Science.gov

Sample records for enhanced wellbore stabilization

  1. Wellbore stability analysis during the production of a carbonate reservoir

    NASA Astrophysics Data System (ADS)

    Alves, J.-L.; Coehlo, L.; Baud, P.; Guevara Junior, N.

    2009-04-01

    Carbonate reservoirs represent a major part of the world oil and gas reserves. During production, the extraction of hydrocarbons reduces pore pressure and thus causes an increase in the effective stress and mechanical compaction in the reservoir. The compactive deformation and failure may be spatially extensive or localized to the vicinity of the wellbore, but in either case the consequences can be economically severe involving surface subsidence, well failure and various production problems. The analysis of wellbore stability and more generally of deformation and failure in carbonate environments hinges upon a relevant constitutive modeling of carbonate rocks over a wide range of porosities. In this study, we performed a wellbore stability analysis for a lateral wellbore junction in three dimensions. The complex geometry for the wellbore junction was modeled with tetrahedral finite elements considering a rate independent elastic-plastic isotropic material that presented linear behavior during elastic strain and associated flow rule. A finite element model simulating drilling and production phases were done for field conditions from a deep water reservoir in Campos basin, offshore Brazil. In this context, several scenarios were studied considering true 3D orientation for both in situ stresses and geometry of the wellbore junction itself. We discussed the impact of constitutive modeling on the wellbore stability, based on new experimental data on two micritic porous carbonates. Series of conventional triaxial experiments were performed at room temperature in dry and wet conditions on samples of Comiso and Tavel limestones of respective porosity 17 and 16%. The wet samples were deformed in drained conditions with 10 MPa pore pressure. The initial yield stresses were identified as the critical stresses at the onset of shear-enhanced compaction, subsequent yield stresses were considered to depend on hardening given by the plastic volumetric strain. For both limestones

  2. Wellbore stability analysis in carbonate reservoir considering anisotropic behaviour

    NASA Astrophysics Data System (ADS)

    Alves, José; Guevara, Nestor; Coelho, Lucia; Baud, Patrick

    2010-05-01

    Carbonate reservoirs represent a major part of the world oil and gas reserves. In particular, recent discoveries in the pre-salt offshore Brazil place big challenges to exploration and production under high temperatures and pressures (HTHP). During production, the extraction of hydrocarbons reduces pore pressure and thus causes an increase in the effective stress and mechanical compaction in the reservoir. The compactive deformation and failure may be spatially extensive or localized to the vicinity of the wellbore, but in either case the consequences can be economically severe involving surface subsidence, well failure and various production problems. The analysis of wellbore stability and more generally of deformation and failure in carbonate environments hinges upon a relevant constitutive modeling of carbonate rocks over a wide range of porosities, in particular, observed microstructure of samples suggests anisotropic behaviour. In this study, we performed a wellbore stability analysis for a lateral wellbore junction in three dimensions. The complex geometry for the wellbore junction was modeled with tetrahedral finite elements considering a rate independent elastic-plastic isotropic material that presented linear behavior during elastic strain and associated flow rule. A finite element model simulating drilling and production phases were done for field conditions from a deep water reservoir in Campos basin, offshore Brazil. In this context, several scenarios were studied considering true 3D orientation for both in situ stresses and geometry of the wellbore junction itself. We discussed the impact of constitutive modeling, considering anisotropic ductile damage and pressure sensitiveness on the wellbore stability. Parameter values for the analysis were based based on experimental data on two micritic porous carbonates. Series of conventional triaxial experiments were performed at room temperature in dry and wet conditions on samples of Comiso and Tavel

  3. Wellbore stability in shale gas reservoirs, a case study of the Barnett Shale (USA).

    NASA Astrophysics Data System (ADS)

    Ouadfeul, Sid-Ali; Aliouane, Leila

    2015-04-01

    Wellbore stability in shale gas reservoirs is one of the major problems during the drilling phase; bad stability can induce the breakouts and drilling induced fractures. Wellbore stability requires the good knowledge of horizontal maximum and minimum stress, the overburden stress and the pore pressure. In this paper, we show a case study of the wellbore stability and how to estimate the mud weight in shale gas reservoir of the Barnett shale formation before drilling. The overburden stress is calculated from the seismic inversion, the minimum stress is calculated using the poro-elastic model, and however the pore pressure is calculated using the Eaton's model. Keywords: Wellbore stability, shale gas, maximum stress, minimum stress, overburden, mud weight, pore pressure.

  4. Wellbore stability in oil and gas drilling with chemical-mechanical coupling.

    PubMed

    Yan, Chuanliang; Deng, Jingen; Yu, Baohua

    2013-01-01

    Wellbore instability in oil and gas drilling is resulted from both mechanical and chemical factors. Hydration is produced in shale formation owing to the influence of the chemical property of drilling fluid. A new experimental method to measure diffusion coefficient of shale hydration is given, and the calculation method of experimental results is introduced. The diffusion coefficient of shale hydration is measured with the downhole temperature and pressure condition, then the penetration migrate law of drilling fluid filtrate around the wellbore is calculated. Furthermore, the changing rules of shale mechanical properties affected by hydration and water absorption are studied through experiments. The relationships between shale mechanical parameters and the water content are established. The wellbore stability model chemical-mechanical coupling is obtained based on the experimental results. Under the action of drilling fluid, hydration makes the shale formation softened and produced the swelling strain after drilling. This will lead to the collapse pressure increases after drilling. The study results provide a reference for studying hydration collapse period of shale. PMID:23935430

  5. Wellbore Stability in Oil and Gas Drilling with Chemical-Mechanical Coupling

    PubMed Central

    Deng, Jingen

    2013-01-01

    Wellbore instability in oil and gas drilling is resulted from both mechanical and chemical factors. Hydration is produced in shale formation owing to the influence of the chemical property of drilling fluid. A new experimental method to measure diffusion coefficient of shale hydration is given, and the calculation method of experimental results is introduced. The diffusion coefficient of shale hydration is measured with the downhole temperature and pressure condition, then the penetration migrate law of drilling fluid filtrate around the wellbore is calculated. Furthermore, the changing rules of shale mechanical properties affected by hydration and water absorption are studied through experiments. The relationships between shale mechanical parameters and the water content are established. The wellbore stability model chemical-mechanical coupling is obtained based on the experimental results. Under the action of drilling fluid, hydration makes the shale formation softened and produced the swelling strain after drilling. This will lead to the collapse pressure increases after drilling. The study results provide a reference for studying hydration collapse period of shale. PMID:23935430

  6. Wellbore fluid

    SciTech Connect

    Swanson, B.L.

    1984-06-19

    The water loss properties of well completion and well workover fluids are improved by the addition of an effective amount of at least one adjuvant selected from (1) sodium carbonate with either sodium bicarbonate or an organic polycarboxylic acid or polycarboxylic acid anhydride or (2) sodium bicarbonate alone. In another embodiment, the adjuvants are added to stabilize water loss control agents in wellbore fluids, especially at elevated temperatures.

  7. Application of in situ stress estimation methods in wellbore stability analysis under isotropic and anisotropic conditions

    NASA Astrophysics Data System (ADS)

    Gholami, Raoof; Rasouli, Vamegh; Aadnoy, Bernt; Mohammadi, Ramin

    2015-08-01

    Estimation of in situ stresses is a key step in many petroleum engineering applications, ranging from wellbore stability to sanding analysis and hydraulic fracturing design. Direct techniques conventionally used to determine in situ stresses are indeed very time consuming and expensive. These measurements would also be restricted as to the depth of acquisition, and generalization of the results to entire rock masses may not yield representative results. In this paper, applications of three indirect methods-Zoback’s polygon, shear moduli, and poroelastic-are studied to assess their applicability in providing reliable stress estimation under isotropic and anisotropic conditions. Determination of elastic, strength, and in situ stress parameters according to the assumption of each method for one of the vertical wells drilled in south Iran indicated that the shear moduli method is an appropriate approach for prediction of maximum horizontal stress within an interval where sufficient field data including leak-off tests are acquired. However, the poroelastic method seems to be a better method in prediction of in situ stresses under anisotropic conditions. This might be due to the presence of excessive shale formations in subsurface layers, causing structural or intrinsic anisotropy-based methods such as poroelastic equations to deliver more accurate results. However, making general conclusions based on studying a single vertical wellbore may not be sufficient, and therefore further studies are required.

  8. Optimization of Integrated Reservoir, Wellbore, and Power Plant Models for Enhanced Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Peluchette, Jason

    Geothermal energy has the potential to become a substantially greater contributor to the U.S. energy market. An adequate investment in Enhanced Geothermal Systems (EGS) technology will be necessary in order to realize the potential of geothermal energy. This study presents an optimization of a waterbased Enhanced Geothermal System (EGS) modeled for AltaRock Energy's Newberry EGS Demonstration location. The optimization successfully integrates all three components of the geothermal system: (1) the present wellbore design, (2) the reservoir design, and (3) the surface plant design. Since the Newberry EGS Demonstration will use an existing well (NWG 55-29), there is no optimization of the wellbore design, and the aim of the study for this component is to replicate the present wellbore conditions and design. An in-house wellbore model is used to accurately reflect the temperature and pressure changes that occur in the wellbore fluid and the surrounding casing, cement, and earth during injection and production. For the reservoir design, the existing conditions, such as temperature and pressure at depth and rock density, are incorporated into the model, and several design variables are investigated. The engineered reservoir is modeled using the reservoir simulator TOUGH2 while using the graphical interface PetraSim for visualization. Several fracture networks are investigated with the goal of determining which fracture network yields the greatest electrical output when optimized jointly with the surface plant. A topological optimization of the surface is completed to determine what type of power plant is best suited for this location, and a parametric optimization of the surface plant is completed to determine the optimal operating conditions. The conditions present at the Newberry, Oregon EGS project site are the basis for this optimization. The subsurface conditions are favorable for the production of electricity from geothermal energy with rock temperatures exceeding

  9. Implementation of Bounding Surface Model into ABAQUS and Its Application to Wellbore Stability Analysis

    NASA Astrophysics Data System (ADS)

    Chen, S.; Al-Muntasheri, G.; Abousleiman, Y. N.

    2014-12-01

    The critical state concept based bounding surface model is one of the most widely used elastoplastic constitutive models for geomaterials, attributed mainly to its essential feature of allowing plastic deformation to occur for stress points within the bounding surface and thus the capability to represent the realistic non-recoverable behaviour of soils and rocks observed under the cyclic loading. This paper develops an implicit integration algorithm for the bounding surface model, using the standard return mapping approach (elastic predictor-plastic corrector), to obtain the updated stresses for the given strain increments. The formulation of the constitutive integration requires the derivation of a supplementary differential equation to describe the evolution of a key variable, i.e., the ratio between the image stress and the current stress quantities. It is essentially an extension of the integration scheme presented in an earlier work used for the simple bounding surface version of modified Cam Clay associated with a substantially simplified hardening rule. The integration algorithm for the bounding surface model is implemented into the finite element analysis commercial program, ABAQUS, through the material interface of UMAT (user defined material subroutine), and then used for the analysis of wellbore stability problem. The predictions from the ABAQUS simulations are generally in excellent agreement with the available analytical solutions, thus demonstrating the accuracy and robustness of the proposed integration scheme.

  10. Laboratory measurements of seismic velocity anisotropy of salt diapirs: Implications for wellbore stability and seismic processing

    NASA Astrophysics Data System (ADS)

    Vargas-Meleza, Liliana; Healy, David

    2013-04-01

    A set of ten evaporite samples collected from outcrops in a single diapiric province in Cape Breton Island (Canada) have been tested for seismic velocity anisotropy using three methods: 1) conventional ultrasonic pulse transmission method, where velocities are found from the travel times and the known dimensions of the samples. In order to obtain the entire suite of elastic constants, both P- and S-wave velocity measurements were taken in three different directions of cuboid rock samples. Velocities have been measured under dry, ambient conditions of temperature and pressure in halite-, gypsum- and anhydrite-dominated samples; 2) optical microscopy and scanning electron microscopy on thin sections to define the spatial distribution of minerals, their crystallographic preferred orientations (CPO); and 3) a numerical 'rock-recipe' approach based on Tatham et al. (2008) to calculate seismic velocity anisotropy using arbitrary composites of evaporite minerals and different CPOs. These three methods are then compared to understand the controlling factors of the anisotropic elastic properties. The elasticity data are used to guide geomechanical modeling for wellbore stability and to provide insights for the seismic data processing and seismic imaging of salt diapirs. Reference Tatham, D.J., Lloyd, G.E., Butler, R.W.H. and Casey, M, 2008, Amphibole and lower crustal seismic properties: Earth and Planetary Science Letters, 267, 118-128.

  11. Wellbore stability analysis and its application in the Fergana basin, central Asia

    NASA Astrophysics Data System (ADS)

    Chuanliang, Yan; Jingen, Deng; Baohua, Yu; Hailong, Liu; Fucheng, Deng; Zijian, Chen; Lianbo, Hu; Haiyan, Zhu; Qin, Han

    2014-02-01

    Wellbore instability is one of the major problems hampering the drilling speed in the Fergana basin. Comprehensive analysis of the geological and engineering data in this area indicates that the Fergana basin is characterized by high in situ stress and plenty of natural fractures, especially in the formations which are rich in bedding structure and have several high-pressure systems. Complex accidents such as wellbore collapse, sticking, well kick and lost circulation happen frequently. Tests and theoretical analysis reveals that the wellbore instability in the Fergana basin was influenced by multiple interactive mechanisms dominated by the instability of the bedding shale. Selecting a proper drilling fluid density and improving the sealing characteristic of the applied drilling fluid is the key to preventing wellbore instability in the Fergana basin. The mechanical mechanism of wellbore instability in the Fergana basin was analysed and a method to determine the proper drilling fluid density was proposed. The research results were successfully used to guide the drilling work of the Jida-4 well; compared with the Jida-3 well, the drilling cycle of the Jida-4 well was reduced by 32%.

  12. Wellbore pressure transducer

    DOEpatents

    Shuck, Lowell Z.

    1979-01-01

    Subterranean earth formations containing energy values are subjected to hydraulic fracturing procedures to enhance the recovery of the energy values. These fractures are induced in the earth formation by pumping liquid into the wellbore penetrating the earth formation until the pressure of the liquid is sufficient to fracture the earth formation adjacent to the wellbore. The present invention is directed to a transducer which is positionable within the wellbore to generate a signal indicative of the fracture initiation useful for providing a timing signal to equipment for seismic mapping of the fracture as it occurs and for providing a measurement of the pressure at which the fracture is initiated.

  13. Weatherford Inclined Wellbore Construction

    SciTech Connect

    Schulte, R.

    2002-08-19

    The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed construction of an inclined wellbore with seven (7) inch, twenty-three (23) pound casing at a total depth of 1296 feet. The inclined wellbore is near vertical to 180 feet with a build angle of approximately 4.5 degrees per hundred feet thereafter. The inclined wellbore was utilized for further proprietary testing after construction and validation. The wellbore is available to other companies requiring a cased hole environment with known deviation out to fifty degrees (50) from vertical. The wellbore may also be used by RMOTC for further deepening into the fractured shales of the Steele and Niobrara formation.

  14. Wellbore simulation - case studies

    SciTech Connect

    Freeston, Derek; Gunn, Calum

    1993-01-28

    The use of a wellbore simulator, WELLSIM, to characterise the effects of multi-feed inflow on wellbore pressure-temperature characteristics, and diameter changes to a well on the deliverability curve, is discussed. Matching analyses are performed with the simulator on a well which has a number of two-phase and liquid infeeds, and it is demonstrated that good matches to both pressure and temperature profiles can be achieved. The significance of the reservoir/feed response curve for a steam well is illustrated, and the optimisation of wellbore diameter is shown to be related to whether the discharge is wellbore or reservoir controlled.

  15. Wellbore Integrity Network

    SciTech Connect

    Carey, James W.; Bachu, Stefan

    2012-06-21

    In this presentation, we review the current state of knowledge on wellbore integrity as developed in the IEA Greenhouse Gas Programme's Wellbore Integrity Network. Wells are one of the primary risks to the successful implementation of CO{sub 2} storage programs. Experimental studies show that wellbore materials react with CO{sub 2} (carbonation of cement and corrosion of steel) but the impact on zonal isolation is unclear. Field studies of wells in CO{sub 2}-bearing fields show that CO{sub 2} does migrate external to casing. However, rates and amounts of CO{sub 2} have not been quantified. At the decade time scale, wellbore integrity is driven by construction quality and geomechanical processes. Over longer time-scales (> 100 years), chemical processes (cement degradation and corrosion) become more important, but competing geomechanical processes may preserve wellbore integrity.

  16. Enhanced Wellbore Stabilization and Reservoir Productivity with Aphron Drilling Fluid Technology

    SciTech Connect

    Arkadiy Belkin; Fred Growcock

    2004-07-31

    The rate and amplitude of pressure transmission of various drilling fluids--particularly aphron drilling fluids--are measured in a long conduit and in sand packs to determine how pressure transmissibility can affect fluid invasion.

  17. Enhanced Wellbore Stabilization and Reservoir Productivity with Aphron Drilling Fluid Technology

    SciTech Connect

    Maribella Irving; Fred Growcock

    2004-11-30

    A method is developed to monitor the rate of loss of air from aphrons at elevated pressures. This technique is used to study the effects of pressure, fluid composition and rates of pressurization and depressurization on the kinetics of air loss from aphrons in APHRON ICS{trademark} drilling fluids.

  18. Enhanced Wellbore Stabilization and Reservoir Productivity with Aphron Drilling Fluid Technology

    SciTech Connect

    Fred Growcock

    2004-03-31

    During this second Quarter of the Project, the first four tasks of Phase I--all focusing on the behavior of aphrons--were continued: (a) Aphron Visualization--evaluate and utilize various methods of monitoring and measuring aphron size distribution at elevated pressure; (b) Fluid Density--investigate the effects of pressure, temperature and chemical composition on the survivability of aphrons; (c) Aphron Air Diffusivity--determine the rate of loss of air from aphrons during pressurization; and (d) Pressure Transmissibility--determine whether aphron bridges created in fractures and pore throats reduce fracture propagation. The project team expanded the laboratory facilities and purchased a high-pressure system to measure bubble size distribution, a dissolved oxygen (DO) probe and computers for data acquisition. Although MASI Technologies LLC is not explicitly ISO-certified, all procedures are being documented in a manner commensurate with ISO 9001 certification, including equipment inventory and calibration, data gathering and reporting, chemical inventory and supplier data base, waste management procedures and emergency response plan. Several opportunities presented themselves to share the latest aphron drilling fluid technology with potential clients, including presentation of papers and working exhibit booths at the IADC/SPE Drilling Conference and the SPE Coiled Tubing Conference & Exhibition. In addition, a brief trip to the Formation Damage Symposium resulted in contacts for possible collaboration with ActiSystems, the University of Alberta and TUDRP/ACTS at the University of Tulsa. Preliminary results indicate that the Aphron Visualization and Pressure Transmissibility tasks should be completed on time. Although the Aphron Air Diffusivity task has been impeded by the lack of a suitable DO probe, it is hoped to be completed on time, too. The Fluid Density task, on the other hand, has had significant delays caused by faulty equipment and will likely require an additional month of work. Meanwhile, an assessment of potential methodologies for the Aphron Hydrophobicity project has been initiated and is now focused on measuring wettability of the aphron surface rather than interfacial tension.

  19. Enhanced Wellbore Stabilization and Reservoir Productivity with Aphron Drilling Fluid Technology

    SciTech Connect

    Fred Growcock

    2003-12-31

    During this first Quarter of the Project, a team of five individuals was formed to characterize aphron drilling fluids, with the ultimate objectives to gain acceptance for this novel technology and decrease the costs of drilling mature and multiple-pressure formations in oil and gas wells. Aphron drilling fluids are very high low-shear-rate viscosity fluids laden with specially designed microbubbles, or ''aphrons.'' The focus of the Project is to develop some understanding of the aphron structure and how aphrons and base fluid behave under downhole conditions. Four tasks were begun during this Quarter. All of these focus on the behavior of aphrons: (a) Aphron Visualization - to evaluate various methods of measuring bubble size distribution, especially Acoustic Bubble Spectroscopy (ABS), in aphron drilling fluids at elevated pressure; (b) Fluid Density - to investigate the effects of pressure, temperature and chemical composition on the survivability of aphrons; (c) Aphron Air Diffusivity - to determine the rate of loss of air from aphrons during pressurization; and (d) Pressure Transmissibility - to determine whether aphron networks (similar to foams) in fractures and pore networks reduce fracture propagation. The project team installed laboratory facilities and purchased most of the equipment required to carry out the tasks described above. Then work areas were combined to permit centralized data acquisition and communication with internal and external file servers, and electronic and hard copy filing systems were set up to be compatible with ISO 9001 guidelines. Initial feasibility tests for all four tasks were conducted, which led to some modification of the experimental designs so as to enable measurements with the required accuracy and precision. Preliminary results indicate that the Aphron Visualization, Aphron Air Diffusivity and Pressure Transmissibility tasks should be completed on time. The Fluid Density task, on the other hand, has some fundamental problems that may preclude realization of its objectives; alternative experimental approaches and methods of analysis will be explored during the next Quarter.

  20. Advanced Wellbore Thermal Simulator

    Energy Science and Technology Software Center (ESTSC)

    1992-03-04

    GEOTEMP2, which is based on the earlier GEOTEMP program, is a wellbore thermal simulator designed for geothermal well drilling and production applications. The code treats natural and forced convection and conduction within the wellbore and heat conduction within the surrounding rock matrix. A variety of well operations can be modeled including injection, production, forward and reverse circulation with gas or liquid, gas or liquid drilling, and two-phase steam injection and production. Well completion with severalmore » different casing sizes and cement intervals can be modeled. The code allows variables, such as flow rate, to change with time enabling a realistic treatment of well operations. Provision is made in the flow equations to allow the flow areas of the tubing to vary with depth in the wellbore. Multiple liquids can exist in GEOTEMP2 simulations. Liquid interfaces are tracked through the tubing and annulus as one liquid displaces another. GEOTEMP2, however, does not attempt to simulate displacement of liquids with a gas or two-phase steam or vice versa. This means that it is not possible to simulate an operation where the type of drilling fluid changes, e.g. mud going to air. GEOTEMP2 was designed primarily for use in predicting the behavior of geothermal wells, but it is flexible enough to handle many typical drilling, production, and injection problems in the oil industry as well. However, GEOTEMP2 does not allow the modeling of gas-filled annuli in production or injection problems. In gas or mist drilling, no radiation losses are included in the energy balance. No attempt is made to model flow in the formation. Average execution time is 50 CP seconds on a CDC CYBER170. This edition of GEOTEMP2 is designated as Version 2.0 by the contributors.« less

  1. Analysis of the Wellbore Seal at Well 49-6 in the SACROC CO2 Enhanced Oil Recovery Field, West Texas

    NASA Astrophysics Data System (ADS)

    Carey, J. W.; Wigand, M.; Chipera, S.; Woldegabriel, G.; Pawar, R.; Lichtner, P. C.; Wehner, S.; Raines, M.; Guthrie, G. D.

    2005-12-01

    Long-term integrity of wellbore cements is one of the major concerns for geologic sequestration of CO2. This paper presents analyses of cement core recovered from a well used in a long-term CO2 enhanced oil recovery operation. A sidetrack system was used to obtain core from a 55 year-old well with 30 years of CO2 exposure as both an injector and a producer at the SACROC unit (Permian Basin, Texas). The mineralogy, chemistry, and hydrologic properties were evaluated for evidence of degradation by CO2. The recovered samples were located ~ 3 m above the contact with the reservoir. The recovered cement had permeabilities in the milliDarcy range and thus retained its capacity to prevent significant flow of CO2. There was evidence for CO2 migration along the casing-cement and cement-shale interfaces. The casing interface had a 1-2 mm thick rind of calcite-aragonite-halite. The CO2 producing this rind may have traveled up the casing wall or may have infiltrated through the casing threads. The cement in contact with the shale (within 1 cm) was heavily carbonated to an assemblage of calcite, aragonite, vaterite and amorphous alumino-silica residue and was transformed to a distinctive orange color. The heavily carbonated region is separated from less altered cement by a narrow, dense zone of silica and carbonate deposition. The CO2 for this carbonation process migrated from the cement-shale interface where the presence of shale fragments (wall cake) may have provided a fluid pathway. The carbonation reaction was associated with only small changes in the original cement chemistry including an increase in Na2O and decrease in CaO and MgO with a slight enrichment in SiO2. The carbonated zone also has a distinct carbon and oxygen stable isotope signature. Although the observed carbonation was intense, the measured hydrologic properties of the carbonated zone were not significantly different from those of relatively unaltered cement in adjacent parts of the core. Textural

  2. Transient Wellbore Fluid Flow Model

    Energy Science and Technology Software Center (ESTSC)

    1982-04-06

    WELBORE is a code to solve transient, one-dimensional two-phase or single-phase non-isothermal fluid flow in a wellbore. The primary thermodynamic variables used in solving the equations are the pressure and specific energy. An equation of state subroutine provides the density, quality, and temperature. The heat loss out of the wellbore is calculated by solving a radial diffusion equation for the temperature changes outside the bore. The calculation is done at each node point in themore » wellbore.« less

  3. A wellbore inertial navigation system

    SciTech Connect

    Kelsey, J.R.

    1983-02-01

    A prototype wireline tool which includes a downhole inertial platform and a surface computer to spatially map a well is described. The hardware consists of a single-gimballed inertial platform with accelerometers and gyros to obtain three-axis motion information. The gyroscope and accelerometer outputs are transmitted to a computer at the surface which calculates probe attitude relative to north, east, and vertical. Double integration of the accelerometer data provides the position information. A conventional 7-conductor wireline is used for the system data transmission. System accuracy is enhanced by advances made in the computer software which processes the data received from the tool. The software uses statistical sampling estimation to obtain optimal estimates of the system errors. Measurement errors are determined by periodically stopping the tool during the logging procedure and observing the indicated velocity measurements. This procedure, known as Kalman filtering, results in increased accuracy of the data. Present mapping systems have an X-Y-Z location accuracy of 100 to 200 feet for a typical well depth of 10,000 feet. Test results show that the new system is accurate to about 1 foot per 1000 feet of well depth. Unlike conventional systems, the inertial navigator does not require any sort of projection of the cable length (which may not be accurately known). Also, this system provides continuous data throughout the wellbore and logging speeds on the order of 10 ft/sec appear possible. The hardware and software associated with this mapping system are described and the recent field test results are reported.

  4. Ranging methods for developing wellbores in subsurface formations

    DOEpatents

    MacDonald, Duncan

    2011-09-06

    A method for forming two or more wellbores in a subsurface formation includes forming a first wellbore in the formation. A second wellbore is directionally drilled in a selected relationship relative to the first wellbore. At least one magnetic field is provided in the second wellbore using one or more magnets in the second wellbore located on a drilling string used to drill the second wellbore. At least one magnetic field is sensed in the first wellbore using at least two sensors in the first wellbore as the magnetic field passes by the at least two sensors while the second wellbore is being drilled. A position of the second wellbore is continuously assessed relative to the first wellbore using the sensed magnetic field. The direction of drilling of the second wellbore is adjusted so that the second wellbore remains in the selected relationship relative to the first wellbore.

  5. Hydrophilic Domains Enhance Nanobubble Stability.

    PubMed

    Nishiyama, Takashi; Takahashi, Koji; Ikuta, Tatsuya; Yamada, Yutaka; Takata, Yasuyuki

    2016-05-18

    Highly stable nanoscale gas states at solid/liquid interfaces, referred to as nanobubbles, have been widely studied for over a decade. In this study, nanobubbles generated on a hydrophobic Teflon amorphous fluoroplastic thin film in the presence and absence of hydrophilic carbon domains are investigated by peak force quantitative nanomechanics. On the hydrophobic surface without hydrophilic domains, a small number of nanobubbles are generated and then rapidly decrease in size. On the hydrophobic surface with hydrophilic domains, the hydrophilic domains have a significant effect on the generation and stability of nanobubbles, with bubbles remaining on the surface for up to three days. PMID:26864857

  6. Rational Design of Biobetters with Enhanced Stability.

    PubMed

    Courtois, Fabienne; Schneider, Curtiss P; Agrawal, Neeraj J; Trout, Bernhardt L

    2015-08-01

    Biotherapeutics are the fastest growing class of pharmaceutical with a rapidly evolving market facing the rise of biosimilar and biobetter products. In contrast to a biosimilar, which is derived from the same gene sequence as the innovator product, a biobetter has enhanced properties, such as enhanced efficacy or reduced immunogenicity. Little work has been carried out so far to increase the intrinsic stability of biotherapeutics via sequence changes, even though, aggregation, the primary degradation pathway of proteins, leads to issues ranging from manufacturing failure to immunological response and to loss of therapeutic activity. Using our spatial aggregation propensity tool as a first step to a rational design approach to identify aggregation-prone regions, biobetters of rituximab have been produced with enhanced stability by introducing site-specific mutations. Significant stabilization against aggregation was achieved for rituximab with no decrease in its binding affinity to the antigen. PMID:26096711

  7. Heating production fluids in a wellbore

    DOEpatents

    Orrego, Yamila; Jankowski, Todd A.

    2016-07-12

    A method for heating a production fluid in a wellbore. The method can include heating, using a packer fluid, a working fluid flowing through a first medium disposed in a first section of the wellbore, where the first medium transfers heat from the packer fluid to the working fluid. The method can also include circulating the working fluid into a second section of the wellbore through a second medium, where the second medium transfers heat from the working fluid to the production fluid. The method can further include returning the working fluid to the first section of the wellbore through the first medium.

  8. Wellbore failure mechanisms in shales: Prediction and prevention

    SciTech Connect

    Gazaniol, D.; Forsans, T.; Boisson, M.J.F.; Piau, J.M.

    1995-07-01

    Shale stability is still one of the most important problems faced during drilling. Until recently, stability problems were most often attributed to shale swelling; however, recent research shows that several mechanisms are involved and that their relative importance can be estimated. This paper presents a review of these mechanisms, including pore-pressure diffusion, plasticity, anisotropy, capillary effects, osmosis, and physicochemical alteration. Pore-pressure diffusion into the rock in the vicinity of the wellbore (transition from undrained to drained behavior) appears to be of major importance in these very-low-permeability rocks. Plasticity is discussed in terms of modeling. Compared with simple elastic models, modeling of plasticity can simulate the actual behavior of wellbore better. The behavior of different types of muds is discussed while taking these phenomena into consideration, and the practical use of rock-mechanics models is also addressed.

  9. Three-dimensional, transient natural convection in inclined wellbores

    SciTech Connect

    McEligot, D.M. . Oceanic Div.); Denbow, D.A. ); Murphy, H.D. )

    1990-01-01

    The occurrence of natural conduction in a wellbore can affect geothermal gradient measurements and heat flow estimates. In the Hot Dry Rock geothermal concept, the wellbores are purposely inclined in the deep regions to enhance heat production. To simulate natural convection flow patterns in directionally drilled wellbores, experiments and analyses were conducted for a circular tube with length to diameter (L/D) ratio of 36 at angles of 0{degrees}, 20{degrees}, and 35{degrees} from the vertical. The tube was heated at the bottom and cooled at the top, and the insulation was adjusted so that approximately one- to two-thirds of the power dissipated was transferred through the tube wall to the surroundings. An aqueous solution of polyvinyl alcohol was employed as the working fluid in order to obtain low Rayleigh numbers corresponding to conditions in geothermal wellbores. Temperature distributions were measured for the three orientations and for several heating rates to demonstrate the effects of tube angle and Rayleigh number. Comparison with measurements showed good agreement of the predicted temperature levels for the maximum inclination and slightly poorer agreement for the other limit, a vertical tube. 50 refs., 9 figs.

  10. Compressor Stability Enhancement Using Discrete Tip Injection

    NASA Technical Reports Server (NTRS)

    Suder, Kenneth L.; Hathaway, Michael D.; Thorp, Scott A.; Strazisar, Anthony J.; Bright, Michelle B.

    2001-01-01

    Mass injection upstream of the tip of a high-speed axial compressor rotor is a stability enhancement approach known to be effective in suppressing small in tip-critical rotors. This process is examined in a transonic axial compressor rotor through experiments and time-averaged Navier-Stokes CFD simulations. Measurements and simulations for discrete injection are presented for a range of injection rates and distributions of injectors around the annulus. The simulations indicate that tip injection increases stability by unloading the rotor tip and that increasing injection velocity improves the effectiveness of tip injection. For the tested rotor, experimental results demonstrate that at 70 percent speed the stalling flow coefficient can be reduced by 30 percent using an injected mass- flow equivalent to 1 percent of the annulus flow. At design speed, the stalling flow coefficient was reduced by 6 percent using an injected mass-fiow equivalent to 2 percent of the annulus flow. The experiments show that stability enhancement is related to the mass-averaged axial velocity at the tip. For a given injected mass-flow, the mass-averaged axial velocity at the tip is increased by injecting flow over discrete portions of the circumference as opposed to full-annular injection. The implications of these results on the design of recirculating casing treatments and other methods to enhance stability will be discussed.

  11. Drilling subsurface wellbores with cutting structures

    DOEpatents

    Mansure, Arthur James; Guimerans, Rosalvina Ramona

    2010-11-30

    A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.

  12. Methods for forming wellbores in heated formations

    DOEpatents

    Guimerans, Rosalvina Ramona; Mansure, Arthur James

    2012-09-25

    A method for forming a wellbore in a heated formation includes flowing liquid cooling fluid to a bottom hole assembly in a wellbore in a heated formation. At least a portion of the liquid cooling fluid is vaporized at or near a region to be cooled. Vaporizing the liquid cooling fluid absorbs heat from the region to be cooled.

  13. Enhanced Product Stability in the Hammerhead Ribozyme†

    PubMed Central

    Shepotinovskaya, Irina; Uhlenbeck, Olke C.

    2010-01-01

    The rate of dissociation of P1, the 5′ product of hammerhead cleavage, is 100–300-fold slower in full-length hammerheads than in hammerheads that either lack or have disrupting mutations in the loop-loop tertiary interaction. The added stability requires the presence of residue 17 at the 3′ terminus of P1 but not the 2′, 3′ terminal phosphate. Since residue 17 is buried within the catalytic core of the hammerhead in the x-ray structure, we propose that the enhanced P1 stability is the result of the cooperative folding of the hammerhead around this residue. However, since the P1 is fully stabilized above 2.5 mM MgCl2 while hammerhead activity continues to increase with increasing MgCl2, it is clear that the hammerhead structure in the transition state must differ from that of the product complex. The product stabilization assay is used to test our earlier proposal that different tertiary interactions modulate the cleavage rate by differentially stabilizing the core. PMID:20423112

  14. Development of a Standalone Thermal Wellbore Simulator

    NASA Astrophysics Data System (ADS)

    Xiong, Wanqiang

    With continuous developments of various different sophisticated wells in the petroleum industry, wellbore modeling and simulation have increasingly received more attention. Especially in unconventional oil and gas recovery processes, there is a growing demand for more accurate wellbore modeling. Despite notable advancements made in wellbore modeling, none of the existing wellbore simulators has been as successful as reservoir simulators such as Eclipse and CMG's and further research works on handling issues such as accurate heat loss modeling and multi-tubing wellbore modeling are really necessary. A series of mathematical equations including main governing equations, auxiliary equations, PVT equations, thermodynamic equations, drift-flux model equations, and wellbore heat loss calculation equations are collected and screened from publications. Based on these modeling equations, workflows for wellbore simulation and software development are proposed. Research works are conducted in key steps for developing a wellbore simulator: discretization, a grid system, a solution method, a linear equation solver, and computer language. A standalone thermal wellbore simulator is developed by using standard C++ language. This wellbore simulator can simulate single-phase injection and production, two-phase steam injection and two-phase oil and water production. By implementing a multi-part scheme which divides a wellbore with sophisticated configuration into several relative simple simulation running units, this simulator can handle different complex wellbores: wellbore with multistage casings, horizontal wells, multilateral wells and double tubing. In pursuance of improved accuracy of heat loss calculations to surrounding formations, a semi-numerical method is proposed and a series of FLUENT simulations have been conducted in this study. This semi-numerical method involves extending the 2D formation heat transfer simulation to include a casing wall and cement and adopting new

  15. Enhanced stabilization of collagen by furfural.

    PubMed

    Lakra, Rachita; Kiran, Manikantan Syamala; Usha, Ramamoorthy; Mohan, Ranganathan; Sundaresan, Raja; Korrapati, Purna Sai

    2014-04-01

    Furfural (2-furancarboxaldehyde), a product derived from plant pentosans, has been investigated for its interaction with collagen. Introduction of furfural during fibril formation enhanced the thermal and mechanical stability of collagen. Collagen films treated with furfural exhibited higher denaturation temperature (Td) (p<0.04) and showed a 3-fold increase in Young's modulus (p<0.04) at higher concentration. Furfural and furfural treated collagen films did not have any cytotoxic effect. Rheological characterization showed an increase in shear stress and shear viscosity with increasing shear rate for treated collagen. Circular dichroism (CD) studies indicated that the furfural did not have any impact on triple helical structure of collagen. Scanning electron microscopy (SEM) of furfural treated collagen exhibited small sized porous structure in comparison with untreated collagen. Thus this study provides an alternate ecologically safe crosslinking agent for improving the stability of collagen for biomedical and industrial applications. PMID:24468046

  16. Ceramic membranes with enhanced thermal stability

    DOEpatents

    Anderson, Marc A.; Xu, Qunyin; Bischoff, Brian L.

