and 1x TBE. Using an anode buffer with increased salt (2x TBE) sharpens smaller sized bands, and stepping watts from 5W to 20W during electrophoresis enhances sensitivity. Positive controls were used to demonstrate that mutations could be detected. Other mutations or polymorphisms were verified by cycle sequencing of PCR products or by alternative PCR-based assays for the more common mutations. Thus, using 3 PCR reactions per patient and one gel condition, we are able to achieve a CF mutation detection rate of approximately 90% in a North American Caucasian population.

  14. Design-Based Research and Technology-Enhanced Learning Environments

    ERIC Educational Resources Information Center

    Wang, Feng; Hannafin, Michael J.

    2005-01-01

    During the past decade, design-based research has demonstrated its potential as a methodology suitable to both research and design of technology-enhanced learning environments (TELEs). In this paper, we define and identify characteristics of design-based research, describe the importance of design-based research for the development of TELEs,…

  15. Fluctuating single sp2 carbon clusters at single hotspots of silver nanoparticle dimers investigated by surface-enhanced resonance Raman scattering

    NASA Astrophysics Data System (ADS)

    Itoh, Tamitake; Yamamoto, Yuko S.; Biju, Vasudevanpillai; Tamaru, Hiroharu; Wakida, Shin-ichi

    2015-12-01

    We evaluate spectral changes in surface enhanced resonance Raman scattering (SERRS) of near-single dye molecules in hotspots of single Ag nanoparticle (NP) dimers. During the laser excitation, surface enhance florescence (SEF) of dye disappeared and the number of SERRS lines decreased until finally ca. two lines remained around 1600 and 1350 cm-1, those are evidence of G and D lines of single sp2 carbon clusters. Analysis of the G and D line intensity ratios reveals the temporal fluctuation in the crystallite size of the clusters within several angstroms; whereas, broadening and splitting in the lines enable us for identifying directly the dynamics of various defects in the clusters. This analysis reveals that the detailed fluctuations of single sp2 carbon clusters, which would be impossible to gain with other microscopic methods.

  16. Syndrome-based discrimination of single nucleotide polymorphism.

    PubMed

    May, E E; Dolan, P; Crozier, P; Brozik, S

    2006-01-01

    The ability to discriminate nucleic acid sequences is necessary for a wide variety of applications: high throughput screening, distinguishing genetically modified organisms (GMOs), molecular computing, differentiating biological markers, fingerprinting a specific sensor response for complex systems, etc. Hybridization-based target recognition and discrimination is central to the operation of nucleic acid sensor systems. Therefore developing a quantitative correlation between mishybridization events and sensor out put is critical to the accurate interpretation of results. In this work, using experimental data produced by introducing single mutations (single nucleotide polymorphisms, SNPs) in the probe sequence of computational catalytic molecular beacons (deoxyribozyme gates) [1], we investigate coding theory algorithms for uniquely categorizing SNPs based on the calculation of syndromes. PMID:17947098

  17. Enhancing model based forecasting of geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Webb, Alla G.

    Modern society is increasingly dependent on the smooth operation of large scale technology supporting Earth based activities such as communication, electricity distribution, and navigation. This technology is potentially threatened by global geomagnetic storms, which are caused by the impact of plasma ejected from the Sun upon the protective magnetic field that surrounds the Earth. Forecasting the timing and magnitude of these geomagnetic storms is part of the emerging discipline of space weather. The most severe geomagnetic storms are caused by magnetic clouds, whose properties and characteristics are important variables in space weather forecasting systems. The methodology presented here is the development of a new statistical approach to characterize the physical properties (variables) of the magnetic clouds and to examine the extent to which theoretical models can be used in describing both of these physical properties, as well as their evolution in space and time. Since space weather forecasting is a complex system, a systems engineering approach is used to perform analysis, validation, and verification of the magnetic cloud models (subsystem of the forecasting system) using a model-based methodology. This research demonstrates that in order to validate magnetic cloud models, it is important to categorize the data by physical parameters such as velocity and distance travelled. This understanding will improve the modeling accuracy of magnetic clouds in space weather forecasting systems and hence increase forecasting accuracy of geomagnetic storms and their impact on earth systems.

  18. Demonstration of a Single-Crystal Reflector-Filter for Enhancing Slow Neutron Beams

    DOE PAGESBeta

    Muhrer, Guenter; Schönfeldt, Troels; Iverson, Erik B.; Mocko, Michal; Baxter, David V.; Hügle, Thomas; Gallmeier, Franz X.; Klinkby, Esben

    2016-06-14

    The cold polycrystalline beryllium reflector-filter concept has been used to enhance the cold neutron emission of cryogenic hydrogen moderators, while suppressing the intermediate wavelength and fast neutron emission at the same time. While suppressing the fast neutron emission is often desired, the suppression of intermediate wavelength neutrons is often unwelcome. It has been hypothesized that replacing the polycrystalline reflector-filter concept with a single-crystal reflector-filter concept would overcome the suppression of intermediate wavelength neutrons and thereby extend the usability of the reflector-filter concept to shorter but still important wavelengths. In this paper we present the first experimental data on a single-crystalmore » reflector-filter and compare experimental results with hypothesized performance. We find that a single-crystal reflector-filter retains the long-wavelength benefit of the polycrystalline reflector-filter, without suffering the same loss of important intermediate wavelength neutrons. Ultimately, this finding extends the applicability of the reflector-filter concept to intermediate wavelengths, and furthermore indicates that the reflector-filter benefits arise from its interaction with fast (background) neutrons, not with intermediate wavelength neutrons of potential interest in many types of neutron scattering.« less

  19. Demonstration of a Single-Crystal Reflector-Filter for Enhancing Slow Neutron Beams

    SciTech Connect

    Muhrer, Guenter; Schönfeldt, Troels; Iverson, Erik B; Mocko, Michal; Baxter, David V; Hügle, Thomas; Gallmeier, Franz X; Klinkby, Esben

    2016-01-01

    The cold polycrystalline beryllium reflector-filter concept has been used to enhance the cold neutron emission of cryogenic hydrogen moderators, while suppressing the intermediate wavelength and fast neutron emission at the same time. While suppressing the fast neutron emission is often desired, the suppression of intermediate wavelength neutrons is often unwelcome. It has been hypothesized that replacing the polycrystalline reflector-filter concept with a single-crystal reflector-filter concept would overcome the suppression of intermediate wavelength neutrons and thereby extend the usability of the reflector-filter concept to shorter but still important wavelengths. In this paper we present the first experimental data on a single-crystal reflector-filter and compare experimental results with hypothesized performance. We find that a single-crystal reflector-filter retains the long-wavelength benefit of the polycrystalline reflector-filter, without suffering the same loss of important intermediate wavelength neutrons. This finding extends the applicability of the reflector-filter concept to intermediate wavelengths, and furthermore indicates that the reflector-filter benefits arise from its interaction with fast (background) neutrons, not with intermediate wavelength neutrons of potential interest in many types of neutron scattering.

  20. Wafer-scale metasurface for total power absorption, local field enhancement and single molecule Raman spectroscopy

    PubMed Central

    Wang, Dongxing; Zhu, Wenqi; Best, Michael D.; Camden, Jon P.; Crozier, Kenneth B.

    2013-01-01

    The ability to detect molecules at low concentrations is highly desired for applications that range from basic science to healthcare. Considerable interest also exists for ultrathin materials with high optical absorption, e.g. for microbolometers and thermal emitters. Metal nanostructures present opportunities to achieve both purposes. Metal nanoparticles can generate gigantic field enhancements, sufficient for the Raman spectroscopy of single molecules. Thin layers containing metal nanostructures (“metasurfaces”) can achieve near-total power absorption at visible and near-infrared wavelengths. Thus far, however, both aims (i.e. single molecule Raman and total power absorption) have only been achieved using metal nanostructures produced by techniques (high resolution lithography or colloidal synthesis) that are complex and/or difficult to implement over large areas. Here, we demonstrate a metasurface that achieves the near-perfect absorption of visible-wavelength light and enables the Raman spectroscopy of single molecules. Our metasurface is fabricated using thin film depositions, and is of unprecedented (wafer-scale) extent. PMID:24091825

  1. Demonstration of a single-crystal reflector-filter for enhancing slow neutron beams

    NASA Astrophysics Data System (ADS)

    Muhrer, G.; Schönfeldt, T.; Iverson, E. B.; Mocko, M.; Baxter, D. V.; Hügle, Th.; Gallmeier, F. X.; Klinkby, E. B.

    2016-09-01

    The cold polycrystalline beryllium reflector-filter concept has been used to enhance the cold neutron emission of cryogenic hydrogen moderators, while suppressing the intermediate wavelength and fast neutron emission at the same time. While suppressing the fast neutron emission is often desired, the suppression of intermediate wavelength neutrons is often unwelcome. It has been hypothesized that replacing the polycrystalline reflector-filter concept with a single-crystal reflector-filter concept would overcome the suppression of intermediate wavelength neutrons and thereby extend the usability of the reflector-filter concept to shorter but still important wavelengths. In this paper we present the first experimental data on a single-crystal reflector-filter at a reflected neutron source and compare experimental results with hypothesized performance. We find that a single-crystal reflector-filter retains the long-wavelength benefit of the polycrystalline reflector-filter, without suffering the same loss of important intermediate wavelength neutrons. This finding extends the applicability of the reflector-filter concept to intermediate wavelengths, and furthermore indicates that the reflector-filter benefits arise from its interaction with fast (background) neutrons, not with intermediate wavelength neutrons of potential interest in many types of neutron scattering.

  2. Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Patra, Partha Pratim; Chikkaraddy, Rohit; Tripathi, Ravi P. N.; Dasgupta, Arindam; Kumar, G. V. Pavan

    2014-07-01

    Single-molecule surface-enhanced Raman scattering (SM-SERS) is one of the vital applications of plasmonic nanoparticles. The SM-SERS sensitivity critically depends on plasmonic hot-spots created at the vicinity of such nanoparticles. In conventional fluid-phase SM-SERS experiments, plasmonic hot-spots are facilitated by chemical aggregation of nanoparticles. Such aggregation is usually irreversible, and hence, nanoparticles cannot be re-dispersed in the fluid for further use. Here, we show how to combine SM-SERS with plasmon polariton-assisted, reversible assembly of plasmonic nanoparticles at an unstructured metal-fluid interface. One of the unique features of our method is that we use a single evanescent-wave optical excitation for nanoparticle assembly, manipulation and SM-SERS measurements. Furthermore, by utilizing dual excitation of plasmons at metal-fluid interface, we create interacting assemblies of metal nanoparticles, which may be further harnessed in dynamic lithography of dispersed nanostructures. Our work will have implications in realizing optically addressable, plasmofluidic, single-molecule detection platforms.

  3. Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles.

    PubMed

    Patra, Partha Pratim; Chikkaraddy, Rohit; Tripathi, Ravi P N; Dasgupta, Arindam; Kumar, G V Pavan

    2014-01-01

    Single-molecule surface-enhanced Raman scattering (SM-SERS) is one of the vital applications of plasmonic nanoparticles. The SM-SERS sensitivity critically depends on plasmonic hot-spots created at the vicinity of such nanoparticles. In conventional fluid-phase SM-SERS experiments, plasmonic hot-spots are facilitated by chemical aggregation of nanoparticles. Such aggregation is usually irreversible, and hence, nanoparticles cannot be re-dispersed in the fluid for further use. Here, we show how to combine SM-SERS with plasmon polariton-assisted, reversible assembly of plasmonic nanoparticles at an unstructured metal-fluid interface. One of the unique features of our method is that we use a single evanescent-wave optical excitation for nanoparticle assembly, manipulation and SM-SERS measurements. Furthermore, by utilizing dual excitation of plasmons at metal-fluid interface, we create interacting assemblies of metal nanoparticles, which may be further harnessed in dynamic lithography of dispersed nanostructures. Our work will have implications in realizing optically addressable, plasmofluidic, single-molecule detection platforms. PMID:25000476

  4. Enhancing and initiating phage-based therapies

    PubMed Central

    Serwer, Philip; Wright, Elena T; Chang, Juan T; Liu, Xiangan

    2014-01-01

    Drug development has typically been a primary foundation of strategy for systematic, long-range management of pathogenic cells. However, drug development is limited in speed and flexibility when response is needed to changes in pathogenic cells, especially changes that produce drug-resistance. The high replication speed and high diversity of phages are potentially useful for increasing both response speed and response flexibility when changes occur in either drug resistance or other aspects of pathogenic cells. We present strategy, with some empirical details, for (1) using modern molecular biology and biophysics to access these advantages during the phage therapy of bacterial infections, and (2) initiating use of phage capsid-based drug delivery vehicles (DDVs) with procedures that potentially overcome both drug resistance and other present limitations in the use of DDVs for the therapy of neoplasms. The discussion of phage therapy includes (a) historical considerations, (b) changes that appear to be needed in clinical tests if use of phage therapy is to be expanded, (c) recent work on novel phages and its potential use for expanding the capabilities of phage therapy and (d) an outline for a strategy that encompasses both theory and practice for expanding the applications of phage therapy. The discussion of DDVs starts by reviewing current work on DDVs, including work on both liposomal and viral DDVs. The discussion concludes with some details of the potential use of permeability constrained phage capsids as DDVs. PMID:26713220

  5. Anisotropy of nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Dreshfield, R. L.; Maier, R. D.

    1980-01-01

    The influence of orientation on the tensile and stress rupture behavior of 52 Mar-M247 single crystals was studied. Tensile tests were performed at temperatures between 23 and 1093 C; stress rupture behavior was examined between 760 and 1038 C. The mechanical behavior of the single crystals was rationalized on the basis of the Schmid factor contours for the operative slip systems and the lattice rotations which the crystals underwent during deformation. The tensile properties correlated well with the appropriate Schmid factor contours. The stress rupture lives at lower testing temperatures were greatly influenced by the lattice rotations required to produce cross slip. A unified analysis was attained for the stress rupture life data generated for the Mar-M247 single crystals at 760 and 774 C under a stress of 724 MPa and the data reported for Mar-M200 single crystals tested at 760 C under a stress of 689 MPa. Based on this analysis, the stereographic triangle was divided into several regions which were rank ordered according to stress rupture life for this temperature regime.

  6. Anisotropy of nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Maier, R. D.; Dreshfield, R. L.

    1980-01-01

    The effects of crystal orientation on the mechanical properties of single crystals of the nickel-based superalloy Mar-M247 are investigated. Tensile tests at temperatures from 23 to 1093 C and stress rupture tests at temperatures from 760 to 1038 C were performed for 52 single crystals at various orientations. During tensile testing between 23 and 760 C, single crystals with high Schmid factors were found to be favorably oriented for slip and to exhibit lower strength and higher ductility than those with low Schmid factors. Crystals which required large rotations to become oriented for cross slip were observed to have the shortest stress rupture lives at 760 C, while those which required little or no rotation had the longest lives. In addition, stereographic triangles obtained for Mar-M247 and Mar-M200 single crystals reveal that crystals with orientations near the -111 had the highest lives, those near the 001 had high lives, and those near the 011 had low lives.

  7. Gal4-based enhancer-trapping in the malaria mosquito Anopheles stephensi.

    PubMed

    O'Brochta, David A; Pilitt, Kristina L; Harrell, Robert A; Aluvihare, Channa; Alford, Robert T

    2012-11-01

    Transposon-based forward and reverse genetic technologies will contribute greatly to ongoing efforts to study mosquito functional genomics. A piggyBac transposon-based enhancer-trap system was developed that functions efficiently in the human malaria vector, Anopheles stephensi. The system consists of six transgenic lines of Anopheles stephensi, each with a single piggyBac-Gal4 element in a unique genomic location; six lines with a single piggyBac-UAStdTomato element; and two lines, each with a single Minos element containing the piggyBac-transposase gene under the regulatory control of the hsp70 promoter from Drosophila melanogaster. Enhancer detection depended upon the efficient remobilization of piggyBac-Gal4 transposons, which contain the yeast transcription factor gene Gal4 under the regulatory control of a basal promoter. Gal4 expression was detected through the expression of the fluorescent protein gene tdTomato under the regulatory control of a promoter with Gal4-binding UAS elements. From five genetic screens for larval- and adult-specific enhancers, 314 progeny were recovered from 24,250 total progeny (1.3%) with unique patterns of tdTomato expression arising from the influence of an enhancer. The frequency of piggyBac remobilization and enhancer detection was 2.5- to 3-fold higher in female germ lines compared with male germ lines. A small collection of enhancer-trap lines are described in which Gal4 expression occurred in adult female salivary glands, midgut, and fat body, either singly or in combination. These three tissues play critical roles during the infection of Anopheles stephensi by malaria-causing Plasmodium parasites. This system and the lines generated using it will be valuable resources to ongoing mosquito functional genomics efforts. PMID:23173082

  8. Single frequency MOPA based on Nd:YAG single crystal fiber and rods.

    PubMed

    Liu, Zhaojun; Men, Shaojie; Liu, Yang; Cong, Zhenhua; Yang, Houwen; Cheng, Wenyong; Rao, Han; Lu, Jianren; Zhang, Xingyu

    2016-04-01

    We demonstrate a single frequency 1064 nm master oscillator power amplifier (MOPA) system operating in macro-micro pulse scheme. The repetition rate for the macro pulses was 300 Hz with pulse duration of 300 μs. Micro pulses operated at 25 kHz. The master laser was a single-longitudinal-mode electro-optically Q-switched Nd:YAG laser with an output power of 250 mW and pulse duration of 33 ns. Three stages of power amplifiers based on Nd:YAG single crystal fiber and rods were designed. The final output power reached 31.3 W with pulse duration of 30 ns and linewidth of less than 130 MHz. Micro pulse energy of 13.9 mJ was obtained with a peak power of up to 464 kW. The beam quality factors (M2) were measured to be 1.56 and 1.76 in horizontal and vertical directions, respectively. PMID:27192235

  9. High-performance diamond-based single-photon sources for quantum communication

    NASA Astrophysics Data System (ADS)

    Su, Chun-Hsu; Greentree, Andrew D.; Hollenberg, Lloyd C. L.

    2009-11-01

    Quantum communication places stringent requirements on single-photon sources. Here we report a theoretical study of the cavity Purcell enhancement of two diamond point defects, the nickel-nitrogen (NE8) and silicon-vacancy (SiV) centers, for high-performance, near on-demand single-photon generation. By coupling the centers strongly to high-finesse optical photonic-band-gap cavities with modest quality factor Q=O(104) and small mode volume V=O(λ3) , these system can deliver picosecond single-photon pulses at their zero-phonon lines with probabilities of 0.954 (NE8) and 0.812 (SiV) under a realistic optical excitation scheme. The undesirable blinking effect due to transitions via metastable states can also be suppressed with O(10-4) blinking probability. We analyze the application of these enhanced centers, including the previously studied cavity-enhanced nitrogen-vacancy (NV) center, to long-distance Bennett-Brassard 1984 protocol quantum key distribution (QKD) in fiber-based, open-air terrestrial and satellite-ground setups. In this comparative study, we show that they can deliver performance comparable with decoy state implementation with weak coherent sources, and are most suitable for open-air communication.

  10. Single Wall Carbon Nanotube-Based Structural Health Sensing Materials

    NASA Technical Reports Server (NTRS)

    Watkins, A. Neal; Ingram, JoAnne L.; Jordan, Jeffrey D.; Wincheski, Russell A.; Smits, Jan M.; Williams, Phillip A.

    2004-01-01

    Single wall carbon nanotube (SWCNT)-based materials represent the future aerospace vehicle construction material of choice based primarily on predicted strength-to-weight advantages and inherent multifunctionality. The multifunctionality of SWCNTs arises from the ability of the nanotubes to be either metallic or semi-conducting based on their chirality. Furthermore, simply changing the environment around a SWCNT can change its conducting behavior. This phenomenon is being exploited to create sensors capable of measuring several parameters related to vehicle structural health (i.e. strain, pressure, temperature, etc.) The structural health monitor is constructed using conventional electron-beam lithographic and photolithographic techniques to place specific electrode patterns on a surface. SWCNTs are then deposited between the electrodes using a dielectrophoretic alignment technique. Prototypes have been constructed on both silicon and polyimide substrates, demonstrating that surface-mountable and multifunctional devices based on SWCNTs can be realized.

  11. Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts

    SciTech Connect

    Chang, Yung-Ting; Liu, Shun-Wei; Yuan, Chih-Hsien; Lee, Chih-Chien; Ho, Yu-Hsuan; Wei, Pei-Kuen; Chen, Kuan-Yu; Lee, Yi-Ting; Wu, Min-Fei; Chen, Chin-Ti E-mail: chihiwu@cc.ee.ntu.edu.tw; Wu, Chih-I E-mail: chihiwu@cc.ee.ntu.edu.tw

    2013-11-07

    Single-layer blue phosphorescence organic light emitting diodes (OLEDs) with either small-molecule or polymer hosts are fabricated using solution process and the performances of devices with different hosts are investigated. The small-molecule device exhibits luminous efficiency of 14.7 cd/A and maximum power efficiency of 8.39 lm/W, which is the highest among blue phosphorescence OLEDs with single-layer solution process and small molecular hosts. Using the same solution process for all devices, comparison of light out-coupling enhancement, with brightness enhancement film (BEF), between small-molecule and polymer based OLEDs is realized. Due to different dipole orientation and anisotropic refractive index, polymer-based OLEDs would trap less light than small molecule-based OLEDs internally, about 37% better based simulation results. In spite of better electrical and spectroscopic characteristics, including ambipolar characteristics, higher carrier mobility, higher photoluminescence quantum yield, and larger triplet state energy, the overall light out-coupling efficiency of small molecule-based devices is worse than that of polymer-based devices without BEF. However, with BEF for light out-coupling enhancement, the improved ratio in luminous flux and luminous efficiency for small molecule based device is 1.64 and 1.57, respectively, which are significantly better than those of PVK (poly-9-vinylcarbazole) devices. In addition to the theoretical optical simulation, the experimental data also confirm the origins of differential light-outcoupling enhancement. The maximum luminous efficiency and power efficiency are enhanced from 14.7 cd/A and 8.39 lm/W to 23 cd/A and 13.2 lm/W, respectively, with laminated BEF, which are both the highest so far for single-layer solution-process blue phosphorescence OLEDs with small molecule hosts.

  12. Single protein sensing with asymmetric plasmonic hexamer via Fano resonance enhanced two-photon luminescence

    NASA Astrophysics Data System (ADS)

    Deng, Hai-Dong; Chen, Xing-Yu; Xu, Yi; Miroshnichenko, Andrey E.

    2015-12-01

    Fano resonances in plasmonic systems have been proved to facilitate various sensing applications in the nanoscale. In this work, we propose an experimental scheme to realize a single protein sensing by utilizing its two-photon luminescence enhanced by a plasmonic Fano resonance system. The asymmetric gold hexamer supporting polarization-dependent Fano resonances and plasmonic modes without in-plane rotational symmetry is used as a referenced spatial coordinate for bio-sensing. We demonstrate via the full-vectorial three-dimensional simulation that the moving direction and the spatial location of a protein can be detected via its two-photon luminescence, which benefits from the resonant near-field interaction with the electromagnetic hot-spots. The sensitivity to changes in position of our method is substantially better compared with the conventional linear sensing approach. Our strategy would facilitate the sensing, tracking and imaging of a single biomolecule in deep sub-wavelength scale and with a small optical extinction cross-section.Fano resonances in plasmonic systems have been proved to facilitate various sensing applications in the nanoscale. In this work, we propose an experimental scheme to realize a single protein sensing by utilizing its two-photon luminescence enhanced by a plasmonic Fano resonance system. The asymmetric gold hexamer supporting polarization-dependent Fano resonances and plasmonic modes without in-plane rotational symmetry is used as a referenced spatial coordinate for bio-sensing. We demonstrate via the full-vectorial three-dimensional simulation that the moving direction and the spatial location of a protein can be detected via its two-photon luminescence, which benefits from the resonant near-field interaction with the electromagnetic hot-spots. The sensitivity to changes in position of our method is substantially better compared with the conventional linear sensing approach. Our strategy would facilitate the sensing, tracking and

  13. Single Sagnac's Interferometers Instrumentation, based in the Best Detection Limit.

    NASA Astrophysics Data System (ADS)

    Palma-Vargas, Salvador; Ramírez-Ibarra, Angélica; Sandoval-Romero, G. Eduardo

    2008-04-01

    An interferometric system of volume optics and fiber optic were constructed and proved, showing the instrumentation technique made for these devices, supported in the new technologies of optical detection, amplification, analogical and digital filtrate and single data acquisition. Based on the Sagnac's effect of volume optics and fiber optic, the interferometer of Sagnac has many applications, nevertheless the methods of construction, design and instrumentation for the sensors manufacture of based on both designs are not very well-known, is for that reason that in this work approaches some of the methodologies for the design and construction of these devices, obtaining higher sensitivity and better contribution in its respective interferometric paths, for the sensing of different physical parameters in which they are applied. We used the single design for each interferometer, proposing the best detection limit for each one. The data acquisition was made with the proposal to obtain quick results, using the audio card of a PC, obtaining a real time measurements and digital processing of the signal in a single way.

  14. Understanding the kinetic mechanism of RNA single base pair formation

    PubMed Central

    Xu, Xiaojun; Yu, Tao; Chen, Shi-Jie

    2016-01-01

    RNA functions are intrinsically tied to folding kinetics. The most elementary step in RNA folding is the closing and opening of a base pair. Understanding this elementary rate process is the basis for RNA folding kinetics studies. Previous studies mostly focused on the unfolding of base pairs. Here, based on a hybrid approach, we investigate the folding process at level of single base pairing/stacking. The study, which integrates molecular dynamics simulation, kinetic Monte Carlo simulation, and master equation methods, uncovers two alternative dominant pathways: Starting from the unfolded state, the nucleotide backbone first folds to the native conformation, followed by subsequent adjustment of the base conformation. During the base conformational rearrangement, the backbone either retains the native conformation or switches to nonnative conformations in order to lower the kinetic barrier for base rearrangement. The method enables quantification of kinetic partitioning among the different pathways. Moreover, the simulation reveals several intriguing ion binding/dissociation signatures for the conformational changes. Our approach may be useful for developing a base pair opening/closing rate model. PMID:26699466

  15. Near-infrared surface-enhanced-Raman-scattering (SERS) mediated detection of single optically trapped bacterial spores

    NASA Astrophysics Data System (ADS)

    Alexander, Troy A.; Pellegrino, Paul M.; Gillespie, James B.

    2003-08-01

    A novel methodology has been developed for the investigation of bacterial spores. Specifically, this method has been used to probe the spore coat composition of two different Bacillus stearothermophilus variants. This technique may be useful in many applications; most notably, development of novel detection schemes toward potentially harmful bacteria. This method would also be useful as an ancillary environmental monitoring system where sterility is of importance (i.e., food preparation areas as well as invasive and minimally invasive medical applications). This unique detection scheme is based on the near-infrared (NIR) Surface-Enhanced-Raman-Scattering (SERS) from single, optically trapped, bacterial spores. The SERS spectra of bacterial spores in aqueous media have been measured using SERS substrates based on ~60-nm diameter gold colloids bound to 3-Aminopropyltriethoxysilane derivatized glass. The light from a 787-nm laser diode was used to trap/manipulate as well as simultaneously excite the SERS of an individual bacterial spore. The collected SERS spectra were examined for uniqueness and the applicability of this technique for the strain discrimination of Bacillus stearothermophilus spores. Comparison of normal Raman and SERS spectra reveal not only an enhancement of the normal Raman spectral features but also the appearance of spectral features absent in the normal Raman spectrum.

  16. Near-infrared Surface-Enhanced-Raman-Scattering (SERS) mediated discrimination of single optically trapped bacterial spores

    NASA Astrophysics Data System (ADS)

    Alexander, Troy A.; Pellegrino, Paul M.; Gillespie, James B.

    2004-03-01

    A novel methodology has been developed for the investigation of bacterial spores. Specifically, this method has been used to probe the spore coat composition of two different Bacillus stearothermophilus variants. This technique may be useful in many applications; most notably, development of novel detection schemes toward potentially harmful bacteria. This method would also be useful as an ancillary environmental monitoring system where sterility is of importance (i.e., food preparation areas as well as invasive and minimally invasive medical applications). This unique detection scheme is based on the near-infrared (NIR) Surface-Enhanced-Raman- Scattering (SERS) from single, optically trapped, bacterial spores. The SERS spectra of bacterial spores in aqueous media have been measured using SERS substrates based on ~60-nm diameter gold colloids bound to 3-Aminopropyltriethoxysilane derivatized glass. The light from a 787-nm laser diode was used to trap/manipulate as well as simultaneously excite the SERS of an individual bacterial spore. The collected SERS spectra were examined for uniqueness and the applicability of this technique for the strain discrimination of Bacillus stearothermophilus spores. Comparison of normal Raman and SERS spectra reveal not only an enhancement of the normal Raman spectral features but also the appearance of spectral features absent in the normal Raman spectrum.

  17. Fast reversible single-step method for enhanced band contrast of polyacrylamide gels for automated detection.

    PubMed

    Ling, Wei-Li; Lua, Wai-Heng; Gan, Samuel Ken-En

    2015-05-01

    Staining SDS-PAGE is commonly used in protein analysis for many downstream characterization processes. Although staining and destaining protocols can be adjusted, they can be laborious, and faint bands often become false negatives. Similarly, these faint bands hinder automated software band detections that are necessary for quantitative analyses. To overcome these problems, we describe a single-step rapid and reversible method to increase (up to 500%) band contrast in stained gels. Through the use of alcohols, we improved band detection and facilitated gel storage by drying the gels into compact white sheets. This method is suitable for all stained SDS-PAGE gels, including gradient gels and is shown to improve automated band detection by enhanced band contrast. PMID:25782090

  18. Fast reversible single-step method for enhanced band contrast of polyacrylamide gels for automated detection

    PubMed Central

    Ling, Wei-Li; Lua, Wai-Heng; Gan, Samuel Ken-En

    2015-01-01

    Staining SDS-PAGE is commonly used in protein analysis for many downstream characterization processes. Although staining and destaining protocols can be adjusted, they can be laborious, and faint bands often become false negatives. Similarly, these faint bands hinder automated software band detections that are necessary for quantitative analyses. To overcome these problems, we describe a single-step rapid and reversible method to increase (up to 500%) band contrast in stained gels. Through the use of alcohols, we improved band detection and facilitated gel storage by drying the gels into compact white sheets. This method is suitable for all stained SDS-PAGE gels, including gradient gels and is shown to improve automated band detection by enhanced band contrast. PMID:25782090

  19. Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology.

    PubMed

    Wang, Yuling; Irudayaraj, Joseph

    2013-02-01

    Single-molecule (SM) spectroscopy has been an exciting area of research offering significant promise and hope in the field of sensor development to detect targets at ultra-low levels down to SM resolution. To the experts and developers in the field of surface-enhanced Raman spectroscopy (SERS), this has often been a challenge and a significant opportunity for exploration. Needless to say, the opportunities and excitement of this multidisciplinary area impacts span the fields of physics, chemistry and engineering, along with a significant thrust in applications constituting areas in medicine, biology, environment and agriculture among others. In this review, we will attempt to provide a quick snapshot of the basics of SM-SERS, nanostructures and devices that can enable SM Raman measurement. We will conclude with a discussion on SERS implications in biomedical sciences. PMID:23267180

  20. Hybrid Graphene and Single-Walled Carbon Nanotube Films for Enhanced Phase-Change Heat Transfer.

    PubMed

    Seo, Han; Yun, Hyung Duk; Kwon, Soon-Yong; Bang, In Cheol

    2016-02-10

    Nucleate boiling is an effective heat transfer method in power generation systems and cooling devices. In this letter, hybrid graphene/single-walled carbon nanotube (SWCNT), graphene, and SWCNT films deposited on indium tin oxide (ITO) surfaces were fabricated to investigate the enhancement of nucleate boiling phenomena described by the critical heat flux and heat transfer coefficient. The graphene films were grown on Cu foils and transferred to ITO surfaces. Furthermore, SWCNTs were deposited on the graphene layer to fabricate hybrid graphene/SWCNT films. We determined that the hybrid graphene/SWCNT film deposited on an ITO surface is the most effective heat transfer surface in pool boiling because of the interconnected network of carbon structures. PMID:26731547

  1. Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology

    PubMed Central

    Wang, Yuling; Irudayaraj, Joseph

    2013-01-01

    Single-molecule (SM) spectroscopy has been an exciting area of research offering significant promise and hope in the field of sensor development to detect targets at ultra-low levels down to SM resolution. To the experts and developers in the field of surface-enhanced Raman spectroscopy (SERS), this has often been a challenge and a significant opportunity for exploration. Needless to say, the opportunities and excitement of this multidisciplinary area impacts span the fields of physics, chemistry and engineering, along with a significant thrust in applications constituting areas in medicine, biology, environment and agriculture among others. In this review, we will attempt to provide a quick snapshot of the basics of SM-SERS, nanostructures and devices that can enable SM Raman measurement. We will conclude with a discussion on SERS implications in biomedical sciences. PMID:23267180

  2. Graphene Enhances Li Storage Capacity of Porous Single-crystalline Silicon Nanowires

    SciTech Connect

    Wang, X.; Han, W.

    2010-12-01

    We demonstrated that graphene significantly enhances the reversible capacity of porous silicon nanowires used as the anode in Li-ion batteries. We prepared our experimental nanomaterials, viz., graphene and porous single-crystalline silicon nanowires, respectively, using a liquid-phase graphite exfoliation method and an electroless HF/AgNO{sub 3} etching process. The Si porous nanowire/graphene electrode realized a charge capacity of 2470 mAh g{sup -1} that is much higher than the 1256 mAh g{sup -1} of porous Si nanowire/C-black electrode and 6.6 times the theoretical capacity of commercial graphite. This relatively high capacity could originate from the favorable charge-transportation characteristics of the combination of graphene with the porous Si 1D nanostructure.

  3. A new GMTI detector based on spaceborne single channel SAR

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Sun, Jinping; Bai, Xia; Yu, Zhenming

    2007-11-01

    This paper examines moving targets detection using single channel Synthetic aperture radar (SAR) in spaceborne platform. Building on previous work moving targets can be retrieved from multi-look images via magnitude subtraction or phase interferometry. A more effective method is proposed which mainly consists of signal subspace processing- based data equilibrium and change detection in multi-look covariance matrix. Also different baseline is checked and weak targets may be found. Test results show that precise calibration of multi-look images are essential and short baseline is preferred when the interesting targets are weak. Therefore, the proposed method leads to improved detection performance and provides ways of GMTI in single channel SAR.

  4. On the critical role of Rayleigh scattering in single-molecule surface-enhanced Raman scattering via a plasmonic nanogap.

    PubMed

    Chen, Bao-Qin; Zhang, Chao; Li, Jiafang; Li, Zhi-Yuan; Xia, Younan

    2016-08-25

    Electromagnetic and chemical enhancement mechanisms are commonly used to account for single-molecule surface-enhanced Raman scattering (SM-SERS). Due to many practical limitations, however, the overall enhancement factor summed up from these two mechanisms is typically 5-6 orders of magnitude below the level of 10(14)-10(15) required for SM-SERS. Here, we demonstrate that the multiple elastic Rayleigh scattering of a molecule could play a critical role in further enhancing the Raman signal, when the molecule is trapped in a 2 nm gap between two Ag nanoparticles, pushing the overall enhancement factor close to the level needed for SM-SERS. As a universal physical process for all molecules interacting with light, we believe that Rayleigh scattering plays a pivotal and as yet unrecognized role in SERS, in particular, for enabling single-molecule sensitivity. PMID:27526632

  5. Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage Reactor

    SciTech Connect

    Mahesh Iyer; Himanshu Gupta; Danny Wong; Liang-Shih Fan

    2005-09-30

    Hydrogen production from coal gasification can be enhanced by driving the equilibrium limited Water Gas Shift reaction forward by incessantly removing the CO{sub 2} by-product via the carbonation of calcium oxide. This project aims at using the OSU patented high-reactivity mesoporous precipitated calcium carbonate sorbent for removing the CO{sub 2} product. Preliminary experiments demonstrate the show the superior performance of the PCC sorbent over other naturally occurring calcium sorbents. Gas composition analyses show the formation of 100% pure hydrogen. Novel calcination techniques could lead to smaller reactor footprint and single-stage reactors that can achieve maximum theoretical H{sub 2} production for multicyclic applications. Sub-atmospheric calcination studies reveal the effect of vacuum level, diluent gas flow rate, thermal properties of the diluent gas and the sorbent loading on the calcination kinetics which play an important role on the sorbent morphology. Steam, which can be easily separated from CO{sub 2}, is envisioned to be a potential diluent gas due to its enhanced thermal properties. Steam calcination studies at 700-850 C reveal improved sorbent morphology over regular nitrogen calcination. A mixture of 80% steam and 20% CO{sub 2} at ambient pressure was used to calcine the spent sorbent at 820 C thus lowering the calcination temperature. Regeneration of calcium sulfide to calcium carbonate was achieved by carbonating the calcium sulfide slurry by bubbling CO{sub 2} gas at room temperature.

  6. Single particle optical investigation of gold shell enhanced upconverted fluorescence emission

    NASA Astrophysics Data System (ADS)

    Green, Kory; Lim, Shuang Fang; Hallen, Hans

    2014-03-01

    Upconverting nanoparticles (UCNPs) excited in the near IR offer novel advantages as fluorescent contrast agents, allowing for background free bio-imaging. However, their fluorescence brightness is hampered by low quantum efficiency due to the low absorption cross section of Ytterbium and Erbium ions in the near IR. We enhance the efficiency of these particles by investigating the plasmonic coupling of 30nm diameter core NaYF4: Yb, Er upconverting particles (UCNPs) with a gold shell coating. An enhancement of green emission by a factor of five and a three times overall increase in emission intensity has been achieved for single particle spectra. UV-Vis absorption has confirmed the surface plasmon resonance (SPR) of the gold shell to the near IR and transmission electron microscope (TEM) images demonstrates successful growth of a gold shell around the upconversion particle. Time-resolved spectroscopy shows that gold shell coupling changes the lifetime of the energy levels of the Erbium ion that are relevant to the emission process.

  7. ZnO nanoflowers with single crystal structure towards enhanced gas sensing and photocatalysis.

    PubMed

    Zhang, Sha; Chen, Hsueh-Shih; Matras-Postolek, Katarzyna; Yang, Ping

    2015-11-11

    In this paper, ZnO nanoflowers (NFs) were fabricated by thermal decomposition in an organic solvent and their application in gas sensors and photocatalysis was investigated. These single crystal ZnO NFs, which were observed for the first time, with an average size of ∼60 nm and were grown along the {100} facet. It was suggested that oleylamine used in the synthesis inhibited the growth and agglomeration of ZnO through the coordination of the oleylamine N atoms. The NFs exhibited excellent selectivity to acetone with a concentration of 25 ppm at 300 °C because they had a high specific surface area that provided more active sites and the surface adsorbed oxygen species for interaction with acetone. In addition, the ZnO NFs showed enhanced gas sensing response which was also ascribed to abundant oxygen vacancies at the junctions between petals of the NFs. Furthermore, ZnO-reduced graphene oxide (RGO) composites were fabricated by loading the ZnO NFs on the surface of the stratiform RGO sheet. In the photodegradation of rhodamine B tests, the composite revealed an enhanced photocatalytic performance compared with ZnO NFs under UV light irradiation. PMID:26507913

  8. Dramatically Enhanced Flux Pinning Properties of Cation Composition Controlled Bi(Pb)2212 Single Crystals

    NASA Astrophysics Data System (ADS)

    Uchida, Satoshi; Shimoyama, Jun-Ichi; Makise, Takanori; Horii, Shigeru; Kishio, Kohji

    2006-06-01

    Single crystals of Bi2212 and Bi(Pb)2212 having various cation compositions were grown by the floating zone method and evaluated their Jc characteristics after control of oxygen content by post-annealing. Jc characteristics of Bi2212 and Bi(Pb)2212 were found to be improved by control of cation compositions towards stoichiometric, Bi:Sr:Ca:Cu = 2:2:1:2. This means that nonstoichiometric cation composition in these systems suppresses inherent superconductivity possibly due to considerably disordered crystal lattice, resulting in poor Jc characteristics. Dramatically enhanced Jc were achieved for cation stoichiometric and small amount of Y or Lu-doped Bi(Pb)2212 single crystals. The highest Jc at 20 K observed were ~0.85 MAcm-2 in self-field and ~0.1 MAcm-2 under 5 T with H // c. The dilute Y and Ludoping is considered to introduce locally lattice-distorted regions acting as effective pinning sites up to high fields.

  9. Analysis of Convective Heat Transfer Enhancement by Nanofluids: Single-Phase and Two-Phase Treatments

    NASA Astrophysics Data System (ADS)

    Kakaç, S.; Pramuanjaroenkij, A.

    2016-06-01

    Nanofluids have been investigated regarding their advantages and potentialities for the purpose of increasing convective heat transfer rates inside thermal systems where they are used as working fluids. Researchers in thermophysics have investigated these fluids experimentally and numerically. This review provides extensive theoretical information concerning nanofluids in the single-phase and two-phase treatments. Important published works on nanofluid properties and correlations are summarized and reviewed in detail. Heat transfer enhancement by nanofluids is a challenging problem due to the difficulties inherent in the model of the physical mechanism of interaction between the paricles. Here the interaction between the phases is modeled by several two-phase models, and the results are given in graphical and tabular forms. Despite the advantages of the mixture model, such as imlementation of physical properties and less computational power requirements, some studies showed that the results of the single-phase and two-phase models are very similar. The main difference consists in the effect of the drift velocities of the phases relative to each other.

  10. Analysis of Convective Heat Transfer Enhancement by Nanofluids: Single-Phase and Two-Phase Treatments

    NASA Astrophysics Data System (ADS)

    Kakaç, S.; Pramuanjaroenkij, A.

    2016-05-01

    Nanofluids have been investigated regarding their advantages and potentialities for the purpose of increasing convective heat transfer rates inside thermal systems where they are used as working fluids. Researchers in thermophysics have investigated these fluids experimentally and numerically. This review provides extensive theoretical information concerning nanofluids in the single-phase and two-phase treatments. Important published works on nanofluid properties and correlations are summarized and reviewed in detail. Heat transfer enhancement by nanofluids is a challenging problem due to the difficulties inherent in the model of the physical mechanism of interaction between the paricles. Here the interaction between the phases is modeled by several two-phase models, and the results are given in graphical and tabular forms. Despite the advantages of the mixture model, such as imlementation of physical properties and less computational power requirements, some studies showed that the results of the single-phase and two-phase models are very similar. The main difference consists in the effect of the drift velocities of the phases relative to each other.

  11. STEP: spatiotemporal enhancement pattern for MR-based breast tumor diagnosis.

    PubMed

    Zheng, Yuanjie; Englander, Sarah; Baloch, Sajjad; Zacharaki, Evangelia I; Fan, Yong; Schnall, Mitchell D; Shen, Dinggang

    2009-07-01

    The authors propose a spatiotemporal enhancement pattern (STEP) for comprehensive characterization of breast tumors in contrast-enhanced MR images. By viewing serial contrast-enhanced MR images as a single spatiotemporal image, they formulate the STEP as a combination of (1) dynamic enhancement and architectural features of a tumor, and (2) the spatial variations of pixelwise temporal enhancements. Although the latter has been widely used by radiologists for diagnostic purposes, it has rarely been employed for computer-aided diagnosis. This article presents two major contributions. First, the STEP features are introduced to capture temporal enhancement and its spatial variations. This is essentially carried out through the Fourier transformation and pharmacokinetic modeling of various temporal enhancement features, followed by the calculation of moment invariants and Gabor texture features. Second, for effectively extracting the STEP features from tumors, we develop a graph-cut based segmentation algorithm that aims at refining coarse manual segmentations of tumors. The STEP features are assessed through their diagnostic performance for differentiating between benign and malignant tumors using a linear classifier (along with a simple ranking-based feature selection) in a leave-one-out cross-validation setting. The experimental results for the proposed features exhibit superior performance, when compared to the existing approaches, with the area under the ROC curve approaching 0.97. PMID:19673218

  12. Development of a new signal processing algorithm based on independent component analysis for single channel ECG data.

