Science.gov

Sample records for enhances proteasome activity

  1. Facilitated Tau Degradation by USP14 Aptamers via Enhanced Proteasome Activity

    PubMed Central

    Lee, Jung Hoon; Shin, Seung Kyun; Jiang, Yanxialei; Choi, Won Hoon; Hong, Chaesun; Kim, Dong-Eun; Lee, Min Jae

    2015-01-01

    The ubiquitin-proteasome system (UPS) is the primary mechanism by which intracellular proteins, transcription factors, and many proteotoxic proteins with aggregation-prone structures are degraded. The UPS is reportedly downregulated in various neurodegenerative disorders, with increased proteasome activity shown to be beneficial in many related disease models. Proteasomes function under tonic inhibitory conditions, possibly via the ubiquitin chain-trimming function of USP14, a proteasome-associated deubiquitinating enzyme (DUB). We identified three specific RNA aptamers of USP14 (USP14-1, USP14-2, and USP14-3) that inhibited its deubiquitinating activity. The nucleotide sequences of these non-cytotoxic USP14 aptamers contained conserved GGAGG motifs, with G-rich regions upstream, and similar secondary structures. They efficiently elevated proteasomal activity, as determined by the increased degradation of small fluorogenic peptide substrates and physiological polyubiquitinated Sic1 proteins. Additionally, proteasomal degradation of tau proteins was facilitated in the presence of the UPS14 aptamers in vitro. Our results indicate that these novel inhibitory UPS14 aptamers can be used to enhance proteasome activity, and to facilitate the degradation of proteotoxic proteins, thereby protecting cells from various neurodegenerative stressors. PMID:26041011

  2. Altered Composition of Liver Proteasome Assemblies Contributes to Enhanced Proteasome Activity in the Exceptionally Long-Lived Naked Mole-Rat

    PubMed Central

    Rodriguez, Karl A.; Edrey, Yael H.; Osmulski, Pawel; Gaczynska, Maria; Buffenstein, Rochelle

    2012-01-01

    The longest-lived rodent, the naked mole-rat (Bathyergidae; Heterocephalus glaber), maintains robust health for at least 75% of its 32 year lifespan, suggesting that the decline in genomic integrity or protein homeostasis routinely observed during aging, is either attenuated or delayed in this extraordinarily long-lived species. The ubiquitin proteasome system (UPS) plays an integral role in protein homeostasis by degrading oxidatively-damaged and misfolded proteins. In this study, we examined proteasome activity in naked mole-rats and mice in whole liver lysates as well as three subcellular fractions to probe the mechanisms behind the apparently enhanced effectiveness of UPS. We found that when compared with mouse samples, naked mole-rats had significantly higher chymotrypsin-like (ChT-L) activity and a two-fold increase in trypsin-like (T-L) in both whole lysates as well as cytosolic fractions. Native gel electrophoresis of the whole tissue lysates showed that the 20S proteasome was more active in the longer-lived species and that 26S proteasome was both more active and more populous. Western blot analyses revealed that both 19S subunits and immunoproteasome catalytic subunits are present in greater amounts in the naked mole-rat suggesting that the observed higher specific activity may be due to the greater proportion of immunoproteasomes in livers of healthy young adults. It thus appears that proteasomes in this species are primed for the efficient removal of stress-damaged proteins. Further characterization of the naked mole-rat proteasome and its regulation could lead to important insights on how the cells in these animals handle increased stress and protein damage to maintain a longer health in their tissues and ultimately a longer life. PMID:22567116

  3. Proteasome activator REGgamma enhances coxsackieviral infection by facilitating p53 degradation.

    PubMed

    Gao, Guang; Wong, Jerry; Zhang, Jingchun; Mao, Ivy; Shravah, Jayant; Wu, Yan; Xiao, Allen; Li, Xiaotao; Luo, Honglin

    2010-11-01

    Coxsackievirus B3 (CVB3) is a small RNA virus associated with diseases such as myocarditis, meningitis, and pancreatitis. We have previously demonstrated that proteasome inhibition reduces CVB3 replication and attenuates virus-induced myocarditis. However, the underlying mechanisms by which the ubiquitin/proteasome system regulates CVB replication remain unclear. In this study, we investigated the role of REGγ, a member of the 11S proteasome activator, in CVB3 replication. We showed that overexpression of REGγ promoted CVB3 replication but that knockdown of REGγ led to reduced CVB3 replication. We further demonstrated that REGγ-mediated p53 proteolysis contributes, as least in part, to the proviral function of REGγ. Although total protein levels of REGγ remained unaltered after CVB3 infection, virus infection induced a redistribution of REGγ from the nucleus to the cytoplasm, rendering an opportunity for a direct interaction of REGγ with viral proteins and/or host proteins (e.g., p53), which controls viral growth and thereby enhances viral infectivity. Further analyses suggested a potential modification of REGγ by SUMO following CVB3 infection, which was verified by both in vitro and in vivo sumoylation assays. Sumoylation of REGγ may play a role in its nuclear export during CVB3 infection. Taken together, our results present the first evidence that the host REGγ pathway is utilized and modified during CVB3 infection to promote efficient viral replication. PMID:20719955

  4. Selective and potent Akt inhibition triggers anti-myeloma activities and enhances fatal endoplasmic reticulum stress induced by proteasome inhibition

    PubMed Central

    Mimura, Naoya; Hideshima, Teru; Shimomura, Toshiyasu; Suzuki, Rikio; Ohguchi, Hiroto; Rizq, Ola; Kikuchi, Shohei; Yoshida, Yasuhiro; Cottini, Francesca; Jakubikova, Jana; Cirstea, Diana; Gorgun, Gullu; Minami, Jiro; Tai, Yu-Tzu; Richardson, Paul G.; Utsugi, Teruhiro; Iwama, Atsushi; Anderson, Kenneth C.

    2014-01-01

    The PI3K/Akt pathway plays a crucial role in the pathogenesis of multiple myeloma (MM) in the bone marrow (BM) milieu. However, efficacy of selective and potent Akt inhibition has not yet been fully elucidated. In this study, we therefore examined the biologic impact of selective and potent Akt inhibition by a novel allosteric inhibitor TAS-117. TAS-117 induced significant growth inhibition, associated with downregulation of phosphorylated Akt (p-Akt), selectively in MM cell lines with high baseline p-Akt. Cytotoxicity of TAS-117 was also observed in patients MM cells, but not in normal peripheral blood mononuclear cells. Importantly, TAS-117 induced significant cytotoxicity in MM cells even in the presence of BM stromal cells, associated with inhibition of IL-6 secretion. Oral administration of TAS-117 significantly inhibited human MM cell growth in murine xenograft models. TAS-117 triggered apoptosis and autophagy, as well as induction of endoplasmic reticulum (ER) stress response with minimal expression of CHOP, a fatal ER-stress marker. Importantly, TAS-117 enhanced bortezomib-induced cytotoxicity, associated with increased CHOP and PARP cleavage and blockade of bortezomib-induced p-Akt, suggesting that TAS-117 augments bortezomib-induced ER stress and apoptotic signaling. Carfilzomib-induced cytotoxicity was similarly enhanced by TAS-117. Importantly, TAS-117 enhanced bortezomib-induced cytotoxicity in vivo, associated with prolonged host survival. Our results show that selective and potent Akt inhibition by TAS-117 triggers anti-MM activities in vitro and in vivo, as well as enhances cytotoxicity of proteasome inhibition, providing the preclinical framework for clinical evaluation of selective Akt inhibitors, alone and in combination with proteasome inhibitors in MM. PMID:24934808

  5. Selective and potent Akt inhibition triggers anti-myeloma activities and enhances fatal endoplasmic reticulum stress induced by proteasome inhibition.

    PubMed

    Mimura, Naoya; Hideshima, Teru; Shimomura, Toshiyasu; Suzuki, Rikio; Ohguchi, Hiroto; Rizq, Ola; Kikuchi, Shohei; Yoshida, Yasuhiro; Cottini, Francesca; Jakubikova, Jana; Cirstea, Diana; Gorgun, Gullu; Minami, Jiro; Tai, Yu-Tzu; Richardson, Paul G; Utsugi, Teruhiro; Iwama, Atsushi; Anderson, Kenneth C

    2014-08-15

    The PI3K/Akt pathway plays a crucial role in the pathogenesis of multiple myeloma (MM) in the bone marrow (BM) milieu. However, efficacy of selective and potent Akt inhibition has not yet been fully elucidated. In this study, we, therefore, examined the biologic impact of selective and potent Akt inhibition by a novel allosteric inhibitor TAS-117. TAS-117 induced significant growth inhibition, associated with downregulation of phosphorylated Akt (p-Akt), selectively in MM cell lines with high baseline p-Akt. Cytotoxicity of TAS-117 was also observed in patient MM cells, but not in normal peripheral blood mononuclear cells. Importantly, TAS-117 induced significant cytotoxicity in MM cells even in the presence of BM stromal cells, associated with inhibition of IL6 secretion. Oral administration of TAS-117 significantly inhibited human MM cell growth in murine xenograft models. TAS-117 triggered apoptosis and autophagy, as well as induction of endoplasmic reticulum (ER) stress response with minimal expression of C/EBP homologous protein (CHOP), a fatal ER stress marker. Importantly, TAS-117 enhanced bortezomib-induced cytotoxicity, associated with increased CHOP and PARP cleavage and blockade of bortezomib-induced p-Akt, suggesting that TAS-117 augments bortezomib-induced ER stress and apoptotic signaling. Carfilzomib-induced cytotoxicity was similarly enhanced by TAS-117. Importantly, TAS-117 enhanced bortezomib-induced cytotoxicity in vivo, associated with prolonged host survival. Our results show that selective and potent Akt inhibition by TAS-117 triggers anti-MM activities in vitro and in vivo, as well as enhances cytotoxicity of proteasome inhibition, providing the preclinical framework for clinical evaluation of selective Akt inhibitors, alone and in combination with proteasome inhibitors in MM. PMID:24934808

  6. PROTEASOME ACTIVITY DECLINES IN AGED MACROPHAGES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin-proteasome pathway is involved in regulation of a variety of biologically important processes including antigen presentation by macrophages. Age-related decrease in proteasome activity has been reported in other tissues. However, the effect of aging on the ubiquitin-proteasome pathway ...

  7. PROTEASOME ACTIVITY DECLINES IN AGED MACROPHAGES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin-proteasome pathway is involved in regulation of a variety of biologically important processes including antigen presentation by macrophages (Mf). Age-related decrease in proteasome activity has been reported in other tissues. However, the effect of aging on the ubiquitin-proteasome pat...

  8. Cytosolic Hsp60 Can Modulate Proteasome Activity in Yeast*

    PubMed Central

    Kalderon, Bella; Kogan, Gleb; Bubis, Ettel; Pines, Ophry

    2015-01-01

    Hsp60, an essential oligomeric molecular mitochondrial chaperone, has been subject to rigorous basic and clinical research. With yeast as a model system, we provide evidence for the ability of cytosolic yHsp60 to inhibit the yeast proteasome. (i) Following biological turnover of murine Bax (a proteasome substrate), we show that co-expression of cytosolic yHsp60 stabilizes Bax, enhances its association with mitochondria, and enhances its killing capacity. (ii) Expression of yHsp60 in the yeast cytosol (yHsp60c) inhibits degradation of a cytosolic protein ΔMTS-Aco1 tagged with the degron SL17 (a ubiquitin-proteasome substrate). (iii) Conditions under which Hsp60 accumulates in the cytosol (elevated Hsp60c or growth at 37 °C) correlate with reduced 20 S peptidase activity in proteasomes purified from cell extracts. (iv) Elevated yHsp60 in the cytosol correlate with accumulation of polyubiquitinated proteins. (v) According to 20 S proteasome pulldown experiments, Hsp60 is physically associated with proteasomes in extracts of cells expressing Hsp60c or grown at 37 °C. Even mutant Hsp60 proteins, lacking chaperone activity, were still capable of proteasome inhibition. The results support the hypothesis that localization of Hsp60 to the cytosol may modulate proteasome activity according to cell need. PMID:25525272