    1993-01-01

    A method of creating a ceramic membrane with enhanced thermal stability is disclosed. The method involves combining quantities of a first metal alkoxide with a second metal, the quantities selected to give a preselected metal ratio in the resultant membrane. A limited amount of water and acid is added to the combination and stirred until a colloidal suspension is formed. The colloid is dried to a gel, and the gel is fired at a temperature greater than approximately 400.degree. C. The porosity and surface area of ceramic membranes formed by this method are not adversely affected by this high temperature firing.

  17. Method for hydraulic fracturing cased wellbores

    SciTech Connect

    Schmidt, J.H.

    1991-12-24

    This patent describes a method of hydraulically fracturing a cased wellbore in an earth formation. It comprises determining the angle with respect to the wellbore axis and a reference point on the circumference of the wellbore which will provide for initiation of a hydraulic fracture in the formation which will turn with the largest radius of curvature into a fracture plane normal to the minimum in situ stress in the formation; perforating the wellbore casing at the angle with respect to the reference point; initiating a hydraulic fracture in the formation by pumping a liquid through the perforation and into the formation to force the initiation of a fracture in the formation at a point which develops the highest tensile stress in the formation in relation to increasing the hydraulic pressure in the wellbore; extending the fracture by pumping a relatively proppant-free quantities of proppant per unit volume of pumped fluid and in successive discrete stages of increasing proppant density to provide a propped portion of increasing proppant density to provide a propped portion of the fracture in the near wellbore region of the fracture which will prevent reclosing of the fracture in the near wellbore region.

  18. Design, implementation, and completion of a horizontal tight gas wellbore - case study: Green River Basin, Wyoming

    SciTech Connect

    Billingsley, R.L.; Evans, L.W.; Anderson, T.M.

    1995-06-01

    In September, 1993 Amoco Production Company began drilling the Champlin 254B No. 2H, a horizontal well test located near the Wamsutter Arch, southwestem Wyoming. The Champlin 254B No. 2H was designed to confirm a fractured reservoir concept and to test the economic viability of a horizontal wellbore in the Almond fm.. The wellbore was designed to determine real-time, the fracture direction and the optimum horizontal leg direction within the confines of the drilling permit. A deviated pilot hole was drilled to optimize our ability to cross vertical natural fractures. MWD gamma-ray, oriented core, a vertical seismic profile, Formation Microimager, and a robust suite of electric logs were obtained to gain information on the presence and orientation of fractures before kickoff for the horizontal leg. Electromagnetic goniometry was used onsite to orient fractures in core. Log and core data were consistent and a wellbore trajectory of due South was chosen. A two thousand foot horizontal wellbore was drilled, 1700 feet of which is in the upper Almond formation productive zone. MWD gamma-ray, three 30` cores, Formation Microscanner logs, and a density-neutron log were obtained in the horizontal hole. This wellbore was completed open-hole with a stabilized gas rate of 1 mmcfd. In May, 1994 a portion of the original wellbore collapsed and a replacement horizontal leg was drilled. Oil-based mud and rotary BOP`s were utilized to minimize damage and invasion to the reservoir. Reservoir pressures encountered in the redrill indicate that depletion along the original wellbore had begun. The redrill was completed open-hole with a pre-perforated (every third joint) 5 1/2 inches liner and also stabilized at a rate of 1 mmcfd.

  19. Photovoltaic panel having enhanced conversion efficiency stability

    SciTech Connect

    Cannella, V. D.

    1985-10-01

    A photovoltaic panel for converting light into electrical energy has enhanced energy conversion efficiency stability. The panel includes a photovoltaic device having an active region formed from a semiconductor material which exhibits an energy conversion efficiency stability directly related to the operating temperature of the device. The panel also includes means for maintaining the operating temperature of the device upon exposure to light at an elevated temperature above the ambient temperature external to the device. The active region semiconductor material is preferably an amorphous semiconductor alloy such as, for example, an amorphous silicon alloy. The operating temperature elevating means can include a thermal insulating material such as glass wool, styrofoam, or cork applied to the back side of the device to minimize heat conduction from the device. The panel can also include an enclosure for enclosing the device having a transparent cover overlying the device to seal the enclosure and provide a still air space adjacent the device. The panel is thereby arranged to maintain the operating temperature of the device at a temperature which is from about twenty degrees Centigrade to about one hundred and fifty degrees Centigrade above the ambient temperature external to the device.

  20. Microseismic monitoring of CO2 injection at the Penn West Enhanced Oil Recovery pilot project, Canada: implications for detection of wellbore leakage.

    PubMed

    Martínez-Garzón, Patricia; Bohnhoff, Marco; Kwiatek, Grzegorz; Zambrano-Narváez, Gonzalo; Chalaturnyk, Rick

    2013-01-01

    A passive seismic monitoring campaign was carried out in the frame of a CO2-Enhanced Oil Recovery (EOR) pilot project in Alberta, Canada. Our analysis focuses on a two-week period during which prominent downhole pressure fluctuations in the reservoir were accompanied by a leakage of CO2 and CH4 along the monitoring well equipped with an array of short-period borehole geophones. We applied state of the art seismological processing schemes to the continuous seismic waveform recordings. During the analyzed time period we did not find evidence of induced micro-seismicity associated with CO2 injection. Instead, we identified signals related to the leakage of CO2 and CH4, in that seven out of the eight geophones show a clearly elevated noise level framing the onset time of leakage along the monitoring well. Our results confirm that micro-seismic monitoring of reservoir treatment can contribute towards improved reservoir monitoring and leakage detection. PMID:24002229

  1. Microseismic Monitoring of CO2 Injection at the Penn West Enhanced Oil Recovery Pilot Project, Canada: Implications for Detection of Wellbore Leakage

    PubMed Central

    Martínez-Garzón, Patricia; Bohnhoff, Marco; Kwiatek, Grzegorz; Zambrano-Narváez, Gonzalo; Chalaturnyk, Rick

    2013-01-01

    A passive seismic monitoring campaign was carried out in the frame of a CO2-Enhanced Oil Recovery (EOR) pilot project in Alberta, Canada. Our analysis focuses on a two-week period during which prominent downhole pressure fluctuations in the reservoir were accompanied by a leakage of CO2 and CH4 along the monitoring well equipped with an array of short-period borehole geophones. We applied state of the art seismological processing schemes to the continuous seismic waveform recordings. During the analyzed time period we did not find evidence of induced micro-seismicity associated with CO2 injection. Instead, we identified signals related to the leakage of CO2 and CH4, in that seven out of the eight geophones show a clearly elevated noise level framing the onset time of leakage along the monitoring well. Our results confirm that micro-seismic monitoring of reservoir treatment can contribute towards improved reservoir monitoring and leakage detection. PMID:24002229

  2. Wellbore inertial directional surveying system

    SciTech Connect

    Andreas, R.D.; Heck, G.M.; Kohler, S.M.; Watts, A.C.

    1991-01-29

    This patent describes a wellbore inertial directional surveying system for providing a complete directional survey of an oil or gas well borehole to determine the displacement in all three directions of the borehole path relative to the well head at the surface. The information generated by the present invention is especially useful when numerous wells are drilled to different geographical targets from a single off-shore platform. Accurate knowledge of the path of the borehole allows proper well spacing and provides assurance that target formations are reached. The tool is lowered down into a borehole on the electrical cable. A computer positioned on the surface communicates with the tool via the cable. The tool contains a sensor block which is supported on a single gimbal, the rotation axis of which is aligned with the cylinder axis of the tool and, correspondingly, the borehole. The gyroscope measurement of the sensor block rotation is used in a null-seeking servo loop which essentially prevents rotation of the sensor block about the gimbal axis. Angular rates of the sensor block about axes which are perpendicular to the gimbal axis are measured by gyroscopes in a manner similar to a strapped-down arrangement. Three accelerometers provide acceleration information as the tool is lowered within the borehole. The uphole computer derives position information based upon acceleration information and annular rate information. Kalman estimation techniques are used to compensate for system errors.

  3. Wellbore inertial directional surveying system

    DOEpatents

    Andreas, R.D.; Heck, G.M.; Kohler, S.M.; Watts, A.C.

    1982-09-08

    A wellbore inertial directional surveying system for providing a complete directional survey of an oil or gas well borehole to determine the displacement in all three directions of the borehole path relative to the well head at the surface. The information generated by the present invention is especially useful when numerous wells are drilled to different geographical targets from a single offshore platform. Accurate knowledge of the path of the borehole allows proper well spacing and provides assurance that target formations are reached. The tool is lowered down into a borehole on an electrical cable. A computer positioned on the surface communicates with the tool via the cable. The tool contains a sensor block which is supported on a single gimbal, the rotation axis of which is aligned with the cylinder axis of the tool and, correspondingly, the borehole. The gyroscope measurement of the sensor block rotation is used in a null-seeking servo loop which essentially prevents rotation of the sensor block about the gimbal axis. Angular rates of the sensor block about axes which are perpendicular to te gimbal axis are measured by gyroscopes in a manner similar to a strapped-down arrangement. Three accelerometers provide acceleration information as the tool is lowered within the borehole. The uphole computer derives position information based upon acceleration information and angular rate information. Kalman estimation techniques are used to compensate for system errors. 25 figures.

  4. Wellbore inertial directional surveying system

    DOEpatents

    Andreas, Ronald D.; Heck, G. Michael; Kohler, Stewart M.; Watts, Alfred C.

    1991-01-01

    A wellbore inertial directional surveying system for providing a complete directional survey of an oil or gas well borehole to determine the displacement in all three directions of the borehole path relative to the well head at the surface. The information generated by the present invention is especially useful when numerous wells are drilled to different geographical targets from a single off-shore platform. Accurate knowledge of the path of the borehole allows proper well spacing and provides assurance that target formations are reached. The tool is lowered down into a borehole on the electrical cable. A computer positioned on the surface communicates with the tool via the cable. The tool contains a sensor block which is supported on a single gimbal, the rotation axis of which is aligned with the cylinder axis of the tool and, correspondingly, the borehole. The gyroscope measurement of the sensor block rotation is used in a null-seeking servo loop which essentially prevents rotation of the sensor block aboutthe gimbal axis. Angular rates of the sensor block about axes which are perpendicular to the gimbal axis are measured by gyroscopes in a manner similar to a strapped-down arrangement. Three accelerometers provide acceleration information as the tool is lowered within the borehole. The uphole computer derives position information based upon acceleration information and anular rate information. Kalman estimation techniques are used to compensate for system errors.

  5. Diverting technique to stage fracturing treatments in horizontal wellbores

    SciTech Connect

    Jennings, A.R. Jr.

    1990-08-28

    This patent describes a method for fracturing a formation containing a horizontal wellbore. It comprises perforating a horizontal wellbore at a desired first interval at a distance farthest from an angle of deviation from vertical of the wellbore thereby causing the wellbore to be in fluid communication with the formation; fracturing hydraulically the formation at the first interval; injecting a solidifiable gel containing a gel breaker into the wellbore witch enters the first interval; displacing with a wiper plug the solidifiable gel so as to force the solidifiable gel into the first interval and contain the gel in the wellbore in an area adjacent to the perforations; allowing the solidifiable gel to remain in the formation and in the wellbore for a time sufficient to form a solid gel in the first interval and a solid gel plug in the wellbore which precludes fluid entry into the wellbore adjacent the first interval; while the solid gel plug remains in the wellbore, perforating another section of the wellbore so as to cause fluid communication between a second interval of the formation and the wellbore; and fracturing hydraulically the formation through perforations so as to cause a second interval to be in fluid communication with the wellbore.

  6. Factors Controlling Wellbore Imaging of Fractures

    NASA Astrophysics Data System (ADS)

    Al-Fahmi, M. M.; Cartwright, J. A.

    2015-12-01

    There are many scientific and engineering methods in petroleum industry for collecting data about small fractures in subsurface. The acquired data is predominantly indirect, and constrained by the bounds of technology and the subtle nature of small fractures. Among the various data types, cores and wellbore images reliably provide the data to observe small fractures, and help characterize important fracture properties such as density, geometry and aperture. There is, however, a major uncertainty about how thorough is the illustration of the small fractures in the wellbore electrical images which are widely used instead of cutting core for practical and economical grounds. We present novel results to help with understanding the potential and limits of wellbore electrical imagers to detect small fractures. We compare and discuss observations from high-quality microresistivity images and their equivalent core samples that are obtained from sub-horizontal wells drilled into carbonate hydrocarbon reservoirs in eastern Arabia. We observed that the wellbore images give limited and inconsistent fracture sampling. The reduction in fracture sampling is related to the fracture nature that defies the imager-resolution capacity. We propose that the imaging capacity is constrained by: 1) degree of fracture roughness, 2) contrast between resistivity and conductivity of the geologic features, 3) effective stress action that is increasing and decreasing fracture aperture, and 4) fracture intake of drilling fluids under a variable fluid pressure balancing between wellbore and reservoir. The wellbore imaging outcomes influence fracture studies, particularly the areas of measuring static and dynamic properties of reservoir fractures and estimating trends and magnitudes of in situ stress.

  7. Passive Endwall Treatments for Enhancing Stability

    NASA Technical Reports Server (NTRS)

    Hathaway, Michael D.

    2007-01-01

    These lecture notes were presented at the von Karman Institutes lecture series on Advances in Axial Compressor Aerodynamics, May 2006. They provide a fairly extensive overview of what's been learned from numerous investigations of various passive casing endwall technologies that have been proposed for alleviating the stall limiting physics associated with the compressor endwall flow field. The lecture notes are organized to give an appreciation for the inventiveness and understanding of the earliest compressor technologists and to provide a coherent thread of understanding that has arisen out of the early investigations. As such the lecture notes begin with a historical overview of casing treatments from their infancy through the earliest proposed concepts involving blowing, suction and flow recirculation. A summary of lessons learned from these early investigations is provided at the end of this section. The lecture notes then provide a somewhat more in-depth overview of recent advancements in the development of passive casing treatments from the late 1990's through 2006, including advancements in understanding the flow mechanism of circumferential groove casing treatments, and the development of discrete tip injection and self-recirculating casing treatments. At the conclusion of the lecture notes a final summary of lessons learned throughout the history of the development of passive casing treatments is provided. Finally, a list of future needs is given. It is hoped that these lecture notes will be a useful reference for future research endeavors to improve our understanding of the fluid physics of passive casing treatments and how they act to enhance compressor stability, and that they will perhaps provide a springboard for future research activities in this area of interest

  8. Method for decreasing permeability around a wellbore

    SciTech Connect

    Richardson, W.C.; Whittington, L.E.; Morrow, L.R.

    1988-01-26

    A method for decreasing formation permeability in an underground formation around a wellbore is described comprising: injecting an aqueous solution having a pH of about 0.9 to about 3.5 into the formation surrounding a wellbore, the aqueous solution comprising about 2% to about 20% by weight of lignosulfonate, about 2% to about 20% by weight of monomer of acrylic acid, a sufficient amount of an initiator of persulfate to copolymerize the lignosulfonate and the monomer, and about 0% to about 3.0% by weight of a metal slat having a cation of iron, titanium, vanadium, chromium or molybdenum.

  9. Proceedings of the wellbore sampling workshop

    SciTech Connect

    Traeger, R.K.; Harding, B.W.

    1987-11-01

    Representatives from academia, industry and research laboratories participated in an intensive two-day review to identify major technological limitations in obtaining solid and fluid samples from wellbores. Top priorities identified for further development include: coring of hard and unconsolidated materials; flow through fluid samplers with borehole measurements T, P and pH; and nonintrusive interrogation of pressure cores.

  10. Cementing a wellbore using cementing material encapsulated in a shell

    DOEpatents

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Spadaccini, Christopher M.; Cowan, Kenneth Michael

    2016-08-16

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  11. Enhancing probiotic stability in industrial processes

    PubMed Central

    Gueimonde, Miguel; Sánchez, Borja

    2012-01-01

    Background Manufacture of probiotic products involves industrial processes that reduce the viability of the strains. This lost of viability constitutes an economic burden for manufacturers, compromising the efficacy of the product and preventing the inclusion of probiotics in many product categories. Different strategies have been used to improve probiotic stability during industrial processes. These include technological approaches, such as the modification of production parameters or the reformulation of products, as well as microbiological approaches focused on the strain intrinsic resistance. Among the later, both selection of natural strains with the desired properties and stress-adaptation of strains have been widely used. Conclusion During recent years, the knowledge acquired on the molecular basis of stress-tolerance of probiotics has increased our understanding on their responses to industrial stresses. This knowledge on stress-response may nowadays be used for the selection of the best strains and industrial conditions in terms of probiotic stability in the final product. PMID:23990824

  12. Geomechanical Modeling to Predict Wellbore Stresses and Strains for the Design of Wellbore Seal Repair Materials

    NASA Astrophysics Data System (ADS)

    Gomez, S. P.; Sobolik, S. R.; Matteo, E. N.; Dewers, T. A.; Taha, M. R.; Stormont, J. C.

    2013-12-01

    A critical aspect of designing effective wellbore seal repair materials is predicting thermo-mechanical perturbations in local stress that can compromise seal integrity. For the DOE-NETL project 'Wellbore Seal Repair Using Nanocomposite Materials,' we are especially interested in the stress-strain history of abandoned wells, as well as changes in local pressure, stress, and temperature conditions that accompany carbon dioxide injection or brine extraction. Building on existing thermo-hydro-mechanical (THM) finite element modeling of wellbore casings subject to significant tensile and shear loads, we advance a conceptual and numerical methodology to assess responses of annulus cement and casing. Bench-scale models complement bench-top experiments of an integrated seal system in an idealized scaled wellbore mock-up being used to test candidate seal repair materials. Field scale models use the stratigraphy from a pilot CO2 injection operation to estimate the necessary mechanical properties needed for a successful repair material. We report on approaches used for adapting existing wellbore models and share preliminary results of field scale models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND Number: 2013-6241A.

  13. A multi-feedzone wellbore simulator

    SciTech Connect

    Bjornsson, G.; Bodvarsson, G.S.

    1987-06-01

    A multi-feedzone wellbore simulator has been developed. This computer code is quite general as it enables one to compute downhole conditions in wells with an arbitrary number of feedzones during discharge or injection. The simulator is applied to flowing pressure and temperature surveys from various wells in Mexico, Iceland and Kenya. It is demonstrated that such a model can be used to estimate flow rates and enthalpies of individual feedzones.

  14. Enhancing protein stability with extended disulfide bonds.

    PubMed

    Liu, Tao; Wang, Yan; Luo, Xiaozhou; Li, Jack; Reed, Sean A; Xiao, Han; Young, Travis S; Schultz, Peter G

    2016-05-24

    Disulfide bonds play an important role in protein folding and stability. However, the cross-linking of sites within proteins by cysteine disulfides has significant distance and dihedral angle constraints. Here we report the genetic encoding of noncanonical amino acids containing long side-chain thiols that are readily incorporated into both bacterial and mammalian proteins in good yields and with excellent fidelity. These amino acids can pair with cysteines to afford extended disulfide bonds and allow cross-linking of more distant sites and distinct domains of proteins. To demonstrate this notion, we preformed growth-based selection experiments at nonpermissive temperatures using a library of random β-lactamase mutants containing these noncanonical amino acids. A mutant enzyme that is cross-linked by one such extended disulfide bond and is stabilized by ∼9 °C was identified. This result indicates that an expanded set of building blocks beyond the canonical 20 amino acids can lead to proteins with improved properties by unique mechanisms, distinct from those possible through conventional mutagenesis schemes. PMID:27162342

  15. Method of repairing a wellbore liner for sand control

    SciTech Connect

    Dees, J.M.

    1992-10-13

    This patent describes a method of repairing a damaged wellbore liner for controlling sand and other fine materials. It comprises: positioning a quantity of fluid resin material in alignment with the portion of the wellbore liner to be repaired; positioning a gas generator in proximity with the fluid resin material; actuating the gas generator to increase wellbore pressure in a substantially instantaneous manner to a pressure substantially in excess of well pressure to force the fluid resin material from the wellbore into the damaged area of the wellbore liner; and subsequently polymerizing the resin material to form a consolidated, porous permeable matrix that allows the flow of production fluid into the well while preventing the flow of sand, or other fine materials into the well through the previously damaged area of the wellbore liner.

  16. Double polymer sheathed carbon nanotube supercapacitors show enhanced cycling stability

    NASA Astrophysics Data System (ADS)

    Zhao, Wenqi; Wang, Shanshan; Wang, Chunhui; Wu, Shiting; Xu, Wenjing; Zou, Mingchu; Ouyang, An; Cao, Anyuan; Li, Yibin

    2015-12-01

    Pseudo-materials are effective in boosting the specific capacitance of supercapacitors, but during service their degradation may also be very strong, causing reduced cycling stability. Here, we show that a carbon nanotube sponge grafted by two conventional pseudo-polymer layers in sequence can serve as a porous supercapacitor electrode with significantly enhanced cycling stability compared with single polymer grafting. Creating conformal polymer coatings on the nanotube surface and the resulting double-sheath configuration are important structural factors leading to the enhanced performance. Combining different polymers as double sheaths as reported here might be a potential route to circumvent the dilemma of pseudo-materials, and to simultaneously improve the capacitance and stability for various energy storage devices.Pseudo-materials are effective in boosting the specific capacitance of supercapacitors, but during service their degradation may also be very strong, causing reduced cycling stability. Here, we show that a carbon nanotube sponge grafted by two conventional pseudo-polymer layers in sequence can serve as a porous supercapacitor electrode with significantly enhanced cycling stability compared with single polymer grafting. Creating conformal polymer coatings on the nanotube surface and the resulting double-sheath configuration are important structural factors leading to the enhanced performance. Combining different polymers as double sheaths as reported here might be a potential route to circumvent the dilemma of pseudo-materials, and to simultaneously improve the capacitance and stability for various energy storage devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05978j

  17. Enhanced stabilization of vesicles by compressed CO2.

    PubMed

    Li, Wei; Zhang, Jianling; Cheng, Siqing; Han, Buxing; Zhang, Chaoxing; Feng, Xiaoying; Zhao, Yueju

    2009-01-01

    In this work, we studied the effect of compressed CO2 on the stability of vesicles formed in a dodecyltrimethylammonium bromide (DTAB)/sodium dodecyl sulfate (SDS) mixed surfactant system by combination of phase behavior and turbidity study, and UV-vis and fluorescence techniques. It was discovered that compressed CO2 could enhance the stability of vesicles significantly. This new and effective method to stabilize vesicles has some unique advantages over conventional methods. For example, the size and stability of the vesicles can be easily controlled by CO2 pressure; the method is greener because CO2 is a green reagent and it can be released completely after depressurization, which simplifies postseparation processes in applications. The main reason for CO2 to stabilize the vesicles is that CO2 molecules can insert into the hydrophobic bilayer region to enhance the rigidity of the vesicle film and reduce the size of the vesicles, which is different from that of conventional cosolvents (e.g., alcohols) used to stabilize vesicles. On the basis of this discovery, we developed a method to prepare hollow silica spheres using tetraethoxysilane as the precursor and CO2-stabilized vesicles as the template, in which CO2 acts as both the stabilizer of the vesicular template and the catalyst for the hydrolysis reaction of the precursor, and other cosolvents and catalysts are not required. Besides, the size of the silica hollow spheres prepared can be controlled by the pressure of CO2. PMID:19049396

  18. Enhanced thermal stability of Ag nanorods through capping

    SciTech Connect

    Bachenheimer, Lou; Elliott, Paul; Stagon, Stephen; Huang, Hanchen

    2014-11-24

    Ag nanorods may serve as sensors in the detection of trace amounts of chemical agents, even single molecules, through surface enhanced Raman spectroscopy (SERS). However, thermal coarsening of Ag nanorods near room temperature limits their applications. This letter proposes the use of a thin oxide capping layer to enhance the thermal stability of Ag nanorods beyond 100 °C. Using electron microscopy characterization and SERS tests, the authors show that the proposed method is effective in stabilizing both morphology and sensitivity of Ag nanorods. The results of this work extend the applicability of Ag nanorods as chemical sensors to higher temperatures.

  19. Deconvolution of wellbore pressure and flow rate

    SciTech Connect

    Kuchuk, F.J. ); Carter, R.G. . Langley Research Center); Ayestaran, L. )

    1990-03-01

    Determination of the influence function of a well/reservoir system from the deconvolution of wellbore flow rate and pressure is presented. Deconvolution is fundamental and is particularly applicable to system identification. A variety of different deconvolution algorithms are presented. The simplest algorithm is a direct method that works well for data without measurement noise but that fails in the presence of even small amounts of noise. The authors show, however, that a modified algorithm that imposes constraints on the solution set works well, even with significant measurement errors.

  20. A multi-feedzone geothermal wellbore simulator

    SciTech Connect

    Bjornsson, G.

    1987-05-01

    The main objective of this work is to develop a multiple feedzone wellbore model for single- or two-phase flow in vertical wells. It has been demonstrated in various fields (e.g., oil and gas and geothermal) that multiple feedzones with different pressure potentials can significantly effect the well performance in the long run. Very little work in this subject has been done to date, but the importance of the subject is becoming more and more evident. 55 refs., 33 figs., 4 tabs.

  1. Sidetracking experiences in hot granitic wellbores

    SciTech Connect

    Pettitt, R.A.; Carden, R.

    1981-01-01

    In the development of the first Hot Dry Rock (HDR) geothermal energy extraction system at Fenton Hill, west of Los Alamos, New Mexico, man-made reservoirs were created by connecting two holes in hot, impermeable crystalline rock with hydraulically-produced fractures. This system consists of two near-vertical, 24.5-cm (9-5/8-in.) diameter holes approximately 3 km (10,000 ft) deep in Precambrian basement rock, at a bottom-hole temperature of 200/sup 0/C (400/sup 0/F). In order to improve the connection between the wellbores, the production hole was sidetracked to intercept the fracture zone at a more favorable depth. Two successful sidetrack operations were accomplished in 1977, utilizing cement plugs, underreaming, Dyna-Drills, and both button and diamond bits. Drilling of the second larger, commercial-sized reservoir system began in 1979 and consists of two boreholes drilled to a depth of 4 km (15,000 ft) at an angle of 35/sup 0/ from the vertical, which will be connected by a series of hydraulic fractures extending across the 400-m-(1200-ft) vertical separation of the two holes. Sidetracking to bypass a stuck bottom-hole assembly was accomplished through the use of a whipstock device, Dyna-Drills, and button bits. This paper is presented as a case history of the efforts involved to achieve successful sidetracking in hot granitic wellbores.

  2. Investigation of wellbore cooling by circulation and fluid penetration into the formation using a wellbore thermal simulator computer code

    SciTech Connect

    Duda, L.E.

    1987-01-01

    The high temperatures of geothermal wells present severe problems for drilling, logging, and developing these reservoirs. Cooling the wellbore is perhaps the most common method to solve these problems. However, it is usually not clear what may be the most effective wellbore cooling mechanism for a given well. In this paper, wellbore cooling by the use of circulation or by fluid injection into the surrounding rock is investigated using a wellbore thermal simulator computer code. Short circulation times offer no prolonged cooling of the wellbore, but long circulation times (greater than ten or twenty days) greatly reduce the warming rate after shut-in. The dependence of the warming rate on the penetration distance of cooler temperatures into the rock formation (as by fluid injection) is investigated. Penetration distances of greater than 0.6 m appear to offer a substantial reduction in the warming rate. Several plots are shown which demonstrate these effects.

  3. Analysis of Pore Pressure and Stress Distribution around a Wellbore Drilled in Chemically Active Elastoplastic Formations

    NASA Astrophysics Data System (ADS)

    Roshan, Hamid; Rahman, S. S.

    2011-09-01

    Drilling in low-permeable reactive shale formations with water-based drilling mud presents significant challenges, particularly in high-pressure and high-temperature environments. In previous studies, several models were proposed to describe the thermodynamic behaviour of shale. Most shale formations under high pressure are expected to undergo plastic deformation. An innovative algorithm including work hardening is proposed in the framework of thermo-chemo-poroelasticity to investigate the effect of plasticity on stresses around the wellbore. For this purpose a finite-element model of coupled thermo-chemo-poro-elastoplasticity is developed. The governing equations are based on the concept of thermodynamics of irreversible processes in discontinuous systems. In order to solve the plastic problem, a single-step backward Euler algorithm containing a yield surface-correction scheme is used to integrate the plastic stress-strain relation. An initial stress method is employed to solve the non-linearity of the plastic equation. In addition, super convergent patch recovery is used to accurately evaluate the time-dependent stress tensor from nodal displacement. The results of this study reveal that thermal and chemical osmosis can significantly affect the fluid flow in low-permeable shale formations. When the salinity of drilling mud is higher than that of pore fluid, fluid is pulled out of the formation by chemical osmotic back flow. Similar results are observed when the temperature of drilling mud is lower than that of the formation fluid. It is found that linear elastic approaches to wellbore stability analysis appear to overestimate the tangential stress around the wellbore and produce more conservative stresses compared to the results of field observation. Therefore, the drilling mud properties obtained from the elastoplastic wellbore stability in shales provide a safer mud weight window and reduce drilling cost.

  4. Enhancement of stability in systems with metastable states

    SciTech Connect

    Spagnolo, B.; Augello, G.; Pizzolato, N.; Valenti, D.; Fiasconaro, A.

    2007-12-06

    The investigation of noise-induced phenomena in far from equilibrium systems is one of the approach used to understand the behaviour of physical and biological complex systems. Metastability is a generic feature of many nonlinear systems, and the problem of the lifetime of metastable states involves fundamental aspects of nonequilibrium statistical mechanics. The enhancement of the life-time of metastable states through the noise enhanced stability effect and the role played by the resonant activation phenomenon will be discussed in models of interdisciplinary physics: (i) Ising model (ii) Josephson junction; (iii) stochastic FitzHugh-Nagumo model; (iv) a population dynamics model, and (v) a market model with stochastic volatility.

  5. Enhanced Mechanical Stability of Gold Nanotips through Carbon Nanocone Encapsulation

    NASA Astrophysics Data System (ADS)

    Cano-Marquez, Abraham G.; Schmidt, Wesller G.; Ribeiro-Soares, Jenaina; Gustavo Cançado, Luiz; Rodrigues, Wagner N.; Santos, Adelina P.; Furtado, Clascidia A.; Autreto, Pedro A. S.; Paupitz, Ricardo; Galvão, Douglas S.; Jorio, Ado

    2015-06-01

    Gold is a noble metal that, in comparison with silver and copper, has the advantage of corrosion resistance. Despite its high conductivity, chemical stability and biocompatibility, gold exhibits high plasticity, which limits its applications in some nanodevices. Here, we report an experimental and theoretical study on how to attain enhanced mechanical stability of gold nanotips. The gold tips were fabricated by chemical etching and further encapsulated with carbon nanocones via nanomanipulation. Atomic force microscopy experiments were carried out to test their mechanical stability. Molecular dynamics simulations show that the encapsulated nanocone changes the strain release mechanisms at the nanoscale by blocking gold atomic sliding, redistributing the strain along the whole nanostructure. The carbon nanocones are conducting and can induce magnetism, thus opening new avenues on the exploitation of transport, mechanical and magnetic properties of gold covered by sp2 carbon at the nanoscale.

  6. Enhanced Mechanical Stability of Gold Nanotips through Carbon Nanocone Encapsulation

    PubMed Central

    Cano-Marquez, Abraham G.; Schmidt, Wesller G.; Ribeiro-Soares, Jenaina; Gustavo Cançado, Luiz; Rodrigues, Wagner N.; Santos, Adelina P.; Furtado, Clascidia A.; Autreto, Pedro A.S.; Paupitz, Ricardo; Galvão, Douglas S.; Jorio, Ado

    2015-01-01

    Gold is a noble metal that, in comparison with silver and copper, has the advantage of corrosion resistance. Despite its high conductivity, chemical stability and biocompatibility, gold exhibits high plasticity, which limits its applications in some nanodevices. Here, we report an experimental and theoretical study on how to attain enhanced mechanical stability of gold nanotips. The gold tips were fabricated by chemical etching and further encapsulated with carbon nanocones via nanomanipulation. Atomic force microscopy experiments were carried out to test their mechanical stability. Molecular dynamics simulations show that the encapsulated nanocone changes the strain release mechanisms at the nanoscale by blocking gold atomic sliding, redistributing the strain along the whole nanostructure. The carbon nanocones are conducting and can induce magnetism, thus opening new avenues on the exploitation of transport, mechanical and magnetic properties of gold covered by sp2 carbon at the nanoscale. PMID:26083864

  7. Geomechanics of fracture caging in wellbores

    NASA Astrophysics Data System (ADS)

    Weijermars, Ruud; Zhang, Xi; Schultz-Ela, Dan

    2013-06-01

    This study highlights the occurrence of so-called `fracture cages' around underbalanced wellbores, where fractures cannot propagate outwards due to unfavourable principal stress orientations. The existence of such cages is demonstrated here by independent analytical and numerical methods. We explain the fracture caging mechanism and pinpoint the physical parameters and conditions for its control. This new insight has great practical relevance for the effectiveness and safety of drilling operations in general, and hydraulic fracturing in particular. Fracture caging runaway poses a hazard for drilling operations in overpressured formations. Recognition of the fracture caging mechanism also opens up new opportunities for controlled engineering of its effects by the manipulation of the Frac number in wells in order to bring more precision in the fracking process of tight formations.

  8. Enhanced catalyst stability for cyclic co methanation operations

    DOEpatents

    Risch, Alan P.; Rabo, Jule A.

    1983-01-01

    Carbon monoxide-containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is thereafter reacted with steam or hydrogen to form methane. Enhanced catalyst stability for long term, cyclic operation is obtained by the incorporation of an alkali or alkaline earth dopant in a silica binding agent added to the catalyst-support additive composition.

  9. Stability of focal adhesion enhanced by its inner force fluctuation

    NASA Astrophysics Data System (ADS)

    Mao, Zhi-Xiu; Chen, Xiao-Feng; Chen, Bin

    2015-08-01

    Cells actively sense and respond to mechanical signals from the extracellular matrix through focal adhesions. By representing a single focal adhesion as a cluster of slip bonds, it has been demonstrated that the cluster often became unstable under fluctuated forces. However, an unusual case was also reported, where the stability of the cluster might be substantially enhanced by a fluctuated force with a relatively low fluctuation frequency and high fluctuation amplitude. Such an observation cannot be explained by the conventional fracture theory of fatigue. Here, we intensively investigate this intriguing observation by carrying out systematic parametric studies. Our intensive simulation results indicate that stability enhancement of this kind is in fact quite robust, which can be affected by the stochastic features of a single bond and the profile of the fluctuated forces such as the average value of bond force. We then suggest that the fluctuation of traction force within a focal adhesion might enhance its stability in a certain way. Project supported by the National Natural Science Foundation of China (Grant No.*11372279).

  10. Dispersive Elements for Enhanced Laser Gyroscopy and Cavity Stabilization

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Chang, Hongrok; Diels, J. C.

    2007-01-01

    We analyze the effect of a highly dispersive element placed inside a modulated optical cavity on the frequency and amplitude of the modulation to determine the conditions for cavity self-stabilization and enhanced gyroscopic sensitivity. We find an enhancement in the sensitivity of a laser gyroscope to rotation for normal dispersion, while anomalous dispersion can be used to self-stabilize an optical cavity. Our results indicate that atomic media, even coherent superpositions in multilevel atoms, are of limited use for these applications, because the amplitude and phase filters work against one another, i.e., decreasing the modulation frequency increases its amplitude and vice-versa. On the other hand, for optical resonators the dispersion reversal associated with critical coupling enables the amplitude and phase filters to work together. We find that for over-coupled resonators, the absorption and normal dispersion on-resonance increase the contrast and frequency of the beat-note, respectively, resulting in a substantial enhancement of the gyroscopic response. Under-coupled resonators can be used to stabilize the frequency of a laser cavity, but result in a concomitant increase in amplitude fluctuations. As a more ideal solution we propose the use of a variety of coupled-resonator-induced transparency that is accompanied by anomalous dispersion.

