Science.gov

Sample records for enhancement research quarterly

  1. Shale oil value enhancement research. Quarterly report, October 1, 1993--December 31, 1993

    SciTech Connect

    1997-05-01

    A major push was made to identify the hydrocarbon and heteroatom types present in raw shale oil. A comprehensive, qualitative picture of the <400{degrees}C material has been obtained. In addition to the expected types, e.g., pyridines, pyrroles, indoles and phenols, the presence of aliphatic carboxylic acids, ketones and nitrites was confirmed. Most importantly, heteroatom types are able to be concentrated nearly quantitatively by liquid-liquid extraction with polar solvents. Compound types characterization of the >400{degrees}C material, as well as rapid, routine analysis of separations fractions, requires new methodologies founded in the Z-BASIC concept. Advances were made in establishing the interface protocol needed to utilize Z-BASIC methodologies for interpretation of gc-ms output data. It is anticipated that all interface protocols will be completed and a computerized reporting system will be in place by the end of the next quarter. Progress reports were made at the Contractor`s Review Meeting (METC), November 16th and at the Eastern Oil Shale Symposium (Lexington), November 17th. Research results continue to be well-received. The concept of a thermodynamically logical map of potential products from shale oil is a sound approach to value-enhancement research. From a commercial perspective, the concept of establishing a demand for raw shale oil at a reasonable purchase price of, say $30/bbl, is increasingly being recognized as the best means of pulling shale oil into the marketplace.

  2. Shale oil value enhancement research. Quarterly report, September 1 - November 30, 1995

    SciTech Connect

    Bunger, J.W.; Russell, C.P.; Tsai, J.C.H.; Cogswell, D.E.; Wiser, J.W.; Mihamou, H.; Wright, A.D.

    1995-12-31

    Activities during this quarter focused on compound type analysis of shale oil extraction products and improvement of the continuous extraction process. We have installed a walk-in fume hood to improve the ventilation of our working environment while handling of larger amounts of shale oil and volatile solvents in our Phase-II(a) work. The fume hood accommodates the distillation column, rotary evaporator, and the CLLX column. During the construction period, experimental work was carried on at a smaller scale. Modifications to the thermal hydrodealkylation process unit at the University of Utah have been completed. The higher boiling polar fraction of shale oil was fed and the preliminary ran showed promising results. The search for potential industrial partners is continuing. During this period, the prijcipal investigator has visited six industrial companies that are candidates for partner/buyer relationship. Currently, we are pursuing confidentiality agreements with four of them. It is the intent to focus our research toward addressing the objectives of those companies who show sufficient interest in the shale oil value enhancement project to enter the next level of discussions.

  3. Shale oil value enhancement research. Quarterly report, March 1 - May 31, 1994

    SciTech Connect

    1994-12-31

    Activities during this quarter focused on integrating the various tasks and elements. During Phase-1, substantial effort was placed on designing and automating the identification of molecular types present in shale oil. The ability to know the molecular composition and to track a given ``target`` species through the initial concentration steps was deemed critically important to the ultimate success of the three-phase project. It has been this molecular tracking ability that clearly distinguishes the JWBA work from prior shale oil research. The major software and hardware tasks are not in place to rapidly perform these analytical efforts. Software improvements are expected as new questions arise. The existence of the major nitrogen and oxygen types in shale oil has been confirmed. Most importantly, the ability to convert higher molecular weight types to lower molecular weight types was preliminarily confirmed in the present quarter. This is significant because it confirms earlier hypothesis that values are found though out the boiling range. Potential yields of extremely high value chemicals, e.g., $1000/bbl of up to 10% by weight of the barrel remain a feasible objective. Market and economic assessment continue to show encouraging results. Markets for specialty and fine chemicals containing a nitrogen atom are expanding both in type and application. Initial discussions with pharmaceutical and agrochemical industries show a strong interest in nitrogen-based compounds. Major progress was made during this quarter in completing agreements with industry for testing of shale oil components for biological activity. Positive results of such testing will add to the previously known applications of shale oil components as pure compounds and concentrates. During this quarter, we will formulate the pilot plant strategy for Phase-11(a).

  4. Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 34, quarter ending March 31, 1983

    SciTech Connect

    Linville, B.

    1983-07-01

    Progress achieved for the quarter ending March 1983 are presented for field projects and supporting research for the following: chemical flooding; carbon dioxide injection; and thermal/heavy oil. In addition, progress reports are presented for: resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; oil recovered by gravity mining; improved drilling technology; and general supporting research. (ATT)

  5. Contracts for field projects and supporting research on enhanced oil recovery: Progress review No. 74, Quarter ending March 31, 1993

    SciTech Connect

    Not Available

    1994-03-01

    Accomplishments for the past quarter are presented for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; microbial technology; field demonstrations in high-priority reservoir classes; and novel technology. A list of available publication is also provided.

  6. Enhanced oil recovery and applied geoscience research program. [Quarterly] report, April 1--June 30, 1993

    SciTech Connect

    Thomas, C.P.

    1993-12-31

    The objectives of this research program are to develop microbial enhanced oil recovery (MEOR) systems for application to reservoirs containing medium to heavy oils and to evaluate reservoir wettability and its effects on oil recovery. The MEOR research goals include: (a) development of bacterial cultures that are effective for oil displacement under a broad range of reservoir conditions, (b) improved understanding of the mechanisms by which microbial systems displace oil under reservoir conditions, (c) determination of the feasibility of combining microbial systems with or following conventional enhanced oil recovery (EOR) processes, (d) development and implementation of industry cost-shared field demonstration projects for MEOR technology. The goals of the reservoir wettability project are to develop: (a) better methods for assessment of reservoir core wettability, (b) more certainty in relating laboratory core analysis procedures to field conditions, (c) a better understanding of the effects of reservoir matrix properties and heterogeneity on wettability, and (d) improved ability to predict and influence waterflood and EOR response through control of wettability in reservoirs.

  7. Shale oil value enhancement research. Quarterly report, June 1 - August 31, 1996

    SciTech Connect

    Bunter, J.W.; Russell, C.P.; Tsai, J.C.H.; Cogswell, D.E.; Mihamou, H.; Wright, A.D.

    1996-12-31

    The overall objective is to develop a new technology for manufacturing valuable marketable products from shale oil. The quarter`s efforts were concentrated on (a) THDA and reaction of alkylpyridines at elevated conditions, (b) compound type analysis of kerogen oil and its derived products, (b) thermal hydrodealkylation of the > 290{degrees}C polar fraction, (c) secondary reactions of pyridinic type compounds to form marketable products, and (d) preparation of presentation to the Dawnbreaker Commercial Assistance Program. Excellent progress is being made in all cases. Our market analysis and industrial feedback indicate that the low molecular weight pyridines are the main market driving force. We are concentrating our effort toward increasing the yield of ``light`` pyridines before the end of Phase II(a). Our current laboratory set-up can only produce analytical quantity of samples, which is not sufficient for marketing purpose. However, the completion of a secondary flow THDA unit for a pilot-scale production depends on the availability of the Phase-II(b) and Phase-III funding.

  8. Shale oil value enhancement research. Quarterly report, March 1 - May 31, 1996

    SciTech Connect

    Bunger, J.W.; Russell, C.P.; Tsai, J.C.H.; Cogswell, D.E.; Mihamou, H.; Wright, A.D.

    1996-12-31

    The overall objective is to develop a new technology for manufacturing valuable marketable products from shale oil. Phase I objectives are to identify desirable components in shale oil, develop separations techniques for those components, identify market needs and to identify plausible products manufacturable from raw shale oil to meet those needs. The quarter`s efforts were concentrated on (a) compound type analysis of shale oil and its extraction products, (b) thermal hydrodealkylation of the >290{degrees}C polar fraction, (c) reaction of pyridinic type compounds to form secondary products, (d) updating SPX economic analysis, and (e) preparation of a business plan for presentation before the Dawnbreaker Commercial Assistance Program. The subcontract on the thermal hydrodealkylation work at the University of Utah ended at May 3 1, 1996. We have obtained valuable information from the batch experiments. The progress on the flow reactor proved somewhat limited because of the restriction of the existing reactor configuration. The liaison with potential industrial partners is continuing. An additional company has reached agreement to proceed with a geochemical testing of shale oil derived products.

  9. Shale oil value enhancement research. Quarterly report, April 1, 1995--June 30, 1995

    SciTech Connect

    1997-05-01

    A review of the marketing, compositional analysis, and process data has pointed to a simplification of the process scheme envisaged for the phase-H continuous process work. This translates into a higher probability of success, both for the R&D and the likelihood of securing an industrial partner for future commercialization. The phase-II PDU construction work is well-along and will be completed in the next quarter. The high efficiency distillation unit is complete and the liquid-liquid extraction unit is operable at ambient temperature and pressure conditions. Flow diagrams of preferred processes for recovery of refinery feeds, aromatics, waxes, and lube oils from oil shale are presented.

  10. Shale oil value enhancement research. Quarterly report, January 1, 1996--March 31, 1996

    SciTech Connect

    1997-05-01

    Activities during this quarter focused on (a) compound type analysis of shale oil and its extraction products, (b) thermal hydrodealkylation of the > 290{degrees}C polar fraction, and (c) economic analysis of the SPX project. At the end of this quarter, Mr. Jerry Wiser - the chief process engineer of JWBA, took a job with an equipment and engineering firm in the Salt Lake City. Jerry still maintains his contact with us as an Associate of the company. With regard to the SPX project, Jerry`s contribution included the process control and automation of various process units including the 15-stage distillation column and the continuous liquid-liquid extraction column. He also participated in data processing of the microanalysis of the complex hydrocarbon mixtures. All of the works he was involved in are fully functional and well-documented. At this transition stage, his previous duty is fulfilled by other JWBA staff. The current SPX team is well-suited for the upcoming tasks of running the PDU`s and preparing samples for introduction to potential partners and buyers. The dialog with potential industrial partners is continuing. We keep receiving inquires about our pyridine technology, including companies outside of United States. We are also preparing for presentation of a business plan before the Dawnbreaker commercialization assistance program. At the present time, although we can put together a {open_quotes}presentable{close_quotes} package, the lack of manufacturing plan and proof of market assurance (the originally proposed Phase-III work which has yet to be funded) may turn out to be critical for making this project commercial attractive.

  11. Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 78, quarter ending March 31, 1994

    SciTech Connect

    1995-05-01

    This report presents descriptions of various research projects and field projects concerned with the enhanced recovery of petroleum. Contract numbers, principal investigators, company names, and project management information is included.

  12. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 83, quarter ending June 30, 1995

    SciTech Connect

    1996-08-01

    Summaries of 41 research projects on enhanced recovery are presented under the following sections: (1) chemical flooding; (2) gas displacement; (3) thermal recovery; (4) geoscience technology; (5) resource assessment technology; and (6) reservoir classes. Each presentation gives the title of the project, contract number, research facility, contract date, expected completion data, amount of the award, principal investigator, and DOE program manager, and describes the objectives of the project and a summary of the technical progress.

  13. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 86, quarter ending March 31, 1996

    SciTech Connect

    1997-05-01

    Summaries are presented for 37 enhanced oil recovery contracts being supported by the Department of Energy. The projects are grouped into gas displacement methods, thermal recovery methods, geoscience technology, reservoir characterization, and field demonstrations in high-priority reservoir classes. Each summary includes the objectives of the project and a summary of the technical progress, as well as information on contract dates, size of award, principal investigator, and company or facility doing the research.

  14. Contracts for field projects and supporting research on enhanced oil recovery, October--December 1992. Progress review No. 73, quarter ending December 31, 1992

    SciTech Connect

    Not Available

    1993-12-01

    Accomplishments for this quarter ending December 31, 1992 are presented for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; microbial technology; reservoir classes; and novel technology.

  15. Contracts for field projects and supporting research on enhanced oil recovery, July--September 1992. Progress review No. 72, quarter ending September 30, 1992

    SciTech Connect

    Not Available

    1993-09-01

    Accomplishments for the past quarter are presented for the following tasks: Chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; microbial technology; and novel technology. A list of available publication is also provided.

  16. Contracts for field projects and supporting research on enhanced oil recovery. Progress review quarter ending September 30, 1993

    SciTech Connect

    Not Available

    1994-08-01

    Progress reports are presented for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; and field demonstrations in high-priority reservoir classes. A list of available publications is also included.

  17. Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 71, quarter ending June 30, 1992

    SciTech Connect

    Not Available

    1993-06-01

    Progress reports are presented for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; microbial technology; and novel technology. A list of available publication is also provided.

  18. The NRC Research Associateship Program has Greatly Enhanced the Solar Research at Marshall Space Flight Center During the Last Quarter Century

    NASA Technical Reports Server (NTRS)

    Gary, G. A.

    2003-01-01

    Under the educational Resident Research Associateships (RRA) program, NASA Headquarters funds post-doctoral research scientists through a contract with the National Research Council (NRC). This short article reviews the important influence that the RRAs have had on solar research at NASA s Marshall Space Flight Center (MSFC). Through the RRA program the National Research Council under the National Academy of Sciences has provided the Marshall Space Flight Center s Solar Physics Group with 29 post-doctorial research associateships since 1975. This starting date corresponds with the increased research activity in solar physics at MSFC. A number of MSFC scientists had been working on and supporting NASA s Skylab Mission in operation from May 1973 until February 1974. This scientific effort included the development MSFC s X-ray telescope SO56 and the development of the United States first full-vector magnetograph. Numerous engineers and scientists at MSFC supported the development and operation of the cluster of solar telescopes on the Apollo Telescope Mount (ATM), a principal part of the Skylab orbiting workshop. With the enormous volume of new and exciting solar data of the solar corona, MSFC dedicated a group of scientists to analyze these data and develop new solar instruments and programs. With this new initiative, came the world- renowned solar prominence expert, Dr. Einar Tandberg-Hanssen, from the High Altitude Observatory in Boulder, Colorado and the support of the first two RRAs in support of solar physics research.

  19. Sociology, history, and philosophy in the Research Quarterly.

    PubMed

    Sage, George H; Dyreson, Mark S; Kretchmar, R Scott

    2005-06-01

    The accounts of our subdiscipline's contributions to The Research Quarterly are similar. Sociology, history, and philosophy operate at some distance from the biological sciences. The research methods used by scholars in each of our domains address distinctive issues related to objectivity and, thus, validity. Our contributions to The Research Quarterly have been modest, numbering about 240 articles, or slightly over 3 per volume. In short, we have enjoyed only a minority presence in The Research Quarterly during its 75 years of existence. Our stories, however, also diverge in important ways. Our research methods are different, and our relationships with our parent disciplines are not the same. In addition, our perceptions of The Research Quarterly as a potential repository for our respective publications vary considerably. PMID:16122133

  20. Solar Energy Research Institute Biomass Program. Quarterly technical report, fourth quarter, FY 1984

    SciTech Connect

    Corder, R.E.; Lowenstein, M.Z.; McIntosh, R.

    1984-10-01

    Highlights of progress made during the fourth quarter of 1984 are summarized. Research was performed in 3 subprograms: aquatic species; anaerobic digestion; and photo/biological hydrogen. In the aquatic species subprogram, investigators: completed evaluation of energy fixation relationship between growth and lipid accumulation (Chlorella SO1); completed evaluation of metabolic blockers to enhance lipid accumulation; determined long-term sustainable productivities for Platymonas in a shallow raceway system; completed evaluation of species screening procedure using Platymonas; issued LOI for collection of microalgae strains; and completed establishment of oleaginous microalgae collection. In the anaerobic digestion subprogram, investigators: completed research on causticized straw-manure mixutre (USDA); performed chemical analysis of different swine manure fractions (Missouri); and completed preliminary evaluation of the conversion of lignocellulosics to liquid fuels with hydrogen iodide and other reductants (SERI). In the photo/biological hydrogen subprogram, investigators: isolated and characterized 10 new strains of photosynthetic bacteria; completed characterization of chemical treatments of O/sub 2/ evolution from photosystem II preparations; and submitted two papers on algal hydrogenase. Separate abstracts have been prepared for each program for inclusion in the Energy Data Base. (DMC)

  1. Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 80. Quarterly report, July--September, 1994

    SciTech Connect

    1995-11-01

    This report contains information on petroleum enhanced recovery projects. In addition to project descriptions, contract numbers, principal investigators and project management information is included.

  2. Sociology, History, and Philosophy in the Research Quarterly

    ERIC Educational Resources Information Center

    Sage, George H.; Dyreson, Mark S.; Kretchmar, R. Scott

    2005-01-01

    The accounts of our subdiscipline's contributions to The Research Quarterly are similar. Sociology, history, and philosophy operate at some distance from the biological sciences. The research methods used by scholars in each of our domains address distinctive issues related to objectivity and, thus, validity. The authors contributions to The…

  3. Sociology, History, and Philosophy in the Research Quarterly

    ERIC Educational Resources Information Center

    Sage, George H.; Dyreson, Mark S.; Kretchmar, R. Scott

    2005-01-01

    The accounts of our subdiscipline's contributions to The Research Quarterly are similar. Sociology, history, and philosophy operate at some distance from the biological sciences. The research methods used by scholars in each of the domains address distinctive issues related to objectivity and, thus, validity. The contributions to The Research…

  4. Teaching to Enhance Research

    ERIC Educational Resources Information Center

    Harland, Tony

    2016-01-01

    In this paper, I present a conceptual argument for "teaching-led research" in which university lecturers construct courses that directly and positively influence their research, while at the same time, safeguard and enhance the student experience. A research-pedagogy for higher education considers the link between teaching and research,…

  5. Coal liquefaction process research quarterly report, October-December 1979

    SciTech Connect

    Bickel, T.C.; Curlee, R.M.; Granoff, B.; Stohl, F.V.; Thomas, M.G.

    1980-03-01

    This quarterly report summarizes the activities of Sandia's continuing program in coal liquefaction process research. The overall objectives are to: (1) provide a fundamental understanding of the chemistry of coal liquefaction; (2) determine the role of catalysts in coal liquefaction; and (3) determine the mechanism(s) of catalyst deactivation. The program is composed of three major projects: short-contact-time coal liquefaction, mineral effects, and catalyst studies. These projects are interdependent and overlap significantly.

  6. Atmospheric Radiation Measurement program climate research facility operations quarterly report.

    SciTech Connect

    Sisterson, D. L.; Decision and Information Sciences

    2006-09-06

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,074.80 hours (0.95 x 2,184 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,965.60 hours (0.90 x 2,184), and that for the Tropical Western Pacific (TWP) locale is 1,856.40 hours (0.85 x 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.80 hours (0.95 x 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive

  7. [National Institute for Petroleum and Energy Research] quarterly technical report, October 1--December 31, 1992

    SciTech Connect

    Not Available

    1993-04-01

    Accomplishments for the past quarter are described for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; and microbial technology.

  8. Advanced Reactor Safety Research Division. Quarterly progress report, January 1-March 31, 1980

    SciTech Connect

    Agrawal, A.K.; Cerbone, R.J.; Sastre, C.

    1980-06-01

    The Advanced Reactor Safety Research Programs quarterly progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: HTGR Safety Evaluation, SSC Code Development, LMFBR Safety Experiments, and Fast Reactor Safety Code Validation.

  9. Water Reactor Safety Research Division quarterly progress report, January 1-March 31, 1980

    SciTech Connect

    Romano, A.J.

    1980-06-01

    The Water Reactor Safety Research Programs Quarterly Report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: LWR Thermal Hydraulic Development, Advanced Code Evaluation, TRAC Code Assessment, and Stress Corrosion Cracking of PWR Steam Generator Tubing.

  10. Water Reactor Safety Research Division. Quarterly progress report, April 1-June 30, 1980

    SciTech Connect

    Abuaf, N.; Levine, M.M.; Saha, P.; van Rooyen, D.

    1980-08-01

    The Water Reactor Safety Research Programs quarterly report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: LWR Thermal Hydraulic Development, Advanced Code Evlauation, TRAC Code Assessment, and Stress Corrosion Cracking of PWR Steam Generator Tubing.

  11. [National Institute for Petroleum and Energy Research] quarterly technical report, October 1--December 31, 1992. Volume 2, Energy production research

    SciTech Connect

    Not Available

    1993-04-01

    Accomplishments for the past quarter are described for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; and microbial technology.

  12. Cooperative research program in coal liquefaction. Quarterly report, August 1, 1991--October 31, 1991

    SciTech Connect

    Huffman, G.P.

    1991-12-31

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  13. Research and development for the declassification productivity initiative. Quarterly report, April 1996--June 1996

    SciTech Connect

    1996-08-01

    Highlights of the second quarter include a trip by one of the OCR investigators to UNLV to study preparation of test suites and to explore possible collaboration with ISRI. Results and recommendations are presented for Knowledge Representation and Inferencing. Methodological strategies have been identified for the Logical Analysis research component. Preliminary findings on Tipster Technology will be reported in the 3rd quarter.

  14. Subsurface Biogeochemical Research FY11 Second Quarter Performance Measure

    SciTech Connect

    Scheibe, Timothy D.

    2011-03-31

    The Subsurface Biogeochemical Research (SBR) Long Term Measure for 2011 under the Performance Assessment Rating Tool (PART) measure is to "Refine subsurface transport models by developing computational methods to link important processes impacting contaminant transport at smaller scales to the field scale." The second quarter performance measure is to "Provide a report on computational methods linking genome-enabled understanding of microbial metabolism with reactive transport models to describe processes impacting contaminant transport in the subsurface." Microorganisms such as bacteria are by definition small (typically on the order of a micron in size), and their behavior is controlled by their local biogeochemical environment (typically within a single pore or a biofilm on a grain surface, on the order of tens of microns in size). However, their metabolic activity exerts strong influence on the transport and fate of groundwater contaminants of significant concern at DOE sites, in contaminant plumes with spatial extents of meters to kilometers. This report describes progress and key findings from research aimed at integrating models of microbial metabolism based on genomic information (small scale) with models of contaminant fate and transport in aquifers (field scale).

