Science.gov

Sample records for enhanced single-molecule detection

  1. DNA Origami Nanoantennas with over 5000-fold Fluorescence Enhancement and Single-Molecule Detection at 25 μM.

    PubMed

    Puchkova, Anastasiya; Vietz, Carolin; Pibiri, Enrico; Wünsch, Bettina; Sanz Paz, María; Acuna, Guillermo P; Tinnefeld, Philip

    2015-12-01

    Optical nanoantennas are known to focus freely propagating light and reversely to mediate the emission of a light source located at the nanoantenna hotspot. These effects were previously exploited for fluorescence enhancement and single-molecule detection at elevated concentrations. We present a new generation of self-assembled DNA origami based optical nanoantennas with improved robustness, reduced interparticle distance, and optimized quantum-yield improvement to achieve more than 5000-fold fluorescence enhancement and single-molecule detection at 25 μM background fluorophore concentration. Besides outperforming lithographic optical antennas, DNA origami nanoantennas are additionally capable of incorporating single emitters or biomolecular assays at the antenna hotspot. PMID:26523768

  2. Combining single-molecule manipulation and single-molecule detection.

    PubMed

    Cordova, Juan Carlos; Das, Dibyendu Kumar; Manning, Harris W; Lang, Matthew J

    2014-10-01

    Single molecule force manipulation combined with fluorescence techniques offers much promise in revealing mechanistic details of biomolecular machinery. Here, we review force-fluorescence microscopy, which combines the best features of manipulation and detection techniques. Three of the mainstay manipulation methods (optical traps, magnetic traps and atomic force microscopy) are discussed with respect to milestones in combination developments, in addition to highlight recent contributions to the field. An overview of additional strategies is discussed, including fluorescence based force sensors for force measurement in vivo. Armed with recent exciting demonstrations of this technology, the field of combined single-molecule manipulation and single-molecule detection is poised to provide unprecedented views of molecular machinery. PMID:25255052

  3. A proposal and a theoretical analysis of an enhanced surface plasmon coupled emission structure for single molecule detection

    NASA Astrophysics Data System (ADS)

    Uddin, Shiekh Zia; Tanvir, Mukhlasur Rahman; Talukder, Muhammad Anisuzzaman

    2016-05-01

    We propose a structure that can be used for enhanced single molecule detection using surface plasmon coupled emission (SPCE). In the proposed structure, instead of a single metal layer on the glass prism of a typical SPCE structure for fluorescence microscopy, a metal-dielectric-metal structure is used. We theoretically show that the proposed structure significantly decreases the excitation volume of the fluorescently labeled sample, and simultaneously increases the peak SPCE intensity and SPCE power. Therefore, the signal-to-noise ratio and sensitivity of an SPCE based fluorescence microscopy system can be significantly increased using the proposed structure, which will be helpful for enhanced single molecule detection, especially, in a less pure biological sample.

  4. Electrochemical detection of single molecules.

    PubMed

    Fan, F R; Bard, A J

    1995-02-10

    The electrochemical behavior of a single molecule can be observed by trapping a small volume of a dilute solution of the electroactive species between an ultramicroelectrode tip with a diameter of approximately 15 nanometers and a conductive substrate. A scanning electrochemical microscope was used to adjust the tip-substrate distance ( approximately 10 nanometers), and the oxidation of [(trimethylammonio)methyl] ferrocene (Cp(2)FeTMA(+)) to Cp(2)FeTMA(2+) was carried out. The response was stochastic, and anodic current peaks were observed as the molecule moved into and out of the electrode-substrate gap. Similar experiments were performed with a solution containing two redox species, ferrocene carboxylate (Cp(2)FeCOO(-)) and Os(bpy)(3)(2+) (bpy is 2,2'-bipyridyl). PMID:17813918

  5. Block copolymer based design of highly sensitive substrates for detecting single molecules by surface enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Rahman, Atikur; Black, Charles

    Surface enhanced Raman spectroscopy (SERS) relies on substrates with nanometer-scale curvature in order to concentrate and amplify the incident electromagnetic field to increase the spectroscopic signature of Raman scattering. The localization and amplification of incident light is maximum between two plasmonic nanostructures called as ``hot spot''. Here, we report a new, scalable method for fabricating high-performance SERS substrates based on self-assembly of nanostructured block copolymer thin films. Due to the high spatial density and extremely high field strengths of substrate hot spots, these substrate are capable of enhancing Raman scattering signals from target molecules by more than 10 billion times. We will describe the process of fabricating these remarkable diagnostic tools, which are ~cm2 area substrates composed of an extremely high density (~1011 /cm2) of hexagonally-arranged Au or Ag nanoparticles positioned atop ~70nm tall silicon nanopillars. Key to the substrate performance is the sub-5 nm separation between particles, which we control with nm level precision. By systematically varying the gap between nanoparticles, we demonstrate that both the high hotspot density and sub 5nm hot spot gap are necessary to achieve the highest degree of enhancement of the Raman signal. The enormous enhancements provided by these substrates make possible the detection of single molecules.

  6. Biomedical applications of single molecule detection

    NASA Astrophysics Data System (ADS)

    Kelso, D. M.

    1997-05-01

    The search for increased sensitivity of bio-analytical techniques has recently shifted from signal generation to detection. While enzyme amplifiers and chemiluminescent reporters developed by chemists over the last two decades gradually moved detection limits to the attomol level, it has taken engineers only a few years to reach single- molecule sensitivity with the development of new instrumentation. A number of different approaches have successfully achieved single-molecule fluorescence detection including confocal and near-field scanning optical microscopy, photon-counting cameras, fluorescence- correlation and time-gated spectroscopy. They detect labels immobilized on substrates, diffusing in solution and flowing in electro-osmotic and hydrodynamically focused streams. Biotechnology has created numerous application s for single- molecule detection. In research labs, it can dramatically increase the rate of DNA sequencing, screen libraries for products of directed evolution, and characterize compounds in drug discovery programs. In medical diagnostics, ultra- sensitive detection technologies can be used for genetic screening, detection of infectious diseases, or multi- analyte profiles. It can be applied to immunoassays as well as DNA or RNA hybridization assays.

  7. Single molecule detection using charge-coupled device array technology

    SciTech Connect

    Denton, M.B.

    1992-07-29

    A technique for the detection of single fluorescent chromophores in a flowing stream is under development. This capability is an integral facet of a rapid DNA sequencing scheme currently being developed by Los Alamos National Laboratory. In previous investigations, the detection sensitivity was limited by the background Raman emission from the water solvent. A detection scheme based on a novel mode of operating a Charge-Coupled Device (CCD) is being developed which should greatly enhance the discrimination between fluorescence from a single molecule and the background Raman scattering from the solvent. Register shifts between rows in the CCD are synchronized with the sample flow velocity so that fluorescence from a single molecule is collected in a single moving charge packet occupying an area approaching that of a single pixel while the background is spread evenly among a large number of pixels. Feasibility calculations indicate that single molecule detection should be achieved with an excellent signal-to-noise ratio.

  8. Single molecule detection for in vitro diagnostics

    NASA Astrophysics Data System (ADS)

    Kirner, Thomas; Ackermann, Jörg; Mathis, Harald P.; Greiner, Benjamin; Tonn, Thomas; Tschachojan, David; Kukoc-Zivojnov, Natasa; Giehring, Sebastian

    2008-02-01

    In this paper we present a novel highly sensitive detection system for diagnostic applications. The system is designed to meet the needs of medical diagnostics for reliable measurements of pathogens and biomarkers in the low concentration regime. It consists of a confocal detection unit, micro-structured sampling cells, and a "Virtual lab" analysis software. The detection unit works with laser induced fluorescence and is designed to provide accurate and highly sensitive measurement at the single molecule level. Various sampling cells are micro-structured in glass, silicon or polymers to enable measurements under flow and nonflow conditions. Sampling volume is below one microliter. The "Virtual lab" software analyzes the light intensity online according to the patent pending "Accurate Stochastic Fluorescence Spectroscopy" (ASFS) developed by FluIT Biosystems GmbH. Tools for simulation and experiment optimization are included as well. Experimental results for various applications with relevance for in vitro diagnostics will be presented.

  9. Single-molecule detection: applications to ultrasensitive biochemical analysis

    NASA Astrophysics Data System (ADS)

    Castro, Alonso; Shera, E. Brooks

    1995-06-01

    Recent developments in laser-based detection of fluorescent molecules have made possible the implementation of very sensitive techniques for biochemical analysis. We present and discuss our experiments on the applications of our recently developed technique of single-molecule detection to the analysis of molecules of biological interest. These newly developed methods are capable of detecting and identifying biomolecules at the single-molecule level of sensitivity. In one case, identification is based on measuring fluorescence brightness from single molecules. In another, molecules are classified by determining their electrophoretic velocities.

  10. Figuration and detection of single molecules

    NASA Astrophysics Data System (ADS)

    Nevels, R.; Welch, G. R.; Cremer, P. S.; Hemmer, P.; Phillips, T.; Scully, S.; Sokolov, A. V.; Svidzinsky, A. A.; Xia, H.; Zheltikov, A.; Scully, M. O.

    2012-08-01

    Recent advances in the description of atoms and molecules based on Dimensional scaling analysis, developed by Dudley Herschbach and co-workers, provided new insights into visualization of molecular structure and chemical bonding. Prof. Herschbach is also a giant in the field of single molecule scattering. We here report on the engineering of molecular detectors. Such systems have a wide range of application from medical diagnostics to the monitoring of chemical, biological and environmental hazards. We discuss ways to identify preselected molecules, in particular, mycotoxin contaminants using coherent laser spectroscopy. Mycotoxin contaminants, e.g. aflatoxin B1 which is present in corn and peanuts, are usually analysed by time-consuming microscopic, chemical and biological assays. We present a new approach that derives from recent experiments in which molecules are prepared by one (or more) femtosecond laser(s) and probed by another set. We call this technique FAST CARS (femto second adaptive spectroscopic technique for coherent anti-Stokes Raman spectroscopy). We propose and analyse ways in which FAST CARS can be used to identify preselected molecules, e.g. aflatoxin, rapidly and economically.

  11. Modeling single-molecule detection statistics

    NASA Astrophysics Data System (ADS)

    Enderlein, Joerg; Robbins, David L.; Ambrose, W. P.; Goodwin, Peter M.; Keller, Richard A.

    1997-05-01

    We present experimental results of single B-phycoerythrin molecule detection in a fluid flow at different sample introduction rates. A new mathematical approach is used for calculating the resulting burst size distributions. The calculations are based upon a complete physical model including absorption, fluorescence and photobleaching characteristics of the fluorophore; its diffusion; the sample stream hydrodynamics; the spatially dependent optical detection efficiency; and the excitation laser beam characteristics. Special attention is paid to the phenomenon of `molecular noise'--fluctuations in the number of overlapping crossings of molecules through the detection volume. The importance of this study and its connections to experimental applications are discussed.

  12. Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection

    PubMed Central

    Zheng, Yuanhui; Soeriyadi, Alexander H.; Rosa, Lorenzo; Ng, Soon Hock; Bach, Udo; Justin Gooding, J.

    2015-01-01

    Single-molecule surface-enhanced Raman spectroscopy (SERS) has attracted increasing interest for chemical and biochemical sensing. Many conventional substrates have a broad distribution of SERS enhancements, which compromise reproducibility and result in slow response times for single-molecule detection. Here we report a smart plasmonic sensor that can reversibly trap a single molecule at hotspots for rapid single-molecule detection. The sensor was fabricated through electrostatic self-assembly of gold nanoparticles onto a gold/silica-coated silicon substrate, producing a high yield of uniformly distributed hotspots on the surface. The hotspots were isolated with a monolayer of a thermoresponsive polymer (poly(N-isopropylacrylamide)), which act as gates for molecular trapping at the hotspots. The sensor shows not only a good SERS reproducibility but also a capability to repetitively trap and release molecules for single-molecular sensing. The single-molecule sensitivity is experimentally verified using SERS spectral blinking and bianalyte methods. PMID:26549539

  13. Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection.

    PubMed

    Zheng, Yuanhui; Soeriyadi, Alexander H; Rosa, Lorenzo; Ng, Soon Hock; Bach, Udo; Justin Gooding, J

    2015-01-01

    Single-molecule surface-enhanced Raman spectroscopy (SERS) has attracted increasing interest for chemical and biochemical sensing. Many conventional substrates have a broad distribution of SERS enhancements, which compromise reproducibility and result in slow response times for single-molecule detection. Here we report a smart plasmonic sensor that can reversibly trap a single molecule at hotspots for rapid single-molecule detection. The sensor was fabricated through electrostatic self-assembly of gold nanoparticles onto a gold/silica-coated silicon substrate, producing a high yield of uniformly distributed hotspots on the surface. The hotspots were isolated with a monolayer of a thermoresponsive polymer (poly(N-isopropylacrylamide)), which act as gates for molecular trapping at the hotspots. The sensor shows not only a good SERS reproducibility but also a capability to repetitively trap and release molecules for single-molecular sensing. The single-molecule sensitivity is experimentally verified using SERS spectral blinking and bianalyte methods. PMID:26549539

  14. Single-molecule detection at high concentrations with optical aperture nanoantennas.

    PubMed

    Alam, Md Shah; Karim, Farzia; Zhao, Chenglong

    2016-05-14

    Single-molecule detection has become an indispensable technology in life science, and medical research. In order to get meaningful information on many biological processes, single-molecule analysis is required in micro-molar concentrations. At such high concentrations, it is very challenging to isolate a single molecule with conventional diffraction-limited optics. Recently, optical aperture nanoantennas (OANs) have emerged as a powerful tool to enhance the single-molecule detection under a physiological environment. The OANs, which consist of nano-scale apertures on a metallic film, have the following unique properties: (1) nanoscale light confinement; (2) enhanced fluorescence emission; (3) tunable radiation pattern; (4) reduced background noise; and (5) massive parallel detection. This review presents the fundamentals, recent developments and future perspectives in this emerging field. PMID:27120086

  15. Single-molecule detection at high concentrations with optical aperture nanoantennas

    NASA Astrophysics Data System (ADS)

    Alam, Md Shah; Karim, Farzia; Zhao, Chenglong

    2016-05-01

    Single-molecule detection has become an indispensable technology in life science, and medical research. In order to get meaningful information on many biological processes, single-molecule analysis is required in micro-molar concentrations. At such high concentrations, it is very challenging to isolate a single molecule with conventional diffraction-limited optics. Recently, optical aperture nanoantennas (OANs) have emerged as a powerful tool to enhance the single-molecule detection under a physiological environment. The OANs, which consist of nano-scale apertures on a metallic film, have the following unique properties: (1) nanoscale light confinement; (2) enhanced fluorescence emission; (3) tunable radiation pattern; (4) reduced background noise; and (5) massive parallel detection. This review presents the fundamentals, recent developments and future perspectives in this emerging field.

  16. Single Molecule Electrochemical Detection in Aqueous Solutions and Ionic Liquids.

    PubMed

    Byers, Joshua C; Paulose Nadappuram, Binoy; Perry, David; McKelvey, Kim; Colburn, Alex W; Unwin, Patrick R

    2015-10-20

    Single molecule electrochemical detection (SMED) is an extremely challenging aspect of electroanalytical chemistry, requiring unconventional electrochemical cells and measurements. Here, SMED is reported using a "quad-probe" (four-channel probe) pipet cell, fabricated by depositing carbon pyrolytically into two diagonally opposite barrels of a laser-pulled quartz quadruple-barreled pipet and filling the open channels with electrolyte solution, and quasi-reference counter electrodes. A meniscus forms at the end of the probe covering the two working electrodes and is brought into contact with a substrate working electrode surface. In this way, a nanogap cell is produced whereby the two carbon electrodes in the pipet can be used to promote redox cycling of an individual molecule with the substrate. Anticorrelated currents generated at the substrate and tip electrodes, at particular distances (typically tens of nanometers), are consistent with the detection of single molecules. The low background noise realized in this droplet format opens up new opportunities in single molecule electrochemistry, including the use of ionic liquids, as well as aqueous solution, and the quantitative assessment and analysis of factors influencing redox cycling currents, due to a precisely known gap size. PMID:26398675

  17. Single-molecule detection using continuous wave excitation of two-photon fluorescence

    NASA Astrophysics Data System (ADS)

    Hou, Ximiao; Cheng, Wei

    2011-08-01

    Two-photon fluorescence (TPF) is one of the most important discoveries for biological imaging. Although a cw laser is known to excite TPF, its application in TPF imaging has been very limited due to the perceived low efficiency of excitation. Here we directly excited fluorophores with an IR cw laser used for optical trapping and achieved single-molecule fluorescence sensitivity: discrete stepwise photobleaching of enhanced green fluorescent proteins was observed. The single-molecule fluorescence intensity analysis and on-time distribution strongly indicate that a cw laser can generate TPF detectable at the single-molecule level, and thus opens the door to single-molecule TPF imaging using cw lasers.

  18. Detection of pathogenic DNA at the single-molecule level

    NASA Astrophysics Data System (ADS)

    Yahiatène, Idir; Klamp, Tobias; Schüttpelz, Mark; Sauer, Markus

    2011-03-01

    We demonstrate ultrasensitive detection of pathogenic DNA in a homogeneous assay at the single-molecule level applying two-color coincidence analysis. The target molecule we quantify is a 100 nucleotide long synthetic single-stranded oligonucleotide adapted from Streptococcus pneumoniae, a bacterium causing lower respiratory tract infections. Using spontaneous hybridization of two differently fluorescing Molecular Beacons we demonstrate a detection sensitivity of 100 fM (10-13M) in 30 seconds applying a simple microfluidic device with a 100 μm channel and confocal two-color fluorescence microscopy.

  19. Single molecule detection using charge-coupled device array technology. Technical progress report

    SciTech Connect

    Denton, M.B.

    1992-07-29

    A technique for the detection of single fluorescent chromophores in a flowing stream is under development. This capability is an integral facet of a rapid DNA sequencing scheme currently being developed by Los Alamos National Laboratory. In previous investigations, the detection sensitivity was limited by the background Raman emission from the water solvent. A detection scheme based on a novel mode of operating a Charge-Coupled Device (CCD) is being developed which should greatly enhance the discrimination between fluorescence from a single molecule and the background Raman scattering from the solvent. Register shifts between rows in the CCD are synchronized with the sample flow velocity so that fluorescence from a single molecule is collected in a single moving charge packet occupying an area approaching that of a single pixel while the background is spread evenly among a large number of pixels. Feasibility calculations indicate that single molecule detection should be achieved with an excellent signal-to-noise ratio.

  20. Analytical assays based on detecting conformational changes of single molecules.

    PubMed

    Zocchi, Giovanni

    2006-03-13

    One common strategy for the detection of biomolecules is labeling either the target itself or an antibody that binds to it. Herein, a different approach, based on detecting the conformational change of a probe molecule induced by binding of the target is discussed. That is, what is being detected is not the presence of the target or the probe, but the conformational change of the probe. Recently, a single-molecule sensor has been developed that exploits this mechanism to detect hybridization of a single DNA oligomer to a DNA probe, as well as specific binding of a single protein to a DNA probe. Biomolecular recognition often involves large conformational changes of the molecules involved, and therefore this strategy may be applicable to other assays. PMID:16514690

  1. Accurate single-molecule FRET studies using multiparameter fluorescence detection.

    PubMed

    Sisamakis, Evangelos; Valeri, Alessandro; Kalinin, Stanislav; Rothwell, Paul J; Seidel, Claus A M

    2010-01-01

    In the recent decade, single-molecule (sm) spectroscopy has come of age and is providing important insight into how biological molecules function. So far our view of protein function is formed, to a significant extent, by traditional structure determination showing many beautiful static protein structures. Recent experiments by single-molecule and other techniques have questioned the idea that proteins and other biomolecules are static structures. In particular, Förster resonance energy transfer (FRET) studies of single molecules have shown that biomolecules may adopt many conformations as they perform their function. Despite the success of sm-studies, interpretation of smFRET data are challenging since they can be complicated due to many artifacts arising from the complex photophysical behavior of fluorophores, dynamics, and motion of fluorophores, as well as from small amounts of contaminants. We demonstrate that the simultaneous acquisition of a maximum of fluorescence parameters by multiparameter fluorescence detection (MFD) allows for a robust assessment of all possible artifacts arising from smFRET and offers unsurpassed capabilities regarding the identification and analysis of individual species present in a population of molecules. After a short introduction, the data analysis procedure is described in detail together with some experimental considerations. The merits of MFD are highlighted further with the presentation of some applications to proteins and nucleic acids, including accurate structure determination based on FRET. A toolbox is introduced in order to demonstrate how complications originating from orientation, mobility, and position of fluorophores have to be taken into account when determining FRET-related distances with high accuracy. Furthermore, the broad time resolution (picoseconds to hours) of MFD allows for kinetic studies that resolve interconversion events between various subpopulations as a biomolecule of interest explores its

  2. Single molecule targeted sequencing for cancer gene mutation detection.

    PubMed

    Gao, Yan; Deng, Liwei; Yan, Qin; Gao, Yongqian; Wu, Zengding; Cai, Jinsen; Ji, Daorui; Li, Gailing; Wu, Ping; Jin, Huan; Zhao, Luyang; Liu, Song; Ge, Liangjin; Deem, Michael W; He, Jiankui

    2016-01-01

    With the rapid decline in cost of sequencing, it is now affordable to examine multiple genes in a single disease-targeted clinical test using next generation sequencing. Current targeted sequencing methods require a separate step of targeted capture enrichment during sample preparation before sequencing. Although there are fast sample preparation methods available in market, the library preparation process is still relatively complicated for physicians to use routinely. Here, we introduced an amplification-free Single Molecule Targeted Sequencing (SMTS) technology, which combined targeted capture and sequencing in one step. We demonstrated that this technology can detect low-frequency mutations using artificially synthesized DNA sample. SMTS has several potential advantages, including simple sample preparation thus no biases and errors are introduced by PCR reaction. SMTS has the potential to be an easy and quick sequencing technology for clinical diagnosis such as cancer gene mutation detection, infectious disease detection, inherited condition screening and noninvasive prenatal diagnosis. PMID:27193446

  3. Single molecule targeted sequencing for cancer gene mutation detection

    PubMed Central

    Gao, Yan; Deng, Liwei; Yan, Qin; Gao, Yongqian; Wu, Zengding; Cai, Jinsen; Ji, Daorui; Li, Gailing; Wu, Ping; Jin, Huan; Zhao, Luyang; Liu, Song; Ge, Liangjin; Deem, Michael W.; He, Jiankui

    2016-01-01

    With the rapid decline in cost of sequencing, it is now affordable to examine multiple genes in a single disease-targeted clinical test using next generation sequencing. Current targeted sequencing methods require a separate step of targeted capture enrichment during sample preparation before sequencing. Although there are fast sample preparation methods available in market, the library preparation process is still relatively complicated for physicians to use routinely. Here, we introduced an amplification-free Single Molecule Targeted Sequencing (SMTS) technology, which combined targeted capture and sequencing in one step. We demonstrated that this technology can detect low-frequency mutations using artificially synthesized DNA sample. SMTS has several potential advantages, including simple sample preparation thus no biases and errors are introduced by PCR reaction. SMTS has the potential to be an easy and quick sequencing technology for clinical diagnosis such as cancer gene mutation detection, infectious disease detection, inherited condition screening and noninvasive prenatal diagnosis. PMID:27193446

  4. Ultrasensitive nucleic acid sequence detection by single-molecule electrophoresis

    SciTech Connect

    Castro, A; Shera, E.B.

    1996-09-01

    This is the final report of a one-year laboratory-directed research and development project at Los Alamos National Laboratory. There has been considerable interest in the development of very sensitive clinical diagnostic techniques over the last few years. Many pathogenic agents are often present in extremely small concentrations in clinical samples, especially at the initial stages of infection, making their detection very difficult. This project sought to develop a new technique for the detection and accurate quantification of specific bacterial and viral nucleic acid sequences in clinical samples. The scheme involved the use of novel hybridization probes for the detection of nucleic acids combined with our recently developed technique of single-molecule electrophoresis. This project is directly relevant to the DOE`s Defense Programs strategic directions in the area of biological warfare counter-proliferation.

  5. Enhancing Single Molecule Imaging in Optofluidics and Microfluidics

    PubMed Central

    Vasdekis, Andreas E.; Laporte, Gregoire P.J.

    2011-01-01

    Microfluidics and optofluidics have revolutionized high-throughput analysis and chemical synthesis over the past decade. Single molecule imaging has witnessed similar growth, due to its capacity to reveal heterogeneities at high spatial and temporal resolutions. However, both resolution types are dependent on the signal to noise ratio (SNR) of the image. In this paper, we review how the SNR can be enhanced in optofluidics and microfluidics. Starting with optofluidics, we outline integrated photonic structures that increase the signal emitted by single chromophores and minimize the excitation volume. Turning then to microfluidics, we review the compatible functionalization strategies that reduce noise stemming from non-specific interactions and architectures that minimize bleaching and blinking. PMID:21954349

  6. Single Molecule Magnetic Force Detection with a Carbon Nanotube Resonator

    NASA Astrophysics Data System (ADS)

    Willick, Kyle; Walker, Sean; Baugh, Jonathan

    2015-03-01

    Single molecule magnets (SMMs) sit at the boundary between macroscopic magnetic behaviour and quantum phenomena. Detecting the magnetic moment of an individual SMM would allow exploration of this boundary, and could enable technological applications based on SMMs such as quantum information processing. Detection of these magnetic moments remains an experimental challenge, particularly at the time scales of relaxation and decoherence. We present a technique for sensitive magnetic force detection that should permit such measurements. A suspended carbon nanotube (CNT) mechanical resonator is combined with a magnetic field gradient generated by a ferromagnetic gate electrode, which couples the magnetic moment of a nanomagnet to the resonant motion of the CNT. Numerical calculations of the mechanical resonance show that resonant frequency shifts on the order of a few kHz arise due to single Bohr magneton changes in magnetic moment. A signal-to-noise analysis based on thermomechanical noise shows that magnetic switching at the level of a Bohr magneton can be measured in a single shot on timescales as short as 10 μs. This sensitivity should enable studies of the spin dynamics of an isolated SMM, within the spin relaxation timescales for many available SMMs. Supported by NSERC.

  7. Single Molecule Detection and Imaging in Single Living Cells

    NASA Astrophysics Data System (ADS)

    Nie, Shuming

    2002-03-01

    Direct observation of single molecules and single molecular events inside living cells could dramatically improve our understanding of basic cellular processes (e.g., signal transduction and gene transcription) as well as improving our knowledge on the intracellular transport and fate of therapeutic agents (e.g., antisense RNA and gene therapy vectors). This talk will focus on using single-molecule fluorescence and luminescent quantum dots to examine the dynamics and spatial distribution of RNA and proteins inside living cells and on the surface membrane surface. These single-molecule studies yield a detailed description of molecular events and cellular structures under physiological conditions.

  8. Single-molecule DNA detection using a novel SP1 protein nanopore.

    PubMed

    Wang, Hai-Yan; Li, Yang; Qin, Li-Xia; Heyman, Arnon; Shoseyov, Oded; Willner, Itamar; Long, Yi-Tao; Tian, He

    2013-02-28

    SP1 protein as a new type of biological nanopore is described and is utilized to distinguish single-stranded DNA at the single-molecule level. Using the SP1 nanopore to investigate single molecule detection broadens the existing research areas of pore-forming biomaterials from unsymmetrical biological nanopores to symmetrical biological nanopores. This novel nanopore could provide a good candidate for single-molecule detection and characterization of biomaterial applications. PMID:23340583

  9. Applying Semiconductor Technologies and Metrology Tools to Biomedical Research: Manipulation and Detection of Single Molecules

    NASA Astrophysics Data System (ADS)

    Berlin, Andrew A.; Sundararajan, Narayan; Koo, Tae-Woong

    2005-09-01

    Intel's Precision Biology research effort is working to combine Intel's expertise in nanotechnology with aspects of biology and medicine to create highly sensitive instrumentation for biomolecular analysis. The ability to manipulate, detect, and identify biological molecules at ultra-low concentrations is important for applications ranging from whole-genome DNA sequencing to protein-based early disease detection. In this paper we describe our work to develop a molecular labeling system based on Surface-Enhanced Raman Spectroscopy (SERS), to enable highly sensitive protein detection. We also present a set of microfluidic and spectroscopic techniques that our team has developed for transporting and identifying single molecules in solution.

  10. Wafer-scale metasurface for total power absorption, local field enhancement and single molecule Raman spectroscopy

    PubMed Central

    Wang, Dongxing; Zhu, Wenqi; Best, Michael D.; Camden, Jon P.; Crozier, Kenneth B.

    2013-01-01

    The ability to detect molecules at low concentrations is highly desired for applications that range from basic science to healthcare. Considerable interest also exists for ultrathin materials with high optical absorption, e.g. for microbolometers and thermal emitters. Metal nanostructures present opportunities to achieve both purposes. Metal nanoparticles can generate gigantic field enhancements, sufficient for the Raman spectroscopy of single molecules. Thin layers containing metal nanostructures (“metasurfaces”) can achieve near-total power absorption at visible and near-infrared wavelengths. Thus far, however, both aims (i.e. single molecule Raman and total power absorption) have only been achieved using metal nanostructures produced by techniques (high resolution lithography or colloidal synthesis) that are complex and/or difficult to implement over large areas. Here, we demonstrate a metasurface that achieves the near-perfect absorption of visible-wavelength light and enables the Raman spectroscopy of single molecules. Our metasurface is fabricated using thin film depositions, and is of unprecedented (wafer-scale) extent. PMID:24091825

  11. Orientation detection of a single molecule using pupil filter with electrically controllable polarization pattern

    NASA Astrophysics Data System (ADS)

    Hashimoto, Mamoru; Yoshiki, Keisuke; Kurihara, Makoto; Hashimoto, Nobuyuki; Araki, Tsutomu

    2015-12-01

    We have developed a system for measuring the orientation of single molecules using a conventional wide-field fluorescence microscope with a polarization filter consisting of a polarizer and a compact polarization mode converter. The polarization filter electrically controls the pattern of polarization filtering. Since the polarization of the fluorescence from a single molecule highly depends on the angle between the observation direction and the molecular direction, polarization pattern filtering at the pupil plane of the objective lens allows the orientation of a single molecule to be visualized. Using this system, we demonstrated the orientation detection of single molecules.

  12. Electrochemical detection of single molecules using abiotic nanopores having electrically tunable dimensions

    DOEpatents

    Sansinena, Jose-Maria; Redondo, Antonio; Olazabal, Virginia; Hoffbauer, Mark A.; Akhadov, Elshan A.

    2009-12-29

    A barrier structure for use in an electrochemical stochastic membrane sensor for single molecule detection. The sensor is based upon inorganic nanopores having electrically tunable dimensions. The inorganic nanopores are formed from inorganic materials and an electrically conductive polymer. Methods of making the barrier structure and sensing single molecules using the barrier structure are also described.

  13. All-Dielectric Silicon Nanogap Antennas To Enhance the Fluorescence of Single Molecules.

    PubMed

    Regmi, Raju; Berthelot, Johann; Winkler, Pamina M; Mivelle, Mathieu; Proust, Julien; Bedu, Frédéric; Ozerov, Igor; Begou, Thomas; Lumeau, Julien; Rigneault, Hervé; García-Parajó, María F; Bidault, Sébastien; Wenger, Jérôme; Bonod, Nicolas

    2016-08-10

    Plasmonic antennas have a profound impact on nanophotonics as they provide efficient means to manipulate light and enhance light-matter interactions at the nanoscale. However, the large absorption losses found in metals can severely limit the plasmonic applications in the visible spectral range. Here, we demonstrate the effectiveness of an alternative approach using all-dielectric nanoantennas based on silicon dimers to enhance the fluorescence detection of single molecules. The silicon antenna design is optimized to confine the near-field intensity in the 20 nm nanogap and reach a 270-fold fluorescence enhancement in a nanoscale volume of λ(3)/1800 with dielectric materials only. Our conclusions are assessed by combining polarization resolved optical spectroscopy of individual antennas, scanning electron microscopy, numerical simulations, fluorescence lifetime measurements, fluorescence burst analysis, and fluorescence correlation spectroscopy. This work demonstrates that all-silicon nanoantennas are a valid alternative to plasmonic devices for enhanced single molecule fluorescence sensing, with the additional key advantages of reduced nonradiative quenching, negligible heat generation, cost-efficiency, and complementary metal-oxide-semiconductor (CMOS) compatibility. PMID:27399057

  14. Peering into Cells One Molecule at a Time: Single-molecule and plasmon-enhanced fluorescence super-resolution imaging

    NASA Astrophysics Data System (ADS)

    Biteen, Julie

    2013-03-01

    Single-molecule fluorescence brings the resolution of optical microscopy down to the nanometer scale, allowing us to unlock the mysteries of how biomolecules work together to achieve the complexity that is a cell. This high-resolution, non-destructive method for examining subcellular events has opened up an exciting new frontier: the study of macromolecular localization and dynamics in living cells. We have developed methods for single-molecule investigations of live bacterial cells, and have used these techniques to investigate thee important prokaryotic systems: membrane-bound transcription activation in Vibrio cholerae, carbohydrate catabolism in Bacteroides thetaiotaomicron, and DNA mismatch repair in Bacillus subtilis. Each system presents unique challenges, and we will discuss the important methods developed for each system. Furthermore, we use the plasmon modes of bio-compatible metal nanoparticles to enhance the emissivity of single-molecule fluorophores. The resolution of single-molecule imaging in cells is generally limited to 20-40 nm, far worse than the 1.5-nm localization accuracies which have been attained in vitro. We use plasmonics to improve the brightness and stability of single-molecule probes, and in particular fluorescent proteins, which are widely used for bio-imaging. We find that gold-coupled fluorophores demonstrate brighter, longer-lived emission, yielding an overall enhancement in total photons detected. Ultimately, this results in increased localization accuracy for single-molecule imaging. Furthermore, since fluorescence intensity is proportional to local electromagnetic field intensity, these changes in decay intensity and rate serve as a nm-scale read-out of the field intensity. Our work indicates that plasmonic substrates are uniquely advantageous for super-resolution imaging, and that plasmon-enhanced imaging is a promising technique for improving live cell single-molecule microscopy.

  15. Variable-Temperature Tip-Enhanced Raman Spectroscopy of Single-Molecule Fluctuations and Dynamics.

    PubMed

    Park, Kyoung-Duck; Muller, Eric A; Kravtsov, Vasily; Sass, Paul M; Dreyer, Jens; Atkin, Joanna M; Raschke, Markus B

    2016-01-13

    Structure, dynamics, and coupling involving single-molecules determine function in catalytic, electronic or biological systems. While vibrational spectroscopy provides insight into molecular structure, rapid fluctuations blur the molecular trajectory even in single-molecule spectroscopy, analogous to spatial averaging in measuring large ensembles. To gain insight into intramolecular coupling, substrate coupling, and dynamic processes, we use tip-enhanced Raman spectroscopy (TERS) at variable and cryogenic temperatures, to slow and control the motion of a single molecule. We resolve intrinsic line widths of individual normal modes, allowing detailed and quantitative investigation of the vibrational modes. From temperature dependent line narrowing and splitting, we quantify ultrafast vibrational dephasing, intramolecular coupling, and conformational heterogeneity. Through statistical correlation analysis of fluctuations of individual modes, we observe rotational motion and spectral fluctuations of the molecule. This work demonstrates single-molecule vibrational spectroscopy beyond chemical identification, opening the possibility for a complete picture of molecular motion ranging from femtoseconds to minutes. PMID:26679007

  16. Single molecule surface enhanced resonance Raman scattering (SERRS) of the enhanced green fluorescent protein (EGFP)

    NASA Astrophysics Data System (ADS)

    Hofkens, Johan; De Schryver, Frans C.; Cotlet, Mircea; Habuchi, Satoshi

    2004-06-01

    One of the most intriguing findings in single molecule spectroscopy (SMS) is the observation of Raman spectra of individual molecules, despite the small cross section of the transitions involved. The observation of the spectra can be explained by the surface enhanced Raman scattering (SERRS) effect. At the single-molecule level, the SERRS-spectra recorded as a function of time reveal inhomogeneous behaviour such as on/off blinking, spectral diffusion, intensity fluctuations of vibrational line, and even splitting of some lines within the spectrum of one molecule. Single-molecule SERRS (SM-SERRS) spectroscopy opens up exciting opportunities in the field of biophysics and biomedical spectroscopy. The first example of single protein SERRS was performed on hemoglobin. However, the possibility of extracting the heme group by silver sols can not be excluded. Here we report on SM-SERRS spectra of enhanced green fluorescent protein (EGFP) in which the chromophore is kept in the protein. The time series of SM-SERRS spectra suggest the conversion of the EGFP chromophore between the deprotonated and the protonated form. Autocorrelation analysis of SM-SERRS trajectory reveals the presence of fast dynamics taking place in the protein. Our findings show the potential of the technique to study structural dynamics of protein molecules.

  17. Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Patra, Partha Pratim; Chikkaraddy, Rohit; Tripathi, Ravi P. N.; Dasgupta, Arindam; Kumar, G. V. Pavan

    2014-07-01

    Single-molecule surface-enhanced Raman scattering (SM-SERS) is one of the vital applications of plasmonic nanoparticles. The SM-SERS sensitivity critically depends on plasmonic hot-spots created at the vicinity of such nanoparticles. In conventional fluid-phase SM-SERS experiments, plasmonic hot-spots are facilitated by chemical aggregation of nanoparticles. Such aggregation is usually irreversible, and hence, nanoparticles cannot be re-dispersed in the fluid for further use. Here, we show how to combine SM-SERS with plasmon polariton-assisted, reversible assembly of plasmonic nanoparticles at an unstructured metal-fluid interface. One of the unique features of our method is that we use a single evanescent-wave optical excitation for nanoparticle assembly, manipulation and SM-SERS measurements. Furthermore, by utilizing dual excitation of plasmons at metal-fluid interface, we create interacting assemblies of metal nanoparticles, which may be further harnessed in dynamic lithography of dispersed nanostructures. Our work will have implications in realizing optically addressable, plasmofluidic, single-molecule detection platforms.

  18. Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles.

    PubMed

    Patra, Partha Pratim; Chikkaraddy, Rohit; Tripathi, Ravi P N; Dasgupta, Arindam; Kumar, G V Pavan

    2014-01-01

    Single-molecule surface-enhanced Raman scattering (SM-SERS) is one of the vital applications of plasmonic nanoparticles. The SM-SERS sensitivity critically depends on plasmonic hot-spots created at the vicinity of such nanoparticles. In conventional fluid-phase SM-SERS experiments, plasmonic hot-spots are facilitated by chemical aggregation of nanoparticles. Such aggregation is usually irreversible, and hence, nanoparticles cannot be re-dispersed in the fluid for further use. Here, we show how to combine SM-SERS with plasmon polariton-assisted, reversible assembly of plasmonic nanoparticles at an unstructured metal-fluid interface. One of the unique features of our method is that we use a single evanescent-wave optical excitation for nanoparticle assembly, manipulation and SM-SERS measurements. Furthermore, by utilizing dual excitation of plasmons at metal-fluid interface, we create interacting assemblies of metal nanoparticles, which may be further harnessed in dynamic lithography of dispersed nanostructures. Our work will have implications in realizing optically addressable, plasmofluidic, single-molecule detection platforms. PMID:25000476

  19. Single molecule transistor based nanopore for the detection of nicotine

    SciTech Connect

    Ray, S. J.

    2014-12-28

    A nanopore based detection methodology was proposed and investigated for the detection of Nicotine. This technique uses a Single Molecular Transistor working as a nanopore operational in the Coulomb Blockade regime. When the Nicotine molecule is pulled through the nanopore area surrounded by the Source(S), Drain (D), and Gate electrodes, the charge stability diagram can detect the presence of the molecule and is unique for a specific molecular structure. Due to the weak coupling between the different electrodes which is set by the nanopore size, the molecular energy states stay almost unaffected by the electrostatic environment that can be realised from the charge stability diagram. Identification of different orientation and position of the Nicotine molecule within the nanopore area can be made from specific regions of overlap between different charge states on the stability diagram that could be used as an electronic fingerprint for detection. This method could be advantageous and useful to detect the presence of Nicotine in smoke which is usually performed using chemical chromatography techniques.

  20. Single molecule transistor based nanopore for the detection of nicotine

    NASA Astrophysics Data System (ADS)

    Ray, S. J.

    2014-12-01

    A nanopore based detection methodology was proposed and investigated for the detection of Nicotine. This technique uses a Single Molecular Transistor working as a nanopore operational in the Coulomb Blockade regime. When the Nicotine molecule is pulled through the nanopore area surrounded by the Source(S), Drain (D), and Gate electrodes, the charge stability diagram can detect the presence of the molecule and is unique for a specific molecular structure. Due to the weak coupling between the different electrodes which is set by the nanopore size, the molecular energy states stay almost unaffected by the electrostatic environment that can be realised from the charge stability diagram. Identification of different orientation and position of the Nicotine molecule within the nanopore area can be made from specific regions of overlap between different charge states on the stability diagram that could be used as an electronic fingerprint for detection. This method could be advantageous and useful to detect the presence of Nicotine in smoke which is usually performed using chemical chromatography techniques.

  1. Single molecule detection using SERS study in PVP functionalized Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Garg, Parul; Dhara, S.

    2013-02-01

    Non-spherical functionalized Ag nanoparticles (NPs) with homogenous size ˜ 40 nm have been grown using soft chemical route. Solution of silver nitrate and polyvinylpyrrolidone is reduced in excess of ethylene glycol for the preparation of the NPs. Substrates has been prepared by dip coating of the NPs on c-Si for Raman studies. Rhodamine (R6G) is used as a test molecule to study the surface enhanced Raman spectroscopy (SERS) effect. A single molecule detection of R6G along with an enhancement factor of ˜ 4×103 orders of magnitude in the intensity, for the concentration as low as 10-12 M using polymer coated Ag NPs as SERS substrates, has been achieved.

  2. Targeted single molecule mutation detection with massively parallel sequencing

    PubMed Central

    Gregory, Mark T.; Bertout, Jessica A.; Ericson, Nolan G.; Taylor, Sean D.; Mukherjee, Rithun; Robins, Harlan S.; Drescher, Charles W.; Bielas, Jason H.

    2016-01-01

    Next-generation sequencing (NGS) technologies have transformed genomic research and have the potential to revolutionize clinical medicine. However, the background error rates of sequencing instruments and limitations in targeted read coverage have precluded the detection of rare DNA sequence variants by NGS. Here we describe a method, termed CypherSeq, which combines double-stranded barcoding error correction and rolling circle amplification (RCA)-based target enrichment to vastly improve NGS-based rare variant detection. The CypherSeq methodology involves the ligation of sample DNA into circular vectors, which contain double-stranded barcodes for computational error correction and adapters for library preparation and sequencing. CypherSeq is capable of detecting rare mutations genome-wide as well as those within specific target genes via RCA-based enrichment. We demonstrate that CypherSeq is capable of correcting errors incurred during library preparation and sequencing to reproducibly detect mutations down to a frequency of 2.4 × 10−7 per base pair, and report the frequency and spectra of spontaneous and ethyl methanesulfonate-induced mutations across the Saccharomyces cerevisiae genome. PMID:26384417

  3. Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology.

    PubMed

    Wang, Yuling; Irudayaraj, Joseph

    2013-02-01

    Single-molecule (SM) spectroscopy has been an exciting area of research offering significant promise and hope in the field of sensor development to detect targets at ultra-low levels down to SM resolution. To the experts and developers in the field of surface-enhanced Raman spectroscopy (SERS), this has often been a challenge and a significant opportunity for exploration. Needless to say, the opportunities and excitement of this multidisciplinary area impacts span the fields of physics, chemistry and engineering, along with a significant thrust in applications constituting areas in medicine, biology, environment and agriculture among others. In this review, we will attempt to provide a quick snapshot of the basics of SM-SERS, nanostructures and devices that can enable SM Raman measurement. We will conclude with a discussion on SERS implications in biomedical sciences. PMID:23267180

  4. Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology

    PubMed Central

    Wang, Yuling; Irudayaraj, Joseph

    2013-01-01

    Single-molecule (SM) spectroscopy has been an exciting area of research offering significant promise and hope in the field of sensor development to detect targets at ultra-low levels down to SM resolution. To the experts and developers in the field of surface-enhanced Raman spectroscopy (SERS), this has often been a challenge and a significant opportunity for exploration. Needless to say, the opportunities and excitement of this multidisciplinary area impacts span the fields of physics, chemistry and engineering, along with a significant thrust in applications constituting areas in medicine, biology, environment and agriculture among others. In this review, we will attempt to provide a quick snapshot of the basics of SM-SERS, nanostructures and devices that can enable SM Raman measurement. We will conclude with a discussion on SERS implications in biomedical sciences. PMID:23267180

  5. Nanofluidics and Single Molecule Detection for DNA analysis

    NASA Astrophysics Data System (ADS)

    Tegenfeldt, Jonas; Cao, Han; Austin, Robert H.; Cox, Edward C.; Tilghman, Shirley M.

    2002-03-01

    We present a device for high-resolution detection of fluorescent tags bound to DNA molecules. Submicron slits are defined in an aluminum film on a quartz wafer. Microfluidic channels are defined perpendicular to the slits. Fluorescently labeled DNA is passed through the microfluidic channels and is illuminated through the submicron slits. The resulting fluorescence is detected in using an APD. We are particularly interested in studying the pattern of transcription factors along single DNA molecules. We use the lac operon as a model system. Fusion proteins of lac-repressor and GFP have been made and imaged individually. To achieve reliable measurements of the positions of the transcription factors along the DNA, the DNA must be uniformly stretched. Previous devices relied on posts for stretching, resulting in poorly stretched DNA with highly disordered head and tail. Here we show that by forcing the DNA into channels that have a diameter close to or below the persistence length of the DNA (Lp=50nm), the DNA is forced into a stretched conformation along its entire length.

  6. Prospects for single-molecule detection in liquids by laser-induced fluorescence

    SciTech Connect

    Trkula, M.; Keller, R.A.; Martin, J.C.; Jett, J.H.; Dovichi, N.J.

    1983-01-01

    A laser-induced fluoresence determination of aqueous solutions of rhodamine 6G resulted in a detection limit of 18 attograms, or 22,000 molecules, of rhodamine 6G. These results allow the projection to single-molecule detection with reasonable improvements in the experimental apparatus.

  7. Towards sorting of biolibraries using single-molecule fluorescence detection techniques.

    PubMed

    Visser, Antonie J W G; Kunst, Beno H; Keller, Hans; Schots, Arjen

    2004-04-01

    The selection of specific binding molecules like peptides and proteins from biolibraries using, for instance, phage display methods can be quite time-consuming. It is therefore desirable to develop a strategy that is much faster in selection and sorting of potential binders out of a biolibrary. In this contribution we separately discuss the current achievements in generation of biolibraries, single-molecule detection techniques and microfluidic devices. A high-throughput microfluidic platform is then proposed that combines the propulsion of liquid containing fluorescent components of the biolibrary through microchannels, single-molecule fluorescence photon burst detection and real-time sorting of positive hits. PMID:15078151

  8. High-throughput single-molecule fluorescence spectroscopy using parallel detection

    PubMed Central

    Michalet, X.; Colyer, R. A.; Scalia, G.; Kim, T.; Levi, Moran; Aharoni, Daniel; Cheng, Adrian; Guerrieri, F.; Arisaka, Katsushi; Millaud, Jacques; Rech, I.; Resnati, D.; Marangoni, S.; Gulinatti, A.; Ghioni, M.; Tisa, S.; Zappa, F.; Cova, S.; Weiss, S.

    2011-01-01

    Solution-based single-molecule fluorescence spectroscopy is a powerful new experimental approach with applications in all fields of natural sciences. The basic concept of this technique is to excite and collect light from a very small volume (typically femtoliter) and work in a concentration regime resulting in rare burst-like events corresponding to the transit of a single-molecule. Those events are accumulated over time to achieve proper statistical accuracy. Therefore the advantage of extreme sensitivity is somewhat counterbalanced by a very long acquisition time. One way to speed up data acquisition is parallelization. Here we will discuss a general approach to address this issue, using a multispot excitation and detection geometry that can accommodate different types of novel highly-parallel detector arrays. We will illustrate the potential of this approach with fluorescence correlation spectroscopy (FCS) and single-molecule fluorescence measurements obtained with different novel multipixel single-photon counting detectors. PMID:21625288

  9. Surface-Enhanced Raman Spectroscopy of Single Molecules and Single Nano-Aggregates

    NASA Astrophysics Data System (ADS)

    Kleinman, Samuel Louis

    Although plasmonic nanoparticles are widely utilized in spectroscopy and sensing applications, a quantitative structure-function relationship is lacking. In this dissertation, we discuss measurements of single noble metal nanoparticles using localized surface plasmon resonance spectroscopy, surface-enhanced Raman spectroscopy (SERS), and transmission electron microscopy to elucidate structure-function relationships. Correlated studies involving two or all three of these techniques relate optical properties of the same nanoparticle to its structure. Through these correlated techniques we have been able to elucidate some of the structural motifs which give rise to the largest SERS enhancements. A variety of SERS substrates are used and the strengths and weaknesses of each type are compared. This information can be applied to sensing and detection methodologies. The utility of SERS is further explored through the use of SER spectroelectrochemistry. This confluence of techniques provided unique insight into the intermolecular interactions present in self-assembled monolayers of tetrathiafulvalene-modified thiolates on gold. Both ensemble-averaged and single-molecule SERS are thoroughly explored and with their benefits and limitations used synergistically to access the most fundamental physics of the light-matter interaction.

  10. Multiplex detection of lung cancer cells at the single-molecule level.

    PubMed

    Hu, Juan; Zhang, Chun-yang

    2014-11-14

    We develop a simple and sensitive method for multiplex detection of lung cancer cells at the single-molecule level, with a detection limit of 15 cells per mL for A549 cells and 4 cells per mL for H23 cells, without the involvement of any sequence-based amplification. This method holds great potential for further application in early clinical diagnosis, especially for the detection of rare tumor cells. PMID:25245541

  11. Single-molecule spectroscopic study of enhanced intrinsic phycoerythrin fluorescence on silver nanostructured surfaces.

    PubMed

    Ray, Krishanu; Chowdhury, Mustafa H; Lakowicz, Joseph R

    2008-09-15

    In this paper, we report on steady-state and time-resolved single-molecule fluorescence measurements performed on a phycobiliprotein, R-phycoerythrin (RPE), assembled on silver nanostructures. Single-molecule measurements clearly show that RPE molecules display a 10-fold increase in fluorescence intensity, with a 7-fold decrease in lifetime when they are assembled on silver nanostructured surfaces, as compared to control glass slides. The emission spectrum of individual RPE molecules also displays a significant fluorescence enhancement on silver nanostructures as compared to glass. From intensity and lifetime histograms, it is clear that the intensities as well as lifetimes of individual RPE molecules on silver nanostructures are more heterogeneously distributed than that on glass. This single-molecule study provides further insight on the heterogeneity in the fluorescence intensity and lifetimes of the RPE molecules on both glass and SiFs surfaces, which is otherwise not possible to observe using ensemble measurements. Finite-difference time-domain calculations have been performed to study the enhanced near-fields induced around silver nanoparticles by a radiating excited-state fluorophore, and the effect of such enhanced fields on the fluorescence enhancement observed is discussed. PMID:18690697

  12. Single molecule fluorescence burst detection of DNA separated by capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Haab, Brian B.; Mathies, Richard A.

    1996-03-01

    A method has been developed for detecting DNA separated by capillary gel electrophoresis using single molecule photon burst counting. A confocal fluorescence microscope was used to observe the fluorescence bursts from single molecules of DNA multiply labeled with a thiazole orange derivative as they passed through the approximately 2 micrometer diameter focused laser beam. Amplified photoelectron pulses from the photomultiplier are grouped into bins of from 360 - 450 microseconds in duration, and the resulting histogram stored in a computer for analysis. Solutions of M13 DNA were first flowed through the capillary at various concentrations, and the resulting data were used to optimize the parameters for digital filtering using a low-pass Fourier filter, selecting a discriminator level for peak detection, and applying a peak-calling algorithm. The optimized single molecule counting method was then used to detect a separation of pBR 322 DNA from pRL 277 DNA. Clusters of discrete fluorescence bursts were observed at the expected appearance time of each DNA band. These separations were easily detected when only 50 to 100 molecules of DNA per band traveled through the detection region. This new detection technology should lead to the routine analysis of DNA in capillary columns with an on-column sensitivity of approximately 100 DNA molecules per band or better.

  13. High-sensitivity single-molecule fluorescence detection in theory and practice

    SciTech Connect

    Mathies, R.A.; Peck, K. . Dept. of Chemistry); Stryer, L. . Dept. of Cell Biology)

    1989-01-01

    The number of emitted photons that can be obtained from a fluorophore increases with the incident light intensity and the duration of illumination. However, saturation of the absorption transition and photodestruction place natural limits on the ultimate signal-to-noise ratio that can be obtained. Equations have been derived to describe the fluorescence-to-background-noise ratio in the presence of saturating light intensities and photodestruction. The fluorescence lifetime and the photodestruction quantum yield are the key parameters that determine the optimum light intensity and exposure time. To test this theory we have performed single molecule detection of phycoerythrin (PE). The laser power was selected to give a mean time between absorptions approximately equal to the fluorescence decay rate. The transit time was selected to be nearly equal to the photodestruction time of {approximately}600 {mu}s. Under these conditions the photocount distribution function, the photocount autocorrelation function, and the concentration dependence clearly show that we are detecting bursts of fluorescence from individual fluorophores. A hard-wired version of this single-molecule detection system was used to measure the concentration of PE down to 10{sup {minus}15} M. This single-molecule counter is three orders-of-magnitude more sensitive than conventional fluorescence detection systems. The approach presented here should be useful in the optimization of fluorescence detected DNA sequencing gels. 17 refs., 4 figs.

  14. Single-molecule detection and radiation control in solutions at high concentrations via a heterogeneous optical slot antenna

    NASA Astrophysics Data System (ADS)

    Zhao, Chenglong; Liu, Yongmin; Yang, Jing; Zhang, Jiasen

    2014-07-01

    We designed a heterogeneous optical slot antenna (OSA) that is capable of detecting single molecules in solutions at high concentrations, where most biological processes occur. A heterogeneous OSA consists of a rectangular nanoslot fabricated on heterogeneous metallic films formed by sequential deposition of gold and aluminum on a glass substrate. The rectangular nanoslot gives rise to large field and fluorescence enhancement for single molecules. The near-field intensity inside a heterogeneous OSA is 170 times larger than that inside an aluminum zero-mode waveguide (ZMW), and the fluorescence emission rate of a molecule inside the heterogeneous OSA is about 70 times higher than that of the molecule in free space. Our proposed heterogeneous optical antenna enables excellent balance between performance and cost. The design takes into account the practical experimental conditions so that the parameters chosen in the simulation are well within the reach of current nano-fabrication technologies. Our results can be used as a direct guidance for designing high-performance, low-cost plasmonic nanodevices for the study of bio-molecule and enzyme dynamics at the single-molecule level.We designed a heterogeneous optical slot antenna (OSA) that is capable of detecting single molecules in solutions at high concentrations, where most biological processes occur. A heterogeneous OSA consists of a rectangular nanoslot fabricated on heterogeneous metallic films formed by sequential deposition of gold and aluminum on a glass substrate. The rectangular nanoslot gives rise to large field and fluorescence enhancement for single molecules. The near-field intensity inside a heterogeneous OSA is 170 times larger than that inside an aluminum zero-mode waveguide (ZMW), and the fluorescence emission rate of a molecule inside the heterogeneous OSA is about 70 times higher than that of the molecule in free space. Our proposed heterogeneous optical antenna enables excellent balance between

  15. Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection.

    PubMed

    Kravets, V G; Schedin, F; Jalil, R; Britnell, L; Gorbachev, R V; Ansell, D; Thackray, B; Novoselov, K S; Geim, A K; Kabashin, A V; Grigorenko, A N

    2013-04-01

    The non-trivial behaviour of phase is crucial for many important physical phenomena, such as, for example, the Aharonov-Bohm effect and the Berry phase. By manipulating the phase of light one can create 'twisted' photons, vortex knots and dislocations which has led to the emergence of the field of singular optics relying on abrupt phase changes. Here we demonstrate the feasibility of singular visible-light nano-optics which exploits the benefits of both plasmonic field enhancement and the peculiarities of the phase of light. We show that properly designed plasmonic metamaterials exhibit topologically protected zero reflection yielding to sharp phase changes nearby, which can be employed to radically improve the sensitivity of detectors based on plasmon resonances. By using reversible hydrogenation of graphene and binding of streptavidin-biotin, we demonstrate an areal mass sensitivity at a level of fg mm(-2) and detection of individual biomolecules, respectively. Our proof-of-concept results offer a route towards simple and scalable single-molecule label-free biosensing technologies. PMID:23314104

  16. Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection

    NASA Astrophysics Data System (ADS)

    Kravets, V. G.; Schedin, F.; Jalil, R.; Britnell, L.; Gorbachev, R. V.; Ansell, D.; Thackray, B.; Novoselov, K. S.; Geim, A. K.; Kabashin, A. V.; Grigorenko, A. N.

    2013-04-01

    The non-trivial behaviour of phase is crucial for many important physical phenomena, such as, for example, the Aharonov-Bohm effect and the Berry phase. By manipulating the phase of light one can create ’twisted’ photons, vortex knots and dislocations which has led to the emergence of the field of singular optics relying on abrupt phase changes. Here we demonstrate the feasibility of singular visible-light nano-optics which exploits the benefits of both plasmonic field enhancement and the peculiarities of the phase of light. We show that properly designed plasmonic metamaterials exhibit topologically protected zero reflection yielding to sharp phase changes nearby, which can be employed to radically improve the sensitivity of detectors based on plasmon resonances. By using reversible hydrogenation of graphene and binding of streptavidin-biotin, we demonstrate an areal mass sensitivity at a level of fg mm-2 and detection of individual biomolecules, respectively. Our proof-of-concept results offer a route towards simple and scalable single-molecule label-free biosensing technologies.

  17. Fluorescence detection of single molecules using pulsed near-field optical excitation and time correlated photon counting

    SciTech Connect

    Ambrose, W.P.; Goodwin, P.M.; Martin, J.C.; Keller, R.A.

    1994-03-01

    Pulsed excitation, time correlated single photon counting and time gated detection are used in near-field optical microscopy to enhance fluorescence images and measure the fluorescence lifetimes of single molecules of Rhodamine 6G on silica surfaces. Time gated detection is used to reject prompt scattered background and to improve the image signal to noise ratio. The excited state lifetime of a single Rhodamine 6G molecule is found to depend on the position of the near-field probe. We attribute the lifetime variations to spontaneous emission rate alterations by the fluorescence reflected from and quenching by the aluminum coated probe.

  18. Multiplexed Detection of Cytokines Based on Dual Bar-Code Strategy and Single-Molecule Counting.

    PubMed

    Li, Wei; Jiang, Wei; Dai, Shuang; Wang, Lei

    2016-02-01

    Cytokines play important roles in the immune system and have been regarded as biomarkers. While single cytokine is not specific and accurate enough to meet the strict diagnosis in practice, in this work, we constructed a multiplexed detection method for cytokines based on dual bar-code strategy and single-molecule counting. Taking interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) as model analytes, first, the magnetic nanobead was functionalized with the second antibody and primary bar-code strands, forming a magnetic nanoprobe. Then, through the specific reaction of the second antibody and the antigen that fixed by the primary antibody, sandwich-type immunocomplex was formed on the substrate. Next, the primary bar-code strands as amplification units triggered multibranched hybridization chain reaction (mHCR), producing nicked double-stranded polymers with multiple branched arms, which were served as secondary bar-code strands. Finally, the secondary bar-code strands hybridized with the multimolecule labeled fluorescence probes, generating enhanced fluorescence signals. The numbers of fluorescence dots were counted one by one for quantification with epi-fluorescence microscope. By integrating the primary and secondary bar-code-based amplification strategy and the multimolecule labeled fluorescence probes, this method displayed an excellent sensitivity with the detection limits were both 5 fM. Unlike the typical bar-code assay that the bar-code strands should be released and identified on a microarray, this method is more direct. Moreover, because of the selective immune reaction and the dual bar-code mechanism, the resulting method could detect the two targets simultaneously. Multiple analysis in human serum was also performed, suggesting that our strategy was reliable and had a great potential application in early clinical diagnosis. PMID:26721199

  19. Single-molecule DNA detection with an engineered MspA protein nanopore.

    PubMed

    Butler, Tom Z; Pavlenok, Mikhail; Derrington, Ian M; Niederweis, Michael; Gundlach, Jens H

    2008-12-30

    Nanopores hold great promise as single-molecule analytical devices and biophysical model systems because the ionic current blockades they produce contain information about the identity, concentration, structure, and dynamics of target molecules. The porin MspA of Mycobacterium smegmatis has remarkable stability against environmental stresses and can be rationally modified based on its crystal structure. Further, MspA has a short and narrow channel constriction that is promising for DNA sequencing because it may enable improved characterization of short segments of a ssDNA molecule that is threaded through the pore. By eliminating the negative charge in the channel constriction, we designed and constructed an MspA mutant capable of electronically detecting and characterizing single molecules of ssDNA as they are electrophoretically driven through the pore. A second mutant with additional exchanges of negatively-charged residues for positively-charged residues in the vestibule region exhibited a factor of approximately 20 higher interaction rates, required only half as much voltage to observe interaction, and allowed ssDNA to reside in the vestibule approximately 100 times longer than the first mutant. Our results introduce MspA as a nanopore for nucleic acid analysis and highlight its potential as an engineerable platform for single-molecule detection and characterization applications. PMID:19098105

  20. Feasibility of Single Molecule DNA Sequencing using Surface-Enhanced Raman Scattering

    SciTech Connect

    Talley, C E; Reboredo, F; Chan, J; Lane, S M

    2006-02-03

    We have used a combined theoretical and experimental approach in order to assess the feasibility of using surface-enhanced Raman scattering (SERS) for DNA sequencing at the single molecule level. We have developed a numerical tool capable of calculating the E-field and resulting SERS enhancement factors for metallic structures of arbitrary size and shape. Measurements of the additional SERS enhancement by combining SERS with coherent antistokes Raman scattering (CARS) show that only modest increases in the signal are achievable due to thermal damage at higher laser powers. Finally, measurements of the SERS enhancement from nanoparticles coated with an insulating layer show that the SERS enhancement is decreased by as much as two orders of magnitude when the molecule is not in contact with the metal surface.

  1. Coherent (photon) vs incoherent (current) detection of multidimensional optical signals from single molecules in open junctions

    SciTech Connect

    Agarwalla, Bijay Kumar; Hua, Weijie; Zhang, Yu; Mukamel, Shaul; Harbola, Upendra

    2015-06-07

    The nonlinear optical response of a current-carrying single molecule coupled to two metal leads and driven by a sequence of impulsive optical pulses with controllable phases and time delays is calculated. Coherent (stimulated, heterodyne) detection of photons and incoherent detection of the optically induced current are compared. Using a diagrammatic Liouville space superoperator formalism, the signals are recast in terms of molecular correlation functions which are then expanded in the many-body molecular states. Two dimensional signals in benzene-1,4-dithiol molecule show cross peaks involving charged states. The correlation between optical and charge current signal is also observed.

  2. Single Molecule Detection in Living Biological Cells using Carbon Nanotube Optical Probes

    NASA Astrophysics Data System (ADS)

    Strano, Michael

    2009-03-01

    Nanoscale sensing elements offer promise for single molecule analyte detection in physically or biologically constrained environments. Molecular adsorption can be amplified via modulation of sharp singularities in the electronic density of states that arise from 1D quantum confinement [1]. Single-walled carbon nanotubes (SWNT), as single molecule optical sensors [2-3], offer unique advantages such as photostable near-infrared (n-IR) emission for prolonged detection through biological media, single-molecule sensitivity and, nearly orthogonal optical modes for signal transduction that can be used to identify distinct classes of analytes. Selective binding to the SWNT surface is difficult to engineer [4]. In this lecture, we will briefly review the immerging field of fluorescent diagnostics using band gap emission from SWNT. In recent work, we demonstrate that even a single pair of SWNT provides at least four optical modes that can be modulated to uniquely fingerprint chemical agents by the degree to which they alter either the emission band intensity or wavelength. We validate this identification method in vitro by demonstrating detection and identification of six genotoxic analytes, including chemotherapeutic drugs and reactive oxygen species (ROS), which are spectroscopically differentiated into four distinct classes. We also demonstrate single-molecule sensitivity in detecting hydrogen peroxide, one of the most common genotoxins and an important cellular signal. Finally, we employ our sensing and fingerprinting method of these analytes in real time within live 3T3 cells, demonstrating the first multiplexed optical detection from a nanoscale biosensor and the first label-free tool to optically discriminate between genotoxins. We will also discuss our recent efforts to fabricate biomedical sensors for real time detection of glucose and other important physiologically relevant analytes in-vivo. The response of embedded SWNT in a swellable hydrogel construct to

  3. Thermoelectric ZT enhanced by asymmetric configuration in single-molecule-magnet junctions

    NASA Astrophysics Data System (ADS)

    Niu, Pengbin; Shi, Yunlong; Sun, Zhu; Nie, Yi-Hang; Luo, Hong-Gang

    2016-02-01

    In mesoscopic devices, many factors like the Coulomb and spin interactions can enhance the thermoelectric figure of merit ZT. Here we use a system consisting of a single-molecule magnet (SMM) connected to two ferromagnetic electrodes to consider the possible enhancement effects of thermoelectric efficiency. By introducing an asymmetric configuration to the transport junction, we find that this configuration can significantly enhance the thermoelectric ZT. The optimized asymmetric thermoelectric ZT is five times that of the ZT with a symmetric configuration or non-magnetic case. Due to this asymmetry, a non-zero charge thermopower at the electron-hole symmetry point is also found. These results demonstrate that the asymmetry of the transport junction helps to enhance thermoelectric efficiency and is useful for fabricating SMM-based thermoelectric devices.

  4. Single molecule molecular inversion probes for targeted, high-accuracy detection of low-frequency variation

    PubMed Central

    Hiatt, Joseph B.; Pritchard, Colin C.; Salipante, Stephen J.; O'Roak, Brian J.; Shendure, Jay

    2013-01-01

    The detection and quantification of genetic heterogeneity in populations of cells is fundamentally important to diverse fields, ranging from microbial evolution to human cancer genetics. However, despite the cost and throughput advances associated with massively parallel sequencing, it remains challenging to reliably detect mutations that are present at a low relative abundance in a given DNA sample. Here we describe smMIP, an assay that combines single molecule tagging with multiplex targeted capture to enable practical and highly sensitive detection of low-frequency or subclonal variation. To demonstrate the potential of the method, we simultaneously resequenced 33 clinically informative cancer genes in eight cell line and 45 clinical cancer samples. Single molecule tagging facilitated extremely accurate consensus calling, with an estimated per-base error rate of 8.4 × 10−6 in cell lines and 2.6 × 10−5 in clinical specimens. False-positive mutations in the single molecule consensus base-calls exhibited patterns predominantly consistent with DNA damage, including 8-oxo-guanine and spontaneous deamination of cytosine. Based on mixing experiments with cell line samples, sensitivity for mutations above 1% frequency was 83% with no false positives. At clinically informative sites, we identified seven low-frequency point mutations (0.2%–4.7%), including BRAF p.V600E (melanoma, 0.2% alternate allele frequency), KRAS p.G12V (lung, 0.6%), JAK2 p.V617F (melanoma, colon, two lung, 0.3%–1.4%), and NRAS p.Q61R (colon, 4.7%). We anticipate that smMIP will be broadly adoptable as a practical and effective method for accurately detecting low-frequency mutations in both research and clinical settings. PMID:23382536

  5. A highly parallel microfluidic droplet method enabling single-molecule counting for digital enzyme detection

    PubMed Central

    Guan, Zhichao; Zou, Yuan; Zhang, Mingxia; Lv, Jiangquan; Shen, Huali; Yang, Pengyuan; Zhang, Huimin; Zhu, Zhi; James Yang, Chaoyong

    2014-01-01

    Although digital detection of nucleic acids has been achieved by amplification of single templates in uniform microfluidic droplets and widely used for genetic analysis, droplet-based digital detection of proteins has rarely been reported, largely due to the lack of an efficient target amplification method for protein in droplets. Here, we report a key step towards digital detection of proteins using a highly parallel microfluidic droplet approach for single enzyme molecule detection in picoliter droplets via enzyme catalyzed signal amplification. An integrated microfluidic chip was designed for high throughput uniform droplet generation, monolayer droplet collection, incubation, detection, and release. Single β-galatosidase (β-Gal) molecules and the fluorogenic substrate fluorescein di-β-D-galactopyranoside were injected from two separated inlets to form uniform 20 μm droplets in fluorinated oil at a frequency of 6.6 kHz. About 200 000 droplets were captured as a monolayer in a capture well on-chip for subsequent imaging detection. A series of β-Gal solutions at different concentrations were analyzed at the single-molecule level. With no enzyme present, no droplets were found to fluoresce, while brightly fluorescent droplets were observed under single-enzyme molecule conditions. Droplet fluorescence intensity distribution analysis showed that the distribution of enzyme molecules under single-molecule conditions matched well with theoretical prediction, further proving the feasibility of detecting single enzyme molecules in emulsion droplets. Moreover, the population of fluorescent droplets increased as the β-Gal concentration increased. Based on a digital counting method, the measured concentrations of the enzyme were found to match well with input enzyme concentration, establishing the accuracy of the digital detection method for the quantification of β-Gal enzyme molecules. The capability of highly parallel detection of single enzyme molecules in

  6. Competitive Assays of Label-Free DNA Hybridization with Single-Molecule Fluorescence Imaging Detection.

    PubMed

    Peterson, Eric M; Manhart, Michael W; Harris, Joel M

    2016-06-21

    Single-molecule imaging of fluorescently labeled biomolecules is a powerful technique for measuring association interactions; however, care must be taken to ensure that the fluorescent labels do not influence the system being probed. Label-free techniques are needed to understand biomolecule interactions free from the influence of an attached label, but these techniques often lack sensitivity and specificity. To solve these challenges, we have developed a competitive assay that uses single-molecule detection to track the population of unlabeled target single-stranded DNA (ssDNA) hybridized with probe DNA immobilized at a glass interface by detecting individual duplexes with a fluorescently labeled "tracer" ssDNA. By labeling a small fraction (<0.2%) of target molecules, the "tracer" DNA tracks the available probe DNA sites without significant competition with the unlabeled target population. Single-molecule fluorescence imaging is a good read-out scheme for competitive assays, as it is sufficiently sensitive to detect tracer DNA on substrates with relatively low densities of probe DNA, ∼10(-3) of a monolayer, so that steric interactions do not hinder DNA hybridization. Competitive assays are used to measure the association constant of complementary strand DNA hybridization of 9- and 10-base pair targets, where the tracer assay predicts the same association constant as a traditional displacement competitive assay. This methodology was used to compare the Ka of hybridization for identical DNA strands differing only by the presence of a fluorescent label tethered to the 5' end of the solution-phase target. The addition of the fluorescent label significantly stabilizes the DNA duplex by 3.6 kJmol(-1), adding more stability than an additional adenine-thymine base-pairing interaction, 2.7 kJmol(-1). This competitive tracer assay could be used to screen a number of labeled and unlabeled target DNA strands to measure the impact of fluorescent labeling on duplex stability

  7. Direct detection of DNA methylation during single-molecule, real-time sequencing

    PubMed Central

    Flusberg, Benjamin A.; Webster, Dale; Lee, Jessa; Travers, Kevin; Olivares, Eric; Clark, Tyson A.; Korlach, Jonas; Turner, Stephen W.