  11. Enhanced bioavailability of atorvastatin calcium from stabilized gastric resident formulation.

    PubMed

    Khan, Furquan Nazimuddin; Dehghan, Mohamed Hassan G

    2011-12-01

    Oral bioavailability of atorvastatin calcium (ATC) is very low (only 14%) due to instability and incomplete intestinal absorption and/or extensive gut wall extraction. When ATC is packed in the form of tablets, powders, etc., it gets destabilized as it is exposed to the oxidative environment, which is usually present during the production process, the storage of the substance, and the pharmaceutical formulation. Therefore, stabilized gastro-retentive floating tablets of ATC were prepared to enhance bioavailability. Water sorption and viscosity measurement studies are performed to get the best polymer matrix for gastro-retention. A 3(2) factorial design used to prepare optimized formulation of ATC. The selected excipients such as docusate sodium enhanced the stability and solubility of ATC in gastric media and tablet dosage form. The best formulation (F4) consisting of hypromellose, sodium bicarbonate, polyethylene oxide, docusate sodium, mannitol, crosscarmellose sodium, and magnesium stearate, gave floating lag time of 56 ± 4.16 s and good matrix integrity with in vitro dissolution of 98.2% in 12 h. After stability studies, no significant change was observed in stability, solubility, floating lag time, total floating duration, matrix integrity, and sustained drug release rates, as confirmed by DSC and powder X-ray diffraction studies. In vivo pharmacokinetic study performed in rabbits revealed enhanced bioavailability of F4 floating tablets, about 1.6 times compared with that of the conventional tablet (Storvas® 80 mg tablet). These results suggest that the gastric resident formulation is a promising approach for the oral delivery of ATC for improving bioavailability. PMID:21879394

  12. Enhanced structural stability of nanoporous zirconia under irradiation of He

    SciTech Connect

    Yang, Tengfei; Huang, Xuejun; Wang, Chenxu; Zhang, Yanwen; Xue, Jianming; Yan, Sha; Wang, Yuguang

    2012-01-01

    This work reports a greatly enhanced tolerance for He irradiation-induced swelling in nanocrystalline zirconia film with interconnected nanoporous structure (hereinafter referred as to NC-C). Compared to bulk yttria-stabilized zirconia (YSZ) and another nanocrystalline zirconia film only with discrete nano voids (hereinafter referred as to NC-V), the NC-C film reveals good tolerance for irradiation of high-fluence He. No appreciable surface blistering can be found even at the highest fluence of 6 1017 cm2 in NCC film. From TEM analysis of as-irradiated samples, the enhanced tolerance for volume swelling in NCC film is attributed to the enhanced diffusion mechanism of deposited He via widely distributed nano channels. Furthermore, the growth of grain size is quite small for both nanocrystalline zirconia films after irradiation, which is ascribed to the decreasing of area of grain boundary due to loose structure and low energy of primary knock-on atoms for He ions.

  13. Chemical Effect on Wellbore Instability of Nahr Umr Shale

    PubMed Central

    Nie, Zhen

    2013-01-01

    Wellbore instability is one of the major problems that hamper the drilling speed in Halfaya Oilfield. Comprehensive analysis of geological and engineering data indicates that Halfaya Oilfield features fractured shale in the Nahr Umr Formation. Complex accidents such as wellbore collapse and sticking emerged frequently in this formation. Tests and theoretical analysis revealed that wellbore instability in the Halfaya Oilfield was influenced by chemical effect of fractured shale and the formation water with high ionic concentration. The influence of three types of drilling fluids on the rock mechanical properties of Nahr Umr Shale is tested, and time-dependent collapse pressure is calculated. Finally, we put forward engineering countermeasures for safety drilling in Halfaya Oilfield and point out that increasing the ionic concentration and improving the sealing capacity of the drilling fluid are the way to keep the wellbore stable. PMID:24282391

  14. Advanced wellbore thermal simulator GEOTEMP2 research report

    SciTech Connect

    Mitchell, R.F.

    1982-02-01

    The development of the GEOTEMP2 wellbore thermal simulator is described. The major technical features include a general purpose air and mist drilling simulator and a two-phase steam flow simulator that can model either injection or production.

  15. Enhancing protein stability by adsorption onto raftlike lipid domains.

    PubMed

    Litt, Jeffrey; Padala, Chakradhar; Asuri, Prashanth; Vutukuru, Srinavya; Athmakuri, Krishna; Kumar, Sanat; Dordick, Jonathan; Kane, Ravi S

    2009-05-27

    We demonstrate that the stability of adsorbed proteins can be enhanced by controlling the heterogeneity of the surfaceby creating raftlike domains in a soft liposomal membrane. Recent work has shown that enzymes adsorbed onto highly curved nanoscale supports can be more stable than those adsorbed on flat surfaces with nominally the same chemical structure. This effect has been attributed to a decrease in lateral interenzyme interactions on a curved surface. Exploiting this idea, we asked if adsorbing enzymes onto "patchy" surfaces composed of adsorbing and nonadsorbing regions can be used to reduce lateral interactions even on relatively flat surfaces. We demonstrate that creating domains on which an enzyme can adsorb enhances the stability of that enzyme under denaturing conditions. Furthermore, we demonstrate that the size of these domains has a considerable effect on the degree of stability imparted by adsorption. Such biomimetic raft-inspired systems may find use in applications ranging from biorecognition to the design of novel strategies for the separation of biomolecules and controlling the interaction of multicomponent membrane-bound enzymes. PMID:19385631

  16. Advanced wellbore thermal simulator: GEOTEMP2 user manual

    SciTech Connect

    Mitchell, R.F.

    1982-02-01

    GEOTEMP2 is a wellbore thermal simulator designed for geothermal well drilling and production problems. GEOTEMP2 includes the following features: fully transient heat conduction, wellbore fluid flow options, well completion options, and drilling-production histories. The data input format is given, along with input examples and comments on special features of the input. Ten examples that illustrate all of the flowing options and input options in GEOTEMP2 are included.

  17. Enhanced thermal stability of phosphate capped magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Muthukumaran, T.; Philip, John

    2014-06-01

    We have studied the effect of phosphate capping on the high temperature thermal stability and magnetic properties of magnetite (Fe3O4) nanoparticles synthesized through a single-step co-precipitation method. The prepared magnetic nanoparticles are characterized using various techniques. When annealed in air, the phosphate capped nanoparticle undergoes a magnetic to non-magnetic phase transition at a temperature of 689 °C as compared to 580 °C in the uncoated nanoparticle of similar size. The observed high temperature phase stability of phosphate capped nanoparticle is attributed to the formation of a phosphocarbonaceous shell over the nanoparticles, which acts as a covalently attached protective layer and improves the thermal stability of the core material by increasing the activation energy. The phosphocarbonaceous shell prevents the intrusion of heat, oxygen, volatiles, and mass into the magnetic core. At higher temperatures, the coalescence of nanoparticles occurs along with the restructuring of the phosphocarbonaceous shell into a vitreous semisolid layer on the nanoparticles, which is confirmed from the small angle X-ray scattering, Fourier transform infra red spectroscopy, and transmission electron microscopy measurements. The probable mechanism for the enhancement of thermal stability of phosphocarbonaceous capped nanoparticles is discussed.

  18. Enhanced thermal stability of phosphate capped magnetite nanoparticles

    SciTech Connect

    Muthukumaran, T.; Philip, John

    2014-06-14

    We have studied the effect of phosphate capping on the high temperature thermal stability and magnetic properties of magnetite (Fe{sub 3}O{sub 4}) nanoparticles synthesized through a single-step co-precipitation method. The prepared magnetic nanoparticles are characterized using various techniques. When annealed in air, the phosphate capped nanoparticle undergoes a magnetic to non-magnetic phase transition at a temperature of 689 °C as compared to 580 °C in the uncoated nanoparticle of similar size. The observed high temperature phase stability of phosphate capped nanoparticle is attributed to the formation of a phosphocarbonaceous shell over the nanoparticles, which acts as a covalently attached protective layer and improves the thermal stability of the core material by increasing the activation energy. The phosphocarbonaceous shell prevents the intrusion of heat, oxygen, volatiles, and mass into the magnetic core. At higher temperatures, the coalescence of nanoparticles occurs along with the restructuring of the phosphocarbonaceous shell into a vitreous semisolid layer on the nanoparticles, which is confirmed from the small angle X-ray scattering, Fourier transform infra red spectroscopy, and transmission electron microscopy measurements. The probable mechanism for the enhancement of thermal stability of phosphocarbonaceous capped nanoparticles is discussed.

  19. Enhanced stability of catalase covalently immobilized on functionalized titania submicrospheres.

    PubMed

    Wu, Hong; Liang, Yanpeng; Shi, Jiafu; Wang, Xiaoli; Yang, Dong; Jiang, Zhongyi

    2013-04-01

    In this study, a novel approach combing the chelation and covalent binding was explored for facile and efficient enzyme immobilization. The unique capability of titania to chelate with catecholic derivatives at ambient conditions was utilized for titania surface functionalization. The functionalized titania was then used for enzyme immobilization. Titania submicrospheres (500-600 nm) were synthesized by a modified sol-gel method and functionalized with carboxylic acid groups through a facile chelation method by using 3-(3,4-dihydroxyphenyl) propionic acid as the chelating agent. Then, catalase (CAT) was covalently immobilized on these functionalized titania submicrospheres through 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) coupling reaction. The immobilized CAT retained 65% of its free form activity with a loading capacity of 100-150 mg/g titania. The pH stability, thermostability, recycling stability and storage stability of the immobilized CAT were evaluated. A remarkable enhancement in enzyme stability was achieved. The immobilized CAT retained 90% and 76% of its initial activity after 10 and 16 successive cycles of decomposition of hydrogen peroxide, respectively. Both the Km and the Vmax values of the immobilized CAT (27.4 mM, 13.36 mM/min) were close to those of the free CAT (25.7 mM, 13.46 mM/min). PMID:23827593

  20. Optimized Design and Use of Induced Complex Fractures in Horizontal Wellbores of Tight Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Zeng, F. H.; Guo, J. C.

    2016-04-01

    Multistage hydraulic fracturing is being increasing use in the establishment of horizontal wells in tight gas reservoirs. Connecting hydraulic fractures to natural and stress-induced fractures can further improve well productivity. This paper investigates the fracture treatment design issues involved in the establishment of horizontal wellbores, including the effects of geologic heterogeneity, perforation parameters, fracturing patterns, and construction parameters on stress anisotropy during hydraulic fracturing and on natural fractures during hydraulic fracture propagation. The extent of stress reversal and reorientation was calculated for fractures induced by the creation of one or more propped fractures. The effects of stress on alternate and sequential fracturing horizontal well and on the reservoir's mechanical properties, including the spatial extent of stress reorientation caused by the opening of fractures, were assessed and quantified. Alternate sequencing of transverse fractures was found to be an effective means of enhancing natural fracture stimulation by allowing fractures to undergo less stress contrast during propagation. The goal of this paper was to present a new approach to design that optimizes fracturing in a horizontal wellbore from the perspectives of both rock mechanics and fluid production. The new design is a modified version of alternate fracturing, where the fracture-initiation sequence was controlled by perforation parameters with a staggered pattern within a horizontal wellbore. Results demonstrated that the modified alternate fracturing performed better than original sequence fracturing and that this was because it increased the contact area and promoted more gas production in completed wells.

  1. Enhancing collagen stability through nanostructures containing chromium(III) oxide.

    PubMed

    Sangeetha, Selvam; Ramamoorthy, Usha; Sreeram, Kalarical Janardhanan; Nair, Balachandran Unni

    2012-12-01

    Stabilization of collagen for various applications employs chemicals such as aldehydes, metal ions, polyphenols, etc. Stability against enzymatic, thermal and mechanical degradation is required for a range of biomedical applications. The premise of this research is to explore the use of nanoparticles with suitable functionalization/encapsulation to crosslink with collagen, such that the three dimensional architecture had the desired stability. Collagen solution prepared as per standard protocols is treated with chromium(III) oxide nanoparticules encapsulated within a polymeric matrix (polystyrene-block-polyacrylic acid copolymer). Selectivity towards encapsulation was ensured by the reaction in dimethyl sulfoxide, where the PS groups popped out and encapsulated the Cr(2)O(3). Subsequently when immersed in aqueous solution, PAA units popped up to react with functional groups of collagen. The interaction with collagen was monitored through techniques such as CD, FTIR, viscosity measurements, stress analysis. CD studies and FTIR showed no degradation of collagen. Thermal stability was enhanced upon interaction of nanostructures with collagen. Self-assembly of collagen was delayed but not inhibited, indicating a compete binding of the metal oxide encapsulated polymer to collagen. Metal oxide nanoparticles encapsulated within a polymeric matrix could provide thermal and mechanical stability to collagen. The formed fibrils of collagen could serve as ideal material for various smart applications such as slow/sustained drug release. The study is also relevant to the leather industry in that the nanostructures can diffuse through the highly networked collagen fibre bundles in skin matrix easily, thus overcoming the rate limiting step of diffusion. PMID:22766281

  2. Does a crouched leg posture enhance running stability and robustness?

    PubMed

    Blum, Yvonne; Birn-Jeffery, Aleksandra; Daley, Monica A; Seyfarth, Andre

    2011-07-21

    Humans and birds both walk and run bipedally on compliant legs. However, differences in leg architecture may result in species-specific leg control strategies as indicated by the observed gait patterns. In this work, control strategies for stable running are derived based on a conceptual model and compared with experimental data on running humans and pheasants (Phasianus colchicus). From a model perspective, running with compliant legs can be represented by the planar spring mass model and stabilized by applying swing leg control. Here, linear adaptations of the three leg parameters, leg angle, leg length and leg stiffness during late swing phase are assumed. Experimentally observed kinematic control parameters (leg rotation and leg length change) of human and avian running are compared, and interpreted within the context of this model, with specific focus on stability and robustness characteristics. The results suggest differences in stability characteristics and applied control strategies of human and avian running, which may relate to differences in leg posture (straight leg posture in humans, and crouched leg posture in birds). It has been suggested that crouched leg postures may improve stability. However, as the system of control strategies is overdetermined, our model findings suggest that a crouched leg posture does not necessarily enhance running stability. The model also predicts different leg stiffness adaptation rates for human and avian running, and suggests that a crouched avian leg posture, which is capable of both leg shortening and lengthening, allows for stable running without adjusting leg stiffness. In contrast, in straight-legged human running, the preparation of the ground contact seems to be more critical, requiring leg stiffness adjustment to remain stable. Finally, analysis of a simple robustness measure, the normalized maximum drop, suggests that the crouched leg posture may provide greater robustness to changes in terrain height. PMID

  3. Dramatic pressure-driven enhancement of bulk skyrmion stability.

    PubMed

    Levatić, I; Popčević, P; Šurija, V; Kruchkov, A; Berger, H; Magrez, A; White, J S; Rønnow, H M; Živković, I

    2016-01-01

    The recent discovery of magnetic skyrmion lattices initiated a surge of interest in the scientific community. Several novel phenomena have been shown to emerge from the interaction of conducting electrons with the skyrmion lattice, such as a topological Hall-effect and a spin-transfer torque at ultra-low current densities. In the insulating compound Cu2OSeO3, magneto-electric coupling enables control of the skyrmion lattice via electric fields, promising a dissipation-less route towards novel spintronic devices. One of the outstanding fundamental issues is related to the thermodynamic stability of the skyrmion lattice. To date, the skyrmion lattice in bulk materials has been found only in a narrow temperature region just below the order-disorder transition. If this narrow stability is unavoidable, it would severely limit applications. Here we present the discovery that applying just moderate pressure on Cu2OSeO3 substantially increases the absolute size of the skyrmion pocket. This insight demonstrates directly that tuning the electronic structure can lead to a significant enhancement of the skyrmion lattice stability. We interpret the discovery by extending the previously employed Ginzburg-Landau approach and conclude that change in the anisotropy is the main driver for control of the size of the skyrmion pocket. PMID:26892190

  4. Dramatic pressure-driven enhancement of bulk skyrmion stability

    PubMed Central

    Levatić, I.; Popčević, P.; Šurija, V.; Kruchkov, A.; Berger, H.; Magrez, A.; White, J. S.; Rønnow, H. M.; Živković, I.

    2016-01-01

    The recent discovery of magnetic skyrmion lattices initiated a surge of interest in the scientific community. Several novel phenomena have been shown to emerge from the interaction of conducting electrons with the skyrmion lattice, such as a topological Hall-effect and a spin-transfer torque at ultra-low current densities. In the insulating compound Cu2OSeO3, magneto-electric coupling enables control of the skyrmion lattice via electric fields, promising a dissipation-less route towards novel spintronic devices. One of the outstanding fundamental issues is related to the thermodynamic stability of the skyrmion lattice. To date, the skyrmion lattice in bulk materials has been found only in a narrow temperature region just below the order-disorder transition. If this narrow stability is unavoidable, it would severely limit applications. Here we present the discovery that applying just moderate pressure on Cu2OSeO3 substantially increases the absolute size of the skyrmion pocket. This insight demonstrates directly that tuning the electronic structure can lead to a significant enhancement of the skyrmion lattice stability. We interpret the discovery by extending the previously employed Ginzburg-Landau approach and conclude that change in the anisotropy is the main driver for control of the size of the skyrmion pocket. PMID:26892190

  5. Dramatic pressure-driven enhancement of bulk skyrmion stability

    NASA Astrophysics Data System (ADS)

    Levatić, I.; Popčević, P.; Šurija, V.; Kruchkov, A.; Berger, H.; Magrez, A.; White, J. S.; Rønnow, H. M.; Živković, I.

    2016-02-01

    The recent discovery of magnetic skyrmion lattices initiated a surge of interest in the scientific community. Several novel phenomena have been shown to emerge from the interaction of conducting electrons with the skyrmion lattice, such as a topological Hall-effect and a spin-transfer torque at ultra-low current densities. In the insulating compound Cu2OSeO3, magneto-electric coupling enables control of the skyrmion lattice via electric fields, promising a dissipation-less route towards novel spintronic devices. One of the outstanding fundamental issues is related to the thermodynamic stability of the skyrmion lattice. To date, the skyrmion lattice in bulk materials has been found only in a narrow temperature region just below the order-disorder transition. If this narrow stability is unavoidable, it would severely limit applications. Here we present the discovery that applying just moderate pressure on Cu2OSeO3 substantially increases the absolute size of the skyrmion pocket. This insight demonstrates directly that tuning the electronic structure can lead to a significant enhancement of the skyrmion lattice stability. We interpret the discovery by extending the previously employed Ginzburg-Landau approach and conclude that change in the anisotropy is the main driver for control of the size of the skyrmion pocket.

  6. Experimental and Computational Studies of Coupled Geomechanical and Hydrologic Processes in Wellbore Systems (Invited)

    NASA Astrophysics Data System (ADS)

    Carey, J. W.; Mori, H.; Porter, M. L.; Lewis, K. C.; Kelkar, S.

    2013-12-01

    cement, the cement-rock interface, caprock, and reservoir rock. We used a model that is 1 m in radius, and extends 5 m along the wellbore. The model consisted of a lower storage aquifer, a caprock and an upper aquifer that received leaking fluids. We coupled flow and geomechanics using a shear-failure model that represents shear-induced damage and is similar to a Mohr-Coulomb slip mechanism. In this model, damage occurs for any excess shear stress with permeability enhancement a function of stress with a maximum magnitude set by the user. Stresses were induced by application of an elevated constant pressure within the injection reservoir representing a far-field injection process. The initial permeability of the cement was 1 mD and stress-enhanced permeability was limited to an increase by a factor of 10-100. The simulations show that shear-failure modes lead to enhanced permeability of the wellbore system. Continuing work will examine sensitivity of the results to mechanical properties and initial permeability distributions, the impact of relative permeability models, and the development of permeability-stress models including an aperture-opening tensile-failure model.

  7. Stability Enhancement of Polymeric Sensing Films Using Fillers

    NASA Technical Reports Server (NTRS)

    Lin, Brian; Shevade, Abhijit; Ryan, Margaret Amy; Kisor, Adam; Yen, Shiao-Pin; Manatt, Kenneth; Homer, Margie; Fleurial, Jean-Pierre

    2006-01-01

    Experiments have shown the stability enhancement of polymeric sensing films on mixing the polymer with colloidal filler particles (submicron-sized) of carbon black, silver, titanium dioxide, and fumed silicon dioxide. The polymer films are candidates for potential use as sensing media in micro/nano chemical sensor devices. The need for stability enhancement of polymer sensing films arises because such films have been found to exhibit unpredictable changes in sensing activity over time, which could result in a possible failure of the sensor device. The changes in the physical properties of a polymer sensing film caused by the sorption of a target molecule can be measured by any of several established transduction techniques: electrochemical, optical, calorimetric, or piezoelectric, for example. The transduction technique used in the current polymer stability experiments is based on piezoelectric principles using a quartz-crystal microbalance (QCM). The surface of the QCM is coated with the polymer, and the mass uptake by the polymer film causes a change in the oscillating frequency of the quartz crystal. The polymer used for the current study is ethyl cellulose. The polymer/ polymer composite solutions were prepared in 1,3 dioxolane solvent. The filler concentration was fixed at 10 weight percent for the composites. The polymer or polymer composite solutions were cast on the quartz crystal having a fundamental frequency of about 6 MHz. The coated crystal was subjected to a multistage drying process to remove all measurable traces of the solvent. In each experiment, the frequency of oscillation was measured while the QCM was exposed to clean, dry, flowing air for about 30 minutes, then to air containing a known concentration of isopropanol for about 30 minutes, then again to clean dry air for about 30 minutes, and so forth. This cycle of measurements for varying isopropanol concentrations was repeated at intervals for several months. The figure depicts some of the

  8. Enhanced structural stability of DNA origami nanostructures by graphene encapsulation

    NASA Astrophysics Data System (ADS)

    Matković, Aleksandar; Vasić, Borislav; Pešić, Jelena; Prinz, Julia; Bald, Ilko; Milosavljević, Aleksandar R.; Gajić, Radoš

    2016-02-01

    We demonstrate that a single-layer graphene replicates the shape of DNA origami nanostructures very well. It can be employed as a protective layer for the enhancement of structural stability of DNA origami nanostructures. Using the AFM based manipulation, we show that the normal force required to damage graphene encapsulated DNA origami nanostructures is over an order of magnitude greater than for the unprotected ones. In addition, we show that graphene encapsulation offers protection to the DNA origami nanostructures against prolonged exposure to deionized water, and multiple immersions. Through these results we demonstrate that graphene encapsulated DNA origami nanostructures are strong enough to sustain various solution phase processing, lithography and transfer steps, thus extending the limits of DNA-mediated bottom-up fabrication.

  9. Low dose tunicamycin enhances atherosclerotic plaque stability by inducing autophagy.

    PubMed

    Ma, Meijuan; Song, Liqiang; Yan, Hao; Liu, Min; Zhang, Le; Ma, Ying; Yuan, Jian; Hu, Jianhua; Ji, Zhaole; Zhang, Rongqing; Li, Congye; Wang, Haichang; Tao, Ling; Zhang, Yingmei; Li, Yan

    2016-01-15

    After decades of indolent progression, atherosclerosis may cause unheralded events, such as myocardial infarction, acute coronary syndrome and stroke due to sudden rupture of atherosclerotic plaques, and pharmacologically modulating plaque stability would reduce the risk of cardiovascular diseases. Endoplasmic reticulum stress (ERS) is responsible for the vulnerability of plaques. However, the underlying mechanism has not been fully elucidated. In this work, ApoE(-/-) mice underwent perivascular carotid collar placement surgeries or sham operations were given higher (3.0mg/kg) and lower (0.3mg/kg) doses of tunicamycin (TM), and plaque stability was evaluated. It was shown that lower TM-treated animals exhibited reduced plaque areas and necrotic cores as well as fibrous cap thickness accompanied by a lower percentage of infiltrates and foam cells than the sham-operated and higher TM treated animals. Lower TM had a profound inhibitory effect on plasma inflammatory response and lipid profile in atherosclerotic ApoE(-/-) mice. In addition, we found that the ApoE(-/-) mice presented higher autophagy activity in response to lower TM administration while apoptosis was reduced. An in vitro study in murine macrophages revealed that lower TM could markedly reduce lipid uptake and accumulation and cell apoptosis while significantly upregulated the expression of Atg7. However, higher TM had adverse effects. Finally, mild induction of ERS by lower TM inhibits AKT-TSC-mTOR cascades to increase cellular autophagy. However, high TM failed to enhance autophagy and equilibrate elevated CHOP-mediated cell death in spite of the inhibition of AKT-TSC-mTOR signaling. In conclusion, lower TM stabilized plaques by activating autophagy through AKT-TSC-mTOR signaling. PMID:26616221

  10. Regional-scale advective, diffusive, and eruptive dynamics of CO2 and brine leakage through faults and wellbores

    NASA Astrophysics Data System (ADS)

    Jung, Na-Hyun; Han, Weon Shik; Han, Kyungdoe; Park, Eungyu

    2015-05-01

    Regional-scale advective, diffusive, and eruptive transport dynamics of CO2 and brine within a natural analogue in the northern Paradox Basin, Utah, were explored by integrating numerical simulations with soil CO2 flux measurements. Deeply sourced CO2 migrates through steeply dipping fault zones to the shallow aquifers predominantly as an aqueous phase. Dense CO2-rich brine mixes with regional groundwater, enhancing CO2 dissolution. Linear stability analysis reveals that CO2 could be dissolved completely within only ~500 years. Assigning lower permeability to the fault zones induces fault-parallel movement, feeds up-gradient aquifers with more CO2, and impedes down-gradient fluid flow, developing anticlinal CO2 traps at shallow depths (<300 m). The regional fault permeability that best reproduces field spatial CO2 flux variation is estimated 1 × 10-17 ≤ kh < 1 × 10-16 m2 and 5 × 10-16 ≤ kv < 1 × 10-15 m2. The anticlinal trap serves as an essential fluid source for eruption at Crystal Geyser. Geyser-like discharge sensitively responds to varying well permeability, radius, and CO2 recharge rate. The cyclic behavior of wellbore CO2 leakage decreases with time.

  11. The influence of wellbore inflow on electromagnetic borehole flowmeter measurements.

    PubMed

    Clemo, Tom; Barrash, Warren; Reboulet, Edward C; Johnson, Timothy C; Leven, Carsten

    2009-01-01

    This paper describes a combined field, laboratory, and numerical study of electromagnetic borehole flowmeter measurements acquired without the use of a packer or skirt to block bypass flow around the flowmeter. The most significant finding is that inflow through the wellbore screen changes the ratio of flow through the flowmeter to wellbore flow. Experiments reveal up to a factor of two differences in this ratio for conditions with and without inflow through the wellbore screen. Standard practice is to assume the ratio is constant. A numerical model has been developed to simulate the effect of inflow on the flowmeter. The model is formulated using momentum conservation within the borehole and around the flowmeter. The model is embedded in the MODFLOW-2000 ground water flow code. PMID:19341370

  12. Controls of Wellbore Flow Regimes on Pump Effluent Composition

    SciTech Connect

    James Martin-Hayden; plummer; Sanford Britt

    2014-01-01

    Where well water and formation water are compositionally different or heterogeneous, pump effluent composition will vary due to partial mixing and transport induced by pumping. Investigating influences of purging and sampling methodology on composition variability requires quantification of wellbore flow regimes and mixing. As a basis for this quantification, analytical models simulating Poiseuille flow were developed to calculate flow paths and travel times. Finite element modeling was used to incorporate influences of mixing. Parabolic velocity distributions within the screened interval accelerate with cumulative inflow approaching the pump intake while an annulus of inflowing formation water contracts uniformly to displace an axial cylinder of pre-pumping well water as pumping proceeds. Increased dispersive mixing forms a more diffuse formation water annulus and the contribution of formation water to pump effluent increases more rapidly. Models incorporating viscous flow and diffusion scale mixing show that initially pump effluent is predominantly pre-pumping well water and compositions vary most rapidly. After two screen volumes of pumping, 94% of pump effluent is inflowing formation water. Where the composition of formation water and pre-pumping well water are likely to be similar, pump effluent compositions will not vary significantly and may be collected during early purging or with passive sampling. However, where these compositions are expected to be considerably different or heterogeneous, compositions would be most variable during early pumping, that is, when samples are collected during low-flow sampling. Purging of two screen volumes would be required to stabilize the content and collect a sample consisting of 94% formation water.

  13. Microwave Heating of Functionalized Graphene Nanoribbons in Thermoset Polymers for Wellbore Reinforcement.

    PubMed

    Kim, Nam Dong; Metzger, Andrew; Hejazi, Vahid; Li, Yilun; Kovalchuk, Anton; Lee, Seoung-Ki; Ye, Ruquan; Mann, Jason A; Kittrell, Carter; Shahsavari, Rouzbeh; Tour, James M

    2016-05-25

    Here, we introduce a systematic strategy to prepare composite materials for wellbore reinforcement using graphene nanoribbons (GNRs) in a thermoset polymer irradiated by microwaves. We show that microwave absorption by GNRs functionalized with poly(propylene oxide) (PPO-GNRs) cured the composite by reaching 200 °C under 30 W of microwave power. Nanoscale PPO-GNRs diffuse deep inside porous sandstone and dramatically enhance the mechanics of the entire structure via effective reinforcement. The bulk and the local mechanical properties measured by compression and nanoindentation mechanical tests, respectively, reveal that microwave heating of PPO-GNRs and direct polymeric curing are major reasons for this significant reinforcement effect. PMID:27140722

  14. Wellbore-wall compression effects on monitored groundwater levels and qualities.

    PubMed

    Eguchi, S; Sawamoto, M; Shiba, M; Iiyama, I; Hasegawa, S

    2013-01-01

    The effects of wellbore-wall compression from rough excavation on monitored groundwater levels and qualities under natural hydraulic gradient conditions were investigated in a shallow clayey Andisol aquifer. Nine wellbores reaching the underlying aquitard at about 2.6-m depth were constructed by dynamic cone penetrometry to mimic rough wellbore construction. Five of these were constructed under wet aquifer soil conditions and the remaining four under dry conditions. A 15-month period monitoring showed that the groundwater levels in the wellbores constructed under wet conditions responded significantly in retard of, and in narrower ranges than, those constructed under dry conditions. The wellbore-wall hydraulic conductivities at the former wellbores were calculated to be more than one to two orders of magnitude lower than those at the latter ones. Furthermore, remarkable nitrate removal attributable to the occurrence of a heterotrophic denitrification was observed in one of the former wellbores. In contrast, the groundwater levels and qualities in the latter wellbores appeared to be generally similar to those monitored in the conventional soil coring and augering-derived wellbores. Our results suggest that the wellbore-wall compression induced by rough excavation under wet and soft aquifer soil conditions leads to a substantial decrease in the wellbore-wall hydraulic conductivity, which in turn can lead to unreliable groundwater levels and qualities. This problem can occur in clayey Andisols whenever the aquifer soil is wet; however, the problem can be largely avoided by constructing the wellbore under dry and hard aquifer soil conditions. PMID:22924593

  15. Calmodulin enhances the stability of the estrogen receptor.

    PubMed

    Li, Z; Joyal, J L; Sacks, D B

    2001-05-18

    The estrogen receptor mediates breast cell proliferation and is the principal target for chemotherapy of breast carcinoma. Previous studies have demonstrated that the estrogen receptor binds to calmodulin-Sepharose in vitro. However, the association of endogenous calmodulin with endogenous estrogen receptors in intact cells has not been reported, and the function of the interaction is obscure. Here we demonstrate by co-immunoprecipitation from MCF-7 human breast epithelial cells that endogenous estrogen receptors bind to endogenous calmodulin. Estradiol treatment of the cells had no significant effect on the interaction. However, incubation of the cells with tamoxifen enhanced by 5-10-fold the association of calmodulin with the estrogen receptor and increased the total cellular content of estrogen receptors by 1.5-2-fold. In contrast, the structurally distinct calmodulin antagonists trifluoperazine and CGS9343B attenuated the interaction between calmodulin and the estrogen receptor and dramatically reduced the number of estrogen receptors in the cell. Neither of these agents altered the amount of estrogen receptor mRNA, suggesting that calmodulin stabilizes the protein. This hypothesis is supported by the observation that, in the presence of Ca2+, calmodulin protected estrogen receptors from in vitro proteolysis by trypsin. Furthermore, overexpression of wild type calmodulin, but not a mutant calmodulin incapable of binding Ca2+, increased the concentration of estrogen receptors in MCF-7 cells, whereas transient expression of a calmodulin inhibitor peptide reduced the estrogen receptor concentration. These data demonstrate that calmodulin binds to the estrogen receptor in intact cells in a Ca2+-dependent, but estradiol-independent, manner, thereby modulating the stability and the steady state level of estrogen receptors. PMID:11278648

  16. CO2-saturated brine reactivity at the Portland cement-shale interface and the integrity of wellbore systems

    NASA Astrophysics Data System (ADS)

    Carey, J. W.; Lichtner, P. C.; Wigand, M. O.

    2006-12-01

    Long-term geologic storage of CO2 requires trapping the buoyant CO2 plume beneath impermeable caprocks such as shale. Given a high-quality caprock, wells that penetrate the caprock represent the most significant potential leak point in the sequestration system. This is particularly so because the Portland cement used to create the primary fluid barrier in the wellbore system is reactive with CO2 and may degrade over time. In this study, we used a combination of field observations obtained at the SACROC Unit in West Texas (the oldest CO2-enhanced oil recovery field in the US), experimental studies of cement-CO2-brine interactions, and numerical modeling to investigate the stability of the primary seal. The field observations and the recognition of the large thickness of Portland cement used in the wellbore annulus shows that the primary concern for potential leakage is not matrix flow due to carbonation of the Portland cement, but is the interfaces between the casing and cement and the cement and caprock. We focused on the dynamics of the cement- caprock interface in this study. Both field observations and experiments show that cement carbonation is accompanied by loss of primary cement phases such as portlandite and their replacement by a combination of carbonate minerals (calcite, aragonite, vaterite, and dolomite) and an amorphous alumino-silica residue. The carbonation reaction is accompanied by a transformation of the cement to a distinctive orange color. We have used the field and laboratory observations to construct a numerical model of carbonation at the cement-shale interface. The initial focus was on obtaining an adequate simulation of the cement alteration mineralogy with a 1-D, diffusion-based model. The primary variables controlling the reaction characteristics were porosity, tortuosity, and mineral reaction rates. By suitable adjustment of these parameters, the model successfully reproduces many of the alteration features of the cement including the

  17. Method of placing magnetic markers on collarless cased wellbores

    SciTech Connect

    Wilson, J.G.; Crawford, G.J.

    1986-02-25

    This patent describes a method of marking a wellbore casing in a manner such that the mark can be subsequently detected by a casing collar locator comprising placing a horseshoe-shaped electromagnet adjacent to the casing and energizing the electromagnet producing a magnetic marker at a location between the poles of the electromagnet.

  18. Controlling the pressure within an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E.; Gonzalez, Manuel E.; Llewellyn, Brian C.; Bloys, James B.

    2010-06-29

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  19. Controlling the pressure within an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E.; Gonzalez, Manuel E.; Llewellyn, Brian C.; Bloys, James B.; Coates, Don M.

    2011-05-31

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  20. Controlling the pressure within an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E.; Gonzalez, Manuel E.; Llewellyn, Brian C.; Bloys, James B.

    2008-10-28

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  1. Controlling the pressure within an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E.; Gonzalez, Manuel E.; Llewellyn, Brian C.; Bloys, James B.

    2011-01-18

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  2. Controlling the pressure within an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E.; Gonzalez, Manuel E.; Llewellyn, Brian C.; Bloys, James B.; Coates, Don M.

    2011-06-21

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  3. Wellbore models GWELL, GWNACL, and HOLA: User's guide

    SciTech Connect

    Aunzo, Z.P. . Geothermal Div.); Bjornsson, G. ); Bodvarsson, G.S. )

    1991-10-01

    This report describes three multi-component, multi-feedzone geothermal wellbore simulators developed. These simulators reproduce the measured flowing temperature and pressure profiles in flowing wells and determine the relative contribution, fluid properties (e.g., enthalpy, temperature) and fluid composition (e.g. CO{sub 2}, NaCl) of each feedzone for a given discharge condition. The three related wellbore simulators that will be discussed here are HOLA, GWELL and GWNACL. HOLA is a multi-feedzone geothermal wellbore simulator for pure water, modified after the wellbore simulator developed by Bjornsson, 1987 and can now handle deviated wells. The other two simulators GWELL and GWNACL are modified versions of HOLO that can handle H{sub 2}O CO{sub 2} and H{sub 2}O-NaCl systems, respectively. These simulators can handle both single and two-phase flows in vertical and inclined pipes and calculate the flowing temperature and pressure profiles in the well. The simulators solve numerically the differential equations that describe the steady-state energy, mass and momentum flow in a pipe. The codes allow for multiple feedzones, variable grid spacing and well radius. Theses codes were developed using FORTRAN language on the UNIX system.

  4. Wellbore Models GWELL, GWNACL, and HOLA User's Guide

    SciTech Connect

    Aunzo, Z.P.; Bjornsson, G.; Bodvarsson, G.S.