  15. Advanced Research and Technology Development Fossil Energy Materials Program. Quarterly progress report ending June 30, 1984

    SciTech Connect

    Not Available

    1984-08-01

    The objective of the AR and TD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The management of the Program has been decentralized to DOE Oak Ridge Operations Office (ORO) and the Oak Ridge National Laboratory (ORNL) as technical support contractor. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating subcontractor organizations. The ORNL Fossil Energy Materials Program Office compiles and issues this combined quarterly progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FYs 1982 to 1986, in which projects are organized according to fossil energy technologies. It is the intent of the AR and TD Fossil Energy Materials Program to sponsor materials research which is generic to a number of fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  16. Decontamination Systems Information and Research Program. Quarterly technical progress report, January 1--March 31, 1994

    SciTech Connect

    Not Available

    1994-05-01

    West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ``Decontamination Systems Information and Research Programs.`` Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Reports on a quarterly basis. This report comprises the first Quarterly Technical Progress Report for Year 2 of the Agreement. This report reflects the progress and/or efforts performed on the sixteen (16) technical projects encompassed by the Year 2 Agreement for the period of January 1 through March 31, 1994. In situ bioremediation of chlorinated organic solvents; Microbial enrichment for enhancing in-situ biodegradation of hazardous organic wastes; Treatment of volatile organic compounds (VOCs) using biofilters; Drain-enhanced soil flushing (DESF) for organic contaminants removal; Chemical destruction of chlorinated organic compounds; Remediation of hazardous sites with steam reforming; Soil decontamination with a packed flotation column; Use of granular activated carbon columns for the simultaneous removal of organics, heavy metals, and radionuclides; Monolayer and multilayer self-assembled polyion films for gas-phase chemical sensors; Compact mercuric iodide detector technology development; Evaluation of IR and mass spectrometric techniques for on-site monitoring of volatile organic compounds; A systematic database of the state of hazardous waste clean-up technologies; Dust control methods for insitu nuclear and hazardous waste handling; Winfield Lock and Dam remediation; and Socio-economic assessment of alternative environmental restoration technologies.

  17. GBRN/DOE Project: Dynamic enhanced recovery technologies. Quarterly technical report, January 1994--March 1994

    SciTech Connect

    Anderson, R.N.

    1994-04-15

    Global Basins Research Network will perform a field demonstration of their ``Dynamic Enhanced Recovery Technology`` to test the concept that the growth faults in EI-330 field are conduits through which producing reservoirs are charged and that enhanced production can be developed by producing directly from the fault zone. The site, operated by Penzoil, is located in 250 feet of water the productive depth intervals include 4000 to 9000 feet. Previous work, which incorporated pressure, temperature, fluid flow, heat flow, seismic, production, and well log data, indicated active fluid flow along fault zones. The field demonstration will be accomplished by drilling and production test of growth fault systems associated with the EI-330 field. The project utilizes advanced 3-D seismic analysis, geochemical studies, structural and stratigraphic reservoir characterization, reservoir simulation, and compact visualization systems. The quarterly progress reports contains accomplishments to date for the following tasks: Management start-up; database management; field and demonstration equipment; reservoir characterization, modeling; geochemistry; and data integration.

  18. [Dynamic enhanced recovery techniques]. Quarterly technical report, April 1994--June 1994

    SciTech Connect

    Anderson, R.N.

    1994-07-15

    Global Basins Research Network will perform a field demonstration of their ``Dynamic Enhanced Recovery Technology`` to test the concept that the growth of faults in Eugene Island Block 330 (EI-330 field) are conduits through which producing reservoirs are charged and that enhanced production can be developed by producing directly from the fault zone. The site, operated by Penzoil, is located in 250 feet of water and the productive depth intervals include 4000 to 9000 feet. The field demonstration will be accomplished by drilling and production testing of growth fault systems associated with the EI-330 field. The project utilizes advanced 3-D seismic analysis, geochemical studies, structural and stratigraphic reservoir characterization, reservoir simulation, and compact visualization systems. In this quarterly report, progress reports are presented for the following tasks: Task one--management start-up; Task two--database management; Task three--field demonstration experiment; Task four--reservoir characterization; Task five--modeling; Task six--geochemistry; and Task seven--data integration.

  19. Coal-gasification basic research and cost studies. Quarterly report 2

    SciTech Connect

    Not Available

    1982-04-16

    Coal-gasification basic research and cost studies performed at Davy McKee Corporation supporting the Department of Energy's coal gasification program is on schedule through the Second Quarter. It is anticipated that work will continue on schedule for the remainder of the program. During the Second Quarter, efforts were concentrated on evaluations, laboratory studies and design activities. In Task I, information on how coals perform in and around fixed-bed gasifiers was reviewed and standards and tests to evaluate the expected performance of agglomerates were developed. The economics of coal agglomeration, the preferred size of agglomerates, and possible coal upgrading methods to enhance agglomerates were examined. Two topical reports describing the findings were prepared and were issued. Approximately 200 separate wafer briquetting runs and 29 double-roll briquetting runs were performed during the period to evaluate potential binders and to investigate different briquetting variables. In Task II, the design of a Winkler coal gasification plant to replace a two-stage gasifier plant in the original Erie Mining facility design was completed, and work on the design of a Combustion Engineering entrained-flow gasification plant replacement was initiated. 24 figures, 12 tables.

  20. FY 1991 environmental research programs for the DOE Field Office, Nevada: Work plan and quarterly reports, fourth quarter report

    SciTech Connect

    1991-10-01

    This research includes a wide range of research and support activities associated with the Weapons Testing Program conducted at the Nevada Test Site (NTS). Ongoing and new environmental research programs to be conducted by DRI over the period of this contract include archaeological studies, site mitigation plans, compliance activities, and historical research; offsite community radiation monitoring support; environmental compliance activities related to state and federal regulations; hydrologic assessment of containment of underground nuclear detonations; hydrology/radionuclide investigations designed to better understand and predict the possible subsurface movement of radionuclides at the NTS; and support of various statistical and data management and design, laboratory, field, and administrative activities. In addition to these, archaeological site characterization, flood hazards for rail transportation, and paleofaunal investigations will be carried out in support of the Yucca Mountain Project. Other areas of the overall program which required DRI support are classified security activities, radiation safety and training, quality assurance and control, computer protection and historical data management, review and classification of DRI documents, and preparation of any special reports, e.g., quarterly reports, not included in the requirements of the individual projects. A new set of programs funded by the Office of Technology Development will be in place by the third quarter of FY 1991. These projects will address environmental restoration and waste management concerns, among other related topics. In accordance with specific contract requirements for each activity, DRI will produce summary, status and final reports and, in some cases, journal articles which will present the results of specific research efforts. This document contains the work plan, including project descriptions, tasks, deliverables and quarterly progress reports on each project for FY 1991.

  1. National Institute for Petroleum and Energy Research quarterly technical report, January 1--March 31, 1993

    SciTech Connect

    Not Available

    1993-06-01

    Accomplishments for the past quarter are briefly described for the following tasks: chemical flooding -- supporting research; gas displacement -- supporting research; thermal recovery -- supporting research; geoscience technology; resource assessment technology; and microbial technology. Chemical flooding covers: surfactant flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; and surfactant-enhanced alkaline flooding field project. Gas displacement covers: gas flooding performance prediction improvement; and mobility control, profile modification and sweep improvement in gas flooding. Thermal recovery includes: thermal processes for light oil recovery; thermal processes for heavy oil recovery; and feasibility study of heavy oil recovery in the mid-continent region -- Oklahoma, Kansas, and Missouri; simulation analysis of steam-foam projects; and field application of foams for oil production symposium. Geoscience technology covers: three-phase relative permeability; and imaging techniques applied to the study of fluids in porous media. Resource assessment technology includes: reservoir assessment and characterization; TORIS research support; upgrade the BPO crude oil analysis data base; and compilation and analysis of outcrop data from the Muddy and Almond Formations. Microbial technology covers development of improved microbial flooding methods; and microbial-enhanced waterflooding field project.

  2. Educational Technology Research Journals: Performance Improvement Quarterly, 2001-2010

    ERIC Educational Resources Information Center

    Mayer, Alisha Rasmussen; Francis, Jenifer; Harrison, J. Buckley; McPhillen, Ammon S.; West, Richard E.

    2012-01-01

    This article is an analysis of "Performance Improvement Quarterly" (PIQ) for the years 2001-2010. The intent was to examine the article types used, the authors who contributed the most to the journal, the topics the journal most commonly focused on, and the citation frequency of the journal's articles. The analysis revealed that…

  3. FY 1991 environmental research programs for the Nevada Operations Office: Work plan and quarterly reports, first and second quarter reports

    SciTech Connect

    1991-05-01

    The work carried out on behalf of the DOE by the Desert Research Institute (DRI) includes a wide range of research and support activities associated with the Weapons Testing Program conducted at the Nevada Test Site (NTS). Ongoing and new environmental research programs to be conducted by DRI over the period of this contract include archaeological studies, site mitigation plans, compliance activities, and historical research; offsite community radiation monitoring support; environmental compliance activities related to stat and federal regulations; hydrologic assessment of containment of underground nuclear detonations; hydrology/radionuclide investigations designed to better understand and predict the possible subsurface movement of radionuclides at the NTS; and support of various statistical and data management and design, laboratory, field, and administrative activities. In addition to these, archaeological site characterization, flood hazards for rail transportation, and paleofaunal investigations will be carried out in support of the Yucca Mountain Project. Other areas of the overall program which require DRI support are classified security activities, radiation safety and training, quality assurance and control, computer protection and historical data management, review and classification of DRI documents, and preparation of any special reports, e.g., quarterly reports, not included in the requirements of the individual projects. A new set of programs funded by the Office of Technology Development will be in place by the third quarter of FY 1991. These projects will address environmental restoration and waste management concerns, among other related topics. This document contains the Work Plan, including project descriptions, tasks, deliverables and quarterly progress reports on each project for FY 1991.

  4. Western Research Institute quarterly technical progress report, July--September 1993

    SciTech Connect

    Not Available

    1993-12-31

    Accomplishments for the quarter are described briefly for the following areas of research: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers process studies. Tar sand research is on recycle oil pyrolysis and extraction (ROPE{sup TM}) Process. Coal research includes: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: CROW{sup TM} field demonstration with Bell Lumber and Pole; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; characterization of petroleum residua; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid state NMR analysis of Mowry formation shale from different sedimentary basins; solid state NMR analysis of naturally and artificially matured kerogens; and development of an effective method for the clean-up of natural gas.

  5. Mild acidic pretreatment to enhance low severity coal liquefaction promoted by cyclic olefins. Quarterly report, July 1995--September 1995

    SciTech Connect

    Curtis, C.W.

    1996-03-01

    Research continued on low severity coal liquefaction. Research using high temperature infrared of cyclic olefins progressed well during this quarter. Several fluorinated solvents were found that provide a high temperature medium for isotetralin and its aromatic and aliphatic analogues.

  6. National Institute for Petroleum and Energy Research quarterly technical report, January 1--March 31, 1993. Volume 2, Energy production research

    SciTech Connect

    Not Available

    1993-06-01

    Accomplishments for the past quarter are briefly described for the following tasks: chemical flooding -- supporting research; gas displacement -- supporting research; thermal recovery -- supporting research; geoscience technology; resource assessment technology; and microbial technology. Chemical flooding covers: surfactant flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; and surfactant-enhanced alkaline flooding field project. Gas displacement covers: gas flooding performance prediction improvement; and mobility control, profile modification and sweep improvement in gas flooding. Thermal recovery includes: thermal processes for light oil recovery; thermal processes for heavy oil recovery; and feasibility study of heavy oil recovery in the mid-continent region -- Oklahoma, Kansas, and Missouri; simulation analysis of steam-foam projects; and field application of foams for oil production symposium. Geoscience technology covers: three-phase relative permeability; and imaging techniques applied to the study of fluids in porous media. Resource assessment technology includes: reservoir assessment and characterization; TORIS research support; upgrade the BPO crude oil analysis data base; and compilation and analysis of outcrop data from the Muddy and Almond Formations. Microbial technology covers development of improved microbial flooding methods; and microbial-enhanced waterflooding field project.

  7. Center for Supercomputing Research and Development: Quarterly report, First quarter, 1987

    SciTech Connect

    Not Available

    1987-06-01

    This paper discusses progress on hardware and applications of superconducting design. The topic titles covered are: hardware development, architecture research, operating system research and development, Cedar Fortran, symbolic processing, compiler research, scientific workstation environment, and numerical library. (LSP)

  8. Research Library Issues: A Quarterly Report from ARL, CNI, and SPARC. RLI 279

    ERIC Educational Resources Information Center

    Baughman, M. Sue, Ed.

    2012-01-01

    "Research Library Issues" ("RLI") is a quarterly report from ARL (Association of Research Libraries), CNI (Coalition of Networked Information), and SPARC (Scholarly Publishing and Academic Resources Coalition). This issue includes the following articles: (1) Digitization of Special Collections and Archives: Legal and Contractual Issues (Peter B.…

  9. Research Library Issues: A Quarterly Report from ARL, CNI, and SPARC. RLI 278

    ERIC Educational Resources Information Center

    Baughman, M. Sue, Ed.

    2012-01-01

    "Research Library Issues" ("RLI") is a quarterly report from ARL (Association of Research Libraries), CNI (Coalition of Networked Information), and SPARC (Scholarly Publishing and Academic Resources Coalition). This issue includes the following articles: (1) Leading a Full Life: Reflections on Several Decades of Work, Family, and Accomplishment…

  10. Research Library Issues: A Quarterly Report from ARL, CNI, and SPARC. RLI 277

    ERIC Educational Resources Information Center

    Baughman, M. Sue, Ed.

    2011-01-01

    "Research Library Issues" ("RLI") is a quarterly report from ARL (Association of Research Libraries), CNI (Coalition of Networked Information), and SPARC (Scholarly Publishing and Academic Resources Coalition). This issue includes the following articles: (1) Rebalancing the Investment in Collections (H. Thomas Hickerson); (2) Experimenting with…

  11. ARM Climate Research Facility Quarterly Instrument Report Fourth Quarter: October 1–December 30, 2010

    SciTech Connect

    Voyles, JW

    2011-01-17

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  12. Thirty-One Years of Group Research in "Social Psychology Quarterly" (1975-2005)

    ERIC Educational Resources Information Center

    Harrod, Wendy J.; Welch, Bridget K.; Kushkowski, Jeff

    2009-01-01

    We examined trends in group research published in Social Psychology Quarterly (SPQ) from 1975 to 2005. We identified a total of 332 papers about groups published during the time period. Following Moreland, Hogg, and Hains (1994), we created an index of interest in groups by dividing the number of pages in papers about groups by the total number of…

  13. Advanced research and technology development fossil energy materials program. Quarterly progress report for the period ending September 30, 1981

    SciTech Connect

    Bradley, R.A.

    1981-12-01

    This is the fourth combined quarterly progress report for those projects that are part of the Advanced Research and Technology Development Fossil Energy Materials Program. The objective is to conduct a program of research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Work performed on the program generally falls into the Applied Research and Exploratory Development categories as defined in the DOE Technology Base Review, although basic research and engineering development are also conducted. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating cntractor organizations. All subcontractor work is monitored by Program staff members at ORNL and Argonne National Laboratory. This report is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1981 in which projects are organized according to fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  14. Molecular biological enhancement of coal biodesulfurization. Quarterly technical report, September 1, 1993--November 30, 1993

    SciTech Connect

    Kilbane, J.J. II

    1993-12-31

    IGT has developed a microbial culture of Rhodococcus rhodochrous, designated as IGTS8, that is capable of specifically cleaving carbon-sulfur bonds in a range of organosulfur model compounds and is capable of removing organic sulfur from coal and petroleum without significantly sacrificing the calorific value of the fuel. Although IGTS8 possesses the ability to specifically remove organic sulfur from coal, a major research need is to develop improved strains of microorganisms that possess higher levels of desulfurization activity and therefore will permit more favorable biodesulfurization process conditions: faster rates, more complete removal, and smaller reactor size. strain improvement is the single most important aspect to the development of a practical coal biodesulfurization process and accordingly is the focus of research in this project. During this quarter the promoter probe vectors that were constructed last quarter were found to be unstable in E. coli. Fragments of R. rhodochrous IGTS8 chromosomal DNA were cloned into pRCAT3 and pRCM1 (previously described in final ICCI report 1993). Many derivatives of pRCM1 and pRCAT3 receiving inserts that regulated the expression of chloramphenicol resistance in Rhodococcus rhodochrous IGTS8 proved to be unstable in E. coli frequently yielding plasmids containing deletions. Stable inserts have been observed ranging from 100 bp to 2.0 kb that regulated expression in Rhodococcus rhodochrous IGTS8. Subtractive hybridization studies continue, several candidates have been isolated and are being confirmed for inducible promoters. Primer extension analysis of the Rhodococcus rhodochrous IGTS8 16S RNA promoter region was initiated this quarter.

  15. Visual display of reservoir parameters affecting enhanced oil recovery. Third quarterly report, [April 1995--June 1995

    SciTech Connect

    Wood, J.R.

    1995-07-01

    This project will provide a detailed example, based on a field trial, of how to evaluate a field for enhanced oil recovery (EOR) operations utilizing data typically available in a filed that has undergone primary development. The approach will utilize readily available, affordable computer software and analytical services. The GeoGraphix Exploration System (GES) software package was acquired this quarter and installed. Well logging, formation tops and other data are being loaded into the program. We also acquired and installed GeoGraphix`s well-log evaluation package, QLA2. Miocene tops for the entire Pioneer Anticline were loaded into the GES system and contour maps and 3D surface visualizations were constructed. Fault data have been digitized and will soon be loaded into the GeoGraphix mapping module and combined with formation-top data to produce structure maps which will display all fault traces. The versatile program MatLab can be used to perform time series analysis and to produce spatial displays of data. MatLab now has a 3D volume visualization package. In the coming quarter we will test MatLab using Pioneer data set.

  16. Advanced Research and Technology Development Fossil Energy Materials Program. Quarterly progress report for the period ending September 30, 1983

    SciTech Connect

    Not Available

    1983-11-01

    The objective of the AR and TD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The management of the Program has been decentralized to DOE Oak Ridge Operations Office (ORO) and the Oak Ridge National Laboratory (ORNL) as technical support contractor. The ORNL Fossil Energy Materials Program Office compiles and issues this combined quarterly progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FYs 1982 to 1986 in which projects are organized according to fossil energy technologies. It is the intent of the AR and TD Fossil Energy Materials Program to sponsor materials research which is generic to a number of fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  17. Enhancing Research Papers in Astronomy

    NASA Astrophysics Data System (ADS)

    Kroffe, Kerry; McCann, G.

    2013-01-01

    XML-based production of journal articles, combined with real-time transformations, now make it possible to develop new enhancements to the reading experience and to the content of the article itself. Papers from AAS journals are now available in ‘Article Evolution’ HTML format, providing both familiar and new functionality that improves the reading experience. This poster will outline the roadmap for the development of ‘Article Evolution’ functionality and ask for input to help shape future enhancements that meet the needs of the astronomy community. Two of the ongoing developments described are ’semantic enrichment’ of articles and adoption of ORCID (Open Researcher and Contributor ID). Both of these have exciting possibilities at an article level within ‘Article Evolution’ but will also impact widely on third party services, such as linking and discovery of research papers.

  18. Molecular biological enhancement of coal biodesulfurization. Seventh quarter report, May--July 1990

    SciTech Connect

    Kilbane, J.J.; Bielaga, B.A.

    1990-07-01

    The overall objective of this project is to sue molecular genetics to develop strains of bacteria with enhanced ability to remove sulfur from coal and to obtain data that will allow the performance and economics of a coal biodesulfurization process to be predicted. The work planned for the current quarter (May 1990 to July 1990) includes the following activities: (1) Construct a cloning vector that can be used in Rhodococcus rhodochrous IGTS8 from the small cryptic plasmid found in Rhodococcus rhodochrous ATCC 190607; (2) Develop techniques for the genetic analysis of IGTS8; (3) Continue biochemical experiments, particularly those that may allow the identification of desulfurization-related enzymes; (4) Continue experiments with coal to determine the kinetics of organic sulfur removal.

  19. Support of enhanced oil recovery to independent producers in Texas. Quarterly technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Fotouh, K.H.

    1995-09-30

    The main objective of this project is to support independent oil producers in Texas and to improve the productivity of marginal wells utilizing enhanced oil recovery techniques. The main task carried out this quarter was the generation of an electronic data base.

  20. Decontamination systems information and research program. Quarterly report, January 1996--March 1996

    SciTech Connect

    1996-04-01

    West Virginia University (WVU) and the US Department of Energy, Morgantown Energy Technology Center (DOE/METC) entered into a Cooperative Agreement in August 1992 titled {open_quotes}Decontamination Systems Information and Research Programs{close_quotes} (DOE Instrument No.: DE-FC21-92MC29467). Requirements stipulated by the Agreement require WVU to submit quarterly Technical Progress reports. This report contains the efforts of the research projects comprising the Agreement for the 1st calendar quarter of 1996. For the period January 1 through December 31, 1996 twelve projects have been selected for funding, and the Kanawha Valley will continue under a no-cost extension. Three new projects have also been added to the program. This document describes these projects involving decontamination, decommissioning and remedial action issues and technologies.

  1. Decontamination systems information and research program. Quarterly report, October 1995--December 1995

    SciTech Connect

    1995-12-01

    West Virginia University (WVU) and the U.S. Department of Energy Morgantown Energy Technology Center (DOE/METC) entered into a Cooperative Agreement on August 29, 1992 titled {open_quotes}Decontamination Systems Information and Research programs{close_quotes} (DOE Instrument No. DE-FC21-92MC29467) This report contains the efforts of the research projects comprising the Agreement for the 4th calendar quarter of 1995, and is the final quarterly report deliverable required for the period ending 31 December 1995. The projects reported for the WVU Cooperative Agreement are categorized into the following three areas: 1.0 In Situ Remediation Process Development, 2.0 Advanced Product Applications Testing, and 3.0 Information Systems, Public Policy, Community Outreach, and Economics. Summaries of the significant accomplishments for the projects reported during the period 1 October 95 through 31 December 95 are presented in the following discussions.

  2. Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2008.

    SciTech Connect

    Sisterson, D. L.