  9. The initiator caspase Dronc is subject of enhanced autophagy upon proteasome impairment in Drosophila.

    PubMed

    Lee, T V; Kamber Kaya, H E; Simin, R; Baehrecke, E H; Bergmann, A

    2016-09-01

    A major function of ubiquitylation is to deliver target proteins to the proteasome for degradation. In the apoptotic pathway in Drosophila, the inhibitor of apoptosis protein 1 (Diap1) regulates the activity of the initiator caspase Dronc (death regulator Nedd2-like caspase; caspase-9 ortholog) by ubiquitylation, supposedly targeting Dronc for degradation by the proteasome. Using a genetic approach, we show that Dronc protein fails to accumulate in epithelial cells with impaired proteasome function suggesting that it is not degraded by the proteasome, contrary to the expectation. Similarly, decreased autophagy, an alternative catabolic pathway, does not result in increased Dronc protein levels. However, combined impairment of the proteasome and autophagy triggers accumulation of Dronc protein levels suggesting that autophagy compensates for the loss of the proteasome with respect to Dronc turnover. Consistently, we show that loss of the proteasome enhances endogenous autophagy in epithelial cells. We propose that enhanced autophagy degrades Dronc if proteasome function is impaired. PMID:27104928

  10. Proteasome activation as a novel anti-aging strategy.

    PubMed

    Gonos, Efstathios

    2014-10-01

    Aging and longevity are two multifactorial biological phenomena whose knowledge at molecular level is still limited. We have studied proteasome function in replicative senescence and cell survival (Mol Aspects Med 35, 1-71, 2014). We have observed reduced levels of proteasome content and activities in senescent cells due to the down-regulation of the catalytic subunits of the 20S complex (J Biol Chem 278, 28026-28037, 2003). In support, partial inhibition of proteasomes in young cells by specific inhibitors induces premature senescence which is p53 dependent (Aging Cell 7, 717-732, 2008). Stable over-expression of catalytic subunits or POMP resulted in enhanced proteasome assembly and activities and increased cell survival following treatments with various oxidants. Importantly, the developed "proteasome activated" human fibroblasts cell lines exhibit a delay of senescence by approximately 15% (J Biol Chem 280, 11840-11850, 2005; J Biol Chem 284, 30076-30086, 2009). Our current work proposes that proteasome activation is an evolutionary conserved mechanism, as it can delay aging in various in vivo systems. Moreover, additional findings indicate that the recorded proteasome activation by many inducers is Nrf2-dependent (J Biol Chem 285, 8171-8184, 2010). Finally, we have studied the proteolysis processes of various age-related proteins and we have identified that CHIP is a major p53 E3 ligase in senescent fibroblasts (Free Rad Biol Med 50, 157-165, 2011). PMID:26461417

  11. Enhanced proteasome degradation extends Caenorhabditis elegans lifespan and alleviates aggregation-related pathologies.

    PubMed

    Chondrogianni, Niki; Georgila, Konstantina; Kourtis, Nikos; Tavernarakis, Nektarios; Gonos Efstathios, S

    2014-10-01

    Collapse of proteostasis and accumulation of damaged macromolecules have been recognized as hallmarks of aging and age-related diseases. The proteasome is the major cellular protease responsible for intracellular protein degradation, having an impaired function during aging. We have previously shown that proteasome activation through overexpression of β5 proteasome subunit delays replicative senescence and confers resistance to oxidative stress in primary fibroblasts. Herein, we have investigated the impact of enhanced proteasome function on organismal longevity and aggregation-related pathologies by employing Caenorhabditis elegans as a model system. We have found that overexpression of a core 20S proteasome subunit in wild type worms extends lifespan, healthspan and survival under proteotoxic conditions. The longevity prolonging effect of the proteasome subunit overexpression was found to depend on the FOXO transcription factor DAF-16 and was associated with its elevated transcriptional activity. We have also uncovered a major role of enhanced proteasome activity in aggregation-related pathologies underlying neurodegenerative diseases. Genetic activation of the proteasome minimized the detrimental effect of polyglutamine-induced toxicity mimicking Huntington's disease, whereas knock-down of the proteasome component exaggerated the disease phenotypes. Similar results were obtained by using a C.elegans model of Amyloid beta (Αβ) -induced toxicity mimicking Alzheimer's disease. Collectively, these findings demonstrate that enhanced proteasome function alleviates proteotoxicity and promotes longevity in synergy with other nodes of lifespan regulation in C.elegans. Understanding the mechanism by which preservation of proteostasis via enhancement of proteasome function, decelerates the aging process and alleviates age-related pathologies may assist in the rational design of therapeutic and anti-aging interventions. PMID:26461298

  12. New orally active proteasome inhibitors in multiple myeloma.

    PubMed

    Allegra, Alessandro; Alonci, Andrea; Gerace, Demetrio; Russo, Sabina; Innao, Vanessa; Calabrò, Laura; Musolino, Caterina

    2014-01-01

    Bortezomib is the first proteasome inhibitor approved for the therapy of multiple myeloma (MM). Although Bortezomib has renovated the treatment of MM, a considerable proportion of subjects fail to respond to Bortezomib treatment and almost all patients relapse from this drug either alone or when used in combination therapies. However, the good clinical outcome of Bortezomib treatment in MM patients gave impulsion for the development of second generation proteasome inhibitors with the ambition of improving efficacy of proteasome inhibition, enhancing antitumor activity, and decreasing toxicity, as well as providing flexible dosing schedules and patient convenience. This review provides an overview of the role of oral proteasome inhibitors including Marizomib, Oprozomib, Delanzomib, chemical proteasome inhibitors, and cinnabaramides, in the therapy of MM, focusing on developments over the past five years. These emerging drugs with different mechanisms of action have exhibited promising antitumor activity in patients with relapsed/refractory MM, and they are creating chances to target multiple pathways, overcome resistance, and improve clinical outcomes, mainly for those subjects who are refractory to approved agents. Future steps in the clinical development of oral inhibitors include the optimization of the schedule and the definition of their antitumor activity in MM. PMID:24239172

  13. An Archaeal Homolog of Proteasome Assembly Factor Functions as a Proteasome Activator

    PubMed Central

    Kumoi, Kentaro; Satoh, Tadashi; Murata, Kazuyoshi; Hiromoto, Takeshi; Mizushima, Tsunehiro; Kamiya, Yukiko; Noda, Masanori; Uchiyama, Susumu; Yagi, Hirokazu; Kato, Koichi

    2013-01-01

    Assembly of the eukaryotic 20S proteasome is an ordered process involving several proteins operating as proteasome assembly factors including PAC1-PAC2 but archaeal 20S proteasome subunits can spontaneously assemble into an active cylindrical architecture. Recent bioinformatic analysis identified archaeal PAC1-PAC2 homologs PbaA and PbaB. However, it remains unclear whether such assembly factor-like proteins play an indispensable role in orchestration of proteasome subunits in archaea. We revealed that PbaB forms a homotetramer and exerts a dual function as an ATP-independent proteasome activator and a molecular chaperone through its tentacle-like C-terminal segments. Our findings provide insights into molecular evolution relationships between proteasome activators and assembly factors. PMID:23555947

  14. An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis

    DOE PAGESBeta

    Jastrab, Jordan B.; Wang, Tong; Murphy, J. Patrick; Bai, Lin; Hu, Kuan; Merkx, Remco; Huang, Jessica; Chatterjee, Champak; Ovaa, Huib; Gygi, Steven P.; et al

    2015-03-23

    Mycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required to cause lethal infections in animals. The only pathway known to target proteins for proteasomal degradation in bacteria is pupylation, which is functionally analogous to eukaryotic ubiquitylation. However, evidence suggests that the M. tuberculosis proteasome contributes to pupylation-independent pathways as well. To identify new proteasome cofactors that might contribute to such pathways, we isolated proteins that bound to proteasomes overproduced in M. tuberculosis and found a previously uncharacterized protein, Rv3780, which formed rings and capped M. tuberculosis proteasome core particles. Rv3780 enhanced peptide and proteinmore » degradation by proteasomes in an adenosine triphosphate (ATP)-independent manner. We identified putative Rv3780-dependent proteasome substrates and found that Rv3780 promoted robust degradation of the heat shock protein repressor, HspR. Importantly, an M. tuberculosis Rv3780 mutant had a general growth defect, was sensitive to heat stress, and was attenuated for growth in mice. Collectively, these data demonstrate that ATP-independent proteasome activators are not confined to eukaryotes and can contribute to the virulence of one the world’s most devastating pathogens.« less

  15. An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis

    SciTech Connect

    Jastrab, Jordan B.; Wang, Tong; Murphy, J. Patrick; Bai, Lin; Hu, Kuan; Merkx, Remco; Huang, Jessica; Chatterjee, Champak; Ovaa, Huib; Gygi, Steven P.; Li, Huilin; Darwin, K. Heran

    2015-03-23

    Mycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required to cause lethal infections in animals. The only pathway known to target proteins for proteasomal degradation in bacteria is pupylation, which is functionally analogous to eukaryotic ubiquitylation. However, evidence suggests that the M. tuberculosis proteasome contributes to pupylation-independent pathways as well. To identify new proteasome cofactors that might contribute to such pathways, we isolated proteins that bound to proteasomes overproduced in M. tuberculosis and found a previously uncharacterized protein, Rv3780, which formed rings and capped M. tuberculosis proteasome core particles. Rv3780 enhanced peptide and protein degradation by proteasomes in an adenosine triphosphate (ATP)-independent manner. We identified putative Rv3780-dependent proteasome substrates and found that Rv3780 promoted robust degradation of the heat shock protein repressor, HspR. Importantly, an M. tuberculosis Rv3780 mutant had a general growth defect, was sensitive to heat stress, and was attenuated for growth in mice. Collectively, these data demonstrate that ATP-independent proteasome activators are not confined to eukaryotes and can contribute to the virulence of one the world’s most devastating pathogens.

  16. Dynamic recruitment of active proteasomes into polyglutamine initiated inclusion bodies.

    PubMed

    Schipper-Krom, Sabine; Juenemann, Katrin; Jansen, Anne H; Wiemhoefer, Anne; van den Nieuwendijk, Rianne; Smith, Donna L; Hink, Mark A; Bates, Gillian P; Overkleeft, Hermen; Ovaa, Huib; Reits, Eric

    2014-01-01

    Neurodegenerative disorders such as Huntington's disease are hallmarked by neuronal intracellular inclusion body formation. Whether proteasomes are irreversibly recruited into inclusion bodies in these protein misfolding disorders is a controversial subject. In addition, it has been proposed that the proteasomes may become clogged by the aggregated protein fragments, leading to impairment of the ubiquitin-proteasome system. Here, we show by fluorescence pulse-chase experiments in living cells that proteasomes are dynamically and reversibly recruited into inclusion bodies. As these recruited proteasomes remain catalytically active and accessible to substrates, our results challenge the concept of proteasome sequestration and impairment in Huntington's disease, and support the reported absence of proteasome impairment in mouse models of Huntington's disease. PMID:24291262

  17. D1 dopamine receptor stimulation impairs striatal proteasome activity in Parkinsonism through 26S proteasome disassembly.