    2010-01-01

    We describe the direct detection of DNA methylation, without bisulfite conversion, through single-molecule real-time (SMRT) sequencing. In SMRT sequencing, DNA polymerases catalyze the incorporation of fluorescently labeled nucleotides into complementary nucleic acid strands. The arrival times and durations of the resulting fluorescence pulses yield information about polymerase kinetics and allow direct detection of modified nucleotides in the DNA template, including N6-methyladenosine, 5-methylcytosine, and 5-hydroxymethylcytosine. Measurement of polymerase kinetics is an intrinsic part of SMRT sequencing and does not adversely affect determination of the primary DNA sequence. The various modifications affect polymerase kinetics differently, allowing discrimination between them. We utilize these kinetic signatures to identify adenosine methylation in genomic samples and show that, in combination with circular consensus sequencing, they can enable single-molecule identification of epigenetic modifications with base-pair resolution. This method is amenable to long read lengths and will likely enable mapping of methylation patterns within even highly repetitive genomic regions. PMID:20453866

  8. Nanopores in solid-state membranes engineered for single molecule detection

    NASA Astrophysics Data System (ADS)

    Dimitrov, V.; Mirsaidov, U.; Wang, D.; Sorsch, T.; Mansfield, W.; Miner, J.; Klemens, F.; Cirelli, R.; Yemenicioglu, S.; Timp, G.

    2010-02-01

    A nanopore is an analytical tool with single molecule sensitivity. For detection, a nanopore relies on the electrical signal that develops when a molecule translocates through it. However, the detection sensitivity can be adversely affected by noise and the frequency response. Here, we report measurements of the frequency and noise performance of nanopores <=8 nm in diameter in membranes compatible with semiconductor processing. We find that both the high frequency and noise performance are compromised by parasitic capacitances. From the frequency response we extract the parameters of lumped element models motivated by the physical structure that elucidates the parasitics, and then we explore four strategies for improving the electrical performance. We reduce the parasitic membrane capacitances using: (1) thick Si3N4 membranes; (2) miniaturized composite membranes consisting of Si3N4 and polyimide; (3) miniaturized membranes formed from metal-oxide-semiconductor (MOS) capacitors; and (4) capacitance compensation through external circuitry, which has been used successfully for patch clamping. While capacitance compensation provides a vast improvement in the high frequency performance, mitigation of the parasitic capacitance through miniaturization offers the most promising route to high fidelity electrical discrimination of single molecules.

  9. Label-free, single molecule resonant cavity detection: a double-blind experimental study.

    PubMed

    Chistiakova, Maria V; Shi, Ce; Armani, Andrea M

    2015-01-01

    Optical resonant cavity sensors are gaining increasing interest as a potential diagnostic method for a range of applications, including medical prognostics and environmental monitoring. However, the majority of detection demonstrations to date have involved identifying a "known" analyte, and the more rigorous double-blind experiment, in which the experimenter must identify unknown solutions, has yet to be performed. This scenario is more representative of a real-world situation. Therefore, before these devices can truly transition, it is necessary to demonstrate this level of robustness. By combining a recently developed surface chemistry with integrated silica optical sensors, we have performed a double-blind experiment to identify four unknown solutions. The four unknown solutions represented a subset or complete set of four known solutions; as such, there were 256 possible combinations. Based on the single molecule detection signal, we correctly identified all solutions. In addition, as part of this work, we developed noise reduction algorithms. PMID:25785307

  10. Superhydrophobicity, plasmonics and Raman spectroscopy for few/single molecule detection down to attomolar concentration

    NASA Astrophysics Data System (ADS)

    Das, G.; Gentile, F.; De Angelis, F.; Coluccio, M. L.; Liberale, C.; Proietti Zaccaria, R.; Di Fabrizio, Enzo

    2012-10-01

    Few/single molecule detection is of great importance in fields including biomedicine, safety and eco-pollution in relation to rare and dangerous chemicals. Superhydrophobic surfaces incorporated with the nanoplasmonic structure enable this device to overcome the diffusion limit of molecules dissolved in water with the concentration down to 10 attomolar. In this paper demonstrated the fabrication of hydrophobic surfaces using optical lithography/reactive ion etching and its application to overcome the diffusion limit. Various experiments such as contact angle measurements, SEM, fluorescence, Raman and FTIR absorption spectroscopy were performed which indicate that utilizing this device it could be possible to perform the measurements for the sample with extremely low dilution. The major application of this novel family of devices would be the early detection of tumors or other important pathologies, with incredible advances in medicine.

  11. Label-Free, Single Molecule Resonant Cavity Detection: A Double-Blind Experimental Study

    PubMed Central

    Chistiakova, Maria V.; Shi, Ce; Armani, Andrea M.

    2015-01-01

    Optical resonant cavity sensors are gaining increasing interest as a potential diagnostic method for a range of applications, including medical prognostics and environmental monitoring. However, the majority of detection demonstrations to date have involved identifying a “known” analyte, and the more rigorous double-blind experiment, in which the experimenter must identify unknown solutions, has yet to be performed. This scenario is more representative of a real-world situation. Therefore, before these devices can truly transition, it is necessary to demonstrate this level of robustness. By combining a recently developed surface chemistry with integrated silica optical sensors, we have performed a double-blind experiment to identify four unknown solutions. The four unknown solutions represented a subset or complete set of four known solutions; as such, there were 256 possible combinations. Based on the single molecule detection signal, we correctly identified all solutions. In addition, as part of this work, we developed noise reduction algorithms. PMID:25785307

  12. Applications of a single-molecule detection in early disease diagnosis and enzymatic reaction study

    SciTech Connect

    Li, Jiangwei

    2008-01-01

    Various single-molecule techniques were utilized for ultra-sensitive early diagnosis of viral DNA and antigen and basic mechanism study of enzymatic reactions. DNA of human papilloma virus (HPV) served as the screening target in a flow system. Alexa Fluor 532 (AF532) labeled single-stranded DNA probes were hybridized to the target HPV-16 DNA in solution. The individual hybridized molecules were imaged with an intensified charge-coupled device (ICCD) in two ways. In the single-color mode, target molecules were detected via fluorescence from hybridized probes only. This system could detect HPV-16 DNA in the presence of human genomic DNA down to 0.7 copy/cell and had a linear dynamic range of over 6 orders of magnitude. In the dual-color mode, fluorescence resonance energy transfer (FRET) was employed to achieve zero false-positive count. We also showed that DNA extracts from Pap test specimens did not interfere with the system. A surface-based method was used to improve the throughput of the flow system. HPV-16 DNA was hybridized to probes on a glass surface and detected with a total internal reflection fluorescence (TIRF) microscope. In the single-probe mode, the whole genome and target DNA were fluorescently labeled before hybridization, and the detection limit is similar to the flow system. In the dual-probe mode, a second probe was introduced. The linear dynamic range covers 1.44-7000 copies/cell, which is typical of early infection to near-cancer stages. The dual-probe method was tested with a crudely prepared sample. Even with reduced hybridization efficiency caused by the interference of cellular materials, we were still able to differentiate infected cells from healthy cells. Detection and quantification of viral antigen with a novel single-molecule immunosorbent assay (SMISA) was achieved. Antigen from human immunodeficiency virus type 1(HIV-1) was chosen to be the target in this study. The target was sandwiched between a monoclonal capture antibody and a

  13. Liposome-based chemical barcodes for single molecule DNA detection using imaging mass spectrometry.

    PubMed

    Gunnarsson, Anders; Sjövall, Peter; Höök, Fredrik

    2010-02-10

    We report on a mass-spectrometry (time-of-flight secondary ion mass spectrometry, TOF-SIMS) based method for multiplexed DNA detection utilizing a random array, where the lipid composition of small unilamellar liposomes act as chemical barcodes to identify unique DNA target sequences down to the single molecule level. In a sandwich format, suspended target-DNA to be detected mediates the binding of capture-DNA modified liposomes to surface-immobilized probe-DNA. With the lipid composition of each liposome encoding a unique target-DNA sequence, TOF-SIMS analysis was used to determine the chemical fingerprint of the bound liposomes. Using high-resolution TOF-SIMS imaging, providing sub-200 nm spatial resolution, single DNA targets could be detected and identified via the chemical fingerprint of individual liposomes. The results also demonstrate the capability of TOF-SIMS to provide multiplexed detection of DNA targets on substrate areas in the micrometer range. Together with a high multiplexing capacity, this makes the concept an interesting alternative to existing barcode concepts based on fluorescence, Raman, or graphical codes for small-scale bioanalysis. PMID:20085369

  14. Fusion FISH Imaging: Single-Molecule Detection of Gene Fusion Transcripts In Situ

    PubMed Central

    Markey, Fatu Badiane; Ruezinsky, William; Tyagi, Sanjay; Batish, Mona

    2014-01-01

    Double-stranded DNA breaks occur on a regular basis in the human genome as a consequence of genotoxic stress and errors during replication. Usually these breaks are rapidly and faithfully repaired, but occasionally different chromosomes, or different regions of the same chromosome, are fused to each other. Some of these aberrant chromosomal translocations yield functional recombinant genes, which have been implicated as the cause of a number of lymphomas, leukemias, sarcomas, and solid tumors. Reliable methods are needed for the in situ detection of the transcripts encoded by these recombinant genes. We have developed just such a method, utilizing single-molecule fluorescence in situ hybridization (sm-FISH), in which approximately 50 short fluorescent probes bind to adjacent sites on the same mRNA molecule, rendering each target mRNA molecule visible as a diffraction-limited spot in a fluorescence microscope. Utilizing this method, gene fusion transcripts are detected with two differently colored probe sets, each specific for one of the two recombinant segments of a target mRNA; enabling the fusion transcripts to be seen in the microscope as distinct spots that fluoresce in both colors. We demonstrate this method by detecting the BCR-ABL fusion transcripts that occur in chronic myeloid leukemia cells, and by detecting the EWSR1-FLI1 fusion transcripts that occur in Ewing's sarcoma cells. This technology should pave the way for accurate in situ typing of many cancers that are associated with, or caused by, fusion transcripts. PMID:24675777

  15. Single-molecule detection and mismatch discrimination of unlabeled DNA targets.

    PubMed

    Gunnarsson, Anders; Jönsson, Peter; Marie, Rodolphe; Tegenfeldt, Jonas O; Höök, Fredrik

    2008-01-01

    We report on a single-molecule readout scheme on total internal reflection fluorescence microscopy (TIRFM) demonstrating a detection limit in the low fM regime for short (30-mer) unlabeled DNA strands. Detection of unlabeled DNA targets is accomplished by letting them mediate the binding of suspended fluorescently labeled DNA-modified small unilamellar vesicles (Ø approximately 100 nm) to a DNA-modified substrate. On top of rapid and sensitive detection, the technique is also shown capable of extracting kinetics data from statistics of the residence time of the binding reaction in equilibrium, that is, without following neither the rate of binding upon injection nor release upon rinsing. The potential of this feature is demonstrated by discriminating a single mismatch from a fully complementary sequence. The success of the method is critically dependent on a surface modification that provides sufficiently low background. This was achieved through self-assembly of a biotinylated copolymer, Poly(L-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) on a silicon dioxide surface, followed by subsequent addition of streptavidin and biotinylated DNA. The proposed detection scheme is particularly appealing due to the simplicity of the sensor, which relies on self-assembly principles and conventional TIRFM. Therefore, we foresee a great potential of the concept to serve as an important component in future multiplexed sensing schemes. This holds in particular true in cases when information about binding kinetics is valuable, such as in single nucleotide polymorphism diagnostics. PMID:18088151

  16. Single-molecule detection of proteins with antigen-antibody interaction using resistive-pulse sensing of submicron latex particles

    NASA Astrophysics Data System (ADS)

    Takakura, T.; Yanagi, I.; Goto, Y.; Ishige, Y.; Kohara, Y.

    2016-03-01

    We developed a resistive-pulse sensor with a solid-state pore and measured the latex agglutination of submicron particles induced by antigen-antibody interaction for single-molecule detection of proteins. We fabricated the pore based on numerical simulation to clearly distinguish between monomer and dimer latex particles. By measuring single dimers agglutinated in the single-molecule regime, we detected single human alpha-fetoprotein molecules. Adjusting the initial particle concentration improves the limit of detection (LOD) to 95 fmol/l. We established a theoretical model of the LOD by combining the reaction kinetics and the counting statistics to explain the effect of initial particle concentration on the LOD. The theoretical model shows how to improve the LOD quantitatively. The single-molecule detection studied here indicates the feasibility of implementing a highly sensitive immunoassay by a simple measurement method using resistive-pulse sensing.

  17. High-efficiency molecular counting in solution: Single-molecule detection in electrodynamically focused microdroplet streams

    SciTech Connect

    Lermer, N.; Barnes, M.D.; Kung, C.Y.; Whitten, W.B.; Ramsey, J.M.

    1997-06-01

    We report fluorescence detection of individual rhodamine 6G molecules using a linear quadrupole to focus streams of microdroplets through the waist of a counterpropagating cw Ar{sup +} laser. Since the terminal velocity scales as the square of the droplet diameter, the droplet-laser interaction time was `tunable` between 5 and 200 ms by using water samples spiked with a small, variable (2-5% v/v) amount of glycerol. Fluorescence bursts from droplets containing single molecules were clearly distinguished from the blanks in real time with an average signal-to-noise ratio of about 10, limited primarily by photobleaching and droplet size fluctuations (<1%). The volume throughput rates associated with this approach (approx. 10 pL/s) are roughly 10{sup 3} higher than those associated with particle levitation techniques, with minimal sacrifice in sensitivity. Total molecular detection efficiencies of about 80% (at >99% confidence) were obtained for 100 and 15 fM rhodamine 6G solutions, in good agreement with detailed theoretical calculations and statistical limitations. 39 refs., 7 figs., 1 tab.

  18. Incorporation of Slow Off-Rate Modified Aptamers Reagents in Single Molecule Array Assays for Cytokine Detection with Ultrahigh Sensitivity.

    PubMed

    Wu, Danlu; Katilius, Evaldas; Olivas, Edgar; Dumont Milutinovic, Milena; Walt, David R

    2016-09-01

    Slow off-rate modified aptamers (SOMAmers) are attractive protein recognition reagents due to their high binding affinities, stable chemical structures, easy production, and established selection process. Here, biotinylated SOMAmer reagents were incorporated into single molecule array (Simoa)-based assays in place of traditional detection antibodies for six cytokine targets. Optimization and validation were conducted for TNF-α as a demonstration using a capture antibody/detection-SOMAmer detection scheme to highlight the performance of this approach. The optimized assay has a broad dynamic range (>4 log10 units) and an ultralow detection limit of 0.67 fM (0.012 pg/mL). These results show comparable sensitivity to our antibody pair-based Simoa assays, and tens to thousands-fold enhancement in sensitivity compared with conventional ELISAs. High recovery percentages were observed in a spike-recovery test using human sera, demonstrating the feasibility of this novel Simoa assay in detecting TNF-α in clinically relevant samples. Detection SOMAmers were also used to detect other cytokines, such as IFN-γ, IL-1β, IL-2, IL-6, and IL-10, in human samples. Although not yet demonstrated, in principle it should be possible to eventually replace both the capture and detector antibodies with corresponding SOMAmer pairs in sandwich immunoassays. The combination of the ultrasensitive Simoa platform with the higher reliability of SOMAmer binding reagents will greatly benefit both biomarker discovery and disease diagnostic fields. PMID:27529794

  19. Note: A method to isolate and detect a large number of single molecules by microdroplet fluorescence spectroscopy.

    PubMed

    Ng, K C; Heredia, K H; Kliewer, D

    2012-03-01

    A laser induced fluorescence system, in combination with a glass-frit nebulizer and a photo-voltaic cell detector, is described for single molecule detection. The glass-frit nebulizer continuously generates a large number of droplets with an average droplet size of three micrometers in diameter. Rhodamine 6G molecules were detected at the 10(-12) M level. Concentrations 10(-12)-10(-10) M would provide mostly single molecules (0, 1, 2, 3, ...) in the individual droplets, as determined by Poisson distribution. PMID:22462973

  20. Note: A method to isolate and detect a large number of single molecules by microdroplet fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Ng, K. C.; Heredia, K. H.; Kliewer, D.

    2012-03-01

    A laser induced fluorescence system, in combination with a glass-frit nebulizer and a photo-voltaic cell detector, is described for single molecule detection. The glass-frit nebulizer continuously generates a large number of droplets with an average droplet size of three micrometers in diameter. Rhodamine 6G molecules were detected at the 10-12 M level. Concentrations 10-12-10-10 M would provide mostly single molecules (0, 1, 2, 3, …) in the individual droplets, as determined by Poisson distribution.

  1. Single molecule detection with graphene and other two-dimensional materials: nanopores and beyond

    PubMed Central

    Arjmandi-Tash, Hadi; Belyaeva, Liubov A.

    2016-01-01

    Graphene and other two dimensional (2D) materials are currently integrated into nanoscaled devices that may – one day – sequence genomes. The challenge to solve is conceptually straightforward: cut a sheet out of a 2D material and use the edge of the sheet to scan an unfolded biomolecule from head to tail. As the scan proceeds – and because 2D materials are atomically thin – the information provided by the edge might be used to identify different segments – ideally single nucleotides – in the biomolecular strand. So far, the most efficient approach was to drill a nano-sized pore in the sheet and use this pore as a channel to guide and detect individual molecules by measuring the electrochemical ionic current. Nanoscaled gaps between two electrodes in 2D materials recently emerged as powerful alternatives to nanopores. This article reviews the current status and prospects of integrating 2D materials in nanopores, nanogaps and similar devices for single molecule biosensing applications. We discuss the pros and cons, the challenges, and the latest achievements in the field. To achieve high-throughput sequencing with 2D materials, interdisciplinary research is essential. PMID:26612268

  2. Chemical polyglycosylation and nanolitre detection enables single-molecule recapitulation of bacterial sugar export.

    PubMed

    Kong, Lingbing; Almond, Andrew; Bayley, Hagan; Davis, Benjamin G

    2016-05-01

    The outermost protective layer of both Gram-positive and Gram-negative bacteria is composed of bacterial capsular polysaccharides. Insights into the interactions between the capsular polysaccharide and its transporter and the mechanism of sugar export would not only increase our understanding of this key process, but would also help in the design of novel therapeutics to block capsular polysaccharide export. Here, we report a nanolitre detection system that makes use of the bilayer interface between two droplets, and we use this system to study single-molecule recapitulation of sugar export. A synthetic strategy of polyglycosylation based on tetrasaccharide monomers enables ready synthetic access to extended fragments of K30 oligosaccharides and polysaccharides. Examination of the interactions between the Escherichia coli sugar transporter Wza and very small amounts of fragments of the K30 capsular polysaccharide substrate reveal the translocation of smaller but not larger fragments. We also observe capture events that occur only on the intracellular side of Wza, which would complement coordinated feeding by adjunct biosynthetic machinery. PMID:27102680

  3. Chemical polyglycosylation and nanolitre detection enables single-molecule recapitulation of bacterial sugar export

    NASA Astrophysics Data System (ADS)

    Kong, Lingbing; Almond, Andrew; Bayley, Hagan; Davis, Benjamin G.

    2016-05-01

    The outermost protective layer of both Gram-positive and Gram-negative bacteria is composed of bacterial capsular polysaccharides. Insights into the interactions between the capsular polysaccharide and its transporter and the mechanism of sugar export would not only increase our understanding of this key process, but would also help in the design of novel therapeutics to block capsular polysaccharide export. Here, we report a nanolitre detection system that makes use of the bilayer interface between two droplets, and we use this system to study single-molecule recapitulation of sugar export. A synthetic strategy of polyglycosylation based on tetrasaccharide monomers enables ready synthetic access to extended fragments of K30 oligosaccharides and polysaccharides. Examination of the interactions between the Escherichia coli sugar transporter Wza and very small amounts of fragments of the K30 capsular polysaccharide substrate reveal the translocation of smaller but not larger fragments. We also observe capture events that occur only on the intracellular side of Wza, which would complement coordinated feeding by adjunct biosynthetic machinery.

  4. Single-molecule tracking of the transcription cycle by sub-second RNA detection

    PubMed Central

    Zhang, Zhengjian; Revyakin, Andrey; Grimm, Jonathan B; Lavis, Luke D; Tjian, Robert

    2014-01-01

    Transcription is an inherently stochastic, noisy, and multi-step process, in which fluctuations at every step can cause variations in RNA synthesis, and affect physiology and differentiation decisions in otherwise identical cells. However, it has been an experimental challenge to directly link the stochastic events at the promoter to transcript production. Here we established a fast fluorescence in situ hybridization (fastFISH) method that takes advantage of intrinsically unstructured nucleic acid sequences to achieve exceptionally fast rates of specific hybridization (∼10e7 M−1s−1), and allows deterministic detection of single nascent transcripts. Using a prototypical RNA polymerase, we demonstrated the use of fastFISH to measure the kinetic rates of promoter escape, elongation, and termination in one assay at the single-molecule level, at sub-second temporal resolution. The principles of fastFISH design can be used to study stochasticity in gene regulation, to select targets for gene silencing, and to design nucleic acid nanostructures. DOI: http://dx.doi.org/10.7554/eLife.01775.001 PMID:24473079

  5. On the critical role of Rayleigh scattering in single-molecule surface-enhanced Raman scattering via a plasmonic nanogap.

    PubMed

    Chen, Bao-Qin; Zhang, Chao; Li, Jiafang; Li, Zhi-Yuan; Xia, Younan

    2016-08-25

    Electromagnetic and chemical enhancement mechanisms are commonly used to account for single-molecule surface-enhanced Raman scattering (SM-SERS). Due to many practical limitations, however, the overall enhancement factor summed up from these two mechanisms is typically 5-6 orders of magnitude below the level of 10(14)-10(15) required for SM-SERS. Here, we demonstrate that the multiple elastic Rayleigh scattering of a molecule could play a critical role in further enhancing the Raman signal, when the molecule is trapped in a 2 nm gap between two Ag nanoparticles, pushing the overall enhancement factor close to the level needed for SM-SERS. As a universal physical process for all molecules interacting with light, we believe that Rayleigh scattering plays a pivotal and as yet unrecognized role in SERS, in particular, for enabling single-molecule sensitivity. PMID:27526632

  6. Direct Detection of α-Synuclein Dimerization Dynamics: Single-Molecule Fluorescence Analysis

    PubMed Central

    Lv, Zhengjian; Krasnoslobodtsev, Alexey V.; Zhang, Yuliang; Ysselstein, Daniel; Rochet, Jean-Christophe; Blanchard, Scott C.; Lyubchenko, Yuri L.

    2015-01-01

    The aggregation of α-synuclein (α-Syn) is linked to Parkinson’s disease. The mechanism of early aggregation steps and the effect of pathogenic single-point mutations remain elusive. We report here a single-molecule fluorescence study of α-Syn dimerization and the effect of mutations. Specific interactions between tethered fluorophore-free α-Syn monomers on a substrate and fluorophore-labeled monomers diffusing freely in solution were observed using total internal reflection fluorescence microscopy. The results showed that wild-type (WT) α-Syn dimers adopt two types of dimers. The lifetimes of type 1 and type 2 dimers were determined to be 197 ± 3 ms and 3334 ± 145 ms, respectively. All three of the mutations used, A30P, E46K, and A53T, increased the lifetime of type 1 dimer and enhanced the relative population of type 2 dimer, with type 1 dimer constituting the major fraction. The kinetic stability of type 1 dimers (expressed in terms of lifetime) followed the order A30P (693 ± 14 ms) > E46K (292 ± 5 ms) > A53T (226 ± 6 ms) > WT (197 ± 3 ms). Type 2 dimers, which are more stable, had lifetimes in the range of several seconds. The strongest effect, observed for the A30P mutant, resulted in a lifetime 3.5 times higher than observed for the WT type 1 dimer. This mutation also doubled the relative fraction of type 2 dimer. These data show that single-point mutations promote dimerization, and they suggest that the structural heterogeneity of α-Syn dimers could lead to different aggregation pathways. PMID:25902443

  7. Mapping fast flows over micrometer-length scales using flow-tagging velocimetry and single-molecule detection.

    PubMed

    Shelby, J Patrick; Chiu, Daniel T

    2003-03-15

    This paper describes a technique of characterizing microfluidic flow profiles from slow laminar flow to fast near-turbulent flow. Using a photo-activated fluorophore, nanosecond-duration photolysis pulses from a Nitrogen laser, and high-sensitivity single-molecule detection with Ar+ laser excitation, we report the measurement of flow speeds up to 47 m/s in a 33-microm-wide straight channel and the mapping of flow profiles in a 55-microm-wide microchamber. Sensitive single-molecule detection is necessary both because of the short time delay (submicrosecond) between laser photolysis and fluorescence detection and the fast transit times (as low as 10 ns) of the fluorescent molecules across the diffraction-limited beam waist of the Ar+ laser focus. This technique permits the high-resolution three-dimensional mapping and analysis of a wide range of velocity profiles in confined spaces that measure a few micrometers in dimension. PMID:12659200

  8. Label-free field-effect-based single-molecule detection of DNA hybridization kinetics

    PubMed Central

    Sorgenfrei, Sebastian; Chiu, Chien-yang; Gonzalez, Ruben L.; Yu, Young-Jun; Kim, Philip; Nuckolls, Colin; Shepard, Kenneth L.

    2013-01-01

    Probing biomolecules at the single-molecule level can provide useful information about molecular interactions, kinetics and motions that is usually hidden in ensemble measurements. Techniques with improved sensitivity and time resolution are required to explore fast biomolecular dynamics. Here, we report the first observation of DNA hybridization at the single-molecule level using a carbon nanotube field-effect transistor. By covalently attaching a single-stranded probe DNA sequence to a point defect in a carbon nanotube, we are able to measure two-level fluctuations in the nanotube conductance due to reversible hybridizing and melting of a complementary DNA target. The kinetics are studied as a function of temperature, allowing the measurement of rate constants, melting curves and activation energies for different sequences and target concentrations. The kinetics show non-Arrhenius behavior, in agreement with DNA hybridization experiments using fluorescence correlation spectroscopy. This technique is label-free and has the potential for studying single-molecule dynamics at sub-microsecond time-scales. PMID:21258331

  9. Pairwise detection of site-specific receptor phosphorylations using single-molecule blotting

    PubMed Central

    Kim, Kyung Lock; Kim, Daehyung; Lee, Seongsil; Kim, Su-Jeong; Noh, Jung Eun; Kim, Joung-Hun; Chae, Young Chan; Lee, Jong-Bong; Ryu, Sung Ho

    2016-01-01

    Post-translational modifications (PTMs) of receptor tyrosine kinases (RTKs) at the plasma membrane (PM) determine the signal transduction efficacy alone and in combination. However, current approaches to identify PTMs provide ensemble results, inherently overlooking combinatorial PTMs in a single polypeptide molecule. Here, we describe a single-molecule blotting (SiMBlot) assay that combines biotinylation of cell surface receptors with single-molecule fluorescence microscopy. This method enables quantitative measurement of the phosphorylation status of individual membrane receptor molecules and colocalization analysis of multiple immunofluorescence signals to directly visualize pairwise site-specific phosphorylation patterns at the single-molecule level. Strikingly, application of SiMBlot to study ligand-dependent epidermal growth factor receptor (EGFR) phosphorylation, which is widely thought to be multi-phosphorylated, reveals that EGFR on cell membranes is hardly multi-phosphorylated, unlike in vitro autophosphorylated EGFR. Therefore, we expect SiMBlot to aid understanding of vast combinatorial PTM patterns, which are concealed in ensemble methods, and to broaden knowledge of RTK signaling. PMID:27009355

  10. Quantitative detection of tumor necrosis factor-α by single molecule counting based on a hybridization chain reaction.

    PubMed

    Dai, Shuang; Feng, Chunjing; Li, Wei; Jiang, Wei; Wang, Lei

    2014-10-15

    This work reports a novel and sensitive quantitative method for detection of tumor necrosis factor-α (TNF-α) based on single molecule counting and hybridization chain reaction (HCR). In the presence of TNF-α, sandwich-type immunocomplex was formed on the surface of glass substrate. The streptavidin acted as a bridge bounded to the biotinylated immunocomplex, which provided three sites to fixate the biotinylated initiator strands. The initiator strands triggered the chain reaction of hybridization to form a long double-helix polymer and SYBR Green I, acted as the fluorescence label, intercalated into the grooves of the long dsDNA polymer. Then, the quantitative detection of TNF-α was realized by single molecule counting. Under the optimal conditions, HCR-based single molecule counting quantitative method could successfully detect TNF-α in the range of 50 fM to 1 pM, and it revealed a reliable result for TNF-α detection in real serum. Moreover, the proposed immunosensor exhibited excellent specificity. These results greatly demonstrated that the proposed method possessed the potentiality in clinical application and it was suitable for quantification of biomarker under low concentration. PMID:24800682

  11. Separation and counting of single molecules through nanofluidics, programmable electrophoresis, and nanoelectrode-gated tunneling and dielectric detection

    DOEpatents

    Lee, James W.; Thundat, Thomas G.

    2006-04-25

    An apparatus for carrying out the separation, detection, and/or counting of single molecules at nanometer scale. Molecular separation is achieved by driving single molecules through a microfluidic or nanofluidic medium using programmable and coordinated electric fields. In various embodiments, the fluidic medium is a strip of hydrophilic material on nonconductive hydrophobic surface, a trough produced by parallel strips of hydrophobic nonconductive material on a hydrophilic base, or a covered passageway produced by parallel strips of hydrophobic nonconductive material on a hydrophilic base together with a nonconductive cover on the parallel strips of hydrophobic nonconductive material. The molecules are detected and counted using nanoelectrode-gated electron tunneling methods, dielectric monitoring, and other methods.

  12. Detection of low abundant mutations in DNA using single-molecule FRET and ligase detection reactions

    NASA Astrophysics Data System (ADS)

    Wabuyele, Musundi B.; Farquar, Hannah; Stryjewski, Wieslaw J.; Hammer, Robert P.; Soper, Steven A.; Cheng, Yu-Wei; Barany, Francis

    2003-06-01

    New strategies for analyzing molecular signatures of disease states in real time using single pair fluorescence resonance energy transfer (spFRET) were developed to rapidly detect point mutations in unamplified genomic DNA (DNA diagnostics). The assay was carried out using allele-specific primers, which flanked the point mutation in the target gene fragment and were ligated using a thremostable ligase enzyme only when the genomic DNA carried this mutation (ligase detection reaction, LDR). We coupled LDR with spFRET to identify a single base mutation in codon 12 of a K-ras oncogene that has high diagnostic value for colorectal cancers. A simple diode laser-based fluorescence system capable of interrogating single fluorescent molecules undergoing FRET was used to detect photon bursts generated from the MB probes formed upon ligation. We demonstrated the ability to rapidly discriminate single base differences in heterogeneous populations having as little as 600 copies of human genomic DNA without PCR amplification. Single base difference in the K-ras gene was discriminated in less than 5 min at a frequency of 1 mutant DNA per 10 normals using only a single LDR thermal cycle of genomic DNA. Real time analyses of point mutations were also performed in PMMA microfluidic device.

  13. Single molecule-level detection and long read-based phasing of epigenetic variations in bacterial methylomes

    PubMed Central

    Beaulaurier, John; Zhang, Xue-Song; Zhu, Shijia; Sebra, Robert; Rosenbluh, Chaggai; Deikus, Gintaras; Shen, Nan; Munera, Diana; Waldor, Matthew K.; Chess, Andrew; Blaser, Martin J.; Schadt, Eric E.; Fang, Gang

    2015-01-01

    Beyond its role in host defense, bacterial DNA methylation also plays important roles in the regulation of gene expression, virulence and antibiotic resistance. Bacterial cells in a clonal population can generate epigenetic heterogeneity to increase population-level phenotypic plasticity. Single molecule, real-time (SMRT) sequencing enables the detection of N6-methyladenine and N4-methylcytosine, two major types of DNA modifications comprising the bacterial methylome. However, existing SMRT sequencing-based methods for studying bacterial methylomes rely on a population-level consensus that lacks the single-cell resolution required to observe epigenetic heterogeneity. Here, we present SMALR (single-molecule modification analysis of long reads), a novel framework for single molecule-level detection and phasing of DNA methylation. Using seven bacterial strains, we show that SMALR yields significantly improved resolution and reveals distinct types of epigenetic heterogeneity. SMALR is a powerful new tool that enables de novo detection of epigenetic heterogeneity and empowers investigation of its functions in bacterial populations. PMID:26074426

  14. Tuning and maximizing the single-molecule surface-enhanced Raman scattering from DNA-tethered nanodumbbells.

    PubMed

    Lee, Jung-Hoon; Nam, Jwa-Min; Jeon, Ki-Seok; Lim, Dong-Kwon; Kim, Hyoki; Kwon, Sunghoon; Lee, Haemi; Suh, Yung Doug

    2012-11-27

    We extensively study the relationships between single-molecule surface-enhanced Raman scattering (SMSERS) intensity, enhancement factor (EF) distribution over many particles, interparticle distance, particle size/shape/composition and excitation laser wavelength using the single-particle AFM-correlated Raman measurement method and theoretical calculations. Two different single-DNA-tethered Au-Ag core-shell nanodumbbell (GSND) designs with an engineerable nanogap were used in this study: the GSND-I with various interparticle nanogaps from ∼4.8 nm to <1 nm or with no gap and the GSND-II with the fixed interparticle gap size and varying particle size from a 23-30 nm pair to a 50-60 nm pair. From the GSND-I, we learned that synthesizing a <1 nm gap is a key to obtain strong SMSERS signals with a narrow EF value distribution. Importantly, in the case of the GSND-I with <1 nm interparticle gap, an EF value of as high as 5.9 × 10(13) (average value = 1.8 × 10(13)) was obtained and the EF values of analyzed particles were narrowly distributed between 1.9 × 10(12) and 5.9 × 10(13). In the case of the GSND-II probes, a combination of >50 nm Au cores and 514.5 nm laser wavelength that matches well with Ag shell generated stronger SMSERS signals with a more narrow EF distribution than <50 nm Au cores with 514.5 nm laser or the GSND-II structures with 632.8 nm laser. Our results show the usefulness and flexibility of these GSND structures in studying and obtaining SMSERS structures with a narrow distribution of high EF values and that the GSNDs with < 1 nm are promising SERS probes with highly sensitive and quantitative detection capability when optimally designed. PMID:23036132

  15. Theoretical Modeling of Plasmon-Enhanced Raman Images of a Single Molecule with Subnanometer Resolution.

    PubMed

    Duan, Sai; Tian, Guangjun; Ji, Yongfei; Shao, Jiushu; Dong, Zhenchao; Luo, Yi

    2015-08-01

    Under local plasmonic excitation, Raman images of single molecules can now surprisingly reach subnanometer resolution. However, its physical origin has not been fully understood. Here we report a quantum-mechanical description of the interaction between a molecule and a highly confined plasmonic field. We show that when the spatial distribution of the plasmonic field is comparable to the size of the molecule, the optical transition matrix of the molecule becomes dependent on the position and distribution of the plasmonic field, resulting in a spatially resolved high-resolution Raman image of the molecule. The resonant Raman image reflects the electronic transition density of the molecule. In combination with first-principles calculations, the simulated Raman image of a porphyrin derivative adsorbed on a silver surface nicely reproduces its experimental counterpart. The present theory provides the basic framework for describing linear and nonlinear responses of molecules under highly confined plasmonic fields. PMID:26186284

  16. The chemical dynamics of nanosensors capable of single-molecule detection.

    PubMed

    Boghossian, Ardemis A; Zhang, Jingqing; Le Floch-Yin, François T; Ulissi, Zachary W; Bojo, Peter; Han, Jae-Hee; Kim, Jong-Ho; Arkalgud, Jyoti R; Reuel, Nigel F; Braatz, Richard D; Strano, Michael S

    2011-08-28

    Recent advances in nanotechnology have produced the first sensor transducers capable of resolving the adsorption and desorption of single molecules. Examples include near infrared fluorescent single-walled carbon nanotubes that report single-molecule binding via stochastic quenching. A central question for the theory of such sensors is how to analyze stochastic adsorption events and extract the local concentration or flux of the analyte near the sensor. In this work, we compare algorithms of varying complexity for accomplishing this by first constructing a kinetic Monte Carlo model of molecular binding and unbinding to the sensor substrate and simulating the dynamics over wide ranges of forward and reverse rate constants. Methods involving single-site probability calculations, first and second moment analysis, and birth-and-death population modeling are compared for their accuracy in reconstructing model parameters in the presence and absence of noise over a large dynamic range. Overall, birth-and-death population modeling was the most robust in recovering the forward rate constants, with the first and second order moment analysis very efficient when the forward rate is large (>10(-3) s(-1)). The precision decreases with increasing noise, which we show masks the existence of underlying states. Precision is also diminished with very large forward rate constants, since the sensor surface quickly and persistently saturates. PMID:21895176

  17. Investigation of insulator-sandwich MCBJ device for single molecule detection

    NASA Astrophysics Data System (ADS)

    Arima, Akihide; Tsutsui, Makusu; Taniguchi, Masateru

    2015-03-01

    Mechanically controllable break junction (MCBJ) is one of the most excellent methods for accurate measurements of electron transport through single molecules because of its stability and repeatability of nanometer-scale gap distance. This method has been recently used to investigate electric conductivity of individual nucleotides in an aqueous solution. However, traditional bare electrodes of MCBJ substrate generates unexpected ionic current, which deteriorates S/N ratio and disturbs accurate control of the gap distance. To solve this problem, we report the novel MCBJ device architecture. Briefly, we covered whole junctions with insulating material. This insulator-sandwich architecture enables us to suppress such ionic current and flesh electrode surface can be used in measurement because the junction is broken in the measurement circumstance for the first time. In this time, we will present basic evaluation of this device. We conducted measurements in vacuum, water, and buffers. We were able to repeat junction breaking and forming hundreds of time. We also observed that the ionic current was suppressed by 1/10 via the insulator coating compared to the traditional one. This device would contribute to investigation of physical property about single molecule.

  18. Probability-based particle detection that enables threshold-free and robust in vivo single-molecule tracking

    PubMed Central

    Smith, Carlas S.; Stallinga, Sjoerd; Lidke, Keith A.; Rieger, Bernd; Grunwald, David

    2015-01-01

    Single-molecule detection in fluorescence nanoscopy has become a powerful tool in cell biology but can present vexing issues in image analysis, such as limited signal, unspecific background, empirically set thresholds, image filtering, and false-positive detection limiting overall detection efficiency. Here we present a framework in which expert knowledge and parameter tweaking are replaced with a probability-based hypothesis test. Our method delivers robust and threshold-free signal detection with a defined error estimate and improved detection of weaker signals. The probability value has consequences for downstream data analysis, such as weighing a series of detections and corresponding probabilities, Bayesian propagation of probability, or defining metrics in tracking applications. We show that the method outperforms all current approaches, yielding a detection efficiency of >70% and a false-positive detection rate of <5% under conditions down to 17 photons/pixel background and 180 photons/molecule signal, which is beneficial for any kind of photon-limited application. Examples include limited brightness and photostability, phototoxicity in live-cell single-molecule imaging, and use of new labels for nanoscopy. We present simulations, experimental data, and tracking of low-signal mRNAs in yeast cells. PMID:26424801

  19. Microfluidic mixer designed for performing single-molecule kinetics with confocal detection on timescales from milliseconds to minutes.

    PubMed

    Wunderlich, Bengt; Nettels, Daniel; Benke, Stephan; Clark, Jennifer; Weidner, Sascha; Hofmann, Hagen; Pfeil, Shawn H; Schuler, Benjamin

    2013-08-01

    Microfluidic mixing in combination with single-molecule spectroscopy allows the investigation of complex biomolecular processes under non-equilibrium conditions. Here we present a protocol for building, installing and operating microfluidic mixing devices optimized for this purpose. The mixer is fabricated by replica molding with polydimethylsiloxane (PDMS), which allows the production of large numbers of devices at a low cost using a single microfabricated silicon mold. The design is based on hydrodynamic focusing combined with diffusive mixing and allows single-molecule kinetics to be recorded over five orders of magnitude in time, from 1 ms to ∼100 s. Owing to microfabricated particle filters incorporated in the inlet channels, the devices provide stable flow for many hours to days without channel blockage, which allows reliable collection of high-quality data. Modular design enables rapid exchange of samples and mixing devices, which are mounted in a specifically designed holder for use with a confocal microscopy detection system. Integrated Peltier elements provide temperature control from 4 to 37 °C. The protocol includes the fabrication of a silicon master, production of the microfluidic devices, instrumentation setup and data acquisition. Once a silicon master is available, devices can be produced and experiments started within ∼1 d of preparation. We demonstrate the performance of the system with single-molecule Förster resonance energy transfer (FRET) measurements of kinetics of protein folding and conformational changes. The dead time of 1 ms, as predicted from finite element calculations, was confirmed by the measurements. PMID:23845960

  20. Single molecule fluorescence detection and tracking in mammalian cells: the state-of-the-art and future perspectives.

    PubMed

    Martin-Fernandez, Marisa L; Clarke, David T

    2012-01-01

    Insights from single-molecule tracking in mammalian cells have the potential to greatly contribute to our understanding of the dynamic behavior of many protein families and networks which are key therapeutic targets of the pharmaceutical industry. This is particularly so at the plasma membrane, where the method has begun to elucidate the mechanisms governing the molecular interactions that underpin many fundamental processes within the cell, including signal transduction, receptor recognition, cell-cell adhesion, etc. However, despite much progress, single-molecule tracking faces challenges in mammalian samples that hinder its general application in the biomedical sciences. Much work has recently focused on improving the methods for fluorescent tagging of target molecules, detection and localization of tagged molecules, which appear as diffraction-limited spots in charge-coupled device (CCD) images, and objectively establishing the correspondence between moving particles in a sequence of image frames to follow their diffusive behavior. In this review we outline the state-of-the-art in the field and discuss the advantages and limitations of the methods available in the context of specific applications, aiming at helping researchers unfamiliar with single molecules methods to plan out their experiments. PMID:23203092

  1. Single molecule fluorescence studies of ribosome dynamics: An application of metal enhanced fluorescence

    NASA Astrophysics Data System (ADS)

    Bharill, Shashank

    Metal enhanced fluorescence (MEF), in which a surface plasmon near a noble metal alters the spectral properties of an organic fluorophore, has been reported to increase fluorescence intensity without a concomitant increase in photobleaching rate. The fluorescence intensities of Cy3- and Cy5-labeled ribosomal initiation complexes (ICs) near 50 nm silver particles were increased 4 - 7-fold compared to ICs in the absence of silver colloids. Photobleaching lifetime was not significantly decreased, resulting in 4 - 5.5-fold enhancement in total photon emission prior to photobleaching. Fluorophores showing enhanced fluorescence were located within ˜280 nm of the colloidal particles, as detected by light scattering and scanning probe microscopy. Aggregates of silver particles or larger colloids themselves produced wavelength-shifted luminescence similar to fluorescence, presumably due to resonant extinction between nearby metal particles. Intensity fluctuations above shot noise, at 0.1 - 5 Hz, were greater from slides containing colloidal particles than from plain glass. Overall signal to noise ratio was similar or slightly better near the silver particles. Proximity to silver particles did not compromise ribosome function, as measured by codon-dependent binding of fluorescent tRNA to the A site of fluorescent labeled ribosomes, dynamics of fluorescence resonance energy transfer between adjacent tRNAs in the ribosomal A and P sites, and elongation factor G catalyzed translocation.

  2. Three-in-one enzyme assay based on single molecule detection in femtoliter arrays.

    PubMed

    Liebherr, Raphaela B; Hutterer, Albert; Mickert, Matthias J; Vogl, Franziska C; Beutner, Andrea; Lechner, Alfred; Hummel, Helmut; Gorris, Hans H

    2015-09-01

    Large arrays of femtoliter-sized chambers are important tools for single molecule research as well as bioanalytical applications. We have optimized the design and fabrication of two array types consisting of 250 × 250 (62 500) femtoliter chambers either by surface etching of fused silica slides or by polydimethylsiloxane (PDMS) molding. Highly diluted solutions of β-galactosidase were enclosed in such arrays to monitor the fluorogenic reactions of hundreds of individual enzyme molecules in parallel by wide-field fluorescence microscopy. An efficient mechanical sealing procedure was developed to prevent diffusion of the fluorescent reaction product out of the chambers. Different approaches for minimizing non-specific surface adsorption were explored. The signal acquisition was optimized to grant both a large field of view and an efficient signal acquisition from each femtoliter chamber. The optimized femtoliter array has enabled a three-in-one enzyme assay system: First, the concentration of active enzyme can be determined in a digital way by counting fluorescent chambers in the array. Second, the activity of the enzyme bulk solution is given by averaging many individual substrate turnover rates without the need for knowing the exact enzyme concentration. Third-unlike conventional enzyme assays-the distribution of individual substrate turnover rates yields insight into the conformational heterogeneity in an enzyme population. The substrate turnover rates of single β-galactosidase molecules were found to be broadly distributed and independent of the type of femtoliter array. In general, both types of femtoliter arrays are highly sensitive platforms for enzyme analysis at the single molecule level and yield consistent results. Graphical Abstract Isolation and analysis of individual enzyme molecules in large arrays of femtoliter-sized chambers. PMID:26253226

  3. Enhancement of Tb(III) -Cu(II) Single-Molecule Magnet Performance through Structural Modification.

    PubMed

    Heras Ojea, María José; Milway, Victoria A; Velmurugan, Gunasekaran; Thomas, Lynne H; Coles, Simon J; Wilson, Claire; Wernsdorfer, Wolfgang; Rajaraman, Gopalan; Murrie, Mark

    2016-08-26

    We report a series of 3d-4f complexes {Ln2 Cu3 (H3 L)2 Xn } (X=OAc(-) , Ln=Gd, Tb or X=NO3 (-) , Ln=Gd, Tb, Dy, Ho, Er) using the 2,2'-(propane-1,3-diyldiimino)bis[2-(hydroxylmethyl)propane-1,3-diol] (H6 L) pro-ligand. All complexes, except that in which Ln=Gd, show slow magnetic relaxation in zero applied dc field. A remarkable improvement of the energy barrier to reorientation of the magnetisation in the {Tb2 Cu3 (H3 L)2 Xn } complexes is seen by changing the auxiliary ligands (X=OAc(-) for NO3 (-) ). This leads to the largest reported relaxation barrier in zero applied dc field for a Tb/Cu-based single-molecule magnet. Ab initio CASSCF calculations performed on mononuclear Tb(III) models are employed to understand the increase in energy barrier and the calculations suggest that the difference stems from a change in the Tb(III) coordination environment (C4v versus Cs ). PMID:27484259

  4. Single-molecule assay reveals strand switching and enhanced processivity of UvrD

    NASA Astrophysics Data System (ADS)

    Dessinges, Marie-Noëlle; Lionnet, Timothée; Xi, Xu Guang; Bensimon, David; Croquette, Vincent

    2004-04-01

    DNA helicases are enzymes capable of unwinding double-stranded DNA (dsDNA) to provide the single-stranded DNA template required in many biological processes. Among these, UvrD, an essential DNA repair enzyme, has been shown to unwind dsDNA while moving 3'-5' on one strand. Here, we use a single-molecule manipulation technique to monitor real-time changes in extension of a single, stretched, nicked dsDNA substrate as it is unwound by a single enzyme. This technique offers a means for measuring the rate, lifetime, and processivity of the enzymatic complex as a function of ATP, and for estimating the helicase step size. Strikingly, we observe a feature not seen in bulk assays: unwinding is preferentially followed by a slow, enzyme-translocation-limited rezipping of the separated strands rather than by dissociation of the enzymatic complex followed by quick rehybridization of the DNA strands. We address the mechanism underlying this phenomenon and propose a fully characterized model in which UvrD switches strands and translocates backwards on the other strand, allowing the DNA to reanneal in its wake. helicase | DNA replication | DNA repair | magnetic tweezers

  5. Single-molecule assay reveals strand switching and enhanced processivity of UvrD.

    PubMed

    Dessinges, Marie-Noëlle; Lionnet, Timothée; Xi, Xu Guang; Bensimon, David; Croquette, Vincent

    2004-04-27

    DNA helicases are enzymes capable of unwinding double-stranded DNA (dsDNA) to provide the single-stranded DNA template required in many biological processes. Among these, UvrD, an essential DNA repair enzyme, has been shown to unwind dsDNA while moving 3'-5' on one strand. Here, we use a single-molecule manipulation technique to monitor real-time changes in extension of a single, stretched, nicked dsDNA substrate as it is unwound by a single enzyme. This technique offers a means for measuring the rate, lifetime, and processivity of the enzymatic complex as a function of ATP, and for estimating the helicase step size. Strikingly, we observe a feature not seen in bulk assays: unwinding is preferentially followed by a slow, enzyme-translocation-limited rezipping of the separated strands rather than by dissociation of the enzymatic complex followed by quick rehybridization of the DNA strands. We address the mechanism underlying this phenomenon and propose a fully characterized model in which UvrD switches strands and translocates backwards on the other strand, allowing the DNA to reanneal in its wake. PMID:15079074

  6. Single-molecule RNA detection at depth by hybridization chain reaction and tissue hydrogel embedding and clearing.

    PubMed

    Shah, Sheel; Lubeck, Eric; Schwarzkopf, Maayan; He, Ting-Fang; Greenbaum, Alon; Sohn, Chang Ho; Lignell, Antti; Choi, Harry M T; Gradinaru, Viviana; Pierce, Niles A; Cai, Long

    2016-08-01

    Accurate and robust detection of mRNA molecules in thick tissue samples can reveal gene expression patterns in single cells within their native environment. Preserving spatial relationships while accessing the transcriptome of selected cells is a crucial feature for advancing many biological areas - from developmental biology to neuroscience. However, because of the high autofluorescence background of many tissue samples, it is difficult to detect single-molecule fluorescence in situ hybridization (smFISH) signals robustly in opaque thick samples. Here, we draw on principles from the emerging discipline of dynamic nucleic acid nanotechnology to develop a robust method for multi-color, multi-RNA imaging in deep tissues using single-molecule hybridization chain reaction (smHCR). Using this approach, single transcripts can be imaged using epifluorescence, confocal or selective plane illumination microscopy (SPIM) depending on the imaging depth required. We show that smHCR has high sensitivity in detecting mRNAs in cell culture and whole-mount zebrafish embryos, and that combined with SPIM and PACT (passive CLARITY technique) tissue hydrogel embedding and clearing, smHCR can detect single mRNAs deep within thick (0.5 mm) brain slices. By simultaneously achieving ∼20-fold signal amplification and diffraction-limited spatial resolution, smHCR offers a robust and versatile approach for detecting single mRNAs in situ, including in thick tissues where high background undermines the performance of unamplified smFISH. PMID:27342713

  7. Single-molecule RNA detection at depth by hybridization chain reaction and tissue hydrogel embedding and clearing

    PubMed Central

    Shah, Sheel; Lubeck, Eric; Schwarzkopf, Maayan; He, Ting-Fang; Greenbaum, Alon; Sohn, Chang Ho; Lignell, Antti; Choi, Harry M. T.; Gradinaru, Viviana; Pierce, Niles A.

    2016-01-01

    Accurate and robust detection of mRNA molecules in thick tissue samples can reveal gene expression patterns in single cells within their native environment. Preserving spatial relationships while accessing the transcriptome of selected cells is a crucial feature for advancing many biological areas – from developmental biology to neuroscience. However, because of the high autofluorescence background of many tissue samples, it is difficult to detect single-molecule fluorescence in situ hybridization (smFISH) signals robustly in opaque thick samples. Here, we draw on principles from the emerging discipline of dynamic nucleic acid nanotechnology to develop a robust method for multi-color, multi-RNA imaging in deep tissues using single-molecule hybridization chain reaction (smHCR). Using this approach, single transcripts can be imaged using epifluorescence, confocal or selective plane illumination microscopy (SPIM) depending on the imaging depth required. We show that smHCR has high sensitivity in detecting mRNAs in cell culture and whole-mount zebrafish embryos, and that combined with SPIM and PACT (passive CLARITY technique) tissue hydrogel embedding and clearing, smHCR can detect single mRNAs deep within thick (0.5 mm) brain slices. By simultaneously achieving ∼20-fold signal amplification and diffraction-limited spatial resolution, smHCR offers a robust and versatile approach for detecting single mRNAs in situ, including in thick tissues where high background undermines the performance of unamplified smFISH. PMID:27342713

  8. Laser-induced fluorescence of flowing samples as an approach to single-molecule detection in liquids

    SciTech Connect

    Dovichi, N.J.; Martin, J.C.; Jett, J.H.; Trkula, M.; Keller, R.A.

    1984-03-01

    A flow cytometer system was used to detect aqueous rhodamine 6G by laser-induced fluorescence. Best results were obtained with careful spectral and spatial filtering. At the detection limit, the probability of a rhodamine 6G molecule being present in the detector's probed volume of 11 pL is about 0.6 . With a flow rate of 0.42 ..mu..L/s, a detection limit of 8.9 x 10/sup -14/ M was obtained for a 1-s time constant. At the detection limit, 18 ag or 22,000 molecules of rhodamine 6G flowed through the probed volume during the signal integration period. Signal linearity extends over greater than 5 orders of magnitude limited only by saturation of the detection electronics at high concentration. The results presented here allow a projection to single-molecule detection with reasonable improvements to the apparatus. 25 references, 5 figures, 7 tables.

  9. Detection of metal binding sites on functional S-layer nanoarrays using single molecule force spectroscopy.

    PubMed

    Tang, Jilin; Ebner, Andreas; Kraxberger, Bernhard; Leitner, Michael; Hykollari, Alba; Kepplinger, Christian; Grunwald, Christian; Gruber, Hermann J; Tampé, Robert; Sleytr, Uwe B; Ilk, Nicola; Hinterdorfer, Peter

    2009-10-01

    Crystalline bacterial cell surface layers (S-layers) show the ability to recrystallize into highly regular pattern on solid supports. In this study, the genetically modified S-layer protein SbpA of Lysinibacillus sphaericus CCM 2177, carrying a hexa-histidine tag (His(6)-tag) at the C-terminus, was used to generate functionalized two-dimensional nanoarrays on a silicon surface. Atomic force microscopy (AFM) was applied to explore the topography and the functionality of the fused His(6)-tags. The accessibility of the His(6)-tags was demonstrated by in-situ anti-His-tag antibody binding to the functional S-layer array. The metal binding properties of the His(6)-tag was investigated by single molecule force microscopy. For this purpose, newly developed tris-NTA was tethered to the AFM tips via a flexible polyethylene glycol (PEG) linker. The functionalized tips showed specific interactions with S-layer containing His(6)-tags in the presence of nickel ions. Thus the His(6)-tag is located at the outer surface of the S-layer and can be used for stable but reversible attachment of functional tris-NTA derivatives. PMID:19232541

  10. Gradual Folding of an Off-Pathway Molten Globule Detected at the Single-Molecule Level.

    PubMed

    Lindhoud, Simon; Pirchi, Menahem; Westphal, Adrie H; Haran, Gilad; van Mierlo, Carlo P M

    2015-09-25

    Molten globules (MGs) are compact, partially folded intermediates that are transiently present during folding of many proteins. These intermediates reside on or off the folding pathway to native protein. Conformational evolution during folding of off-pathway MGs is largely unexplored. Here, we characterize the denaturant-dependent structure of apoflavodoxin's off-pathway MG. Using single-molecule fluorescence resonance energy transfer (smFRET), we follow conversion of unfolded species into MG down to denaturant concentrations that favor formation of native protein. Under strongly denaturing conditions, fluorescence resonance energy transfer histograms show a single peak, arising from unfolded protein. The smFRET efficiency distribution shifts to higher value upon decreasing denaturant concentration because the MG folds. Strikingly, upon approaching native conditions, the fluorescence resonance energy transfer efficiency of the MG rises above that of native protein. Thus, smFRET exposes the misfolded nature of apoflavodoxin's off-pathway MG. We show that conversion of unfolded into MG protein is a gradual, second-order-like process that simultaneously involves separate regions within the polypeptide. PMID:26163276

  11. A novel aptasensor based on single-molecule force spectroscopy for highly sensitive detection of mercury ions.

    PubMed

    Li, Qing; Michaelis, Monika; Wei, Gang; Colombi Ciacchi, Lucio

    2015-08-01

    We have developed a novel aptasensor based on single-molecule force spectroscopy (SMFS) capable of detecting mercury ions (Hg(2+)) with sub-nM sensitivity. The single-strand (ss) DNA aptamer used in this work is rich in thymine (T) and readily forms T-Hg(2+)-T complexes in the presence of Hg(2+). The aptamer was conjugated to an atomic force microscope (AFM) probe, and the adhesion force between the probe and a flat graphite surface was measured by single-molecule force spectroscopy (SMFS). The presence of Hg(2+) ions above a concentration threshold corresponding to the affinity constant of the ions for the aptamer (about 5 × 10(9) M(-1)) could be easily detected by a change of the measured adhesion force. With our chosen aptamer, we could reach an Hg(2+) detection limit of 100 pM, which is well below the maximum allowable level of Hg(2+) in drinking water. In addition, this aptasensor presents a very high selectivity for Hg(2+) over other metal cations, such as K(+), Ca(2+), Zn(2+), Fe(2+), and Cd(2+). Furthermore, the effects of the ionic strength and loading rate on the Hg(2+) detection were evaluated. Its simplicity, reproducibility, high selectivity and sensitivity make our SMFS-based aptasensor advantageous with respect to other current Hg(2+) sensing methods. It is expected that our strategy can be exploited for monitoring the pollution of water environments and the safety of potentially contaminated food. PMID:26075518

  12. Integration and characterization of SiN nanopores for single-molecule detection in liquid-core ARROW waveguides

    NASA Astrophysics Data System (ADS)

    Rudenko, M. I.; Yin, D.; Holmes, M.; Hawkins, A. R.; Schmidt, H.

    2007-02-01

    We demonstrate a method for integrating silicon nitride nanopores in liquid core Anti Resonant Reflecting Optical Waveguides (ARROW) for single molecule electrical detection and control. We use a two-step integration process when a micropore is fabricated first, paving the way for subsequent nanopore integration in the first silicon nitride layer of the ARROW structure. Nanopores with dimensions as small as 11 nm were fabricated using a Focused Ion Beam shrinking process commensurate with single particle gating of viruses, proteins, ribosomes and other biomolecules.

  13. Super-resolution imaging and detection of fluorescence from single molecules by scanning near-field optical microscopy

    NASA Astrophysics Data System (ADS)

    Meixner, Alfred J.; Zeisel, Dieter; Bopp, A. Martin; Tarrach, Guido

    1995-08-01

    Scanning near-field microscopy (SNOM or NSOM) is a versatile and attractive scanning probe technique for imaging with subdiffraction-limited spatial resolution using visible light. At least three different types of images can be recorded simultaneously of the selected sample area, such as the topography, the near-field optical transmission, and the fluorescence from excited chromophores. We have built such a microscope, especially designed for achieving the high resolution and the sensitivity needed for single molecule detection. We report on optical near- field investigations of surface structures and thin polymer films that are doped with fluorescent dye molecules. The effective aperture diameters of the fiber tips used in the SNOM experiments were determined by a photon-scanning tunneling microscopy (PSTM) giving values between 70 and 160 nm. The transmission imaging of transparent polymer phase gratings reveals the existence of different contrast mechanisms, which are either based on the inherent distance dependence of the optical near field or on the periodic change of boundary conditions for the electric field component of the light between the aperture and the sample. Furthermore, we demonstrate selective irreversible photobleaching of dye molecules at moderate concentration (10-5 M) induced locally by the subwavelength-sized probe tip. Finally, we present fluorescence images showing single molecule detection in a thin solid film. The chromophores (rhodamine 6G) were embedded at low concentration (10-7 M) in a 25-nm thin polyvinylbutyral film. A lateral resolution of 160 nm was achieved. We find that the signal strengths of the brightest fluorescent features vary considerably in a sequence of images (a typical single-molecule behavior), whereas the fluorescence background exhibits the usual photobleaching behavior of a large ensemble.

  14. Detection of the barium daughter in 136Xe -->136Ba + 2e- by in situ single-molecule fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Nygren, David

    2015-10-01

    To proceed toward effective ``discovery class'' ton-scale detectors in the search for neutrino-less double beta decay, a robust technique for rejection of all radioactivity-induced backgrounds is urgently needed. An efficient technique for detection of the barium daughter in the decay 136Xe -->136Ba + 2e- would provide a long-sought pathway toward this goal. Single-molecule fluorescent imaging appears to offer a new way to detect the barium daughter atom, which emerges naturally in an ionized state in pure xenon. A doubly charged barium ion can initiate a chelation process with a non-fluorescent precursor molecule, leading to a highly fluorescent complex. Repeated photo-excitation of the complex can reveal both presence and location of a single ionized atom with high precision and selectivity. Detection within the active volume of a xenon gas Time Projection Chamber operating at high pressure would be automatic, and with a capability for redundant confirmation.

  15. Single-cell multiple gene expression analysis based on single-molecule-detection microarray assay for multi-DNA determination.

    PubMed

    Li, Lu; Wang, Xianwei; Zhang, Xiaoli; Wang, Jinxing; Jin, Wenrui

    2015-01-01

    We report a novel ultra-sensitive and high-selective single-molecule-detection microarray assay (SMA) for multiple DNA determination. In the SMA, a capture DNA (DNAc) microarray consisting of 10 subarrays with 9 spots for each subarray is fabricated on a silanized glass coverslip as the substrate. On the subarrays, the spot-to-spot spacing is 500 μm and each spot has a diameter of ∼300 μm. The sequence of the DNAcs on the 9 spots of a subarray is different, to determine 8 types of target DNAs (DNAts). Thus, 8 types of DNAts are captured to their complementary DNAcs at 8 spots of a subarray, respectively, and then labeled with quantum dots (QDs) attached to 8 types of detection DNAs (DNAds) with different sequences. The ninth spot is used to detect the blank value. In order to determine the same 8 types of DNAts in 10 samples, the 10 DNAc-modified subarrays on the microarray are identical. Fluorescence single-molecule images of the QD-labeled DNAts on each spot of the subarray are acquired using a home-made single-molecule microarray reader. The amounts of the DNAts are quantified by counting the bright dots from the QDs. For a microarray, 8 types of DNAts in 10 samples can be quantified in parallel. The limit of detection of the SMA for DNA determination is as low as 1.3×10(-16) mol L(-1). The SMA for multi-DNA determination can also be applied in single-cell multiple gene expression analysis through quantification of complementary DNAs (cDNAs) corresponding to multiple messenger RNAs (mRNAs) in single cells. To do so, total RNA in single cells is extracted and reversely transcribed into their cDNAs. Three types of cDNAs corresponding to beta-2-microglobulin, glyceraldehyde-3-phosphate dehydrogenase and ribosomal protein, large, P2 mRNAs in single human breast cancer cells and 5 random synthetic DNAts are simultaneously quantified to examine the SMA and SMA-based single-cell multiple gene expression analysis. PMID:25479875

  16. Enhancement of Single Molecule Fluorescence Signals by Colloidal Silver Nanoparticles in Studies of Protein Translation

    PubMed Central

    Bharill, Shashank; Chen, Chunlai; Stevens, Benjamin; Kaur, Jaskiran; Smilansky, Zeev; Mandecki, Wlodek; Gryczynski, Ignacy; Gryczynski, Zygmunt; Cooperman, Barry S.; Goldman, Yale E.

    2011-01-01

    Metal enhanced fluorescence (MEF) increased total photon emission of Cy3- and Cy5-labeled ribosomal initiation complexes near 50 nm silver particles 4- and 5.5-fold respectively. Fluorescence intensity fluctuations above shot noise, at 0.1 – 5 Hz, were greater on silver particles. Overall signal to noise ratio was similar or slightly improved near the particles. Proximity to silver particles did not compromise ribosome function, as measured by codon-dependent binding of fluorescent tRNA, dynamics of fluorescence resonance energy transfer between adjacent tRNAs in the ribosome, and tRNA translocation induced by elongation factor G. PMID:21158483

  17. Raman scattering enhanced by plasmonic clusters and its application to single-molecule imaging

    SciTech Connect

    Yasuike, Tomokazu; Nobusada, Katsuyuki

    2015-12-31

    The optical response of the linear Au{sub 8} cluster is investigated by the linear response theory based on the density functional theory. It is revealed that the observed many peaks in the visible region originate from the interaction of the ideal plasmonic excitation along the molecular axis with the background d-electron excitations, i.e., the Landau damping. In spite of the existence of the damping, the Raman scattering is shown to be enhanced remarkably by the incident light resonant to the visible excitations. The novel imaging experiment with the atomic resolution is proposed by utilizing a plasmonic cluster as the probing tip.

  18. Detection of confinement and jumps in single-molecule membrane trajectories

    NASA Astrophysics Data System (ADS)

    Meilhac, N.; Le Guyader, L.; Salomé, L.; Destainville, N.

    2006-01-01

    We propose a variant of the algorithm by [R. Simson, E. D. Sheets, and K. Jacobson, Biophys. 69, 989 (1995)]. Their algorithm was developed to detect transient confinement zones in experimental single-particle tracking trajectories of diffusing membrane proteins or lipids. We show that our algorithm is able to detect confinement in a wider class of confining potential shapes than that of Simson Furthermore, it enables to detect not only temporary confinement but also jumps between confinement zones. Jumps are predicted by membrane skeleton fence and picket models. In the case of experimental trajectories of μ -opioid receptors, which belong to the family of G-protein-coupled receptors involved in a signal transduction pathway, this algorithm confirms that confinement cannot be explained solely by rigid fences.

  19. Approach to single-molecule detection by laser-induced fluorescence

    SciTech Connect

    Dovichi, N.J.; Martin, J.C.; Jett, J.H.; Trkula, M.; Keller, R.A.

    1983-08-01

    A sheath flow cuvette was evaluated in laser-induced fluorescence determination of aqueous rhodamine 6G. A detection limit of 18 attograms was obtained within a one-second signal integration time. The concentration detection limit was 8.9 x 10/sup -14/ mole per liter. An average of one-half rhodamine 6G molecule was present within the 11 pL excitation volume. However, during the signal integration time a total of 22,000 analyte molecules passed through the excitation in a 0.42 microliter volume.

  20. High sensitivity fluorescent single particle and single molecule detection apparatus and method

    DOEpatents

    Mathies, Richard A.; Peck, Konan; Stryer, Lubert

    1990-01-01

    Apparatus is described for ultrasensitive detection of single fluorescent particles down to the single fluorescent molecule limit in a fluid or on a substrate comprising means for illuminating a predetermined volume of the fluid or area of the substrate whereby to emit light including background light from the fluid and burst of photons from particles residing in the area. The photon burst is detected in real time to generate output representative signal. The signal is received and the burst of energy from the fluorescent particles is distinguished from the background energy to provide an indication of the number, location or concentration of the particles or molecules.

  1. Detection of toxins in single molecule level using deoxyribonucleic acid aptamers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toxins in foodstuffs are always a threat to food safety Among many toxins related to food, ricin (category B toxin) from castor beans has been mentioned in some poisoning cases happened. Atomic Force Microscopy (AFM) is a widely used nanotechnology to detect biospecies in vitro and in situ. The AFM...

  2. Detecting a single molecule using a micropore-nanopore hybrid chip

    PubMed Central

    2013-01-01

    Nanopore-based DNA sequencing and biomolecule sensing have attracted more and more attention. In this work, novel sensing devices were built on the basis of the chips containing nanopore arrays in polycarbonate (PC) membranes and micropores in Si3N4 films. Using the integrated chips, the transmembrane ionic current induced by biomolecule's translocation was recorded and analyzed, which suggested that the detected current did not change linearly as commonly expected with increasing biomolecule concentration. On the other hand, detailed translocation information (such as translocation gesture) was also extracted from the discrete current blockages in basic current curves. These results indicated that the nanofluidic device based on the chips integrated by micropores and nanopores possessed comparative potentials in biomolecule sensing. PMID:24261484

  3. High-throughput, dual probe biological assays based on single molecule detection

    DOEpatents

    Hollars, Christopher W.; Huser, Thomas R.; Lane, Stephen M.; Balhorn, Rodney L.; Bakajin, Olgica; Darrow, Christopher; Satcher, Jr., Joe H.

    2006-07-11

    A method and apparatus with the sensitivity to detect and identify single target molecules through the localization of dual, fluorescently labeled probe molecules. This can be accomplished through specific attachment of the taget to a surface or in a two-dimensional (2D) flowing fluid sheet having approximate dimensions of 0.5 .mu.m.times.100 .mu.m.times.100 .mu.m. A device using these methods would have 10.sup.3 10.sup.4 greater throughput than previous one-dimensional (1D) micro-stream devices having 1 .mu.m.sup.3 interrogation volumes and would for the first time allow immuno- and DNA assays at ultra-low (femtomolar) concentrations to be performed in short time periods (.about.10 minutes). The use of novel labels (such as metal or semiconductor nanoparticles) may be incorporated to further extend the sensitivity possibly into the attomolar range.

  4. The temporal autocorrelation in FCS: a single-molecule detection nano-biotechnology

    NASA Astrophysics Data System (ADS)

    Kao, Lie-Jane

    2005-11-01

    The fluorescence correlation spectroscopy (FCS) has become a powerful tool that entails the information about molecules at very minute concentrations in the biological system. With the advances in the laser technology and confocal microscopy, the applications of FCS have been extended to the studies of protein dynamics in living cells as well as drug-screening. Two assumptions are made in FCS: the biological system under study is in its equilibrium state and the molecules diffuse within the system freely according to Brownian motions. Fluorescence intensity fluctuations occur when the fluorescent molecule moving in and out of the confocal microscopy defined detection volume in which bursts of photons are emitted. Based on the assumptions above, the statistical-physics-based autocorrelation function of the fluorescence intensity fluctuations was formulated by Aragon and Pecora, which provides the information about the dynamics of the fluorescent macromolecules in the system. However, in this manuscript, we demonstrate that the temporal autocorrelation function of Aragon and Pecora was inadequately derived due to the fact that the process of the positions of a molecule in the system over time is not a stationary Gaussian process. Efforts are made here to derive a new version of the autocorrelation function of the temporal fluorescence intensity fluctuation. The fit of the new autocorrelation function will be compared with that of Aragon and Pecora.