    2009-01-15

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, they calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The US Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208), and for the Tropical Western Pacific (TWP) locale is 1,876.80 hours (0.85 x 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because the data have not yet been released from China to the DMF for processing. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is

  3. [Advanced Gas Turbine Systems Research]. Technical Quarterly Progress Report

    SciTech Connect

    1998-09-30

    Major Accomplishments by Advanced Gas Turbine Systems Research (AGTSR) during this reporting period are highlighted below and amplified in later sections of this report: AGTSR distributed 50 proposals from the 98RFP to the IRB for review, evaluation and rank-ordering during the summer; AGTSR conducted a detailed program review at DOE-FETC on July 24; AGTSR organized the 1998 IRB proposal review meeting at SCIES on September 15-16; AGTSR consolidated all the IRB proposal scores and rank-orderings to facilitate the 98RFP proposal deliberations; AGTSR submitted meeting minutes and proposal short-list recommendation to the IRB and DOE for the 98RFP solicitation; AGTSR reviewed two gas turbine related proposals as part of the CU RFP State Project for renovating the central energy facility; AGTSR reviewed and cleared research papers with the IRB from the University of Pittsburgh, Wisconsin, and Minnesota; AGTSR assisted GTA in obtaining university stakeholder support of the ATS program from California, Pennsylvania, and Colorado; AGTSR assisted GTA in distributing alert notices on potential ATS budget cuts to over 150 AGTSR performing university members; AGTSR submitted proceedings booklet and organizational information pertaining to the OAI hybrid gas turbine workshop to DOE-FETC; For DOE-FETC, AGTSR updated the university consortium poster to include new members and research highlights; For DOE-FETC, the general AGTSR Fact Sheet was updated to include new awards, workshops, educational activity and select accomplishments from the research projects; For DOE-FETC, AGTSR prepared three fact sheets highlighting university research supported in combustion, aero-heat transfer, and materials; For DOE-FETC, AGTSR submitted pictures on materials research for inclusion in the ATS technology brochure; For DOE-FETC, AGTSR submitted a post-2000 roadmap showing potential technology paths AGTSR could pursue in the next decade; AGTSR distributed the ninth newsletter UPDATE to DOE, the

  4. ARM Climate Research Facility Quarterly Value-Added Product Report

    SciTech Connect

    Sivaraman, Chitra

    2013-07-31

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive.

  5. ARM Climate Research Facility Quarterly Value-Added Product Report

    SciTech Connect

    Sivaraman, Chitra

    2014-01-14

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive.

  6. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report. October 1 - December 31, 2010.

    SciTech Connect

    Sisterson, D. L.

    2011-02-01

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY2010 for the Southern Great Plains (SGP) site is 2097.60 hours (0.95 x 2208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1987.20 hours (0.90 x 2208) and for the Tropical Western Pacific (TWP) locale is 1876.80 hours (0.85 x 2208). The first ARM Mobile Facility (AMF1) deployment in Graciosa Island, the Azores, Portugal, continued through this quarter, so the OPSMAX time this quarter is 2097.60 hours (0.95 x 2208). The second ARM Mobile Facility (AMF2) began deployment this quarter to Steamboat Springs, Colorado. The experiment officially began November 15, but most of the instruments were up and running by November 1. Therefore, the OPSMAX time for the AMF2 was 1390.80 hours (.95 x 1464 hours) for November and December (61 days). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It

  7. Research and development for the declassification productivity initiative. Quarterly report, January 1997--August 1997

    SciTech Connect

    Bessonet, C.G. de

    1997-03-05

    The highlight for the first quarter was the presentation of research progress and findings at the DPI Symposium on March 5, 1997. Since that presentation, additional progress was slowed down due to the decreased budget funding for year two, and consequently, the decrease in time-effort of the principal investigators. This report summarizes the progress in each of the topical areas to date. A research article has been prepared for publication for the Optical Character Recognition project; two progress reports are included for the Logical Analysis project; and two progress reports for the Knowledge Representation project. Research activities for the Tipster Technology project will resume this fall.

  8. Enhancing Ocean Research Data Access

    NASA Astrophysics Data System (ADS)

    Chandler, Cynthia; Groman, Robert; Shepherd, Adam; Allison, Molly; Arko, Robert; Chen, Yu; Fox, Peter; Glover, David; Hitzler, Pascal; Leadbetter, Adam; Narock, Thomas; West, Patrick; Wiebe, Peter

    2014-05-01

    The Biological and Chemical Oceanography Data Management Office (BCO-DMO) works in partnership with ocean science investigators to publish data from research projects funded by the Biological and Chemical Oceanography Sections and the Office of Polar Programs Antarctic Organisms & Ecosystems Program at the U.S. National Science Foundation. Since 2006, researchers have been contributing data to the BCO-DMO data system, and it has developed into a rich repository of data from ocean, coastal and Great Lakes research programs. While the ultimate goal of the BCO-DMO is to ensure preservation of NSF funded project data and to provide open access to those data, achievement of those goals is attained through a series of related phases that benefits from active collaboration and cooperation with a large community of research scientists as well as curators of data and information at complementary data repositories. The BCO-DMO is just one of many intermediate data management centers created to facilitate long-term preservation of data and improve access to ocean research data. Through partnerships with other data management professionals and active involvement in local and global initiatives, BCO-DMO staff members are working to enhance access to ocean research data available from the online BCO-DMO data system. Continuing efforts in use of controlled vocabulary terms, development of ontology design patterns and publication of content as Linked Open Data are contributing to improved discovery and availability of BCO-DMO curated data and increased interoperability of related content available from distributed repositories. We will demonstrate how Semantic Web technologies (e.g. RDF/XML, SKOS, OWL and SPARQL) have been integrated into BCO-DMO data access and delivery systems to better serve the ocean research community and to contribute to an expanding global knowledge network.

  9. Surfactant-enhanced alkaline flooding for light oil recovery. Quarterly report, January 1--March 31, 1994

    SciTech Connect

    Wasan, D.T.

    1994-06-01

    The overall objective of this project is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultra-low tension. In addition, the novel concept of pH gradient design to optimize flood water conditions will be tested. Last quarter we investigated the phase behavior and the regions where in the middle phase occurs. The optimum phase was found to go through a maximum with pH, sodium concentration and surfactant concentration. The optimum pH is about 12.0 to 13.5, the optimum sodium concentration is about 0.513 mol/liter, and the optimum surfactant concentration is about 0.2%. The effect of surfactant type was also investigated. Petrostep B-105 was found to give the most middle phase production. This quarter, we investigated the contact angle of Long Beach oil, Adena oil, and a model oil on a solid glass surface in contact with an aqueous alkaline solution both with and without added preformed surfactant. The contact angle with Long Beach and Adena oils showed oil-wet conditions, whereas the model oil showed both oil-wet and water-wet conditions depending on the pH of the aqueous phase. The addition of surfactant to the alkaline solution resulted in making the system less oil-wet. Spreading of the oil on the glass surface was observed in all three systems investigated.

  10. Reactor Safety Research Programs Quarterly Report April -June 1980

    SciTech Connect

    Edler, S. K.

    1980-11-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from April 1 through June 30, 1980, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission {NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining structural graphite strength, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation and postaccident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  11. Reactor Safety Research Programs Quarterly Report October - December 1980

    SciTech Connect

    Edler, S K

    1981-04-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from October 1 through December 31, 1980, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining structural graphite strength, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NOE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation and postaccident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  12. Reactor Safety Research Programs Quarterly Report April- June 1981

    SciTech Connect

    Edler, S. K.

    1981-09-01

    This document summarizes the work performed by Pacific Northwest laboratory (PNL} from April1 through June 30, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, lspra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory {INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  13. Reactor Safety Research Programs Quarterly Report January - March 1980

    SciTech Connect

    Hagen, C. M

    1980-10-01

    This document summarizes the work performed by Pacific Northwest Laboratory from January 1 through March 31, 1980, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission. Evaluation of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibilty of determining structural graphite strength, evaluating the feasibilty of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor steam generator tubes where serviceinduced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include the loss-of-coolant accident simulation tests at the NRU reactor, Chalk River, Canada; the fuel rod deformation and post-accident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; the blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and the experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  14. [Research on shallow-shelf carbonate (Class 2) reservoirs]. Quarterly report, July--September 1992

    SciTech Connect

    Brashear, J.P.

    1992-11-02

    The purpose of this contract is to provide technical and analytical support services for TORIS at BPO. The discussion of the work performed is organized by task order. The objective of task order 1 is to support the BPO TORIS Program Coordinator in the maintenance, operations, enhancement, and applications of the data bases, models, and hardware of TORIS on the BPO computer. Objective of task order 2 is to support BPO management in following: analyzing, interpreting, and reporting on trends in the oil and gas industry; and technical assistance in the areas of environmental health and safety and quality control for quality assurance procedures. Accomplishments for this quarter are described.

  15. Decontamination systems information and research program. Quarterly report, April--June 1995

    SciTech Connect

    1995-07-01

    West Virginia University (WVU) and the US Department of Energy Morgantown Energy Technology Center (DOE/METC) entered into a Cooperative Agreement on August 29, 1992 titled `Decontamination Systems Information and Research Programs`. Requirements stipulated by the Agreement require WVU to submit Technical Progress reports on a quarterly basis. This report contains the efforts of the fourteen research projects comprising the Agreement for the period April 1 to June 30, 1995. During this period three new projects have been funded by the Agreement. These projects are: (1) WERC National Design Contest, (2) Graduate Interns to the Interagency Environmental Technology Office under the National Science and Technology Council, and (3) WV High Tech Consortium.

  16. Shale Oil Value Enhancement Research

    SciTech Connect

    James W. Bunger

    2006-11-30

    Raw kerogen oil is rich in heteroatom-containing compounds. Heteroatoms, N, S & O, are undesirable as components of a refinery feedstock, but are the basis for product value in agrochemicals, pharmaceuticals, surfactants, solvents, polymers, and a host of industrial materials. An economically viable, technologically feasible process scheme was developed in this research that promises to enhance the economics of oil shale development, both in the US and elsewhere in the world, in particular Estonia. Products will compete in existing markets for products now manufactured by costly synthesis routes. A premium petroleum refinery feedstock is also produced. The technology is now ready for pilot plant engineering studies and is likely to play an important role in developing a US oil shale industry.

  17. Research Trends in Adapted Physical Activity Quarterly From 2004 to 2013.

    PubMed

    Haegele, Justin A; Lee, Jihyun; Porretta, David L

    2015-07-01

    The purpose of this documentary analysis was to examine trends in research published in Adapted Physical Activity Quarterly (APAQ) over a 10-yr span. A total of 181 research articles published from 2004 to 2013 were coded and analyzed using the following categories: first-author country affiliation, theoretical framework, intervention, research methods, disability categories, and topical focus. Results indicate high frequencies of nonintervention and group-design studies, as well as a low frequency of studies that describe a theoretical or conceptual framework. Trends in disability of participants and topical focus reflect current interests of researchers publishing in APAQ. While some scholars have suggested that changes in research on adapted physical activity would occur, the results of this analysis suggest that many of these categories remain largely unchanged for research published in APAQ. This study calls attention to similarities between the results of the current analysis and previous ones. PMID:26113549

  18. Low-rank coal research. Quarterly report, January--March 1990

    SciTech Connect

    Not Available

    1990-08-01

    This document contains several quarterly progress reports for low-rank coal research that was performed from January-March 1990. Reports in Control Technology and Coal Preparation Research are in Flue Gas Cleanup, Waste Management, and Regional Energy Policy Program for the Northern Great Plains. Reports in Advanced Research and Technology Development are presented in Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Reports in Combustion Research cover Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Coal Fuels, Diesel Utilization of Low-Rank Coals, and Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications. Liquefaction Research is reported in Low-Rank Coal Direct Liquefaction. Gasification Research progress is discussed for Production of Hydrogen and By-Products from Coal and for Chemistry of Sulfur Removal in Mild Gas.

  19. Atmospheric Radiation Measurement program climate research facility operations quarterly report April 1 - June 30, 2007.

    SciTech Connect

    Sisterson, D. L.

    2007-07-26

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter of FY 2007 for the Southern Great Plains (SGP) site is 2,074.8 hours (0.95 x 2,184 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,965.6 hours (0.90 x 2,184), and that for the Tropical Western Pacific (TWP) locale is 1,856.4 hours (0.85 x 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.8 hours (0.95 x 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in

  20. Molecular biological enhancement of coal biodesulfurization. [Quarterly] technical report, December 1, 1993--February 28, 1994

    SciTech Connect

    Kilbane, J.J. II

    1994-06-01

    IGT has developed a microbial culture of Rhodococcus rhodochrous, IGTS8, that is capable of specifically cleaving carbon-sulfur bonds in a range of organosulfur model compounds and is capable of removing organic sulfur from coal and petroleum. Although IGTS8 possesses the ability to specifically remove organic sulfur from coal, a major research need is to develop improved strain`s of microorganisms that possess higher levels of desulfurization activity and therefore wall permit more favorable biodesulfurization process conditions: faster rates, mare complete removal, and smaller reactor size. Strain improvement is the single most important aspect to the development of a practical coal biodesulfurization process and accordingly is the focus of research in this project. Several possible strong promoters have been isolated and are in the process of being analyzed. When these promoters have been characterized for inducibility, strength, transcriptional start sites and other physical properties, they will be placed in front of the desulfurization genes and expression will be monitored. Improved promoter probe vectors have been constructed, allowing a conclusive screen of all putative Rhodococcus promoters. With the improved methodologies in the handling of Rhodococcus RNA, we have begun to gauge promoter expression using Northern blots. During this quarter we have constructed and successfully used a promoter probe vector using the {beta}-galactosidane gene from E. coli. A chromosomal promoter library was constructed upstream from the {beta}-galactosidase gene. Over 200 colonies were isolated that yielded {beta}-galactosidase activity.

  1. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 – September 30, 2008

    SciTech Connect

    Sisterson, DL

    2008-09-30

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY 2008 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208), and for the Tropical Western Pacific (TWP) locale is 1,876.80 hours (0.85 x 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because the data have not yet been released from China to the DMF for processing. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is

  2. Atmospheric Radiation Measurement Program Climate Research Facility Operation quarterly report July 1 - September 30, 2010.

    SciTech Connect

    Sisterson, D. L.

    2010-10-26

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY2010 for the Southern Great Plains (SGP) site is 2097.60 hours (0.95 2208 hours this quarter). The OPSMAX for the North Slope of Alaska (NSA) locale is 1987.20 hours (0.90 2208) and for the Tropical Western Pacific (TWP) locale is 1876.80 hours (0.85 2208). The first ARM Mobile Facility (AMF1) deployment in Graciosa Island, the Azores, Portugal, continues, so the OPSMAX time this quarter is 2097.60 hours (0.95 x 2208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or datastream. Data availability reported here refers to the average of the individual, continuous datastreams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to

  3. Atmospheric Radiation Measurement program climate research facility operations quarterly report January 1 - March 31, 2009.

    SciTech Connect

    Sisterson, D. L.

    2009-04-23

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the second quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,052.00 hours (0.95 x 2,160 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,944.00 hours (0.90 x 2,160), and for the Tropical Western Pacific (TWP) locale is 1,836.00 hours (0.85 x 2,160). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because not all of the metadata have been acquired that are used to generate this metric. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability

  4. Atmospheric Radiation Measurement program climate research facility operations quarterly report July 1 - Sep. 30, 2009.

    SciTech Connect

    Sisterson, D. L.

    2009-10-15

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 ? 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 ? 2,208) and for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 ? 2,208). The ARM Mobile Facility (AMF) was officially operational May 1 in Graciosa Island, the Azores, Portugal, so the OPSMAX time this quarter is 2,097.60 hours (0.95 x 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive result from downtime (scheduled or unplanned) of the individual instruments. Therefore, data

  5. Atmospheric Radiation Measurement program climate research facilities quarterly report April 1 - June 30, 2009.

    SciTech Connect

    Sisterson, D. L.

    2009-07-14

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,074.80 hours (0.95 x 2,184 hours this quarter); for the North Slope Alaska (NSA) locale it is 1,965.60 hours (0.90 x 2,184); and for the Tropical Western Pacific (TWP) locale it is 1,856.40 hours (0.85 x 2,184). The ARM Mobile Facility (AMF) was officially operational May 1 in Graciosa Island, the Azores, Portugal, so the OPSMAX time this quarter is 1390.80 hours (0.95 x 1464). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data

  6. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 - March 31, 2005

    SciTech Connect

    Sisterson, DL

    2005-03-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for this second quarter for the Southern Great Plains (SGP) site is 2052 hours (0.95 × 2,160 hours this quarter). The annual OPSMAX for the North Slope Alaska (NSA) site is 1944 hours (0.90 × 2,160), and that for the Tropical Western Pacific (TWP) site is 1836 hours (0.85 × 2,160). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 90

  7. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2005

    SciTech Connect

    Sisterson, DL

    2005-12-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,097.6 hours (0.95 × 2,208 hours this quarter). The OPSMAX for the North Slope of Alaska (NSA) locale is 1,987.2 hours (0.90 × 2,208), and that for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 × 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,097.6 hours (0.95 × 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent

  8. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January-March 2006

    SciTech Connect

    Sisterson, DL

    2006-03-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year; and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the second quarter for the Southern Great Plains (SGP) site is 2,052 hours (0.95 × 2,160 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,944 hours (0.90 × 2,160), and that for the Tropical Western Pacific (TWP) locale is 1,836 hours (0.85 × 2,160). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,052 hours (0.95 × 2,160). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the

  9. Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2007.

    SciTech Connect

    Sisterson, D. L.

    2008-01-24

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period October 1 - December 31, 2007, for the fixed sites and the mobile site. The AMF has been deployed to Germany and this was the final operational quarter. The first quarter comprises a total of 2,208 hours. Although the average exceeded our goal this quarter, a series of severe weather events (i.e., widespread ice storms) disrupted utility services, which affected the SGP performance measures. Some instruments were covered in ice and power and data communication lines were down for more than 10 days in some areas of Oklahoma and Kansas, which resulted in lost data at the SGP site. The Site Access Request System is a web-based database used to track visitors to the fixed sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. The AMF completed its mission at the end of this quarter in Haselback, Germany (FKB designation). NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE

  10. Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research. Quarterly technical progress report, April--June 1992

    SciTech Connect

    Not Available

    1992-12-01

    Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

  11. Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, October--December 1992

    SciTech Connect

    Speight, J.G.

    1992-12-31

    Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

  12. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, January--March 1993

    SciTech Connect

    Not Available

    1993-09-01

    Accomplishments for the past quarter are briefly described for the following areas of research: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale and tar sand researches cover processing studies. Coal research includes: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology covers: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin tight gas sands; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of naturally and artificially matured kerogens; and development of an effective method for the clean-up of natural gas.

  13. Strategic petroleum reserve supporting research. Quarterly technical report, January 1-March 31, 1986

    SciTech Connect

    Woodward, P.W.

    1986-01-01

    The basic objective is to provide technical support to the Strategic Petroleum Reserve Office (SPRO), through the Bartlesville Project Office. This support includes routine analyses, experimental research, and technical consultation at the SPRO's request. Accomplishments for this past quarter include: stable D, /sup 34/S, and /sup 13/C isotope ratio analyses for 27 samples of SPR crude oil; gas chromatographic simulated distillation (Sim-dis) of 74 SPR crude samples; sim-dis of sludge samples to check for bimodal distributions; data for 8 comprehensive analyses have been entered into the Bonner and Moore ''Crude Assay II'' library; 25 samples which included both whole crudes and distillate fractions were chromatographed using Siemens dual-oven GC and PIANO software; separation of 4 sludge samples into acid, base, and neutral fractions by ion exchange chromatography; and proton and sodium-23 NMR measurements of sludge samples. 1 fig., 5 tabs.

  14. Atmospheric Radiation Measurement program climate research facility operations quarterly report January 1 - March 31, 2008.

    SciTech Connect

    Sisterson, D. L.

    2008-05-22

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period January 1 - March 31, 2008, for the fixed sites. The AMF is being deployed to China and is not in operation this quarter. The second quarter comprises a total of 2,184 hours. The average as well as the individual site values exceeded our goal this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. FKB represents the AMF statistics for the Haselbach, Germany, past deployment in 2007. NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE represents just the AMF Archive statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request a research account on the local site data system. The seven computers for the research accounts are located at the Barrow

  15. 50 Years of "Reading Research Quarterly" (1965-2014): Looking Back, Moving Forward

    ERIC Educational Resources Information Center

    Reutzel, D. Ray; Mohr, Kathleen A. J.

    2015-01-01

    This issue of "Reading Research Quarterly" ("RRQ") marks the journal's golden (50th) anniversary and 200th published issue. Given this historic milestone, an understanding of the journal's content and impact might inform its readership about the field of literacy broadly and the contribution of "RRQ" in…

  16. Starting Where the People Are: The African Medical and Research Foundation (AMREF). Carnegie Quarterly, Volume XXXII, Number 2.

    ERIC Educational Resources Information Center

    Carnegie Quarterly, 1987

    1987-01-01

    This issue of the "Carnegie Quarterly" describes three projects that are being conducted by the African Medical and Research Foundation (AMREF). The projects are the following: (1) building community participation in health care at Lake Kenyatta; (2) the role of community education in disease control among the Turkana people at Lokichoggio; and…

  17. Materials compatibility and lubricants research on CFC-refrigerant substitutes. Quarterly report, October 1, 1995--December 31, 1995

    SciTech Connect

    Szymurski, S.R.

    1996-02-01

    The quarterly status report for the Materials Compatibility and Lubricants Research Program is presented. Objectives for 1 October 1995--31 December 1995 include completion of contract negotiations for Study of Foaming Characteristics project, and finalizing Phase IV and Phase V projects.

  18. Atmospheric Radiation Measurement program climate research facility operations quarterly report July 1 - September 30, 2008.

    SciTech Connect

    Sisterson, D. L.

    2008-10-08

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period July 1 - September 30, 2008, for the fixed sites. The AMF has been deployed to China, but the data have not yet been released. The fourth quarter comprises a total of 2,208 hours. The average exceeded our goal this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. HFE represents the AMF statistics for the Shouxian, China, deployment in 2008. FKB represents the AMF statistics for the Haselbach, Germany, past deployment in 2007. NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE represents just the AMF Archive statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request a research account on the local site data system. The seven computers for the

  19. Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2006.