    PubMed

    Lee, J; Lee, K J; Yoo, S K

    2004-01-01

    In this paper, we proposed a new signal processing algorithm based on independent component analysis (ICA) for single channel ECG data. For the application ICA to single channel data, mixed (multi-channel) signals are constructed by adding some delay to original data. By ICA, signal enhancement is acquired. For validation of usefulness of this signal, QRS complex detection was accompanied. In QRS detection process, Hilbert transform and wavelet transform were used and good QRS detection efficacy was obtained. Furthermore, a signal, which could not be filtered properly using existing algorithm, also had better signal enhancement. In future, we need to study on the algorithm optimization and simplification. PMID:17271650

  13. Contrast enhancement via texture region based histogram equalization

    NASA Astrophysics Data System (ADS)

    Singh, Kuldeep; Vishwakarma, Dinesh K.; Singh Walia, Gurjit; Kapoor, Rajiv

    2016-08-01

    This paper presents two novel contrast enhancement approaches using texture regions-based histogram equalization (HE). In HE-based contrast enhancement methods, the enhanced image often contains undesirable artefacts because an excessive number of pixels in the non-textured areas heavily bias the histogram. The novel idea presented in this paper is to suppress the impact of pixels in non-textured areas and to exploit texture features for the computation of histogram in the process of HE. The first algorithm named as Dominant Orientation-based Texture Histogram Equalization (DOTHE), constructs the histogram of the image using only those image patches having dominant orientation. DOTHE categories image patches into smooth, dominant or non-dominant orientation patches by using the image variance and singular value decomposition algorithm and utilizes only dominant orientation patches in the process of HE. The second method termed as Edge-based Texture Histogram Equalization, calculates significant edges in the image and constructs the histogram using the grey levels present in the neighbourhood of edges. The cumulative density function of the histogram formed from texture features is mapped on the entire dynamic range of the input image to produce the contrast-enhanced image. Subjective as well as objective performance assessment of proposed methods is conducted and compared with other existing HE methods. The performance assessment in terms of visual quality, contrast improvement index, entropy and measure of enhancement reveals that the proposed methods outperform the existing HE methods.

  14. A single chip microcontroller based portable multichannel analyzer

    NASA Astrophysics Data System (ADS)

    Khan, Shahid

    1987-06-01

    The development of a portable multichannel analyzer for gamma spectroscopy applications is described. The developed unit is based on the Intel 8751 single chip microcontroller and has CRT and liquid crystal displays, preamplifying and amplifying sections, high voltage supply, built-in printer and runs on rechargeable batteries. The design uses standard off the shelf components, minimizes chip count by using all the microcontroller's resources and implementing most functions in software, and this results in a low cost system with good performance. Hardware and software design along with their integration are discussed.

  15. Single optical tweezers based on elliptical core fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhao, Li; Chen, Yunhao; Liu, Zhihai; Zhang, Yaxun; Zhao, Enming; Yang, Jun; Yuan, Libo

    2016-04-01

    We propose and demonstrate a new single optical tweezers based on an elliptical core fiber, which can realize the trapped yeast cell rotation with a precise and simple control. Due to the elliptical shape of the fiber core, the LP11 mode beam can propagate stably. When we rotate the fiber tip, the LP11 mode beam will also rotate along with the fiber tip, which helps to realize the trapped micro-particle rotation. By using this method, we can easily realize the rotation of the trapped yeast cells, the rotating angle of the yeast cell is same as the elliptical core fiber tip.

  16. Gas Sensors Based on Single-Arm Waveguide Interferometers

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey; Curley, Michael; Diggs, Darnell; Adamovsky, Grigory

    1998-01-01

    Various optical technologies can be implemented in chemical sensing. Sensitive, rugged, and compact systems will be more likely built using interferometric waveguide sensors. Currently existing sensors comprise dual-arm systems with external reference arm, dual-arm devices with internal reference arm such as integrated Mach-Zehnder interferometer, and single-arm systems which employ the interference between different waveguide modes. These latter ones are the most compact and rugged but still sensitive enough to monitor volatile pollutants such as NH3 coming out of industrial refrigerators and fertilizer plants and stocks, NO, NO2, SO2, emitted by industrial burning processes. Single-arm devices in planar waveguide configuration most frequently use two orthogonally polarized modes TE (sub i) and TM (sub i) of the same order i. Sensing effect is based on the difference in propagation conditions for the modes caused by the environment. However, dual-mode single-order interferometers still have relatively low sensitivity with respect to the environment related changes in the waveguide core because of small difference between propagation constants of TE (sub i) and TM (sub i) modes of the same order. Substantial sensitivity improvement without significant complication can be achieved for planar waveguide interferometers using modes of different orders with much greater difference between propagation constants.

  17. Single-dislocation-based deformation mechanisms in nanolayered composites

    NASA Astrophysics Data System (ADS)

    Misra, Amit

    2004-03-01

    Nanolayered metallic composites, composed of alternating layers of soft metals, are shown to possess several GPa level strengths, often within a factor of two to three of the theoretical strength limit, when the bilayer periods are on the order of a few nanometers. Experiments on model systems such as Cu-Ni and Cu-Nb indicate that, in the micron to sub-micron range, the strengths of these materials increase with microstructural refinement according to the Hall-Petch model. However, as the layer thickness is reduced to the nm-scale, the number of dislocations in a pile-up approaches unity and the pile-up based Hall-Petch model ceases to apply. In the few to a few tens of nanometers range, the increase in yield strength of nanolaminates with decreasing layer thickness is interpreted in terms of the confined layer slip of single dislocations. As layer thickness is decreased to a couple nanometers, strength reaches a peak with weak or no dependence on layer thickness. We show that the peak strength is determined by the stress needed to transmit single dislocations across the interface. Atomistic modeling is used to estimate the single dislocation interface crossing stress for coherent (Cu-Ni), incoherent (Cu-Nb) and nanoscale twinned (austenitic stainless steel 330) interfaces, and compared with experimental data. This work is supported by the U. S. Dept. of Energy, Office of Science, Office of Basic Energy Sciences.

  18. Variational contrast enhancement guided by global and local contrast measurements for single-image defogging

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Bi, Du-Yan; He, Lin-Yuan

    2015-01-01

    The visibility of images captured in foggy conditions is impaired severely by a decrease in the contrasts of objects and veiling with a characteristic gray hue, which may limit the performance of visual applications out of doors. Contrast enhancement together with color restoration is a challenging mission for conventional fog-removal methods, as the degrading effect of fog is largely dependent on scene depth information. Nowadays, people change their minds by establishing a variational framework for contrast enhancement based on a physically based analytical model, unexpectedly resulting in color distortion, dark-patch distortion, or fuzzy features of local regions. Unlike previous work, our method treats an atmospheric veil as a scattering disturbance and formulates a foggy image as an energy functional minimization to estimate direct attenuation, originating from the work of image denoising. In addition to a global contrast measurement based on a total variation norm, an additional local measurement is designed in that optimal problem for the purpose of digging out more local details as well as suppressing dark-patch distortion. Moreover, we estimate the airlight precisely by maximization with a geometric constraint and a natural image prior in order to protect the faithfulness of the scene color. With the estimated direct attenuation and airlight, the fog-free image can be restored. Finally, our method is tested on several benchmark and realistic images evaluated by two assessment approaches. The experimental results imply that our proposed method works well compared with the state-of-the-art defogging methods.

  19. Raman scattering enhanced by plasmonic clusters and its application to single-molecule imaging

    SciTech Connect

    Yasuike, Tomokazu; Nobusada, Katsuyuki

    2015-12-31

    The optical response of the linear Au{sub 8} cluster is investigated by the linear response theory based on the density functional theory. It is revealed that the observed many peaks in the visible region originate from the interaction of the ideal plasmonic excitation along the molecular axis with the background d-electron excitations, i.e., the Landau damping. In spite of the existence of the damping, the Raman scattering is shown to be enhanced remarkably by the incident light resonant to the visible excitations. The novel imaging experiment with the atomic resolution is proposed by utilizing a plasmonic cluster as the probing tip.

  20. Phototransistor based on single In2Se3 nanosheets

    NASA Astrophysics Data System (ADS)

    Li, Qin-Liang; Liu, Chang-Hai; Nie, Yu-Ting; Chen, Wen-Hua; Gao, Xu; Sun, Xu-Hui; Wang, Sui-Dong

    2014-11-01

    Micrometer-sized single-crystalline In2Se3 nanosheets are synthesized by epitaxial growth from In2Se3 nanowires. The In2Se3 nanosheets possess anisotropic structural configuration with intralayer covalent bonding and interlayer van der Waals bonding. Phototransistors based on the In2Se3 nanosheets are realized, and the devices show high photoresponsivity and high photo On/Off ratio up to two orders. The photo-gating effect can be modulated by the gate bias, indicating potential utility of the In2Se3 nanosheets in a variety of optoelectronic applications.Micrometer-sized single-crystalline In2Se3 nanosheets are synthesized by epitaxial growth from In2Se3 nanowires. The In2Se3 nanosheets possess anisotropic structural configuration with intralayer covalent bonding and interlayer van der Waals bonding. Phototransistors based on the In2Se3 nanosheets are realized, and the devices show high photoresponsivity and high photo On/Off ratio up to two orders. The photo-gating effect can be modulated by the gate bias, indicating potential utility of the In2Se3 nanosheets in a variety of optoelectronic applications. Electronic supplementary information (ESI) available: SEM images of typical In2Se3 nanosheets, TEM-EDX spectrum of single In2Se3 nanosheets, STEM image and elemental mapping of an In2Se3 nanosheet, Scherrer sizes of In2Se3 nanosheets derived from the XRD pattern, statistics of In2Se3 nanosheet thickness, and photoresponse of an In2Se3 nanosheet phototransistor. See DOI: 10.1039/c4nr04404e

  1. Direct Quantification of DNA Base Composition by Surface-Enhanced Raman Scattering Spectroscopy.

    PubMed

    Morla-Folch, Judit; Alvarez-Puebla, Ramon A; Guerrini, Luca

    2016-08-01

    Design of ultrasensitive DNA sensors based on the unique physical properties of plasmonic nanostructures has become one of the most exciting areas in nanomedicine. However, despite the vast number of proposed applications, the determination of the base composition in nucleic acids, a fundamental parameter in genomic analyses and taxonomic classification, is still restricted to time-consuming and poorly sensitive conventional methods. Herein, we demonstrate the possibility of determining the base composition in single- and double-stranded DNA by using a simple, low-cost, high-throughput, and label-free surface-enhanced Raman scattering (SERS) method in combination with cationic nanoparticles. PMID:27441814

  2. Collision-Based Computing Using Single-Electron Circuits

    NASA Astrophysics Data System (ADS)

    Hayashi, Shunsuke; Oya, Takahide

    2012-06-01

    A single-electron (SE) device based on “collision-based computing (CBC)” is proposed for information processing. CBC is an analog computing in which input signals behave like billiard balls, and the goals of moving balls are regarded as output positions. The proposed SE device consists of arrayed SE oscillators with coupling capacitor between each pair. An SE oscillator is a threshold decision device which can be used as a reaction-diffusion (RD) model, a kind of the analog computation model. The RD model can express the various behaviors of an excited wave, e.g., “moving at a constant velocity” and “disappearing due to collision”. These behaviors are also important for CBC. We designed basic SE-CBC circuits and a full adder as an application, and evaluated their operation by Monte-Carlo computer simulation. The results indicate that this circuit is useful for configuring various types of logical circuits.

  3. Single-molecular diodes based on opioid derivatives.

    PubMed

    Siqueira, M R S; Corrêa, S M; Gester, R M; Del Nero, J; Neto, A M J C

    2015-12-01

    We propose an efficient single-molecule rectifier based on a derivative of opioid. Electron transport properties are investigated within the non-equilibrium Green's function formalism combined with density functional theory. The analysis of the current-voltage characteristics indicates obvious diode-like behavior. While heroin presents rectification coefficient R>1, indicating preferential electronic current from electron-donating to electron-withdrawing, 3 and 6-acetylmorphine and morphine exhibit contrary behavior, R<1. Our calculations indicate that the simple inclusion of acetyl groups modulate a range of devices, which varies from simple rectifying to resonant-tunneling diodes. In particular, the rectification rations for heroin diodes show microampere electron current with a maximum of rectification (R=9.1) at very low bias voltage of ∼0.6 V and (R=14.3)∼1.8 V with resistance varying between 0.4 and 1.5 M Ω. Once most of the current single-molecule diodes usually rectifies in nanoampere, are not stable over 1.0 V and present electrical resistance around 10 M. Molecular devices based on opioid derivatives are promising in molecular electronics. PMID:26613894

  4. Single-channel stereoscopic ophthalmology microscope based on TRD

    NASA Astrophysics Data System (ADS)

    Radfar, Edalat; Park, Jihoon; Lee, Sangyeob; Ha, Myungjin; Yu, Sungkon; Jang, Seulki; Jung, Byungjo

    2016-03-01

    A stereoscopic imaging modality was developed for the application of ophthalmology surgical microscopes. A previous study has already introduced a single-channel stereoscopic video imaging modality based on a transparent rotating deflector (SSVIM-TRD), in which two different view angles, image disparity, are generated by imaging through a transparent rotating deflector (TRD) mounted on a stepping motor and is placed in a lens system. In this case, the image disparity is a function of the refractive index and the rotation angle of TRD. Real-time single-channel stereoscopic ophthalmology microscope (SSOM) based on the TRD is improved by real-time controlling and programming, imaging speed, and illumination method. Image quality assessments were performed to investigate images quality and stability during the TRD operation. Results presented little significant difference in image quality in terms of stability of structural similarity (SSIM). A subjective analysis was performed with 15 blinded observers to evaluate the depth perception improvement and presented significant improvement in the depth perception capability. Along with all evaluation results, preliminary results of rabbit eye imaging presented that the SSOM could be utilized as an ophthalmic operating microscopes to overcome some of the limitations of conventional ones.

  5. Performance enhancement of a silicon MEMS piezoresistive single axis accelerometer with electroplated gold on a proof mass

    NASA Astrophysics Data System (ADS)

    Sankar, A. Ravi; Lahiri, S. K.; Das, S.

    2009-02-01

    Performance enhancement of a silicon MEMS piezoresistive single axis accelerometer with electroplated gold on a proof mass is presented in this paper. The fabricated accelerometer device consists of a heavy proof mass supported by four thin flexures. Boron-diffused piezoresistors located near the fixed ends of the flexures are used for sensing the developed stress and hence acceleration. Performance enhancement is achieved by electroplating a gold mass of 20 µm thickness on top of the proof mass. A commercially available sulfite-based solution TSG-250™ was used for the electroplating process. Aluminum metal lines were used to form a Wheatstone bridge for signal pick-up. To avoid galvanic corrosion between two dissimilar metals having contact in an electrolyte, a shadow mask technique was used to selectively deposit a Cr/Au seed layer on an insulator atop the proof mass for subsequent electrodeposition. Bulk micromachining was performed using a 5% dual-doped TMAH solution. Fabricated devices with different electroplated gold areas were tested up to ±13 g acceleration. For electroplated gold dimensions of 2500 µm × 2500 µm × 20 µm on a proof mass, sensitivity along the Z-axis is increased by 21.8% as compared to the structure without gold. Off-axis sensitivities along the X- and Y-axes are reduced by 7.6% and 6.9%, respectively.

  6. Enhancing ionic conductivity of bulk single-crystal yttria-stabilized zirconia by tailoring dopant distribution

    SciTech Connect

    Lee, E.; Prinz, F. B.; Cai, W.

    2011-02-11

    We present an ab initio–based kinetic Monte Carlo model for ionic conductivity in single-crystal yttria-stabilized zirconia. Ionic interactions are taken into account by combining density functional theory calculations and the cluster expansion method and are found to be essential in reproducing the effective activation energy observed in experiments. The model predicts that the effective energy barrier can be reduced by 0.15–0.25 eV by arranging the dopant ions into a superlattice.

  7. Temperature and Enhanced Adduct Mobility on the Growth of MMTWNMP Single Crystals

    NASA Astrophysics Data System (ADS)

    Srinivasan, R.; Raghavan, C. M.; Saravanan, L.; Jayavel, R.; Baskar, K.

    2011-07-01

    A novel organometallic nonlinear optical crystal material; diaquatetrakis (thiocyanato) manganese (II) mercury (II)-N-methyl-2-pyrrolidone, MnHg(SCN)4(H2O)2.2(C3H6CONCH3), (abbreviated as MMTWNMP) of very good transparency was grown by low temperature solution growth method. The improvement on the quality of the single crystal was analyzed and explained based on the temperature effect and the mobility of adduct N-Methyl Pyrrolidone molecules. A mechanism for the basic mass transport is proposed and reasoned.

  8. Performance Enhancement Using Selective Reinforcement for Metallic Single- and Multi-Pin Loaded Holes

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.; Seshadri, Banavara R.

    2005-01-01

    An analysis based investigation of aluminum with metal matrix composite selectively reinforced single- and multi-hole specimens was performed and their results compared with results from geometrically comparable non-reinforced specimens. All reinforced specimens exhibited a significant increase in performance. Performance increase of up to 170 percent was achieved. Specimen failure modes were consistent with results from reinforced polymeric matrix composite specimens. Localized reinforcement application (circular) proved as effective as a broader area (strip) reinforcement. Also, selective reinforcement is an excellent method of increasing the performance of multi-hole specimens.

  9. Correlation dynamics and enhanced signals for the identification of serial biomolecules and DNA bases

    NASA Astrophysics Data System (ADS)

    Ahmed, Towfiq; Haraldsen, Jason T.; Rehr, John J.; Di Ventra, Massimiliano; Schuller, Ivan; Balatsky, Alexander V.

    2014-03-01

    Nanopore-based sequencing has demonstrated a significant potential for the development of fast, accurate, and cost-efficient fingerprinting techniques for next generation molecular detection and sequencing. We propose a specific multilayered graphene-based nanopore device architecture for the recognition of single biomolecules. Molecular detection and analysis can be accomplished through the detection of transverse currents as the molecule or DNA base translocates through the nanopore. To increase the overall signal-to-noise ratio and the accuracy, we implement a new ‘multi-point cross-correlation’ technique for identification of DNA bases or other molecules on the single molecular level. We demonstrate that the cross-correlations between each nanopore will greatly enhance the transverse current signal for each molecule. We implement first-principles transport calculations for DNA bases surveyed across a multilayered graphene nanopore system to illustrate the advantages of the proposed geometry. A time-series analysis of the cross-correlation functions illustrates the potential of this method for enhancing the signal-to-noise ratio. This work constitutes a significant step forward in facilitating fingerprinting of single biomolecules using solid state technology.

  10. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance.

    PubMed

    Crossland, Edward J W; Noel, Nakita; Sivaram, Varun; Leijtens, Tomas; Alexander-Webber, Jack A; Snaith, Henry J

    2013-03-14

    Mesoporous ceramics and semiconductors enable low-cost solar power, solar fuel, (photo)catalyst and electrical energy storage technologies. State-of-the-art, printable high-surface-area electrodes are fabricated from thermally sintered pre-formed nanocrystals. Mesoporosity provides the desired highly accessible surfaces but many applications also demand long-range electronic connectivity and structural coherence. A mesoporous single-crystal (MSC) semiconductor can meet both criteria. Here we demonstrate a general synthetic method of growing semiconductor MSCs of anatase TiO2 based on seeded nucleation and growth inside a mesoporous template immersed in a dilute reaction solution. We show that both isolated MSCs and ensembles incorporated into films have substantially higher conductivities and electron mobilities than does nanocrystalline TiO2. Conventional nanocrystals, unlike MSCs, require in-film thermal sintering to reinforce electronic contact between particles, thus increasing fabrication cost, limiting the use of flexible substrates and precluding, for instance, multijunction solar cell processing. Using MSC films processed entirely below 150 °C, we have fabricated all-solid-state, low-temperature sensitized solar cells that have 7.3 per cent efficiency, the highest efficiency yet reported. These high-surface-area anatase single crystals will find application in many different technologies, and this generic synthetic strategy extends the possibility of mesoporous single-crystal growth to a range of functional ceramics and semiconductors. PMID:23467091

  11. A Sensitivity-Enhanced Refractive Index Sensor Using a Single-Mode Thin-Core Fiber Incorporating an Abrupt Taper

    PubMed Central

    Shi, Jie; Xiao, Shilin; Yi, Lilin; Bi, Meihua

    2012-01-01

    A sensitivity-enhanced fiber-optic refractive index (RI) sensor based on a tapered single-mode thin-core diameter fiber is proposed and experimentally demonstrated. The sensor head is formed by splicing a section of tapered thin-core diameter fiber (TCF) between two sections of single-mode fibers (SMFs). The cladding modes are excited at the first SMF-TCF interface, and then interfere with the core mode at the second interface, thus forming an inter-modal interferometer (IMI). An abrupt taper (tens of micrometers long) made by the electric-arc-heating method is utilized, and plays an important role in improving sensing sensitivity. The whole manufacture process only involves fiber splicing and tapering, and all the fabrication process can be achieved by a commercial fiber fusion splicer. Using glycerol and water mixture solution as an example, the experimental results show that the refractive index sensitivity is measured to be 0.591 nm for 1% change of surrounding RI. The proposed sensor structure features simple structure, low cost, easy fabrication, and high sensitivity. PMID:22666052

  12. Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector.

    PubMed

    Kabadi, Ami M; Ousterout, David G; Hilton, Isaac B; Gersbach, Charles A

    2014-10-29

    Engineered DNA-binding proteins that manipulate the human genome and transcriptome have enabled rapid advances in biomedical research. In particular, the RNA-guided CRISPR/Cas9 system has recently been engineered to create site-specific double-strand breaks for genome editing or to direct targeted transcriptional regulation. A unique capability of the CRISPR/Cas9 system is multiplex genome engineering by delivering a single Cas9 enzyme and two or more single guide RNAs (sgRNAs) targeted to distinct genomic sites. This approach can be used to simultaneously create multiple DNA breaks or to target multiple transcriptional activators to a single promoter for synergistic enhancement of gene induction. To address the need for uniform and sustained delivery of multiplex CRISPR/Cas9-based genome engineering tools, we developed a single lentiviral system to express a Cas9 variant, a reporter gene and up to four sgRNAs from independent RNA polymerase III promoters that are incorporated into the vector by a convenient Golden Gate cloning method. Each sgRNA is efficiently expressed and can mediate multiplex gene editing and sustained transcriptional activation in immortalized and primary human cells. This delivery system will be significant to enabling the potential of CRISPR/Cas9-based multiplex genome engineering in diverse cell types. PMID:25122746

  13. Nanosensors based on functionalized nanoparticles and surface enhanced raman scattering

    DOEpatents

    Talley, Chad E.; Huser, Thomas R.; Hollars, Christopher W.; Lane, Stephen M.; Satcher, Jr., Joe H.; Hart, Bradley R.; Laurence, Ted A.

    2007-11-27

    Surface-Enhanced Raman Spectroscopy (SERS) is a vibrational spectroscopic technique that utilizes metal surfaces to provide enhanced signals of several orders of magnitude. When molecules of interest are attached to designed metal nanoparticles, a SERS signal is attainable with single molecule detection limits. This provides an ultrasensitive means of detecting the presence of molecules. By using selective chemistries, metal nanoparticles can be functionalized to provide a unique signal upon analyte binding. Moreover, by using measurement techniques, such as, ratiometric received SERS spectra, such metal nanoparticles can be used to monitor dynamic processes in addition to static binding events. Accordingly, such nanoparticles can be used as nanosensors for a wide range of chemicals in fluid, gaseous and solid form, environmental sensors for pH, ion concentration, temperature, etc., and biological sensors for proteins, DNA, RNA, etc.

  14. Single Crystal DMs for Space-Based Observatories

    NASA Astrophysics Data System (ADS)

    Bierden, Paul

    We propose to demonstrate the feasibility of a new manufacturing process for large aperture, high-actuator count microelectromechanical deformable mirrors (MEMS-DMs). These DMs are designed to fill a critical technology gap in NASA s plan for high- contrast space-based exoplanet observatories. We will manufacture a prototype DM with a continuous mirror facesheet, having an active aperture of 50mm diameter, supported by 2040 electrostatic actuators (50 across the diameter of the active aperture), spaced at a pitch of 1mm. The DM will be manufactured using silicon microfabrication tools. The strategic motivation for the proposed project is to advance MEMS DMs as an enabling technology in NASA s rapidly emerging program for extrasolar planet exploration. That goal is supported by an Astro2010 white paper on Technologies for Direct Optical Imaging of Exoplanets, which concluded that DMs are a critical component for all proposed internal coronagraph instrument concepts. That white paper pointed to great strides made by DM developers in the past decade, and acknowledged the components made by Boston Micromachines Corporation to be the most notable MEMS-based technology option. The principal manufacturing innovation in this project will be assembly of the DM through fusion bonding of three separate single crystal silicon wafers comprising the device s substrate, actuator array, and facesheet. The most significant challenge of this project will be to develop processes that allow reliable fusion bonds between multiple compliant silicon layers while yielding an optically flat surface and a robust electromechanical system. The compliance of the DM, which is required for its electromechanical function, will make it challenging to achieve the intimate, planar contact that is generally needed for success in fusion bonding. The manufacturing approach will use photolithography and reactive ion etching to pattern structural layers. Three wafer-scale devices will be patterned and

  15. Fabrication of metallic single electron transistors featuring plasma enhanced atomic layer deposition of tunnel barriers

    NASA Astrophysics Data System (ADS)

    Karbasian, Golnaz

    The continuing increase of the device density in integrated circuits (ICs) gives rise to the high level of power that is dissipated per unit area and consequently a high temperature in the circuits. Since temperature affects the performance and reliability of the circuits, minimization of the energy consumption in logic devices is now the center of attention. According to the International Technology Roadmaps for Semiconductors (ITRS), single electron transistors (SETs) hold the promise of achieving the lowest power of any known logic device, as low as 1x10-18 J per switching event. Moreover, SETs are the most sensitive electrometers to date, and are capable of detecting a fraction of an electron charge. Despite their low power consumption and high sensitivity for charge detection, room temperature operation of these devices is quite challenging mainly due to lithographical constraints in fabricating structures with the required dimensions of less than 10 nm. Silicon based SETs have been reported to operate at room temperature. However, they all suffer from significant variation in batch-to-batch performance, low fabrication yield, and temperature-dependent tunnel barrier height. In this project, we explored the fabrication of SETs featuring metal-insulator-metal (MIM) tunnel junctions. While Si-based SETs suffer from undesirable effect of dopants that result in irregularities in the device behavior, in metal-based SETs the device components (tunnel barrier, island, and the leads) are well-defined. Therefore, metal SETs are potentially more predictable in behavior, making them easier to incorporate into circuits, and easier to check against theoretical models. Here, the proposed fabrication method takes advantage of unique properties of chemical mechanical polishing (CMP) and plasma enhanced atomic layer deposition (PEALD). Chemical mechanical polishing provides a path for tuning the dimensions of the tunnel junctions, surpassing the limits imposed by electron beam

  16. Enhanced non-volatile resistive switching in suspended single-crystalline ZnO nanowire with controllable multiple states

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Pang, Wei; Zhang, Qing; Chen, Yan; Chen, Xuejiao; Feng, Zhihong; Yang, Jianhua; Zhang, Daihua

    2016-08-01

    Resistive switching nanostructures are a promising candidate for next-generation non-volatile memories. In this report, we investigate the switching behaviors of single-crystalline ZnO nanowires suspended in air. They exhibit significantly higher current density, lower switching voltage, and more pronounced multiple conductance states compared to nanowires in direct contact with substrate. We attribute the effect to enhanced Joule heating efficiency, reduced surface scattering, and more significantly, the positive feedback established between the current density and local temperature in the suspended nanowires. The proposed mechanism has been quantitatively examined by finite element simulations. We have also demonstrated an innovative approach to initiating the current–temperature mutual enhancement through illumination by ultraviolet light, which further confirmed our hypothesis and enabled even greater enhancement. Our work provides further insight into the resistive switching mechanism of single-crystalline one-dimensional nanostructures, and suggests an effective means of performance enhancement and device optimization.

  17. Alu-associated enhancement of single nucleotide polymorphisms in the human genome.

    PubMed

    Ng, Siu-Kin; Xue, Hong

    2006-03-01

    Identifying features shaping the architecture of sequence variations is important for understanding genome evolution and mapping disease loci. In this study, high-resolution scanning of Alu-centered alignments of the human genome sequences has revealed a striking elevation of the frequency of single nucleotide polymorphisms (SNP) in the body and tail of Alu sequences compared to flanking regions. This enhancement in SNP density is evident for all twenty-four chromosomes, and in both the Alu-body and Alu-tail, which together may be referred to as the Alu-SNPs. Reduced levels of Alu-SNPs in the sex chromosomes, especially in the non-recombining NRY region of the Y chromosome, are consistent with recombination events playing an important role in the enhancement. The Alu elements are unstable recombination-mutation hotspots in the human genome, and it is suggested that the Alu-SNPs represent a key manifestation of this instability. Variations in Alu-SNPs among the HapMap populations of northern and western European ancestry (CEU), Han Chinese from Beijing (CHB), Japanese from Tokyo (JPT), and Yoruba from Ibadan, Nigeria (YRI) indicate that the Alu-SNPs provide useful sequence markers, in addition to the Alu-insertion polymorphisms themselves, for the delineation of human genome evolution. That Alu-SNP levels are highest in the youngest Alu-Y, intermediate in the Alu-S of intermediate age, and lowest in the oldest Alu-J is consistent with the occurrence of not only genetic drift but also natural selection on the Alu-SNPs. Such evolutionary selection in turn suggests that Alu-SNPs might include potential sites of disease association, and therefore deserve detailed investigation. PMID:16380220

  18. Extracellular ATP has a potent effect to enhance cytosolic calcium and contractility in single ventricular myocytes.

    PubMed

    Danziger, R S; Raffaeli, S; Moreno-Sanchez, R; Sakai, M; Capogrossi, M C; Spurgeon, H A; Hansford, R G; Lakatta, E G

    1988-08-01

    The effect of extracellular ATP on the contraction of single rat cardiac myocytes was investigated, together with the effect on the transient change in cytosolic Ca2+ (Cai) elicited by excitation and on the relationship between these two parameters. In unstimulated single myocytes, ATP caused a small increase in Cai (measured as the ratio of fluorescence of Indo-1 at 410 to that at 490 nm. In myocytes bathed in a medium containing 1.0 mM [Ca2+] at 23 degrees C and stimulated at 1 Hz, ATP (1 microM) resulted in a two-threefold increase in amplitude of contraction, as measured by video cinemicrographic techniques. The duration of the Cai-transient was not altered but its amplitude was markedly enhanced, as was the amplitude of contraction. The relation between Cai and contraction-amplitude was not altered by ATP, when measured over a range of extracellular [Ca2+], suggesting that ATP does not affect the myofilament-Ca2+ interaction. The primary site of action of ATP in increasing Cai is at the sarcolemma since the addition to suspensions of myocytes of caffeine (10 mM), which depletes the sarcoplasmic reticulum Ca2+ load, does not prevent the subsequent increase of Cai due to ATP. Further, lowering of the extracellular [Ca2+] to less than 1 microM with EGTA abolishes the response of Cai to ATP, though not the response to caffeine. Thus in rat cardiac myocytes ATP stimulates trans-sarcolemmal influx of Ca2+: ADP, AMP and adenosine are ineffective. ATP markedly augments the amplitude of the Cai transient elicited by electrical stimulation thus rendering it a potent inotropic agent. PMID:3191528

  19. Color image enhancement based on HVS and MSRCR

    NASA Astrophysics Data System (ADS)

    Xue, Rong kun; Li, Yu feng

    2015-10-01

    Due to inclement weather caused frequently, such as clouds, fog , rain etc. The light intensity on the illuminated objects falls sharply, it make the scenes captured unclear, poor visual quality and low contrast degree. To improve the overall quality of these images, especially the bad illuminated images, the paper propose a new color image enhancement algorithm which is based on multi-scale Retinex theory with color recovering factor (MSRCR) and the human visual system (HVS). It can effectively solve the problem of the color balance of digital images by removing the influence of light and obtain component images reflected the reflex of the object surface, meanwhile, reduce the impact of non-artificial factors and overcome the Ringing effect and human interference. Through comparison and contrast among experiments, that combined evaluated parameters on enhancement image, such as variance, average gradient, sharpness and so forth with the traditional image enhancement methods, such as histogram enhancement, adaptive histogram enhancement, the MSRCR algorithm is proved to be effective in image contrast, detail enhancement and color fidelity, etc.

  20. Efficient single photon source based on μ-fibre-coupled tunable microcavity

    PubMed Central

    Lee, Chang-Min; Lim, Hee-Jin; Schneider, Christian; Maier, Sebastian; Höfling, Sven; Kamp, Martin; Lee, Yong-Hee

    2015-01-01

    Efficient and fast on-demand single photon sources have been sought after as critical components of quantum information science. We report an efficient and tunable single photon source based on an InAs quantum dot (QD) embedded in a photonic crystal cavity coupled with a highly curved μ-fibre. Exploiting evanescent coupling between the μ-fibre and the cavity, a high collection efficiency of 23% and Purcell-enhanced spontaneous emissions are observed. In our scheme, the spectral position of a resonance can be tuned by as much as 1.5 nm by adjusting the contact position of the μ-fibre, which increases the spectral coupling probability between the QD and the cavity mode. Taking advantage of the high photon count rate and the tunability, the collection efficiencies and the decay rates are systematically investigated as a function of the QD–cavity detuning. PMID:26391607

  1. Efficient single photon source based on μ-fibre-coupled tunable microcavity.

    PubMed

    Lee, Chang-Min; Lim, Hee-Jin; Schneider, Christian; Maier, Sebastian; Höfling, Sven; Kamp, Martin; Lee, Yong-Hee

    2015-01-01

    Efficient and fast on-demand single photon sources have been sought after as critical components of quantum information science. We report an efficient and tunable single photon source based on an InAs quantum dot (QD) embedded in a photonic crystal cavity coupled with a highly curved μ-fibre. Exploiting evanescent coupling between the μ-fibre and the cavity, a high collection efficiency of 23% and Purcell-enhanced spontaneous emissions are observed. In our scheme, the spectral position of a resonance can be tuned by as much as 1.5 nm by adjusting the contact position of the μ-fibre, which increases the spectral coupling probability between the QD and the cavity mode. Taking advantage of the high photon count rate and the tunability, the collection efficiencies and the decay rates are systematically investigated as a function of the QD-cavity detuning. PMID:26391607

  2. Wavelet Speech Enhancement Based on Nonnegative Matrix Factorization

    NASA Astrophysics Data System (ADS)

    Wang, Syu-Siang; Chern, Alan; Tsao, Yu; Hung, Jeih-weih; Lu, Xugang; Lai, Ying-Hui; Su, Borching

    2016-08-01

    For most of the state-of-the-art speech enhancement techniques, a spectrogram is usually preferred than the respective time-domain raw data since it reveals more compact presentation together with conspicuous temporal information over a long time span. However, the short-time Fourier transform (STFT) that creates the spectrogram in general distorts the original signal and thereby limits the capability of the associated speech enhancement techniques. In this study, we propose a novel speech enhancement method that adopts the algorithms of discrete wavelet packet transform (DWPT) and nonnegative matrix factorization (NMF) in order to conquer the aforementioned limitation. In brief, the DWPT is first applied to split a time-domain speech signal into a series of subband signals without introducing any distortion. Then we exploit NMF to highlight the speech component for each subband. Finally, the enhanced subband signals are joined together via the inverse DWPT to reconstruct a noise-reduced signal in time domain. We evaluate the proposed DWPT-NMF based speech enhancement method on the MHINT task. Experimental results show that this new method behaves very well in prompting speech quality and intelligibility and it outperforms the convnenitional STFT-NMF based method.

  3. Advanced piezoelectric single crystal based transducers for naval sonar applications

    NASA Astrophysics Data System (ADS)

    Snook, Kevin A.; Rehrig, Paul W.; Hackenberger, Wesley S.; Jiang, Xiaoning; Meyer, Richard J., Jr.; Markley, Douglas

    2005-05-01

    TRS is developing new transducers based on single crystal piezoelectric materials such as Pb(Mg1/3Nb2/3)x-1TixO3 (PMN-PT). Single crystal piezoelectrics such as PMN-PT exhibit very high piezoelectric coefficients (d33 ~ 1800 to >2000 pC/N) and electromechanical coupling factors (k33 > 0.9), respectively, which may be exploited for improving the performance of broad bandwidth and high frequency sonar. Apart from basic performance, much research has been done on reducing the size and increasing the output power of tonpilz transducers for sonar applications. Results are presented from two different studies. "33" mode single crystal tonpilz transducers have reduced stack lengths due to their low elastic stiffness relative to PZTs, however, this produces non-ideal aspect ratios due to large lateral dimensions. Alternative "31" resonance mode tonpilz elements are proposed to improve performance over these "33" designs. d32 values as high as 1600 pC/N have been observed, and since prestress is applied perpendicular to the poling direction, "31" mode Tonpilz elements exhibit lower loss and higher reliability than "33" mode designs. Planar high power tonpilz arrays are the optimum way to obtain the required acoustic pressure and bandwidth for small footprint, high power sensors. An important issue for these sensors is temperature and prestress stability, since fluctuations in tonpilz properties affects power delivery and sensing electronic design. TRS used the approach of modifying the composition of PMN-PT to improve the temperature dependence of properties of the material. Results show up to a 50% decrease in temperature change while losing minimal source level.

  4. Optimum wavelet based masking for the contrast enhancement of medical images using enhanced cuckoo search algorithm.

    PubMed

    Daniel, Ebenezer; Anitha, J

    2016-04-01

    Unsharp masking techniques are a prominent approach in contrast enhancement. Generalized masking formulation has static scale value selection, which limits the gain of contrast. In this paper, we propose an Optimum Wavelet Based Masking (OWBM) using Enhanced Cuckoo Search Algorithm (ECSA) for the contrast improvement of medical images. The ECSA can automatically adjust the ratio of nest rebuilding, using genetic operators such as adaptive crossover and mutation. First, the proposed contrast enhancement approach is validated quantitatively using Brain Web and MIAS database images. Later, the conventional nest rebuilding of cuckoo search optimization is modified using Adaptive Rebuilding of Worst Nests (ARWN). Experimental results are analyzed using various performance matrices, and our OWBM shows improved results as compared with other reported literature. PMID:26945462

  5. Bithermal fatigue of a nickel-base superalloy single crystal

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.

    1988-01-01

    The thermomechanical fatigue behavior of a nickel-base superalloy single crystal was investigated using a bithermal test technique. The bithermal fatigue test was used as a simple alternative to the more complex thermomechanical fatigue test. Both in-phase and out-of-phase bithermal tests were performed on (100)-oriented coated and bare Rene N4 single crystals. In out-of-plane bithermal tests, the tensile and compressive halves of the cycle were applied isothermally at 760 and 982 C, respectively, while for the in-phase bithermal tests the temperature-loading sequence was reversed. The bithermal fatigue lives of bare specimens were shorter than the isothermal fatigue lives at either temperature extreme when compared on an inelastic strain basis. Both in-phase and out-of-phase bithermal fatigue life curves converged in the large strain regime and diverged in the small strain regime, out-of-phase resulting in the shortest lives. The coating had no effect on life for specimens cycled in-phase; however, the coating was detrimental for isothermal fatigue at 760 C and for out-of-phase fatigue under large strains.

  6. Segregation in water-based stable single-bubble sonoluminescence.

    PubMed

    Levinsen, Mogens T

    2012-01-01

    A long-standing issue in the field of long-time-stable, water-based, single-bubble sonoluminescence has been the close similarity of the spectra to that of blackbody radiation, the question being whether the similarity is just a weird coincidence, with the bubbles being, on the whole, transparent to their own radiation. One mechanism that has been suggested is the generation of a shock or, at least, a compression wave in the gas of the bubble. A footprint of such a wave would be segregation of species. We have investigated spectra from bubbles seeded with various mixtures of helium or neon with xenon or argon using a transformation, specific to our experimental setup and spectrometer, that was shown to allow for a single-parameter characterization of the spectra in some simpler situations. The surprising result of this investigation is that although no trace of segregation is found, the radiation seems to be highly thermalized in all cases. PMID:22400660

  7. A crystallographic model for nickel base single crystal alloys

    NASA Technical Reports Server (NTRS)

    Dame, L. T.; Stouffer, D. C.

    1988-01-01

    The purpose of this research is to develop a tool for the mechanical analysis of nickel-base single-crystal superalloys, specifically Rene N4, used in gas turbine engine components. This objective is achieved by developing a rate-dependent anisotropic constitutive model and implementing it in a nonlinear three-dimensional finite-element code. The constitutive model is developed from metallurgical concepts utilizing a crystallographic approach. An extension of Schmid's law is combined with the Bodner-Partom equations to model the inelastic tension/compression asymmetry and orientation-dependence in octahedral slip. Schmid's law is used to approximate the inelastic response of the material in cube slip. The constitutive equations model the tensile behavior, creep response and strain-rate sensitivity of the single-crystal superalloys. Methods for deriving the material constants from standard tests are also discussed. The model is implemented in a finite-element code, and the computed and experimental results are compared for several orientations and loading conditions.

  8. Inferring Single Neuron Properties in Conductance Based Balanced Networks

    PubMed Central

    Pool, Román Rossi; Mato, Germán

    2011-01-01

    Balanced states in large networks are a usual hypothesis for explaining the variability of neural activity in cortical systems. In this regime the statistics of the inputs is characterized by static and dynamic fluctuations. The dynamic fluctuations have a Gaussian distribution. Such statistics allows to use reverse correlation methods, by recording synaptic inputs and the spike trains of ongoing spontaneous activity without any additional input. By using this method, properties of the single neuron dynamics that are masked by the balanced state can be quantified. To show the feasibility of this approach we apply it to large networks of conductance based neurons. The networks are classified as Type I or Type II according to the bifurcations which neurons of the different populations undergo near the firing onset. We also analyze mixed networks, in which each population has a mixture of different neuronal types. We determine under which conditions the intrinsic noise generated by the network can be used to apply reverse correlation methods. We find that under realistic conditions we can ascertain with low error the types of neurons present in the network. We also find that data from neurons with similar firing rates can be combined to perform covariance analysis. We compare the results of these methods (that do not requite any external input) to the standard procedure (that requires the injection of Gaussian noise into a single neuron). We find a good agreement between the two procedures. PMID:22016730

  9. SPRING - an image processing package for single-particle based helical reconstruction from electron cryomicrographs.

    PubMed

    Desfosses, Ambroise; Ciuffa, Rodolfo; Gutsche, Irina; Sachse, Carsten

    2014-01-01

    Helical reconstruction from electron cryomicrographs has become a routine technique for macromolecular structure determination of helical assemblies since the first days of Fourier-based three-dimensional image reconstruction. In the past decade, the single-particle technique has had an important impact on the advancement of helical reconstruction. Here, we present the software package SPRING that combines Fourier based symmetry analysis and real-space helical processing into a single workflow. One of the most time-consuming steps in helical reconstruction is the determination of the initial symmetry parameters. First, we propose a class-based helical reconstruction approach that enables the simultaneous exploration and evaluation of many symmetry combinations at low resolution. Second, multiple symmetry solutions can be further assessed and refined by single-particle based helical reconstruction using the correlation of simulated and experimental power spectra. Finally, the 3D structure can be determined to high resolution. In order to validate the procedure, we use the reference specimen Tobacco Mosaic Virus (TMV). After refinement of the helical symmetry, a total of 50,000 asymmetric units from two micrographs are sufficient to reconstruct a subnanometer 3D structure of TMV at 6.4Å resolution. Furthermore, we introduce the individual programs of the software and discuss enhancements of the helical reconstruction workflow. Thanks to its user-friendly interface and documentation, SPRING can be utilized by the novice as well as the expert user. In addition to the study of well-ordered helical structures, the development of a streamlined workflow for single-particle based helical reconstruction opens new possibilities to analyze specimens that are heterogeneous in symmetries. PMID:24269218

  10. Sonoclot(®)-based method to detect iron enhanced coagulation.

    PubMed

    Nielsen, Vance G; Henderson, Jon

    2016-07-01

    Thrombelastographic methods have been recently introduced to detect iron mediated hypercoagulability in settings such as sickle cell disease, hemodialysis, mechanical circulatory support, and neuroinflammation. However, these inflammatory situations may have heme oxygenase-derived, coexistent carbon monoxide present, which also enhances coagulation as assessed by the same thrombelastographic variables that are affected by iron. This brief report presents a novel, Sonoclot-based method to detect iron enhanced coagulation that is independent of carbon monoxide influence. Future investigation will be required to assess the sensitivity of this new method to detect iron mediated hypercoagulability in clinical settings compared to results obtained with thrombelastographic techniques. PMID:26497986

  11. A Microfluidic-based Hydrodynamic Trap for Single Particles

    PubMed Central

    Johnson-Chavarria, Eric M.; Tanyeri, Melikhan; Schroeder, Charles M.