    PubMed

    Barroso-Chinea, Pedro; Thiolat, Marie-Laure; Bido, Simone; Martinez, Audrey; Doudnikoff, Evelyne; Baufreton, Jérôme; Bourdenx, Mathieu; Bloch, Bertrand; Bezard, Erwan; Martin-Negrier, Marie-Laure

    2015-06-01

    Among the mechanisms underlying the development of L-dopa-induced dyskinesia (LID) in Parkinson's disease, complex alterations in dopamine signaling in D1 receptor (D1R)-expressing medium spiny striatal neurons have been unraveled such as, but not limited to, dysregulation of D1R expression, lateral diffusion, intraneuronal trafficking, subcellular localization and desensitization, leading to a pathological anchorage of D1R at the plasma membrane. Such anchorage is partly due to a decreased proteasomal activity that is specific of the L-dopa-exposed dopamine-depleted striatum, results from D1R activation and feeds-back the D1R exaggerated cell surface abundance. The precise mechanisms by which L-dopa affects striatal proteasome activity remained however unknown. We here show, in a series of in vitro ex vivo and in vivo models, that such rapid modulation of striatal proteasome activity intervenes through D1R-mediated disassembly of the 26S proteasome rather than change in transcription or translation of proteasome or proteasome subunits intraneuronal relocalization. PMID:25766677

  18. The Proteasome Inhibitor Bortezomib Enhances ATRA-Induced Differentiation of Neuroblastoma Cells via the JNK Mitogen-Activated Protein Kinase Pathway

    PubMed Central

    Luo, Peihua; Lin, Meili; Li, Lin; Yang, Bo; He, Qiaojun

    2011-01-01

    Neuroblastoma (NB) is the most common extracranial solid tumor in childhood. Differentiated human NBs are associated with better outcome and lower stage; induction of differentiation is considered to be therapeutically advantageous. All-trans retinoic acid (ATRA) has been shown to induce the differentiation of neuroblastoma (NB) cell lines. The proteasome inhibitor bortezomib inhibits cell growth and angiogenesis in NBs. Here, we investigated the synergistic effect between bortezomib and ATRA in inducing NB cell differentiation in different NB cell lines. Bortezomib combined with ATRA had a significantly enhanced antiproliferative effect. This inhibition was characterized by a synergistic increase in neuronal differentiation. At the same time, the combination therapy showed little neuronal toxicity which was assessed in primary cultures of rat cerebellar granule cells by the MTT assay, PI staining. The combination of bortezomib and ATRA triggered increased differentiation through the activation of proteins, including RARα, RARβ, RARγ, p-JNK and p21, compared with ATRA treatment alone. Using JNK inhibitor SP600125 to block JNK-dependent activity, the combination therapy-induced neuronal differentiation was partially attenuated. In addition, p21 shRNA had no effect on the combination therapy-induced neuronal differentiation. The in vivo antitumor activities were examined in human NB cell xenografts and GFP-labeled human NB cell xenografts. Treatment of human NB cell CHP126-bearing nude mice with ATRA plus bortezomib resulted in more significant tumor growth inhibition than mice treated with either drug alone. These findings provide the rationale for the development of a new therapeutic strategy for NB based on the pharmacological combination of ATRA and bortezomib. PMID:22087283

  19. Activity and regulation of the centrosome-associated proteasome.

    PubMed

    Fabunmi, R P; Wigley, W C; Thomas, P J; DeMartino, G N

    2000-01-01

    Regulated proteolysis is important for maintaining appropriate cellular levels of many proteins. The bulk of intracellular protein degradation is catalyzed by the proteasome. Recently, the centrosome was identified as a novel site for concentration of the proteasome and associated regulatory proteins (Wigley, W. C., Fabunmi, R. P., Lee, M. G., Marino, C. R., Muallem, S., DeMartino, G. N., and Thomas, P. J. (1999) J. Cell Biol. 145, 481-490). Here we provide evidence that centrosomes contain the active 26 S proteasome that degrades ubiquitinated-protein and proteasome-specific peptide substrates. Moreover, the centrosomes contain an ubiquitin isopeptidase activity. The proteolytic activity is ATP-dependent and is inhibited by proteasome inhibitors. Notably, treatment of cells with inhibitors of proteasome activity promotes redistribution of the proteasome and associated regulatory proteins to the centrosome independent of an intact microtubule system. These data provide biochemical evidence for active proteasomal complexes at the centrosome, highlighting a novel function for this organizing structure. PMID:10617632

  20. Gene therapy by proteasome activator, PA28γ, improves motor coordination and proteasome function in Huntington's disease YAC128 mice.

    PubMed

    Jeon, J; Kim, W; Jang, J; Isacson, O; Seo, H

    2016-06-01

    Huntington's disease (HD) is neurologically characterized by involuntary movements, associated with degeneration of the medium-sized spiny neurons (MSNs) and ubiquitin-positive neuronal intranuclear inclusions (NIIs). It has been reported that the proteolytic activities of the ubiquitin-proteasome system (UPS) are generally inhibited in HD patient's brain. We previously discovered that a proteasome activator (PA), PA28γ enhances proteasome activities and cell survival in in vitro HD model. In this study, we aimed to find whether PA28γ gene transfer improves the proteasome activities and pathological symptoms in in vivo HD model. We stereotaxically injected lenti-PA28γ virus into the striatum of mutant (MT) YAC128 HD mice and littermate (LM) controls at 14-18months of age, and validated their behavioral and biochemical changes at 12weeks after the injection. YAC128 mice showed a significant increase in their peptidyl-glutamyl preferring hydrolytic (PGPH) proteasome activity and the mRNA or protein levels of brain-derived neurotrophic factor (BDNF) and pro-BDNF after lenti-PA28γ injection. The number of ubiquitin-positive inclusion bodies was reduced in the striatum of YAC128 mice after lenti-PA28γ injection. YAC128 mice showed significant improvement of latency to fall on the rota-rod test after lenti-PA28γ injection. These data demonstrate that the gene therapy with PA, PA28γ can improve UPS function as well as behavioral abnormalities in HD model mice. PMID:26944602

  1. Bacterial Proteasome Activator Bpa (Rv3780) Is a Novel Ring-Shaped Interactor of the Mycobacterial Proteasome

    PubMed Central

    Delley, Cyrille L.; Laederach, Juerg; Ziemski, Michal; Bolten, Marcel; Boehringer, Daniel; Weber-Ban, Eilika

    2014-01-01

    The occurrence of the proteasome in bacteria is limited to the phylum of actinobacteria, where it is maintained in parallel to the usual bacterial compartmentalizing proteases. The role it plays in these organisms is still not fully understood, but in the human pathogen Mycobacterium tuberculosis (Mtb) the proteasome supports persistence in the host. In complex with the ring-shaped ATPase Mpa (called ARC in other actinobacteria), the proteasome can degrade proteins that have been post-translationally modified with the prokaryotic ubiquitin-like protein Pup. Unlike for the eukaryotic proteasome core particle, no other bacterial proteasome interactors have been identified to date. Here we describe and characterize a novel bacterial proteasome activator of Mycobacterium tuberculosis we termed Bpa (Rv3780), using a combination of biochemical and biophysical methods. Bpa features a canonical C-terminal proteasome interaction motif referred to as the HbYX motif, and its orthologs are only found in those actinobacteria encoding the proteasomal subunits. Bpa can inhibit degradation of Pup-tagged substrates in vitro by competing with Mpa for association with the proteasome. Using negative-stain electron microscopy, we show that Bpa forms a ring-shaped homooligomer that can bind coaxially to the face of the proteasome cylinder. Interestingly, Bpa can stimulate the proteasomal degradation of the model substrate β-casein, which suggests it could play a role in the removal of non-native or damaged proteins. PMID:25469515

  2. Proteasome inhibition enhances the killing effect of BikDD gene therapy

    PubMed Central

    Sun, Ye; Ponz-Sarvise, Mariano; Chang, Shih-Shin; Chang, Wei-Chao; Chen, Chung-Hsuan; Hsu, Jennifer L; Hung, Mien-Chie

    2015-01-01

    BikDD, a phosphorylation-mimic mutant of pro-apoptotic protein Bik, elicits strong apoptosis in cancer cells when introduced via an expression platform termed VP16-GAL4-WPRE integrated systemic amplifier (VISA) under the control of a cancer-specific promoter both in vitro and in vivo. C-VISA-BikDD expression plasmid encapsulated in liposomes is currently in the process to initiate a phase I clinical trial for pancreatic cancer. In this study, we report a potential combination approach of BikDD with proteasome inhibitors on the basis of our findings that exogenously expressed BikDD protein undergoes proteasome-mediated degradation via both ubiquitin-dependent and -independent pathways. Inhibition of proteasome increases the protein stability of BikDD, enhancing the apoptotic effect of BikDD. Hence, high proteasome activity may be a mechanism by which intrinsic and acquired resistance occurs in BikDD gene therapy, and a combination therapy with current clinically approved proteasome inhibitor may overcome resistance. PMID:25901200

  3. Activities of proteasome and m-calpain are essential for Chikungunya virus replication.

    PubMed

    Karpe, Yogesh A; Pingale, Kunal D; Kanade, Gayatri D

    2016-10-01

    Replication of many viruses is dependent on the ubiquitin proteasome system. The present study demonstrates that Chikungunya virus replication increases proteasome activity and induces unfolded protein response (UPR) in cultured cells. Further, it was seen that the virus replication was dependent on the activities of proteasomes and m-calpain. Proteasome inhibition induced accumulation of polyubiquitinated proteins and earlier visualization of UPR. PMID:27206501

  4. Proteasome inhibitors exacerbate interleukin-8 production induced by protease-activated receptor 2 in intestinal epithelial cells.

    PubMed

    Ghouzali, Ibtissem; Azhar, Saïda; Bôle-Feysot, Christine; Ducrotté, Philippe; Déchelotte, Pierre; Coëffier, Moïse

    2016-10-01

    Protease activated receptors (PARs) and the ubiquitin-proteasome system (UPS) regulate inflammatory response in intestinal cells. We aimed to elucidate putative connections between PARs and UPS pathways in intestinal epithelial cells. Caco-2 cells were treated by agonist peptides of PARs and/or IL-1β and/or proteasome inhibitors, bortezomib or MG132. Inflammatory response was evaluated by measuring IL-8 production. Proteasome activities were also evaluated. We showed that PAR-1 and -2 activation increased release of IL-8 compared with vehicle and independently of IL-1β. In contrast, PAR-4 agonist peptide had no effect. Caspase-like and chymotrypsin-like proteasomal activities were increased by PAR-2 activation only in the presence of IL-1β. Interestingly, in polarized Caco-2 cells, the release of IL-8 was predominantly upregulated in the side where PAR-2 agonist peptide was added, apical or basalolateral. In contrast, proteasome activities were only affected when PAR-2 agonist peptide was added in the apical side. Proteasome inhibitors, bortezomib and MG132, enhanced IL-8 production in both sides, apical and basolateral. In conclusion, PAR-2 activation alone did not affect proteasome but needed inflammatory stimulus IL-1β to synergistically increase chymotrypsin-like activity in intestinal epithelial cells. However, proteasome inhibition led to exacerbate inflammatory response induced by PAR-2 activation. PMID:27455449

  5. Proteasome activation is a mechanism for pyrazolone small molecules displaying therapeutic potential in amyotrophic lateral sclerosis.

    PubMed

    Trippier, Paul C; Zhao, Kevin Tianmeng; Fox, Susan G; Schiefer, Isaac T; Benmohamed, Radhia; Moran, Jason; Kirsch, Donald R; Morimoto, Richard I; Silverman, Richard B

    2014-09-17

    Amyotrophic lateral sclerosis (ALS) is a progressive and ultimately fatal neurodegenerative disease. Pyrazolone containing small molecules have shown significant disease attenuating efficacy in cellular and murine models of ALS. Pyrazolone based affinity probes were synthesized to identify high affinity binding partners and ascertain a potential biological mode of action. Probes were confirmed to be neuroprotective in PC12-SOD1(G93A) cells. PC12-SOD1(G93A) cell lysates were used for protein pull-down, affinity purification, and subsequent proteomic analysis using LC-MS/MS. Proteomics identified the 26S proteasome regulatory subunit 4 (PSMC1), 26S proteasome regulatory subunit 6B (PSMC4), and T-complex protein 1 (TCP-1) as putative protein targets. Coincubation with appropriate competitors confirmed the authenticity of the proteomics results. Activation of the proteasome by pyrazolones was demonstrated in the absence of exogenous proteasome inhibitor and by restoration of cellular protein degradation of a fluorogenic proteasome substrate in PC12-SOD1(G93A) cells. Importantly, supplementary studies indicated that these molecules do not induce a heat shock response. We propose that pyrazolones represent a rare class of molecules that enhance proteasomal activation in the absence of a heat shock response and may have therapeutic potential in ALS. PMID:25001311

  6. ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors.