    SciTech Connect

    Sisterson, D. L.

    2007-03-14

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), the actual hours of operation, and the variance (unplanned downtime) for the period October 1 through December 31, 2006, for the fixed and mobile sites. Although the AMF is currently up and running in Niamey, Niger, Africa, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. The first quarter comprises a total of 2,208 hours. For all fixed sites, the actual data availability (and therefore actual hours of operation) exceeded the individual (and well as aggregate average of the fixed sites) operational goal for the first quarter of fiscal year (FY) 2007. The Site Access Request System is a web-based database used to track visitors to the fixed sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a Central Facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. NIM represents the AMF statistics for the current deployment in Niamey, Niger, Africa. PYE represents the AMF statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be

  20. Coal log pipeline research at University of Missouri. 3rd quarterly report for 1995, July 1, 1995--September 30, 1995

    SciTech Connect

    Liu, H.

    1995-12-31

    During this quarter (1/1/95-9/30/95), major progress has been made in the following areas of coal log pipeline research, development and technology transfer: (1) Conceptual design of a test machine based on hydraulic presses to mass-produce 5.4-inch-diameter coal logs for testing in a 6-inch-diameter pipeline has been completed. (2) Conceptual design of a rotary-press machine to produce 1.9-inch-diameter coal logs for testing in a 2-inch-diameter pipeline has also been completed. (3) It has been confirmed through experiments that molds with round-edge exit can make logs as good as those made with tapered exit. (4) Conducted a study to determine the effect of surface condition of mold and lubricants on the quality of coal logs. (5) Completed an evaluation of the effect of fiber (wood pulp) on coal log quality. (6) Prepared an apparatus for testing fast compaction of coal logs -- 2 second per log. (7) Compacted coal logs in a 5.3-inch-diameter mold. (8) Completed a preliminary study to assess vacuum and steam heating systems to enhance coal log production and quality. (9) Changed the small-scale-CLP-demo loop from a once-through system to a recirculating system. (10) Completed revision of CLP economic model and revised the 1993 report.

  1. Quarterly technical progress report - base program on energy related research. Quarterly report, May 1--July 31, 1994

    SciTech Connect

    1997-05-01

    Research is presented on oil and gas technologies, advanced systems, soil remediation and remediation of acid mine drainage, applied science research in plastics and petroleum coprocessing, and fossil fuel and hydrocarbon conversion using a hydrogen rich plasmas.

  2. Declassification Productivity Research Center quarterly report {number_sign}7, September 25--December 31, 1997

    SciTech Connect

    1997-12-31

    This report describes the progress achieved by the Declassification Productivity Research Center (DPRC) during the first quarter of its third year of operations. Progress has accelerated as the DPRC has gotten more involved with the federal declassification community, and has found meaningful ways to be of service to DOE and other agencies of the government. Accordingly, there is an excellent project log to present in this report. Moreover, this year the DPRC has received its first funding from agencies other than DOE, to signal a new mode of operation in its relationship to the declassification community at large. The DPRC was established as an independent, world-class research capability and computer facility to support the DOE Declassification Productivity Initiative (DPI). The goal of DPI is to increase the flow of unrestricted government information to the public. To this end, the work involves both basic and applied research in the areas of (1) system-level declassification process analysis and modeling, (2) development of computer systems to automate declassification processes, including text analysis and interpretation, (3) coordination/integration of new technology among into the processes, and (4) development and promulgation of inter-operability and document transfer standards.

  3. A study of over production and enhanced secretion of enzymes. Quarterly report 1

    SciTech Connect

    Dashek, W.V.

    1992-12-28

    The current project is concerned with the over-production and enhanced secretion of PPO, cellulase and lignin peroxidase. The project is divided into two segments: over-production of lignocellulolytic enzymes by genetic engineering methodologies and hyper-production and enhanced secretion of these enzymes by biochemical/electron microscopical techniques. The former approach employs recombinant DNA procedures, ligation of appropriate nuclease generated DNA fragments into a vector and the subsequent transformation of Escherichia coli to yield E. coli harboring a C. versicolor DNA insert. The biochemistry/electron microscopical method involves substrate induction and the time-dependent addition of respiration and PPO inhibitors to elevate C.versicolor`s ability to synthesize and secrete lignocellulosic enzymes. In this connection, cell fractionation/kinetic analysis, TEM immunoelectron microscopic localization and TEM substrate localization of PPO are being employed to assess the route of secretion. Both approaches will culminate in the batch culture of either E. coli or C. versicolor, in a fermentor with the subsequent development of rapid isolation and purification procedures to yield elevated quantities of pure lignocellulosic enzymes. During the past year, research effort were directed toward determining the route of polyphenol oxidase (PPO) secretion by the wood-decay fungus, Coriolus versicolor. In addition, research activities were continued to over-produce and to purify PPO as well as define the time-dependent intra- and extra-cellular appearances of C. versicolor ligninases and cellulases.

  4. On the automatic activation of attitudes: a quarter century of evaluative priming research.

    PubMed

    Herring, David R; White, Katherine R; Jabeen, Linsa N; Hinojos, Michelle; Terrazas, Gabriela; Reyes, Stephanie M; Taylor, Jennifer H; Crites, Stephen L

    2013-09-01

    Evaluation is a fundamental concept in psychological science. Limitations of self-report measures of evaluation led to an explosion of research on implicit measures of evaluation. One of the oldest and most frequently used implicit measurement paradigms is the evaluative priming paradigm developed by Fazio, Sanbonmatsu, Powell, and Kardes (1986). This paradigm has received extensive attention in psychology and is used to investigate numerous phenomena ranging from prejudice to depression. The current review provides a meta-analysis of a quarter century of evaluative priming research: 73 studies yielding 125 independent effect sizes from 5,367 participants. Because judgments people make in evaluative priming paradigms can be used to tease apart underlying processes, this meta-analysis examined the impact of different judgments to test the classic encoding and response perspectives of evaluative priming. As expected, evidence for automatic evaluation was found, but the results did not exclusively support either of the classic perspectives. Results suggest that both encoding and response processes likely contribute to evaluative priming but are more nuanced than initially conceptualized by the classic perspectives. Additionally, there were a number of unexpected findings that influenced evaluative priming such as segmenting trials into discrete blocks. We argue that many of the findings of this meta-analysis can be explained with 2 recent evaluative priming perspectives: the attentional sensitization/feature-specific attention allocation and evaluation window perspectives. PMID:23339522

  5. Enhancing Research Capacity in Gerontological Social Work

    ERIC Educational Resources Information Center

    Mehrotra, Chandra M.; Townsend, Aloen; Berkman, Barbara

    2009-01-01

    There is an untapped potential of social work faculty to conduct aging research aimed at enhancing the well-being of older adults. To better exploit this resource, we have designed, implemented, and evaluated a postgraduate training program in aging research. The goal of the program is to build and sustain a community of social work faculty…

  6. Jmol-Enhanced Biochemistry Research Projects

    ERIC Educational Resources Information Center

    Saderholm, Matthew; Reynolds, Anthony

    2011-01-01

    We developed a protein research project for a one-semester biochemistry lecture class to enhance learning and more effectively train students to understand protein structure and function. During this semester-long process, students select a protein with known structure and then research its structure, sequence, and function. This project…

  7. Enhancing Undergraduate Students' Research and Writing

    ERIC Educational Resources Information Center

    Lumpkin, Angela

    2015-01-01

    Concern about the research and writing abilities of undergraduate students led to the development, implementation and enhancement of four sequential writing assignments in an introductory course. These writing assignments--which included a report on an interview of a professional in the field, a research paper on an aspirational career, a research…

  8. Quarterly technical progress report - base program on energy related research. Quarterly report, February 1--April 30, 1994

    SciTech Connect

    1997-05-01

    Research is presented on oil and gas technologies, advanced systems for fossil fuels, environmental technologies for remediation and waste management, applied energy science on heavy oil and plastics coprocessing, and fossil fuel and hydrocarbon conversion using hydrogen rich plasma.

  9. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report. October 1 - December 31, 2009.

    SciTech Connect

    D. L. Sisterson

    2010-01-12

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY 2010 for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208); for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208); and for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 x 2,208). The ARM Mobile Facility (AMF) deployment in Graciosa Island, the Azores, Portugal, continues; its OPSMAX time this quarter is 2,097.60 hours (0.95 x 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are the result of downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to

  10. Research Exchange. Quarterly Newsletter of the National Center for the Dissemination of Disability Research (NCDDR), 1999.

    ERIC Educational Resources Information Center

    Research Exchange, 1999

    1999-01-01

    The four issues of this newsletters are designed to promote the effective dissemination and utilization of disability research outcomes. The first two newsletters include parts 1 and 2 of "Disability, Diversity and Dissemination: A Review of the Literature on Topics Related to Increasing the Utilization of Rehabilitation Research Outcomes among…

  11. Base program on energy related research. Quarterly report, August 1--October 31, 1997

    SciTech Connect

    1997-12-31

    The Base Research Program at Western Research Institute (WRI) is planned to develop technologies to a level that will attract industrial sponsors for continued development under the Jointly Sponsored Research (JSR) Program. The goals of the JSR and Base Programs are accomplished by focusing research, development, demonstration, and commercialization in three major technology areas: energy programs emphasize the increased production and utilization of domestic energy resources and include enhanced oil recovery, coal beneficiation and upgrading, coalbed methane recovery, and renewable energy resources; environmental programs minimize the impact of energy production and utilization by providing technology to clean underground oily wastes, mitigate acid mine drainage, and demonstrate uses for clean coal technology (CCT) and pressurized fluidized bed combustion (PFBC) waste solids; technology enhancement activities encompass resource characterization studies, the development of improved environmental monitors and sensors, and improved techniques and models for predicting the dispersion of hazardous gas releases. Significant accomplishments under the Base Research program are reported.

  12. Surfactant development for enhanced oil recovery. Seventh quarterly report, April 1--June 30, 1995

    SciTech Connect

    1995-11-01

    The overall objective of the project is to develop surfactant system(s) that will enhance projects on tertiary oil recovery. Such surfactant systems will be expected to be stable at high temperatures and exhibit high salinity tolerance. The authors have shown in previous reports that double-tailed surfactants show very good promise as well as remarkable potential for effective tertiary oil recovery. For this reason they have continued to devote research activities on this class of surfactants. In this report two additional double-tailed surfactants were synthesized and their critical micelle concentration (CMC) determined. These surfactants are sodium dihexadecyl phosphate (SDDP) and calcium ditetradecyl sulfonate CaDTDS. These are all anionic surfactants with different head groups. The observed critical micelle concentration for these surfactants are 0.78 {times} 10{sup {minus}5} M and 0.81 {times} 10{sup {minus}5} M, respectively. These CMC values were obtained using conductometric and surface tensiometric methods.

  13. Coal-gasification basic research and costs studies. Quarterly report No. 4

    SciTech Connect

    Not Available

    1982-10-15

    Work was continued on basic research and cost studies supporting the Department of Energy's coal gasification program. Two major activities or tasks are being performed. The first activity is the development of a process or processes to produce agglomerates from coal fines suitable for use as a feed to fixed-bed gasifiers. During the Fourth Quarter approximately 70 double-roll briquetting runs and 97 pelletizing runs were performed to evaluate promising binder candidates and to investigate other briquetting and pelletizing variables. All agglomerates were tested for room temperature handling ease (measured by crush-strength and drop-shatter tests) and for stability and performance at gasifier temperatures. The best agglomerates were further evaluated in a modified Burghardt test and in a tumbler test. Ten agglomerate compositions, eight briquettes and two pellets, were run in a small gasifier at American Natural Resources. Most agglomerates performed well in this gasifier. In Task II, the design of a gasification plant with Rockwell Molten Salt gasifiers was completed, and estimates of capital and operating costs were developed. Work on all basic cases has now been completed and only the incorporation of a briquetting facility into the fixed-bed plant design remains to be done.

  14. ARM Climate Research Facility Quarterly Value-Added Product Report Fourth Quarter: July 1–September 30, 2012

    SciTech Connect

    Sivaraman, C

    2012-11-13

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive.

  15. ARM Climate Research Facility Quarterly Value-Added Product Report First Quarter: October 01-December 31, 2011

    SciTech Connect

    Sivaraman, C

    2012-02-28

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive.

  16. ARM Climate Research Facility Quarterly Value-Added Product Report Fourth Quarter: July 01–September 30, 2011

    SciTech Connect

    Sivaraman, C

    2011-11-02

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive. New information is highlighted in blue text. New information about processed data by the developer is highlighted in red text.

  17. FY 1990 environmental research programs for the Nevada Operations Office. Work plan and quarterly reports, first through fourth quarter reports

    SciTech Connect

    1990-11-01

    This work includes a wide range of research and support activities associated with the Weapons Testing Program conducted at the Nevada Test Site (NTS). Ongoing and new environmental research programs to be conducted by DRI over the period of this contract include archaeological studies and site mitigation plans; offsite community radiation monitoring support; environmental compliance activities related to state and federal regulations; hydrologic assessment of containment of underground nuclear detonations; hydrology/radionuclide investigations designed to better understand and predict the possible subsurface movement of radionuclides at the NTS; and support of various statistical and data management and design activities. In addition to these, archaeological and other activities will be carried out in support of the Yucca Mountain Project. Other areas of the overall program which require DRI support are classified security activities, radiation safety and training, quality assurance and control, computer protection and historical data management, derivative classification of DRI documents, and preparation of any special reports not included in the requirements of the individual projects.

  18. Computational mechanics research and support for aerodynamics and hydraulics at TFHRC. Quarterly report January through March 2011. Year 1 Quarter 2 progress report.

    SciTech Connect

    Lottes, S. A.; Kulak, R. F.; Bojanowski, C.

    2011-05-19

    This project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at the Turner-Fairbank Highway Research Center for a period of five years, beginning in October 2010. The analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water loads on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to assess them for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, vehicle stability under high wind loading, and the use of electromagnetic shock absorbers to improve vehicle stability under high wind conditions. This quarterly report documents technical progress on the project tasks for the period of January through March 2011.

  19. Assessment of research directions for high voltage direct current power systems. Quarterly technical progress report, October 1, 1980-December 31, 1980

    SciTech Connect

    Long, W F

    1981-01-01

    Activities during this quarterly period on proposed HVDC systems research are reported. These activities include studies of HVDC converters, computerized simulation of HVDC systems, circuit breakers, and long-range planning of HVDC projects. (LCL)

  20. Enhancing Biological Understanding through Undergraduate Field Research.

    ERIC Educational Resources Information Center

    Hammer, Samuel

    2001-01-01

    Describes a PEET (Partnerships for Enhancing Expertise in Taxonomy) project designed for undergraduate biology students at Boston University's College of General Studies. Reports that the project used a small group field research setting, facilitating critical thinking skills and group dynamics. Discusses the issue of how to introduce and…

  1. Advanced Gas Turbine Systems Research, Technical Quarterly Progress Report. October 1, 1998--December 31, 1998

    SciTech Connect

    1999-01-19

    Major accomplishments during this reporting period by the Advanced Gas Turbine Systems Research (AGTSR) are: AGTSR submitted FY99 program continuation request to DOE-FETC for $4M; AGTSR submitted program and workshop Formation to the Collaborative Advanced Gas Turbine (CAGT) initiative; AGTSR distributed research accomplishment summaries to DOE-FETC in the areas of combustion, aero-heat transfer, and materials; AGTSR reviewed and cleared research papers with the IRB from Arizona State, Cornell, Wisconsin, Minnesota, Pittsburgh, Clemson, Texas and Georgia Tech; AGTSR prepared background material for DOE-FETC on three technology workshops for distribution at the DOE-ATS conference in Washington, DC; AGTSR coordinated two recommendations for reputable firms to conduct an economic impact analysis in support of new DOE gas turbine initiatives; AGTSR released letters announcing the short-list winners/non-winners from the 98RFP solicitation AGTSR updated fact sheet for 1999 and announced four upcoming workshops via the SCIES web page AGTSR distributed formation to EPRI on research successes, active university projects, and workshop offerings in 1999 AGTSR continued to conduct telephone debriefings to non-winning PI's born the 98RFP solicitation AGTSR distributed completed quarterly progress report assessments to the IRB experts in the various technology areas AGTSR provided Formation to GE-Evandale on the active combustion control research at Georgia Tech AGTSR provided information to AlliedSignal and Wright-Pat Air Force Base on Connecticut's latest short-listed proposal pertaining to NDE of thermal barrier coatings AGTSR submitted final technical reports from Georgia Tech - one on coatings and the other on active combustion control - to the HU3 for review and evaluation AGTSR coordinated the format, presentation and review of 28 university research posters for the ATS Annual Review Meeting in November, 1998 AGTSR published a research summary paper at the ATS Annual

  2. Base program on energy related research. Quarterly report, February 1--April 30, 1996

    SciTech Connect

    1996-12-31

    The Base Research Program at Western Research Institute (WRI) is planned to develop technologies to a level that will attract industrial sponsors for continued development under the Jointly Sponsored Research (JSR) Program. The goals of the Base Research Program are in support of those of the JSR Program, which are designed to: increase the production of US and western energy resources, particularly low-sulfur coal, natural gas, oil, and renewable energy resources; enhance the competitiveness of US and western energy technologies in international markets and assist in technology transfer; reduce the nation`s dependence on foreign energy supplies and strengthen both the US and regional economies; and minimize environmental impacts of energy production and utilization. Summaries are presented for many of the subtasks related to oil and gas research, advanced systems applications for coal, environmental technologies, and remediation. The paper also contains federal assistance management summary reports, and contract status reports.

  3. Coolside waste management research. Quarterly report, October 1 - December 31, 1995

    SciTech Connect

    1995-12-31

    The objective of this research is to produce sufficient information on the physical and chemical nature of Coolside waste to design and construct physically stable and environmentally safe landfills. This quarterly report consists of three monthly progress reports. The first is on an ongoing field test where additional data obtained during this reporting period support earlier results indicating that mineralogical transformations continue in the field lysimeters as a function of available moisture, aging and static loading of the Coolside materials. The second report presents results from an ongoing laboratory testing which support earlier data that mineralogical transformations cause swell in the FBC ash samples. The objectives of this part of study focuses on long-term changes in permeability of clay liners caused by water leaching through FGD- materials into compacted clay liners. The third report summarizes results from an ongoing investigation of the capacity of dry FGD wastes to absorb acidic gases. This work is part of a continuing effort to identify and evaluate potential commercial applications for FGD waste materials. Results from an investigation of CO{sub 2} absorption in which waste samples were evaluated in both hydrated- solid and aqueous-slurry forms were previously reported. In that study, emphasis was placed on the removal of CO{sub 2} from multi- component gas streams, particularly, natural-gas streams. The current probe is an expansion of the CO{sub 2} absorption study and includes results from testing of H{sub 2}S, SO{sub 2}, NO, CH{sub 4}, and NO{sub 2} absorption. The relative affinity of the dry FGD wastes for the gases examined thus far was found to be SO{sub 2} > CO{sub 2} > H{sub 2}S. CH{sub 4} and NO are not absorbed and NO{sub 2} apparently decomposes on contact with surface water to NO and HNO{sub 3}.

  4. Base program on energy related research. Quarterly report, November 1, 1996--January 31, 1997

    SciTech Connect

    1997-06-01

    The Base Research Program at Western Research Institute (WRI) is planned to develop technologies to a level that will attract industrial sponsors for continued development under the Jointly Sponsored Research (JSR) Program. The goals of the Base Research Program are in support of those of the JSR Program, which are designed to: increase the production of US and western energy resources, particularly low-sulfur coal, natural gas, oil, and renewable energy resources; enhance the competitiveness of US and western energy technologies in international markets and assist in technology transfer; reduce the nation`s dependence on foreign energy supplies and strengthen both the US and regional economies; and minimize environmental impacts of energy production and utilization. Summaries are presented for 11 subtasks related to these four main goals.

  5. Base program on energy related research. Quarterly report, May, 1996--July 31, 1996

    SciTech Connect

    1997-04-01

    The Base Research Program at Western Research Institute (WRI) is planned to develop technologies to a level that will attract industrial sponsors for continued development under the Jointly Sponsored Research (JSR) Program. In many instances, a potential JSR cosponsor has been identified but additional laboratory or bench-scale data are necessary to assess the utility of the technology prior to cosponsor investment. Both peer and management review are employed prior to proposing Base projects to the US DOE. The goals of the Base Research Program are in support of those of the JSR program, which are designed to: increase the production of United States and western energy resources, particularly low-sulfur coal, natural gas, oil, and renewable energy resources; enhance the competitiveness of US and western energy technologies in international markets and assist in technology transfer; reduce the nations`s dependence on foreign energy supplies and strengthen both the US and regional economies; minimize environmental impacts of energy production and utilization. The goals of the JSR and Base Programs are accomplished by focusing research, development, demonstration, and commercialization in three major technology areas: Energy Programs emphasize the increased production and utilization of domestic energy resources and include enhanced oil recovery, coal bonification and upgrading, coalbed methane recovery, and renewable energy resources; Environmental Programs minimize the impact of energy production and utilization by providing technology to clean underground oily wastes, mitigate acid mine drainage, and demonstrate uses for Clean Coal Technology and pressurized fluidized bed combustion waste solids; Technology Enhancement activities encompass resource characterization studies, the development of improved environmental monitors and sensors, and improved techniques and models for predicting the dispersion of hazardous gas releases.

  6. Molecular biological enhancement of coal desulfurization: Cloning and expression of the sulfoxide/sulfone/sulfonate/sulfate genes in Pseudomonads and Thiobacillae. Eleventh quarterly report

    SciTech Connect

    Krawiec, S.

    1992-08-01

    Research continues on desulfurization of coal using microorganisms. Topics reported on this quarter include: desulfurization with N1-36 (presumptively identified as Rhodochrous erythropolis), pulsed-field gel electrophoresis of chromosomal DNA`s of Thiobacillus spp., and fresh isolates with the presumptive capacity to desulfurize dibenzothiophenes.