    2011-01-01

    The ability to confine and manipulate single particles in free solution is a key enabling technology for fundamental and applied science. Methods for particle trapping based on optical, magnetic, electrokinetic, and acoustic techniques have led to major advancements in physics and biology ranging from the molecular to cellular level. In this article, we introduce a new microfluidic-based technique for particle trapping and manipulation based solely on hydrodynamic fluid flow. Using this method, we demonstrate trapping of micro- and nano-scale particles in aqueous solutions for long time scales. The hydrodynamic trap consists of an integrated microfluidic device with a cross-slot channel geometry where two opposing laminar streams converge, thereby generating a planar extensional flow with a fluid stagnation point (zero-velocity point). In this device, particles are confined at the trap center by active control of the flow field to maintain particle position at the fluid stagnation point. In this manner, particles are effectively trapped in free solution using a feedback control algorithm implemented with a custom-built LabVIEW code. The control algorithm consists of image acquisition for a particle in the microfluidic device, followed by particle tracking, determination of particle centroid position, and active adjustment of fluid flow by regulating the pressure applied to an on-chip pneumatic valve using a pressure regulator. In this way, the on-chip dynamic metering valve functions to regulate the relative flow rates in the outlet channels, thereby enabling fine-scale control of stagnation point position and particle trapping. The microfluidic-based hydrodynamic trap exhibits several advantages as a method for particle trapping. Hydrodynamic trapping is possible for any arbitrary particle without specific requirements on the physical or chemical properties of the trapped object. In addition, hydrodynamic trapping enables confinement of a "single" target object in

  12. Enhanced piezoelectric properties of vertically aligned single-crystalline NKN nano-rod arrays

    NASA Astrophysics Data System (ADS)

    Kang, Min-Gyu; Oh, Seung-Min; Jung, Woo-Suk; Gyu Moon, Hi; Baek, Seung-Hyub; Nahm, Sahn; Yoon, Seok-Jin; Kang, Chong-Yun

    2015-05-01

    Piezoelectric materials capable of converting between mechanical and electrical energy have a great range of potential applications in micro- and nano-scale smart devices; however, their performance tends to be greatly degraded when reduced to a thin film due to the large clamping force by the substrate and surrounding materials. Herein, we report an effective method for synthesizing isolated piezoelectric nano-materials as means to relax the clamping force and recover original piezoelectric properties of the materials. Using this, environmentally friendly single-crystalline NaxK1-xNbO3 (NKN) piezoelectric nano-rod arrays were successfully synthesized by conventional pulsed-laser deposition and demonstrated to have a remarkably enhanced piezoelectric performance. The shape of the nano-structure was also found to be easily manipulated by varying the energy conditions of the physical vapor. We anticipate that this work will provide a way to produce piezoelectric micro- and nano-devices suitable for practical application, and in doing so, open a new path for the development of complex metal-oxide nano-structures.

  13. Radiation-Induced Helium Nanobubbles Enhance Ductility in Submicron-Sized Single-Crystalline Copper.

    PubMed

    Ding, Ming-Shuai; Du, Jun-Ping; Wan, Liang; Ogata, Shigenobu; Tian, Lin; Ma, Evan; Han, Wei-Zhong; Li, Ju; Shan, Zhi-Wei

    2016-07-13

    The workability and ductility of metals usually degrade with exposure to irradiation, hence the phrase "radiation damage". Here, we found that helium (He) radiation can actually enhance the room-temperature deformability of submicron-sized copper. In particular, Cu single crystals with diameter of 100-300 nm and containing numerous pressurized sub-10 nm He bubbles become stronger, more stable in plastic flow and ductile in tension, compared to fully dense samples of the same dimensions that tend to display plastic instability (strain bursts). The sub-10 nm He bubbles are seen to be dislocation sources as well as shearable obstacles, which promote dislocation storage and reduce dislocation mean free path, thus contributing to more homogeneous and stable plasticity. Failure happens abruptly only after significant bubble coalescence. The current findings can be explained in light of Weibull statistics of failure and the beneficial effects of bubbles on plasticity. These results shed light on plasticity and damage developments in metals and could open new avenues for making mechanically robust nano- and microstructures by ion beam processing and He bubble engineering. PMID:27249672

  14. Enhanced single-stage laser-driven electron acceleration by self-controlled ionization injection.

    PubMed

    Li, Song; Hafz, Nasr A M; Mirzaie, Mohammad; Sokollik, Thomas; Zeng, Ming; Chen, Min; Sheng, Zhengming; Zhang, Jie

    2014-12-01

    We report on overall enhancement of a single-stage laser wakefield acceleration (LWFA) using the ionization injection in a mixture of 0.3% nitrogen gas in 99.7% helium gas. Upon the interaction of 30-TW, 30-fs laser pulses with a gas jet of the above gas mixture, >300 MeV electron beams were generated at a helium plasma densities of 3.3-8.5 × 10(18) cm(-3). Compared with the uncontrolled electron self-injection in pure helium gas jet, the ionization injection process due to the presence of ultra-low nitrogen concentrations appears to be self-controlled; it has led to the generation of electron beams with higher energies, higher charge, lower density threshold for trapping, and a narrower energy spread without dark current (low energy electrons) or multiple bunches. It is foreseen that further optimization of such a scheme is expected to bring the electron beam energy-spread down to 1%, making them suitable for driving ultra-compact free-electron lasers. PMID:25606890

  15. Enhanced Li adsorption and diffusion in single-walled silicon nanotubes: an ab initio study.

    PubMed

    Kulish, Vadym V; Ng, Man-Fai; Malyi, Oleksandr I; Wu, Ping; Chen, Zhong

    2013-04-15

    We report a first-principles investigation of Li adsorption and diffusion in single-walled Si nanotubes (SWSiNTs) of interest to Li-ion battery anodes. We calculate Li insertion characteristics in SWSiNTs and compare them with the respective ones in carbon nanotubes (CNTs) and other silicon nanostructures. From our calculations, SWSiNTs show higher reactivity toward the adsorption of Li adatoms than CNTs and Si nanoclusters. Considering the importance of Li kinetics, we demonstrate that the interior of SWSiNTs may serve as a fast Li diffusion channel. The important advantage of SWSiNTs over their carbon analogues is a sevenfold reduction in the energy barrier for the penetration of the Li atoms into the nanotube interior through the sidewalls. This prepossesses easier Li diffusion inside the tube and subsequent utilization of the interior sites, which enhances Li storage capacity of the system. The improvements in both Li uptake and Li mobility over their analogues support the great potential of SWSiNTs as Li-ion battery anodes. PMID:23564742

  16. Enhanced piezoelectric properties of vertically aligned single-crystalline NKN nano-rod arrays

    PubMed Central

    Kang, Min-Gyu; Oh, Seung-Min; Jung, Woo-Suk; Gyu Moon, Hi; Baek, Seung-Hyub; Nahm, Sahn; Yoon, Seok-Jin; Kang, Chong-Yun

    2015-01-01

    Piezoelectric materials capable of converting between mechanical and electrical energy have a great range of potential applications in micro- and nano-scale smart devices; however, their performance tends to be greatly degraded when reduced to a thin film due to the large clamping force by the substrate and surrounding materials. Herein, we report an effective method for synthesizing isolated piezoelectric nano-materials as means to relax the clamping force and recover original piezoelectric properties of the materials. Using this, environmentally friendly single-crystalline NaxK1-xNbO3 (NKN) piezoelectric nano-rod arrays were successfully synthesized by conventional pulsed-laser deposition and demonstrated to have a remarkably enhanced piezoelectric performance. The shape of the nano-structure was also found to be easily manipulated by varying the energy conditions of the physical vapor. We anticipate that this work will provide a way to produce piezoelectric micro- and nano-devices suitable for practical application, and in doing so, open a new path for the development of complex metal-oxide nano-structures. PMID:25955763

  17. Enhanced piezoelectric properties of vertically aligned single-crystalline NKN nano-rod arrays.

    PubMed

    Kang, Min-Gyu; Oh, Seung-Min; Jung, Woo-Suk; Moon, Hi Gyu; Baek, Seung-Hyub; Nahm, Sahn; Yoon, Seok-Jin; Kang, Chong-Yun

    2015-01-01

    Piezoelectric materials capable of converting between mechanical and electrical energy have a great range of potential applications in micro- and nano-scale smart devices; however, their performance tends to be greatly degraded when reduced to a thin film due to the large clamping force by the substrate and surrounding materials. Herein, we report an effective method for synthesizing isolated piezoelectric nano-materials as means to relax the clamping force and recover original piezoelectric properties of the materials. Using this, environmentally friendly single-crystalline NaxK1-xNbO3 (NKN) piezoelectric nano-rod arrays were successfully synthesized by conventional pulsed-laser deposition and demonstrated to have a remarkably enhanced piezoelectric performance. The shape of the nano-structure was also found to be easily manipulated by varying the energy conditions of the physical vapor. We anticipate that this work will provide a way to produce piezoelectric micro- and nano-devices suitable for practical application, and in doing so, open a new path for the development of complex metal-oxide nano-structures. PMID:25955763

  18. Performance benefits of telerobotics and teleoperation - enhancements for an arm-based tank waste retrieval system

    SciTech Connect

    Horschel, D.S.; Gibbons, P.W.; Draper, J.V.

    1995-06-01

    This report evaluates telerobotic and teleoperational arm-based retrieval systems that require advanced robotic controls. These systems will be deployed in waste retrieval activities in Hanford`s Single Shell Tanks (SSTs). The report assumes that arm-based, retrieval systems will combine a teleoperational arm and control system enhanced by a number of advanced and telerobotic controls. The report describes many possible enhancements, spanning the full range of the control spectrum with the potential for technical maturation. The enhancements considered present a variety of choices and factors including: the enhancements to be included in the actual control system, safety, detailed task analyses, human factors, cost-benefit ratios, and availability and maturity of technology. Because the actual system will be designed by an offsite vendor, the procurement specifications must have the flexibility to allow bidders to propose a broad range of ideas, yet build in enough restrictions to filter out infeasible and undesirable approaches. At the same time they must allow selection of a technically promising proposal. Based on a preliminary analysis of the waste retrieval task, and considering factors such as operator limitations and the current state of robotics technology, the authors recommend a set of enhancements that will (1) allow the system to complete its waste retrieval mission, and (2) enable future upgrades in response to changing mission needs and technological advances.

  19. Algal-based, single-step treatment of urban wastewaters.

    PubMed

    Henkanatte-Gedera, S M; Selvaratnam, T; Caskan, N; Nirmalakhandan, N; Van Voorhies, W; Lammers, Peter J

    2015-08-01

    Currently, urban wastewaters (UWW) laden with organic carbon (BOD) and nutrients (ammoniacal nitrogen, N, and phosphates, P) are treated in multi-stage, energy-intensive process trains to meet the mandated discharge standards. This study presents a single-step process based on mixotrophic metabolism for simultaneous removal of carbon and nutrients from UWWs. The proposed system is designed specifically for hot, arid environments utilizing an acidophilic, thermotolerant algal species, Galdieria sulphuraria, and an enclosed photobioreactor to limit evaporation. Removal rates of BOD, N, and P recorded in this study (14.93, 7.23, and 1.38 mg L(-1) d(-1), respectively) are comparable to literature reports. These results confirm that the mixotrophic system can reduce the energy costs associated with oxygen supply in current UWW treatment systems, and has the potential to generate more energy-rich biomass for net energy extraction from UWW. PMID:25898089

  20. AFM-based mechanical characterization of single nanofibres.

    PubMed

    Neugirg, Benedikt R; Koebley, Sean R; Schniepp, Hannes C; Fery, Andreas

    2016-04-28

    Nanofibres are found in a broad variety of hierarchical biological systems as fundamental structural units, and nanofibrillar components are playing an increasing role in the development of advanced functional materials. Accurate determination of the mechanical properties of single nanofibres is thus of great interest, yet measurement of these properties is challenging due to the intricate specimen handling and the exceptional force and deformation resolution that is required. The atomic force microscope (AFM) has emerged as an effective, reliable tool in the investigation of nanofibrillar mechanics, with the three most popular approaches-AFM-based tensile testing, three-point deformation testing, and nanoindentation-proving preferable to conventional tensile testing in many (but not all) cases. Here, we review the capabilities and limitations of each of these methods and give a comprehensive overview of the recent advances in this field. PMID:27055900

  1. Optical sensor based on a single CdS nanobelt.

    PubMed

    Li, Lei; Yang, Shuming; Han, Feng; Wang, Liangjun; Zhang, Xiaotong; Jiang, Zhuangde; Pan, Anlian

    2014-01-01

    In this paper, an optical sensor based on a cadmium sulfide (CdS) nanobelt has been developed. The CdS nanobelt was synthesized by the vapor phase transportation (VPT) method. X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) results revealed that the nanobelt had a hexagonal wurtzite structure of CdS and presented good crystal quality. A single nanobelt Schottky contact optical sensor was fabricated by the electron beam lithography (EBL) technique, and the device current-voltage results showed back-to-back Schottky diode characteristics. The photosensitivity, dark current and the decay time of the sensor were 4 × 10⁴, 31 ms and 0.2 pA, respectively. The high photosensitivity and the short decay time were because of the exponential dependence of photocurrent on the number of the surface charges and the configuration of the back to back Schottky junctions. PMID:24763211

  2. Mars laser altimeter based on a single photon ranging technique

    NASA Technical Reports Server (NTRS)

    Prochazka, Ivan; Hamal, Karel; Sopko, B.; Pershin, S.

    1993-01-01

    The Mars 94/96 Mission will carry, among others things, the balloon probe experiment. The balloon with the scientific cargo in the gondola underneath will drift in the Mars atmosphere, its altitude will range from zero, in the night, up to 5 km at noon. The accurate gondola altitude will be determined by an altimeter. As the Balloon gondola mass is strictly limited, the altimeter total mass and power consumption are critical; maximum allowed is a few hundred grams a few tens of mWatts of average power consumption. We did propose, design, and construct the laser altimeter based on the single photon ranging technique. Topics covered include the following: principle of operation, altimeter construction, and ground tests.

  3. AFM-based mechanical characterization of single nanofibres

    NASA Astrophysics Data System (ADS)

    Neugirg, Benedikt R.; Koebley, Sean R.; Schniepp, Hannes C.; Fery, Andreas

    2016-04-01

    Nanofibres are found in a broad variety of hierarchical biological systems as fundamental structural units, and nanofibrillar components are playing an increasing role in the development of advanced functional materials. Accurate determination of the mechanical properties of single nanofibres is thus of great interest, yet measurement of these properties is challenging due to the intricate specimen handling and the exceptional force and deformation resolution that is required. The atomic force microscope (AFM) has emerged as an effective, reliable tool in the investigation of nanofibrillar mechanics, with the three most popular approaches--AFM-based tensile testing, three-point deformation testing, and nanoindentation--proving preferable to conventional tensile testing in many (but not all) cases. Here, we review the capabilities and limitations of each of these methods and give a comprehensive overview of the recent advances in this field.

  4. Single Base-Resolution Methylome of the Dizygotic Sheep

    PubMed Central

    Liu, Bin; Su, Rui; Jiang, Yu; Wang, Wen; Dong, Yang

    2015-01-01

    Sheep is an important livestock in the world for meat, dairy and wool production. The third version of sheep reference genome has been recently assembled, but sheep DNA methylome has not been profiled yet. In this study, we report the comprehensive sheep methylome with 94.38% cytosine coverage at single base resolution by sequencing DNA samples from Longissimus dorsi of dizygotic Sunit sheep, which were bred in different habitats. We also compared methylomes between the twin sheep. DNA methylation status at genome-scale differentially methylated regions (DMRs), functional genomic regions and 248 DMR-containing genes were identified between the twin sheep. Gene ontology (GO) and KEGG annotations of these genes were performed to discover computationally predicted function. Lipid metabolism, sexual maturity and tumor-associated categories were observed to significantly enrich DMR-containing genes. These findings could be used to illustrate the relationship between phenotypic variations and gene methylation patterns. PMID:26536671

  5. Enhancements to the KATE model-based reasoning system

    NASA Technical Reports Server (NTRS)

    Thomas, Stan J.

    1994-01-01

    KATE (Knowledge-based Autonomous Test Engineer) is a model-based software system developed in the Artificial Intelligence Laboratory at the Kennedy Space Center for monitoring, fault detection, and control of launch vehicles and ground support systems. This report describes two software efforts which enhance the functionality and usability of KATE. The first addition, a flow solver, adds to KATE a tool for modeling the flow of liquid in a pipe system. The second addition adds support for editing KATE knowledge base files to the Emacs editor. The body of this report discusses design and implementation issues having to do with these two tools. It will be useful to anyone maintaining or extending either the flow solver or the editor enhancements.

  6. Enhancing intestinal drug solubilisation using lipid-based delivery systems.

    PubMed

    Porter, Christopher J H; Pouton, Colin W; Cuine, Jean F; Charman, William N

    2008-03-17

    Lipid-based delivery systems are finding increasing application in the oral delivery of poorly water-soluble, lipophilic drugs. Whilst lipidic dose forms may improve oral bioavailability via several mechanisms, enhancement of gastrointestinal solubilisation remains argueably the most important method of absorption enhancement. This review firstly describes the mechanistic rationale which underpins the use of lipid-based delivery systems to enhance drug solubilisation and briefly reviews the available literature describing increases in oral bioavailability after the administration of lipid solution, suspension and self-emulsifying formulations. The use of in vitro methods including dispersion tests and more complex models of in vitro lipolysis as indicators of potential in vivo performance are subsequently described, with particular focus on recent data which suggests that the digestion of surfactants present in lipid-based formulations may impact on formulation performance. Finally, a series of seven guiding principles for formulation design of lipid-based delivery systems are suggested based on an analysis of recent data generated in our laboratories and elsewhere. PMID:18155801

  7. Performance enhancement of thin film silicon solar cells based on distributed Bragg reflector and diffraction grating

    SciTech Connect

    Dubey, R. S.; Saravanan, S.; Kalainathan, S.

    2014-12-15

    The influence of various designing parameters were investigated and explored for high performance solar cells. Single layer grating based solar cell of 50 μm thickness gives maximum efficiency up to 24 % whereas same efficiency is achieved with the use of three bilayers grating based solar cell of 30 μm thickness. Remarkably, bilayer grating based solar cell design not only gives broadband absorption but also enhancement in efficiency with reduced cell thickness requirement. This absorption enhancement is attributed to the high reflection and diffraction from DBR and grating respectively. The obtained short-circuit current were 29.6, 32.9, 34.6 and 36.05 mA/cm{sup 2} of 5, 10, 20 and 30 μm cell thicknesses respectively. These presented designing efforts would be helpful to design and realize new generation of solar cells.

  8. ENHANCED HYDROGEN PRODUCTION INTEGRATED WITH CO2 SEPARATION IN A SINGLE-STAGE REACTOR

    SciTech Connect

    Himanshu Gupta; Mahesh Iyer; Bartev Sakadjian; Liang-Shih Fan

    2005-04-01

    Hydrogen production by the water gas shift reaction (WGSR) is equilibrium limited due to thermodynamic constrains. However, this can be overcome by continuously removing the product CO{sub 2}, thereby driving the WGSR in the forward direction to enhance hydrogen production. This project aims at using a high reactivity, mesoporous calcium based sorbent (PCC-CaO) for removing CO{sub 2} using reactive separation scheme. Preliminary results have shown that PCC-CaO dominates in its performance over naturally occurring limestone towards enhanced hydrogen production. However, maintenance of high reactivity of the sorbent over several reaction-regeneration cycles warrants effective regeneration methods. We have identified sub-atmospheric calcination (vacuum) as vital regeneration technique that helps preserve the sorbent morphology. Sub-atmospheric calcination studies reveal the significance of vacuum level, diluent gas flow rate, thermal properties of diluent gas, and sorbent loading on the kinetics of calcination and the morphology of the resultant CaO sorbent. Steam, which can be easily separated from CO{sub 2}, has been envisioned as a potential diluent gas due to its better thermal properties resulting in effective heat transfer. A novel multi-fixed bed reactor was designed which isolates the catalyst bed from the sorbent bed during the calcination step. This should prevent any potential catalyst deactivation due to oxidation by CO{sub 2} during the regeneration phase.

  9. Single-step, high yield synthesis of gold nanoworms and their surface enhanced Raman scattering properties

    NASA Astrophysics Data System (ADS)

    Ahmed, Waqqar; van Ruitenbeek, Jan M.

    Rod-shaped gold nanoparticles have attracted enormous attention owing to their interesting optical properties arising from the surface plasmon resonances. Slight deviation from the rod morphology can markedly change the optical properties. For-example, worm-shaped gold nanoparticles can have more than two plasmon peaks. Furthermore, they show much higher local field enhancements as compared to their rod-shaped counterparts. We have devised a simple seedless, high-yield protocol for the synthesis of gold nanoworms (NWs). NWs were grown simply by reducing HAuCl4 with ascorbic acid in a high pH reaction medium, and in the presence of growth directional agents, cetyltrimethylammonium bromide and AgNO3. In contrast to the seed-mediated growth of gold nanorods where a seed grows into a rod, NWs grow by oriental attachment of nanoparticles. By varying different reaction parameters we were able to control the length of NWs from a few nanometers to micrometers. Furthermore, the aspect ratio can also be tuned over a wide range. Gold NWs show excellent surface enhanced Raman scattering (SERS) properties. Ultra-low concentrations of various target molecules were detected using NWs based SERS substrates.

  10. Adaptive image contrast enhancement algorithm for point-based rendering

    NASA Astrophysics Data System (ADS)

    Xu, Shaoping; Liu, Xiaoping P.

    2015-03-01

    Surgical simulation is a major application in computer graphics and virtual reality, and most of the existing work indicates that interactive real-time cutting simulation of soft tissue is a fundamental but challenging research problem in virtual surgery simulation systems. More specifically, it is difficult to achieve a fast enough graphic update rate (at least 30 Hz) on commodity PC hardware by utilizing traditional triangle-based rendering algorithms. In recent years, point-based rendering (PBR) has been shown to offer the potential to outperform the traditional triangle-based rendering in speed when it is applied to highly complex soft tissue cutting models. Nevertheless, the PBR algorithms are still limited in visual quality due to inherent contrast distortion. We propose an adaptive image contrast enhancement algorithm as a postprocessing module for PBR, providing high visual rendering quality as well as acceptable rendering efficiency. Our approach is based on a perceptible image quality technique with automatic parameter selection, resulting in a visual quality comparable to existing conventional PBR algorithms. Experimental results show that our adaptive image contrast enhancement algorithm produces encouraging results both visually and numerically compared to representative algorithms, and experiments conducted on the latest hardware demonstrate that the proposed PBR framework with the postprocessing module is superior to the conventional PBR algorithm and that the proposed contrast enhancement algorithm can be utilized in (or compatible with) various variants of the conventional PBR algorithm.

  11. Infrared image enhancement based on human visual properties

    NASA Astrophysics Data System (ADS)

    Chen, Hongyu; Hui, Bin

    2015-10-01

    With the development of modern military, infrared imaging technology is widely used in this field. However, limited by the mechanism of infrared imaging and the detector, infrared images have the disadvantages of low contrast and blurry edge by comparison with the visible image. These shortcomings lead infrared image unsuitable to be observed by both human and computer. Thus image enhancement is required. Traditional image enhancement methods on the application of infrared image, without taking into account the human visual properties, is not convenient for the human observation. This article purposes a new method that combines the layering idea with the human visual properties to enhance the infrared image. The proposed method relies on bilateral filtering to separate a base component, which contains the large amplitude signal and must be compressed, from a detail component, which must be expanded because it contains the small signal variations related to fine texture. The base component is mapped into the proper range which is 8-bit using the human visual properties, and the detail component is applied the method of adaptive gain control. Finally, the two parts are recombined and quantized to 8-bit domain. Experimental results show that this algorithm exceeds most current image enhancement methods in solving the problems of low contrast and blurry detail.

  12. SuSPect: enhanced prediction of single amino acid variant (SAV) phenotype using network features.

    PubMed

    Yates, Christopher M; Filippis, Ioannis; Kelley, Lawrence A; Sternberg, Michael J E

    2014-07-15

    Whole-genome and exome sequencing studies reveal many genetic variants between individuals, some of which are linked to disease. Many of these variants lead to single amino acid variants (SAVs), and accurate prediction of their phenotypic impact is important. Incorporating sequence conservation and network-level features, we have developed a method, SuSPect (Disease-Susceptibility-based SAV Phenotype Prediction), for predicting how likely SAVs are to be associated with disease. SuSPect performs significantly better than other available batch methods on the VariBench benchmarking dataset, with a balanced accuracy of 82%. SuSPect is available at www.sbg.bio.ic.ac.uk/suspect. The Web site has been implemented in Perl and SQLite and is compatible with modern browsers. An SQLite database of possible missense variants in the human proteome is available to download at www.sbg.bio.ic.ac.uk/suspect/download.html. PMID:24810707

  13. Single nucleotide polymorphism-based dispersal estimates using noninvasive sampling.

    PubMed

    Norman, Anita J; Spong, Göran

    2015-08-01

    Quantifying dispersal within wild populations is an important but challenging task. Here we present a method to estimate contemporary, individual-based dispersal distance from noninvasively collected samples using a specialized panel of 96 SNPs (single nucleotide polymorphisms). One main issue in conducting dispersal studies is the requirement for a high sampling resolution at a geographic scale appropriate for capturing the majority of dispersal events. In this study, fecal samples of brown bear (Ursus arctos) were collected by volunteer citizens, resulting in a high sampling resolution spanning over 45,000 km(2) in Gävleborg and Dalarna counties in Sweden. SNP genotypes were obtained for unique individuals sampled (n = 433) and subsequently used to reconstruct pedigrees. A Mantel test for isolation by distance suggests that the sampling scale was appropriate for females but not for males, which are known to disperse long distances. Euclidean distance was estimated between mother and offspring pairs identified through the reconstructed pedigrees. The mean dispersal distance was 12.9 km (SE 3.2) and 33.8 km (SE 6.8) for females and males, respectively. These results were significantly different (Wilcoxon's rank-sum test: P-value = 0.02) and are in agreement with the previously identified pattern of male-biased dispersal. Our results illustrate the potential of using a combination of noninvasively collected samples at high resolution and specialized SNPs for pedigree-based dispersal models. PMID:26357536

  14. Single-walled carbon nanotube based molecular switch tunnel junctions.

    PubMed

    Diehl, Michael R; Steuerman, David W; Tseng, Hsian-Rong; Vignon, Scott A; Star, Alexander; Celestre, Paul C; Stoddart, J Fraser; Heath, James R

    2003-12-15

    This article describes two-terminal molecular switch tunnel junctions (MSTJs) which incorporate a semiconducting, single-walled carbon nanotube (SWNT) as the bottom electrode. The nanotube interacts noncovalently with a monolayer of bistable, nondegenerate [2]catenane tetracations, self-organized by their supporting amphiphilic dimyristoylphosphatidyl anions which shield the mechanically switchable tetracations from a two-micrometer wide metallic top electrode. The resulting 0.002 micron 2 area tunnel junction addresses a nanometer wide row of approximately 2000 molecules. Active and remnant current-voltage measurements demonstrated that these devices can be reconfigurably switched and repeatedly cycled between high and low current states under ambient conditions. Control compounds, including a degenerate [2]catenane, were explored in support of the mechanical origin of the switching signature. These SWNT-based MSTJs operate like previously reported silicon-based MSTJs, but differently from similar devices incorporating bottom metal electrodes. The relevance of these results with respect to the choice of electrode materials for molecular electronics devices is discussed. PMID:14714382

  15. Single nucleotide polymorphism-based dispersal estimates using noninvasive sampling

    PubMed Central

    Norman, Anita J; Spong, Göran

    2015-01-01

    Quantifying dispersal within wild populations is an important but challenging task. Here we present a method to estimate contemporary, individual-based dispersal distance from noninvasively collected samples using a specialized panel of 96 SNPs (single nucleotide polymorphisms). One main issue in conducting dispersal studies is the requirement for a high sampling resolution at a geographic scale appropriate for capturing the majority of dispersal events. In this study, fecal samples of brown bear (Ursus arctos) were collected by volunteer citizens, resulting in a high sampling resolution spanning over 45,000 km2 in Gävleborg and Dalarna counties in Sweden. SNP genotypes were obtained for unique individuals sampled (n = 433) and subsequently used to reconstruct pedigrees. A Mantel test for isolation by distance suggests that the sampling scale was appropriate for females but not for males, which are known to disperse long distances. Euclidean distance was estimated between mother and offspring pairs identified through the reconstructed pedigrees. The mean dispersal distance was 12.9 km (SE 3.2) and 33.8 km (SE 6.8) for females and males, respectively. These results were significantly different (Wilcoxon’s rank-sum test: P-value = 0.02) and are in agreement with the previously identified pattern of male-biased dispersal. Our results illustrate the potential of using a combination of noninvasively collected samples at high resolution and specialized SNPs for pedigree-based dispersal models. PMID:26357536

  16. Single image superresolution based on gradient profile sharpness.

    PubMed

    Yan, Qing; Xu, Yi; Yang, Xiaokang; Nguyen, Truong Q

    2015-10-01

    Single image superresolution is a classic and active image processing problem, which aims to generate a high-resolution (HR) image from a low-resolution input image. Due to the severely under-determined nature of this problem, an effective image prior is necessary to make the problem solvable, and to improve the quality of generated images. In this paper, a novel image superresolution algorithm is proposed based on gradient profile sharpness (GPS). GPS is an edge sharpness metric, which is extracted from two gradient description models, i.e., a triangle model and a Gaussian mixture model for the description of different kinds of gradient profiles. Then, the transformation relationship of GPSs in different image resolutions is studied statistically, and the parameter of the relationship is estimated automatically. Based on the estimated GPS transformation relationship, two gradient profile transformation models are proposed for two profile description models, which can keep profile shape and profile gradient magnitude sum consistent during profile transformation. Finally, the target gradient field of HR image is generated from the transformed gradient profiles, which is added as the image prior in HR image reconstruction model. Extensive experiments are conducted to evaluate the proposed algorithm in subjective visual effect, objective quality, and computation time. The experimental results demonstrate that the proposed approach can generate superior HR images with better visual quality, lower reconstruction error, and acceptable computation efficiency as compared with state-of-the-art works. PMID:25807567

  17. Fast single image dehazing based on image fusion

    NASA Astrophysics Data System (ADS)

    Liu, Haibo; Yang, Jie; Wu, Zhengping; Zhang, Qingnian

    2015-01-01

    Images captured in foggy weather conditions often fade the colors and reduce the contrast of the observed objects. An efficient image fusion method is proposed to remove haze from a single input image. First, the initial medium transmission is estimated based on the dark channel prior. Second, the method adopts an assumption that the degradation level affected by haze of each region is the same, which is similar to the Retinex theory, and uses a simple Gaussian filter to get the coarse medium transmission. Then, pixel-level fusion is achieved between the initial medium transmission and coarse medium transmission. The proposed method can recover a high-quality haze-free image based on the physical model, and the complexity of the proposed method is only a linear function of the number of input image pixels. Experimental results demonstrate that the proposed method can allow a very fast implementation and achieve better restoration for visibility and color fidelity compared to some state-of-the-art methods.

  18. Single-Walled Carbon-Nanotubes-Based Organic Memory Structures.

    PubMed

    Fakher, Sundes; Nejm, Razan; Ayesh, Ahmad; Al-Ghaferi, Amal; Zeze, Dagou; Mabrook, Mohammed

    2016-01-01

    The electrical behaviour of organic memory structures, based on single-walled carbon-nanotubes (SWCNTs), metal-insulator-semiconductor (MIS) and thin film transistor (TFT) structures, using poly(methyl methacrylate) (PMMA) as the gate dielectric, are reported. The drain and source electrodes were fabricated by evaporating 50 nm gold, and the gate electrode was made from 50 nm-evaporated aluminium on a clean glass substrate. Thin films of SWCNTs, embedded within the insulating layer, were used as the floating gate. SWCNTs-based memory devices exhibited clear hysteresis in their electrical characteristics (capacitance-voltage (C-V) for MIS structures, as well as output and transfer characteristics for transistors). Both structures were shown to produce reliable and large memory windows by virtue of high capacity and reduced charge leakage. The hysteresis in the output and transfer characteristics, the shifts in the threshold voltage of the transfer characteristics, and the flat-band voltage shift in the MIS structures were attributed to the charging and discharging of the SWCNTs floating gate. Under an appropriate gate bias (1 s pulses), the floating gate is charged and discharged, resulting in significant threshold voltage shifts. Pulses as low as 1 V resulted in clear write and erase states. PMID:27598112

  19. Reproducible Ultrahigh SERS Enhancement in Single Deterministic Hotspots Using Nanosphere-Plane Antennas Under Radially Polarized Excitation.

    PubMed

    Long, Jing; Yi, Hui; Li, Hongquan; Lei, Zeyu; Yang, Tian

    2016-01-01

    Surface enhanced Raman scattering (SERS) in a nanometer size hotspot has empowered the investigation of chemical structures and dynamic behaviors of one and a few molecules. However, further advancement is hindered by lack of large enough yet reproducible enhancement in single deterministic hotspots. To resolve this problem, here we introduce a nanosphere-plane antenna under radially polarized laser excitation experiment, which provides an electromagnetic enhancement of 10(9~10) at the gap of each individual nanosphere-plane antenna and a root-mean-square error down to 10(0.08) between them. The experiment also reveals a nonlinear SERS behavior with less than one plasmon, which is also observed within a single hotspot. The unprecedented simultaneous achievement of ultrahigh enhancement and reproducibility in deterministic individual hotspots is attributed to the combination of a well-controlled hotspot geometry, the efficient coupling between vertical antenna and laser which produces orders of magnitude higher enhancement than previous excitation methods, and low power operation which is critical for high reproducibility. Our method opens a path for systematic studies on single and few molecule SERS and their surface chemistry in an in-situ and well-controlled manner. PMID:27621109

  20. Chirality-Selective Photoluminescence Enhancement of ssDNA-Wrapped Single-Walled Carbon Nanotubes Modified with Gold Nanoparticles.

    PubMed

    Yang, Juan; Zhao, Qinghua; Lyu, Min; Zhang, Zhenyu; Wang, Xiao; Wang, Meng; Gao, Zhou; Li, Yan

    2016-06-01

    In this work, a convenient method to enhance the photoluminescence (PL) of single-walled carbon nanotubes (SWNTs) in aqueous solutions is provided. Dispersing by single-stranded DNA (ssDNA) and modifying with gold nanoparticles (AuNPs), about tenfold PL enhancement of the SWNTs is observed. More importantly, the selective PL enhancement is achieved for some particular chiralities of interest over all other chiralities, by using certain specific ssDNA sequences that are reported to recognize these particular chiralities. By forming AuNP-DNA-SWNT nanohybrids, ssDNA serves as superior molecular spacers that on one hand protect SWNT from direct contacting with AuNP and causing PL quench, and on the other hand attract the AuNP in close proximity to the SWNT to enhance its PL. This PL enhancement method can be utilized for the PL analysis of SWNTs in aqueous solutions, for biomedical imaging, and may serve as a prescreening method for the recognition and separation of single chirality SWNTs by ssDNA. PMID:27128378

  1. Enhanced photocatalytic efficiency in zirconia buffered n-NiO/p-NiO single crystalline heterostructures by nanosecond laser treatment

    SciTech Connect

    Molaei, R.; Bayati, M. R.; Alipour, H. M.; Nori, S.; Narayan, J.

    2013-06-21

    We report the formation of NiO based single crystalline p-n junctions with enhanced photocatalytic activity induced by pulsed laser irradiation. The NiO epilayers were grown on Si(001) substrates buffered with cubic yttria-stabilized zirconia (c-YSZ) by using pulsed laser deposition. The NiO/c-YSZ/Si heterostructures were subsequently laser treated by 5 pulses of KrF excimer laser (pulse duration = 25 Multiplication-Sign 10{sup -9} s) at lower energies. Microstructural studies, conducted by X-ray diffraction ({theta}-2{theta} and {phi} techniques) and high resolution transmission electron microscope, showed a cube-on-cube epitaxial relationship at the c-YSZ/Si interface; the epitaxial relationship across the NiO/c-YSZ interface was established as NiO<111 > Double-Vertical-Line Double-Vertical-Line c-YSZ<001> and in-plane NiO<110> Double-Vertical-Line Double-Vertical-Line c-YSZ<100>. Electron microscopy studies showed that the interface between the laser annealed and the pristine region as well as the NiO/c-YSZ interface was atomically sharp and crystallographically continuous. The formation of point defects, namely oxygen vacancies and NiO, due to the coupling of the laser photons with the NiO epilayers was confirmed by XPS. The p-type electrical characteristics of the pristine NiO epilayers turned to an n-type behavior and the electrical conductivity was increased by one order of magnitude after laser treatment. Photocatalytic activity of the pristine (p-NiO/c-YSZ/Si) and the laser-annealed (n-NiO/p-NiO/c-YSZ/Si) heterostructures were assessed by measuring the decomposition rate of 4-chlorophenol under UV light. The photocatalytic reaction rate constants were determined to be 0.0059 and 0.0092 min{sup -1} for the as-deposited and the laser-treated samples, respectively. The enhanced photocatalytic efficiency was attributed to the suppressed charge carrier recombination in the NiO based p-n junctions and higher electrical conductivity. Besides, the oxygen vacancies

  2. Ultrasound image enhancement using structure-based filtering.

    PubMed

    Ueng, Shyh-Kuang; Yen, Cho-Li; Chen, Guan-Zhi

    2014-01-01

    Ultrasound images are prone to speckle noises. Speckles blur features which are essential for diagnosis and assessment. Thus despeckling is a necessity in ultrasound image processing. Linear filters can suppress speckles, but they smooth out features. Median filter based despeckling algorithms produce better results. However, they may produce artifact patterns in the resulted images and oversmooth nonuniform regions. This paper presents an innovative despeckle procedure for ultrasound images. In the proposed method, the diffusion tensor of intensity is computed at each pixel at first. Then the eigensystem of the diffusion tensor is calculated and employed to detect and classify the underlying structure. Based on the classification result, a feasible filter is selected to suppress speckles and enhance features. Test results show that the proposed despeckle method reduces speckles in uniform areas and enhances tissue boundaries and spots. PMID:25110515

  3. Ultrasound Image Enhancement Using Structure-Based Filtering

    PubMed Central

    Yen, Cho-Li; Chen, Guan-Zhi

    2014-01-01

    Ultrasound images are prone to speckle noises. Speckles blur features which are essential for diagnosis and assessment. Thus despeckling is a necessity in ultrasound image processing. Linear filters can suppress speckles, but they smooth out features. Median filter based despeckling algorithms produce better results. However, they may produce artifact patterns in the resulted images and oversmooth nonuniform regions. This paper presents an innovative despeckle procedure for ultrasound images. In the proposed method, the diffusion tensor of intensity is computed at each pixel at first. Then the eigensystem of the diffusion tensor is calculated and employed to detect and classify the underlying structure. Based on the classification result, a feasible filter is selected to suppress speckles and enhance features. Test results show that the proposed despeckle method reduces speckles in uniform areas and enhances tissue boundaries and spots. PMID:25110515

  4. Fingerprint enhancement based on MRF with curve accumulation

    NASA Astrophysics Data System (ADS)

    Huang, Zhongwen; Qi, Feihu

    2001-09-01

    The uniqueness of fingerprints has been used for identification for a long time. Automatic fingerprint identification system (AFIS) depends on minutiae to identify a person that rely heavily on the quality of fingerprint image. This paper presents a novel fingerprint enhancement scheme based on a Markov Random Field (MRF). The MRF model is applied to capture local statistical regularities of ridges and then the curve accumulation based on the MRF model is presented to enhance the fingerprint. Such procedure is repeated until the statistics difference can be got between fingerprint ridges and valleys (accumulation). In the end, the adaptive binarisation is made. The results of experiments show that this method can effectively improve the clarity of ridge and valley structures of input fingerprint images and meanwhile preserve the minutiae very well.

  5. Enhanced magnetic hysteresis in Ni-Mn-Ga single crystal and its influence on magnetic shape memory effect

    SciTech Connect

    Heczko, O. Drahokoupil, J.; Straka, L.

    2015-05-07

    Enhanced magnetic hysteresis due to boron doping in combination with magnetic shape memory effect in Ni-Mn-Ga single crystal results in new interesting functionality of magnetic shape memory (MSM) alloys such as mechanical demagnetization. In Ni{sub 50.0}Mn{sub 28.5}Ga{sub 21.5} single crystal, the boron doping increased magnetic coercivity from few Oe to 270 Oe while not affecting the transformation behavior and 10 M martensite structure. However, the magnetic field needed for MSM effect also increased in doped sample. The magnetic behavior is compared to undoped single crystal of similar composition. The evidence from the X-ray diffraction, magnetic domain structure, magnetization loops, and temperature evolution of the magnetic coercivity points out that the enhanced hysteresis is caused by stress-induced anisotropy.

  6. Enhanced magnetic hysteresis in Ni-Mn-Ga single crystal and its influence on magnetic shape memory effect

    NASA Astrophysics Data System (ADS)

    Heczko, O.; Drahokoupil, J.; Straka, L.

    2015-05-01

    Enhanced magnetic hysteresis due to boron doping in combination with magnetic shape memory effect in Ni-Mn-Ga single crystal results in new interesting functionality of magnetic shape memory (MSM) alloys such as mechanical demagnetization. In Ni50.0Mn28.5Ga21.5 single crystal, the boron doping increased magnetic coercivity from few Oe to 270 Oe while not affecting the transformation behavior and 10 M martensite structure. However, the magnetic field needed for MSM effect also increased in doped sample. The magnetic behavior is compared to undoped single crystal of similar composition. The evidence from the X-ray diffraction, magnetic domain structure, magnetization loops, and temperature evolution of the magnetic coercivity points out that the enhanced hysteresis is caused by stress-induced anisotropy.

  7. Silicon nanohybrid-based surface-enhanced Raman scattering sensors.

    PubMed

    Wang, Houyu; Jiang, Xiangxu; Lee, Shuit-Tong; He, Yao

    2014-11-01

    Nanomaterial-based surface-enhanced Raman scattering (SERS) sensors are highly promising analytical tools, capable of ultrasensitive, multiplex, and nondestructive detection of chemical and biological species. Extensive efforts have been made to design various silicon nanohybrid-based SERS substrates such as gold/silver nanoparticle (NP)-decorated silicon nanowires, Au/Ag NP-decorated silicon wafers (AuNP@Si), and so forth. In comparison to free AuNP- and AgNP-based SERS sensors, the silicon nanohybrid-based SERS sensors feature higher enhancement factors (EFs) and excellent reproducibility, since SERS hot spots are efficiently coupled and stabilized through interconnection to the semiconducting silicon substrates. Consequently, in the past decade, giant advancements in the development of silicon nanohybrid-based SERS sensors have been witnessed for myriad sensing applications. In this review, the representative achievements related to the design of high-performance silicon nanohybrid-based SERS sensors and their use for chemical and biological analysis are reviewed in a detailed way. Furthermore, the major opportunities and challenges in this field are discussed from a broad perspective and possible future directions. PMID:25243935

  8. Sequence-Dependent Elasticity and Electrostatics of Single-Stranded DNA: Signatures of Base-Stacking

    PubMed Central

    McIntosh, Dustin B.; Duggan, Gina; Gouil, Quentin; Saleh, Omar A.

    2014-01-01

    Base-stacking is a key factor in the energetics that determines nucleic acid structure. We measure the tensile response of single-stranded DNA as a function of sequence and monovalent salt concentration to examine the effects of base-stacking on the mechanical and thermodynamic properties of single-stranded DNA. By comparing the elastic response of highly stacked poly(dA) and that of a polypyrimidine sequence with minimal stacking, we find that base-stacking in poly(dA) significantly enhances the polymer’s rigidity. The unstacking transition of poly(dA) at high force reveals that the intrinsic electrostatic tension on the molecule varies significantly more weakly on salt concentration than mean-field predictions. Further, we provide a model-independent estimate of the free energy difference between stacked poly(dA) and unstacked polypyrimidine, finding it to be ∼−0.25 kBT/base and nearly constant over three orders of magnitude in salt concentration. PMID:24507606

  9. Enhanced Absorption of Nasulin™, an Ultrarapid-Acting Intranasal Insulin Formulation, Using Single Nostril Administration in Normal Subjects

    PubMed Central

    Stote, Robert; Miller, Michael; Marbury, Thomas; Shi, Leon; Strange, Poul

    2011-01-01

    Background This pharmacokinetic (PK) study was designed to investigate the maximum intranasal insulin dose that could be achieved by repeated doses in a single nostril of a nasal spray of recombinant regular human insulin 1% in combination with cyclopentadecalactone (CPE-215) 2%, a compound that enhances absorption of molecules across mucous membranes (Nasulin™, CPEX Pharmaceuticals, Inc.). Method A nine-period crossover study of 8 healthy, nonsmoking subjects (ages 18–50, body mass index <33 kg/m2, weight >70 kg) were studied. In a fasted state, subjects were randomly given 25, 50, and 75 U in a single nostril on the first day and randomly given 50, 75, and 100 U doses utilizing both nostrils on two subsequent days. After a 45-minute PK assessment, subjects were given a meal. To determine the mechanism of enhanced absorption in a single nostril, a second study utilizing 24 subjects under similar conditions received 25 U, placebo (P) that included CPE-215 plus 25 U, and 50 U in a single nostril. Results Single nostril administration revealed enhanced absorption with maximum concentrations (Cmax) of 13, 65, and 96 µU/ml for the 25, 50, and 75 U doses, respectively. Dual nostril administration in two cohorts resulted in Cmax of 31/42, 65/52, and 88/79 µU/ml for the 50, 75, and 100 U, respectively. In the second cohort, Cmax was 23, 19, 56 µU/ml for the 25, P + 25, and 50 U doses, respectively. Conclusions Repeated dosing in a single nostril resulted in enhanced absorption; this was not due to the increased CPE-215 but to the increased insulin administered. PMID:21303633

  10. Osmium-Based Pyrimidine Contrast Tags for Enhanced Nanopore-Based DNA Base Discrimination.

    PubMed

    Henley, Robert Y; Vazquez-Pagan, Ana G; Johnson, Michael; Kanavarioti, Anastassia; Wanunu, Meni

    2015-01-01

    Nanopores are a promising platform in next generation DNA sequencing. In this platform, an individual DNA strand is threaded into nanopore using an electric field, and enzyme-based ratcheting is used to move the strand through the detector. During this process the residual ion current through the pore is measured, which exhibits unique levels for different base combinations inside the pore. While this approach has shown great promise, accuracy is not optimal because the four bases are chemically comparable to one another, leading to small differences in current obstruction. Nucleobase-specific chemical tagging can be a viable approach to enhancing the contrast between different bases in the sequence. Herein we show that covalent modification of one or both of the pyrimidine bases by an osmium bipyridine complex leads to measureable differences in the blockade amplitudes of DNA molecules. We qualitatively determine the degree of osmylation of a DNA strand by passing it through a solid-state nanopore, and are thus able to gauge T and C base content. In addition, we show that osmium bipyridine reacts with dsDNA, leading to substantially different current blockade levels than exhibited for bare dsDNA. This work serves as a proof of principle for nanopore sequencing and mapping via base-specific DNA osmylation. PMID:26657869

  11. Osmium-Based Pyrimidine Contrast Tags for Enhanced Nanopore-Based DNA Base Discrimination

    PubMed Central

    Henley, Robert Y.; Vazquez-Pagan, Ana G.; Johnson, Michael; Kanavarioti, Anastassia; Wanunu, Meni

    2015-01-01

    Nanopores are a promising platform in next generation DNA sequencing. In this platform, an individual DNA strand is threaded into nanopore using an electric field, and enzyme-based ratcheting is used to move the strand through the detector. During this process the residual ion current through the pore is measured, which exhibits unique levels for different base combinations inside the pore. While this approach has shown great promise, accuracy is not optimal because the four bases are chemically comparable to one another, leading to small differences in current obstruction. Nucleobase-specific chemical tagging can be a viable approach to enhancing the contrast between different bases in the sequence. Herein we show that covalent modification of one or both of the pyrimidine bases by an osmium bipyridine complex leads to measureable differences in the blockade amplitudes of DNA molecules. We qualitatively determine the degree of osmylation of a DNA strand by passing it through a solid-state nanopore, and are thus able to gauge T and C base content. In addition, we show that osmium bipyridine reacts with dsDNA, leading to substantially different current blockade levels than exhibited for bare dsDNA. This work serves as a proof of principle for nanopore sequencing and mapping via base-specific DNA osmylation. PMID:26657869

  12. Calix[4]arene Based Single-Molecule Magnets

    SciTech Connect

    Karotsis, Georgios; Teat, Simon J.; Wernsdorfer, Wolfgang; Piligkos, Stergios; Dalgarno, Scott J.; Brechin, Euan K.