  5. Quantum dots and microfluidic single-molecule detection for screening genetic and epigenetic cancer markers in clinical samples

    NASA Astrophysics Data System (ADS)

    Wang, Tza-Huei; Bailey, Vasudev; Liu, Kelvin

    2011-06-01

    Genomic analysis of biomarkers, including genetic markers such as point mutations and epigenetic markers such as DNA methylation, has become a central theme in modern disease diagnosis and prognosis. Recently there is an increasing interest in using single-molecule detection (SMD) for genomic detection. The driving force not only comes from its ultrahigh sensitivity that can allow the detection of low-abundance nucleic acids with reduced or without the need of amplification but also from its potential in achieving high-accuracy quantification of rare targets via singlemolecule sorting. The unique photophysical properties of semiconductor quantum dots (QDs) have made them ideal for use as spectral labels and luminescent probes. QDs also make excellent donors to pair with organic dyes in the fluorescence resonance energy transfer (FRET) process due to the features of narrow emission spectra and small Stokes shift. We have developed highly sensitive, quantitative and clinically relevant technologies for analysis of genomic markers based on the convergence of SMD, microfluidic manipulations, and quantum dot fluorescence resonance energy transfer technology (QD-FRET). Extraordinary performances of these new technologies have been exemplified by analysis of a variety of biomarkers including point mutations, DNA integrity and DNA methylation in clinical samples.

  6. Single-molecule electrophoresis

    SciTech Connect

    Castro, A.; Shera, E.B.

    1995-09-15

    A novel method for the detection and identification of single molecules in solution has been devised, computer simulated, and experimentally achieved. The technique involves the determination of electrophoretic velocities by measuring the time required for individual molecules to travel a fixed distance between two laser beams. Computer simulations of the process were performed before-hand in order to estimate the experimental feasibility of the method and to determine the optimum values for the various experimental parameters. Examples of the use of the technique for the ultrasensitive detection and identification of rhodamine-6G, a mixture of DNA restriction fragments, and a mixture of proteins in aqueous solution are presented. 20 refs., 8 figs.

  7. Single-Molecule DNA Analysis

    NASA Astrophysics Data System (ADS)

    Efcavitch, J. William; Thompson, John F.

    2010-07-01

    The ability to detect single molecules of DNA or RNA has led to an extremely rich area of exploration of the single most important biomolecule in nature. In cases in which the nucleic acid molecules are tethered to a solid support, confined to a channel, or simply allowed to diffuse into a detection volume, novel techniques have been developed to manipulate the DNA and to examine properties such as structural dynamics and protein-DNA interactions. Beyond the analysis of the properties of nucleic acids themselves, single-molecule detection has enabled dramatic improvements in the throughput of DNA sequencing and holds promise for continuing progress. Both optical and nonoptical detection methods that use surfaces, nanopores, and zero-mode waveguides have been attempted, and one optically based instrument is already commercially available. The breadth of literature related to single-molecule DNA analysis is vast; this review focuses on a survey of efforts in molecular dynamics and nucleic acid sequencing.

  8. Tunable PIE and synchronized gating detections by FastFLIM for quantitative microscopy measurements of fast dynamics of single molecules

    NASA Astrophysics Data System (ADS)

    Sun, Yuansheng; Coskun, Ulas; Ferreon, Allan Chris; Barbieri, Beniamino; Liao, Shih-Chu Jeff

    2016-03-01

    The crosstalk between two fluorescent species causes problems in fluorescence microscopy imaging, especially for quantitative measurements such as co-localization, Förster resonance energy transfer (FRET), fluorescence cross correlation spectroscopy (FCCS). In laser scanning confocal microscopy, the lasers can be switched on and off by acousto-optic tunable filters (AOTF) in the microsecond scale for alternative line scanning in order to avoid the crosstalk while minimizing the time delay between two lasers on the same pixel location. In contrast, the pulsed interleaved excitation (PIE) technique synchronizes two pulsed lasers of different wavelengths in the nanosecond scale to enable measuring superfast dynamics of two fluorescent species simultaneously and yet quantitatively without the crosstalk contamination. This feature is critical for many cell biology applications, e.g. accurate determination of stoichiometry in FRET measurements for studying protein-protein interactions or cell signal events, detection of weaker bindings in FCCS by eliminating the false cross correlation due to the crosstalk. The PIE has been used with the time correlated single photon counting (TCSPC) electronics. Here, we describe a novel PIE development using the digital frequency domain (DFD) technique -- FastFLIM, which provides tunable PIE setups and synchronized gating detections, tailored and optimized to specific applications. A few PIE setups by FastFLIM and measurement examples are described. Combined with the sensitivity of Alba and Q2 systems, the PIE allowed us to quantitatively measure the fast dynamics of single molecules.

  9. A Dual-Mode Single-Molecule Fluorescence Assay for the Detection of Expanded CGG Repeats in Fragile X Syndrome

    PubMed Central

    Cannon, Brian; Pan, Cynthia; Chen, Liangjing; Hadd, Andrew G.

    2012-01-01

    Fragile X syndrome is the leading cause of inherited mental impairment and is associated with expansions of CGG repeats within the FMR1 gene. To detect expanded CGG repeats, we developed a dual-mode single-molecule fluorescence assay that allows acquisition of two parallel, independent measures of repeat number based on (1) the number of Cy3-labeled probes bound to the repeat region and (2) the physical length of the electric field-linearized repeat region, obtained from the relative position of a single Cy5 dye near the end of the repeat region. Using target strands derived from cell-line DNA with defined numbers of CGG repeats, we show that this assay can rapidly and simultaneously measure the repeats of a collection of individual sample strands within a single field of view. With a low occurrence of false positives, the assay differentiated normal CGG repeat lengths (CGGN, N = 23) and expanded CGG repeat lengths (CGGN, N = 118), representing a premutation disease state. Further, mixtures of these DNAs gave results that correlated with their relative populations. This strategy may be useful for identifying heterozygosity or for screening collections of individuals, and it is readily adaptable for screening other repeat disorders. PMID:22311273

  10. Data-driven techniques for detecting dynamical state changes in noisily measured 3D single-molecule trajectories.

    PubMed

    Calderon, Christopher P

    2014-01-01

    Optical microscopes and nanoscale probes (AFM, optical tweezers, etc.) afford researchers tools capable of quantitatively exploring how molecules interact with one another in live cells. The analysis of in vivo single-molecule experimental data faces numerous challenges due to the complex, crowded, and time changing environments associated with live cells. Fluctuations and spatially varying systematic forces experienced by molecules change over time; these changes are obscured by "measurement noise" introduced by the experimental probe monitoring the system. In this article, we demonstrate how the Hierarchical Dirichlet Process Switching Linear Dynamical System (HDP-SLDS) of Fox et al. [IEEE Transactions on Signal Processing 59] can be used to detect both subtle and abrupt state changes in time series containing "thermal" and "measurement" noise. The approach accounts for temporal dependencies induced by random and "systematic overdamped" forces. The technique does not require one to subjectively select the number of "hidden states" underlying a trajectory in an a priori fashion. The number of hidden states is simultaneously inferred along with change points and parameters characterizing molecular motion in a data-driven fashion. We use large scale simulations to study and compare the new approach to state-of-the-art Hidden Markov Modeling techniques. Simulations mimicking single particle tracking (SPT) experiments are the focus of this study. PMID:25397733

  11. Single-molecule detection of folding and unfolding of the G-quadruplex aptamer in a nanopore nanocavity.

    PubMed

    Shim, Ji Wook; Tan, Qiulin; Gu, Li-Qun

    2009-02-01

    Guanine-rich nucleic acids can form G-quadruplexes that are important in gene regulation, biosensor design and nano-structure construction. In this article, we report on the development of a nanopore encapsulating single-molecule method for exploring how cations regulate the folding and unfolding of the G-quadruplex formed by the thrombin-binding aptamer (TBA, GGTTGGTGTGGTTGG). The signature blocks in the nanopore revealed that the G-quadruplex formation is cation-selective. The selectivity sequence is K(+) > NH(4)(+) approximately Ba(2+) > Cs(+) approximately Na(+) > Li(+), and G-quadruplex was not detected in Mg(2+) and Ca(2+). Ba(2+) can form a long-lived G-quadruplex with TBA. However, the capability is affected by the cation-DNA interaction. The cation-selective formation of the G-quadruplex is correlated with the G-quadruplex volume, which varies with cation species. The high formation capability of the K(+)-induced G-quadruplex is contributed largely by the slow unfolding reaction. Although the Na(+)- and Li(+)-quadruplexes feature similar equilibrium properties, they undergo radically different pathways. The Na(+)-quadruplex folds and unfolds most rapidly, while the Li(+)-quadruplex performs both reactions at the slowest rates. Understanding these ion-regulated properties of oligonucleotides is beneficial for constructing fine-tuned biosensors and nano-structures. The methodology in this work can be used for studying other quadruplexes and protein-aptamer interactions. PMID:19112078

  12. Isolation and detection of single molecules on paramagnetic beads using sequential fluid flows in microfabricated polymer array assemblies.

    PubMed

    Kan, Cheuk W; Rivnak, Andrew J; Campbell, Todd G; Piech, Tomasz; Rissin, David M; Mösl, Matthias; Peterça, Andrej; Niederberger, Hans-Peter; Minnehan, Kaitlin A; Patel, Purvish P; Ferrell, Evan P; Meyer, Raymond E; Chang, Lei; Wilson, David H; Fournier, David R; Duffy, David C

    2012-03-01

    We report a method for isolating individual paramagnetic beads in arrays of femtolitre-sized wells and detecting single enzyme-labeled proteins on these beads using sequential fluid flows in microfabricated polymer array assemblies. Arrays of femtolitre-sized wells were fabricated in cyclic olefin polymer (COP) using injection moulding based on DVD manufacturing. These arrays were bonded to a complementary fluidic structure that was also moulded in COP to create an enclosed device to allow delivery of liquids to the arrays. Enzyme-associated, paramagnetic beads suspended in aqueous solutions of enzyme substrate were delivered fluidically to the array such that one bead per well was loaded by gravity. A fluorocarbon oil was then flowed into the device to remove excess beads from the surface of the array, and to seal and isolate the femtolitre-sized wells containing beads and enzyme substrate. The device was then imaged using standard fluorescence imaging to determine which wells contained single enzyme molecules. The analytical performance of this device as the detector for digital ELISA compared favourably to the standard method, i.e., glass arrays mechanically sealed against a silicone gasket; prostate specific antigen (PSA) could be detected from 0.011 pg mL(-1) up to 100 pg mL(-1). The use of an enclosed fluidic device to isolate beads in single-molecule arrays offers a multitude of advantages for low-cost manufacturing, ease of automation, and instrument development to enable applications in biomarker validation and medical diagnosis. PMID:22179487

  13. Enhancing the magnetic blocking temperature and magnetic coercivity of {CrLn} single-molecule magnets via bridging ligand modification.

    PubMed

    Langley, Stuart K; Wielechowski, Daniel P; Moubaraki, Boujemaa; Murray, Keith S

    2016-09-21

    Replacing bridging benzoate ligands with 2-chloro-4,5-fluorobenzoate in a family of {CrLn} (Ln = Tb, Dy and Ho) single-molecule magnets result in significant improvements in magnetic relaxation time, magnetic hysteresis blocking temperature and magnetic coercivity. PMID:27532688

  14. Nanochannel Based Single Molecule Recycling

    PubMed Central

    Lesoine, John F.; Venkataraman, Prahnesh A.; Maloney, Peter C.; Dumont, Mark

    2012-01-01

    We present a method for measuring the fluorescence from a single molecule hundreds of times without surface immobilization. The approach is based on the use of electroosmosis to repeatedly drive a single target molecule in a fused silica nanochannel through a stationary laser focus. Single molecule fluorescence detected during the transit time through the laser focus is used to repeatedly reverse the electrical potential controlling the flow direction. Our method does not rely on continuous observation and therefore is less susceptible to fluorescence blinking than existing fluorescence-based trapping schemes. The variation in the turnaround times can be used to measure the diffusion coefficient on a single molecule level. We demonstrate the ability to recycle both proteins and DNA in nanochannels and show that the procedure can be combined with single-pair Förster energy transfer. Nanochannel-based single molecule recycling holds promise for studying conformational dynamics on the same single molecule in solution and without surface tethering. PMID:22662745

  15. In situ single molecule detection of insulin receptors on erythrocytes from a type 1 diabetes ketoacidosis patient by atomic force microscopy.

    PubMed

    Zhang, Lu; Pi, Jiang; Shi, Qiping; Cai, Jiye; Yang, Peihui; Liang, Zhihong

    2015-11-01

    Type 1 diabetes is an insulin-dependent metabolic disorder always associated with ketoacidosis and a high morbidity rate in teenagers. The in situ single molecule detection of insulin receptors on healthy and diseased erythrocytes is helpful to understand the pathomechanism of type 1 diabetes ketoacidosis (T1-DKA), which would also benefit the diagnosis and treatment of T1-DKA. Here, we demonstrated, for the first time, the single molecule interaction between insulin and insulin receptor on erythrocytes from a healthy volunteer and a T1-DKA patient using high sensitivity atomic force microscopy (AFM) in PBS solution. The single molecule force results demonstrated the decreased binding force and binding probability between insulin and insulin receptor on T1-DKA erythrocytes, implying the deficit of insulin receptor functions in T1-DKA. The binding kinetic parameters calculated from dynamic force spectroscopy indicated that the insulin-insulin receptor complexes on T1-DKA erythrocytes were less stable than those from healthy volunteer. Using high resolution AFM imaging, a decreased roughness was found both in intact T1-DKA erythrocytes and in the purified membrane of T1-DKA erythrocytes, and an increased stiffness was also found in T1-DKA erythrocytes. Moreover, AFM, which was used to investigate the single molecule interactions between insulin-insulin receptor, cell surface ultrastructure and stiffness in healthy and diseased erythrocytes, was expected to develop into a potential nanotool for pathomechanism studies of clinical samples at the nanoscale. PMID:26405719

  16. Plasmon Mapping in Metallic Nanostructures and its Application to Single Molecule Surface Enhanced Raman Scattering: Imaging Electromagnetic Hot-Spots and Analyte Location

    SciTech Connect

    Camden, Jon P

    2013-07-16

    A major component of this proposal is to elucidate the connection between optical and electron excitation of plasmon modes in metallic nanostructures. These accomplishments are reported: developed a routine protocol for obtaining spatially resolved, low energy EELS spectra, and resonance Rayleigh scattering spectra from the same nanostructures.; correlated optical scattering spectra and plasmon maps obtained using STEM/EELS.; and imaged electromagnetic hot spots responsible for single-molecule surface-enhanced Raman scattering (SMSERS).

  17. Molecular Order in Buried Layers of TbPc2 Single-Molecule Magnets Detected by Torque Magnetometry.

    PubMed

    Perfetti, Mauro; Serri, Michele; Poggini, Lorenzo; Mannini, Matteo; Rovai, Donella; Sainctavit, Philippe; Heutz, Sandrine; Sessoli, Roberta

    2016-08-01

    Cantilever torque magnetometry is used to elucidate the orientation of magnetic molecules in thin films. The technique allows depth-resolved investigations by intercalating a layer of anisotropic magnetic molecules in a film of its isotropic analogues. The proof-of-concept is here demonstrated with the single-molecule magnet TbPc2 evidencing also an exceptional long-range templating effect on substrates coated by the organic molecule perylene-3,4,9,10-tetracarboxylic dianhydride. PMID:27232580

  18. Subunits of highly Fluorescent Protein R-Phycoerythrin as Probes for Cell Imaging and Single-Molecule Detection

    SciTech Connect

    Dragan Isailovic

    2005-12-17

    The purposes of our research were: (1) To characterize subunits of highly fluorescent protein R-Phycoerythrin (R-PE) and check their suitability for single-molecule detection (SMD) and cell imaging, (2) To extend the use of R-PE subunits through design of similar proteins that will be used as probes for microscopy and spectral imaging in a single cell, and (3) To demonstrate a high-throughput spectral imaging method that will rival spectral flow cytometry in the analysis of individual cells. We first demonstrated that R-PE subunits have spectroscopic and structural characteristics that make them suitable for SMD. Subunits were isolated from R-PE by high-performance liquid chromatography (HPLC) and detected as single molecules by total internal reflection fluorescence microscopy (TIRFM). In addition, R-PE subunits and their enzymatic digests were characterized by several separation and detection methods including HPLC, capillary electrophoresis, sodium dodecyl sulfate-polyacrilamide gel electrophoresis (SDS-PAGE) and HPLC-electrospray ionization mass spectrometry (ESI-MS). Favorable absorption and fluorescence of the R-PE subunits and digest peptides originate from phycoerythrobilin (PEB) and phycourobilin (PUB) chromophores that are covalently attached to cysteine residues. High absorption coefficients and strong fluorescence (even under denaturing conditions), broad excitation and emission fluorescence spectra in the visible region of electromagnetic spectrum, and relatively low molecular weights make these molecules suitable for use as fluorescence labels of biomolecules and cells. We further designed fluorescent proteins both in vitro and in vivo (in Escherichia coli) based on the highly specific attachment of PEB chromophore to genetically expressed apo-subunits of R-PE. In one example, apo-alpha and apo-beta R-PE subunits were cloned from red algae Polisiphonia boldii (P. boldii), and expressed in E. coli. Although expressed apo-subunits formed inclusion

  19. Distinguishing individual vibrational fingerprints: single-molecule surface-enhanced resonance raman scattering from one-to-one binary mixtures in Langmuir-Blodgett monolayers.

    PubMed

    Goulet, Paul J G; Aroca, Ricardo F

    2007-04-01

    Here, it is demonstrated that similar chemical species within a multicomponent sample can be distinguished, down to the single-molecule level, by means of their surface-enhanced vibrational fingerprints. Surface-enhanced resonance Raman scattering spectra and 2D spatial intensity maps are recorded from thin Ag nanoparticle films coated with fatty acid Langmuir-Blodgett monolayers containing one-to-one binary mixtures, at varying concentrations, of two dye molecules of similar absorption and scattering cross section (n-pentyl-5-salicylimidoperylene and octadecylrhodamine B). The results reveal the change in the distribution of the two dyes within the monolayer, and the breakdown of ensemble spectral averaging, which occur as the single-molecule regime is approached. It is found that the unimolecular level is reached when 1-10 molecules of each dye occupy the 1-microm2 scattering areas probed by the laser. These signals are attributed to the rare spatial coincidence of isolated target analyte molecules and localized electromagnetic hot spots in the nanostructured metal film. The bianalyte nature of the samples provides strong corroborative support for the attribution of spectra to single molecules at high dilution, while the effect of domain formation/aggregation is found to be important at higher concentrations. PMID:17311464

  20. Towards single molecule switches.

    PubMed

    Zhang, Jia Lin; Zhong, Jian Qiang; Lin, Jia Dan; Hu, Wen Ping; Wu, Kai; Xu, Guo Qin; Wee, Andrew T S; Chen, Wei

    2015-05-21

    The concept of using single molecules as key building blocks for logic gates, diodes and transistors to perform basic functions of digital electronic devices at the molecular scale has been explored over the past decades. However, in addition to mimicking the basic functions of current silicon devices, molecules often possess unique properties that have no parallel in conventional materials and promise new hybrid devices with novel functions that cannot be achieved with equivalent solid-state devices. The most appealing example is the molecular switch. Over the past decade, molecular switches on surfaces have been intensely investigated. A variety of external stimuli such as light, electric field, temperature, tunneling electrons and even chemical stimulus have been used to activate these molecular switches between bistable or even multiple states by manipulating molecular conformations, dipole orientations, spin states, charge states and even chemical bond formation. The switching event can occur either on surfaces or in break junctions. The aim of this review is to highlight recent advances in molecular switches triggered by various external stimuli, as investigated by low-temperature scanning tunneling microscopy (LT-STM) and the break junction technique. We begin by presenting the molecular switches triggered by various external stimuli that do not provide single molecule selectivity, referred to as non-selective switching. Special focus is then given to selective single molecule switching realized using the LT-STM tip on surfaces. Single molecule switches operated by different mechanisms are reviewed and discussed. Finally, molecular switches embedded in self-assembled monolayers (SAMs) and single molecule junctions are addressed. PMID:25757483

  1. Single-Molecule Bioelectronics

    PubMed Central

    Rosenstein, Jacob K.; Lemay, Serge G.; Shepard, Kenneth L.

    2014-01-01

    Experimental techniques which interface single biomolecules directly with microelectronic systems are increasingly being used in a wide range of powerful applications, from fundamental studies of biomolecules to ultra-sensitive assays. Here we review several technologies which can perform electronic measurements of single molecules in solution: ion channels, nanopore sensors, carbon nanotube field-effect transistors, electron tunneling gaps, and redox cycling. We discuss the shared features among these techniques that enable them to resolve individual molecules, and discuss their limitations. Recordings from each of these methods all rely on similar electronic instrumentation, and we discuss the relevant circuit implementations and potential for scaling these single-molecule bioelectronic interfaces to high-throughput arrayed sensing platforms. PMID:25529538

  2. Single-molecule bioelectronics.

    PubMed

    Rosenstein, Jacob K; Lemay, Serge G; Shepard, Kenneth L

    2015-01-01

    Experimental techniques that interface single biomolecules directly with microelectronic systems are increasingly being used in a wide range of powerful applications, from fundamental studies of biomolecules to ultra-sensitive assays. In this study, we review several technologies that can perform electronic measurements of single molecules in solution: ion channels, nanopore sensors, carbon nanotube field-effect transistors, electron tunneling gaps, and redox cycling. We discuss the shared features among these techniques that enable them to resolve individual molecules, and discuss their limitations. Recordings from each of these methods all rely on similar electronic instrumentation, and we discuss the relevant circuit implementations and potential for scaling these single-molecule bioelectronic interfaces to high-throughput arrayed sensing platforms. PMID:25529538

  3. Internally labeled Cy3/Cy5 DNA constructs show greatly enhanced photo-stability in single-molecule FRET experiments

    PubMed Central

    Lee, Wonbae; von Hippel, Peter H.; Marcus, Andrew H.

    2014-01-01

    DNA constructs labeled with cyanine fluorescent dyes are important substrates for single-molecule (sm) studies of the functional activity of protein–DNA complexes. We previously studied the local DNA backbone fluctuations of replication fork and primer–template DNA constructs labeled with Cy3/Cy5 donor–acceptor Förster resonance energy transfer (FRET) chromophore pairs and showed that, contrary to dyes linked ‘externally’ to the bases with flexible tethers, direct ‘internal’ (and rigid) insertion of the chromophores into the sugar-phosphate backbones resulted in DNA constructs that could be used to study intrinsic and protein-induced DNA backbone fluctuations by both smFRET and sm Fluorescent Linear Dichroism (smFLD). Here we show that these rigidly inserted Cy3/Cy5 chromophores also exhibit two additional useful properties, showing both high photo-stability and minimal effects on the local thermodynamic stability of the DNA constructs. The increased photo-stability of the internal labels significantly reduces the proportion of false positive smFRET conversion ‘background’ signals, thereby simplifying interpretations of both smFRET and smFLD experiments, while the decreased effects of the internal probes on local thermodynamic stability also make fluctuations sensed by these probes more representative of the unperturbed DNA structure. We suggest that internal probe labeling may be useful in studies of many DNA–protein interaction systems. PMID:24627223

  4. Ultra-high-density 3D DNA arrays within nanoporous biocompatible membranes for single-molecule-level detection and purification of circulating nucleic acids.

    PubMed

    Aramesh, M; Shimoni, O; Fox, K; Karle, T J; Lohrmann, A; Ostrikov, K; Prawer, S; Cervenka, J

    2015-04-14

    Extracellular nucleic acids freely circulating in blood and other physiologic fluids are important biomarkers for non-invasive diagnostics and early detection of cancer and other diseases, yet difficult to detect because they exist in very low concentrations and large volumes. Here we demonstrate a new broad-range sensor platform for ultrasensitive and selective detection of circulating DNA down to the single-molecule level. The biosensor is based on a chemically functionalized nanoporous diamond-like carbon (DLC) coated alumina membrane. The few nanometer-thick, yet perfect and continuous DLC-coating confers the chemical stability and biocompatibility of the sensor, allowing its direct application in biological conditions. The selective detection is based on complementary hybridization of a fluorescently-tagged circulating cancer oncomarker (a 21-mer nucleic acid) with covalently immobilized DNA on the surface of the membrane. The captured DNAs are detected in the nanoporous structure of the sensor using confocal scanning laser microscopy. The flow-through membrane sensor demonstrates broad-range sensitivity, spanning from 10(15) molecules per cm(2) down to single molecules, which is several orders of magnitude improvement compared to the flat DNA microarrays. Our study suggests that these flow-through type nanoporous sensors represent a new powerful platform for large volume sampling and ultrasensitive detection of different chemical biomarkers. PMID:25744416

  5. Watching single molecules dance

    NASA Astrophysics Data System (ADS)

    Mehta, Amit Dinesh

    Molecular motors convert chemical energy, from ATP hydrolysis or ion flow, into mechanical motion. A variety of increasingly precise mechanical probes have been developed to monitor and perturb these motors at the single molecule level. Several outstanding questions can be best approached at the single molecule level. These include: how far does a motor progress per energy quanta consumed? how does its reaction cycle respond to load? how many productive catalytic cycles can it undergo per diffusional encounter with its track? and what is the mechanical stiffness of a single molecule connection? A dual beam optical trap, in conjunction with in vitro ensemble motility assays, has been used to characterize two members of the myosin superfamily: muscle myosin II and chick brain myosin V. Both move the helical polymer actin, but myosin II acts in large ensembles to drive muscle contraction or cytokinesis, while myosin V acts in small numbers to transport vesicles. An optical trapping apparatus was rendered sufficiently precise to identify a myosin working stroke with 1nm or so, barring systematic errors such as those perhaps due to random protein orientations. This and other light microscopic motility assays were used to characterize myosin V: unlike myosin II this vesicle transport protein moves through many increments of travel while remaining strongly bound to a single actin filament. The step size, stall force, and travel distance of myosin V reveal a remarkably efficient motor capable of moving along a helical track for over a micrometer without significantly spiraling around it. Such properties are fully consistent with the putative role of an organelle transport motor, present in small numbers to maintain movement over long ranges relative to cellular size scales. The contrast between myosin II and myosin V resembles that between a human running on the moon and one walking on earth, where the former allows for faster motion when in larger ensembles but for less

  6. Single Molecule Transcription Elongation

    PubMed Central

    Galburt, Eric A.; Grill, Stephan W.; Bustamante, Carlos

    2009-01-01

    Single molecule optical trapping assays have now been applied to a great number of macromolecular systems including DNA, RNA, cargo motors, restriction enzymes, DNA helicases, chromosome remodelers, DNA polymerases and both viral and bacterial RNA polymerases. The advantages of the technique are the ability to observe dynamic, unsynchronized molecular processes, to determine the distributions of experimental quantities and to apply force to the system while monitoring the response over time. Here, we describe the application of these powerful techniques to study the dynamics of transcription elongation by RNA polymerase II from Saccharomyces cerevisiae. PMID:19426807

  7. Detection of the barium daughter in 136Xe →136Ba+2e- by in situ single-molecule fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Nygren, David R.

    2016-07-01

    A robust technique for rejection of all γ-ray induced backgrounds in the search for the decay 136Xe→136Ba+2e- is needed to proceed to ton-scale detection systems. Efficient detection of the barium daughter would provide a long-sought pathway toward this goal. Single-molecule fluorescent imaging may offer a new way to detect the barium daughter atom in a naturally ionized state. A doubly charged barium ion can initiate a chelation process with a non-fluorescent precursor molecule, leading to a highly fluorescent complex. Repeated photo-excitation of the complex can reveal both presence and location of a single ionized atom with high precision and selectivity. Detection would be automatic, and is accomplished within the active volume of a xenon gas Time Projection Chamber operating at high pressure.

  8. Significant Heterogeneity and Slow Dynamics of the Unfolded Ubiquitin Detected by the Line Confocal Method of Single-Molecule Fluorescence Spectroscopy.

    PubMed

    Saito, Masataka; Kamonprasertsuk, Supawich; Suzuki, Satomi; Nanatani, Kei; Oikawa, Hiroyuki; Kushiro, Keiichiro; Takai, Madoka; Chen, Po-Ting; Chen, Eric H-L; Chen, Rita P-Y; Takahashi, Satoshi

    2016-09-01

    The conformation and dynamics of the unfolded state of ubiquitin doubly labeled regiospecifically with Alexa488 and Alexa647 were investigated using single-molecule fluorescence spectroscopy. The line confocal fluorescence detection system combined with the rapid sample flow enabled the characterization of unfolded proteins at the improved structural and temporal resolutions compared to the conventional single-molecule methods. In the initial stage of the current investigation, however, the single-molecule Förster resonance energy transfer (sm-FRET) data of the labeled ubiquitin were flawed by artifacts caused by the adsorption of samples to the surfaces of the fused-silica flow chip and the sample delivery system. The covalent coating of 2-methacryloyloxyethyl phosphorylcholine polymer to the flow chip surface was found to suppress the artifacts. The sm-FRET measurements based on the coated flow chip demonstrated that the histogram of the sm-FRET efficiencies of ubiquitin at the native condition were narrowly distributed, which is comparable to the probability density function (PDF) expected from the shot noise, demonstrating the structural homogeneity of the native state. In contrast, the histogram of the sm-FRET efficiencies of the unfolded ubiquitin obtained at a time resolution of 100 μs was distributed significantly more broadly than the PDF expected from the shot noise, demonstrating the heterogeneity of the unfolded state conformation. The variety of the sm-FRET efficiencies of the unfolded state remained even after evaluating the moving average of traces with a window size of 1 ms, suggesting that conformational averaging of the heterogeneous conformations mostly occurs in the time domain slower than 1 ms. Local structural heterogeneity around the labeled fluorophores was inferred as the cause of the structural heterogeneity. The heterogeneity and slow dynamics revealed by the line confocal tracking of sm-FRET might be common properties of the unfolded

  9. Cross-Talk Between Ionic and Nanoribbon Current Signals in Graphene Nanoribbon-Nanopore Sensors for Single-Molecule Detection.

    PubMed

    Puster, Matthew; Balan, Adrian; Rodríguez-Manzo, Julio A; Danda, Gopinath; Ahn, Jae-Hyuk; Parkin, William; Drndić, Marija

    2015-12-16

    Nanopores are now being used not only as an ionic current sensor but also as a means to localize molecules near alternative sensors with higher sensitivity and/or selectivity. One example is a solid-state nanopore embedded in a graphene nanoribbon (GNR) transistor. Such a device possesses the high conductivity needed for higher bandwidth measurements and, because of its single-atomic-layer thickness, can improve the spatial resolution of the measurement. Here measurements of ionic current through the nanopore are shown during double-stranded DNA (dsDNA) translocation, along with the simultaneous response of the neighboring GNR due to changes in the surrounding electric potential. Cross-talk originating from capacitive coupling between the two measurement channels is observed, resulting in a transient response in the GNR during DNA translocation; however, a modulation in device conductivity is not observed via an electric-field-effect response during DNA translocation. A field-effect response would scale with GNR source-drain voltage (Vds), whereas the capacitive coupling does not scale with Vds . In order to take advantage of the high bandwidth potential of such sensors, the field-effect response must be enhanced. Potential field calculations are presented to outline a phase diagram for detection within the device parameter space, charting a roadmap for future optimization of such devices. PMID:26500023

  10. Ultra-high-density 3D DNA arrays within nanoporous biocompatible membranes for single-molecule-level detection and purification of circulating nucleic acids

    NASA Astrophysics Data System (ADS)

    Aramesh, M.; Shimoni, O.; Fox, K.; Karle, T. J.; Lohrmann, A.; Ostrikov, K.; Prawer, S.; Cervenka, J.

    2015-03-01

    Extracellular nucleic acids freely circulating in blood and other physiologic fluids are important biomarkers for non-invasive diagnostics and early detection of cancer and other diseases, yet difficult to detect because they exist in very low concentrations and large volumes. Here we demonstrate a new broad-range sensor platform for ultrasensitive and selective detection of circulating DNA down to the single-molecule level. The biosensor is based on a chemically functionalized nanoporous diamond-like carbon (DLC) coated alumina membrane. The few nanometer-thick, yet perfect and continuous DLC-coating confers the chemical stability and biocompatibility of the sensor, allowing its direct application in biological conditions. The selective detection is based on complementary hybridization of a fluorescently-tagged circulating cancer oncomarker (a 21-mer nucleic acid) with covalently immobilized DNA on the surface of the membrane. The captured DNAs are detected in the nanoporous structure of the sensor using confocal scanning laser microscopy. The flow-through membrane sensor demonstrates broad-range sensitivity, spanning from 1015 molecules per cm2 down to single molecules, which is several orders of magnitude improvement compared to the flat DNA microarrays. Our study suggests that these flow-through type nanoporous sensors represent a new powerful platform for large volume sampling and ultrasensitive detection of different chemical biomarkers.Extracellular nucleic acids freely circulating in blood and other physiologic fluids are important biomarkers for non-invasive diagnostics and early detection of cancer and other diseases, yet difficult to detect because they exist in very low concentrations and large volumes. Here we demonstrate a new broad-range sensor platform for ultrasensitive and selective detection of circulating DNA down to the single-molecule level. The biosensor is based on a chemically functionalized nanoporous diamond-like carbon (DLC) coated

  11. Robust hypothesis tests for detecting statistical evidence of two-dimensional and three-dimensional interactions in single-molecule measurements

    NASA Astrophysics Data System (ADS)

    Calderon, Christopher P.; Weiss, Lucien E.; Moerner, W. E.

    2014-05-01

    Experimental advances have improved the two- (2D) and three-dimensional (3D) spatial resolution that can be extracted from in vivo single-molecule measurements. This enables researchers to quantitatively infer the magnitude and directionality of forces experienced by biomolecules in their native environment. Situations where such force information is relevant range from mitosis to directed transport of protein cargo along cytoskeletal structures. Models commonly applied to quantify single-molecule dynamics assume that effective forces and velocity in the x ,y (or x ,y,z) directions are statistically independent, but this assumption is physically unrealistic in many situations. We present a hypothesis testing approach capable of determining if there is evidence of statistical dependence between positional coordinates in experimentally measured trajectories; if the hypothesis of independence between spatial coordinates is rejected, then a new model accounting for 2D (3D) interactions can and should be considered. Our hypothesis testing technique is robust, meaning it can detect interactions, even if the noise statistics are not well captured by the model. The approach is demonstrated on control simulations and on experimental data (directed transport of intraflagellar transport protein 88 homolog in the primary cilium).

  12. Domain movements of the enhancer-dependent sigma factor drive DNA delivery into the RNA polymerase active site: insights from single molecule studies

    PubMed Central

    Sharma, Amit; Leach, Robert N.; Gell, Christopher; Zhang, Nan; Burrows, Patricia C.; Shepherd, Dale A.; Wigneshweraraj, Sivaramesh; Smith, David Alastair; Zhang, Xiaodong; Buck, Martin; Stockley, Peter G.; Tuma, Roman

    2014-01-01

    Recognition of bacterial promoters is regulated by two distinct classes of sequence-specific sigma factors, σ70 or σ54, that differ both in their primary sequence and in the requirement of the latter for activation via enhancer-bound upstream activators. The σ54 version controls gene expression in response to stress, often mediating pathogenicity. Its activator proteins are members of the AAA+ superfamily and use adenosine triphosphate (ATP) hydrolysis to remodel initially auto-inhibited holoenzyme promoter complexes. We have mapped this remodeling using single-molecule fluorescence spectroscopy. Initial remodeling is nucleotide-independent and driven by binding both ssDNA during promoter melting and activator. However, DNA loading into the RNA polymerase active site depends on co-operative ATP hydrolysis by the activator. Although the coupled promoter recognition and melting steps may be conserved between σ70 and σ54, the domain movements of the latter have evolved to require an activator ATPase. PMID:24553251

  13. Domain movements of the enhancer-dependent sigma factor drive DNA delivery into the RNA polymerase active site: insights from single molecule studies.

    PubMed

    Sharma, Amit; Leach, Robert N; Gell, Christopher; Zhang, Nan; Burrows, Patricia C; Shepherd, Dale A; Wigneshweraraj, Sivaramesh; Smith, David Alastair; Zhang, Xiaodong; Buck, Martin; Stockley, Peter G; Tuma, Roman

    2014-04-01

    Recognition of bacterial promoters is regulated by two distinct classes of sequence-specific sigma factors, σ(70) or σ(54), that differ both in their primary sequence and in the requirement of the latter for activation via enhancer-bound upstream activators. The σ(54) version controls gene expression in response to stress, often mediating pathogenicity. Its activator proteins are members of the AAA+ superfamily and use adenosine triphosphate (ATP) hydrolysis to remodel initially auto-inhibited holoenzyme promoter complexes. We have mapped this remodeling using single-molecule fluorescence spectroscopy. Initial remodeling is nucleotide-independent and driven by binding both ssDNA during promoter melting and activator. However, DNA loading into the RNA polymerase active site depends on co-operative ATP hydrolysis by the activator. Although the coupled promoter recognition and melting steps may be conserved between σ(70) and σ(54), the domain movements of the latter have evolved to require an activator ATPase. PMID:24553251

  14. Structural anisotropy of cyanido-bridged {CoW} single-molecule magnets induced by bidentate ligands: towards the rational enhancement of an energy barrier.

    PubMed

    Chorazy, Szymon; Rams, Michał; Hoczek, Anna; Czarnecki, Bernard; Sieklucka, Barbara; Ohkoshi, Shin-Ichi; Podgajny, Robert

    2016-04-01

    Pentadecanuclear {Co[W(V)(CN)8]6} clusters were combined with bidentate 2,2'-bipyridine N,N'-dioxide (2,2'-bpdo) ligands resulting in two distinct molecules, {Co9W6(2,2'-bpdo)7} (cluster A) and {Co9W6(2,2'-bpdo)6} (cluster B), capped by seven and six 2,2'-bpdo ligands, respectively. They crystallize within a single {Co9W6(2,2'-bpdo)7}·{Co9W6(2,2'-bpdo)6}·solvent (1) supramolecular network, and reveal single-molecule magnet behaviour with an enhanced energy barrier, a ΔE/kB of 30.0(8) K, which was tentatively ascribed to seven-capped axially deformed cluster A. PMID:26933695

  15. Single Molecule Mechanochemistry

    NASA Astrophysics Data System (ADS)

    Li, Shaowei; Zhang, Yanxing; Ho, Wilson; Wu, Ruqian; Ruqian Wu, Yanxing Zhang Team; Wilson Ho, Shaowei Li Team

    Mechanical forces can be used to trigger chemical reactions through bending and stretching of chemical bonds. Using the reciprocating movement of the tip of a scanning tunneling microscope (STM), mechanical energy can be provided to a single molecule sandwiched between the tip and substrate. When the mechanical pulse center was moved to the outer ring feature of a CO molecule, the reaction rate was significantly increased compared with bare Cu surface and over Au atoms. First, DFT calculations show that the presence of CO makes the Cu cavity more attractive toward H2 Second, H2 prefers the horizontal adsorption geometry in the Cu-Cu and Au-Cu cavities and no hybridization occurs between the antibonding states of H2 and states of Cu atoms. While H2 loses electrons from its bonding state in all three cavities, the filling of its anti-bonding state only occurs in the CO-Cu cavity. Both make the CO-Cu cavity much more effectively to chop the H2 molecule. Work was supported by the National Science Foundation Center for Chemical Innovation on Chemistry at the Space-Time Limit (CaSTL) under Grant No. CHE-1414466.

  16. Recent topics on single-molecule fluctuation analysis using blinking in surface-enhanced resonance Raman scattering: clarification by the electromagnetic mechanism.

    PubMed

    Itoh, Tamitake; Yamamoto, Yuko S

    2016-08-15

    Surface-enhanced Raman scattering (SERS) spectroscopy has become an ultrasensitive tool for clarifying molecular functions on plasmonic metal nanoparticles (NPs). SERS has been used for in situ probing of detailed behaviors of few or single molecules (SMs) at plasmonic NP junctions. SM SERS signals are commonly observed with temporal and spectral changes known as "blinking", which are related to various physical and chemical interactions between molecules and NP junctions. These temporal and spectral changes simultaneously take place, therefore resulting in serious complexities in interpretations of the SM SERS results. Dual contributions of Raman enhancement mechanisms in SERS (i.e., electromagnetic (EM) and chemical enhancements) also make interpretations more difficult. To resolve these issues and reduce the degree of complexities in SM SERS analyses, the present review is focused on the recent studies of probing SM behaviors using SERS exclusively within the framework of the EM mechanism. The EM mechanism is briefly introduced, and several recent topics on SM SERS blinking analysis are discussed in light of the EM mechanism. This review will provide a basis for clarification of complex SERS fluctuations of various molecules. PMID:27241875

  17. DNA sequencing by a single molecule detection of labeled nucleotides sequentially cleaved from a single strand of DNA

    SciTech Connect

    Goodwin, P.M.; Schecker, J.A.; Wilkerson, C.W.; Hammond, M.L.; Ambrose, W.P.; Jett, J.H.; Martin, J.C.; Marrone, B.L.; Keller, R.A. ); Haces, A.; Shih, P.J.; Harding, J.D. )

    1993-01-01

    We are developing a laser-based technique for the rapid sequencing of large DNA fragments (several kb in size) at a rate of 100 to 1000 bases per second. Our approach relies on fluorescent labeling of the bases in a single fragment of DNA, attachment of this labeled DNA fragment to a support, movement of the supported DNA into a flowing sample stream, sequential cleavage of the end nucleotide from the DNA fragment with an exonuclease, and detection of the individual fluorescently labeled bases by laser-induced fluorescence.

  18. DNA sequencing by a single molecule detection of labeled nucleotides sequentially cleaved from a single strand of DNA

    SciTech Connect

    Goodwin, P.M.; Schecker, J.A.; Wilkerson, C.W.; Hammond, M.L.; Ambrose, W.P.; Jett, J.H.; Martin, J.C.; Marrone, B.L.; Keller, R.A.; Haces, A.; Shih, P.J.; Harding, J.D.

    1993-02-01

    We are developing a laser-based technique for the rapid sequencing of large DNA fragments (several kb in size) at a rate of 100 to 1000 bases per second. Our approach relies on fluorescent labeling of the bases in a single fragment of DNA, attachment of this labeled DNA fragment to a support, movement of the supported DNA into a flowing sample stream, sequential cleavage of the end nucleotide from the DNA fragment with an exonuclease, and detection of the individual fluorescently labeled bases by laser-induced fluorescence.

  19. Quantitative Aspects of Single Molecule Microscopy

    PubMed Central

    Ober, Raimund J.; Tahmasbi, Amir; Ram, Sripad; Lin, Zhiping; Ward, E. Sally

    2015-01-01

    Single molecule microscopy is a relatively new optical microscopy technique that allows the detection of individual molecules such as proteins in a cellular context. This technique has generated significant interest among biologists, biophysicists and biochemists, as it holds the promise to provide novel insights into subcellular processes and structures that otherwise cannot be gained through traditional experimental approaches. Single molecule experiments place stringent demands on experimental and algorithmic tools due to the low signal levels and the presence of significant extraneous noise sources. Consequently, this has necessitated the use of advanced statistical signal and image processing techniques for the design and analysis of single molecule experiments. In this tutorial paper, we provide an overview of single molecule microscopy from early works to current applications and challenges. Specific emphasis will be on the quantitative aspects of this imaging modality, in particular single molecule localization and resolvability, which will be discussed from an information theoretic perspective. We review the stochastic framework for image formation, different types of estimation techniques and expressions for the Fisher information matrix. We also discuss several open problems in the field that demand highly non-trivial signal processing algorithms. PMID:26167102

  20. Single molecule tracking

    DOEpatents

    Shera, E. Brooks

    1988-01-01

    A detection system is provided for identifying individual particles or molecules having characteristic emission in a flow train of the particles in a flow cell. A position sensitive sensor is located adjacent the flow cell in a position effective to detect the emissions from the particles within the flow cell and to assign spatial and temporal coordinates for the detected emissions. A computer is then enabled to predict spatial and temporal coordinates for the particle in the flow train as a function of a first detected emission. Comparison hardware or software then compares subsequent detected spatial and temporal coordinates with the predicted spatial and temporal coordinates to determine whether subsequently detected emissions originate from a particle in the train of particles. In one embodiment, the particles include fluorescent dyes which are excited to fluoresce a spectrum characteristic of the particular particle. Photones are emitted adjacent at least one microchannel plate sensor to enable spatial and temporal coordinates to be assigned. The effect of comparing detected coordinates with predicted coordinates is to define a moving sample volume which effectively precludes the effects of background emissions.

  1. Single molecule tracking

    DOEpatents

    Shera, E.B.

    1987-10-07

    A detection system is provided for identifying individual particles or molecules having characteristic emission in a flow train of the particles in a flow cell. A position sensitive sensor is located adjacent the flow cell in a position effective to detect the emissions from the particles within the flow cell and to assign spatial and temporal coordinates for the detected emissions. A computer is then enabled to predict spatial and temporal coordinates for the particle in the flow train as a function of a first detected emission. Comparison hardware or software then compares subsequent detected spatial and temporal coordinates with the predicted spatial and temporal coordinates to determine whether subsequently detected emissions originate from a particle in the train of particles. In one embodiment, the particles include fluorescent dyes which are excited to fluoresce a spectrum characteristic of the particular particle. Photons are emitted adjacent at least one microchannel plate sensor to enable spatial and temporal coordinates to be assigned. The effect of comparing detected coordinates with predicted coordinates is to define a moving sample volume which effectively precludes the effects of background emissions. 3 figs.

  2. Single molecule nanometry for biological physics

    PubMed Central

    Kim, Hajin; Ha, Taekjip

    2013-01-01

    Precision measurement is a hallmark of physics but the small length scale (~ nanometer) of elementary biological components and thermal fluctuations surrounding them challenge our ability to visualize their action. Here, we highlight the recent developments in single molecule nanometry where the position of a single fluorescent molecule can be determined with nanometer precision, reaching the limit imposed by the shot noise, and the relative motion between two molecules can be determined with ~ 0.3 nm precision at ~ 1 millisecond time resolution, and how these new tools are providing fundamental insights on how motor proteins move on cellular highways. We will also discuss how interactions between three and four fluorescent molecules can be used to measure three and six coordinates, respectively, allowing us to correlate movements of multiple components. Finally, we will discuss recent progress in combining angstrom precision optical tweezers with single molecule fluorescent detection, opening new windows for multi-dimensional single molecule nanometry for biological physics. PMID:23249673

  3. Single-molecule detection and tracking of RNA transcripts in living cells using phosphorothioate-optimized 2'-O-methyl RNA molecular beacons.

    PubMed

    Zhao, Dan; Yang, Yantao; Qu, Na; Chen, Mingming; Ma, Zhao; Krueger, Christopher J; Behlke, Mark A; Chen, Antony K

    2016-09-01

    Molecular Beacons (MBs) composed of 2'-O-methyl RNA (2Me) and phosphorothioate (PS) linkages throughout the backbone (2Me/PSFULL MBs) have enabled long-term imaging of RNA in living cells, but excess PS modification can induce nonspecific binding, causing false-positive signals. In this study, we evaluate the intracellular stability of MBs composed of 2Me with various PS modifications, and found that false-positive signals could be reduced to marginal levels when the MBs possess a fully PS-modified loop domain and a phosphodiester stem (2Me/PSLOOP MB). Additionally, 2Me/PSLOOP MBs exhibited uncompromised hybridization kinetics, prolonged functionality and >88% detection accuracy for single RNA transcripts, and could do so without interfering with gene expression or cell growth. Finally, 2Me/PSLOOP MBs could image the dynamics of single mRNA transcripts in the nucleus and the cytoplasm simultaneously, regardless of whether the MBs targeted the 5'- or the 3'-UTR. Together, these findings demonstrate the effectiveness of loop-domain PS modification in reducing nonspecific signals and the potential for sensitive and accurate imaging of individual RNAs at the single-molecule level. With the growing interest in the role of RNA localization and dynamics in health and disease, 2Me/PSLOOP MBs could enable new discoveries in RNA research. PMID:27261815

  4. Fluorescence Microscopy of Single Molecules

    ERIC Educational Resources Information Center

    Zimmermann, Jan; van Dorp, Arthur; Renn, Alois

    2004-01-01

    The investigation of photochemistry and photophysics of individual quantum systems is described with the help of a wide-field fluorescence microscopy approach. The fluorescence single molecules are observed in real time.

  5. Single-Molecule Sensors: Challenges and Opportunities for Quantitative Analysis.

    PubMed

    Gooding, J Justin; Gaus, Katharina

    2016-09-12

    Measurement science has been converging to smaller and smaller samples, such that it is now possible to detect single molecules. This Review focuses on the next generation of analytical tools that combine single-molecule detection with the ability to measure many single molecules simultaneously and/or process larger and more complex samples. Such single-molecule sensors constitute a new type of quantitative analytical tool, as they perform analysis by molecular counting and thus potentially capture the heterogeneity of the sample. This Review outlines the advantages and potential of these new, quantitative single-molecule sensors, the measurement challenges in making single-molecule devices suitable for analysis, the inspiration biology provides for overcoming these challenges, and some of the solutions currently being explored. PMID:27444661

  6. Plasmonic nanopore-based platforms for single-molecule Raman scattering

    NASA Astrophysics Data System (ADS)

    Deng, Liang; Wang, Yixin; Liu, Chen; Hu, Dora Juan Juan; Shum, Perry Ping; Su, Lei

    2016-08-01

    We propose and demonstrate a novel plasmonic nanopore platform based on a bowtie-nanopore structure, for single-molecule sensing. In this nano-structure, nano-bowties are integrated with solid-state nanopores to provide localized surface plasmon resonances for signal enhancement. We design and optimize the nano-structure by tuning both the bowtie gap and the bowtie angle, and investigate their influences on field enhancement, thereby achieving single-molecule sensitivity. In addition, we study the field enhancement by introducing an engineered photonic nano-cavity. This further strengthens the electric enhancement. An overall Raman enhancement factor of 2×108 is achieved in our simulation. This is believed to be sufficient for single-molecule sensing. The proposed bowtie-nanopore structure can be multiplexed on a single substrate for simultaneous multi-channel detection, paving the way for demanding applications such as DNA sequencing.

  7. Enhanced photostability of an anthracene-based dye due to supramolecular encapsulation: a new type of photostable fluorophore for single-molecule study.

    PubMed

    Mitsui, Masaaki; Higashi, Koji; Takahashi, Ryoya; Hirumi, Yohei; Kobayashi, Kenji

    2014-08-01

    For single-molecule fluorescence studies, highly photostable fluorophores are absolutely imperative, because photo-induced degradation (i.e., photobleaching) limits the observation time of individual molecules. Herein, the photophysics and photostability of a highly fluorescent 9,10-bis(phenylethynyl)anthracene derivative (G) and its self-assembled boronic ester encapsulation complex (G@Cap) embedded in a glassy polymer matrix are investigated by single-molecule fluorescence spectroscopy (SMFS). The heterogeneity of the fluorescence emission wavelength and triplet blinking kinetics of the guest G are significantly decreased by supramolecular encapsulation due to conformational restriction and reduced heterogeneity in the local environment. A nearly 10-fold increase in the photostability of G due to encapsulation is quantitatively confirmed by evaluating the photobleaching yields of G and G@Cap. In addition, it is found that the G@Cap is >30-fold more photostable than rhodamine 6G, a widely used fluorescent dye in single-molecule studies. These results demonstrate that the G@Cap can serve as a very bright, long-lasting fluorescent probe for single-molecule studies. PMID:24887756

  8. Single Molecule Raman Spectroscopy Under High Pressure

    NASA Astrophysics Data System (ADS)

    Fu, Yuanxi; Dlott, Dana

    2014-06-01

    Pressure effects on surface-enhanced Raman scattering spectra of Rhdoamine 6G adsorbed on silver nanoparticle surfaces was studied using a confocal Raman microscope. Colloidal silver nanoparticles were treated with Rhodamine 6G (R6G) and its isotopically substituted partner, R6G-d4. Mixed isotopomers let us identify single-molecule spectra, since multiple-molecule spectra would show vibrational transitions from both species. The nanoparticles were embedded into a poly vinyl alcohol film, and loaded into a diamond anvil cell for the high-pressure Raman scattering measurement. Argon was the pressure medium. Ambient pressure Raman scattering spectra showed few single-molecule spectra. At moderately high pressure ( 1GPa), a surprising effect was observed. The number of sites with observable spectra decreased dramatically, and most of the spectra that could be observed were due to single molecules. The effects of high pressure suppressed the multiple-molecule Raman sites, leaving only the single-molecule sites to be observed.

  9. Single Molecule Electronics and Devices

    PubMed Central

    Tsutsui, Makusu; Taniguchi, Masateru

    2012-01-01

    The manufacture of integrated circuits with single-molecule building blocks is a goal of molecular electronics. While research in the past has been limited to bulk experiments on self-assembled monolayers, advances in technology have now enabled us to fabricate single-molecule junctions. This has led to significant progress in understanding electron transport in molecular systems at the single-molecule level and the concomitant emergence of new device concepts. Here, we review recent developments in this field. We summarize the methods currently used to form metal-molecule-metal structures and some single-molecule techniques essential for characterizing molecular junctions such as inelastic electron tunnelling spectroscopy. We then highlight several important achievements, including demonstration of single-molecule diodes, transistors, and switches that make use of electrical, photo, and mechanical stimulation to control the electron transport. We also discuss intriguing issues to be addressed further in the future such as heat and thermoelectric transport in an individual molecule. PMID:22969345

  10. Geometry-mediated enhancement of single-ion anisotropy: a route to single-molecule magnets with a high blocking temperature.

    PubMed

    Dey, Mamon; Gogoi, Nayanmoni

    2013-12-01

    Not just any old iron ion: A linear, two-coordinate ionic Fe(I) complex with a S=3/2 ground state has a large energy barrier for magnetization reversal, Ueff =226 cm(-1) , and undergoes slow magnetic relaxation in the absence of an applied magnetic field. The preparation of complexes with these properties is a step towards the eventual practical application of single-molecule magnets. PMID:24130116

  11. Nanodevices for Single Molecule Studies

    NASA Astrophysics Data System (ADS)

    Craighead, H. G.; Stavis, S. M.; Samiee, K. T.

    During the last two decades, biotechnology research has resulted in progress in fields as diverse as the life sciences, agriculture and healthcare. While existing technology enables the analysis of a variety of biological systems, new tools are needed for increasing the efficiency of current methods, and for developing new ones altogether. Interest has grown in single molecule analysis for these reasons.

  12. Trapping and manipulating single molecules of DNA

    NASA Astrophysics Data System (ADS)

    Shon, Min Ju

    This thesis presents the development and application of nanoscale techniques to trap and manipulate biomolecules, with a focus on DNA. These methods combine single-molecule microscopy and nano- and micro-fabrication to study biophysical properties of DNA and proteins. The Dimple Machine is a lab-on-a-chip device that can isolate and confine a small number of molecules from a bulk solution. It traps molecules in nanofabricated chambers, or "dimples", and the trapped molecules are then studied on a fluorescence microscope at the single-molecule level. The sampling of bulk solution by dimples is representative, reproducible, and automated, enabling highthroughput single-molecule experiments. The device was applied to study hybridization of oligonucleotides, particularly in the context of reaction thermodynamics and kinetics in nanoconfinement. The DNA Pulley is a system to study protein binding and the local mechanical properties of DNA. A molecule of DNA is tethered to a surface on one end, and a superparamagnetic bead is attached to the other. A magnet pulls the DNA taut, and a silicon nitride knife with a nanoscale blade scans the DNA along its contour. Information on the local properties of the DNA is extracted by tracking the bead with nanometer precision in a white-light microscope. The system can detect proteins bound to DNA and localize their recognition sites, as shown with a model protein, EcoRI restriction enzyme. Progress on the measurements of nano-mechanical properties of DNA is included.

  13. Single-molecule spectroscopy and imaging over the decades.

    PubMed

    Moerner, W E; Shechtman, Yoav; Wang, Quan

    2015-01-01

    As of 2015, it has been 26 years since the first optical detection and spectroscopy of single molecules in condensed matter. This area of science has expanded far beyond the early low temperature studies in crystals to include single molecules in cells, polymers, and in solution. The early steps relied upon high-resolution spectroscopy of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral fine structure arising directly from the position-dependent fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 1990s, a variety of fascinating physical effects were observed for individual molecules, including imaging of the light from single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency. In the room temperature regime, researchers showed that bursts of light from single molecules could be detected in solution, leading to imaging and microscopy by a variety of methods. Studies of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. All of these early steps provided important fundamentals underpinning the development of super-resolution microscopy based on single-molecule localization and active control of emitting concentration. Current thrust areas include extensions to three-dimensional imaging with high precision, orientational analysis of single molecules, and direct measurements of photodynamics and transport properties for single molecules trapped in solution by suppression of Brownian motion. Without question, a huge variety of studies of single molecules performed by many

  14. Single-molecule electrophoresis. Final report

    SciTech Connect

    Castro, A.; Shera, E.B.

    1996-05-22

    A novel method for the detection and identification of single molecules in solution has been devised, computer-simulated, and experimentally achieved. The technique involves the determination of electrophoretic velocities by measuring the time required by individual molecules to travel a fixed distance between two laser beams. Computer simulations of the process were performed beforehand in order to estimate the experimental feasibility of the method, and to determine the optimum values for the various experimental parameters. Examples of the use of the technique for the ultrasensitive detection and identification of rhodamine-6G, a mixture of DNA restriction fragments, and a mixture of proteins in aqueous solution are presented.

  15. Multiparameter single-molecule fluorescence measurements of DNA intercalating fluorophores

    NASA Astrophysics Data System (ADS)

    Bowen, Benjamin P.; Enderlein, Jorg; Woodbury, Neal W. T.

    2003-06-01

    Experiments using single-molecules of TOTO-1 intercalated into dsDNA were performed to investigate the DNA sequence dependence on the fluorescence detectable with single-molecule fluorescence spectroscopy. Previous work has shown that there is a difference in the fluorescence lifetime when TOTO-1 is intercalated in poly-AT DNA or in poly-GC DNA. The fluorescence detected from single-molecules in this work for poly-GC and poly-AT DNA showed fluorescence lifetimes of 2.1 and 1.8 nsec, respectively. Analysis of the fluorescence intensity detected from single-molecules of TOTO-1 was performed by fluorescence cross-correlation spectroscopy. TOTO-1 is shown to spend large amounts of time in dark states. These dark states reduce the detectable fluorescence intensity to approximately 10 photons per millisecond on average.

  16. Theory of single molecule emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Bel, Golan; Brown, Frank L. H.

    2015-05-01

    A general theory and calculation framework for the prediction of frequency-resolved single molecule photon counting statistics is presented. Expressions for the generating function of photon counts are derived, both for the case of naive "detection" based solely on photon emission from the molecule and also for experimentally realizable detection of emitted photons, and are used to explicitly calculate low-order photon-counting moments. The two cases of naive detection versus physical detection are compared to one another and it is demonstrated that the physical detection scheme resolves certain inconsistencies predicted via the naive detection approach. Applications to two different models for molecular dynamics are considered: a simple two-level system and a two-level absorber subject to spectral diffusion.

  17. Reversible Aptamer-Au Plasmon Rulers for Secreted Single Molecules

    SciTech Connect

    Lee, Somin Eunice; Chen, Qian; Bhat, Ramray; Petkiewicz, Shayne; Smith, Jessica M.; Ferry, Vivian E.; Correia, Ana Luisa; Alivisatos, A. Paul; Bissell, Mina J.

    2015-06-03

    Plasmon rulers, consisting of pairs of gold nanoparticles, allow single-molecule analysis without photobleaching or blinking; however, current plasmon rulers are irreversible, restricting detection to only single events. Here, we present a reversible plasmon ruler, comprised of coupled gold nanoparticles linked by a single aptamer, capable of binding individual secreted molecules with high specificity. We show that the binding of target secreted molecules to the reversible plasmon ruler is characterized by single-molecule sensitivity, high specificity, and reversibility. Lastly, such reversible plasmon rulers should enable dynamic and adaptive live-cell measurement of secreted single molecules in their local microenvironment.

  18. Theory of single molecule emission spectroscopy

    SciTech Connect

    Bel, Golan; Brown, Frank L. H.

    2015-05-07

    A general theory and calculation framework for the prediction of frequency-resolved single molecule photon counting statistics is presented. Expressions for the generating function of photon counts are derived, both for the case of naive “detection” based solely on photon emission from the molecule and also for experimentally realizable detection of emitted photons, and are used to explicitly calculate low-order photon-counting moments. The two cases of naive detection versus physical detection are compared to one another and it is demonstrated that the physical detection scheme resolves certain inconsistencies predicted via the naive detection approach. Applications to two different models for molecular dynamics are considered: a simple two-level system and a two-level absorber subject to spectral diffusion.

  19. Electric Field Controlled Magnetic Anisotropy in a Single Molecule

    NASA Astrophysics Data System (ADS)

    Zyazin, Alexander S.; van den Berg, Johan W. G.; Osorio, Edgar A.; van der Zant, Herre S. J.; Konstantinidis, Nikolaos P.; Leijnse, Martin; Wegewijs, Maarten R.; May, Falk; Hofstetter, Walter; Danieli, Chiara; Cornia, Andrea

    2010-09-01

    We have measured quantum transport through an individual Fe$_4$ single-molecule magnet embedded in a three-terminal device geometry. The characteristic zero-field splittings of adjacent charge states and their magnetic field evolution are observed in inelastic tunneling spectroscopy. We demonstrate that the molecule retains its magnetic properties, and moreover, that the magnetic anisotropy is significantly enhanced by reversible electron addition / subtraction controlled with the gate voltage. Single-molecule magnetism can thus be electrically controlled.

  20. Electric field controlled magnetic anisotropy in a single molecule.

    PubMed

    Zyazin, Alexander S; van den Berg, Johan W G; Osorio, Edgar A; van der Zant, Herre S J; Konstantinidis, Nikolaos P; Leijnse, Martin; Wegewijs, Maarten R; May, Falk; Hofstetter, Walter; Danieli, Chiara; Cornia, Andrea

    2010-09-01

    We have measured quantum transport through an individual Fe(4) single-molecule magnet embedded in a three-terminal device geometry. The characteristic zero-field splittings of adjacent charge states and their magnetic field evolution are observed in inelastic tunneling spectroscopy. We demonstrate that the molecule retains its magnetic properties and, moreover, that the magnetic anisotropy is significantly enhanced by reversible electron addition/subtraction controlled with the gate voltage. Single-molecule magnetism can thus be electrically controlled. PMID:20687519

  1. Mechanical studies on single molecules: general considerations

    NASA Astrophysics Data System (ADS)

    Bensimon, David; Croquette, Vincent

    2015-10-01

    The following sections are included: * Elements of molecular biology * Advantages and drawbacks of single molecule studies * Order of magnitude of the relevant parameters at the single molecule level * Single molecule manipulation techniques * Comparison of the different techniques * DNA mechanical properties * Conclusion * Bibliography

  2. Cobalt single-molecule magnet

    NASA Astrophysics Data System (ADS)

    Yang, En-Che; Hendrickson, David N.; Wernsdorfer, Wolfgang; Nakano, Motohiro; Zakharov, Lev N.; Sommer, Roger D.; Rheingold, Arnold L.; Ledezma-Gairaud, Marisol; Christou, George

    2002-05-01

    A cobalt molecule that functions as a single-molecule magnet, [Co4(hmp)4(MeOH)4Cl4], where hmp- is the anion of hydroxymethylpyridine, is reported. The core of the molecule consists of four Co(II) cations and four hmp- oxygen atom ions at the corners of a cube. Variable-field and variable-temperature magnetization data have been analyzed to establish that the molecule has a S=6 ground state with considerable negative magnetoanisotropy. Single-ion zero-field interactions (DSz2) at each cobalt ion are the origin of the negative magnetoanisotropy. A single crystal of the compound was studied by means of a micro-superconducting quantum interference device magnetometer in the range of 0.040-1.0 K. Hysteresis was found in the magnetization versus magnetic field response of this single crystal.

  3. Room temperature single molecule microscopes

    SciTech Connect

    Ambrose, W.P.; Goodwin, P.M.; Enderlein, G.; Semin, D.J.; Keller, R.A.

    1997-12-31

    We have developed three capabilities to image the locations of and interrogate immobilized single fluorescent molecules: near-field scanning optical, confocal scanning optical, and wide-field epi-fluorescence microscopy. Each microscopy has its own advantages. Near-field illumination can beat the diffraction limit. Confocal microscopy has high brightness and temporal resolution. Wide-field has the quickest (parallel) imaging capability. With confocal microscopy, we have verified that single fluorescent spots in our images are due to single molecules by observing photon antibunching. Using all three microscopies, we have observed that xanthene molecules dispersed on dry silica curiously exhibit intensity fluctuations on millisecond to minute time scales. We are exploring the connection between the intensity fluctuations and fluctuations in individual photophysical parameters. The fluorescence lifetimes of Rhodamine 6G on silica fluctuate. The complex nature of the intensity and lifetime fluctuations is consistent with a mechanism that perturbs more than one photophysical parameter.

  4. Single molecule microscopy and spectroscopy: concluding remarks.

    PubMed

    van Hulst, Niek F

    2015-01-01

    Chemistry is all about molecules: control, synthesis, interaction and reaction of molecules. All too easily on a blackboard, one draws molecules, their structures and dynamics, to create an insightful picture. The dream is to see these molecules in reality. This is exactly what "Single Molecule Detection" provides: a look at molecules in action at ambient conditions; a breakthrough technology in chemistry, physics and biology. Within the realms of the Royal Society of Chemistry, the Faraday Discussion on "Single Molecule Microscopy and Spectroscopy" was a very appropriate topic for presentation, deliberation and debate. Undoubtedly, the Faraday Discussions have a splendid reputation in stimulating scientific debates along the traditions set by Michael Faraday. Interestingly, back in the 1830's, Faraday himself pursued an experiment that led to the idea that atoms in a compound were joined by an electrical component. He placed two opposite electrodes in a solution of water containing a dissolved compound, and observed that one of the elements of the compound accumulated on one electrode, while the other was deposited on the opposite electrode. Although Faraday was deeply opposed to atomism, he had to recognize that electrical forces were responsible for the joining of atoms. Probably a direct view on the atoms or molecules in his experiment would have convinced him. As such, Michael Faraday might have liked the gathering at Burlington House in September 2015 (). Surely, with the questioning eyes of his bust on the 1st floor corridor, the non-believer Michael Faraday has incited each passer-by to enter into discussion and search for deeper answers at the level of single molecules. In these concluding remarks, highlights of the presented papers and discussions are summarized, complemented by a conclusion on future perspectives. PMID:26606461

  5. Single-molecule imaging by optical absorption

    NASA Astrophysics Data System (ADS)

    Celebrano, Michele; Kukura, Philipp; Renn, Alois; Sandoghdar, Vahid

    2011-02-01

    To date, optical studies of single molecules at room temperature have relied on the use of materials with high fluorescence quantum yield combined with efficient spectral rejection of background light. To extend single-molecule studies to a much larger pallet of substances that absorb but do not fluoresce, scientists have explored the photothermal effect, interferometry, direct attenuation and stimulated emission. Indeed, very recently, three groups have succeeded in achieving single-molecule sensitivity in absorption. Here, we apply modulation-free transmission measurements known from absorption spectrometers to image single molecules under ambient conditions both in the emissive and strongly quenched states. We arrive at quantitative values for the absorption cross-section of single molecules at different wavelengths and thereby set the ground for single-molecule absorption spectroscopy. Our work has important implications for research ranging from absorption and infrared spectroscopy to sensing of unlabelled proteins at the single-molecule level.

  6. Single molecule detection of PARP1 and PARP2 interaction with DNA strand breaks and their poly(ADP-ribosyl)ation using high-resolution AFM imaging.

    PubMed

    Sukhanova, Maria V; Abrakhi, Sanae; Joshi, Vandana; Pastre, David; Kutuzov, Mikhail M; Anarbaev, Rashid O; Curmi, Patrick A; Hamon, Loic; Lavrik, Olga I

    2016-04-01

    PARP1 and PARP2 are implicated in the synthesis of poly(ADP-ribose) (PAR) after detection of DNA damage. The specificity of PARP1 and PARP2 interaction with long DNA fragments containing single- and/or double-strand breaks (SSBs and DSBs) have been studied using atomic force microscopy (AFM) imaging in combination with biochemical approaches. Our data show that PARP1 localizes mainly on DNA breaks and exhibits a slight preference for nicks over DSBs, although the protein has a moderately high affinity for undamaged DNA. In contrast to PARP1, PARP2 is mainly detected at a single DNA nick site, exhibiting a low level of binding to undamaged DNA and DSBs. The enhancement of binding affinity of PARP2 for DNA containing a single nick was also observed using fluorescence titration. AFM studies reveal that activation of both PARPs leads to the synthesis of highly branched PAR whose size depends strongly on the presence of SSBs and DSBs for PARP1 and of SSBs for PARP2. The initial affinity between the PARP1, PARP2 and the DNA damaged site appears to influence both the size of the PAR synthesized and the time of residence of PARylated PARP1 and PARP2 on DNA damages. PMID:26673720

  7. Single molecule detection of PARP1 and PARP2 interaction with DNA strand breaks and their poly(ADP-ribosyl)ation using high-resolution AFM imaging

    PubMed Central

    Sukhanova, Maria V.; Abrakhi, Sanae; Joshi, Vandana; Pastre, David; Kutuzov, Mikhail M.; Anarbaev, Rashid O.; Curmi, Patrick A.; Hamon, Loic; Lavrik, Olga I.

    2016-01-01

    PARP1 and PARP2 are implicated in the synthesis of poly(ADP-ribose) (PAR) after detection of DNA damage. The specificity of PARP1 and PARP2 interaction with long DNA fragments containing single- and/or double-strand breaks (SSBs and DSBs) have been studied using atomic force microscopy (AFM) imaging in combination with biochemical approaches. Our data show that PARP1 localizes mainly on DNA breaks and exhibits a slight preference for nicks over DSBs, although the protein has a moderately high affinity for undamaged DNA. In contrast to PARP1, PARP2 is mainly detected at a single DNA nick site, exhibiting a low level of binding to undamaged DNA and DSBs. The enhancement of binding affinity of PARP2 for DNA containing a single nick was also observed using fluorescence titration. AFM studies reveal that activation of both PARPs leads to the synthesis of highly branched PAR whose size depends strongly on the presence of SSBs and DSBs for PARP1 and of SSBs for PARP2. The initial affinity between the PARP1, PARP2 and the DNA damaged site appears to influence both the size of the PAR synthesized and the time of residence of PARylated PARP1 and PARP2 on DNA damages. PMID:26673720

  8. Visualizing repetitive diffusion activity of double-strand RNA binding proteins by single molecule fluorescence assays.