  7. Research and development for the declassification productivity initiative. Quarterly report No. 3, July 1996--September 1996

    SciTech Connect

    1996-11-01

    The third quarter began with a full-day workshop on declassification by Mr. Scott R. Lowery referred by the Technical Officer, Tom Curtis. This workshop, at Southern University, Baton Rouge, was attended by all the principal investigators. Various degrees of program have been observed for this period in all sub-areas of the DPI project. An initial evaluation of TIPSTER has revealed that its relevance to declassification would depend on a set of questions identified for further investigation. Progress is reported in developing a segment of a representation language that could be sued to enable classifiers to classify and enter information and ask questions. A prototype test suite with approximately 145 pages is being finalized to be forwarded to UNLV for testing and analysis. The progress on the computer programs developed f or the logical analysis approval is also reported along with a timeline of specific tasks for the fourth quarter.

  8. Coal log pipeline research at University of Missouri. 1. quarterly report for 1996, January 1--March 31, 1996

    SciTech Connect

    1996-07-01

    This project consists of the following nine tasks: Machine design for coal log fabrication; Very rapid compaction of coal logs; Rapid compaction of coal logs; Fast-track experiments on coal log compaction; Coal log fabrication using hydrophobic binders; Drag reduction in large diameter hydraulic capsule pipeline; Automatic control of coal log pipeline system; Hydraulics of CLP (Coal Log Pipeline); and Coal heating system research. The purpose of the task, the work accomplished during this report period, and work proposed for the next quarter are described for each task.

  9. Responsive copolymers for enhanced petroleum recovery. Quarterly technical progress report, December 21, 1994--March 22, 1995

    SciTech Connect

    McCormick, C.; Hester, R.

    1995-05-01

    The purpose of this study is to extend the concept of micellar polymerization to more complex systems, and to explore the responsive nature of hydrophobically modified polyelectrolytes by tailoring the microstructure. The synthesis of hydrophobically modified acrylamide/acrylic acid copolymer is described. These types of polymers are of interest as thickening agents utilized in enhanced oil recovery.

  10. Oak Ridge Research Reactor quarterly report, April, May, and June 1981

    SciTech Connect

    Hurt, S.S. III; Lance, E.D.

    1982-01-01

    The ORR operated at an average power level of 29.8 MW for 90.7% of the time during April, May, and June 1981. The reactor was shut down on eight occasions, one of which was unscheduled. Reactor downtime needed for refueling, maintenance, and checks was normal, with the reactor remaining available for operation 91.6% of the time. Maintenance activities, both mechanical and instrument, were essentially routine in nature. In-service inspection completed during the quarter is described.

  11. Enhancement of methane conversion using electric fields. Quarterly report, April--June 1995

    SciTech Connect

    Mallinson, R.G.; Lobban, L.L.

    1995-07-01

    The goal of this project is the development of novel, economical processes for the conversion of natural gas to more valuable products such as methanol, ethylene, and other organic oxygenates or higher hydrocarbons. The methodologies of the project are to investigate and develop low temperature electric discharges and electric field- enhanced catalysis for carrying out these conversions. In the case of low temperature discharges, the conversion is carried out at ambient temperature which in effect trades high temperature thermal energy for electric energy as the driving force for conversion. The low operating temperatures relax the thermodynamic constraints on the product distribution found at high temperatures and also remove the requirements of large thermal masses required for current technologies. With the electric field-enhanced conversion, the operating temperatures are expected to be below those currently required for such processes as oxidative coupling, thereby allowing for a higher degree of catalytic selectivity while maintaining high activity.

  12. Enhancement of methane conversion using electric fields. Quarterly report, July--September 1995

    SciTech Connect

    Mallinson, R.G.; Lobban, L.L.

    1995-11-01

    The goal of this project is the development of novel, economical, processes for the conversion of natural gas to more valuable projects such as methanol, ethylene and other organic oxygenates or higher hydrocarbons. The methodologies of the project are to investigate and develop low temperature electric discharges and electric field-enhanced catalysis for carrying out these conversions. In the case of low temperature discharges, the conversion is carried out at ambient temperature which in effect trades high temperature thermal energy for electric energy as the driving force for conversion. The low operating temperatures relax the thermodynamic constraints on the product distribution found at high temperature and also removes the requirements of large thermal masses required for current technologies. With the electric field-enhanced conversion, the operating temperatures are expected to be below those currently required for such processes as oxidative coupling, thereby allowing for a higher degree of catalytic selectivity while maintaining high activity.

  13. Enhancement of methane conversion using electric fields. Quarterly report, December 1994--March 1995

    SciTech Connect

    Mallinson, R.G.; Lobban, L.L.

    1995-04-01

    The goal of this project is the development of novel, economical, processes for the conversion of natural gas to more valuable projects such as methanol, ethylene and other organic oxygenates or higher hydrocarbons. The methodologies of the project are to investigate and develop low temperature electric discharges and electric field-enhanced catalysis for carrying out these conversions. In the case of low temperature discharges, the conversion is carried out at ambient temperature which in effect trades high temperature thermal energy for electric energy as the driving force for conversion. The low operating temperature relax and thermodynamic constraints on the product distribution found at high temperature and also removes the requirements of large thermal masses required for current technologies. With the electric field-enhanced conversion, the operating temperatures are expected to be below those currently required for such processes as oxidative coupling, thereby allowing for a higher degree of catalytic selectivity while maintaining high activity.

  14. A study of overproduction and enhanced secretion of enzymes. Quarterly report

    SciTech Connect

    Dashek, W.V.

    1993-09-01

    Wood decay within forests, a significant renewable photosynthetic energy resource, is caused primarily by Basidiomycetous fungi, e.g., white rot fungi. These organisms possess the ability to degrade lignin, cellulose and hemicellulose, the main organic polymers of wood. In the case of the white rot fungi, e.g., Coriolus versicolor, the capacity results from the fungus` ability to elaborate extracellular cellulolytic and ligninolytic enzymes. With regard to the latter, at least one of the enzymes, polyphenol oxidase (PPO) appears within a defined growth medium. This proposal focuses on the over-production and enhanced secretion of PPO, cellulase and lignin peroxidase. There are two major sections to the proposal: (1) overproduction of lignocellulolytic enzymes by genetic engineering methodologies and hyper-production and enhanced secretion of these enzymes by biochemical/electro microscopical techniques and (2) the biochemical/electron microscopical method involves substrate induction and the time-dependent addition of respiration and PPO enzymes.

  15. Integrated computer-enhanced remote viewing system. Quarterly report No. 2, January--March 1993

    SciTech Connect

    Not Available

    1993-05-03

    The Interactive, Computer-Enhanced, Remote Viewing System (ICERVS) is a system designed to provide a reliable geometric description of a robotic task space in a fashion that enables robotic remediation to be carried out more efficiently and economically than with present systems. The key elements are a faithful way to store empirical data and a friendly user interface that provides an operator with timely access to all that is known about a scene.

  16. Visual display of reservoir parameters affecting enhanced oil recovery. Quarterly report, July 1995--September 1995

    SciTech Connect

    Wood, J.R.

    1995-10-01

    Research continued on reservoir characterization. An atlas of thin section petrology of reservoir samples from the Southern San Joaquin Basin was acquired. One-dimensional modeling activities were initiated. Results of a modeling study of Elk Hills is described.

  17. Coal log pipeline research at University of Missouri. Second quarterly technical progress report, 1 April--30 June 1996

    SciTech Connect

    Liu, H.

    1996-06-01

    During this quarter, significant progress has been made in the following, fronts of coal log pipeline research, development and technology transfer: 1. Design of the special 300-ton coal log compaction machine was completed, Furthermore, much progress has been made in the design of the system needed to feed coal into the coal log compaction machine, and the design of the system to remove logs automatically as soon as they are compacted. 2. Coal mixtures containing different amounts of moisture were compacted into 1.91- inch-diameter coal logs rapidly (in 6 seconds). It was found that for the Mettiki coal tested, the optimum moisture is around 8%. Under the test conditions (room temperature and 3% binders), the rapidly compacted coal logs with 8% moisture had less than 4% weight loss in 350 cycles of circulation. 3. Completed evaluation of the effectiveness of using wall lubricants to enhance coal log quality. Both calcium sterarate and MoS{sub 2} were found to be effective. 4. It was found that when the interior of a mold is not cleaned after coal log has been compacted, the coal mixture film clinging to the wall hardens in time and form a hard crust which affects the quality of the next log to be produced. But, if the second log is produced immediately after the first, no hard crust is formed and the quality of the second log, is not affected. 5. Coal logs made with the coal crushed by the Gundlach Company were found to be better than coal logs made with the coal crushed by the CPRC`s hammer mill. 7. A 320-ft-long, 6-inch-diameter coal log pipeline test facility was constructed in Rolla during this period. 8. Completed the simulation of an 8-inch-diameter, 20-mile-long coal log pipeline recirculating loop driven by a pump bypass. 9. Continued improvement was accomplished in the hydraulic model of HCP and CLP to predict pressure drop and capsule velocity for both single capsules and capsule train. Also, work has started to extend the analysis to sloped pipelines.

  18. Reservoir characterization and enhanced oil recovery research

    SciTech Connect

    Lake, L.W.; Pope, G.A.; Schechter, R.S.

    1992-03-01

    The research in this annual report falls into three tasks each dealing with a different aspect of enhanced oil recovery. The first task strives to develop procedures for accurately modeling reservoirs for use as input to numerical simulation flow models. This action describes how we have used a detail characterization of an outcrop to provide insights into what features are important to fluid flow modeling. The second task deals with scaling-up and modeling chemical and solvent EOR processes. In a sense this task is the natural extension of task 1 and, in fact, one of the subtasks uses many of the same statistical procedures for insight into the effects of viscous fingering and heterogeneity. The final task involves surfactants and their interactions with carbon dioxide and reservoir minerals. This research deals primarily with phenomena observed when aqueous surfactant solutions are injected into oil reservoirs.

  19. Molecular biological enhancement of coal biodesulfurization. Tenth quarterly technical progress report, [September--December 1991

    SciTech Connect

    Litchfield, J.H.; Zupancic, T.J.; Kittle, J.D.; Baker, B.; Palmer, D.T.; Fry, I.J.; Traunero, C.G.; Wyza, R.E.; Schweitzer, A.; Conkle, H.N.; Chakravanty, L.; Tuovinen, O.H.

    1991-12-13

    The objective of this project is to produce one or more microorganisms capable of removing the organic and inorganic sulfur in coal. The specific technical objectives of the project are to: clone and characterize the genes encoding the enzymes of the ``4S`` pathway (sulfoxide/sulfone/sulfonate/sulfate) for release of organic sulfur from coal; return multiple copies of genes to the original host to enhance the biodesulfurization activity of that organism; transfer this pathway into a fast-growing chemolithotrophic bacterium; and conduct a batch-mode optimization/analysis of scale-up variables.

  20. Molecular biological enhancement of coal biodesulfurization. Fourth quarterly technical progress report

    SciTech Connect

    Litchfield, J.H.; Fry, I.; Wyza, R.E.; Palmer, D.T.; Zupancic, T.J.; Conkle, H.N.

    1990-06-14

    The objective of this project is to produce one or more microorganisms capable of removing the organic and inorganic sulfur in coal. The original specific technical objectives of the project were to: clone and characterize the genes encoding the enzymes of the ``4S`` pathway (sulfoxide/sulfone/sulfonate/sulfate) for release of organic sulfur from coal; return multiple copies of genes to the original host to enhance the biodesulfurization activity of that organism; transfer this pathway into a fast-growing chemolithotropic bacterium; conduct a batch-mode optimization/analysis of scale-up variables.

  1. Molecular biological enhancement of coal biodesulfurization. Third quarterly technical progress report

    SciTech Connect

    Litchfield, J.H.; Fry, I.; Wyza, R.E.; Palmer, D.T.; Zupancic, T.J.; Conkle, H.N.

    1990-03-15

    The objective of this project is to produce one or more microorganisms capable of removing the organic and inorganic sulfur in coal. The original specific technical objectives of the project were to: Clone and characterize the genes encoding the enzymes of the ``4S`` pathway (sulfoxide/sulfone/sulfonate/sulfate) for release of organic sulfur from coal; Return multiple copies of genes to the original host to enhance the biodesulfurization activity of that organism; Transfer this pathway into a fast-growing chemolithotrophic bacterium; Conduct a batch-mode optimization/analysis of scale-up variables.

  2. Molecular biological enhancement of coal biodesulfurization. Ninth quarterly technical progress report

    SciTech Connect

    Litchfield, J.H.; Zupancic, T.J.; Baker, B.; Palmer, D.T.; Fry, I.J.; Tranuero, C.G.; Wyza, R.E.; Schweitzer, A.; Conkle, H.N.; Chakravanty, L.; Tuovinen, O.H.

    1991-09-13

    The objective of this project is to produce one or more microorganisms capable of removing the organic and inorganic sulfur in coal. The original specific technical objectives of the project were to: clone and characterize the genes encoding the enzymes of the ``4S`` pathway (sulfoxide/sulfone/sulfonate/sulfate) for release of organic sulfur from coal; return multiple copies of genes to the original host to enhance the biodesulfurization activity of that organism; transfer this pathway into a fast-growing chemolithotropic bacterium; conduct a batch-mode optimization/analysis of scale-up variables.

  3. Enhanced control of mercury and other HAPs by innovative modifications to wet FGD processes. First quarter 1996 technical progress report

    SciTech Connect

    Carey, T.R.; Hargrove, O.W.

    1996-06-03

    The overall objective of this project is to learn more about controlling emissions of hazardous air pollutants (HAPs) from coal- fired power plants that are equipped with wet flue gas desulfurization (FGD) systems. This project focuses on three research areas: (1) catalytic oxidation of vapor-phase elemental mercury, (2) enhanced particulate-phase HAPs removal by electrostatic charging of liquid droplets, and (3) enhanced mercury removal by additional of additives to FGD process liquor.

  4. Coal-gasification basic research and cost studies. Quarterly report No. 3

    SciTech Connect

    Not Available

    1982-07-16

    Two major activities or tasks are being performed. The first activity (Task I) is the development of a process or processes to produce agglomerates from coal fines suitable for use as a feed to fixed-bed gasifiers. Seven US coals are being investigated. The second activity (Task II) is a design and cost study to examine the effects of gasifier selection on overall plant costs for a commercial-scale coal gasification facility. Task I work during the Third Quarter involved laboratory experimentation and some limited cost studies. Twenty-four different materials and many material combinations were evaluated as potential binders for coal briquettes. Potential binder materials were initially prescreened in wafer briquette tests. Of the materials tested,approximately a dozen showed good promise as a suitable binder. The most promising candidates were then used to produce larger briquetts on a double-roll press. Binderless briquetting was also investigated. In addition, work was initiated during the period in developing suitable pelletizing processes for coal fines and a tour was made of commercial briquetting plants in Europe. The results to date indicate that there is a good probability that a suitable process that will result in agglomerates that will stand up in a fixed-bed gasifier will be techincally possible for each of the seven coals being studied. The econonics of these processes, however, are uncertain at this time and are being studied. Task II work during the Third Quarter centered on (1) completing the capital and operating cost estimates for a large coal gasification plant based on Winkler gasifiers and (2) initiating the design of a similar plant based on Molten Salt gasifiers. Capital and operating costs for the Molten Salt gasification plant and for a fixed-bed gasification plant incorporating agglomeration facilities will be developed during the next Quarter.

  5. Geologic research of conventional and unconventional hydrocarbon resources. Quarterly report, October 1, 1992--March 1, 1993

    SciTech Connect

    Not Available

    1993-03-02

    This report covers the period from October 1, 1992 to March 1, 1993. The overall goals of the program task are to provide a final synthesis of six deep seismic reflection profiles and other geological and geophysical data from the southern Washington Cascades region where a probable extensive deep sedimentary basin has been discovered. This deep sedimentary basin is hypothesized from geological, regional magnetotelluric (MT), gravity, magnetic , and seismic reflection data as described in the American Association of Petroleum Geologists (AAPG) article by Stanley and others (1992). This report analyzed three seismic reflection profiles acquired by the Morgantown Energy Technology Centers in combination with the extensive MT and other data to outline a probable geological model for a thick conductive section of rocks in the southern Washington Cascades (called the Southern Washington Cascades conductor, SWCC). Earlier MT models suggested that the section consisted of an east-dipping package that extended to depths of as much as 20 km but appeared to surface in the Bear Canyon area near Morton, Washington and along the axis of the Carbon River and Morton anticlines. Interpretation of the first three DOE seismic reflection approximately confirmed the MT interpretation and added new information on anticlinal structures and detailed stratigraphy. In this quarterly report, we summarize the progress over the first two quarters of the program for FY93, and project the possible findings during the remainder of the project. A milestone chart for the first two quarters has been submitted separately, along with cost reports, but a copy of these items are attached for completeness.

  6. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 - September 30, 2005

    SciTech Connect

    DL Sisterson

    2005-09-30

    Description. Individual raw data streams from instrumentation at the ACRF fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at PNNL for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The DOE requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,097.6 hours (0.95 × 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) site is 1,987.2 hours (0.90 × 2,208), and that for the Tropical Western Pacific (TWP) site is 1,876.8 hours (0.85 × 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,097.6 hours (0.95 × 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 92 days for this quarter) the instruments were operating

  7. Responsive copolymers for enhanced petroleum recovery. Quarterly technical progress report, September 11, 1994--December 22, 1994

    SciTech Connect

    McCormick, C.; Hester, R.

    1994-01-01

    Advanced polymer systems that possess microstructural features that are responsive to temperature, electrolyte concentration, and shear conditions are being synthesized which will be superior to polymers presently used for mobility control in enhanced oil recovery. Improved polymer performance is accomplished by controlling hydrophobic or ampholytic interations between individual polymer chains in solution. The advanced polymers will circumbent major problems inherent in conventional EOR polymers in which molecular weight is usually compromised to allow sufficient solution viscosity and uniform reservoir permeation without plugging the porous media. Accomplishments are reported for the following tasks: quaternary ammonium cyclopolymer synthesis; characterization of molecular structure and solution behavior; {sup 23}Na NMR studies of non-binding to anionic polyelectrolytes and solution rheology.

  8. Enhancing Seismic Calibration Research Through Software Automation

    SciTech Connect

    Ruppert, S; Dodge, D; Elliott, A; Ganzberger, M; Hauk, T; Matzel, E; Ryall, F

    2004-07-09

    The National Nuclear Security Administration (NNSA) Ground-Based Nuclear Explosion Monitoring Research and Engineering (GNEM R&E) Program has made significant progress enhancing the process of deriving seismic calibrations and performing scientific integration with automation tools. We present an overview of our software automation efforts and framework to address the problematic issues of very large datasets and varied formats utilized during seismic calibration research. The software and scientific automation initiatives directly support the rapid collection of raw and contextual seismic data used in research, provide efficient interfaces for researchers to measure/analyze data, and provide a framework for research dataset integration. The automation also improves the researcher's ability to assemble quality controlled research products for delivery into the NNSA Knowledge Base (KB). The software and scientific automation tasks provide the robust foundation upon which synergistic and efficient development of, GNEM R&E Program, seismic calibration research may be built. The task of constructing many seismic calibration products is labor intensive and complex, hence expensive. However, aspects of calibration product construction are susceptible to automation and future economies. We are applying software and scientific automation to problems within two distinct phases or 'tiers' of the seismic calibration process. The first tier involves initial collection of waveform and parameter (bulletin) data that comprise the 'raw materials' from which signal travel-time and amplitude correction surfaces are derived and is highly suited for software automation. The second tier in seismic research content development activities include development of correction surfaces and other calibrations. This second tier is less susceptible to complete automation, as these activities require the judgment of scientists skilled in the interpretation of often highly unpredictable event

  9. Decontamination Systems Information and Research Program. Quarterly report, October--December 1993

    SciTech Connect

    Not Available

    1994-02-01

    This report is a summary of the work conducted for the period of October--December 1993 by the West Virginia University for the US DOE Morgantown Energy Technology Center. Research under the program focuses on pertinent technology for hazardous waste clean-up. This report reflects the progress performed on sixteen technical projects encompassed by this program: Systematic assessment of the state of hazardous waste clean-up technologies; Site remediation technologies: (a) Drain-enhanced soil flushing and (b) In situ bio-remediation of organic contaminants; Excavation systems for hazardous waste sites: Dust control methods for in-situ nuclear waste handling; Chemical destruction of polychlorinated biphenyls; Development of organic sensors: Monolayer and multilayer self-assembled films for chemical sensors; Winfield lock and dam remediation; Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale test facility implementation; Remediation of hazardous sites with steam reforming; Microbial enrichment for enhancing biodegradation of hazardous organic wastes in soil; Soil decontamination with a packed flotation column; Treatment of volatile organic compounds using biofilters; Use of granular activated carbon columns for the simultaneous removal of organic, heavy metals, and radionuclides; Compact mercuric iodide detector technology development; Evaluation of IR and mass spectrometric techniques for on-site monitoring of volatile organic compounds; and Improved socio-economic assessment of alternative environmental restoration techniques.

  10. Quarterly technical progress report, July-September 1982 on Energy Conversion Research and Development Programs

    SciTech Connect

    Not Available

    1983-12-01

    Detail design work was resumed on the superheater. Satisfactory bids were received for the air heater and lowest price responsive bidder was chosen. The conduct of three tests in the LMF1C series is reported. The status of the environmental monitoring program is reviewed. Preliminary analyses of the test data from the three tests conducted during the quarter are included. The heat fluxes, combustor pressure and combustor efficiencies are reported. The performance of the nozzle, diagnostic (Hall) channel and diffuser is compared with an analytical model for each test run. The performance of the new diffuser which was installed during the quarter is discussed. The test results from the downstream components; i.e. slag screen, radiant furnace, secondary combustor and materials test module, are discussed. Slag removal from the radiant furnace, refractory performance and metals performance is covered. A summary report is included on the results of the cold flow modeling of the secondary combustor, which involved variations in relative velocity of the secondary air, the angle of injection and the flow constriction. Diagnostic support of testing activities is described, including the use of the laser doppler velocimeter (LDV) for the secondary combustor modeling. Luminosity and line reversal temperature measurements were made in support of the CFFF tests. A photodiode line reversal system has been designed which has the promise of being more reliable, easier to install on operational equipment and cheaper.