    2009-06-04

    Single-molecule magnets (SMMs) have been the subject of much interest in recent years because their molecular nature and inherent physical properties allow the crossover between classical and quantum physics to be observed. The macroscopic observation of quantum phenomena - tunneling between different spin states, quantum interference between tunnel paths - not only allows scientists to study quantum mechanical laws in great detail, but also provides model systems with which to investigate the possible implementation of spin-based solid state qubits and molecular spintronics. The isolation of small, simple SMMs is therefore an exciting prospect. To date almost all SMMs have been made via the self-assembly of 3d metal ions in the presence of bridging/chelating organic ligands. However, very recently an exciting new class of SMMs, based on 3d metal clusters (or single lanthanide ions) housed within polyoxometalates, has appeared. These types of molecule, in which the SMM is completely encapsulated within (or shrouded by) a 'protective' organic or inorganic sheath have much potential for design and manipulation: for example, for the removal of unwanted dipolar interactions, the introduction of redox activity, or to simply aid functionalization for surface grafting. Calix[4]arenes are cyclic (typically bowl-shaped) polyphenols that have been used extensively in the formation of versatile self-assembled supramolecular structures. Although many have been reported, p-{sup t}But-calix[4]arene and calix[4]arene (TBC4 and C4 respectively, Figure 1A) are frequently encountered due to (a) synthetic accessibility, and (b) vast potential for alteration at either the upper or lower rim of the macrocyclic framework. Within the field of supramolecular chemistry, TBC4 is well known for interesting polymorphic behavior and phase transformations within anti-parallel bi-layer arrays, while C4 often forms self-included trimers. The polyphenolic nature of calix[n]arenes (where n = 4

  13. Vertically Conductive Single-Crystal SiC-Based Bragg Reflector Grown on Si Wafer

    PubMed Central

    Massoubre, David; Wang, Li; Hold, Leonie; Fernandes, Alanna; Chai, Jessica; Dimitrijev, Sima; Iacopi, Alan

    2015-01-01

    Single-crystal silicon carbide (SiC) thin-films on silicon (Si) were used for the fabrication and characterization of electrically conductive distributed Bragg reflectors (DBRs) on 100 mm Si wafers. The DBRs, each composed of 3 alternating layers of SiC and Al(Ga)N grown on Si substrates, show high wafer uniformity with a typical maximum reflectance of 54% in the blue spectrum and a stopband (at 80% maximum reflectance) as large as 100 nm. Furthermore, high vertical electrical conduction is also demonstrated resulting to a density of current exceeding 70 A/cm2 above 1.5 V. Such SiC/III-N DBRs with high thermal and electrical conductivities could be used as pseudo-substrate to enhance the efficiency of SiC-based and GaN-based optoelectronic devices on large Si wafers. PMID:26601894

  14. Compressive Video Recovery Using Block Match Multi-Frame Motion Estimation Based on Single Pixel Cameras

    PubMed Central

    Bi, Sheng; Zeng, Xiao; Tang, Xin; Qin, Shujia; Lai, King Wai Chiu

    2016-01-01

    Compressive sensing (CS) theory has opened up new paths for the development of signal processing applications. Based on this theory, a novel single pixel camera architecture has been introduced to overcome the current limitations and challenges of traditional focal plane arrays. However, video quality based on this method is limited by existing acquisition and recovery methods, and the method also suffers from being time-consuming. In this paper, a multi-frame motion estimation algorithm is proposed in CS video to enhance the video quality. The proposed algorithm uses multiple frames to implement motion estimation. Experimental results show that using multi-frame motion estimation can improve the quality of recovered videos. To further reduce the motion estimation time, a block match algorithm is used to process motion estimation. Experiments demonstrate that using the block match algorithm can reduce motion estimation time by 30%. PMID:26950127

  15. Vertically Conductive Single-Crystal SiC-Based Bragg Reflector Grown on Si Wafer.

    PubMed

    Massoubre, David; Wang, Li; Hold, Leonie; Fernandes, Alanna; Chai, Jessica; Dimitrijev, Sima; Iacopi, Alan

    2015-01-01

    Single-crystal silicon carbide (SiC) thin-films on silicon (Si) were used for the fabrication and characterization of electrically conductive distributed Bragg reflectors (DBRs) on 100 mm Si wafers. The DBRs, each composed of 3 alternating layers of SiC and Al(Ga)N grown on Si substrates, show high wafer uniformity with a typical maximum reflectance of 54% in the blue spectrum and a stopband (at 80% maximum reflectance) as large as 100 nm. Furthermore, high vertical electrical conduction is also demonstrated resulting to a density of current exceeding 70 A/cm(2) above 1.5 V. Such SiC/III-N DBRs with high thermal and electrical conductivities could be used as pseudo-substrate to enhance the efficiency of SiC-based and GaN-based optoelectronic devices on large Si wafers. PMID:26601894

  16. Vertically Conductive Single-Crystal SiC-Based Bragg Reflector Grown on Si Wafer

    NASA Astrophysics Data System (ADS)

    Massoubre, David; Wang, Li; Hold, Leonie; Fernandes, Alanna; Chai, Jessica; Dimitrijev, Sima; Iacopi, Alan

    2015-11-01

    Single-crystal silicon carbide (SiC) thin-films on silicon (Si) were used for the fabrication and characterization of electrically conductive distributed Bragg reflectors (DBRs) on 100 mm Si wafers. The DBRs, each composed of 3 alternating layers of SiC and Al(Ga)N grown on Si substrates, show high wafer uniformity with a typical maximum reflectance of 54% in the blue spectrum and a stopband (at 80% maximum reflectance) as large as 100 nm. Furthermore, high vertical electrical conduction is also demonstrated resulting to a density of current exceeding 70 A/cm2 above 1.5 V. Such SiC/III-N DBRs with high thermal and electrical conductivities could be used as pseudo-substrate to enhance the efficiency of SiC-based and GaN-based optoelectronic devices on large Si wafers.

  17. Compressive Video Recovery Using Block Match Multi-Frame Motion Estimation Based on Single Pixel Cameras.

    PubMed

    Bi, Sheng; Zeng, Xiao; Tang, Xin; Qin, Shujia; Lai, King Wai Chiu

    2016-01-01

    Compressive sensing (CS) theory has opened up new paths for the development of signal processing applications. Based on this theory, a novel single pixel camera architecture has been introduced to overcome the current limitations and challenges of traditional focal plane arrays. However, video quality based on this method is limited by existing acquisition and recovery methods, and the method also suffers from being time-consuming. In this paper, a multi-frame motion estimation algorithm is proposed in CS video to enhance the video quality. The proposed algorithm uses multiple frames to implement motion estimation. Experimental results show that using multi-frame motion estimation can improve the quality of recovered videos. To further reduce the motion estimation time, a block match algorithm is used to process motion estimation. Experiments demonstrate that using the block match algorithm can reduce motion estimation time by 30%. PMID:26950127

  18. Single-Particle Spectroscopic Study on Fluorescence Enhancement by Plasmon Coupled Gold Nanorod Dimers Assembled on DNA Origami.

    PubMed

    Zhang, Taishi; Gao, Nengyue; Li, Shuang; Lang, Matthew J; Xu, Qing-Hua

    2015-06-01

    Metal-enhanced fluorescence has attracted much attention due to its scientific importance and lots of potential applications. Plasmon coupled metal nanoparticles have been demonstrated to further improve the enhancement effects. Conventional studies of metal-enhanced fluorescence on the bulk systems are complicated by the ensemble average effects over many critical factors with large variations. Here, fluorescence enhancement of ATTO-655 by a plasmon coupled gold nanorod dimer fixed on a DNA origami nanobreadboard was studied on the single-particle level. A series of gold nanorod dimers with linear orientation and different gap distances ranging from 6.1 to 26.0 nm were investigated to explore the plasmon coupling effect on fluorescence enhancement. The results show that the dimer with the smallest gap (6.1 nm) gives the highest enhancement (470-fold), and the enhancement gradually decreases as the gap distance increases and eventually approaches that from a monomer (120-fold). This trend is consistent with the numerical calculation results. This study indicates that plasmon coupling in gold nanorod dimers offers further increased excitation efficiency to achieve large fluorescence enhancement. PMID:26266500

  19. Niobium enrichment and environmental enhancement of creep crack growth in nickel-base superalloys

    SciTech Connect

    Gao, M.; Wei, R.P.; Dwyer, D.J.

    1995-04-15

    In this paper, the possible role of niobium in the environmental enhancement of creep crack growth in nickel-base superalloys is further examined. The examination included (1) surface enrichment of Nb in a commercial Inconel 718; (2) a source of niobium and its interaction with oxygen; (3) preferential oxidation of Nb at the crack tip, and (4) correlations between environmental sensitivity and niobium concentration of nickel-base superalloys from the literature. The role of niobium was suggested by recent X-ray photoelectron spectroscopic (XPS) studies. The XPS studies show a significant increase in the concentration of niobium on the (001) surface of an Inconel 718 single crystal after heating at temperatures above 775 K. Considerable segregation of niobium was also found on the grain boundaries of a thermally aged commercial (polycrystalline) Inconel 718. The CCGR data showed significant enhancement by oxygen and water vapor at temperatures of 800--975 K where niobium enrichment occurred.

  20. Functional long circulating single walled carbon nanotubes for fluorescent/photoacoustic imaging-guided enhanced phototherapy.

    PubMed

    Xie, Lisi; Wang, Guohao; Zhou, Hao; Zhang, Fan; Guo, Zhide; Liu, Chuan; Zhang, Xianzhong; Zhu, Lei

    2016-10-01

    Nanotherapeutics have been investigated for years, but only modest survival benefits were observed clinic. This is partially attributed to the short and rapid elimination of nanodrug after intravenous administration. In this study, a long circulation single wall carbon nanotube (SWCNT) complex was successfully fabricated through a new SWCNT dispersion agent, evans blue (EB). The complex was endowed with fluorescent imaging and photodynamic therapy ability by self-assembly loading an albumin coupled fluorescent photosensitizer, Chlorin e6 (Ce6) via the high affinity between EB and albumin. The yielding multifunctional albumin/Ce6 loaded EB/carbon nanotube-based delivery system, named ACEC, is capable of providing fluorescent and photoacoustic imaging of tumors for optimizing therapeutic time window. Synergistic photodynamic therapy (PDT) and photothermal therapy (PTT) were carried out as guided by imaging results at 24 h post-injection and achieved an efficient tumor ablation effect. Compared to PDT or PTT alone, the combined phototherapy managed to damage tumor and diminish tumor without recurrence. Overall, our study presents a SWCNT based theranostic system with great promising in dual modalities imaging guided PTT/PDT combined treatment of tumor. The applications of EB on SWCNT functionalization can be easily extended to the other nanomaterials for improving their in vivo stability and circulation time. PMID:27392290

  1. Peering into Cells One Molecule at a Time: Single-molecule and plasmon-enhanced fluorescence super-resolution imaging

    NASA Astrophysics Data System (ADS)

    Biteen, Julie

    2013-03-01

    Single-molecule fluorescence brings the resolution of optical microscopy down to the nanometer scale, allowing us to unlock the mysteries of how biomolecules work together to achieve the complexity that is a cell. This high-resolution, non-destructive method for examining subcellular events has opened up an exciting new frontier: the study of macromolecular localization and dynamics in living cells. We have developed methods for single-molecule investigations of live bacterial cells, and have used these techniques to investigate thee important prokaryotic systems: membrane-bound transcription activation in Vibrio cholerae, carbohydrate catabolism in Bacteroides thetaiotaomicron, and DNA mismatch repair in Bacillus subtilis. Each system presents unique challenges, and we will discuss the important methods developed for each system. Furthermore, we use the plasmon modes of bio-compatible metal nanoparticles to enhance the emissivity of single-molecule fluorophores. The resolution of single-molecule imaging in cells is generally limited to 20-40 nm, far worse than the 1.5-nm localization accuracies which have been attained in vitro. We use plasmonics to improve the brightness and stability of single-molecule probes, and in particular fluorescent proteins, which are widely used for bio-imaging. We find that gold-coupled fluorophores demonstrate brighter, longer-lived emission, yielding an overall enhancement in total photons detected. Ultimately, this results in increased localization accuracy for single-molecule imaging. Furthermore, since fluorescence intensity is proportional to local electromagnetic field intensity, these changes in decay intensity and rate serve as a nm-scale read-out of the field intensity. Our work indicates that plasmonic substrates are uniquely advantageous for super-resolution imaging, and that plasmon-enhanced imaging is a promising technique for improving live cell single-molecule microscopy.

  2. Inclusion of a furin-sensitive spacer enhances the cytotoxicity of ribotoxin restrictocin containing recombinant single-chain immunotoxins.

    PubMed

    Goyal, A; Batra, J K

    2000-01-15

    Chimaeric toxins have considerable therapeutic potential to treat various malignancies. We have previously used the fungal ribonucleolytic toxin restrictocin to make chimaeric toxins in which the ligand was fused at either the N-terminus or the C-terminus of the toxin. Chimaeric toxins containing ligand at the C-terminus of restrictocin were shown to be more active than those having ligand at the N-terminus of the toxin. Here we describe the further engineering of restrictocin-based chimaeric toxins, anti-TFR(scFv)-restrictocin and restrictocin-anti-TFR(scFv), containing restrictocin and a single chain fragment variable (scFv) of a monoclonal antibody directed at the human transferrin receptor (TFR), to enhance their cell-killing activity. To promote the independent folding of the two proteins in the chimaeric toxin, a linear flexible peptide, Gly-Gly-Gly-Gly-Ser, was inserted between the toxin and the ligand to generate restrictocin-linker-anti-TFR(scFv) and anti-TFR(scFv)-linker-restrictocin. A 12-residue spacer, Thr-Arg-His-Arg-Gln-Pro-Arg-Gly-Trp-Glu-Gln-Leu, containing the recognition site for the protease furin, was incorporated between the toxin and the ligand to generate restrictocin-spacer-anti-TFR(scFv) and anti-TFR(scFv)-spacer-restrictocin. The incorporation of the proteolytically cleavable spacer enhanced the cell-killing activity of both constructs by 2-30-fold depending on the target cell line. However, the introduction of linker improved the cytotoxic activity only for anti-TFR(scFv)-linker-restrictocin. The proteolytically cleavable spacer-containing chimaeric toxins had similar cytotoxic activities irrespective of the location of the ligand on the toxin and they were found to release the restrictocin fragment efficiently on proteolysis in vitro. PMID:10620501

  3. Plasmon resonance-based optical trapping of single and multiple Au nanoparticles.

    SciTech Connect

    Toussaint, K. C.; Liu, M.; Pelton, M.; Pesic, J.; Guffey, M.; Guyot-Sionnest, P.; Scherer, N. F.; Univ. of Chicago

    2007-01-01

    The plasmon resonance-based optical trapping (PREBOT) method is used to achieve stable trapping of metallic nanoparticles of different shapes and composition, including Au bipyramids and Au/Ag core/shell nanorods. In all cases the longitudinal plasmon mode of these anisotropic particles is used to enhance the gradient force of an optical trap, thereby increasing the strength of the trap potential. Specifically, the trapping laser is slightly detuned to the long-wavelength side of the longitudinal plasmon resonance where the sign of the real component of the polarizability leads to an attractive gradient force. A second (femtosecond pulsed) laser is used to excite two-photon fluorescence for detection of the trapped nanoparticles. Two-photon fluorescence time trajectories are recorded for up to 20 minutes for single and multiple particles in the trap. In the latter case, a stepwise increase reflects sequential loading of single Au bipyramids. The nonlinearity of the amplitude and noise with step number are interpreted as arising from interactions or enhanced local fields among the trapped particles and fluctuations in the arrangements thereof.

  4. Ion-track based single-channel templates for single-nanowire contacting

    NASA Astrophysics Data System (ADS)

    Chtanko, N.; Toimil-Molares, M. E.; Cornelius, T. W.; Dobrev, D.; Neumann, R.

    2005-07-01

    This work reports a procedure for the fabrication of membranes containing only one single channel with diameter down to 20 nm and with well-defined geometry. Foils of different types of polymer (polyethylene terephthalate (PET) and polycarbonate (PC)) were tested with respect to their suitability as ion-track template for single-nanowire growth. Membranes with one pore were created by the track-etching technique. The pore size was characterized by electrical conductivity measurements in 1 M KCl. Furthermore, we developed also a method for the preparation and electrical contacting of single metallic nanowires. Cylindrical single pores were filled with Bi by electrochemical deposition. The resulting wires, remaining embedded in the polymer foil, are very suitable for measurements of electrical resistance as a function of parameters such as wire diameter and temperature.

  5. CFD-Based Design Optimization for Single Element Rocket Injector

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Rajkumar; Tucker, Kevin; Papila, Nilay; Shyy, Wei

    2003-01-01

    To develop future Reusable Launch Vehicle concepts, we have conducted design optimization for a single element rocket injector, with overall goals of improving reliability and performance while reducing cost. Computational solutions based on the Navier-Stokes equations, finite rate chemistry, and the k-E turbulence closure are generated with design of experiment techniques, and the response surface method is employed as the optimization tool. The design considerations are guided by four design objectives motivated by the consideration in both performance and life, namely, the maximum temperature on the oxidizer post tip, the maximum temperature on the injector face, the adiabatic wall temperature, and the length of the combustion zone. Four design variables are selected, namely, H2 flow angle, H2 and O2 flow areas with fixed flow rates, and O2 post tip thickness. In addition to establishing optimum designs by varying emphasis on the individual objectives, better insight into the interplay between design variables and their impact on the design objectives is gained. The investigation indicates that improvement in performance or life comes at the cost of the other. Best compromise is obtained when improvements in both performance and life are given equal importance.

  6. An Autonomous Underwater Recorder Based on a Single Board Computer

    PubMed Central

    Caldas-Morgan, Manuel; Alvarez-Rosario, Alexander; Rodrigues Padovese, Linilson

    2015-01-01

    As industrial activities continue to grow on the Brazilian coast, underwater sound measurements are becoming of great scientific importance as they are essential to evaluate the impact of these activities on local ecosystems. In this context, the use of commercial underwater recorders is not always the most feasible alternative, due to their high cost and lack of flexibility. Design and construction of more affordable alternatives from scratch can become complex because it requires profound knowledge in areas such as electronics and low-level programming. With the aim of providing a solution; a well succeeded model of a highly flexible, low-cost alternative to commercial recorders was built based on a Raspberry Pi single board computer. A properly working prototype was assembled and it demonstrated adequate performance levels in all tested situations. The prototype was equipped with a power management module which was thoroughly evaluated. It is estimated that it will allow for great battery savings on long-term scheduled recordings. The underwater recording device was successfully deployed at selected locations along the Brazilian coast, where it adequately recorded animal and manmade acoustic events, among others. Although power consumption may not be as efficient as that of commercial and/or micro-processed solutions, the advantage offered by the proposed device is its high customizability, lower development time and inherently, its cost. PMID:26076479

  7. Gravity-base SALS (single anchor leg system) at Tazerka

    SciTech Connect

    Not Available

    1983-10-01

    A gravity-base single anchor leg system (SALS) delivers crude oil from subsea wells to a converted tanker for Shell Tunirex, as operator of a joint venture. The SALS features a manifold chamber and high-pressure swivels which permit varied operations to be performed remotely and in complete safety. The system is designed to accommodate up to 8 wells; inject water into a maximum of 3 wells and produce from the remaining 5; provide gas lift, if needed; shut in the system at the wellhead, at the manifold, or on the tanker; permit switching from any one of 6 high-pressure swivels to another in case of seal failure; permit quick replacement of entire swivel assembly if overhaul needed; withstand 100-yr environmental conditions; use its built-in restoration mechanics to return the riser to a vertical position if environmental forces cause tanker movement; be self-installable with only light support craft; and be recoverable, for further use elsewhere after field depletion.

  8. Single molecule transistor based nanopore for the detection of nicotine

    SciTech Connect

    Ray, S. J.

    2014-12-28

    A nanopore based detection methodology was proposed and investigated for the detection of Nicotine. This technique uses a Single Molecular Transistor working as a nanopore operational in the Coulomb Blockade regime. When the Nicotine molecule is pulled through the nanopore area surrounded by the Source(S), Drain (D), and Gate electrodes, the charge stability diagram can detect the presence of the molecule and is unique for a specific molecular structure. Due to the weak coupling between the different electrodes which is set by the nanopore size, the molecular energy states stay almost unaffected by the electrostatic environment that can be realised from the charge stability diagram. Identification of different orientation and position of the Nicotine molecule within the nanopore area can be made from specific regions of overlap between different charge states on the stability diagram that could be used as an electronic fingerprint for detection. This method could be advantageous and useful to detect the presence of Nicotine in smoke which is usually performed using chemical chromatography techniques.

  9. Single molecule transistor based nanopore for the detection of nicotine

    NASA Astrophysics Data System (ADS)

    Ray, S. J.

    2014-12-01

    A nanopore based detection methodology was proposed and investigated for the detection of Nicotine. This technique uses a Single Molecular Transistor working as a nanopore operational in the Coulomb Blockade regime. When the Nicotine molecule is pulled through the nanopore area surrounded by the Source(S), Drain (D), and Gate electrodes, the charge stability diagram can detect the presence of the molecule and is unique for a specific molecular structure. Due to the weak coupling between the different electrodes which is set by the nanopore size, the molecular energy states stay almost unaffected by the electrostatic environment that can be realised from the charge stability diagram. Identification of different orientation and position of the Nicotine molecule within the nanopore area can be made from specific regions of overlap between different charge states on the stability diagram that could be used as an electronic fingerprint for detection. This method could be advantageous and useful to detect the presence of Nicotine in smoke which is usually performed using chemical chromatography techniques.

  10. An Autonomous Underwater Recorder Based on a Single Board Computer.

    PubMed

    Caldas-Morgan, Manuel; Alvarez-Rosario, Alexander; Rodrigues Padovese, Linilson

    2015-01-01

    As industrial activities continue to grow on the Brazilian coast, underwater sound measurements are becoming of great scientific importance as they are essential to evaluate the impact of these activities on local ecosystems. In this context, the use of commercial underwater recorders is not always the most feasible alternative, due to their high cost and lack of flexibility. Design and construction of more affordable alternatives from scratch can become complex because it requires profound knowledge in areas such as electronics and low-level programming. With the aim of providing a solution; a well succeeded model of a highly flexible, low-cost alternative to commercial recorders was built based on a Raspberry Pi single board computer. A properly working prototype was assembled and it demonstrated adequate performance levels in all tested situations. The prototype was equipped with a power management module which was thoroughly evaluated. It is estimated that it will allow for great battery savings on long-term scheduled recordings. The underwater recording device was successfully deployed at selected locations along the Brazilian coast, where it adequately recorded animal and manmade acoustic events, among others. Although power consumption may not be as efficient as that of commercial and/or micro-processed solutions, the advantage offered by the proposed device is its high customizability, lower development time and inherently, its cost. PMID:26076479

  11. Compositional Effects on Nickel-Base Superalloy Single Crystal Microstructures

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca A.; Gabb, Timothy P.; Garg,Anita; Rogers, Richard B.; Nathal, Michael V.

    2012-01-01

    Fourteen nickel-base superalloy single crystals containing 0 to 5 wt% chromium (Cr), 0 to 11 wt% cobalt (Co), 6 to 12 wt% molybdenum (Mo), 0 to 4 wt% rhenium (Re), and fixed amounts of aluminum (Al) and tantalum (Ta) were examined to determine the effect of bulk composition on basic microstructural parameters, including gamma' solvus, gamma' volume fraction, volume fraction of topologically close-packed (TCP) phases, phase chemistries, and gamma - gamma'. lattice mismatch. Regression models were developed to describe the influence of bulk alloy composition on the microstructural parameters and were compared to predictions by a commercially available software tool that used computational thermodynamics. Co produced the largest change in gamma' solvus over the wide compositional range used in this study, and Mo produced the largest effect on the gamma lattice parameter and the gamma - gamma' lattice mismatch over its compositional range, although Re had a very potent influence on all microstructural parameters investigated. Changing the Cr, Co, Mo, and Re contents in the bulk alloy had a significant impact on their concentrations in the gamma matrix and, to a smaller extent, in the gamma' phase. The gamma phase chemistries exhibited strong temperature dependencies that were influenced by the gamma and gamma' volume fractions. A computational thermodynamic modeling tool significantly underpredicted gamma' solvus temperatures and grossly overpredicted the amount of TCP phase at 982 C. Furthermore, the predictions by the software tool for the gamma - gamma' lattice mismatch were typically of the wrong sign and magnitude, but predictions could be improved if TCP formation was suspended within the software program. However, the statistical regression models provided excellent estimations of the microstructural parameters based on bulk alloy composition, thereby demonstrating their usefulness.

  12. Recent Enhancements to the Development of CFD-Based Aeroelastic Reduced-Order Models

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    2007-01-01

    Recent enhancements to the development of CFD-based unsteady aerodynamic and aeroelastic reduced-order models (ROMs) are presented. These enhancements include the simultaneous application of structural modes as CFD input, static aeroelastic analysis using a ROM, and matched-point solutions using a ROM. The simultaneous application of structural modes as CFD input enables the computation of the unsteady aerodynamic state-space matrices with a single CFD execution, independent of the number of structural modes. The responses obtained from a simultaneous excitation of the CFD-based unsteady aerodynamic system are processed using system identification techniques in order to generate an unsteady aerodynamic state-space ROM. Once the unsteady aerodynamic state-space ROM is generated, a method for computing the static aeroelastic response using this unsteady aerodynamic ROM and a state-space model of the structure, is presented. Finally, a method is presented that enables the computation of matchedpoint solutions using a single ROM that is applicable over a range of dynamic pressures and velocities for a given Mach number. These enhancements represent a significant advancement of unsteady aerodynamic and aeroelastic ROM technology.

  13. Sensitivity enhancement of grating interferometer based two-dimensional sensor arrays using two-wavelength readout

    SciTech Connect

    Ferhanoglu, Onur; Urey, Hakan

    2011-07-01

    Diffraction gratings integrated with microelectromechanical systems (MEMS) sensors offer displacement measurements with subnanometer sensitivity. However, the sensitivity of the interferometric readout may drop significantly based on the gap between the grating and the reference surface. A two-wavelength (2-{lambda}) readout method was previously tested using a single MEMS sensor for illustrating increased displacement measurement capability. This work demonstrates sensitivity enhancement on a sensor array with large scale parallelization ({approx}20,000 sensors). The statistical representation, which is developed to model sensitivity enhancement within a grating based sensor array, is supported by experimental results using a thermal sensor array. In the experiments, two lasers at different wavelengths (633 and 650 nm) illuminate the thermal sensor array from the backside, time-sequentially. The diffracted first order light from the array is imaged onto a single CCD camera. The target scene is reconstructed by observing the change in the first diffracted order diffraction intensity for both wavelengths. Merging of the data from two measurements with two lasers was performed by taking the larger of the two CCD measurements with respect to the reference image for each sensor. {approx}30% increase in the average sensitivity was demonstrated for a 160x120 pixel IR sensor array. Proposed architecture is also applicable to a variety of sensing applications, such as parallel biosensing and atomic force microscopy, for improved displacement measurements and enhanced sensitivity.

  14. Enhancing and controlling single-atom high-harmonic generation spectra: a time-dependent density-functional scheme

    NASA Astrophysics Data System (ADS)

    Castro, Alberto; Rubio, Angel; Gross, Eberhard K. U.

    2015-08-01

    High harmonic generation (HHG) provides a flexible framework for the development of coherent light sources in the extreme-ultraviolet and soft X-ray regimes. However it suffers from low conversion efficiencies as the control of the HHG spectral and temporal characteristics requires manipulating electron trajectories on attosecond time scale. The phase matching mechanism has been employed to selectively enhance specific quantum paths leading to HHG. A few important fundamental questions remain open, among those how much of the enhancement can be achieved by the single-emitter and what is the role of correlations (or the electronic structure) in the selectivity and control of HHG generation. Here we address those questions by examining computationally the possibility of optimizing the HHG spectrum of isolated hydrogen and helium atoms by shaping the slowly varying envelope of a 800 nm, 200-cycles long laser pulse. The spectra are computed with a fully quantum mechanical description, by explicitly computing the time-dependent dipole moment of the systems using a time-dependent density-functional approach (or the single-electron Schrödinger equation for the case of H), on top of a one-dimensional model. The sought optimization corresponds to the selective enhancement of single harmonics, which we find to be significant. This selectivity is entirely due to the single atom response, and not to any propagation or phase-matching effect. Moreover, we see that the electronic correlation plays a role in the determining the degree of optimization that can be obtained.

  15. Optical Sensors Based on Single Arm Thin Film Waveguide Interferometer

    NASA Technical Reports Server (NTRS)

    Sarkisov, S. S.; Diggs, D.; Curley, M.; Adamovsky, Grigory (Technical Monitor)

    2001-01-01

    Single-arm double-mode double-order optical waveguide interferometer utilizes interference between two propagating modes of different orders. Sensing effect results from the change in propagation conditions of the modes caused by the environment. The waveguide is made as an open asymmetric slab structure containing a dye-doped polymer film onto a fused quartz substrate. It is more sensitive to the change of environment than its conventional polarimetric analog using orthogonal modes (TE and TM) of the same order. The sensor still preserves the option of operating in polarimetric regime using a variety of mode combinations such as TE(sub 0)/TM(sub 0) (conventional), TE(sub 0)/TM(sub 1), TE(sub 1)/TM(sub 0), or TE(sub 1)/TM(sub 1) but can also work in nonpolarimetric regime using combinations TE(sub 0)/TM(sub 1) or TE(sub 0)/TM(sub 1). Utilization of different mode combinations simultaneously makes the device more versatile. Application of the sensor to gas sensing is based on doping polymer film with an organic indicator dye sensitive to a particular gas. Change of optical absorption spectrum of the dye caused by the gaseous pollutant results change of the reactive index of the dye-doped polymer film that can be detected by the sensor. As an indicator dyes, we utilize Bromocresol Purple doped into polymer poly(methyl) methacrylate, which shows a reversible growth of the absorption peak neat 600 nm after exposure to wet ammonia. We have built a breadboard prototype of the sensor with He-Ne laser as a light source and with a single mode fiber input and a multimode fiber output. The prototype showed sensitivity to temperature change of the order of 2 C per one full oscillation of the signal. The sensitivity of the sensor to the presence of wet ammonia is 200 ppm per one full oscillation of the signal. The further improvements include switching to a longer wavelength laser source (750-nm semiconductor laser), substitution of poly(methyl) methacrylate with hydrophilic

  16. Quantitative single-mode fiber based PS-OCT with single input polarization state using Mueller matrix.

    PubMed

    Ding, Zhenyang; Liang, Chia-Pin; Tang, Qinggong; Chen, Yu

    2015-05-01

    We present a simple but effective method to quantitatively measure the birefringence of tissue by an all single-mode fiber (SMF) based polarization-sensitive optical coherence tomography (PS-OCT) with single input polarization state. We theoretically verify that our SMF based PS-OCT system can quantify the phase retardance and optic axis orientation after a simple calibration process using a quarter wave plate (QWP). Based on the proposed method, the quantification of the phase retardance and optic axis orientation of a Berek polarization compensator and biological tissues were demonstrated. PMID:26137383

  17. RNA-seq based transcriptomic analysis of single bacterial cells.

    PubMed

    Wang, Jiangxin; Chen, Lei; Chen, Zixi; Zhang, Weiwen

    2015-11-01

    Gene-expression heterogeneity among individual cells determines the fate of a bacterial population. Here we report the first bacterial single-cell RNA sequencing (RNA-seq), BaSiC RNA-seq, a method integrating RNA isolation, cDNA synthesis and amplification, and RNA-seq analysis of the whole transcriptome of single cyanobacterium Synechocystis sp. PCC 6803 cells which typically contain approximately 5-7 femtogram total RNA per cell. We applied the method to 3 Synechocystis single cells at 24 h and 3 single cells at 72 h after nitrogen-starvation stress treatment, as well as their bulk-cell controls under the same conditions, to determine the heterogeneity upon environmental stress. With 82-98% and 31-48% of all putative Synechocystis genes identified in single cells of 24 and 72 h, respectively, the results demonstrated that the method could achieve good identification of the transcripts in single bacterial cells. In addition, the preliminary results from nitrogen-starved cells also showed a possible increasing gene-expression heterogeneity from 24 h to 72 h after nitrogen starvation stress. Moreover, preliminary analysis of single-cell transcriptomic datasets revealed that genes from the "Mobile elements" functional category have the most significant increase of gene-expression heterogeneity upon stress, which was further confirmed by single-cell RT-qPCR analysis of gene expression in 24 randomly selected cells. PMID:26331465

  18. Spatially uniform enhancement of single quantum dot emission using plasmonic grating decoupler

    PubMed Central

    Kumar, Arunandan; Weeber, Jean-Claude; Bouhelier, Alexandre; Eloi, Fabien; Buil, Stéphanie; Quélin, Xavier; Nasilowski, Michel; Dubertret, Benoit; Hermier, Jean-Pierre; Colas des Francs, Gérard

    2015-01-01

    We demonstrate a spatially uniform enhancement of individual quantum dot (QD) fluorescence emission using plasmonic grating decouplers on thin gold or silver films. Individual QDs are deposited within the grating in a controlled way to investigate the position dependency on both the radiation pattern and emission enhancement. We also describe the optimization of the grating decoupler. We achieve a fluorescence enhancement ~3 times higher than using flat plasmon film, for any QD position in the grating. PMID:26577533

  19. Spatially uniform enhancement of single quantum dot emission using plasmonic grating decoupler.

    PubMed

    Kumar, Arunandan; Weeber, Jean-Claude; Bouhelier, Alexandre; Eloi, Fabien; Buil, Stéphanie; Quélin, Xavier; Nasilowski, Michel; Dubertret, Benoit; Hermier, Jean-Pierre; Colas des Francs, Gérard

    2015-01-01

    We demonstrate a spatially uniform enhancement of individual quantum dot (QD) fluorescence emission using plasmonic grating decouplers on thin gold or silver films. Individual QDs are deposited within the grating in a controlled way to investigate the position dependency on both the radiation pattern and emission enhancement. We also describe the optimization of the grating decoupler. We achieve a fluorescence enhancement ~3 times higher than using flat plasmon film, for any QD position in the grating. PMID:26577533

  20. Spatially uniform enhancement of single quantum dot emission using plasmonic grating decoupler

    NASA Astrophysics Data System (ADS)

    Kumar, Arunandan; Weeber, Jean-Claude; Bouhelier, Alexandre; Eloi, Fabien; Buil, Stéphanie; Quélin, Xavier; Nasilowski, Michel; Dubertret, Benoit; Hermier, Jean-Pierre; Colas Des Francs, Gérard

    2015-11-01

    We demonstrate a spatially uniform enhancement of individual quantum dot (QD) fluorescence emission using plasmonic grating decouplers on thin gold or silver films. Individual QDs are deposited within the grating in a controlled way to investigate the position dependency on both the radiation pattern and emission enhancement. We also describe the optimization of the grating decoupler. We achieve a fluorescence enhancement ~3 times higher than using flat plasmon film, for any QD position in the grating.

  1. Peripheral nerve enhancement based on multi-scale Hessian matrix

    NASA Astrophysics Data System (ADS)

    Ma, Xiuli; Li, Hui; Zhou, Xueli; Wan, Wanggen

    2011-06-01

    To improve the precision of nerve segmentation in CT images, a new comparability function is proposed in this paper to enhance the contrast between nerve structure and other surrounding tissues. It is based on nerve's characteristic, i.e. dark tubular structure, and a thorough analysis of the multi-scale Hessian matrix. By comparability function, the gray range of interested nerve structure can be automatically determined, which combines the multi-scale Hessian matrix eigenvalues with intensity information of original nerve CT images. The experimental results show that the improved algorithm can not only enhance the continuous nerve of tubular structure, but also clearly reflect its bifurcations and crossovers. It is very important and significant to the computer-aided disease diagnosis of peripheral nervous system.

  2. Image contrast enhancement based on a local standard deviation model

    SciTech Connect

    Chang, Dah-Chung; Wu, Wen-Rong

    1996-12-31

    The adaptive contrast enhancement (ACE) algorithm is a widely used image enhancement method, which needs a contrast gain to adjust high frequency components of an image. In the literature, the gain is usually inversely proportional to the local standard deviation (LSD) or is a constant. But these cause two problems in practical applications, i.e., noise overenhancement and ringing artifact. In this paper a new gain is developed based on Hunt`s Gaussian image model to prevent the two defects. The new gain is a nonlinear function of LSD and has the desired characteristic emphasizing the LSD regions in which details are concentrated. We have applied the new ACE algorithm to chest x-ray images and the simulations show the effectiveness of the proposed algorithm.

  3. Anatomical noise in contrast-enhanced digital mammography. Part I. Single-energy imaging

    SciTech Connect

    Hill, Melissa L.; Yaffe, Martin J.; Mainprize, James G.; Carton, Ann-Katherine; Muller, Serge; Ebrahimi, Mehran; Jong, Roberta A.; Dromain, Clarisse

    2013-05-15

    Purpose: The use of an intravenously injected iodinated contrast agent could help increase the sensitivity of digital mammography by adding information on tumor angiogenesis. Two approaches have been made for clinical implementation of contrast-enhanced digital mammography (CEDM), namely, single-energy (SE) and dual-energy (DE) imaging. In each technique, pairs of mammograms are acquired, which are then subtracted with the intent to cancel the appearance of healthy breast tissue to permit sensitive detection and specific characterization of lesions. Patterns of contrast agent uptake in the healthy parenchyma, and uncanceled signal from background tissue create a 'clutter' that can mask or mimic an enhancing lesion. This type of 'anatomical noise' is often the limiting factor in lesion detection tasks, and thus, noise quantification may be useful for cascaded systems analysis of CEDM and for phantom development. In this work, the authors characterize the anatomical noise in CEDM clinical images and the authors evaluate the influence of the x-ray energy used for acquisition, the presence of iodine in the breast, and the timing of imaging postcontrast administration on anatomical noise. The results are presented in a two-part report, with SE CEDM described here, and DE CEDM in Part II. Methods: A power law is used to model anatomical noise in CEDM images. The exponent, {beta}, which describes the anatomical structure, and the constant {alpha}, which represents the magnitude of the noise, are determined from Wiener spectra (WS) measurements on images. A total of 42 SE CEDM cases from two previous clinical pilot studies are assessed. The parameters {alpha} and {beta} are measured both from unprocessed images and from subtracted images. Results: Consistent results were found between the two SE CEDM pilot studies, where a significant decrease in {beta} from a value of approximately 3.1 in the unprocessed images to between about 1.1 and 1.8 in the subtracted images was

  4. Magnetic field induced extraordinary photoluminescence enhancement in Er{sup 3+}:YVO{sub 4} single crystal

    SciTech Connect

    Zhang, Junpei; Wang, Xia; Tang, Chaoqun; Zhong, Zhiqiang; Ma, Zongwei; Wang, Shaoliang; Han, Yibo; Han, Jun-Bo Li, Liang

    2015-08-28

    A bright green photoluminescence (PL) from {sup 4}S{sub 3∕2} → {sup 4}I{sub 15∕2} emission band in Er{sup 3+}:YVO{sub 4} single crystal has been observed with the excitation of an argon laser at 488.0 nm. More than two orders of PL enhancement have been obtained under the effect of magnetic fields, and the enhancement factor f reaches 170 when the applied magnetic field is 7.7 T under the sample temperature of 4.2 K. Unusually, the PL enhancements only happen at some certain magnetic fields (B{sub c}s), and a decrease of sample temperature will lead to the increase of f and decrease of B{sub c}. The results confirm that this PL enhancement originates from the resonance excitation of the electron transitions induced by the cross of the laser energy and the absorption energy modulated by both the magnetic field and temperature. This special PL enhancement in Er{sup 3+}:YVO{sub 4} single crystal can be applied in the calibration of pulsed high magnetic field, detection of material fine energy structures, and modulation of magneto-optical devices.

  5. Continuous-wave, single-pass, single-frequency second-harmonic-generation at 266 nm based on birefringent-multicrystal scheme.

    PubMed

    Devi, Kavita; Parsa, S; Ebrahim-Zadeh, M

    2016-04-18

    We report the implementation of a compact cascaded multicrystal scheme based on birefringent crystals in critical phase-matching, for the generation of continuous-wave (cw) radiation in the deep ultraviolet (UV). The approach comprises a cascade of 4 single-pass second-harmonic-generation (SHG) stages in β-BaB2O4 (BBO) pumped by a single-frequency cw green source at 532 nm. A deep-UV cw output power of 37.7 mW at 266 nm has been obtained with a high passive power stability of 0.12% rms over more than 4 hours. Characterization and optimization of the system in each stage has been systematically performed. Angular phase-matching acceptance bandwidth under tight focusing in BBO, and spectral properties of the deep-UV radiation, have been studied. Theoretical calculations for SHG in the cascaded scheme based on birefringent phase-matching have been performed, and enhancement in UV power compared to single-stage single-pass scheme are studied. Theoretical comparison of BBO with other potential crystals for deep-UV generation in cascaded multicrystal scheme is also presented. PMID:27137310

  6. ENHANCED HYDROGEN PRODUCTION INTEGRATED WITH CO2 SEPARATION IN A SINGLE-STAGE REACTOR

    SciTech Connect

    Himanshu Gupta; Mahesh Iyer; Bartev Sakadjian; Liang-Shih Fan

    2005-03-10

    The water gas shift reaction (WGSR) plays a major role in increasing the hydrogen production from fossil fuels. However, the enhanced hydrogen production is limited by thermodynamic constrains posed by equilibrium limitations of WGSR. This project aims at using a mesoporous, tailored, highly reactive calcium based sorbent system for incessantly removing the CO{sub 2} product which drives the equilibrium limited WGSR forward. In addition, a pure sequestration ready CO{sub 2} stream is produced simultaneously. A detailed project vision with the description of integration of this concept with an existing coal gasification process for hydrogen production is presented. Conceptual reactor designs for investigating the simultaneous water gas shift and the CaO carbonation reactions are presented. In addition, the options for conducting in-situ sorbent regeneration under vacuum or steam are also reported. Preliminary, water gas shift reactions using high temperature shift catalyst and without any sorbent confirmed the equilibrium limitation beyond 600 C demonstrating a carbon monoxide conversion of about 80%. From detailed thermodynamic analyses performed for fuel gas streams from typical gasifiers the optimal operating temperature range to prevent CaO hydration and to effect its carbonation is between 575-830 C.