    1991-10-01

    This report describes three multi-component, multi-feedzone geothermal wellbore simulators developed. These simulators reproduce the measured flowing temperature and pressure profiles in flowing wells and determine the relative contribution, fluid properties (e.g. enthalpy, temperature) and fluid composition (e.g. CO{sub 2}, NaCl) of each feedzone for a given discharge condition. The three related wellbore simulators that will be discussed here are HOLA, GWELL and GWNACL. HOLA is a multi-feedzone geothermal wellbore simulator for pure water, modified after the wellbore simulator developed by Bjornsson, 1987 and can now handle deviated wells. The other two simulators GWELL (see also Aunzo, 1990) and GWNACL are modified versions of HOLA that can handle H{sub 2}O-CO{sub 2} and H{sub 2}O-NaCl systems, respectively. These simulators can handle both single and two-phase flows in vertical and inclined pipes and calculate the flowing temperature and pressure profiles in the well. The simulators solve numerically the differential equations that describe the steady-state energy, mass and momentum flow in a pipe. The codes allow for multiple feedzones, variable grid spacing and well radius. These codes were developed using FORTRAN language on the UNIX system.

  5. Peptide lipidation stabilizes structure to enhance biological function★

    PubMed Central

    Ward, Brian P.; Ottaway, Nickki L.; Perez-Tilve, Diego; Ma, Dejian; Gelfanov, Vasily M.; Tschöp, Matthias H.; DiMarchi, Richard D.

    2013-01-01

    Medicines that decrease body weight and restore nutrient tolerance could improve human diabetes and obesity treatment outcomes. We developed lipid–acylated glucagon analogs that are co-agonists for the glucagon and glucagon-like peptide 1 receptors, and stimulate weight loss and plasma glucose lowering in pre-diabetic obese mice. Our studies identified lipid acylation (lipidation) can increase and balance in vitro potencies of select glucagon analogs for the two aforementioned receptors in a lipidation site-dependent manner. A general capacity for lipidation to enhance the secondary structure of glucagon analogs was recognized, and the energetics of this effect quantified. The molecular structure of a lipid–acylated glucagon analog in water was also characterized. These results support that lipidation can modify biological activity through thermodynamically-favorable intramolecular interactions which stabilize structure. This establishes use of lipidation to achieve specific pharmacology and implicates similar endogenous post-translational modifications as physiological tools capable of refining biological action in means previously underappreciated. PMID:24327962

  6. Observation of enhanced nuclear stability near the 162 neutron shell

    SciTech Connect

    Lougheed, R.W.; Moody, K.J.; Wild, J.F.; Hulet, E.K.; McQuaid, J.H.; Lazarev, Yu.A.; Lobanov, Yu.V.; Oganessian, Yu.Ts.; Utyonkov, V.K.; Abdullin, F.Sh.; Buklanov, G.V.; Gikal, B.N.; Iliev, S.; Mezentsev, A.N.; Polyakov, A.N.; Sedykh, I.M.; Shirokovsky, I.V.; Subbotin, V.G.; Sukhov, A.M.; Tsyganov, Yu.S.; Zhuchko, V.E.

    1993-09-22

    In bombardments of {sup 248}Cm with {sup 22}Ne the authors discovered two new isotopes, {sup 265}106 and {sup 266}106, by establishing genetic links between {alpha} decays of the 106 nuclides and SF or {alpha} decays of the daughter (grand-daughter) nuclides. For {sup 266}106 they measured E{sub {alpha}}=8.62{+-}0.06 MeV followed by the SF decay of {sup 262}104 for which they measured a half-life value of 1.2{sup +1.0}{sub {minus}0.5} s. For {sup 265}106 they measured E{sub {alpha}}=8.82{+-}0.06 MeV. They estimated {alpha} half-lives of 10-30 s for {sup 266}106 and 2-30 s for {sup 265}106 with SF branches of {approximately}50% or less. The decay properties of {sup 266}106 indicate a large enhancement in the SF stability of this N=160 nuclide and confirm the existence of the predicted neutron-deformed shell N=162.

  7. Solar enhanced wastewater treatment in waste stabilization ponds.

    PubMed

    Agunwamba, J C; Utsev, J T; Okonkwo, W I

    2009-05-01

    One of the most popular off-site wastewater treatment plants used in the tropics is the waste stabilization pond (WSP). Although it has several advantages, its use in urban areas is limited because of its large land area requirement. Hence, this research is aimed at investigating if a solar-enhanced WSP (SEWSP) can increase treatment efficiency and consequently reduce the land area requirement. The SEWSPs of varying sizes, made of a metallic tank with inlet and outlet valves and a solar reflector, were constructed to increase the incident sunlight intensity. Wastewater samples collected from the inlet and outlet of the SEWSPs were examined for physio-chemical and biological characteristics for a period of 2 months. The parameters examined were total suspended solids, dissolved oxygen, 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), coliform, and Escherichia coli. The efficiencies of the SEWSPs, with respect to these parameters, fluctuated with temperature variation, with the shallowest SEWSP giving the highest treatment efficiency. The research revealed that the cost of treating wastewater using SEWSPs was approximately 2 times lower than the conventional WSP for the same treatment efficiencies. PMID:19472946

  8. Birefringence and Enhanced Stability in Stable Organic Glasses

    NASA Astrophysics Data System (ADS)

    Liu, Tianyi; Exarhos, Annemarie; Cheng, Kevin; Jia, Tiezheng; Walsh, Patrick; Kikkawa, Jay; Fakhraai, Zahra

    Stable glasses can be prepared by physical vapor depositing organic molecules onto a cold substrate at slow rates. These glasses have many exceptional properties such as high thermal stability, high density, and birefringence. Regardless of the molecular shape or intermolecular interactions, birefringence has been observed in various stable glasses produced at low temperatures (below 80% of the molecule's glass transition temperature, Tg) . Here we prepare stable glasses of an organic molecule, 9-(3,5-di(naphthalen-1-yl)phenyl)anthracene, that possesses a nearly isotropic shape and intrinsic fluorescence. Ellipsometry is used to show that all stable glasses prepared in the temperature range from 73% Tg to 97% Tgshow positive birefringence. Angle- and polarization- dependent photoluminescence measurements show isotropic molecular orientation in these optically birefringent glasses. Furthermore, the values of birefringence are strongly correlated with the enhanced density, implying a general origin of the observed anisotropy in stable glasses. This correlation can elucidate the role of packing in the formation of such high-density glasses. The authors would like to acknowledge Ethan Alguire and Joe Subotnik for simulation. Z.F. acknowledges funding from NSF CAREER (DMR-1350044). P.J.W. acknowledges funding from NSF (CHE-1152488). J.M.K acknowledges funding from NSF (DMR-1206270).

  9. Enhanced photoacoustic stability of gold nanorods by silica matrix confinement

    NASA Astrophysics Data System (ADS)

    Chen, Leng-Chun; Wei, Chen-Wei; Souris, Jeffrey S.; Cheng, Shih-Hsun; Chen, Chin-Tu; Yang, Chung-Shi; Li, Pai-Chi; Lo, Leu-Wei

    2010-01-01

    Photoacoustic tomography (PAT) has garnered much attention for its high contrast and excellent spatial resolution of perfused tissues. Gold nanorods (GNRs) have been employed to further enhance the imaging contrast of PAT. However, the photon fluences typically needed for PA wave induction often also result in GNR shape changes that significantly reduce the efficiency of acoustic wave generation. In this work, we propose, synthesize, and evaluate amorphous silica-coated gold nanorods (GNR-Si) in an effort to improve contrast agent stability and ameliorate efficiency loss during photoacoustic (PA) wave induction. TEM and optical absorption spectra measurements of GNR and GNR-Si show that encasing GNRs within amorphous silica provides substantial protection of nanorod conformation from thermal deformation. PA signals generated by GNR-Si demonstrate considerably greater resistance to degradation of signal intensity with repetitive pulsing than do uncoated GNRs, thereby enabling much longer, high-contrast imaging sessions than previously possible. The prolongation of high-contrast imaging, and biocompatibility and easy surface functionalization for targeting ligands afforded by amorphous silica, suggest GNR-Si to be potentially significant for the clinical translation of PAT.

  10. Effect of CO2-induced reactions on the mechanical behaviour of fractured wellbore cement

    NASA Astrophysics Data System (ADS)

    Wolterbeek, Timotheus; Hangx, Suzanne; Spiers, Christopher

    2016-04-01

    Geomechanical damage, such as fracturing of wellbore cement, can severely impact well integrity in CO2 storage fields. Chemical reactions between the cement and CO2-bearing fluids may subsequently alter the cement's mechanical properties, either enhancing or inhibiting damage accumulation during ongoing changes in wellbore temperature and stress-state. To evaluate the potential for such effects, we performed triaxial compression tests on Class G Portland cement, conducted at down-hole temperature (80 ° C) and effective confining pressures ranging from 1 to 25 MPa. After deformation, samples displaying failure on localised shear fractures were reacted with CO2-H2O, and then subjected to a second triaxial test to assess changes in mechanical properties. Using results from the first phase of deformation, baseline yield and failure criteria were constructed for virgin cement. These delineate stress conditions where unreacted cement is most prone to dilatational (permeability-enhancing) failure. Once shear-fractures formed, later reaction with CO2 did not produce further geomechanical weakening. Instead, after six weeks of reaction, we observed up to 83% recovery of peak-strength and increased frictional strength (15-40%) in the post-failure regime, due to calcium carbonate precipitation in the fractures. As such, our results suggest more or less complete mechanical healing on timescales of the order of months.

  11. Chemical stabilization of porous silicon for enhanced biofunctionalization with immunoglobulin

    NASA Astrophysics Data System (ADS)

    Naveas, Nelson; Torres Costa, Vicente; Gallach, Dario; Hernandez-Montelongo, Jacobo; Martín Palma, Raul Jose; Predenstinacion Garcia-Ruiz, Josefa; Manso-Silván, Miguel

    2012-08-01

    Porous silicon (PSi) is widely used in biological experiments, owing to its biocompatibility and well-established fabrication methods that allow tailoring its surface. Nevertheless, there are some unresolved issues such as deciding whether the stabilization of PSi is necessary for its biological applications and evaluating the effects of PSi stabilization on the surface biofunctionalization with proteins. In this work we demonstrate that non-stabilized PSi is prone to detachment owing to the stress induced upon biomolecular adsorption. Biofunctionalized non-stabilized PSi loses the interference properties characteristic of a thin film, and groove-like structures resulting from a final layer collapse were observed by scanning electron microscopy. Likewise, direct PSi derivatization with 3-aminopropyl-triethoxysilane (APTS) does not stabilize PSi against immunoglobulin biofunctionalization. To overcome this problem, we developed a simple chemical process of stabilizing PSi (CoxPSi) for biological applications, which has several advantages over thermal stabilization (ToxPSi). The process consists of chemical oxidation in H2O2, surface derivatization with APTS and a curing step at 120 °C. This process offers integral homogeneous PSi morphology, hydrophilic surface termination (contact angle θ = 26°) and highly efficient derivatized and biofunctionalized PSi surfaces (six times more efficient than ToxPSi). All these features are highly desirable for biological applications, such as biosensing, where our results can be used for the design and optimization of the biomolecular immobilization cascade on PSi surfaces.

  12. Mechanism study on stability enhancement of adefovir dipivoxil by cocrystallization: Degradation kinetics and structure-stability correlation.

    PubMed

    Lin, Rui-Zhen; Sun, Peng-Jie; Tao, Qian; Yao, Jia; Chen, Jia-Mei; Lu, Tong-Bu

    2016-03-31

    The purpose of this study is to determine the mechanism by which cocrystallization can enhance the stability of adefovir dipivoxil (AD), a diester prodrug of adefovir with known chemical stability problem. Three multi-component crystals of AD with biologically safe coformers, including gallic acid cocrystal hydrate (1:1:1), salicylate salt (1:1), and maleate salt (1:1) were prepared and characterized by thermal analysis, infrared spectroscopy, powder and single crystal X-ray diffraction. DVS measurements and stability tests were applied to evaluate the stability. The new crystalline phases exhibit improved stability compared to pure drug in the order AD gallic acid cocrystal>AD maleate>AD salicylate>AD form I. Degradation kinetics and structure-stability correlation studies demonstrate that the stability enhancement mechanism by cocrystallization involves (1) inhibition of hydrolysis of AD by replacement of drug-drug homosynthons by stronger drug-coformer heterosynthons at adenine fragments; (2) suppression of dimerization of AD by separation of adenine fragments by inserting coformers in crystal lattices; (3) further reducing rates of hydrolysis by forming hydrogen bonds with hydrate water at phosphoryl fragments. This study has important implications for use of cocrystallization approach to some easily degradable drugs in pharmaceutical. PMID:26462447

  13. Advanced wellbore thermal simulator GEOTEMP2 user manual

    SciTech Connect

    Mondy, L.A.; Duda, L.E.

    1984-11-01

    GEOTEMP2 is a wellbore thermal simulator computer code designed for geothermal drilling and production applications. The code treats natural and forced convection and conduction within the wellbore and heat conduction within the surrounding rock matrix. A variety of well operations can be modeled including injection, production, forward, and reverse circulation with gas or liquid, gas or liquid drilling, and two-phase steam injection and production. Well completion with several different casing sizes and cement intervals can be modeled. The code allows variables suchas flow rate to change with time enabling a realistic treatment of well operations. This user manual describes the input required to properly operate the code. Ten sample problems are included which illustrate all the code options. Complete listings of the code and the output of each sample problem are provided.

  14. Multi-rate flowing Wellbore electric conductivity logging method

    SciTech Connect

    Tsang, Chin-Fu; Doughty, Christine

    2003-04-22

    The flowing wellbore electric conductivity logging method involves the replacement of wellbore water by de-ionized or constant-salinity water, followed by constant pumping with rate Q, during which a series of fluid electric conductivity logs are taken. The logs can be analyzed to identify depth locations of inflow, and evaluate the transmissivity and electric conductivity (salinity) of the fluid at each inflow point. The present paper proposes the use of the method with two or more pumping rates. In particular it is recommended that the method be applied three times with pumping rates Q, Q /2, and 2Q. Then a combined analysis of the multi-rate data allows an efficient means of determining transmissivity and salinity values of all inflow points along a well with a confidence measure, as well as their inherent or far-field pressure heads. The method is illustrated by a practical example.

  15. System for recovering fluids from a horizontal wellbore

    SciTech Connect

    Pasini, J. III.

    1980-03-25

    The present invention is directed to a gas-lift system for facilitating the removal of fluid (liquid and/or gaseous) energy values from a subterranean geologic earth formation penetrated by a horizontally extending wellbore. In accordance with the present invention concentric tubing is disposed in the wellbore with the outer tubing being provided with one-way valves for admitting the fluids from the earth formation surrounding the tubing. These fluids flow into an annulus between the tubings and are expelled from the annulus by injecting a gas into the annulus between the tubes which closes the valves and flushes the liquids from the tubing by forcing the fluids through the inner tube to a surface collection point.

  16. Well logging and completion technology for horizontal wellbores

    SciTech Connect

    Fertl, W.H. )

    1990-09-01

    In highly deviated and, particularly, horizontal wellbores, special hardware systems guide, push, and/or pump the logging instrument assembly toward the bottom, i.e., the end of the wellbore, and to log the interval of interest. The present paper discusses basic pipe-conveyed logging (PCL) systems and the coiled-tubing-conveyed (CTC) system for completion and perforating applications in horizontal well bores, which already have proven successful in Europe, the US, and Canada. Open- and cased-hole field applications, with special emphasis on the Cretaceous Austin Chalk in Texas and the Bakken Shale in Wyoming, will illustrate today's technology and review advantages and possible constraints of these well logging and completion techniques.

  17. Enhancing the stability of the synchronization of multivariable coupled oscillators

    NASA Astrophysics Data System (ADS)

    Sevilla-Escoboza, R.; Gutiérrez, R.; Huerta-Cuellar, G.; Boccaletti, S.; Gómez-Gardeñes, J.; Arenas, A.; Buldú, J. M.

    2015-09-01

    Synchronization processes in populations of identical networked oscillators are the focus of intense studies in physical, biological, technological, and social systems. Here we analyze the stability of the synchronization of a network of oscillators coupled through different variables. Under the assumption of an equal topology of connections for all variables, the master stability function formalism allows assessing and quantifying the stability properties of the synchronization manifold when the coupling is transferred from one variable to another. We report on the existence of an optimal coupling transference that maximizes the stability of the synchronous state in a network of Rössler-like oscillators. Finally, we design an experimental implementation (using nonlinear electronic circuits) which grounds the robustness of the theoretical predictions against parameter mismatches, as well as against intrinsic noise of the system.

  18. Quantifying drag on wellbore casings in moving salt sheets

    NASA Astrophysics Data System (ADS)

    Weijermars, R.; Jackson, M. P. A.; Dooley, T. P.

    2014-08-01

    Frontier hydrocarbon development projects in the deepwater slopes of the Gulf of Mexico Basin, Santos Basin and Lower Congo Basin all require wells to cross ductile layers of autochthonous or allochthonous salt moving at peak rates of 100 mm yr-1. The Couette-Poiseuille number is introduced here to help pinpoint the depth of shear stress reversal in such salt layers. For any well-planned through salt, the probable range of creep forces of moving salt needs to be taken into account when designing safety margins and load-factor tolerance of the well casing. Drag forces increase with wellbore diameter, but more significantly with effective viscosity and speed of the creeping salt layer. The potential drag forces on cased wellbores in moving salt sheets are estimated analytically using a range of salt viscosities (1015-1019 Pa s) and creep rates (0-10 mm yr-1). Drag on perfectly rigid casing of infinite strength may reach up to 13 Giga Newton per meter wellbore length in salt having a viscosity of 1019 Pa s. Well designers may delay stress accumulations due to salt drag when flexible casing accommodates some of the early displacement and strain. However, all creeping salt could displace, fracture and disconnect well casing, eventually. The shear strength of typical heavy duty well casing (about 1000 MPa) can be reached due to drag by moving salt. Internal flow of salt will then fracture the casing near salt entry and exit points, but the structural damage is likely to remain unnoticed early in the well-life when the horizontal shift of the wellbore is still negligibly small (at less than 1 cm yr-1). Disruption of casing and production flow lines within the anticipated service lifetime of a well remains a significant risk factor within distinct zones of low-viscosity salt which may reach ultrafast creep rates of 100 mm yr-1.

  19. High-energy gas fracturing in cased and perforated wellbores

    SciTech Connect

    Cuderman, J.F.

    1986-06-01

    A propellant-based technology, High-Energy Gas Fracturing (HEGF), has been applied to fracturing through perforations in cased boreholes. HEGF is a tailored-pulse fracturing technique originally developed by Sandia National Laboratories for application in uncased, liquid-free gas wells in Appalachian Devonian shales. Because most oil and gas wells are liquid filled as well as cased and perforated, the potential impact of present research is significantly broader. A number of commercial tailored-pulse fracturing services, using a variety of explosives or propellants, are currently available. Present research provides valuable insight into phenomena that occur in those stimulations. The use of propellants that deflagrate or burn rather than detonate, as do high-order explosives, permits controlled buildup of pressure in the wellbore. The key to successful stimulation in cased and perforated wellbores is to control the pressure buildup of the combustion gases to maximize fracturing without destroying the casing. Eight experiments using cased and perforated wellbore were conducted in a tunnel complex at the Department of Energy's Nevada Test Site, which provides a realistic in situ stress environment (4 to 10 MPa (600 to 1500 psi)) and provides access for mineback to directly observe fracturing obtained. Primary variables in the experiments include propellant burn rate and amount of propellant used, presence or absence of liquid in the wellbore, in situ stress orientation, and perforation diameter, density, and phasing. In general, the presence of liquid in the borehole results in a much faster pressure risetime and a lower peak pressure for the same propellant charge. Fracture surfaces proceed outward along lines of perforations as determined by phasing, then gradually turn toward the hydraulic fracture direction. 8 refs., 23 figs., 3 tabs.

  20. Enhancing synchronization stability in a multi-area power grid.

    PubMed

    Wang, Bing; Suzuki, Hideyuki; Aihara, Kazuyuki

    2016-01-01

    Maintaining a synchronous state of generators is of central importance to the normal operation of power grids, in which many networks are generally interconnected. In order to understand the condition under which the stability can be optimized, it is important to relate network stability with feedback control strategies as well as network structure. Here, we present a stability analysis on a multi-area power grid by relating it with several control strategies and topological design of network structure. We clarify the minimal feedback gain in the self-feedback control, and build the optimal communication network for the local and global control strategies. Finally, we consider relationship between the interconnection pattern and the synchronization stability; by optimizing the network interlinks, the obtained network shows better synchronization stability than the original network does, in particular, at a high power demand. Our analysis shows that interlinks between spatially distant nodes will improve the synchronization stability. The results seem unfeasible to be implemented in real systems but provide a potential guide for the design of stable power systems. PMID:27225708

  1. Enhanced muscle activity during lumbar extension exercise with pelvic stabilization

    PubMed Central

    Lee, Ho-Seong

    2015-01-01

    The purpose of this study was to investigate whether pelvic stabilization affects multifidus (MF) and iliocostalis lumborum (IL) muscle activities during dynamic extension exercise. Nine males (age, 25.1±6.3 yr; height, 176.6±2.4 cm; body mass, 74.9±6.7 kg) performed an isometric lumbar extension strength test and dynamic exercise in an upright seated position with or without pelvic stabilization. The electromyography and muscle strength of the MF and IL muscles were measured when the subjects performed the isometric lumbar extension strength test at the trunk angle 110°, 146°, and 182°. In addition, the trunk extensor muscle activities were measured using 50% muscle strength of maximum isometric strength during a dynamic trunk extension exercise. The MF and IL muscle activities were significantly higher at 110°, 146°, and 182° with pelvic stabilization than that without pelvic stabilization during the isometric lumbar extension strength test (P<0.05) and the dynamic exercise (P<0.05). These results suggest that the lumbar extension exercise with pelvic stabilization may be more effective for MF and IL muscle activity compared to that without pelvic stabilization. PMID:26730390

  2. Enhancing synchronization stability in a multi-area power grid

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Suzuki, Hideyuki; Aihara, Kazuyuki

    2016-05-01

    Maintaining a synchronous state of generators is of central importance to the normal operation of power grids, in which many networks are generally interconnected. In order to understand the condition under which the stability can be optimized, it is important to relate network stability with feedback control strategies as well as network structure. Here, we present a stability analysis on a multi-area power grid by relating it with several control strategies and topological design of network structure. We clarify the minimal feedback gain in the self-feedback control, and build the optimal communication network for the local and global control strategies. Finally, we consider relationship between the interconnection pattern and the synchronization stability; by optimizing the network interlinks, the obtained network shows better synchronization stability than the original network does, in particular, at a high power demand. Our analysis shows that interlinks between spatially distant nodes will improve the synchronization stability. The results seem unfeasible to be implemented in real systems but provide a potential guide for the design of stable power systems.

  3. Enhancing synchronization stability in a multi-area power grid

    PubMed Central

    Wang, Bing; Suzuki, Hideyuki; Aihara, Kazuyuki

    2016-01-01

    Maintaining a synchronous state of generators is of central importance to the normal operation of power grids, in which many networks are generally interconnected. In order to understand the condition under which the stability can be optimized, it is important to relate network stability with feedback control strategies as well as network structure. Here, we present a stability analysis on a multi-area power grid by relating it with several control strategies and topological design of network structure. We clarify the minimal feedback gain in the self-feedback control, and build the optimal communication network for the local and global control strategies. Finally, we consider relationship between the interconnection pattern and the synchronization stability; by optimizing the network interlinks, the obtained network shows better synchronization stability than the original network does, in particular, at a high power demand. Our analysis shows that interlinks between spatially distant nodes will improve the synchronization stability. The results seem unfeasible to be implemented in real systems but provide a potential guide for the design of stable power systems. PMID:27225708

  4. Optimum position for wells producing at constant wellbore pressure

    SciTech Connect

    Camacho-Velazquez, R.; Rodriguez de la Garza, F.; Galindo-Nava, A.; Prats, M.

    1994-12-31

    This paper deals with the determination of the optimum position of several wells, producing at constant different wellbore pressures from a two-dimensional closed-boundary reservoirs, to maximize the cumulative production or the total flow rate. To achieve this objective they authors use an improved version of the analytical solution recently proposed by Rodriguez and Cinco-Ley and an optimization algorithm based on a quasi-Newton procedure with line search. At each iteration the algorithm approximates the negative of the objective function by a cuadratic relation derived from a Taylor series. The improvement of rodriguez and Cinco`s solution is attained in four ways. First, an approximation is obtained, which works better at earlier times (before the boundary dominated period starts) than the previous solution. Second, the infinite sums that are present in the solution are expressed in a condensed form, which is relevant for reducing the computer time when the optimization algorithm is used. Third, the solution is modified to take into account the possibility of having wells starting to produce at different times. This point allows them to deal with the problem of getting the optimum position for an infill drilling program. Last, the solution is extended to include the possibility of changing the value of wellbore pressure or being able to stimulate any of the wells at any time. When the wells are producing at different wellbore pressures it is found that the optimum position is a function of time, otherwise the optimum position is fixed.

  5. Enhanced stability of hillslopes and channel beds to mass failure

    NASA Astrophysics Data System (ADS)

    Prancevic, Jeff; Lamb, Michael; Palucis, Marisa; Venditti, Jeremy

    2016-04-01

    The stability of inclined, unconsolidated sediments subjected to groundwater flow on hillslopes and steep channel beds is important for both landscape evolution and natural hazards. Force-balance models have been used for seven decades to predict the stability of slopes, but they generally underpredict the degree of saturation required to destabilize the sediment. Researchers often appeal to heightened stabilizing forces from root and mineral cohesion, and friction acting on the margins of the failure to explain this underprediction. Surprisingly, infinite-slope stability models in their simplest form have never been tested under controlled laboratory conditions. To address this gap in data, we perform a set of controlled laboratory experiments with slope-parallel seepage in the simplest possible configuration. We performed 47 experiments in a 5 m laboratory flume with 4 grain sizes (D50 = 0.7, 2, 5, and 15 mm) and a wide range in bed angles (20° to 43°), spanning both Darcian and turbulent subsurface flow regimes. Our experiments show that granular slopes were more stable than predicted by simple force balance models in experiments that lack root or mineral cohesion. Despite the smooth plastic walls and the long aspect ratio of our flume, we calculate wall and toe friction to be important. Including these additional resistance terms in the model reduces the model misfit with our experimental results. However, there is considerable remaining misfit (up to 50% underestimation of the saturation level required for failure). We investigate two explanations of this heightened stability: 1) standard frictional resistance terms are underestimated, and 2) seepage stresses are overestimated. Both explanations require that we modify the models used to predict slope stability.

  6. New Insight into Cataract Formation: Enhanced Stability through Mutual Attraction

    SciTech Connect

    Stradner, A.; Schurtenberger, P.; Foffi, G.; Dorsaz, N.; Thurston, G.

    2007-11-09

    Small-angle neutron scattering experiments and molecular dynamics simulations combined with an application of concepts from soft matter physics to complex protein mixtures provide new insight into the stability of eye lens protein mixtures. Exploring this colloid-protein analogy we demonstrate that weak attractions between unlike proteins help to maintain lens transparency in an extremely sensitive and nonmonotonic manner. These results not only represent an important step towards a better understanding of protein condensation diseases such as cataract formation, but provide general guidelines for tuning the stability of colloid mixtures, a topic relevant for soft matter physics and industrial applications.

  7. Hydraulic fracturing model featuring initiation beyond the wellbore wall for directional well in coal bed

    NASA Astrophysics Data System (ADS)

    Li, Yuwei; Jia, Dan; Wang, Meng; Liu, Jia; Fu, Chunkai; Yang, Xinliang; Ai, Chi

    2016-08-01

    In developing internal fracture systems in coal beds, the initiation mechanism differs greatly from that of conventional ones and initiations may be produced beyond the wellbore wall. This paper describes the features of the internal structure of coal beds and RFPA2D simulation is used to attest the possible occurrence of initiation beyond the wellbore wall in coal bed hydraulic fracturing. Using the theory of elasticity and fracture mechanics, we analyse the stress distribution in the vicinal coal rock. Then by taking into consideration the effects of the spatial relationship between coal bed cleats and the wellbore, we establish a model for calculating both tensile and shear initiation pressure that occur along cleats beyond the wellbore wall. The simulation in this paper indicates that for shear initiations that happen along coal cleats, the pressure required to initiate fracture for cleats beyond the wellbore wall is evidently lower than that on the wellbore wall, thus it is easier to initiate shear fractures for cleats beyond the wellbore wall. For tensile failure, the pressure required to initiate tensile fracture for cleats beyond the wellbore wall is obviously higher than that for cleats at the wellbore wall, thus it is easier to initiate tensile fractures for cleats at the wellbore wall. On the one hand, this paper has proved the possible occurrence of initiations beyond the wellbore wall and has changed the current assumption that hydraulic fractures can only occur at the wellbore wall. On the other hand, the established theoretical model provides a new approach to calculating the initiation pressure in hydraulic fracturing.

  8. Recombination technologies for enhanced transgene stability in bioengineered insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transposon-based vectors currently provide the most suitable gene transfer systems for insect germ-line transformation and are used for molecular improvement of the Sterile Insect Technique. However, the long time stability of genome-integrated transposon constructs depends on the absence of transpo...

  9. System and method for determining the relative permeability of an earth formation surrounding a wellbore

    SciTech Connect

    Nagel, W.A.; Walsh, D.J.

    1983-12-20

    A method for determining the relative permeability of an earth formation surrounding a wellbore having a longitudinal axis comprising the steps of injecting a fluid into the wellbore such that the fluid invades the earth formation, measuring at different points in time a quantity that varies in response to the radius from the wellbore axis of the fluid invasion into the earth formation, determining in response to said quantity measurements the radius from the wellbore axis of the fluid invasion into the earth formation, and determining in response to said radii determinations the relative permeability of the earth formation. A system for performing the method is also disclosed.

  10. Adaptive forward-inverse modeling of reservoir fluids away from wellbores

    SciTech Connect

    Ziagos, J P; Gelinas, R J; Doss, S K; Nelson, R G

    1999-07-30

    This Final Report contains the deliverables of the DeepLook Phase I project entitled, ''Adaptive Forward-Inverse Modeling of Reservoir Fluids Away from Wellbores''. The deliverables are: (i) a description of 2-D test problem results, analyses, and technical descriptions of the techniques used, (ii) a listing of program setup commands that construct and execute the codes for selected test problems (these commands are in mathematical terminology, which reinforces technical descriptions in the text), and (iii) an evaluation and recommendation regarding continuance of this project, including considerations of possible extensions to 3-D codes, additional technical scope, and budget for the out-years. The far-market objective in this project is to develop advanced technologies that can help locate and enhance the recovery of oil from heterogeneous rock formations. The specific technical objective in Phase I was to develop proof-of-concept of new forward and inverse (F-I) modeling techniques [Gelinas et al, 1998] that seek to enhance estimates (images) of formation permeability distributions and fluid motion away from wellbore volumes. This goes to the heart of improving industry's ability to jointly image reservoir permeability and flow predictions of trapped and recovered oil versus time. The estimation of formation permeability away from borehole measurements is an ''inverse'' problem. It is an inseparable part of modeling fluid flows throughout the reservoir in efforts to increase the efficiency of oil recovery at minimum cost. Classic issues of non-uniqueness, mathematical instability, noise effects, and inadequate numerical solution techniques have historically impeded progress in reservoir parameter estimations. Because information pertaining to fluid and rock properties is always sampled sparsely by wellbore measurements, a successful method for interpolating permeability and fluid data between the measurements must be: (i) physics-based, (ii) conditioned by

  11. Multidentate block-copolymer-stabilized ultrasmall superparamagnetic iron oxide nanoparticles with enhanced colloidal stability for magnetic resonance imaging.

    PubMed

    Chan, Nicky; Laprise-Pelletier, Myriam; Chevallier, Pascale; Bianchi, Andrea; Fortin, Marc-André; Oh, Jung Kwon

    2014-06-01

    Ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) with diameters <5 nm hold great promise as T1-positive contrast agents for in vivo magnetic resonance imaging. However, control of the surface chemistry of USPIOs to ensure individual colloidal USPIOs with a ligand monolayer and to impart biocompatibility and enhanced colloidal stability is essential for successful clinical applications. Herein, an effective and versatile strategy enabling the development of aqueous colloidal USPIOs stabilized with well-defined multidentate block copolymers (MDBCs) is reported. The multifunctional MDBCs are designed to consist of an anchoring block possessing pendant carboxylates as multidentate anchoring groups strongly bound to USPIO surfaces and a hydrophilic block having pendant hydrophilic oligo(ethylene oxide) chains to confer water dispersibility and biocompatibility. The surface of USPIOs is saturated with multiple anchoring groups of MDBCs, thus exhibiting excellent long-term colloidal stability as well as enhanced colloidal stability at biologically relevant electrolyte, pH, and temperature conditions. Furthermore, relaxometric properties as well as in vitro and in vivo MR imaging results demonstrate that the MDBC-stabilized USPIO colloids hold great potential as an effective T1 contrast agent. PMID:24785001

  12. Optimal mistuning for enhanced aeroelastic stability of transonic fans

    NASA Technical Reports Server (NTRS)

    Hall, K. C.; Crawley, E. F.

    1983-01-01

    An inverse design procedure was developed for the design of a mistuned rotor. The design requirements are that the stability margin of the eigenvalues of the aeroelastic system be greater than or equal to some minimum stability margin, and that the mass added to each blade be positive. The objective was to achieve these requirements with a minimal amount of mistuning. Hence, the problem was posed as a constrained optimization problem. The constrained minimization problem was solved by the technique of mathematical programming via augmented Lagrangians. The unconstrained minimization phase of this technique was solved by the variable metric method. The bladed disk was modelled as being composed of a rigid disk mounted on a rigid shaft. Each of the blades were modelled with a single tosional degree of freedom.

  13. Recombination technologies for enhanced transgene stability in bioengineered insects

    PubMed Central

    Schetelig, Marc F.; Götschel, Frank; Viktorinová, Ivana; Handler, Alfred M.

    2010-01-01

    Transposon-based vectors currently provide the most suitable gene transfer systems for insect germ-line transformation and are used for molecular improvement of the Sterile Insect Technique. However, the long time stability of genome-integrated transposon constructs depends on the absence of transposase activity that could remobilize the transposon-embedded transgenes. To achieve transgene stability transposon vectors are usually non-autonomous, lacking a functional transposase gene, and chosen so that endogenous or related transposon activities are not present in the host. Nevertheless, the non-autonomous transposon-embedded transgenes could become unstable by the unintended presence of a mobilizing transposase that may have been undetected or subsequently entered the host species by horizontal gene transfer. Since the field release of transgenic insects will present environmental concerns relating to large populations and high mobility, it will be important to ensure that transgene constructs are stably integrated for maintaining strain integrity and eliminating the possibility for unintentional transfer into the genome of another organism. Here we review efficient methods to delete or rearrange terminal repeat sequences of transposons necessary for their mobility, subsequent to their initial genomic integration. These procedures should prevent transposase-mediated remobilization of the transgenes, ensuring their genomic stability. PMID:20844938

  14. Method for enhancing stability of high explosives, for purposes of transport or storage, and the stabilized high explosives

    DOEpatents

    Nutt, Gerald L.

    1991-01-01

    The stability of porous solid high explosives, for purposes of transport or storage, is enhanced by reducing the sensitivity to shock initiation of a reaction that leads to detonation. The pores of the explosive down to a certain size are filled under pressure with a stable, low melt temperature material in liquid form, and the combined material is cooled so the pore filling material solidifies. The stability can be increased to progressively higher levels by filling smaller pores. The pore filling material can be removed, at least partially, by reheating above its melt temperature and drained off so that the explosive is once more suitable for detonation.

  15. Geochemistry of Wellbore Integrity in CO2 Sequestration: Portland Cement-Steel-Brine-CO2 Interactions (Invited)

    NASA Astrophysics Data System (ADS)

    Carey, J. W.

    2013-12-01

    Effective geologic sequestration of CO2 requires long-term storage with very low leak rates. Numerous studies have identified wells as one of the key risk factors for CO2 leakage including purpose-built injection and monitoring wells in addition to older wells in and above the storage reservoir. All wells have the potential to leak due to faulty construction or other defects. However, geochemical reactions induced by CO2 could result in damage to Portland cement and steel that are used in the well to isolate reservoir fluids from underground drinking water sources and the surface. This concern is based on the thermodynamic incompatibility of CO2-saturated aqueous fluids with Portland cement and steel, which leads to relatively rapidly reactions that form, principally, calcium carbonate and iron carbonate. Despite this thermodynamic fate, wellbore materials perform and maintain zonal isolation in field and experimental observations. This is understood as a consequence of coupled behavior between flow of reactants (CO2-water) and the rate of dissolution and precipitation of cement or corrosion of steel. In the restricted flow environments found in wellbore systems, cements are carbonated but do not suffer significant deterioration of hydrologic or mechanical properties. In fact, cement carbonation often results in reduced permeability and enhanced mechanical strength. While steel is susceptible to corrosion, wellbore environments allow development of protective iron carbonate scale. In addition, the presence of Portland cement, even carbonated cement, provides protection against significant rates of corrosion. The impact of geochemical reactions in the wellbore environment cannot be separated from coupled flow, thermal and mechanical processes. CO2-induced chemical reactions migrating upward from a storage reservoir will not result in the creation of defects or the wholesale dissolution of cement or steel. Defects must exist that allow CO2×brine to flow and to come

  16. Synthesis and Characterization of Processable Polyimides with Enhanced Thermal Stability

    NASA Technical Reports Server (NTRS)

    Harris, Frank W.