    PubMed

    Koh, Hye Ran; Wang, Xinlei; Myong, Sua

    2016-08-01

    TRBP, one of double strand RNA binding proteins (dsRBPs), is an essential cofactor of Dicer in the RNA interference pathway. Previously we reported that TRBP exhibits repetitive diffusion activity on double strand (ds)RNA in an ATP independent manner. In the TRBP-Dicer complex, the diffusion mobility of TRBP facilitates Dicer-mediated RNA cleavage. Such repetitive diffusion of dsRBPs on a nucleic acid at the nanometer scale can be appropriately captured by several single molecule detection techniques. Here, we provide a step-by-step guide to four different single molecule fluorescence assays by which the diffusion activity of dsRBPs on dsRNA can be detected. One color assay, termed protein induced fluorescence enhancement enables detection of unlabeled protein binding and diffusion on a singly labeled RNA. Two-color Fluorescence Resonance Energy Transfer (FRET) in which labeled dsRBPs is applied to labeled RNA, allows for probing the motion of protein along the RNA axis. Three color FRET reports on the diffusion movement of dsRBPs from one to the other end of RNA. The single molecule pull down assay provides an opportunity to collect dsRBPs from mammalian cells and examine the protein-RNA interaction at single molecule platform. PMID:27012177

  9. Single Molecule Studies of Chromatin

    SciTech Connect

    Jeans, C; Thelen, M P; Noy, A

    2006-02-06

    In eukaryotic cells, DNA is packaged as chromatin, a highly ordered structure formed through the wrapping of the DNA around histone proteins, and further packed through interactions with a number of other proteins. In order for processes such as DNA replication, DNA repair, and transcription to occur, the structure of chromatin must be remodeled such that the necessary enzymes can access the DNA. A number of remodeling enzymes have been described, but our understanding of the remodeling process is hindered by a lack of knowledge of the fine structure of chromatin, and how this structure is modulated in the living cell. We have carried out single molecule experiments using atomic force microscopy (AFM) to study the packaging arrangements in chromatin from a variety of cell types. Comparison of the structures observed reveals differences which can be explained in terms of the cell type and its transcriptional activity. During the course of this project, sample preparation and AFM techniques were developed and optimized. Several opportunities for follow-up work are outlined which could provide further insight into the dynamic structural rearrangements of chromatin.

  10. A 3-terminal single molecule nanoscale amperometer

    NASA Astrophysics Data System (ADS)

    Hliwa, M.; Ami, S.; Joachim, C.

    2006-07-01

    A 3-terminal single molecule transducer is presented which is able to measure tunnel current intensities. The conformation of a pyrene-phenyl molecule is changed under an intramolecular inelastic current effect. This conformation change is detected by a third lateral electrode interacting also with the molecule. The full multi-channel electronic scattering matrix of the device is calculated taking into account the chemisorption of the molecule at one end and the details mechanics of the conformation change of this molecule. A semi-classical model is used to describe the intramolecular transduction effect between the electrons transferred through the molecule and its conformation change. It results a linear transduction curve between the input and the detection currents of the device for a range of tunnel current of interest for mono-molecular electronics.

  11. Nanometer Resolution Imaging by SIngle Molecule Switching

    SciTech Connect

    Hu, Dehong; Orr, Galya

    2010-04-02

    The fluorescence intensity of single molecules can change dramatically even under constant laser excitation. The phenomenon is frequently called "blinking" and involves molecules switching between high and low intensity states.[1-3] In additional to spontaneous blinking, the fluorescence of some special fluorophores, such as cyanine dyes and photoactivatable fluorescent proteins, can be switched on and off by choice using a second laser. Recent single-molecule spectroscopy investigations have shed light on mechanisms of single molecule blinking and photoswitching. This ability to controllably switch single molecules led to the invention of a novel fluorescence microscopy with nanometer spatial resolution well beyond the diffraction limit.

  12. Stochasticity in single-molecule nanoelectrochemistry: origins, consequences, and solutions.

    PubMed

    Singh, Pradyumna S; Kätelhön, Enno; Mathwig, Klaus; Wolfrum, Bernhard; Lemay, Serge G

    2012-11-27

    Electrochemical detection of single molecules is being actively pursued as an enabler of new fundamental experiments and sensitive analytical capabilities. Most attempts to date have relied on redox cycling in a nanogap, which consists of two parallel electrodes separated by a nanoscale distance. While these initial experiments have demonstrated single-molecule detection at the proof-of-concept level, several fundamental obstacles need to be overcome to transform the technique into a realistic detection tool suitable for use in more complex settings (e.g., studying enzyme dynamics at single catalytic event level, probing neuronal exocytosis, etc.). In particular, it has become clearer that stochasticity--the hallmark of most single-molecule measurements--can become the key limiting factor on the quality of the information that can be obtained from single-molecule electrochemical assays. Here we employ random-walk simulations to show that this stochasticity is a universal feature of all single-molecule experiments in the diffusively coupled regime and emerges due to the inherent properties of brownian motion. We further investigate the intrinsic coupling between stochasticity and detection capability, paying particular attention to the role of the geometry of the detection device and the finite time resolution of measurement systems. We suggest concrete, realizable experimental modifications and approaches to mitigate these limitations. Overall, our theoretical analyses offer a roadmap for optimizing single-molecule electrochemical experiments, which is not only desirable but also indispensable for their wider employment as experimental tools for electrochemical research and as realistic sensing or detection systems. PMID:23106647

  13. Electromechanical Properties of Single Molecule Devices

    NASA Astrophysics Data System (ADS)

    Bruot, Christopher

    Understanding the interplay between the electrical and mechanical properties of single molecules is of fundamental importance for molecular electronics. The sensitivity of charge transport to mechanical fluctuations is a key problem in developing long lasting molecular devices. Furthermore, harnessing this response to mechanical perturbation, molecular devices which can be mechanically gated can be developed. This thesis demonstrates three examples of the unique electromechanical properties of single molecules. First, the electromechanical properties of 1,4-benzenedithiol molecular junctions are investigate. Counterintuitively, the conductance of this molecule is found to increase by more than an order of magnitude when stretched. This conductance increase is found to be reversible when the molecular junction is compressed. The current-voltage, conductance-voltage and inelastic electron tunneling spectroscopy characteristics are used to attribute the conductance increase to a strain-induced shift in the frontier molecular orbital relative to the electrode Fermi level, leading to resonant enhancement in the conductance. Next, the effect of stretching-induced structural changes on charge transport in DNA molecules is studied. The conductance of single DNA molecules with lengths varying from 6 to 26 base pairs is measured and found to follow a hopping transport mechanism. The conductance of DNA molecules is highly sensitive to mechanical stretching, showing an abrupt decrease in conductance at surprisingly short stretching distances, with weak dependence on DNA length. This abrupt conductance decrease is attributed to force-induced breaking of hydrogen bonds in the base pairs at the end of the DNA sequence. Finally, the effect of small mechanical modulation of the base separation on DNA conductance is investigated. The sensitivity of conductance to mechanical modulation is studied for molecules of different sequence and length. Sequences with purine-purine stacking

  14. Applications of capillary electrophoresis and laser-induced fluorescence detection to the analysis of trace species: From single cells to single molecules

    SciTech Connect

    Qifeng, X.

    1995-11-01

    This Ph.D. Thesis describes several separation and detection schemes for the analysis of small volume and amount of samples, such as intracellular components and single enzymes developed during research. Indirect Laser-induced fluorescence detection and capillary electrophoresis were used to quantify lactate and pyruvate in single red blood cells. The assay of specific enzyme activities was achieved by monitoring the highly fluorescent enzymatic reaction product, NADH. LDH activity was found not to be a unique marker for diagnosis of leukemia. Reactions of single LDH-1 molecules were investigated by monitoring the reaction product with LIF detection.

  15. Chemical principles of single-molecule electronics

    NASA Astrophysics Data System (ADS)

    Su, Timothy A.; Neupane, Madhav; Steigerwald, Michael L.; Venkataraman, Latha; Nuckolls, Colin

    2016-03-01

    The field of single-molecule electronics harnesses expertise from engineering, physics and chemistry to realize circuit elements at the limit of miniaturization; it is a subfield of nanoelectronics in which the electronic components are single molecules. In this Review, we survey the field from a chemical perspective and discuss the structure-property relationships of the three components that form a single-molecule junction: the anchor, the electrode and the molecular bridge. The spatial orientation and electronic coupling between each component profoundly affect the conductance properties and functions of the single-molecule device. We describe the design principles of the anchor group, the influence of the electronic configuration of the electrode and the effect of manipulating the structure of the molecular backbone and of its substituent groups. We discuss single-molecule conductance switches as well as the phenomenon of quantum interference and then trace their fundamental roots back to chemical principles.

  16. Extracting Models in Single Molecule Experiments

    NASA Astrophysics Data System (ADS)

    Presse, Steve

    2013-03-01

    Single molecule experiments can now monitor the journey of a protein from its assembly near a ribosome to its proteolytic demise. Ideally all single molecule data should be self-explanatory. However data originating from single molecule experiments is particularly challenging to interpret on account of fluctuations and noise at such small scales. Realistically, basic understanding comes from models carefully extracted from the noisy data. Statistical mechanics, and maximum entropy in particular, provide a powerful framework for accomplishing this task in a principled fashion. Here I will discuss our work in extracting conformational memory from single molecule force spectroscopy experiments on large biomolecules. One clear advantage of this method is that we let the data tend towards the correct model, we do not fit the data. I will show that the dynamical model of the single molecule dynamics which emerges from this analysis is often more textured and complex than could otherwise come from fitting the data to a pre-conceived model.

  17. Design and construction of wall-less nano-electrophoretic and nano in micro array high throughput devices for single cell ‘omics' single molecule detection analyses

    NASA Astrophysics Data System (ADS)

    Misevic, Gradimir N.; BenAssayag, Gerard; Rasser, Bernard; Sales, Philippe; Simic-Krstic, Jovana; Misevic, Nikola J.; Popescu, Octavian

    2014-09-01

    Single cell ‘omics' requires a technological platform with reliable and high throughput single cell analyses with single molecular detection and quantification. Presently available options are to either to detect many different macromolecules and metabolites extracted from many cells, thus obtaining partial ‘omics' of an average cell or to study only few single cells and be limited to semi-quantitative analyses and detection of a few abundant molecules. Here we present a new design and prototype proof of concept construction of high throughput nano-electrophoretic separation (NEA) device and nano in micro array (NiMA) affinity probe device for a complete single cell ‘omics' single bio-molecule polymers detection and quantification analyses. Prototype devices were constructed using gallium ion Focus Ion Beam (FIB), Gas Injection System (GIS) and Scanning Electron Microscope (SEM) crossbeam instruments. The NEA device accommodates 100 different cell samplings per 1 cm2 chip with arrays of open nano-electrophoretic guides. The NiMA bio-sensor device on 1 cm2 can accommodate 2500 cells in a micro-well array which consists of 250,000 probe markers in nano-well array located in each micro-well. Using Secondary Ion Mass Spectrometry (SIMS) we have demonstrated the direct detection of a single protein molecule and proved the feasibility of single bio-molecular detection and quantification concept for NEA and NIMA. Our concept validates high throughput and complete and quantitative single cell ‘omics' with single molecular detection analyses without labeling. Thus, it is superior to commonly used microfluidics, capillary electrophoresis and micro-arrays using mass spectrometry and fluorescent labeling for molecular detection.

  18. Flow-through Capture and in Situ Amplification Can Enable Rapid Detection of a Few Single Molecules of Nucleic Acids from Several Milliliters of Solution.

    PubMed

    Schlappi, Travis S; McCalla, Stephanie E; Schoepp, Nathan G; Ismagilov, Rustem F

    2016-08-01

    Detecting nucleic acids (NAs) at zeptomolar concentrations (few molecules per milliliter) currently requires expensive equipment and lengthy processing times to isolate and concentrate the NAs into a volume that is amenable to amplification processes, such as PCR or LAMP. Shortening the time required to concentrate NAs and integrating this procedure with amplification on-device would be invaluable to a number of analytical fields, including environmental monitoring and clinical diagnostics. Microfluidic point-of-care (POC) devices have been designed to address these needs, but they are not able to detect NAs present in zeptomolar concentrations in short time frames because they require slow flow rates and/or they are unable to handle milliliter-scale volumes. In this paper, we theoretically and experimentally investigate a flow-through capture membrane that solves this problem by capturing NAs with high sensitivity in a short time period, followed by direct detection via amplification. Theoretical predictions guided the choice of physical parameters for a chitosan-coated nylon membrane; these predictions can also be applied generally to other capture situations with different requirements. The membrane is also compatible with in situ amplification, which, by eliminating an elution step enables high sensitivity and will facilitate integration of this method into sample-to-answer detection devices. We tested a wide range of combinations of sample volumes and concentrations of DNA molecules using a capture membrane with a 2 mm radius. We show that for nucleic acid detection, this approach can concentrate and detect as few as ∼10 molecules of DNA with flow rates as high as 1 mL/min, handling samples as large as 50 mL. In a specific example, this method reliably concentrated and detected ∼25 molecules of DNA from 50 mL of sample. PMID:27429181

  19. Observing single molecule chemical reactions on metal nanoparticles.

    SciTech Connect

    Emory, S. R.; Ambrose, W. Patrick; Goodwin, P. M.; Keller, Richard A.

    2001-01-01

    We report the study of the photodecomposition of single Rhodamine 6G (R6G) dye molecules adsorbed on silver nanoparticles. The nanoparticles were immobilized and spatially isolated on polylysine-derivatized glass coverslips, and confocal laser microspectroscopy was used to obtain surface-enhanced Raman scattering (SERS) spectra from individual R6G molecules. The photodecomposition of these molecules was observed with 150-ms temporal resolution. The photoproduct was identified as graphitic carbon based on the appearance of broad SERS vibrational bands at 1592 cm{sup -1} and 1340 cm{sup -1} observed in both bulk and averaged single-molecule photoproduct spectra. In contrast, when observed at the single-molecule level, the photoproduct yielded sharp SERS spectra. The inhomogeneous broadening of the bulk SERS spectra is due to a variety of photoproducts in different surface orientations and is a characteristic of ensemble-averaged measurements of disordered systems. These single-molecule studies indicate a photodecomposition pathway by which the R6G molecule desorbs from the metal surface, an excited-state photoreaction occurs, and the R6G photoproduct(s) readsorbs to the surface. A SERS spectrum is obtained when either the intact R6G or the R6G photoproduct(s) are adsorbed on a SERS-active site. This work further illustrates the power of single-molecule spectroscopy (SMS) to reveal unique behaviors of single molecules that are not discernable with bulk measurements.

  20. Single-Molecule Total Internal Reflection Fluorescence Microscopy.

    PubMed

    Kudalkar, Emily M; Davis, Trisha N; Asbury, Charles L

    2016-01-01

    The advent of total internal reflection fluorescence (TIRF) microscopy has permitted visualization of biological events on an unprecedented scale: the single-molecule level. Using TIRF, it is now possible to view complex biological interactions such as cargo transport by a single molecular motor or DNA replication in real time. TIRF allows for visualization of single molecules by eliminating out-of-focus fluorescence and enhancing the signal-to-noise ratio. TIRF has been instrumental for studying in vitro interactions and has also been successfully implemented in live-cell imaging. Visualization of cytoskeletal structures and dynamics at the plasma membrane, such as endocytosis, exocytosis, and adhesion, has become much clearer using TIRF microscopy. Thanks to recent advances in optics and commercial availability, TIRF microscopy is becoming an increasingly popular and user-friendly technique. In this introduction, we describe the fundamental properties of TIRF microscopy and the advantages of using TIRF for single-molecule investigation. PMID:27140922

  1. Signatures of molecular magnetism in single-molecule transport spectroscopy.

    PubMed

    Jo, Moon-Ho; Grose, Jacob E; Baheti, Kanhayalal; Deshmukh, Mandar M; Sokol, Jennifer J; Rumberger, Evan M; Hendrickson, David N; Long, Jeffrey R; Park, Hongkun; Ralph, D C

    2006-09-01

    We report single-molecule-transistor measurements on devices incorporating magnetic molecules. By studying the electron-tunneling spectrum as a function of magnetic field, we are able to identify signatures of magnetic states and their associated magnetic anisotropy. A comparison of the data to simulations also suggests that sequential electron tunneling may enhance the magnetic relaxation of the magnetic molecule. PMID:16968018

  2. Sorting single molecules: application to diagnostics and evolutionary biotechnology.

    PubMed Central

    Eigen, M; Rigler, R

    1994-01-01

    A method is described that provides for detection and identification of single molecules in solution. The method is based on fluorescence correlation spectroscopy, which records spatio-temporal correlations among fluctuating light signals, coupled with devices for trapping single molecules in an electric field. This technique is applied to studies of molecular evolution, where it allows fast screening of large mutant spectra in which targets are labeled by specific fluorescent ligands. The method expands the horizon in molecular diagnostics by making it possible to monitor concentrations down to (less than) 10(-15) M without any need for amplification. Images PMID:7517036

  3. Simultaneous time and frequency resolved fluorescence microscopy of single molecules.

    SciTech Connect

    Hayden, Carl C.; Gradinaru, Claudiu C.; Chandler, David W.; Luong, A. Khai

    2005-01-01

    Single molecule fluorophores were studied for the first time with a new confocal fluorescence microscope that allows the wavelength and emission time to be simultaneously measured with single molecule sensitivity. In this apparatus, the photons collected from the sample are imaged through a dispersive optical system onto a time and position sensitive detector. This detector records the wavelength and emission time of each detected photon relative to an excitation laser pulse. A histogram of many events for any selected spatial region or time interval can generate a full fluorescence spectrum and correlated decay plot for the given selection. At the single molecule level, this approach makes entirely new types of temporal and spectral correlation spectroscopy of possible. This report presents the results of simultaneous time- and frequency-resolved fluorescence measurements of single rhodamine 6G (R6G), tetramethylrhodamine (TMR), and Cy3 embedded in thin films of polymethylmethacrylate (PMMA).

  4. 'Giant' multishell CdSe nanocrystal quantum dots with supporessed blinking: novel fluorescent probes for real-time detection of single-molecule events

    SciTech Connect

    Hollingsworth, Jennifer A; Vela, Javier; Htoon, Han; Klimov, Victor I; Casson, Amy R; Chen, Yongfen

    2009-01-01

    We reported for the first time that key nanocrystal quantum dot (NQD) optical properties-quantum yield, photobleaching and blinking-can be rendered independent ofNQD surface chemistry and environment by growth of a very thick, defect-free inorganic shell. Here, we show the precise shell-thickness dependence of these effects. We demonstrate that 'giant-shell' NQDs can be largely non-blinking for observation times as long as 54 minutes and lhat on-time fractions are independent of experimental time-resolution from 1-200 ms. These effects are primarily demonstrated on (CdSe)CdS (core)shell NQDs, but we also show that alloyed shells comprising Cd.Znl.'S and terminated with a non-cytotoxic ZnS layer exhibit similar properties. The mechanism for suppressed blinking and dramatically enhanced stability is attributed to both effective isolation of the NQD core excitonic wavefunction from the NQD surface, as well as a quasi-Type II electronic structure. The unusual electronic structure provides for effective spatial separation of the electron and hole into the shell and core, respectively, and, thereby, for reduced efficiencies in non-radiative Auger recombination.

  5. Broadband single-molecule excitation spectroscopy

    PubMed Central

    Piatkowski, Lukasz; Gellings, Esther; van Hulst, Niek F.

    2016-01-01

    Over the past 25 years, single-molecule spectroscopy has developed into a widely used tool in multiple disciplines of science. The diversity of routinely recorded emission spectra does underpin the strength of the single-molecule approach in resolving the heterogeneity and dynamics, otherwise hidden in the ensemble. In early cryogenic studies single molecules were identified by their distinct excitation spectra, yet measuring excitation spectra at room temperature remains challenging. Here we present a broadband Fourier approach that allows rapid recording of excitation spectra of individual molecules under ambient conditions and that is robust against blinking and bleaching. Applying the method we show that the excitation spectra of individual molecules exhibit an extreme distribution of solvatochromic shifts and distinct spectral shapes. Importantly, we demonstrate that the sensitivity and speed of the broadband technique is comparable to that of emission spectroscopy putting both techniques side-by-side in single-molecule spectroscopy. PMID:26794035

  6. Molecular junctions: Single-molecule contacts exposed

    NASA Astrophysics Data System (ADS)

    Nichols, Richard J.; Higgins, Simon J.

    2015-05-01

    Using a scanning tunnelling microscopy-based method it is now possible to get an atomistic-level description of the most probable binding and contact configuration for single-molecule electrical junctions.

  7. Broadband single-molecule excitation spectroscopy

    NASA Astrophysics Data System (ADS)

    Piatkowski, Lukasz; Gellings, Esther; van Hulst, Niek F.

    2016-01-01

    Over the past 25 years, single-molecule spectroscopy has developed into a widely used tool in multiple disciplines of science. The diversity of routinely recorded emission spectra does underpin the strength of the single-molecule approach in resolving the heterogeneity and dynamics, otherwise hidden in the ensemble. In early cryogenic studies single molecules were identified by their distinct excitation spectra, yet measuring excitation spectra at room temperature remains challenging. Here we present a broadband Fourier approach that allows rapid recording of excitation spectra of individual molecules under ambient conditions and that is robust against blinking and bleaching. Applying the method we show that the excitation spectra of individual molecules exhibit an extreme distribution of solvatochromic shifts and distinct spectral shapes. Importantly, we demonstrate that the sensitivity and speed of the broadband technique is comparable to that of emission spectroscopy putting both techniques side-by-side in single-molecule spectroscopy.

  8. Microarray analysis at single molecule resolution

    PubMed Central

    Mureşan, Leila; Jacak, Jarosław; Klement, Erich Peter; Hesse, Jan; Schütz, Gerhard J.

    2010-01-01

    Bioanalytical chip-based assays have been enormously improved in sensitivity in the recent years; detection of trace amounts of substances down to the level of individual fluorescent molecules has become state of the art technology. The impact of such detection methods, however, has yet not fully been exploited, mainly due to a lack in appropriate mathematical tools for robust data analysis. One particular example relates to the analysis of microarray data. While classical microarray analysis works at resolutions of two to 20 micrometers and quantifies the abundance of target molecules by determining average pixel intensities, a novel high resolution approach [1] directly visualizes individual bound molecules as diffraction limited peaks. The now possible quantification via counting is less susceptible to labeling artifacts and background noise. We have developed an approach for the analysis of high-resolution microarray images. It consists first of a single molecule detection step, based on undecimated wavelet transforms, and second, of a spot identification step via spatial statistics approach (corresponding to the segmentation step in the classical microarray analysis). The detection method was tested on simulated images with a concentration range of 0.001 to 0.5 molecules per square micron and signal-to-noise ratio (SNR) between 0.9 and 31.6. For SNR above 15 the false negatives relative error was below 15%. Separation of foreground/background proved reliable, in case foreground density exceeds background by a factor of 2. The method has also been applied to real data from high-resolution microarray measurements. PMID:20123580

  9. Enhanced photoacoustic detection using photonic crystal substrate

    SciTech Connect

    Zhao, Yunfei; Liu, Kaiyang; McClelland, John; Lu, Meng

    2014-04-21

    This paper demonstrates the enhanced photoacoustic sensing of surface-bound light absorbing molecules and metal nanoparticles using a one-dimensional photonic crystal (PC) substrate. The PC structure functions as an optical resonator at the wavelength where the analyte absorption is strong. The optical resonance of the PC sensor provides an intensified evanescent field with respect to the excitation light source and results in enhanced optical absorption by surface-immobilized samples. For the analysis of a light absorbing dye deposited on the PC surface, the intensity of photoacoustic signal was enhanced by more than 10-fold in comparison to an un-patterned acrylic substrate. The technique was also applied to detect gold nanorods and exhibited more than 40 times stronger photoacoustic signals. The demonstrated approach represents a potential path towards single molecule absorption spectroscopy with greater performance and inexpensive instrumentation.

  10. Intracellular bottom-up generation of targeted nanosensors for single-molecule imaging

    NASA Astrophysics Data System (ADS)

    Hou, Yanyan; Arai, Satoshi; Kitaguchi, Tetsuya; Suzuki, Madoka

    2016-02-01

    Organic dyes are useful tools for sensing cellular activities but unfavorable in single-molecule imaging, whereas quantum dots (QDs) are widely applied in single-molecule imaging but with few sensing applications. Here, to visualize cellular activities by monitoring the response of a single probe in living cells, we propose a bottom-up approach to generate nanoprobes where four organic dyes are conjugated to tetravalent single-chain avidin (scAVD) proteins via an intracellular click reaction. We demonstrate that the nanoprobes, exhibiting increased brightness and enhanced photostability, were detectable as single dots in living cells. The ease of intracellular targeting allowed the tracking of endoplasmic reticulum (ER) remodeling with nanometer spatial resolution. Conjugating thermosensitive dyes generated temperature-sensitive nanoprobes on ER membranes that successfully monitored local temperature changes in response to external heat pulses. Our approach is potentially a suitable tool for visualizing localized cellular activities with single probe sensitivity in living cells.Organic dyes are useful tools for sensing cellular activities but unfavorable in single-molecule imaging, whereas quantum dots (QDs) are widely applied in single-molecule imaging but with few sensing applications. Here, to visualize cellular activities by monitoring the response of a single probe in living cells, we propose a bottom-up approach to generate nanoprobes where four organic dyes are conjugated to tetravalent single-chain avidin (scAVD) proteins via an intracellular click reaction. We demonstrate that the nanoprobes, exhibiting increased brightness and enhanced photostability, were detectable as single dots in living cells. The ease of intracellular targeting allowed the tracking of endoplasmic reticulum (ER) remodeling with nanometer spatial resolution. Conjugating thermosensitive dyes generated temperature-sensitive nanoprobes on ER membranes that successfully monitored local

  11. The optics inside an automated single molecule array analyzer

    NASA Astrophysics Data System (ADS)

    McGuigan, William; Fournier, David R.; Watson, Gary W.; Walling, Les; Gigante, Bill; Duffy, David C.; Rissin, David M.; Kan, Cheuk W.; Meyer, Raymond E.; Piech, Tomasz; Fishburn, Matthew W.

    2014-02-01

    Quanterix and Stratec Biomedical have developed an instrument that enables the automated measurement of multiple proteins at concentration ~1000 times lower than existing immunoassays. The instrument is based on Quanterix's proprietary Single Molecule Array technology (Simoa™ ) that facilitates the detection and quantification of biomarkers previously difficult to measure, thus opening up new applications in life science research and in-vitro diagnostics. Simoa is based on trapping individual beads in arrays of femtoliter-sized wells that, when imaged with sufficient resolution, allows for counting of single molecules associated with each bead. When used to capture and detect proteins, this approach is known as digital ELISA (Enzyme-linked immunosorbent assay). The platform developed is a merger of many science and engineering disciplines. This paper concentrates on the optical technologies that have enabled the development of a fully-automated single molecule analyzer. At the core of the system is a custom, wide field-of-view, fluorescence microscope that images arrays of microwells containing single molecules bound to magnetic beads. A consumable disc containing 24 microstructure arrays was developed previously in collaboration with Sony DADC. The system cadence requirements, array dimensions, and requirement to detect single molecules presented significant optical challenges. Specifically, the wide field-of-view needed to image the entire array resulted in the need for a custom objective lens. Additionally, cost considerations for the system required a custom solution that leveraged the image processing capabilities. This paper will discuss the design considerations and resultant optical architecture that has enabled the development of an automated digital ELISA platform.

  12. Time-dependent study of single-molecule SERS signal from yeast cytochrome c

    NASA Astrophysics Data System (ADS)

    Delfino, Ines; Bizzarri, Anna Rita; Cannistraro, Salvatore

    2006-08-01

    A study of cytochrome c from Saccharomyces cerevisiae adsorbed on silver colloids at very low concentration is carried out by surface-enhanced Raman scattering. Spectra acquired at different times exhibit dramatic fluctuations in both line frequency and intensity indicating that single molecule detection is approached. The intensity fluctuations are investigated by means of a second order time correlation analysis. Such an approach has allowed us to put into evidence the presence of two distinct dynamical phenomena. The results are discussed in connection with diffusion processes to which the protein undergoes with respect to the surface of the Ag nanoclusters and with a modulation of the enhancement of the Raman signal.

  13. Single Molecule Spectroscopy of Electron Transfer

    SciTech Connect

    Michael Holman; Ling Zang; Ruchuan Liu; David M. Adams

    2009-10-20

    The objectives of this research are threefold: (1) to develop methods for the study electron transfer processes at the single molecule level, (2) to develop a series of modifiable and structurally well defined molecular and nanoparticle systems suitable for detailed single molecule/particle and bulk spectroscopic investigation, (3) to relate experiment to theory in order to elucidate the dependence of electron transfer processes on molecular and electronic structure, coupling and reorganization energies. We have begun the systematic development of single molecule spectroscopy (SMS) of electron transfer and summaries of recent studies are shown. There is a tremendous need for experiments designed to probe the discrete electronic and molecular dynamic fluctuations of single molecules near electrodes and at nanoparticle surfaces. Single molecule spectroscopy (SMS) has emerged as a powerful method to measure properties of individual molecules which would normally be obscured in ensemble-averaged measurement. Fluctuations in the fluorescence time trajectories contain detailed molecular level statistical and dynamical information of the system. The full distribution of a molecular property is revealed in the stochastic fluctuations, giving information about the range of possible behaviors that lead to the ensemble average. In the case of electron transfer, this level of understanding is particularly important to the field of molecular and nanoscale electronics: from a device-design standpoint, understanding and controlling this picture of the overall range of possible behaviors will likely prove to be as important as designing ia the ideal behavior of any given molecule.

  14. Single Molecule Fluorescence Microscopy on Planar Supported Bilayers.

    PubMed

    Axmann, Markus; Schütz, Gerhard J; Huppa, Johannes B

    2015-01-01

    In the course of a single decade single molecule microscopy has changed from being a secluded domain shared merely by physicists with a strong background in optics and laser physics to a discipline that is now enjoying vivid attention by life-scientists of all venues (1). This is because single molecule imaging has the unique potential to reveal protein behavior in situ in living cells and uncover cellular organization with unprecedented resolution below the diffraction limit of visible light (2). Glass-supported planar lipid bilayers (SLBs) are a powerful tool to bring cells otherwise growing in suspension in close enough proximity to the glass slide so that they can be readily imaged in noise-reduced Total Internal Reflection illumination mode (3,4). They are very useful to study the protein dynamics in plasma membrane-associated events as diverse as cell-cell contact formation, endocytosis, exocytosis and immune recognition. Simple procedures are presented how to generate highly mobile protein-functionalized SLBs in a reproducible manner, how to determine protein mobility within and how to measure protein densities with the use of single molecule detection. It is shown how to construct a cost-efficient single molecule microscopy system with TIRF illumination capabilities and how to operate it in the experiment. PMID:26555335

  15. Single Molecule Fluorescence Microscopy on Planar Supported Bilayers

    PubMed Central

    Axmann, Markus; Schütz, Gerhard J.; Huppa, Johannes B.

    2015-01-01

    In the course of a single decade single molecule microscopy has changed from being a secluded domain shared merely by physicists with a strong background in optics and laser physics to a discipline that is now enjoying vivid attention by life-scientists of all venues 1. This is because single molecule imaging has the unique potential to reveal protein behavior in situ in living cells and uncover cellular organization with unprecedented resolution below the diffraction limit of visible light 2. Glass-supported planar lipid bilayers (SLBs) are a powerful tool to bring cells otherwise growing in suspension in close enough proximity to the glass slide so that they can be readily imaged in noise-reduced Total Internal Reflection illumination mode 3,4. They are very useful to study the protein dynamics in plasma membrane-associated events as diverse as cell-cell contact formation, endocytosis, exocytosis and immune recognition. Simple procedures are presented how to generate highly mobile protein-functionalized SLBs in a reproducible manner, how to determine protein mobility within and how to measure protein densities with the use of single molecule detection. It is shown how to construct a cost-efficient single molecule microscopy system with TIRF illumination capabilities and how to operate it in the experiment. PMID:26555335

  16. Sample preparation for single molecule localization microscopy.

    PubMed

    Allen, John R; Ross, Stephen T; Davidson, Michael W

    2013-11-21

    Single molecule localization-based optical nanoscopy was introduced in 2006, surpassing traditional diffraction-limited resolutions by an order of magnitude. Seven years later, this superresolution technique is continuing to follow a trend of increasing popularity and pervasiveness, with the proof-of-concept work long finished and commercial implementations now available. However one important aspect that tends to become lost in translation is the importance of proper sample preparation, with very few resources addressing the considerations that must be made when preparing samples for imaging with single molecule level sensitivity. Presented here is a an in-depth analysis of all aspects of sample preparation for single molecule superresolution, including both live and fixed cell preparation, choice of fluorophore, fixation and staining techniques, and imaging buffer considerations. PMID:24084850

  17. Single-Molecule Studies in Live Cells.

    PubMed

    Yu, Ji

    2016-05-27

    Live-cell single-molecule experiments are now widely used to study complex biological processes such as signal transduction, self-assembly, active trafficking, and gene regulation. These experiments' increased popularity results in part from rapid methodological developments that have significantly lowered the technical barriers to performing them. Another important advance is the development of novel statistical algorithms, which, by modeling the stochastic behaviors of single molecules, can be used to extract systemic parameters describing the in vivo biochemistry or super-resolution localization of biological molecules within their physiological environment. This review discusses recent advances in experimental and computational strategies for live-cell single-molecule studies, as well as a selected subset of biological studies that have utilized these new technologies. PMID:27070321

  18. Protein folding at single-molecule resolution

    PubMed Central

    Ferreon, Allan Chris M.; Deniz, Ashok A.

    2011-01-01

    The protein folding reaction carries great significance for cellular function and hence continues to be the research focus of a large interdisciplinary protein science community. Single-molecule methods are providing new and powerful tools for dissecting the mechanisms of this complex process by virtue of their ability to provide views of protein structure and dynamics without associated ensemble averaging. This review briefly introduces common FRET and force methods, and then explores several areas of protein folding where single-molecule experiments have yielded insights. These include exciting new information about folding landscapes, dynamics, intermediates, unfolded ensembles, intrinsically disordered proteins, assisted folding and biomechanical unfolding. Emerging and future work is expected to include advances in single-molecule techniques aimed at such investigations, and increasing work on more complex systems from both the physics and biology standpoints, including folding and dynamics of systems of interacting proteins and of proteins in cells and organisms. PMID:21303706

  19. Single-Molecule Studies in Live Cells

    NASA Astrophysics Data System (ADS)

    Yu, Ji

    2016-05-01

    Live-cell single-molecule experiments are now widely used to study complex biological processes such as signal transduction, self-assembly, active trafficking, and gene regulation. These experiments' increased popularity results in part from rapid methodological developments that have significantly lowered the technical barriers to performing them. Another important advance is the development of novel statistical algorithms, which, by modeling the stochastic behaviors of single molecules, can be used to extract systemic parameters describing the in vivo biochemistry or super-resolution localization of biological molecules within their physiological environment. This review discusses recent advances in experimental and computational strategies for live-cell single-molecule studies, as well as a selected subset of biological studies that have utilized these new technologies.

  20. Applications of optical trapping to single molecule DNA

    SciTech Connect

    Sonek, G.J.; Berns, M.W.; Keller, R.A.

    1997-12-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project focused on the methodologies required to integrate optical trapping with single molecule detection (SMD) so as to demonstrate high speed sequencing through optical micromanipulation of host substrates, nucleotide cleavage, and single molecule detection. As part of this effort, the new technology of optical tweezers was applied to the confinement and manipulation of microsphere handles containing attached DNA fragments. The authors demonstrated substrate optical trapping in rapid flow streams, the fluorescence excitation and detection of fluorescently labeled nucleotides in an optical trapping system, and the epifluorescent imaging of DNA fragments in flow streams. They successfully demonstrated optical trapping in laminar flow streams and completely characterized the trapping process as functions of fluid flow velocity, chamber dimension, trapping depth, incident laser power, and fluorescence measurement geometry.

  1. COCIS: Markov processes in single molecule fluorescence

    PubMed Central

    Talaga, David S.

    2009-01-01

    This article examines the current status of Markov processes in single molecule fluorescence. For molecular dynamics to be described by a Markov process, the Markov process must include all states involved in the dynamics and the FPT distributions out of those states must be describable by a simple exponential law. The observation of non-exponential first-passage time distributions or other evidence of non-Markovian dynamics is common in single molecule studies and offers an opportunity to expand the Markov model to include new dynamics or states that improve understanding of the system. PMID:19543444

  2. Force-Manipulation Single-Molecule Spectroscopy Studies of Enzymatic Dynamics

    NASA Astrophysics Data System (ADS)

    Lu, H. Peter; He, Yufan; Lu, Maolin; Cao, Jin; Guo, Qing

    2014-03-01

    Subtle conformational changes play a crucial role in protein functions, especially in enzymatic reactions involving complex substrate-enzyme interactions and chemical reactions. We applied AFM-enhanced and magnetic tweezers-correlated single-molecule spectroscopy to study the mechanisms and dynamics of enzymatic reactions involved with kinase and lysozyme proteins. Enzymatic reaction turnovers and the associated structure changes of individual protein molecules were observed simultaneously in real-time by single-molecule FRET detections. Our single-molecule spectroscopy measurements of enzymatic conformational dynamics have revealed time bunching effect and intermittent coherence in conformational state change dynamics involving in enzymatic reaction cycles. The coherent conformational state dynamics suggests that the enzymatic catalysis involves a multi-step conformational motion along the coordinates of substrate-enzyme complex formation and product releasing. Our results support a multiple-conformational state model, being consistent with a complementary conformation selection and induced-fit enzymatic loop-gated conformational change mechanism in substrate-enzyme active complex formation.

  3. Single-molecule junctions beyond electronic transport

    NASA Astrophysics Data System (ADS)

    Aradhya, Sriharsha V.; Venkataraman, Latha

    2013-06-01

    The idea of using individual molecules as active electronic components provided the impetus to develop a variety of experimental platforms to probe their electronic transport properties. Among these, single-molecule junctions in a metal-molecule-metal motif have contributed significantly to our fundamental understanding of the principles required to realize molecular-scale electronic components from resistive wires to reversible switches. The success of these techniques and the growing interest of other disciplines in single-molecule-level characterization are prompting new approaches to investigate metal-molecule-metal junctions with multiple probes. Going beyond electronic transport characterization, these new studies are highlighting both the fundamental and applied aspects of mechanical, optical and thermoelectric properties at the atomic and molecular scales. Furthermore, experimental demonstrations of quantum interference and manipulation of electronic and nuclear spins in single-molecule circuits are heralding new device concepts with no classical analogues. In this Review, we present the emerging methods being used to interrogate multiple properties in single molecule-based devices, detail how these measurements have advanced our understanding of the structure-function relationships in molecular junctions, and discuss the potential for future research and applications.

  4. Probing redox proteins on a gold surface by single molecule fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Elmalk, Abdalmohsen T.; Salverda, Jante M.; Tabares, Leandro C.; Canters, Gerard W.; Aartsma, Thijs J.

    2012-06-01

    The interaction between the fluorescently labeled redox protein, azurin, and a thin gold film is characterized using single-molecule fluorescence intensity and lifetime measurements. Fluorescence quenching starts at distances below 2.3 nm from the gold surface. At shorter distances the quantum yield may decrease down to fourfold for direct attachment of the protein to bare gold. Outside of the quenching range, up to fivefold enhancement of the fluorescence is observed on average with increasing roughness of the gold layer. Fluorescence-detected redox activity of individual azurin molecules, with a lifetime switching ratio of 0.4, is demonstrated for the first time close to a gold surface.

  5. High thermopower of mechanically stretched single-molecule junctions

    PubMed Central

    Tsutsui, Makusu; Morikawa, Takanori; He, Yuhui; Arima, Akihide

    2015-01-01

    Metal-molecule-metal junction is a promising candidate for thermoelectric applications that utilizes quantum confinement effects in the chemically defined zero-dimensional atomic structure to achieve enhanced dimensionless figure of merit ZT. A key issue in this new class of thermoelectric nanomaterials is to clarify the sensitivity of thermoelectricity on the molecular junction configurations. Here we report simultaneous measurements of the thermoelectric voltage and conductance on Au-1,4-benzenedithiol (BDT)-Au junctions mechanically-stretched in-situ at sub-nanoscale. We obtained the average single-molecule conductance and thermopower of 0.01 G0 and 15 μV/K, respectively, suggesting charge transport through the highest occupied molecular orbital. Meanwhile, we found the single-molecule thermoelectric transport properties extremely-sensitive to the BDT bridge configurations, whereby manifesting the importance to design the electrode-molecule contact motifs for optimizing the thermoelectric performance of molecular junctions. PMID:26112999

  6. High thermopower of mechanically stretched single-molecule junctions.

    PubMed

    Tsutsui, Makusu; Morikawa, Takanori; He, Yuhui; Arima, Akihide; Taniguchi, Masateru

    2015-01-01

    Metal-molecule-metal junction is a promising candidate for thermoelectric applications that utilizes quantum confinement effects in the chemically defined zero-dimensional atomic structure to achieve enhanced dimensionless figure of merit ZT. A key issue in this new class of thermoelectric nanomaterials is to clarify the sensitivity of thermoelectricity on the molecular junction configurations. Here we report simultaneous measurements of the thermoelectric voltage and conductance on Au-1,4-benzenedithiol (BDT)-Au junctions mechanically-stretched in-situ at sub-nanoscale. We obtained the average single-molecule conductance and thermopower of 0.01 G0 and 15 μV/K, respectively, suggesting charge transport through the highest occupied molecular orbital. Meanwhile, we found the single-molecule thermoelectric transport properties extremely-sensitive to the BDT bridge configurations, whereby manifesting the importance to design the electrode-molecule contact motifs for optimizing the thermoelectric performance of molecular junctions. PMID:26112999

  7. Visualizing Cellular Machines with Colocalization Single Molecule Microscopy

    PubMed Central

    Larson, Joshua D.; Rodgers, Margaret L.

    2013-01-01

    Many of the cell's macromolecular machines contain multiple components that transiently associate with one another. This compositional and dynamic complexity presents a challenge for understanding how these machines are constructed and function. Colocalization single molecule spectroscopy enables simultaneous observation of individual components of these machines in real-time and grants a unique window into processes that are typically obscured in ensemble assays. Colocalization experiments can yield valuable information about assembly pathways, compositional heterogeneity, and kinetics that together contribute to the development of richly detailed reaction mechanisms. This review focuses on recent advances in colocalization single molecule spectroscopy and how this technique has been applied to enhance our understanding of transcription, RNA splicing, and translation. PMID:23970346

  8. High-throughput multispot single-molecule spectroscopy

    PubMed Central

    Colyer, Ryan A.; Scalia, Giuseppe; Kim, Taiho; Rech, Ivan; Resnati, Daniele; Marangoni, Stefano; Ghioni, Massimo; Cova, Sergio; Weiss, Shimon; Michalet, Xavier

    2011-01-01

    Solution-based single-molecule spectroscopy and fluorescence correlation spectroscopy (FCS) are powerful techniques to access a variety of molecular properties such as size, brightness, conformation, and binding constants. However, this is limited to low concentrations, which results in long acquisition times in order to achieve good statistical accuracy. Data can be acquired more quickly by using parallelization. We present a new approach using a multispot excitation and detection geometry made possible by the combination of three powerful new technologies: (i) a liquid crystal spatial light modulator to produce multiple diffraction-limited excitation spots; (ii) a multipixel detector array matching the excitation pattern and (iii) a low-cost reconfigurable multichannel counting board. We demonstrate the capabilities of this technique by reporting FCS measurements of various calibrated samples as well as single-molecule burst measurements. PMID:21643532

  9. Single-Molecule Observation of Prokaryotic DNA Replication

    PubMed Central

    Tanner, Nathan A.; van Oijen, Antoine M.

    2010-01-01

    Recent advances in optical imaging and molecular manipulation techniques have made it possible to observe the activity of individual enzymes and study the dynamic properties of processes that are challenging to elucidate using ensemble-averaging techniques. The use of single-molecule approaches has proven to be particularly successful in the study of the dynamic interactions between the components at the replication fork. In this section, we describe the methods necessary for in vitro single-molecule studies of prokaryotic replication systems. Through these experiments, accurate information can be obtained on the rates and processivities of DNA unwinding and polymerization. The ability to monitor in real time the progress of a single replication fork allows for the detection of short-lived, intermediate states that would be difficult to visualize in bulk-phase assays. PMID:19563119

  10. Single Molecule Approaches in RNA-Protein Interactions.

    PubMed

    Serebrov, Victor; Moore, Melissa J

    2016-01-01

    RNA-protein interactions govern every aspect of RNA metabolism, and aberrant RNA-binding proteins are the cause of hundreds of genetic diseases. Quantitative measurements of these interactions are necessary in order to understand mechanisms leading to diseases and to develop efficient therapies. Existing methods of RNA-protein interactome capture can afford a comprehensive snapshot of RNA-protein interaction networks but lack the ability to characterize the dynamics of these interactions. As all ensemble methods, their resolution is also limited by statistical averaging. Here we discuss recent advances in single molecule techniques that have the potential to tackle these challenges. We also provide a thorough overview of single molecule colocalization microscopy and the essential protein and RNA tagging and detection techniques. PMID:27256383

  11. Stereoelectronic switching in single-molecule junctions

    NASA Astrophysics Data System (ADS)

    Su, Timothy A.; Li, Haixing; Steigerwald, Michael L.; Venkataraman, Latha; Nuckolls, Colin

    2015-03-01

    A new intersection between reaction chemistry and electronic circuitry is emerging from the ultraminiaturization of electronic devices. Over decades chemists have developed a nuanced understanding of stereoelectronics to establish how the electronic properties of molecules relate to their conformation; the recent advent of single-molecule break-junction techniques provides the means to alter this conformation with a level of control previously unimagined. Here we unite these ideas by demonstrating the first single-molecule switch that operates through a stereoelectronic effect. We demonstrate this behaviour in permethyloligosilanes with methylthiomethyl electrode linkers. The strong σ conjugation in the oligosilane backbone couples the stereoelectronic properties of the sulfur-methylene σ bonds that terminate the molecule. Theoretical calculations support the existence of three distinct dihedral conformations that differ drastically in their electronic character. We can shift between these three species by simply lengthening or compressing the molecular junction, and, in doing so, we can switch conductance digitally between two states.

  12. Automated imaging system for single molecules

    DOEpatents

    Schwartz, David Charles; Runnheim, Rodney; Forrest, Daniel

    2012-09-18

    There is provided a high throughput automated single molecule image collection and processing system that requires minimal initial user input. The unique features embodied in the present disclosure allow automated collection and initial processing of optical images of single molecules and their assemblies. Correct focus may be automatically maintained while images are collected. Uneven illumination in fluorescence microscopy is accounted for, and an overall robust imaging operation is provided yielding individual images prepared for further processing in external systems. Embodiments described herein are useful in studies of any macromolecules such as DNA, RNA, peptides and proteins. The automated image collection and processing system and method of same may be implemented and deployed over a computer network, and may be ergonomically optimized to facilitate user interaction.

  13. Artifacts in single-molecule localization microscopy.

    PubMed

    Burgert, Anne; Letschert, Sebastian; Doose, Sören; Sauer, Markus

    2015-08-01

    Single-molecule localization microscopy provides subdiffraction resolution images with virtually molecular resolution. Through the availability of commercial instruments and open-source reconstruction software, achieving super resolution is now public domain. However, despite its conceptual simplicity, localization microscopy remains prone to user errors. Using direct stochastic optical reconstruction microscopy, we investigate the impact of irradiation intensity, label density and photoswitching behavior on the distribution of membrane proteins in reconstructed super-resolution images. We demonstrate that high emitter densities in combination with inappropriate photoswitching rates give rise to the appearance of artificial membrane clusters. Especially, two-dimensional imaging of intrinsically three-dimensional membrane structures like microvilli, filopodia, overlapping membranes and vesicles with high local emitter densities is prone to generate artifacts. To judge the quality and reliability of super-resolution images, the single-molecule movies recorded to reconstruct the images have to be carefully investigated especially when investigating membrane organization and cluster analysis. PMID:26138928

  14. Single-Molecule Analysis of Biomembranes

    NASA Astrophysics Data System (ADS)

    Schmidt, Thomas; Schütz, Gerhard J.

    Biomembranes are more than just a cell's envelope - as the interface to the surrounding of a cell they carry key signalling functions. Consequentially, membranes are highly complex organelles: they host about thousand different types of lipids and about half of the proteome, whose interaction has to be orchestrated appropriately for the various signalling purposes. In particular, knowledge on the nanoscopic organization of the plasma membrane appears critical for understanding the regulation of interactions between membrane proteins. The high localization precision of ˜20 nm combined with a high time resolution of ˜1 ms made single molecule tracking an excellent technology to obtain insights into membrane nanostructures, even in a live cell context. In this chapter, we will highlight concepts to achieve superresolution by single molecule imaging, summarize tools for data analysis, and review applications on artificial and live cell membranes.

  15. The symmetry of single-molecule conduction.

    PubMed

    Solomon, Gemma C; Gagliardi, Alessio; Pecchia, Alessandro; Frauenheim, Thomas; Di Carlo, Aldo; Reimers, Jeffrey R; Hush, Noel S

    2006-11-14

    We introduce the conductance point group which defines the symmetry of single-molecule conduction within the nonequilibrium Green's function formalism. It is shown, either rigorously or to within a very good approximation, to correspond to a molecular-conductance point group defined purely in terms of the properties of the conducting molecule. This enables single-molecule conductivity to be described in terms of key qualitative chemical descriptors that are independent of the nature of the molecule-conductor interfaces. We apply this to demonstrate how symmetry controls the conduction through 1,4-benzenedithiol chemisorbed to gold electrodes as an example system, listing also the molecular-conductance point groups for a range of molecules commonly used in molecular electronics research. PMID:17115774

  16. Single-molecule Studies of Riboswitch Folding

    PubMed Central

    Savinov, Andrew; Perez, Christian F.; Block, Steven M.

    2014-01-01

    The folding dynamics of riboswitches are central to their ability to modulate gene expression in response to environmental cues. In most cases, a structural competition between the formation of a ligand-binding aptamer and an expression platform (or some other competing off-state) determines the regulatory outcome. Here, we review single-molecule studies of riboswitch folding and function, predominantly carried out using single-molecule FRET or optical trapping approaches. Recent results have supplied new insights into riboswitch folding energy landscapes, the mechanisms of ligand binding, the roles played by divalent ions, the applicability of hierarchical folding models, and kinetic vs. thermodynamic control schemes. We anticipate that future work, based on improved data sets and potentially combining multiple experimental techniques, will enable the development of more complete models for complex RNA folding processes. PMID:24727093

  17. Superresolution Imaging using Single-Molecule Localization

    PubMed Central

    Patterson, George; Davidson, Michael; Manley, Suliana; Lippincott-Schwartz, Jennifer

    2013-01-01

    Superresolution imaging is a rapidly emerging new field of microscopy that dramatically improves the spatial resolution of light microscopy by over an order of magnitude (∼10–20-nm resolution), allowing biological processes to be described at the molecular scale. Here, we discuss a form of superresolution microscopy based on the controlled activation and sampling of sparse subsets of photoconvertible fluorescent molecules. In this single-molecule based imaging approach, a wide variety of probes have proved valuable, ranging from genetically encodable photoactivatable fluorescent proteins to photoswitchable cyanine dyes. These have been used in diverse applications of superresolution imaging: from three-dimensional, multicolor molecule localization to tracking of nanometric structures and molecules in living cells. Single-molecule-based superresolution imaging thus offers exciting possibilities for obtaining molecular-scale information on biological events occurring at variable timescales. PMID:20055680

  18. Single Molecule Dynamics of Branched DNA Polymers

    NASA Astrophysics Data System (ADS)

    Mai, Danielle; Sing, Charles; Schroeder, Charles

    This work focuses on extending the field of single polymer dynamics to topologically complex polymers. Here, we report the direct observation of DNA-based branched polymers. Recently, we recently demonstrated a two-step synthesis method to generate star, H-shaped, and comb polymers for single molecule visualization. Following synthesis, we use single-color or dual-color single molecule fluorescence microscopy to directly visualize branched polymer dynamics in flow, in particular tracking side branches and backbones independently. In this way, our imaging method allows for characterization of molecular properties, including quantification of polymer contour length and branch distributions. Moving beyond characterization, we use molecular rheology and single molecule techniques to study the dynamics of single branched polymers in flow. Here, we utilize precision microfluidics to directly observe branched DNA polymer conformations during transient stretching, steady-state extension, and relaxation from high stretch. We specifically measure backbone end-to-end distance as a function of time. Experiments and Brownian dynamics simulations show that branched polymer relaxation is a strong function of the number of branches and position of branch points along the main chain backbone.

  19. Laser-Assisted Single Molecule Refolding

    NASA Astrophysics Data System (ADS)

    Zhao, Rui; Marshall, Myles; Aleman, Elvin; Lamichhane, Rajan; Rueda, David

    2010-03-01

    In vivo, many RNA molecules can adopt multiple conformations depending on their biological context such as the HIV Dimerization Initiation Sequence (DIS) or the DsrA RNA in bacteria. It is quite common that the initial interaction between the two RNAs takes place via complementary unpaired regions, thus forming a so-called kissing complex. However, the exact kinetic mechanism by which the two RNA molecules reach the dimerized state is still not well understood. To investigate the refolding energy surface of RNA molecules, we have developed new technology based on the combination of single molecule spectroscopy with laser induced temperature jump kinetics, called Laser Assisted Single-molecule Refolding (LASR). LASR enables us to induce folding reactions of otherwise kinetically trapped RNAs at the single molecule level, and to characterize their folding landscape. LASR provides an exciting new approach to study molecular memory effects and kinetically trapped RNAs in general. LASR should be readily applicable to study DNA and protein folding as well.

  20. Single-Molecule Imaging of Cellular Signaling

    NASA Astrophysics Data System (ADS)

    De Keijzer, Sandra; Snaar-Jagalska, B. Ewa; Spaink, Herman P.; Schmidt, Thomas

    Single-molecule microscopy is an emerging technique to understand the function of a protein in the context of its natural environment. In our laboratory this technique has been used to study the dynamics of signal transduction in vivo. A multitude of signal transduction cascades are initiated by interactions between proteins in the plasma membrane. These cascades start by binding a ligand to its receptor, thereby activating downstream signaling pathways which finally result in complex cellular responses. To fully understand these processes it is important to study the initial steps of the signaling cascades. Standard biological assays mostly call for overexpression of the proteins and high concentrations of ligand. This sets severe limits to the interpretation of, for instance, the time-course of the observations, given the large temporal spread caused by the diffusion-limited binding processes. Methods and limitations of single-molecule microscopy for the study of cell signaling are discussed on the example of the chemotactic signaling of the slime-mold Dictyostelium discoideum. Single-molecule studies, as reviewed in this chapter, appear to be one of the essential methodologies for the full spatiotemporal clarification of cellular signaling, one of the ultimate goals in cell biology.

  1. Application of Recognition Tunneling in Single Molecule Identification

    NASA Astrophysics Data System (ADS)

    Zhao, Yanan

    Single molecule identification is one essential application area of nanotechnology. The application areas including DNA sequencing, peptide sequencing, early disease detection and other industrial applications such as quantitative and quantitative analysis of impurities, etc. The recognition tunneling technique we have developed shows that after functionalization of the probe and substrate of a conventional Scanning Tunneling Microscope with recognition molecules ("tethered molecule-pair" configuration), analyte molecules trapped in the gap that is formed by probe and substrate will bond with the reagent molecules. The stochastic bond formation/breakage fluctuations give insight into the nature of the intermolecular bonding at a single molecule-pair level. The distinct time domain and frequency domain features of tunneling signals were extracted from raw signals of analytes such as amino acids and their enantiomers. The Support Vector Machine (a machine-learning method) was used to do classification and predication based on the signal features generated by analytes, giving over 90% accuracy of separation of up to seven analytes. This opens up a new interface between chemistry and electronics with immediate implications for rapid Peptide/DNA sequencing and molecule identification at single molecule level.

  2. Single-molecule fluorescence spectroscopy in (bio)catalysis

    PubMed Central

    Roeffaers, Maarten B. J.; De Cremer, Gert; Uji-i, Hiroshi; Muls, Benîot; Sels, Bert F.; Jacobs, Pierre A.; De Schryver, Frans C.; De Vos, Dirk E.; Hofkens, Johan

    2007-01-01

    The ever-improving time and space resolution and molecular detection sensitivity of fluorescence microscopy offer unique opportunities to deepen our insights into the function of chemical and biological catalysts. Because single-molecule microscopy allows for counting the turnover events one by one, one can map the distribution of the catalytic activities of different sites in solid heterogeneous catalysts, or one can study time-dependent activity fluctuations of individual sites in enzymes or chemical catalysts. By experimentally monitoring individuals rather than populations, the origin of complex behavior, e.g., in kinetics or in deactivation processes, can be successfully elucidated. Recent progress of temporal and spatial resolution in single-molecule fluorescence microscopy is discussed in light of its impact on catalytic assays. Key concepts are illustrated regarding the use of fluorescent reporters in catalytic reactions. Future challenges comprising the integration of other techniques, such as diffraction, scanning probe, or vibrational methods in single-molecule fluorescence spectroscopy are suggested. PMID:17664433

  3. Single Molecule Spectroscopy of Monomeric LHCII: Experiment and Theory.

    PubMed

    Malý, Pavel; Gruber, J Michael; van Grondelle, Rienk; Mančal, Tomáš

    2016-01-01

    We derive approximate equations of motion for excited state dynamics of a multilevel open quantum system weakly interacting with light to describe fluorescence-detected single molecule spectra. Based on the Frenkel exciton theory, we construct a model for the chlorophyll part of the LHCII complex of higher plants and its interaction with previously proposed excitation quencher in the form of the lutein molecule Lut 1. The resulting description is valid over a broad range of timescales relevant for single molecule spectroscopy, i.e. from ps to minutes. Validity of these equations is demonstrated by comparing simulations of ensemble and single-molecule spectra of monomeric LHCII with experiments. Using a conformational change of the LHCII protein as a switching mechanism, the intensity and spectral time traces of individual LHCII complexes are simulated, and the experimental statistical distributions are reproduced. Based on our model, it is shown that with reasonable assumptions about its interaction with chlorophylls, Lut 1 can act as an efficient fluorescence quencher in LHCII. PMID:27189196

  4. Single-molecule imaging of hyaluronan in human synovial fluid

    NASA Astrophysics Data System (ADS)

    Kappler, Joachim; Kaminski, Tim P.; Gieselmann, Volkmar; Kubitscheck, Ulrich; Jerosch, Jörg

    2010-11-01

    Human synovial fluid contains a high concentration of hyaluronan, a high molecular weight glycosaminoglycan that provides viscoelasticity and contributes to joint lubrication. In osteoarthritis synovial fluid, the concentration and molecular weight of hyaluronan decrease, thus impairing shock absorption and lubrication. Consistently, substitution of hyaluronan (viscosupplementation) is a widely used treatment for osteoarthritis. So far, the organization and dynamics of hyaluronan in native human synovial fluid and its action mechanism in viscosupplementation are poorly characterized at the molecular level. Here, we introduce highly sensitive single molecule microscopy to analyze the conformation and interactions of fluorescently labeled hyaluronan molecules in native human synovial fluid. Our findings are consistent with a random coil conformation of hyaluronan in human synovial fluid, and point to specific interactions of hyaluronan molecules with the synovial fluid matrix. Furthermore, single molecule microscopy is capable of detecting the breakdown of the synovial fluid matrix in osteoarthritis. Thus, single molecule microscopy is a useful new method to probe the structure of human synovial fluid and its changes in disease states like osteoarthritis.

  5. Single Molecule Spectroscopy of Monomeric LHCII: Experiment and Theory

    PubMed Central

    Malý, Pavel; Gruber, J. Michael; van Grondelle, Rienk; Mančal, Tomáš

    2016-01-01

    We derive approximate equations of motion for excited state dynamics of a multilevel open quantum system weakly interacting with light to describe fluorescence-detected single molecule spectra. Based on the Frenkel exciton theory, we construct a model for the chlorophyll part of the LHCII complex of higher plants and its interaction with previously proposed excitation quencher in the form of the lutein molecule Lut 1. The resulting description is valid over a broad range of timescales relevant for single molecule spectroscopy, i.e. from ps to minutes. Validity of these equations is demonstrated by comparing simulations of ensemble and single-molecule spectra of monomeric LHCII with experiments. Using a conformational change of the LHCII protein as a switching mechanism, the intensity and spectral time traces of individual LHCII complexes are simulated, and the experimental statistical distributions are reproduced. Based on our model, it is shown that with reasonable assumptions about its interaction with chlorophylls, Lut 1 can act as an efficient fluorescence quencher in LHCII. PMID:27189196

  6. Single-molecule imaging of non-equilibrium molecular ensembles on the millisecond timescale.

    PubMed

    Juette, Manuel F; Terry, Daniel S; Wasserman, Michael R; Altman, Roger B; Zhou, Zhou; Zhao, Hong; Blanchard, Scott C

    2016-04-01

    Single-molecule fluorescence microscopy is uniquely suited for detecting transient molecular recognition events, yet achieving the time resolution and statistics needed to realize this potential has proven challenging. Here we present a single-molecule imaging and analysis platform using scientific complementary metal-oxide semiconductor (sCMOS) detectors that enables imaging of 15,000 individual molecules simultaneously at millisecond rates. This system enabled the detection of previously obscured processes relevant to the fidelity mechanism in protein synthesis. PMID:26878382

  7. Simulated single molecule microscopy with SMeagol

    PubMed Central

    Lindén, Martin; Ćurić, Vladimir; Boucharin, Alexis; Fange, David; Elf, Johan

    2016-01-01

    Summary: SMeagol is a software tool to simulate highly realistic microscopy data based on spatial systems biology models, in order to facilitate development, validation and optimization of advanced analysis methods for live cell single molecule microscopy data. Availability and implementation: SMeagol runs on Matlab R2014 and later, and uses compiled binaries in C for reaction–diffusion simulations. Documentation, source code and binaries for Mac OS, Windows and Ubuntu Linux can be downloaded from http://smeagol.sourceforge.net. Contact: johan.elf@icm.uu.se Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153711

  8. Protein mechanics: from single molecules to functional biomaterials.

    PubMed

    Li, Hongbin; Cao, Yi

    2010-10-19

    Elastomeric proteins act as the essential functional units in a wide variety of biomechanical machinery and serve as the basic building blocks for biological materials that exhibit superb mechanical properties. These proteins provide the desired elasticity, mechanical strength, resilience, and toughness within these materials. Understanding the mechanical properties of elastomeric protein-based biomaterials is a multiscale problem spanning from the atomistic/molecular level to the macroscopic level. Uncovering the design principles of individual elastomeric building blocks is critical both for the scientific understanding of multiscale mechanics of biomaterials and for the rational engineering of novel biomaterials with desirable mechanical properties. The development of single-molecule force spectroscopy techniques has provided methods for characterizing mechanical properties of elastomeric proteins one molecule at a time. Single-molecule atomic force microscopy (AFM) is uniquely suited to this purpose. Molecular dynamic simulations, protein engineering techniques, and single-molecule AFM study have collectively revealed tremendous insights into the molecular design of single elastomeric proteins, which can guide the design and engineering of elastomeric proteins with tailored mechanical properties. Researchers are focusing experimental efforts toward engineering artificial elastomeric proteins with mechanical properties that mimic or even surpass those of natural elastomeric proteins. In this Account, we summarize our recent experimental efforts to engineer novel artificial elastomeric proteins and develop general and rational methodologies to tune the nanomechanical properties of elastomeric proteins at the single-molecule level. We focus on general design principles used for enhancing the mechanical stability of proteins. These principles include the development of metal-chelation-based general methodology, strategies to control the unfolding hierarchy of

  9. Single-Molecule Imaging of Individual Amyloid Protein Aggregates in Human Biofluids

    PubMed Central

    2016-01-01

    The misfolding and aggregation of proteins into amyloid fibrils characterizes many neurodegenerative disorders such as Parkinson’s and Alzheimer’s diseases. We report here a method, termed SAVE (single aggregate visualization by enhancement) imaging, for the ultrasensitive detection of individual amyloid fibrils and oligomers using single-molecule fluorescence microscopy. We demonstrate that this method is able to detect the presence of amyloid aggregates of α-synuclein, tau, and amyloid-β. In addition, we show that aggregates can also be identified in human cerebrospinal fluid (CSF). Significantly, we see a twofold increase in the average aggregate concentration in CSF from Parkinson’s disease patients compared to age-matched controls. Taken together, we conclude that this method provides an opportunity to characterize the structural nature of amyloid aggregates in a key biofluid, and therefore has the potential to study disease progression in both animal models and humans to enhance our understanding of neurodegenerative disorders. PMID:26800462

  10. Electric field breakdown in single molecule junctions.

    PubMed

    Li, Haixing; Su, Timothy A; Zhang, Vivian; Steigerwald, Michael L; Nuckolls, Colin; Venkataraman, Latha

    2015-04-22

    Here we study the stability and rupture of molecular junctions under high voltage bias at the single molecule/single bond level using the scanning tunneling microscope-based break-junction technique. We synthesize carbon-, silicon-, and germanium-based molecular wires terminated by aurophilic linker groups and study how the molecular backbone and linker group affect the probability of voltage-induced junction rupture. First, we find that junctions formed with covalent S-Au bonds are robust under high voltage and their rupture does not demonstrate bias dependence within our bias range. In contrast, junctions formed through donor-acceptor bonds rupture more frequently, and their rupture probability demonstrates a strong bias dependence. Moreover, we find that the junction rupture probability increases significantly above ∼1 V in junctions formed from methylthiol-terminated disilanes and digermanes, indicating a voltage-induced rupture of individual Si-Si and Ge-Ge bonds. Finally, we compare the rupture probabilities of the thiol-terminated silane derivatives containing Si-Si, Si-C, and Si-O bonds and find that Si-C backbones have higher probabilities of sustaining the highest voltage. These results establish a new method for studying electric field breakdown phenomena at the single molecule level. PMID:25675085

  11. Single-molecule studies of collagen mechanics

    NASA Astrophysics Data System (ADS)

    Forde, Nancy; Rezaei, Naghmeh; Kirkness, Michael

    Collagen is the fundamental structural protein in vertebrates. Its triple helical structure at the molecular level is believed to be strongly related to its mechanical role in connective tissues. However, the mechanics of collagen at the single-molecule level remain contentious. Estimates of its persistence length span an order of magnitude, from 15-180 nm for this biopolymer of 300 nm contour length. How collagen responds to applied force is also controversial, with different single-molecule studies suggesting one of three different responses: extending entropically, overwinding, or unwinding, all at forces below 10 pN. Using atomic force microscopy to image collagens deposited from solution, we find that their flexibility depends strongly on ionic strength and pH. To study force-dependent structural changes, we are performing highly parallelized enzymatic cleavage assays of triple helical collagen in our new compact centrifuge force microscope. Because proteolytic cleavage requires a locally unwound triple helix, these experiments are revealing how local collagen structure changes in response to applied force. Our results can help to resolve long-standing debates about collagen mechanics and structure at the molecular level.

  12. Single molecule dynamics in lipid membranes

    NASA Astrophysics Data System (ADS)

    Skaug, Michael James

    Lipid membranes are self-assembled molecular materials that form the membranes of cells. Because of their biological function, lipid membranes are important from a biomedical and biotechnological standpoint. Because of their complex fluid properties, they also provide a rich testbed for studying the structure and dynamics in self-assembled materials and for developing other bio-mimetic structures. In this work, we studied the dynamics of single lipid molecules using experimental and computational techniques. Using single molecule fluorescence microscopy, we tracked the diffusive motion of lipids in phase separated lipid membranes. With the additional techniques of atomic force microscopy and Monte Carlo simulation, we were able to, for the first time experimentally, directly correlate the observed obstructed diffusion with lipid membrane organization. The single molecule tracking tracking experiments required the addition of impurity fluorescent molecules and the assumption that the impurities do not alter the dynamics of the system. To test this assumption, we performed atomistic molecular dynamics simulations of a fluorescently labeled lipid in a lipid membrane. We showed that the fluorescent impurity could have a significant impact on some membrane properties, such as phase behavior, but that relative changes in diffusive behavior are unaffected.

  13. Single Molecule and Single Cell Epigenomics

    PubMed Central

    Hyun, Byung-Ryool; McElwee, John L.; Soloway, Paul D.

    2014-01-01

    Dynamically regulated changes in chromatin states are vital for normal development and can produce disease when they go awry. Accordingly, much effort has been devoted to characterizing these states under normal and pathological conditions. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is the most widely used method to characterize where in the genome transcription factors, modified histones, modified nucleotides and chromatin binding proteins are found; bisulfite sequencing (BS-seq) and its variants are commonly used to characterize the locations of DNA modifications. Though very powerful, these methods are not without limitations. Notably, they are best at characterizing one chromatin feature at a time, yet chromatin features arise and function in combination. Investigators commonly superimpose separate ChIP-seq or BS-seq datasets, and then infer where chromatin features are found together. While these inferences might be correct, they can be misleading when the chromatin source has distinct cell types, or when a given cell type exhibits any cell to cell variation in chromatin state. These ambiguities can be eliminated by robust methods that directly characterize the existence and genomic locations of combinations of chromatin features in very small inputs of cells or ideally, single cells. Here we review single molecule epigenomic methods under development to overcome these limitations, the technical challenges associated with single molecule methods and their potential application to single cells. PMID:25204781

  14. PREFACE: Nanoelectronics, sensors and single molecule biophysics Nanoelectronics, sensors and single molecule biophysics

    NASA Astrophysics Data System (ADS)

    Tao, Nongjian

    2012-04-01

    This special section of Journal of Physics: Condensed Matter (JPCM) is dedicated to Professor Stuart M Lindsay on the occasion of his 60th birthday and in recognition of his outstanding contributions to multiple research areas, including light scattering spectroscopy, scanning probe microscopy, biophysics, solid-liquid interfaces and molecular and nanoelectronics. It contains a collection of 14 papers in some of these areas, including a feature article by Lindsay. Each paper was subject to the normal rigorous review process of JPCM. In Lindsay's paper, he discusses the next generations of hybrid chemical-CMOS devices for low cost and personalized medical diagnosis. The discussion leads to several papers on nanotechnology for biomedical applications. Kawaguchi et al report on the detection of single pollen allergen particles using electrode embedded microchannels. Stern et al describe a structural study of three-dimensional DNA-nanoparticle assemblies. Hihath et al measure the conductance of methylated DNA, and discuss the possibility of electrical detection DNA methylation. Portillo et al study the electrostatic effects on the aggregation of prion proteins and peptides with atomic force microscopy. In an effort to understand the interactions between nanostructures and cells, Lamprecht et al report on the mapping of the intracellular distribution of carbon nanotubes with a confocal Raman imaging technique, and Wang et al focus on the intracellular delivery of gold nanoparticles using fluorescence microscopy. Park and Kristic provide theoretical analysis of micro- and nano-traps and their biological applications. This section also features several papers on the fundamentals of electron transport in single atomic wires and molecular junctions. The papers by Xu et al and by Wandlowksi et al describe new methods to measure conductance and forces in single molecule junctions and metallic atomic wires. Scullion et al report on the conductance of molecules with similar

  15. Nanofluidic single-molecule sorting of DNA: a new concept in separation and analysis of biomolecules towards ultimate level performance

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takatoki; Fujii, Teruo

    2010-10-01

    Separation and separation-based analysis of biomolecules are fundamentally important techniques in the field of biotechnology. These techniques, however, depend on stochastic processes that intrinsically involve uncertainty, and thus it is not possible to achieve 100% separation accuracy. Theoretically, the ultimate resolution and sensitivity should be realized in a single-molecule system because of the deterministic nature of single-molecule manipulation. Here, we have proposed and experimentally demonstrated the concept of a 'single-molecule sorter' that detects and correctly identifies individual single molecules, realizing the ultimate level of resolution and sensitivity for any separation-based technology. The single-molecule sorter was created using a nanofluidic network consisting of a single inlet channel that branches off into multiple outlet channels. It includes two major functional elements, namely a single-molecule detection and identification element and a flow path switching element to accurately separate single molecules. With this system we have successfully demonstrated the world's first single-molecule sorting using DNA as a sample molecule. In the future, we hope to expand the application of such devices to comprehensive sorting of single-proteins from a single cell. We also believe that in addition to the single-molecule sorting method reported here, other types of single-molecule based processes will emerge and find use in a wide variety of applications.