  11. Integrated computer-enhanced remote viewing system. Quarterly report Number 5, October 1993--December 1993

    SciTech Connect

    1994-02-22

    The Interactive, Computer-Enhanced, Remote Viewing System (ICERVS) is a system designed to provide a reliable geometric description of a robotic task space in a fashion that enables robotic remediation to be carried out more efficiently and economically that with present systems. The key elements are a faithful way to store empirical data and a friendly user interface that provides an operator with timely access to all that is known about a scene. ICERVS will help an operator to analyze a scene and generate additional geometric data for automating significant portions of the remediation activity. Features that enable this include the following: storage and display of empirical sensor data; ability to update segments of the geometric description of the task space; side-by-side comparisons of a live TV scene and a computer generated view of the same scene; ability to create and display computer models of perceived objects in the task space, together with textual comments, and easy export of data to robotic world models for robot guidance.

  12. Desulfurization of coal: enhanced selectivity using phase transfer catalysts. Quarterly report, March 1 - May 31, 1996

    SciTech Connect

    Palmer, S.R.; Hippo, E.J.

    1996-12-31

    Due to environmental problems related to the combustion of high sulfur Illinois coal, there continues to be interest in the development in viable pre-combustion desulfurization processes. Recent studies by the authors have obtained very good sulfur removals but the reagents that are used are too expensive. Use of cheaper reagents leads to a loss of desired coal properties. This study investigated the application phase transfer catalysts to the selective oxidation of sulfur in coal using air and oxygen as oxidants. The phase transfer catalyst is expected to function as a selectivity moderator by permitting the use of milder reaction conditions that otherwise necessary. This would enhance the sulfur selectivity and help retain the heating value of the coal. The use of certain coal combustion wastes for desulfurization, and the application of cerium (IV) catalyzed air oxidation for selective sulfur oxidation are also being studied. If successful, this project could lead to the rapid development of a commercially viable desulfurization process. This would significantly improve the marketability of Illinois coal.

  13. Responsive copolymers for enhanced petroleum recovery. Quarterly progress report, March 21, 1995--June 22, 1995

    SciTech Connect

    McCormick, C.; Hester, R.

    1995-09-01

    Advanced polymer systems that possess microstructural features that are responsive to temperature, electrolyte concentration, and shear conditions are being synthesized which will be superior to polymers presently used for mobility control in enhanced oil recovery. Improved polymer performance is accomplished by controlling hydrophobic or ampholytic interactions between individual polymer chains in solution. Of special interest to our group have been (1) the elucidation of the mechanism of associative thickening and (2) the tailoring of thickeners with reversible associations responsive to changes in pH, ionic strength, temperature, or shear stress. A polymerization technique, termed ``micellar`` polymerization utilizes a surfactant to solubilize a relatively low mole percent of a hydrophobic monomer in water for copolymerization with a hydrophilic monomer. In this report, we examine the role of surfactant-to-monomer ratio (SMR) in the reaction medium on microstructure utilizing the N-[(1- pyrenylsulfonamido)ethyl] acrylamide (APS) monomer as a fluorescent label. Comparison is made with previously reported terpolymers of identical AM/AA compositions with N-(4-decyl)phenylacrylamide as the hydrophobic monomer. Unlike the uncharged copolymer of AM/APS, however, the AM/AA/APS terpolymers of this study do not show intermolecular associative thickening, apparently due to insufficient liaisons of hydrophobic microdomains even at high concentrations of terpolymer.

  14. Integrated Computer-Enhanced Remote Viewing System. Quarterly report number 4, July--October 1993

    SciTech Connect

    Not Available

    1993-11-30

    The Interactive, Computer-Enhanced, Remote Viewing System (ICERVS) is a system designed to provide a reliable geometric description of a robotic task space in a fashion that enables robotic remediation to be carried out more efficiently and economically than with present systems. The key elements are a faithful way to store empirical data and a friendly user interface that provides an operator with timely access to all that is known about a scene. The development of ICERVS is to occur in three phases. Phase 1 will focus on the development of the Data Library, which contains the geometric data about the task space and the objects in it, and the Toolkit, which includes the mechanisms for manipulating and displaying both empirical and model data. Phase 2 will concentrate on integrating these subsystems with a sensor subsystem into one working system. Some additional functionality will be incorporated in the Data Library and Toolkit subsystems. Phase 3 will expand the configuration to meet the needs of a full scale demonstration of the interactive mapping of some waste site to be identified. The second Phase of the ICERVS project consists of nine tasks. Significant efforts were devoted to the completion of Task 1: Intermediate System Design, and Task 3: Computer Upgrade. This report describes progress in these two tasks.

  15. [Research guidance studies]. Quarterly progress report, October 1--December 31, 1997

    SciTech Connect

    Gray, D.; Tomlinson, G.

    1997-12-31

    The overall objectives of this contract are to: (1) evaluate the technical and economic merits of current direct and indirect coal liquefaction technologies and other similar emerging technologies such as coal-waste coprocessing, natural gas conversion, and biomass conversion technologies, (2) monitor progress in these technologies, (3) conduct specific and generic project economic and technical feasibility studies based on these technologies, (4) identify long-range R and D areas that have the greatest potential for process improvements, and (5) preliminarily investigate best configurations and associated costs for refining coal-derived and other non-conventional liquids in existing petroleum refineries. During this quarter, work was continued in the area of coal/oil coprocessing with existing petroleum refineries.

  16. Quarterly technical progress report, October-December 1982 on Energy Conversion Research and Development Programs

    SciTech Connect

    Not Available

    1983-10-01

    In this quarterly technical progress report, UTSI reports on the continued design work for the low mass flow train superheater. The detailed design of this component continued and the overall arrangement drawing for the superheater and air heater was finalized. The air heater procurement reached the point of contract award, but the actual purchase order award was held up pending receipt of additional funding from the Department of Energy. Testing activity reported includes two additional tests in the LMF1C series, which concludes this test series. Test data are presented, along with preliminary analyses for the combustor, nozzle, diagnostic channel, diffuser, radiant furnace/secondary combustor and Materials Test Module. In addition to the nitrogen oxide test measurements, corrosion and erosion rates for the boiler tube specimens and the materials test module are reported.

  17. A quarter century of pharmacognostic research on Panamanian flora: a review.

    PubMed

    Caballero-George, Catherina; Gupta, Mahabir P

    2011-07-01

    Panama is a unique terrestrial bridge of extreme biological importance. It is one of the "hot spots" and occupies the fourth place among the 25 most plant-rich countries in the world, with 13.4 % endemic species. Panamanian plants have been screened for a wide range of biological activities: as cytotoxic, brine shrimp-toxic, antiplasmodial, antimicrobial, antiviral, antioxidant, immunosuppressive, and antihypertensive agents. This review concentrates on ethnopharmacological uses of medicinal plants employed by three Amerindian groups of Panama and on selected plants with novel structures and/or interesting bioactive compounds. During the last quarter century, a total of approximately 390 compounds from 86 plants have been isolated, of which 160 are new to the literature. Most of the work reported here has been the result of many international collaborative efforts with scientists worldwide. From the results presented, it is immediately obvious that the Panamanian flora is still an untapped source of new bioactive compounds. PMID:21674433

  18. Exploratory coprocessing research. Quarterly report Number 9, September 1--November 30, 1990

    SciTech Connect

    Hirschon, A.S.; Tse, D.T.; Malhotra, R.; McMillen, D.F.; Ross, D.S.

    1991-05-01

    The objectives of this project are to: (1) study the scope of hydrothermal pretreatment of coal on subsequent conversion, (2) identify and study the chemical or physical causes of this effect, and (3) attempt to elucidate the chemistry responsible for any coal-resid synergisms. This project is divided into three tasks. This quarter the authors concentrated on Tasks 2 and 3 as described below. Task 2: chemistry of pretreatment. This Quarter they continued their investigation of the chemistry of pretreatment using an iron catalyst, (ferrous sulfate), both with and without aqueous pretreatment on Wyodak coal. The combination of iron and hydrothermal pretreatment gave the best results, as long as the pretreated coal was not dried prior to conversion. However, the combination of iron and pretreatment gave similar conversions as with pretreatment alone. Task 3: chemistry of synergy. To help provide a baseline for distinguishing between the benefits resulting from chemical and physical solvency factors, the authors decided to conduct some experiments in homogeneous systems, from which they can easily extract the impact due to chemical changes. They synthesized a series of benzyl aromatics and studied their cleavage in a mixture of anthracene and dihydroanthracene. Cleavage rates for the different substrates increase in the order diphenylmethane < benzylnaphthalene < benzylphenanthrene < benzylpyrene. The log of observed first-order rate constants correlate linearly with the exothermicity of H-addition to the aromatic bearing the benzyl group, and are in excellent agreement with previously modeled results. The experimental results further show the generality of induced bond cleavage, and buttress the view of the possible chemical basis of improvements resulting from increased aromaticity.

  19. National Institute for Petroleum and Energy Research quarterly technical report, July 1--September 30, 1992

    SciTech Connect

    Gall, Bonnie L.; Liave, Feliciano M.; Noll, Leo A.

    1992-12-01

    Volume II includes: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; and microbial technology.

  20. Advanced reservoir characterization in the Antelope Shale to establish the viability of CO{sub 2} enhanced oil recovery in California`s Monterey formation siliceous shales. Quarterly report, April 1, 1996 - June 30, 1996

    SciTech Connect

    Smith, S.C.

    1996-06-01

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO{sub 2} enhanced oil recovery project in the Buena Vista Hills field. The Buena Vista Hills pilot CO{sub 2} project will demonstrate the economic viability and widespread applicability Of CO{sub 2} flooding in fractured siliceous shales reservoirs of the San Joaquin Valley. The research consists of four primary work processes: Reservoir Matrix and Fluid Characterization; Fracture Characterization; Reservoir Modeling and Simulation; and, CO{sub 2} Pilot Flood and Evaluation. Work done in these areas can be subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced EOR pilot in the West Dome of the Buena Vista Hills field. The Buena Vista Hills project realized it`s first major milestone in the second quarter of 1996 with the pending drilling of proposed project injection well. Regional fracture characterization work was also initiated in the second quarter. This report summarizes the status of those efforts.

  1. Jointly sponsored research program. Quarterly technical progress report, April--June, 1994

    SciTech Connect

    Not Available

    1994-10-01

    Objectives, accomplishments, procedures, and results are briefly described for each of the following 18 research projects: Development and demonstration of a practical electric downhole steam generator for thermal recovery of heavy oil and tar; Wetting behavior of selected crude oil/brine/rock systems; Coal gasification, power generation, and product market study; The impact of leachate from Clean Coal Technology waste on the stability of clay liners; Investigation of coprocessing of heavy oil, automobile shredder residue, and coal; Injection into coal seams for simultaneous CO{sub 2} mitigation and enhanced recovery of coalbed methane; Optimization of carbonizer operations in the FMC Coke Process; Chemical sensor and field screening technology development; Demonstration of the Koppelman Series C Process using a batch test unit with Powder River Basin coal as feed; Remote chemical sensor development; Market assessment and technical feasibility study of PFBC ash use; Solid-state NMR analysis and interpretation of naturally and artificially matured kerogens; CROW{trademark} field demonstration with bell lumber and pole; ``B`` series pilot plant tests; In situ treatment of manufactured gas plant contaminated soils demonstration program; Development and demonstration of a wood-fired gas turbine system; NMR analysis of Mowry Formation shale from different sedimentary basins; and Acid-mine drainage prevention, control, and treatment technology development for the Stockett/Sand Coulee Area.

  2. Jointly sponsored research program. Quarterly technical progress report, October--December 1993

    SciTech Connect

    Deans, H.A.

    1994-05-01

    This is a progress report on work performed by Western Research Institute for the U.S. DOE, Morgantown Energy Technology Center in the period October- December 1993. Tasks addressed include: development and demonstration of a practical electric downhole steam generator for thermal recovery of heavy oil and tar; wetting behavior of selected crude oil/brine/rock systems; coal gasification, power generation, and product market study; the impact of leachate from clean coal technology waste on the stability of clay liners; investigation of coprocessing of heavy oil, automobile shredder residue, and coal; injection into coal seams for simultaneous CO{sub 2} mitigation and enhanced recovery of coalbed methane; optimization of carbonizer operations in the FMC coke process; chemical sensor and field screening technology development; demonstration of the koppelman {open_quotes}series c{close_quotes} process using a batch test unit with Powder River Basin coal as feed; remote chemical sensor development; market assessment and technical feasibility study of PFBC ash use; solid-state NMR analysis and interpretation of naturally and artificially matured kerogens; Crow{trademark} field demonstration with bell lumber and pole; {open_quotes}B{close_quotes} series pilot plant tests; in situ treatment of manufactured gas plant contaminated soils demonstration program.

  3. Development of enhanced sulfur rejection processes. Second quarterly technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Yoon, R.H.; Luttrell, G.; Adel, G.; Richardson, P.E.

    1993-06-14

    Research at Virginia Tech led to the development of two complementary concepts for improving the removal of inorganic sulfur from many eastern US coals. These concepts are referred to as Electrochemically Enhanced Sulfur Rejection (EESR) and Polymer Enhanced Sulfur Rejection (PESR). The EESR process uses electrochemical techniques to suppress the formation of hydrophobic oxidation products believed to be responsible for the floatability of coal pyrite. The PESR process uses polymeric reagents that react with pyrite and convert floatable middlings, i.e., composite particles composed of pyrite with coal inclusions, into hydrophilic particles. These new pyritic-sulfur rejection processes do not require significant modifications to existing coal preparation facilities, thereby enhancing their adoptability by the coal industry. It is believed that these processes can be used simultaneously to maximize the rejection of both well-liberated pyrite and composite coal-pyrite particles. The technical research was initiated on October 1, 1992, and a detailed work plan and work schedule were developed. During this reporting period, research was conducted to evaluate the liberation characteristics of various pyrite samples, to determine the electrochemical reactions that influence the hydrophobicity of pyrite, and to examine the potential use of electrochemical methods for controlling the flotation and depression of pyrite.

  4. Decontamination systems information and research programs. Quarterly report, July 1--August 31, 1996

    SciTech Connect

    1997-07-01

    The US contains numerous hazardous waste sites. Many sites are on private land near operating units of various companies. An effort is being made to determine the conditions under which such sites can be remediated voluntarily. The objective of the project will be to first assess the interest and willingness of industry in the Kanawha River Valley, WV to participate in discussions that would lead toward voluntary cleanup activities. The second will be to implement the activities agreed upon by the interested parties. The project will first involve individual discussions with the industrial, government, and other organized groups in the area. These discussions will help determine the feasibility of organizing voluntary efforts. If the discussions indicate that conditions may be favorable for developing individual or group voluntary cleanup projects, a working group will be convened to establish the environmental goals of the project as well as the technical approach for achieving those goals. The projects for the 1996 WVU Cooperative Agreement are categorized into three task focus areas: Task 1.0 Contaminant Plume Containment and Remediation, Task 2.0 Cross Cutting Innovative Technologies, and Task 3.0 Small Business Support Program. Summaries of the accomplishments for the subtasks reporting under these categories during the third quarter, 1 July 96 through 30 September 96, are presented.

  5. Commercial nuclear waste research and development program. Quarterly report, October-December 1981

    SciTech Connect

    Hakl, A.R.

    1982-01-01

    This document is a report of activities performed by AESD-Nevada Operations in meeting task objectives of the Nevada Nuclear Waste Storage Investigations (NNWSI) planning documentation for Fiscal Year (FY) 1982. Significant activities were: Completion of a fuel assembly exchange was successfully in support of the Spent Fuel Test-Climax (SFT-C) Program; input was provided, in response to FY 1982 guidance, to DOE/NV and the Office of Nuclear Waste Isolation (ONWI) for a proposed co-located Generic Packaging Facility (GPF); in response to FY 1982 guidance, drafts were prepared of facility layouts, material and process flow charts, equipment requirements, costs, and schedules for packaging (at E-MAD) of 28 alternative configurations of defense high-level waste, disassembled spent fuel, and commercial high-level waste in support of a proposed Test and Evaluation Facility (TEF); and quarterly dry run operations for canister emplacement in a drywell and in the Hot Bay Transfer Pit using the Emplacement/Installation Vehicle (EIV).

  6. National Institute for Petroleum and Energy Research quarterly technical report, April 1--June 30, 1992

    SciTech Connect

    Not Available

    1992-09-01

    Progress reports are presented for: chemical flooding--supporting research; gas displacement-supporting research; thermal recovery-supporting research; geoscience technology; resource assessment technology; and microbial technology. (AT)

  7. National Institute for Petroleum and Energy Research quarterly technical report, July 1--September 30, 1992. Volume 2, Energy production research

    SciTech Connect

    Not Available

    1992-12-01

    Volume II includes: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; and microbial technology.

  8. Development of enhanced sulfur rejection processes. First Quarterly technical progress report, October 1, 1992--December 31, 1992

    SciTech Connect

    Yoon, R.H.; Luttrell, G.; Adel, G.; Richardson, P.E.

    1993-03-23

    Research at Virginia Tech led to two complementary concepts for improving the removal of inorganic sulfur from much of the Eastern US coals. One controls the surface properties of coal pyrite (FeS{sub 2}) by electrochemical-.potential control, referred to as the Electrochemically Enhanced Sulfur Rejection (EESR) Process: The second controls the flotation of middlings, i.e., particles composed of pyrite with coal inclusions by using polymeric reagents to react with pyrite and convert the middlings to hydrophilic particles, and is termed the Polymer Enhanced Sulfur Rejection (PESR) Process. These new concepts are based on recent research establishing the two main reasons why flotation fails to remove more than about 50% of the pyritic sulfur from coal: superficial oxidization of liberated pyrite to form polysulfide oxidation products so that a part of the liberated pyrite floats with the coal; and hydrophobic coal inclusions in the middlings dominating their flotation so that the middlings also float with the coal. These new pyritic-sulfur rejection processes do not require significant modifications of existing coal preparation facilities, enhancing their adoptability by the coal industry. It is believed that they can be used simultaneously to achieve both free pyrite and locked pyrite rejection.

  9. Experiential Learning and Research Ethics: Enhancing Knowledge through Action

    ERIC Educational Resources Information Center

    Teixeira-Poit, Stephanie M.; Cameron, Abigail E.; Schulman, Michael D.

    2011-01-01

    How can instructors use experiential learning strategies to enhance student understanding of research ethics and responsible research conduct? In this article, the authors review literature on using experiential learning to teach research ethics and responsible research conduct. They present a three-step exercise for teaching research ethics and…

  10. Cooperative research program in coal liquefaction. Quarterly report, November 1, 1991--January 31, 1992

    SciTech Connect

    Huffman, G.P.

    1992-06-01

    Research continues on coal liquefaction in the following areas: (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  11. Research Libraries in OCLC: A Quarterly, Numbers 1-4, January-October 1981.

    ERIC Educational Resources Information Center

    Research Libraries in OCLC: A Quarterly, 1981

    1981-01-01

    The articles in these four issues include discussions of: the Research Libraries Advisory Committee to OCLC; Title II-C grants for bibliographic access/control research projects; cooperative cataloging costs via OCLC; a research project on online public access; an OCLC examination of the UK-MARC format; use of the Comprehensive Index (CINDEX) and…

  12. Enhancing Social Work Research Education through Research Field Placements

    ERIC Educational Resources Information Center

    Hewson, Jennifer A.; Walsh, Christine A.; Bradshaw, Cathryn

    2010-01-01

    The increased focus on the role of research in the social service sector, pressure for practitioners to engage in research and the demand for integration of research and practice challenges faculties about ways in which to engage social work students in research. This paper evaluates a research based practicum program within a social work faculty…

  13. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Quarterly technical progress report 8, July--September 1988

    SciTech Connect

    Jha, M.C.; Berggren, M.H.

    1988-11-14

    AMAX Research & Development Center (AMAX R&D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  14. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Quarterly technical progress report 9, October--December 1988

    SciTech Connect

    Jha, M.C.; Berggren, M.H.

    1989-03-06

    AMAX Research & Development Center (AMAX R&D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  15. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Quarterly technical progress report 7, April--June 1988

    SciTech Connect

    Jha, M.C.; Berggren, M.H.

    1988-08-19

    AMAX Research & Development Center (AMAX R&D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  16. Materials Compatibility and Lubricants Research on CFC-refrigerant substitutes. Quarterly MCLR Program technical progress report, July 1--September 30, 1995

    SciTech Connect

    Szymurski, S.R.; Hourahan, G.C.; Godwin, D.S.; Amrane, K.

    1995-10-01

    The Materials Compatibility and Lubricants Research (MCLR) program supports critical research to accelerate the introduction of CFC and HCFC refrigerant substitutes. The MCLR program addresses refrigerant and lubricant properties and materials compatibility. The primary elements of the work include data collection and dissemination, materials compatibility testing, and methods development. This report summarizes the research conducted during the third quarter of calendar year 1995 on the following projects: Thermophysical properties of HCFC alternatives; Compatibility of manufacturing process fluids with HFC refrigerants and ester lubricants; Compatibility of motor materials used in air-conditioning for retrofits with alternative refrigerants and lubricants; Compatibility of lubricant additives with HFC refrigerants and synthetic lubricants; Products of motor burnouts; Accelerated test methods for predicting the life of motor materials exposed to refrigerant-lubricant mixtures; Investigation of flushing and clean-out methods; Investigation into the fractionation of refrigerant blends; Lean flammability limits as a fundamental refrigerant property; Effect of selected contaminants in AC and R equipment; Study of foaming characteristics; Study of lubricant circulation in systems; Evaluation of HFC-245ca for commercial use in low pressure chillers; Infrared analysis of refrigerant mixtures; Refrigerant database; Refrigerant toxicity survey; Thermophysical properties of HFC-32, HFC-123, HCFC-124 and HFC-125; Thermophysical properties of HFC-143a and HFC-152a; Theoretical evaluations of R-22 alternative fluids; Chemical and thermal stability of refrigerant-lubricant mixtures with metals; Miscibility of lubricants with refrigerants; Viscosity, solubility and density measurements of refrigerant-lubricant mixtures; Electrohydrodynamic enhancement of pool and in-tube boiling of alternative refrigerants; Accelerated screening methods; and more.