    PubMed

    Halasi, Marianna; Wang, Ming; Chavan, Tanmay S; Gaponenko, Vadim; Hay, Nissim; Gartel, Andrei L

    2013-09-01

    NAC (N-acetyl-L-cysteine) is commonly used to identify and test ROS (reactive oxygen species) inducers, and to inhibit ROS. In the present study, we identified inhibition of proteasome inhibitors as a novel activity of NAC. Both NAC and catalase, another known scavenger of ROS, similarly inhibited ROS levels and apoptosis associated with H₂O₂. However, only NAC, and not catalase or another ROS scavenger Trolox, was able to prevent effects linked to proteasome inhibition, such as protein stabilization, apoptosis and accumulation of ubiquitin conjugates. These observations suggest that NAC has a dual activity as an inhibitor of ROS and proteasome inhibitors. Recently, NAC was used as a ROS inhibitor to functionally characterize a novel anticancer compound, piperlongumine, leading to its description as a ROS inducer. In contrast, our own experiments showed that this compound depicts features of proteasome inhibitors including suppression of FOXM1 (Forkhead box protein M1), stabilization of cellular proteins, induction of ROS-independent apoptosis and enhanced accumulation of ubiquitin conjugates. In addition, NAC, but not catalase or Trolox, interfered with the activity of piperlongumine, further supporting that piperlongumine is a proteasome inhibitor. Most importantly, we showed that NAC, but not other ROS scavengers, directly binds to proteasome inhibitors. To our knowledge, NAC is the first known compound that directly interacts with and antagonizes the activity of proteasome inhibitors. Taken together, the findings of the present study suggest that, as a result of the dual nature of NAC, data interpretation might not be straightforward when NAC is utilized as an antioxidant to demonstrate ROS involvement in drug-induced apoptosis. PMID:23772801

  7. Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation

    PubMed Central

    Choi, Won Hoon; de Poot, Stefanie A. H.; Lee, Jung Hoon; Kim, Ji Hyeon; Han, Dong Hoon; Kim, Yun Kyung; Finley, Daniel; Lee, Min Jae

    2016-01-01

    When in the closed form, the substrate translocation channel of the proteasome core particle (CP) is blocked by the convergent N termini of α-subunits. To probe the role of channel gating in mammalian proteasomes, we deleted the N-terminal tail of α3; the resulting α3ΔN proteasomes are intact but hyperactive in the hydrolysis of fluorogenic peptide substrates and the degradation of polyubiquitinated proteins. Cells expressing the hyperactive proteasomes show markedly elevated degradation of many established proteasome substrates and resistance to oxidative stress. Multiplexed quantitative proteomics revealed ∼200 proteins with reduced levels in the mutant cells. Potentially toxic proteins such as tau exhibit reduced accumulation and aggregate formation. These data demonstrate that the CP gate is a key negative regulator of proteasome function in mammals, and that opening the CP gate may be an effective strategy to increase proteasome activity and reduce levels of toxic proteins in cells. PMID:26957043

  8. Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation.

    PubMed

    Choi, Won Hoon; de Poot, Stefanie A H; Lee, Jung Hoon; Kim, Ji Hyeon; Han, Dong Hoon; Kim, Yun Kyung; Finley, Daniel; Lee, Min Jae

    2016-01-01

    When in the closed form, the substrate translocation channel of the proteasome core particle (CP) is blocked by the convergent N termini of α-subunits. To probe the role of channel gating in mammalian proteasomes, we deleted the N-terminal tail of α3; the resulting α3ΔN proteasomes are intact but hyperactive in the hydrolysis of fluorogenic peptide substrates and the degradation of polyubiquitinated proteins. Cells expressing the hyperactive proteasomes show markedly elevated degradation of many established proteasome substrates and resistance to oxidative stress. Multiplexed quantitative proteomics revealed ∼ 200 proteins with reduced levels in the mutant cells. Potentially toxic proteins such as tau exhibit reduced accumulation and aggregate formation. These data demonstrate that the CP gate is a key negative regulator of proteasome function in mammals, and that opening the CP gate may be an effective strategy to increase proteasome activity and reduce levels of toxic proteins in cells. PMID:26957043

  9. Inhibition of Cellular Proteasome Activities Mediates HBX-Independent Hepatitis B Virus Replication In Vivo▿

    PubMed Central

    Zhang, Zhensheng; Sun, Eun; Ou, Jing-hsiung James; Liang, T. Jake

    2010-01-01

    The X protein (HBX) of the hepatitis B virus (HBV) is essential for HBV productive infection in vivo. Our previous study (Z. Hu, Z. Zhang, E. Doo, O. Coux, A. L. Goldberg, and T. J. Liang, J. Virol. 73:7231-7240, 1999) shows that interaction of HBX with the proteasome complex may underlie the pleiotropic functions of HBX. Previously, we demonstrated that HBX affects hepadnaviral replication through a proteasome-dependent pathway in cell culture models. In the present study, we studied the effect of the proteasome inhibitor MLN-273 in two HBV mouse models. We demonstrated that administration of MLN-273 to transgenic mice containing the replication-competent HBV genome with the defective HBX gene substantially enhanced HBV replication, while the compound had a minor effect on wild-type HBV transgenic mice. Similar results were obtained by using C57BL/6 mice infected with recombinant adenoviruses expressing the replicating HBV genome. Our data suggest that HBV replication is subjected to regulation by cellular proteasome and HBX functions through the inhibition of proteasome activities to enhance HBV replication in vivo. PMID:20592087

  10. Arabidopsis PROTEASOME REGULATOR1 is required for auxin-mediated suppression of proteasome activity and regulates auxin signalling.

    PubMed

    Yang, Bao-Jun; Han, Xin-Xin; Yin, Lin-Lin; Xing, Mei-Qing; Xu, Zhi-Hong; Xue, Hong-Wei

    2016-01-01

    The plant hormone auxin is perceived by the nuclear F-box protein TIR1 receptor family and regulates gene expression through degradation of Aux/IAA transcriptional repressors. Several studies have revealed the importance of the proteasome in auxin signalling, but details on how the proteolytic machinery is regulated and how this relates to degradation of Aux/IAA proteins remains unclear. Here we show that an Arabidopsis homologue of the proteasome inhibitor PI31, which we name PROTEASOME REGULATOR1 (PTRE1), is a positive regulator of the 26S proteasome. Loss-of-function ptre1 mutants are insensitive to auxin-mediated suppression of proteasome activity, show diminished auxin-induced degradation of Aux/IAA proteins and display auxin-related phenotypes. We found that auxin alters the subcellular localization of PTRE1, suggesting this may be part of the mechanism by which it reduces proteasome activity. Based on these results, we propose that auxin regulates proteasome activity via PTRE1 to fine-tune the homoeostasis of Aux/IAA repressor proteins thus modifying auxin activity. PMID:27109828

  11. Arabidopsis PROTEASOME REGULATOR1 is required for auxin-mediated suppression of proteasome activity and regulates auxin signalling

    PubMed Central

    Yang, Bao-Jun; Han, Xin-Xin; Yin, Lin-Lin; Xing, Mei-Qing; Xu, Zhi-Hong; Xue, Hong-Wei

    2016-01-01

    The plant hormone auxin is perceived by the nuclear F-box protein TIR1 receptor family and regulates gene expression through degradation of Aux/IAA transcriptional repressors. Several studies have revealed the importance of the proteasome in auxin signalling, but details on how the proteolytic machinery is regulated and how this relates to degradation of Aux/IAA proteins remains unclear. Here we show that an Arabidopsis homologue of the proteasome inhibitor PI31, which we name PROTEASOME REGULATOR1 (PTRE1), is a positive regulator of the 26S proteasome. Loss-of-function ptre1 mutants are insensitive to auxin-mediated suppression of proteasome activity, show diminished auxin-induced degradation of Aux/IAA proteins and display auxin-related phenotypes. We found that auxin alters the subcellular localization of PTRE1, suggesting this may be part of the mechanism by which it reduces proteasome activity. Based on these results, we propose that auxin regulates proteasome activity via PTRE1 to fine-tune the homoeostasis of Aux/IAA repressor proteins thus modifying auxin activity. PMID:27109828

  12. [Antiatherogenic characteristics of korvitin: effect on proteasome activity of the aorta, heart, and blood cells].

    PubMed

    Pashevin, D O; Dosenko, B Ie; Byts', Iu V; Moĭbenko, O O

    2009-01-01

    We studied the changes in proteasomal proteolisis during modelling of rabbit cholesterol-induced atherosclerosis. It was determined that in aorta the TL activity of proteasome increased 2.4-fold (P < 0.05), CTL activity increased by 43%, and PGPG--by 10%. In heart tissue it was observed the increase of CTL proteasome activity by 14%. The application of "Korvitin" (water-soluble form of quercetine) followed by considerable decrease of proteasomal activity both in tissues (aorta and heart) and leucocytes. The intensity ofatherosclerotic changes in aorta was significantly smaller. Obtained data suggest that "Korvitin" reveales angioprotective properties mediated by it effect on proteasomal proteolisis. PMID:19827630

  13. Proteasome inhibitors induce peroxisome proliferator-activated receptor transactivation through RXR accumulation and a protein kinase C-dependent pathway

    SciTech Connect

    Tsao, W.-C.; Wu, H.-M.; Chi, K.-H.; Chang, Y.-H.; Lin, W.-W. . E-mail: wwl@ha.mc.ntu.edu.tw

    2005-03-10

    Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), a member of nuclear hormone receptors, forms a heterodimeric DNA binding complex with retinoid X receptor (RXR) and serves as a transcriptional regulator of gene expression. In this study, using luciferase assay of a reporter gene containing PPAR response element (PPRE), we found PPRE transactivity was additively induced by PPAR{gamma} activator (15dPGJ{sub 2}) and RXR activator (9-cis retinoic acid, 9-cis RA). Proteasome inhibitors MG132 and MG262 also stimulate PPRE transactivity in a concentration-dependent manner, and this effect is synergistic to 15dPGJ{sub 2} and 9-cis RA. PKC activation by 12-myristate 13-acetate (PMA) and ingenol 3,20-dibenzoate (IDB) also led to an increased PPRE activation, and this action was additive to PPAR{gamma} activators and 9-cis RA, but not to proteasome inhibitors. Results indicate that the PPAR{gamma} enhancing effect of proteasome inhibitors was attributed to redox-sensitive PKC activation. Western blot analysis showed that the protein level of RXR{alpha}, but not PPAR{gamma}, RXR{beta}, or PKC isoforms, was accumulated in the presence of proteasome inhibitors. Taken together, we conclude that proteasome inhibitors can upregulate PPRE activity through RXR{alpha} accumulation and a PKC-dependent pathway. The former is due to inhibition of RXR{alpha} degradation through ubiquitin-dependent proteasome system, while the latter is mediated by reactive oxygen species (ROS) production.

  14. Proteasome activity is important for replication recovery, CHK1 phosphorylation and prevention of G2 arrest after low-dose formaldehyde

    SciTech Connect

    Ortega-Atienza, Sara; Green, Samantha E.; Zhitkovich, Anatoly

    2015-07-15

    Formaldehyde (FA) is a human carcinogen with numerous sources of environmental and occupational exposures. This reactive aldehyde is also produced endogenously during metabolism of drugs and other processes. DNA–protein crosslinks (DPCs) are considered to be the main genotoxic lesions for FA. Accumulating evidence suggests that DPC repair in high eukaryotes involves proteolysis of crosslinked proteins. Here, we examined a role of the main cellular proteolytic machinery proteasomes in toxic responses of human lung cells to low FA doses. We found that transient inhibition of proteasome activity increased cytotoxicity and diminished clonogenic viability of FA-treated cells. Proteasome inactivation exacerbated suppressive effects of FA on DNA replication and increased the levels of the genotoxic stress marker γ-H2AX in normal human cells. A transient loss of proteasome activity in FA-exposed cells also caused delayed perturbations of cell cycle, which included G2 arrest and a depletion of S-phase populations at FA doses that had no effects in control cells. Proteasome activity diminished p53-Ser15 phosphorylation but was important for FA-induced CHK1 phosphorylation, which is a biochemical marker of DPC proteolysis in replicating cells. Unlike FA, proteasome inhibition had no effect on cell survival and CHK1 phosphorylation by the non-DPC replication stressor hydroxyurea. Overall, we obtained evidence for the importance of proteasomes in protection of human cells against biologically relevant doses of FA. Biochemically, our findings indicate the involvement of proteasomes in proteolytic repair of DPC, which removes replication blockage by these highly bulky lesions. - Highlights: • Proteasome inhibition enhances cytotoxicity of low-dose FA in human lung cells. • Active proteasomes diminish replication-inhibiting effects of FA. • Proteasome activity prevents delayed G2 arrest in FA-treated cells. • Proteasome inhibition exacerbates replication stress by FA in

  15. Studies on the activation by ATP of the 26 S proteasome complex from rat skeletal muscle.

    PubMed Central

    Dahlmann, B; Kuehn, L; Reinauer, H

    1995-01-01

    The 26 S proteasome complex is thought to catalyse the breakdown of ubiquitinated proteins within eukaryotic cells. In addition it has been found that the complex also degrades short-lived proteins such as ornithine decarboxylase in a ubiquitin-independent manner. Both proteolytic processes are paralleled by the hydrolysis of ATP. Here we show that ATP also affects the hydrolytic activity towards fluorigenic peptide substrates by the 26 S proteasome complex from rat skeletal muscle tissue. Low concentrations of ATP (about 25 microM) optimally activate the so-called chymotryptic and tryptic activity by increasing the rate of peptide hydrolysis but not peptidylglutamylpeptide hydrolysis. Activation of the enzyme by ATP is transient but this effect can be enhanced and prolonged by including in the assay an ATP-regenerating system, indicating that ATP is hydrolysed by the 26 S proteasome complex. Although ATP cannot be substituted for by adenosine 5'-[beta,gamma-methylene]triphosphate or AMP, hydrolysis of the phosphoanhydride bond of ATP seems not to be necessary for the activation process of the proteasome complex, a conclusion drawn from the findings that ATP analogues such as adenosine 5'-[beta,gamma-imido]triphosphate, adenosine 5'-O-[gamma-thio]triphosphate, adenosine 5'-O-[beta-thio]-diphosphate and adenosine 5'-[alpha,beta-methylene]triphosphate give the same effect as ATP, and vanadate does not prevent ATP activation. These effects are independent of the presence of Mg2+. Thus, ATP and other nucleotides may act as allosteric activators of peptide-hydrolysing activities of the 26 S proteasome complex as has also been found with the lon protease from Escherichia coli. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:7619056