  16. Single Molecule Conductance of Oligothiophene Derivatives

    NASA Astrophysics Data System (ADS)

    Dell, Emma J.

    This thesis studies the electronic properties of small organic molecules based on the thiophene motif. If we are to build next-generation devices, advanced materials must be designed which possess requisite electronic functionality. Molecules present attractive candidates for these ad- vanced materials since nanoscale devices are particularly sought after. However, selecting a molecule that is suited to a certain electronic function remains a challenge, and characterization of electronic behavior is therefore critical. Single molecule conductance measurements are a powerful tool to determine properties on the nanoscale and, as such, can be used to investigate novel building blocks that may fulfill the design requirements of next-generation devices. Combining these conductance results with strategic chemical synthesis allows for the development of new families of molecules that show attractive properties for future electronic devices. Since thiophene rings are the fruitflies of organic semiconductors on the bulk scale, they present an intriguing starting point for building functional materials on the nanoscale, and therefore form the structural basis of all molecules studied herein. First, the single-molecule conductance of a family of bithiophene derivatives was measured. A broad distribution in the single-molecule conductance of bithiophene was found compared with that of a biphenyl. This increased breadth in the conductance distribution was shown to be explained by the difference in 5-fold symmetry of thiophene rings as compared to the 6-fold symmetry of benzene rings. The reduced symmetry of thiophene rings results in a restriction on the torsion angle space available to these molecules when bound between two metal electrodes in a junction, causing each molecular junction to sample a different set of conformers in the conductance measurements. By contrast, the rotations of biphenyl are essentially unimpeded by junction binding, allowing each molecular junction

  17. Single Molecule Studies on Dynamics in Liquid Crystals

    PubMed Central

    Täuber, Daniela; von Borczyskowski, Christian

    2013-01-01

    Single molecule (SM) methods are able to resolve structure related dynamics of guest molecules in liquid crystals (LC). Highly diluted small dye molecules on the one hand explore structure formation and LC dynamics, on the other hand they report about a distortion caused by the guest molecules. The anisotropic structure of LC materials is used to retrieve specific conformation related properties of larger guest molecules like conjugated polymers. This in particular sheds light on organization mechanisms within biological cells, where large molecules are found in nematic LC surroundings. This review gives a short overview related to the application of highly sensitive SM detection schemes in LC. PMID:24077123

  18. PREFACE: Nanoelectronics, sensors and single molecule biophysics Nanoelectronics, sensors and single molecule biophysics

    NASA Astrophysics Data System (ADS)

    Tao, Nongjian

    2012-04-01

    This special section of Journal of Physics: Condensed Matter (JPCM) is dedicated to Professor Stuart M Lindsay on the occasion of his 60th birthday and in recognition of his outstanding contributions to multiple research areas, including light scattering spectroscopy, scanning probe microscopy, biophysics, solid-liquid interfaces and molecular and nanoelectronics. It contains a collection of 14 papers in some of these areas, including a feature article by Lindsay. Each paper was subject to the normal rigorous review process of JPCM. In Lindsay's paper, he discusses the next generations of hybrid chemical-CMOS devices for low cost and personalized medical diagnosis. The discussion leads to several papers on nanotechnology for biomedical applications. Kawaguchi et al report on the detection of single pollen allergen particles using electrode embedded microchannels. Stern et al describe a structural study of three-dimensional DNA-nanoparticle assemblies. Hihath et al measure the conductance of methylated DNA, and discuss the possibility of electrical detection DNA methylation. Portillo et al study the electrostatic effects on the aggregation of prion proteins and peptides with atomic force microscopy. In an effort to understand the interactions between nanostructures and cells, Lamprecht et al report on the mapping of the intracellular distribution of carbon nanotubes with a confocal Raman imaging technique, and Wang et al focus on the intracellular delivery of gold nanoparticles using fluorescence microscopy. Park and Kristic provide theoretical analysis of micro- and nano-traps and their biological applications. This section also features several papers on the fundamentals of electron transport in single atomic wires and molecular junctions. The papers by Xu et al and by Wandlowksi et al describe new methods to measure conductance and forces in single molecule junctions and metallic atomic wires. Scullion et al report on the conductance of molecules with similar

  19. Single-Molecule Observations of Ribosome Function

    PubMed Central

    Blanchard, Scott C.

    2009-01-01

    Summary of Recent Advances Single-molecule investigations promise to greatly advance our understanding of basic and regulated ribosome functions during the process of translation. Here, recent progress towards directly imaging the elemental translation elongation steps using fluorescence resonance energy transfer (FRET)-based imaging methods is discussed, which provide striking evidence of the highly dynamic nature of the ribosome. In this view, global rates and fidelities of protein synthesis reactions may be regulated by interactions of the ribosome with mRNA, tRNA, translation factors, and potentially many other cellular ligands, that modify intrinsic conformational equilibria in the translating particle. Future investigations probing this model must aim to visualize translation processes from multiple structural and kinetic perspectives simultaneously, to provide direct correlations between factor binding and conformational events. PMID:19223173

  20. Single-Molecule Solvation-Shell Sensing

    NASA Astrophysics Data System (ADS)

    Leary, E.; Höbenreich, H.; Higgins, S. J.; van Zalinge, H.; Haiss, W.; Nichols, R. J.; Finch, C. M.; Grace, I.; Lambert, C. J.; McGrath, R.; Smerdon, J.

    2009-02-01

    We present a new route to single-molecule sensing via solvation shells surrounding a current-carrying backbone molecule. As an example, we show that the presence of a water solvation shell “gates” the conductance of a family of oligothiophene-containing molecular wires, and that the longer the oligothiophene, the larger is the effect. For the longest example studied, the molecular conductance is over 2 orders of magnitude larger in the presence of a shell comprising just 10 water molecules. A first principles theoretical investigation of electron transport through the molecules, using the nonequilibrium Green’s function method, shows that water molecules interact directly with the thiophene rings, significantly shifting transport resonances and greatly increasing the conductance. This reversible effect is confirmed experimentally through conductance measurements performed in the presence of moist air and dry argon.

  1. Single-molecule spectroscopy using microfluidic platforms.

    PubMed

    Kim, Samuel; Zare, Richard N

    2010-01-01

    Microfluidics serves as a convenient platform for single-molecule experiments by providing manipulation of small amounts of liquids and micron-sized particles. An adapted version of capillary electrophoresis (CE) on a microchip can be utilized to separate chemical species with high resolution based on their ionic mobilities (i.e., charges and sizes), but identification of separated species is not trivial, especially for complex mixtures of sticky biomolecules. We describe here how to use a surfactant mixture system for CE on a poly(dimethylsiloxane) (PDMS) microchip, capture separated peaks within a 50-pl chamber using microvalves, analyze the fluorescence signals with correlation spectroscopy to extract molecular diffusion characteristics, and to identify the biomolecular clusters in a model immunocomplex system. PMID:20580962

  2. Bringing single-molecule spectroscopy to macromolecular protein complexes

    PubMed Central

    Joo, Chirlmin; Fareh, Mohamed; Kim, V. Narry

    2013-01-01

    Single-molecule fluorescence spectroscopy offers real-time, nanometer-resolution information. Over the past two decades, this emerging single-molecule technique has been rapidly adopted to investigate the structural dynamics and biological functions of proteins. Despite this remarkable achievement, single-molecule fluorescence techniques must be extended to macromolecular protein complexes that are physiologically more relevant for functional studies. In this review, we present recent major breakthroughs for investigating protein complexes within cell extracts using single-molecule fluorescence. We outline the challenges, future prospects and potential applications of these new single-molecule fluorescence techniques in biological and clinical research. PMID:23200186

  3. An atomic spectrum recorded with a single-molecule light source

    NASA Astrophysics Data System (ADS)

    Kiefer, Wilhelm; Rezai, Mohammad; Wrachtrup, Jörg; Gerhardt, Ilja

    2016-02-01

    A single molecule under cryogenic conditions allows one to realize an extremely bright and simultaneously narrow-band single-photon source. We present a review on the different excitation schemes of a single molecule and present the corresponding single-photon nature of the emitted light. Single-molecule spectroscopy has been recently interlinked with atomic spectroscopy. This optical interconnect among the different quantum systems might be enhanced by a so-called Faraday anomalous dispersion optical filter—an ideal tool for many experiments in quantum optics. We introduce our theoretical and experimental approach on these filters which are based on hot atomic sodium vapor. The electrical tunability together with the brightness of a single molecule allows us to record a full atomic spectrum of this filter with the single photons originating from a single-molecular emitter.

  4. Cavity optomechanical spring sensing of single molecules

    PubMed Central

    Yu, Wenyan; Jiang, Wei C; Lin, Qiang; Lu, Tao

    2016-01-01

    Label-free bio-sensing is a critical functionality underlying a variety of health- and security-related applications. Micro-/nano-photonic devices are well suited for this purpose and have emerged as promising platforms in recent years. Here we propose and demonstrate an approach that utilizes the optical spring effect in a high-Q coherent optomechanical oscillator to dramatically enhance the sensing resolution by orders of magnitude compared with conventional approaches, allowing us to detect single bovine serum albumin proteins with a molecular weight of 66 kDa at a signal-to-noise ratio of 16.8. The unique optical spring sensing approach opens up a distinctive avenue that not only enables biomolecule sensing and recognition at individual level, but is also of great promise for broad physical sensing applications that rely on sensitive detection of optical cavity resonance shift to probe external physical parameters. PMID:27460277

  5. Cavity optomechanical spring sensing of single molecules.

    PubMed

    Yu, Wenyan; Jiang, Wei C; Lin, Qiang; Lu, Tao

    2016-01-01

    Label-free bio-sensing is a critical functionality underlying a variety of health- and security-related applications. Micro-/nano-photonic devices are well suited for this purpose and have emerged as promising platforms in recent years. Here we propose and demonstrate an approach that utilizes the optical spring effect in a high-Q coherent optomechanical oscillator to dramatically enhance the sensing resolution by orders of magnitude compared with conventional approaches, allowing us to detect single bovine serum albumin proteins with a molecular weight of 66 kDa at a signal-to-noise ratio of 16.8. The unique optical spring sensing approach opens up a distinctive avenue that not only enables biomolecule sensing and recognition at individual level, but is also of great promise for broad physical sensing applications that rely on sensitive detection of optical cavity resonance shift to probe external physical parameters. PMID:27460277

  6. Cavity optomechanical spring sensing of single molecules

    NASA Astrophysics Data System (ADS)

    Yu, Wenyan; Jiang, Wei C.; Lin, Qiang; Lu, Tao

    2016-07-01

    Label-free bio-sensing is a critical functionality underlying a variety of health- and security-related applications. Micro-/nano-photonic devices are well suited for this purpose and have emerged as promising platforms in recent years. Here we propose and demonstrate an approach that utilizes the optical spring effect in a high-Q coherent optomechanical oscillator to dramatically enhance the sensing resolution by orders of magnitude compared with conventional approaches, allowing us to detect single bovine serum albumin proteins with a molecular weight of 66 kDa at a signal-to-noise ratio of 16.8. The unique optical spring sensing approach opens up a distinctive avenue that not only enables biomolecule sensing and recognition at individual level, but is also of great promise for broad physical sensing applications that rely on sensitive detection of optical cavity resonance shift to probe external physical parameters.

  7. Metal-Catalyzed Chemical Reaction of Single Molecules Directly Probed by Vibrational Spectroscopy.

    PubMed

    Choi, Han-Kyu; Park, Won-Hwa; Park, Chan-Gyu; Shin, Hyun-Hang; Lee, Kang Sup; Kim, Zee Hwan

    2016-04-01

    The study of heterogeneous catalytic reactions remains a major challenge because it involves a complex network of reaction steps with various intermediates. If the vibrational spectra of individual molecules could be monitored in real time, one could characterize the structures of the intermediates and the time scales of reaction steps without ensemble averaging. Surface-enhanced Raman scattering (SERS) spectroscopy does provide vibrational spectra with single-molecule sensitivity, but typical single-molecule SERS signals exhibit spatial heterogeneities and temporal fluctuations, making them difficult to be used in single-molecule kinetics studies. Here we show that SERS can monitor the single-molecule catalytic reactions in real time. The surface-immobilized reactants placed at the junctions of well-defined nanoparticle-thin film structures produce time-resolved SERS spectra with discrete, step-transitions of photoproducts. We interpret that such SERS-steps correspond to the reaction events of individual molecules occurring at the SERS hotspot. The analyses of the yield, dynamics, and the magnitude of such SERS steps, along with the associated spectral characteristics, fully support our claim. In addition, a model that is based on plasmonic field enhancement and surface photochemistry reproduces the key features of experimental observation. Overall, the result demonstrates that it is possible, under well-controlled conditions, to differentiate the chemical and physical processes contributing to the single-molecule SERS signals, and thus shows the use of single-molecule SERS as a tool for studying the metal-catalyzed organic reactions. PMID:26964567

  8. Progress towards DNA sequencing at the single molecule level

    SciTech Connect

    Goodwin, P.M.; Affleck, R.L.; Ambrose, W.P.

    1995-12-01

    We describe progress towards sequencing DNA at the single molecule level. Our technique involves incorporation of fluorescently tagged nucleotides into a targeted sequence, anchoring the labeled DNA strand in a flowing stream, sequential exonuclease digestion of the DNA strand, and efficient detection and identification of single tagged nucleotides. Experiments demonstrating strand specific exonuclease digestion of fluorescently labeled DNA anchored in flow as well as the detection of single cleaved fluorescently tagged nucleotides from a small number of anchored DNA fragments axe described. We find that the turnover rate of Esherichia coli exonuclease III on fluorescently labeled DNA in flow at 36{degree}C is {approximately}7 nucleotides per DNA strand per second, which is approximately the same as that measured for this enzyme on native DNA under static, saturated (excess enzyme) conditions. Experiments demonstrating the efficient detection of single fluorescent molecules delivered electrokinetically to a {approximately}3 pL probe volume are also described.

  9. SMART Timing: Principles of Single Molecule Techniques Course at the University of Michigan 2014

    PubMed Central

    Bartke, Rebecca M.; Cameron, Elizabeth L.; Cristie-David, Ajitha S.; Custer, Thomas C.; Denies, Maxwell S.; Farhat, May Daher; Dhakal, Soma; Ghosh, Soumi; Heinicke, Laurie A.; Hoff, J. Damon; Hou, Qian; Kahlscheuer, Matthew L.; Karslake, Joshua; Krieger, Adam G.; Li, Jieming; Li, Xiang; Lund, Paul E.; Vo, Nguyen N.; Park, Jun; Pitchiaya, Sethuramasundaram; Rai, Victoria; Smith, David J.; Suddala, Krishna C.; Wang, Jiarui; Widom, Julia R.; Walter, Nils G.

    2015-01-01

    Four days after the announcement of the 2014 Nobel Prize in Chemistry for “the development of super-resolved fluorescence microscopy” based on single molecule detection, the Single Molecule Analysis in Real-Time (SMART) Center at the University of Michigan hosted a “Principles of Single Molecule Techniques 2014” course. Through a combination of plenary lectures and an Open House at the SMART Center, the course took a snapshot of a technology with an especially broad and rapidly expanding range of applications in the biomedical and materials sciences. Highlighting the continued rapid emergence of technical and scientific advances, the course underscored just how brightly the future of the single molecule field shines. PMID:25546606

  10. Tunable magnetoresistance in an asymmetrically coupled single-molecule junction.

    PubMed

    Warner, Ben; El Hallak, Fadi; Prüser, Henning; Sharp, John; Persson, Mats; Fisher, Andrew J; Hirjibehedin, Cyrus F

    2015-03-01

    Phenomena that are highly sensitive to magnetic fields can be exploited in sensors and non-volatile memories. The scaling of such phenomena down to the single-molecule level may enable novel spintronic devices. Here, we report magnetoresistance in a single-molecule junction arising from negative differential resistance that shifts in a magnetic field at a rate two orders of magnitude larger than Zeeman shifts. This sensitivity to the magnetic field produces two voltage-tunable forms of magnetoresistance, which can be selected via the applied bias. The negative differential resistance is caused by transient charging of an iron phthalocyanine (FePc) molecule on a single layer of copper nitride (Cu2N) on a Cu(001) surface, and occurs at voltages corresponding to the alignment of sharp resonances in the filled and empty molecular states with the Cu(001) Fermi energy. An asymmetric voltage-divider effect enhances the apparent voltage shift of the negative differential resistance with magnetic field, which inherently is on the scale of the Zeeman energy. These results illustrate the impact that asymmetric coupling to metallic electrodes can have on transport through molecules, and highlight how this coupling can be used to develop molecular spintronic applications. PMID:25622229

  11. Ultra-Stable Organic Fluorophores for Single-Molecule Research

    PubMed Central

    Zheng, Qinsi; Juette, Manuel F.; Jockusch, Steffen; Wasserman, Michael R.; Zhou, Zhou; Altman, Roger B.; Blanchard, Scott C.

    2013-01-01

    Fluorescence provides a mechanism for achieving contrast in biological imaging that enables investigations of molecular structure, dynamics, and function at high spatial and temporal resolution. Small-molecule organic fluorophores have proven essential for such efforts and are widely used in advanced applications such as single-molecule and super-resolution microscopy. Yet, organic fluorophores, like all fluorescent species, exhibit instabilities in their emission characteristics, including blinking and photobleaching that limit their utility and performance. Here, we review the photophysics and photochemistry of organic fluorophores as they pertain to mitigating such instabilities, with a specific focus on the development of stabilized fluorophores through derivatization. Self-healing organic fluorophores, wherein the triplet state is intramolecularly quenched by a covalently attached protective agent, exhibit markedly improved photostabilities. We discuss the potential for further enhancements towards the goal of developing “ultra-stable” fluorophores spanning the visible spectrum and how such fluorophores are likely to impact the future of single-molecule research. PMID:24177677

  12. Single-Molecule Electrical Random Resequencing of DNA and RNA

    NASA Astrophysics Data System (ADS)

    Ohshiro, Takahito; Matsubara, Kazuki; Tsutsui, Makusu; Furuhashi, Masayuki; Taniguchi, Masateru; Kawai, Tomoji

    2012-07-01

    Two paradigm shifts in DNA sequencing technologies--from bulk to single molecules and from optical to electrical detection--are expected to realize label-free, low-cost DNA sequencing that does not require PCR amplification. It will lead to development of high-throughput third-generation sequencing technologies for personalized medicine. Although nanopore devices have been proposed as third-generation DNA-sequencing devices, a significant milestone in these technologies has been attained by demonstrating a novel technique for resequencing DNA using electrical signals. Here we report single-molecule electrical resequencing of DNA and RNA using a hybrid method of identifying single-base molecules via tunneling currents and random sequencing. Our method reads sequences of nine types of DNA oligomers. The complete sequence of 5'-UGAGGUA-3' from the let-7 microRNA family was also identified by creating a composite of overlapping fragment sequences, which was randomly determined using tunneling current conducted by single-base molecules as they passed between a pair of nanoelectrodes.

  13. Single-molecule methods to quantify adsorptive separations (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Landes, Christy

    2015-08-01

    Interfacial adsorption and transport are the chemical and physical processes that underlie separations. Although separations technology accounts for hundreds of billions of dollars in the global economy, the process is not well-understood at the mechanistic level and instead is almost always optimized empirically. One of the reasons is that access to the underlying molecular phenomena has only been available recently via single-molecule methods. There are still interesting challenges because adsorption, desorption, and transport are all dynamic processes, whereas much of the advances in super-resolution imaging have focused on imaging static materials. Our lab has focused in recent years on developing and optimizing data analysis methods for quantifying the dynamics of adsorption and transport in porous materials at nanometer-resolution spatial scales. Our methods include maximizing information content in dynamic single-molecule data and developing methods to detect change-points in binned data. My talk will outline these methods, and will address how and when they can be applied to extract dynamic details in heterogeneous materials such as porous membranes.

  14. Single-molecule magnets ``without'' intermolecular interactions

    NASA Astrophysics Data System (ADS)

    Wernsdorfer, W.; Vergnani, L.; Rodriguez-Douton, M. J.; Cornia, A.; Neugebauer, P.; Barra, A. L.; Sorace, L.; Sessoli, R.

    2012-02-01

    Intermolecular magnetic interactions (dipole-dipole and exchange) affect strongly the magnetic relaxation of crystals of single-molecule magnets (SMMs), especially at low temperature, where quantum tunneling of the magnetization (QTM) dominates. This leads to complex many-body problems [l]. Measurements on magnetically diluted samples are desirable to clearly sort out the behaviour of magnetically-isolated SMMs and to reveal, by comparison, the effect of intermolecular interactions. Here, we diluted a Fe4 SMM into a diamagnetic crystal lattice, affording arrays of independent and iso-oriented magnetic units. We found that the resonant tunnel transitions are much sharper, the tunneling efficiency changes significantly, and two-body QTM transitions disappear. These changes have been rationalized on the basis of a dipolar shuffling mechanism and of transverse dipolar fields, whose effect has been analyzed using a multispin model. Our findings directly prove the impact of intermolecular magnetic couplings on the SMM behaviour and disclose the magnetic response of truly-isolated giant spins in a diamagnetic crystalline environment.[4pt] [1] W. Wernsdorfer, at al, PRL 82, 3903 (1999); PRL 89, 197201 (2002); Nature 416, 406 (2002); IS Tupitsyn, PCE Stamp, NV Prokof'ev, PRB 69, 132406 (2004).

  15. SINGLE MOLECULE APPROACHES TO BIOLOGY, 2010 GORDON RESEARCH CONFERENCE, JUNE 27-JULY 2, 2010, ITALY

    SciTech Connect

    Professor William Moerner

    2010-07-09

    The 2010 Gordon Conference on Single-Molecule Approaches to Biology focuses on cutting-edge research in single-molecule science. Tremendous technical developments have made it possible to detect, identify, track, and manipulate single biomolecules in an ambient environment or even in a live cell. Single-molecule approaches have changed the way many biological problems are addressed, and new knowledge derived from these approaches continues to emerge. The ability of single-molecule approaches to avoid ensemble averaging and to capture transient intermediates and heterogeneous behavior renders them particularly powerful in elucidating mechanisms of biomolecular machines: what they do, how they work individually, how they work together, and finally, how they work inside live cells. The burgeoning use of single-molecule methods to elucidate biological problems is a highly multidisciplinary pursuit, involving both force- and fluorescence-based methods, the most up-to-date advances in microscopy, innovative biological and chemical approaches, and nanotechnology tools. This conference seeks to bring together top experts in molecular and cell biology with innovators in the measurement and manipulation of single molecules, and will provide opportunities for junior scientists and graduate students to present their work in poster format and to exchange ideas with leaders in the field. A number of excellent poster presenters will be selected for short oral talks. Topics as diverse as single-molecule sequencing, DNA/RNA/protein interactions, folding machines, cellular biophysics, synthetic biology and bioengineering, force spectroscopy, new method developments, superresolution imaging in cells, and novel probes for single-molecule imaging will be on the program. Additionally, the collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings in the beauty of the Il Ciocco site in

  16. Ultrasensitive surface-enhanced Raman scattering detection in common fluids

    PubMed Central

    Yang, Shikuan; Dai, Xianming; Stogin, Birgitt Boschitsch; Wong, Tak-Sing

    2016-01-01

    Detecting target analytes with high specificity and sensitivity in any fluid is of fundamental importance to analytical science and technology. Surface-enhanced Raman scattering (SERS) has proven to be capable of detecting single molecules with high specificity, but achieving single-molecule sensitivity in any highly diluted solutions remains a challenge. Here we demonstrate a universal platform that allows for the enrichment and delivery of analytes into the SERS-sensitive sites in both aqueous and nonaqueous fluids, and its subsequent quantitative detection of Rhodamine 6G (R6G) down to ∼75 fM level (10−15 mol⋅L−1). Our platform, termed slippery liquid-infused porous surface-enhanced Raman scattering (SLIPSERS), is based on a slippery, omniphobic substrate that enables the complete concentration of analytes and SERS substrates (e.g., Au nanoparticles) within an evaporating liquid droplet. Combining our SLIPSERS platform with a SERS mapping technique, we have systematically quantified the probability, p(c), of detecting R6G molecules at concentrations c ranging from 750 fM (p > 90%) down to 75 aM (10−18 mol⋅L−1) levels (p ≤ 1.4%). The ability to detect analytes down to attomolar level is the lowest limit of detection for any SERS-based detection reported thus far. We have shown that analytes present in liquid, solid, or air phases can be extracted using a suitable liquid solvent and subsequently detected through SLIPSERS. Based on this platform, we have further demonstrated ultrasensitive detection of chemical and biological molecules as well as environmental contaminants within a broad range of common fluids for potential applications related to analytical chemistry, molecular diagnostics, environmental monitoring, and national security. PMID:26719413

  17. Ultrasensitive surface-enhanced Raman scattering detection in common fluids.

    PubMed

    Yang, Shikuan; Dai, Xianming; Stogin, Birgitt Boschitsch; Wong, Tak-Sing

    2016-01-12

    Detecting target analytes with high specificity and sensitivity in any fluid is of fundamental importance to analytical science and technology. Surface-enhanced Raman scattering (SERS) has proven to be capable of detecting single molecules with high specificity, but achieving single-molecule sensitivity in any highly diluted solutions remains a challenge. Here we demonstrate a universal platform that allows for the enrichment and delivery of analytes into the SERS-sensitive sites in both aqueous and nonaqueous fluids, and its subsequent quantitative detection of Rhodamine 6G (R6G) down to ∼75 fM level (10(-15) mol⋅L(-1)). Our platform, termed slippery liquid-infused porous surface-enhanced Raman scattering (SLIPSERS), is based on a slippery, omniphobic substrate that enables the complete concentration of analytes and SERS substrates (e.g., Au nanoparticles) within an evaporating liquid droplet. Combining our SLIPSERS platform with a SERS mapping technique, we have systematically quantified the probability, p(c), of detecting R6G molecules at concentrations c ranging from 750 fM (p > 90%) down to 75 aM (10(-18) mol⋅L(-1)) levels (p ≤ 1.4%). The ability to detect analytes down to attomolar level is the lowest limit of detection for any SERS-based detection reported thus far. We have shown that analytes present in liquid, solid, or air phases can be extracted using a suitable liquid solvent and subsequently detected through SLIPSERS. Based on this platform, we have further demonstrated ultrasensitive detection of chemical and biological molecules as well as environmental contaminants within a broad range of common fluids for potential applications related to analytical chemistry, molecular diagnostics, environmental monitoring, and national security. PMID:26719413

  18. 'Single molecule': theory and experiments, an introduction

    PubMed Central

    2013-01-01

    At scales below micrometers, Brownian motion dictates most of the behaviors. The simple observation of a colloid is striking: a permanent and random motion is seen, whereas inertial forces play a negligible role. This Physics, where velocity is proportional to force, has opened new horizons in biology. The random feature is challenged in living systems where some proteins - molecular motors - have a directed motion whereas their passive behaviors of colloid should lead to a Brownian motion. Individual proteins, polymers of living matter such as DNA, RNA, actin or microtubules, molecular motors, all these objects can be viewed as chains of colloids. They are submitted to shocks from molecules of the solvent. Shapes taken by these biopolymers or dynamics imposed by motors can be measured and modeled from single molecules to their collective effects. Thanks to the development of experimental methods such as optical tweezers, Atomic Force Microscope (AFM), micropipettes, and quantitative fluorescence (such as Förster Resonance Energy Transfer, FRET), it is possible to manipulate these individual biomolecules in an unprecedented manner: experiments allow to probe the validity of models; and a new Physics has thereby emerged with original biological insights. Theories based on statistical mechanics are needed to explain behaviors of these systems. When force-extension curves of these molecules are extracted, the curves need to be fitted with models that predict the deformation of free objects or submitted to a force. When velocity of motors is altered, a quantitative analysis is required to explain the motions of individual molecules under external forces. This lecture will give some elements of introduction to the lectures of the session 'Nanophysics for Molecular Biology'. PMID:24565227

  19. From single molecule to single tubules

    NASA Astrophysics Data System (ADS)

    Guo, Chin-Lin

    2012-02-01

    Biological systems often make decisions upon conformational changes and assembly of single molecules. In vivo, epithelial cells (such as the mammary gland cells) can respond to extracellular matrix (ECM) molecules, type I collagen (COL), and switch their morphology from a lobular lumen (100-200 micron) to a tubular lumen (1mm-1cm). However, how cells make such a morphogenetic decision through interactions with each other and with COL is unclear. Using a temporal control of cell-ECM interaction, we find that epithelial cells, in response to a fine-tuned percentage of type I collagen (COL) in ECM, develop various linear patterns. Remarkably, these patterns allow cells to self-assemble into a tubule of length ˜ 1cm and diameter ˜ 400 micron in the liquid phase (i.e., scaffold-free conditions). In contrast with conventional thought, the linear patterns arise through bi-directional transmission of traction force, but not through diffusible biochemical factors secreted by cells. In turn, the transmission of force evokes a long-range (˜ 600 micron) intercellular mechanical interaction. A feedback effect is encountered when the mechanical interaction modifies cell positioning and COL alignment. Micro-patterning experiments further reveal that such a feedback is a novel cell-number-dependent, rich-get-richer process, which allows cells to integrate mechanical interactions into long-range (> 1mm) linear coordination. Our results suggest a mechanism cells can use to form and coordinate long-range tubular patterns, independent of those controlled by diffusible biochemical factors, and provide a new strategy to engineer/regenerate epithelial organs using scaffold-free self-assembly methods.

  20. Visualizing electromagnetic fields at the nanoscale by single molecule localization.

    PubMed

    Steuwe, Christian; Erdelyi, Miklos; Szekeres, G; Csete, M; Baumberg, Jeremy J; Mahajan, Sumeet; Kaminski, Clemens F

    2015-05-13

    Coupling of light to the free electrons at metallic surfaces allows the confinement of electric fields to subwavelength dimensions, far below the optical diffraction limit. While this is routinely used to manipulate light at the nanoscale, in electro-optic devices and enhanced spectroscopic techniques, no characterization technique for imaging the underlying nanoscopic electromagnetic fields exists, which does not perturb the field or employ complex electron beam imaging. Here, we demonstrate the direct visualization of electromagnetic fields on patterned metallic substrates at nanometer resolution, exploiting a strong "autonomous" fluorescence-blinking behavior of single molecules within the confined fields allowing their localization. Use of DNA-constructs for precise positioning of fluorescence dyes on the surface induces this distance-dependent autonomous blinking thus completely obviating the need for exogenous agents or switching methods. Mapping such electromagnetic field distributions at nanometer resolution aids the rational design of nanometals for diverse photonic applications. PMID:25915093

  1. Single-molecule fluorescence studies on DNA looping.

    PubMed

    Jeong, Jiyoun; Le, Tung T; Kim, Harold D

    2016-08-01

    Structure and dynamics of DNA impact how the genetic code is processed and maintained. In addition to its biological importance, DNA has been utilized as building blocks of various nanomachines and nanostructures. Thus, understanding the physical properties of DNA is of fundamental importance to basic sciences and engineering applications. DNA can undergo various physical changes. Among them, DNA looping is unique in that it can bring two distal sites together, and thus can be used to mediate interactions over long distances. In this paper, we introduce a FRET-based experimental tool to study DNA looping at the single molecule level. We explain the connection between experimental measurables and a theoretical concept known as the J factor with the intent of raising awareness of subtle theoretical details that should be considered when drawing conclusions. We also explore DNA looping-assisted protein diffusion mechanism called intersegmental transfer using protein induced fluorescence enhancement (PIFE). We present some preliminary results and future outlooks. PMID:27064000

  2. Nonlinear coherent spectroscopy in the single molecule limit (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Potma, Eric O.

    2015-10-01

    Detecting coherent anti-Stokes Raman scattering (CARS) signals from signal molecules is a longstanding experimental challenge. Driving the vibrational CARS response with surface plasmon fields has proven notoriously difficult due to strong background contributions, unfavorable heat dissipation and the phase dispersion of the plasmon modes in the ensemble. In this work we overcome previous experimental limitations and demonstrate time-resolved, vibrational CARS from molecules in the low copy number limit, down to the single molecule level. Our measurements, which are performed under ambient and non-electronic resonance conditions, establish that the coherent response from vibrational modes of individual molecules can be studied experimentally, opening up a new realm of molecular spectroscopic investigations.

  3. Nanopore sensing at ultra-low concentrations using single-molecule dielectrophoretic trapping

    NASA Astrophysics Data System (ADS)

    Freedman, Kevin J.; Otto, Lauren M.; Ivanov, Aleksandar P.; Barik, Avijit; Oh, Sang-Hyun; Edel, Joshua B.

    2016-01-01

    Single-molecule techniques are being developed with the exciting prospect of revolutionizing the healthcare industry by generating vast amounts of genetic and proteomic data. One exceptionally promising route is in the use of nanopore sensors. However, a well-known complexity is that detection and capture is predominantly diffusion limited. This problem is compounded when taking into account the capture volume of a nanopore, typically 108-1010 times smaller than the sample volume. To rectify this disproportionate ratio, we demonstrate a simple, yet powerful, method based on coupling single-molecule dielectrophoretic trapping to nanopore sensing. We show that DNA can be captured from a controllable, but typically much larger, volume and concentrated at the tip of a metallic nanopore. This enables the detection of single molecules at concentrations as low as 5 fM, which is approximately a 103 reduction in the limit of detection compared with existing methods, while still maintaining efficient throughput.

  4. Nanopore sensing at ultra-low concentrations using single-molecule dielectrophoretic trapping

    PubMed Central

    Freedman, Kevin J.; Otto, Lauren M.; Ivanov, Aleksandar P.; Barik, Avijit; Oh, Sang-Hyun; Edel, Joshua B.

    2016-01-01

    Single-molecule techniques are being developed with the exciting prospect of revolutionizing the healthcare industry by generating vast amounts of genetic and proteomic data. One exceptionally promising route is in the use of nanopore sensors. However, a well-known complexity is that detection and capture is predominantly diffusion limited. This problem is compounded when taking into account the capture volume of a nanopore, typically 108–1010 times smaller than the sample volume. To rectify this disproportionate ratio, we demonstrate a simple, yet powerful, method based on coupling single-molecule dielectrophoretic trapping to nanopore sensing. We show that DNA can be captured from a controllable, but typically much larger, volume and concentrated at the tip of a metallic nanopore. This enables the detection of single molecules at concentrations as low as 5 fM, which is approximately a 103 reduction in the limit of detection compared with existing methods, while still maintaining efficient throughput. PMID:26732171

  5. Collective effects in Single Molecule Magnets

    NASA Astrophysics Data System (ADS)

    Subedi, Pradeep

    Single molecule magnets (SMMs), such as Mn12-acetate, are composed of transition metal ions and consists of identical molecules with large ground-state spin (S = 10) and a strong uniaxial anisotropy (65 K). Below about 3 K, Mn12-acetate exhibits magnetic hysteresis with steps at specific values of longitudinal magnetic field due to resonant quantum tunneling between spin up and down projections along the easy axis. The intermolecular exchange interactions between spins on molecules are quite small and spins are considered to be independent and non-interacting. However, the molecules do interact with each other both through magnetic dipolar interactions and through the lattice (e.g. phonons). I have investigated collective effects in SMMs due to these intermolecular interactions. In the thesis I will present experiments that explored magnetic ordering due to magnetic dipole interactions in Mn12-acetate and Mn12-acetate-MeOH. I will also present exper- iments on the onset of magnetic de agration in Mn12-acetate due to a thermal instability. The magnetic ordering studies involved investigating the effect of transverse fields on the susceptibility of single crystals of Mn12-acetate and Mn12-acetate- MeOH. Transverse fields increase quantum spin uctuations that suppress long- range order. However, the suppression of the Curie temperature by transverse fields in Mn12-acetate is far more rapid than predicted by the Transverse-Field Ising Ferromagnetic Model (TFIFM) and instead agrees with the predictions of the Random-Field Ising Ferromagnet Model. It appears that solvent disorder in Mn12-acetate gives rise to a distribution of random-fields that further suppress long-range order. Subsequent studies on Mn12-acetate-MeOH, with the same spin and similar lattice constants but without solvent disorder as Mn12-acetate, agrees with the TFIFM. The magnetic de agration studies involved studying the instability that leads to the ignition of magnetic deflagration in a thermally

  6. Surface enhanced Raman scattering detection of single R6G molecules on nanoporous gold films

    NASA Astrophysics Data System (ADS)

    Liu, Hongwen; Zhang, L.; Yamaguchi, Y.; Iwasaki, H.; Inouye, Y.; Xue, Q. K.; Chen, M. W.

    2011-03-01

    Detecting single molecules with high sensitivity and molecular specificity is of great practical interest in many fields such as chemistry, biology, medicine, and pharmacology. For this purpose, cheap and highly active substrates are of crucial importance. Recently, nanoporous metals (NPMs), with a three-dimensional continuous network structure and pore channels usually much smaller than the wavelength of visible light, revealed outstanding optical properties in surface enhanced Raman scattering (SERS). In this work, we further modify the nanoporous gold films by growing a high density of gold nano-tips on the surface. Extremely focused electromagnetic fields can be produced at the apex of the nano-tips, resulting in so-called hot spots. With this NPM-based and affordable substrate, single molecule-detection is achievable with ultrahigh enhancement in SERS.

  7. Single-molecule spectroscopy and dynamics at room temperature

    SciTech Connect

    Xie, X.S.

    1996-12-01

    The spirit of studying single-molecule behaviors dates back to the turn of the century. In addition to Einstein`s well-known work on Brownian motion, there has been a tradition for studying single {open_quotes}macromolecules{close_quotes} or a small number of molecules either by light scattering or by fluorescence using an optical microscope. Modern computers have allowed detailed studies of single-molecule behaviors in condensed media through molecular dynamics simulations. Optical spectroscopy offers a wealth of information on the structure, interaction, and dynamics of molecular species. With the motivation of removing {open_quotes}inhomogeneous broadening{close_quotes}, spectroscopic techniques have evolved from spectral hole burning, fluorescence line narrowing, and photo-echo to the recent pioneering work on single-molecule spectroscopy in solids at cryogenic temperatures. High-resolution spectroscopic work on single molecules relies on zero phonon lines which appear at cryogenic temperatures, and have narrow line widths and large absorption cross sections. Recent advances in near-field and confocal fluorescence have allowed not only fluorescence imaging of single molecules with high spatial resolutions but also single-molecule spectroscopy at room temperature. In this Account, the author provides a physical chemist`s perspective on experimental and theoretical developments on room-temperature single-molecule spectroscopy and dynamics, with the emphasis on the information obtainable from single-molecule experiments. 61 refs., 9 figs.

  8. Single molecule image formation, reconstruction and processing: introduction.

    PubMed

    Ashok, Amit; Piestun, Rafael; Stallinga, Sjoerd

    2016-07-01

    The ability to image at the single molecule scale has revolutionized research in molecular biology. This feature issue presents a collection of articles that provides new insights into the fundamental limits of single molecule imaging and reports novel techniques for image formation and analysis. PMID:27409708

  9. Action spectroscopy for single-molecule reactions - Experiments and theory

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Motobayashi, K.; Frederiksen, T.; Ueba, H.; Kawai, M.

    2015-05-01

    We review several representative experimental results of action spectroscopy (AS) of single molecules on metal surfaces using a scanning tunneling microscope (STM) by M. Kawai's group over last decade. The experimental procedures to observe STM-AS are described. A brief description of a low-temperature STM and experimental setup are followed by key experimental techniques of how to determine an onset bias voltage of a reaction and how to measure a current change associated with reactions and finally how to observe AS for single molecule reactions. The experimental results are presented for vibrationally mediated chemical transformation of trans-2-butene to 1.3-butadiene molecule and rotational motion of a single cis-2-butene molecule among four equivalent orientations on Pd(1 1 0). The AS obtained from the motion clearly detects more vibrational modes than inelastic electron tunneling spectroscopy with an STM. AS is demonstrated as a useful and novel single molecule vibrational spectroscopy. The AS for a lateral hopping of water dimer on Pt(1 1 1) is presented as an example of novelty. Several distinct vibrational modes are detected as the thresholds in the AS. The assignment of the vibrational modes determined from the analysis of the AS is made from a view of the adsorption geometry of hydrogen-bond donor or acceptor molecules in water dimer. A generic theory of STM-AS, i.e., a reaction rate or yield as a function of bias voltage, is presented using a single adsorbate resonance model for single molecule reactions induced by the inelastic tunneling current. Formulas for the reaction rate R (V) and Y (V) , i.e., reaction yield per electron Y (V) = eR (V) / I are derived. It provides a versatile framework to analyze any vibrationally mediated reactions of single adsorbates on metal surfaces. Numerical examples are presented to demonstrate generic features of the vibrational generation rate and Y (V) at different levels of approximations and to show how the effective

  10. Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy

    PubMed Central

    Michalet, Xavier; Ingargiola, Antonino; Colyer, Ryan A.; Scalia, Giuseppe; Weiss, Shimon; Maccagnani, Piera; Gulinatti, Angelo; Rech, Ivan; Ghioni, Massimo

    2014-01-01

    Solution-based single-molecule fluorescence spectroscopy is a powerful experimental tool with applications in cell biology, biochemistry and biophysics. The basic feature of this technique is to excite and collect light from a very small volume and work in a low concentration regime resulting in rare burst-like events corresponding to the transit of a single molecule. Detecting photon bursts is a challenging task: the small number of emitted photons in each burst calls for high detector sensitivity. Bursts are very brief, requiring detectors with fast response time and capable of sustaining high count rates. Finally, many bursts need to be accumulated to achieve proper statistical accuracy, resulting in long measurement time unless parallelization strategies are implemented to speed up data acquisition. In this paper we will show that silicon single-photon avalanche diodes (SPADs) best meet the needs of single-molecule detection. We will review the key SPAD parameters and highlight the issues to be addressed in their design, fabrication and operation. After surveying the state-of-the-art SPAD technologies, we will describe our recent progress towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. The potential of this approach is illustrated with single-molecule Förster resonance energy transfer measurements. PMID:25309114

  11. Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy.

    PubMed

    Michalet, Xavier; Ingargiola, Antonino; Colyer, Ryan A; Scalia, Giuseppe; Weiss, Shimon; Maccagnani, Piera; Gulinatti, Angelo; Rech, Ivan; Ghioni, Massimo

    2014-11-01

    Solution-based single-molecule fluorescence spectroscopy is a powerful experimental tool with applications in cell biology, biochemistry and biophysics. The basic feature of this technique is to excite and collect light from a very small volume and work in a low concentration regime resulting in rare burst-like events corresponding to the transit of a single molecule. Detecting photon bursts is a challenging task: the small number of emitted photons in each burst calls for high detector sensitivity. Bursts are very brief, requiring detectors with fast response time and capable of sustaining high count rates. Finally, many bursts need to be accumulated to achieve proper statistical accuracy, resulting in long measurement time unless parallelization strategies are implemented to speed up data acquisition. In this paper we will show that silicon single-photon avalanche diodes (SPADs) best meet the needs of single-molecule detection. We will review the key SPAD parameters and highlight the issues to be addressed in their design, fabrication and operation. After surveying the state-of-the-art SPAD technologies, we will describe our recent progress towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. The potential of this approach is illustrated with single-molecule Förster resonance energy transfer measurements. PMID:25309114

  12. Single Molecule Screening of Disease DNA Without Amplification

    SciTech Connect

    Ji-Young Lee

    2006-12-12

    The potential of single molecule detection as an analysis tool in biological and medical fields is well recognized today. This fast evolving technique will provide fundamental sensitivity to pick up individual pathogen molecules, and therefore contribute to a more accurate diagnosis and a better chance for a complete cure. Many studies are being carried out to successfully apply this technique in real screening fields. In this dissertation, several attempts are shown that have been made to test and refine the application of the single molecule technique as a clinical screening method. A basic applicability was tested with a 100% target content sample, using electrophoretic mobility and multiple colors as identification tools. Both electrophoretic and spectral information of individual molecule were collected within a second, while the molecule travels along the flow in a capillary. Insertion of a transmission grating made the recording of the whole spectrum of a dye-stained molecule possible without adding complicated instrumental components. Collecting two kinds of information simultaneously and combining them allowed more thorough identification, up to 98.8% accuracy. Probing mRNA molecules with fluorescently labeled cDNA via hybridization was also carried out. The spectral differences among target, probe, and hybrid were interpreted in terms of dispersion distances after transmission grating, and used for the identification of each molecule. The probes were designed to have the least background when they are free, but have strong fluorescence after hybridization via fluorescence resonance energy transfer. The mRNA-cDNA hybrids were further imaged in whole blood, plasma, and saliva, to test how far a crude preparation can be tolerated. Imaging was possible with up to 50% of clear bio-matrix contents, suggesting a simple lysis and dilution would be sufficient for imaging for some cells. Real pathogen DNA of human papillomavirus (HPV) type-I6 in human genomic DNA

  13. Electrical, Mechanical and Thermal Properties of Single Molecules

    SciTech Connect

    Tao, Nongjian

    2014-08-20

    The specific aims of the prior DOE grant are to determine the stability of a single molecule bound to two electrodes, study local heating in single molecule junctions due to electron-phonon and electron-electron interactions, measure electron-phonon interactions in single molecule wires; and explore piezoelectric properties of single molecules. We have completed all the major tasks, and also expanded naturally the scope of the project to address several other critical issues in single molecule properties, developed new experimental capabilities, and observed a number of unexpected phenomena. We summarized here some of the findings that are most relevant to the present renewal proposal. More details can be found in the publications resulted from this grant and annual progress reports.

  14. Analyzing Single-Molecule Time Series via Nonparametric Bayesian Inference

    PubMed Central

    Hines, Keegan E.; Bankston, John R.; Aldrich, Richard W.

    2015-01-01

    The ability to measure the properties of proteins at the single-molecule level offers an unparalleled glimpse into biological systems at the molecular scale. The interpretation of single-molecule time series has often been rooted in statistical mechanics and the theory of Markov processes. While existing analysis methods have been useful, they are not without significant limitations including problems of model selection and parameter nonidentifiability. To address these challenges, we introduce the use of nonparametric Bayesian inference for the analysis of single-molecule time series. These methods provide a flexible way to extract structure from data instead of assuming models beforehand. We demonstrate these methods with applications to several diverse settings in single-molecule biophysics. This approach provides a well-constrained and rigorously grounded method for determining the number of biophysical states underlying single-molecule data. PMID:25650922

  15. Optical Microcavity: Sensing down to Single Molecules and Atoms

    PubMed Central

    Yoshie, Tomoyuki; Tang, Lingling; Su, Shu-Yu

    2011-01-01

    This review article discusses fundamentals of dielectric, low-loss, optical micro-resonator sensing, including figures of merit and a variety of microcavity designs, and future perspectives in microcavity-based optical sensing. Resonance frequency and quality (Q) factor are altered as a means of detecting a small system perturbation, resulting in realization of optical sensing of a small amount of sample materials, down to even single molecules. Sensitivity, Q factor, minimum detectable index change, noises (in sensor system components and microcavity system including environments), microcavity size, and mode volume are essential parameters to be considered for optical sensing applications. Whispering gallery mode, photonic crystal, and slot-type microcavities typically provide compact, high-quality optical resonance modes for optical sensing applications. Surface Bloch modes induced on photonic crystals are shown to be a promising candidate thanks to large field overlap with a sample and ultra-high-Q resonances. Quantum optics effects based on microcavity quantum electrodynamics (QED) would provide novel single-photo-level detection of even single atoms and molecules via detection of doublet vacuum Rabi splitting peaks in strong coupling. PMID:22319393

  16. Analysis of the Role of Peripheral Ligands Coordinated to Zn(II) in Enhancing the Energy Barrier in Luminescent Linear Trinuclear Zn-Dy-Zn Single-Molecule Magnets.

    PubMed

    Costes, Jean Pierre; Titos-Padilla, Silvia; Oyarzabal, Itziar; Gupta, Tulika; Duhayon, Carine; Rajaraman, Gopalan; Colacio, Enrique

    2015-10-26

    Three new Dy complexes have been prepared according to a complex-as-ligand strategy. Structural determinations indicate that the central Dy ion is surrounded by two LZn units (L(2-) is the di-deprotonated form of the N2 O2 compartmental N,N'-2,2-dimethylpropylenedi(3-methoxysalicylideneiminato) Schiff base. The Dy ions are nonacoordinate to eight oxygen atoms from the two L ligands and to a water molecule. The Zn ions are pentacoordinate in all cases, linked to the N2 O2 atoms from L, and the apical position of the Zn coordination sphere is occupied by a water molecule or bromide or chloride ions. These resulting complexes, formulated (LZnX)-Dy-(LZnX), are tricationic with X=H2 O and monocationic with X=Br or Cl. They behave as field-free single-molecule magnets (SMMs) with effective energy barriers (Ueff ) for the reversal of the magnetization of 96.9(6) K with τ0 =2.4×10(-7)  s, 146.8(5) K with τ0 =9.2×10(-8)  s, and 146.1(10) K with τ0 =9.9×10(-8)  s for compounds with ZnOH2 , ZnBr, and ZnCl motifs, respectively. The Cole-Cole plots exhibit semicircular shapes with α parameters in the range of 0.19 to 0.29, which suggests multiple relaxation processes. Under a dc applied magnetic field of 1000 Oe, the quantum tunneling of magnetization (QTM) is partly or fully suppressed and the energy barriers increase to Ueff =128.6(5) K and τ0 =1.8×10(-8)  s for 1, Ueff =214.7 K and τ0 =9.8×10(-9)  s for 2, and Ueff =202.4 K and τ0 =1.5×10(-8)  s for 3. The two pairs of largely negatively charged phenoxido oxygen atoms with short DyO bonds are positioned at opposite sides of the Dy(3+) ion, which thus creates a strong crystal field that stabilizes the axial MJ =±15/2 doublet as the ground Kramers doublet. Although the compound with the ZnOH2 motifs possesses the larger negative charges on the phenolate oxygen atoms, as confirmed by using DFT calculations, it exhibits the larger distortions of the DyO9 coordination

  17. Combined versatile high-resolution optical tweezers and single-molecule fluorescence microscopy

    PubMed Central

    Sirinakis, George; Ren, Yuxuan; Gao, Ying; Xi, Zhiqun; Zhang, Yongli

    2012-01-01

    Optical trapping and single-molecule fluorescence are two major single-molecule approaches. Their combination has begun to show greater capability to study more complex systems than either method alone, but met many fundamental and technical challenges. We built an instrument that combines base-pair resolution dual-trap optical tweezers with single-molecule fluorescence microscopy. The instrument has complementary design and functionalities compared with similar microscopes previously described. The optical tweezers can be operated in constant force mode for easy data interpretation or in variable force mode for maximum spatiotemporal resolution. The single-molecule fluorescence detection can be implemented in either wide-field or confocal imaging configuration. To demonstrate the capabilities of the new instrument, we imaged a single stretched λ DNA molecule and investigated the dynamics of a DNA hairpin molecule in the presence of fluorophore-labeled complementary oligonucleotide. We simultaneously observed changes in the fluorescence signal and pauses in fast extension hopping of the hairpin due to association and dissociation of individual oligonucleotides. The combined versatile microscopy allows for greater flexibility to study molecular machines or assemblies at a single-molecule level. PMID:23020384

  18. Nobel Lecture: Single-molecule spectroscopy, imaging, and photocontrol: Foundations for super-resolution microscopy*

    NASA Astrophysics Data System (ADS)

    Moerner, W. E. William E.

    2015-10-01

    The initial steps toward optical detection and spectroscopy of single molecules in condensed matter arose out of the study of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral signatures relating to the fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 1990s, many fascinating physical effects were observed for individual molecules, and the imaging of single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency provided important forerunners of the later super-resolution microscopy with single molecules. In the room-temperature regime, imaging of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. Because each single fluorophore acts as a light source roughly 1 nm in size, microscopic observation and localization of individual fluorophores is a key ingredient to imaging beyond the optical diffraction limit. Combining this with active control of the number of emitting molecules in the pumped volume led to the super-resolution imaging of Eric Betzig and others, a new frontier for optical microscopy beyond the diffraction limit. The background leading up to these observations is described and selected current developments are summarized.

  19. Single-Molecule Spectroscopy, Imaging, and Photocontrol: Foundations for Super-Resolution Microscopy (Nobel Lecture).

    PubMed

    Moerner, W E William E

    2015-07-01

    The initial steps toward optical detection and spectroscopy of single molecules in condensed matter arose out of the study of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral signatures relating to the fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 90s, many fascinating physical effects were observed for individual molecules, and the imaging of single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency provided important forerunners of the later super-resolution microscopy with single molecules. In the room temperature regime, imaging of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic observation and localization of individual fluorophores is a key ingredient to imaging beyond the optical diffraction limit. Combining this with active control of the number of emitting molecules in the pumped volume led to the super-resolution imaging of Eric Betzig and others, a new frontier for optical microscopy beyond the diffraction limit. The background leading up to these observations is described and current developments are summarized. PMID:26088273

  20. Closing the Gap between Single Molecule and Bulk FRET Analysis of Nucleosomes

    PubMed Central

    Gansen, Alexander; Hieb, Aaron R.; Böhm, Vera; Tóth, Katalin; Langowski, Jörg

    2013-01-01

    Nucleosome structure and stability affect genetic accessibility by altering the local chromatin morphology. Recent FRET experiments on nucleosomes have given valuable insight into the structural transformations they can adopt. Yet, even if performed under seemingly identical conditions, experiments performed in bulk and at the single molecule level have given mixed answers due to the limitations of each technique. To compare such experiments, however, they must be performed under identical conditions. Here we develop an experimental framework that overcomes the conventional limitations of each method: single molecule FRET experiments are carried out at bulk concentrations by adding unlabeled nucleosomes, while bulk FRET experiments are performed in microplates at concentrations near those used for single molecule detection. Additionally, the microplate can probe many conditions simultaneously before expending valuable instrument time for single molecule experiments. We highlight this experimental strategy by exploring the role of selective acetylation of histone H3 on nucleosome structure and stability; in bulk, H3-acetylated nucleosomes were significantly less stable than non-acetylated nucleosomes. Single molecule FRET analysis further revealed that acetylation of histone H3 promoted the formation of an additional conformational state, which is suppressed at higher nucleosome concentrations and which could be an important structural intermediate in nucleosome regulation. PMID:23637734

  1. Understanding the physics of DNA using nanoscale single-molecule manipulation.

    PubMed

    Frey, Eric W; Gooding, Ashton A; Wijeratne, Sitara; Kiang, Ching-Hwa

    2012-10-01

    Processes for decoding the genetic information in cells, including transcription, replication, recombination and repair, involve the deformation of DNA from its equilibrium structures such as bending, stretching, twisting, and unzipping of the double helix. Single-molecule manipulation techniques have made it possible to control DNA conformation and simultaneously detect the induced changes, revealing a rich variety of mechanically-induced conformational changes and thermodynamic states. These single-molecule techniques helped us to reveal the physics of DNA and the processes involved in the passing on of the genetic code. PMID:23467419

  2. Understanding the physics of DNA using nanoscale single-molecule manipulation

    PubMed Central

    Frey, Eric W.; Gooding, Ashton A.; Wijeratne, Sitara; Kiang, Ching-Hwa

    2013-01-01

    Processes for decoding the genetic information in cells, including transcription, replication, recombination and repair, involve the deformation of DNA from its equilibrium structures such as bending, stretching, twisting, and unzipping of the double helix. Single-molecule manipulation techniques have made it possible to control DNA conformation and simultaneously detect the induced changes, revealing a rich variety of mechanically-induced conformational changes and thermodynamic states. These single-molecule techniques helped us to reveal the physics of DNA and the processes involved in the passing on of the genetic code. PMID:23467419

  3. Microscopy beyond the diffraction limit using actively controlled single molecules

    PubMed Central

    MOERNER, W.E.

    2013-01-01

    Summary In this short review, the general principles are described for obtaining microscopic images with resolution beyond the optical diffraction limit with single molecules. Although it has been known for several decades that single-molecule emitters can blink or turn on and off, in recent work the addition of on/off control of molecular emission to maintain concentrations at very low levels in each imaging frame combined with sequential imaging of sparse subsets has enabled the reconstruction of images with resolution far below the optical diffraction limit. Single-molecule active control microscopy provides a powerful window into information about nanoscale structures that was previously unavailable. PMID:22582796

  4. Single-molecule imaging at high hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Vass, Hugh; Lucas Black, S.; Flors, Cristina; Lloyd, Diarmuid; Bruce Ward, F.; Allen, Rosalind J.

    2013-04-01

    Direct microscopic fluorescence imaging of single molecules can provide a wealth of mechanistic information, but up to now, it has not been possible under high pressure conditions, due to limitations in microscope pressure cell design. We describe a pressure cell window design that makes it possible to image directly single molecules at high hydrostatic pressure. We demonstrate our design by imaging single molecules of Alexa Fluor 647 dye bound to DNA, at 120 and 210 bar, and following their fluorescence photodynamics. We further show that the failure pressure of this type of pressure cell window can be in excess of 1 kbar.

  5. Manipulating transport through a single-molecule junction

    SciTech Connect

    Sotthewes, Kai; Heimbuch, René; Zandvliet, Harold J. W.

    2013-12-07

    Molecular Electronics deals with the realization of elementary electronic devices that rely on a single molecule. For electronic applications, the most important property of a single molecule is its conductance. Here we show how the conductance of a single octanethiol molecule can be measured and manipulated by varying the contact's interspace. This mechanical gating of the single molecule junction leads to a variation of the conductance that can be understood in terms of a tunable image charge effect. The image charge effect increases with a decrease of the contact's interspace due to a reduction of the effective potential barrier height of 1.5 meV/pm.

  6. Single-Molecule Fluorescence Spectroscopy using Phospholipid Bilayer Nanodiscs

    PubMed Central

    Nath, Abhinav; Trexler, Adam J.; Koo, Peter; Miranker, Andrew D.; Atkins, William M.; Rhoades, Elizabeth

    2012-01-01

    Nanodiscs are a new class of model membranes that are being used to solubilize and study a range of integral membrane proteins and membrane-associated proteins. Unlike other model membranes, the Nanodisc bilayer is bounded by a scaffold protein coat that confers enhanced stability and a narrow particle size distribution. The bilayer diameter can be precisely controlled by changing the diameter of the protein coat. All these properties make Nanodiscs excellent model membranes for single molecule fluorescence applications. In this chapter, we describe our work using Nanodiscs to apply total internal reflection fluorescence microscopy (TIRFM), fluorescence correlation spectroscopy (FCS) and Förster resonance energy transfer (FRET) to study the integral membrane protein cytochrome P450 3A4 and the membrane-binding proteins islet amyloid popypeptide (IAPP) and α-synuclein, respectively. The monodisperse size distribution of Nanodiscs enhances control over the oligomeric state of the membrane protein of interest, and also facilitates accurate solution-based measurements. Nanodiscs also comprise an excellent system to stably immobilize integral membrane proteins in a bilayer without covalent modification, enabling a range of surface-based experiments where accurate localization of the protein of interest is required. PMID:20580961

  7. Wide-range quantification of human thyroid-stimulating hormone using gold-nanopatterned single-molecule sandwich immunoassay chip.

    PubMed

    Lee, Seungah; Kang, Seong Ho

    2012-09-15

    We performed wide-range quantification of human thyroid-stimulating hormone (hTSH) using a gold nano-patterned sandwich immunoassay chip. Objective-type total internal reflection fluorescence microscopy (TIRFM) was used to detect hTSH at the single-molecule level. A gold spot with a diameter of 100 nm on a 10-mm square glass substrate was fabricated by electron beam nanolithography. When hTSH bound to antibodies conjugated to each 100-nm gold spot, there was an increase in the relative fluorescent intensity (RFI). The detection limit of this "TSH-nanoarray chip" was 360 zM (equivalent to five molecules), which demonstrated that a TSH-nanoarray chip could be used for detection at the single-molecule level. A linear response was observed over a wide dynamic range (from 360 zM to 36 pM, R=0.9812) without a fluorescence quenching effect. A significant enhancement in the sensitivity (~12,000-fold) was achieved with the 100-nm gold nano-patterned chip compared with results obtained using a traditional chemiluminescence immunoassay for the evaluation of TSH in human serum. PMID:22967658

  8. Super-resolution Localization and Defocused Fluorescence Microscopy on Resonantly Coupled Single-Molecule, Single-Nanorod Hybrids

    PubMed Central

    2016-01-01

    Optical antennas made of metallic nanostructures dramatically enhance single-molecule fluorescence to boost the detection sensitivity. Moreover, emission properties detected at the optical far field are dictated by the antenna. Here we study the emission from molecule–antenna hybrids by means of super-resolution localization and defocused imaging. Whereas gold nanorods make single-crystal violet molecules in the tip’s vicinity visible in fluorescence, super-resolution localization on the enhanced molecular fluorescence reveals geometrical centers of the nanorod antenna instead. Furthermore, emission angular distributions of dyes linked to the nanorod surface resemble that of nanorods in defocused imaging. The experimental observations are consistent with numerical calculations using the finite-difference time-domain method. PMID:26815168

  9. Super-resolution Localization and Defocused Fluorescence Microscopy on Resonantly Coupled Single-Molecule, Single-Nanorod Hybrids.

    PubMed

    Su, Liang; Yuan, Haifeng; Lu, Gang; Rocha, Susana; Orrit, Michel; Hofkens, Johan; Uji-i, Hiroshi

    2016-02-23

    Optical antennas made of metallic nanostructures dramatically enhance single-molecule fluorescence to boost the detection sensitivity. Moreover, emission properties detected at the optical far field are dictated by the antenna. Here we study the emission from molecule-antenna hybrids by means of super-resolution localization and defocused imaging. Whereas gold nanorods make single-crystal violet molecules in the tip's vicinity visible in fluorescence, super-resolution localization on the enhanced molecular fluorescence reveals geometrical centers of the nanorod antenna instead. Furthermore, emission angular distributions of dyes linked to the nanorod surface resemble that of nanorods in defocused imaging. The experimental observations are consistent with numerical calculations using the finite-difference time-domain method. PMID:26815168

  10. Whole-mount single molecule FISH method for zebrafish embryo.

    PubMed

    Oka, Yuma; Sato, Thomas N

    2015-01-01

    Noise in gene expression renders cells more adaptable to changing environment by imposing phenotypic and functional heterogeneity on genetically identical individual cells. Hence, quantitative measurement of noise in gene expression is essential for the study of biological processes in cells. Currently, there are two complementary methods for quantitatively measuring noise in gene expression at the single cell level: single molecule FISH (smFISH) and single cell qRT-PCR (or single cell RNA-seq). While smFISH has been developed for culture cells, tissue sections and whole-mount invertebrate organisms, the method has not been reported for whole-mount vertebrate organisms. Here, we report an smFISH method that is suitable for whole-mount zebrafish embryo, a popular vertebrate model organism for the studies of development, physiology and disease. We show the detection of individual transcripts for several cell-type specific and ubiquitously expressed genes at the single cell level in whole-mount zebrafish embryo. We also demonstrate that the method can be adapted to detect two different genes in individual cells simultaneously. The whole-mount smFISH method described in this report is expected to facilitate the study of noise in gene expression and its role in zebrafish, a vertebrate animal model relevant to human biology. PMID:25711926

  11. Mapping DNA polymerase errors by single-molecule sequencing.

    PubMed

    Lee, David F; Lu, Jenny; Chang, Seungwoo; Loparo, Joseph J; Xie, Xiaoliang S

    2016-07-27

    Genomic integrity is compromised by DNA polymerase replication errors, which occur in a sequence-dependent manner across the genome. Accurate and complete quantification of a DNA polymerase's error spectrum is challenging because errors are rare and difficult to detect. We report a high-throughput sequencing assay to map in vitro DNA replication errors at the single-molecule level. Unlike previous methods, our assay is able to rapidly detect a large number of polymerase errors at base resolution over any template substrate without quantification bias. To overcome the high error rate of high-throughput sequencing, our assay uses a barcoding strategy in which each replication product is tagged with a unique nucleotide sequence before amplification. This allows multiple sequencing reads of the same product to be compared so that sequencing errors can be found and removed. We demonstrate the ability of our assay to characterize the average error rate, error hotspots and lesion bypass fidelity of several DNA polymerases. PMID:27185891

  12. DNA origami based Au-Ag-core-shell nanoparticle dimers with single-molecule SERS sensitivity

    NASA Astrophysics Data System (ADS)

    Prinz, J.; Heck, C.; Ellerik, L.; Merk, V.; Bald, I.

    2016-03-01

    DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 1010, which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled.DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 1010, which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled. Electronic supplementary information (ESI) available: Additional information about materials and methods, designs of DNA origami templates, height profiles, additional SERS spectra, assignment of DNA

  13. Single-molecule localization software applied to photon counting imaging.

    PubMed

    Hirvonen, Liisa M; Kilfeather, Tiffany; Suhling, Klaus

    2015-06-01

    Centroiding in photon counting imaging has traditionally been accomplished by a single-step, noniterative algorithm, often implemented in hardware. Single-molecule localization techniques in superresolution fluorescence microscopy are conceptually similar, but use more sophisticated iterative software-based fitting algorithms to localize the fluorophore. Here, we discuss common features and differences between single-molecule localization and photon counting imaging and investigate the suitability of single-molecule localization software for photon event localization. We find that single-molecule localization software packages designed for superresolution microscopy-QuickPALM, rapidSTORM, and ThunderSTORM-can work well when applied to photon counting imaging with a microchannel-plate-based intensified camera system: photon event recognition can be excellent, fixed pattern noise can be low, and the microchannel plate pores can easily be resolved. PMID:26192667

  14. Computer systems for annotation of single molecule fragments

    DOEpatents

    Schwartz, David Charles; Severin, Jessica

    2016-07-19

    There are provided computer systems for visualizing and annotating single molecule images. Annotation systems in accordance with this disclosure allow a user to mark and annotate single molecules of interest and their restriction enzyme cut sites thereby determining the restriction fragments of single nucleic acid molecules. The markings and annotations may be automatically generated by the system in certain embodiments and they may be overlaid translucently onto the single molecule images. An image caching system may be implemented in the computer annotation systems to reduce image processing time. The annotation systems include one or more connectors connecting to one or more databases capable of storing single molecule data as well as other biomedical data. Such diverse array of data can be retrieved and used to validate the markings and annotations. The annotation systems may be implemented and deployed over a computer network. They may be ergonomically optimized to facilitate user interactions.

  15. Understanding Enzyme Activity Using Single Molecule Tracking (Poster)

    SciTech Connect

    Liu, Y.-S.; Zeng, Y.; Luo, Y.; Xu, Q.; Himmel, M.; Smith S.; Wei, H.; Ding, S.-Y.

    2009-06-01

    This poster describes single-molecule tracking and total internal reflection fluorescence microscopy. It discusses whether the carbohydrate-binding module (CBM) moves on cellulose, how the CBM binds to cellulose, and the mechanism of cellulosome assembly.

  16. Design and development of a field-deployable single-molecule detector (SMD) for the analysis of molecular markers†

    PubMed Central

    Emory, Jason M.; Peng, Zhiyong; Young, Brandon; Hupert, Mateusz L.; Rousselet, Arnold; Patterson, Donald; Ellison, Brad; Soper, Steven A.

    2012-01-01

    Single-molecule detection (SMD) has demonstrated some attractive benefits for many types of biomolecular analyses including enhanced processing speed by eliminating processing steps, elimination of ensemble averaging and single-molecule sensitivity. However, it's wide spread use has been hampered by the complex instrumentation required for its implementation when using fluorescence as the readout modality. We report herein a simple and compact fluorescence single-molecule instrument that is straightforward to operate and consisted of fiber optics directly coupled to a microfluidic device. The integrated fiber optics served as waveguides to deliver the laser excitation light to the sample and collecting the resulting emission, simplifying the optical requirements associated with traditional SMD instruments by eliminating the need for optical alignment and simplification of the optical train. Additionally, the use of a vertical cavity surface emitting laser and a single photon avalanche diode serving as the excitation source and photon transducer, respectively, as well as a field programmable gate array (FPGA) integrated into the processing electronics assisted in reducing the instrument footprint. This small footprint SMD platform was tested using fluorescent microspheres and single AlexaFluor 660 molecules to determine the optimal operating parameters and system performance. As a demonstration of the utility of this instrument for biomolecular analyses, molecular beacons (MBs) were designed to probe bacterial cells for the gene encoding Gram-positive species. The ability to monitor biomarkers using this simple and portable instrument will have a number of important applications, such as strain-specific detection of pathogenic bacteria or the molecular diagnosis of diseases requiring rapid turn-around-times directly at the point-of-use. PMID:22005669

  17. An Improved Surface Passivation Method for Single-Molecule Studies

    PubMed Central

    Hua, Boyang; Young Han, Kyu; Zhou, Ruobo; Kim, Hajin; Shi, Xinghua; Abeysirigunawardena, Sanjaya C.; Jain, Ankur; Singh, Digvijay; Aggarwal, Vasudha; Woodson, Sarah A.; Ha, Taekjip

    2014-01-01

    We herein report a surface passivation method for in vitro single-molecule studies, which more efficiently prevents non-specific binding of biomolecules as compared to the polyethylene glycol surface. The new surface does not perturb the behavior and activities of tethered biomolecules. It can also be used for single-molecule imaging in the presence of high concentrations of labeled species in solution. Reduction in preparation time and cost is another major advantage. PMID:25306544

  18. Detailed analysis of complex single molecule FRET data with the software MASH

    NASA Astrophysics Data System (ADS)

    Hadzic, Mélodie C. A. S.; Kowerko, Danny; Börner, Richard; Zelger-Paulus, Susann; Sigel, Roland K. O.