  7. Highly sensitive immunoassay of protein molecules based on single nanoparticle fluorescence detection in a nanowell

    NASA Astrophysics Data System (ADS)

    Han, Jin-Hee; Kim, Hee-Joo; Lakshmana, Sudheendra; Gee, Shirley J.; Hammock, Bruce D.; Kennedy, Ian M.

    2011-03-01

    A nanoarray based-single molecule detection system was developed for detecting proteins with extremely high sensitivity. The nanoarray was able to effectively trap nanoparticles conjugated with biological sample into nanowells by integrating with an electrophoretic particle entrapment system (EPES). The nanoarray/EPES is superior to other biosensor using immunoassays in terms of saving the amounts of biological solution and enhancing kinetics of antibody binding due to reduced steric hindrance from the neighboring biological molecules. The nanoarray patterned onto a layer of PMMA and LOL on conductive and transparent indium tin oxide (ITO)-glass slide by using e-beam lithography. The suspension of 500 nm-fluorescent (green emission)-carboxylated polystyrene (PS) particles coated with protein-A followed by BDE 47 polyclonal antibody was added to the chip that was connected to the positive voltage. The droplet was covered by another ITO-coated-glass slide and connected to a ground terminal. After trapping the particles into the nanowells, the solution of different concentrations of anti-rabbit- IgG labeled with Alexa 532 was added for an immunoassay. A single molecule detection system could quantify the anti-rabbit IgG down to atto-mole level by counting photons emitted from the fluorescent dye bound to a single nanoparticle in a nanowell.

  8. Chemiluminescence detector based on a single planar transparent digital microfluidic device.

    PubMed

    Zeng, Xiangyu; Zhang, Kaidi; Pan, Jian; Chen, Guoping; Liu, Ai-Qun; Fan, Shih-Kang; Zhou, Jia

    2013-07-21

    We report on a compact and portable prototype of chemiluminescence detector based on a single planar single polar transparent electrowetting-on-dielectrics (EWOD) device. The coupling ground model was proposed to build the EWOD device, which could be driven under a single polar voltage. Such a design not only simplified the chip construction and control circuit, but also had the potential for the ball-like droplet to focus the fluorescence and enhance the detection sensitivity. Simulations and experiments both confirmed that the greater the contact angle, the stronger the detected optical signal, and thus the higher the sensitivity. The sensitivity of the prototype detector to H2O2 was 5.45 mV (mmol L(-1))(-1) and the detection limit was 0.01 mmol L(-1) when the contact angle of the EWOD surface was 120°. To further increase the sensitivity and decrease the detection limit, the contact angle of the EWOD device could be increased and the dark current of the photomultiplier decreased. The prototype shows potential applications as highly sensitive, cost effective and portable immuno-detectors, especially as a blood glucose monitor. PMID:23674102

  9. Transmission enhancement based on strong interference in metal-semiconductor layered film for energy harvesting

    PubMed Central

    Li, Qiang; Du, Kaikai; Mao, Kening; Fang, Xu; Zhao, Ding; Ye, Hui; Qiu, Min

    2016-01-01

    A fundamental strategy to enhance optical transmission through a continuous metallic film based on strong interference dominated by interface phase shift is developed. In a metallic film coated with a thin semiconductor film, both transmission and absorption are simultaneously enhanced as a result of dramatically reduced reflection. For a 50-nm-thick Ag film, experimental transmission enhancement factors of 4.5 and 9.5 are realized by exploiting Ag/Si non-symmetric and Si/Ag/Si symmetric geometries, respectively. These planar layered films for transmission enhancement feature ultrathin thickness, broadband and wide-angle operation, and reduced resistance. Considering one of their potential applications as transparent metal electrodes in solar cells, a calculated 182% enhancement in the total transmission efficiency relative to a single metallic film is expected. This strategy relies on no patterned nanostructures and thereby may power up a wide spectrum of energy-harvesting applications such as thin-film photovoltaics and surface photocatalysis. PMID:27404510

  10. Transmission enhancement based on strong interference in metal-semiconductor layered film for energy harvesting.

    PubMed

    Li, Qiang; Du, Kaikai; Mao, Kening; Fang, Xu; Zhao, Ding; Ye, Hui; Qiu, Min

    2016-01-01

    A fundamental strategy to enhance optical transmission through a continuous metallic film based on strong interference dominated by interface phase shift is developed. In a metallic film coated with a thin semiconductor film, both transmission and absorption are simultaneously enhanced as a result of dramatically reduced reflection. For a 50-nm-thick Ag film, experimental transmission enhancement factors of 4.5 and 9.5 are realized by exploiting Ag/Si non-symmetric and Si/Ag/Si symmetric geometries, respectively. These planar layered films for transmission enhancement feature ultrathin thickness, broadband and wide-angle operation, and reduced resistance. Considering one of their potential applications as transparent metal electrodes in solar cells, a calculated 182% enhancement in the total transmission efficiency relative to a single metallic film is expected. This strategy relies on no patterned nanostructures and thereby may power up a wide spectrum of energy-harvesting applications such as thin-film photovoltaics and surface photocatalysis. PMID:27404510

  11. Enhancement of Tb(III) -Cu(II) Single-Molecule Magnet Performance through Structural Modification.

    PubMed

    Heras Ojea, María José; Milway, Victoria A; Velmurugan, Gunasekaran; Thomas, Lynne H; Coles, Simon J; Wilson, Claire; Wernsdorfer, Wolfgang; Rajaraman, Gopalan; Murrie, Mark

    2016-08-26

    We report a series of 3d-4f complexes {Ln2 Cu3 (H3 L)2 Xn } (X=OAc(-) , Ln=Gd, Tb or X=NO3 (-) , Ln=Gd, Tb, Dy, Ho, Er) using the 2,2'-(propane-1,3-diyldiimino)bis[2-(hydroxylmethyl)propane-1,3-diol] (H6 L) pro-ligand. All complexes, except that in which Ln=Gd, show slow magnetic relaxation in zero applied dc field. A remarkable improvement of the energy barrier to reorientation of the magnetisation in the {Tb2 Cu3 (H3 L)2 Xn } complexes is seen by changing the auxiliary ligands (X=OAc(-) for NO3 (-) ). This leads to the largest reported relaxation barrier in zero applied dc field for a Tb/Cu-based single-molecule magnet. Ab initio CASSCF calculations performed on mononuclear Tb(III) models are employed to understand the increase in energy barrier and the calculations suggest that the difference stems from a change in the Tb(III) coordination environment (C4v versus Cs ). PMID:27484259

  12. Enhancement of catalysis and functional expression of a bacterial laccase by single amino acid replacement.

    PubMed

    Nasoohi, Nikoo; Khajeh, Khosro; Mohammadian, Mahdi; Ranjbar, Bijan

    2013-09-01

    Structure-function relationships underlying laccases properties are very limited that makes these enzymes interesting for protein engineering approaches. Therefore in the current study, a thermostable laccase that was isolated from Bacillus sp. HR03 with the ability of bilirubin oxidation besides its laccase and tyrosinase activity is used. The extensive application of this enzyme is limited by its low expression level in Escherichia coli. Based on sequence alignments and structural studies, three single amino acid substitutions, D500G, D500E, D500S and a glycine insertion, are introduced using site-directed mutagenesis to evaluate the role of Asp(500) located in the C-terminal segment close to the T1 copper center. Substitution of aspartic acid with less sterically hindered, conserved residue such as glycine increase kcat (2.3 fold) and total activity (7.3 fold) which is accompanied by a significant increase in the expression level up to 3 fold. Biochemical characterization and structural studies using far-UV CD and fluorescence spectroscopy reveal the importance of C-terminal copper-binding loop in the laccase functional expression and catalytic efficiency. Kinetic characterization of the purified mutants toward 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), syringaldazine (SGZ) and bilirubin, shows that substrate specificity is left unchanged. PMID:23707861

  13. Superconducting transport in single and parallel double InAs quantum dot Josephson junctions with Nb-based superconducting electrodes

    SciTech Connect

    Baba, Shoji Sailer, Juergen; Deacon, Russell S.; Oiwa, Akira; Shibata, Kenji; Hirakawa, Kazuhiko; Tarucha, Seigo

    2015-11-30

    We report conductance and supercurrent measurements for InAs single and parallel double quantum dot Josephson junctions contacted with Nb or NbTiN superconducting electrodes. Large superconducting gap energy, high critical field, and large switching current are observed, all reflecting the features of Nb-based electrodes. For the parallel double dots, we observe an enhanced supercurrent when both dots are on resonance, which may reflect split Cooper pair tunneling.

  14. Toward Low-Voltage and Bendable X-Ray Direct Detectors Based on Organic Semiconducting Single Crystals.

    PubMed

    Ciavatti, Andrea; Capria, Ennio; Fraleoni-Morgera, Alessandro; Tromba, Giuliana; Dreossi, Diego; Sellin, Paul J; Cosseddu, Piero; Bonfiglio, Annalisa; Fraboni, Beatrice

    2015-11-25

    Organic materials have been mainly proposed as ionizing radiation detectors in the indirect conversion approach. The first thin and bendable X-ray direct detectors are realized (directly converting X-photons into an electric signal) based on organic semiconducting single crystals that possess enhanced sensitivity, low operating voltage (≈5 V), and a minimum detectable dose rate of 50 μGy s(-1) . PMID:26445101

  15. Single-Dose Replication-Defective VSV-based Nipah Virus Vaccines Provide Protection from Lethal Challenge in Syrian Hamsters

    PubMed Central

    Lo, Michael K.; Bird, Brian H.; Chattopadhyay, Anasuya; Drew, Clifton P.; Martin, Brock E.; Coleman, Joann D.; Rose, John K.; Nichol, Stuart T.; Spiropoulou, Christina F.

    2013-01-01

    Nipah virus (NiV) continues to cause outbreaks of fatal human encephalitis due to spillover from its bat reservoir. We determined that a single dose of replication-defective vesicular stomatitis virus (VSV)-based vaccine vectors expressing either the NiV fusion (F) or attachment (G) glycoproteins protected hamsters from over 1000 times LD50 NiV challenge. This highly effective single-dose protection coupled with an enhanced safety profile makes these candidates ideal for potential use in livestock and humans. PMID:24184127

  16. Extrapolated HPGe efficiency estimates based on a single calibration measurement

    SciTech Connect

    Winn, W.G.

    1994-07-01

    Gamma spectroscopists often must analyze samples with geometries for which their detectors are not calibrated. The effort to experimentally recalibrate a detector for a new geometry can be quite time consuming, causing delay in reporting useful results. Such concerns have motivated development of a method for extrapolating HPGe efficiency estimates from an existing single measured efficiency. Overall, the method provides useful preliminary results for analyses that do not require exceptional accuracy, while reliably bracketing the credible range. The estimated efficiency {element_of} for a uniform sample in a geometry with volume V is extrapolated from the measured {element_of}{sub 0} of the base sample of volume V{sub 0}. Assuming all samples are centered atop the detector for maximum efficiency, {element_of} decreases monotonically as V increases about V{sub 0}, and vice versa. Extrapolation of high and low efficiency estimates {element_of}{sub h} and {element_of}{sub L} provides an average estimate of {element_of} = 1/2 [{element_of}{sub h} + {element_of}{sub L}] {plus_minus} 1/2 [{element_of}{sub h} {minus} {element_of}{sub L}] (general) where an uncertainty D{element_of} = 1/2 ({element_of}{sub h} {minus} {element_of}{sub L}] brackets limits for a maximum possible error. The {element_of}{sub h} and {element_of}{sub L} both diverge from {element_of}{sub 0} as V deviates from V{sub 0}, causing D{element_of} to increase accordingly. The above concepts guided development of both conservative and refined estimates for {element_of}.

  17. Microbiosensors based on DNA modified single-walled carbon nanotube and Pt black nanocomposites.

    PubMed

    Shi, Jin; Cha, Tae-Gon; Claussen, Jonathan C; Diggs, Alfred R; Choi, Jong Hyun; Porterfield, D Marshall

    2011-12-01

    Glucose and ATP biosensors have important applications in diagnostics and research. Biosensors based on conventional materials suffer from low sensitivity and low spatial resolution. Our previous work has shown that combining single-walled carbon nanotubes (SWCNTs) with Pt nanoparticles can significantly enhance the performance of electrochemical biosensors. The immobilization of SWCNTs on biosensors remains challenging due to the aqueous insolubility originating from van der Waals forces. In this study, we used single-stranded DNA (ssDNA) to modify SWCNTs to increase solubility in water. This allowed us to explore new schemes of combining ssDNA-SWCNT and Pt black in aqueous media systems. The result is a nanocomposite with enhanced biosensor performance. The surface morphology, electroactive surface area, and electrocatalytic performance of different fabrication protocols were studied and compared. The ssDNA-SWCNT/Pt black nanocomposite constructed by a layered scheme proved most effective in terms of biosensor activity. The key feature of this protocol is the exploitation of ssDNA-SWCNTs as molecular templates for Pt black electrodeposition. The glucose and ATP microbiosensors fabricated on this platform exhibited high sensitivity (817.3 nA/mM and 45.6 nA/mM, respectively), wide linear range (up to 7 mM and 510 μM), low limit of detection (1 μM and 2 μM) and desirable selectivity. This work is significant to biosensor development because this is the first demonstration of ssDNA-SWCNT/Pt black nanocomposite as a platform for constructing both single-enzyme and multi-enzyme biosensors for physiological applications. PMID:21858297

  18. Enhancing Traditional Behavioral Parent Training for Single Mothers of Children with ADHD

    ERIC Educational Resources Information Center

    Chacko, Anil; Wymbs, Brian T.; Wymbs, Frances A.; Pelham, William E.; Swanger-Gagne, Michelle S.; Girio, Erin; Pirvics, Lauma; Herbst, Laura; Guzzo, Jamie; Phillips, Carlie; O'Connor, Briannon

    2009-01-01

    Behavioral parent training is an efficacious treatment for attention-deficit/hyperactivity disorder (ADHD). However, single-mother households are at high risk for poor outcomes during and following behavioral parent training. This study randomly assigned cohorts of 120 single mothers of children (ages 5-12 years) with ADHD to a waitlist control…

  19. Enhancing Girls' Learning through Single-Sex Education: Evidence and a Policy Conundrum.

    ERIC Educational Resources Information Center

    Jimenez, Emmanuel; Lockheed, Marlaine E.

    1989-01-01

    Relative performance of single-sex education and coeducation for 3,265 eighth graders in Thailand was assessed. Scores on standardized mathematics tests indicate that single-sex schools are more effective for females, whereas coeducational schools are more effective for males in improving student mathematics performance. These differentials are…

  20. Enhancing Accountability in Behavioral Consultation through the Use of Single-Case Designs

    ERIC Educational Resources Information Center

    Segool, Natasha K.; Brinkman, Tara M.; Carlson, John S.

    2007-01-01

    Single-case design and progress monitoring methodologies are efficient and cost-effective strategies for increasing accountability for indirect service provision. Single-case design conceptualizes the treatment of an individual as an experimental process that can be monitored over time and evaluated for effectiveness. Increasingly in clinical,…

  1. Dengue Virus prM-Specific Human Monoclonal Antibodies with Virus Replication-Enhancing Properties Recognize a Single Immunodominant Antigenic Site

    PubMed Central

    Smith, Scott A.; Nivarthi, Usha K.; de Alwis, Ruklanthi; Kose, Nurgun; Sapparapu, Gopal; Bombardi, Robin; Kahle, Kristen M.; Pfaff, Jennifer M.; Lieberman, Sherri; Doranz, Benjamin J.

    2015-01-01

    ABSTRACT The proposed antibody-dependent enhancement (ADE) mechanism for severe dengue virus (DENV) disease suggests that non-neutralizing serotype cross-reactive antibodies generated during a primary infection facilitate entry into Fc receptor bearing cells during secondary infection, resulting in enhanced viral replication and severe disease. One group of cross-reactive antibodies that contributes considerably to this serum profile target the premembrane (prM) protein. We report here the isolation of a large panel of naturally occurring human monoclonal antibodies (MAbs) obtained from subjects following primary DENV serotype 1, 2, or 3 or secondary natural DENV infections or following primary DENV serotype 1 live attenuated virus vaccination to determine the antigenic landscape on the prM protein that is recognized by human antibodies. We isolated 25 prM-reactive human MAbs, encoded by diverse antibody-variable genes. Competition-binding studies revealed that all of the antibodies bound to a single major antigenic site on prM. Alanine scanning-based shotgun mutagenesis epitope mapping studies revealed diverse patterns of fine specificity of various clones, suggesting that different antibodies use varied binding poses to recognize several overlapping epitopes within the immunodominant site. Several of the antibodies interacted with epitopes on both prM and E protein residues. Despite the diverse genetic origins of the antibodies and differences in the fine specificity of their epitopes, each of these prM-reactive antibodies was capable of enhancing the DENV infection of Fc receptor-bearing cells. IMPORTANCE Antibodies may play a critical role in the pathogenesis of enhanced DENV infection and disease during secondary infections. A substantial proportion of enhancing antibodies generated in response to natural dengue infection are directed toward the prM protein. The fine specificity of human prM antibodies is not understood. Here, we isolated a panel of dengue pr

  2. Atom devices based on single dopants in silicon nanostructures

    PubMed Central

    2011-01-01

    Silicon field-effect transistors have now reached gate lengths of only a few tens of nanometers, containing a countable number of dopants in the channel. Such technological trend brought us to a research stage on devices working with one or a few dopant atoms. In this work, we review our most recent studies on key atom devices with fundamental structures of silicon-on-insulator MOSFETs, such as single-dopant transistors, preliminary memory devices, single-electron turnstile devices and photonic devices, in which electron tunneling mediated by single dopant atoms is the essential transport mechanism. Furthermore, observation of individual dopant potential in the channel by Kelvin probe force microscopy is also presented. These results may pave the way for the development of a new device technology, i.e., single-dopant atom electronics. PMID:21801408

  3. Nanoscale mapping of excitonic processes in single-layer MoS2 using tip-enhanced photoluminescence microscopy.

    PubMed

    Su, Weitao; Kumar, Naresh; Mignuzzi, Sandro; Crain, Jason; Roy, Debdulal

    2016-05-19

    In two-dimensional (2D) semiconductors, photoluminescence originating from recombination processes involving neutral electron-hole pairs (excitons) and charged complexes (trions) is strongly affected by the localized charge transfer due to inhomogeneous interactions with the local environment and surface defects. Herein, we demonstrate the first nanoscale mapping of excitons and trions in single-layer MoS2 using the full spectral information obtained via tip-enhanced photoluminescence (TEPL) microscopy along with tip-enhanced Raman spectroscopy (TERS) imaging of a 2D flake. Finally, we show the mapping of the PL quenching centre in single-layer MoS2 with an unprecedented spatial resolution of 20 nm. In addition, our research shows that unlike in aperture-scanning near field microscopy, preferential exciton emission mapping at the nanoscale using TEPL and Raman mapping using TERS can be obtained simultaneously using this method that can be used to correlate the structural and excitonic properties. PMID:27152366

  4. Optimization of Polarimetric Contrast Enhancement Based on Fisher Criterion

    NASA Astrophysics Data System (ADS)

    Deng, Qiming; Chen, Jiong; Yang, Jian

    The optimization of polarimetric contrast enhancement (OPCE) is a widely used method for maximizing the received power ratio of a desired target versus an undesired target (clutter). In this letter, a new model of the OPCE is proposed based on the Fisher criterion. By introducing the well known two-class problem of linear discriminant analysis (LDA), the proposed model is to enlarge the normalized distance of mean value between the target and the clutter. In addition, a cross-iterative numerical method is proposed for solving the optimization with a quadratic constraint. Experimental results with the polarimetric SAR (POLSAR) data demonstrate the effectiveness of the proposed method.

  5. Single-cell printing based on impedance detection

    PubMed Central

    Schoendube, J.; Wright, D.; Zengerle, R.; Koltay, P.

    2015-01-01

    Label-free isolation of single cells is essential for the growing field of single-cell analysis. Here, we present a device which prints single living cells encapsulated in free-flying picoliter droplets. It combines inkjet printing and impedance flow cytometry. Droplet volume can be controlled in the range of 500 pl–800 pl by piezo actuator displacement. Two sets of parallel facing electrodes in a 50 μm × 55 μm channel are applied to measure the presence and velocity of a single cell in real-time. Polystyrene beads with <5% variation in diameter generated signal variations of 12%–17% coefficients of variation. Single bead efficiency (i.e., printing events with single beads vs. total number of printing events) was 73% ± 11% at a throughput of approximately 9 events/min. Viability of printed HeLa cells and human primary fibroblasts was demonstrated by culturing cells for at least eight days. PMID:25759750

  6. An organic-inorganic broadband photodetector based on a single polyaniline nanowire doped with quantum dots.

    PubMed

    Yang, Xianguang; Liu, Yong; Lei, Hongxiang; Li, Baojun

    2016-08-25

    The capability to detect light over a broad waveband is highly important for practical optoelectronic applications and has been achieved with photodetectors of one-dimensional inorganic nanomaterials such as Si, ZnO, and GaN. However, achieving high speed responsivity over an entire waveband within such a photodetector remains a challenge. Here we demonstrate a broadband photodetector using a single polyaniline nanowire doped with quantum dots that is highly responsive over a broadband from 350 to 700 nm. The high responsivity is due to the high density of trapping states at the enormous interfaces between polyaniline and quantum dots. The interface trapping can effectively reduce the recombination rate and enhance the efficiency for light detection. Furthermore, a tunable spectral range can be achieved by size-based spectral tuning of quantum dots. The use of organic-inorganic hybrid polyaniline nanowires in broadband photodetection may offer novel functionalities in optoelectronic devices and circuits. PMID:27417337

  7. Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection

    NASA Astrophysics Data System (ADS)

    Shopova, S. I.; Rajmangal, R.; Holler, S.; Arnold, S.

    2011-06-01

    We describe and demonstrate a physical mechanism that substantially enhances the label-free sensitivity of a whispering-gallery-mode biosensor for the detection of individual nanoparticles in aqueous solution. It involves the interaction of dielectric nanoparticle in an equatorial carousel orbit with a plasmonic nanoparticle bound at the microparticle's equator. As the dielectric particle parks to hot spots on the plasmonic particle we observe frequency shifts that are enhanced by a factor of 4, consistent with a simple reactive model. Once optimized the enhancement by this mechanism should exceed several orders of magnitude, putting individual protein within reach.

  8. A Triplex Ribozyme Expression System Based on a Single Hairpin Ribozyme

    PubMed Central

    Aquino-Jarquin, Guillermo; Benítez-Hess, María Luisa; DiPaolo, Joseph A.

    2008-01-01

    Triplex ribozyme (RZ) configurations allow for the individual activity of trans-acting RZs in multiple expression cassettes (multiplex), thereby increasing target cleavage relative to conventionally expressed RZs. Although hairpin RZs have been advantageously compared to hammerhead RZs, their longer size and structural features complicated triplex design. We present a triplex expression system based on a single hairpin RZ with trans-cleavage capability and simple engineering. The system was tested in vitro using cis- and trans-cleavage kinetic assays against a known target RNA from HPV-16 E6/E7 mRNA. Single and multiplex triplex RZ constructs were more efficient in cleaving the target than tandem-cloned hairpin RZs, suggesting that the release of individual RZs enhanced trans-cleavage kinetics. Multiplex systems constructed with two different hairpin RZs resulted in better trans-cleavage compared to standard double-RZ constructs. In addition, the triplex RZ performed cis- and trans-cleavage in cervical cancer cells. The use of triplex configurations with multiplex RZs permit differential targeting of the same or different RNA, thus improving potential use against unstable targets. This prototype will provide the basis for the development of future RZ-based therapies and technologies. PMID:18707243

  9. A triplex ribozyme expression system based on a single hairpin ribozyme.

    PubMed

    Aquino-Jarquin, Guillermo; Benítez-Hess, María Luisa; DiPaolo, Joseph A; Alvarez-Salas, Luis M

    2008-09-01

    Triplex ribozyme (RZ) configurations allow for the individual activity of trans-acting RZs in multiple expression cassettes (multiplex), thereby increasing target cleavage relative to conventionally expressed RZs. Although hairpin RZs have been advantageously compared to hammerhead RZs, their longer size and structural features complicated triplex design. We present a triplex expression system based on a single hairpin RZ with transcleavage capability and simple engineering. The system was tested in vitro using cis- and trans-cleavage kinetic assays against a known target RNA from HPV-16 E6/E7 mRNA. Single and multiplex triplex RZ constructs were more efficient in cleaving the target than tandem-cloned hairpin RZs, suggesting that the release of individual RZs enhanced trans-cleavage kinetics. Multiplex systems constructed with two different hairpin RZs resulted in better trans-cleavage compared to standard double-RZ constructs. In addition, the triplex RZ performed cis- and trans-cleavage in cervical cancer cells. The use of triplex configurations with multiplex RZs permit differential targeting of the same or different RNA, thus improving potential use against unstable targets. This prototype will provide the basis for the development of future RZ-based therapies and technologies. PMID:18707243

  10. Ultrasensitive organic phototransistors with multispectral response based on thin-film/single-crystal bilayer structures

    SciTech Connect

    Pinto, R. M.; Gouveia, W.; Neves, A. I. S.; Alves, H.

    2015-11-30

    We report on highly efficient organic phototransistors (OPTs) based on thin-film/single-crystal planar bilayer junctions between 5,6,11,12-tetraphenyltetracene (rubrene) and [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PC{sub 61}BM). The OPTs show good field-effect characteristics in the dark, with high hole-mobility (4–5 cm{sup 2} V{sup −1} s{sup −1}), low-contact resistance (20 kΩ cm), and low-operating voltage (≤5 V). Excellent sensing capabilities allow for light detection in the 400–750 nm range, with photocurrent/dark current ratio as high as 4 × 10{sup 4}, responsivity on the order of 20 AW{sup −1} at 27 μW cm{sup −2}, and an external quantum efficiency of 52 000%. Photocurrent generation is attributed to enhanced electron and hole transfer at the interface between rubrene and PC{sub 61}BM, and fast response times are observed as a consequence of the high-mobility of the interfaces. The optoelectronic properties exhibited in these OPTs outperform those typically provided by a-Si based devices, enabling future applications where multifunctionality in a single-device is sought.

  11. Single-layer and dual-layer contrast-enhanced mammography using amorphous selenium flat panel detectors

    NASA Astrophysics Data System (ADS)

    Allec, N.; Abbaszadeh, S.; Karim, K. S.

    2011-09-01

    The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml-1 in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.

  12. Short Peptides Enhance Single Cell Adhesion and Viability onMicroarrays

    SciTech Connect

    Veiseh, Mandana; Veiseh, Omid; Martin, Michael C.; Asphahani,Fareid; Zhang, Miqin

    2007-01-19

    Single cell patterning holds important implications forbiology, biochemistry, biotechnology, medicine, and bioinformatics. Thechallenge for single cell patterning is to produce small islands hostingonly single cells and retaining their viability for a prolonged period oftime. This study demonstrated a surface engineering approach that uses acovalently bound short peptide as a mediator to pattern cells withimproved single cell adhesion and prolonged cellular viabilityon goldpatterned SiO2 substrates. The underlying hypothesis is that celladhesion is regulated bythe type, availability, and stability ofeffective cell adhesion peptides, and thus covalently bound shortpeptides would promote cell spreading and, thus, single cell adhesion andviability. The effectiveness of this approach and the underlyingmechanism for the increased probability of single cell adhesion andprolonged cell viability by short peptides were studied by comparingcellular behavior of human umbilical cord vein endothelial cells on threemodelsurfaces whose gold electrodes were immobilized with fibronectin,physically adsorbed Arg-Glu-Asp-Val-Tyr, and covalently boundLys-Arg-Glu-Asp-Val-Tyr, respectively. The surface chemistry and bindingproperties were characterized by reflectance Fourier transform infraredspectroscopy. Both short peptides were superior to fibronectin inproducing adhesion of only single cells, whereas the covalently boundpeptide also reduced apoptosis and necrosisof adhered cells. Controllingcell spreading by peptide binding domains to regulate apoptosis andviability represents a fundamental mechanism in cell-materialsinteraction and provides an effective strategy in engineering arrays ofsingle cells.

  13. DNA-Directed Antibody Immobilization for Enhanced Detection of Single Viral Pathogens.

    PubMed

    Seymour, Elif; Daaboul, George G; Zhang, Xirui; Scherr, Steven M; Ünlü, Nese Lortlar; Connor, John H; Ünlü, M Selim

    2015-10-20

    Here, we describe the use of DNA-conjugated antibodies for rapid and sensitive detection of whole viruses using a single-particle interferometric reflectance imaging sensor (SP-IRIS), a simple, label-free biosensor capable of imaging individual nanoparticles. First, we characterize the elevation of the antibodies conjugated to a DNA sequence on a three-dimensional (3-D) polymeric surface using a fluorescence axial localization technique, spectral self-interference fluorescence microscopy (SSFM). Our results indicate that using DNA linkers results in significant elevation of the antibodies on the 3-D polymeric surface. We subsequently show the specific detection of pseudotyped vesicular stomatitis virus (VSV) as a model virus on SP-IRIS platform. We demonstrate that DNA-conjugated antibodies improve the capture efficiency by achieving the maximal virus capture for an antibody density as low as 0.72 ng/mm(2), whereas for unmodified antibody, the optimal virus capture requires six times greater antibody density on the sensor surface. We also show that using DNA conjugated anti-EBOV GP (Ebola virus glycoprotein) improves the sensitivity of EBOV-GP carrying VSV detection compared to directly immobilized antibodies. Furthermore, utilizing a DNA surface for conversion to an antibody array offers an easier manufacturing process by replacing the antibody printing step with DNA printing. The DNA-directed immobilization technique also has the added advantages of programmable sensor surface generation based on the need and resistance to high temperatures required for microfluidic device fabrication. These capabilities improve the existing SP-IRIS technology, resulting in a more robust and versatile platform, ideal for point-of-care diagnostics applications. PMID:26378807

  14. Enhanced solar energy conversion in Au-doped, single-wall carbon nanotube-Si heterojunction cells

    PubMed Central

    2013-01-01

    The power conversion efficiency (PCE) of single-wall carbon nanotube (SCNT)/n-type crystalline silicon heterojunction photovoltaic devices is significantly improved by Au doping. It is found that the overall PCE was significantly increased to threefold. The efficiency enhancement of photovoltaic devices is mainly the improved electrical conductivity of SCNT by increasing the carrier concentration and the enhancing the absorbance of active layers by Au nanoparticles. The Au doping can lead to an increase of the open circuit voltage through adjusting the Fermi level of SCNT and then enhancing the built-in potential in the SCNT/n-Si junction. This fabrication is easy, cost-effective, and easily scaled up, which demonstrates that such Au-doped SCNT/Si cells possess promising potential in energy harvesting application. PMID:23663755

  15. Resolving single fluorophores within dense ensembles: contrast limits of tip-enhanced fluorescence microscopy.

    PubMed

    Mangum, Benjamin D; Mu, Chun; Gerton, Jordan M

    2008-04-28

    We investigate the limits of one-photon fluorescence as a contrast mechanism in nanoscale-resolution tip-enhanced optical microscopy. Specifically, we examine the magnitude of tip-induced signal enhancement needed to resolve individual fluorophores within densely-packed ensembles. Modulation of fluorescence signals induced by an oscillating tip followed by demodulation with a lock-in amplifier increases image contrast by nearly two orders of magnitude. A theoretical model of this simple modulation/ demodulation scheme predicts an optimal value for the tip-oscillation amplitude that agrees with experimental measurements. Further, as an important step toward the eventual application of tip-enhanced fluorescence microscopy to the nanoscale structural analysis of biomolecular systems, we show that requisite signal enhancement factors are within the capabilities of commercially available silicon tips. PMID:18545320

  16. Hyaluronidase To Enhance Nanoparticle-Based Photodynamic Tumor Therapy.

    PubMed

    Gong, Hua; Chao, Yu; Xiang, Jian; Han, Xiao; Song, Guosheng; Feng, Liangzhu; Liu, Jingjing; Yang, Guangbao; Chen, Qian; Liu, Zhuang

    2016-04-13

    Photodynamic therapy (PDT) is considered as a safe and selective way to treat a wide range of cancers as well as nononcological disorders. However, as oxygen is required in the process of PDT, the hypoxic tumor microenvironment has largely limited the efficacy of PDT to treat tumors especially those with relatively large sizes. To this end, we uncover that hyaluronidase (HAase), which breaks down hyaluronan, a major component of extracellular matrix (ECM) in tumors, would be able to enhance the efficacy of nanoparticle-based PDT for in vivo cancer treatment. It is found that the administration of HAase would lead to the increase of tumor vessel densities and effective vascular areas, resulting in increased perfusion inside the tumor. As a result, the tumor uptake of nanomicelles covalently linked with chlorine e6 (NM-Ce6) would be increased by ∼2 folds due to the improved "enhanced permeability and retention" (EPR) effect, while the tumor oxygenation level also shows a remarkable increase, effectively relieving the hypoxia state inside the tumor. Those effects taken together offer significant benefits in greatly improving the efficacy of PDT delivered by nanoparticles. Taking advantage of the effective migration of HAase from the primary tumor to its drainage sentinel lymph nodes (SLNs), we further demonstrate that this strategy would be helpful to the treatment of metastatic lymph nodes by nanoparticle-based PDT. Lastly, both enhanced EPR effect of NM-Ce6 and relieved hypoxia state of tumor are also observed after systemic injection of modified HAase, proving its potential for clinical translation. Therefore, our work presents a new concept to improve the efficacy of nanomedicine by modulating the tumor microenvironment. PMID:27022664

  17. Bright source of indistinguishable photons based on cavity-enhanced parametric down-conversion utilizing the cluster effect

    NASA Astrophysics Data System (ADS)

    Ahlrichs, Andreas; Benson, Oliver

    2016-01-01

    We present a bright, simple-to-setup, single-mode source of indistinguishable photon pairs at the cesium D1-line with a bandwidth of about 100 MHz. The source is based on degenerate, cavity enhanced spontaneous parametric down-conversion utilizing the cluster effect. The setup relies on a microcontroller-based digital locking system. A brightness of 1.1 ×103/(s m W ) detected, indistinguishable photon pairs could be measured.

  18. Enhanced Weight based DSR for Mobile Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Verma, Samant; Jain, Sweta

    2011-12-01

    Routing in ad hoc network is a great problematic, since a good routing protocol must ensure fast and efficient packet forwarding, which isn't evident in ad hoc networks. In literature there exists lot of routing protocols however they don't include all the aspects of ad hoc networks as mobility, device and medium constraints which make these protocols not efficient for some configuration and categories of ad hoc networks. Thus in this paper we propose an improvement of Weight Based DSR in order to include some of the aspects of ad hoc networks as stability, remaining battery power, load and trust factor and proposing a new approach Enhanced Weight Based DSR.

  19. Plasmonic nanoantenna based triggered single-photon source

    NASA Astrophysics Data System (ADS)

    Straubel, J.; Filter, R.; Rockstuhl, C.; Słowik, K.

    2016-05-01

    Highly integrated single-photon sources are key components in future quantum-optical circuits. Whereas the probabilistic generation of single photons can routinely be done by now, their triggered generation is a much greater challenge. Here, we describe the triggered generation of single photons in a hybrid plasmonic device. It consists of a lambda-type quantum emitter coupled to a multimode optical nanoantenna. For moderate interaction strengths between the subsystems, the description of the quantum optical evolution can be simplified by an adiabatic elimination of the electromagnetic fields of the nanoantenna modes. This leads to an insightful analysis of the emitter's dynamics, entails the opportunity to understand the physics of the device, and to identify parameter regimes for a desired operation. Even though the approach presented in this work is general, we consider a simple exemplary design of a plasmonic nanoantenna, made of two silver nanorods, suitable for triggered generation of single photons. The investigated device realizes single photons, triggered, potentially at high rates, and using low device volumes.

  20. Enhancing interprofessional student practice through a case-based model.

    PubMed

    Cahill, Mairead; O'Donnell, Marie; Warren, Alison; Taylor, Ann; Gowan, Olive

    2013-07-01

    Healthcare workers are increasingly being called upon to work collaboratively in practice to improve patient care and it seems imperative that interprofessional working should be mirrored in student education, especially during placements. This short report describes a qualitative evaluation of a client-centered, case-based model of interprofessional education (IPE) which aimed to improve interprofessional communication and team working skills for the students and therapists involved in practice placements. The IPE project implemented the meet, assess, goal set, plan, implement, evaluate (MAGPIE) framework for interprofessional case-based teaching (Queensland-Health (2008)) alongside the International Classification of Function, Disability and Health (ICF) (WHO, 2001). Three separate focus groups explored the experiences of the students, therapists and placement facilitators from the disciplines of occupational therapy, physiotherapy and speech and language therapy. Three themes emerged: IPE as a motivating experience, IPE enhancing the depth of learning and clarity of expectations. This report concluded that IPE in the clinical setting, using the client-centered MAGPIE model, provided a strong foundation for enhanced learning in practice education contexts. PMID:23398325

  1. Detail enhancement of blurred infrared images based on frequency extrapolation

    NASA Astrophysics Data System (ADS)

    Xu, Fuyuan; Zeng, Deguo; Zhang, Jun; Zheng, Ziyang; Wei, Fei; Wang, Tiedan

    2016-05-01

    A novel algorithm for enhancing the details of the blurred infrared images based on frequency extrapolation has been raised in this paper. Unlike other researchers' work, this algorithm mainly focuses on how to predict the higher frequency information based on the Laplacian pyramid separation of the blurred image. This algorithm uses the first level of the high frequency component of the pyramid of the blurred image to reverse-generate a higher, non-existing frequency component, and adds back to the histogram equalized input blurred image. A simple nonlinear operator is used to analyze the extracted first level high frequency component of the pyramid. Two critical parameters are participated in the calculation known as the clipping parameter C and the scaling parameter S. The detailed analysis of how these two parameters work during the procedure is figure demonstrated in this paper. The blurred image will become clear, and the detail will be enhanced due to the added higher frequency information. This algorithm has the advantages of computational simplicity and great performance, and it can definitely be deployed in the real-time industrial applications. We have done lots of experiments and gave illustrations of the algorithm's performance in this paper to convince its effectiveness.

  2. Prism-based single-camera system for stereo display

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Cui, Xiaoyu; Wang, Zhiguo; Chen, Hongsheng; Fan, Heyu; Wu, Teresa

    2016-06-01

    This paper combines the prism and single camera and puts forward a method of stereo imaging with low cost. First of all, according to the principle of geometrical optics, we can deduce the relationship between the prism single-camera system and dual-camera system, and according to the principle of binocular vision we can deduce the relationship between binoculars and dual camera. Thus we can establish the relationship between the prism single-camera system and binoculars and get the positional relation of prism, camera, and object with the best effect of stereo display. Finally, using the active shutter stereo glasses of NVIDIA Company, we can realize the three-dimensional (3-D) display of the object. The experimental results show that the proposed approach can make use of the prism single-camera system to simulate the various observation manners of eyes. The stereo imaging system, which is designed by the method proposed by this paper, can restore the 3-D shape of the object being photographed factually.

  3. Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths

    NASA Astrophysics Data System (ADS)

    Balet, L.; Francardi, M.; Gerardino, A.; Chauvin, N.; Alloing, B.; Zinoni, C.; Monat, C.; Li, L. H.; Le Thomas, N.; Houdré, R.; Fiore, A.

    2007-09-01

    The authors demonstrate coupling at 1.3μm between single InAs quantum dots (QDs) and a mode of a two dimensional photonic crystal (PhC) defect cavity with a quality factor of 15 000. By spectrally tuning the cavity mode, they induce coupling with excitonic lines. They perform a time integrated and time-resolved photoluminescence and measure an eightfold increase in the spontaneous emission rate inducing a coupling efficiency of 96%. These measurements indicate the potential of single QDs in PhC cavities as efficient single-photon emitters for fiber-based quantum information processing applications.

  4. Villin Severing Activity Enhances Actin-based Motility In Vivo

    PubMed Central

    Revenu, Céline; Courtois, Matthieu; Michelot, Alphée; Sykes, Cécile; Louvard, Daniel

    2007-01-01

    Villin, an actin-binding protein associated with the actin bundles that support microvilli, bundles, caps, nucleates, and severs actin in a calcium-dependant manner in vitro. We hypothesized that the severing activity of villin is responsible for its reported role in enhancing cell plasticity and motility. To test this hypothesis, we chose a loss of function strategy and introduced mutations in villin based on sequence comparison with CapG. By pyrene-actin assays, we demonstrate that this mutant has a strongly reduced severing activity, whereas nucleation and capping remain unaffected. The bundling activity and the morphogenic effects of villin in cells are also preserved in this mutant. We thus succeeded in dissociating the severing from the three other activities of villin. The contribution of villin severing to actin dynamics is analyzed in vivo through the actin-based movement of the intracellular bacteria Shigella flexneri in cells expressing villin and its severing variant. The severing mutations abolish the gain of velocity induced by villin. To further analyze this effect, we reconstituted an in vitro actin-based bead movement in which the usual capping protein is replaced by either the wild type or the severing mutant of villin. Confirming the in vivo results, villin-severing activity enhances the velocity of beads by more than two-fold and reduces the density of actin in the comets. We propose a model in which, by severing actin filaments and capping their barbed ends, villin increases the concentration of actin monomers available for polymerization, a mechanism that might be paralleled in vivo when an enterocyte undergoes an epithelio-mesenchymal transition. PMID:17182858

  5. Thin film transistors using preferentially grown semiconducting single-walled carbon nanotube networks by water-assisted plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kim, Un Jeong; Lee, Eun Hong; Kim, Jong Min; Min, Yo-Sep; Kim, Eunseong; Park, Wanjun

    2009-07-01

    Nearly perfect semiconducting single-walled carbon nanotube random network thin film transistors were fabricated and their reproducible transport properties were investigated. The networked single-walled carbon nanotubes were directly grown by water-assisted plasma-enhanced chemical vapor deposition. Optical analysis confirmed that the nanotubes were mostly semiconductors without clear metallic resonances in both the Raman and the UV-vis-IR spectroscopy. The transistors made by the nanotube networks whose density was much larger than the percolation threshold also showed no metallic paths. Estimation based on the conductance change of semiconducting nanotubes in the SWNT network due to applied gate voltage difference (conductance difference for on and off state) indicated a preferential growth of semiconducting nanotubes with an advantage of water-assisted PECVD. The nanotube transistors showed 10-5 of on/off ratio and ~8 cm2 V-1 s-1 of field effect mobility.

  6. Thin film transistors using preferentially grown semiconducting single-walled carbon nanotube networks by water-assisted plasma-enhanced chemical vapor deposition.