    1999-01-01

    The following is a summary report of the research carried out under NASA Grant NAG-1-448. The work was divided into four major areas: 1) Enhanced polyimide processing through the use of reactive plasticizers 2) Development of processable polyhenylquinoxalines 3) Synthesis and characterization of perfluorovinylether-terminated imide oligomers and 4) Fluorosilicones containing perfuorocyclobutane rings.

  17. Microwave axial free-electron laser with enhanced phase stability

    SciTech Connect

    Carlsten, B.; Fazio, M.; Haynes, W.

    1995-12-31

    Free-electron laser (FEL) amplifiers have demonstrated high efficiencies and high output power at microwave wavelengths. However, measurements and simulations have indicated that the present level of phase stability for these devices is not sufficient for driving linear accelerators. Fluctuations in the diode voltage, which is needed to accelerate the electron beam, are the largest cause of the shifts in the phase of the output power. Pulse-power technology cannot keep the voltage fluctuations less than 1/4%. However, we have found a scheme that will make the output phase much less sensitive to these fluctuations by exploiting the traveling wave nature of the FEL interaction. In this paper we study the phase stability issue by analyzing the dispersion relation for an axial FEL, in which the rf field is transversely wiggled and the electron trajectories are purely longitudinal. The advantage of using the axial FEL interaction instead of the common transverse FEL interaction is that (1) the dispersion relation is not additionally complicated by how the transverse electron motion depends on the diode voltage and (2) such a device is simpler and less expensive to construct than a transverse-coupling FEL because there is no wiggler. The axial FEL interaction is with a fast wave and does involve axial bunching of the electron beam, so the results found for this device also apply to transverse-coupling FELs. By examination of the dispersion relation it is found that the effect of the phase dependency on the beam`s velocity can be cancelled by the effect of the phase dependency on the beam`s plasma wave, for an annular electron beam. By changing the annulus radius, exact cancellation can be found for a variety of beam voltages and currents in the ranges of 0.5-1.0 MV and 1-5 kA. This cancellation leads to first-order phase stability, which is not possible for standing-wave devices, such as klystrons.

  18. Microwave axial free-electron laser with enhanced phase stability

    SciTech Connect

    Carlsten, B.E.; Fortgang, C.M.; Fazio, M.V.; Haynes, W.B.; May, L.M.; Potter, J.M.

    1995-09-01

    Free-electron lasers (FELs) amplifiers have demonstrated high efficiencies and high output power at microwave wavelengths. However, measurements and simulations have indicated that the present level of phase stability for these devices is not sufficient for driving linear accelerators. Fluctuations in the diode voltage, which is needed to accelerate the electron beam, are the largest cause of the shifts in the phase of the output power. Present-day pulse-power technology cannot keep the voltage fluctuations less than 1/4%. However, we have found a scheme that win make the output phase much less sensitive to these fluctuations by exploiting the traveling-wave nature of the FEL interaction. In this paper we study the phase stability issue by analyzing the dispersion relation for an axial FEL, in which the rf field is transversely wiggled and the electron trajectories are purely longitudinal. The advantage of using the axial FEL interaction instead of the common transverse FEL interaction is that the dispersion relation is not additionally complicated by how the transverse electron motion depends on the diode voltage and such a device is simpler and less expensive to construct than a transverse-coupling FEL because there is no wiggler. By examination of the dispersion relation it is found that the effect of the phase dependency on the beam`s velocity can be cancelled by the effect of the phase dependency on the beam`s plasma wave, for an annular electron beam. This cancellation leads to first-order phase stability, which is not possible for standing-wave devices, such as klystrons. Detailed particle-in-cell simulations are included to demonstrate the transverse wiggling of the rf mode and the axial FEL interaction.

  19. Response surfaces for CO2 leakage from geologic storage along abandoned wellbores

    NASA Astrophysics Data System (ADS)

    Jordan, A.; Carey, J. W.; Pawar, R. J.; Stauffer, P. H.

    2011-12-01

    The storage of carbon dioxide (CO2) in geologic reservoirs that have previously been drilled for oil and gas exploration is under investigation worldwide as an option for reducing the amount of anthropogenic carbon introduced to the atmosphere. Reservoirs that have already been tapped for hydrocarbon production have several benefits over development of new sites: they tend to be geologically well-understood, with existing wellbore data to help further characterize the local geologic framework; are known to be conducive to trapping buoyant or pressurized fluids; may have infrastructure in place; and are likely to be already impacted ecologically as compared to pristine sites. One downside to using depleted hydrocarbon reservoirs is the potential for CO2 leakage along pre-existing wellbores that were either not designed for CO2 sequestration or have been improperly plugged and abandoned. The primary goal of this study is to develop estimates of possible wellbore leakage rates of CO2 from storage reservoirs to the surface and/or into overlaying aquifers, as a function of wellbore properties and the surrounding geologic framework. The Finite Element Heat and Mass transfer code (FEHM) was used to perform Monte Carlo simulations of multiphase flow along wellbores across a wide range of geologic and wellbore parameters. Several wellbore scenarios were studied, including a simple wellbore between the CO2 storage reservoir and the surface; a wellbore intersecting a saline aquifer ("thief zone"); and a wellbore intersecting both a thief zone and a freshwater aquifer. The Problem Solving environment for Uncertainty Analysis and Design Exploration (PSUADE) software was used to analyze results and produce response surfaces for the estimation of wellbore flow rate as a function of the primary factors that influence leakage. These results will be used to develop abstractions for leakage rates to be incorporated in performance assessments of geologic CO2 storage, which will help

  20. Tuneable enhancement of the salt and thermal stability of polymeric micelles by cyclized amphiphiles

    PubMed Central

    Honda, Satoshi; Yamamoto, Takuya; Tezuka, Yasuyuki

    2013-01-01

    Cyclic molecules provide better stability for their aggregates. Typically in nature, the unique cyclic cell membrane lipids allow thermophilic archaea to inhabit extreme conditions. By mimicking the biological design, the robustness of self-assembled synthetic nanostructures is expected to be improved. Here we report topology effects by cyclized polymeric amphiphiles against their linear counterparts, demonstrating a drastic enhancement in the thermal, as well as salt stability of self-assembled micelles. Furthermore, through coassembly of the linear and cyclic amphiphiles, the stability was successfully tuned for a wide range of temperatures and salt concentrations. The enhanced thermal/salt stability was exploited in a halogen exchange reaction to stimulate the catalytic activity. The mechanism for the enhancement was also investigated. These topology effects by the cyclic amphiphiles offer unprecedented opportunities in polymer materials design unattainable by traditional means. PMID:23481382

  1. Feasibility of Biogeochemical Sealing of Wellbore Cements: Lab and Simulation Tests

    NASA Astrophysics Data System (ADS)

    Colwell, F. S.; Verba, C.; Thurber, A. R.; Alleau, Y.; Koley, D.; Peszynska, M.; Torres, M. E.

    2014-12-01

    To ensure permanence of carbon dioxide stored in a geologic formation it is essential to maintain wellbore integrity to prevent leakage of gas to the surface or surficial aquifers. Among others, the Mt. Simon Sandstone of the Illinois Basin has been targeted by DOE partnerships for supercritical CO2 injection. In this study, we used lab experiments to test the feasibility of microbially-mediated sealing of a leaking wellbore and then used the data to model the biofilm growth and calcite precipitation while accounting for over nine chemical reactions. Sporosarcina pasteurii was investigated for its ability to precipitate calcium carbonate to seal fractures in cement or within the Mt. Simon Sandstone formation, at variable pressure and temperature conditions. S. pasteurii cultures were studied in a rocking autoclave at temperature (ca. 40oC) and pressure (ca. 12 MPa) consistent with the geologic formation at depth and surficial changes were characterized before and after experimental incubations using scanning electron microscopy (SEM) and scanning electrochemical microscopy (SECM). At temperatures up to 40oC, atmospheric pressure, and in the presence of the Mt. Simon brine (1.016 M NaCl, 0.171M CaCl2, 0.067 M MgCl2, 0.017 M Na2SO4, 0.006 M NaHCO3), S. pasteurii thrived and showed evidence of biofilm formation using SECM. These data are the first to be applied to the newly developed computational model that extends a singular and degenerate model of biofilm growth and incorporates a variational inequality to remove the singularity. This study extends our knowledge of the stability of biologically generated carbonate species, and the associated biota, in pore-space and fractures of pertinent geological strata and cement under conditions consistent with deep storage of CO2.

  2. Wellbore inertial navigation system (WINS) software development and test results

    SciTech Connect

    Wardlaw, R. Jr.

    1982-09-01

    The structure and operation of the real-time software developed for the Wellbore Inertial Navigation System (WINS) application are described. The procedure and results of a field test held in a 7000-ft well in the Nevada Test Site are discussed. Calibration and instrumentation error compensation are outlined, as are design improvement areas requiring further test and development. Notes on Kalman filtering and complete program listings of the real-time software are included in the Appendices. Reference is made to a companion document which describes the downhole instrumentation package.

  3. EE-2 Fracture Initiation by Simultaneous Wellbore Cooling and Pressurization

    SciTech Connect

    Brown, Donald W.

    1982-03-11

    One of the more significant though generally unrecognized technical achievements of the HDR program has been the demonstration of multiple fracture initiation by simulations wellbore cooling and pressurization. This technique, if applied to the Phase II reservoir, would undoubtedly result in the formation of numerous incipient fractures along the entire EE-2 openhole section. This simple and straightforward method of developing a multiply-fractured HDR reservoir could have a profound influence on the cost of reservoir development, and the economics of the HDR concept in general.

  4. Enhanced Thermal Stability of Polylactide by Terminal Conjugation Groups

    NASA Astrophysics Data System (ADS)

    Tran, Hang Thi; Matsusaki, Michiya; Akashi, Mitsuru; Vu, Ngo Dinh

    2016-05-01

    Various acids such as aliphatic or carbocyclic fatty or aromatic acids were successfully conjugated into the ending hydroxyl group of poly( l-lactide) (PLLA). The chemical structures of various acid-PLLAs were confirmed by Fourier transform infrared and proton nuclear magnetic resonance analysis. The crystallinity and solubility of the original PLLA were maintained after the terminal conjugation of various acids. The thermal properties were significantly improved, especially the 10% weight-loss temperature that showed an increase of over 80°C for conjugation of aliphatic or aromatic acids as compared to that of the corresponding original PLLA. In addition, more than 60 wt.% of the aliphatic acid-PLLAs was pyrolyzed, and aromatic acid-PLLAs degraded only about 10 wt.% for 150 min, although the original PLLA was pyrolyzed completely at 250°C for 7 min. The thermal stability of PLLA was controlled by the conjugation of aliphatic or aromatic acids into a chain end. These acid-PLLAs may be useful as materials with high thermal stability for various application fields.

  5. Synthesis and characterization of processable polyimides with enhanced thermal stability

    NASA Technical Reports Server (NTRS)

    Harris, Frank W.

    1987-01-01

    Many of the emerging applications of polymers on space vehicles require materials with outstanding thermal stability. These polymers must also be readily processable in order to facilitate their use. The syntheses and polymerization of a cardo dianhydride were investigated. This monomer was prepared via the reaction of N-methyl 4-nitrophthalimide with a cardo diol. Polyimides containing oxyalkylene linkages were studied. The effects of two additional structural modifications on the polymers' properties were investigated. The effects of carrying out the preparation of poly(amic acid)s under non-equilibrium conditions were examined. Approaches that were investigated included the in-situ neutralization of the generated amic acid and its in-situ esterification.

  6. Mechanical expansion of steel tubing as a solution to leaky wellbores.

    PubMed

    Radonjic, Mileva; Kupresan, Darko

    2014-01-01

    Wellbore cement, a procedural component of wellbore completion operations, primarily provides zonal isolation and mechanical support of the metal pipe (casing), and protects metal components from corrosive fluids. These are essential for uncompromised wellbore integrity. Cements can undergo multiple forms of failure, such as debonding at the cement/rock and cement/metal interfaces, fracturing, and defects within the cement matrix. Failures and defects within the cement will ultimately lead to fluid migration, resulting in inter-zonal fluid migration and premature well abandonment. Currently, there are over 1.8 million operating wells worldwide and over one third of these wells have leak related problems defined as Sustained Casing Pressure (SCP). The focus of this research was to develop an experimental setup at bench-scale to explore the effect of mechanical manipulation of wellbore casing-cement composite samples as a potential technology for the remediation of gas leaks. The experimental methodology utilized in this study enabled formation of an impermeable seal at the pipe/cement interface in a simulated wellbore system. Successful nitrogen gas flow-through measurements demonstrated that an existing microannulus was sealed at laboratory experimental conditions and fluid flow prevented by mechanical manipulation of the metal/cement composite sample. Furthermore, this methodology can be applied not only for the remediation of leaky wellbores, but also in plugging and abandonment procedures as well as wellbore completions technology, and potentially preventing negative impacts of wellbores on subsurface and surface environments. PMID:25490436

  7. Thermal effects in borehole stability

    NASA Astrophysics Data System (ADS)

    Tran, Dung Trung

    An accurate wellbore stability analysis depends strongly on the state of knowledge of the problem at hand. Almost in all cases, the state of knowledge for wellbore stability analyses is poor. Values of many parameters and variables (so-called prior geological information) are poorly constrained and various assumptions of the adopted wellbore models are easily violated. The dilema is that using a model requiring few input parameters would suffer from a large number of model assumptions and simplifications; while using a complex model requiring a large number of input parameters which have wide ranges of possible values. Therefore, assessing the uncertainty (or degree of confidence) for different possible wellbore stability/instability scenarios remains difficult. Current sensitivity analyses, which consider varying possible values of one parameter while keeping others constant, are suboptimal and may not provide the correct effects of the parameters' uncertainties on the overall uncertainty of the wellbore stability prediction. Recent technological advances such as logging-while-drilling (LWD) and measuring-while-drilling (MWD) enable real-time updating of measured rock properties values and in-situ conditions. This means the ranges and uncertainties of parameters for wellbore stability analyses can be adjusted in real-time, during drilling. This aspect has not been developed into a self-updating, real-time wellbore stability analysis approach yet. As a step toward that goal, this dissertation presents several studies covering different aspects of wellbore stability. In particular, the uncertainties of input parameters and selected models are treated using a probabilistic framework combining Monte Carlo simulations and Bayesian statistics. The uncertain nature of both input parameters and model assumptions and their effects on the uncertainties of wellbore stability predictions are investigated. It is shown that, depending on the severity of parameters

  8. A Quasi-Steady Flexible Launch Vehicle Stability Analysis Using Steady CFD with Unsteady Aerodynamic Enhancement

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2011-01-01

    Launch vehicles frequently experience a reduced stability margin through the transonic Mach number range. This reduced stability margin is caused by an undamping of the aerodynamics in one of the lower frequency flexible or rigid body modes. Analysis of the behavior of a flexible vehicle is routinely performed with quasi-steady aerodynamic lineloads derived from steady rigid computational fluid dynamics (CFD). However, a quasi-steady aeroelastic stability analysis can be unconservative at the critical Mach numbers where experiment or unsteady computational aeroelastic (CAE) analysis show a reduced or even negative aerodynamic damping. This paper will present a method of enhancing the quasi-steady aeroelastic stability analysis of a launch vehicle with unsteady aerodynamics. The enhanced formulation uses unsteady CFD to compute the response of selected lower frequency modes. The response is contained in a time history of the vehicle lineloads. A proper orthogonal decomposition of the unsteady aerodynamic lineload response is used to reduce the scale of data volume and system identification is used to derive the aerodynamic stiffness, damping and mass matrices. The results of the enhanced quasi-static aeroelastic stability analysis are compared with the damping and frequency computed from unsteady CAE analysis and from a quasi-steady analysis. The results show that incorporating unsteady aerodynamics in this way brings the enhanced quasi-steady aeroelastic stability analysis into close agreement with the unsteady CAE analysis.

  9. Enhanced weathering strategies for stabilizing climate and averting ocean acidification

    NASA Astrophysics Data System (ADS)

    Taylor, Lyla L.; Quirk, Joe; Thorley, Rachel M. S.; Kharecha, Pushker A.; Hansen, James; Ridgwell, Andy; Lomas, Mark R.; Banwart, Steve A.; Beerling, David J.

    2016-04-01

    Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation) indicates that enhanced weathering could lower atmospheric CO2 by 30-300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m-2 yr-1) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions.

  10. Enhanced Weathering Strategies for Stabilizing Climate and Averting Ocean Acidification

    NASA Technical Reports Server (NTRS)

    Taylor, Lyla L.; Quirk, Joe; Thorley, Rachel M. S.; Kharecha, Pushker A.; Hansen, James; Ridgwell, Andy; Lomas, Mark R.; Banwart, Steve A.; Beerling, David J.

    2015-01-01

    Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation) indicates that enhanced weathering could lower atmospheric CO2 by 30-300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m(exp -2) yr (exp -1)) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions.

  11. Glycosylation of the enhanced aromatic sequon is similarly stabilizing in three distinct reverse turn contexts.

    PubMed

    Price, Joshua L; Powers, David L; Powers, Evan T; Kelly, Jeffery W

    2011-08-23

    Cotranslational N-glycosylation can accelerate protein folding, slow protein unfolding, and increase protein stability, but the molecular basis for these energetic effects is incompletely understood. N-glycosylation of proteins at naïve sites could be a useful strategy for stabilizing proteins in therapeutic and research applications, but without engineering guidelines, often results in unpredictable changes to protein energetics. We recently introduced the enhanced aromatic sequon as a family of portable structural motifs that are stabilized upon glycosylation in specific reverse turn contexts: a five-residue type I β-turn harboring a G1 β-bulge (using a Phe-Yyy-Asn-Xxx-Thr sequon) and a type II β-turn within a six-residue loop (using a Phe-Yyy-Zzz-Asn-Xxx-Thr sequon) [Culyba EK, et al. (2011) Science 331:571-575]. Here we show that glycosylating a new enhanced aromatic sequon, Phe-Asn-Xxx-Thr, in a type I' β-turn stabilizes the Pin 1 WW domain. Comparing the energetic effects of glycosylating these three enhanced aromatic sequons in the same host WW domain revealed that the glycosylation-mediated stabilization is greatest for the enhanced aromatic sequon complementary to the type I β-turn with a G1 β-bulge. However, the portion of the stabilization from the tripartite interaction between Phe, Asn(GlcNAc), and Thr is similar for each enhanced aromatic sequon in its respective reverse turn context. Adding the Phe-Asn-Xxx-Thr motif (in a type I' β-turn) to the enhanced aromatic sequon family doubles the number of proteins that can be stabilized by glycosylation without having to alter the native reverse turn type. PMID:21825145

  12. Wellbore pressure differential control for gravel pack screen

    SciTech Connect

    Cornette, H.M.

    1993-08-10

    A method is described for minimizing cross-flow of fluid in a wellbore in an earth formation and fitted with a gravel packing and an auger-type gravel pack screen, comprising the steps of: providing an auger-type gravel pack screen having a generally tubular liner member defining a space therewithin; providing a quantity of wellbore fluid loss control material comprising a graded particulate salt disposed in said space which will provide a substantially impermeable barrier to the flow of fluid out of said space through said liner into said gravel packing and said earth formation; filling at least a portion of said space with said material; installing said screen in said gravel packing; removing said material from said space after installation of said screen in said gravel packing by entraining said material in a carrier fluid while allowing at least some of said material to flow out of said space through said screen to form a filter cake on at least one of said gravel packing and said earth formation to minimize said cross-flow of fluid into said earth formation.

  13. Geomechanical analyses to investigate wellbore/mine interactions in the Potash Enclave of Southeastern New Mexico.

    SciTech Connect

    Ehgartner, Brian L.; Bean, James E.; Arguello, Jose Guadalupe, Jr.; Stone, Charles Michael

    2010-04-01

    Geomechanical analyses have been performed to investigate potential mine interactions with wellbores that could occur in the Potash Enclave of Southeastern New Mexico. Two basic models were used in the study; (1) a global model that simulates the mechanics associated with mining and subsidence and (2) a wellbore model that examines the resulting interaction impacts on the wellbore casing. The first model is a 2D approximation of a potash mine using a plane strain idealization for mine depths of 304.8 m (1000 ft) and 609.6 m (2000 ft). A 3D wellbore model then considers the impact of bedding plane slippage across single and double cased wells cemented through the Salado formation. The wellbore model establishes allowable slippage to prevent casing yield.

  14. Development of an Ultrasonic Phased Array System for Wellbore Integrity Evaluation and Near-Wellbore Fracture Network Mapping of Injection and Production Wells in Geothermal Energy Systems

    SciTech Connect

    Almansouri, Hani; Foster, Benjamin; Kisner, Roger A; Polsky, Yarom; Bouman, Charlie

    2016-01-01

    This paper documents our progress developing an ultrasound phased array system in combination with a model-based iterative reconstruction (MBIR) algorithm to inspect the health of and characterize the composition of the near-wellbore region for geothermal reservoirs. The main goal for this system is to provide a near-wellbore in-situ characterization capability that will significantly improve wellbore integrity evaluation and near well-bore fracture network mapping. A more detailed image of the fracture network near the wellbore in particular will enable the selection of optimal locations for stimulation along the wellbore, provide critical data that can be used to improve stimulation design, and provide a means for measuring evolution of the fracture network to support long term management of reservoir operations. Development of such a measurement capability supports current hydrothermal operations as well as the successful demonstration of Engineered Geothermal Systems (EGS). The paper will include the design of the phased array system, the performance specifications, and characterization methodology. In addition, we will describe the MBIR forward model derived for the phased array system and the propagation of compressional waves through a pseudo-homogenous medium.

  15. Enhanced stability of skyrmions in magnets with broken mirror symmetry

    NASA Astrophysics Data System (ADS)

    Rowland, James; Banerjee, Sumilan; Randeria, Mohit

    Most previous work on skyrmion phases in chiral magnets with Dzyaloshinkii Moriya interactions (DMI) focuses on the case of broken bulk inversion symmetry. The skyrmion crystal is then stable only in a limited range of parameter space with easy-axis anisotropy. In this talk I will describe the effects of including broken mirror or surface inversion symmetry which leads to a Rashba DMI, in addition to the Dresselhaus DMI arising from broken bulk inversion. I will show that increasing Rashba DMI leads to a progressively larger domain of stability for skyrmions, especially in the easy-plane anisotropy regime. In the latter regime the topological charge density shows an unusual internal structure, and isolated skyrmions cannot be embedded in a ferromagnetic background. Thus the homotopy group π2 (S2) method of classifying skyrmions fails. I will discuss a Chern number classification of these non-trivial skyrmions using maps from the 2-torus (the unit cell for skyrmion crystals) to the 2-sphere in spin space. Finally, I will discuss the elliptic cone phase, a new state that emerges for easy-axis anisotropy and broken mirror symmetry. We acknowledge support by the National Science Foundation by the NSF Graduate Research Fellowship Program Grant No. DGE-1343012 (JR), by an NSF Grant DMR-1410364 (MR), and by the CEM, an NSF MRSEC, under Grant DMR-1420451.

  16. Zirconia coating for enhanced thermal stability of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Pastre, A.; Cristini-Robbe, O.; Bois, L.; Chassagneux, F.; Branzea, D.; Boé, A.; Kinowski, C.; Raulin, K.; Rolland, N.; Bernard, R.

    2016-01-01

    This paper describes a rapid, simple and one-step method for the preparation of 2-4 nm diameter zirconia-coated gold nanoparticles at room temperature. These nanoparticles were synthesized by two simultaneous processes: the chemical reduction of tetrachloroauric acid with sodium borohydride and the formation of zirconia sol-gel matrices. All the gold nanoparticle sols were characterized by UV-visible absorption and transmission electron microscopy to determine the nanoparticle size and shape. The synthesis method is a combination of a polymeric structure of the amorphous zirconia and the use of a strong reducing agent, and it yields to very small quasi-spherical gold nanoparticles at room temperature. The thermal stability up to 1200 °C of the coated nanoparticles was studied by x-ray diffraction. The metastable tetragonal phase of the zirconia coating was obtained at 400 °C, and a progressive transformation from tetragonal to monoclinic phases of the zirconia coating was observed up to 1100 °C. After the heat treatment at 400 °C, the crystallite size of the gold nanoparticles was about 29 nm, and it remained unchanged from 400 °C to 1200 °C. These results are promising for the development of such materials as doping elements for optical fiber applications.

  17. Enhancement of stability of various nZVI suspensions used in groundwater remediation with environmentally friendly organic stabilizers

    NASA Astrophysics Data System (ADS)

    Schmid, Doris; Wagner, Stephan; Velimirović, Milica; Laumann, Susanne; Micić, Vesna; Hofmann, Thilo

    2014-05-01

    The use of nanoscale zero-valent iron (nZVI) particles for in situ remediation of polluted soil and groundwater has been shown as one of the most promising techniques [1]. The success of this technology depends on the mobility, reactivity, and longevity of nZVI particles. The mobility of nZVI particles depends on the properties of the single particles, stability of the particle suspension, and the aquifer material [1,2]. In order to enhance the mobility of nZVI, the mobility-decisive properties of the nZVI particles in suspension such as concentration, size distribution, surface charge, and sedimentation rate have to be investigated and optimized. Previous studies showed that pristine nZVI particles aggregate rapidly in water, reducing the particles radius of influence after injection [3]. In order to prevent aggregation and sedimentation of the nZVI particles, and consequently improve the stability of nZVI suspension and therefore the mobility of the nZVI particles, surface stabilizers can be used to provide electrostatic repulsion and steric or electrosteric stabilization [3,4]. The objective of this lab-scale study is to investigate the potential for enhancing the stability of different nZVI suspensions by means of environmentally friendly organic stabilizers, including carboxymethyl cellulose, pectin, alginate, xanthan, and guar gum. The different nZVI particles used included pristine and polyacrylic acid-coated nZVI particles provided in suspension (Nanofer 25 and Nanofer 25S, respectively, NANOIRON s.r.o., Czech Republic), air-stable nZVI particles (Nanofer Star, (NANOIRON s.r.o., Czech Republic), and milled iron flakes (UVR-FIA, Germany). In order to study the enhancement of nZVI stability (1 g L-1 total iron) different concentrations of organic stabilizers (1-20 wt.%) were applied in these nZVI suspensions. Each nZVI suspension was freshly prepared and treated for 10 minutes with Ultra-Turrax (15 000 rpm) and 10 minutes ultrasonic bath prior to

  18. hnRNP-U enhances the expression of specific genes by stabilizing mRNA.

    PubMed

    Yugami, Masato; Kabe, Yasuaki; Yamaguchi, Yuki; Wada, Tadashi; Handa, Hiroshi

    2007-01-01

    Heterogeneous nuclear ribonucleoproteins (hnRNPs) are thought to be involved in pre-mRNA processing. hnRNP-U, also termed scaffold attachment factor A (SAF-A), binds to pre-mRNA and nuclear matrix/scaffold attachment region DNA elements. However, its role in the regulation of gene expression is as yet poorly understood. In the present study, we show that hnRNP-U specifically enhances the expression of tumor necrosis factor alpha mRNA by increasing its stability, possibly through binding to the 3' untranslated region. We also show that hnRNP-U enhances the expression of several other genes as well, including GADD45A, HEXIM1, HOXA2, IER3, NHLH2, and ZFY, by binding to and stabilizing these mRNAs. These results suggest that hnRNP-U enhances the expression of specific genes by regulating mRNA stability. PMID:17174306

  19. Enhanced Immunogenicity of Stabilized Trimeric Soluble Influenza Hemagglutinin

    PubMed Central

    Weldon, William C.; Wang, Bao-Zhong; Martin, Maria P.; Koutsonanos, Dimitrios G.; Skountzou, Ioanna; Compans, Richard W.

    2010-01-01

    Background The recent swine-origin H1N1 pandemic illustrates the need to develop improved procedures for rapid production of influenza vaccines. One alternative to the current egg-based manufacture of influenza vaccine is to produce a hemagglutinin (HA) subunit vaccine using a recombinant expression system with the potential for high protein yields, ease of cloning new antigenic variants, and an established safety record in humans. Methodology/Principal Findings We generated a soluble HA (sHA), derived from the H3N2 virus A/Aichi/2/68, modified at the C-terminus with a GCN4pII trimerization repeat to stabilize the native trimeric structure of HA. When expressed in the baculovirus system, the modified sHA formed native trimers. In contrast, the unmodified sHA was found to present epitopes recognized by a low-pH conformation specific monoclonal antibody. We found that mice primed and boosted with 3 µg of trimeric sHA in the absence of adjuvants had significantly higher IgG and HAI titers than mice that received the unmodified sHA. This correlated with an increased survival and reduced body weight loss following lethal challenge with mouse-adapted A/Aichi/2/68 virus. In addition, mice receiving a single vaccination of the trimeric sHA in the absence of adjuvants had improved survival and body weight loss compared to mice vaccinated with the unmodified sHA. Conclusions/Significance Our data indicate that the recombinant trimeric sHA presents native trimeric epitopes while the unmodified sHA presents epitopes not exposed in the native HA molecule. The epitopes presented in the unmodified sHA constitute a “silent face” which may skew the antibody response to epitopes not accessible in live virus at neutral pH. The results demonstrate that the trimeric sHA is a more effective influenza vaccine candidate and emphasize the importance of structure-based antigen design in improving recombinant HA vaccines. PMID:20824188

  20. An assessment of the mechanical stability of wells offshore Nigeria

    SciTech Connect

    Lowrey, J.P.; Ottesen, S.

    1995-03-01

    In 1991 lost time due to stuck pipe related drilling problems accounted for approximately 18% of total drilling time in Mobil Producing Nigeria Ultd.`s (MPN) offshore operations. The primary cause of stuck pipe was identified as mechanical wellbore instability. This paper presents an assessment of the mechanical stability of MPN`s wells offshore Nigeria. The objectives of the study were to: (1) determine the magnitude of the in-situ principal stresses and material properties of the troublesome Intra-Biafra and Qua Iboe shale sequences; (2) quantify the drilling fluid densities required to drill mechanically stable wells through these formations; (3) review and recommend well planning and operational parameters which aid in minimizing wellbore stability-related drilling problems. The well-bore stability assessment was carried out with the aid of a 3-dimensional wellbore stability model using field derived data from the study area to corroborate the results. The collection and analysis of drilling data (borehole geometry and density logs, pore pressure, leak-off tests, local geology and other relevant well records) to determine the magnitude of the in-situ principal stresses, together with compressive strength tests on formation cores are discussed. Minimum safe drilling fluid densities to promote wellbore stability as a function of well geometry and depth are presented for the most troublesome shales drilled in the study area. Implementation of the results reduced wellbore stability related problems and associated trouble time to less than 5% in 1992.

  1. Enhanced Physical Stability of Amorphous Drug Formulations via Dry Polymer Coating.

    PubMed

    Capece, Maxx; Davé, Rajesh

    2015-06-01

    Although amorphous solid drug formulations may be advantageous for enhancing the bioavailability of poorly soluble active pharmaceutical ingredients, they exhibit poor physical stability and undergo recrystallization. To address this limitation, this study investigates stability issues associated with amorphous solids through analysis of the crystallization behavior for acetaminophen (APAP), known as a fast crystallizer, using a modified form of the Avrami equation that kinetically models both surface and bulk crystallization. It is found that surface-enhanced crystallization, occurring faster at the free surface than in the bulk, is the major impediment to the stability of amorphous APAP. It is hypothesized that a novel use of a dry-polymer-coating process referred to as mechanical-dry-polymer-coating may be used to inhibit surface crystallization and enhance stability. The proposed process, which is examined, simultaneously mills and coats amorphous solids with polymer, while avoiding solvents or solutions, which may otherwise cause stability or crystallization issues during coating. It is shown that solid dispersions of APAP (64% loading) with a small particle size (28 μm) could be prepared and coated with the polymer, carnauba wax, in a vibratory ball mill. The resulting amorphous solid was found to have excellent stability as a result of inhibition of surface crystallization. PMID:25902736

  2. A hybrid superconducting fault current limiter for enhancing transient stability in Korean power systems

    NASA Astrophysics Data System (ADS)

    Seo, Sangsoo; Kim, Seog-Joo; Moon, Young-Hwan; Lee, Byongjun

    2013-11-01

    Additional power generation sites have been limited in Korea, despite the fact load demands are gradually increasing. In order to meet these increasing demands, Korea’s power system company has begun constructing new generators at existing sites. Thus, multi-unit plants can create problems in terms of transient stability when a large disturbance occurs. This paper proposes a hybrid superconducting fault current limiter (SFCL) application to enhance the transient stability of multi-unit power plants. SFCLs reduce fault currents, and limitation currents decrease the imbalance of the mechanical and electrical torque of the generators, resulting in an improvement in transient stability.

  3. Utilizing resonant magnetic perturbations to enhance neoclassical tearing mode stabilization by rf current

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoguang; Zhang, Xiaodong; Yu, Qingquan; Wu, Bin; Zhu, Sizheng; Wang, Jinfang; Zhang, Yang; Wang, Xiaojing

    2015-09-01

    A new method to stabilize the rotating neoclassical tearing mode (NTM) by using both the rf current drive and the static resonant magnetic perturbation (RMP) is investigated. When a non-uniform mode rotation is induced by the RMP, the stabilization of NTM by the rf current is found to be enhanced if the RMP phase has a half period difference from that of the rf wave deposition along the helical angle. The required rf current for mode stabilization is reduced by about one third if an appropriate RMP amplitude is applied.

  4. Geochemical and Geomechanical Effects on Wellbore Cement Fractures

    DOE PAGESBeta

    Um, Wooyong; Jung, Hun Bok; Kabilan, Senthil; Fernandez, Carlos A.; Brown, Christopher F.

    2014-12-31

    Experimental studies were conducted using batch reactors, X-ray microtomograpy (XMT), and computational fluid dynamics (CFD) simulation to determine changes in cement fracture surfaces, fluid flow pathways, and permeability with geochemical and geomechanical processes. Composite Portland cement-basalt caprock core with artificial fractures was prepared and reacted with CO2-saturated groundwater at 50°C and 10 MPa for 3 to 3.5 months under static conditions to understand the geochemical and geomechanical effects on the integrity of wellbores containing defects. Cement-basalt interface samples were subjected to mechanical stress at 2.7 MPa before the CO2 reaction. XMT provided three-dimensional (3-D) visualization of the opening and interconnectionmore » of cement fractures due to mechanical stress. After the CO2 reaction, XMT images revealed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along fractures located at the cement-basalt interface. The permeability calculated based on CFD simulation was in agreement with the experimentally measured permeability. The experimental results imply that the wellbore cement with fractures is likely to be healed during exposure to CO2-saturated groundwater under static conditions, whereas fractures along the cement-caprock interface are still likely to remain vulnerable to the leakage of CO2. CFD simulation for the flow of different fluids (CO2-saturated brine and supercritical CO2) using a pressure difference of 20 kPa and 200 kPa along ~2 cm-long cement fractures showed that a pressure gradient increase resulted in an increase of CO2 fluids flux by a factor of only ~3-9 because the friction of CO2 fluids on cement fracture surfaces increased with higher flow rate as well. At the same pressure gradient, the simulated flow rate was higher for supercritical CO2 than CO2-saturated brine by a factor of only ~2-3, because the viscosity of supercritical CO2 is

  5. Geochemical and Geomechanical Effects on Wellbore Cement Fractures

    SciTech Connect

    Um, Wooyong; Jung, Hun Bok; Kabilan, Senthil; Fernandez, Carlos A.; Brown, Christopher F.