  17. Process research on Semix Silicon Material (PROSSM). Quarterly report No. 5, December 1, 1981-February 28, 1982

    SciTech Connect

    Wohlgemuth, J H; Warfield, D B

    1982-01-01

    Emphasis was shifted from the development of a cost-effective process sequence to research designed to understand the mechanisms of photovoltaic conversion in semicrystalline silicon. With this change has gone a change of title from Module Experimental Process System Development Unit (MEPSDU) to Process Research of Semix Silicon Material (PROSSM). Efforts are now underway to prepare a revised program plan with emphasis on determining the mechanisms limiting voltage and current collection in the semicrystalline silicon. The efforts reported concern work done before the change in emphasis and so the continued development of the cost-effective process sequence is reported. A cost-effective process sequence was identified, equipment was designed to implement a 6.6 MW per year automated production line, and a cost analysis projected a $0.56 per watt cell add-on cost for this line. Four process steps were developed for this program: glass bead back clean-up; hot spray antireflective coating; wave-soldering of fronts; ion milling for edging. While spray dopants were advertised as an off the shelf developed product, they proved to be unreliable with shorter than advertised shelf life. Equipment for handling and processing solar cells is available for all of the cell processing steps identified in this program. During this quarter efforts included work on spray dopant, edging, AR coating, wave soldering and fluxing, ion milling and cost analysis.

  18. National Institute for Petroleum and Energy Research quarterly technical report, April 1--June 30, 1992. Volume 2, Energy production research

    SciTech Connect

    Not Available

    1992-09-01

    Progress reports are presented for: chemical flooding--supporting research; gas displacement-supporting research; thermal recovery-supporting research; geoscience technology; resource assessment technology; and microbial technology. (AT)

  19. The IRM at 25: A Quarter Century of Community-Based Research and Education at the Institute for Rock Magnetism

    NASA Astrophysics Data System (ADS)

    Moskowitz, B. M.

    2015-12-01

    A 1986 meeting on the future of rock magnetism proposed an idea for a center where researchers in rock magnetism, other earth science disciplines, and allied fields in the physical sciences could share ideas and have access to advanced instrumentation in magnetism. The idea became reality in 1990, when the Institute for Rock Magnetism (IRM) was established as a shared resource for the GP and broader research communities, providing instruments to study the magnetism of rocks, sediment, biological materials and synthetic analogs. This is accomplished with a suite of instruments that measures magnetization from 2-1000 K, in DC fields up to 5 T and AC fields up to 10 kHz. These are complemented by Mössbauer spectrometers (4.2-300K, 0-6.5T), a high-temperature magnetic force microscope (Tmax~ 673 K), and a low-temperature probe (20-300 K) for vector remanence measurements. A unique aspect of the IRM was that it allowed for routine measurements below 300 K and provided new ways of "seeing" magnetism. This has enabled researchers to study magnetic behavior through magnetic ordering temperatures, crystal phase transitions, and blocking temperatures, providing new insights into mineral magnetism as well as developing new methods to interpret the magnetism of natural materials. The main access to the IRM is the Visiting Fellowship (VF) program, where 379 have been awarded representing 157 institutions from the US and 30 countries. Nearly 50% of VFs have gone to students. The total output of visiting and in-house researches have produced about 800 publications to date. The IRM also provides education and outreach activities including: (1) The IRM Quarterly with over 600 subscribers; (2) The Biennial Santa Fe meetings on the current state and future trends in magnetic research; and (3) The Biennial Summer Schools for Rock Magnetism offering graduate students in the geosciences with instruction in rock magnetism theory and hands-on lab training.

  20. Embedding Research Activities to Enhance Student Learning

    ERIC Educational Resources Information Center

    Webster, Cynthia M.; Kenney, Jacqueline

    2011-01-01

    Purpose: The purpose of this paper's novel, research-oriented approach is to embed research-based activities in a core second-year course of a university business degree program to support and develop student research capabilities. Design/methodology/approach: The design draws on Boud and Prosser's work to foster participation in a…

  1. (National Institute for Petroleum and Energy Research) quarterly technical report, July 1--September 30, 1991

    SciTech Connect

    Not Available

    1992-01-01

    The report is submitted in two volumes, Volume I representing the work accomplished under Fuels Research and Volume II the work for Energy Production Research during the period July 1--Sept. 30, 1991. Topics covered include: chemical flooding, gas displacement, thermal recovery, geoscience technology, resource assessment technology, microbial technology, environmental technology.

  2. Advanced gas turbine systems research. Quarterly report, October--December 1995

    SciTech Connect

    1996-01-01

    This report summarizes the major accomplishments and reports issued by Advanced Gas Turbine Systems Research (AGTSR) during October 1, 1995 to December 31, 1995, reports on changes in the AGTSR membership, describes 1993, 1994 and 1995 subcontract progress, third combustion workshop, first combustion specialty meeting, materials workshop, industrial internship, research topics highlighted, and seminar sponsorship.

  3. Computational mechanics research and support for aerodynamics and hydraulics at TFHRC, year 2 quarter 1 progress report.

    SciTech Connect

    Lottes, S.A.; Bojanowski, C.; Shen, J.; Xie, Z.; Zhai, Y.

    2012-04-09

    The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. The analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water effects on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to improve design allowing for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel in the TFHRC wind engineering laboratory. This quarterly report documents technical progress on the project tasks for the period of October through December

  4. Computational mechanics research and support for aerodynamics and hydraulics at TFHRC, year 1 quarter 3 progress report.

    SciTech Connect

    Lottes, S.A.; Kulak, R.F.; Bojanowski, C.

    2011-08-26

    The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. The analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water loads on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to assess them for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, vehicle stability under high wind loading, and the use of electromagnetic shock absorbers to improve vehicle stability under high wind conditions. This quarterly report documents technical progress on the project tasks

  5. Computational mechanics research and support for aerodynamics and hydraulics at TFHRC, year 2 quarter 2 progress report

    SciTech Connect

    Lottes, S.A.; Bojanowski, C.; Shen, J.; Xie, Z.; Zhai, Y.

    2012-06-28

    The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. The analysis methods employ well benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water effects on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to improve design allowing for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel in the TFHRC wind engineering laboratory. This quarterly report documents technical progress on the project tasks for the period of January through March

  6. Computational mechanics research and support for aerodynamics and hydraulics at TFHRC year 1 quarter 4 progress report.

    SciTech Connect

    Lottes, S.A.; Kulak, R.F.; Bojanowski, C.

    2011-12-09

    The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. The analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water effects on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to assess them for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel in the TFCHR wind engineering laboratory, vehicle stability under high wind loading, and the use of electromagnetic shock absorbers to improve vehicle stability under

  7. Design-Based Research and Technology-Enhanced Learning Environments

    ERIC Educational Resources Information Center

    Wang, Feng; Hannafin, Michael J.

    2005-01-01

    During the past decade, design-based research has demonstrated its potential as a methodology suitable to both research and design of technology-enhanced learning environments (TELEs). In this paper, we define and identify characteristics of design-based research, describe the importance of design-based research for the development of TELEs,…

  8. The Legal Research Method: An Approach to Enhance Nursing Science.

    ERIC Educational Resources Information Center

    Kjervik, Diane K.; King, Floris E.

    1990-01-01

    The nature of legal research as it relates to other research methods used in nursing is described, its history discussed, and its relevance to nursing science examined. The phenomenological method is the one considered most likely to be enhanced by legal research. Also described are steps in the legal research process and source materials.…

  9. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2012

    SciTech Connect

    Voyles, JW

    2012-10-10

    Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile research sites are collected and routed to the Data Management Facility (DMF) for processing in near-real-time. Instrument and processed data are then delivered approximately daily to the ARM Data Archive, where they are made freely available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  10. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1–December 31, 2012

    SciTech Connect

    Voyles, JW

    2013-01-11

    Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile research sites are collected and routed to the Data Management Facility (DMF) for processing in near-real-time. Instrument and processed data are then delivered approximately daily to the ARM Data Archive, where they are made freely available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year dating back to 1998.

  11. Enhancing Theory Courses with Racially Inclusive Research.

    ERIC Educational Resources Information Center

    Bramlett-Solomon, Sharon; Liebler, Carol M.

    1999-01-01

    Offers a blueprint that instructors of mass media theory courses can adopt to expose students to racially inclusive research in order to encourage students to explore and employ relevant theories when probing media and race questions. Offers examples of inclusive media research, examining six prominent theories: selective-perception theory,…

  12. Base program on energy-related research. Quarterly report, February 1995--April 1995

    SciTech Connect

    1995-06-01

    This report describes research performed by the Morgantown Energy Technology Center in the following areas: oil and gas; advanced systems describing a coal solid fuel and an eastern shale oil residue waste program; environmental remediation; and waste management technologies.

  13. Decontamination Systems Information and Research Program. Quarterly technical progress report, July 1--September 30, 1993

    SciTech Connect

    Not Available

    1993-10-01

    Progress reports are presented for the following projects: systematic assessment of the state of hazardous waste clean-up technologies; site remediation technologies--drain-enhanced soil flushing (DESF) for organic contaminants removal; excavation systems for hazardous waste sites; chemical destruction of polychlorinated biphenyls; development of organic sensors--monolayer and multilayer self-assembled films for chemical sensors; Winfield Lock and Dam remediation; Winfield cleanup survey; assessment of technologies for hazardous waste site remediation--non-treatment technologies and pilot scale test facility implementation; assessment of environmental remediation storage technology; assessment of environmental remediation excavation technology; assessment of environmental remediation monitoring technology; and remediation of hazardous sites with steam reforming.

  14. Decontamination Systems Information and Research Program. Quarterly technical progress report, January 1--March 31, 1993

    SciTech Connect

    Not Available

    1993-04-01

    This reports reports the progress/efforts performed on six technical projects: 1. systematic assessment of the state of hazardous waste clean-up technologies; 2. site remediation technologies (SRT):drain- enhanced soil flushing for organic contaminants removal; 3. SRT: in situ bio-remediation of organic contaminants; 4. excavation systems for hazardous waste sites: dust control methods for in-situ nuclear waste handling; 5. chemical destruction of polychlorinated biphenyls; and 6. development of organic sensors: monolayer and multilayer self-assembled films for chemical sensors.

  15. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-September 1999

    SciTech Connect

    Jubin, R.T.

    2001-04-16

    quarter, MSRE Remediation Studies focused on recovery of {sup 233}U and its conversion to a stable oxide and radiolysis experiments to permit remediation of MSRE fuel salt. Investigation of options for final disposition of the {sup 233}U inventory represents a new initiative within this area. In the area of Chemistry Research, activities included studies relative to molecular imprinting for use in areas such as selective sorption, chemical sensing, and catalysis, as well as spectroscopic investigation into the fundamental interaction between ionic solvents and solutes in both low- and high-temperature ionic liquids.

  16. Exploratory research on novel coal liquefaction concept. [Quarterly report], May 24--September 30, 1995

    SciTech Connect

    Burke, F.P.; Winschel, R.A.; Brandes, S.D.; Derbyshire, F.J.; Kimber, G.; Anderson, R.K.; Carter, S.D.; Peluso, M.

    1995-11-08

    CONSOL Inc., the University of Kentucky/Center for Applied Energy Research (CAER), and LDP Associates are conducting a three-year research program to explore the technical and economic feasibility of a novel direct coal liquefaction concept. The purpose of this research program is to explore a new approach to direct coal liquefaction in which the primary coal dissolution step is effected by chemical rather than thermal cleavage of bonds in the coal. This is done at a temperature which is significantly lower than that typically used in conventional coal liquefaction. Reaction at this low temperature results in high conversion of the coal to a solubilized form, with little hydrocarbon gas make, and avoids the thermally induced retrograde reactions which are unavoidable in conventional thermal processes. In addition, for low-rank coals, a substantial portion of the oxygen in the coal is removed as CO and CO{sub 2} during the dissolution. The higher selectivity to liquid products and rejection of oxygen as carbon oxides should result in improved hydrogen utilization. The basis of the novel concept is the discovery made by CONSOL R&D that certain hydride transfer agents are very active for coal dissolution at temperatures in the range of 350{degree}C. Because of the exploratory nature of the research, the project is divided into sequential tasks that are designed to first evaluate key elements of the process is presented for the following tasks: management plan; evaluation of process steps; engineering and economic study and reporting.

  17. Inclusion for Young Children with Disabilities: A Quarter Century of Research Perspectives

    ERIC Educational Resources Information Center

    Odom, Samuel L.; Buysse, Virginia; Soukakou, Elena

    2011-01-01

    Issues affecting inclusion of young children with disabilities over the last 25 years are discussed. A brief history of early childhood inclusion is followed by a discussion of definition, terminology, and models for inclusive services. A summary of synthesis points derived from the research literature focuses on critical outcomes for children…

  18. Advanced gas turbine systems research. Technical quarterly progress report, October 1--December 31, 1997

    SciTech Connect

    1997-12-31

    Major accomplishments by AGTSR during this reporting period are highlighted and then amplified in later sections of this report. Main areas of research are combustion, heat transfer, and materials. Gas turbines are used for power generation by utilities and industry and for propulsion.

  19. Advanced gas turbine systems research. Technical quarterly progress report, April 1--June 30, 1998

    SciTech Connect

    1998-09-01

    Major accomplishments by AGTSR during this reporting period are highlighted and then amplified in later sections of this report. Main areas of research are combustion, heat transfer, and materials. Gas turbines are used for power generation by utilities and industry and for propulsion.

  20. [Enhancement of coal liquefaction efficiency with ceramic membrane reactors]. Second final quarterly report, July--September 1993

    SciTech Connect

    Not Available

    1993-12-31

    In this quarter, the gas chromatography GC calibrations of compound No. 9, No. 11 and toluene were established. The results were accurate and reproducible using wide bore capillary column. A three-component mixture -- toluene, tetraline and compound No. 9 --also could be analyzed with a modified injection procedure. The experimental procedures of modified membrane separation were finalized based on the literature review. The coal-liquid separation could be described as an ultrafiltration process. For microporous membrane separation, two transport phenomenons, molecular diffusion and convection, were the most important mechanisms. The hindrance factors of those mechanisms were necessary to evaluate the separation performance of the membrane and to design the catalytic membrane reactor. Experimentally, with the relation of rejection and permeate flux, the hindrance factors can be calculated based on the simplified Niemi-Palosaari method. In this quarter, we first tested the 40{Angstrom} pore membrane. The preliminary results indicated that the concentration polarization was observed due to the low Reynolds number, i.e. low feed flow rate. The experimental instrumentation and procedures will be improved in the future. These factors will be used to conduct the modification of the membrane and the catalytic membrane reactor. The model compound for catalytic membrane was compound No. 9, 1-[4-[2(Phenylethyl) benzyl

  1. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report January 1–March 31, 2012

    SciTech Connect

    Voyles, JW

    2012-04-13

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  2. Solid state research. Quarterly technical report 1 February--30 April 1999

    SciTech Connect

    Shaver, D.C.

    1999-09-01

    This report covers in detail the research work of the Solid State Division at Lincoln Laboratory for the period 1 February--30 April 1999. The topics covered are Quantum Electronics, Electro-optical Materials and Devices, Submicrometer Technology, Biosensor and Molecular Technologies, Microelectronics, Analog Device Technology, and Advanced Silicon Technology. Funding is provided by several DoD organizations--including the Air Force, Army, BMDO, DARPA, Navy, NSA, and OSD--and also by the DOE, NASA, and NIST.

  3. Solid state research. Quarterly technical report, 1 November 1998--31 January 1999

    SciTech Connect

    Shaver, D.C.

    1999-06-11

    This report covers in detail the research work of the Solid State Division at Lincoln Laboratory for the period 1 November 1998--31 January 1999. The topics covered are Quantum Electronics, Electro-optical Materials and Devices, Submicrometer Technology, Biosensor and Molecular Technologies, Microelectronics, Analog Device Technology, and Advanced Silicon Technology. Funding is provided by several DoD organizations -- including the Air Force, Army, BMDO, DARPA, Navy, NSA, and OSD -- and also by the DOE, NASA, and NIST.

  4. Solid state research. Quarterly technical report, 1 August--31 October 1998

    SciTech Connect

    Shaver, D.C.

    1999-03-23

    This report covers in detail the research work of the Solid State Division at Lincoln Laboratory for the period 1 August through 31 October 1998. The topics covered are Quantum Electronics, Electro-optical Materials and Devices, Submicrometer Technology, Biosensor and Molecular Technologies, Microelectronics, Analog Device Technology, and Advanced Silicon Technology. Funding is provided by several DoD organizations -- including the Air Force, Army, BMDO, DARPA, Navy, NSA, and OSD -- and also by the DOE, NASA, and NIST.

  5. Enhancing Student Understanding of Environmental Sciences Research.

    ERIC Educational Resources Information Center

    Gurwick, Noel P.; Krasny, Marianne E.

    2001-01-01

    Presents an authentic semi-guided student research project. Studies the impact of a regional invasion of non-indigenous worm species on decomposition in forest soils. Describes the experimental design, data analysis, and interpretation of the data. (Contains 16 references.) (YDS)

  6. [National Institute for Petroleum and Energy Research] quarterly technical report, July 1--September 30, 1991. Volume 2, Energy production research

    SciTech Connect

    Not Available

    1992-01-01

    The report is submitted in two volumes, Volume I representing the work accomplished under Fuels Research and Volume II the work for Energy Production Research during the period July 1--Sept. 30, 1991. Topics covered include: chemical flooding, gas displacement, thermal recovery, geoscience technology, resource assessment technology, microbial technology, environmental technology.

  7. Shale oil value enhancement research. Quarterly report, June 1 - August 31, 1993

    SciTech Connect

    Bunger, J.W.; Russell, C.P.; Devineni, P.A.V.; Cogswell, D.E.; Wiser, J.W.

    1993-12-31

    All tasks are on schedule, or ahead of schedule. Particular progress has been made in identifying industrial entities, commodities and specialty products of target interest for shale oil-derived products. There is clearly a major emphasis worldwide on new chemicals and shale oil-derived structures are similar to many of these chemicals of interest. Details of the mathematical modeling, programming and algorithm development have progressed with excellent results. Considerable effort will be required to interface these with the output of the gc/ms but we are receiving excellent support from Hewlett Packard in this regard. The ability to concentrate particularly valuable compounds with reasonable projected cost processes continues to show promise. In one system, a single-stage extraction recovered 87% of the total nitrogen in an extract representing only 33% of the fraction. Special attention is being paid to both nitrogen types and oxygen types. The raffinates from the polar solvent extractions will be evaluated for their oil and wax contents. All of the start-up infrastructure is now in place. Subcontracts have been initiated and equipment and supplies have been procured. We are now planning a major push to reach some general findings by early in 1994. From these findings, we will be prepared to focus on experimental verification of process design needed for the second program phase.

  8. Shale oil value enhancement research. First quarterly technical progress report, March 1, 1993--May 31, 1993

    SciTech Connect

    Bunger, J.W.; Russell, C.P.; Devineni, P.A.V.; Cogswell, D.E.; Wiser, J.W.

    1993-06-25

    Concurrent progress is being made in all key areas, namely, separation, characterization and market assessment. The market area, not one of our traditionally strong areas, has been going better than expected. We believe this is due mainly to the emerging interest in new and unconventional materials. The characterization work has been progressing solidly with the fundamental Z-BASIC correlations providing information not heretofore available in the chemical literature. Our agreement with Hewlett-Packard regarding the purchase of equipment at a reduced price is complete and the gc-ms will be ordered shortly. The separation work has progressed satisfactorily although an unexpected amount of time has been required for ``facilities`` and ``equipment`` related issues. Some of these issues have dealt with safety and regulatory compliance when storing larger quantities of samples. These now seem to be solved. We have a lot of direct experience in shale oil separations dating back to the OXY project and before. Also, we will streamline our work by going to prepacked micro-separation tools for some of our separation characterization work. This will allow us to stay on schedule. Overall, we are on schedule with the project. All administration requirements are in place and the accounting and financial records are current.

  9. Shale oil value enhancement research. Quarterly report, October 1, 1993--December 31, 1993

    SciTech Connect

    1997-05-01

    The first year of this effort was focussed on the following broad objectives: (1) Analyze the molecular types present in shale oil (as a function of molecular weight distribution); (2) Determine the behavior of these molecular types in liquid-liquid extraction; (3) Develop the analytical tools needed to systematize the process development; (4) Survey the markets to assure that these have high value uses for the types found in shale oil; (5) Explore selective process means for extracting/converting shale oil components into concentrates of potentially marketable components; (6) Compile overview of the venture development strategy and begin implementation of that strategy. Each of these tasks has been completed in sufficient detail that we can now focus on filling in the knowledge gaps evident from the overview.

  10. E-Portfolio for Enhancing Graduate Research Supervision

    ERIC Educational Resources Information Center

    Le, Quynh

    2012-01-01

    Purpose: E-Portfolio is a powerful tool for demonstrating evidence of learning and achievements in graduate research. The purpose of this paper is to examine the concept, structure and functions of e-Portfolio in graduate research and discuss the significance of the role of e-Portfolio in enhancing the quality of graduate research students and…

  11. Enhancing Effective Instructional Time: A Review of Research.

    ERIC Educational Resources Information Center

    Suarez, Tanya M.; And Others

    1991-01-01

    This policy brief was written to provide the North Carolina State Board of Education with a summary of research on enhancing effective instructional time. The impetus for extending school time appears to stem from two primary sources: international comparisons, and research on the relationship between time and learning. Research findings indicate…

  12. Decontamination systems information and research program. Quarterly report, January 1--March 31, 1997

    SciTech Connect

    1997-12-31

    Progress reports are given on the following projects: (A) Subsurface contaminants, containment and remediation: 1.1 Characteristic evaluation of grout barriers in grout testing chamber; 1.2 Development of standard test protocols and barrier design models for desiccation barriers; 1.3 Development of standard test protocols and barrier design models for in-situ formed barriers -- technical support; 1.4 Laboratory studies and field testing at the DOE/RMI Extrusion Plant (Ashtabula, Ohio); 1.5 Use of drained enhanced soil flushing for contaminants removal; (B) Mixed waste characterization, treatment and disposal: Analysis of the Vortec cyclone melting system for remediation of PCB contaminated soils using computational fluid dynamics; (C) Decontamination and decommissioning: 3.1 Production and evaluation of biosorbents and cleaning solutions for use in D and D; 3.2 Use of Spintek centrifugal membrane technology and sorbents/cleaning solutions in the D and D of DOE facilities; (D) Cross-cutting innovative technologies: 4.1 Use of centrifugal membrane technology with novel membranes to treat hazardous/radioactive wastes; 4.2 Environmental pollution control devices based on novel forms of carbon; 4.3 Design of rotating membrane filtration system for remediation technologies; and (E) Outreach: Small business technical based support.