    PubMed

    Kim, Un Jeong; Lee, Eun Hong; Kim, Jong Min; Min, Yo-Sep; Kim, Eunseong; Park, Wanjun

    2009-07-22

    Nearly perfect semiconducting single-walled carbon nanotube random network thin film transistors were fabricated and their reproducible transport properties were investigated. The networked single-walled carbon nanotubes were directly grown by water-assisted plasma-enhanced chemical vapor deposition. Optical analysis confirmed that the nanotubes were mostly semiconductors without clear metallic resonances in both the Raman and the UV-vis-IR spectroscopy. The transistors made by the nanotube networks whose density was much larger than the percolation threshold also showed no metallic paths. Estimation based on the conductance change of semiconducting nanotubes in the SWNT network due to applied gate voltage difference (conductance difference for on and off state) indicated a preferential growth of semiconducting nanotubes with an advantage of water-assisted PECVD. The nanotube transistors showed 10(-5) of on/off ratio and approximately 8 cm2 V(-1) s(-1) of field effect mobility. PMID:19567966

  7. Enhanced Genetic Analysis of Single Human Bioparticles Recovered by Simplified Micromanipulation from Forensic ‘Touch DNA’ Evidence

    PubMed Central

    Farash, Katherine; Hanson, Erin K.; Ballantyne, Jack

    2015-01-01

    DNA profiles can be obtained from ‘touch DNA’ evidence, which comprises microscopic traces of human biological material. Current methods for the recovery of trace DNA employ cotton swabs or adhesive tape to sample an area of interest. However, such a ‘blind-swabbing’ approach will co-sample cellular material from the different individuals, even if the individuals’ cells are located in geographically distinct locations on the item. Thus, some of the DNA mixtures encountered in touch DNA samples are artificially created by the swabbing itself. In some instances, a victim’s DNA may be found in significant excess thus masking any potential perpetrator’s DNA. In order to circumvent the challenges with standard recovery and analysis methods, we have developed a lower cost, ‘smart analysis’ method that results in enhanced genetic analysis of touch DNA evidence. We describe an optimized and efficient micromanipulation recovery strategy for the collection of bio-particles present in touch DNA samples, as well as an enhanced amplification strategy involving a one-step 5 µl microvolume lysis/STR amplification to permit the recovery of STR profiles from the bio-particle donor(s). The use of individual or few (i.e., “clumps”) bioparticles results in the ability to obtain single source profiles. These procedures represent alternative enhanced techniques for the isolation and analysis of single bioparticles from forensic touch DNA evidence. While not necessary in every forensic investigation, the method could be highly beneficial for the recovery of a single source perpetrator DNA profile in cases involving physical assault (e.g., strangulation) that may not be possible using standard analysis techniques. Additionally, the strategies developed here offer an opportunity to obtain genetic information at the single cell level from a variety of other non-forensic trace biological material. PMID:25867046

  8. Single-crystalline nanogap electrodes: enhancing the nanowire-breakdown process with a gaseous environment.

    PubMed

    Suga, Hiroshi; Sumiya, Touru; Furuta, Shigeo; Ueki, Ryuichi; Miyazawa, Yosuke; Nishijima, Takuya; Fujita, Jun-ichi; Tsukagoshi, Kazuhito; Shimizu, Tetsuo; Naitoh, Yasuhisa

    2012-10-24

    A method for fabricating single-crystalline nanogaps on Si substrates was developed. Polycrystalline Pt nanowires on Si substrates were broken down by current flow under various gaseous environments. The crystal structure of the nanogap electrode was evaluated using scanning electron microscopy and transmission electron microscopy. Nanogap electrodes sandwiched between Pt-large-crystal-grains were obtained by the breakdown of the wire in an O(2) or H(2) atmosphere. These nanogap electrodes show intense spots in the electron diffraction pattern. The diffraction pattern corresponds to Pt (111), indicating that single-crystal grains are grown by the electrical wire breakdown process in an O(2) or H(2) atmosphere. The Pt wires that have (111)-texture and coherent boundaries can be considered ideal as interconnectors for single molecular electronics. The simple method for fabrication of a single-crystalline nanogap is one of the first steps toward standard nanogap electrodes for single molecular instruments and opens the door to future research on physical phenomena in nanospaces. PMID:23054205

  9. Current enhancement of CdTe-based solar cells

    DOE PAGESBeta

    Paudel, Naba R.; Poplawsky, Jonathan D.; More, Karren Leslie; Yan, Yanfa

    2015-07-30

    We report on the realization of CdTe solar cell photocurrent enhancement using an n-type CdSe heterojunction partner sputtered on commercial SnO2/SnO2:F coated soda-lime glass substrates. With high-temperature close-space sublimation CdTe deposition followed by CdCl2 activation, this thin-film stack allows for substantial interdiffusion at the CdSe/CdTe interface facilitating a CdSexTe1-x alloy formation. The bowing effect causes a reduced optical bandgap of the alloyed absorber layer and, therefore, leads to current enhancement in the long-wavelength region and a decrease in open-circuit voltage (VOC). To overcome the VOC loss and maintain a high short-circuit current (JSC), the CdTe cell configuration has been modifiedmore » using combined CdS:O/CdSe window layers. The new device structure has demonstrated enhanced collection from both short-and long-wavelength regions as well as a VOC improvement. With an optimized synthesis process, a small-area cell using CdS:O/CdSe window layer showed an efficiency of 15.2% with a VOC of 831 mV, a JSC of 26.3 mA/cm2, and a fill factor of 69.5%, measured under an AM1.5 illumination without antireflection coating. Furthermore, the results provide new directions for further improvement of CdTe-based solar cells.« less

  10. Current enhancement of CdTe-based solar cells

    SciTech Connect

    Paudel, Naba R.; Poplawsky, Jonathan D.; More, Karren Leslie; Yan, Yanfa

    2015-07-30

    We report on the realization of CdTe solar cell photocurrent enhancement using an n-type CdSe heterojunction partner sputtered on commercial SnO2/SnO2:F coated soda-lime glass substrates. With high-temperature close-space sublimation CdTe deposition followed by CdCl2 activation, this thin-film stack allows for substantial interdiffusion at the CdSe/CdTe interface facilitating a CdSexTe1-x alloy formation. The bowing effect causes a reduced optical bandgap of the alloyed absorber layer and, therefore, leads to current enhancement in the long-wavelength region and a decrease in open-circuit voltage (VOC). To overcome the VOC loss and maintain a high short-circuit current (JSC), the CdTe cell configuration has been modified using combined CdS:O/CdSe window layers. The new device structure has demonstrated enhanced collection from both short-and long-wavelength regions as well as a VOC improvement. With an optimized synthesis process, a small-area cell using CdS:O/CdSe window layer showed an efficiency of 15.2% with a VOC of 831 mV, a JSC of 26.3 mA/cm2, and a fill factor of 69.5%, measured under an AM1.5 illumination without antireflection coating. Furthermore, the results provide new directions for further improvement of CdTe-based solar cells.

  11. High brightness fiber laser pump sources based on single emitters and multiple single emitters

    NASA Astrophysics Data System (ADS)

    Scheller, Torsten; Wagner, Lars; Wolf, Jürgen; Bonati, Guido; Dörfel, Falk; Gabler, Thomas

    2008-02-01

    Driven by the potential of the fiber laser market, the development of high brightness pump sources has been pushed during the last years. The main approaches to reach the targets of this market had been the direct coupling of single emitters (SE) on the one hand and the beam shaping of bars and stacks on the other hand, which often causes higher cost per watt. Meanwhile the power of single emitters with 100μm emitter size for direct coupling increased dramatically, which also pushed a new generation of wide stripe emitters or multi emitters (ME) of up to 1000μm emitter size respectively "minibars" with apertures of 3 to 5mm. The advantage of this emitter type compared to traditional bars is it's scalability to power levels of 40W to 60W combined with a small aperture which gives advantages when coupling into a fiber. We show concepts using this multiple single emitters for fiber coupled systems of 25W up to 40W out of a 100μm fiber NA 0.22 with a reasonable optical efficiency. Taking into account a further efficiency optimization and an increase in power of these devices in the near future, the EUR/W ratio pushed by the fiber laser manufacturer will further decrease. Results will be shown as well for higher power pump sources. Additional state of the art tapered fiber bundles for photonic crystal fibers are used to combine 7 (19) pump sources to output powers of 100W (370W) out of a 130μm (250μm) fiber NA 0.6 with nominal 20W per port. Improving those TFB's in the near future and utilizing 40W per pump leg, an output power of even 750W out of 250μm fiber NA 0.6 will be possible. Combined Counter- and Co-Propagated pumping of the fiber will then lead to the first 1kW fiber laser oscillator.

  12. Charge Enhancement of Single-Stranded DNA in Negative Electrospray Ionization Using the Supercharging Reagent Meta-nitrobenzyl Alcohol

    NASA Astrophysics Data System (ADS)

    Brahim, Bessem; Alves, Sandra; Cole, Richard B.; Tabet, Jean-Claude

    2013-12-01

    Charge enhancement of single-stranded oligonucleotide ions in negative ESI mode is investigated. The employed reagent, meta-nitrobenzyl alcohol (m-NBA), was found to improve total signal intensity (Itot), increase the highest observed charge states (zhigh), and raise the average charge states (zavg) of all tested oligonucleotides analyzed in negative ESI. To quantify these increases, signal enhancement ratios (SER1%) and charge enhancement coefficients (CEC1%) were introduced. The SER1%, (defined as the quotient of total oligonucleotide ion abundances with 1 % m-NBA divided by total oligonucleotide abundance without m-NBA) was found to be greater than unity for every oligonucleotide tested. The CEC1% values (defined as the average charge state in the presence of 1 % m-NBA minus the average charge state in the absence of m-NBA) were found to be uniformly positive. Upon close inspection, the degree of charge enhancement for longer oligonucleotides was found to be dependent upon thymine density (i.e., the number and the location of phospho-thymidine units). A correlation between the charge enhancement induced by the presence of m-NBA and the apparent gas-phase acidity (largely determined by the sequence of thymine units but also by the presence of protons on other nucleobases) of multiply deprotonated oligonucleotide species, was thus established. Ammonium cations appeared to be directly involved in the m-NBA supercharging mechanism, and their role seems to be consistent with previously postulated ESI mechanisms describing desorption/ionization of single-stranded DNA into the gas phase.

  13. Citric acid-based hydroxyapatite composite scaffolds enhance calvarial regeneration.

    PubMed

    Sun, Dawei; Chen, Yuhui; Tran, Richard T; Xu, Song; Xie, Denghui; Jia, Chunhong; Wang, Yuchen; Guo, Ying; Zhang, Zhongmin; Guo, Jinshan; Yang, Jian; Jin, Dadi; Bai, Xiaochun

    2014-01-01

    Citric acid-based polymer/hydroxyapatite composites (CABP-HAs) are a novel class of biomimetic composites that have recently attracted significant attention in tissue engineering. The objective of this study was to compare the efficacy of using two different CABP-HAs, poly (1,8-octanediol citrate)-click-HA (POC-Click-HA) and crosslinked urethane-doped polyester-HA (CUPE-HA) as an alternative to autologous tissue grafts in the repair of skeletal defects. CABP-HA disc-shaped scaffolds (65 wt.-% HA with 70% porosity) were used as bare implants without the addition of growth factors or cells to renovate 4 mm diameter rat calvarial defects (n = 72, n = 18 per group). Defects were either left empty (negative control group), or treated with CUPE-HA scaffolds, POC-Click-HA scaffolds, or autologous bone grafts (AB group). Radiological and histological data showed a significant enhancement of osteogenesis in defects treated with CUPE-HA scaffolds when compared to POC-Click-HA scaffolds. Both, POC-Click-HA and CUPE-HA scaffolds, resulted in enhanced bone mineral density, trabecular thickness, and angiogenesis when compared to the control groups at 1, 3, and 6 months post-trauma. These results show the potential of CABP-HA bare implants as biocompatible, osteogenic, and off-shelf-available options in the repair of orthopedic defects. PMID:25372769

  14. "YFlag"--a single-base extension primer based method for gender determination.

    PubMed

    Allwood, Julia S; Harbison, Sally Ann

    2015-01-01

    Assigning the gender of a DNA contributor in forensic analysis is typically achieved using the amelogenin test. Occasionally, this test produces false-positive results due to deletions occurring on the Y chromosome. Here, a four-marker "YFlag" method is presented to infer gender using single-base extension primers to flag the presence (or absence) of Y-chromosome DNA within a sample to supplement forensic STR profiling. This method offers built-in redundancy, with a single marker being sufficient to detect the presence of male DNA. In a study using 30 male and 30 female individuals, detection of male DNA was achieved with c. 0.03 ng of male DNA. All four markers were present in male/female mixture samples despite the presence of excessive female DNA. In summary, the YFlag system offers a method that is reproducible, specific, and sensitive, making it suitable for forensic use to detect male DNA. PMID:25354446

  15. Template-stripped Plasmonic Cup Resonators for Single-Nanohole-Based Sensing and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Olson, Stephen Andrew Olaf

    We have designed and tested a new plasmonic biosensor, featuring a centered nanohole in the base of a recessed metallic nanocup. This configuration enables us to perform independent plasmon-resonance-enhanced single-nanohole transmission spectroscopy on femtoliter volumes of solution. In this thesis we will demonstrate the fabrication, characterization, and application of these novel cup resonator plasmonic biosensors. Utilizing plasmonic confinement to enhance and modulate transmission through a nanohole aperture, the resulting transmission spectra can be used to determine changes in the material properties of a dielectric material located inside the sensing volume of the cup. We have determined, through measurements and simulations, the physical mechanisms causing transmission modulation through the structure. Utilizing this information, we have constructed predictive behavior models for the design and customization of these devices for specific purposes. We show that these structures are responsive to refractive index changes in their surroundings, and propose some possible application of these resonators in biological sensing roles which take advantage of their unique geometry.

  16. Characterization of hydrogen embrittlement in nickel base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Chene, J.; Baker, C. L.; Bernstein, I. M.; Williams, J. C.

    1986-01-01

    In order to study the role of CMSX2 single crystal microstructure on the combined stress-hydrogen environment effects, hydrogen was introduced by cathodic charging. Concentration measurements were carried out to investigate the dependence of hydrogen solubility and trapping on microstructure. Mechanical properties were measured at room temperature on smooth tensile specimens as a function of heat treatment, crystal orientation and H charging conditions. SEM and TEM allow to study H induced cracks initiation and propagation. A large amount of hydrogen can be dissolved and trapped in CMSX2 single crystals when exposed to a high hydrogen fugacity environment. The strong H trapping evidenced in voids explains the predominant role of these defects as crack initiation sites. The strong detrimental effect of hydrogen on the material tenacity is discussed.

  17. Charge Transport in Azobenzene-Based Single-Molecule Junctions

    NASA Astrophysics Data System (ADS)

    Garcia-Lekue, Aran; Kim, Youngsang; Sysoiev, Dmytro; Frederiksen, Thomas; Groth, Ulrich; Scheer, Elke

    2013-03-01

    The azobenzene class of molecules has become an archetype of molecular photoswitch research, due to their simple structure and the significant difference of the electronic system between their cis and trans isomers. However, a detailed understanding of the charge transport for the two isomers, when embedded in a junction with electrodes is still lacking. In order to clarify this issue, we investigate charge transport properties through single Azobenzene-ThioMethyl (AzoTM) molecules in a mechanically controlled break junction (MCBJ) system at 4.2 K. Single-molecule conductance, I-V characteristics, and IETS spectra of molecular junctions are measured and compared with first-principles transport calculations. Our studies elucidate the origin of a slightly higher conductance of junctions with cis isomer and demonstrate that IETS spectra of cis and trans forms show distinct vibrational fingerprints that can be used for identifying the isomer.

  18. Single Kernel Sorting Technology for Enhancing Scab Resistance and Grain Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We developed automated visible and near-infrared (NIR) spectroscopy procedures and instrumentation to select kernels with specific hardness, protein, and color traits to enhance the development of scab resistant hard and soft wheat varieties. The system also shows potential to sort for other charac...

  19. FRESH-FRI-Based Single-Image Super-Resolution Algorithm.

    PubMed

    Wei, Xiaoyao; Dragotti, Pier Luigi

    2016-08-01

    In this paper, we consider the problem of single image super-resolution and propose a novel algorithm that outperforms state-of-the-art methods without the need of learning patches pairs from external data sets. We achieve this by modeling images and, more precisely, lines of images as piecewise smooth functions and propose a resolution enhancement method for this type of functions. The method makes use of the theory of sampling signals with finite rate of innovation (FRI) and combines it with traditional linear reconstruction methods. We combine the two reconstructions by leveraging from the multi-resolution analysis in wavelet theory and show how an FRI reconstruction and a linear reconstruction can be fused using filter banks. We then apply this method along vertical, horizontal, and diagonal directions in an image to obtain a single-image super-resolution algorithm. We also propose a further improvement of the method based on learning from the errors of our super-resolution result at lower resolution levels. Simulation results show that our method outperforms state-of-the-art algorithms under different blurring kernels. PMID:27168595

  20. Protocols for a quantum network based on single photons

    NASA Astrophysics Data System (ADS)

    Blum, Susanne; O'Brien, Christopher; Reich, Daniel; Lauk, Nikolai; Koch, Christiane; Fleischhauer, Michael; Morigi, Giovanna

    2015-03-01

    Two protocols for interfacing single optical photons with individual qubits are theoretically discussed. The first is a protocol which allows one to interface a single optical photon with a superconducting qubit. It makes use of a a spin ensemble, where the individual emitters possess both an optical and a magnetic dipole transition. Reversible frequency conversion is realized by combining optical photon storage, for instance by means of EIT, with the controlled switching on and off the coupling of the magnetic dipole transition with a microwave cavity, which in turn couples to a superconducting qubit. We test various strategies and compare their efficiencies in terms of robustness and transfer time. The second protocol aims at achieving perfect absorption of a photon by a single trapped atom, or solid-state emitter, by means of optimal control theory. We make use of the Krotov algorithm for the purpose of identifying pulses driving the atom, that maximize the efficiency and fidelity of absorption in the setup of. These protocols contribute to the development of a toolbox for quantum networks using hybrid platforms.

  1. Enhanced Corrosion Resistance of Iron-Based Amorphous Alloys

    SciTech Connect

    Rebak, R B; Day, S D; Lian, T; Aprigliano, L F; Hailey, P D; Farmer, J C

    2007-02-18

    Iron-based amorphous alloys possess enhanced hardness and are highly resistant to corrosion, which make them desirable for wear applications in corrosive environments. It was of interest to examine the behavior of amorphous alloys during anodic polarization in concentrated salt solutions and in the salt-fog testing. Results from the testing of one amorphous material (SAM2X5) both in ribbon form and as an applied coating are reported here. Cyclic polarization tests were performed on SAM2X5 ribbon as well as on other nuclear engineering materials. SAM2X5 showed the highest resistance to localized corrosion in 5 M CaCl{sub 2} solution at 105 C. Salt fog tests of 316L SS and Alloy 22 coupons coated with amorphous SAM2X5 powder showed resistance to rusting. Partial devitrification may be responsible for isolated pinpoint rust spots in some coatings.

  2. Enhancing exposure-based therapy from a translational research perspective

    PubMed Central

    Hofmann, Stefan G.

    2007-01-01

    Combining an effective psychological treatment with conventional anxiolytic medication is typically not more effective than unimodal therapy for treating anxiety disorders. However, recent advances in the neuroscience of fear reduction have led to novel approaches for combining psychological therapy and pharmacological agents. Exposure-based treatments in humans partly rely on extinction to reduce the fear response in anxiety disorders. Animal studies have shown that d-cycloserine (DCS), a partial agonist at the glycine recognition site of the glutamatergic N-methyl- d-aspartate receptor facilitates extinction learning. Similarly, recent human trials have shown that DCS enhances fear reduction during exposure therapy of some anxiety disorders. This article discusses the biological and psychological mechanisms of extinction learning and the therapeutic value of DCS as an augmentation strategy for exposure therapy. Areas of future research will be identified. PMID:17659253

  3. [Enhanced recovery after surgery based on medical ethics].

    PubMed

    Zhao, Qingchuan

    2016-03-01

    Enhanced recovery after surgery (ERAS), a new model of perioperative management developed in recent years, can shorten hospital stay, reduce medical cost and postoperative discomfort. However, some of these measures under the strategy are negation of the traditional recommendation and many surgeons are concerned about the medical tangle by the complications coming with the ERAS strategy. In this paper, ERAS strategy is evaluated from an ethical standpoint and the assessment factors of medical behavior are introduced based on medical virtues and medical ethnics. It is also analyzed that how to deal with the conflicts between the textbooks and the ERAS strategy, and elaborated that the medical ethics should be observed if the ERAS strategy is implemented. The scientific principles must be followed, the rights and interests of the patients need to be protected, and the informed consent should be guaranteed. PMID:27003639

  4. Enhanced thermoelectric performance of amorphous Nb based oxynitrides

    NASA Astrophysics Data System (ADS)

    Music, Denis; Geyer, Richard W.; Hans, Marcus

    2015-12-01

    Using density functional theory, amorphous Nb0.27Ru0.06O0.56N0.10 was designed to facilitate a combination of an enhanced Seebeck coefficient and low electrical resistivity. Based on a positive Cauchy pressure, ductile behavior is expected. To verify these predictions, the transport and mechanical properties of amorphous thin films were evaluated. Metallic electrical resistivity and the Seebeck coefficient of -94 μV K-1 are obtained, which is consistent with our predictions. As there is no crack formation, these samples can be perceived as ductile. We demonstrate that the power factor can be increased by an order of magnitude, while keeping the thermal fatigue low.

  5. In vivo DPP-4 inhibition to enhance engraftment of single-unit cord blood transplants in adults with hematological malignancies.

    PubMed

    Farag, Sherif S; Srivastava, Shivani; Messina-Graham, Steven; Schwartz, Jennifer; Robertson, Michael J; Abonour, Rafat; Cornetta, Kenneth; Wood, Lisa; Secrest, Angie; Strother, R Matthew; Jones, David R; Broxmeyer, Hal E

    2013-04-01

    Delayed engraftment is a significant limitation of umbilical cord blood (UCB) transplantation due to low stem cell numbers. Inhibition of dipeptidyl peptidase (DPP)-4 enhanced engraftment in murine transplants. We evaluated the feasibility of systemic DPP-4 inhibition using sitagliptin to enhance engraftment of single-unit UCB grafts in adults with hematological malignancies. Twenty-four patients (21-58 years) received myeloablative conditioning, followed by sitagliptin 600 mg orally days -1 to +2, and single UCB grafts day 0. Seventeen receiving red cell-depleted (RCD) grafts, matched at 4 (n=10) or 5 (n=7) of 6 human leucocyte antigen (HLA) loci with median nucleated cell dose 3.6 (2.5-5.2)×10(7)/kg, engrafted at median of 21 (range, 13-50) days with cumulative incidence of 94% (95% confidence interval, 84%-100%) at 50 days. Plasma DDP-4 activity was reduced to 23%±7% within 2 h. Area under DPP-4 activity-time curve (AUCA) correlated with engraftment; 9 of 11 with AUCA <6,000 activity·h engrafted within ≤21 days, while all 6 with higher AUCA engrafted later (P=0.002). Seven patients receiving red cell replete grafts had 10-fold lower colony forming units after thawing compared with RCD grafts, with poor engraftment. Systemic DPP-4 inhibition was well tolerated and may enhance engraftment. Optimizing sitagliptin dosing to achieve more sustained DPP-4 inhibition may further improve outcome. PMID:23270493

  6. Differential evolution enhanced with multiobjective sorting-based mutation operators.

    PubMed

    Wang, Jiahai; Liao, Jianjun; Zhou, Ying; Cai, Yiqiao

    2014-12-01

    Differential evolution (DE) is a simple and powerful population-based evolutionary algorithm. The salient feature of DE lies in its mutation mechanism. Generally, the parents in the mutation operator of DE are randomly selected from the population. Hence, all vectors are equally likely to be selected as parents without selective pressure at all. Additionally, the diversity information is always ignored. In order to fully exploit the fitness and diversity information of the population, this paper presents a DE framework with multiobjective sorting-based mutation operator. In the proposed mutation operator, individuals in the current population are firstly sorted according to their fitness and diversity contribution by nondominated sorting. Then parents in the mutation operators are proportionally selected according to their rankings based on fitness and diversity, thus, the promising individuals with better fitness and diversity have more opportunity to be selected as parents. Since fitness and diversity information is simultaneously considered for parent selection, a good balance between exploration and exploitation can be achieved. The proposed operator is applied to original DE algorithms, as well as several advanced DE variants. Experimental results on 48 benchmark functions and 12 real-world application problems show that the proposed operator is an effective approach to enhance the performance of most DE algorithms studied. PMID:24802378

  7. Enhancing the Resilience of Young Single Mothers of Color: A Review of Programs and Services

    ERIC Educational Resources Information Center

    Romo, Laura F.; Segura, Denise A.

    2010-01-01

    Within the last decade, births to unmarried women in the United States have risen dramatically, presenting challenges for young women to complete high school and attend college. This article presents a review of programs and services designed to support single mothers in completing high school and accessing postsecondary education. We highlight…

  8. Single-molecule assay reveals strand switching and enhanced processivity of UvrD

    NASA Astrophysics Data System (ADS)

    Dessinges, Marie-Noëlle; Lionnet, Timothée; Xi, Xu Guang; Bensimon, David; Croquette, Vincent

    2004-04-01

    DNA helicases are enzymes capable of unwinding double-stranded DNA (dsDNA) to provide the single-stranded DNA template required in many biological processes. Among these, UvrD, an essential DNA repair enzyme, has been shown to unwind dsDNA while moving 3'-5' on one strand. Here, we use a single-molecule manipulation technique to monitor real-time changes in extension of a single, stretched, nicked dsDNA substrate as it is unwound by a single enzyme. This technique offers a means for measuring the rate, lifetime, and processivity of the enzymatic complex as a function of ATP, and for estimating the helicase step size. Strikingly, we observe a feature not seen in bulk assays: unwinding is preferentially followed by a slow, enzyme-translocation-limited rezipping of the separated strands rather than by dissociation of the enzymatic complex followed by quick rehybridization of the DNA strands. We address the mechanism underlying this phenomenon and propose a fully characterized model in which UvrD switches strands and translocates backwards on the other strand, allowing the DNA to reanneal in its wake. helicase | DNA replication | DNA repair | magnetic tweezers

  9. Single-molecule assay reveals strand switching and enhanced processivity of UvrD.

    PubMed

    Dessinges, Marie-Noëlle; Lionnet, Timothée; Xi, Xu Guang; Bensimon, David; Croquette, Vincent

    2004-04-27

    DNA helicases are enzymes capable of unwinding double-stranded DNA (dsDNA) to provide the single-stranded DNA template required in many biological processes. Among these, UvrD, an essential DNA repair enzyme, has been shown to unwind dsDNA while moving 3'-5' on one strand. Here, we use a single-molecule manipulation technique to monitor real-time changes in extension of a single, stretched, nicked dsDNA substrate as it is unwound by a single enzyme. This technique offers a means for measuring the rate, lifetime, and processivity of the enzymatic complex as a function of ATP, and for estimating the helicase step size. Strikingly, we observe a feature not seen in bulk assays: unwinding is preferentially followed by a slow, enzyme-translocation-limited rezipping of the separated strands rather than by dissociation of the enzymatic complex followed by quick rehybridization of the DNA strands. We address the mechanism underlying this phenomenon and propose a fully characterized model in which UvrD switches strands and translocates backwards on the other strand, allowing the DNA to reanneal in its wake. PMID:15079074

  10. Enhanced deammonification of livestock wastewater using Brocadia caroliniensis and HPNS in single tank process

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work we describe new findings that allowed rapid implementation of deammonification reaction in livestock anaerobic digestion effluents using mixtures of two bacterial cultures and a one-stage process (partial nitritation and anammox in a single tank). The bacterial cultures were high perf...

  11. Giant enhancement in critical current density, up to a hundredfold, in superconducting NaFe0.97Co0.03 As single crystals under hydrostatic pressure.

    PubMed

    Shabbir, Babar; Wang, Xiaolin; Ghorbani, S R; Wang, A F; Dou, Shixue; Chen, X H

    2015-01-01

    Tremendous efforts towards improvement in the critical current density "Jc" of iron based superconductors (FeSCs), especially at relatively low temperatures and magnetic fields, have been made so far through different methods, resulting in real progress. Jc at high temperatures in high fields still needs to be further improved, however, in order to meet the requirements of practical applications. Here, we demonstrate a simple approach to achieve this. Hydrostatic pressure can significantly enhance Jc in NaFe0.97Co0.03As single crystals by at least tenfold at low field and more than a hundredfold at high fields. Significant enhancement in the in-field performance of NaFe0.97Co0.03As single crystal in terms of pinning force density (Fp) is found at high pressures. At high fields, the Fp is over 20 and 80 times higher than under ambient pressure at12 K and 14 K, respectively, at P = 1 GPa. We believe that the Co-doped NaFeAs compounds are very exciting and deserve to be more intensively investigated. Finally, it is worthwhile to say that by using hydrostatic pressure, we can achieve more milestones in terms of high Jc values in tapes, wires or films of other Fe-based superconductors. PMID:26030085

  12. Giant enhancement in critical current density, up to a hundredfold, in superconducting NaFe0.97Co0.03 As single crystals under hydrostatic pressure

    PubMed Central

    Shabbir, Babar; Wang, Xiaolin; Ghorbani, S. R.; Wang, A. F.; Dou, Shixue; Chen, X. H.

    2015-01-01

    Tremendous efforts towards improvement in the critical current density “Jc” of iron based superconductors (FeSCs), especially at relatively low temperatures and magnetic fields, have been made so far through different methods, resulting in real progress. Jc at high temperatures in high fields still needs to be further improved, however, in order to meet the requirements of practical applications. Here, we demonstrate a simple approach to achieve this. Hydrostatic pressure can significantly enhance Jc in NaFe0.97Co0.03As single crystals by at least tenfold at low field and more than a hundredfold at high fields. Significant enhancement in the in-field performance of NaFe0.97Co0.03As single crystal in terms of pinning force density (Fp) is found at high pressures. At high fields, the Fp is over 20 and 80 times higher than under ambient pressure at12 K and 14 K, respectively, at P = 1 GPa. We believe that the Co-doped NaFeAs compounds are very exciting and deserve to be more intensively investigated. Finally, it is worthwhile to say that by using hydrostatic pressure, we can achieve more milestones in terms of high Jc values in tapes, wires or films of other Fe-based superconductors. PMID:26030085

  13. A realistic fabrication and design concept for quantum gates based on single emitters integrated in plasmonic-dielectric waveguide structures

    NASA Astrophysics Data System (ADS)

    Kewes, Günter; Schoengen, Max; Neitzke, Oliver; Lombardi, Pietro; Schönfeld, Rolf-Simon; Mazzamuto, Giacomo; Schell, Andreas W.; Probst, Jürgen; Wolters, Janik; Löchel, Bernd; Toninelli, Costanza; Benson, Oliver

    2016-07-01

    Tremendous enhancement of light-matter interaction in plasmonic-dielectric hybrid devices allows for non-linearities at the level of single emitters and few photons, such as single photon transistors. However, constructing integrated components for such devices is technologically extremely challenging. We tackle this task by lithographically fabricating an on-chip plasmonic waveguide-structure connected to far-field in- and out-coupling ports via low-loss dielectric waveguides. We precisely describe our lithographic approach and characterize the fabricated integrated chip. We find excellent agreement with rigorous numerical simulations. Based on these findings we perform a numerical optimization and calculate concrete numbers for a plasmonic single-photon transistor.

  14. A realistic fabrication and design concept for quantum gates based on single emitters integrated in plasmonic-dielectric waveguide structures

    PubMed Central

    Kewes, Günter; Schoengen, Max; Neitzke, Oliver; Lombardi, Pietro; Schönfeld, Rolf-Simon; Mazzamuto, Giacomo; Schell, Andreas W.; Probst, Jürgen; Wolters, Janik; Löchel, Bernd; Toninelli, Costanza; Benson, Oliver

    2016-01-01

    Tremendous enhancement of light-matter interaction in plasmonic-dielectric hybrid devices allows for non-linearities at the level of single emitters and few photons, such as single photon transistors. However, constructing integrated components for such devices is technologically extremely challenging. We tackle this task by lithographically fabricating an on-chip plasmonic waveguide-structure connected to far-field in- and out-coupling ports via low-loss dielectric waveguides. We precisely describe our lithographic approach and characterize the fabricated integrated chip. We find excellent agreement with rigorous numerical simulations. Based on these findings we perform a numerical optimization and calculate concrete numbers for a plasmonic single-photon transistor. PMID:27364604

  15. A realistic fabrication and design concept for quantum gates based on single emitters integrated in plasmonic-dielectric waveguide structures.

    PubMed

    Kewes, Günter; Schoengen, Max; Neitzke, Oliver; Lombardi, Pietro; Schönfeld, Rolf-Simon; Mazzamuto, Giacomo; Schell, Andreas W; Probst, Jürgen; Wolters, Janik; Löchel, Bernd; Toninelli, Costanza; Benson, Oliver

    2016-01-01

    Tremendous enhancement of light-matter interaction in plasmonic-dielectric hybrid devices allows for non-linearities at the level of single emitters and few photons, such as single photon transistors. However, constructing integrated components for such devices is technologically extremely challenging. We tackle this task by lithographically fabricating an on-chip plasmonic waveguide-structure connected to far-field in- and out-coupling ports via low-loss dielectric waveguides. We precisely describe our lithographic approach and characterize the fabricated integrated chip. We find excellent agreement with rigorous numerical simulations. Based on these findings we perform a numerical optimization and calculate concrete numbers for a plasmonic single-photon transistor. PMID:27364604

  16. Effect of single walled carbon nanotubes on the threshold voltage of dye based photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Manik, N. B.

    2016-01-01

    Carbon nanotubes are being widely used in organic photovoltaic (OPV) devices as their usage has been reported to enhance the device efficiency along with other related parameters. In this work we have studied the energy (Ec) effect of single walled carbon nanotubes (SWCNT) on the threshold voltage (Vth) and also on the trap states of dye based photovoltaic devices. SWCNT is added in a series of dyes such as Rose Bengal (RB), Methyl Red (MR), Malachite Green (MG) and Crystal Violet (CV). By analysing the steady state dark current-voltage (I-V) characteristics Vth and Ec is estimated for the different devices with and without addition of SWCNT. It is observed that on an average for all the dyes Vth is reduced by about 30% in presence of SWCNT. The trap energy Ec also reduces in case of all the dyes. The relation between Vth, Ec and total trap density is discussed. From the photovoltaic measurements it is seen that the different photovoltaic parameters change with addition of SWCNT to the dye based devices. Both the short circuit current density and fill factor are found to increase for all the dye based devices in presence of SWCNT.

  17. Single view-based 3D face reconstruction robust to self-occlusion

    NASA Astrophysics Data System (ADS)

    Lee, Youn Joo; Lee, Sung Joo; Park, Kang Ryoung; Jo, Jaeik; Kim, Jaihie

    2012-12-01

    State-of-the-art 3D morphable model (3DMM) is used widely for 3D face reconstruction based on a single image. However, this method has a high computational cost, and hence, a simplified 3D morphable model (S3DMM) was proposed as an alternative. Unlike the original 3DMM, S3DMM uses only a sparse 3D facial shape, and therefore, it incurs a lower computational cost. However, this method is vulnerable to self-occlusion due to head rotation. Therefore, we propose a solution to the self-occlusion problem in S3DMM-based 3D face reconstruction. This research is novel compared with previous works, in the following three respects. First, self-occlusion of the input face is detected automatically by estimating the head pose using a cylindrical head model. Second, a 3D model fitting scheme is designed based on selected visible facial feature points, which facilitates 3D face reconstruction without any effect from self-occlusion. Third, the reconstruction performance is enhanced by using the estimated pose as the initial pose parameter during the 3D model fitting process. The experimental results showed that the self-occlusion detection had high accuracy and our proposed method delivered a noticeable improvement in the 3D face reconstruction performance compared with previous methods.

  18. Indium plasma in single- and two-color mid-infrared fields: Enhancement of tunable harmonics

    NASA Astrophysics Data System (ADS)

    Ganeev, R. A.; Wang, Zhe; Lan, Pengfei; Lu, Peixiang; Suzuki, M.; Kuroda, H.

    2016-04-01

    The tuning of odd and even high-order harmonics of ultrashort pulses along the strong resonance of laser-produced indium plasma using an optical parametric amplifier of white-light continuum radiation (1250-1400 nm) allowed observation of different harmonics enhanced in the vicinity of the 4 d105 s21S0→4 d95 s25 p 1P1 transition of In ii ions. We demonstrate various peculiarities and discuss the theoretical model of the phenomenon of tunable harmonics enhancement in the region of 62 nm using indium plasma. With the theoretical analysis we can reproduce the experimental observations and characterize the dynamics of the resonant harmonic emissions.

  19. Epitaxial lift-off of quantum dot enhanced GaAs single junction solar cells

    SciTech Connect

    Bennett, Mitchell F.; Bittner, Zachary S.; Forbes, David V.; Hubbard, Seth M.; Rao Tatavarti, Sudersena; Wibowo, Andree; Pan, Noren; Chern, Kevin; Phillip Ahrenkiel, S.

    2013-11-18

    InAs/GaAs strain-balanced quantum dot (QD) n-i-p solar cells were fabricated by epitaxial lift-off (ELO), creating thin and flexible devices that exhibit an enhanced sub-GaAs bandgap current collection extending into the near infrared. Materials and optical analysis indicates that QD quality after ELO processing is preserved, which is supported by transmission electron microscopy images of the QD superlattice post-ELO. Spectral responsivity measurements depict a broadband resonant cavity enhancement past the GaAs bandedge, which is due to the thinning of the device. Integrated external quantum efficiency shows a QD contribution to the short circuit current density of 0.23 mA/cm{sup 2}.

  20. Overexpression of a single Leishmania major gene enhances parasite infectivity in vivo and in vitro

    PubMed Central

    Reiling, Linda; Chrobak, Mareike; Schmetz, Christel; Clos, Joachim

    2010-01-01

    We identified a Leishmania major-specific gene that can partly compensate for the loss of virulence observed for L. major HSP100 null mutants. The gene, encoding a 46 kD protein of unknown function and lineage, also enhances the virulence of wild type L. major upon overexpression. Surprisingly, the approximately sixfold overexpression of this protein also extends the host range of L. major to normally resistant C57BL/6 mice, causing persisting lesions in this strain, even while eliciting a strong cellular immune response. This enhanced virulence in vivo is mirrored in vitro by increased parasite burden inside bone marrow-derived macrophages. The localization of the protein in the macrophage cytoplasm suggests that it may modulate the macrophage effector mechanisms. In summary, our data show that even minor changes of gene expression in L. major may alter the outcome of an infection, regardless of the host's genetic predisposition. PMID:20345655

  1. Structural examination of iridium-based single-crystal preparations

    NASA Astrophysics Data System (ADS)

    Axler, K. M.; Roof, R. B.

    A high-temperature crystal growth experiment produced discrete single-crystal products of AlIr and IrSi. The preparation and examination of these phases is described within. This project is part of a materials compatibility study relating to radioisotopic heat sources. These heat sources are comprised of a PuO2 fuel pellet encapsulated in an Ir alloy containment shell. Th is introduced as an additive within the Ir to maintain ductility. Si and P are picked up inadvertently in the fuel processing. The compatibility of the heat sources with Al is of interest because of potential interactions with Al alloy hardware associated with the heat source environment.

  2. Structure-based protocol for identifying mutations that enhance protein-protein binding affinities.

    PubMed

    Sammond, Deanne W; Eletr, Ziad M; Purbeck, Carrie; Kimple, Randall J; Siderovski, David P; Kuhlman, Brian

    2007-08-31

    The ability to manipulate protein binding affinities is important for the development of proteins as biosensors, industrial reagents, and therapeutics. We have developed a structure-based method to rationally predict single mutations at protein-protein interfaces that enhance binding affinities. The protocol is based on the premise that increasing buried hydrophobic surface area and/or reducing buried hydrophilic surface area will generally lead to enhanced affinity if large steric clashes are not introduced and buried polar groups are not left without a hydrogen bond partner. The procedure selects affinity enhancing point mutations at the protein-protein interface using three criteria: (1) the mutation must be from a polar amino acid to a non-polar amino acid or from a non-polar amino acid to a larger non-polar amino acid, (2) the free energy of binding as calculated with the Rosetta protein modeling program should be more favorable than the free energy of binding calculated for the wild-type complex and (3) the mutation should not be predicted to significantly destabilize the monomers. The performance of the computational protocol was experimentally tested on two separate protein complexes; Galpha(i1) from the heterotrimeric G-protein system bound to the RGS14 GoLoco motif, and the E2, UbcH7, bound to the E3, E6AP from the ubiquitin pathway. Twelve single-site mutations that were predicted to be stabilizing were synthesized and characterized in the laboratory. Nine of the 12 mutations successfully increased binding affinity with five of these increasing binding by over 1.0 kcal/mol. To further assess our approach we searched the literature for point mutations that pass our criteria and have experimentally determined binding affinities. Of the eight mutations identified, five were accurately predicted to increase binding affinity, further validating the method as a useful tool to increase protein-protein binding affinities. PMID:17603074

  3. AOTF enhancements for a space-based spectropolarimeter

    NASA Astrophysics Data System (ADS)

    1993-07-01

    Progress in the development of enhancements to acousto-optical tunable filters (AOTF) is summarized. Specific topics addressed include extended tuning range, AOTF efficiency enhancement, anti-reflection coating, new materials, bandpass modification, RF synthesizer, device confinement and aging, resonance enhanced AOTF, and the development of an AOTF spectropolarimeter.

  4. PSO Based Optimal Power Flow with FACTS Devices for Security Enhancement Considering Credible Network Contingencies

    NASA Astrophysics Data System (ADS)

    Rambabu, C.; Obulesu, Y. P.; Saibabu, Ch.

    2014-07-01

    This work presents particle swarm optimization (PSO) based method to solve the optimal power flow in power systems incorporating flexible AC transmission systems controllers such as thyristor controlled phase shifter, thyristor controlled series compensator and unified power flow controller for security enhancement under single network contingencies. A fuzzy contingency ranking method is used in this paper and observed that it effectively eliminates the masking effect when compared with other methods of contingency ranking. The fuzzy based network composite overall severity index is used as an objective to be minimized to improve the security of the power system. The proposed optimization process with PSO is presented with case study example using IEEE 30-bus test system to demonstrate its applicability. The results are presented to show the feasibility and potential of this new approach.

  5. Efficiency enhancement in a single-pass Raman free electron laser

    SciTech Connect

    Rouhani, M. H.; Maraghechi, B.

    2009-09-15

    Efficiency enhancement in free electron laser (FEL) with ion channel and axial magnetic field is compared. By using Maxwell's equations and nonwiggler averaged equation of motion of electron beam, a set of coupled nonlinear differential equations is derived in the slowly varying amplitude and wave number approximation. Because of using nonwiggler averaged equation of motion, it is possible to treat the injection of the beam into the wiggler. The electron beam propagates with a relativistic velocity, ions are assumed immobile and slippage is ignored. The final set of nonlinear first-order differential equations describing the nonlinear evolution of the FEL is solved by the Runge-Kutta method. Efficiency enhancement in group I orbits is almost the same for both ion channel and axial magnetic field cases, with somewhat larger growth rate for the latter. In group II orbits, efficiency enhancement is not possible for the ion-channel guiding; however, the intrinsic efficiency can be larger than that of the axial magnetic field case.

  6. Single molecule fluorescence studies of ribosome dynamics: An application of metal enhanced fluorescence

    NASA Astrophysics Data System (ADS)

    Bharill, Shashank

    Metal enhanced fluorescence (MEF), in which a surface plasmon near a noble metal alters the spectral properties of an organic fluorophore, has been reported to increase fluorescence intensity without a concomitant increase in photobleaching rate. The fluorescence intensities of Cy3- and Cy5-labeled ribosomal initiation complexes (ICs) near 50 nm silver particles were increased 4 - 7-fold compared to ICs in the absence of silver colloids. Photobleaching lifetime was not significantly decreased, resulting in 4 - 5.5-fold enhancement in total photon emission prior to photobleaching. Fluorophores showing enhanced fluorescence were located within ˜280 nm of the colloidal particles, as detected by light scattering and scanning probe microscopy. Aggregates of silver particles or larger colloids themselves produced wavelength-shifted luminescence similar to fluorescence, presumably due to resonant extinction between nearby metal particles. Intensity fluctuations above shot noise, at 0.1 - 5 Hz, were greater from slides containing colloidal particles than from plain glass. Overall signal to noise ratio was similar or slightly better near the silver particles. Proximity to silver particles did not compromise ribosome function, as measured by codon-dependent binding of fluorescent tRNA to the A site of fluorescent labeled ribosomes, dynamics of fluorescence resonance energy transfer between adjacent tRNAs in the ribosomal A and P sites, and elongation factor G catalyzed translocation.

  7. Enhancing data exploitation through DTN-based data transmission protocols

    NASA Astrophysics Data System (ADS)

    Daglis, Ioannis A.; Tsaoussidis, Vassilis; Rontogiannis, Athanasios; Balasis, Georgios; Keramitsoglou, Iphigenia; Paronis, Dimitrios; Sykioti, Olga; Tsinganos, Antonios

    2014-05-01

    Data distribution and data access are major issues in space sciences and geosciences as they strongly influence the degree of data exploitation. Processing and analysis of large volumes of Earth observation and space/planetary data face two major impediments: limited access capabilities due to narrow connectivity windows between spacecraft and ground receiving stations and lack of sufficient communication and dissemination mechanisms between space data receiving centres and the end-user community. Real-time data assimilation that would be critical in a number of forecasting capabilities is particularly affected by such limitations. The FP7-Space project "Space-Data Routers" (SDR) has the aim of allowing space agencies, academic institutes and research centres to disseminate/share space data generated by single or multiple missions, in an efficient, secure and automated manner. The approach of SDR relies on space internetworking - and in particular on Delay-Tolerant Networking (DTN), which marks the new era in space communications, unifies space and earth communication infrastructures and delivers a set of tools and protocols for space-data exploitation. The project includes the definition of limitations imposed by typical space mission scenarios in which the National Observatory of Athens is currently involved, including space and planetary exploration, as well as satellite-supported geoscience applications. In this paper, we present the mission scenarios, the SDR-application and the evaluation of the associated impact from the space-data router enhancements. The work leading to this paper has received funding from the European Union's Seventh Framework Programme (FP7-SPACE-2010-1) under grant agreement no. 263330 for the SDR (Space-Data Routers for Exploiting Space Data) collaborative research project. This paper reflects only the authors' views and the Union is not liable for any use that may be made of the information contained therein.

  8. Enhanced Photoelectrical Response of Hydrogenated Amorphous Silicon Single-Nanowire Solar Cells by Front-Opening Crescent Design

    NASA Astrophysics Data System (ADS)

    Yang, Zhenhai; Cao, Guoyang; Shang, Aixue; Lei, Dang Yuan; Zhang, Cheng; Gao, Pingqi; Ye, Jichun; Li, Xiaofeng

    2016-04-01

    We report an approach for substantially enhancing the light-trapping and photoconversion efficiency of hydrogenated amorphous silicon (a-Si:H) single-nanowire solar cells (SNSCs) by engineering the cross section of the nanowire from circular into a front-opening crescent shape. The proposed SNSCs show a broadband and highly tunable optical absorption compared to the conventional circular counterparts under both transverse electric and transverse magnetic incidences, enabling an enhancement ratio of over 40 % in both the photocurrent density and the photoconversion efficiency in a-Si:H SNSCs with a diameter of 200 nm. We further show that the superior performance can be well maintained under a wide range of incident angle and is robust to the blunt crescent edges.