  16. Formation of Tankyrase Inhibitor-Induced Degradasomes Requires Proteasome Activity

    PubMed Central

    Pedersen, Nina Marie; Thorvaldsen, Tor Espen; Schultz, Sebastian Wolfgang; Wenzel, Eva Maria; Stenmark, Harald

    2016-01-01

    In canonical Wnt signaling, the protein levels of the key signaling mediator β-catenin are under tight regulation by the multimeric destruction complex that mediates proteasomal degradation of β-catenin. In colorectal cancer, destruction complex activity is often compromised due to mutations in the multifunctional scaffolding protein Adenomatous Polyposis Coli (APC), leading to a stabilization of β-catenin. Recently, tankyrase inhibitors (TNKSi), a novel class of small molecule inhibitors, were shown to re-establish a functional destruction complex in APC-mutant cancer cell lines by stabilizing AXIN1/2, whose protein levels are usually kept low via poly(ADP-ribosyl)ation by the tankyrase enzymes (TNKS1/2). Surprisingly, we found that for the formation of the morphological correlates of destruction complexes, called degradasomes, functional proteasomes are required. In addition we found that AXIN2 is strongly upregulated after 6 h of TNKS inhibition. The proteasome inhibitor MG132 counteracted TNKSi-induced degradasome formation and AXIN2 stabilization, and this was accompanied by reduced transcription of AXIN2. Mechanistically we could implicate the transcription factor FoxM1 in this process, which was recently shown to be a transcriptional activator of AXIN2. We observed a substantial reduction in TNKSi-induced stabilization of AXIN2 after siRNA-mediated depletion of FoxM1 and found that proteasome inhibition reduced the active (phosphorylated) fraction of FoxM1. This can explain the decreased protein levels of AXIN2 after MG132 treatment. Our findings have implications for the design of in vitro studies on the destruction complex and for clinical applications of TNKSi. PMID:27482906

  17. Bacterial Proteasomes

    PubMed Central

    Jastrab, Jordan B.; Darwin, K. Heran

    2015-01-01

    Interest in bacterial proteasomes was sparked by the discovery that proteasomal degradation is required for the pathogenesis of Mycobacterium tuberculosis, one of the world's deadliest pathogens. Although bacterial proteasomes are structurally similar to their eukaryotic and archaeal homologs, there are key differences in their mechanisms of assembly, activation, and substrate targeting for degradation. In this article, we compare and contrast bacterial proteasomes with their archaeal and eukaryotic counterparts, and we discuss recent advances in our understanding of how bacterial proteasomes function to influence microbial physiology. PMID:26488274

  18. Activation of Chymotrypsin-Like Activity of the Proteasome during Ischemia Induces Myocardial Dysfunction and Death.

    PubMed

    Sanchez, Gina; Berrios, Daniela; Olmedo, Ivonne; Pezoa, Javier; Riquelme, Jaime A; Montecinos, Luis; Pedrozo, Zully; Donoso, Paulina

    2016-01-01

    Inhibitors of the ubiquitin-proteasome system improve hemodynamic parameters and decrease the infarct size after ischemia reperfusion. The molecular basis of this protection is not fully understood since most available data report inhibition of the 26 proteasome after ischemia reperfusion. The decrease in cellular ATP levels during ischemia leads to the dissociation of the 26S proteasome into the 19S regulatory complex and the 20S catalytic core, which results in protein degradation independently of ubiquitination. There is scarce information on the activity of the 20S proteasome during cardiac ischemia. Accordingly, the aim of this work was to determine the effects of 30 minutes of ischemia, or 30 min of ischemia followed by 60 minutes of reperfusion on the three main peptidase activities of the 20S proteasome in Langendorff perfused rat hearts. We found that 30 min of ischemia produced a significant increase in the chymotrypsin-like activity of the proteasome, without changes in its caspase-like or trypsin-like activities. In contrast, all three activities were decreased upon reperfusion. Ixazomib, perfused before ischemia at a concentration that reduced the chymotrypsin-like activity to 50% of the control values, without affecting the other proteasomal activities, improved the hemodynamic parameters upon reperfusion and decreased the infarct size. Ixazomib also prevented the 50% reduction in RyR2 content observed after ischemia. The protection was lost, however, when simultaneous inhibition of chymotrypsin-like and caspase-like activities of the proteasome was achieved at higher concentration of ixazomib. Our results suggest that selective inhibition of chymotrypsin-like activity of the proteasome during ischemia preserves key proteins for cardiomyocyte function and exerts a positive impact on cardiac performance after reperfusion. PMID:27529620

  19. Activation of Chymotrypsin-Like Activity of the Proteasome during Ischemia Induces Myocardial Dysfunction and Death

    PubMed Central

    Sanchez, Gina; Berrios, Daniela; Olmedo, Ivonne; Pezoa, Javier; Riquelme, Jaime A.; Montecinos, Luis; Pedrozo, Zully; Donoso, Paulina

    2016-01-01

    Inhibitors of the ubiquitin-proteasome system improve hemodynamic parameters and decrease the infarct size after ischemia reperfusion. The molecular basis of this protection is not fully understood since most available data report inhibition of the 26 proteasome after ischemia reperfusion. The decrease in cellular ATP levels during ischemia leads to the dissociation of the 26S proteasome into the 19S regulatory complex and the 20S catalytic core, which results in protein degradation independently of ubiquitination. There is scarce information on the activity of the 20S proteasome during cardiac ischemia. Accordingly, the aim of this work was to determine the effects of 30 minutes of ischemia, or 30 min of ischemia followed by 60 minutes of reperfusion on the three main peptidase activities of the 20S proteasome in Langendorff perfused rat hearts. We found that 30 min of ischemia produced a significant increase in the chymotrypsin-like activity of the proteasome, without changes in its caspase-like or trypsin-like activities. In contrast, all three activities were decreased upon reperfusion. Ixazomib, perfused before ischemia at a concentration that reduced the chymotrypsin-like activity to 50% of the control values, without affecting the other proteasomal activities, improved the hemodynamic parameters upon reperfusion and decreased the infarct size. Ixazomib also prevented the 50% reduction in RyR2 content observed after ischemia. The protection was lost, however, when simultaneous inhibition of chymotrypsin-like and caspase-like activities of the proteasome was achieved at higher concentration of ixazomib. Our results suggest that selective inhibition of chymotrypsin-like activity of the proteasome during ischemia preserves key proteins for cardiomyocyte function and exerts a positive impact on cardiac performance after reperfusion. PMID:27529620

  20. Local application of a proteasome inhibitor enhances fracture healing in rats.

    PubMed

    Yoshii, Toshitaka; Nyman, Jeffry S; Yuasa, Masato; Esparza, Javier M; Okawa, Atsushi; Gutierrez, Gloria E

    2015-08-01

    The ubiquitin/proteasome system plays an important role in regulating the activity of osteoblast precursor cells. Proteasome inhibitors (PSIs) have been shown to stimulate the differentiation of osteoblast precursor cells and to promote bone formation. This raises the possibility that PSIs might be useful for enhancing fracture healing. In this study, we examined the effect of the local administration of PSI on fracture repair in rats. The effects of treatment on the healing of a fractured femur were assessed based on radiographs, micro-computed tomography (μCT) analysis, biomechanical testing, and histological analysis. PSI enhanced osteogenic differentiation in bone marrow- and periosteum-derived mesenchymal progenitor cells in vitro. Moreover, the local administration of PSI in vivo promoted fracture healing in rats, as demonstrated by an increased fracture callus volume in radiographs at 2 weeks post-fracture, and improved radiographic scores. By week 4, PSI treatment had enhanced biomechanical strength and mineral density in the callus as assessed using bending tests, and μCT, respectively. Histological sections demonstrated that PSI treatment accelerated endochondral ossification during the early stages of fracture repair. Although further investigations are necessary to assess its clinical use, the local administration of PSIs might be a novel, and effective therapeutic approach for fracture repair. PMID:25683968

  1. Evidence for anti-apoptotic roles of proteasome activator 28γ via inhibiting caspase activity.

    PubMed

    Moncsek, Anja; Gruner, Melanie; Meyer, Hannes; Lehmann, Andrea; Kloetzel, Peter-Michael; Stohwasser, Ralf

    2015-09-01

    Proteasome activator PA28γ (REGγ, Ki antigen) has recently been demonstrated to display anti-apoptotic properties via enhancing Mdm2-p53 interaction, thereby facilitating ubiquitination and down-regulation of the tumor suppressor p53. In this study we demonstrate a correlation between cellular PA28γ levels and the sensitivity of cells towards apoptosis in different cellular contexts thereby confirming a role of proteasome activator PA28γ as an anti-apoptotic regulator. We investigated the anti-apoptotic role of PA28γ upon UV-C stimulation in B8 mouse fibroblasts stably overexpressing the PA28γ-encoding PSME3 gene and upon butyrate-induced apoptosis in human HT29 adenocarcinoma cells with silenced PSME3 gene. Interestingly, our results demonstrate that PA28γ has a strong influence on different apoptotic hallmarks, especially p53 phosphorylation and caspase activation. In detail, PA28γ and effector caspases mutually restrict each other. PA28γ is a caspase substrate, if PA28γ levels are low. In contrast, PA28γ overexpression reduces caspase activities, including the caspase-dependent processing of PA28γ. Furthermore, overexpression of PA28γ resulted in a nuclear accumulation of transcriptional active p53. In summary, our findings indicate that even in a p53-dominated cellular context, pro-apoptotic signaling might be overcome by PA28γ-mediated caspase inhibition. PMID:26201457

  2. Decreased Proteasomal Activity Causes Photoreceptor Degeneration in Mice

    PubMed Central

    Ando, Ryo; Noda, Kousuke; Tomaru, Utano; Kamoshita, Mamoru; Ozawa, Yoko; Notomi, Shoji; Hisatomi, Toshio; Noda, Mika; Kanda, Atsuhiro; Ishibashi, Tatsuro; Kasahara, Masanori; Ishida, Susumu

    2014-01-01

    Purpose. To study the retinal degeneration caused by decreased proteasomal activity in β5t transgenic (β5t-Tg) mice, an animal model of senescence acceleration. Methods. β5t-Tg mice and age-matched littermate control (WT) mice were used. Proteasomal activities and protein level of poly-ubiquitinated protein in retinal extracts were quantified. Fundus images of β5t-Tg mice were taken and their features were assessed. For histologic evaluation, the thicknesses of inner nuclear layer (INL), outer nuclear layer (ONL), and photoreceptor outer segment (OS) were measured. For functional analysis, ERG was recorded under scotopic and photopic illumination conditions. Immunofluorescence (IF) staining and TUNEL were performed to investigate the mechanism of photoreceptor degeneration. Results. Chymotrypsin-like activity was partially suppressed in retinal tissues of β5t-Tg mice. Retinal degenerative changes with arterial attenuation were present in β5t-Tg, but not in WT mice. Inner nuclear layer thickness showed no significant change between β5t-Tg and WT mice at 1, 3, 6, and 9 months of age. By contrast, thicknesses of ONL and OS in β5t-Tg mice were significantly decreased at 3, 6, and 9 months compared with those in WT mice. Electroretinograms showed decrease of scotopic a-wave amplitude in β5t-Tg mice. The number of TUNEL-positive cells in ONL were significantly increased in β5t-Tg mice and colocalized with apoptosis-inducing factor, but not with cleaved caspase-3 and -9, indicating that the photoreceptor cell death was induced via a caspase-independent pathway. Conclusions. The current data showed that impaired proteasomal function causes photoreceptor degeneration. PMID:24994871