    2016-04-01

    The processing and analysis of surface-immobilized single molecule FRET (Förster resonance energy transfer) data follows systematic steps (e.g. single molecule localization, clearance of different sources of noise, selection of the conformational and kinetic model, etc.) that require a solid knowledge in optics, photophysics, signal processing and statistics. The present proceeding aims at standardizing and facilitating procedures for single molecule detection by guiding the reader through an optimization protocol for a particular experimental data set. Relevant features were determined from single molecule movies (SMM) imaging Cy3- and Cy5-labeled Sc.ai5γ group II intron molecules synthetically recreated, to test the performances of four different detection algorithms. Up to 120 different parameterizations per method were routinely evaluated to finally establish an optimum detection procedure. The present protocol is adaptable to any movie displaying surface-immobilized molecules, and can be easily reproduced with our home-written software MASH (multifunctional analysis software for heterogeneous data) and script routines (both available in the download section of www.chem.uzh.ch/rna).

  19. Single molecule tools for enzymology, structural biology, systems biology and nanotechnology: an update

    PubMed Central

    Widom, Julia R.; Dhakal, Soma; Heinicke, Laurie A.; Walter, Nils G.

    2015-01-01

    Toxicology is the highly interdisciplinary field studying the adverse effects of chemicals on living organisms. It requires sensitive tools to detect such effects. After their initial implementation during the 1990s, single-molecule fluorescence detection tools were quickly recognized for their potential to contribute greatly to many different areas of scientific inquiry. In the intervening time, technical advances in the field have generated ever-improving spatial and temporal resolution, and have enabled the application of single-molecule fluorescence to increasingly complex systems, such as live cells. In this review, we give an overview of the optical components necessary to implement the most common versions of single-molecule fluorescence detection. We then discuss current applications to enzymology and structural studies, systems biology, and nanotechnology, presenting the technical considerations that are unique to each area of study, along with noteworthy recent results. We also highlight future directions that have the potential to revolutionize these areas of study by further exploiting the capabilities of single-molecule fluorescence microscopy. PMID:25212907

  20. Compact Quantum Dots for Single-molecule Imaging

    PubMed Central

    Smith, Andrew M.; Nie, Shuming

    2012-01-01

    Single-molecule imaging is an important tool for understanding the mechanisms of biomolecular function and for visualizing the spatial and temporal heterogeneity of molecular behaviors that underlie cellular biology 1-4. To image an individual molecule of interest, it is typically conjugated to a fluorescent tag (dye, protein, bead, or quantum dot) and observed with epifluorescence or total internal reflection fluorescence (TIRF) microscopy. While dyes and fluorescent proteins have been the mainstay of fluorescence imaging for decades, their fluorescence is unstable under high photon fluxes necessary to observe individual molecules, yielding only a few seconds of observation before complete loss of signal. Latex beads and dye-labeled beads provide improved signal stability but at the expense of drastically larger hydrodynamic size, which can deleteriously alter the diffusion and behavior of the molecule under study. Quantum dots (QDs) offer a balance between these two problematic regimes. These nanoparticles are composed of semiconductor materials and can be engineered with a hydrodynamically compact size with exceptional resistance to photodegradation 5. Thus in recent years QDs have been instrumental in enabling long-term observation of complex macromolecular behavior on the single molecule level. However these particles have still been found to exhibit impaired diffusion in crowded molecular environments such as the cellular cytoplasm and the neuronal synaptic cleft, where their sizes are still too large 4,6,7. Recently we have engineered the cores and surface coatings of QDs for minimized hydrodynamic size, while balancing offsets to colloidal stability, photostability, brightness, and nonspecific binding that have hindered the utility of compact QDs in the past 8,9. The goal of this article is to demonstrate the synthesis, modification, and characterization of these optimized nanocrystals, composed of an alloyed HgxCd1-xSe core coated with an insulating CdyZn1

  1. Quantum dots for quantitative imaging: from single molecules to tissue.

    PubMed

    Vu, Tania Q; Lam, Wai Yan; Hatch, Ellen W; Lidke, Diane S

    2015-04-01

    Since their introduction to biological imaging, quantum dots (QDs) have progressed from a little known, but attractive, technology to one that has gained broad application in many areas of biology. The versatile properties of these fluorescent nanoparticles have allowed investigators to conduct biological studies with extended spatiotemporal capabilities that were previously not possible. In this review, we focus on QD applications that provide enhanced quantitative information concerning protein dynamics and localization, including single particle tracking and immunohistochemistry, and finish by examining the prospects of upcoming applications, such as correlative light and electron microscopy and super-resolution. Advances in single molecule imaging, including multi-color and three-dimensional QD tracking, have provided new insights into the mechanisms of cell signaling and protein trafficking. New forms of QD tracking in vivo have allowed the observation of biological processes at molecular level resolution in the physiological context of the whole animal. Further methodological development of multiplexed QD-based immunohistochemistry assays should enable more quantitative analysis of key proteins in tissue samples. These advances highlight the unique quantitative data sets that QDs can provide to further our understanding of biological and disease processes. PMID:25620410

  2. Single molecule analysis of Trypanosoma brucei DNA replication dynamics

    PubMed Central

    Calderano, Simone Guedes; Drosopoulos, William C.; Quaresma, Marina Mônaco; Marques, Catarina A.; Kosiyatrakul, Settapong; McCulloch, Richard; Schildkraut, Carl L.; Elias, Maria Carolina

    2015-01-01

    Eukaryotic genome duplication relies on origins of replication, distributed over multiple chromosomes, to initiate DNA replication. A recent genome-wide analysis of Trypanosoma brucei, the etiological agent of sleeping sickness, localized its replication origins to the boundaries of multigenic transcription units. To better understand genomic replication in this organism, we examined replication by single molecule analysis of replicated DNA. We determined the average speed of replication forks of procyclic and bloodstream form cells and we found that T. brucei DNA replication rate is similar to rates seen in other eukaryotes. We also analyzed the replication dynamics of a central region of chromosome 1 in procyclic forms. We present evidence for replication terminating within the central part of the chromosome and thus emanating from both sides, suggesting a previously unmapped origin toward the 5′ extremity of chromosome 1. Also, termination is not at a fixed location in chromosome 1, but is rather variable. Importantly, we found a replication origin located near an ORC1/CDC6 binding site that is detected after replicative stress induced by hydroxyurea treatment, suggesting it may be a dormant origin activated in response to replicative stress. Collectively, our findings support the existence of more replication origins in T. brucei than previously appreciated. PMID:25690894

  3. Single molecule analysis of Trypanosoma brucei DNA replication dynamics.

    PubMed

    Calderano, Simone Guedes; Drosopoulos, William C; Quaresma, Marina Mônaco; Marques, Catarina A; Kosiyatrakul, Settapong; McCulloch, Richard; Schildkraut, Carl L; Elias, Maria Carolina

    2015-03-11

    Eukaryotic genome duplication relies on origins of replication, distributed over multiple chromosomes, to initiate DNA replication. A recent genome-wide analysis of Trypanosoma brucei, the etiological agent of sleeping sickness, localized its replication origins to the boundaries of multigenic transcription units. To better understand genomic replication in this organism, we examined replication by single molecule analysis of replicated DNA. We determined the average speed of replication forks of procyclic and bloodstream form cells and we found that T. brucei DNA replication rate is similar to rates seen in other eukaryotes. We also analyzed the replication dynamics of a central region of chromosome 1 in procyclic forms. We present evidence for replication terminating within the central part of the chromosome and thus emanating from both sides, suggesting a previously unmapped origin toward the 5' extremity of chromosome 1. Also, termination is not at a fixed location in chromosome 1, but is rather variable. Importantly, we found a replication origin located near an ORC1/CDC6 binding site that is detected after replicative stress induced by hydroxyurea treatment, suggesting it may be a dormant origin activated in response to replicative stress. Collectively, our findings support the existence of more replication origins in T. brucei than previously appreciated. PMID:25690894

  4. Single-Molecule Reaction Chemistry in Patterned Nanowells.

    PubMed

    Bouilly, Delphine; Hon, Jason; Daly, Nathan S; Trocchia, Scott; Vernick, Sefi; Yu, Jaeeun; Warren, Steven; Wu, Ying; Gonzalez, Ruben L; Shepard, Kenneth L; Nuckolls, Colin

    2016-07-13

    A new approach to synthetic chemistry is performed in ultraminiaturized, nanofabricated reaction chambers. Using lithographically defined nanowells, we achieve single-point covalent chemistry on hundreds of individual carbon nanotube transistors, providing robust statistics and unprecedented spatial resolution in adduct position. Each device acts as a sensor to detect, in real-time and through quantized changes in conductance, single-point functionalization of the nanotube as well as consecutive chemical reactions, molecular interactions, and molecular conformational changes occurring on the resulting single-molecule probe. In particular, we use a set of sequential bioconjugation reactions to tether a single-strand of DNA to the device and record its repeated, reversible folding into a G-quadruplex structure. The stable covalent tether allows us to measure the same molecule in different solutions, revealing the characteristic increased stability of the G-quadruplex structure in the presence of potassium ions (K(+)) versus sodium ions (Na(+)). Nanowell-confined reaction chemistry on carbon nanotube devices offers a versatile method to isolate and monitor individual molecules during successive chemical reactions over an extended period of time. PMID:27270004

  5. Multiplex single-molecule interaction profiling of DNA barcoded proteins

    PubMed Central

    Gu, Liangcai; Li, Chao; Aach, John; Hill, David E.; Vidal, Marc; Church, George M.

    2014-01-01

    In contrast with advances in massively parallel DNA sequencing1, high-throughput protein analyses2-4 are often limited by ensemble measurements, individual analyte purification and hence compromised quality and cost-effectiveness. Single-molecule (SM) protein detection achieved using optical methods5 is limited by the number of spectrally nonoverlapping chromophores. Here, we introduce a single molecular interaction-sequencing (SMI-Seq) technology for parallel protein interaction profiling leveraging SM advantages. DNA barcodes are attached to proteins collectively via ribosome display6 or individually via enzymatic conjugation. Barcoded proteins are assayed en masse in aqueous solution and subsequently immobilized in a polyacrylamide (PAA) thin film to construct a random SM array, where barcoding DNAs are amplified into in situ polymerase colonies (polonies)7 and analyzed by DNA sequencing. This method allows precise quantification of various proteins with a theoretical maximum array density of over one million polonies per square millimeter. Furthermore, protein interactions can be measured based on the statistics of colocalized polonies arising from barcoding DNAs of interacting proteins. Two demanding applications, G-protein coupled receptor (GPCR) and antibody binding profiling, were demonstrated. SMI-Seq enables “library vs. library” screening in a one-pot assay, simultaneously interrogating molecular binding affinity and specificity. PMID:25252978

  6. Active Microfluidic Devices for Single-Molecule Experiments

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Meiners, Jens-Christian

    2003-03-01

    Microfluidic chips have become an increasingly powerful and versatile tool in the life sciences. Multilayer devices fabricated from soft silicone elastomers in a replication molding technique are especially promising, because they permit flexible integration of active elements such as valves and pumps. In addition, they are fairly easy and inexpensive to produce. In a wide range of applications, microfluidic chips are used in conjunction with optical detection and manipulation techniques. However their widespread use has been hampered due to problems with interconnect stability, optical accessibility, and ability to perform surface chemistry. We have developed a packaging technique that encapsulates the elastomer in an epoxy resin of high optical quality. This stabilizes the interconnects so that a chip can be repeatedly plugged in and out of a socket. Our technique also eliminates the need for a baking step that is conventionally used to attach a glass cover slip to the elastomer surface. This allows us to assemble devices that contain a cover slip coated with proteins, thereby permitting subsequent in situ attachment of DNA molecules to the bottom of the flow channels. We demonstrate the utility of our chips in single-molecule applications involving tethered-particles and optical tweezers. Support: NIH R01 GM065934 & Research Corporation

  7. Mapping Transcription Factors on Extended DNA: A Single Molecule Approach

    NASA Astrophysics Data System (ADS)

    Ebenstein, Yuval; Gassman, Natalie; Weiss, Shimon

    The ability to determine the precise loci and distribution of nucleic acid binding proteins is instrumental to our detailed understanding of cellular processes such as transcription, replication, and chromatin reorganization. Traditional molecular biology approaches and above all Chromatin immunoprecipitation (ChIP) based methods have provided a wealth of information regarding protein-DNA interactions. Nevertheless, existing techniques can only provide average properties of these interactions, since they are based on the accumulation of data from numerous protein-DNA complexes analyzed at the ensemble level. We propose a single molecule approach for direct visualization of DNA binding proteins bound specifically to their recognition sites along a long stretch of DNA such as genomic DNA. Fluorescent Quantum dots are used to tag proteins bound to DNA, and the complex is deposited on a glass substrate by extending the DNA to a linear form. The sample is then imaged optically to determine the precise location of the protein binding site. The method is demonstrated by detecting individual, Quantum dot tagged T7-RNA polymerase enzymes on the bacteriophage T7 genomic DNA and assessing the relative occupancy of the different promoters.

  8. Negative differential conductance and super-Poissonian shot noise in single-molecule magnet junctions

    PubMed Central

    Xue, Hai-Bin; Liang, Jiu-Qing; Liu, Wu-Ming

    2015-01-01

    Molecular spintroinic device based on a single-molecule magnet is one of the ultimate goals of semiconductor nanofabrication technologies. It is thus necessary to understand the electron transport properties of a single-molecule magnet junction. Here we study the negative differential conductance and super-Poissonian shot noise properties of electron transport through a single-molecule magnet weakly coupled to two electrodes with either one or both of them being ferromagnetic. We predict that the negative differential conductance and super-Poissonian shot noise, which can be tuned by a gate voltage, depend sensitively on the spin polarization of the source and drain electrodes. In particular, the shot noise in the negative differential conductance region can be enhanced or decreased originating from the different formation mechanisms of negative differential conductance. The effective competition between fast and slow transport channels is responsible for the observed negative differential conductance and super-Poissonian shot noise. In addition, we further discuss the skewness and kurtosis properties of transport current in the super-Poissonian shot noise regions. Our findings suggest a tunable negative differential conductance molecular device, and the predicted properties of high-order current cumulants are very interesting for a better understanding of electron transport through single-molecule magnet junctions. PMID:25736094

  9. Magnetic anisotropy and high-spin effects in single-molecule transistors

    NASA Astrophysics Data System (ADS)

    Zyazin, Alexander; van den Berg, Johan; Osorio, Edgar; Konstantinidis, Nikos; Leijnse, Martin; May, Falk; Hofstetter, Walter; Danieli, Chiara; Cornia, Andrea; Wegewijs, Maarten; van der Zant, Herre

    2011-03-01

    Fabrication of single-molecule transistors where electron transport occurs through an individual molecule has become possible due to the recent progress in molecular electronics. Three-terminal configuration allows charging molecules and performing transport spectroscopy in multiple redox states. Single-molecule magnets combining large spin with uniaxial anisotropy are of special interest as appealing candidates for high density memory applications and quantum information processing. We study single-molecule magnets Fe 4 . Three-terminal junctions are fabricated using electromigration of gold nanowires followed by a self-breaking. High-spin Kondo effect and inelastic cotunneling excitations show up in transport measurements. Several excitations feature the energy close to the energy of zero-field splitting (ZFS) of a ground spin multiplet in bulk. This splitting is caused by the anisotropy and is a hallmark of single-molecule magnets. We observe nonlinear Zeeman effect due to a misalignment of an anisotropy axis and a magnetic field direction. The ZFS energy is increased in oxidized and reduced states of the molecule indicating enhancement of the anisotropy in these states.

  10. Sizing up single-molecule enzymatic conformational dynamics.

    PubMed

    Lu, H Peter

    2014-02-21

    Enzymatic reactions and related protein conformational dynamics are complex and inhomogeneous, playing crucial roles in biological functions. The relationship between protein conformational dynamics and enzymatic reactions has been a fundamental focus in modern enzymology. It is extremely difficult to characterize and analyze such complex dynamics in an ensemble-averaged measurement, especially when the enzymes are associated with multiple-step, multiple-conformation complex chemical interactions and transformations. Beyond the conventional ensemble-averaged studies, real-time single-molecule approaches have been demonstrated to be powerful in dissecting the complex enzymatic reaction dynamics and related conformational dynamics. Single-molecule enzymology has come a long way since the early demonstrations of the single-molecule spectroscopy studies of enzymatic dynamics about two decades ago. The rapid development of this fundamental protein dynamics field is hand-in-hand with the new development of single-molecule imaging and spectroscopic technology and methodology, theoretical model analyses, and correlations with biological preparation and characterization of the enzyme protein systems. The complex enzymatic reactions can now be studied one molecule at a time under physiological conditions. Most exciting developments include active manipulation of enzymatic conformational changes and energy landscape to regulate and manipulate the enzymatic reactivity and associated conformational dynamics, and the new advancements have established a new stage for studying complex protein dynamics beyond by simply observing but by actively manipulating and observing the enzymatic dynamics at the single-molecule sensitivity temporally and spatially. PMID:24306450

  11. Spin blockade effect in single-molecule transistors

    NASA Astrophysics Data System (ADS)

    Luo, Guangpu; Park, Kyungwha

    Recently single-molecule transistors consisting of individual single-molecule magnets trapped between electrodes have been experimentally realized and electron transport properties through individual single-molecule magnets have been measured. For a single-molecule magnet the (2S+1)-fold degeneracy of magnetic levels in a given spin multiplet is lifted even in the absence of external magnetic field, due to the magnetic anisotropy induced by spin-orbit coupling. This anisotropic nature of single-molecule magnets allowed one to discover interesting, unexpected transport properties. A recent theoretical study showed that an Eu-based anisotropic magnetic molecule can switch its magnetic anisotropy between magnetic easy plane and easy axis upon varying the charge state of the molecule. Motivated by this report, we investigate how this switch of magnetic anisotropy influences the electron transport through the molecule, by considering sequential electron tunneling. We calculate current-voltage characteristics by solving the master equation based on the model Hamiltonians. We explore this interesting effect in the absence and presence of external magnetic field. Funding from NSF DMR-1206354.

  12. High-throughput platform for real-time monitoring of biological processes by multicolor single-molecule fluorescence

    PubMed Central

    Chen, Jin; Dalal, Ravindra V.; Petrov, Alexey N.; Tsai, Albert; O’Leary, Seán E.; Chapin, Karen; Cheng, Janice; Ewan, Mark; Hsiung, Pei-Lin; Lundquist, Paul; Turner, Stephen W.; Hsu, David R.; Puglisi, Joseph D.

    2014-01-01

    Zero-mode waveguides provide a powerful technology for studying single-molecule real-time dynamics of biological systems at physiological ligand concentrations. We customized a commercial zero-mode waveguide-based DNA sequencer for use as a versatile instrument for single-molecule fluorescence detection and showed that the system provides long fluorophore lifetimes with good signal to noise and low spectral cross-talk. We then used a ribosomal translation assay to show real-time fluidic delivery during data acquisition, showing it is possible to follow the conformation and composition of thousands of single biomolecules simultaneously through four spectral channels. This instrument allows high-throughput multiplexed dynamics of single-molecule biological processes over long timescales. The instrumentation presented here has broad applications to single-molecule studies of biological systems and is easily accessible to the biophysical community. PMID:24379388

  13. Spectroscopic and transport measurements of single molecules in solution using an electrokinetic trap

    NASA Astrophysics Data System (ADS)

    Wang, Quan; Moerner, W. E.

    2014-03-01

    In aqueous solution, diffusion generally limits the observation window of a nano-meter sized single molecule to milliseconds and prevents quantitative determination of spectroscopic and transport properties molecule-by-molecule. The anti-Brownian electrokinetic (ABEL) trap is a feedback-based microfluidic device that enables prolonged (multiseconds) observation of single molecules in solution. The amount of information that can be extracted from each molecule in solution is thus boosted by three orders of magnitude. We describe recent advances in extending the ABEL trap to conduct both spectroscopic and transport measurements of single trapped molecules. First, by combining the trap with multi-parameter fluorescence detection, synchronized dynamics in different observables can be visualized in solution. We use single molecules of Atto 633 as an example and show that this popular label switches between different emissive states under common imaging conditions. Next, we show how transport properties of trapped single molecules can be extracted in addition to spectroscopic readouts. Due to their direct sensitivity to molecular size and charge, measured transport coefficients can be used to distinguish different molecular species and trace biomolecular interactions in solution. We demonstrate this new paradigm by monitoring DNA hybridization/melting in real-time.

  14. Influence of fluorescent tag on the motility properties of kinesin-1 in single-molecule assays.

    PubMed

    Norris, Stephen R; Núñez, Marcos F; Verhey, Kristen J

    2015-03-10

    Molecular motors such as kinesin and dynein use the energy derived from ATP hydrolysis to walk processively along microtubule tracks and transport various cargoes inside the cell. Recent advancements in fluorescent protein (FP) research enable motors to be fluorescently labeled such that single molecules can be visualized inside cells in multiple colors. The performance of these fluorescent tags can vary depending on their spectral properties and a natural tendency for oligomerization. Here we present a survey of different fluorescent tags fused to kinesin-1 and studied by single-molecule motility assays of mammalian cell lysates. We tested eight different FP tags and found that seven of them display sufficient fluorescence intensity and photostability to visualize motility events. Although none of the FP tags interfere with the enzymatic properties of the motor, four of the tags (EGFP, monomeric EGFP, tagRFPt, and mApple) cause aberrantly long motor run lengths. This behavior is unlikely to be due to electrostatic interactions and is probably caused by tag-dependent oligomerization events that appear to be facilitated by fusion to the dimeric kinesin-1. We also compared the single-molecule performance of various fluorescent SNAP and HALO ligands. We found that although both green and red SNAP ligands provide sufficient fluorescent signal, only the tetramethyl rhodamine (TMR) HALO ligand provides sufficient signal for detection in these assays. This study will serve as a valuable reference for choosing fluorescent labels for single-molecule motility assays. PMID:25762325

  15. Single-molecule decoding of combinatorially modified nucleosomes.

    PubMed

    Shema, Efrat; Jones, Daniel; Shoresh, Noam; Donohue, Laura; Ram, Oren; Bernstein, Bradley E

    2016-05-01

    Different combinations of histone modifications have been proposed to signal distinct gene regulatory functions, but this area is poorly addressed by existing technologies. We applied high-throughput single-molecule imaging to decode combinatorial modifications on millions of individual nucleosomes from pluripotent stem cells and lineage-committed cells. We identified definitively bivalent nucleosomes with concomitant repressive and activating marks, as well as other combinatorial modification states whose prevalence varies with developmental potency. We showed that genetic and chemical perturbations of chromatin enzymes preferentially affect nucleosomes harboring specific modification states. Last, we combined this proteomic platform with single-molecule DNA sequencing technology to simultaneously determine the modification states and genomic positions of individual nucleosomes. This single-molecule technology has the potential to address fundamental questions in chromatin biology and epigenetic regulation. PMID:27151869

  16. Open-frame system for single-molecule microscopy.

    PubMed

    Arsenault, Adriel; Leith, Jason S; Henkin, Gil; McFaul, Christopher M J; Tarling, Matthew; Talbot, Richard; Berard, Daniel; Michaud, Francois; Scott, Shane; Leslie, Sabrina R

    2015-03-01

    We present the design and construction of a versatile, open frame inverted microscope system for wide-field fluorescence and single molecule imaging. The microscope chassis and modular design allow for customization, expansion, and experimental flexibility. We present two components which are included with the microscope which extend its basic capabilities and together create a powerful microscopy system: A Convex Lens-induced Confinement device provides the system with single-molecule imaging capabilities, and a two-color imaging system provides the option of imaging multiple molecular species simultaneously. The flexibility of the open-framed chassis combined with accessible single-molecule, multi-species imaging technology supports a wide range of new measurements in the health, nanotechnology, and materials science research sectors. PMID:25832232

  17. Detectors for single-molecule fluorescence imaging and spectroscopy

    PubMed Central

    MICHALET, X.; SIEGMUND, O.H.W.; VALLERGA, J.V.; JELINSKY, P.; MILLAUD, J.E.; WEISS, S.

    2010-01-01

    Single-molecule observation, characterization and manipulation techniques have recently come to the forefront of several research domains spanning chemistry, biology and physics. Due to the exquisite sensitivity, specificity, and unmasking of ensemble averaging, single-molecule fluorescence imaging and spectroscopy have become, in a short period of time, important tools in cell biology, biochemistry and biophysics. These methods led to new ways of thinking about biological processes such as viral infection, receptor diffusion and oligomerization, cellular signaling, protein-protein or protein-nucleic acid interactions, and molecular machines. Such achievements require a combination of several factors to be met, among which detector sensitivity and bandwidth are crucial. We examine here the needed performance of photodetectors used in these types of experiments, the current state of the art for different categories of detectors, and actual and future developments of single-photon counting detectors for single-molecule imaging and spectroscopy. PMID:20157633

  18. Temperature dependence of charge transport in conjugated single molecule junctions

    NASA Astrophysics Data System (ADS)

    Huisman, Eek; Kamenetska, Masha; Venkataraman, Latha

    2011-03-01

    Over the last decade, the break junction technique using a scanning tunneling microscope geometry has proven to be an important tool to understand electron transport through single molecule junctions. Here, we use this technique to probe transport through junctions at temperatures ranging from 5K to 300K. We study three amine-terminated (-NH2) conjugated molecules: a benzene, a biphenyl and a terphenyl derivative. We find that amine groups bind selectively to undercoordinate gold atoms gold all the way down to 5K, yielding single molecule junctions with well-defined conductances. Furthermore, we find that the conductance of a single molecule junction increases with temperature and we present a mechanism for this temperature dependent transport result. Funded by a Rubicon Grant from The Netherlands Organisation for Scientific Research (NWO) and the NSEC program of NSF under grant # CHE-0641523.

  19. Electrochemical Single-Molecule Transistors with Optimized Gate Coupling.

    PubMed

    Osorio, Henrry M; Catarelli, Samantha; Cea, Pilar; Gluyas, Josef B G; Hartl, František; Higgins, Simon J; Leary, Edmund; Low, Paul J; Martín, Santiago; Nichols, Richard J; Tory, Joanne; Ulstrup, Jens; Vezzoli, Andrea; Milan, David C; Zeng, Qiang

    2015-11-18

    Electrochemical gating at the single molecule level of viologen molecular bridges in ionic liquids is examined. Contrary to previous data recorded in aqueous electrolytes, a clear and sharp peak in the single molecule conductance versus electrochemical potential data is obtained in ionic liquids. These data are rationalized in terms of a two-step electrochemical model for charge transport across the redox bridge. In this model the gate coupling in the ionic liquid is found to be fully effective with a modeled gate coupling parameter, ξ, of unity. This compares to a much lower gate coupling parameter of 0.2 for the equivalent aqueous gating system. This study shows that ionic liquids are far more effective media for gating the conductance of single molecules than either solid-state three-terminal platforms created using nanolithography, or aqueous media. PMID:26488257

  20. Single-Molecule Experiments in Vitro and in Silico

    NASA Astrophysics Data System (ADS)

    Sotomayor, Marcos; Schulten, Klaus

    2007-05-01

    Single-molecule force experiments in vitro enable the characterization of the mechanical response of biological matter at the nanometer scale. However, they do not reveal the molecular mechanisms underlying mechanical function. These can only be readily studied through molecular dynamics simulations of atomic structural models: “in silico” (by computer analysis) single-molecule experiments. Steered molecular dynamics simulations, in which external forces are used to explore the response and function of macromolecules, have become a powerful tool complementing and guiding in vitro single-molecule experiments. The insights provided by in silico experiments are illustrated here through a review of recent research in three areas of protein mechanics: elasticity of the muscle protein titin and the extracellular matrix protein fibronectin; linker-mediated elasticity of the cytoskeleton protein spectrin; and elasticity of ankyrin repeats, a protein module found ubiquitously in cells but with an as-yet unclear function.

  1. Single-Molecule Electronics: Chemical and Analytical Perspectives.

    PubMed

    Nichols, Richard J; Higgins, Simon J

    2015-01-01

    It is now possible to measure the electrical properties of single molecules using a variety of techniques including scanning probe microcopies and mechanically controlled break junctions. Such measurements can be made across a wide range of environments including ambient conditions, organic liquids, ionic liquids, aqueous solutions, electrolytes, and ultra high vacuum. This has given new insights into charge transport across molecule electrical junctions, and these experimental methods have been complemented with increasingly sophisticated theory. This article reviews progress in single-molecule electronics from a chemical perspective and discusses topics such as the molecule-surface coupling in electrical junctions, chemical control, and supramolecular interactions in junctions and gating charge transport. The article concludes with an outlook regarding chemical analysis based on single-molecule conductance. PMID:26048551

  2. Single-Molecule Electronics: Chemical and Analytical Perspectives

    NASA Astrophysics Data System (ADS)

    Nichols, Richard J.; Higgins, Simon J.

    2015-07-01

    It is now possible to measure the electrical properties of single molecules using a variety of techniques including scanning probe microcopies and mechanically controlled break junctions. Such measurements can be made across a wide range of environments including ambient conditions, organic liquids, ionic liquids, aqueous solutions, electrolytes, and ultra high vacuum. This has given new insights into charge transport across molecule electrical junctions, and these experimental methods have been complemented with increasingly sophisticated theory. This article reviews progress in single-molecule electronics from a chemical perspective and discusses topics such as the molecule-surface coupling in electrical junctions, chemical control, and supramolecular interactions in junctions and gating charge transport. The article concludes with an outlook regarding chemical analysis based on single-molecule conductance.

  3. Extending Single-Molecule Microscopy Using Optical Fourier Processing

    PubMed Central

    2015-01-01

    This article surveys the recent application of optical Fourier processing to the long-established but still expanding field of single-molecule imaging and microscopy. A variety of single-molecule studies can benefit from the additional image information that can be obtained by modulating the Fourier, or pupil, plane of a widefield microscope. After briefly reviewing several current applications, we present a comprehensive and computationally efficient theoretical model for simulating single-molecule fluorescence as it propagates through an imaging system. Furthermore, we describe how phase/amplitude-modulating optics inserted in the imaging pathway may be modeled, especially at the Fourier plane. Finally, we discuss selected recent applications of Fourier processing methods to measure the orientation, depth, and rotational mobility of single fluorescent molecules. PMID:24745862

  4. Single molecule techniques for the study of membrane proteins.

    PubMed

    García-Sáez, Ana J; Schwille, Petra

    2007-08-01

    Single molecule techniques promise novel information about the properties and behavior of individual particles, thus enabling access to molecular heterogeneities in biological systems. Their recent developments to accommodate membrane studies have significantly deepened the understanding of membrane proteins. In this short review, we will describe the basics of the three most common single-molecule techniques used on membrane proteins: fluorescence correlation spectroscopy, single particle tracking, and atomic force microscopy. We will discuss the most relevant findings made during the recent years and their contribution to the membrane protein field. PMID:17497147

  5. Molecular electronics with single molecules in solid-state devices.

    PubMed

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-09-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule, and on how the electron transport properties of the molecule depend on the strength of the electronic coupling between it and the electrodes. A variety of phenomena are observed depending on whether this coupling is weak, intermediate or strong. PMID:19734925

  6. Improved single molecule force spectroscopy using micromachined cantilevers.

    PubMed

    Bull, Matthew S; Sullan, Ruby May A; Li, Hongbin; Perkins, Thomas T

    2014-05-27

    Enhancing the short-term force precision of atomic force microscopy (AFM) while maintaining excellent long-term force stability would result in improved performance across multiple AFM modalities, including single molecule force spectroscopy (SMFS). SMFS is a powerful method to probe the nanometer-scale dynamics and energetics of biomolecules (DNA, RNA, and proteins). The folding and unfolding rates of such macromolecules are sensitive to sub-pN changes in force. Recently, we demonstrated sub-pN stability over a broad bandwidth (Δf = 0.01-16 Hz) by removing the gold coating from a 100 μm long cantilever. However, this stability came at the cost of increased short-term force noise, decreased temporal response, and poor sensitivity. Here, we avoided these compromises while retaining excellent force stability by modifying a short (L = 40 μm) cantilever with a focused ion beam. Our process led to a ∼10-fold reduction in both a cantilever's stiffness and its hydrodynamic drag near a surface. We also preserved the benefits of a highly reflective cantilever while mitigating gold-coating induced long-term drift. As a result, we extended AFM's sub-pN bandwidth by a factor of ∼50 to span five decades of bandwidth (Δf ≈ 0.01-1000 Hz). Measurements of mechanically stretching individual proteins showed improved force precision coupled with state-of-the-art force stability and no significant loss in temporal resolution compared to the stiffer, unmodified cantilever. Finally, these cantilevers were robust and were reused for SFMS over multiple days. Hence, we expect these responsive, yet stable, cantilevers to broadly benefit diverse AFM-based studies. PMID:24670198

  7. Novel Labeling Schemes for Single-Molecule Nanoscopy

    PubMed Central

    Schoen, Ingmar; Kaplan, Charlotte; Platonova, Evgenia; Vogel, Viola; Ewers, Helge; Ries, Jonas

    2013-01-01

    Single molecule localization-based superresolution microscopy methods, such as PALM or STORM, have been breakthrough techniques of the last years. Until now however, they require special fluorescent proteins to be cloned or high-affinity antibodies to be generated for specific labeling. On the other hand, many laboratories will have most of their constructs in GFP form and entire genomes are available as functional GFP-fusion proteins. Here, we report a method that makes all these constructs available for superresolution microscopy by targeting GFP with tiny, high-affinity antibodies coupled to blinking dyes. It thus combines the molecular specificity of genetic tagging with the high photon yield of organic dyes and minimal linkage error, as demonstrated on microtubules, living neurons and yeast cells. We show that in combination with GFP-libraries, virtually any known protein can immediately be used in superresolution microscopy and that high-throughput superresolution imaging using simplified labeling schemes is possible. The labeling density in superresolution microscopy based on photoactivatable fluorophores is limited by the fact that a small, but significant fraction is always in the bright state. To overcome this limitation we implemented binding-activated localization microscopy (BALM), which is based on the localization of individual binding events of fluorophores that show a fluorescence enhancement upon binding to their target structures. Using nucleic acid stains on double-stranded DNA we yielded a resolution of –14 nm (fwhm) and a spatial sampling of 1/nm in vitro and could visualize the organization of the bacterial chromosome in fixed Escherichia coli cells. In general, the principle of binding-activated localization microscopy can be extended to other dyes and targets such as protein structures.

  8. Knotting and unknotting of a protein in single molecule experiments.

    PubMed

    Ziegler, Fabian; Lim, Nicole C H; Mandal, Soumit Sankar; Pelz, Benjamin; Ng, Wei-Ping; Schlierf, Michael; Jackson, Sophie E; Rief, Matthias

    2016-07-01

    Spontaneous folding of a polypeptide chain into a knotted structure remains one of the most puzzling and fascinating features of protein folding. The folding of knotted proteins is on the timescale of minutes and thus hard to reproduce with atomistic simulations that have been able to reproduce features of ultrafast folding in great detail. Furthermore, it is generally not possible to control the topology of the unfolded state. Single-molecule force spectroscopy is an ideal tool for overcoming this problem: by variation of pulling directions, we controlled the knotting topology of the unfolded state of the 52-knotted protein ubiquitin C-terminal hydrolase isoenzyme L1 (UCH-L1) and have therefore been able to quantify the influence of knotting on its folding rate. Here, we provide direct evidence that a threading event associated with formation of either a 31 or 52 knot, or a step closely associated with it, significantly slows down the folding of UCH-L1. The results of the optical tweezers experiments highlight the complex nature of the folding pathway, many additional intermediate structures being detected that cannot be resolved by intrinsic fluorescence. Mechanical stretching of knotted proteins is also of importance for understanding the possible implications of knots in proteins for cellular degradation. Compared with a simple 31 knot, we measure a significantly larger size for the 52 knot in the unfolded state that can be further tightened with higher forces. Our results highlight the potential difficulties in degrading a 52 knot compared with a 31 knot. PMID:27339135

  9. Single-Molecule Trapping Dynamics of Sugar-Uptake Channels in Marine Bacteria

    NASA Astrophysics Data System (ADS)

    Suginta, Wipa; Smith, M. F.

    2013-06-01

    Stochastic fluctuations of ion current through one chitoporin (ChiP) channel within a bilayer lipid membrane in sugar solution are analyzed. These reflect single-molecule dynamics, which indicate that ChiP has multiple binding sites for sugar and exploits interactions between bound molecules to direct sugar passage. Since ChiP is used by marine bacteria, this is likely an adaptive strategy to enhance sugar translocation from rough water.

  10. Localization microscopy: mapping cellular dynamics with single molecules.

    PubMed

    Nelson, A J; Hess, S T

    2014-04-01

    Resolution describes the smallest details within a sample that can be recovered by a microscope lens system. For optical microscopes detecting visible light, diffraction limits the resolution to ∼200-250 nm. In contrast, localization measures the position of an isolated object using its image. Single fluorescent molecules can be localized with an uncertainty of a few tens of nanometres, and in some cases less than one nanometre. Superresolution fluorescence localization microscopy (SRFLM) images and localizes fluorescent molecules in a sample. By controlling the visibility of the fluorescent molecules with light, it is possible to cause a sparse subset of the tags to fluoresce and be spatially separated from each other. A movie is acquired with a camera, capturing images of many sets of visible fluorescent tags over a period of time. The movie is then analysed by a computer whereby all of the single molecules are independently measured, and their positions are recorded. When the coordinates of a sufficient number of molecules are collected, an image can be rendered by plotting the coordinates of the localized molecules. The spatial resolution of these rendered images can be better than 20 nm, roughly an order of magnitude better than the diffraction limited resolution. The invention of SRFLM has led to an explosion of related techniques. Through the use of specialized optics, the fluorescent signal can be split into multiple detection channels. These channels can capture additional information such as colour (emission wavelength), orientation and three-dimensional position of the detected molecules. Measurement of the colour of the detected fluorescence can allow researchers to distinguish multiple types of fluorescent tags and to study the interaction between multiple molecules of interest. Three-dimensional imaging and determination of molecular orientations offer insight into structural organization of the sample. SRFLM is compatible with living samples and

  11. Development of new photon-counting detectors for single-molecule fluorescence microscopy

    PubMed Central

    Michalet, X.; Colyer, R. A.; Scalia, G.; Ingargiola, A.; Lin, R.; Millaud, J. E.; Weiss, S.; Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Cheng, A.; Levi, M.; Aharoni, D.; Arisaka, K.; Villa, F.; Guerrieri, F.; Panzeri, F.; Rech, I.; Gulinatti, A.; Zappa, F.; Ghioni, M.; Cova, S.

    2013-01-01

    Two optical configurations are commonly used in single-molecule fluorescence microscopy: point-like excitation and detection to study freely diffusing molecules, and wide field illumination and detection to study surface immobilized or slowly diffusing molecules. Both approaches have common features, but also differ in significant aspects. In particular, they use different detectors, which share some requirements but also have major technical differences. Currently, two types of detectors best fulfil the needs of each approach: single-photon-counting avalanche diodes (SPADs) for point-like detection, and electron-multiplying charge-coupled devices (EMCCDs) for wide field detection. However, there is room for improvements in both cases. The first configuration suffers from low throughput owing to the analysis of data from a single location. The second, on the other hand, is limited to relatively low frame rates and loses the benefit of single-photon-counting approaches. During the past few years, new developments in point-like and wide field detectors have started addressing some of these issues. Here, we describe our recent progresses towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. We also discuss our development of large area photon-counting cameras achieving subnanosecond resolution for fluorescence lifetime imaging applications at the single-molecule level. PMID:23267185

  12. Single-molecule photophysics, from cryogenic to ambient conditions.

    PubMed

    Kozankiewicz, Bolesław; Orrit, Michel

    2014-02-21

    We review recent progress in characterizing and understanding the photophysics of single molecules in condensed matter, mostly at cryogenic temperatures. We discuss the central role of the triplet state in limiting the number of useful host-guest systems, notably a new channel, intermolecular intersystem crossing. Another important limitation to the use of single molecules is their photo-reactivity, leading to blinking of the fluorescence signal, and eventually to its loss by photo-bleaching. These processes are at the heart of modern super-resolution schemes. We then examine some of the new host-guest systems recently discovered following these general principles, and the mechanisms of spectral diffusion and dephasing that they have revealed. When charges are injected into organic conductors, they get trapped and influence single molecules via the local fields they create in the material, and via their coupling to localized vibrations. Understanding these processes is necessary for better control of spectral diffusion and dephasing of single molecules. We finally conclude by giving some outlook on future directions of this fascinating field. PMID:24190080

  13. Statistics and Related Topics in Single-Molecule Biophysics

    PubMed Central

    Qian, Hong; Kou, S. C.

    2014-01-01

    Since the universal acceptance of atoms and molecules as the fundamental constituents of matter in the early twentieth century, molecular physics, chemistry and molecular biology have all experienced major theoretical breakthroughs. To be able to actually “see” biological macromolecules, one at a time in action, one has to wait until the 1970s. Since then the field of single-molecule biophysics has witnessed extensive growth both in experiments and theory. A distinct feature of single-molecule biophysics is that the motions and interactions of molecules and the transformation of molecular species are necessarily described in the language of stochastic processes, whether one investigates equilibrium or nonequilibrium living behavior. For laboratory measurements following a biological process, if it is sampled over time on individual participating molecules, then the analysis of experimental data naturally calls for the inference of stochastic processes. The theoretical and experimental developments of single-molecule biophysics thus present interesting questions and unique opportunity for applied statisticians and probabilists. In this article, we review some important statistical developments in connection to single-molecule biophysics, emphasizing the application of stochastic-process theory and the statistical questions arising from modeling and analyzing experimental data. PMID:25009825

  14. Binding configurations and intramolecular strain in single-molecule devices.

    PubMed

    Rascón-Ramos, Habid; Artés, Juan Manuel; Li, Yuanhui; Hihath, Joshua

    2015-05-01

    The development of molecular-scale electronic devices has made considerable progress over the past decade, and single-molecule transistors, diodes and wires have all been demonstrated. Despite this remarkable progress, the agreement between theoretically predicted conductance values and those measured experimentally remains limited. One of the primary reasons for these discrepancies lies in the difficulty to experimentally determine the contact geometry and binding configuration of a single-molecule junction. In this Article, we apply a small-amplitude, high-frequency, sinusoidal mechanical signal to a series of single-molecule devices during junction formation and breakdown. By measuring the current response at this frequency, it is possible to determine the most probable binding and contact configurations for the molecular junction at room temperature in solution, and to obtain information about how an applied strain is distributed within the molecular junction. These results provide insight into the complex configuration of single-molecule devices, and are in excellent agreement with previous predictions from theoretical models. PMID:25686263

  15. Single-Molecule Electronic Measurements with Metal Electrodes

    ERIC Educational Resources Information Center

    Lindsay, Stuart

    2005-01-01

    A review of concepts like tunneling through a metal-molecule-metal-junction, contrast with electrochemical and optical-charge injection, strong-coupling limit, calculations of tunnel transport, electron transfer through Redox-active molecules is presented. This is followed by a discussion of experimental approaches for single-molecule measurements.

  16. Single-Molecule Biochemical Analysis Using Channel Current Cheminformatics

    NASA Astrophysics Data System (ADS)

    Winters-Hilt, Stephen

    2005-11-01

    A single nanometer-scale protein channel, residing in a bilayer, is used as a single-molecule measurement device. Single molecule kinetic information can be directly obtained with this approach via observation of single-molecule channel current blockades. A nanopore-based detector can also measure molecular characteristics indirectly, by changes in the blockades resulting from a changing bound-molecule complex. In essence, the heart of chemistry — the nature of the chemical bond — is now accessible via a new, computationally intensive, single-molecule observation method. In this work: (i) analysis of blockade signals is done using a variety of bioinformatics and machine learning tools; (ii) antibody blockade signals are examined and preliminary data on the characterization of antibody-antigen binding is briefly explored; and (iii) aptamer-based drug-discovery screening prospects are explored. The initial feature identification and extraction of blockade signals involves HMMs for level identification, HMM-EM for level projection, and time-domain FSAs for processing of the level-projected waveform. HMMs are then used for feature extraction and an SVM decision tree for multiclass discrimination. A new family of SVM variants is used, based on regularized-divergence kernels, and restriction is also made to feature vectors that can be interpreted as probability vectors. A web interface to the Channel Current Cheminformatics tools (unoCCC) and the Support Vector Machine classifier (unoSVM) will also be described.

  17. Single Molecule Study of Cellulase Hydrolysis of Crystalline Cellulose

    SciTech Connect

    Liu, Y.-S.; Luo, Y.; Baker, J. O.; Zeng, Y.; Himmel, M. E.; Smith, S.; Ding, S.-Y.

    2009-12-01

    This report seeks to elucidate the role of cellobiohydrolase-I (CBH I) in the hydrolysis of crystalline cellulose. A single-molecule approach uses various imaging techniques to investigate the surface structure of crystalline cellulose and changes made in the structure by CBH I.

  18. Giant single-molecule anisotropic magnetoresistance at room temperature.

    PubMed

    Li, Ji-Jun; Bai, Mei-Lin; Chen, Zhao-Bin; Zhou, Xiao-Shun; Shi, Zhan; Zhang, Meng; Ding, Song-Yuan; Hou, Shi-Min; Schwarzacher, Walther; Nichols, Richard J; Mao, Bing-Wei

    2015-05-13

    We report an electrochemically assisted jump-to-contact scanning tunneling microscopy (STM) break junction approach to create reproducible and well-defined single-molecule spintronic junctions. The STM break junction is equipped with an external magnetic field either parallel or perpendicular to the electron transport direction. The conductance of Fe-terephthalic acid (TPA)-Fe single-molecule junctions is measured and a giant single-molecule tunneling anisotropic magnetoresistance (T-AMR) up to 53% is observed at room temperature. Theoretical calculations based on first-principles quantum simulations show that the observed AMR of Fe-TPA-Fe junctions originates from electronic coupling at the TPA-Fe interfaces modified by the magnetic orientation of the Fe electrodes with respect to the direction of current flow. The present study highlights new opportunities for obtaining detailed understanding of mechanisms of charge and spin transport in molecular junctions and the role of interfaces in determining the MR of single-molecule junctions. PMID:25894840

  19. Single-molecule Studies of RNA Polymerase: Motoring Along

    PubMed Central

    Herbert, Kristina M.; Greenleaf, William J.; Block, Steven M.

    2010-01-01

    Single-molecule techniques have advanced our understanding of transcription by RNA polymerase. A new arsenal of approaches, including single-molecule fluorescence, atomic-force microscopy, magnetic tweezers, and optical traps have been employed to probe the many facets of the transcription cycle. These approaches supply fresh insights into the means by which RNA polymerase identifies a promoter; initiates transcription, translocates and pauses along the DNA template, proofreads errors, and ultimately terminates transcription. Results from single-molecule experiments complement knowledge gained from biochemical and genetic assays by facilitating the observation of states that are otherwise obscured by ensemble averaging, such as those resulting from heterogeneity in molecular structure, elongation rate, or pause propensity. Most studies to date have been performed with bacterial RNA polymerase, but work is also being carried out with eukaryotic polymerase (Pol II) and single-subunit polymerases from bacteriophages. We discuss recent progress achieved by single-molecule studies, highlighting some of the unresolved questions and ongoing debates. PMID:18410247

  20. Combining single-molecule imaging and single-channel electrophysiology.

    PubMed

    Weatherill, Eve E; Wallace, Mark I

    2015-01-16

    Combining simultaneous single-molecule fluorescence measurements of ion channel conformational change with single-channel electrophysiology would enable a direct link between structure and function. Such methods would help us to create a truly molecular "movie" of how these important biomolecules work. Here we review past and recent progress toward this goal. PMID:25026065

  1. Investigating single molecule adhesion by atomic force spectroscopy.

    PubMed

    Stetter, Frank W S; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-01-01

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment. PMID:25867282

  2. Hybrid photonic antennas for subnanometer multicolor localization and nanoimaging of single molecules.

    PubMed

    Mivelle, Mathieu; van Zanten, Thomas S; Garcia-Parajo, Maria F

    2014-08-13

    Photonic antennas amplify and confine optical fields at the nanoscale offering excellent perspectives for nanoimaging and nanospectroscopy. Increased resolution beyond the diffraction limit has been demonstrated using a variety of antenna designs, but multicolor nanoscale imaging is precluded by their resonance behavior. Here we report on the design of a novel hybrid antenna probe based on a monopole nanoantenna engineered on a bowtie nanoaperture. The device combines broadband enhanced emission, extreme field confinement down to few nanometers, and zero-background illumination. We demonstrate simultaneous dual-color single molecule nanoimaging with 20 nm resolution and angstrom localization precision, corresponding to 10(3)-fold improvement compared to diffraction-limited optics. When interacting with individual molecules in the near-field, our innovative design enables the emission of 10(4) photon-counts per molecule in a 20 nm excitation region, allowing direct discrimination of spectrally distinct molecules separated by 2.1 ± 0.4 nm. We foresee that background-free nanolight sources will open new horizons in optical nanoscopy and fluorescence spectroscopy by providing multicolor detection of standard fluorescent molecules fully compatible with live cell research. PMID:25050445

  3. On the Uncertainty in Single Molecule Fluorescent Lifetime and Energy Emission Measurements

    NASA Technical Reports Server (NTRS)

    Brown, Emery N.; Zhang, Zhenhua; McCollom, Alex D.

    1996-01-01

    Time-correlated single photon counting has recently been combined with mode-locked picosecond pulsed excitation to measure the fluorescent lifetimes and energy emissions of single molecules in a flow stream. Maximum likelihood (ML) and least squares methods agree and are optimal when the number of detected photons is large, however, in single molecule fluorescence experiments the number of detected photons can be less than 20, 67 percent of those can be noise, and the detection time is restricted to 10 nanoseconds. Under the assumption that the photon signal and background noise are two independent inhomogeneous Poisson processes, we derive the exact joint arrival time probability density of the photons collected in a single counting experiment performed in the presence of background noise. The model obviates the need to bin experimental data for analysis, and makes it possible to analyze formally the effect of background noise on the photon detection experiment using both ML or Bayesian methods. For both methods we derive the joint and marginal probability densities of the fluorescent lifetime and fluorescent emission. The ML and Bayesian methods are compared in an analysis of simulated single molecule fluorescence experiments of Rhodamine 110 using different combinations of expected background noise and expected fluorescence emission. While both the ML or Bayesian procedures perform well for analyzing fluorescence emissions, the Bayesian methods provide more realistic measures of uncertainty in the fluorescent lifetimes. The Bayesian methods would be especially useful for measuring uncertainty in fluorescent lifetime estimates in current single molecule flow stream experiments where the expected fluorescence emission is low. Both the ML and Bayesian algorithms can be automated for applications in molecular biology.

  4. On the uncertainty in single molecule fluorescent lifetime and energy emission measurements

    NASA Technical Reports Server (NTRS)

    Brown, Emery N.; Zhang, Zhenhua; Mccollom, Alex D.

    1995-01-01

    Time-correlated single photon counting has recently been combined with mode-locked picosecond pulsed excitation to measure the fluorescent lifetimes and energy emissions of single molecules in a flow stream. Maximum likelihood (ML) and least square methods agree and are optimal when the number of detected photons is large however, in single molecule fluorescence experiments the number of detected photons can be less than 20, 67% of those can be noise and the detection time is restricted to 10 nanoseconds. Under the assumption that the photon signal and background noise are two independent inhomogeneous poisson processes, we derive the exact joint arrival time probably density of the photons collected in a single counting experiment performed in the presence of background noise. The model obviates the need to bin experimental data for analysis, and makes it possible to analyze formally the effect of background noise on the photon detection experiment using both ML or Bayesian methods. For both methods we derive the joint and marginal probability densities of the fluorescent lifetime and fluorescent emission. the ML and Bayesian methods are compared in an analysis of simulated single molecule fluorescence experiments of Rhodamine 110 using different combinations of expected background nose and expected fluorescence emission. While both the ML or Bayesian procedures perform well for analyzing fluorescence emissions, the Bayesian methods provide more realistic measures of uncertainty in the fluorescent lifetimes. The Bayesian methods would be especially useful for measuring uncertainty in fluorescent lifetime estimates in current single molecule flow stream experiments where the expected fluorescence emission is low. Both the ML and Bayesian algorithms can be automated for applications in molecular biology.

  5. Magnetic behaviour of TbPc2 single-molecule magnets chemically grafted on silicon surface

    PubMed Central

    Mannini, Matteo; Bertani, Federico; Tudisco, Cristina; Malavolti, Luigi; Poggini, Lorenzo; Misztal, Kasjan; Menozzi, Daniela; Motta, Alessandro; Otero, Edwige; Ohresser, Philippe; Sainctavit, Philippe; Condorelli, Guglielmo G.; Dalcanale, Enrico; Sessoli, Roberta

    2014-01-01

    Single-molecule magnets (SMMs) are among the most promising molecular systems for the development of novel molecular electronics based on the spin transport. Going beyond the investigations focused on physisorbed SMMs, in this work the robust grafting of Terbium(III) bis(phthalocyaninato) complexes to silicon surface from a diluted solution is achieved by rational chemical design yielding the formation of a partially oriented monolayer on the conducting substrate. Here, by exploiting the surface sensitivity of X-ray circular magnetic dichroism we evidence an enhancement of the magnetic bistability of this single-molecule magnet, in contrast to the dramatic reduction of the magnetic hysteresis that characterises monolayer deposits evaporated on noble and ferromagnetic metals. Photoelectron spectroscopy investigations and density functional theory analysis suggest a non-innocent role played by the silicon substrate, evidencing the potentiality of this approach for robust integration of bistable magnetic molecules in electronic devices. PMID:25109254

  6. Single-molecule imaging of BMP4 dimerization on human periodontal ligament cells.

    PubMed

    Mi, H-W; Lee, M-C; Chiang, Y-C; Chow, L-P; Lin, C-P

    2011-11-01

    We expressed bone morphogenetic protein 4 (BMP4) fused with enhanced green fluorescent protein (BMP4-EGFP) in the secretory pathways of producer cells. Fluorescent EGFP was acquired only after we interrupted the transport of BMP4-EGFP by culturing cells at a lower temperature (20°C), and the dynamics of BMP4-EGFP could be monitored by single-molecule microscopy. Western blotting analysis confirmed that exposure to low temperature helped the integrated formation of BMP4-EGFP fusion proteins. In this study, for the first time, we could image the fluorescently labeled BMP4 molecules localized on the plasma membrane of living hPDL cells. The one-step photobleaching with EGFP and the "blinking" behavior of quantum dots suggest that the fluorescent spots represent the events of single BMP4 molecules. Single-molecule tracking showed that the BMP receptors (BMPR) dimerize after BMP4 stimulation, or that a complex of one BMP4 molecule and a pre-formed BMPR dimer develops first, followed by the binding of the second BMP4 molecule. Furthermore, BMP4-EGFP enhanced the osteogenic differentiation of hPDL cells via signal transduction involving BMP receptors. This single-molecule imaging technique might be a valuable tool for the future development of BMP4 gene therapy and regenerative medicine mediated by hPDLs. PMID:21841042

  7. Electronic transport in benzodifuran single-molecule transistors

    NASA Astrophysics Data System (ADS)

    Xiang, An; Li, Hui; Chen, Songjie; Liu, Shi-Xia; Decurtins, Silvio; Bai, Meilin; Hou, Shimin; Liao, Jianhui

    2015-04-01

    Benzodifuran (BDF) single-molecule transistors have been fabricated in electromigration break junctions for electronic measurements. The inelastic electron tunneling spectrum validates that the BDF molecule is the pathway of charge transport. The gating effect is analyzed in the framework of a single-level tunneling model combined with transition voltage spectroscopy (TVS). The analysis reveals that the highest occupied molecular orbital (HOMO) of the thiol-terminated BDF molecule dominates the charge transport through Au-BDF-Au junctions. Moreover, the energy shift of the HOMO caused by the gate voltage is the main reason for conductance modulation. In contrast, the electronic coupling between the BDF molecule and the gold electrodes, which significantly affects the low-bias junction conductance, is only influenced slightly by the applied gate voltage. These findings will help in the design of future molecular electronic devices.Benzodifuran (BDF) single-molecule transistors have been fabricated in electromigration break junctions for electronic measurements. The inelastic electron tunneling spectrum validates that the BDF molecule is the pathway of charge transport. The gating effect is analyzed in the framework of a single-level tunneling model combined with transition voltage spectroscopy (TVS). The analysis reveals that the highest occupied molecular orbital (HOMO) of the thiol-terminated BDF molecule dominates the charge transport through Au-BDF-Au junctions. Moreover, the energy shift of the HOMO caused by the gate voltage is the main reason for conductance modulation. In contrast, the electronic coupling between the BDF molecule and the gold electrodes, which significantly affects the low-bias junction conductance, is only influenced slightly by the applied gate voltage. These findings will help in the design of future molecular electronic devices. Electronic supplementary information (ESI) available: The fabrication procedure for BDF single-molecule

  8. A gate-tunable single-molecule diode

    NASA Astrophysics Data System (ADS)

    Perrin, Mickael L.; Galán, Elena; Eelkema, Rienk; Thijssen, Joseph M.; Grozema, Ferdinand; van der Zant, Herre S. J.

    2016-04-01

    In the pursuit of down-sizing electronic components, the ultimate limit is the use of single molecules as functional devices. The first theoretical proposal of such a device, predicted more than four decades ago, is the seminal Aviram-Ratner rectifier that exploits the orbital structure of the molecule. The experimental realization of single-molecule rectifiers, however, has proven to be challenging. In this work, we report on the experimental realization of a gate-tunable single-molecule rectifier with rectification ratios as high as 600. The rectification mechanism arises from the molecular structure and relies on the presence of two conjugated sites that are weakly coupled through a saturated linker. The observed gate dependence not only demonstrates tunability of the rectification ratio, it also shows that the proposed rectification mechanism based on the orbital structure is operative in the molecule.In the pursuit of down-sizing electronic components, the ultimate limit is the use of single molecules as functional devices. The first theoretical proposal of such a device, predicted more than four decades ago, is the seminal Aviram-Ratner rectifier that exploits the orbital structure of the molecule. The experimental realization of single-molecule rectifiers, however, has proven to be challenging. In this work, we report on the experimental realization of a gate-tunable single-molecule rectifier with rectification ratios as high as 600. The rectification mechanism arises from the molecular structure and relies on the presence of two conjugated sites that are weakly coupled through a saturated linker. The observed gate dependence not only demonstrates tunability of the rectification ratio, it also shows that the proposed rectification mechanism based on the orbital structure is operative in the molecule. Electronic supplementary information (ESI) available: DFT calculations on the DPE molecule, three-terminal measurements on the DPE molecule, additional analysis

  9. Direct Measurement of Single-Molecule DNA Hybridization Dynamics with Single-Base Resolution.

    PubMed

    He, Gen; Li, Jie; Ci, Haina; Qi, Chuanmin; Guo, Xuefeng

    2016-07-25

    Herein, we report label-free detection of single-molecule DNA hybridization dynamics with single-base resolution. By using an electronic circuit based on point-decorated silicon nanowires as electrical probes, we directly record the folding/unfolding process of individual hairpin DNAs with sufficiently high signal-to-noise ratio and bandwidth. These measurements reveal two-level current oscillations with strong temperature dependence, enabling us to determine the thermodynamic and kinetic properties of hairpin DNA hybridization. More importantly, successive, stepwise increases and decreases in device conductance at low temperature on a microsecond timescale are successfully observed, indicating a base-by-base unfolding/folding process. The process demonstrates a kinetic zipper model for DNA hybridization/dehybridization at the single base-pair level. This measurement capability promises a label-free single-molecule approach to probe biomolecular interactions with fast dynamics. PMID:27272178

  10. Exploring bacterial cell biology with single-molecule tracking and super-resolution imaging

    PubMed Central

    Gahlmann, Andreas; Moerner, W. E.

    2014-01-01

    The ability to detect single molecules in live bacterial cells enables us to probe biological events one molecule at a time and thereby gain knowledge of the activities of intracellular molecules that remain obscure in conventional ensemble-averaged measurements. Single-molecule fluorescence tracking and super-resolution imaging are thus providing a new window into bacterial cells and facilitating the elucidation of cellular processes at an unprecedented level of sensitivity, specificity and spatial resolution. In this Review, we consider what these technologies have taught us about the bacterial cytoskeleton, nucleoid organization and the dynamic processes of transcription and translation, and we also highlight the methodological improvements that are needed to address a number of experimental challenges in the field. PMID:24336182

  11. Single-molecule spectroscopy of protein conformational dynamics in live eukaryotic cells.

    PubMed

    König, Iwo; Zarrine-Afsar, Arash; Aznauryan, Mikayel; Soranno, Andrea; Wunderlich, Bengt; Dingfelder, Fabian; Stüber, Jakob C; Plückthun, Andreas; Nettels, Daniel; Schuler, Benjamin

    2015-08-01

    Single-molecule methods have become widely used for quantifying the conformational heterogeneity and structural dynamics of biomolecules in vitro. Their application in vivo, however, has remained challenging owing to shortcomings in the design and reproducible delivery of labeled molecules, the range of applicable analysis methods, and suboptimal cell culture conditions. By addressing these limitations in an integrated approach, we demonstrate the feasibility of probing protein dynamics from milliseconds down to the nanosecond regime in live eukaryotic cells with confocal single-molecule Förster resonance energy transfer (FRET) spectroscopy. We illustrate the versatility of the approach by determining the dimensions and submicrosecond chain dynamics of an intrinsically disordered protein; by detecting even subtle changes in the temperature dependence of protein stability, including in-cell cold denaturation; and by quantifying the folding dynamics of a small protein. The methodology opens possibilities for assessing the effect of the cellular environment on biomolecular conformation, dynamics and function. PMID:26147918

  12. Single molecule spin resonance spectroscopy and imaging by diamond-sensor

    NASA Astrophysics Data System (ADS)

    Du, Jiangfeng

    Single-molecule magnetic resonance spectroscopy and imaging is one of the ultimate goals in magnetic resonance and will has great applications in a broad range of scientific areas, from life science to physics and chemistry. The spin of a single nitrogen vacancy (NV) center in diamond is a highly sensitive magnetic-field sensor, which has been proposed for detection of single molecules or nanoscale targets. We and co-workers have successfully obtained the first single-protein spin resonance spectroscopy under ambient conditions, high-resolution vector microwave imaging, and realized atomic-scale structure analysis of single nuclear-spin clusters in diamond. Moreover, we have tried to improve the quantum control technique and succeed to achieve fault-tolerant universal quantum gates. As the last part, I will briefly introduce our most recently work on single protein imaging in situ in cell.

  13. Single Molecule Study of DNA Organization and Recombination

    NASA Astrophysics Data System (ADS)

    Xiao, Botao

    We have studied five projects related to DNA organization and recombination using mainly single molecule force-spectroscopy and statistical tools. First, HU is one of the most abundant DNA-organizing proteins in bacterial chromosomes and participates in gene regulation. We report experiments that study the dependence of DNA condensation by HU on force, salt and HU concentration. A first important result is that at physiological salt levels, HU only bends DNA, resolving a previous paradox of why a chromosome-compacting protein should have a DNA-stiffening function. A second major result is quantitative demonstration of strong dependencies of HU-DNA dissociation on both salt concentration and force. Second, we have used a thermodynamic Maxwell relation to count proteins driven off large DNAs by tension, an effect important to understanding DNA organization. Our results compare well with estimates of numbers of proteins HU and Fis in previous studies. We have also shown that a semi-flexible polymer model describes our HU experimental data well. The force-dependent binding suggests mechano-chemical mechanisms for gene regulation. Third, the elusive role of protein H1 in chromatin has been clarified with purified H1 and Xenopus extracts. We find that H1 compacts DNA by both bending and looping. Addition of H1 enhances chromatin formation and maintains the plasticity of the chromatin. Fourth, the topology and mechanics of DNA twisting are critical to DNA organization and recombination. We have systematically measured DNA extension as a function of linking number density from 0.08 to -2 with holding forces from 0.2 to 2.4 pN. Unlike previous proposals, the DNA extension decreases with negative linking number. Finally, DNA recombination is a dynamic process starting from enzyme-DNA binding. We report that the Int-DBD domain of lambda integrase binds to DNA without compaction at low Int-DBD concentration. High concentration of Int-DBD loops DNA below a threshold force

  14. A 48-pixel array of Single Photon Avalanche Diodes for multispot Single Molecule analysis

    PubMed Central

    Rech, Ivan; Maccagnani, Piera; Ghioni, Massimo

    2013-01-01

    In this paper we present an array of 48 Single Photon Avalanche Diodes (SPADs) specifically designed for multispot Single Molecule Analysis. The detectors have been arranged in a 12×4 square geometry with a pitch-to-diameter ratio of ten in order to minimize the collection of the light from non-conjugated excitation spots. In order to explore the trade-offs between the detectors’ performance and the optical coupling with the experimental setup, SPADs with an active diameter of 25 and of 50µm have been manufactured. The use of a custom technology, specifically designed for the fabrication of the detectors, allowed us to combine a high photon detection efficiency (peak close to 50% at a wavelength of 550nm) with a low dark count rate compatible with true single molecule detection. In order to allow easy integration into the optical setup for parallel single-molecule analysis, the SPAD array has been incorporated in a compact module containing all the electronics needed for a proper operation of the detectors. PMID:24357913

  15. Microsecond protein dynamics observed at the single-molecule level

    PubMed Central

    Otosu, Takuhiro; Ishii, Kunihiko; Tahara, Tahei

    2015-01-01

    How polypeptide chains acquire specific conformations to realize unique biological functions is a central problem of protein science. Single-molecule spectroscopy, combined with fluorescence resonance energy transfer, is utilized to study the conformational heterogeneity and the state-to-state transition dynamics of proteins on the submillisecond to second timescales. However, observation of the dynamics on the microsecond timescale is still very challenging. This timescale is important because the elementary processes of protein dynamics take place and direct comparison between experiment and simulation is possible. Here we report a new single-molecule technique to reveal the microsecond structural dynamics of proteins through correlation of the fluorescence lifetime. This method, two-dimensional fluorescence lifetime correlation spectroscopy, is applied to clarify the conformational dynamics of cytochrome c. Three conformational ensembles and the microsecond transitions in each ensemble are indicated from the correlation signal, demonstrating the importance of quantifying microsecond dynamics of proteins on the folding free energy landscape. PMID:26151767

  16. High-Resolution, Single-Molecule Measurements of Biomolecular Motion

    PubMed Central

    Greenleaf, William J.; Woodside, Michael T.; Block, Steven M.

    2007-01-01

    Many biologically important macromolecules undergo motions that are essential to their function. Biophysical techniques can now resolve the motions of single molecules down to the nanometer scale or even below, providing new insights into the mechanisms that drive molecular movements. This review outlines the principal approaches that have been used for high-resolution measurements of single-molecule motion, including centroid tracking, fluorescence resonance energy transfer, magnetic tweezers, atomic force microscopy, and optical traps. For each technique, the principles of operation are outlined, the capabilities and typical applications are examined, and various practical issues for implementation are considered. Extensions to these methods are also discussed, with an eye toward future application to outstanding biological problems. PMID:17328679

  17. Controlling single-molecule junction conductance by molecular interactions

    PubMed Central

    Kitaguchi, Y.; Habuka, S.; Okuyama, H.; Hatta, S.; Aruga, T.; Frederiksen, T.; Paulsson, M.; Ueba, H.

    2015-01-01

    For the rational design of single-molecular electronic devices, it is essential to understand environmental effects on the electronic properties of a working molecule. Here we investigate the impact of molecular interactions on the single-molecule conductance by accurately positioning individual molecules on the electrode. To achieve reproducible and precise conductivity measurements, we utilize relatively weak π-bonding between a phenoxy molecule and a STM-tip to form and cleave one contact to the molecule. The anchoring to the other electrode is kept stable using a chalcogen atom with strong bonding to a Cu(110) substrate. These non-destructive measurements permit us to investigate the variation in single-molecule conductance under different but controlled environmental conditions. Combined with density functional theory calculations, we clarify the role of the electrostatic field in the environmental effect that influences the molecular level alignment. PMID:26135251

  18. Single-Molecule Studies of DNA Replisome Function

    PubMed Central

    Perumal, Senthil K.; Yue, Hongjun; Hu, Zhenxin; Spiering, Michelle M.; Benkovic, Stephen J.

    2010-01-01

    Fast and accurate replication of DNA is accomplished by the interactions of multiple proteins in the dynamic DNA replisome. The DNA replisome effectively coordinates the leading and lagging strand synthesis of DNA. These complex, yet elegantly organized, molecular machines have been studied extensively by kinetic and structural methods to provide an in-depth understanding of the mechanism of DNA replication. Owing to averaging of observables, unique dynamic information of the biochemical pathways and reactions are concealed in conventional ensemble methods. However, recent advances in the rapidly expanding field of single-molecule analyses to study single biomolecules offer opportunities to probe and understand the dynamic processes involved in large biomolecular complexes such as replisomes. This review will focus on the recent developments in the biochemistry and biophysics of DNA replication employing single-molecule techniques and the insights provided by these methods towards a better understanding of the intricate mechanisms of DNA replication. PMID:19665592

  19. Single molecule fluorescence experiments determine protein folding transition path times

    PubMed Central

    Chung, Hoi Sung; McHale, Kevin; Louis, John M.; Eaton, William A.

    2013-01-01

    The transition path is the tiny fraction of an equilibrium molecular trajectory when a transition occurs by crossing the free-energy barrier between two states. It is a single-molecule property that contains all the mechanistic information on how a process occurs. As a step toward observing transition paths in protein folding we determined the average transition-path time for a fast- and a slow-folding protein from a photon-by-photon analysis of fluorescence trajectories in single-molecule Förster-resonance-energy-transfer experiments. While the folding rate coefficients differ by a factor of 10,000, the transition-path times differ by less than a factor of 5, showing that a fast-and a slow-folding protein take almost the same time to fold when folding actually happens. A very simple model based on energy landscape theory can explain this result. PMID:22363011

  20. Controlling single-molecule junction conductance by molecular interactions.

    PubMed

    Kitaguchi, Y; Habuka, S; Okuyama, H; Hatta, S; Aruga, T; Frederiksen, T; Paulsson, M; Ueba, H

    2015-01-01

    For the rational design of single-molecular electronic devices, it is essential to understand environmental effects on the electronic properties of a working molecule. Here we investigate the impact of molecular interactions on the single-molecule conductance by accurately positioning individual molecules on the electrode. To achieve reproducible and precise conductivity measurements, we utilize relatively weak π-bonding between a phenoxy molecule and a STM-tip to form and cleave one contact to the molecule. The anchoring to the other electrode is kept stable using a chalcogen atom with strong bonding to a Cu(110) substrate. These non-destructive measurements permit us to investigate the variation in single-molecule conductance under different but controlled environmental conditions. Combined with density functional theory calculations, we clarify the role of the electrostatic field in the environmental effect that influences the molecular level alignment. PMID:26135251

  1. Single Molecule Junctions: Probing Contact Chemistry and Fundamental Circuit Laws

    SciTech Connect

    Hybertsen M. S.