  9. Enhanced Photoelectrical Response of Hydrogenated Amorphous Silicon Single-Nanowire Solar Cells by Front-Opening Crescent Design.

    PubMed

    Yang, Zhenhai; Cao, Guoyang; Shang, Aixue; Lei, Dang Yuan; Zhang, Cheng; Gao, Pingqi; Ye, Jichun; Li, Xiaofeng

    2016-12-01

    We report an approach for substantially enhancing the light-trapping and photoconversion efficiency of hydrogenated amorphous silicon (a-Si:H) single-nanowire solar cells (SNSCs) by engineering the cross section of the nanowire from circular into a front-opening crescent shape. The proposed SNSCs show a broadband and highly tunable optical absorption compared to the conventional circular counterparts under both transverse electric and transverse magnetic incidences, enabling an enhancement ratio of over 40 % in both the photocurrent density and the photoconversion efficiency in a-Si:H SNSCs with a diameter of 200 nm. We further show that the superior performance can be well maintained under a wide range of incident angle and is robust to the blunt crescent edges. PMID:27129685

  10. Structural transformation and enhancement in magnetic properties of single-phase Bi1-xPrxFeO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumar Srivastav, Simant; Gajbhiye, N. S.; Banerjee, A.

    2013-05-01

    Single-phase Bi1-xPrxFeO3 (x = 0.0, 0.05, and 0.10) nanoparticles have been synthesized by propylene glycol-gel route at a temperature of 400 °C. Rietveld refinement of X-ray diffraction data and Raman spectra reflect a structural phase transition from rhombohedral for x = 0 to triclinic for x = 0.10. Magnetic measurements reveal that Pr-doped BiFeO3 nanoparticles for x = 0.10 have enhanced remnant magnetization about 10 times as compared to pure BiFeO3 nanoparticles. It has been shown by 57Fe Mössbauer spectroscopy that the observed enhancement in magnetic properties of BiFeO3 with Pr doping is mainly due to suppression of modulated spiral spin structure near x = 0.10 and not due to Fe multiple valence, i.e., oxygen deficiency.

  11. Enhancement of ambipolar characteristics in single-walled carbon nanotubes using C{sub 60} and fabrication of logic gates

    SciTech Connect

    Park, Steve; Nam, Ji Hyun; Koo, Ja Hoon; Lei, Ting; Bao, Zhenan

    2015-03-09

    We demonstrate a technique to convert p-type single-walled carbon nanotube (SWNT) network transistor into ambipolar transistor by thermally evaporating C{sub 60} on top. The addition of C{sub 60} was observed to have two effects in enhancing ambipolar characteristics. First, C{sub 60} served as an encapsulating layer that enhanced the ambipolar characteristics of SWNTs. Second, C{sub 60} itself served as an electron transporting layer that contributed to the n-type conduction. Such a dual effect enables effective conversion of p-type into ambipolar characteristics. We have fabricated inverters using our SWNT/C{sub 60} ambipolar transistors with gain as high as 24, along with adaptive NAND and NOR logic gates.

  12. Enhanced Macroscopic Quantum Tunneling in Capacitively Coupled BiPb2201 Single-Layered Intrinsic Josephson Junctions

    NASA Astrophysics Data System (ADS)

    Nomura, Yoshiki; Mizuno, Takaaki; Kambara, Hitoshi; Nakagawa, Yuya; Kakeya, Itsuhiro

    2015-01-01

    Macroscopic quantum tunneling (MQT) in an intrinsic Josephson junction (IJJ) stack of Bi1.9Pb0.1Sr1.39La0.63CuO6+δ (BiPb2201) has been investigated. For the first switch, from superconducting to the first resistive branch in current-voltage characteristics, the crossover between MQT and thermal activation (TA) takes place at 0.6 K. On the other hand, for the second switch, the MQT-TA crossover temperature is increased to 2.0 K. This result is interpreted as follows: the MQT rate of the second switch is enhanced by the charge coupling between adjacent IJJs as well as in Bi2Sr2CaCu2O8+δ. We consider that the enhancement of the MQT rate is a common feature among bismuth-cuprates with single and double CuO2 layers in their crystal structures.

  13. Single-nucleotide polymorphisms and activity analysis of the promoter and enhancer of the pig lactase gene.

    PubMed

    Du, Hai-Ting; Zhu, Hong-Yan; Wang, Jia-Mei; Zhao, Wei; Tao, Xiao-Li; Ba, Cai-Feng; Tian, Yu-Min; Su, Yu-Hong

    2014-07-15

    Lactose intolerance in northern Europeans is strongly associated with a single-nucleotide polymorphism (SNP) located 14 kb upstream of the human lactase gene: -13,910 C/T. We examined whether SNPs in the 5' flanking region of the pig lactase gene are similar to those in the human gene and whether these polymorphisms play a functional role in regulating pig lactase gene expression. The 5' flanking region of the lactase gene from several different breeds of pigs was cloned and analyzed for gene regulatory activity of a luciferase reporter gene. One SNP was found in the enhancer region (-797 G/A) and two were found in the promoter region (-308G/C and -301 A/G). The promoter C-308,G-301(Pro-CG) strongly promotes the expression of the lactase gene, but the promoter G-308,A-301(Pro-GA) does not. The enhancer A-797(Enh-A) genotype for Pro-GA can significantly enhance promoter activity, but has an inhibitory effect on Pro-CG. The Enhancer G-797(Enh-G) has a significant inhibitory effect on both promoters. In conclusion, the order of effectiveness on the pig lactase gene is Enh-A+Pro-GA>Enh-A/G+Pro-CG>Enh-G+Pro-GA. PMID:24809963

  14. Dendrimer-templated Fe nanoparticles for the growth of single-wall carbon nanotubes by plasma-enhanced CVD.

    PubMed

    Amama, Placidus B; Maschmann, Matthew R; Fisher, Timothy S; Sands, Timothy D

    2006-06-01

    A fourth-generation (G4) poly(amidoamine) (PAMAM) dendrimer (G4-NH2) has been used as a template to deliver nearly monodispersed catalyst nanoparticles to SiO2/Si, Ti/Si, sapphire, and porous anodic alumina (PAA) substrates. Fe2O3 nanoparticles obtained after calcination of the immobilized Fe3+/G4-NH2 composite served as catalytic "seeds" for the growth of single-wall carbon nanotubes (SWNTs) by microwave plasma-enhanced CVD (PECVD). To surmount the difficulty associated with SWNT growth via PECVD, reaction conditions that promote the stabilization of Fe nanoparticles, resulting in enhanced SWNT selectivity and quality, have been identified. In particular, in situ annealing of Fe catalyst in an N2 atmosphere was found to improve SWNT selectivity and quality. H2 prereduction at 900 degrees C for 5 min was also found to enhance SWNT selectivity and quality for SiO2/Si supported catalyst, albeit of lower quality for sapphire supported catalyst. The application of positive dc bias voltage (+200 V) during SWNT growth was shown to be very effective in removing amorphous carbon impurities while enhancing graphitization, SWNT selectivity, and vertical alignment. The results of this study should promote the use of exposed Fe nanoparticles supported on different substrates for the growth of high-quality SWNTs by PECVD. PMID:16771309

  15. Large Grained Perovskite Solar Cells Derived from Single-Crystal Perovskite Powders with Enhanced Ambient Stability.

    PubMed

    Yen, Hung-Ju; Liang, Po-Wei; Chueh, Chu-Chen; Yang, Zhibin; Jen, Alex K-Y; Wang, Hsing-Lin

    2016-06-15

    In this study, we demonstrate the large grained perovskite solar cells prepared from precursor solution comprising single-crystal perovskite powders for the first time. The resultant large grained perovskite thin film possesses a negligible physical (structural) gap between each large grain and is highly crystalline as evidenced by its fan-shaped birefringence observed under polarized light, which is very different from the thin film prepared from the typical precursor route (MAI + PbI2). PMID:27224963

  16. Enhanced Magnetic Anisotropies of Single Transition-Metal Adatoms on a Defective MoS2 Monolayer

    PubMed Central

    Cong, W. T.; Tang, Z.; Zhao, X. G.; Chu, J. H.

    2015-01-01

    Single magnetic atoms absorbed on an atomically thin layer represent the ultimate limit of bit miniaturization for data storage. To approach the limit, a critical step is to find an appropriate material system with high chemical stability and large magnetic anisotropic energy. Here, on the basis of first-principles calculations and the spin-orbit coupling theory, it is elucidated that the transition-metal Mn and Fe atoms absorbed on disulfur vacancies of MoS2 monolayers are very promising candidates. It is analysed that these absorption systems are of not only high chemical stabilities but also much enhanced magnetic anisotropies and particularly the easy magnetization axis is changed from the in-plane one for Mn to the out-of-plane one for Fe by a symmetry-lowering Jahn-Teller distortion. The results point out a promising direction to achieve the ultimate goal of single adatomic magnets with utilizing the defective atomically thin layers. PMID:25797135

  17. Enhanced photodegradation of pentachlorophenol by single and mixed nonionic and anionic surfactants using graphene-TiO₂ as catalyst.

    PubMed

    Zhang, Yaxin; He, Xin; Zeng, Guangming; Chen, Tan; Zhou, Zeyu; Wang, Hongtao; Lu, Wenjing

    2015-11-01

    The photodegradation of pentachlorophenol (PCP) in a surfactant-containing (single and mixed) complex system using graphene-TiO2 (GT) as catalyst was investigated. The objective was to better understand the behavior of surfactants in a GT catalysis system for its possible use in remediation technology of soil contaminated by hydrophobic organic compounds (HOCs). In a single-surfactant system, surfactant molecules aggregated on GT via hydrogen bonding and electrostatic force; nonideal mixing between nonionic and anionic surfactants rendered GT surface with mixed admicelles in a mixed surfactant system. Both effects helped incorporating PCP molecules into surfactant aggregates on catalyst surface. Hence, the targeted pollutants were rendered easily available to photo-yielded oxidative radicals, and photodegradation efficiency was significantly enhanced. Finally, real soil washing-photocatalysis trials proved that anionic-nonionic mixed surfactant soil washing coupled with graphene-TiO2 photocatalysis can be one promising technology for HOC-polluted soil remediation. PMID:26194233

  18. Single-shot thermometry and OH detection via femtosecond fully resonant electronically enhanced CARS (FREE-CARS).

    PubMed

    Wrzesinski, Paul J; Stauffer, Hans U; Schmidt, Jacob B; Roy, Sukesh; Gord, James R

    2016-05-01

    Femtosecond time-resolved, fully resonant electronically enhanced coherent anti-Stokes Raman scattering (FREE-CARS) spectroscopy, incorporating a two-color excitation scheme, is used to demonstrate selective and sensitive gas-phase detection of the hydroxyl (OH) radical in a reacting flow. Spectral resolution of the emitted FREE-CARS signal allows simultaneous detection of temperature and relative OH mole fraction under single-laser-shot conditions in a laminar ethylene-air flame. By comparison to previously reported OH concentration and temperature measurements, we demonstrate excellent single-shot temperature accuracies (∼2% deviation from adiabatic flame temperature) and precisions (∼2% standard deviation), with simultaneous relative OH concentration measurements that demonstrate high detection sensitivity (100-300 ppm). PMID:27128064

  19. Mechanism for enhanced single-crystal GaN growth in the C-assisted Na-flux method

    NASA Astrophysics Data System (ADS)

    Kawamura, Takahiro; Imabayashi, Hiroki; Maruyama, Mihoko; Imade, Mamoru; Yoshimura, Masashi; Mori, Yusuke; Morikawa, Yoshitada

    2016-01-01

    First-principles molecular dynamics simulations are used to examine the effect of C addition in Na-flux growth of GaN. The mechanism for suppression of polycrystalline growth and the enhancement of single-crystal growth was identified by systematically calculating activation free energies for the formation and dissociation of C-N bonds. The energy barrier for C-N dissociation in a Ga-Na melt is ≥3 eV; thus, dissociation is inhibited and the growth of polycrystals is suppressed. However, at kink sites at a Na/GaN interface with excess Ga atoms, the barrier is only ˜1.0 eV, allowing C-N dissociation and growth of GaN single crystals.

  20. Convergence enhancement of single-pixel PIV with symmetric double correlation

    NASA Astrophysics Data System (ADS)

    Avallone, Francesco; Discetti, Stefano; Astarita, Tommaso; Cardone, Gennaro

    2015-04-01

    A symmetric correlation approach is proposed to improve the convergence of the single-pixel technique for particle image velocimetry (PIV). Nogueira et al. (Exp Fluids 30:309-316, 2001) introduced this method to remove a source of random errors in PIV when small interrogation windows are used; it consists in applying the cross-correlation operator by considering fixed the first exposure and moving the second one, and vice versa, and then calculating the cross-correlation map as the average of the two maps. The symmetric correlation suppresses the effects of truncation of the particles lying on the border of the interrogation windows. In this paper, the application of symmetric correlation to single-pixel PIV algorithms is reported. Since symmetric direct correlation provides a significant improvement in the cross-correlation peak shape with respect to the standard asymmetric single-pixel implementation, a faster convergence in estimating the average velocity components and turbulence statistics is achieved. An additional improvement is due to the possibly limited correlation between the background noise for the two exposures. The algorithm is tested via synthetic images with imposed constant and sinusoidal displacement and then tested with real data of a jet flow. The technique has shown that the same accuracy of the standard asymmetric approach can be achieved with 50 % of the samples and that a reduction in the measurement error by 30 % is obtained when using the same number of samples.

  1. Brightness-enhanced high-efficiency single emitters for fiber laser pumping

    NASA Astrophysics Data System (ADS)

    Yanson, Dan; Rappaport, Noam; Shamay, Moshe; Cohen, Shalom; Berk, Yuri; Klumel, Genadi; Don, Yaroslav; Peleg, Ophir; Levy, Moshe

    2013-02-01

    Reliable single emitters delivering <10W in the 9xx nm spectral range, are common energy sources for fiber laser pumps. The brightness (radiance) of a single emitter, which connotes the angular concentration of the emitted energy, is just as important a parameter as the output power alone for fiber coupling applications. We report on the development of high-brightness single emitters that demonstrate <12W output with 60% wall-plug efficiency and a lateral emission angle that is compatible with coupling into 0.15 NA delivery fiber. Using a purpose developed active laser model, simulation of far-field patterns in the lateral (slow) axis can be performed for different epitaxial wafer structures. By optimizing both the wafer and chip designs, we have both increased the device efficiency and improved the slow-axis divergence in high-current operation. Device reliability data are presented. The next-generation emitters will be integrated in SCD's NEON fiber pump modules to upgrade the pump output towards higher ex-fiber powers with high efficiency.

  2. Averaging of Replicated Pulses for Enhanced-Dynamic-Range Single-Shot Measurement of Nanosecond Optical Pulses

    SciTech Connect

    Marciante, J.R.; Donaldson, W.R.; Roides, R.G.

    2007-10-04

    Measuring optical pulse shapes beyond the dynamic range of oscilloscopes is achieved by temporal pulse stacking in a low-loss, passive, fiber-optic network. Optical pulses are averaged with their time-delayed replicas without introducing additional noise or jitter, allowing for high-contrast pulse-shape measurements of single-shot events. A dynamic-range enhancement of three bits is experimentally demonstrated and compared with conventional multi-shot averaging. This technique can be extended to yield an increase of up to seven bits of additional dynamic range over nominal oscilloscope performance.

  3. Mechanical and Electrical Properties of a Polyimide Film Significantly Enhanced by the Addition of Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2005-01-01

    Single-wall carbon nanotubes have been shown to possess a combination of outstanding mechanical, electrical, and thermal properties. The use of carbon nanotubes as an additive to improve the mechanical properties of polymers and/or enhance their thermal and electrical conductivity has been a topic of intense interest. Nanotube-modified polymeric materials could find a variety of applications in NASA missions including large-area antennas, solar arrays, and solar sails; radiation shielding materials for vehicles, habitats, and extravehicular activity suits; and multifunctional materials for vehicle structures and habitats. Use of these revolutionary materials could reduce vehicle weight significantly and improve vehicle performance and capabilities.

  4. Nanoscale mapping of excitonic processes in single-layer MoS2 using tip-enhanced photoluminescence microscopy

    NASA Astrophysics Data System (ADS)

    Su, Weitao; Kumar, Naresh; Mignuzzi, Sandro; Crain, Jason; Roy, Debdulal

    2016-05-01

    In two-dimensional (2D) semiconductors, photoluminescence originating from recombination processes involving neutral electron-hole pairs (excitons) and charged complexes (trions) is strongly affected by the localized charge transfer due to inhomogeneous interactions with the local environment and surface defects. Herein, we demonstrate the first nanoscale mapping of excitons and trions in single-layer MoS2 using the full spectral information obtained via tip-enhanced photoluminescence (TEPL) microscopy along with tip-enhanced Raman spectroscopy (TERS) imaging of a 2D flake. Finally, we show the mapping of the PL quenching centre in single-layer MoS2 with an unprecedented spatial resolution of 20 nm. In addition, our research shows that unlike in aperture-scanning near field microscopy, preferential exciton emission mapping at the nanoscale using TEPL and Raman mapping using TERS can be obtained simultaneously using this method that can be used to correlate the structural and excitonic properties.In two-dimensional (2D) semiconductors, photoluminescence originating from recombination processes involving neutral electron-hole pairs (excitons) and charged complexes (trions) is strongly affected by the localized charge transfer due to inhomogeneous interactions with the local environment and surface defects. Herein, we demonstrate the first nanoscale mapping of excitons and trions in single-layer MoS2 using the full spectral information obtained via tip-enhanced photoluminescence (TEPL) microscopy along with tip-enhanced Raman spectroscopy (TERS) imaging of a 2D flake. Finally, we show the mapping of the PL quenching centre in single-layer MoS2 with an unprecedented spatial resolution of 20 nm. In addition, our research shows that unlike in aperture-scanning near field microscopy, preferential exciton emission mapping at the nanoscale using TEPL and Raman mapping using TERS can be obtained simultaneously using this method that can be used to correlate the structural

  5. Enhanced photocoagulation with catheter-based diffusing optical device

    NASA Astrophysics Data System (ADS)

    Kang, Hyun Wook; Kim, Jeehyun; Oh, Jungwhan

    2012-11-01

    A novel balloon catheter-based diffusing optical device was designed and evaluated to assist in treating excessive menstrual bleeding. A synthetic fused-silica fiber was micro-machined precisely to create scattering segments on a 25 mm long fiber tip for uniform light distribution. A visible wavelength (λ=532 nm) was used to specifically target the endometrium due to the high vascularity of the uterine wall. Optical simulation presented 30% wider distribution of photons along with approximately 40% higher irradiance induced by addition of a glass cap to the diffuser tip. Incorporation of the optical diffuser with a polyurethane balloon catheter considerably enhanced coagulation depth and area (i.e., 3.5 mm and 18.9 cm2 at 1 min irradiation) in tissue in vitro. The prototype device demonstrated the coagulation necrosis of 2.8±1.2 mm (n=18) and no thermal damage to myometrium in in vivo caprine models. A prototype 5 cm long balloon catheter-assisted optical diffuser was also evaluated with a cadaveric human uterus to confirm the coagulative response of the uterine tissue as well as to identify the further design improvement and clinical applicability. The proposed catheter-based diffusing optical device can be a feasible therapeutic tool to photocoagulate endometrial cell layers in an efficient and safe manner.

  6. An Enhanced Differential Evolution Algorithm Based on Multiple Mutation Strategies

    PubMed Central

    Xiang, Wan-li; Meng, Xue-lei; An, Mei-qing; Li, Yin-zhen; Gao, Ming-xia

    2015-01-01

    Differential evolution algorithm is a simple yet efficient metaheuristic for global optimization over continuous spaces. However, there is a shortcoming of premature convergence in standard DE, especially in DE/best/1/bin. In order to take advantage of direction guidance information of the best individual of DE/best/1/bin and avoid getting into local trap, based on multiple mutation strategies, an enhanced differential evolution algorithm, named EDE, is proposed in this paper. In the EDE algorithm, an initialization technique, opposition-based learning initialization for improving the initial solution quality, and a new combined mutation strategy composed of DE/current/1/bin together with DE/pbest/bin/1 for the sake of accelerating standard DE and preventing DE from clustering around the global best individual, as well as a perturbation scheme for further avoiding premature convergence, are integrated. In addition, we also introduce two linear time-varying functions, which are used to decide which solution search equation is chosen at the phases of mutation and perturbation, respectively. Experimental results tested on twenty-five benchmark functions show that EDE is far better than the standard DE. In further comparisons, EDE is compared with other five state-of-the-art approaches and related results show that EDE is still superior to or at least equal to these methods on most of benchmark functions. PMID:26609304

  7. Enhanced vibration based energy harvesting using embedded acoustic black holes

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Semperlotti, F.; Conlon, S. C.

    2014-03-01

    In this paper, we investigate the use of dynamic structural tailoring via the concept of an Acoustic Black Hole (ABH) to enhance the performance of piezoelectric based energy harvesting from operational mechanical vibrations. The ABH is a variable thickness structural feature that can be embedded in the host structure allowing a smooth reduction of the phase velocity while minimizing the amplitude of reflected waves. The ABH thickness variation is typically designed according to power-law profiles. As a propagating wave enters the ABH, it is progressively slowed down while its wavelength is compressed. This effect results in structural areas with high energy density that can be exploited effectively for energy harvesting. The potential of ABH for energy harvesting is shown via a numerical study based on fully coupled finite element electromechanical models of an ABH tapered plate with surface mounted piezo-transducers. The performances of the novel design are evaluated by direct comparison with a non-tapered structure in terms of energy ratios and attenuation indices. Results show that the tailored structural design allows a drastic increase in the harvested energy both for steady state and transient excitation. Performance dependencies of key design parameters are also investigated.

  8. Combined 3 Tesla MRI Biomarkers Improve the Differentiation between Benign vs Malignant Single Ring Enhancing Brain Masses

    PubMed Central

    Salice, Simone; Esposito, Roberto; Ciavardelli, Domenico; delli Pizzi, Stefano; di Bastiano, Rossella; Tartaro, Armando

    2016-01-01

    Purpose To evaluate whether the combination of imaging biomarkers obtained by means of different 3 Tesla (3T) Magnetic Resonance Imaging (MRI) advanced techniques can improve the diagnostic accuracy in the differentiation between benign and malignant single ring-enhancing brain masses. Materials and Methods 14 patients presenting at conventional 3T MRI single brain mass with similar appearance as regard ring enhancement, presence of peri-lesional edema and absence of hemorrhage signs were included in the study. All lesions were histologically proven: 5 pyogenic abscesses, 6 glioblastomas, and 3 metastases. MRI was performed at 3 Tesla and included Diffusion Weighted Imaging (DWI), Dynamic Susceptibility Contrast -Perfusion Weighted Imaging (DSC-PWI), Magnetic Resonance Spectroscopy (MRS), and Diffusion Tensor Imaging (DTI). Imaging biomarkers derived by those advanced techniques [Cerebral Blood Flow (CBF), relative Cerebral Blood Volume (rCBV), relative Main Transit Time (rMTT), Choline (Cho), Creatine (Cr), Succinate, N-Acetyl Aspartate (NAA), Lactate (Lac), Lipids, relative Apparent Diffusion Coefficient (rADC), and Fractional Anisotropy (FA)] were detected by two experienced neuroradiologists in joint session in 4 areas: Internal Cavity (IC), Ring Enhancement (RE), Peri-Lesional edema (PL), and Contralateral Normal Appearing White Matter (CNAWM). Significant differences between benign (n = 5) and malignant (n = 9) ring enhancing lesions were tested with Mann-Withney U test. The diagnostic accuracy of MRI biomarkers taken alone and MRI biomarkers ratios were tested with Receiver Operating Characteristic (ROC) analysis with an Area Under the Curve (AUC) ≥ 0.9 indicating a very good diagnostic accuracy of the variable. Results Five MRI biomarker ratios achieved excellent accuracy: IC-rADC/PL-NAA (AUC = 1), IC-rADC/IC-FA (AUC = 0.978), RE-rCBV/RE-FA (AUC = 0.933), IC-rADC/RE-FA (AUC = 0.911), and IC-rADC/PL-FA (AUC = 0.911). Only IC-rADC achieved a very good

  9. Localized tip enhanced Raman spectroscopic study of impurity incorporated single GaN nanowire in the sub-diffraction limit

    SciTech Connect

    Patsha, Avinash E-mail: dhara@igcar.gov.in; Dhara, Sandip; Tyagi, A. K.

    2015-09-21

    The localized effect of impurities in single GaN nanowires in the sub-diffraction limit is reported using the study of lattice vibrational modes in the evanescent field of Au nanoparticle assisted tip enhanced Raman spectroscopy (TERS). GaN nanowires with the O impurity and the Mg dopants were grown by the chemical vapor deposition technique in the catalyst assisted vapor-liquid-solid process. Symmetry allowed Raman modes of wurtzite GaN are observed for undoped and doped nanowires. Unusually very strong intensity of the non-zone center zone boundary mode is observed for the TERS studies of both the undoped and the Mg doped GaN single nanowires. Surface optical mode of A{sub 1} symmetry is also observed for both the undoped and the Mg doped GaN samples. A strong coupling of longitudinal optical (LO) phonons with free electrons, however, is reported only in the O rich single nanowires with the asymmetric A{sub 1}(LO) mode. Study of the local vibration mode shows the presence of Mg as dopant in the single GaN nanowires.

  10. A mechanistic based approach for enhancing buccal mucoadhesion of chitosan.

    PubMed

    Meng-Lund, Emil; Muff-Westergaard, Christian; Sander, Camilla; Madelung, Peter; Jacobsen, Jette

    2014-01-30

    Mucoadhesive buccal drug delivery systems can enhance rapid drug absorption by providing an increased retention time at the site of absorption and a steep concentration gradient. An understanding of the mechanisms behind mucoadhesion of polymers, e.g. chitosan, is necessary for improving the mucoadhesiveness of buccal formulations. The interaction between chitosan of different chain lengths and porcine gastric mucin (PGM) was studied using a complex coacervation model (CCM), isothermal titration calorimetry (ITC) and a tensile detachment model (TDM). The effect of pH was assessed in all three models and the approach to add a buffer to chitosan based drug delivery systems is a means to optimize and enhance buccal drug absorption. The CCM demonstrated optimal interactions between chitosan and PGM at pH 5.2. The ITC experiments showed a significantly increase in affinity between chitosan and PGM at pH 5.2 compared to pH 6.3 and that the interactions were entropy driven. The TDM showed a significantly increase in strength of adhesion between chitosan discs and an artificial mucosal surface at pH 5.2 compared to pH 6.8, addition of PGM increased the total work of adhesion by a factor of 10 as compared to the wetted surface without PGM. These findings suggest that chitosan and PGM are able to interact by electrostatic interactions and by improving the conditions for electrostatic interactions, the adhesion between chitosan and PGM becomes stronger. Also, the three complementary methods were utilized to conclude the pH dependency on mucoadhesiveness. PMID:24291123

  11. Mapping of Single-Base Differences between Two DNA Strands in a Single Molecule Using Holliday Junction Nanomechanics

    PubMed Central

    Brème, Camille; Heslot, François

    2013-01-01

    Objective The aim of this work is to demonstrate a novel single-molecule DNA sequence comparison assay that is purely based on DNA mechanics. Methods A molecular construct that contained the two homologous but non-identical DNA sequences that were to be compared was prepared such that a four-way (Holliday) junction could be formed by the formation of heteroduplexes through the inter-recombination of the strands. Magnetic tweezers were used to manipulate the force and the winding applied to this construct for inducing both the formation and the migration of a Holliday junction. The end-to-end distance of the construct was measured as a function of the winding and was used to monitor the behavior of the Holliday junction in different regions of the intra-molecular recombination. Main Results In the appropriate buffer, the magnet rotation induces the migration of the Holliday junction in the regions where there is no sequence difference between the recombining sequences. In contrast, even a single-base difference between the recombining sequences leads to a long-lasting blockage of the migration in the same buffer; this effect was obtained when the junction was positioned near this locus (the site of the single-base difference) and forced toward the formation of heteroduplexes that comprise the locus. The migration blockages were detected through the identification of the formation of plectonemes. The detection of the presence of sequence differences and their respective mappings were obtained from the series of blockages that were detected. Significance This work presents a novel single-molecule sequence comparison assay that is based on the use of a Holliday junction as an ultra-sensitive nanomechanism; the mismatches act as blocking grains of sand in the Holliday “DNA gearbox”. This approach will potentially have future applications in biotechnology. PMID:23393565

  12. A neutron sensor based on synthetic single crystal diamond

    SciTech Connect

    Schmid, G J; Koch, J A; Lerche, R A; Moran, M J

    2003-10-17

    We report the first neutron data for a single crystal Chemical Vapor Deposition (CVD) diamond sensor. Results are presented for 2.5, 14.1, and 14.9 MeV incident neutrons. We show that the energy resolution for 14.1 MeV neutrons is at least 2.9% (as limited by the energy spread of the incident neutrons), and perhaps as good as 0.4% (as extrapolated from high resolution {alpha} particle data). This result could be relevant to fusion neutron spectroscopy at machines like the International Thermonuclear Experimental Reactor (ITER). We also show that our sensor has a high neutron linear attenuation coefficient, due to the high atomic density of diamond, and this could lead to applications in fission neutron detection.

  13. Single-Photon Switch Based on Rydberg Blockade

    NASA Astrophysics Data System (ADS)

    Baur, Simon; Tiarks, Daniel; Rempe, Gerhard; Duerr, Stephan

    2015-05-01

    All-optical switching is a technique in which a gate light pulse changes the transmission of a target light pulse without the detour via electronic signal processing. We take this to the quantum regime, where the incoming gate light pulse contains only one photon on average. The gate pulse is stored as a Rydberg excitation in an ultracold atomic gas using electromagnetically induced transparency. Rydberg blockade suppresses the transmission of the subsequent target pulse. Finally, the stored gate photon can be retrieved. A retrieved photon heralds successful storage. The corresponding postselected subensemble shows a relative transmission of 0.05. The single-photon switch offers many interesting perspectives ranging from quantum communication to quantum information processing.

  14. Enhancement of Single Molecule Fluorescence Signals by Colloidal Silver Nanoparticles in Studies of Protein Translation

    PubMed Central

    Bharill, Shashank; Chen, Chunlai; Stevens, Benjamin; Kaur, Jaskiran; Smilansky, Zeev; Mandecki, Wlodek; Gryczynski, Ignacy; Gryczynski, Zygmunt; Cooperman, Barry S.; Goldman, Yale E.

    2011-01-01

    Metal enhanced fluorescence (MEF) increased total photon emission of Cy3- and Cy5-labeled ribosomal initiation complexes near 50 nm silver particles 4- and 5.5-fold respectively. Fluorescence intensity fluctuations above shot noise, at 0.1 – 5 Hz, were greater on silver particles. Overall signal to noise ratio was similar or slightly improved near the particles. Proximity to silver particles did not compromise ribosome function, as measured by codon-dependent binding of fluorescent tRNA, dynamics of fluorescence resonance energy transfer between adjacent tRNAs in the ribosome, and tRNA translocation induced by elongation factor G. PMID:21158483

  15. Advanced piezoelectric single crystal based transducers for naval sonar applications

    NASA Astrophysics Data System (ADS)

    Snook, Kevin A.; Rehrig, Paul W.; Hackenberger, Wesley S.; Jiang, Xiaoning; Meyer, Richard J., Jr.; Markley, Douglas

    2006-03-01

    Transducers incorporating single crystal piezoelectric Pb(Mg 1/3Nb 2/3) x-1Ti xO 3 (PMN-PT) exhibit significant advantages over ceramic piezoelectrics such as PZT, including both high electromechanical coupling (k 33 > 90%) and piezoelectric coefficients (d 33 > 2000 pC/N). Conventional <001> orientation gives inherently larger bandwidth and output power than PZT ceramics, however, the anisotropy of the crystal also allows for tailoring of the performance by orienting the crystal along different crystallographic axes. This attribute combined with composition refinements can be used to improve thermal or mechanical stability, which is important in high power, high duty cycle sonar applications. By utilizing the "31" resonance mode, the high power performance of PMN-PT can be improved over traditional "33" mode single crystal transducers, due to an improved aspect ratio. Utilizing novel geometries, effective piezoelectric constants of -600 pC/N to -1200 pC/N have been measured. The phase transition point induced by temperature, pre-stress or field is close to that in the "33" mode, and since the prestress is applied perpendicular to the poling direction in "31" mode elements, they exhibit lower loss and can therefore be driven harder. The high power characteristics of tonpilz transducers can also be affected by the composition of the PMN-PT crystal. TRS modified the composition of PMN-PT to improve the thermal stability of the material, while keeping the loss as low as possible. Three dimensional modeling shows that the useable bandwidth of these novel compositions nearly equals that of conventional PMN-PT. A decrease in the source level of up to 6 dB was calculated, which can be compensated for by the higher drive voltages possible.

  16. A Novel SNPs Detection Method Based on Gold Magnetic Nanoparticles Array and Single Base Extension

    PubMed Central

    Li, Song; Liu, Hongna; Jia, Yingying; Deng, Yan; Zhang, Liming; Lu, Zhuoxuan; He, Nongyue

    2012-01-01

    To fulfill the increasing need for large-scale genetic research, a high-throughput and automated SNPs genotyping method based on gold magnetic nanoparticles (GMNPs) array and dual-color single base extension has been designed. After amplification of DNA templates, biotinylated extension primers were captured by streptavidin coated gold magnetic nanoparticle (SA-GMNPs). Next a solid-phase, dual-color single base extension (SBE) reaction with the specific biotinylated primer was performed directly on the surface of the GMNPs. Finally, a “bead array” was fabricated by spotting GMNPs with fluorophore on a clean glass slide, and the genotype of each sample was discriminated by scanning the “bead array”. MTHFR gene C677T polymorphism of 320 individual samples were interrogated using this method, the signal/noise ratio for homozygous samples were over 12.33, while the signal/noise ratio for heterozygous samples was near 1. Compared with other dual-color hybridization based genotyping methods, the method described here gives a higher signal/noise ratio and SNP loci can be identified with a high level of confidence. This assay has the advantage of eliminating the need for background subtraction and direct analysis of the fluorescence values of the GMNPs to determine their genotypes without the necessary procedures for purification and complex reduction of PCR products. The application of this strategy to large-scale SNP studies simplifies the process, and reduces the labor required to produce highly sensitive results while improving the potential for automation. PMID:23139724

  17. Enhanced Access Polynomial Based Self-healing Key Distribution

    NASA Astrophysics Data System (ADS)

    Dutta, Ratna; Mukhopadhyay, Sourav; Dowling, Tom

    A fundamental concern of any secure group communication system is that of key management. Wireless environments create new key management problems and requirements to solve these problems. One such core requirement in these emerging networks is that of self-healing. In systems where users can be offline and miss updates self healing allows a user to recover lost keys and get back into the secure communication without putting extra burden on the group manager. Clearly self healing must be only available to authorized users and this creates more challenges in that we must ensure unauthorized or revoked users cannot, themselves or by means of collusion, avail of self healing. To this end we enhance the one-way key chain based self-healing key distribution of Dutta et al. by introducing a collusion resistance property between the revoked users and the newly joined users. Our scheme is based on the concept of access polynomials. These can be loosely thought of as white lists of authorized users as opposed to the more widely used revocation polynomials or black lists of revoked users. We also allow each user a pre-arranged life cycle distributed by the group manager. Our scheme provides better efficiency in terms of storage, and the communication and computation costs do not increase as the number of sessions grows as compared to most current schemes. We analyze our scheme in an appropriate security model and prove that the proposed scheme is computationally secure and not only achieving forward and backward secrecy, but also resisting collusion between the new joined users and the revoked users. Unlike most existing schemes the new scheme allows temporary revocation. Also unlike existing schemes, our construction does not collapse if the number of revoked users crosses a threshold value. This feature increases resilience against revocation based denial of service (DOS) attacks and thus improves availability of communication channel.

  18. Cysticerci-related single parenchymal brain enhancing lesions in non-endemic countries

    PubMed Central

    Del Brutto, Oscar H.; Nash, Theodore E.; Garcia, Hector H.

    2012-01-01

    Objective Review of case reports and case series of patients with single cysticercus granulomas in non-endemic countries to determine the characteristics of this form of neurocysticercosis in these regions. Methods MEDLINE and manual search of patients with single cysticercus granulomas diagnosed in non-endemic countries from 1991 to 2011. Abstracted data included: demographic profile, clinical manifestations, form of neurocysticercosis, and whether the disease occurred in immigrants, international travelers, or citizens from non-endemic countries who had never been abroad. Results A total of 77 patients were found. Of these, 61 (79%) were diagnosed since the year 2000. Thirty-four patients (44%) patients were immigrants from endemic countries, 18 (23%) were international travelers returning from disease-endemic areas, and the remaining 25 (33%) were citizens from non-endemic countries who had never been abroad. Most immigrants and international travelers became symptomatic two or more years after returning home. Countries with the most reported patients were Kuwait (n=18), UK (n=11), Australia (n=8), USA (n=7), Japan (n=6), and Israel (n=5). Conclusions A single cerebral cysticercus granuloma in a non-endemic country is not a rare event. As seen in endemic regions, these cases have a good prognosis although more surgical procedures are performed in non-endemic countries, likely reflecting a decrease of diagnostic suspicion for cysticercosis and an increased availability of surgical options. The mean age of the reported cases was 25 years, and immigrants most often developed the disease greater than two years after arrival into a non-endemic area, suggesting a significant delay between infection and symptoms. However, some may have been infected and developed the disease while residing in non-endemic countries. PMID:22658897

  19. Enhanced Neural Cell Adhesion and Neurite Outgrowth on Graphene-Based Biomimetic Substrates

    PubMed Central

    Lee, Jong Ho; Kang, Seok Hee; Hwang, Eun Young; Hwang, Yu-Shik; Lee, Mi Hee; Park, Jong-Chul

    2014-01-01

    Neural cell adhesion and neurite outgrowth were examined on graphene-based biomimetic substrates. The biocompatibility of carbon nanomaterials such as graphene and carbon nanotubes (CNTs), that is, single-walled and multiwalled CNTs, against pheochromocytoma-derived PC-12 neural cells was also evaluated by quantifying metabolic activity (with WST-8 assay), intracellular oxidative stress (with ROS assay), and membrane integrity (with LDH assay). Graphene films were grown by using chemical vapor deposition and were then coated onto glass coverslips by using the scooping method. Graphene sheets were patterned on SiO2/Si substrates by using photolithography and were then covered with serum for a neural cell culture. Both types of CNTs induced significant dose-dependent decreases in the viability of PC-12 cells, whereas graphene exerted adverse effects on the neural cells just at over 62.5 ppm. This result implies that graphene and CNTs, even though they were the same carbon-based nanomaterials, show differential influences on neural cells. Furthermore, graphene-coated or graphene-patterned substrates were shown to substantially enhance the adhesion and neurite outgrowth of PC-12 cells. These results suggest that graphene-based substrates as biomimetic cues have good biocompatibility as well as a unique surface property that can enhance the neural cells, which would open up enormous opportunities in neural regeneration and nanomedicine. PMID:24592382

  20. Enhanced Stability and Controllability of an Ionic Diode Based on Funnel-Shaped Nanochannels with an Extended Critical Region.

    PubMed

    Xiao, Kai; Xie, Ganhua; Zhang, Zhen; Kong, Xiang-Yu; Liu, Qian; Li, Pei; Wen, Liping; Jiang, Lei

    2016-05-01

    The enhanced stability and controllability of an ionic diode system based on funnel-shaped nanochannels with a much longer critical region is reported. The polarity of ion transport switching from anion/cation-selective to ambipolar can be controlled by tuning the length and charge of the critical region. This nanofluidic structure anticipates potential applications in single-molecule biosensing, water resource monitoring, and healthcare. PMID:26928676

  1. Troika of single particle tracking programing: SNR enhancement, particle identification, and mapping

    PubMed Central

    Shuang, Bo; Chen, Jixin; Kisley, Lydia

    2014-01-01

    single particle tracking (SPT) techniques provide a microscopic approach to probe in vivo and in vitro structure and reactions. Automatic analysis of SPT data with high efficiency and accuracy spurs the development of SPT algorithms. In this perspective, we review a range of available techniques used in SPT analysis programs. In addition, we present an example SPT program step-by-step to provide a guide so that researchers can use, modify, and/or write a SPT program for their own purposes. PMID:24263676

  2. [The enhancement of human thermal resistance by the single use of bemitil and fenibut].

    PubMed

    Makarov, V I; Tiurenkov, I N; Klauchek, S V; Nalivaĭko, I Iu; Antipova, A Iu

    1997-01-01

    The authors studied the effect of single intake of bymetil (0.5 g) and phenibut (0.25 g) on the thermal state, gas-energy exchange, blood oxygenation, working capacity, and the subjective status of man in intensive physical exertion in isolating means of individual protection. The drugs under study increased thermal resistance, promoted normal supply of the organism with oxygen, and provided the maintenance of man's high working capacity under conditions which lead to his overheating. The best protective effects was produced in this case with phenibut. PMID:9162292

  3. Enhanced single copy integration events in corn via particle bombardment using low quantities of DNA.

    PubMed

    Lowe, Brenda A; Shiva Prakash, N; Way, Melissa; Mann, Michael T; Spencer, T Michael; Boddupalli, Raghava S

    2009-12-01

    Transgene copy number is an important criterion for determining the utility of transgenic events. Single copy integration events are highly desirable when the objective is to produce marker free plants through segregation or when it is necessary to introgress different transgenes into commercial cultivars from different transgenic events. In contrast multi-copy events are advocated by several authors for higher expression of the transgene. Till recently, it was thought that employment of the particle gun for transformation results in the production of a high proportion of multi-copy events often with complex integration pattern when compared to Agrobacterium-mediated transformation. However, it has been demonstrated that usage of cassette DNA for bombardment in place of whole plasmids would result in simple insertion pattern of the transgenes. While investigating the effect of varying the cassette DNA amount on stable transformation, the frequency of occurrence of low copy events was observed to increase when lower doses of cassette DNA was employed for bombardment. Large scale experimentation with rigorous statistical analysis performed to verify the above observations employing Helium gun and the Electric discharge gun for gene delivery confirmed the above observations. Helium gun experiments involving production of more than 1,600 corn events consistently yielded single copy events at higher frequencies at lower cassette DNA load (46% at 2.5 ng/shot) as compared to higher cassette DNA load (29% at 25 ng/shot) across 18 independent experiments. Results were nearly identical with the Electric discharge particle gun device where single copy events were recovered at frequencies of 54% at 2.5 ng cassettes DNA per shot as compared to 18% at 25 ng cassette DNA per shot. The transformation frequency declined from 41 to 34% (Helium gun) and from 48 to 31% (Electric discharge gun) with reduction in cassette DNA quantity from 25 to 2.5 ng per shot. This reduction in the

  4. Troika of single particle tracking programing: SNR enhancement, particle identification, and mapping.

    PubMed

    Shuang, Bo; Chen, Jixin; Kisley, Lydia; Landes, Christy F

    2014-01-14

    Single particle tracking (SPT) techniques provide a microscopic approach to probe in vivo and in vitro structure and reactions. Automatic analysis of SPT data with high efficiency and accuracy spurs the development of SPT algorithms. In this perspective, we review a range of available techniques used in SPT analysis programs. In addition, we present an example SPT program step-by-step to provide a guide so that researchers can use, modify, and/or write a SPT program for their own purposes. PMID:24263676

  5. Single image orthogonal fringe technique for resolution enhancement of the Fourier transform fringe analysis method

    NASA Astrophysics Data System (ADS)

    Tavares, Paulo J.; Vaz, Mário A. P.

    2013-03-01

    Gradient range and spatial resolution in Fourier Transform Profilometry depend on the size of the filter window in reciprocal space. The proposed methods to date for the elimination of the fundamental frequency and enlargement of the filter window are either too computationally complex or depend on the possibility of using two frames, thus disabling the method's ability to cope with dynamic situations and subjecting the results to possible intensity changes between the two frame acquisitions. This article describes a simple method for using a single crossed fringe pattern to accomplish that objective, greatly improving the previously reported technique, whilst retaining its main advantages.

  6. Measurements of solar flare enhancements to the single event upset environment in the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Dyer, C. S.; Sims, A. J.; Farren, J.; Stephen, J.

    1990-12-01

    The Cosmic Radiation Environment Monitor has flow regularly on a supersonic airliner over a period of 18 months in order to explore the extent of single-event phenomena in the upper atmosphere. Data presented are from flights occurring between November 1988 and May 1990. The detector system used is briefly described. Quiet-time data now have good statistical precision and are compared with predictions of environment models. A number of increases and decreases were observed during the solar flare events of September and October 1989.