    2014-12-31

    Experimental studies were conducted using batch reactors, X-ray microtomograpy (XMT), and computational fluid dynamics (CFD) simulation to determine changes in cement fracture surfaces, fluid flow pathways, and permeability with geochemical and geomechanical processes. Composite Portland cement-basalt caprock core with artificial fractures was prepared and reacted with CO2-saturated groundwater at 50°C and 10 MPa for 3 to 3.5 months under static conditions to understand the geochemical and geomechanical effects on the integrity of wellbores containing defects. Cement-basalt interface samples were subjected to mechanical stress at 2.7 MPa before the CO2 reaction. XMT provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. After the CO2 reaction, XMT images revealed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along fractures located at the cement-basalt interface. The permeability calculated based on CFD simulation was in agreement with the experimentally measured permeability. The experimental results imply that the wellbore cement with fractures is likely to be healed during exposure to CO2-saturated groundwater under static conditions, whereas fractures along the cement-caprock interface are still likely to remain vulnerable to the leakage of CO2. CFD simulation for the flow of different fluids (CO2-saturated brine and supercritical CO2) using a pressure difference of 20 kPa and 200 kPa along ~2 cm-long cement fractures showed that a pressure gradient increase resulted in an increase of CO2 fluids flux by a factor of only ~3-9 because the friction of CO2 fluids on cement fracture surfaces increased with higher flow rate as well. At the same pressure gradient, the simulated flow rate was higher for supercritical CO2 than CO2-saturated brine by a factor of only ~2-3, because the viscosity of supercritical CO2 is much

  6. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    PubMed Central

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-01-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology. PMID:26861509

  7. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    NASA Astrophysics Data System (ADS)

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-02-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  8. Effective Permeability Change in Wellbore Cement with Carbon Dioxide Reaction

    SciTech Connect

    Um, Wooyong; Jung, Hun Bok; Martin, Paul F.; McGrail, B. Peter

    2011-11-01

    Portland cement, a common sealing material for wellbores for geological carbon sequestration was reacted with CO{sub 2} in supercritical, gaseous, and aqueous phases at various pressure and temperature conditions to simulate cement-CO{sub 2} reaction along the wellbore from carbon injection depth to the near-surface. Hydrated Portland cement columns (14 mm diameter x 90 mm length; water-to-cement ratio = 0.33) including additives such as steel coupons and Wallula basalt fragments were reacted with CO{sub 2} in the wet supercritical (the top half) and dissolved (the bottom half) phases under carbon sequestration condition with high pressure (10 MPa) and temperature (50 C) for 5 months, while small-sized hydrated Portland cement columns (7 mm diameter x 20 mm length; water-to-cement ratio = 0.38) were reacted with CO{sub 2} in dissolved phase at high pressure (10 MPa) and temperature (50 C) for 1 month or with wet CO{sub 2} in gaseous phase at low pressure (0.2 MPa) and temperature (20 C) for 3 months. XMT images reveal that the cement reacted with CO{sub 2} saturated groundwater had degradation depth of {approx}1 mm for 1 month and {approx}3.5 mm for 5 month, whereas the degradation was minor with cement exposure to supercritical CO{sub 2}. SEM-EDS analysis showed that the carbonated cement was comprised of three distinct zones; the innermost less degraded zone with Ca atom % > C atom %, the inner degraded zone with Ca atom % {approx} C atom % due to precipitation of calcite, the outer degraded zone with C atom % > Ca atom % due to dissolution of calcite and C-S-H, as well as adsorption of carbon to cement matrix. The outer degraded zone of carbonated cement was porous and fractured because of dissolution-dominated reaction by carbonic acid exposure, which resulted in the increase in BJH pore volume and BET surface area. In contrast, cement-wet CO{sub 2}(g) reaction at low P (0.2 MPa)-T (20 C) conditions for 1 to 3 months was dominated by precipitation of micron

  9. Potential of hydraulically induced fractures to communicate with existing wellbores

    NASA Astrophysics Data System (ADS)

    Montague, James A.; Pinder, George F.

    2015-10-01

    The probability that new hydraulically fractured wells drilled within the area of New York underlain by the Marcellus Shale will intersect an existing wellbore is calculated using a statistical model, which incorporates: the depth of a new fracturing well, the vertical growth of induced fractures, and the depths and locations of existing nearby wells. The model first calculates the probability of encountering an existing well in plan view and combines this with the probability of an existing well-being at sufficient depth to intersect the fractured region. Average probability estimates for the entire region of New York underlain by the Marcellus Shale range from 0.00% to 3.45% based upon the input parameters used. The largest contributing parameter on the probability value calculated is the nearby density of wells meaning that due diligence by oil and gas companies during construction in identifying all nearby wells will have the greatest effect in reducing the probability of interwellbore communication.

  10. AnalyzeHOLE - An Integrated Wellbore Flow Analysis Tool

    USGS Publications Warehouse

    Halford, Keith

    2009-01-01

    Conventional interpretation of flow logs assumes that hydraulic conductivity is directly proportional to flow change with depth. However, well construction can significantly alter the expected relation between changes in fluid velocity and hydraulic conductivity. Strong hydraulic conductivity contrasts between lithologic intervals can be masked in continuously screened wells. Alternating intervals of screen and blank casing also can greatly complicate the relation between flow and hydraulic properties. More permeable units are not necessarily associated with rapid fluid-velocity increases. Thin, highly permeable units can be misinterpreted as thick and less permeable intervals or not identified at all. These conditions compromise standard flow-log interpretation because vertical flow fields are induced near the wellbore. AnalyzeHOLE, an integrated wellbore analysis tool for simulating flow and transport in wells and aquifer systems, provides a better alternative for simulating and evaluating complex well-aquifer system interaction. A pumping well and adjacent aquifer system are simulated with an axisymmetric, radial geometry in a two-dimensional MODFLOW model. Hydraulic conductivities are distributed by depth and estimated with PEST by minimizing squared differences between simulated and measured flows and drawdowns. Hydraulic conductivity can vary within a lithology but variance is limited with regularization. Transmissivity of the simulated system also can be constrained to estimates from single-well, pumping tests. Water-quality changes in the pumping well are simulated with simple mixing models between zones of differing water quality. These zones are differentiated by backtracking thousands of particles from the well screens with MODPATH. An Excel spreadsheet is used to interface the various components of AnalyzeHOLE by (1) creating model input files, (2) executing MODFLOW, MODPATH, PEST, and supporting FORTRAN routines, and (3) importing and graphically

  11. AnalyzeHOLE: An Integrated Wellbore Flow Analysis Tool

    SciTech Connect

    Keith J. Halford

    2009-10-01

    Conventional interpretation of flow logs assumes that hydraulic conductivity is directly proportional to flow change with depth. However, well construction can significantly alter the expected relation between changes in fluid velocity and hydraulic conductivity. Strong hydraulic conductivity contrasts between lithologic intervals can be masked in continuously screened wells. Alternating intervals of screen and blank casing also can greatly complicate the relation between flow and hydraulic properties. More permeable units are not necessarily associated with rapid fluid-velocity increases. Thin, highly permeable units can be misinterpreted as thick and less permeable intervals or not identified at all. These conditions compromise standard flow-log interpretation because vertical flow fields are induced near the wellbore. AnalyzeHOLE, an integrated wellbore analysis tool for simulating flow and transport in wells and aquifer systems, provides a better alternative for simulating and evaluating complex well-aquifer system interaction. A pumping well and adjacent aquifer system are simulated with an axisymmetric, radial geometry in a two-dimensional MODFLOW model. Hydraulic conductivities are distributed by depth and estimated with PEST by minimizing squared differences between simulated and measured flows and drawdowns. Hydraulic conductivity can vary within a lithology but variance is limited with regularization. Transmissivity of the simulated system also can be constrained to estimates from single-well, pumping tests. Water-quality changes in the pumping well are simulated with simple mixing models between zones of differing water quality. These zones are differentiated by backtracking thousands of particles from the well screens with MODPATH. An Excel spreadsheet is used to interface the various components of AnalyzeHOLE by (1) creating model input files, (2) executing MODFLOW, MODPATH, PEST, and supporting FORTRAN routines, and (3) importing and graphically

  12. Emissions of Methane and Other Hydrocarbons Due to Wellbore Leaks

    NASA Astrophysics Data System (ADS)

    Lyman, S. N.; Mansfield, M. L.

    2013-12-01

    The explosive growth of oil and gas production in the United States has focused public and regulatory attention on environmental impacts of hydrocarbon extraction, including air quality and climate impacts. However, EPA and others have acknowledged that current air emissions factors and inventories for many oil and gas-related source categories are inadequate or lacking entirely. One potentially important emissions source is leakage of natural gas from wellbores. This phenomenon has long been recognized to occur, but no attempt has been made to quantify emission rates of gas leaked from wellbores to the atmosphere. Soil gas measurements carried out by USGS over the last several years in Utah's oil and gas fields have shown that, while concentrations of methane in soils near many wells are low, soil gas near some wells can contain more than 10% methane, indicating that underground leakage is occurring. In summer 2013 we carried out a campaign to measure the emission rate of methane and other hydrocarbons from soils near wells in two oil and gas fields in Utah. We measured emissions from several locations on some well pads to determine the change in emission rate with distance from well heads, and we measured at non-well sites in the same fields to determine background emission rates. Methane emission rates at some wells exceeded 3 g m-2 h-1, while emission rates at other wells were similar to background levels, and a correlation was observed between soil gas methane concentrations and methane emission rates from the soil. We used these data to estimate total methane and hydrocarbon emission rates from these two fields.

  13. Enhanced Enzyme Kinetic Stability by Increasing Rigidity within the Active Site*

    PubMed Central

    Xie, Yuan; An, Jiao; Yang, Guangyu; Wu, Geng; Zhang, Yong; Cui, Li; Feng, Yan

    2014-01-01

    Enzyme stability is an important issue for protein engineers. Understanding how rigidity in the active site affects protein kinetic stability will provide new insight into enzyme stabilization. In this study, we demonstrated enhanced kinetic stability of Candida antarctica lipase B (CalB) by mutating the structurally flexible residues within the active site. Six residues within 10 Å of the catalytic Ser105 residue with a high B factor were selected for iterative saturation mutagenesis. After screening 2200 colonies, we obtained the D223G/L278M mutant, which exhibited a 13-fold increase in half-life at 48 °C and a 12 °C higher T5015, the temperature at which enzyme activity is reduced to 50% after a 15-min heat treatment. Further characterization showed that global unfolding resistance against both thermal and chemical denaturation also improved. Analysis of the crystal structures of wild-type CalB and the D223G/L278M mutant revealed that the latter formed an extra main chain hydrogen bond network with seven structurally coupled residues within the flexible α10 helix that are primarily involved in forming the active site. Further investigation of the relative B factor profile and molecular dynamics simulation confirmed that the enhanced rigidity decreased fluctuation of the active site residues at high temperature. These results indicate that enhancing the rigidity of the flexible segment within the active site may provide an efficient method for improving enzyme kinetic stability. PMID:24448805

  14. Molecular Lock: A Versatile Key to Enhance Efficiency and Stability of Organic Solar Cells.

    PubMed

    Cheng, Pei; Yan, Cenqi; Lau, Tsz-Ki; Mai, Jiangquan; Lu, Xinhui; Zhan, Xiaowei

    2016-07-01

    4,4'-Biphenol (BPO), a common, cheap chemical, is employed as a "molecular lock" in blends of fluorine-containing polymer or small molecule donors and fullerene acceptors to lock donors via hydrogen bond formed between the donor and BPO. The molecular lock is a versatile key to enhance the efficiency and stability of organic solar cells simultaneously. PMID:27158774

  15. Enhancing Economic Stability Utilizing the High Technologies in Community Colleges: A Case Study.

    ERIC Educational Resources Information Center

    Mehnert, Barbara H.; Kurki, Allan W.

    Strategies to enhance the economic stability of community colleges through high technology approaches are discussed in this paper. First, general economic problems facing higher education are identified, and the ways in which they influence community colleges are described. Next, 10 strategies to aid in the economic recovery of community colleges…

  16. Successful Stabilization of Graphene Oxide in Electrolyte Solutions: Enhancement of Bio-functionalization and Cellular Uptake

    PubMed Central

    Hong, Bong Jin; Compton, Owen C.; An, Zhi; Eryzazici, Ibrahim; Nguyen, SonBinh T.

    2013-01-01

    Aqueous dispersions of graphene oxide are inherently unstable in the presence of electrolytes, which screen the electrostatic surface charge on these nanosheets and induce irreversible aggregation. Two complementary strategies, utilizing either electrostatic or steric stabilization, have been developed to enhance the stability of graphene oxide in electrolyte solutions, allowing it to stay dispersed in cell culture media and serum. The electrostatic stabilization approach entails further oxidation of graphene oxide to low C/O ratio (~1.03) and increases ionic tolerance of these nanosheets. The steric stabilization technique employs an amphiphilic block copolymer that serves as a non-covalently bound surfactant to minimize the aggregate-induced nanosheets-nanosheet interactions. Both strategies can stabilize graphene oxide nanosheets with large dimensions (>300 nm) in biological media, allowing for an enhancement of >250% in the bioconjugation efficiency of streptavidin in comparison to untreated nanosheets. Notably, both strategies allow the stabilized nanosheets to be readily uptake by cells, demonstrating their excellent performance as potential drug delivery vehicles. PMID:22017285

  17. Enhancement of amorphous celecoxib stability by mixing it with octaacetylmaltose: the molecular dynamics study.

    PubMed

    Grzybowska, K; Paluch, M; Wlodarczyk, P; Grzybowski, A; Kaminski, K; Hawelek, L; Zakowiecki, D; Kasprzycka, A; Jankowska-Sumara, I

    2012-04-01

    In this paper, we present a novel way of stabilization of amorphous celecoxib (CEL) against recrystallization by preparing binary amorphous celecoxib-octaacetylmaltose (CEL-acMAL) systems by quench-cooling of the molten phase. As far as we know this is the first application of carbohydrate derivatives with acetate groups to enhance the stability of an amorphous drug. We found that CEL in the amorphous mixture with acMAL is characterized by a much better solubility than pure CEL. We report very promising results of the long-term measurements of stability of the CEL-acMAL binary amorphous system with small amount of stabilizer during its storage at room temperature. Moreover, we examined the effect of adding acMAL on molecular dynamics of CEL in the wide temperature range in both the supercooled liquid and glassy states. We found that the molecular mobility of the mixture of CEL with 10 wt % acMAL in the glassy state is much more limited than that in the case of pure CEL, which correlates with the better stability of the amorphous binary system. By dielectric measurements and theoretical calculations within the framework of density functional theory (DFT), we studied the role of acMAL in enhancing the stability of amorphous CEL in mixtures and postulated which interactions between CEL and acMAL molecules can be responsible for preventing devitrification. PMID:22384922

  18. The Significance of Wellbore Flow in the Santa Clara Valley, California

    NASA Astrophysics Data System (ADS)

    Hanson, R. T.

    2005-12-01

    Interaquifer flow through water-supply wells screened across multiple aquifers is an important component to the flow of ground water in many developed aquifer systems. Wellbore flow in the Santa Clara Valley, California, was examined using flow measurements, hydrochemistry, and numerical simulations. Interaquifer flow was assessed locally using a combination of wellbore flow measurements and depth-dependent water-chemistry sampling at three water-supply wells and depth-specific samples from multiple-well monitoring sites. Interaquifer flow owing to wellbore flow in hundreds of multi-aquifer supply wells was assessed regionally using a simulation model of regional ground-water flow. Wellbore flow and depth-dependent chemical and isotopic data indicate that flow into the well from multiple aquifers, as well as capture of artificial recharge by pumping of water-supply wells, predominantly is occurring in the upper 500 feet of the aquifer system. Uncorrected carbon-14 data indicates that the ground water in the upper 500 feet generally is less than 2,000 years old, and ground water in the deeper aquifer layers generally ranges from 16,700 to 39,900 years old. Results of depth-dependent and depth-specific sampling collectively suggest that wellbores may be the main path for vertical flow between aquifer layers. In addition, on the west side of the valley, the ground water in the shallower aquifers (< 500 ft depth) contains a substantial amount of water from artificial recharge. Deuterium and oxygen isotopic data indicate as much as 60 percent of water pumped from production wells in this area originated as artificial recharge. Depth-dependent samples from water-supply wells also helped to better delineate trace amounts of anthropogenic contaminants coming from shallower aquifers . In addition to wellbore measurements, the regional effects of wellbore flow were assessed with a regional ground-water flow model that included the simulation of wellbore flow from wells

  19. Bacterial lipopolysaccharide binding enhances virion stability and promotes environmental fitness of an enteric virus

    PubMed Central

    Robinson, Christopher M.; Jesudhasan, Palmy R.; Pfeiffer, Julie K.

    2014-01-01

    Summary Enteric viruses, including poliovirus and reovirus, encounter a vast microbial community in the mammalian gastrointestinal tract, which has been shown to promote virus replication and pathogenesis. Investigating the underlying mechanisms, we find that poliovirus binds bacterial surface polysaccharides, which enhances virion stability and cell attachment by increasing binding to the viral receptor. Additionally, we identified a poliovirus mutant, VP1-T99K, with reduced lipopolysaccharide (LPS) binding. Although T99K and WT poliovirus cell attachment, replication and pathogenesis in mice are equivalent, following peroral inoculation of mice, VP1-T99K poliovirus was unstable in feces. Consequently, the ratio of mutant virus in feces is reduced following additional cycles of infection in mice. Thus, the mutant virus incurs a fitness cost when environmental stability is a factor. These data suggest that poliovirus binds bacterial surface polysaccharides, enhancing cell attachment and environmental stability, potentially promoting transmission to a new host. PMID:24439896

  20. Enhancing the stability and antibiofilm activity of DspB by immobilization on carboxymethyl chitosan nanoparticles.

    PubMed

    Tan, Yulong; Ma, Su; Liu, Chenguang; Yu, Wengong; Han, Feng

    2015-09-01

    A β-N-acetyl-glucosaminidase (DspB) from Aggregatibacter actinomycetemcomitans CU1000 has been proved to inhibit and detach the biofilms formed by Staphylococcus epidermidis, Staphylococcus aureus and A. actinomycetemcomitans. However, the application of this enzyme is limited by its poor stability. In the present study, a β-N-acetyl-glucosaminidase encoding gene, dspB, was cloned from A. actinomycetemcomitans HK1651 and expressed in Escherichia coli. The recombinant DspB was loaded on hydrogel nanoparticles, which was prepared by using linoleic acid (LA) modified carboxymethyl chitosan (CMCS) after sonication. The nanoparticles were almost saturated by DspB at 0.3 mg/ml, which gave a loading capacity of 76.7%. The immobilization enhanced thermal stability, storage stability and reusability of DspB significantly. Moreover, it also increased antibiofilm activity due to the dual mechanism, including the improvement of the enzyme stability and the antibiofilm activity of CMCS nanoparticles. PMID:26302845

  1. A Nonlinear Excitation Controller Design Method for Terminal Voltage Regulation and Transient Stability Enhancement

    NASA Astrophysics Data System (ADS)

    Huang, Chongxin; Zhang, Kaifeng; Dai, Xianzhong; Zang, Qiang

    2014-06-01

    This paper proposes a cascade control method to design a nonlinear excitation controller to guarantee the terminal voltage regulation and the transient stability. Firstly, a nonlinear automatic voltage regulator (NAVR) in the inner loop is designed to control the terminal voltage exactly. Secondly, the generator model including the NAVR is transformed to be a reduced one. Subsequently, based on the reduced generator model, the nonlinear power system stabilizer in the external loop is designed to enhance the transient stability of the power systems. Furthermore, a coordination strategy is presented to improve the performances of the terminal voltage regulation in the steady state and the stability in the transient state. Finally, the proposed method is verified by numerous simulation results.

  2. Balancing the stability and the catalytic specificities of OP hydrolases with enhanced V-agent activities.

    PubMed

    Reeves, T E; Wales, M E; Grimsley, J K; Li, P; Cerasoli, D M; Wild, J R

    2008-06-01

    Rational site-directed mutagenesis and biophysical analyses have been used to explore the thermodynamic stability and catalytic capabilities of organophosphorus hydrolase (OPH) and its genetically modified variants. There are clear trade-offs in the stability of modifications that enhance catalytic activities. For example, the H254R/H257L variant has higher turnover numbers for the chemical warfare agents VX (144 versus 14 s(-1) for the native enzyme (wild type) and VR (Russian VX, 465 versus 12 s(-1) for wild type). These increases are accompanied by a loss in stability in which the total Gibb's free energy for unfolding is 19.6 kcal/mol, which is 5.7 kcal/mol less than that of the wild-type enzyme. X-ray crystallographic studies support biophysical data that suggest amino acid residues near the active site contribute to the chemical and thermal stability through hydrophobic and cation-pi interactions. The cation-pi interactions appear to contribute an additional 7 kcal/mol to the overall global stability of the enzyme. Using rational design, it has been possible to make amino acid changes in this region that restored the stability, yet maintained effective V-agent activities, with turnover numbers of 68 and 36 s(-1) for VX and VR, respectively. This study describes the first rationally designed, stability/activity balance for an OPH enzyme with a legitimate V-agent activity, and its crystal structure. PMID:18434422

  3. Enhancing Intrinsic Stability of Hybrid Perovskite Solar Cell by Strong, yet Balanced, Electronic Coupling

    PubMed Central

    El-Mellouhi, Fedwa; Bentria, El Tayeb; Rashkeev, Sergey N.; Kais, Sabre; Alharbi, Fahhad H.

    2016-01-01

    In the past few years, the meteoric development of hybrid organic–inorganic perovskite solar cells (PSC) astonished the community. The efficiency has already reached the level needed for commercialization; however, the instability hinders its deployment on the market. Here, we report a mechanism to chemically stabilize PSC absorbers. We propose to replace the widely used methylammonium cation (CH3NH3+) by alternative molecular cations allowing an enhanced electronic coupling between the cation and the PbI6 octahedra while maintaining the band gap energy within the suitable range for solar cells. The mechanism exploits establishing a balance between the electronegativity of the materials’ constituents and the resulting ionic electrostatic interactions. The calculations demonstrate the concept of enhancing the electronic coupling, and hence the stability, by exploring the stabilizing features of CH3PH3+, CH3SH2+, and SH3+ cations, among several other possible candidates. Chemical stability enhancement hence results from a strong, yet balanced, electronic coupling between the cation and the halides in the octahedron. This shall unlock the hindering instability problem for PSCs and allow them to hit the market as a serious low-cost competitor to silicon based solar cell technologies. PMID:27457130

  4. Enhancement of colour stability of anthocyanins in model beverages by gum arabic addition.

    PubMed

    Chung, Cheryl; Rojanasasithara, Thananunt; Mutilangi, William; McClements, David Julian

    2016-06-15

    This study investigated the potential of gum arabic to improve the stability of anthocyanins that are used in commercial beverages as natural colourants. The degradation of purple carrot anthocyanin in model beverage systems (pH 3.0) containing L-ascorbic acid proceeded with a first-order reaction rate during storage (40 °C for 5 days in light). The addition of gum arabic (0.05-5.0%) significantly enhanced the colour stability of anthocyanin, with the most stable systems observed at intermediate levels (1.5%). A further increase in concentration (>1.5%) reduced its efficacy due to a change in the conformation of the gum arabic molecules that hindered their exposure to the anthocyanins. Fluorescence quenching measurements showed that the anthocyanin could have interacted with the glycoprotein fractions of the gum arabic through hydrogen bonding, resulting in enhanced stability. Overall, this study provides valuable information about enhancing the stability of anthocyanins in beverage systems using natural ingredients. PMID:26868542

  5. VMCast: A VM-Assisted Stability Enhancing Solution for Tree-Based Overlay Multicast

    PubMed Central

    Gu, Weidong; Zhang, Xinchang; Gong, Bin; Zhang, Wei; Wang, Lu

    2015-01-01

    Tree-based overlay multicast is an effective group communication method for media streaming applications. However, a group member’s departure causes all of its descendants to be disconnected from the multicast tree for some time, which results in poor performance. The above problem is difficult to be addressed because overlay multicast tree is intrinsically instable. In this paper, we proposed a novel stability enhancing solution, VMCast, for tree-based overlay multicast. This solution uses two types of on-demand cloud virtual machines (VMs), i.e., multicast VMs (MVMs) and compensation VMs (CVMs). MVMs are used to disseminate the multicast data, whereas CVMs are used to offer streaming compensation. The used VMs in the same cloud datacenter constitute a VM cluster. Each VM cluster is responsible for a service domain (VMSD), and each group member belongs to a specific VMSD. The data source delivers the multicast data to MVMs through a reliable path, and MVMs further disseminate the data to group members along domain overlay multicast trees. The above approach structurally improves the stability of the overlay multicast tree. We further utilized CVM-based streaming compensation to enhance the stability of the data distribution in the VMSDs. VMCast can be used as an extension to existing tree-based overlay multicast solutions, to provide better services for media streaming applications. We applied VMCast to two application instances (i.e., HMTP and HCcast). The results show that it can obviously enhance the stability of the data distribution. PMID:26562152

  6. Enhancing Intrinsic Stability of Hybrid Perovskite Solar Cell by Strong, yet Balanced, Electronic Coupling

    NASA Astrophysics Data System (ADS)

    El-Mellouhi, Fedwa; Bentria, El Tayeb; Rashkeev, Sergey N.; Kais, Sabre; Alharbi, Fahhad H.

    2016-07-01

    In the past few years, the meteoric development of hybrid organic–inorganic perovskite solar cells (PSC) astonished the community. The efficiency has already reached the level needed for commercialization; however, the instability hinders its deployment on the market. Here, we report a mechanism to chemically stabilize PSC absorbers. We propose to replace the widely used methylammonium cation (CH3NH3+) by alternative molecular cations allowing an enhanced electronic coupling between the cation and the PbI6 octahedra while maintaining the band gap energy within the suitable range for solar cells. The mechanism exploits establishing a balance between the electronegativity of the materials’ constituents and the resulting ionic electrostatic interactions. The calculations demonstrate the concept of enhancing the electronic coupling, and hence the stability, by exploring the stabilizing features of CH3PH3+, CH3SH2+, and SH3+ cations, among several other possible candidates. Chemical stability enhancement hence results from a strong, yet balanced, electronic coupling between the cation and the halides in the octahedron. This shall unlock the hindering instability problem for PSCs and allow them to hit the market as a serious low-cost competitor to silicon based solar cell technologies.

  7. Enhancing Intrinsic Stability of Hybrid Perovskite Solar Cell by Strong, yet Balanced, Electronic Coupling.

    PubMed

    El-Mellouhi, Fedwa; Bentria, El Tayeb; Rashkeev, Sergey N; Kais, Sabre; Alharbi, Fahhad H

    2016-01-01

    In the past few years, the meteoric development of hybrid organic-inorganic perovskite solar cells (PSC) astonished the community. The efficiency has already reached the level needed for commercialization; however, the instability hinders its deployment on the market. Here, we report a mechanism to chemically stabilize PSC absorbers. We propose to replace the widely used methylammonium cation (CH3NH3(+)) by alternative molecular cations allowing an enhanced electronic coupling between the cation and the PbI6 octahedra while maintaining the band gap energy within the suitable range for solar cells. The mechanism exploits establishing a balance between the electronegativity of the materials' constituents and the resulting ionic electrostatic interactions. The calculations demonstrate the concept of enhancing the electronic coupling, and hence the stability, by exploring the stabilizing features of CH3PH3(+), CH3SH2(+), and SH3(+) cations, among several other possible candidates. Chemical stability enhancement hence results from a strong, yet balanced, electronic coupling between the cation and the halides in the octahedron. This shall unlock the hindering instability problem for PSCs and allow them to hit the market as a serious low-cost competitor to silicon based solar cell technologies. PMID:27457130

  8. VMCast: A VM-Assisted Stability Enhancing Solution for Tree-Based Overlay Multicast.

    PubMed

    Gu, Weidong; Zhang, Xinchang; Gong, Bin; Zhang, Wei; Wang, Lu

    2015-01-01

    Tree-based overlay multicast is an effective group communication method for media streaming applications. However, a group member's departure causes all of its descendants to be disconnected from the multicast tree for some time, which results in poor performance. The above problem is difficult to be addressed because overlay multicast tree is intrinsically instable. In this paper, we proposed a novel stability enhancing solution, VMCast, for tree-based overlay multicast. This solution uses two types of on-demand cloud virtual machines (VMs), i.e., multicast VMs (MVMs) and compensation VMs (CVMs). MVMs are used to disseminate the multicast data, whereas CVMs are used to offer streaming compensation. The used VMs in the same cloud datacenter constitute a VM cluster. Each VM cluster is responsible for a service domain (VMSD), and each group member belongs to a specific VMSD. The data source delivers the multicast data to MVMs through a reliable path, and MVMs further disseminate the data to group members along domain overlay multicast trees. The above approach structurally improves the stability of the overlay multicast tree. We further utilized CVM-based streaming compensation to enhance the stability of the data distribution in the VMSDs. VMCast can be used as an extension to existing tree-based overlay multicast solutions, to provide better services for media streaming applications. We applied VMCast to two application instances (i.e., HMTP and HCcast). The results show that it can obviously enhance the stability of the data distribution. PMID:26562152

  9. Numerical Simulation on Open Wellbore Shrinkage and Casing Equivalent Stress in Bedded Salt Rock Stratum

    PubMed Central

    Liu, Jianjun

    2013-01-01

    Most salt rock has interbed of mudstone in China. Owing to the enormous difference of mechanical properties between the mudstone interbed and salt rock, the stress-strain and creep behaviors of salt rock are significantly influenced by neighboring mudstone interbed. In order to identify the rules of wellbore shrinkage and casings equivalent stress in bedded salt rock stratum, three-dimensional finite difference models were established. The effects of thickness and elasticity modulus of mudstone interbed on the open wellbore shrinkage and equivalent stress of casing after cementing operation were studied, respectively. The results indicate that the shrinkage of open wellbore and equivalent stress of casings decreases with the increase of mudstone interbed thickness. The increasing of elasticity modulus will reduce the shrinkage of open wellbore and casing equivalent stress. Research results can provide the scientific basis for the design of mud density and casing strength. PMID:24198726

  10. Enhanced stability of hydrogen atoms at the graphene/graphane interface of nanoribbons

    NASA Astrophysics Data System (ADS)

    Ao, Z. M.; Hernández-Nieves, A. D.; Peeters, F. M.; Li, S.

    2010-12-01

    The thermal stability of graphene/graphane nanoribbons (GGNRs) is investigated using density functional theory. It is found that the energy barriers for the diffusion of hydrogen atoms on the zigzag and armchair interfaces of GGNRs are 2.86 and 3.17 eV, respectively, while the diffusion barrier of an isolated H atom on pristine graphene was only ˜0.3 eV. These results unambiguously demonstrate that the thermal stability of GGNRs can be enhanced significantly by increasing the hydrogen diffusion barriers through graphene/graphane interface engineering. This may provide new insights for viable applications of GGNRs.

  11. Protein stabilizer, NDSB-195, enhances the dynamics of the β4 -α2 loop of ubiquitin.

    PubMed

    Wang, Haimei; Hosoda, Kazuo; Ishii, Takeshi; Arai, Ryo; Kohno, Toshiyuki; Terawaki, Shin-Ichi; Wakamatsu, Kaori

    2016-03-01

    Non-detergent sulfobetaines (NDSBs) are a new group of small, synthetic protein stabilizers, which have advantages over classical compatible osmolytes, such as polyol, amines, and amino acids: they do not increase solution viscosity, unlike polyols, and they are zwitterionic at all pH ranges, unlike amines and amino acids. NDSBs also facilitate the crystallization and refolding of proteins. The mechanism whereby NDSBs exhibit such activities, however, remains elusive. To gain insight into this mechanism, we studied, using nuclear magnetic resonance (NMR), the effects of dimethylethylammonium propane sulfonate (NDSB-195) on the dynamics of ubiquitin, on which a wealth of information has been accumulated. By analyzing the line width of amide proton resonances and the transverse relaxation rates of nitrogen atoms, we found that NDSB-195 enhances the microsecond-millisecond dynamics of a β4 -α2 loop of ubiquitin. Although those compounds that enhance protein dynamics are generally considered to destabilize protein molecules, NDSB-195 enhanced the stability of ubiquitin against guanidium chloride denaturation. Thus, the simultaneous enhancement of stability and flexibility by a single compound can be attained. PMID:26856691

  12. Pulse testing in the presence of wellbore storage and skin effects

    SciTech Connect

    Ogbe, D.O.; Brigham, W.E.

    1984-08-01

    A pulse test is conducted by creating a series of short-time pressure transients in an active (pulsing) well and recording the observed pressure response at an observation (responding) well. Using the pressure response and flow rate data, the transmissivity and storativity of the tested formation can be determined. Like any other pressure transient data, the pulse-test response is significantly influenced by wellbore storage and skin effects. The purpose of this research is to examine the influence of wellbore storage and skin effects on interference testing in general and on pulse-testing in particular, and to present the type curves and procedures for designing and analyzing pulse-test data when wellbore storage and skin effects are active at either the responding well or the pulsing well. A mathematical model for interference testing was developed by solving the diffusivity equation for radial flow of a single-phase, slightly compressible fluid in an infinitely large, homogeneous reservoir. When wellbore storage and skin effects are present in a pulse test, the observed response amplitude is attenuated and the time lag is inflated. Consequently, neglecting wellbore storage and skin effects in a pulse test causes the calculated storativity to be over-estimated and the transmissivity to be under-estimated. The error can be as high as 30%. New correlations and procedures are developed for correcting the pulse response amplitude and time lag for wellbore storage effects. Using these correlations, it is possible to correct the wellbore storage-dominated response amplitude and time lag to within 3% of their expected values without wellbore storage, and in turn to calculate the corresponding transmissivity and storativity. Worked examples are presented to illustrate how to use the new correction techniques. 45 references.

  13. Enhancement of the organic solvent-stability of the LST-03 lipase by directed evolution.

    PubMed

    Kawata, Takuya; Ogino, Hiroyasu

    2009-01-01

    LST-03 lipase from an organic solvent-tolerant Pseudomonas aeruginosa LST-03 has high stability and activity in the presence of various organic solvents. In this research, enhancement of organic solvent-stability of LST-03 lipase was attempted by directed evolution. The structural gene of the LST-03 lipase was amplified by the error prone-PCR method. Organic solvent-stability of the mutated lipases was assayed by formation of a clear zone of agar which contained dimethyl sulfoxide (DMSO) and tri-n-butyrin and which overlaid a plate medium. And the organic solvent-stability was also confirmed by measuring the half-life of activity in the presence of DMSO. Four mutated enzymes were selected on the basis of their high organic solvent-stability in the presence of DMSO. The organic solvent-stabilities of mutated LST-03 lipase in the presence of various organic solvents were measured and their mutated amino acid residues were identified. The half-lives of the LST-03-R65 lipase in the presence of cyclohexane and n-decane were about 9 to 11-fold longer than those of the wild-type lipase, respectively. Some substituted amino acid residues of mutated LST-03 lipases have been located at the surface of the enzyme molecules, while some other amino acid residues have been changed from neutral to basic residues. PMID:19731302

  14. Geomechanical analysis to predict the oil leak at the wellbores in Big Hill Strategic Petroleum Reserve

    SciTech Connect

    Park, Byoung Yoon

    2014-02-01

    Oil leaks were found in wellbores of Caverns 105 and 109 at the Big Hill Strategic Petroleum Reserve site. According to the field observations, two instances of casing damage occurred at the depth of the interbed between the caprock bottom and salt top. A three dimensional finite element model, which contains wellbore element blocks and allows each cavern to be configured individually, is constructed to investigate the wellbore damage mechanism. The model also contains element blocks to represent interface between each lithology and a shear zone to examine the interbed behavior in a realistic manner. The causes of the damaged casing segments are a result of vertical and horizontal movements of the interbed between the caprock and salt dome. The salt top subsides because the volume of caverns below the salt top decrease with time due to salt creep closure, while the caprock subsides at a slower rate because the caprock is thick and stiffer. This discrepancy yields a deformation of the well. The deformed wellbore may fail at some time. An oil leak occurs when the wellbore fails. A possible oil leak date of each well is determined using the equivalent plastic strain failure criterion. A well grading system for a remediation plan is developed based on the predicted leak dates of each wellbore.

  15. Noises- and delay-enhanced stability in a bistable dynamical system describing chemical reaction

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Zhang, Chun; Han, Qinglin; Zeng, Chun-Hua; Wang, Hua; Tian, Dong; Long, Fei

    2014-06-01

    In this paper, we consider the Schlögl model with time-delayed feedback to study the switching behavior of a bistable chemical reaction system in the presence of cross-correlated multiplicative and additive noise sources. Our results show that (i) the multiplicative noise (or additive noise) can induce the switch from high (or low) concentration state to low (or high) concentration one; (ii) the mean first passage time (MFPT) of switch from high concentration state to the low concentration one as functions of the noise strengths exhibits a maximum, which is the signature of the noise enhanced stability (NES) phenomenon for the high concentration state; and (iii) as the value of cross-correlation strength λ, time delay τ, or strength K of the feedback loop increases, the maximum in the MFPT increases, i.e., λ, τ, or K can enhance stability of the high concentration state.

  16. Enhanced stability of black phosphorus field-effect transistors with SiO2 passivation

    NASA Astrophysics Data System (ADS)

    Wan, Bensong; Yang, Bingchao; Wang, Yue; Zhang, Junying; Zeng, Zhongming; Liu, Zhongyuan; Wang, Wenhong

    2015-10-01

    Few-layer black phosphorus (BP) has attracted much attention due to its high mobility and suitable band gap for potential applic5ations in optoelectronics and flexible devices. However, its instability under ambient conditions limits its practical applications. Our investigations indicate that by passivation of the mechanically exfoliated BP flakes with a SiO2 layer, the fabricated BP field-effect transistors (FETs) exhibit greatly enhanced environmental stability. Compared to the unpassivated BP devices, which show a fast drop of on/off current ratio by a factor of 10 after one week of ambient exposure, the SiO2-passivated BP devices display a high retained on/off current ratio of over 600 after one week of exposure, just a little lower than the initial value of 810. Our investigations provide an effective route to passivate the few-layer BPs for enhancement of their environmental stability.