  3. Calcium-dependent proteasome activation is required for axonal neurofilament degradation.

    PubMed

    Park, Joo Youn; Jang, So Young; Shin, Yoon Kyung; Suh, Duk Joon; Park, Hwan Tae

    2013-12-25

    Even though many studies have identified roles of proteasomes in axonal degeneration, the molecular mechanisms by which axonal injury regulates proteasome activity are still unclear. In the present study, we found evidence indicating that extracellular calcium influx is an upstream regulator of proteasome activity during axonal degeneration in injured peripheral nerves. In degenerating axons, the increase in proteasome activity and the degradation of ubiquitinated proteins were significantly suppressed by extracellular calcium chelation. In addition, electron microscopic findings revealed selective inhibition of neurofilament degradation, but not microtubule depolymerization or mitochondrial swelling, by the inhibition of calpain and proteasomes. Taken together, our findings suggest that calcium increase and subsequent proteasome activation are an essential initiator of neurofilament degradation in Wallerian degeneration. PMID:25206662

  4. Proteasome activity is required for the initiation of precancerous pancreatic lesions.

    PubMed

    Furuyama, Takaki; Tanaka, Shinji; Shimada, Shu; Akiyama, Yoshimitsu; Matsumura, Satoshi; Mitsunori, Yusuke; Aihara, Arihiro; Ban, Daisuke; Ochiai, Takanori; Kudo, Atsushi; Fukamachi, Hiroshi; Arii, Shigeki; Kawaguchi, Yoshiya; Tanabe, Minoru

    2016-01-01

    Proteasome activity is significantly increased in advanced cancers, but its role in cancer initiation is not clear, due to difficulties in monitoring this process in vivo. We established a line of transgenic mice that carried the ZsGreen-degron(ODC) (Gdeg) proteasome reporter to monitor the proteasome activity. In combination with Pdx-1-Cre;LSL-Kras(G12D) model, proteasome activity was investigated in the initiation of precancerous pancreatic lesions (PanINs). Normal pancreatic acini in Gdeg mice had low proteasome activity. By contrast, proteasome activity was increased in the PanIN lesions that developed in Gdeg;Pdx-1-Cre;LSL-Kras(G12D) mice. Caerulein administration to Gdeg;Pdx-1-Cre;LSL-Kras(G12D) mice induced constitutive elevation of proteasome activity in pancreatic tissues and accelerated PanIN formation. The proteasome inhibitor markedly reduced PanIN formation in Gdeg;Pdx-1-Cre;LSL-Kras(G12D) mice (P = 0.001), whereas it had no effect on PanIN lesions that had already formed. These observations indicated the significance of proteasome activity in the initiation of PanIN but not the maintenance per se. In addition, the expressions of pERK and its downstream factors including cyclin D1, NF-κB, and Cox2 were decreased after proteasome inhibition in PanINs. Our studies showed activation of proteasome is required specifically for the initiation of PanIN. The roles of proteasome in the early stages of pancreatic carcinogenesis warrant further investigation. PMID:27244456

  5. Proteasome activity is required for the initiation of precancerous pancreatic lesions

    PubMed Central

    Furuyama, Takaki; Tanaka, Shinji; Shimada, Shu; Akiyama, Yoshimitsu; Matsumura, Satoshi; Mitsunori, Yusuke; Aihara, Arihiro; Ban, Daisuke; Ochiai, Takanori; Kudo, Atsushi; Fukamachi, Hiroshi; Arii, Shigeki; Kawaguchi, Yoshiya; Tanabe, Minoru

    2016-01-01

    Proteasome activity is significantly increased in advanced cancers, but its role in cancer initiation is not clear, due to difficulties in monitoring this process in vivo. We established a line of transgenic mice that carried the ZsGreen-degronODC (Gdeg) proteasome reporter to monitor the proteasome activity. In combination with Pdx-1-Cre;LSL-KrasG12D model, proteasome activity was investigated in the initiation of precancerous pancreatic lesions (PanINs). Normal pancreatic acini in Gdeg mice had low proteasome activity. By contrast, proteasome activity was increased in the PanIN lesions that developed in Gdeg;Pdx-1-Cre;LSL-KrasG12D mice. Caerulein administration to Gdeg;Pdx-1-Cre;LSL-KrasG12D mice induced constitutive elevation of proteasome activity in pancreatic tissues and accelerated PanIN formation. The proteasome inhibitor markedly reduced PanIN formation in Gdeg;Pdx-1-Cre;LSL-KrasG12D mice (P = 0.001), whereas it had no effect on PanIN lesions that had already formed. These observations indicated the significance of proteasome activity in the initiation of PanIN but not the maintenance per se. In addition, the expressions of pERK and its downstream factors including cyclin D1, NF-κB, and Cox2 were decreased after proteasome inhibition in PanINs. Our studies showed activation of proteasome is required specifically for the initiation of PanIN. The roles of proteasome in the early stages of pancreatic carcinogenesis warrant further investigation. PMID:27244456

  6. Proteasome inhibitors.

    PubMed

    Teicher, Beverly A; Tomaszewski, Joseph E

    2015-07-01

    Proteasome inhibitors have a 20 year history in cancer therapy. The first proteasome inhibitor, bortezomib (Velcade, PS-341), a break-through multiple myeloma treatment, moved rapidly through development from bench in 1994 to first approval in 2003. Bortezomib is a reversible boronic acid inhibitor of the chymotrypsin-like activity of the proteasome. Next generation proteasome inhibitors include carfilzomib and oprozomib which are irreversible epoxyketone proteasome inhibitors; and ixazomib and delanzomib which are reversible boronic acid proteasome inhibitors. Two proteasome inhibitors, bortezomib and carfilzomib are FDA approved drugs and ixazomib and oprozomib are in late stage clinical trials. All of the agents are potent cytotoxics. The disease focus for all the proteasome inhibitors is multiple myeloma. This focus arose from clinical observations made in bortezomib early clinical trials. Later preclinical studies confirmed that multiple myeloma cells were indeed more sensitive to proteasome inhibitors than other tumor cell types. The discovery and development of the proteasome inhibitor class of anticancer agents has progressed through a classic route of serendipity and scientific investigation. These agents are continuing to have a major impact in their treatment of hematologic malignancies and are beginning to be explored as potential treatment agent for non-cancer indications. PMID:25935605

  7. The transition zone protein Rpgrip1l regulates proteasomal activity at the primary cilium

    PubMed Central

    Lier, Johanna Maria; Burmühl, Stephan; Struchtrup, Andreas; Deutschmann, Kathleen; Vetter, Maik; Leu, Tristan; Reeg, Sandra; Grune, Tilman; Rüther, Ulrich

    2015-01-01

    Mutations in RPGRIP1L result in severe human diseases called ciliopathies. To unravel the molecular function of RPGRIP1L, we analyzed Rpgrip1l−/− mouse embryos, which display a ciliopathy phenotype and die, at the latest, around birth. In these embryos, cilia-mediated signaling was severely disturbed. Defects in Shh signaling suggested that the Rpgrip1l deficiency causes an impairment of protein degradation and protein processing. Indeed, we detected a cilia-dependent decreased proteasomal activity in the absence of Rpgrip1l. We found different proteasomal components localized to cilia and identified Psmd2, a component of the regulatory proteasomal 19S subunit, as an interaction partner for Rpgrip1l. Quantifications of proteasomal substrates demonstrated that Rpgrip1l regulates proteasomal activity specifically at the basal body. Our study suggests that Rpgrip1l controls ciliary signaling by regulating the activity of the ciliary proteasome via Psmd2. PMID:26150391

  8. Structural analysis of the dodecameric proteasome activator PafE in Mycobacterium tuberculosis.

    PubMed

    Bai, Lin; Hu, Kuan; Wang, Tong; Jastrab, Jordan B; Darwin, K Heran; Li, Huilin

    2016-04-01

    The human pathogen Mycobacterium tuberculosis (Mtb) requires a proteasome system to cause lethal infections in mice. We recently found that proteasome accessory factor E (PafE, Rv3780) activates proteolysis by the Mtb proteasome independently of adenosine triphosphate (ATP). Moreover, PafE contributes to the heat-shock response and virulence of Mtb Here, we show that PafE subunits formed four-helix bundles similar to those of the eukaryotic ATP-independent proteasome activator subunits of PA26 and PA28. However, unlike any other known proteasome activator, PafE formed dodecamers with 12-fold symmetry, which required a glycine-XXX-glycine-XXX-glycine motif that is not found in previously described activators. Intriguingly, the truncation of the PafE carboxyl-terminus resulted in the robust binding of PafE rings to native proteasome core particles and substantially increased proteasomal activity, suggesting that the extended carboxyl-terminus of this cofactor confers suboptimal binding to the proteasome core particle. Collectively, our data show that proteasomal activation is not limited to hexameric ATPases in bacteria. PMID:27001842

  9. Structural analysis of the dodecameric proteasome activator PafE in Mycobacterium tuberculosis

    DOE PAGESBeta

    Bai, Lin; Hu, Kuan; Wang, Tong; Jastrab, Jordan B.; Darwin, K. Heran; Li, Huilin

    2016-03-21

    Here, the human pathogen Mycobacterium tuberculosis (Mtb) requires a proteasome system to cause lethal infections in mice. We recently found that proteasome accessory factor E (PafE, Rv3780) activates proteolysis by the Mtb proteasome independently of adenosine triphosphate (ATP). Moreover, PafE contributes to the heat-shock response and virulence of Mtb. Here, we show that PafE subunits formed four-helix bundles similar to those of the eukaryotic ATP-independent proteasome activator subunits of PA26 and PA28. However, unlike any other known proteasome activator, PafE formed dodecamers with 12-fold symmetry, which required a glycine-XXX-glycine-XXX-glycine motif that is not found in previously described activators. Intriguingly, themore » truncation of the PafE carboxyl-terminus resulted in the robust binding of PafE rings to native proteasome core particles and substantially increased proteasomal activity, suggesting that the extended carboxyl-terminus of this cofactor confers suboptimal binding to the proteasome core particle. Collectively, our data show that proteasomal activation is not limited to hexameric ATPases in bacteria.« less

  10. Ubiquitinated proteins activate the proteasomal ATPases by binding to Usp14 or Uch37 homologs.

    PubMed

    Peth, Andreas; Kukushkin, Nikolay; Bossé, Marc; Goldberg, Alfred L

    2013-03-15

    Degradation of ubiquitinated proteins by 26 S proteasomes requires ATP hydrolysis, but it is unclear how the proteasomal ATPases are regulated and how proteolysis, substrate deubiquitination, degradation, and ATP hydrolysis are coordinated. Polyubiquitinated proteins were shown to stimulate ATP hydrolysis by purified proteasomes, but only if the proteins contain a loosely folded domain. If they were not ubiquitinated, such proteins did not increase ATPase activity. However, they did so upon addition of ubiquitin aldehyde, which mimics the ubiquitin chain and binds to 26 S-associated deubiquitinating enzymes (DUBs): in yeast to Ubp6, which is essential for the ATPase activation, and in mammalian 26 S to the Ubp6 homolog, Usp14, and Uch37. Occupancy of either DUB by a ubiquitin conjugate leads to ATPase stimulation, thereby coupling deubiquitination and ATP hydrolysis. Thus, ubiquitinated loosely folded proteins, after becoming bound to the 26 S, interact with Ubp6/Usp14 or Uch37 to activate ATP hydrolysis and enhance their own destruction. PMID:23341450

  11. Enhanced ubiquitination and proteasomal degradation of catalytically deficient human choline acetyltransferase mutants.