  13. Jointly sponsored research program quarterly technical progress report, January--March 1994

    SciTech Connect

    Not Available

    1994-08-01

    Progress reports are presented for the following tasks: Development and demonstration of a practical electric downhole steam generator for thermal recovery of heavy oil and tar; wetting behavior of selected crude oil/brine/rock systems; coal gasification, power generation, and product market study; impact of leachate from clean coal technology waste on the stability of clay liners; investigation of coprocessing of heavy oil, automobile shredder residue, and coal; injection into coal seams for simultaneous CO{sub 2} mitigation and enhanced recovery of coalbed methane; optimization of carbonizer operations in the FMC coke process; chemical sensor and field screening technology development; demonstration of the Koppelman ``Series C`` Power River Basin coal as feed; remote chemical sensor development; market assessment and technical feasibility study of PFBC ash use; solid-state NMR analysis and interpretation of naturally and artificially matured kerogens; Crow{trademark} field demonstration with Bell Lumber and Pole; ``B`` series pilot plant tests; and in-situ treatment of manufactured gas plant contaminated soils demonstration program.

  14. Decontamination systems information and research program. Quarterly report, April--June 1996

    SciTech Connect

    1996-07-01

    This report contains separate reports on the following subtasks: analysis of the Vortec cyclone melting system for remediation of PCB contaminated soils using CFD; drain enhanced soil flushing using prefabricated vertical drains; performance and characteristics evaluation of acrylates as grout barriers; development of standard test protocol barrier design models for desiccation barriers, and for in-situ formed barriers; in-situ bioremediation of chlorinated solvents at Portsmouth Gaseous Diffusion Plant; development of a decision support system and a prototype database for management of the EM50 technology development program; GIS-based infrastructure for site characterization and remediation; treatment of mixed wastes via fluidized bed steam reforming; use of centrifugal membrane technology to treat hazardous/radioactive waste; environmental pollution control devices based on novel forms of carbon; development of instrumental methods for analysis of nuclear wastes and environmental materials; production and testing of biosorbents and cleaning solutions for D and D; use of SpinTek centrifugal membrane and sorbents/cleaning solutions for D and D; West Virginia High Tech Consortium Foundation--Environmental support program; small business interaction opportunities; and approach for assessing potential voluntary environmental protection.

  15. Cooperative research program in coal liquefaction. Quarterly report, May 1, 1993--October 31, 1993

    SciTech Connect

    Hoffman, G.P.

    1994-07-01

    This report summarizes progress in four areas of research under the general heading of Coal Liquefaction. Results of studies concerning the coliquefaction of coal with waste organic polymers or chemical products of these polymers were reported. Secondly, studies of catalytic systems for the production of clean transportation fuels from coal were discussed. Thirdly, investigations of the chemical composition of coals and their dehydrogenated counterparts were presented. These studies were directed toward elucidation of coal liquefaction processes on the chemical level. Finally, analytical methodologies developed for in situ monitoring of coal liquefaction were reported. Techniques utilizing model reactions and methods based on XAFS, ESR, and GC/MS are discussed.

  16. Fuel-cell applied research: electrocatalysis and materials. Quarterly report, January 1-March 31, 1980

    SciTech Connect

    Srinivasan, S.; Isaacs, H. S.; McBreen, J.; O'Grady, W. E.; Olender, H.; Olmer, L. J.; Schouler, E. J.L.; Kordesch, K. V.

    1980-09-01

    Research on phosphoric acid-electrolyte fuel cells and high-temperature solid-electrolyte fuel cells is reported. The corrosion behavior of five Cabot Corporation furnace black carbon supports for platinum electrocatalysts in phosphoric acid was evaluated using a cyclic voltammetric technique. The electrode kinetic studies of the hydrogen oxidation and the oxygen reduction reactions on smooth platinum in phosphoric acid, previously used as the electrolyte in an Energy Research Corporation fuel cell, revealed that the entire decrease in performance of a fuel cell in this impure electrolyte, as compared with fresh phosphoric acid at operating temperatures above 160/sup 0/C, is entirely due to the impurity. A mathematical model which describes the slow oxygen adsorption step was compared with the experimental polarization and impedance results of uncontaminated platinum electrodes in contact with yttria-stabilized-zirconia electrolytes. Attempts to explain discrepancies were made by assuming that the adsorption of oxygen followed a Langmuir and then a Frumkin adsorption isotherm. It was concluded that a site variation occurred on the electrode surface when potentials were varied in the cathodic region. Investigations of gold electrodes in reducing environments have shown that the polarization behavior is similar to that of platinum. The direct relationship between the limiting current for H/sub 2/ oxidation and P/sub H2O/P/sub H2/ indicates the presence of a slow chemical step involving H/sub 2/. (WHK)

  17. Fuel cell applied research: electrocatalysis and materials. Quarterly report, October 1-December 31, 1979

    SciTech Connect

    Srinivasan, S.; Isaacs, H.S.; McBreen, J.; O'Grady, W.E.; Olender, H.; Olmer, L.J.; Schouler, E.J.L.; Kordesch, K.V.

    1980-05-01

    Research on electrocatalysis of phosphoric acid fuel cell reactions is reported. Five types of carbon obtained from Cabot Laboratories (Cabot designation of carbons - Monarch 1300, CSX 98, Mogul L, Vulcan XC-72R and Regan 660R) were compared as supports for platinum electrocatalysts. Experiments were conducted to determine the wetting characteristics of the carbons on the electrocatalytic activity of supported platinum for oxygen reduction. The latter was investigated by a cyclic voltammetry technique. The changes in the electrochemically active surface areas on increasing the temperature from 25/sup 0/ to 135/sup 0/C and after carrying out oxygen reduction were measured from the hydrogen desorption charge in the cyclic voltammograms. Also, research on electrode kinetics in high-temperature solid electrolyte fuel cells is described. The influence of electrode material on oxygen reduction kinetics and the reaction mechanism on platinum at interfaces with solid electrolytes were investigated. Direct current and alternating current impedance techniques were used. Studies on the oxidation of H/sub 2/ on platinum and gold interfaces with the zirconia electrolyte interface were begun. Experiments on single contact ball electrodes of platinum were used. Slow potential sweep techniques (scan rate 5 mV/sec) were used. Results are presented and discussed. (WHK)

  18. Advanced moisture sensor research and development. Quarterly progress report, August 1, 1992--October 31, 1992

    SciTech Connect

    De Los Santos, A.

    1992-10-31

    During this period, testing of the system continued at the American Fructose (AF) plant in Dimmitt, Texas. Testing at the first two sites (dryer output and dryer input) was completed. Following the testing at the second site, the sensor was returned to the Southwest Research Institute (SwRI) laboratories for modifications and for fitting of the additional components required to allow sampling of the material to be measured at the third site. These modifications were completed during this reporting period, and the system is scheduled to be installed at the third site (Rotary Vacuum Filter output) early in the next period. Laboratory measurements of corn germ (to be measured at the fourth site) and a variety of fruits and vegetables (one of which will be measured at the fifth site) have also continued during this period.

  19. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 – September 30, 2006

    SciTech Connect

    DL Sisterson

    2006-10-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998.

  20. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 – June 30, 2006

    SciTech Connect

    DL Sisterson

    2006-07-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year; and (2) site and fiscal year dating back to 1998.

  1. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1–December 31, 2011

    SciTech Connect

    Voyles, JW

    2012-01-09

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  2. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 – September 30, 2009

    SciTech Connect

    DL Sisterson

    2009-10-15

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data then are sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by 1) individual data stream, site, and month for the current year and 2) site and fiscal year (FY) dating back to 1998.

  3. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - July 1 - September 30, 2008

    SciTech Connect

    DL Sisterson

    2008-09-30

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  4. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2008

    SciTech Connect

    DL Sisterson

    2008-06-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  5. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2007

    SciTech Connect

    DL Sisterson

    2007-07-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  6. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - October 1 - December 31, 2008

    SciTech Connect

    Sisterson, DL

    2009-01-15

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  7. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 – March 31, 2007

    SciTech Connect

    DL Sisterson

    2007-04-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  8. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - January 1 - March 31, 2008

    SciTech Connect

    Sisterson, DL

    2008-04-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  9. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report: October 1 - December 31, 2010

    SciTech Connect

    Sisterson, DL

    2011-03-02

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  10. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2007

    SciTech Connect

    DL Sisterson

    2008-01-08

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  11. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 - March 31, 2009

    SciTech Connect

    DL Sisterson

    2009-03-17

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  12. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 - September 30, 2007

    SciTech Connect

    DL Sisterson

    2007-10-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  13. Research and development for the declassification productivity initiative. Quarterly report, January 1998--June 30, 1998

    SciTech Connect

    1998-07-01

    This report relates to the development of automated analysis systems for the classification and declassification of documents. This report reflects the intended deliverables on the project at the end of the second year carryover project period. Products include: (1) an interactive support system to combine and coordinate classification and representation technologies, (2) a test suite for optical character and document recognition, (3) a classification/declassification system using logical analysis. Experimental results for the classification/declassification system are included in the report. Except for the TIPSTER component, which has been concluded, the other three components are proceeding with significant developments. It is proposed that the balance funds for the TIPSTER component be used to conclude the Knowledge Representation research.

  14. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2011

    SciTech Connect

    Voyles, JW

    2011-10-10

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  15. Base Program on Energy Related Research: Quarterly report, August 1-October 31, 1994

    SciTech Connect

    1994-12-31

    This document describes research performed at the Morgantown Energy Technology Center in the areas of oil and gas, advanced systems application, environmental technologies, applied energy science and remediation. The following subtasks are described: CROW{sup TM} Process Modeling, Development of a Portable Data Acquisition System and Coalbed Methane Simulator, Tank Bottom Waste Processing using the TaBoRR{sup TM} Process, Process Support and Development, Eastern Shale Oil Residue as an Asphalt Additive, Solid Waste Management, Remediation of Contaminated Soils, The Syn-Ag{sup TM} Process: Coal Combustion Ash Management Option, the Maxi-Acid{sup TM} Process: In- sit Amelioration of Acid Mine Drainage, Spill Test Facility Database, Heavy Oil/Plastics Co-Processing, Fossil Fuel and Hydrocarbon Conversion Using Hydrogen-Rich Plasmas, and North Site Remediation.

  16. Commercial nuclear waste research and development program. Quarterly report, January-March 1982

    SciTech Connect

    Hakl, A.R.

    1982-04-01

    The Westinghouse Advanced Energy Systems Division Nevada Operations, under contract to the US Department of Energy, provides trained personnel and services at the E-MAD Facility required for nuclear materials handling, packaging, data gathering, and other related activities in support of the Commercial Nuclear Waste Research and Development Programs. Support is provided to research programs, including: Waste packaging experiments, spent fuel test - Climax (SFT-C), Hanford Near Surface Test Facility (NSTF), Tests of spent reactor fuel interim handling and storage, tests to assess safety of transport systems for spent reactor fuel and solidified high level nuclear waste, and other special waste package development and handling tests as requested by the DOE. Activities reported have been performed to meet subtask objectives of the Nevada Nuclear Waste Storage Investigations (NNWSI) planning documentation for Fiscal Year 1982: Preliminary facility designs, process flow charts, and recommendations for equipment and services which would be required in a Generic Packaging Facility (GPF) co-located with the proposed Test and Evaluation Facility (TEF); E-MAD facility descriptions, logic diagrams, and process flow charts for E-MAD packaging of nuclear waste for the proposed TEF, if the TEF were not located on the Nevada Test Site; Preliminary cost estimates and schedules for a proposed large scale fuel storage demonstration, as requested by DOE/Headquarters; a remote source integrity check of the Cobalt 60 source; calibration and recertification of the Astro Arc automatic welding system. Installation of illustrated alarm panel for the E-MAD Remote Area Monitor (RAM) system in the E-MAD gatehouse; and installation of the RAM/CAM (Constant Air Monitoring) system computer interface hardware.

  17. Microbial enhanced oil recovery research. [Peptides

    SciTech Connect

    Sharma, M.M.; Georgiou, G. )

    1991-01-01

    The objective of this work is to develop an engineering framework for the exploitation of microorganisms to enhance oil recovery. Specific goals include: (1) the production, isolation, chemical characterization and study of the physical properties of microbially produced surfactants; (2) development of simulators for MEOR; (3) model studies in sandstone cores for the characterization of the interactions between growing microbially cultures and oil reservoirs,; (4) design of operation strategies for the sequential injection of microorganisms and nutrient in reservoirs. Accomplishments are: (1) ultra low interfacial tensions (0.003 mN/M) were obtained between decane and 5% NaCl brine using biosurfactants obtained from Bacillus Licheniformis, JF-2 which is the lowest IFT ever reported for biosurfactants; (2) a method to was developed isolate the biosurfactant from the growth medium; (3) the structure of the isolated biosurfactant has been determined; (4) several techniques have been proposed to increase the yield of the surfactant; and (5) an MEOR simulator has been completed.

  18. Enhancing Transdisciplinary Research Through Collaborative Leadership

    PubMed Central

    Gray, Barbara

    2008-01-01

    Transcending the well-established and familiar boundaries of disciplinary silos poses challenges for even the most interpersonally competent scientists. This paper explores the challenges inherent in leading transdisciplinary projects, detailing the critical roles that leaders play in shepherding transdisciplinary scientific endeavors. Three types of leadership tasks are considered: cognitive, structural, and processual. Distinctions are made between leading small, co-located projects and large, dispersed ones. Finally, social-network analysis is proposed as a useful tool for conducting research on leadership, and, in particular, on the role of brokers, on complex transdisciplinary teams. PMID:18619392

  19. NASA Research Announcement for Space Suit Survivability Enhancement

    NASA Technical Reports Server (NTRS)

    Fredrickson, Thad H.; Ware, Joanne S.; Lin, John K.; Pastore, Christopher M.

    1998-01-01

    This report documents the research activities for space suit survivability material enhancements. Self-sealing mechanisms for the pressure envelope were addressed, as were improvements in materials for cut, puncture, and hypervelocity impact resistance.

  20. Microbial enhanced oil recovery research. [Peptides

    SciTech Connect

    Sharma, M.M.; Georgiou, G. )

    1992-01-01

    The surface active lipopeptide produced by Bacillus licheniformis JF-2 was isolated to near apparent homogeneity. NMR experiments revealed that this compound consists of a heptapeptide with an amino acid sequence similar to surfactin and a heterogeneous fatty acid consisting of the normal-, anteiso-, and iso- branched isomers. The surface activity of the B. licheniformis JF-2 surfactant was shown to depend on the presence of fermentation products and is strongly affected by the pH. Under conditions of optimal salinity and pH the interfacial tension against decane was 6 [times] 10[sup 3] mN/m which is one of the lowest values ever obtained with a microbial surfactant. Microbial compounds which exhibit particularly high surface activity are classified as biosurfactants. Microbial biosurfactants include a wide variety of surface and interfacially active compounds, such as glycolipids, lipopeptides polysaccharideprotein complexes, phospholipids, fatty acids and neutral lipids. Biosurfactants are easily biodegradable and thus are particularly suited for environmental applications such as bioremediation and the dispersion of oil spills. Bacillus licheniformis strain JF-2 has been shown to be able to grow and produce a very effective biosurfactant under both aerobic and anaerobic conditions and in the presence of high salt concentrations. The production of biosurfactants in anaerobic, high salt environments is potentially important for a variety of in situ applications such as microbial enhanced oil recovery. As a first step towards evaluating the commercial utility of the B. licheniformis JF-2 surfactant, we isolated t-he active. compound from the culture supernatant, characterized its chemical structure and investigated its phase behavior. We found that the surface activity of the surfactant is strongly dependent on the pH of the aqueous. phase. This may be important for the biological function of the surfactant and is of interest for several applications in surfactancy.

  1. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2004

    SciTech Connect

    Sisterson, DL

    2004-12-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The annual OPSMAX time for the Southern Great Plains (SGP) site is 8,322 hours per year (0.95 × 8,760, the number hours in a year, not including leap year). The annual OPSMAX for the North Slope Alaska (NSA) site is 7,884 hours per year (0.90 × 8,760), and that for the Tropical Western Pacific (TWP) site is 7,446 hours per year (0.85 × 8,760). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the

  2. VAO Tools Enhance CANDELS Research Productivity

    NASA Astrophysics Data System (ADS)

    Greene, Gretchen; Donley, J.; Rodney, S.; LAZIO, J.; Koekemoer, A. M.; Busko, I.; Hanisch, R. J.; VAO Team; CANDELS Team

    2013-01-01

    The formation of galaxies and their co-evolution with black holes through cosmic time are prominent areas in current extragalactic astronomy. New methods in science research are building upon collaborations between scientists and archive data centers which span large volumes of multi-wavelength and heterogeneous data. A successful example of this form of teamwork is demonstrated by the CANDELS (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey) and the Virtual Astronomical Observatory (VAO) collaboration. The CANDELS project archive data provider services are registered and discoverable in the VAO through an innovative web based Data Discovery Tool, providing a drill down capability and cross-referencing with other co-spatially located astronomical catalogs, images and spectra. The CANDELS team is working together with the VAO to define new methods for analyzing Spectral Energy Distributions of galaxies containing active galactic nuclei, and helping to evolve advanced catalog matching methods for exploring images of variable depths, wavelengths and resolution. Through the publication of VOEvents, the CANDELS project is publishing data streams for newly discovered supernovae that are bright enough to be followed from the ground.

  3. Enhanced Geothermal Systems (EGS) R&D Program, Status Report: Foreign Research on Enhanced Geothermal Systems

    SciTech Connect

    McLarty, Lynn; Entingh, Daniel

    2000-09-29

    This report reviews enhanced geothermal systems (EGS) research outside the United States. The term ''enhanced geothermal systems'' refers to the use of advanced technology to extract heat energy from underground in areas with higher than average heat flow but where the natural permeability or fluid content is limited. EGS covers the spectrum of geothermal resources from low permeability hydrothermal to hot dry rock.

  4. Oil recovery enhancement from fractured, low permeability reservoirs. Quarterly technical progress report, July 1, 1991--September 30, 1991

    SciTech Connect

    Poston, S.

    1995-03-01

    In one task, mathematical modeling and data analysis of various geologic surveys of petroleum and gas deposits are discussed. In a second task, well logs are correlated to enhanced recovery. In a third task, laboratory studies of petroleum displacement by carbon dioxide and water were discussed. Models of the displacement/enhanced recovery were presented and actual field trials were performed.

  5. Program of basic research on the utilization of coal-water mixture fuels. Quarterly report for the period ending September 30, 1981

    SciTech Connect

    Casassa, E.Z.; Padmanaban, J.; Parfitt, G.D.; Rao, S.A.; Rubin, E.S.; Sommer, H.T.; Toor, E.W.

    1981-01-01

    The objective of this research involves improving basic understanding of two areas of special importance to the successful use of coal-water slurries: mixture stability and atomization. The present report covers progress for the calendar quarter ending September 30, 1981; hence, reivews the start-up activities for the first three weeks of the project. Section 2 of this report reviews activities in the study of mixture stability. Section 3 discusses studies on the atomization of coal-water slurries. Sections 2 and 3 each are organized according to specific tasks listed in the proposal Statement of Work.

  6. Increasingly mobile: How new technologies can enhance qualitative research

    PubMed Central

    Moylan, Carrie Ann; Derr, Amelia Seraphia; Lindhorst, Taryn

    2015-01-01

    Advances in technology, such as the growth of smart phones, tablet computing, and improved access to the internet have resulted in many new tools and applications designed to increase efficiency and improve workflow. Some of these tools will assist scholars using qualitative methods with their research processes. We describe emerging technologies for use in data collection, analysis, and dissemination that each offer enhancements to existing research processes. Suggestions for keeping pace with the ever-evolving technological landscape are also offered. PMID:25798072

  7. Research Ethics and Participatory Research in an Interdisciplinary Technology-Enhanced Learning Project

    ERIC Educational Resources Information Center

    Tracy, Frances; Carmichael, Patrick

    2010-01-01

    This account identifies some of the tensions that became apparent in a large interdisciplinary technology-enhanced learning project as its members attempted to maintain their commitment to responsive, participatory research and development in naturalistic research settings while also "enacting" these commitments in formal research review…

  8. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: October-December 1997

    SciTech Connect

    Jubin, R.T.

    1999-02-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period October--December 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of Hot Cell Operations included efforts to optimize the processing conditions for Enhanced Sludge Washing of Hanford tank sludge, the testing of candidate absorbers and ion exchangers under continuous-flow conditions using actual supernatant from the Melton Valley Storage Tanks, and attempts to develop a cesium-specific spherical inorganic sorbent for the treatment of acidic high-salt waste solutions. Within the area of Process Chemistry and Thermodynamics, the problem of solids formation in process solutions from caustic treatment of Hanford sludge was addressed and experimental collaborative efforts with Russian scientists to determine the solidification conditions of yttrium barium, and copper oxides from their melts were completed.

  9. Enhancing Field Research Methods with Mobile Survey Technology

    ERIC Educational Resources Information Center

    Glass, Michael R.

    2015-01-01

    This paper assesses the experience of undergraduate students using mobile devices and a commercial application, iSurvey, to conduct a neighborhood survey. Mobile devices offer benefits for enhancing student learning and engagement. This field exercise created the opportunity for classroom discussions on the practicalities of urban research, the…

  10. Visual Methodology in Classroom Inquiry: Enhancing Complementary Qualitative Research Designs

    ERIC Educational Resources Information Center

    Kingsley, Joanne

    2009-01-01

    This article presents the argument that combining visual methods with other qualitative research methods enhances the inherent strengths of each methodology and allows new understandings to emerge. These would otherwise remain hidden if only one method were used in isolation. In a qualitative inquiry of an elementary teacher's constructivist…