    2013-04-11

    By exploiting selective link chemistry, formation of single molecule junctions with reproducible conductance has become established. Systematic studies reveal the structure-conductance relationships for diverse molecules. I will draw on experiments from my collaborators at Columbia University, atomic-scale calculations and theory to describe progress in two areas. First, I will describe a novel route to form single molecule junctions, based on SnMe3 terminated molecules, in which gold directly bonds to carbon in the molecule backbone resulting in near ideal contact resistance [1]. Second, comparison of the conductance of junctions formed with molecular species containing either one backbone or two backbones in parallel allows demonstration of the role of quantum interference in the conductance superposition law at the molecular scale [2].

  2. Single Molecule Electron Transfer Process of Ruthenium Complexes.

    SciTech Connect

    Hu, Dehong; Lu, H PETER.

    2006-03-01

    Transition metal complexes such as ruthenium complexes, having metal-to-ligand charge transfer states, are extensively used in solar energy conversion and electron transfer in biological systems and at interfaces. The dynamics of metal-to-ligand charge transfer and subsequent intermolecular, intramolecular, and interfacial electron transfer processes can be highly complex and inhomogeneous, especially when molecules are involved in interactions and perturbations from heterogeneous local environments and gated by conformation fluctuations. We have employed the single-molecule spectroscopy, a powerful approach for inhomogeneous systems to study the electron transfer dynamics of ruthenium complexes. We have applied a range of statistical analysis methods to reveal nonclassical photon emission behavior of the single ruthenium complex, i.e., photon antibunching, and photophysical ground-state recovering dynamics on a microsecond time scale. The use of photon antibunching to measure phosphorescence lifetimes and single-molecule electron transfer dynamics at room temperature is demonstrated.

  3. Single molecule insights on conformational selection and induced fit mechanism.

    PubMed

    Hatzakis, Nikos S

    2014-02-01

    Biomolecular interactions regulate a plethora of vital cellular processes, including signal transduction, metabolism, catalysis and gene regulation. Regulation is encoded in the molecular properties of the constituent proteins; distinct conformations correspond to different functional outcomes. To describe the molecular basis of this behavior, two main mechanisms have been advanced: 'induced fit' and 'conformational selection'. Our understanding of these models relies primarily on NMR, computational studies and kinetic measurements. These techniques report the average behavior of a large ensemble of unsynchronized molecules, often masking intrinsic dynamic behavior of proteins and biologically significant transient intermediates. Single molecule measurements are emerging as a powerful tool for characterizing protein function. They offer the direct observation and quantification of the activity, abundance and lifetime of multiple states and transient intermediates in the energy landscape, that are typically averaged out in non-synchronized ensemble measurements. Here we survey new insights from single molecule studies that advance our understanding of the molecular mechanisms underlying biomolecular recognition. PMID:24342874

  4. Density Functional Theory with Dissipation: Transport through Single Molecules

    SciTech Connect

    Kieron Burke

    2012-04-30

    A huge amount of fundamental research was performed on this grant. Most of it focussed on fundamental issues of electronic structure calculations of transport through single molecules, using density functional theory. Achievements were: (1) First density functional theory with dissipation; (2) Pseudopotential plane wave calculations with master equation; (3) Weak bias limit; (4) Long-chain conductance; and (5) Self-interaction effects in tunneling.

  5. Hydration effects on membrane structure probed by single molecule orientations.

    PubMed

    Huckabay, Heath A; Dunn, Robert C

    2011-03-15

    Single molecule fluorescence measurements are used to probe the structural changes in glass-supported DPPC bilayers as a function of relative humidity (RH). Defocused polarized total internal reflection fluorescence microscopy is employed to determine the three-dimensional orientation of the fluorescent lipid analogue BODIPY-PC, doped into DPPC membranes in trace amounts. Supported DPPC bilayers formed using vesicle fusion and Langmuir-Blodgett/Langmuir-Schäfer (LB/LS) transfer are compared and show similar trends as a function of relative humidity. Population histograms of the emission dipole tilt angle reveal bimodal distributions as observed previously for BODIPY-PC in DPPC. These distributions are dominated by large populations of BODIPY-PC molecules with emission dipoles oriented parallel (≥81°) and normal (≤10°) to the membrane plane, with less than 25% oriented at intermediate tilts. As the relative humidity is increased from 13% to 95%, the population of molecules oriented normal to the surface decreases with a concomitant increase in those oriented parallel to the surface. The close agreement in trends observed for bilayers formed from vesicle fusion and LB/LS transfer supports the assignment of an equivalent surface pressure of 23 mN/m for bilayers formed from vesicle fusion. At each RH condition, a small population of BODIPY-PC dye molecules are laterally mobile in both bilayer preparations. This population exponentially increases with RH but never exceeds 6% of the total population. Interestingly, even under conditions where there is little lateral diffusion, fluctuations in the single molecule orientations can be observed which suggests there is appreciable freedom in the acyl chain region. Dynamic measurements of single molecule orientation changes, therefore, provide a new view into membrane properties at the single molecule level. PMID:21319764

  6. Atomic-Scale Control of Electron Transport through Single Molecules

    NASA Astrophysics Data System (ADS)

    Wang, Y. F.; Kröger, J.; Berndt, R.; Vázquez, H.; Brandbyge, M.; Paulsson, M.

    2010-04-01

    Tin-phthalocyanine molecules adsorbed on Ag(111) were contacted with the tip of a cryogenic scanning tunneling microscope. Orders-of-magnitude variations of the single-molecule junction conductance were achieved by controllably dehydrogenating the molecule and by modifying the atomic structure of the surface electrode. Nonequilibrium Green’s function calculations reproduce the trend of the conductance and visualize the current flow through the junction, which is guided through molecule-electrode chemical bonds.

  7. Single-Molecule Ion Channel Conformational Dynamics in Living Cells

    NASA Astrophysics Data System (ADS)

    Lu, H. Peter

    2014-03-01

    Stochastic and inhomogeneous conformational changes regulate the function and dynamics of ion channels that are crucial for cell functions, neuronal signaling, and brain functions. Such complexity makes it difficult, if not impossible, to characterize ion channel dynamics using conventional electrical recording alone since that the measurement does not specifically interrogate the associated conformational changes but rather the consequences of the conformational changes. Recently, new technology developments on single-molecule spectroscopy, and especially, the combined approaches of using single ion channel patch-clamp electrical recording and single-molecule fluorescence imaging have provided us the capability of probing ion channel conformational changes simultaneously with the electrical single channel recording. By combining real-time single-molecule fluorescence imaging measurements with real-time single-channel electric current measurements in artificial lipid bilayers and in living cell membranes, we were able to probe single ion-channel-protein conformational changes simultaneously, and thus providing an understanding the dynamics and mechanism of ion-channel proteins at the molecular level. The function-regulating and site-specific conformational changes of ion channels are now measurable under physiological conditions in real-time, one molecule at a time. We will focus our discussion on the new development and results of real-time imaging of the dynamics of gramicidin, colicin, and NMDA receptor ion channels in lipid bilayers and living cells. Our results shed light on new perspectives of the intrinsic interplay of lipid membrane dynamics, solvation dynamics, and the ion channel functions.

  8. Single-molecule observation of prokaryotic DNA replication.

    PubMed

    Geertsema, Hylkje J; Duderstadt, Karl E; van Oijen, Antoine M

    2015-01-01

    Replication of DNA requires the coordinated activity of a number of proteins within a multiprotein complex, the replisome. Recent advances in single-molecule techniques have enabled the observation of dynamic behavior of individual replisome components and of the replisome as a whole, aspects that previously often have been obscured by ensemble averaging in more classical solution-phase biochemical experiments. To improve robustness and reproducibility of single-molecule assays of replication and allow objective analysis and comparison of results obtained from such assays, common practices should be established. Here, we describe the technical details of two assays to study replisome activity. In one, the kinetics of replication are observed as length changes in DNA molecules mechanically stretched by a laminar flow applied to attached beads. In the other, fluorescence imaging is used to determine both the kinetics and stoichiometry of individual replisome components. These in vitro single-molecule methods allow for elucidation of the dynamic behavior of individual replication proteins of prokaryotic replication systems. PMID:25916715

  9. Single-Molecule Electronic Monitoring of DNA Polymerase Activity

    NASA Astrophysics Data System (ADS)

    Marushchak, Denys O.; Pugliese, Kaitlin M.; Turvey, Mackenzie W.; Choi, Yongki; Gul, O. Tolga; Olsen, Tivoli J.; Rajapakse, Arith J.; Weiss, Gregory A.; Collins, Philip G.

    Single-molecule techniques can reveal new spatial and kinetic details of the conformational changes occurring during enzymatic catalysis. Here, we investigate the activity of DNA polymerases using an electronic single-molecule technique based on carbon nanotube transistors. Single molecules of the Klenow fragment (KF) of polymerase I were conjugated to the transistors and then monitored via fluctuations in electrical conductance. Continuous, long-term monitoring recorded single KF molecules incorporating up to 10,000 new bases into single-stranded DNA templates. The duration of individual incorporation events was invariant across all analog and native nucleotides, indicating that the precise structure of different base pairs has no impact on the timing of incorporation. Despite similar timings, however, the signal magnitudes generated by certain analogs reveal alternate conformational states that do not occur with native nucleotides. The differences induced by these analogs suggest that the electronic technique is sensing KF's O-helix as it tests the stability of nascent base pairs.

  10. Single-molecule imaging studies of protein dynamics

    NASA Astrophysics Data System (ADS)

    Zareh, Shannon Kian G.

    2011-12-01

    Single-molecule fluorescence imaging is a powerful method for studying biological events. The work of this thesis primarily focuses on single molecule studies of the dynamics of Green Fluorescent Protein (GFP) and other fluorescent-labeled proteins by utilizing Total Internal Reflection Fluorescence (TIRF) microscopy and imaging. The single molecule experiments of this thesis covered three broad topics. First, the adsorption mechanisms of proteins onto hydrophobic and hydrophilic fused silica surfaces were imaged and reversible and irreversible adsorption mechanisms were observed. The second topic covered a new technique for measuring the diffusion coefficient of Brownian diffusing proteins, in particular GFP, in solution via a single image. The corresponding experiments showed a relationship between the intensity profile width and the diffusion coefficient of the diffusing molecules. The third topic covered an in vivo experiment involving imaging and quantifying prokaryotic cell metabolism protein dynamics inside the Bacillus subtilis bacteria, in which a helical diffusion pattern for the protein was observed. These topics are presented in the chronological order of the experiments conducted.

  11. Semisynthetic protein nanoreactor for single-molecule chemistry

    PubMed Central

    Lee, Joongoo; Bayley, Hagan

    2015-01-01

    The covalent chemistry of individual reactants bound within a protein pore can be monitored by observing the ionic current flow through the pore, which acts as a nanoreactor responding to bond-making and bond-breaking events. In the present work, we incorporated an unnatural amino acid into the α-hemolysin (αHL) pore by using solid-phase peptide synthesis to make the central segment of the polypeptide chain, which forms the transmembrane β-barrel of the assembled heptamer. The full-length αHL monomer was obtained by native chemical ligation of the central synthetic peptide to flanking recombinant polypeptides. αHL pores with one semisynthetic subunit were then used as nanoreactors for single-molecule chemistry. By introducing an amino acid with a terminal alkyne group, we were able to visualize click chemistry at the single-molecule level, which revealed a long-lived (4.5-s) reaction intermediate. Additional side chains might be introduced in a similar fashion, thereby greatly expanding the range of single-molecule covalent chemistry that can be investigated by the nanoreactor approach. PMID:26504203

  12. Single molecule microscopy in 3D cell cultures and tissues.

    PubMed

    Lauer, Florian M; Kaemmerer, Elke; Meckel, Tobias

    2014-12-15

    From the onset of the first microscopic visualization of single fluorescent molecules in living cells at the beginning of this century, to the present, almost routine application of single molecule microscopy, the method has well-proven its ability to contribute unmatched detailed insight into the heterogeneous and dynamic molecular world life is composed of. Except for investigations on bacteria and yeast, almost the entire story of success is based on studies on adherent mammalian 2D cell cultures. However, despite this continuous progress, the technique was not able to keep pace with the move of the cell biology community to adapt 3D cell culture models for basic research, regenerative medicine, or drug development and screening. In this review, we will summarize the progress, which only recently allowed for the application of single molecule microscopy to 3D cell systems and give an overview of the technical advances that led to it. While initially posing a challenge, we finally conclude that relevant 3D cell models will become an integral part of the on-going success of single molecule microscopy. PMID:25453259

  13. Massively parallel haplotyping on microscopic beads for the high-throughput phase analysis of single molecules.

    PubMed

    Boulanger, Jérôme; Muresan, Leila; Tiemann-Boege, Irene

    2012-01-01

    In spite of the many advances in haplotyping methods, it is still very difficult to characterize rare haplotypes in tissues and different environmental samples or to accurately assess the haplotype diversity in large mixtures. This would require a haplotyping method capable of analyzing the phase of single molecules with an unprecedented throughput. Here we describe such a haplotyping method capable of analyzing in parallel hundreds of thousands single molecules in one experiment. In this method, multiple PCR reactions amplify different polymorphic regions of a single DNA molecule on a magnetic bead compartmentalized in an emulsion drop. The allelic states of the amplified polymorphisms are identified with fluorescently labeled probes that are then decoded from images taken of the arrayed beads by a microscope. This method can evaluate the phase of up to 3 polymorphisms separated by up to 5 kilobases in hundreds of thousands single molecules. We tested the sensitivity of the method by measuring the number of mutant haplotypes synthesized by four different commercially available enzymes: Phusion, Platinum Taq, Titanium Taq, and Phire. The digital nature of the method makes it highly sensitive to detecting haplotype ratios of less than 1:10,000. We also accurately quantified chimera formation during the exponential phase of PCR by different DNA polymerases. PMID:22558329

  14. Ultracompact alignment-free single molecule fluorescence device with a foldable light path

    NASA Astrophysics Data System (ADS)

    Kumar Singh, Niraj; Chacko, Jenu V.; Sreenivasan, Varun K. A.; Nag, Suman; Maiti, Sudipta

    2011-02-01

    Instruments with single-molecule level detection capabilities can potentially benefit a wide variety of fields, including medical diagnostics. However, the size, cost, and complexity of such devices have prevented their widespread use outside sophisticated research laboratories. Fiber-only devices have recently been suggested as smaller and simpler alternatives, but thus far, they have lacked the resolution and sensitivity of a full-fledged system, and accurate alignment remains a critical requirement. Here we show that through-space reciprocal optical coupling between a fiber and a microscope objective, combined with wavelength division multiplexing in optical fibers, allows a drastic reduction of the size and complexity of such an instrument while retaining its resolution. We demonstrate a 4×4×18 cm3 sized fluorescence correlation spectrometer, which requires no alignment, can analyze kinetics at the single-molecule level, and has an optical resolution similar to that of much larger microscope based devices. The sensitivity can also be similar in principle, though in practice it is limited by the large background fluorescence of the commonly available optical fibers. We propose this as a portable and field deployable single molecule device with practical diagnostic applications.

  15. Interferometric three-dimensional single molecule localization microscopy using a single high-numerical-aperture objective.

    PubMed

    Zhang, P; Goodwin, P M; Werner, J H

    2014-11-01

    Interferometric detection of the fluorescence emission from a single molecule [interferometric photoactivated localization microscopy (iPALM)] enables a localization accuracy of nanometers in axial localization for 3D superresolution imaging. However, iPALM uses two high-numerical-aperture (NA) objectives in juxtaposition for fluorescence collection (a 4Pi microscope geometry), increasing expense and limiting samples that can be studied. Here, we propose an interferometric single molecule localization microscopy method using a single high-NA objective. The axial position of single molecules can be unambiguously determined from the phase-shifted interference signals with nanometer precision and over a range of 2λ. The use of only one objective simplifies the system configuration and sample mounting. In addition, due to the use of wavefront-splitting interference in our approach, the two parts of the wavefront that eventually merge and interfere with each other travel along nearly equivalent optical paths, which should minimize the effect of drift for long-term 3D superresolution imaging. PMID:25402907

  16. Combining Single-molecule Manipulation and Imaging for the Study of Protein-DNA Interactions

    PubMed Central

    Monico, Carina; Belcastro, Gionata; Vanzi, Francesco; Pavone, Francesco S.; Capitanio, Marco

    2014-01-01

    The paper describes the combination of optical tweezers and single molecule fluorescence detection for the study of protein-DNA interaction. The method offers the opportunity of investigating interactions occurring in solution (thus avoiding problems due to closeby surfaces as in other single molecule methods), controlling the DNA extension and tracking interaction dynamics as a function of both mechanical parameters and DNA sequence. The methods for establishing successful optical trapping and nanometer localization of single molecules are illustrated. We illustrate the experimental conditions allowing the study of interaction of lactose repressor (lacI), labeled with Atto532, with a DNA molecule containing specific target sequences (operators) for LacI binding. The method allows the observation of specific interactions at the operators, as well as one-dimensional diffusion of the protein during the process of target search. The method is broadly applicable to the study of protein-DNA interactions but also to molecular motors, where control of the tension applied to the partner track polymer (for example actin or microtubules) is desirable. PMID:25226304

  17. Fabrication of Low Noise Borosilicate Glass Nanopores for Single Molecule Sensing

    PubMed Central

    Bafna, Jayesh A.; Soni, Gautam V.

    2016-01-01

    We show low-cost fabrication and characterization of borosilicate glass nanopores for single molecule sensing. Nanopores with diameters of ~100 nm were fabricated in borosilicate glass capillaries using laser assisted glass puller. We further achieve controlled reduction and nanometer-size control in pore diameter by sculpting them under constant electron beam exposure. We successfully fabricate pore diameters down to 6 nm. We next show electrical characterization and low-noise behavior of these borosilicate nanopores and compare their taper geometries. We show, for the first time, a comprehensive characterization of glass nanopore conductance across six-orders of magnitude (1M-1μM) of salt conditions, highlighting the role of buffer conditions. Finally, we demonstrate single molecule sensing capabilities of these devices with real-time translocation experiments of individual λ-DNA molecules. We observe distinct current blockage signatures of linear as well as folded DNA molecules as they undergo voltage-driven translocation through the glass nanopores. We find increased signal to noise for single molecule detection for higher trans-nanopore driving voltages. We propose these nanopores will expand the realm of applications for nanopore platform. PMID:27285088

  18. Fisher information theory for parameter estimation in single molecule microscopy: tutorial.

    PubMed

    Chao, Jerry; Sally Ward, E; Ober, Raimund J

    2016-07-01

    Estimation of a parameter of interest from image data represents a task that is commonly carried out in single molecule microscopy data analysis. The determination of the positional coordinates of a molecule from its image, for example, forms the basis of standard applications such as single molecule tracking and localization-based super-resolution image reconstruction. Assuming that the estimator used recovers, on average, the true value of the parameter, its accuracy, or standard deviation, is then at best equal to the square root of the Cramér-Rao lower bound. The Cramér-Rao lower bound can therefore be used as a benchmark in the evaluation of the accuracy of an estimator. Additionally, as its value can be computed and assessed for different experimental settings, it is useful as an experimental design tool. This tutorial demonstrates a mathematical framework that has been specifically developed to calculate the Cramér-Rao lower bound for estimation problems in single molecule microscopy and, more broadly, fluorescence microscopy. The material includes a presentation of the photon detection process that underlies all image data, various image data models that describe images acquired with different detector types, and Fisher information expressions that are necessary for the calculation of the lower bound. Throughout the tutorial, examples involving concrete estimation problems are used to illustrate the effects of various factors on the accuracy of parameter estimation and, more generally, to demonstrate the flexibility of the mathematical framework. PMID:27409706

  19. Ultracompact alignment-free single molecule fluorescence device with a foldable light path.

    PubMed

    Singh, Niraj Kumar; Chacko, Jenu V; Sreenivasan, Varun K A; Nag, Suman; Maiti, Sudipta

    2011-02-01

    Instruments with single-molecule level detection capabilities can potentially benefit a wide variety of fields, including medical diagnostics. However, the size, cost, and complexity of such devices have prevented their widespread use outside sophisticated research laboratories. Fiber-only devices have recently been suggested as smaller and simpler alternatives, but thus far, they have lacked the resolution and sensitivity of a full-fledged system, and accurate alignment remains a critical requirement. Here we show that through-space reciprocal optical coupling between a fiber and a microscope objective, combined with wavelength division multiplexing in optical fibers, allows a drastic reduction of the size and complexity of such an instrument while retaining its resolution. We demonstrate a 4 × 4 × 18 cm(3) sized fluorescence correlation spectrometer, which requires no alignment, can analyze kinetics at the single-molecule level, and has an optical resolution similar to that of much larger microscope based devices. The sensitivity can also be similar in principle, though in practice it is limited by the large background fluorescence of the commonly available optical fibers. We propose this as a portable and field deployable single molecule device with practical diagnostic applications. PMID:21361684

  20. Cylindrical Illumination Confocal Spectroscopy: Rectifying the Limitations of Confocal Single Molecule Spectroscopy through One-Dimensional Beam Shaping

    PubMed Central

    Liu, Kelvin J.; Wang, Tza-Huei

    2008-01-01

    Cylindrical illumination confocal spectroscopy (CICS) is a new implementation of single molecule detection that can be generically incorporated into any microfluidic system and allows highly quantitative and accurate analysis of single fluorescent molecules. Through theoretical modeling of confocal optics and Monte Carlo simulations, one-dimensional beam shaping is used to create a highly uniform sheet-like observation volume that enables the detection of digital fluorescence bursts while retaining single fluorophore sensitivity. First, we theoretically show that when used to detect single molecules in a microchannel, CICS can be optimized to obtain near 100% mass detection efficiency, <10% relative SD in burst heights, and a high signal/noise ratio. As a result, CICS is far less sensitive to thresholding artifacts than traditional single molecule detection and significantly more accurate at determining both burst rate and burst parameters. CICS is then experimentally implemented, optically characterized, and integrated into separate two microfluidic devices for the analysis of fluorescently stained plasmid DNA and single Cy5 labeled oligonucleotides. CICS rectifies the limitations of traditional confocal spectroscopy-based single molecule detection without the significant operational complications of competing technologies. PMID:18515376

  1. Rational design of DNA-actuated enzyme nanoreactors guided by single molecule analysis

    NASA Astrophysics Data System (ADS)

    Dhakal, Soma; Adendorff, Matthew R.; Liu, Minghui; Yan, Hao; Bathe, Mark; Walter, Nils G.

    2016-01-01

    The control of enzymatic reactions using nanoscale DNA devices offers a powerful application of DNA nanotechnology uniquely derived from actuation. However, previous characterization of enzymatic reaction rates using bulk biochemical assays reported suboptimal function of DNA devices such as tweezers. To gain mechanistic insight into this deficiency and to identify design rules to improve their function, here we exploit the synergy of single molecule imaging and computational modeling to characterize the three-dimensional structures and catalytic functions of DNA tweezer-actuated nanoreactors. Our analysis revealed two important deficiencies - incomplete closure upon actuation and conformational heterogeneity. Upon rational redesign of the Holliday junctions located at their hinge and arms, we found that the DNA tweezers could be more completely and uniformly closed. A novel single molecule enzyme assay was developed to demonstrate that our design improvements yield significant, independent enhancements in the fraction of active enzyme nanoreactors and their individual substrate turnover frequencies. The sequence-level design strategies explored here may aid more broadly in improving the performance of DNA-based nanodevices including biological and chemical sensors.The control of enzymatic reactions using nanoscale DNA devices offers a powerful application of DNA nanotechnology uniquely derived from actuation. However, previous characterization of enzymatic reaction rates using bulk biochemical assays reported suboptimal function of DNA devices such as tweezers. To gain mechanistic insight into this deficiency and to identify design rules to improve their function, here we exploit the synergy of single molecule imaging and computational modeling to characterize the three-dimensional structures and catalytic functions of DNA tweezer-actuated nanoreactors. Our analysis revealed two important deficiencies - incomplete closure upon actuation and conformational

  2. Orientation and Rotational Motions of Single Molecules by Polarized Total Internal Reflection Fluorescence Microscopy (polTIRFM)

    PubMed Central

    Beausang, John F.; Sun, Yujie; Quinlan, Margot E.; Forkey, Joseph N.; Goldman, Yale E.

    2013-01-01

    In this article, we describe methods to detect the spatial orientation and rotational dynamics of single molecules using polarized total internal reflection fluorescence microscopy (polTIRFM). polTIRFM determines the three-dimensional angular orientation and the extent of wobble of a fluorescent probe bound to the macromolecule of interest. We discuss single-molecule versus ensemble measurements, as well as single-molecule techniques for orientation and rotation, and fluorescent probes for orientation studies. Using calmodulin (CaM) as an example of a target protein, we describe a method for labeling CaM with bifunctional rhodamine (BR). We also describe the physical principles and experimental setup of polTIRFM. We conclude with a brief introduction to assays using polTIRFM to assess the interaction of actin and myosin. PMID:22550303

  3. Magnetostructural correlations in Tetrairon(III) single-molecule magnets.

    PubMed

    Gregoli, Luisa; Danieli, Chiara; Barra, Anne-Laure; Neugebauer, Petr; Pellegrino, Giovanna; Poneti, Giordano; Sessoli, Roberta; Cornia, Andrea

    2009-06-22

    Tunable single-molecule magnets: The spin-level landscape in a series of Fe(III) (4) single-molecule magnets with propeller-like structure was analyzed by means of high-frequency EPR spectroscopy. The zero-field splitting parameter D of the ground S=5 spin state correlates strongly with the pitch of the propeller gamma (see picture), and thus provides a simple link between molecular structure and magnetic behavior.We report three novel tetrairon(III) single-molecule magnets with formula [Fe(4)(L)(2)(dpm)(6)] (Hdpm=2,2,6,6-tetramethylheptane-3,5-dione), prepared by using pentaerythritol monoether ligands H(3)L=R'OCH(2)C(CH(2)OH)(3) with R'=allyl (1), (R,S)-2-methyl-1-butyl (2), and (S)-2-methyl-1-butyl (3), along with a new crystal phase of the complex containing H(3)L=11-(acetylthio)-2,2-bis(hydroxymethyl)- undecan-1-ol (4). High-frequency EPR (HF-EPR) spectra at low temperature were collected on powder samples in order to determine the zero-field splitting (zfs) parameters in the ground S=5 spin state. In 1-4 and in other eight isostructural compounds previously reported, a remarkable correlation is found between the axial zfs parameter D and the pitch gamma of the propeller-like structure. The relationship is directly demonstrated by 1, which features both structurally and magnetically inequivalent molecules in the crystal. The dynamics of magnetization has been investigated by ac susceptometry, and the results analyzed by master-matrix calculations. The large rhombicities of 2 and 3 were found to be responsible for the fast magnetic relaxation observed in the two compounds. However, complex 3 shows an additional faster relaxation mechanism which is unaccounted for by the set of spin Hamiltonian parameters determined by HF-EPR. PMID:19462389

  4. Memory effects and oscillations in single-molecule kinetics.

    PubMed

    Vlad, Marcel O; Moran, Federico; Schneider, Friedemann W; Ross, John

    2002-10-01

    An exactly solvable model for single-molecule kinetics is suggested, based on the following assumptions: (i) A single molecule can exist in different chemical states and the random transitions from one chemical state to another can be described by a local master equation with time-dependent transition rates. (ii) Because of conformational and other intramolecular fluctuations the rate coefficients in the master equation are random functions of time; their stochastic properties are represented in terms of a set of control parameters. We assume that the fluctuating rate coefficients fulfill a separability condition, that is, they are made up of the multiplicative contributions of two factors: (a) a universal factor, which depends on the vector of control parameters and is the same for all chemical transformation processes and (b) process-dependent factors, which depend on the initial and final chemical states of the molecule but are independent of the control parameters. For systems with two chemical states the condition of separability is automatically fulfilled. We introduce an intrinsic time scale, which makes it possible to compute theoretically various experimental observables, such as the correlation functions of the fluorescent signal. We analyze the connections between the condition of separability and detailed balance, and discuss the possible cause of chemical oscillations in single molecule kinetics. We show that the intrinsic dynamics of the molecule, expressed by the fluctuations of the control parameters, may lead to damped oscillations of the correlation functions of the fluorescent signal. The influence of the random fluctuations on the control parameters may be described by a renormalized master equation with nonfluctuating apparent rate coefficients. The apparent rate coefficients do not have to obey a condition of detailed balance, even though the real rate coefficients do obey such a condition. It follows that the renormalized master equation may

  5. An Organolanthanide Building Block Approach to Single-Molecule Magnets.

    PubMed

    Harriman, Katie L M; Murugesu, Muralee

    2016-06-21

    Single-molecule magnets (SMMs) are highly sought after for their potential application in high-density information storage, spintronics, and quantum computing. SMMs exhibit slow relaxation of the magnetization of purely molecular origin, thus making them excellent candidates towards the aforementioned applications. In recent years, significant focus has been placed on the rare earth elements due to their large intrinsic magnetic anisotropy arising from the near degeneracy of the 4f orbitals. Traditionally, coordination chemistry has been utilized to fabricate lanthanide-based SMMs; however, heteroatomic donor atoms such as oxygen and nitrogen have limited orbital overlap with the shielded 4f orbitals. Thus, control over the anisotropic axis and induction of f-f interactions are limited, meaning that the performance of these systems can only extend so far. To this end, we have placed considerable attention on the development of novel SMMs whose donor atoms are conjugated hydrocarbons, thereby allowing us to perturb the crystal field of lanthanide ions through the use of an electronic π-cloud. This approach allows for fine tuning of the anisotropic axis of the molecule, allowing this method the potential to elicit SMMs capable of reaching much larger values for the two vital performance measurements of an SMM, the energy barrier to spin reversal (Ueff), and the blocking temperature of the magnetization (TB). In this Account, we describe our efforts to exploit the inherent anisotropy of the late 4f elements; namely, Dy(III) and Er(III), through the use of cyclooctatetraenyl (COT) metallocenes. With respect to the Er(III) derivatives, we have seen record breaking success, reaching blocking temperatures as high as 14 K with frozen solution magnetometry. These results represent the first example of such a high TB being observed for a system with only a single spin center, formally known as a single-ion magnet (SIM). Our continued interrelationship between theoretical

  6. Single molecule studies of helicases with magnetic tweezers.

    PubMed

    Hodeib, Samar; Raj, Saurabh; Manosas, M; Zhang, Weiting; Bagchi, Debjani; Ducos, Bertrand; Allemand, Jean-François; Bensimon, David; Croquette, Vincent

    2016-08-01

    Helicases are a broad family of enzymes that perform crucial functions in DNA replication and in the maintenance of DNA and RNA integrity. A detailed mechanical study of helicases on DNA and RNA is possible using single molecule manipulation methods. Among those, magnetic tweezers (or traps) present a convenient, moderate throughput assay (tens of enzymes can be monitored simultaneously) that allow for high resolution (single base-pair) studies of these enzymes in various conditions and on various substrates (double and single stranded DNA and RNA). Here we discuss various implementation of the basic assay relevant for these studies. PMID:27371121

  7. Hybrid photodetector for single-molecule spectroscopy and microscopy

    PubMed Central

    Michalet, X.; Cheng, Adrian; Antelman, Joshua; Suyama, Motohiro; Arisaka, Katsushi; Weiss, Shimon

    2011-01-01

    We report benchmark tests of a new single-photon counting detector based on a GaAsP photocathode and an electron-bombarded avalanche photodiode developed by Hamamatsu Photonics. We compare its performance with those of standard Geiger-mode avalanche photodiodes. We show its advantages for FCS due to the absence of after-pulsing and for fluorescence lifetime measurements due to its excellent time resolution. Its large sensitive area also greatly simplifies setup alignment. Its spectral sensitivity being similar to that of recently introduced CMOS SPADs, this new detector could become a valuable tool for single-molecule fluorescence measurements, as well as for many other applications. PMID:21822361

  8. Multiplexed single-molecule force spectroscopy using a centrifuge.

    PubMed

    Yang, Darren; Ward, Andrew; Halvorsen, Ken; Wong, Wesley P

    2016-01-01

    We present a miniature centrifuge force microscope (CFM) that repurposes a benchtop centrifuge for high-throughput single-molecule experiments with high-resolution particle tracking, a large force range, temperature control and simple push-button operation. Incorporating DNA nanoswitches to enable repeated interrogation by force of single molecular pairs, we demonstrate increased throughput, reliability and the ability to characterize population heterogeneity. We perform spatiotemporally multiplexed experiments to collect 1,863 bond rupture statistics from 538 traceable molecular pairs in a single experiment, and show that 2 populations of DNA zippers can be distinguished using per-molecule statistics to reduce noise. PMID:26984516

  9. Spin coherence in a Mn3 single-molecule magnet

    NASA Astrophysics Data System (ADS)

    Abeywardana, Chathuranga; Mowson, Andrew M.; Christou, George; Takahashi, Susumu

    2016-01-01

    Spin coherence in single crystals of the spin S = 6 single-molecule magnet (SMM) [Mn3O(O2CEt)3(mpko)3]+ (abbreviated Mn3) has been investigated using 230 GHz electron paramagnetic resonance spectroscopy. Coherence in Mn3 was uncovered by significantly suppressing dipolar contribution to the decoherence with complete spin polarization of Mn3 SMMs. The temperature dependence of spin decoherence time (T2) revealed that the dipolar decoherence is the dominant source of decoherence in Mn3 and T2 can be extended up to 267 ns by quenching the dipolar decoherence.

  10. Multiplexed single-molecule force spectroscopy using a centrifuge

    NASA Astrophysics Data System (ADS)

    Yang, Darren; Ward, Andrew; Halvorsen, Ken; Wong, Wesley P.

    2016-03-01

    We present a miniature centrifuge force microscope (CFM) that repurposes a benchtop centrifuge for high-throughput single-molecule experiments with high-resolution particle tracking, a large force range, temperature control and simple push-button operation. Incorporating DNA nanoswitches to enable repeated interrogation by force of single molecular pairs, we demonstrate increased throughput, reliability and the ability to characterize population heterogeneity. We perform spatiotemporally multiplexed experiments to collect 1,863 bond rupture statistics from 538 traceable molecular pairs in a single experiment, and show that 2 populations of DNA zippers can be distinguished using per-molecule statistics to reduce noise.

  11. Characterizing 3D RNA structure by single molecule FRET.

    PubMed

    Stephenson, James D; Kenyon, Julia C; Symmons, Martyn F; Lever, Andrew M L

    2016-07-01

    The importance of elucidating the three dimensional structures of RNA molecules is becoming increasingly clear. However, traditional protein structural techniques such as NMR and X-ray crystallography have several important drawbacks when probing long RNA molecules. Single molecule Förster resonance energy transfer (smFRET) has emerged as a useful alternative as it allows native sequences to be probed in physiological conditions and allows multiple conformations to be probed simultaneously. This review serves to describe the method of generating a three dimensional RNA structure from smFRET data from the biochemical probing of the secondary structure to the computational refinement of the final model. PMID:26853327

  12. Spin Manipulation by Creation of Single-Molecule Radical Cations

    NASA Astrophysics Data System (ADS)

    Karan, Sujoy; Li, Na; Zhang, Yajie; He, Yang; Hong, I.-Po; Song, Huanjun; Lü, Jing-Tao; Wang, Yongfeng; Peng, Lianmao; Wu, Kai; Michelitsch, Georg S.; Maurer, Reinhard J.; Diller, Katharina; Reuter, Karsten; Weismann, Alexander; Berndt, Richard

    2016-01-01

    All-trans-retinoic acid (ReA), a closed-shell organic molecule comprising only C, H, and O atoms, is investigated on a Au(111) substrate using scanning tunneling microscopy and spectroscopy. In dense arrays single ReA molecules are switched to a number of states, three of which carry a localized spin as evidenced by conductance spectroscopy in high magnetic fields. The spin of a single molecule may be reversibly switched on and off without affecting its neighbors. We suggest that ReA on Au is readily converted to a radical by the abstraction of an electron.

  13. Electronic Single Molecule Measurements with the Scanning Tunneling Microscope

    NASA Astrophysics Data System (ADS)

    Im, Jong One

    Richard Feynman said "There's plenty of room at the bottom". This inspired the techniques to improve the single molecule measurements. Since the first single molecule study was in 1961, it has been developed in various field and evolved into powerful tools to understand chemical and biological property of molecules. This thesis demonstrates electronic single molecule measurement with Scanning Tunneling Microscopy (STM) and two of applications of STM; Break Junction (BJ) and Recognition Tunneling (RT). First, the two series of carotenoid molecules with four different substituents were investigated to show how substituents relate to the conductance and molecular structure. The measured conductance by STM-BJ shows that Nitrogen induces molecular twist of phenyl distal substituents and conductivity increasing rather than Carbon. Also, the conductivity is adjustable by replacing the sort of residues at phenyl substituents. Next, amino acids and peptides were identified through STM-RT. The distribution of the intuitive features (such as amplitude or width) are mostly overlapped and gives only a little bit higher separation probability than random separation. By generating some features in frequency and cepstrum domain, the classification accuracy was dramatically increased. Because of large data size and many features, supporting vector machine (machine learning algorithm for big data) was used to identify the analyte from a data pool of all analytes RT data. The STM-RT opens a possibility of molecular sequencing in single molecule level. Similarly, carbohydrates were studied by STM-RT. Carbohydrates are difficult to read the sequence, due to their huge number of possible isomeric configurations. This study shows that STM-RT can identify not only isomers of mono-saccharides and disaccharides, but also various mono-saccharides from a data pool of eleven analytes. In addition, the binding affinity between recognition molecule and analyte was investigated by comparing with

  14. Multiplexed single-molecule force spectroscopy using a centrifuge

    PubMed Central

    Yang, Darren; Ward, Andrew; Halvorsen, Ken; Wong, Wesley P.

    2016-01-01

    We present a miniature centrifuge force microscope (CFM) that repurposes a benchtop centrifuge for high-throughput single-molecule experiments with high-resolution particle tracking, a large force range, temperature control and simple push-button operation. Incorporating DNA nanoswitches to enable repeated interrogation by force of single molecular pairs, we demonstrate increased throughput, reliability and the ability to characterize population heterogeneity. We perform spatiotemporally multiplexed experiments to collect 1,863 bond rupture statistics from 538 traceable molecular pairs in a single experiment, and show that 2 populations of DNA zippers can be distinguished using per-molecule statistics to reduce noise. PMID:26984516

  15. Reversible Positioning of Single Molecules inside Zero-Mode Waveguides

    PubMed Central

    2015-01-01

    We have developed a hybrid nanopore/zero-mode waveguide device for single-molecule fluorescence and DNA sequencing applications. The device is a freestanding solid-state membrane with sub-5 nm nanopores that reversibly delivers individual biomolecules to the base of 70 nm diameter waveguides for interrogation. Rapid and reversible molecular loading is achieved by controlling the voltage across the device. Using this device we demonstrate protein and DNA loading with efficiency that is orders of magnitude higher than diffusion-based molecular loading. PMID:25209321

  16. Theoretical investigation on single-molecule chiroptical spectroscopy

    SciTech Connect

    Wakabayashi, M.; Yokojima, S.; Fukaminato, T.; Ogata, K.; Nakamura, S.

    2013-12-10

    Some experimental results of chiroptical response of single molecule have already reported. In those experiments, dissymmetry parameter, g was used as an indicator of the relative circular dichroism intensity. The parameter for individual molecules was measured. For the purpose of giving an interpretation or explanation to the experimental result, the dissymmetry parameter is formulated on the basis of Fermi’s golden rule. Subsequently, the value of individual molecules is evaluated as a function of the direction of light propagation to the orientationary fixed molecules. The ground and excited wavefunction of electrons in the molecule and transition moments needed are culculated using the density functional theory.

  17. Electron transport in single molecules: from benzene to graphene.

    PubMed

    Chen, F; Tao, N J

    2009-03-17

    Electron movement within and between molecules--that is, electron transfer--is important in many chemical, electrochemical, and biological processes. Recent advances, particularly in scanning electrochemical microscopy (SECM), scanning-tunneling microscopy (STM), and atomic force microscopy (AFM), permit the study of electron movement within single molecules. In this Account, we describe electron transport at the single-molecule level. We begin by examining the distinction between electron transport (from semiconductor physics) and electron transfer (a more general term referring to electron movement between donor and acceptor). The relation between these phenomena allows us to apply our understanding of single-molecule electron transport between electrodes to a broad range of other electron transfer processes. Electron transport is most efficient when the electron transmission probability via a molecule reaches 100%; the corresponding conductance is then 2e(2)/h (e is the charge of the electron and h is the Planck constant). This ideal conduction has been observed in a single metal atom and a string of metal atoms connected between two electrodes. However, the conductance of a molecule connected to two electrodes is often orders of magnitude less than the ideal and strongly depends on both the intrinsic properties of the molecule and its local environment. Molecular length, means of coupling to the electrodes, the presence of conjugated double bonds, and the inclusion of possible redox centers (for example, ferrocene) within the molecular wire have a pronounced effect on the conductance. This complex behavior is responsible for diverse chemical and biological phenomena and is potentially useful for device applications. Polycyclic aromatic hydrocarbons (PAHs) afford unique insight into electron transport in single molecules. The simplest one, benzene, has a conductance much less than 2e(2)/h due to its large LUMO-HOMO gap. At the other end of the spectrum, graphene

  18. Irving Langmuir Prize Talk: Single-Molecule Fluorescence Imaging: Nanoscale Emitters with Photoinduced Switching Enable Superresolution.

    NASA Astrophysics Data System (ADS)

    Moerner, W. E.

    2009-03-01

    In the two decades since the first optical detection and spectroscopy of a single molecule in a solid (Phys. Rev. Lett. 62, 2535 (1989)), much has been learned about the ability of single molecules to probe local nanoenvironments and individual behavior in biological and nonbiological materials in the absence of ensemble averaging that can obscure heterogeneity. The early years concentrated on high-resolution spectroscopy in solids, which provided observations of lifetime-limited spectra, optical saturation, spectral diffusion, optical switching, vibrational spectra, and magnetic resonance of a single molecular spin. In the mid-1990's, much of the field moved to room temperature, where a wide variety of biophysical effects were subsequently explored, but it is worth noting that several features from the low-temperature studies have analogs at high temperature. For example, in our first studies of yellow-emitting variants of green fluorescent protein (EYFP) in the water-filled pores of a gel (Nature 388, 355 (1997)), optically induced switching of the emission was observed, a room-temperature analog of the earlier low-temperature behavior. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic imaging of individual fluorophores leads naturally to superlocalization, or determination of the position of the molecule with precision beyond the optical diffraction limit, simply by digitization of the point-spread function from the single emitter. Recent work has allowed measurement of the shape of single filaments in a living cell simply by allowing a single molecule to move through the filament (PNAS 103, 10929 (2006)). The additional use of photoinduced control of single-molecule emission allows imaging beyond the diffraction limit (superresolution) by several novel approaches proposed by different researchers. For example, using photoswitchable EYFP, a novel protein superstructure can now be directly imaged in a living bacterial cell at

  19. A three-camera imaging microscope for high-speed single-molecule tracking and super-resolution imaging in living cells

    NASA Astrophysics Data System (ADS)

    English, Brian P.; Singer, Robert H.

    2015-08-01

    Our aim is to develop quantitative single-molecule assays to study when and where molecules are interacting inside living cells and where enzymes are active. To this end we present a three-camera imaging microscope for fast tracking of multiple interacting molecules simultaneously, with high spatiotemporal resolution. The system was designed around an ASI RAMM frame using three separate tube lenses and custom multi-band dichroics to allow for enhanced detection efficiency. The frame times of the three Andor iXon Ultra EMCCD cameras are hardware synchronized to the laser excitation pulses of the three excitation lasers, such that the fluorophores are effectively immobilized during frame acquisitions and do not yield detections that are motion-blurred. Stroboscopic illumination allows robust detection from even rapidly moving molecules while minimizing bleaching, and since snapshots can be spaced out with varying time intervals, stroboscopic illumination enables a direct comparison to be made between fast and slow molecules under identical light dosage. We have developed algorithms that accurately track and co-localize multiple interacting biomolecules. The three-color microscope combined with our co-movement algorithms have made it possible for instance to simultaneously image and track how the chromosome environment affects diffusion kinetics or determine how mRNAs diffuse during translation. Such multiplexed single-molecule measurements at a high spatiotemporal resolution inside living cells will provide a major tool for testing models relating molecular architecture and biological dynamics.

  20. A three-camera imaging microscope for high-speed single-molecule tracking and super-resolution imaging in living cells

    PubMed Central

    English, Brian P.; Singer, Robert H.

    2016-01-01

    Our aim is to develop quantitative single-molecule assays to study when and where molecules are interacting inside living cells and where enzymes are active. To this end we present a three-camera imaging microscope for fast tracking of multiple interacting molecules simultaneously, with high spatiotemporal resolution. The system was designed around an ASI RAMM frame using three separate tube lenses and custom multi-band dichroics to allow for enhanced detection efficiency. The frame times of the three Andor iXon Ultra EMCCD cameras are hardware synchronized to the laser excitation pulses of the three excitation lasers, such that the fluorophores are effectively immobilized during frame acquisitions and do not yield detections that are motion-blurred. Stroboscopic illumination allows robust detection from even rapidly moving molecules while minimizing bleaching, and since snapshots can be spaced out with varying time intervals, stroboscopic illumination enables a direct comparison to be made between fast and slow molecules under identical light dosage. We have developed algorithms that accurately track and co-localize multiple interacting biomolecules. The three-color microscope combined with our co-movement algorithms have made it possible for instance to simultaneously image and track how the chromosome environment affects diffusion kinetics or determine how mRNAs diffuse during translation. Such multiplexed single-molecule measurements at a high spatiotemporal resolution inside living cells will provide a major tool for testing models relating molecular architecture and biological dynamics. PMID:26819489

  1. Tuning the spin dynamics of single molecule magnets via dipolar interactions

    NASA Astrophysics Data System (ADS)

    Hofmann, A.; Salman, Z.

    2014-12-01

    We present calculations of the dipolar field distribution acting on a single molecule magnet due to its neighbours in thin films. The calculations are presented for different packing/configuration scenarios, with different easy axis orientations. The potential for controlling the molecular spin dynamics by tuning the molecule-substrate interaction and its competition with intra-molecular interactions is discussed. We argue that by altering the configuration of the molecular moments, and thus their dipolar interactions, one can enhance or slow down their spin dynamics.

  2. Directly measuring single-molecule heterogeneity using force spectroscopy.

    PubMed

    Hinczewski, Michael; Hyeon, Changbong; Thirumalai, D

    2016-07-01

    One of the most intriguing results of single-molecule experiments on proteins and nucleic acids is the discovery of functional heterogeneity: the observation that complex cellular machines exhibit multiple, biologically active conformations. The structural differences between these conformations may be subtle, but each distinct state can be remarkably long-lived, with interconversions between states occurring only at macroscopic timescales, fractions of a second or longer. Although we now have proof of functional heterogeneity in a handful of systems-enzymes, motors, adhesion complexes-identifying and measuring it remains a formidable challenge. Here, we show that evidence of this phenomenon is more widespread than previously known, encoded in data collected from some of the most well-established single-molecule techniques: atomic force microscopy or optical tweezer pulling experiments. We present a theoretical procedure for analyzing distributions of rupture/unfolding forces recorded at different pulling speeds. This results in a single parameter, quantifying the degree of heterogeneity, and also leads to bounds on the equilibration and conformational interconversion timescales. Surveying 10 published datasets, we find heterogeneity in 5 of them, all with interconversion rates slower than 10 s(-1) Moreover, we identify two systems where additional data at realizable pulling velocities is likely to find a theoretically predicted, but so far unobserved crossover regime between heterogeneous and nonheterogeneous behavior. The significance of this regime is that it will allow far more precise estimates of the slow conformational switching times, one of the least understood aspects of functional heterogeneity. PMID:27317744

  3. Single molecule studies of the neuronal SNARE fusion machinery

    PubMed Central

    Brunger, Axel T.; Weninger, Keith; Bowen, Mark; Chu, Steven

    2010-01-01

    SNAREs are essential components of the machinery for Ca2+-triggered fusion of synaptic vesicles with the plasma membrane, resulting in neurotransmitter release into the synaptic cleft. While much is known about their biophysical and structural properties and their interactions with accessory proteins such as the Ca2+ sensor synaptotagmin, their precise role in membrane fusion remains an enigma. Ensemble studies of liposomes with reconstituted SNAREs have demonstrated that SNAREs and accessory proteins can trigger lipid mixing/fusion, but the inability to study individual fusion events has precluded molecular insights into the fusion process. Thus, this field is ripe for studies with single molecule methodology. In this review we discuss first applications of single-molecule approaches to observe reconstituted SNAREs, their complexes, associated proteins, and their effect on biological membranes. Some of the findings are provocative, such the possibility of parallel and anti-parallel SNARE complexes, or vesicle docking with only syntaxin and synaptobrevin, but have been confirmed by other experiments. PMID:19489736

  4. Single-Molecule Electrical Random Resequencing of DNA and RNA

    PubMed Central

    Ohshiro, Takahito; Matsubara, Kazuki; Tsutsui, Makusu; Furuhashi, Masayuki; Taniguchi, Masateru; Kawai, Tomoji

    2012-01-01

    Two paradigm shifts in DNA sequencing technologies—from bulk to single molecules and from optical to electrical detection—are expected to realize label-free, low-cost DNA sequencing that does not require PCR amplification. It will lead to development of high-throughput third-generation sequencing technologies for personalized medicine. Although nanopore devices have been proposed as third-generation DNA-sequencing devices, a significant milestone in these technologies has been attained by demonstrating a novel technique for resequencing DNA using electrical signals. Here we report single-molecule electrical resequencing of DNA and RNA using a hybrid method of identifying single-base molecules via tunneling currents and random sequencing. Our method reads sequences of nine types of DNA oligomers. The complete sequence of 5′-UGAGGUA-3′ from the let-7 microRNA family was also identified by creating a composite of overlapping fragment sequences, which was randomly determined using tunneling current conducted by single-base molecules as they passed between a pair of nanoelectrodes. PMID:22787559

  5. Common fluorescent proteins for single-molecule localization microscopy

    NASA Astrophysics Data System (ADS)

    Klementieva, Natalia V.; Bozhanova, Nina G.; Mishina, Natalie M.; Zagaynova, Elena V.; Lukyanov, Konstantin A.; Mishin, Alexander S.

    2015-07-01

    Super-resolution techniques for breaking the diffraction barrier are spread out over multiple studies nowadays. Single-molecule localization microscopy such as PALM, STORM, GSDIM, etc allow to get super-resolved images of cell ultrastructure by precise localization of individual fluorescent molecules via their temporal isolation. However, these methods are supposed the use of fluorescent dyes and proteins with special characteristics (photoactivation/photoconversion). At the same time, there is a need for retaining high photostability of fluorophores during long-term acquisition. Here, we first showed the potential of common red fluorescent protein for single-molecule localization microscopy based on spontaneous intrinsic blinking. Also, we assessed the effect of different imaging media on photobleaching of these fluorescent proteins. Monomeric orange and red fluorescent proteins were examined for stochastic switching from a dark state to a bright fluorescent state. We studied fusions with cytoskeletal proteins in NIH/3T3 and HeLa cells. Imaging was performed on the Nikon N-STORM system equipped with EMCCD camera. To define the optimal imaging conditions we tested several types of cell culture media and buffers. As a result, high-resolution images of cytoskeleton structure were obtained. Essentially, low-intensity light was sufficient to initiate the switching of tested red fluorescent protein reducing phototoxicity and provide long-term live-cell imaging.

  6. Single Molecule Mechanical Probing of the SNARE Protein Interactions

    PubMed Central

    Liu, W.; Montana, Vedrana; Bai, Jihong; Chapman, Edwin R.; Mohideen, U.; Parpura, Vladimir

    2006-01-01

    Exocytotic release of neurotransmitters is mediated by the ternary soluble N-ethyl maleimide-sensitive fusion protein attachment protein receptors (SNAREs) complex, comprised of syntaxin (Sx), synaptosome-associated protein of 25 kDa (SNAP25), and synaptobrevin 2 (Sb2). Since exocytosis involves the nonequilibrium process of association and dissociation of bonds between molecules of the SNARE complex, dynamic measurements at the single molecule level are necessary for a detailed understanding of these interactions. To address this issue, we used the atomic force microscope in force spectroscopy mode to show from single molecule investigations of the SNARE complex, that Sx1A and Sb2 are zippered throughout their entire SNARE domains without the involvement of SNAP25. When SNAP25B is present in the complex, it creates a local interaction at the 0 (ionic) layer by cuffing Sx1A and Sb2. Force loading rate studies indicate that the ternary complex interaction is more stable than the Sx1A-Sb2 interaction. PMID:16648158

  7. Resolving metal-molecule interfaces at single-molecule junctions

    PubMed Central

    Komoto, Yuki; Fujii, Shintaro; Nakamura, Hisao; Tada, Tomofumi; Nishino, Tomoaki; Kiguchi, Manabu

    2016-01-01

    Electronic and structural detail at the electrode-molecule interface have a significant influence on charge transport across molecular junctions. Despite the decisive role of the metal-molecule interface, a complete electronic and structural characterization of the interface remains a challenge. This is in no small part due to current experimental limitations. Here, we present a comprehensive approach to obtain a detailed description of the metal-molecule interface in single-molecule junctions, based on current-voltage (I-V) measurements. Contrary to conventional conductance studies, this I-V approach provides a correlated statistical description of both, the degree of electronic coupling across the metal-molecule interface, and the energy alignment between the conduction orbital and the Fermi level of the electrode. This exhaustive statistical approach was employed to study single-molecule junctions of 1,4-benzenediamine (BDA), 1,4-butanediamine (C4DA), and 1,4-benzenedithiol (BDT). A single interfacial configuration was observed for both BDA and C4DA junctions, while three different interfacial arrangements were resolved for BDT. This multiplicity is due to different molecular adsorption sites on the Au surface namely on-top, hollow, and bridge. Furthermore, C4DA junctions present a fluctuating I-V curve arising from the greater conformational freedom of the saturated alkyl chain, in sharp contrast with the rigid aromatic backbone of both BDA and BDT. PMID:27221947

  8. Single-molecule microscopy using tunable nanoscale confinement

    NASA Astrophysics Data System (ADS)

    McFaul, Christopher M. J.; Leith, Jason; Jia, Bojing; Michaud, François; Arsenault, Adriel; Martin, Andrew; Berard, Daniel; Leslie, Sabrina

    2013-09-01

    We present the design, construction and implementation of a modular microscopy device that transforms a basic inverted fluorescence microscope into a versatile single-molecule imaging system. The device uses Convex Lens- Induced Confinement (CLIC) to improve background rejection and extend diffusion-limited observation time. To facilitate its integration into a wide range of laboratories, this implementation of the CLIC device can use a standard flow-cell, into which the sample is loaded. By mechanically deforming the flow-cell, the device creates a tunable, wedge-shaped imaging chamber which we have modeled using finite element analysis simulations and characterized experimentally using interferometry. A powerful feature of CLIC imaging technology is the ability to examine single molecules under a continuum of applied confinement, from the nanometer to the micrometer scale. We demonstrate, using freely diffusing λ-phage DNA, that when the imposed confinement is on the scale of individual molecules their molecular conformations and diffusivity are altered significantly. To improve the flow-cell stiffness, seal, and re-usability, we have innovated the fabrication of thin PDMS-bonded flow-cells. The presented flow-cell CLIC technology can be combined with surface-lithography to provide an accessible and powerful approach to tune, trap, and image individual molecules under an extended range of imaging conditions. It is well-suited to tackling open problems in biophysics, biotechnology, nanotechnology, materials science, and chemistry.

  9. Surface Passivation for Single-molecule Protein Studies

    PubMed Central

    Chandradoss, Stanley D.; Haagsma, Anna C.; Lee, Young Kwang; Hwang, Jae-Ho; Nam, Jwa-Min; Joo, Chirlmin

    2014-01-01

    Single-molecule fluorescence spectroscopy has proven to be instrumental in understanding a wide range of biological phenomena at the nanoscale. Important examples of what this technique can yield to biological sciences are the mechanistic insights on protein-protein and protein-nucleic acid interactions. When interactions of proteins are probed at the single-molecule level, the proteins or their substrates are often immobilized on a glass surface, which allows for a long-term observation. This immobilization scheme may introduce unwanted surface artifacts. Therefore, it is essential to passivate the glass surface to make it inert. Surface coating using polyethylene glycol (PEG) stands out for its high performance in preventing proteins from non-specifically interacting with a glass surface. However, the polymer coating procedure is difficult, due to the complication arising from a series of surface treatments and the stringent requirement that a surface needs to be free of any fluorescent molecules at the end of the procedure. Here, we provide a robust protocol with step-by-step instructions. It covers surface cleaning including piranha etching, surface functionalization with amine groups, and finally PEG coating. To obtain a high density of a PEG layer, we introduce a new strategy of treating the surface with PEG molecules over two rounds, which remarkably improves the quality of passivation. We provide representative results as well as practical advice for each critical step so that anyone can achieve the high quality surface passivation. PMID:24797261

  10. High contrast single molecule tracking in the pericellular coat

    NASA Astrophysics Data System (ADS)

    Scrimgeour, Jan; McLane, Louis T.; Curtis, Jennifer E.

    2014-03-01

    The pericellular coat is a robust, hydrated, polymer brush-like structure that can extend several micrometers into the extracellular space around living cells. By controlling access to the cell surface, acting as a filter and storage reservoir for proteins, and actively controlling tissue-immune system interactions, the cell coat performs many important functions at scales ranging from the single cell to whole tissues. The cell coat consists of a malleable backbone - the large polysaccharide hyaluronic acid (HA) - with its structure, material properties, and ultimately its bio-functionality tuned by a diverse set of HA binding proteins. These proteins add charge, cross-links and growth factor-like ligands to the coat To probe the dynamic behavior of this soft biomaterial we have used high contrast single molecule imaging, based on highly inclined laser illumination, to observe individual fluorescently labeled HA binding proteins within the cell coat. Our work focuses on the cell coat of living chondrocyte (cartilage) cells, and in particular the effect of the large, highly charged, protein aggrecan on the properties of the coat. Through single molecule imaging we observe that aggrecan is tightly tethered to HA, and plays an important role in cell coat extension and stiffening.

  11. Conduction mechanisms in biphenyl dithiol single-molecule junctions

    NASA Astrophysics Data System (ADS)

    Bürkle, M.; Viljas, J. K.; Vonlanthen, D.; Mishchenko, A.; Schön, G.; Mayor, M.; Wandlowski, T.; Pauly, F.

    2012-02-01

    Based on density-functional theory calculations, we report a detailed study of the single-molecule charge-transport properties for a series of recently synthesized biphenyl-dithiol molecules [D. Vonlanthen , Angew. Chem., Int. Ed.1433-785110.1002/anie.200903946 48, 8886 (2009); A. Mishchenko , Nano Lett.NALEFD1530-698410.1021/nl903084b 10, 156 (2010)]. The torsion angle ϕ between the two phenyl rings, and hence the degree of π conjugation, is controlled by alkyl chains and methyl side groups. We consider three different coordination geometries, namely, top-top, bridge-bridge, and hollow-hollow, with the terminal sulfur atoms bound to one, two, and three gold surface atoms, respectively. Our calculations show that different coordination geometries give rise to conductances that vary by one order of magnitude for the same molecule. Irrespective of the coordination geometries, the charge transport calculations predict a cos2ϕ dependence of the conductance, which is confirmed by our experimental measurements. We demonstrate that the calculated transmission through biphenyl dithiols is typically dominated by a single transmission eigenchannel formed from π electrons. For perpendicular orientation of the rings a residual conductance arises from σ-π couplings. But only for a single molecule with a completely broken conjugation we find a nearly perfect degeneracy of the σ-π eigenchannels for the hollow-hollow-type contact in our theory.

  12. Studying the Nucleated Mammalian Cell Membrane by Single Molecule Approaches

    PubMed Central

    Wang, Feng; Wu, Jiazhen; Gao, Jing; Liu, Shuheng; Jiang, Junguang; Jiang, Shibo; Wang, Hongda

    2014-01-01

    The cell membrane plays a key role in compartmentalization, nutrient transportation and signal transduction, while the pattern of protein distribution at both cytoplasmic and ectoplasmic sides of the cell membrane remains elusive. Using a combination of single-molecule techniques, including atomic force microscopy (AFM), single molecule force spectroscopy (SMFS) and stochastic optical reconstruction microscopy (STORM), to study the structure of nucleated cell membranes, we found that (1) proteins at the ectoplasmic side of the cell membrane form a dense protein layer (4 nm) on top of a lipid bilayer; (2) proteins aggregate to form islands evenly dispersed at the cytoplasmic side of the cell membrane with a height of about 10–12 nm; (3) cholesterol-enriched domains exist within the cell membrane; (4) carbohydrates stay in microdomains at the ectoplasmic side; and (5) exposed amino groups are asymmetrically distributed on both sides. Based on these observations, we proposed a Protein Layer-Lipid-Protein Island (PLLPI) model, to provide a better understanding of cell membrane structure, membrane trafficking and viral fusion mechanisms. PMID:24806512

  13. Single molecule study of a processivity clamp sliding on DNA

    SciTech Connect

    Laurence, T A; Kwon, Y; Johnson, A; Hollars, C; O?Donnell, M; Camarero, J A; Barsky, D

    2007-07-05

    Using solution based single molecule spectroscopy, we study the motion of the polIII {beta}-subunit DNA sliding clamp ('{beta}-clamp') on DNA. Present in all cellular (and some viral) forms of life, DNA sliding clamps attach to polymerases and allow rapid, processive replication of DNA. In the absence of other proteins, the DNA sliding clamps are thought to 'freely slide' along the DNA; however, the abundance of positively charged residues along the inner surface may create favorable electrostatic contact with the highly negatively charged DNA. We have performed single-molecule measurements on a fluorescently labeled {beta}-clamp loaded onto freely diffusing plasmids annealed with fluorescently labeled primers of up to 90 bases. We find that the diffusion constant for 1D diffusion of the {beta}-clamp on DNA satisfies D {le} 10{sup -14} cm{sup 2}/s, much slower than the frictionless limit of D = 10{sup -10} cm{sup 2}/s. We find that the {beta} clamp remains at the 3-foot end in the presence of E. coli single-stranded binding protein (SSB), which would allow for a sliding clamp to wait for binding of the DNA polymerase. Replacement of SSB with Human RP-A eliminates this interaction; free movement of sliding clamp and poor binding of clamp loader to the junction allows sliding clamp to accumulate on DNA. This result implies that the clamp not only acts as a tether, but also a placeholder.

  14. Single-molecule correlated chemical probing of RNA.

    PubMed

    Homan, Philip J; Favorov, Oleg V; Lavender, Christopher A; Kursun, Olcay; Ge, Xiyuan; Busan, Steven; Dokholyan, Nikolay V; Weeks, Kevin M

    2014-09-23

    Complex higher-order RNA structures play critical roles in all facets of gene expression; however, the through-space interaction networks that define tertiary structures and govern sampling of multiple conformations are poorly understood. Here we describe single-molecule RNA structure analysis in which multiple sites of chemical modification are identified in single RNA strands by massively parallel sequencing and then analyzed for correlated and clustered interactions. The strategy thus identifies RNA interaction groups by mutational profiling (RING-MaP) and makes possible two expansive applications. First, we identify through-space interactions, create 3D models for RNAs spanning 80-265 nucleotides, and characterize broad classes of intramolecular interactions that stabilize RNA. Second, we distinguish distinct conformations in solution ensembles and reveal previously undetected hidden states and large-scale structural reconfigurations that occur in unfolded RNAs relative to native states. RING-MaP single-molecule nucleic acid structure interrogation enables concise and facile analysis of the global architectures and multiple conformations that govern function in RNA. PMID:25205807

  15. Dual-Colored DNA Comb Polymers for Single Molecule Rheology

    NASA Astrophysics Data System (ADS)

    Mai, Danielle; Marciel, Amanda; Schroeder, Charles

    2014-03-01

    We report the synthesis and characterization of branched biopolymers for single molecule rheology. In our work, we utilize a hybrid enzymatic-synthetic approach to graft ``short'' DNA branches to ``long'' DNA backbones, thereby producing macromolecular DNA comb polymers. The branches and backbones are synthesized via polymerase chain reaction with chemically modified deoxyribonucleotides (dNTPs): ``short'' branches consist of Cy5-labeled dNTPs and a terminal azide group, and ``long'' backbones contain dibenzylcyclooctyne-modified (DBCO) dNTPs. In this way, we utilize strain-promoted, copper-free cycloaddition ``click'' reactions for facile grafting of azide-terminated branches at DBCO sites along backbones. Copper-free click reactions are bio-orthogonal and nearly quantitative when carried out under mild conditions. Moreover, comb polymers can be labeled with an intercalating dye (e.g., YOYO) for dual-color fluorescence imaging. We characterized these materials using gel electrophoresis, HPLC, and optical microscopy, with atomic force microscopy in progress. Overall, DNA combs are suitable for single molecule dynamics, and in this way, our work holds the potential to improve our understanding of topologically complex polymer melts and solutions.

  16. Resolving metal-molecule interfaces at single-molecule junctions

    NASA Astrophysics Data System (ADS)

    Komoto, Yuki; Fujii, Shintaro; Nakamura, Hisao; Tada, Tomofumi; Nishino, Tomoaki; Kiguchi, Manabu

    2016-05-01

    Electronic and structural detail at the electrode-molecule interface have a significant influence on charge transport across molecular junctions. Despite the decisive role of the metal-molecule interface, a complete electronic and structural characterization of the interface remains a challenge. This is in no small part due to current experimental limitations. Here, we present a comprehensive approach to obtain a detailed description of the metal-molecule interface in single-molecule junctions, based on current-voltage (I-V) measurements. Contrary to conventional conductance studies, this I-V approach provides a correlated statistical description of both, the degree of electronic coupling across the metal-molecule interface, and the energy alignment between the conduction orbital and the Fermi level of the electrode. This exhaustive statistical approach was employed to study single-molecule junctions of 1,4-benzenediamine (BDA), 1,4-butanediamine (C4DA), and 1,4-benzenedithiol (BDT). A single interfacial configuration was observed for both BDA and C4DA junctions, while three different interfacial arrangements were resolved for BDT. This multiplicity is due to different molecular adsorption sites on the Au surface namely on-top, hollow, and bridge. Furthermore, C4DA junctions present a fluctuating I-V curve arising from the greater conformational freedom of the saturated alkyl chain, in sharp contrast with the rigid aromatic backbone of both BDA and BDT.

  17. Identifying Mechanisms of Interfacial Dynamics Using Single-Molecule Tracking

    PubMed Central

    Kastantin, Mark; Walder, Robert; Schwartz, Daniel K.

    2012-01-01

    The “soft” (i.e. non-covalent) interactions between molecules and surfaces are complex and highly-varied (e.g. hydrophobic, hydrogen bonding, ionic) often leading to heterogeneous interfacial behavior. Heterogeneity can arise either from spatial variation of the surface/interface itself or from molecular configurations (i.e. conformation, orientation, aggregation state, etc.). By observing adsorption, diffusion, and desorption of individual fluorescent molecules, single-molecule tracking can characterize these types of heterogeneous interfacial behavior in ways that are inaccessible to traditional ensemble-averaged methods. Moreover, the fluorescence intensity or emission wavelength (in resonance energy transfer experiments) can be used to simultaneously track molecular configuration and directly relate this to the resulting interfacial mobility or affinity. In this feature article, we review recent advances involving the use of single-molecule tracking to characterize heterogeneous molecule-surface interactions including: multiple modes of diffusion and desorption associated with both internal and external molecular configuration, Arrhenius activated interfacial transport, spatially dependent interactions, and many more. PMID:22716995

  18. Pushing The Sample-Size Limit Of Infrared Vibrational Nano-Spectroscopy: From Monolayer Towards Single molecule sensitivity

    SciTech Connect

    Xu, Xiaoji G.; Rang, Matthias; Craig, Ian M.; Rashcke, Markus B.

    2012-06-18

    While scattering-scanning near-field optical microscopy (s-SNOM) has demonstrated its potential to extend infrared (IR) spectroscopy into the nanometer scale, it has not yet reached its full potential in terms of spectroscopic sensitivity. We combine broadband femtosecond mid-IR excitation with an optimized spectral irradiance of 2 W/cm2/ cm–1 (power/area/bandwidth) and a combination of tip- and substrate enhancement to demonstrate single-monolayer sensitivity with exceptional signal-to-noise ratio. Using interferometric time domain detection, the near-field IR s-SNOM spectral phase directly reflects the molecular vibrational resonances and their intrinsic line shapes. We probe the stretching resonance of 1000 carbonyl groups at 1700 cm–1 in a self-assembled monolayer of 16-mercaptohexadecanoic acid (MHDA) on an evaporated gold substrate with spectroscopic contrast and sensitivity of 100 vibrational oscillators. From these results we provide a roadmap for achieving true single-molecule IR vibrational spectroscopy in s-SNOM by implementing optical antenna resonant enhancement, increased spectral pump power, and improved detection schemes.

  19. Investigation of bacterial nucleotide excision repair using single-molecule techniques.

    PubMed

    Van Houten, Bennett; Kad, Neil

    2014-08-01

    Despite three decades of biochemical and structural analysis of the prokaryotic nucleotide excision repair (NER) system, many intriguing questions remain with regard to how the UvrA, UvrB, and UvrC proteins detect, verify and remove a wide range of DNA lesions. Single-molecule techniques have begun to allow more detailed understanding of the kinetics and action mechanism of this complex process. This article reviews how atomic force microscopy and fluorescence microscopy have captured new glimpses of how these proteins work together to mediate NER. PMID:24472181

  20. Super-Resolution Imaging of Molecular Emission Spectra and Single Molecule Spectral Fluctuations

    PubMed Central

    Mlodzianoski, Michael J.; Curthoys, Nikki M.; Gunewardene, Mudalige S.; Carter, Sean; Hess, Samuel T.

    2016-01-01

    Localization microscopy can image nanoscale cellular details. To address biological questions, the ability to distinguish multiple molecular species simultaneously is invaluable. Here, we present a new version of fluorescence photoactivation localization microscopy (FPALM) which detects the emission spectrum of each localized molecule, and can quantify changes in emission spectrum of individual molecules over time. This information can allow for a dramatic increase in the number of different species simultaneously imaged in a sample, and can create super-resolution maps showing how single molecule emission spectra vary with position and time in a sample. PMID:27002724

  1. Simultaneous Single-Molecule Force and Fluorescence Sampling of DNA Nanostructure Conformations Using Magnetic Tweezers.