  17. Enhanced stability of black phosphorus field-effect transistors with SiO₂ passivation.

    PubMed

    Wan, Bensong; Yang, Bingchao; Wang, Yue; Zhang, Junying; Zeng, Zhongming; Liu, Zhongyuan; Wang, Wenhong

    2015-10-30

    Few-layer black phosphorus (BP) has attracted much attention due to its high mobility and suitable band gap for potential applic5ations in optoelectronics and flexible devices. However, its instability under ambient conditions limits its practical applications. Our investigations indicate that by passivation of the mechanically exfoliated BP flakes with a SiO2 layer, the fabricated BP field-effect transistors (FETs) exhibit greatly enhanced environmental stability. Compared to the unpassivated BP devices, which show a fast drop of on/off current ratio by a factor of 10 after one week of ambient exposure, the SiO2-passivated BP devices display a high retained on/off current ratio of over 600 after one week of exposure, just a little lower than the initial value of 810. Our investigations provide an effective route to passivate the few-layer BPs for enhancement of their environmental stability. PMID:26436439

  18. On the stabilizing role of species diffusion in chemical enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Daripa, Prabir; Gin, Craig

    2015-11-01

    In this talk, the speaker will discuss a problem on the stability analysis related to the effect of species diffusion on stabilization of fingering in a Hele-Shaw model of chemical enhanced oil recovery. The formulation of the problem is motivated by a specific design principle of the immiscible interfaces in the hope that this will lead to significant stabilization of interfacial instabilities, there by improving oil recovery in the context of porous media flow. Testing the merits of this hypothesis poses some challenges which will be discussed along with some numerical results based on current formulation of this problem. Several open problems in this context will be discussed. This work is currently under progress. Supported by the grant NPRP 08-777-1-141 from the Qatar National Research Fund (a member of The Qatar Foundation).

  19. Transient stability enhancement of electric power generating systems by 120-degree phase rotation

    DOEpatents

    Cresap, Richard L.; Taylor, Carson W.; Kreipe, Michael J.

    1982-01-01

    A method and system for enhancing the transient stability of an intertied three-phase electric power generating system. A set of power exporting generators (10) is connected to a set of power importing generators (20). When a transient cannot be controlled by conventional stability controls, and imminent loss of synchronism is detected (such as when the equivalent rotor angle difference between the two generator sets exceeds a predetermined value, such as 150 degrees), the intertie is disconnected by circuit breakers. Then a switch (30) having a 120-degree phase rotation, or a circuit breaker having a 120-degree phase rotation is placed in the intertie. The intertie is then reconnected. This results in a 120-degree reduction in the equivalent rotor angle difference between the two generator sets, making the system more stable and allowing more time for the conventional controls to stabilize the transient.

  20. Zwitterionic gel encapsulation promotes protein stability, enhances pharmacokinetics, and reduces immunogenicity.

    PubMed

    Zhang, Peng; Sun, Fang; Tsao, Caroline; Liu, Sijun; Jain, Priyesh; Sinclair, Andrew; Hung, Hsiang-Chieh; Bai, Tao; Wu, Kan; Jiang, Shaoyi

    2015-09-29

    Advances in protein therapy are hindered by the poor stability, inadequate pharmacokinetic (PK) profiles, and immunogenicity of many therapeutic proteins. Polyethylene glycol conjugation (PEGylation) is the most successful strategy to date to overcome these shortcomings, and more than 10 PEGylated proteins have been brought to market. However, anti-PEG antibodies induced by treatment raise serious concerns about the future of PEGylated therapeutics. Here, we demonstrate a zwitterionic polymer network encapsulation technology that effectively enhances protein stability and PK while mitigating the immune response. Uricase modified with a comprehensive zwitterionic polycarboxybetaine (PCB) network exhibited exceptional stability and a greatly prolonged circulation half-life. More importantly, the PK behavior was unchanged, and neither anti-uricase nor anti-PCB antibodies were detected after three weekly injections in a rat model. This technology is applicable to a variety of proteins and unlocks the possibility of adopting highly immunogenic proteins for therapeutic or protective applications. PMID:26371311

  1. Zwitterionic gel encapsulation promotes protein stability, enhances pharmacokinetics, and reduces immunogenicity

    PubMed Central

    Zhang, Peng; Sun, Fang; Tsao, Caroline; Liu, Sijun; Jain, Priyesh; Sinclair, Andrew; Hung, Hsiang-Chieh; Bai, Tao; Wu, Kan; Jiang, Shaoyi

    2015-01-01

    Advances in protein therapy are hindered by the poor stability, inadequate pharmacokinetic (PK) profiles, and immunogenicity of many therapeutic proteins. Polyethylene glycol conjugation (PEGylation) is the most successful strategy to date to overcome these shortcomings, and more than 10 PEGylated proteins have been brought to market. However, anti-PEG antibodies induced by treatment raise serious concerns about the future of PEGylated therapeutics. Here, we demonstrate a zwitterionic polymer network encapsulation technology that effectively enhances protein stability and PK while mitigating the immune response. Uricase modified with a comprehensive zwitterionic polycarboxybetaine (PCB) network exhibited exceptional stability and a greatly prolonged circulation half-life. More importantly, the PK behavior was unchanged, and neither anti-uricase nor anti-PCB antibodies were detected after three weekly injections in a rat model. This technology is applicable to a variety of proteins and unlocks the possibility of adopting highly immunogenic proteins for therapeutic or protective applications. PMID:26371311

  2. Chemical derivatization to enhance chemical/oxidative stability of resorcinol-formaldehyde resin

    SciTech Connect

    Hubler, T.

    1996-10-01

    The purpose of this work is to develop modified resorcinol-formaldehyde (R-F) resin with enhanced chemical/oxidative stability in conditions typically encountered in the remediation of radioactive waste tanks. R-F resin is a regenerable organic ion-exchanger developed at Savannah River Technology Center that is being considered for use in the selective removal of radioactive cesium from alkaline waste tank supernates at both the Hanford and Savannah River sites.

  3. Cavity Self-Stabilization and Enhancement of Laser Gyroscopes by (Coupled) Optical Resonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.

    2006-01-01

    We analyze the effect of a highly dispersive element placed inside a modulated optical cavity on the frequency and amplitude of the modulation to determine the conditions for cavity self-stabilization and enhanced gyroscopic sensitivity. Hence, we model cavity rotation or instability by an arbitrary AM/FM modulation, and the dispersive element as a phase and amplitude filter. We find that anomalous dispersion may be used to self-stabilize a laser cavity, provided the magnitude of the group index of refraction is smaller than the phase index of refraction in the cavity. The optimal stabilization is found to occur when the group index is zero. Group indices with magnitudes larger than the phase index (both normal and anomalous dispersion) are found to enhance the sensitivity of a laser gyroscope to rotation. Furthermore, our results indicate that atomic media, even coherent superpositions in multilevel atoms, are not useful for these applications, because the amplitude and phase filters work against one another, i.e., decreasing the modulation frequency increases its amplitude and vice versa, with one exception: negative group indices whose magnitudes are larger than the phase index result in negative, but enhanced, beat frequencies. On the other hand, for optical resonators the dispersion reversal associated with critical coupling enables the amplitude and phase filters to work together under a greater variety of circumstances than for atomic media. We find that for single over-coupled resonators, or in the case of under-coupled coupled-resonator-induced absorption, the absorption and normal dispersion on-resonance increase the contrast and frequency of the beat-note, respectively, resulting in a substantial enhancement of the gyroscopic response. Moreover, for cavity self-stabilization, we propose the use of a variety of coupled-resonator induced transparency that is accompanied by anomalous dispersion.

  4. Thiols as interfacial modifiers to enhance the performance and stability of perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Cao, Jing; Yin, Jun; Yuan, Shangfu; Zhao, Yun; Li, Jing; Zheng, Nanfeng

    2015-05-01

    Modifying the interfaces of CH3NH3PbI3 with TiO2 and hole transport layers using two different types of thiols leads to enhanced performance and stability of perovskite solar cells. The incorporation of HOOC-Ph-SH at the TiO2/perovskite interface facilitates electron transfer from perovskite to TiO2 and also alters the morphology of perovskite crystal growth to increase the power conversion efficiency. The modification of pentafluorobenzenethiol at the perovskite/hole transport layer interface improves the stability.Modifying the interfaces of CH3NH3PbI3 with TiO2 and hole transport layers using two different types of thiols leads to enhanced performance and stability of perovskite solar cells. The incorporation of HOOC-Ph-SH at the TiO2/perovskite interface facilitates electron transfer from perovskite to TiO2 and also alters the morphology of perovskite crystal growth to increase the power conversion efficiency. The modification of pentafluorobenzenethiol at the perovskite/hole transport layer interface improves the stability. Electronic supplementary information (ESI) available: Details of the XRD, UV-vis spectra, cross-sectional SEM images and the EQE spectra of the cells. See DOI: 10.1039/c5nr01820j

  5. Lipid Cross-Linking of Nanolipoprotein Particles Substantially Enhances Serum Stability and Cellular Uptake.

    PubMed

    Gilmore, Sean F; Blanchette, Craig D; Scharadin, Tiffany M; Hura, Greg L; Rasley, Amy; Corzett, Michele; Pan, Chong-Xian; Fischer, Nicholas O; Henderson, Paul T

    2016-08-17

    Nanolipoprotein particles (NLPs) consist of a discoidal phospholipid lipid bilayer confined by an apolipoprotein belt. NLPs are a promising platform for a variety of biomedical applications due to their biocompatibility, size, definable composition, and amphipathic characteristics. However, poor serum stability hampers the use of NLPs for in vivo applications such as drug formulation. In this study, NLP stability was enhanced upon the incorporation and subsequent UV-mediated intermolecular cross-linking of photoactive DiynePC phospholipids in the lipid bilayer, forming cross-linked nanoparticles (X-NLPs). Both the concentration of DiynePC in the bilayer and UV exposure time significantly affected the resulting X-NLP stability in 100% serum, as assessed by size exclusion chromatography (SEC) of fluorescently labeled particles. Cross-linking did not significantly impact the size of X-NLPs as determined by dynamic light scattering and SEC. X-NLPs had essentially no degradation over 48 h in 100% serum, which is a drastic improvement compared to non-cross-linked NLPs (50% degradation by ∼10 min). X-NLPs had greater uptake into the human ATCC 5637 bladder cancer cell line compared to non-cross-linked particles, indicating their potential utility for targeted drug delivery. X-NLPs also exhibited enhanced stability following intravenous administration in mice. These results collectively support the potential utility of X-NLPs for a variety of in vivo applications. PMID:27411034

  6. Bifunctional peptidomimetic prodrugs of didanosine for improved intestinal permeability and enhanced acidic stability: synthesis, transepithelial transport, chemical stability and pharmacokinetics.

    PubMed

    Yan, Zhongtian; Sun, Jin; Chang, Yannan; Liu, Yanhua; Fu, Qiang; Xu, Youjun; Sun, Yongbing; Pu, Xiaohui; Zhang, Youxi; Jing, Yongkui; Yin, Shiliang; Zhu, Meng; Wang, Yongjun; He, Zhonggui

    2011-04-01

    Five peptidomimetic prodrugs of didanosine (DDI) were synthesized and designed to improve bioavailability of DDI following oral administration via targeting intestinal oligopeptide transporter (PepT1) and enhancing chemical stability. The permeability of prodrugs was screened in Caco-2 cells grown on permeable supports. 5'-O-L-valyl ester prodrug of DDI (compound 4a) demonstrated the highest membrane permeability and was selected as the optimal target prodrug for further studies. The uptake of glycylsarcosine (Gly-Sar, a typical substrate of PepT1) by Caco-2 cells could be inhibited by compound 4a in a concentration-dependent manner. The Caco-2 cells were treated with 0.2 nM leptin for enhanced PepT1 expression. The uptake of compound 4a was markedly increased in the leptin-treated Caco-2 cells compared with the control Caco-2 cells, both of which were obviously inhibited by 20 mM Gly-Sar. The K(m) and V(max) values of kinetic study of compound 4a transported by PepT1 in Caco-2 cells were 0.91 mM and 11.94 nmol/mg of protein/10 min, respectively. The chemical stability studies were performed in simulated gastric fluid (SGF), phosphate buffers under various pH conditions, rat tissue homogenates and plasma at 37 °C. The concentrations of DDI could not be detected in the two minutes in SGF. But compound 4a could significantly increase DDI acidic stability, and its t(½) was extended to as long as 36 min in SGF. Compound 4a was stable in pH 6.0 phosphate buffer but could be quickly transformed into DDI in plasma and tissue homogenates. The oral absolute bioavailability of DDI was 47.2% and 7.9% after compound 4a and DDI were orally administered to rats at a dose of 15 mg/kg, respectively. The coadministration with antiacid agent could also suggest that compound 4a was more stable under harsh acidic conditions compared with DDI. Compound 4a bioavailability in rats was reduced to 33.9% when orally co-administered with Gly-Sar (100 mg/kg). The In Vivo bioactivation

  7. Investigation of Possible Wellbore Cement Failures During Hydraulic Fracturing Operations

    SciTech Connect

    Kim, Jihoon; Moridis, George

    2014-11-01

    We model and assess the possibility of shear failure, using the Mohr-Coulomb model ? along the vertical well by employing a rigorous coupled flow-geomechanic analysis. To this end, we vary the values of cohesion between the well casing and the surrounding cement to representing different quality levels of the cementing operation (low cohesion corresponds to low-quality cement and/or incomplete cementing). The simulation results show that there is very little fracturing when the cement is of high quality.. Conversely, incomplete cementing and/or weak cement can causes significant shear failure and the evolution of long fractures/cracks along the vertical well. Specifically, low cohesion between the well and cemented areas can cause significant shear failure along the well, but the same cohesion as the cemented zone does not cause shear failure. When the hydraulic fracturing pressure is high, low cohesion of the cement can causes fast propagation of shear failure and of the resulting fracture/crack, but a high-quality cement with no weak zones exhibits limited shear failure that is concentrated near the bottom of the vertical part of the well. Thus, high-quality cement and complete cementing along the vertical well appears to be the strongest protection against shear failure of the wellbore cement and, consequently, against contamination hazards to drinking water aquifers during hydraulic fracturing operations.

  8. Protection Enhances Community and Habitat Stability: Evidence from a Mediterranean Marine Protected Area

    PubMed Central

    Fraschetti, Simonetta; Guarnieri, Giuseppe; Bevilacqua, Stanislao; Terlizzi, Antonio; Boero, Ferdinando

    2013-01-01

    Rare evidences support that Marine Protected Areas (MPAs) enhance the stability of marine habitats and assemblages. Based on nine years of observation (2001–2009) inside and outside a well managed MPA, we assessed the potential of conservation and management actions to modify patterns of spatial and/or temporal variability of Posidonia oceanica meadows, the lower midlittoral and the shallow infralittoral rock assemblages. Significant differences in both temporal variations and spatial patterns were observed between protected and unprotected locations. A lower temporal variability in the protected vs. unprotected assemblages was found in the shallow infralittoral, demonstrating that, at least at local scale, protection can enhance community stability. Macrobenthos with long-lived and relatively slow-growing invertebrates and structurally complex algal forms were homogeneously distributed in space and went through little fluctuations in time. In contrast, a mosaic of disturbed patches featured unprotected locations, with small-scale shifts from macroalgal stands to barrens, and harsh temporal variations between the two states. Opposite patterns of spatial and temporal variability were found for the midlittoral assemblages. Despite an overall clear pattern of seagrass regression through time, protected meadows showed a significantly higher shoot density than unprotected ones, suggesting a higher resistance to local human activities. Our results support the assumption that the exclusion/management of human activities within MPAs enhance the stability of the structural components of protected marine systems, reverting or arresting threat-induced trajectories of change. PMID:24349135

  9. Distributed Multi-Agent-Based Protection Scheme for Transient Stability Enhancement in Power Systems

    NASA Astrophysics Data System (ADS)

    Rahman, M. S.; Mahmud, M. A.; Pota, H. R.; Hossain, M. J.; Orchi, T. F.

    2015-04-01

    This paper presents a new distributed agent-based scheme to enhance the transient stability of power systems by maintaining phase angle cohesiveness of interconnected generators through proper relay coordination with critical clearing time (CCT) information. In this distributed multi-agent infrastructure, intelligent agents represent various physical device models to provide dynamic information and energy flow among different physical processes of power systems. The agents can communicate with each other in a distributed manner with a final aim to control circuit breakers (CBs) with CCT information as this is the key issue for maintaining and enhancing the transient stability of power systems. The performance of the proposed scheme is evaluated on a standard IEEE 39-bus New England benchmark system under different large disturbances such as three-phase short-circuit faults and changes in loads within the systems. From the simulation results, it is found that the proposed scheme significantly enhances the transient stability of power systems as compared to a conventional scheme of static CB operation.

  10. Enhanced stability of Cu-BTC MOF via perfluorohexane plasma-enhanced chemical vapor deposition.

    PubMed

    Decoste, Jared B; Peterson, Gregory W; Smith, Martin W; Stone, Corinne A; Willis, Colin R

    2012-01-25

    Metal organic frameworks (MOFs) are a leading class of porous materials for a wide variety of applications, but many of them have been shown to be unstable toward water. Cu-BTC (1,3,5 benzenetricarboxylic acid, BTC) was treated with a plasma-enhanced chemical vapor deposition (PECVD) of perfluorohexane creating a hydrophobic form of Cu-BTC. It was found that the treated Cu-BTC could withstand high humidity and even submersion in water much better than unperturbed Cu-BTC. Through Monte Carlo simulations it was found that perfluorohexane sites itself in such a way within Cu-BTC as to prevent the formation of water clusters, hence preventing the decomposition of Cu-BTC by water. This PECVD of perfluorohexane could be exploited to widen the scope of practical applications of Cu-BTC and other MOFs. PMID:22239201

  11. Vertical Wellbore Flow Monitoring for Assessing Spatial and Temporal Flow Relationships with a Dynamic River Boundary

    SciTech Connect

    Newcomer, Darrell R.; Bjornstad, Bruce N.; Vermeul, Vincent R.

    2010-10-01

    A useful tool for identifying the temporal and spatial ambient wellbore flow relationships near a dynamic river boundary is to continuously monitor ambient vertical wellbore flow with an electromagnetic borehole flowmeter (EBF). This is important because the presence of the wellbore can result in significant mixing or exchange of groundwater vertically across the aquifer. Mixing or exchanging groundwater within the well-screen section can have significant impacts on the distribution of contaminants within the aquifer and adverse effects on the representativeness of groundwater samples collected from the monitoring well. EBF monitoring data collected from long, fully screened wells at Hanford’s 300-Area Integrated Field Research Challenge (IFRC) site, located ~260 to 290 m from the Columbia River, demonstrate that ambient vertical wellbore flow exhibits both a positive (direct) and inverse temporal relationship with periodic river-stage fluctuations over short distances. The ambient flow monitoring wells fully penetrate a highly transmissive unconfined aquifer that consists of unconsolidated coarse sediments of the Hanford formation. The spatial distribution of ambient vertical wellbore flows across the IFRC’s ~2,200 m2 well-field size indicates two general regions of inverse ambient wellbore flow behavior. The western region of the IFRC site is characterized by ambient vertical wellbore flows that are positively related to river-stage fluctuations. In contrast, the eastern region of the site exhibits ambient wellbore flows that are inversely related to river-stage fluctuations. The cause of this opposite relationship between ambient wellbore flows and river-stage changes is not completely understood; however, the positive relationships appear to be associated with high-energy Hanford formation flood deposits. These flood deposits have a well-defined northwest-southeast trend and are believed to coincide with a local paleochannel. This local paleochannel bisects

  12. Calculations of Gas-liquid Equilibrium in Wellbore with High Carbon dioxide Flow

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaming; Wu, Xiaodong; Wang, Bo; Liu, Kai; Gao, Yue

    2014-05-01

    Carbon dioxide injection not only enhances the oil recovery dramatically, but also it will reduce the greenhouse effect, therefore, Carbon dioxide injection technique is applied extensively. During the process of carbon dioxide displacement, when carbon dioxide breaks though into oil production wells, carbon dioxide content will impacts the phase state and physical properties of the mixed liquor in the wellbore, as a result, it will affect the calculation of temperature and pressure in oil production wells. Applying the conventional black-oil model to calculate the phase state of the miscible fluids is unacceptable. To tackle the problem, this paper uses the gas-liquid flash theory and component model to program software, so that the phase state (gas, liquid or gas-liquid) and physical properties of the mixed liquor (including hydrogen sulfide, carbon dioxide and hydrocarbon) under initial conditions is calculated, moreover, the impact of carbon dioxide content on the physical properties(mainly including density, viscosity, specific heat at const pressure, surface tension, etc) of mixed liquor in oil production wells is analyzed in this paper. The comparison of the results shows that this model can meet the engineering needs with high accuracy.

  13. Cross-linkable liposomes stabilize a magnetic resonance contrast-enhancing polymeric fastener.

    PubMed

    Smith, Cartney E; Kong, Hyunjoon

    2014-04-01

    Liposomes are commonly used to deliver drugs and contrast agents to their target site in a controlled manner. One of the greatest obstacles in the performance of such delivery vehicles is their stability in the presence of serum. Here, we demonstrate a method to stabilize a class of liposomes that load gadolinium, a magnetic resonance (MR) contrast agent, as a model cargo on their surfaces. We hypothesized that the sequential adsorption of a gadolinium-binding chitosan fastener on the liposome surface followed by covalent cross-linking of the lipid bilayer would provide enhanced stability and improved MR signal in the presence of human serum. To investigate this hypothesis, liposomes composed of diyne-containing lipids were assembled and functionalized via chitosan conjugated with a hydrophobic anchor and diethylenetriaminepentaacetic acid (DTPA). This postadsorption cross-linking strategy served to stabilize the thermodynamically favorable association between liposome and polymeric fastener. Furthermore, the chitosan-coated, cross-linked liposomes proved more effective as delivery vehicles of gadolinium than uncross-linked liposomes due to the reduced liposome degradation and chitosan desorption. Overall, this study demonstrates a useful method to stabilize a broad class of particles used for systemic delivery of various molecular payloads. PMID:24635565

  14. Enhancement of the Stability of a Prolipase from Rhizopus oryzae toward Aldehydes by Saturation Mutagenesis▿

    PubMed Central

    Di Lorenzo, Mirella; Hidalgo, Aurelio; Molina, Rafael; Hermoso, Juan A.; Pirozzi, Domenico; Bornscheuer, Uwe T.

    2007-01-01

    A prolipase from Rhizopus oryzae (proROL) was engineered in order to increase its stability toward lipid oxidation products such as aldehydes with the aim of improving its performance in oleochemical industries. Out of 22 amino acid residues (15 Lys and 7 His) prone to react with aldehydes, 6 Lys and all His residues (except for the catalytic histidine) were chosen and subjected to saturation mutagenesis. In order to quickly and reliably identify stability mutants within the resulting libraries, active variants were prescreened by an activity staining method on agar plates. Active mutants were expressed in Escherichia coli Origami in a 96-well microtiterplate format, and a stability test using octanal as a model deactivating agent was performed. The most stable histidine mutant (H201S) conferred a stability increase of 60%, which was further enhanced to 100% by combination with a lysine mutant (H201S/K168I). This increase in stability was also confirmed for other aldehydes. Interestingly, the mutations did not affect specific activity, as this was still similar to the wild-type enzyme. PMID:17890336

  15. Facile Synthesis of Phosphatidyl Saccharides for Preparation of Anionic Nanoliposomes with Enhanced Stability

    PubMed Central

    Song, Shuang; Cheong, Ling-Zhi; Falkeborg, Mia; Liu, Lei; Dong, Mingdong; Jensen, Henrik Max; Bertelsen, Kresten; Thorsen, Michael; Tan, Tianwei; Xu, Xuebing; Guo, Zheng

    2013-01-01

    Physical stability during storage and against processing such as dehyration/rehydration are the cornerstone in designing delivery vehicles. In this work, mono-, di- and tri-saccharides were enzymatically conjugated to phosphatidyl group through a facile approach namely phospholipase D (PLD) mediated transphosphatidylation in a biphasic reaction system. The purified products were structurally identified and the connectivities of carbohydrate to phosphatidyl moiety precisely mapped by 1H, 31P, 13C NMR pulse sequences and LC-ESI-FTMS. The synthetic phosphatidyl saccharides were employed as the sole biomimetic component for preparation of nanoliposomes. It was found that the critical micelle concentration (CMC) of phosphatidyl saccharides increases as more bulky sugar moiety (mono- to tri-) is introduced. Phosphatidyl di-saccharide had the largest membrane curvature. In comparison to the zwitterionic phosphatidylcholine liposome, all phosphatidyl saccharides liposomes are anionic and demonstrated significantly enhanced stability during storage. According to the confocal laser scan microscopy (CLSM) and atom force microscopy (AFM) analyses, the nanoliposomes formed by the synthetic phosphatidyl saccharides also show excellent stability against dehydration/rehydration process in which most of the liposomal structures remained intact. The abundance hydroxyl groups in the saccharide moieties might provide sufficient H-bondings for stabilization. This work demonstrated the synthesized phosphatidyl saccharides are capable of functioning as enzymatically liable materials which can form stable nanoliposomes without addition of stabilizing excipients. PMID:24069243

  16. Co-composting solid biowastes with alkaline materials to enhance carbon stabilization and revegetation potential.

    PubMed

    Chowdhury, Saikat; Bolan, Nanthi S; Seshadri, Balaji; Kunhikrishnan, Anitha; Wijesekara, Hasintha; Xu, Yilu; Yang, Jianjun; Kim, Geon-Ha; Sparks, Donald; Rumpel, Cornelia

    2016-04-01

    Co-composting biowastes such as manures and biosolids can be used to stabilize carbon (C) without impacting the quality of these biowastes. This study investigated the effect of co-composting biowastes with alkaline materials on C stabilization and monitored the fertilization and revegetation values of these co-composts. The stabilization of C in biowastes (poultry manure and biosolids) was examined by their composting in the presence of various alkaline amendments (lime, fluidized bed boiler ash, flue gas desulphurization gypsum, and red mud) for 6 months in a controlled environment. The effects of co-composting on the biowastes' properties were assessed for different physical C fractions, microbial biomass C, priming effect, potentially mineralizable nitrogen, bioavailable phosphorus, and revegetation of an urban landfill soil. Co-composting biowastes with alkaline materials increased C stabilization, attributed to interaction with alkaline materials, thereby protecting it from microbial decomposition. The co-composted biowastes also increased the fertility of the landfill soil, thereby enhancing its revegetation potential. Stabilization of biowastes using alkaline materials through co-composting maintains their fertilization value in terms of improving plant growth. The co-composted biowastes also contribute to long-term soil C sequestration and reduction of bioavailability of heavy metals. PMID:26381784

  17. Decreased aperture surface energy enhances electrical, mechanical, and temporal stability of suspended lipid membranes.

    PubMed

    Bright, Leonard K; Baker, Christopher A; Agasid, Mark T; Ma, Lin; Aspinwall, Craig A

    2013-11-27

    The development of next-generation transmembrane protein-based biosensors relies heavily on the use of black lipid membranes (BLMs); however, electrical, mechanical, and temporal instability of BLMs poses a limiting challenge to biosensor development. In this work, micrometer-sized glass apertures were modified with silanes of different chain length and fluorine composition, including 3-cyanopropyldimethychlorosilane (CPDCS), ethyldimethylchlorosilane (EDCS), n-octyldimethylchlorosilane (ODCS), (tridecafluoro-1, 1, 2, 2-tetrahydrooctyl)dimethylchlorosilane (PFDCS), or (heptadecafluoro-1,1,2,2-tetrahydrodecyl)dimethylchlorosilane (PFDDCS), to explore the effect of substrate surface energy on BLM stability. Low energy silane-modified surfaces promoted enhanced lipid-substrate interactions that facilitate the formation of low-leakage, stable BLMs. The surface energies of silane-modified substrates were 30 ± 3, 16 ± 1, 14 ± 2, 11 ± 1, and 7.1 ± 2 mJ m(-2) for CDCS, EDCS, ODCS, PFDCS, and PFDDCS, respectively. Decreased surface energy directly correlated to improved electrical, mechanical, and temporal BLM stability. Amphiphobic perfluorinated surface modifiers yielded superior performance compared to traditional hydrocarbon modifiers in terms of stability and BLM formation, with only marginal effects on BLM membrane permeability. Leakage currents obtained for PFDCS and PFDDCS BLMs were elevated only 10-30%, though PFDDCS modification yielded >5-fold increase in electrical stability as indicated by breakdown voltage (> 2000 mV vs 418 ± 73 mV), and >25-fold increase in mechanical stability as indicated by air-water transfers (> 50 vs 2 ± 0.2) when compared to previously reported CPDCS modification. Importantly, the dramatically improved membrane stabilities were achieved with no deleterious effects on reconstituted ion channel function, as evidenced by α-hemolysin activity. Thus, this approach provides a simple, low cost, and broadly applicable alternative for

  18. Flash nanoprecipitation: prediction and enhancement of particle stability via drug structure.

    PubMed

    Zhu, Zhengxi

    2014-03-01

    Flash nanoprecipitation (FNP) can generate hydrophobic drug nanoparticles in ∼ 100 nm with a much higher drug loading (e.g., > 40 wt %) than traditional nanocarriers (e.g., < 20 wt %). This paper studies the effects of drug molecules on nanoparticle stability made via FNP and demonstrates that chemically bonding a drug compound (e.g., paclitaxel) with a cleavable hydrophobic moiety of organosilicate (e.g., triethoxysilicate) is able to enhance the particle size stability. A nonionic amphiphilic diblock copolymer, poly(lactic-co-glycolic acid)-block-poly(ethylene glycol) (PLGA-b-PEG), is used as a model surfactant to provide steric stabilization. The experiments here show that the lower the drug solubility in the aqueous medium, the more stable the particles in terms of Ostwald ripening, which are consistent with the prediction by the LSW theory. The initial particle size distribution is sufficiently narrow and of insignificance to Ostwald ripening. To correlate the particle stability with hydrophobicity, this study introduces the n-octanol/water partition coefficient (LogP), a hydrophobicity indication, into the FNP technique. A comparison of various drugs and their analogues shows that LogP of a drug is a better hydrophobicity indication than the solubility parameter (δ) and correlates well with the particle stability. Empirically, with ACDLogP > ∼ 12, nanoparticles have good stability; with ∼ 2 < ACDLogP < ∼ 9, nanoparticles show fast Ostwald ripening and interparticle recrystallization; with ACDLogP < ∼ 2, the drug is very likely difficult to form nanoparticles. This rule creates a quick way to predict particle stability for a randomly selected drug structure and helps to enable a fast preclinical drug screen. PMID:24484077

  19. Flash Nanoprecipitation: Prediction and Enhancement of Particle Stability via Drug Structure

    PubMed Central

    2015-01-01

    Flash nanoprecipitation (FNP) can generate hydrophobic drug nanoparticles in ∼100 nm with a much higher drug loading (e.g., > 40 wt %) than traditional nanocarriers (e.g., < 20 wt %). This paper studies the effects of drug molecules on nanoparticle stability made via FNP and demonstrates that chemically bonding a drug compound (e.g., paclitaxel) with a cleavable hydrophobic moiety of organosilicate (e.g., triethoxysilicate) is able to enhance the particle size stability. A nonionic amphiphilic diblock copolymer, poly(lactic-co-glycolic acid)-block-poly(ethylene glycol) (PLGA-b-PEG), is used as a model surfactant to provide steric stabilization. The experiments here show that the lower the drug solubility in the aqueous medium, the more stable the particles in terms of Ostwald ripening, which are consistent with the prediction by the LSW theory. The initial particle size distribution is sufficiently narrow and of insignificance to Ostwald ripening. To correlate the particle stability with hydrophobicity, this study introduces the n-octanol/water partition coefficient (LogP), a hydrophobicity indication, into the FNP technique. A comparison of various drugs and their analogues shows that LogP of a drug is a better hydrophobicity indication than the solubility parameter (δ) and correlates well with the particle stability. Empirically, with ACDLogP > ∼12, nanoparticles have good stability; with ∼2 < ACDLogP < ∼9, nanoparticles show fast Ostwald ripening and interparticle recrystallization; with ACDLogP < ∼2, the drug is very likely difficult to form nanoparticles. This rule creates a quick way to predict particle stability for a randomly selected drug structure and helps to enable a fast preclinical drug screen. PMID:24484077

  20. Geomechanical Modeling of CO2 Injection Site to Predict Wellbore Stresses and Strains for the Design of Wellbore Seal Repair Materials

    NASA Astrophysics Data System (ADS)

    Sobolik, S. R.; Gomez, S. P.; Matteo, E. N.; Stormont, J.

    2015-12-01

    This paper will present the results of large-scale three-dimensional calculations simulating the hydrological-mechanical behavior of a CO2injection reservoir and the resulting effects on wellbore casings and sealant repair materials. A critical aspect of designing effective wellbore seal repair materials is predicting thermo-mechanical perturbations in local stress that can compromise seal integrity. The DOE-NETL project "Wellbore Seal Repair Using Nanocomposite Materials," is interested in the stress-strain history of abandoned wells, as well as changes in local pressure, stress, and temperature conditions that accompany carbon dioxide injection or brine extraction. Two distinct computational models comprise the current modeling effort. The first is a field scale model that uses the stratigraphy, material properties, and injection history from a pilot CO2injection operation in Cranfield, MS to develop a stress-strain history for wellbore locations from 100 to 400 meters from an injection well. The results from the field scale model are used as input to a more detailed model of a wellbore casing. The 3D wellbore model examines the impacts of various loading scenarios on a casing structure. This model has been developed in conjunction with bench-top experiments of an integrated seal system in an idealized scaled wellbore mock-up being used to test candidate seal repair materials. The results from these models will be used to estimate the necessary mechanical properties needed for a successful repair material. This material is based upon work supported by the US Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant Number DE-FE0009562. This project is managed and administered by the Storage Division of the NETL and funded by DOE/NETL and cost-sharing partners. This work was funded in part by the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science

  1. Geomechanical Modeling of CO2 Injection Site to Predict Wellbore Stresses and Strains for the Design of Wellbore Seal Repair Materials

    NASA Astrophysics Data System (ADS)

    Sobolik, S. R.; Gomez, S. P.; Matteo, E. N.; Stormont, J.

    2014-12-01

    This paper will present the results of large-scale three-dimensional calculations simulating the hydrological-mechanical behavior of a CO2injection reservoir and the resulting effects on wellbore casings and sealant repair materials. A critical aspect of designing effective wellbore seal repair materials is predicting thermo-mechanical perturbations in local stress that can compromise seal integrity. The DOE-NETL project "Wellbore Seal Repair Using Nanocomposite Materials," is interested in the stress-strain history of abandoned wells, as well as changes in local pressure, stress, and temperature conditions that accompany carbon dioxide injection or brine extraction. Two distinct computational models comprise the current modeling effort. The first is a field scale model that uses the stratigraphy, material properties, and injection history from a pilot CO2injection operation in Cranfield, MS to develop a stress-strain history for wellbore locations from 100 to 400 meters from an injection well. The results from the field scale model are used as input to a more detailed model of a wellbore casing. The 3D wellbore model examines the impacts of various loading scenarios on a casing structure. This model has been developed in conjunction with bench-top experiments of an integrated seal system in an idealized scaled wellbore mock-up being used to test candidate seal repair materials. The results from these models will be used to estimate the necessary mechanical properties needed for a successful repair material. This material is based upon work supported by the US Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant Number DE-FE0009562. This project is managed and administered by the Storage Division of the NETL and funded by DOE/NETL and cost-sharing partners. This work was funded in part by the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science

  2. Geomechanical Modeling of CO2 Injection Site to Predict Wellbore Stresses and Strains for the Design of Wellbore Seal Repair Materials

    NASA Astrophysics Data System (ADS)

    Sobolik, S. R.; Matteo, E. N.; Dewers, T. A.; Newell, P.; Gomez, S. P.; Stormont, J.