    PubMed

    Morey, Trevor M; Albers, Shawn; Shilton, Brian H; Rylett, R Jane

    2016-05-01

    Choline acetyltransferase (ChAT) is essential for cholinergic neuron function as it mediates synthesis of the neurotransmitter acetylcholine. ChAT mutations have been linked to the neuromuscular disorder congenital myasthenic syndrome (CMS). One CMS-related ChAT mutation, V18M, reduces enzyme activity and cellular protein levels, and is positioned within a highly conserved proline-rich motif with the sequence 14 PKLPVPP20 . We demonstrate that N-terminal truncation that includes this proline-rich motif, as well as mutation of prolines-17/19 together to alanine (P17A/P19A), dramatically reduces ChAT steady-state protein levels and cellular activity when expressed in cholinergic SN56 neural cells. The in vitro activity of bacterially expressed recombinant P17A/P19A-ChAT is also reduced, although this is not caused by changes in protein secondary structure or thermal stability. Treatment of SN56 cells with the proteasome inhibitor MG132 increases cellular P17A/P19A-ChAT steady-state protein levels, and by immunoprecipitation we found that ChAT is ubiquitinated and that polyubiquitination of P17A/P19A-ChAT is increased compared to wild-type (WT) ChAT. Using a novel fluorescent-biorthogonal pulse-chase protocol in SN56 cells, we determined that the protein half-life of P17A/P19A-ChAT (2.2 h) is substantially reduced compared to WT-ChAT (19.7 h). Lastly, we show that two CMS-related ChAT mutants (V18M and A513T) have enhanced ubiquitination, and that treatment with MG132 can partially restore both the steady-state protein levels as well as cellular activity of some CMS-mutant ChAT. These results identify a novel mechanism for regulation of ChAT through the ubiquitin-proteasome system that is influenced by the conserved N-terminal proline-rich motif of ChAT and may be implicated in CMS pathology. Choline acetyltransferase (ChAT) synthesizes acetylcholine in cholinergic neurons. In this study we find that steady-state protein levels of human 69-kDa ChAT are regulated by

  12. Force Spectroscopy of Substrate Molecules En Route to the Proteasome's Active Sites

    PubMed Central

    Classen, Mirjam; Breuer, Sarah; Baumeister, Wolfgang; Guckenberger, Reinhard; Witt, Susanne

    2011-01-01

    We used an atomic force microscope to study the mechanism underlying the translocation of substrate molecules inside the proteasome. Our specific experimental setup allowed us to measure interaction forces between the 20S proteasome and its substrates. The substrate (β-casein) was covalently bound either via a thiol-Au bond or by a PEG-based binding procedure to the atomic force microscope cantilever tip and offered as bait to proteasomes from Methanosarcina mazei. The proteasomes were immobilized densely in an upright orientation on mica, which made their upper pores accessible for substrates to enter. Besides performing conventional single-molecule force spectroscopy experiments, we developed a three-step procedure that allows the detection of specific proteasome-substrate single-molecule events without tip-sample contact. Using the active 20S wild type and an inactive active-site mutant, as well as two casein mutants bound with opposite termini to the microscope tip, we detected no directional preference of the proteasome-substrate interactions. By comparing the distribution of the measured forces for the proteasome-substrate interactions, were observed that a significant proportion of interaction events occurred at higher forces for the active versus the inactive proteasome. These forces can be attributed to the translocation of substrate en route to the active sites that are harbored deep inside the proteasome. PMID:21244845

  13. Hsp90 Enhances Degradation of Oxidized Calmodulin by the 20S Proteasome

    SciTech Connect

    Whittier, Jennifer E.; Xiong, Yijia; Rechsteiner, Martin C.; Squier, Thomas C.

    2004-10-29

    The 20S proteasome has been suggested to play a critical role in mediating the degradation of abnormal proteins under conditions of oxidative stress, and has been found in tight association with the molecular chaperone Hsp90. To elucidate the role of Hsp90 in promoting the degradation of oxidized calmodulin (CaMox), which accumulates in senescent brain during normal biological aging, we have purified the 20S proteasome free of Hsp90 from red blood cells and assessed its ability to recognize and degrade CaMox in the absence and presence of added Hsp90. The purified 20S proteasome does not degrade CaMox to any appreciable extent. However, following association with Hsp90, the 20S proteasome selectively degrades CaMox. This degradation is sensitive to both proteasome and Hsp90-specific inhibitors, and is further enhanced in the presence of 2 mM ATP. Irrespective of the presence of Hsp90 we find that unoxidized CaM is not significantly degraded. Furthermore, the ability of the proteasome to degrade commonly used fluorogenic peptides is not affected by Hsp90, indicating that there is no change in the accessibility of the catalytic core. Direct binding measurements demonstrate that Hsp90 selectively associates with CaMox; essentially no binding is observed between Hsp90 and unoxidized CaM. Since oxidation has previously been shown to induce both global conformational changes and a reduction in helical content of CaM, these results suggest that Hsp90 in association with the 20S proteasome selectively associates with partially unfolded proteins to promote their degradation by the proteasome.

  14. Does inactivation of USP14 enhance degradation of proteasomal substrates that are associated with neurodegenerative diseases?

    PubMed Central

    Ortuno, Daniel; Carlisle, Holly J.; Miller, Silke

    2016-01-01

    A common pathological hallmark of age-related neurodegenerative diseases is the intracellular accumulation of protein aggregates such as α-synuclein in Parkinson’s disease, TDP-43 in ALS, and tau in Alzheimer’s disease. Enhancing intracellular clearance of aggregation-prone proteins is a plausible strategy for slowing progression of neurodegenerative diseases and there is great interest in identifying molecular targets that control protein turnover. One of the main routes for protein degradation is through the proteasome, a multisubunit protease that degrades proteins that have been tagged with a polyubiquitin chain by ubiquitin activating and conjugating enzymes. Published data from cellular models indicate that Ubiquitin-specific protease 14 (USP14), a deubiquitinating enzyme (DUB), slows the degradation of tau and TDP-43 by the proteasome and that an inhibitor of USP14 increases the degradation of these substrates. We conducted similar experiments designed to evaluate tau, TDP-43, or α-synuclein levels in cells after overexpressing USP14 or knocking down endogenous expression by siRNA. PMID:26998235

  15. ACTIVATION OF PERK KINASE IN NEURAL CELLS BY PROTEASOME INHIBITOR TREATMENT

    PubMed Central

    Zhang, Le; Ebenezer, Philip J; Dasuri, Kalavathi; Bruce-Keller, Annadora J.; Fernandez-Kim, Sun Ok; Liu, Ying; Keller, Jeffrey N.

    2010-01-01

    Inhibition of the proteasome proteolytic pathway occurs as the result of normal aging, as well as in a variety of neurodegenerative conditions, and is believed to promote cellular toxicity in each of these conditions through diverse mechanisms. In the present study we examined whether proteasome inhibition alters the protein kinase (PKR)-like ER kinase (PERK). Our studies demonstrate that proteasome inhibitors induce the transient activation of PERK in both primary rat neurons as well as the N2a neural cell line. Experiments with siRNA to PERK demonstrated that the modulation of PERK was not significant involved in regulating toxicity, ubiquitinated protein levels, or ribosome perturbations in response to proteasome inhibitor treatment. Surprisingly, PERK was observed to be involved in the upregulation of p38 kinase following proteasome inhibitor treatment. Taken together, these data demonstrate the ability of proteasome inhibition to activate PERK and demonstrate evidence for novel cross talk between PERK and the activation of p38 kinase in neural cells following proteasome inhibition. Taken together, these data have implications for understanding the basis by which proteasome inhibition alters neural homeostasis, and the basis by which cell signaling cascades are regulated by proteasome inhibition. PMID:19860852

  16. mTORC1 signaling activates NRF1 to increase cellular proteasome levels

    PubMed Central

    Zhang, Yinan; Manning, Brendan D

    2015-01-01

    Defects in the maintenance of protein homeostasis, or proteostasis, has emerged as an underlying feature of a variety of human pathologies, including aging-related diseases. Proteostasis is achieved through the coordinated action of cellular systems overseeing amino acid availability, mRNA translation, protein folding, secretion, and degradation. The regulation of these distinct systems must be integrated at various points to attain a proper balance. In a recent study, we found that the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) pathway, well known to enhance the protein synthesis capacity of cells while concordantly inhibiting autophagy, promotes the production of more proteasomes. Activation of mTORC1 genetically, through loss of the tuberous sclerosis complex (TSC) tumor suppressors, or physiologically, through growth factors or feeding, stimulates a transcriptional program involving the sterol-regulatory element binding protein 1 (SREBP1) and nuclear factor erythroid-derived 2-related factor 1 (NRF1; also known as NFE2L1) transcription factors leading to an increase in cellular proteasome content. As discussed here, our findings suggest that this increase in proteasome levels facilitates both the maintenance of proteostasis and the recovery of amino acids in the face of an increased protein load consequent to mTORC1 activation. We also consider the physiological and pathological implications of this unexpected new downstream branch of mTORC1 signaling. PMID:26017155

  17. Interferon gamma regulates accumulation of the proteasome activator PA28 and immunoproteasomes at nuclear PML bodies.

    PubMed

    Fabunmi, R P; Wigley, W C; Thomas, P J; DeMartino, G N

    2001-01-01

    PA28 is an interferon (gamma) (IFN(gamma)) inducible proteasome activator required for presentation of certain major histocompatibility (MHC) class I antigens. Under basal conditions in HeLa and Hep2 cells, a portion of nuclear PA28 is concentrated at promyelocytic leukemia oncoprotein (PML)-containing bodies also commonly known as PODs or ND10. IFN(gamma) treatment greatly increased the number and size of the PA28- and PML-containing bodies, and the effect was further enhanced in serum-deprived cells. PML bodies are disrupted in response to certain viral infections and in diseases such as acute promyelocytic leukemia (APL). Like PML, PA28 was delocalized from PML bodies by expression of the cytomegalovirus protein, IE1, and in NB4 cells, an APL model line. Moreover, retinoic acid treatment, which causes remission of APL in patients and reformation of PML-containing bodies in NB4 cells, relocalized PA28 to this site. In contrast, the proteasome, the functional target of PA28, was not detected at PML bodies under basal conditions in HeLa and Hep2 cells, but IFN(gamma) promoted accumulation of 'immunoproteasomes' at this site. These results establish PA28 as a novel component of nuclear PML bodies, and suggest that PA28 may assemble or activate immunoproteasomes at this site as part of its role in proteasome-dependent MHC class I antigen presentation. PMID:11112687

  18. Ubiquitin, Proteasomes and Proteolytic Mechanisms Activated by Kidney Disease

    PubMed Central

    Rajan, Vik; Mitch, William E.

    2008-01-01

    Summary The ubiquitin-proteasome system (UPS) includes 3 enzymes that conjugate ubiquitin to intracellular proteins that are then recognized and degraded in the proteasome. The process participates in the regulation of cell metabolism. In the kidney, the UPS regulates the turnover of transporters and signaling proteins and its activity is down regulated in acidosis-induced proximal tubular cell hypertrophy. In chronic kidney disease (CKD), muscle wasting occurs because complications of CKD including acidosis, insulin resistance, inflammation, and increased angiotensin II levels stimulate the UPS to degrade muscle proteins. This response also includes caspase-3 and calpains which act to cleave muscle proteins to provide substrates for the UPS. For example, caspase-3 degrades actomyosin, leaving a 14kD fragment of actin in muscle. The 14 kD actin fragment is increased in muscle of patient with kidney disease, burn injury and surgery. In addition, acidosis, insulin resistance, inflammation and angiotensin II stimulate glucocorticoid production. Glucocorticoids are also required for the muscle wasting that occurs in CKD. Thus, the UPS is involved in regulating kidney function and participates in highly organized responses that degrade muscle protein in response to loss of kidney function. PMID:18723090

  19. Emodin potentiates the antiproliferative effect of interferon α/β by activation of JAK/STAT pathway signaling through inhibition of the 26S proteasome

    PubMed Central

    He, Yujiao; Huang, Junmei; Wang, Ping; Shen, Xiaofei; Li, Sheng; Yang, Lijuan; Liu, Wanli; Suksamrarn, Apichart; Zhang, Guolin; Wang, Fei

    2016-01-01

    The 26S proteasome is a negative regulator of type I interferon (IFN-α/β) signaling. Inhibition of the 26S proteasome by small molecules may be a new strategy to enhance the efficacy of type I IFNs and reduce their side effects. Using cell-based screening assay for new 26S proteasome inhibitors, we found that emodin, a natural anthraquinone, was a potent inhibitor of the human 26S proteasome. Emodin preferably inhibited the caspase-like and chymotrypsin-like activities of the human 26S proteasome and increased the ubiquitination of endogenous proteins in cells. Computational modeling showed that emodin exhibited an orientation/conformation favorable to nucleophilic attack in the active pocket of the β1, β2, and β5 subunits of the 26S proteasome. Emodin increased phosphorylation of STAT1, decreased phosphorylation of STAT3 and increased endogenous gene expression stimulated by IFN-α. Emodin inhibited IFN-α-stimulated ubiquitination and degradation of type I interferon receptor 1 (IFNAR1). Emodin also sensitized the antiproliferative effect of IFN-α in HeLa cervical carcinoma cells and reduced tumor growth in Huh7 hepatocellular carcinoma-bearing mice. These results suggest that emodin potentiates the antiproliferative effect of IFN-α by activation of JAK/STAT pathway signaling through inhibition of 26S proteasome-stimulated IFNAR1 degradation. Therefore, emodin warrants further investigation as a new means to enhance the efficacy of IFN-α/β. PMID:26683360

  20. Emodin potentiates the antiproliferative effect of interferon α/β by activation of JAK/STAT pathway signaling through inhibition of the 26S proteasome.