  7. Multiplexed Detection of Cytokines Based on Dual Bar-Code Strategy and Single-Molecule Counting.

    PubMed

    Li, Wei; Jiang, Wei; Dai, Shuang; Wang, Lei

    2016-02-01

    Cytokines play important roles in the immune system and have been regarded as biomarkers. While single cytokine is not specific and accurate enough to meet the strict diagnosis in practice, in this work, we constructed a multiplexed detection method for cytokines based on dual bar-code strategy and single-molecule counting. Taking interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) as model analytes, first, the magnetic nanobead was functionalized with the second antibody and primary bar-code strands, forming a magnetic nanoprobe. Then, through the specific reaction of the second antibody and the antigen that fixed by the primary antibody, sandwich-type immunocomplex was formed on the substrate. Next, the primary bar-code strands as amplification units triggered multibranched hybridization chain reaction (mHCR), producing nicked double-stranded polymers with multiple branched arms, which were served as secondary bar-code strands. Finally, the secondary bar-code strands hybridized with the multimolecule labeled fluorescence probes, generating enhanced fluorescence signals. The numbers of fluorescence dots were counted one by one for quantification with epi-fluorescence microscope. By integrating the primary and secondary bar-code-based amplification strategy and the multimolecule labeled fluorescence probes, this method displayed an excellent sensitivity with the detection limits were both 5 fM. Unlike the typical bar-code assay that the bar-code strands should be released and identified on a microarray, this method is more direct. Moreover, because of the selective immune reaction and the dual bar-code mechanism, the resulting method could detect the two targets simultaneously. Multiple analysis in human serum was also performed, suggesting that our strategy was reliable and had a great potential application in early clinical diagnosis. PMID:26721199

  8. Recognition of novel faces after single exposure is enhanced during pregnancy.

    PubMed

    Anderson, Marla V; Rutherford, M D

    2011-01-01

    Protective mechanisms in pregnancy include Nausea and Vomiting in Pregnancy (NVP) (Fessler, 2002; Flaxman and Sherman, 2000), increased sensitivity to health cues (Jones et al., 2005), and increased vigilance to out-group members (Navarette, Fessler, and Eng, 2007). While common perception suggests that pregnancy results in decreased cognitive function, an adaptationist perspective might predict that some aspects of cognition would be enhanced during pregnancy if they help to protect the reproductive investment. We propose that a reallocation of cognitive resources from nonessential to critical areas engenders the cognitive decline observed in some studies. Here, we used a recognition task disguised as a health rating to determine whether pregnancy facilitates face recognition. We found that pregnant women were significantly better at recognizing faces and that this effect was particularly pronounced for own-race male faces. In human evolutionary history, and today, males present a significant threat to females. Thus, enhanced recognition of faces, and especially male faces, during pregnancy may serve a protective function. PMID:22947954

  9. Single Nanoparticle-Based Heteronanojunction as a Plasmon Ruler for Measuring Dielectric Thin Films.

    PubMed

    Li, Li; Hutter, Tanya; Li, Wenwu; Mahajan, Sumeet

    2015-06-18

    Nondestructive, noninvasive and accurate measurement of thin film thicknesses on dielectric substrates is challenging. In this work a ruler for measuring thin film thicknesses utilizes the heteronanojunction construct formed between a plasmonic nanoparticle and a high refractive index nonplasmonic substrate. The high near-field sensitivity in the nanojunction renders it suitable for measuring the thickness of intervening dielectric thin films. We demonstrate this by controlling the thickness of dielectric spacer layers created by overgrowing SiO2 thin films on commercially available silicon substrates. While Rayleigh (using dark-field) scattering measurements show that the spectral response is well correlated to the thickness of SiO2 spacer layers the distance-dependence is much steeper with surface-enhanced Raman scattering (SERS). Good agreement between 3D simulations and experimental results confirm the plasmon ruler construct's sensitivity to the dielectric thin film spacing. Thus, we postulate that this single nanoparticle based heteronanojunction configuration can serve as a convenient and simple ruler in metrology of thin films as well as a platform for SERS-based detection even in cases where plasmonically active films are not a suitable substrate. PMID:26266605

  10. Dual-carbon enhanced silicon-based composite as superior anode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Liu, Dai-Huo; Wang, Ying-Ying; Hou, Bao-Hua; Zhang, Jing-Ping; Wang, Rong-Shun; Wu, Xing-Long

    2016-03-01

    Dual-carbon enhanced Si-based composite (Si/C/G) has been prepared via employing the widely distributed, low-cost and environmentally friendly Diatomite mineral as silicon raw material. The preparation processes are very simple, non-toxic and easy to scale up. Electrochemical tests as anode material for lithium ion batteries (LIBs) demonstrate that this Si/C/G composite exhibits much improved Li-storage properties in terms of superior high-rate capabilities and excellent cycle stability compared to the pristine Si material as well as both single-carbon modified composites. Specifically for the Si/C/G composite, it can still deliver a high specific capacity of about 470 mAh g-1 at an ultrahigh current density of 5 A g-1, and exhibit a high capacity of 938 mAh g-1 at 0.1 A g-1 with excellent capacity retention in the following 300 cycles. The significantly enhanced Li-storage properties should be attributed to the co-existence of both highly conductive graphite and amorphous carbon in the Si/C/G composite. While the former can enhance the electrical conductivity of the obtained composite, the latter acts as the adhesives to connect the porous Si particulates and conductive graphite flakes to form robust and stable conductive network.

  11. Speech enhancement using an equivalent source inverse filtering-based microphone array.

    PubMed

    Bai, Mingsian R; Hur, Kur-Nan; Liu, Ying-Ting

    2010-03-01

    This paper presents a microphone array technique aimed at enhancing speech quality in a reverberant environment. This technique is based on the central idea of single-input-multiple-output equivalent source inverse filtering (SIMO-ESIF). The inverse filters required by the time-domain processing in the technique serve two purposes: de-reverberation and noise reduction. The proposed approach could be useful in telecommunication applications such as automotive hands-free systems, where noise-corrupted speech signal generally needs to be enhanced. SIMO-ESIF can be further enhanced against uncertainties and perturbations by including an adaptive generalized side-lobe canceller. The system is implemented and validated experimentally in a car. As indicated by numerous performance measures, the proposed system proved effective in reducing noise in human speech without significantly compromising the speech quality. In addition, listening tests were conducted to assess the subjective performance of the proposed system, with results processed by using the analysis of variance and a post hoc Fisher's least significant difference (LSD) test to assess the pairwise difference between the noise reduction (NR) algorithms. PMID:20329837

  12. Optical fiber tip-based quartz-enhanced photoacoustic sensor for trace gas detection

    NASA Astrophysics Data System (ADS)

    Li, Zhili; Wang, Zhen; Wang, Chao; Ren, Wei

    2016-05-01

    We reported the development of an evanescent-wave quartz-enhanced photoacoustic sensor (EW-QEPAS) using a single-mode optical fiber tip for sensitive gas detection in the extended near-infrared region. It is a spectroscopic technique based on the combination of quartz-enhanced photoacoustic spectroscopy with fiber-optic evanescent-wave absorption to achieve low optical noise, easy optical alignment, and high compactness. Carbon monoxide (CO) detection at 2.3 μm using a fiber-coupled, continuous-wave, distributed-feedback laser was selected for the sensor demonstration. By tapering the optical fiber down to 2.5 μm diameter using the flame-brushing technique, an evanescent field of ~0.6 mW around the fiber tip was absorbed by CO molecules. Besides an excellent linear response ( R 2 = 0.9996) to CO concentrations, the EW-QEPAS sensor achieved a normalized noise-equivalent absorption (NNEA) coefficient of 8.6 × 10-8 cm-1W/√Hz for an incident optical power of 1.8 mW and integration time of 1 s. The sensor detection sensitivity can be further improved by enhancing the evanescent-wave power on the fiber tip.

  13. Color enhancement and image defogging in HSI based on Retinex model

    NASA Astrophysics Data System (ADS)

    Gao, Han; Wei, Ping; Ke, Jun

    2015-08-01

    Retinex is a luminance perceptual algorithm based on color consistency. It has a good performance in color enhancement. But in some cases, the traditional Retinex algorithms, both Single-Scale Retinex(SSR) and Multi-Scale Retinex(MSR) in RGB color space, do not work well and will cause color deviation. To solve this problem, we present improved SSR and MSR algorithms. Compared to other Retinex algorithms, we implement Retinex algorithms in HSI(Hue, Saturation, Intensity) color space, and use a parameter αto improve quality of the image. Moreover, the algorithms presented in this paper has a good performance in image defogging. Contrasted with traditional Retinex algorithms, we use intensity channel to obtain reflection information of an image. The intensity channel is processed using a Gaussian center-surround image filter to get light information, which should be removed from intensity channel. After that, we subtract the light information from intensity channel to obtain the reflection image, which only includes the attribute of the objects in image. Using the reflection image and a parameter α, which is an arbitrary scale factor set manually, we improve the intensity channel, and complete the color enhancement. Our experiments show that this approach works well compared with existing methods for color enhancement. Besides a better performance in color deviation problem and image defogging, a visible improvement in the image quality for human contrast perception is also observed.

  14. The mechanism of the nitric oxide-mediated enhancement of tert-butylhydroperoxide-induced DNA single strand breakage

    PubMed Central

    Guidarelli, Andrea; Clementi, Emilio; Sciorati, Clara; Cantoni, Orazio

    1998-01-01

    Caffeine (Cf) enhances the DNA cleavage induced by tert-butylhydroperoxide (tB-OOH) in U937 cells via a mechanism involving Ca2+-dependent mitochondrial formation of DNA-damaging species (Guidarelli et al., 1997b). Nitric oxide (NO) is not involved in this process since U937 cells do not express the constitutive nitric oxide synthase (cNOS).Treatment with the NO donors S-nitroso-N-acetyl-penicillamine (SNAP, 10 μM), or S-nitrosoglutathione (GSNO, 300 μM), however, potentiated the DNA strand scission induced by 200 μM tB-OOH. The DNA lesions generated by tB-OOH alone, or combined with SNAP, were repaired with superimposable kinetics and were insensitive to anti-oxidants and peroxynitrite scavengers but suppressed by iron chelators.SNAP or GSNO did not cause mitochondrial Ca2+ accumulation but their enhancing effects on the tB-OOH-induced DNA strand scission were prevented by ruthenium red, an inhibitor of the calcium uniporter of mitochondria. Furthermore, the enhancing effects of both SNAP and GSNO were identical to and not additive with those promoted by the Ca2+-mobilizing agents Cf or ATP.The SNAP- or GSNO-mediated enhancement of the tB-OOH-induced DNA cleavage was abolished by the respiratory chain inhibitors rotenone and myxothiazol and was not apparent in respiration-deficient cells.It is concluded that, in cells which do not express the enzyme cNOS, exogenous NO enhances the accumulation of DNA single strand breaks induced by tB-OOH via a mechanism involving inhibition of complex III. PMID:9846647

  15. Weak Ligand-Field Effect from Ancillary Ligands on Enhancing Single-Ion Magnet Performance.

    PubMed

    Meng, Yin-Shan; Zhang, Yi-Quan; Wang, Zhe-Ming; Wang, Bing-Wu; Gao, Song

    2016-08-26

    A series of bis-pentamethylcyclopentadienyl-supported Dy complexes containing different ancillary ligands were synthesized and characterized. Magnetic studies showed that 1 Dy [Cp*2 DyCl(THF)], 1 Dy' [Cp*2 DyCl2 K(THF)]n , 2 Dy [Cp*2 DyBr(THF)], 3 Dy [Cp*2 DyI(THF)] and 4 Dy [Cp*2 DyTp] (Tp=hydrotris(1-pyrazolyl)borate) were single-ion magnets (SIMs). The 1D dysprosium chain 1 Dy' exhibited a hysteresis at up to 5 K. Furthermore, 3 Dy featured the highest energy barrier (419 cm(-1) ) among the complexes. The effects of ancillary ligands on single-ion magnetic properties were studied by experimental, ab initio calculations and electrostatic analysis methods in detail. These results demonstrated that the QTM rate was strongly dependent on the ancillary ligands and that a weak equatorial ligand field could be beneficial for constructing Dy-SIMs. PMID:27417884

  16. Single-walled carbon nanotube incorporated novel three phase carbon/epoxy composite with enhanced properties.

    PubMed

    Rana, Sohel; Alagirusamy, Ramasamy; Joshi, Mangala

    2011-08-01

    In the present work, single-walled carbon nanotubes were dispersed within the matrix of carbon fabric reinforced epoxy composites in order to develop novel three phase carbon/epoxy/single-walled carbon nanotube composites. A combination of ultrasonication and high speed mechanical stirring at 2000 rpm was used to uniformly disperse carbon nanotubes in the epoxy resin. The state of carbon nanotube dispersion in the epoxy resin and within the nanocomposites was characterized with the help of optical microscopy and atomic force microscopy. Pure carbon/epoxy and three phase composites were characterized for mechanical properties (tensile and compressive) as well as for thermal and electrical conductivity. Fracture surfaces of composites after tensile test were also studied in order to investigate the effect of dispersed carbon nanotubes on the failure behavior of composites. Dispersion of only 0.1 wt% nanotubes in the matrix led to improvements of 95% in Young's modulus, 31% in tensile strength, 76% in compressive modulus and 41% in compressive strength of carbon/epoxy composites. In addition to that, electrical and thermal conductivity also improved significantly with addition of carbon nanotubes. PMID:22103118

  17. Photon-activated electron hopping in a single-electron trap enhanced by Josephson radiation

    NASA Astrophysics Data System (ADS)

    Lotkhov, S. V.; Jalali-Jafari, B.; Zorin, A. B.

    2016-04-01

    Using a Josephson junction interferometer (DC SQUID) as a microwave source for irradiating a single-electron trap, both devices fabricated on the same chip, we study the process of photon-assisted tunneling as an effective mechanism of single photon detection. High sensitivity down to a very small oscillation amplitude v J ˜ 10 nV ≪ E act ≲ h f J and down to low photon absorption rates Γph ˜ (1-50) Hz, as well as a clear threshold type of operation with an activation energy Eact ˜ 400 μeV, is demonstrated for the trap with respect to the microwave photons of frequency fJ ˜ (100-200) GHz. Tunable generation is demonstrated with respect to the power and frequency of the microwave signal produced by the SQUID source biased within the subgap voltage range. A much weaker effect is observed at the higher junction voltages along the quasiparticle branch of the I-V curve; this response mostly appears due to the recombination phonons.

  18. Spiro-OMeTAD single crystals: Remarkably enhanced charge-carrier transport via mesoscale ordering.

    PubMed

    Shi, Dong; Qin, Xiang; Li, Yuan; He, Yao; Zhong, Cheng; Pan, Jun; Dong, Huanli; Xu, Wei; Li, Tao; Hu, Wenping; Brédas, Jean-Luc; Bakr, Osman M

    2016-04-01

    We report the crystal structure and hole-transport mechanism in spiro-OMeTAD [2,2',7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9'-spirobifluorene], the dominant hole-transporting material in perovskite and solid-state dye-sensitized solar cells. Despite spiro-OMeTAD's paramount role in such devices, its crystal structure was unknown because of highly disordered solution-processed films; the hole-transport pathways remained ill-defined and the charge carrier mobilities were low, posing a major bottleneck for advancing cell efficiencies. We devised an antisolvent crystallization strategy to grow single crystals of spiro-OMeTAD, which allowed us to experimentally elucidate its molecular packing and transport properties. Electronic structure calculations enabled us to map spiro-OMeTAD's intermolecular charge-hopping pathways. Promisingly, single-crystal mobilities were found to exceed their thin-film counterparts by three orders of magnitude. Our findings underscore mesoscale ordering as a key strategy to achieving breakthroughs in hole-transport material engineering of solar cells. PMID:27152342

  19. Spiro-OMeTAD single crystals: Remarkably enhanced charge-carrier transport via mesoscale ordering

    PubMed Central

    Shi, Dong; Qin, Xiang; Li, Yuan; He, Yao; Zhong, Cheng; Pan, Jun; Dong, Huanli; Xu, Wei; Li, Tao; Hu, Wenping; Brédas, Jean-Luc; Bakr, Osman M.

    2016-01-01

    We report the crystal structure and hole-transport mechanism in spiro-OMeTAD [2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9′-spirobifluorene], the dominant hole-transporting material in perovskite and solid-state dye-sensitized solar cells. Despite spiro-OMeTAD’s paramount role in such devices, its crystal structure was unknown because of highly disordered solution-processed films; the hole-transport pathways remained ill-defined and the charge carrier mobilities were low, posing a major bottleneck for advancing cell efficiencies. We devised an antisolvent crystallization strategy to grow single crystals of spiro-OMeTAD, which allowed us to experimentally elucidate its molecular packing and transport properties. Electronic structure calculations enabled us to map spiro-OMeTAD’s intermolecular charge-hopping pathways. Promisingly, single-crystal mobilities were found to exceed their thin-film counterparts by three orders of magnitude. Our findings underscore mesoscale ordering as a key strategy to achieving breakthroughs in hole-transport material engineering of solar cells. PMID:27152342

  20. Automatic image enhancement based on multi-scale image decomposition

    NASA Astrophysics Data System (ADS)

    Feng, Lu; Wu, Zhuangzhi; Pei, Luo; Long, Xiong

    2014-01-01

    In image processing and computational photography, automatic image enhancement is one of the long-range objectives. Recently the automatic image enhancement methods not only take account of the globe semantics, like correct color hue and brightness imbalances, but also the local content of the image, such as human face and sky of landscape. In this paper we describe a new scheme for automatic image enhancement that considers both global semantics and local content of image. Our automatic image enhancement method employs the multi-scale edge-aware image decomposition approach to detect the underexposure regions and enhance the detail of the salient content. The experiment results demonstrate the effectiveness of our approach compared to existing automatic enhancement methods.

  1. Magnetospheric Response to Interplanetary Field Enhancements: Coordinated Space-based and Ground-based Observations

    NASA Astrophysics Data System (ADS)

    Chi, Peter; Russell, Christopher; Lai, Hairong

    2014-05-01

    In general, asteroids, meteoroids and dust do not interact with the plasma structures in the solar system, but after a collision between fast moving bodies the debris cloud contains nanoscale dust particles that are charged and behave like heavy ions. Dusty magnetic clouds are then accelerated to the solar wind speed. While they pose no threat to spacecraft because of the particle size, the coherency imposed by the magnetization of the cloud allows the cloud to interact with the Earth's magnetosphere as well as the plasma in the immediate vicinity of the cloud. We call these clouds Interplanetary Field Enhancements (IFEs). These IFEs are a unique class of interplanetary field structures that feature cusp-shaped increases and decreases in the interplanetary magnetic field and a thin current sheet. The occurrence of IFEs is attributed to the interaction between the solar wind and dust particles produced in inter-bolide collisions. Previous spacecraft observations have confirmed that IFEs move with the solar wind. When IFEs strike the magnetosphere, they may distort the magnetosphere in several possible ways, such as producing a small indentation, a large scale compression, or a glancing blow. In any event if the IFE is slowed by the magnetosphere, the compression of the Earth's field should be seen in the ground-based magnetic records that are continuously recorded. Thus it is important to understand the magnetospheric response to IFE arrival. In this study, we investigate the IFE structure observed by spacecraft upstream of the magnetosphere and the induced magnetic field perturbations observed by networks of ground magnetometers, including the THEMIS, CARISMA, McMAC arrays in North America and the IMAGE array in Europe. We find that, in a well-observed IFE event on December 24, 2006, all ground magnetometer stations observed an impulse at approximately 1217 UT when the IFE was expected to arrive at the Earth's magnetopause. These ground stations spread across many

  2. Single-cell multiple gene expression analysis based on single-molecule-detection microarray assay for multi-DNA determination.

    PubMed

    Li, Lu; Wang, Xianwei; Zhang, Xiaoli; Wang, Jinxing; Jin, Wenrui

    2015-01-01

    We report a novel ultra-sensitive and high-selective single-molecule-detection microarray assay (SMA) for multiple DNA determination. In the SMA, a capture DNA (DNAc) microarray consisting of 10 subarrays with 9 spots for each subarray is fabricated on a silanized glass coverslip as the substrate. On the subarrays, the spot-to-spot spacing is 500 μm and each spot has a diameter of ∼300 μm. The sequence of the DNAcs on the 9 spots of a subarray is different, to determine 8 types of target DNAs (DNAts). Thus, 8 types of DNAts are captured to their complementary DNAcs at 8 spots of a subarray, respectively, and then labeled with quantum dots (QDs) attached to 8 types of detection DNAs (DNAds) with different sequences. The ninth spot is used to detect the blank value. In order to determine the same 8 types of DNAts in 10 samples, the 10 DNAc-modified subarrays on the microarray are identical. Fluorescence single-molecule images of the QD-labeled DNAts on each spot of the subarray are acquired using a home-made single-molecule microarray reader. The amounts of the DNAts are quantified by counting the bright dots from the QDs. For a microarray, 8 types of DNAts in 10 samples can be quantified in parallel. The limit of detection of the SMA for DNA determination is as low as 1.3×10(-16) mol L(-1). The SMA for multi-DNA determination can also be applied in single-cell multiple gene expression analysis through quantification of complementary DNAs (cDNAs) corresponding to multiple messenger RNAs (mRNAs) in single cells. To do so, total RNA in single cells is extracted and reversely transcribed into their cDNAs. Three types of cDNAs corresponding to beta-2-microglobulin, glyceraldehyde-3-phosphate dehydrogenase and ribosomal protein, large, P2 mRNAs in single human breast cancer cells and 5 random synthetic DNAts are simultaneously quantified to examine the SMA and SMA-based single-cell multiple gene expression analysis. PMID:25479875

  3. Enhanced centrifuge-based approach to powder characterization

    NASA Astrophysics Data System (ADS)

    Thomas, Myles Calvin

    Many types of manufacturing processes involve powders and are affected by powder behavior. It is highly desirable to implement tools that allow the behavior of bulk powder to be predicted based on the behavior of only small quantities of powder. Such descriptions can enable engineers to significantly improve the performance of powder processing and formulation steps. In this work, an enhancement of the centrifuge technique is proposed as a means of powder characterization. This enhanced method uses specially designed substrates with hemispherical indentations within the centrifuge. The method was tested using simulations of the momentum balance at the substrate surface. Initial simulations were performed with an ideal powder containing smooth, spherical particles distributed on substrates designed with indentations. The van der Waals adhesion between the powder, whose size distribution was based on an experimentally-determined distribution from a commercial silica powder, and the indentations was calculated and compared to the removal force created in the centrifuge. This provided a way to relate the powder size distribution to the rotational speed required for particle removal for various indentation sizes. Due to the distinct form of the data from these simulations, the cumulative size distribution of the powder and the Hamaker constant for the system were be extracted. After establishing adhesion force characterization for an ideal powder, the same proof-of-concept procedure was followed for a more realistic system with a simulated rough powder modeled as spheres with sinusoidal protrusions and intrusions around the surface. From these simulations, it was discovered that an equivalent powder of smooth spherical particles could be used to describe the adhesion behavior of the rough spherical powder by establishing a size-dependent 'effective' Hamaker constant distribution. This development made it possible to describe the surface roughness effects of the entire

  4. Single and Multi-Channel Carbon-based Quantum Dragons

    NASA Astrophysics Data System (ADS)

    Inkoom, Godfred; Abdurazakov, Omadillo; Novotny, Mark

    2015-03-01

    In the coherent regime for electrical conductance measurements, two semi-infinite leads are connected to a finite nanostructure, and the nano-device conductance is calculated using the Landauer formula. Any channel k that has transmission for electrons with energy E, \\calTk (E) =1 contributes the conductance quantum G0 = 2e2 / h . Any nano-device with at least one \\calTk (E) =1 is called a quantum dragon. The transmission probability \\calTk (E) can be obtained from the solution of the time-independent Schrödinger equation. Uniform leads connected to armchair single-walled carbon nanotubes (SWCNTs) have calT (E) =1, while when connected to zigzag SWCNT the calT (E) is less than unity. Appropriately dimerized leads connected to zigzag SWCNTs are quantum dragons, while when connected to armchair SWCNTs calT (E) is less than unity. We have generalized the matrix method and mapping methods of in order to investigate SWCNTs that can be multi-channel quantum dragons. For example, one can use armchair SWCNT leads to connect to an armchair SWCNT to try to produce a multi-channel quantum dragon. Supported in part by NSF Grant DMR-1206233.

  5. Micromotion based single-qubit addressing with trapped-ions

    NASA Astrophysics Data System (ADS)

    Akerman, Nitzan; Navon, Nir; Kotler, Shlomi; Glickman, Yinnon; Almog, Ido; Ozeri, Roee

    2013-05-01

    Individual-particle addressing is a necessary capability in many quantum information experiments. For example, characterization of multi-qubit operations with quantum process tomography (QPT). We propose and demonstrate a scheme that exploits the inhomogeneous excess micromotion in ion trap to address single-qubits in a chain of several ion-qubits, separated by only few microns. The scheme uses a laser field which is resonant with the micromotion sideband of a narrow optical quadrupole transition and acts as a dressing field with a spatially-dependent coupling along the chain. As a consequence, the level spacing of each ion, in the dressed state picture, becomes position dependent and individual ions can be spectrally separated. We have demonstrated Individual Rabi flops with 85% fidelity in a three-ion chain. For the case of only two ions, the coupling can be tailored to vanish on one of the two. This allows preparing any two-qubit product state as well as completing state tomography without direct spatially-selective imaging. We demonstrate full QPT for two-qubit Sørensen-Mølmer entangling interaction (Bell-state preparation fidelity of 98%) which has not been process-analyzed yet. Our tomography resulted process fidelity of 92%. N. Navon et al. arXiv:1210.7336 (1012).

  6. Single-domain antibody based thermally stable electrochemical immunosensor.

    PubMed

    Singh, Aparajita; Pasha, Syed Khalid; Manickam, Pandiaraj; Bhansali, Shekhar

    2016-09-15

    Conventional monoclonal and polyclonal antibodies are sensitive to changes in environmental factors such as temperature, pH, humidity, etc. This limits the current cost-effective and portable electrochemical immunosensors in harsh environments. Using Ricin Chain-A, a naturally occurring toxin, as a model analyte we report fabrication of a thermally stable electrochemical immunosensor. Single-domain antibodies (sdAb) or nanobodies have been employed as recognition elements for direct detection of Ricin at temperatures great than 4°C. Immunosensor fabricated using the conventional Ricin monoclonal and polyclonal antibodies have also been demonstrated for comparison. In the case of sdAb immunosensor, Ricin was detected in a linear range of 1log(fg/mL)-1log(μg/mL) with a sensitivity of 0.07μA/log(g/mL)/cm(2) using cyclic voltammetry. The fabricated miniaturized sensors have demonstrated higher shelf life and stability at temperatures up to 40°C. Therefore these electrochemical sensors can be integrated as a part of a portable device for point-of-care immunosensing. PMID:27125838

  7. Risk-based planning analysis for a single levee

    NASA Astrophysics Data System (ADS)

    Hui, Rui; Jachens, Elizabeth; Lund, Jay

    2016-04-01

    Traditional risk-based analysis for levee planning focuses primarily on overtopping failure. Although many levees fail before overtopping, few planning studies explicitly include intermediate geotechnical failures in flood risk analysis. This study develops a risk-based model for two simplified levee failure modes: overtopping failure and overall intermediate geotechnical failure from through-seepage, determined by the levee cross section represented by levee height and crown width. Overtopping failure is based only on water level and levee height, while through-seepage failure depends on many geotechnical factors as well, mathematically represented here as a function of levee crown width using levee fragility curves developed from professional judgment or analysis. These levee planning decisions are optimized to minimize the annual expected total cost, which sums expected (residual) annual flood damage and annualized construction costs. Applicability of this optimization approach to planning new levees or upgrading existing levees is demonstrated preliminarily for a levee on a small river protecting agricultural land, and a major levee on a large river protecting a more valuable urban area. Optimized results show higher likelihood of intermediate geotechnical failure than overtopping failure. The effects of uncertainty in levee fragility curves, economic damage potential, construction costs, and hydrology (changing climate) are explored. Optimal levee crown width is more sensitive to these uncertainties than height, while the derived general principles and guidelines for risk-based optimal levee planning remain the same.

  8. The AI Interdisciplinary Context: Single or Multiple Research Bases?

    ERIC Educational Resources Information Center

    Khawam, Yves J.

    1992-01-01

    This study used citation analysis to determine whether the disciplines contributing to the journal literature of artificial intelligence (AI)--philosophy, psychology, linguistics, computer science, and engineering--share a common AI research base. The idea that AI consists of a completely interdisciplinary endeavor was refuted. (MES)

  9. Enhanced Surface Superconductivity in Single Crystal La2-xBaxCuO4

    NASA Astrophysics Data System (ADS)

    Martin, Ivar; Tee, Xian Yang; Ito, Toshimitsu; Ushiyama, Tomoharu; Tomioka, Yasuhide; Panagopoulos, Christos

    Surfaces of materials often possess properties which are distinctly different from their bulk. The atomic structure can develop intricate new patterns due to surface reconstruction and the electronic properties can be very distinct, as most dramatically manifested in topological insulators. However, more subtle collective phenomena such as superconductivity are not as strongly affected by the presence of surfaces. Here, we report an unprecedented finding of enhanced superconductivity at the ab-plane surface of high-Tc cuprate La2-xBaxCuO4. Spatially-resolved electrical and thermoelectric transport measurements detect a superconducting surface below the transition temperature Tcs which is considerably higher than the bulk Tc. The effect is pronounced in the region of charge carrier doping (x) with strong spin-charge stripe correlations. Notably, for x = 0 . 12 , Tcs reaches 36 K, exceeding even the highest reported bulk Tc in this material for any doping. Possible interpretations for the novel effect are discussed.

  10. Free-standing thin film Ge single crystals grown by plasma-enhanced chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Outlaw, R. A.; Hopson, P., Jr.

    1984-01-01

    The films, which are approximately 10 microns in thickness, are grown epitaxially on polished (100) NaCl substrates at 450 C by plasma enhanced chemical vapor deposition. Upon cooling, the films are separated from the substrate by differential shear stress, leaving free-standing films of Ge which can be handled. Growths are attained by nucleating at minimum plasma power for very brief intervals and then raising the power to 65 W to increase the growth rate to approximately 10 microns/h. It is found that substrate exposure to the plasma at too high a power for too long a time sputters and erodes the surface, thereby substantially degrading the nucleation process and the ultimate growths. It is noted that the free-standing films are visually specular and exhibit a high degree of crystalline order when examined by X-ray diffraction. Auger electron spectroscopy and energy dispersive analysis of X-rays reveal no detectable bulk contamination.

  11. Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage

    SciTech Connect

    Mahesh Iyer; Shwetha Ramkumar; Liang-Shih Fan

    2006-09-30

    Enhancement in the production of high purity hydrogen from fuel gas, obtained from coal gasification, is limited by thermodynamics of the Water Gas Shift Reaction. However, this constraint can be overcome by concurrent water-gas shift (WGS) and carbonation reactions to enhance H{sub 2} production by incessantly driving the equilibrium-limited WGS reaction forward and in-situ removing the CO2 product from the gas mixture. The spent sorbent is then regenerated by calcining it to produce a pure stream of CO{sub 2} and CaO which can be reused. However while performing the cyclic carbonation and calcination it was observed that the CO{sub 2} released during the in-situ calcination causes the deactivation of the iron oxide WGS catalyst. Detailed understanding of the iron oxide phase diagram helped in developing a catalyst pretreatment procedure using a H{sub 2}/H{sub 2}O system to convert the deactivated catalyst back to its active magnetite (Fe{sub 3}O{sub 4}) form. The water gas shift reaction was studied at different temperatures, different steam to carbon monoxide ratios (S/C) 3:1, 2:1, 1:1 and different total pressures ranging from 0-300 psig. The combined water gas shift and carbonation reaction was investigated at temperatures ranging from 600-700C, S/C ratio of 3:1 to 1:1 and at different pressures of 0-300 psig and the calcium looping process was found to produce high purity hydrogen with in-situ CO{sub 2} capture.

  12. Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage Reactor

    SciTech Connect

    Mahesh Iyer; Shwetha Ramkumar; Liang-Shih Fan

    2006-03-31

    Hydrogen production from coal gasification can be enhanced by driving the equilibrium limited Water Gas Shift reaction forward by incessantly removing the CO{sub 2} by-product via the carbonation of calcium oxide. This project uses the high-reactivity mesoporous precipitated calcium carbonate sorbent for removing the CO{sub 2} product to enhance H{sub 2} production. Preliminary experiments demonstrate the show the superior performance of the PCC sorbent over other naturally occurring calcium sorbents. It was observed that the CO{sub 2} released during the in-situ calcination causes the deactivation of the iron oxide WGS catalyst by changing the active phase of the catalyst from magnetite (F{sub 3}O{sub 4}). Detailed understanding of the iron oxide phase diagram helped in developing a catalyst pretreatment procedure using a H{sub 2}/H{sub 2}O system. Intermediate catalyst pretreatment helps prevent its deactivation by reducing the catalyst back to its active magnetite (Fe{sub 3}O{sub 4}) form. Multicyclic runs which consist of combined WGS/carbonation reaction followed by in-situ calcination with a subsequent catalyst pretreatment procedure sustains the catalytic activity and prevents deactivation. The water gas shift reaction was studied at different temperatures, different steam to carbon monoxide ratios (S/C) 3:1, 2:1, 1:1 and different total pressures ranging from 0-300 psig. The CO conversion was found to have an optimal value with increasing pressure, S/C ratio and temperatures. The combined water gas shift and carbonation reaction was investigated at 650 C, S/C ratio of 3:1and at different pressures of 0-300 psig.

  13. Boron nitride nanotubes enhance properties of chitosan-based scaffolds.

    PubMed

    Emanet, Melis; Kazanç, Emine; Çobandede, Zehra; Çulha, Mustafa

    2016-10-20

    With their low toxicity, high mechanical strength and chemical stability, boron nitride nanotubes (BNNTs) are good candidates to enhance the properties of polymers, composites and scaffolds. Chitosan-based scaffolds are exhaustively investigated in tissue engineering because of their biocompatibility and antimicrobial activity. However, their spontaneous degradation prevents their use in a range of tissue engineering applications. In this study, hydroxylated BNNTs (BNNT-OH) were included into a chitosan scaffold and tested for their mechanical strength, swelling behavior and biodegradability. The results show that inclusion of BNNTs-OH into the chitosan scaffold increases the mechanical strength and pore size at values optimal for high cellular proliferation and adhesion. The chitosan/BNNT-OH scaffold was also found to be non-toxic to Human Dermal Fibroblast (HDF) cells due to its slow degradation rate. HDF cell proliferation and adhesion were increased as compared to the chitosan-only scaffold as observed by scanning electron microscopy (SEM) and fluorescent microscopy images. PMID:27474572

  14. Biodegradable HEMA-based hydrogels with enhanced mechanical properties.

    PubMed

    Moghadam, Mohamadreza Nassajian; Pioletti, Dominique P

    2016-08-01

    Hydrogels are widely used in the biomedical field. Their main purposes are either to deliver biological active agents or to temporarily fill a defect until they degrade and are followed by new host tissue formation. However, for this latter application, biodegradable hydrogels are usually not capable to sustain any significant load. The development of biodegradable hydrogels presenting load-bearing capabilities would open new possibilities to utilize this class of material in the biomedical field. In this work, an original formulation of biodegradable photo-crosslinked hydrogels based on hydroxyethyl methacrylate (HEMA) is presented. The hydrogels consist of short-length poly(2-hydroxyethyl methacrylate) (PHEMA) chains in a star shape structure, obtained by introducing a tetra-functional chain transfer agent in the backbone of the hydrogels. They are cross-linked with a biodegradable N,O-dimethacryloyl hydroxylamine (DMHA) molecule sensitive to hydrolytic cleavage. We characterized the degradation properties of these hydrogels submitted to mechanical loadings. We showed that the developed hydrogels undergo long-term degradation and specially meet the two essential requirements of a biodegradable hydrogel suitable for load bearing applications: enhanced mechanical properties and low molecular weight degradation products. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1161-1169, 2016. PMID:26061346

  15. Wavelets based algorithm for the evaluation of enhanced liver areas

    NASA Astrophysics Data System (ADS)

    Alvarez, Matheus; Rodrigues de Pina, Diana; Giacomini, Guilherme; Gomes Romeiro, Fernando; Barbosa Duarte, Sérgio; Yamashita, Seizo; de Arruda Miranda, José Ricardo

    2014-03-01

    Hepatocellular carcinoma (HCC) is a primary tumor of the liver. After local therapies, the tumor evaluation is based on the mRECIST criteria, which involves the measurement of the maximum diameter of the viable lesion. This paper describes a computed methodology to measure through the contrasted area of the lesions the maximum diameter of the tumor by a computational algorithm. 63 computed tomography (CT) slices from 23 patients were assessed. Noncontrasted liver and HCC typical nodules were evaluated, and a virtual phantom was developed for this purpose. Optimization of the algorithm detection and quantification was made using the virtual phantom. After that, we compared the algorithm findings of maximum diameter of the target lesions against radiologist measures. Computed results of the maximum diameter are in good agreement with the results obtained by radiologist evaluation, indicating that the algorithm was able to detect properly the tumor limits. A comparison of the estimated maximum diameter by radiologist versus the algorithm revealed differences on the order of 0.25 cm for large-sized tumors (diameter > 5 cm), whereas agreement lesser than 1.0cm was found for small-sized tumors. Differences between algorithm and radiologist measures were accurate for small-sized tumors with a trend to a small increase for tumors greater than 5 cm. Therefore, traditional methods for measuring lesion diameter should be complemented with non-subjective measurement methods, which would allow a more correct evaluation of the contrast-enhanced areas of HCC according to the mRECIST criteria.

  16. Enhanced surveillance system based on panomorph panoramic lenses

    NASA Astrophysics Data System (ADS)

    Thibault, Simon

    2007-04-01

    Modern surveillance and security systems demand a technological approach because only technology can provide highly efficient vigilance, a certainty of detection and a fast response 100% of the time. Recent developments, including new wide-angle lenses, advanced cameras, IP networks and video analysis technology, provide significant improvements in system performance and flexibility. This paper presents a new advanced surveillance system featuring a panoramic Panomorph lens for event detection, recognition and identification over a 360-degree area with 100% coverage. This innovative approach provides enhanced performance with better pixel/cost ratio. Intelligent video technology enables the video camera to be "more" than just a video camera; it allows the panoramic image to follow events (such as moving objects or unauthorized behavior) in real time, which in turn allows the operator to focus his/her activity on a narrow field pan/tilt camera without losing any information in the field. Adding incremental capabilities such as a Panomorph lens-based imager to an existing surveillance video system can provide improvements in operational efficiency and effectiveness. Foreseen applications are in the fields of border surveillance, high-security environments, aerospace and defense, mass transit, public security and wherever the need for total awareness is a prerequisite.

  17. Melamine sensing based on evanescent field enhanced optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Luo, Ji; Yao, Jun; Wang, Wei-min; Zhuang, Xu-ye; Ma, Wen-ying; Lin, Qiao

    2013-08-01

    Melamine is an insalubrious chemical, and has been frequently added into milk products illegally, to make the products more protein-rich. However, it can cause some various diseases, such as kidney stones and bladder cancer. In this paper, a novel optical fiber sensor with high sensitivity based on absorption of the evanescent field for melamine detection is successfully proposed and developed. Different concentrations of melamine changing from 0 to 10mg/mL have been detected using the micro/nano-sensing fiber decorated with silver nanoparticles cluster layer. As the concentration increases, the sensing fiber's output intensity gradually deceases and the absorption of the analyte becomes large. The concentration changing of 1mg/ml can cause the absorbance varying 0.664 and the limit of the melamine detectable concentration is 1ug/mL. Besides, the coupling properties between silver nanoparticles have also been analyzed by the FDTD method. Overall, this evanescent field enhanced optical fiber sensor has potential to be used in oligo-analyte detection and will promote the development of biomolecular and chemical sensing applications.

  18. Enhanced synaptic transmission at the squid giant synapse by artificial seawater based on physically modified saline

    PubMed Central

    Choi, Soonwook; Yu, Eunah; Rabello, Guilherme; Merlo, Suelen; Zemmar, Ajmal; Walton, Kerry D.; Moreno, Herman; Moreira, Jorge E.; Sugimori, Mutsuyuki; Llinás, Rodolfo R.

    2014-01-01

    Superfusion of the squid giant synapse with artificial seawater (ASW) based on isotonic saline containing oxygen nanobubbles (RNS60 ASW) generates an enhancement of synaptic transmission. This was determined by examining the postsynaptic response to single and repetitive presynaptic spike activation, spontaneous transmitter release, and presynaptic voltage clamp studies. In the presence of RNS60 ASW single presynaptic stimulation elicited larger postsynaptic potentials (PSP) and more robust recovery from high frequency stimulation than in control ASW. Analysis of postsynaptic noise revealed an increase in spontaneous transmitter release with modified noise kinetics in RNS60 ASW. Presynaptic voltage clamp demonstrated an increased EPSP, without an increase in presynaptic ICa++ amplitude during RNS60 ASW superfusion. Synaptic release enhancement reached stable maxima within 5–10 min of RNS60 ASW superfusion and was maintained for the entire recording time, up to 1 h. Electronmicroscopic morphometry indicated a decrease in synaptic vesicle density and the number at active zones with an increase in the number of clathrin-coated vesicles (CCV) and large endosome-like vesicles near junctional sites. Block of mitochondrial ATP synthesis by presynaptic injection of oligomycin reduced spontaneous release and prevented the synaptic noise increase seen in RNS60 ASW. After ATP block the number of vesicles at the active zone and CCV was reduced, with an increase in large vesicles. The possibility that RNS60 ASW acts by increasing mitochondrial ATP synthesis was tested by direct determination of ATP levels in both presynaptic and postsynaptic structures. This was implemented using luciferin/luciferase photon emission, which demonstrated a marked increase in ATP synthesis following RNS60 administration. It is concluded that RNS60 positively modulates synaptic transmission by up-regulating ATP synthesis, thus leading to synaptic transmission enhancement. PMID:24575037

  19. Enhanced synaptic transmission at the squid giant synapse by artificial seawater based on physically modified saline.

    PubMed

    Choi, Soonwook; Yu, Eunah; Rabello, Guilherme; Merlo, Suelen; Zemmar, Ajmal; Walton, Kerry D; Moreno, Herman; Moreira, Jorge E; Sugimori, Mutsuyuki; Llinás, Rodolfo R

    2014-01-01

    Superfusion of the squid giant synapse with artificial seawater (ASW) based on isotonic saline containing oxygen nanobubbles (RNS60 ASW) generates an enhancement of synaptic transmission. This was determined by examining the postsynaptic response to single and repetitive presynaptic spike activation, spontaneous transmitter release, and presynaptic voltage clamp studies. In the presence of RNS60 ASW single presynaptic stimulation elicited larger postsynaptic potentials (PSP) and more robust recovery from high frequency stimulation than in control ASW. Analysis of postsynaptic noise revealed an increase in spontaneous transmitter release with modified noise kinetics in RNS60 ASW. Presynaptic voltage clamp demonstrated an increased EPSP, without an increase in presynaptic ICa(++) amplitude during RNS60 ASW superfusion. Synaptic release enhancement reached stable maxima within 5-10 min of RNS60 ASW superfusion and was maintained for the entire recording time, up to 1 h. Electronmicroscopic morphometry indicated a decrease in synaptic vesicle density and the number at active zones with an increase in the number of clathrin-coated vesicles (CCV) and large endosome-like vesicles near junctional sites. Block of mitochondrial ATP synthesis by presynaptic injection of oligomycin reduced spontaneous release and prevented the synaptic noise increase seen in RNS60 ASW. After ATP block the number of vesicles at the active zone and CCV was reduced, with an increase in large vesicles. The possibility that RNS60 ASW acts by increasing mitochondrial ATP synthesis was tested by direct determination of ATP levels in both presynaptic and postsynaptic structures. This was implemented using luciferin/luciferase photon emission, which demonstrated a marked increase in ATP synthesis following RNS60 administration. It is concluded that RNS60 positively modulates synaptic transmission by up-regulating ATP synthesis, thus leading to synaptic transmission enhancement. PMID:24575037

  20. Enhanced-Resolution Single-Shot 2DFT Spectroscopy by Spatial Spectral Interferometry.

    PubMed

    Spencer, Austin P; Spokoyny, Boris; Harel, Elad

    2015-03-19

    We demonstrate use of spatial interference for the complete electric field reconstruction of two-dimensional (2D) coherent spectroscopic signals generated through four-wave mixing (4WM) in a single laser shot. Until now, the amplitude and phase characterization of 4WM signals has relied primarily on Fourier transform spectral interferometry (FTSI), which limits the measurement's sensitivity and resolution. We show that spatial spectral interferometry (SSI) is a generalized approach to 4WM signal detection that eliminates these inherent limitations of FTSI without introducing additional experimental complexity. SSI is used to measure the 2D photon echo spectra of two systems with dramatically different line widths, the coupled D line transitions in rubidium vapor and the energy-transfer dynamics in the light-harvesting protein LH2. PMID:26262850