    2014-12-01

    This paper will present the results of large-scale three-dimensional calculations simulating the hydrological-mechanical behavior of a CO2 injection reservoir and the resulting effects on wellbore casings and sealant repair materials. A critical aspect of designing effective wellbore seal repair materials is predicting thermo-mechanical perturbations in local stress that can compromise seal integrity. The DOE-NETL project "Wellbore Seal Repair Using Nanocomposite Materials," is interested in the stress-strain history of abandoned wells, as well as changes in local pressure, stress, and temperature conditions that accompany carbon dioxide injection or brine extraction. Two distinct computational models comprise the current modeling effort. The first is a field scale model that uses the stratigraphy, material properties, and injection history from a pilot CO2 injection operation in Cranfield, MS to develop a stress-strain history for wellbore locations from 100 to 400 meters from an injection well. The results from the field scale model are used as input to a more detailed model of a wellbore casing. The 3D wellbore model examines the impacts of various loading scenarios on a casing structure. This model has been developed in conjunction with bench-top experiments of an integrated seal system in an idealized scaled wellbore mock-up being used to test candidate seal repair materials. The results from these models will be used to estimate the necessary mechanical properties needed for a successful repair material. This material is based upon work supported by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant Number DE-FE0009562. This project is managed and administered by the University of New Mexico and funded by DOE/NETL and cost-sharing partners. This work was funded in part by the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of

  3. Origin of Shear Stability and Compressive Ductility Enhancement of Metallic Glasses by Metal Coating

    NASA Astrophysics Data System (ADS)

    Sun, B. A.; Chen, S. H.; Lu, Y. M.; Zhu, Z. G.; Zhao, Y. L.; Yang, Y.; Chan, K. C.; Liu, C. T.

    2016-06-01

    Metallic glasses (MGs) are notorious for the poor macroscopic ductility and to overcome the weakness various intrinsic and extrinsic strategies have been proposed in past decades. Among them, the metal coating is regarded as a flexible and facile approach, yet the physical origin is poorly understood due to the complex nature of shear banding process. Here, we studied the origin of ductile enhancement in the Cu-coating both experimentally and theoretically. By examining serrated shear events and their stability of MGs, we revealed that the thin coating layer plays a key role in stopping the final catastrophic failure of MGs by slowing down shear band dynamics and thus retarding its attainment to a critical instable state. The mechanical analysis on interplay between the coating layer and shear banding process showed the enhanced shear stability mainly comes from the lateral tension of coating layer induced by the surface shear step and the bonding between the coating layer and MGs rather than the layer thickness is found to play a key role in contributing to the shear stability.

  4. Validation of enhanced stabilization of municipal solid waste under controlled leachate recirculation using FTIR and XRD.

    PubMed

    Sethi, Sapna; Kothiyal, N C; Nema, Arvind K

    2012-07-01

    Leachate recirculation at neutral PH accompanied with buffer/nutrients addition has been used successfully in earlier stabilization of municipal solid waste in bioreactor landfills. In the present study, efforts were made to enhance the stabilization rate of municipal solid waste (MSW) and organic solid waste (OSW) in simulated landfill bioreactors by controlling the pH of recirculated leachate towards slightly alkaline side in absence of additional buffer and nutrients addition. Enhanced stabilization in waste samples was monitored with the help of analytical tools like Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD). Predominance of bands assigned to inorganic compounds and comparatively lower intensities of bands for organic compounds in the FTIR spectra of waste samples degraded with leachate recirculation under controlled pH confirmed higher rate of biodegradation and mineralization of waste than the samples degraded without controlled leachate recirculation. XRD spectra also confirmed to a greater extent of mineralization in the waste samples degraded under leachate recirculation with controlled pH. Comparison of XRD spectra of two types of wastes pointed out higher degree of mineralization in organic solid waste as compared to municipal solid waste. PMID:24749191

  5. Origin of Shear Stability and Compressive Ductility Enhancement of Metallic Glasses by Metal Coating

    PubMed Central

    Sun, B. A.; Chen, S. H.; Lu, Y. M.; Zhu, Z. G.; Zhao, Y. L.; Yang, Y.; Chan, K. C.; Liu, C. T.

    2016-01-01

    Metallic glasses (MGs) are notorious for the poor macroscopic ductility and to overcome the weakness various intrinsic and extrinsic strategies have been proposed in past decades. Among them, the metal coating is regarded as a flexible and facile approach, yet the physical origin is poorly understood due to the complex nature of shear banding process. Here, we studied the origin of ductile enhancement in the Cu-coating both experimentally and theoretically. By examining serrated shear events and their stability of MGs, we revealed that the thin coating layer plays a key role in stopping the final catastrophic failure of MGs by slowing down shear band dynamics and thus retarding its attainment to a critical instable state. The mechanical analysis on interplay between the coating layer and shear banding process showed the enhanced shear stability mainly comes from the lateral tension of coating layer induced by the surface shear step and the bonding between the coating layer and MGs rather than the layer thickness is found to play a key role in contributing to the shear stability. PMID:27271435

  6. Origin of Shear Stability and Compressive Ductility Enhancement of Metallic Glasses by Metal Coating.

    PubMed

    Sun, B A; Chen, S H; Lu, Y M; Zhu, Z G; Zhao, Y L; Yang, Y; Chan, K C; Liu, C T

    2016-01-01

    Metallic glasses (MGs) are notorious for the poor macroscopic ductility and to overcome the weakness various intrinsic and extrinsic strategies have been proposed in past decades. Among them, the metal coating is regarded as a flexible and facile approach, yet the physical origin is poorly understood due to the complex nature of shear banding process. Here, we studied the origin of ductile enhancement in the Cu-coating both experimentally and theoretically. By examining serrated shear events and their stability of MGs, we revealed that the thin coating layer plays a key role in stopping the final catastrophic failure of MGs by slowing down shear band dynamics and thus retarding its attainment to a critical instable state. The mechanical analysis on interplay between the coating layer and shear banding process showed the enhanced shear stability mainly comes from the lateral tension of coating layer induced by the surface shear step and the bonding between the coating layer and MGs rather than the layer thickness is found to play a key role in contributing to the shear stability. PMID:27271435

  7. The role of sleep in motor sequence consolidation: stabilization rather than enhancement.

    PubMed

    Nettersheim, Almut; Hallschmid, Manfred; Born, Jan; Diekelmann, Susanne

    2015-04-29

    Sleep supports the consolidation of motor sequence memories, yet it remains unclear whether sleep stabilizes or actually enhances motor sequence performance. Here we assessed the time course of motor memory consolidation in humans, taking early boosts in performance into account and varying the time between training and sleep. Two groups of subjects, each participating in a short wake condition and a longer sleep condition, were trained on the sequential finger-tapping task in the evening and were tested (1) after wake intervals of either 30 min or 4 h and (2) after a night of sleep that ensued either 30 min or 4 h after training. The results show an early boost in performance 30 min after training and a subsequent decay across the 4 h wake interval. When sleep followed 30 min after training, post-sleep performance was stabilized at the early boost level. Sleep at 4 h after training restored performance to the early boost level, such that, 12 h after training, performance was comparable regardless of whether sleep occurred 30 min or 4 h after training. These findings indicate that sleep does not enhance but rather stabilizes motor sequence performance without producing additional gains. PMID:25926448

  8. Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs

    PubMed Central

    Furukawa, Taro; Nakanotani, Hajime; Inoue, Munetomo; Adachi, Chihaya

    2015-01-01

    Recently, triplet harvesting via a thermally activated delayed fluorescence (TADF) process has been established as a realistic route for obtaining ultimate internal electroluminescence (EL) quantum efficiency in organic light-emitting diodes (OLEDs). However, the possibility that the rather long transient lifetime of the triplet excited states would reduce operational stability due to an increased chance for unwarranted chemical reactions has been a concern. Herein, we demonstrate dual enhancement of EL efficiency and operational stability in OLEDs by employing a TADF molecule as an assistant dopant and a fluorescent molecule as an end emitter. The proper combination of assistant dopant and emitter molecules realized a “one-way” rapid Förster energy transfer of singlet excitons from TADF molecules to fluorescent emitters, reducing the number of cycles of intersystem crossing (ISC) and reverse ISC in the TADF molecules and resulting in a significant enhancement of operational stability compared to OLEDs with a TADF molecule as the end emitter. In addition, we found that the presence of this rapid energy transfer significantly suppresses singlet-triplet annihilation. Using this finely-tuned rapid triplet-exciton upconversion scheme, OLED performance and lifetime was greatly improved. PMID:25673259

  9. Intestine-Specific Delivery of Hydrophobic Bioactives from Oxidized Starch Microspheres with an Enhanced Stability.

    PubMed

    Wang, Shanshan; Chen, Yuying; Liang, Hao; Chen, Yiming; Shi, Mengxuan; Wu, Jiande; Liu, Xianwu; Li, Zuseng; Liu, Bin; Yuan, Qipeng; Li, Yuan

    2015-10-01

    An intestine-specific delivery system for hydrophobic bioactives with improved stability was developed. It consists of oxidized potato starch polymers, where the carboxyl groups were physically cross-linked via ferric ions. The model hydrophobic ingredients (β-carotene) were incorporated inside the starch microspheres via a double-emulsion method. Confocal laser scanning microscopy images showed that β-carotene were distributed homogeneously in the inner oil phase of the starch microspheres. The negative value of the ζ-potential of microspheres increased with increasing pH and decreasing ionic strength. In vitro release experiments showed that the microspheres were stable at acidic stomach conditions (pH < 2), whereas at neutral intestinal conditions (pH 7.0), they rupture to release the loaded β-carotene. The 1,1-diphenyl-2-picrylhydrazyl radical, 2,2-diphenyl-1-(2,4,6-trinitriphenyl), scavenging activity results suggested that microsphere-encapsulated β-carotene had an improved activity after thermal treatment at 80 °C. The storage stability of encapsulated β-carotene at room temperature was also enhanced. The starch microspheres showed potential as intestine-specific carriers with an enhanced stability. PMID:26414436

  10. Enhancing Protein Stability by Adsorption onto Raft-like Lipid Domains

    PubMed Central

    Litt, Jeffrey; Padala, Chakradhar; Asuri, Prashanth; Vutukuru, Srinavya; Athmakuri, Krishna; Kumar, Sanat; Dordick, Jonathan; Kane, Ravi S.

    2015-01-01

    We demonstrate that the stability of adsorbed proteins can be enhanced by controlling the heterogeneity of the surface – by creating raft-like domains in a soft liposomal membrane. Recent work has shown that enzymes adsorbed onto highly curved nanoscale supports can be more stable than those adsorbed on flat surfaces with nominally the same chemical structure. This effect has been attributed to a decrease in lateral inter-enzyme interactions on a curved surface. Exploiting this idea, we asked if adsorbing enzymes onto “patchy” surfaces composed of adsorbing and non-adsorbing regions can be used to reduce lateral interactions even on relatively flat surfaces. We demonstrate that creating domains on which an enzyme can adsorb enhances the stability of that enzyme under denaturing conditions. Furthermore, we demonstrate that the size of these domains has a considerable effect on the degree of stability imparted by adsorption. Such biomimetic raft-inspired systems may find use in applications ranging from biorecognition to the design of novel strategies for the separation of biomolecules, and controlling the interaction of multi-component membrane-bound enzymes. PMID:19385631

  11. Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs.

    PubMed

    Furukawa, Taro; Nakanotani, Hajime; Inoue, Munetomo; Adachi, Chihaya

    2015-01-01

    Recently, triplet harvesting via a thermally activated delayed fluorescence (TADF) process has been established as a realistic route for obtaining ultimate internal electroluminescence (EL) quantum efficiency in organic light-emitting diodes (OLEDs). However, the possibility that the rather long transient lifetime of the triplet excited states would reduce operational stability due to an increased chance for unwarranted chemical reactions has been a concern. Herein, we demonstrate dual enhancement of EL efficiency and operational stability in OLEDs by employing a TADF molecule as an assistant dopant and a fluorescent molecule as an end emitter. The proper combination of assistant dopant and emitter molecules realized a "one-way" rapid Förster energy transfer of singlet excitons from TADF molecules to fluorescent emitters, reducing the number of cycles of intersystem crossing (ISC) and reverse ISC in the TADF molecules and resulting in a significant enhancement of operational stability compared to OLEDs with a TADF molecule as the end emitter. In addition, we found that the presence of this rapid energy transfer significantly suppresses singlet-triplet annihilation. Using this finely-tuned rapid triplet-exciton upconversion scheme, OLED performance and lifetime was greatly improved. PMID:25673259

  12. Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs

    NASA Astrophysics Data System (ADS)

    Furukawa, Taro; Nakanotani, Hajime; Inoue, Munetomo; Adachi, Chihaya

    2015-02-01

    Recently, triplet harvesting via a thermally activated delayed fluorescence (TADF) process has been established as a realistic route for obtaining ultimate internal electroluminescence (EL) quantum efficiency in organic light-emitting diodes (OLEDs). However, the possibility that the rather long transient lifetime of the triplet excited states would reduce operational stability due to an increased chance for unwarranted chemical reactions has been a concern. Herein, we demonstrate dual enhancement of EL efficiency and operational stability in OLEDs by employing a TADF molecule as an assistant dopant and a fluorescent molecule as an end emitter. The proper combination of assistant dopant and emitter molecules realized a ``one-way'' rapid Förster energy transfer of singlet excitons from TADF molecules to fluorescent emitters, reducing the number of cycles of intersystem crossing (ISC) and reverse ISC in the TADF molecules and resulting in a significant enhancement of operational stability compared to OLEDs with a TADF molecule as the end emitter. In addition, we found that the presence of this rapid energy transfer significantly suppresses singlet-triplet annihilation. Using this finely-tuned rapid triplet-exciton upconversion scheme, OLED performance and lifetime was greatly improved.

  13. Inflow and outflow signatures in flowing wellbore electrical conductivity logs

    SciTech Connect

    Doughty, Christine; Tsang, Chin-Fu

    2002-08-28

    Flowing wellbore electrical-conductivity logging provides a means to determine hydrologic properties of fractures, fracture zones, or other permeable layers intersecting a borehole in saturated rock. The method involves analyzing the time-evolution of fluid electrical-conductivity logs obtained while the well is being pumped and yields information on the location, hydraulic transmissivity, and salinity of permeable layers, as well as their initial (or ambient) pressure head. Earlier analysis methods were restricted to the case in which flows from the permeable layers or fractures were directed into the borehole. More recently, a numerical model for simulating flowing-conductivity logging was adapted to permit treatment of both inflow and outflow, including analysis of natural regional flow in the permeable layer. However, determining the fracture properties with the numerical model by optimizing the match to the conductivity logs is a laborious trial-and-error procedure. In this paper, we identify the signatures of various inflow and outflow features in the conductivity logs to expedite this procedure and to provide physical insight for the analysis of these logs. Generally, inflow points are found to produce a distinctive signature on the conductivity logs themselves, enabling the determination of location, inflow rate, and ion concentration in a straightforward manner. Identifying outflow locations and flow rates, on the other hand, can be done with a more complicated integral method. Running a set of several conductivity logs with different pumping rates (e.g., half and double the original pumping rate) provides further information on the nature of the feed points. In addition to enabling the estimation of flow parameters from conductivity logs, an understanding of the conductivity log signatures can aid in the design of follow-up logging activities.

  14. Subsurface fracture mapping from geothermal wellbores. Final report

    SciTech Connect

    Hartenbaum, B.A.; Rawson, G.

    1983-08-01

    To advance the state-of-the-art in Hot Dry Rock technology, and evaluation is made of (1) the use of both electromagnetic and acoustic radar to map far-field fractures, (2) the use of more than twenty different conventional well logging tools to map borehole-fracture intercepts, (3) the use of magnetic dipole ranging to determine the relative positions of the injection well and the production well within the fractured zone, (4) the use of passive microseismic methods to determine the orientation and extent of hydraulic fractures, and (5) the application of signal processing techniques to fracture mapping including tomography, holography, synthetic aperture, image reconstruction, and the relative importance of phase and amplitude information. It is found that according to calculations, VHF backscatter radar has the potential for mapping fractures within a distance of 50 +- 20 meters from the wellbore. A new technique for improving fracture identification is presented. The range of acoustic radar is five to seven times greater than that of VHF radar when compared on the basis of equal resolution, i.e., equal wavelengths. Analyses of extant data indicate that when used synergistically the (1) caliper, (2) resistivity dipmeter, (3) televiewer, (4) television, (5) impression packer, and (6) acoustic transmission are useful for mapping borehole-fracture intercepts. A new model of hydraulic fracturing is presented which indicates that a hydraulic fracture is dynamically unstable; consequently, improvements in locating the crack tip may be possible. The importance of phase in signal processing is stressed and those techniques which employ phase data are emphasized for field use.

  15. Enhanced Performance of Plasmid DNA Polyplexes Stabilized by a Combination of Core Hydrophobicity and Surface PEGylation

    PubMed Central

    Adolph, Elizabeth J.; Nelson, Christopher E.; Werfel, Thomas A.; Guo, Ruijing; Davidson, Jeffrey M.; Duvall, Craig L.

    2014-01-01

    Nonviral gene therapy has high potential for safely promoting tissue restoration and for treating various genetic diseases. One current limitation is that conventional transfection reagents such as polyethylenimine (PEI) form electrostatically stabilized plasmid DNA (pDNA) polyplexes with poor colloidal stability. In this study, a library of poly(ethylene glycol-b-(dimethylaminoethyl methacrylate-co-butyl methacrylate)) [poly(EG-b-(DMAEMA-co-BMA))] polymers were synthesized and screened for improved colloidal stability and nucleic acid transfection following lyophilization. When added to pDNA in the appropriate pH buffer, the DMAEMA moieties initiate formation of electrostatic polyplexes that are internally stabilized by hydrophobic interactions of the core BMA blocks and sterically stabilized against aggregation by a PEG corona. The BMA content was varied from 0% to 60% in the second polymer block in order to optimally tune the balance of electrostatic and hydrophobic interactions in the polyplex core, and polymers with 40 and 50 mol% BMA achieved the highest transfection efficiency. Diblock copolymers were more stable than PEI in physiologic buffers. Consequently, diblock copolymer polyplexes aggregated more slowly and followed a reaction-limited colloidal aggregation model, while fast aggregation of PEI polyplexes was governed by a diffusion-limited model. Polymers with 40% BMA did not aggregate significantly after lyophilization and produced up to 20-fold higher transfection efficiency than PEI polyplexes both before and after lyophilization. Furthermore, poly(EG-b-(DMAEMA-co-BMA)) polyplexes exhibited pH-dependent membrane disruption in a red blood cell hemolysis assay and endosomal escape as observed by confocal microscopy.Lyophilized polyplexes made with the lead candidate diblock copolymer (40% BMA) also successfully transfected cells in vitro following incorporation into gas-foamed polymeric scaffolds. In summary, the enhanced colloidal stability

  16. Enhancement of stability of aqueous suspension of alumina nanoparticles by femtosecond laser irradiation

    SciTech Connect

    Seo, Youngsang; Ha, Jeonghong; Kim, Dongsik; Choi, Tae-Youl; Jeong, Dae-Yong; Lee, Seung Yong

    2015-09-21

    In this work, we report substantially enhanced colloidal stability of aqueous nanoparticle suspensions by ultrashort laser pulse irradiation. A Ti:Sapphire femtosecond laser (wavelength: 800 nm; pulse duration: 50 fs at full width at half maximum) was used to modify the electrochemical properties of nanoparticle suspensions at laser fluences below the particle ablation threshold. The colloidal stability of the suspension was evaluated by zeta potential and dynamic light scattering (DLS). The DLS results along with the images from transmission electron microscopy revealed that the laser irradiation caused no distinct morphological change to the individual alumina particles, but a substantial portion of the clustered particles was fragmented by the laser pulses, decreasing the apparent size of the suspended particles. Also, X-ray photoelectron spectroscopy analysis indicates that the laser irradiation modified the surface chemistry of the alumina particles. The stabilizing capability of the proposed technique was turned out to be better than that of conventional ultrasonic treatments. The stability of the laser-treated sample with no added surfactant was maintained for up to 30 days, without requiring an additional homogenizing process such as magnetic stirring.

  17. Enhanced stability of uncemented canine femoral components by bone ingrowth into the porous coatings.

    PubMed

    Jasty, M; Bragdon, C R; Zalenski, E; O'Connor, D; Page, A; Harris, W H

    1997-01-01

    The following questions were answered in this study: (1) What is the initial stability of proximally porous-coated canine femoral components? (2) Does bone ingrowth occur under these conditions? (3) Is the stability enhanced by tissue ingrowth in vivo? The stability of proximally porous-coated femoral components of canine total hip arthroplasties after 6 months to 2 years of in vivo service in dogs was measured in vitro using displacement transducers under loads simulating canine midstance. This was compared with the stability of identical components under the same loading conditions immediately after implantation in vitro in the contralateral femurs. The femurs were then sectioned and bone ingrowth into the porous coatings was quantified. The results showed that immediately after implantation the implants can move as much as 50 microns, but that the bone ingrowth into porous coatings of canine femoral components can occur even under such conditions. These data also suggested that the relative motion existing at the time of insertion can be reduced to very small amounts (< 10 microns) by bone ingrowth. PMID:9021510

  18. Thermal stability enhancement of modified carboxymethyl cellulose films using SnO2 nanoparticles.

    PubMed

    Baniasad, Arezou; Ghorbani, Mohsen

    2016-05-01

    In this study, in-situ and ex-situ hydrothermal synthesis procedures were applied to synthesize novel CMC/porous SnO2 nanocomposites from rice husk extracted carboxymethyl cellulose (CMC) biopolymer. In addition, the effects of SnO2 nanoparticles on thermal stability of the prepared nanocomposite were specifically studied. Products were investigated in terms of morphology, particle size, chemical structure, crystallinity and thermal stability by using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA), respectively. Presence of characteristic bands in the FTIR spectra of samples confirmed the successful formation of CMC and CMC/SnO2 nanocomposites. In addition, FESEM images revealed four different morphologies of porous SnO2 nanoparticles including nanospheres, microcubes, nanoflowers and olive-like nanoparticles with hollow cores which were formed on CMC. These nanoparticles possessed d-spacing values of 3.35Å. Thermal stability measurements revealed that introduction of SnO2 nanoparticles in the structure of CMC enhanced stability of CMC to 85%. PMID:26893046

  19. Power system stability enhancement employing controllers based on a versatile modeling

    NASA Astrophysics Data System (ADS)

    Chung, Chi Yung

    Rapid advances in power electronics have made it both practicable and economic to design powerful thyristor-controlled devices, such as Flexible AC Transmission Systems (FACTS), for stability enhancements. The discrepancies of existing modeling approaches have limited the feasibility of handling these devices or designing its damping controller. In this thesis, a versatile and generalized approach to model standard power system components is proposed. The more systematic and realistic representation, accompanied by the development of powerful eigenvalue-analysis techniques, facilitates the study of small signal stability (monotonic and oscillatory) of the power systems. In monotonic stability study, the effect of exciter and governor is critically reviewed based on the exploitation of eigenvalues, modal and sensitivity analyses over a wide range of operating conditions. In oscillatory stability study, a common FACTS device, the static var compensator (SVC), is used to improve system damping. This study reveals the inadequacy of many conventional methodologies in SVC design since they have ignored (or cannot handle) some important factors such as SVC mode instability and robustness of the power system. Two approaches, combined sensitivities and Hinfinity algorithms, are introduced to solve these limitations. Finally, an extended Hinfinity algorithm, which is applied to PSS design and successfully solves certain limitations of the existing H infinity based PSS design, is also presented. Although these studies are developed on selected controller devices or typical systems for convenience of discussion, extension to more complex systems can be dealt with in a similar way because of the versatility of the proposed modeling methodology.

  20. Synthesis of multi-hierarchical structured yttria-stabilized zirconia powders and their enhanced thermophysical properties

    SciTech Connect

    Cao, Fengmei; Gao, Yanfeng; Chen, Hongfei; Liu, Xinling; Tang, Xiaoping; Luo, Hongjie

    2013-06-01

    Multi-hierarchical structured yttria-stabilized zirconia (YSZ) powders were successfully synthesized by a hydrothermal-calcination process. The morphology, crystallinity, and microstructure of the products were characterized by SEM, XRD, TEM, and BET. A possible formation mechanism of the unique structure formed during hydrothermal processing was also investigated. The measured thermophysical results indicated that the prepared YSZ powders had a low thermal conductivity (0.63–1.27 W m⁻¹ K⁻¹), good short-term high-temperature stability up to 1300 °C. The influence of the morphology and microstructure on their thermophysical properties was briefly discussed. The unique multi-hierarchical structure makes the prepared YSZ powders candidates for use in enhanced applications involving thermal barrier coatings. - Graphical abstract: There are many tiny pores and grain boundaries in the multi-hierarchical structured yttria-stabilized zirconia (YSZ) powders,which greatly decrease the thermal conductivities of the YSZ powders. - Highlights: • Multi-hierarchical structured YSZ powders were successfully prepared. • The prepared YSZ powders had a low thermal conductivity (0.63–1.27 W m⁻¹ K⁻¹). • Improved high-temperature stability had been achieved for the prepared YSZ powders. • The influence of the morphology on their thermophysical properties was explored.

  1. Enhanced stability of low fouling zwitterionic polymer brushes in seawater with diblock architecture.

    PubMed

    Quintana, Robert; Gosa, Maria; Jańczewski, Dominik; Kutnyanszky, Edit; Vancso, G Julius

    2013-08-27

    The successful implementation of zwitterionic polymeric brushes as antifouling materials for marine applications is conditioned by the stability of the polymer chain and the brush-anchoring segment in seawater. Here we demonstrate that robust, antifouling, hydrophilic polysulfobetaine-based brushes with diblock architecture can be fabricated by atom-transfer radical polymerization (ATRP) using initiator-modified surfaces. Sequential living-type polymerization of hydrophobic styrene or methyl methacrylate and commercially available hydrophilic sulfobetaine methacrylamide (SBMAm) monomer is employed. Stability enhancement is accomplished by protecting the siloxane anchoring bond of brushes on the substrate, grafted from silicon oxide surfaces. The degradation of unprotected PSBMAm brushes is clearly evident after a 3 month immersion challenge in sterilized artificial seawater. Ellipsometry and atomic force microscopy (AFM) measurements are used to follow changes in coating thickness and surface morphology. Comparative stability results indicate that surface-tethered poly(methyl methacrylate) and polystyrene hydrophobic blocks substantially improve the stability of zwitterionic brushes in an artificial marine environment. In addition, differences between the hydration of zwitterionic brushes in fresh and salt water are discussed to provide a better understanding of hydration and degradation processes with the benefit of improved design of polyzwitterionic coatings. PMID:23876125

  2. Enhancement of stability of aqueous suspension of alumina nanoparticles by femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Seo, Youngsang; Choi, Tae-Youl; Ha, Jeonghong; Jeong, Dae-Yong; Lee, Seung Yong; Kim, Dongsik

    2015-09-01

    In this work, we report substantially enhanced colloidal stability of aqueous nanoparticle suspensions by ultrashort laser pulse irradiation. A Ti:Sapphire femtosecond laser (wavelength: 800 nm; pulse duration: 50 fs at full width at half maximum) was used to modify the electrochemical properties of nanoparticle suspensions at laser fluences below the particle ablation threshold. The colloidal stability of the suspension was evaluated by zeta potential and dynamic light scattering (DLS). The DLS results along with the images from transmission electron microscopy revealed that the laser irradiation caused no distinct morphological change to the individual alumina particles, but a substantial portion of the clustered particles was fragmented by the laser pulses, decreasing the apparent size of the suspended particles. Also, X-ray photoelectron spectroscopy analysis indicates that the laser irradiation modified the surface chemistry of the alumina particles. The stabilizing capability of the proposed technique was turned out to be better than that of conventional ultrasonic treatments. The stability of the laser-treated sample with no added surfactant was maintained for up to 30 days, without requiring an additional homogenizing process such as magnetic stirring.

  3. Enhancing stability of poly(1,3-cyclohexadiene)-based materials by bromination and dehydrobromination

    SciTech Connect

    Huang, Tianzi; Wang, Xiaojun; Malmgren, Thomas W; Mays, Jimmy

    2012-01-01

    In order to improve their thermal stability, poly(1,3-cyclohexadiene) (PCHD) homopolymer, diblock copolymer of PCHD with styrene (PCHD-b-PS), and crosslinked PCHD membranes were dehydrogenated by addition of bromine to the polymer in solution, followed by dehydrobromination using an isothermal treatment at elevated temperature. The brominated PCHD materials thus obtained were characterized via FT-IR and thermogravimetric analysis (TGA) before and after dehydrobromination. Dehydrobromination was performed inside a TGA instrument, allowing insight into thermal stability of the analytes to be obtained. The dehydrobrominated PCHD samples were characterized using elemental analysis, and it was found the dehydrogenation of PCHD to polyphenylene was not complete. Nevertheless, some aromatization did occur, and the thermal stability of the treated polymer was greatly enhanced as compared to its PCHD precursor. Such materials may thus be of interest as high carbon content, graphene-like films. Crosslinked PCHD membranes and PCHD-b-PS diblock copolymers were treated via the same bromination/pyrolysis process, which resulted in markedly improved thermal stabilities for these materials as well.

  4. Low temperature acclimation with electrical stimulation enhance the biocathode functioning stability for antibiotics detoxification.

    PubMed

    Liang, Bin; Kong, Deyong; Ma, Jincai; Wen, Chongqing; Yuan, Tong; Lee, Duu-Jong; Zhou, Jizhong; Wang, Aijie

    2016-09-01

    Improvement of the stability of functional microbial communities in wastewater treatment system is critical to accelerate pollutants detoxification in cold regions. Although biocathode communities could accelerate environmental pollutants degradation, how to acclimate the cold stress and to improve the catalytic stability of functional microbial communities are remain poorly understood. Here we investigated the structural and functional responses of antibiotic chloramphenicol (CAP) reducing biocathode communities to constant low temperature 10 °C (10-biocathode) and temperature elevation from 10 °C to 25 °C (S25-biocathode). Our results indicated that the low temperature acclimation with electrical stimulation obviously enhanced the CAP nitro group reduction efficiency when comparing the aromatic amine product AMCl2 formation efficiency with the 10-biocathode and S25-biocathode under the opened and closed circuit conditions. The 10-biocathode generated comparative AMCl maximum as the S25-biocathode but showed significant lower dehalogenation rate of AMCl2 to AMCl. The continuous low temperature and temperature elevation both enriched core functional community in the 10-biocathode and S25-biocathode, respectively. The 10-biocathode functioning stability maintained mainly through selectively enriching cold-adapted functional species, coexisting metabolically similar nitroaromatics reducers and maintaining the relative abundance of key electrons transfer genes. This study provides new insights into biocathode functioning stability for accelerating environmental pollutants degradation in cold wastewater system. PMID:27183211

  5. MoS2 Enhanced T-Phase Stabilization and Tunability Through Alloying.

    PubMed

    Raffone, Federico; Ataca, Can; Grossman, Jeffrey C; Cicero, Giancarlo

    2016-07-01

    Two-dimensional MoS2 is a promising material for nanoelectronics and catalysis, but its potential is not fully exploited since proper control of its multiple phases (H, T, ZT) and electronic properties is lacking. In this theoretical study, alloying is proposed as a method to stabilize the MoS2 T-phase. In particular, MoS2 is alloyed with another material that is known to exist in a monolayer MX2 T-structure, and we show that the formation energy difference among phases decreases even for low impurity concentrations in MoS2, and a relationship between impurity concentration and alloy band gap is established. This method can be potentially applied to many two-dimensional materials to tune/enhance their electronic properties and stabilities in order to suit the desired application. PMID:27225447

  6. Substrate and head group modifications for enhanced stability in molecular electronic devices

    NASA Astrophysics Data System (ADS)

    Ferrato, Michael-Anthony

    Poor Self-Assembled Monolayer (SAM) stability is a barrier which impedes the incorporation of molecular layers as functional components in electronic device architectures. Here we investigate the molecular electronic characteristics of two well established approaches to enhancing SAM stability. In Chapter 2 we investigate the electrochemical modification of Au substrates by the underpotential deposition of silver monolayers (AgUPD). In Chapter 3 we study chelating dithiophosphinic acid (DTPA) head groups to anchor SAM molecules to substrates. Based on molecular electronic characterization using EGaIn Tip testbeds, we observed that AgUPD substrates maintained the inherent electronic character of n-alkanethiolate SAMs, but reduced charge transport by almost 1 order of magnitude as compared with the same SAMs on bulk Au substrates. Similar molecular electronic characterization of (diphenyl)dithiophosphinic acid SAMs on Au substrates revealed that the DTPA head group induced a ~3 order of magnitude drop in charge transport as compared with analogous thiophenol SAMs.

  7. Aeroelastic Tailoring for Stability Augmentation and Performance Enhancements of Tiltrotor Aircraft

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.; Piatak, David J.; Corso, Lawrence M.; Popelka, David A.

    1999-01-01

    The requirements for increased speed and productivity for tiltrotors has spawned several investigations associated with proprotor aeroelastic stability augmentation and aerodynamic performance enhancements. Included among these investigations is a focus on passive aeroelastic tailoring concepts which exploit the anisotropic capabilities of fiber composite materials. Researchers at Langley Research Center and Bell Helicopter have devoted considerable effort to assess the potential for using these materials to obtain aeroelastic responses which are beneficial to the important stability and performance considerations of tiltrotors. Both experimental and analytical studies have been completed to examine aeroelastic tailoring concepts for the tiltrotor, applied either to the wing or to the rotor blades. This paper reviews some of the results obtained in these aeroelastic tailoring investigations and discusses the relative merits associated with these approaches.

  8. Correction: Enhanced photocatalytic activity of a self-stabilized synthetic flavin anchored on a TiO2 surface.

    PubMed

    Pandiri, Manjula; Shaham-Waldmann, Nurit; Hossain, Mohammad S; Foss, Frank W; Rajeshwar, Krishnan; Paz, Yaron

    2016-09-14

    Correction for 'Enhanced photocatalytic activity of a self-stabilized synthetic flavin anchored on a TiO2 surface' by Manjula Pandiri et al., Phys. Chem. Chem. Phys., 2016, 18, 18575-18583. PMID:27509005

  9. Primary stability of two uncemented acetabular components of different geometry: hemispherical or peripherally enhanced?

    PubMed Central

    Antoniades, G.; Smith, E. J.; Deakin, A. H.; Wearing, S. C.; Sarungi, M.

    2013-01-01

    Objective This study compared the primary stability of two commercially available acetabular components from the same manufacturer, which differ only in geometry; a hemispherical and a peripherally enhanced design (peripheral self-locking (PSL)). The objective was to determine whether altered geometry resulted in better primary stability. Methods Acetabular components were seated with 0.8 mm to 2 mm interference fits in reamed polyethylene bone substrate of two different densities (0.22 g/cm3 and 0.45 g/cm3). The primary stability of each component design was investigated by measuring the peak failure load during uniaxial pull-out and tangential lever-out tests. Results There was no statistically significant difference in seating force (p = 0.104) or primary stability (pull-out p = 0.171, lever-out p = 0.087) of the two components in the low-density substrate. Similarly, in the high-density substrate, there was no statistically significant difference in the peak pull-out force (p = 0.154) or lever-out moment (p = 0.574) between the designs. However, the PSL component required a significantly higher seating force than the hemispherical cup in the high-density bone analogue (p = 0.006). Conclusions Higher seating forces associated with the PSL design may result in inadequate seating and increased risk of component malpositioning or acetabular fracture in the intra-operative setting in high-density bone stock. Our results, if translated clinically, suggest that a purely hemispherical geometry may have an advantage over a peripherally enhanced geometry in high density bone stock. Cite this article: Bone Joint Res 2013;2:264–9. PMID:24326398

  10. Enhancing enzyme stability by construction of polymer-enzyme conjugate micelles for decontamination of organophosphate agents.

    PubMed

    Suthiwangcharoen, Nisaraporn; Nagarajan, Ramanathan

    2014-04-14

    Enhancing the stability of enzymes under different working environments is essential if the potential of enzyme-based applications is to be realized for nanomedicine, sensing and molecular diagnostics, and chemical and biological decontamination. In this study, we focus on the enzyme, organophosphorus hydrolase (OPH), which has shown great promise for the nontoxic and noncorrosive decontamination of organophosphate agents (OPs) as well as for therapeutics as a catalytic bioscavanger against nerve gas poisoning. We describe a facile approach to stabilize OPH using covalent conjugation with the amphiphilic block copolymer, Pluronic F127, leading to the formation of F127-OPH conjugate micelles, with the OPH on the micelle corona. SDS-PAGE and MALDI-TOF confirmed the successful conjugation, and transmission electron microscopy (TEM) and dynamic light scattering (DLS) revealed ∼100 nm size micelles. The conjugates showed significantly enhanced stability and higher activity compared to the unconjugated OPH when tested (i) in aqueous solutions at room temperature, (ii) in aqueous solutions at higher temperatures, (iii) after multiple freeze/thaw treatments, (iv) after lyophilization, and (v) in the presence of organic solvents. The F127-OPH conjugates also decontaminated paraoxon (introduced as a chemical agent simulant) on a polystyrene film surface and on a CARC (Chemical Agent Resistant Coating) test panel more rapidly and to a larger extent compared to free OPH. We speculate that, in the F127-OPH conjugates (both in the micellar form as well as in the unaggregated conjugate), the polypropylene oxide block of the copolymer interacts with the surface of the OPH and this confinement of the OPH reduces the potential for enzyme denaturation and provides robustness to OPH at different working environments. The use of such polymer-enzyme conjugate micelles with improved enzyme stability opens up new opportunities for numerous civilian and Warfighter applications. PMID