    PubMed

    Kemmerich, Felix E; Swoboda, Marko; Kauert, Dominik J; Grieb, M Svea; Hahn, Steffen; Schwarz, Friedrich W; Seidel, Ralf; Schlierf, Michael

    2016-01-13

    We present a hybrid single-molecule technique combining magnetic tweezers and Förster resonance energy transfer (FRET) measurements. Through applying external forces to a paramagnetic sphere, we induce conformational changes in DNA nanostructures, which are detected in two output channels simultaneously. First, by tracking a magnetic bead with high spatial and temporal resolution, we observe overall DNA length changes along the force axis. Second, the measured FRET efficiency between two fluorescent probes monitors local conformational changes. The synchronized orthogonal readout in different observation channels will facilitate deciphering the complex mechanisms of biomolecular machines. PMID:26632021

  2. Super-Resolution Imaging of Molecular Emission Spectra and Single Molecule Spectral Fluctuations.

    PubMed

    Mlodzianoski, Michael J; Curthoys, Nikki M; Gunewardene, Mudalige S; Carter, Sean; Hess, Samuel T

    2016-01-01

    Localization microscopy can image nanoscale cellular details. To address biological questions, the ability to distinguish multiple molecular species simultaneously is invaluable. Here, we present a new version of fluorescence photoactivation localization microscopy (FPALM) which detects the emission spectrum of each localized molecule, and can quantify changes in emission spectrum of individual molecules over time. This information can allow for a dramatic increase in the number of different species simultaneously imaged in a sample, and can create super-resolution maps showing how single molecule emission spectra vary with position and time in a sample. PMID:27002724

  3. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine

    NASA Astrophysics Data System (ADS)

    Pi, Jiang; Jin, Hua; Yang, Fen; Chen, Zheng W.; Cai, Jiye

    2014-10-01

    The cell membrane, which consists of a viscous phospholipid bilayer, different kinds of proteins and various nano/micrometer-sized domains, plays a very important role in ensuring the stability of the intracellular environment and the order of cellular signal transductions. Exploring the precise cell membrane structure and detailed functions of the biomolecules in a cell membrane would be helpful to understand the underlying mechanisms involved in cell membrane signal transductions, which could further benefit research into cell biology, immunology and medicine. The detection of membrane biomolecules at the single molecule level can provide some subtle information about the molecular structure and the functions of the cell membrane. In particular, information obtained about the molecular mechanisms and other information at the single molecule level are significantly different from that detected from a large amount of biomolecules at the large-scale through traditional techniques, and can thus provide a novel perspective for the study of cell membrane structures and functions. However, the precise investigations of membrane biomolecules prompts researchers to explore cell membranes at the single molecule level by the use of in situ imaging methods, as the exact conformation and functions of biomolecules are highly controlled by the native cellular environment. Recently, the in situ single molecule imaging of cell membranes has attracted increasing attention from cell biologists and immunologists. The size of biomolecules and their clusters on the cell surface are set at the nanoscale, which makes it mandatory to use high- and super-resolution imaging techniques to realize the in situ single molecule imaging of cell membranes. In the past few decades, some amazing imaging techniques and instruments with super resolution have been widely developed for molecule imaging, which can also be further employed for the in situ single molecule imaging of cell membranes. In

  4. Fluorescence spectroscopy of single molecules at room temperature and its applications

    SciTech Connect

    Ha, Taekjip

    1996-12-01

    We performed fluorescence spectroscopy of single and pairs of dye molecules on a surface at room temperature. Near field scanning optical microscope (NSOM) and far field scanning optical microscope with multi-color excitation/detection capability were built. The instrument is capable of optical imaging with 100nm resolution and has the sensitivity necessary for single molecule detection. A variety of dynamic events which cannot be observed from an ensemble of molecules is revealed when the molecules are probed one at a time. They include (1) spectral jumps correlated with dark states, (2) individually resolved quantum jumps to and from the meta-stable triplet state, (3) rotational jumps due to desorption/readsorption events of single molecules on the surface. For these studies, a computer controlled optical system which automatically and rapidly locates and performs spectroscopic measurements on single molecules was developed. We also studied the interaction between closely spaced pairs of molecules. In particular, fluorescence resonance energy transfer between a single resonant pair of donor and acceptor molecules was measured. Photodestruction dynamics of the donor or acceptor were used to determine the presence and efficiency of energy transfer Dual molecule spectroscopy was extended to a non-resonant pair of molecules to obtain high resolution differential distance information. By combining NSOM and dual color scheme, we studied the co-localization of parasite proteins and host proteins on a human red blood cell membrane infected with malaria. These dual-molecule techniques can be used to measure distances, relative orientations, and changes in distances/orientations of biological macromolecules with very good spatial, angular and temporal resolutions, hence opening new capabilities in the study of such systems.

  5. Probing Electronic and Thermoelectric Properties of Single Molecule Junctions

    NASA Astrophysics Data System (ADS)

    Widawsky, Jonathan R.

    In an effort to further understand electronic and thermoelectric phenomenon at the nanometer scale, we have studied the transport properties of single molecule junctions. To carry out these transport measurements, we use the scanning tunneling microscope-break junction (STM-BJ) technique, which involves the repeated formation and breakage of a metal point contact in an environment of the target molecule. Using this technique, we are able to create gaps that can trap the molecules, allowing us to sequentially and reproducibly create a large number of junctions. By applying a small bias across the junction, we can measure its conductance and learn about the transport mechanisms at the nanoscale. The experimental work presented here directly probes the transmission properties of single molecules through the systematic measurement of junction conductance (at low and high bias) and thermopower. We present measurements on a variety of molecular families and study how conductance depends on the character of the linkage (metal-molecule bond) and the nature of the molecular backbone. We start by describing a novel way to construct single molecule junctions by covalently connecting the molecular backbone to the electrodes. This eliminates the use of linking substituents, and as a result, the junction conductance increases substantially. Then, we compare transport across silicon chains (silanes) and saturated carbon chains (alkanes) while keeping the linkers the same and find a stark difference in their electronic transport properties. We extend our studies of molecular junctions by looking at two additional aspects of quantum transport -- molecular thermopower and molecular current-voltage characteristics. Each of these additional parameters gives us further insight into transport properties at the nanoscale. Evaluating the junction thermopower allows us to determine the nature of charge carriers in the system and we demonstrate this by contrasting the measurement of amine

  6. Single cell and single molecule techniques for the analysis of the epigenome

    NASA Astrophysics Data System (ADS)

    Wallin, Christopher Benjamin

    Epigenetic regulation is a critical biological process for the health and development of a cell. Epigenetic regulation is facilitated by covalent modifications to the underlying DNA and chromatin proteins. A fundamental understanding of these epigenetic modifications and their associated interactions at the molecular scale is necessary to explain phenomena including cellular identity, stem cell plasticity, and neoplastic transformation. It is widely known that abnormal epigenetic profiles have been linked to many diseases, most notably cancer. While the field of epigenetics has progressed rapidly with conventional techniques, significant advances remain to be made with respect to combinatoric analysis of epigenetic marks and single cell epigenetics. Therefore, in this dissertation, I will discuss our development of devices and methodologies to address these pertinent issues. First, we designed a preparatory polydimethylsiloxane (PDMS) microdevice for the extraction, purification, and stretching of human chromosomal DNA and chromatin from small cell populations down to a single cell. The valveless device captures cells by size exclusion within the micropillars, entraps the DNA or chromatin in the micropillars after cell lysis, purifies away the cellular debris, and fluorescently labels the DNA and/or chromatin all within a single reaction chamber. With the device, we achieve nearly 100% extraction efficiency of the DNA. The device is also used for in-channel immunostaining of chromatin followed by downstream single molecule chromatin analysis in nanochannels (SCAN). Second, using multi-color, time-correlated single molecule measurements in nanochannels, simultaneous coincidence detection of 2 epigenetic marks is demonstrated. Coincidence detection of 3 epigenetic marks is also established using a pulsed interleaved excitation scheme. With these two promising results, genome-wide quantification of epigenetic marks was pursued. Unfortunately, quantitative SCAN never

  7. Optimizing 1-μs-Resolution Single-Molecule Force Spectroscopy on a Commercial Atomic Force Microscope.

    PubMed

    Edwards, Devin T; Faulk, Jaevyn K; Sanders, Aric W; Bull, Matthew S; Walder, Robert; LeBlanc, Marc-Andre; Sousa, Marcelo C; Perkins, Thomas T

    2015-10-14

    Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) is widely used to mechanically measure the folding and unfolding of proteins. However, the temporal resolution of a standard commercial cantilever is 50-1000 μs, masking rapid transitions and short-lived intermediates. Recently, SMFS with 0.7-μs temporal resolution was achieved using an ultrashort (L = 9 μm) cantilever on a custom-built, high-speed AFM. By micromachining such cantilevers with a focused ion beam, we optimized them for SMFS rather than tapping-mode imaging. To enhance usability and throughput, we detected the modified cantilevers on a commercial AFM retrofitted with a detection laser system featuring a 3-μm circular spot size. Moreover, individual cantilevers were reused over multiple days. The improved capabilities of the modified cantilevers for SMFS were showcased by unfolding a polyprotein, a popular biophysical assay. Specifically, these cantilevers maintained a 1-μs response time while eliminating cantilever ringing (Q ≅ 0.5). We therefore expect such cantilevers, along with the instrumentational improvements to detect them on a commercial AFM, to accelerate high-precision AFM-based SMFS studies. PMID:26421945

  8. Single molecule thermodynamics of ATP synthesis by F1-ATPase

    NASA Astrophysics Data System (ADS)

    Toyabe, Shoichi; Muneyuki, Eiro

    2015-01-01

    FoF1-ATP synthase is a factory for synthesizing ATP in virtually all cells. Its core machinery is the subcomplex F1-motor (F1-ATPase) and performs the reversible mechanochemical coupling. The isolated F1-motor hydrolyzes ATP, which is accompanied by unidirectional rotation of its central γ -shaft. When a strong opposing torque is imposed, the γ -shaft rotates in the opposite direction and drives the F1-motor to synthesize ATP. This mechanical-to-chemical free-energy transduction is the final and central step of the multistep cellular ATP-synthetic pathway. Here, we determined the amount of mechanical work exploited by the F1-motor to synthesize an ATP molecule during forced rotations using a methodology combining a nonequilibrium theory and single molecule measurements of responses to external torque. We found that the internal dissipation of the motor is negligible even during rotations far from a quasistatic process.

  9. Single-Molecule Studies of Rotary Molecular Motors

    NASA Astrophysics Data System (ADS)

    Pilizota, Teuta; Sowa, Yoshiyuki; Berry, Richard M.

    Rotary molecular motors are protein complexes that transform chemical or electrochemical energy into mechanical work. There are five known rotary molecular motors in nature; the bacterial flagellar motor, and two motors in each of ATP-synthase and V-ATPase. Rotation of the flagellar motor drives a helical propeller that powers bacterial swimming. The function of the other rotary motors is to couple electrochemical ion gradients to synthesis or hydrolysis of ATP, and rotation is a detail of the coupling mechanism rather than the ultimate purpose of the motors. Much has been learned about the mechanism of the F1 part of ATP-synthase and the flagellar motor by measuring the rotation of single motors with a variety of techniques under a wide range of conditions. This chapter will review the structures of ATP-synthase and the flagellar motor, and what has been learned about their mechanisms using single molecule techniques.

  10. Single-molecule denaturation mapping of DNA in nanofluidic channels

    PubMed Central

    Reisner, Walter; Larsen, Niels B.; Silahtaroglu, Asli; Kristensen, Anders; Tommerup, Niels; Tegenfeldt, Jonas O.; Flyvbjerg, Henrik

    2010-01-01

    Here we explore the potential power of denaturation mapping as a single-molecule technique. By partially denaturing YOYO®-1-labeled DNA in nanofluidic channels with a combination of formamide and local heating, we obtain a sequence-dependent “barcode” corresponding to a series of local dips and peaks in the intensity trace along the extended molecule. We demonstrate that this structure arises from the physics of local denaturation: statistical mechanical calculations of sequence-dependent melting probability can predict the barcode to be observed experimentally for a given sequence. Consequently, the technique is sensitive to sequence variation without requiring enzymatic labeling or a restriction step. This technique may serve as the basis for a new mapping technology ideally suited for investigating the long-range structure of entire genomes extracted from single cells. PMID:20616076

  11. Robust Magnetic Properties of a Sublimable Single-Molecule Magnet.

    PubMed

    Kiefl, Evan; Mannini, Matteo; Bernot, Kevin; Yi, Xiaohui; Amato, Alex; Leviant, Tom; Magnani, Agnese; Prokscha, Thomas; Suter, Andreas; Sessoli, Roberta; Salman, Zaher

    2016-06-28

    The organization of single-molecule magnets (SMMs) on surfaces via thermal sublimation is a prerequisite for the development of future devices for spintronics exploiting the richness of properties offered by these magnetic molecules. However, a change in the SMM properties due to the interaction with specific surfaces is usually observed. Here we present a rare example of an SMM system that can be thermally sublimated on gold surfaces while maintaining its intact chemical structure and magnetic properties. Muon spin relaxation and ac susceptibility measurements are used to demonstrate that, unlike other SMMs, the magnetic properties of this system in thin films are very similar to those in the bulk, throughout the full volume of the film, including regions near the metal and vacuum interfaces. These results exhibit the robustness of chemical and magnetic properties of this complex and provide important clues for the development of nanostructures based on SMMs. PMID:27139335

  12. n and p type character of single molecule diodes

    NASA Astrophysics Data System (ADS)

    Zoldan, Vinícius Claudio; Faccio, Ricardo; Pasa, André Avelino

    2015-02-01

    Looking for single molecule electronic devices, we have investigated the charge transport properties of individual tetra-phenylporphyrin molecules on different substrates by ultrahigh-vacuum scanning tunneling microscopy and spectroscopy and by first-principles calculations. The tetra-phenylporphyrins with a Co atom (Co-TPP) or 2 hydrogens (H2-TPP) in the central macrocycle when deposited on Cu3Au(100) substrates showed a diode-like behavior with p and n type character, respectively. After removing the central hydrogens of H2-TPP molecule with the STM tip an ohmic behavior was measured. The rectifying effect was understood from the theoretical point of view by assuming for Co-TPP HOMO conduction and for H2-TPP LUMO conduction, both selectively elected by the hybridization of states between molecule and substrate surface.

  13. Three dimensional single molecule localization using a phase retrieved pupilfunction

    PubMed Central

    Liu, Sheng; Kromann, Emil B.; Krueger, Wesley D.; Bewersdorf, Joerg; Lidke, Keith A.

    2013-01-01

    Localization-based superresolution imaging is dependent on finding the positions of individualfluorophores in a sample by fitting the observed single-molecule intensity pattern to the microscopepoint spread function (PSF). For three-dimensional imaging, system-specific aberrations of theoptical system can lead to inaccurate localizations when the PSF model does not account for theseaberrations. Here we describe the use of phase-retrieved pupil functions to generate a more accuratePSF and therefore more accurate 3D localizations. The complex-valued pupil function containsinformation about the system-specific aberrations and can thus be used to generate the PSF forarbitrary defocus. Further, it can be modified to include depth dependent aberrations. We describethe phase retrieval process, the method for including depth dependent aberrations, and a fastfitting algorithm using graphics processing units. The superior localization accuracy of the pupilfunction generated PSF is demonstrated with dual focal plane 3D superresolution imaging ofbiological structures. PMID:24514501

  14. Reconstructing Folding Energy Landscapes by Single-Molecule Force Spectroscopy

    PubMed Central

    Woodside, Michael T.; Block, Steven M.

    2015-01-01

    Folding may be described conceptually in terms of trajectories over a landscape of free energies corresponding to different molecular configurations. In practice, energy landscapes can be difficult to measure. Single-molecule force spectroscopy (SMFS), whereby structural changes are monitored in molecules subjected to controlled forces, has emerged as a powerful tool for probing energy landscapes. We summarize methods for reconstructing landscapes from force spectroscopy measurements under both equilibrium and nonequilibrium conditions. Other complementary, but technically less demanding, methods provide a model-dependent characterization of key features of the landscape. Once reconstructed, energy landscapes can be used to study critical folding parameters, such as the characteristic transition times required for structural changes and the effective diffusion coefficient setting the timescale for motions over the landscape. We also discuss issues that complicate measurement and interpretation, including the possibility of multiple states or pathways and the effects of projecting multiple dimensions onto a single coordinate. PMID:24895850

  15. Subnanometre enzyme mechanics probed by single-molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Pelz, Benjamin; Žoldák, Gabriel; Zeller, Fabian; Zacharias, Martin; Rief, Matthias

    2016-02-01

    Enzymes are molecular machines that bind substrates specifically, provide an adequate chemical environment for catalysis and exchange products rapidly, to ensure fast turnover rates. Direct information about the energetics that drive conformational changes is difficult to obtain. We used subnanometre single-molecule force spectroscopy to study the energetic drive of substrate-dependent lid closing in the enzyme adenylate kinase. Here we show that in the presence of the bisubstrate inhibitor diadenosine pentaphosphate (AP5A), closing and opening of both lids is cooperative and tightly coupled to inhibitor binding. Surprisingly, binding of the substrates ADP and ATP exhibits a much smaller energetic drive towards the fully closed state. Instead, we observe a new dominant energetic minimum with both lids half closed. Our results, combining experiment and molecular dynamics simulations, give detailed mechanical insights into how an enzyme can cope with the seemingly contradictory requirements of rapid substrate exchange and tight closing, to ensure efficient catalysis.

  16. Single-molecule protein sequencing through fingerprinting: computational assessment

    NASA Astrophysics Data System (ADS)

    Yao, Yao; Docter, Margreet; van Ginkel, Jetty; de Ridder, Dick; Joo, Chirlmin

    2015-10-01

    Proteins are vital in all biological systems as they constitute the main structural and functional components of cells. Recent advances in mass spectrometry have brought the promise of complete proteomics by helping draft the human proteome. Yet, this commonly used protein sequencing technique has fundamental limitations in sensitivity. Here we propose a method for single-molecule (SM) protein sequencing. A major challenge lies in the fact that proteins are composed of 20 different amino acids, which demands 20 molecular reporters. We computationally demonstrate that it suffices to measure only two types of amino acids to identify proteins and suggest an experimental scheme using SM fluorescence. When achieved, this highly sensitive approach will result in a paradigm shift in proteomics, with major impact in the biological and medical sciences.

  17. Subnanometre enzyme mechanics probed by single-molecule force spectroscopy.

    PubMed

    Pelz, Benjamin; Žoldák, Gabriel; Zeller, Fabian; Zacharias, Martin; Rief, Matthias

    2016-01-01

    Enzymes are molecular machines that bind substrates specifically, provide an adequate chemical environment for catalysis and exchange products rapidly, to ensure fast turnover rates. Direct information about the energetics that drive conformational changes is difficult to obtain. We used subnanometre single-molecule force spectroscopy to study the energetic drive of substrate-dependent lid closing in the enzyme adenylate kinase. Here we show that in the presence of the bisubstrate inhibitor diadenosine pentaphosphate (AP5A), closing and opening of both lids is cooperative and tightly coupled to inhibitor binding. Surprisingly, binding of the substrates ADP and ATP exhibits a much smaller energetic drive towards the fully closed state. Instead, we observe a new dominant energetic minimum with both lids half closed. Our results, combining experiment and molecular dynamics simulations, give detailed mechanical insights into how an enzyme can cope with the seemingly contradictory requirements of rapid substrate exchange and tight closing, to ensure efficient catalysis. PMID:26906294

  18. DNA-cisplatin interaction studied with single molecule stretching experiments.

    PubMed

    Crisafuli, F A P; Cesconetto, E C; Ramos, E B; Rocha, M S

    2012-05-01

    By performing single molecule stretching experiments with optical tweezers, we have studied the changes in the mechanical properties of DNA-cisplatin complexes as a function of some variables of interest such as the drug diffusion time and concentration in the sample. We propose a model to explain the behavior of the persistence length as a function of the drug concentration, extracting the binding data from pure mechanical measurements. Such analysis has allowed us to show that cisplatin binds cooperatively to the DNA molecule. In addition, DNA compaction by the action of the drug was also observed under our experimental conditions by studying the kinetics of some mechanical properties such as the radius of gyration and the end-to-end distance, e.g. Crisafuli et al., Integr. Biol., 2011, xx, xxxx. PMID:22513758

  19. n and p type character of single molecule diodes.

    PubMed

    Zoldan, Vinícius Claudio; Faccio, Ricardo; Pasa, André Avelino

    2015-01-01

    Looking for single molecule electronic devices, we have investigated the charge transport properties of individual tetra-phenylporphyrin molecules on different substrates by ultrahigh-vacuum scanning tunneling microscopy and spectroscopy and by first-principles calculations. The tetra-phenylporphyrins with a Co atom (Co-TPP) or 2 hydrogens (H2-TPP) in the central macrocycle when deposited on Cu3Au(100) substrates showed a diode-like behavior with p and n type character, respectively. After removing the central hydrogens of H2-TPP molecule with the STM tip an ohmic behavior was measured. The rectifying effect was understood from the theoretical point of view by assuming for Co-TPP HOMO conduction and for H2-TPP LUMO conduction, both selectively elected by the hybridization of states between molecule and substrate surface. PMID:25666850

  20. n and p type character of single molecule diodes

    PubMed Central

    Zoldan, Vinícius Claudio; Faccio, Ricardo; Pasa, André Avelino

    2015-01-01

    Looking for single molecule electronic devices, we have investigated the charge transport properties of individual tetra-phenylporphyrin molecules on different substrates by ultrahigh-vacuum scanning tunneling microscopy and spectroscopy and by first-principles calculations. The tetra-phenylporphyrins with a Co atom (Co-TPP) or 2 hydrogens (H2-TPP) in the central macrocycle when deposited on Cu3Au(100) substrates showed a diode-like behavior with p and n type character, respectively. After removing the central hydrogens of H2-TPP molecule with the STM tip an ohmic behavior was measured. The rectifying effect was understood from the theoretical point of view by assuming for Co-TPP HOMO conduction and for H2-TPP LUMO conduction, both selectively elected by the hybridization of states between molecule and substrate surface. PMID:25666850

  1. Subnanometre enzyme mechanics probed by single-molecule force spectroscopy

    PubMed Central

    Pelz, Benjamin; Žoldák, Gabriel; Zeller, Fabian; Zacharias, Martin; Rief, Matthias

    2016-01-01

    Enzymes are molecular machines that bind substrates specifically, provide an adequate chemical environment for catalysis and exchange products rapidly, to ensure fast turnover rates. Direct information about the energetics that drive conformational changes is difficult to obtain. We used subnanometre single-molecule force spectroscopy to study the energetic drive of substrate-dependent lid closing in the enzyme adenylate kinase. Here we show that in the presence of the bisubstrate inhibitor diadenosine pentaphosphate (AP5A), closing and opening of both lids is cooperative and tightly coupled to inhibitor binding. Surprisingly, binding of the substrates ADP and ATP exhibits a much smaller energetic drive towards the fully closed state. Instead, we observe a new dominant energetic minimum with both lids half closed. Our results, combining experiment and molecular dynamics simulations, give detailed mechanical insights into how an enzyme can cope with the seemingly contradictory requirements of rapid substrate exchange and tight closing, to ensure efficient catalysis. PMID:26906294

  2. Single-molecule Analysis of Telomerase Structure and Function

    PubMed Central

    Hengesbach, Martin; Akiyama, Benjamin M.; Stone, Michael D.

    2016-01-01

    The telomerase ribonucleoprotein is a specialized reverse transcriptase required to maintain protective chromosome end-capping structures called telomeres. In most cells, telomerase is not active and the natural shortening of telomeres with each round of DNA replication ultimately triggers cell growth arrest. In contrast, the presence of telomerase confers a high level of renewal capacity upon rapidly dividing cells. Telomerase is aberrantly activated in 90% of human cancers and thus represents an important target for anticancer therapeutics. However, the naturally low abundance of telomerase has hampered efforts to obtain high-resolution models for telomerase structure and function. To circumvent these challenges, single molecule techniques have recently been employed to investigate telomerase assembly, structure, and catalysis. PMID:22057212

  3. Lipid mobility in supported lipid bilayers by single molecule tracking

    NASA Astrophysics Data System (ADS)

    Kohram, Maryam; Shi, Xiaojun; Smith, Adam

    2015-03-01

    Phospholipid bilayers are the main component of cell membranes and their interaction with biomolecules in their immediate environment is critical for cellular functions. These interactions include the binding of polycationic polymers to lipid bilayers which affects many cell membrane events. As an alternative method of studying live cell membranes, we assemble a supported lipid bilayer and investigate its binding with polycationic polymers in vitro by fluorescently labeling the molecules of the supported lipid bilayer and tracking their mobility. In this work, we use single molecule tracking total internal reflection fluorescence microscopy (TIRF) to study phosphatidylinositol phosphate (PIP) lipids with and without an adsorbed polycationic polymer, quaternized polyvinylpyridine (QPVP). Individual molecular trajectories are obtained from the experiment, and a Brownian diffusion model is used to determine diffusion coefficients through mean square displacements. Our results indicate a smaller diffusion coefficient for the supported lipid bilayers in the presence of QPVP in comparison to its absence, revealing that their binding causes a decrease in lateral mobility.

  4. Kinesin regulation dynamics through cargo delivery, a single molecule investigation

    NASA Astrophysics Data System (ADS)

    Kovacs, Anthony; Kessler, Jonathan; Lin, Huawen; Dutcher, Susan; Wang, Yan Mei

    2015-03-01

    Kinesins are microtubule-based motors that deliver cargo to their destinations in a highly regulated manner. Although in recent years numerous regulators of cargo delivery have been identified, the regulation mechanism of kinesin through the cargo delivery and recycling process is not known. By performing single molecule fluorescence imaging measurements in Chlamydomonas flagella, which are 200 nm in diameter, 10 microns in length, and contain 9 sets of microtubule doublets, we tracked the intraflagellar transport (IFT) trains, BBSome cargo, and kinesin-2 motors through the cargo delivery process and determined the aforementioned dynamics. Upon arrival at the microtubule plus end at the flagellar tip, (1) IFT trains and BBSome cargo remain intact, dissociate together from kinesins and microtubules, and diffuse along flagellar membrane for a mean of 2.3 sec before commencing retrograde travel. (2) Kinesin motors remain bound to and diffuse along microtubules for 1.3 sec before dissociating into the flagellar lumen for recycling.

  5. Polarization-dependent single-molecule spectroscopy on photosystem I

    NASA Astrophysics Data System (ADS)

    Skandary, S.; Konrad, A.; Hussels, M.; Meixner, A. J.; Brecht, M.

    2015-08-01

    Single-molecule spectroscopy (SMS) at low temperature was used to study the spectral properties, heterogeneities and spectral dynamics of the chlorophyll a (Chl a) molecules responsible for the fluorescence emission of photosystem I (PS I). The fluorescence spectra of single PS I complexes are dominated by several red-shifted Chl a molecules categorized into red pools called C708 and C719. By polarization dependent measurements we demonstrate spectrally separate emissions corresponding to C708 and C719 in single PS I monomers and trimers. Moreover, we compared the results of SMS polarization dependent between monomeric and trimeric PS I complexes and give an estimation for the orientation between these red pools. As a consequence, we get new insight into the energy transfer towards and between the red Chl a molecules in PS I complexes.

  6. X-ray induced demagnetization of single-molecule magnets

    SciTech Connect

    Dreiser, Jan; Westerström, Rasmus; Piamonteze, Cinthia; Nolting, Frithjof; Rusponi, Stefano; Brune, Harald; Yang, Shangfeng; Popov, Alexey; Dunsch, Lothar; Greber, Thomas

    2014-07-21

    Low-temperature x-ray magnetic circular dichroism measurements on the endohedral single-molecule magnet DySc{sub 2}N@C{sub 80} at the Dy M{sub 4,5} edges reveal a shrinking of the opening of the observed hysteresis with increasing x-ray flux. Time-dependent measurements show that the exposure of the molecules to x-rays resonant with the Dy M{sub 5} edge accelerates the relaxation of magnetization more than off-resonant x-rays. The results cannot be explained by a homogeneous temperature rise due to x-ray absorption. Moreover, the observed large demagnetization cross sections indicate that the resonant absorption of one x-ray photon induces the demagnetization of many molecules.

  7. Exploiting single-molecule transcript sequencing for eukaryotic gene prediction.

    PubMed

    Minoche, André E; Dohm, Juliane C; Schneider, Jessica; Holtgräwe, Daniela; Viehöver, Prisca; Montfort, Magda; Sörensen, Thomas Rosleff; Weisshaar, Bernd; Himmelbauer, Heinz

    2015-01-01

    We develop a method to predict and validate gene models using PacBio single-molecule, real-time (SMRT) cDNA reads. Ninety-eight percent of full-insert SMRT reads span complete open reading frames. Gene model validation using SMRT reads is developed as automated process. Optimized training and prediction settings and mRNA-seq noise reduction of assisting Illumina reads results in increased gene prediction sensitivity and precision. Additionally, we present an improved gene set for sugar beet (Beta vulgaris) and the first genome-wide gene set for spinach (Spinacia oleracea). The workflow and guidelines are a valuable resource to obtain comprehensive gene sets for newly sequenced genomes of non-model eukaryotes. PMID:26328666

  8. New insights into the spliceosome by single molecule fluorescence microscopy.

    PubMed

    Hoskins, Aaron A; Gelles, Jeff; Moore, Melissa J

    2011-12-01

    Splicing is an essential eukaryotic process in which introns are excised from precursors to messenger RNAs and exons ligated together. This reaction is catalyzed by a multi-MegaDalton machine called the spliceosome, composed of 5 small nuclear RNAs (snRNAs) and a core set of ∼100 proteins minimally required for activity. Because of the spliceosome's size, its low abundance in cellular extracts, and its highly dynamic assembly pathway, analysis of the kinetics of splicing and the conformational rearrangements occurring during spliceosome assembly and disassembly has proven extraordinarily challenging. Here, we review recent progress in combining chemical biology methodologies with single molecule fluorescence techniques to provide a window into splicing in real time. These methods complement ensemble measurements of splicing in vivo and in vitro to facilitate kinetic dissection of pre-mRNA splicing. PMID:22057211

  9. Single-molecule paleoenzymology probes the chemistry of resurrected enzymes

    PubMed Central

    Perez-Jimenez, Raul; Inglés-Prieto, Alvaro; Zhao, Zi-Ming; Sanchez-Romero, Inmaculada; Alegre-Cebollada, Jorge; Kosuri, Pallav; Garcia-Manyes, Sergi; Kappock, T. Joseph; Tanokura, Masaru; Holmgren, Arne; Sanchez-Ruiz, Jose M.; Gaucher, Eric A.; Fernandez, Julio M.

    2011-01-01

    A journey back in time is possible at the molecular level by reconstructing proteins from extinct organisms. Here we report the reconstruction, based on sequence predicted by phylogenetic analysis, of seven Precambrian thioredoxin enzymes (Trx), dating back between ~1.4 and ~4 billion years (Gyr). The reconstructed enzymes are up to 32° C more stable than modern enzymes and the oldest show significantly higher activity than extant ones at pH 5. We probed their mechanisms of reduction using single-molecule force spectroscopy. From the force-dependency of the rate of reduction of an engineered substrate, we conclude that ancient Trxs utilize chemical mechanisms of reduction similar to those of modern enzymes. While Trx enzymes have maintained their reductase chemistry unchanged, they have adapted over a 4 Gyr time span to the changes in temperature and ocean acidity that characterize the evolution of the global environment from ancient to modern Earth. PMID:21460845

  10. Processive cytoskeletal motors studied with single-molecule fluorescence techniques

    PubMed Central

    Belyy, Vladislav; Yildiz, Ahmet

    2014-01-01

    Processive cytoskeletal motors from the myosin, kinesin, and dynein families walk on actin filaments and microtubules to drive cellular transport and organization in eukaryotic cells. These remarkable molecular machines are able to take hundreds of successive steps at speeds of up to several microns per second, allowing them to effectively move vesicles and organelles throughout the cytoplasm. Here, we focus on single-molecule fluorescence techniques and discuss their wide-ranging applications to the field of cytoskeletal motor research. We cover both traditional fluorescence and sub-diffraction imaging of motors, providing examples of how fluorescence data can be used to measure biophysical parameters of motors such as coordination, stepping mechanism, gating, and processivity. We also outline some remaining challenges in the field and suggest future directions. PMID:24882363

  11. Charge Transport in Azobenzene-Based Single-Molecule Junctions

    NASA Astrophysics Data System (ADS)

    Garcia-Lekue, Aran; Kim, Youngsang; Sysoiev, Dmytro; Frederiksen, Thomas; Groth, Ulrich; Scheer, Elke

    2013-03-01

    The azobenzene class of molecules has become an archetype of molecular photoswitch research, due to their simple structure and the significant difference of the electronic system between their cis and trans isomers. However, a detailed understanding of the charge transport for the two isomers, when embedded in a junction with electrodes is still lacking. In order to clarify this issue, we investigate charge transport properties through single Azobenzene-ThioMethyl (AzoTM) molecules in a mechanically controlled break junction (MCBJ) system at 4.2 K. Single-molecule conductance, I-V characteristics, and IETS spectra of molecular junctions are measured and compared with first-principles transport calculations. Our studies elucidate the origin of a slightly higher conductance of junctions with cis isomer and demonstrate that IETS spectra of cis and trans forms show distinct vibrational fingerprints that can be used for identifying the isomer.

  12. Structure and mechanics of proteins from single molecules to cells

    NASA Astrophysics Data System (ADS)

    Brown, Andre E.

    2009-07-01

    Physical factors drive evolution and play important roles in motility and attachment as well as in differentiation. As animal cells adhere to survive, they generate force and "feel" various mechanical features of their surroundings and respond to externally applied forces. This mechanosensitivity requires a substrate for cells to adhere to and a mechanism for cells to apply force, followed by a cellular response to the mechanical properties of the substrate. We have taken an outside-in approach to characterize several aspects of cellular mechanosensitivity. First, we used single molecule force spectroscopy to measure how fibrinogen, an extracellular matrix protein that forms the scaffold of blood clots, responds to applied force and found that it rapidly unfolds in 23 nm steps at forces around 100 pN. Second, we used tensile testing to measure the force-extension behavior of fibrin gels and found that they behave almost linearly to strains of over 100%, have extensibilities of 170 +/- 15%, and undergo a large volume decrease that corresponds to a large and negative peak in compressibility at low strain, which indicates a structural transition. Using electron microscopy and X-ray scattering we concluded that these properties are likely due to coiled-coil unfolding, as observed at the single molecule level in fibrinogen. Moving inside cells, we used total internal reflection fluorescence and atomic force microscopy to image self-assembled myosin filaments. These filaments of motor proteins that are responsible for cell and muscle contractility were found to be asymmetric, with an average of 32% more force generating heads on one half than the other. This could imply a force imbalance, so that rather than being simply contractile, myosin filaments may also be motile in cells.

  13. Single-molecule mechanics of protein-labelled DNA handles

    PubMed Central

    Wruck, Florian

    2016-01-01

    Summary DNA handles are often used as spacers and linkers in single-molecule experiments to isolate and tether RNAs, proteins, enzymes and ribozymes, amongst other biomolecules, between surface-modified beads for nanomechanical investigations. Custom DNA handles with varying lengths and chemical end-modifications are readily and reliably synthesized en masse, enabling force spectroscopic measurements with well-defined and long-lasting mechanical characteristics under physiological conditions over a large range of applied forces. Although these chemically tagged DNA handles are widely used, their further individual modification with protein receptors is less common and would allow for additional flexibility in grabbing biomolecules for mechanical measurements. In-depth information on reliable protocols for the synthesis of these DNA–protein hybrids and on their mechanical characteristics under varying physiological conditions are lacking in literature. Here, optical tweezers are used to investigate different protein-labelled DNA handles in a microfluidic environment under different physiological conditions. Digoxigenin (DIG)-dsDNA-biotin handles of varying sizes (1000, 3034 and 4056 bp) were conjugated with streptavidin or neutravidin proteins. The DIG-modified ends of these hybrids were bound to surface-modified polystyrene (anti-DIG) beads. Using different physiological buffers, optical force measurements showed consistent mechanical characteristics with long dissociation times. These protein-modified DNA hybrids were also interconnected in situ with other tethered biotinylated DNA molecules. Electron-multiplying CCD (EMCCD) imaging control experiments revealed that quantum dot–streptavidin conjugates at the end of DNA handles remain freely accessible. The experiments presented here demonstrate that handles produced with our protein–DNA labelling procedure are excellent candidates for grasping single molecules exposing tags suitable for molecular recognition

  14. Single-cell and single-molecule laser biotechnology

    NASA Astrophysics Data System (ADS)

    Greulich, Karl O.; Bauer, Eckhard; Fiedler, Ursula; Hoyer, Carsten; Koenig, Karsten; Monajembashi, Shamci

    1996-01-01

    While lasers have found a wide field of application in the analysis of cells and biomolecules, their use in manipulation is less common. Now, new applications of lasers are emerging, which aim at cells and even molecules as biotechnological individuals: For example, in single cell gel electrophoresis individual cells are irradiated by UV laser pulses which cause radiation damage to DNA. When the whole cell is positioned in an electric field and the UV induced damages are converted into DNA strand breaks, the resulting DNA fragments are eluted out of the cell nucleus. Small fragments are running further than large ones. After staining of the DNA fragments, the cell has the appearance like a comet (therefore comet assay). The tail moment, a parameter quantifying the shape of the tail, gives information on the degree of DNA damage. The kinetics of DNA damage induction can be described by a type of exponential law with parameters which are related to radiation sensitivity of the DNA. A further emerging technique aims at DNA as a molecular individuum. One pivotal step for single molecule DNA analysis is single molecule handling. For that purpose, a DNA molecule is coupled to a micrometer sized polystyrene bead, either via an avidin-biotin bridge or, more specifically, by strand recognition, and labeled with fluorescence dyes such as DAPI. In order to visualize the dynamics of individual DNA molecules, highly sensitive video processing and single photon counting is required. Moving the polystyrene bead using optical tweezers, the molecule can be deformed, i.e., bent, turned or stretched. Using a laser microbeam, the same individual molecule can be cut into smaller portions.

  15. Statistical assessment of change point detectors for single molecule kinetic analysis.

    PubMed

    Parsons, Sean P; Huizinga, Jan D

    2013-05-01

    Change point detectors (CPDs) are used to segment recordings of single molecules for the purpose of kinetic analysis. The assessment of the accuracy of CPD algorithms has usually been based on testing them with simulated data. However, there have not been methods to assess the output of CPDs from real data independent of simulation. Here we present one method to do this based on the assumption that the elementary kinetic unit is a stationary period (SP) with a normal distribution of samples, separated from other SPs by change points (CPs). Statistical metrics of normality can then be used to assess SPs detected by a CPD algorithm (detected SPs, DSPs). Two statistics in particular were found to be useful, the z-transformed skew (S(Z)) and z-transformed kurtosis (K(Z)). K(Z)(S(Z)) plots of DSP from noise, simulated data and single ion channel recordings showed that DSPs with false negative CP could be distinguished. Also they showed that filtering had a significant effect on the normality of data and so filtering should be taken into account when calculating statistics. This method should be useful for analyzing single molecule recordings where there is no simple model for the data. PMID:23652811

  16. Placing Single-Molecule T4 Lysozyme Enzymes on a Bacterial Cell Surface: Toward Probing Single-Molecule Enzymatic Reaction in Living Cells

    SciTech Connect

    Hu, Dehong; Lu, H PETER.

    2004-07-01

    TheT4 lysozyme enzymatic hydrolyzation reaction of bacterial cell walls is an important biological process, and single-molecule enzymatic reaction dynamics had been studied under physiological condition using purified E. Coli cell walls as substrates. Here, we report progress toward characterizing the T4 lysozyme enzymatic reaction on a living bacterial cell wall using a combined single-molecule placement and spectroscopy. Placing a dye-labeled single T4 lysozyme molecule on a targeted cell wall by using a hydrodynamic micro-injection approach, we monitored single-molecule rotational motions during binding, attachment to, and dissociation from the cell wall by tracing single-molecule fluorescence intensity time trajectories and polarization. The single-molecule attachment duration of the T4 lysozyme to the cell wall during enzymatic reactions was typically shorter than photobleaching time under physiological conditions.

  17. Observation of vibrational overtones by single-molecule resonant photodissociation

    PubMed Central

    Khanyile, Ncamiso B.; Shu, Gang; Brown, Kenneth R.

    2015-01-01

    Molecular ions can be held in a chain of laser-cooled atomic ions by sympathetic cooling. This system is ideal for performing high-precision molecular spectroscopy with applications in astrochemistry and fundamental physics. Here we show that this same system can be coupled with a broadband laser to discover new molecular transitions. We use three-ion chains of Ca+ and CaH+ to observe vibrational transitions via resonance-enhanced multiphoton dissociation detected by Ca+ fluorescence. On the basis of theoretical calculations, we assign the observed peaks to the transition from the ground vibrational state, ν=0 to ν=9 and 10. Our method allows us to track single-molecular events, and it can be extended to work with any molecule by using normal mode frequency shifts to detect the dissociation. This survey spectroscopy serves as a bridge to the precision spectroscopy required for molecular ion control. PMID:26197787

  18. Observation of vibrational overtones by single-molecule resonant photodissociation

    NASA Astrophysics Data System (ADS)

    Khanyile, Ncamiso B.; Shu, Gang; Brown, Kenneth R.

    2015-07-01

    Molecular ions can be held in a chain of laser-cooled atomic ions by sympathetic cooling. This system is ideal for performing high-precision molecular spectroscopy with applications in astrochemistry and fundamental physics. Here we show that this same system can be coupled with a broadband laser to discover new molecular transitions. We use three-ion chains of Ca+ and CaH+ to observe vibrational transitions via resonance-enhanced multiphoton dissociation detected by Ca+ fluorescence. On the basis of theoretical calculations, we assign the observed peaks to the transition from the ground vibrational state, ν=0 to ν=9 and 10. Our method allows us to track single-molecular events, and it can be extended to work with any molecule by using normal mode frequency shifts to detect the dissociation. This survey spectroscopy serves as a bridge to the precision spectroscopy required for molecular ion control.

  19. Observation of vibrational overtones by single molecule resonant photodissociation

    NASA Astrophysics Data System (ADS)

    Shu, Gang; Khanyile, Ncamiso; Brown, Kenneth

    2016-05-01

    Molecular ions sympathetically cooled by a chain of laser-cooled atomic ions are ideal for performing high-precision molecular spectroscopy with applications in astrochemistry and fundamental physics. The same system can be coupled with a broadband laser to perform survey spectroscopy and discover new molecular transitions. Here we present our results using three-ion chains of Ca+ and CaH+ to observe vibrational transitions via resonance enhanced multiphoton dissociation detected by Ca+ fluorescence. Based on theoretical calculations, the observed peaks are assigned to two vibrational overtones corresponding to transitions from the ground vibrational state, ν = 0, to the excited vibrational states, ν = 9 and ν = 10. Our method allows us to track single molecular events, and it can be extended to handle any molecule by monitoring normal mode frequency shifts to detect the dissociation.

  20. Probing Single Molecules with a Tunable Femtosecond Laser Coupled RF-STM

    NASA Astrophysics Data System (ADS)

    Cao, Weicai

    Scanning Tunneling Microscope (STM) has become a powerful tool in nanoscience for imaging, manipulation and electronic spectroscopy. STM inelastic electron tunneling spectroscopy (IETS) first achieved chemical identification of molecular species by characterizing vibrational energies. Recently, with the STM itProbe and H2 rotational spectromicroscopy, molecular structure and chemical bonds are observed with the STM. Despite these successes in spatial resolution, various efforts have been made to combine fs laser with STM to overcome the temporal resolution limitation of STM, there is so far no clear evidence of simultaneous fs and A resolution. Electronic properties of organic molecules are of central importance to applications such as molecular electronics, organic LEDs, and solar cells. Properties of these molecules can be probed by the scanning tunneling microscope (STM) at the single molecule level and with sub-A spatial resolution. The molecular orbital of 4, 7-Di ([2, 20-bithiophen]-5-yl) benzo[c] [1, 2, 5] thiadiazole (4T-BTD) with intramolecular donor-acceptor-donor sites is probed with the electronic state dI/dV imaging and H2 rotational and vibrational spectromicroscopy. 1, 4-Phenylene Diisocyanide (PDI) is probed by imaging with a CO-terminated tip and H2. PDI can self-assemble on noble metal surfaces to form nanostructures, which could have potential applications in molecular electronics and catalysis. Further combination of a RF-STM with a tunable femtosecond laser enables the investigation of light-molecule interactions. In this dissertation, efforts are spent to setup a new tunable fs laser (220 nm˜1040 nm) to couple with the RF-STM. The effects of the femtosecond laser are followed by detecting photo induced electron emission and photochemistry. A new double lock-in technique is applied to detect the weak laser-induced signal in the tunneling regime. To sharpen the energy width and increase the lifetime of the excited states of molecules, thin

  1. Microfluidic mixing for non-equilibrium single-molecule optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Pfeil, Shawn H.

    We describe a series of experiments made possible by the combination of single-molecule fluorescence spectroscopy and microfluidic mixing. To perform these measurements, a microfluidic sample handling system was developed and characterized. This system allows observation at times as early as 2.4 ms after a reaction is triggered, which is an more than an order of magnitude earlier than previous microfabricated devices. Dilutions as high as 1:19 (v/v) are achieved, allowing measurements of molecular refolding in native conditions. The interconversion of subpopulations, masked by averaging in ensemble measurements, is observed. This technology also facilitates ultra-sensitive chemiluminescence measurements, using only microliters of sample. Microfluidics are designed and fabricated to extend single-molecule measurements to samples out of equilibrium. The system is optimized for sensitive optical detection and experimental convenience. Channels are replica-molded in poly-dimethyl-siloxane (PDMS) elastomer and sealed to coverglass. The resulting devices are compatible with a broad range of chemicals, and exhibit low background fluorescence. The combination of continuous flow, which decouples reaction progress from measurement duration, with low background enables single molecules to be probed at well defined times after a reaction is triggered. Fluid delivery and pressure connections are made using an interface optimized for rapid assembly, rapid sample exchange, and modular device replacement, while providing access for high numerical aperture optics. The kinetics of Csp, the cold shock protein from Thermotoga maritima, are studied with the mixer. An order of magnitude decrease in deadtime puts a new upper limit of 4.6 ms on the time required for collapse after mixing. This result is in agreement with indirect measurements of chain reconfiguration time, which suggest collapse happens on the timescale of 10--100 ns. Measurements of the kinetics of a DNA sequence that

  2. Measuring the spatial distribution of dielectric constants in polymers through quasi-single molecule microscopy.

    PubMed

    Hess, Chelsea M; Riley, Erin A; Palos-Chávez, Jorge; Reid, Philip J

    2013-06-13

    The variation in dielectric constant is measured for thin films of poly(methyl methacrylate) (PMMA) and poly(vinylidene fluoride) (PVDF) using confocal fluorescence microscopy. Spatial variation in the local dielectric constant of the polymer films on the ~250 nm length scale is measured using the solvochromatic emission from incorporated nile red (NR) at "quasi-single molecule" (10(-7) M) and true single molecule (SM) concentrations (10(-9) M). Correlation of the NR fluorescence wavelength maximum with dielectric constant is used to transform images of NR's emission maxima to spatial variation in local dielectric constant. We demonstrate that the distributions of dielectric environments measured in the quasi- and true SM approaches are equivalent; however, the enhanced signal rates present in the quasi-SM approach result in this technique being more efficient. In addition, the quasi-SM technique reports directly on the continuous spatial variation in dielectric constant, information that is difficult to obtain in true SM studies. With regards to the polymers of interest, the results presented here demonstrate that a limited distribution of dielectric environments is present in PMMA; however, a broad distribution of environments exists in PVDF consistent with this polymer existing as a distribution of structural phases. PMID:23735049

  3. Tuning Conductance in π-σ-π Single-Molecule Wires.

    PubMed

    Su, Timothy A; Li, Haixing; Klausen, Rebekka S; Widawsky, Jonathan R; Batra, Arunabh; Steigerwald, Michael L; Venkataraman, Latha; Nuckolls, Colin

    2016-06-22

    While the single-molecule conductance properties of π-conjugated and σ-conjugated systems have been well-studied, little is known regarding the conductance properties of mixed σ-π backbone wires and the factors that control their transport properties. Here we utilize a scanning tunneling microscope-based break-junction technique to study a series of molecular wires with π-σ-π backbone structures, where the π-moiety is an electrode-binding thioanisole ring and the σ-moiety is a triatomic α-β-α chain composed of C, Si, or Ge atoms. We find that the sequence and composition of group 14 atoms in the α-β-α chain dictates whether electronic communication between the aryl rings is enhanced or suppressed. Placing heavy atoms at the α-position decreases conductance, whereas placing them at the β-position increases conductance: for example, the C-Ge-C sequence is over 20 times more conductive than the Ge-C-Ge sequence. Density functional theory calculations reveal that these conductance trends arise from periodic trends (i.e., atomic size, polarizability, and electronegativity) that differ from C to Si to Ge. The periodic trends that control molecular conductance here are the same ones that give rise to the α and β silicon effects from physical organic chemistry. These findings outline a new molecular design concept for tuning conductance in single-molecule electrical devices. PMID:27299173

  4. Tunneling spectroscopy of organic monolayers and single molecules.

    PubMed

    Hipps, K W

    2012-01-01

    Basic concepts in tunneling spectroscopy applied to molecular systems are presented. Junctions of the form M-A-M, M-I-A-M, and M-I-A-I'-M, where A is an active molecular layer, are considered. Inelastic electron tunneling spectroscopy (IETS) is found to be readily applied to all the above device types. It can provide both vibrational and electron spectroscopic data about the molecules comprising the A layer. In IETS there are no strong selection rules (although there are preferences) so that transitions that are normally IR, Raman, or even photon-forbidden can be observed. In the electronic transition domain, spin and Laporte forbidden transitions may be observed. Both vibrational and electronic IETS can be acquired from single molecules. The negative aspect of this seemingly ideal spectroscopic method is the thermal line width of about 5 k(B)T. This limits the useful measurement of vibrational IETS to temperatures below about 10 K. In the case of most electronic transitions where the intrinsic linewidth is much broader, useful experiments above 100 K are possible. One further limitation of electronic IETS is that it is generally limited to transitions with energy less than about 20,000 cm(-1). IETS can be identified by peaks in d(2) I/dV (2) vs bias voltage plots that occur at the same position (but not necessarily same intensity) in either bias polarity.Elastic tunneling spectroscopy is discussed in the context of processes involving molecular ionization and electron affinity states, a technique we call orbital mediated tunneling spectroscopy, or OMTS. OMTS can be applied readily to M-I-A-M and M-I-A-I'-M systems, but application to M-A-M junctions is problematic. Spectra can be obtained from single molecules. Ionization state results correlate well with UPS spectra obtained from the same systems in the same environment. Both ionization and affinity levels measured by OMTS can usually be correlated with one electron oxidation and reduction potentials for the

  5. Quantum yield and excitation rate of single molecules close to metallic nanostructures.

    PubMed

    Holzmeister, Phil; Pibiri, Enrico; Schmied, Jürgen J; Sen, Tapasi; Acuna, Guillermo P; Tinnefeld, Philip

    2014-01-01

    The interaction of dyes and metallic nanostructures strongly affects the fluorescence and can lead to significant fluorescence enhancement at plasmonic hot spots, but also to quenching. Here we present a method to distinguish the individual contributions to the changes of the excitation, radiative and non-radiative rate and use this information to determine the quantum yields for single molecules. The method is validated by precisely placing single fluorescent dyes with respect to gold nanoparticles as well as with respect to the excitation polarization using DNA origami nanostructures. Following validation, measurements in zeromode waveguides reveal that suppression of the radiative rate and enhancement of the non-radiative rate lead to a reduced quantum yield. Because the method exploits the intrinsic blinking of dyes, it can generally be applied to fluorescence measurements in arbitrary nanophotonic environments. PMID:25370834

  6. Quantum yield and excitation rate of single molecules close to metallic nanostructures

    PubMed Central

    Holzmeister, Phil; Pibiri, Enrico; Schmied, Jürgen J.; Sen, Tapasi; Acuna, Guillermo P.; Tinnefeld, Philip

    2014-01-01

    The interaction of dyes and metallic nanostructures strongly affects the fluorescence and can lead to significant fluorescence enhancement at plasmonic hot spots, but also to quenching. Here we present a method to distinguish the individual contributions to the changes of the excitation, radiative and non-radiative rate and use this information to determine the quantum yields for single molecules. The method is validated by precisely placing single fluorescent dyes with respect to gold nanoparticles as well as with respect to the excitation polarization using DNA origami nanostructures. Following validation, measurements in zeromode waveguides reveal that suppression of the radiative rate and enhancement of the non-radiative rate lead to a reduced quantum yield. Because the method exploits the intrinsic blinking of dyes, it can generally be applied to fluorescence measurements in arbitrary nanophotonic environments. PMID:25370834

  7. Protein-protein binding detection with nanoparticle photonic crystal enhanced microscopy (NP-PCEM).

    PubMed

    Zhuo, Yue; Tian, Limei; Chen, Weili; Yu, Hojeong; Singamaneni, Srikanth; Cunningham, Brian T

    2014-01-01

    We demonstrate a novel microscopy-based biosensing approach that utilizes a photonic crystal (PC) surface to detect protein-protein binding with the functionalized nanoparticles as tags. This imaging approach utilizes the measurement of localized shifts in the resonant wavelength and resonant reflection magnitude from the PC biosensor in the presence of individual nanoparticles. Moreover, it substantially increases the sensitivity of the imaging approach through tunable localized surface plasmon resonant frequency of the nanoparticle matching with the resonance of the PC biosensor. Experimental demonstrations of photonic crystal enhanced microscopy (PCEM) imaging with single nanoparticle resolution are supported by Finite-Difference Time-Domain (FDTD) computer simulations. The ability to detect the surface adsorption of individual nanoparticles as tags offers a route to single molecule biosensing with photonic crystal biosensor in the future. PMID:25570391

  8. Single-Molecule Measurements of T4 Lysozyme using Carbon Nanotube Electronic Circuits

    NASA Astrophysics Data System (ADS)

    Sims, Patrick Craig

    Because of their unique electronic and chemical properties, single-walled carbon nanotubes (SWNTs) are attractive candidates for label-free, single-molecule sensing and detection applications. In this work, a field-effect transistor (FET) architecture comprised of an individual SWNT is used to transduce the conformational motion of a single T4 lysozyme protein, conjugated to the SWNT side wall, into a corresponding electrical current signal. The SWNTs are grown using chemical vapor deposition, and metal electrical contacts are formed using electron beam evaporation. Using N-(1-Pyrene)maleimide, the protein is conjugated to the SWNT side wall. After conjugation, the sensing area of the device is submerged in an electrolyte solution, and the source-drain current is measured while applying an electrolyte-gate. Analysis of the signal provided single-molecule resolution of the dynamical activity of lysozyme as it hydrolyzes macromolecular peptidoglycan, a component of bacterial cell walls. This analysis revealed seven different independent time scales that govern the activity of lysozyme, the pH dependence of these time scales, and a lower limit on the number rate-limiting steps in lysozyme's hinge opening and closing motions. Furthermore, the signals elucidated differences in how lysozyme traverses and catalyzes structurally varying peptidoglycan constructs.

  9. Single molecule imaging of conformational dynamics in sodium-coupled transporters

    NASA Astrophysics Data System (ADS)

    Terry, Daniel S.

    Neurotransmitter:sodium symporter (NSS) proteins remove neurotransmitters released into the synapse through a transport process driven by the physiological sodium ion (Na+) gradient. NSSs for dopamine, noradrenaline, and serotonin are targeted by the psychostimulants cocaine and amphetamines, as well as by antidepressants. The crystal structure of LeuT, a prokaryotic NSS homologue, revealed the NSS molecular architecture and has been the basis for extensive structural, biochemical, and computational investigations of the mechanism of transporter proteins with a LeuT-like fold. In this dissertation, the conformational states sampled by LeuT are explored using single-molecule fluorescence resonance energy transfer imaging methods, with special focus on the motions of transmembrane helix 1a that lead to inward release of substrate. We also explored how dynamics are modulated by substrate, Na+, and protons to produce efficient transport. These advances represent a first of a kind study of the dynamics of an integral membrane protein at a truly single-molecule scale. Advances in instrumentation, analysis tools, and organic fluorophores were all required to achieve these goals, and such advances are also described. While these experiments were performed with detergent-solubilized protein, preliminary work suggests that imaging of LeuT in proteoliposomes is feasible and a fluorescence sensor assay could be used to simultaneously detect conformational dynamics and transport function.

  10. Single-Molecule LATE-PCR Analysis of Human Mitochondrial Genomic Sequence Variations

    PubMed Central

    Osborne, Adam; Reis, Arthur H.; Bach, Loren; Wangh, Lawrence J.

    2009-01-01

    It is thought that changes in mitochondrial DNA are associated with many degenerative diseases, including Alzheimer's and diabetes. Much of the evidence, however, depends on correlating disease states with changing levels of heteroplasmy within populations of mitochondrial genomes, rather than individual mitochondrial genomes. Thus these measurements are likely to either overestimate the extent of heteroplasmy due to technical artifacts, or underestimate the actual level of heteroplasmy because only the most abundant changes are observable. In contrast, Single Molecule (SM) LATE-PCR analysis achieves efficient amplification of single-stranded amplicons from single target molecules. The product molecules, in turn, can be accurately sequenced using a convenient Dilute-‘N’-Go protocol, as shown here. Using these novel technologies we have rigorously analyzed levels of mitochondrial genome heteroplasmy found in single hair shafts of healthy adult individuals. Two of the single molecule sequences (7% of the samples) were found to contain mutations. Most of the mtDNA sequence changes, however, were due to the presence of laboratory contaminants. Amplification and sequencing errors did not result in mis-identification of mutations. We conclude that SM-LATE-PCR in combination with Dilute-‘N’-Go Sequencing are convenient technologies for detecting infrequent mutations in mitochondrial genomes, provided great care is taken to control and document contamination. We plan to use these technologies in the future to look for age, drug, and disease related mitochondrial genome changes in model systems and clinical samples. PMID:19461959

  11. Single molecule quantitation and sequencing of rare translocations using microfluidic nested digital PCR.

    PubMed

    Shuga, Joe; Zeng, Yong; Novak, Richard; Lan, Qing; Tang, Xiaojiang; Rothman, Nathaniel; Vermeulen, Roel; Li, Laiyu; Hubbard, Alan; Zhang, Luoping; Mathies, Richard A; Smith, Martyn T

    2013-09-01

    Cancers are heterogeneous and genetically unstable. New methods are needed that provide the sensitivity and specificity to query single cells at the genetic loci that drive cancer progression, thereby enabling researchers to study the progression of individual tumors. Here, we report the development and application of a bead-based hemi-nested microfluidic droplet digital PCR (dPCR) technology to achieve 'quantitative' measurement and single-molecule sequencing of somatically acquired carcinogenic translocations at extremely low levels (<10(-6)) in healthy subjects. We use this technique in our healthy study population to determine the overall concentration of the t(14;18) translocation, which is strongly associated with follicular lymphoma. The nested dPCR approach improves the detection limit to 1×10(-7) or lower while maintaining the analysis efficiency and specificity. Further, the bead-based dPCR enabled us to isolate and quantify the relative amounts of the various clonal forms of t(14;18) translocation in these subjects, and the single-molecule sensitivity and resolution of dPCR led to the discovery of new clonal forms of t(14;18) that were otherwise masked by the conventional quantitative PCR measurements. In this manner, we created a quantitative map for this carcinogenic mutation in this healthy population and identified the positions on chromosomes 14 and 18 where the vast majority of these t(14;18) events occur. PMID:23873959

  12. Single molecule quantitation and sequencing of rare translocations using microfluidic nested digital PCR

    PubMed Central

    Shuga, Joe; Zeng, Yong; Novak, Richard; Lan, Qing; Tang, Xiaojiang; Rothman, Nathaniel; Vermeulen, Roel; Li, Laiyu; Hubbard, Alan; Zhang, Luoping; Mathies, Richard A.; Smith, Martyn T.

    2013-01-01

    Cancers are heterogeneous and genetically unstable. New methods are needed that provide the sensitivity and specificity to query single cells at the genetic loci that drive cancer progression, thereby enabling researchers to study the progression of individual tumors. Here, we report the development and application of a bead-based hemi-nested microfluidic droplet digital PCR (dPCR) technology to achieve ‘quantitative’ measurement and single-molecule sequencing of somatically acquired carcinogenic translocations at extremely low levels (<10−6) in healthy subjects. We use this technique in our healthy study population to determine the overall concentration of the t(14;18) translocation, which is strongly associated with follicular lymphoma. The nested dPCR approach improves the detection limit to 1 × 10−7 or lower while maintaining the analysis efficiency and specificity. Further, the bead-based dPCR enabled us to isolate and quantify the relative amounts of the various clonal forms of t(14;18) translocation in these subjects, and the single-molecule sensitivity and resolution of dPCR led to the discovery of new clonal forms of t(14;18) that were otherwise masked by the conventional quantitative PCR measurements. In this manner, we created a quantitative map for this carcinogenic mutation in this healthy population and identified the positions on chromosomes 14 and 18 where the vast majority of these t(14;18) events occur. PMID:23873959

  13. Fluorescence lifetime imaging system with nm-resolution and single-molecule sensitivity

    NASA Astrophysics Data System (ADS)

    Wahl, Michael; Rahn, Hans-Juergen; Ortmann, Uwe; Erdmann, Rainer; Boehmer, Martin; Enderlein, Joerg

    2002-03-01

    Fluorescence lifetime measurement of organic fluorophores is a powerful tool for distinguishing molecules of interest from background or other species. This is of interest in sensitive analysis and Single Molecule Detection (SMD). A demand in many applications is to provide 2-D imaging together with lifetime information. The method of choice is then Time-Correlated Single Photon Counting (TCSPC). We have devloped a compact system on a single PC board that can perform TCSPC at high throughput, while synchronously driving a piezo scanner holding the immobilized sample. The system allows count rates up to 3 MHz and a resolution down to 30 ps. An overall Instrument Response Function down to 300ps is achieved with inexpensive detectors and diode lasers. The board is designed for the PCI bus, permitting high throughput without loss of counts. It is reconfigurable to operate in different modes. The Time-Tagged Time-Resolved (TTTR) mode permits the recording of all photon events with a real-time tag allowing data analysis with unlimited flexibility. We use the Time-Tag clock for an external piezo scanner that moves the sample. As the clock source is common for scanning and tagging, the individual photons can be matched to pixels. Demonstrating the capablities of the system we studied single molecule solutions. Lifetime imaging can be performed at high resolution with as few as 100 photons per pixel.

  14. Slowing down single-molecule trafficking through a protein nanopore reveals intermediates for peptide translocation

    NASA Astrophysics Data System (ADS)

    Mereuta, Loredana; Roy, Mahua; Asandei, Alina; Lee, Jong Kook; Park, Yoonkyung; Andricioaei, Ioan; Luchian, Tudor

    2014-01-01

    The microscopic details of how peptides translocate one at a time through nanopores are crucial determinants for transport through membrane pores and important in developing nano-technologies. To date, the translocation process has been too fast relative to the resolution of the single molecule techniques that sought to detect its milestones. Using pH-tuned single-molecule electrophysiology and molecular dynamics simulations, we demonstrate how peptide passage through the α-hemolysin protein can be sufficiently slowed down to observe intermediate single-peptide sub-states associated to distinct structural milestones along the pore, and how to control residence time, direction and the sequence of spatio-temporal state-to-state dynamics of a single peptide. Molecular dynamics simulations of peptide translocation reveal the time- dependent ordering of intermediate structures of the translocating peptide inside the pore at atomic resolution. Calculations of the expected current ratios of the different pore-blocking microstates and their time sequencing are in accord with the recorded current traces.

  15. Investigation of saturation and photobleaching of allophycocyanin by single-molecule recrossing events.

    PubMed

    Tian, Yu; Pappas, Dimitri

    2010-03-01

    Phycobiliprotein fluorescent labels are playing an increasingly important role in bioanalysis. They are also being used more and more frequently as light-harvesting materials for energy research. It is therefore critical to study the working conditions of these fluorescent dyes. Allophycocyanin (APC) belongs to a group of phycobiliproteins and features red excitation and emission, making it both a useful fluorophore and light-harvesting material. Saturation irradiance and photobleaching of APC were studied by single-molecule detection in this work. The mean fluorescence intensity at different laser powers was calculated from extracted single-molecule fluorescence peaks. By interpolating the figure of the mean fluorescence intensity as a function of excitation power, the experimental saturation irradiance can be extracted. By comparing the experimental with the calculated saturation irradiance, it can be demonstrated that the triplet state for APC was formed at higher excitation irradiance. The technique of molecular recrossing events was applied to investigate the photobleaching of APC. Normalized recrossing events confirmed that photobleaching occurred at high excitation power. This work provided the optimizing experimental conditions for APC both as a fluorophore and as a light-harvesting molecule. PMID:20223069

  16. Single-molecule super-resolution microscopy reveals how light couples to a plasmonic nanoantenna on the nanometer scale.

    PubMed

    Wertz, Esther; Isaacoff, Benjamin P; Flynn, Jessica D; Biteen, Julie S

    2015-04-01

    The greatly enhanced fields near metal nanoparticles have demonstrated remarkable optical properties and are promising for applications from solar energy to biosensing. However, direct experimental study of these light-matter interactions at the nanoscale has remained difficult due to the limitations of optical microscopy. Here, we use single-molecule fluorescence imaging to probe how a plasmonic nanoantenna modifies the fluorescence emission from a dipole emitter. We show that the apparent fluorophore emission position is strongly shifted upon coupling to an antenna and that the emission of dyes located up to 90 nm away is affected by this coupling. To predict this long-ranged effect, we present a framework based on a distance-dependent partial coupling of the dye emission to the antenna. Our direct interpretation of these light-matter interactions will enable more predictably optimized, designed, and controlled plasmonic devices and will permit reliable plasmon-enhanced single-molecule nanoscopy. PMID:25799002

  17. Single-Molecule Manipulation Studies of a Mechanically Activated Protein

    NASA Astrophysics Data System (ADS)

    Botello, Eric; Harris, Nolan; Choi, Huiwan; Bergeron, Angela; Dong, Jing-Fei; Kiang, Ching-Hwa

    2009-10-01

    Plasma von Willebrand factor (pVWF) is the largest multimeric adhesion ligand found in human blood and must be adhesively activated by exposure to shear stress, like at sites of vascular injury, to initiate blood clotting. Sheared pVWF (sVWF) will undergo a conformational change from a loose tangled coil to elongated strings forming adhesive fibers by binding with other sVWF. VWF's adhesion activity is also related to its length, with the ultra-large form of VWF (ULVWF) being hyper-actively adhesive without exposure to shear stress; it has also been shown to spontaneously form fibers. We used single molecule manipulation techniques with the AFM to stretch pVWF, sVWF and ULVWF and monitor the forces as a function of molecular extension. We showed a similar increase in resistance to unfolding for sVWF and ULVWF when compared to pVWF. This mechanical resistance to forced unfolding is reduced when other molecules known to disrupt their fibril formation are present. Our results show that sVWF and ULVWF domains unfold at higher forces than pVWF, which is consistent with the hypothesis that shear stress induces lateral association that alters adhesion activity of pVWF.

  18. Quantitative structural information from single-molecule FRET.

    PubMed

    Beckers, M; Drechsler, F; Eilert, T; Nagy, J; Michaelis, J

    2015-01-01

    Single-molecule studies can be used to study biological processes directly and in real-time. In particular, the fluorescence energy transfer between reporter dye molecules attached to specific sites on macromolecular complexes can be used to infer distance information. When several measurements are combined, the information can be used to determine the position and conformation of certain domains with respect to the complex. However, data analysis schemes that include all experimental uncertainties are highly complex, and the outcome depends on assumptions about the state of the dye molecules. Here, we present a new analysis algorithm using Bayesian parameter estimation based on Markov Chain Monte Carlo sampling and parallel tempering termed Fast-NPS that can analyse large smFRET networks in a relatively short time and yields the position of the dye molecules together with their respective uncertainties. Moreover, we show what effects different assumptions about the dye molecules have on the outcome. We discuss the possibilities and pitfalls in structure determination based on smFRET using experimental data for an archaeal transcription pre-initiation complex, whose architecture has recently been unravelled by smFRET measurements. PMID:26407323

  19. Gold plasmonic effects on charge transport through single molecule junctions

    NASA Astrophysics Data System (ADS)

    Adak, Olgun; Venkataraman, Latha

    2014-03-01

    We study the impact of surface plasmon polaritons, the coupling of electromagnetic waves to collective electron oscillations on metal surfaces, on the conductance of single-molecule junctions. We use a scanning-tunneling microscope based break junction setup that is built into an optical microscope to form molecular junctions. Coherent 685nm light is used to illuminate the molecular junctions formed with 4,4'-bipyridine with diffraction limited focusing performance. We employ a lock-in type technique to measure currents induced by light. Furthermore, the thermal expansion due to laser heating is mimicked by mechanically modulating inter-electrode separation. For each junction studied, we measure current, and use AC techniques to determine molecular junction resonance levels and coupling strengths. We use a cross correlations analysis technique to analyze and compare the effect of light to that of the mechanical modulation. Our results show that junction transmission characteristics are not altered under illumination, within the resolution of our instrument. We argue that photo-currents measured with lock-in techniques in these kinds of structures are due to thermal effects. This work was funded by the Center for Re-Defining Photovoltaic Efficiency through Molecule Scale Control, an EFRC funded by the US Department of Energy, Office of Basic Energy Sciences under Contract No. DESC0001085.

  20. A single-molecule view of gene regulation in cancer

    NASA Astrophysics Data System (ADS)

    Larson, Daniel

    2013-03-01

    Single-cell analysis has revealed that transcription is dynamic and stochastic, but tools are lacking that can determine the mechanism operating at a single gene. Here we utilize single-molecule observations of RNA in fixed and living cells to develop a single-cell model of steroid-receptor mediated gene activation. Steroid receptors coordinate a diverse range of responses in higher eukaryotes and are involved in a wide range of human diseases, including cancer. Steroid receptor response elements are present throughout the human genome and modulate chromatin remodeling and transcription in both a local and long-range fashion. As such, steroid receptor-mediated transcription is a paradigm of genetic control in the metazoan nucleus. Moreover, the ligand-dependent nature of these transcription factors makes them appealing targets for therapeutic intervention, necessitating a quantitative understanding of how receptors control output from target genes. We determine that steroids drive mRNA synthesis by frequency modulation of transcription. This digital behavior in single cells gives rise to the well-known analog dose response across the population. To test this model, we developed a light-activation technology to turn on a single gene and follow dynamic synthesis of RNA from the activated locus. The response delay is a measure of time required for chromatin remodeling at a single gene.