    PubMed

    He, Yujiao; Huang, Junmei; Wang, Ping; Shen, Xiaofei; Li, Sheng; Yang, Lijuan; Liu, Wanli; Suksamrarn, Apichart; Zhang, Guolin; Wang, Fei

    2016-01-26

    The 26S proteasome is a negative regulator of type I interferon (IFN-α/β) signaling. Inhibition of the 26S proteasome by small molecules may be a new strategy to enhance the efficacy of type I IFNs and reduce their side effects. Using cell-based screening assay for new 26S proteasome inhibitors, we found that emodin, a natural anthraquinone, was a potent inhibitor of the human 26S proteasome. Emodin preferably inhibited the caspase-like and chymotrypsin-like activities of the human 26S proteasome and increased the ubiquitination of endogenous proteins in cells. Computational modeling showed that emodin exhibited an orientation/conformation favorable to nucleophilic attack in the active pocket of the β1, β2, and β5 subunits of the 26S proteasome. Emodin increased phosphorylation of STAT1, decreased phosphorylation of STAT3 and increased endogenous gene expression stimulated by IFN-α. Emodin inhibited IFN-α-stimulated ubiquitination and degradation of type I interferon receptor 1 (IFNAR1). Emodin also sensitized the antiproliferative effect of IFN-α in HeLa cervical carcinoma cells and reduced tumor growth in Huh7 hepatocellular carcinoma-bearing mice. These results suggest that emodin potentiates the antiproliferative effect of IFN-α by activation of JAK/STAT pathway signaling through inhibition of 26S proteasome-stimulated IFNAR1 degradation. Therefore, emodin warrants further investigation as a new means to enhance the efficacy of IFN-α/β. PMID:26683360

  1. [Proteasome inhibitor].

    PubMed

    Yagi, Hideo

    2014-06-01

    The ubiquitin-proteasome system plays an essential role in degradation of eukaryotic intracellular protein, including cell cycle regulation, cell growth and proliferation, and survival. Cancer cells generally have higher level of proteasome activity compared with normal cells, suggesting proteasome inhibition could be therapeutic target in oncology. Bortezomib, the first proteasome inhibitor introduced into the clinic, is approved for the treatment of patients with multiple myeloma (MM). Although it was approved as single agent in the relapsed setting, bortezomib is now predominantly used in combination with conventional and novel targeted agents because bortezomib has demonstrated additive and synergistic activity in preclinical studies. Recently, several second-generation proteasome inhibitors, such as carfilzomib and MLN9708, have been developed and entered into clinical trials. These agents were investigated in frontline MM in combination with lenalidomide and low-dose dexamethasone. These studies demonstrated positive efficacy and safety, and it is expected that they will be approved in near future. PMID:25016815

  2. Bufalin derivative BF211 inhibits proteasome activity in human lung cancer cells in vitro by inhibiting β1 subunit expression and disrupting proteasome assembly

    PubMed Central

    Sun, Peng; Feng, Li-xing; Zhang, Dong-mei; Liu, Miao; Liu, Wang; Mi, Tian; Wu, Wan-ying; Jiang, Bao-hong; Yang, Min; Hu, Li-hong; Guo, De-an; Liu, Xuan

    2016-01-01

    Aim: Bufalin is one of the active components in the traditional Chinese medicine ChanSu that is used to treat arrhythmia, inflammation and cancer. BF211 is a bufalin derivative with stronger cytotoxic activity in cancer cells. The aim of this study was to identify the putative target proteins of BF211 and the signaling pathways in cancer cells. Methods: A549 human lung cancer cells were treated with BF211. A SILAC-based proteomic analysis was used to detect the protein expression profiles of BF211-treated A549 cells. Cellular proteasome activities were examined using fluorogenic peptide substrates, and the binding affinities of BF211 to recombinant proteasome subunit proteins were evaluated using the Biacore assay. The expression levels of proteasome subunits were determined using RT-PCR and Western blotting, and the levels of the integral 26S proteasome were evaluated using native PAGE analysis. Results: The proteomic analysis revealed that 1282 proteins were differentially expressed in BF211-treated A549 cells, and the putative target proteins of BF211 were associated with various cellular functions, including transcription, translation, mRNA splicing, ribosomal protein synthesis and proteasome function. In A549 cells, BF211 (5, 10, and 20 nmol/L) dose-dependently inhibited the enzymatic activities of proteasome. But BF211 displayed a moderate affinity in binding to proteasome β1 subunit and no binding affinity to the β2 and β5 subunits. Moreover, BF211 (0.1, 1, and 10 nmol/L) did not inhibit the proteasome activities in the cell lysates. BF211 (5, 10, and 20 nmol/L) significantly decreased the expression level of proteasome β1 subunit and the levels of integral 26S proteasome in A549 cells. Similarly, knockdown of the β1 subunit with siRNA in A549 cells significantly decreased integral 26S proteasome and proteasome activity. Conclusion: BF211 inhibits proteasome activity in A549 cells by decreasing β1 subunit expression and disrupting proteasome assembly

  3. The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction

    PubMed Central

    Koizumi, Shun; Irie, Taro; Hirayama, Shoshiro; Sakurai, Yasuyuki; Yashiroda, Hideki; Naguro, Isao; Ichijo, Hidenori; Hamazaki, Jun; Murata, Shigeo

    2016-01-01

    In response to proteasome dysfunction, mammalian cells upregulate proteasome gene expression by activating Nrf1. Nrf1 is an endoplasmic reticulum-resident transcription factor that is continually retrotranslocated and degraded by the proteasome. Upon proteasome inhibition, Nrf1 escapes degradation and is cleaved to become active. However, the processing enzyme for Nrf1 remains obscure. Here we show that the aspartyl protease DNA-damage inducible 1 homolog 2 (DDI2) is required to cleave and activate Nrf1. Deletion of DDI2 reduced the cleaved form of Nrf1 and increased the full-length cytosolic form of Nrf1, resulting in poor upregulation of proteasomes in response to proteasome inhibition. These defects were restored by adding back wild-type DDI2 but not protease-defective DDI2. Our results provide a clue for blocking compensatory proteasome synthesis to improve cancer therapies targeting proteasomes. DOI: http://dx.doi.org/10.7554/eLife.18357.001 PMID:27528193

  4. mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy

    PubMed Central

    Zhao, Jinghui; Zhai, Bo; Gygi, Steven P.; Goldberg, Alfred Lewis

    2015-01-01

    Growth factors and nutrients enhance protein synthesis and suppress overall protein degradation by activating the protein kinase mammalian target of rapamycin (mTOR). Conversely, nutrient or serum deprivation inhibits mTOR and stimulates protein breakdown by inducing autophagy, which provides the starved cells with amino acids for protein synthesis and energy production. However, it is unclear whether proteolysis by the ubiquitin proteasome system (UPS), which catalyzes most protein degradation in mammalian cells, also increases when mTOR activity decreases. Here we show that inhibiting mTOR with rapamycin or Torin1 rapidly increases the degradation of long-lived cell proteins, but not short-lived ones, by stimulating proteolysis by proteasomes, in addition to autophagy. This enhanced proteasomal degradation required protein ubiquitination, and within 30 min after mTOR inhibition, the cellular content of K48-linked ubiquitinated proteins increased without any change in proteasome content or activity. This rapid increase in UPS-mediated proteolysis continued for many hours and resulted primarily from inhibition of mTORC1 (not mTORC2), but did not require new protein synthesis or key mTOR targets: S6Ks, 4E-BPs, or Ulks. These findings do not support the recent report that mTORC1 inhibition reduces proteolysis by suppressing proteasome expression [Zhang Y, et al. (2014) Nature 513(7518):440–443]. Several growth-related proteins were identified that were ubiquitinated and degraded more rapidly after mTOR inhibition, including HMG-CoA synthase, whose enhanced degradation probably limits cholesterol biosynthesis upon insulin deficiency. Thus, mTOR inhibition coordinately activates the UPS and autophagy, which provide essential amino acids and, together with the enhanced ubiquitination of anabolic proteins, help slow growth. PMID:26669439

  5. A Set of Activity-Based Probes to Visualize Human (Immuno)proteasome Activities.

    PubMed

    de Bruin, Gerjan; Xin, Bo Tao; Kraus, Marianne; van der Stelt, Mario; van der Marel, Gijsbert A; Kisselev, Alexei F; Driessen, Christoph; Florea, Bogdan I; Overkleeft, Herman S

    2016-03-18

    Proteasomes are therapeutic targets for various cancers and autoimmune diseases. Constitutively expressed proteasomes have three active sites, β1c, β2c, and β5c. Lymphoid tissues also express the immunoproteasome subunits β1i, β2i, and β5i. Rapid and simultaneous measurement of the activity of these catalytic subunits would assist in the discovery of new inhibitors, improve analysis of proteasome inhibitors in clinical trials, and simplify analysis of subunit expression. In this work, we present a cocktail of activity-based probes that enables simultaneous gel-based detection of all six catalytic human proteasome subunits. We used this cocktail to develop specific inhibitors for β1c, β2c, β5c, and β2i, to compare the active-site specificity of clinical proteasome inhibitors, and to demonstrate that many hematologic malignancies predominantly express immunoproteasomes. Furthermore, we show that selective and complete inhibition of β5i and β1i is cytotoxic to primary cells from acute lymphocytic leukemia (ALL) patients. PMID:26511210

  6. Proteasome Activity Is Affected by Fluctuations in Insulin-Degrading Enzyme Distribution

    PubMed Central

    Sbardella, Diego; Tundo, Grazia Raffaella; Sciandra, Francesca; Bozzi, Manuela; Gioia, Magda; Ciaccio, Chiara; Tarantino, Umberto; Brancaccio, Andrea; Coletta, Massimo; Marini, Stefano

    2015-01-01

    Insulin-Degrading-Enzyme (IDE) is a Zn2+-dependent peptidase highly conserved throughout evolution and ubiquitously distributed in mammalian tissues wherein it displays a prevalent cytosolic localization. We have recently demonstrated a novel Heat Shock Protein-like behaviour of IDE and its association with the 26S proteasome. In the present study, we examine the mechanistic and molecular features of IDE-26S proteasome interaction in a cell experimental model, extending the investigation also to the effect of IDE on the enzymatic activities of the 26S proteasome. Further, kinetic investigations indicate that the 26S proteasome activity undergoes a functional modulation by IDE through an extra-catalytic mechanism. The IDE-26S proteasome interaction was analyzed during the Heat Shock Response and we report novel findings on IDE intracellular distribution that might be of critical relevance for cell metabolism. PMID:26186340

  7. Ubiquitination and proteasomal degradation of ATG12 regulates its proapoptotic activity

    PubMed Central

    Haller, Martina; Hock, Andreas K; Giampazolias, Evangelos; Oberst, Andrew; Green, Douglas R; Debnath, Jayanta; Ryan, Kevin M; Vousden, Karen H; Tait, Stephen W G

    2015-01-01

    During macroautophagy, conjugation of ATG12 to ATG5 is essential for LC3 lipidation and autophagosome formation. Additionally, ATG12 has ATG5-independent functions in diverse processes including mitochondrial fusion and mitochondrial-dependent apoptosis. In this study, we investigated the regulation of free ATG12. In stark contrast to the stable ATG12–ATG5 conjugate, we find that free ATG12 is highly unstable and rapidly degraded in a proteasome-dependent manner. Surprisingly, ATG12, itself a ubiquitin-like protein, is directly ubiquitinated and this promotes its proteasomal degradation. As a functional consequence of its turnover, accumulation of free ATG12 contributes to proteasome inhibitor-mediated apoptosis, a finding that may be clinically important given the use of proteasome inhibitors as anticancer agents. Collectively, our results reveal a novel interconnection between autophagy, proteasome activity, and cell death mediated by the ubiquitin-like properties of ATG12. PMID:25629932

  8. Secondary Metabolites Produced by an Endophytic Fungus Pestalotiopsis sydowiana and Their 20S Proteasome Inhibitory Activities.

    PubMed

    Xia, Xuekui; Kim, Soonok; Liu, Changheng; Shim, Sang Hee

    2016-01-01

    Fungal endophytes have attracted attention due to their functional diversity. Secondary metabolites produced by Pestalotiopsis sydowiana from a halophyte, Phragmites communis Trinus, were investigated. Eleven compounds, including four penicillide derivatives (1-4) and seven α-pyrone analogues (5-10) were isolated from cultures of P. sydowiana. The compounds were identified based on spectroscopic data. The inhibitory activities against the 20S proteasome were evaluated. Compounds 1-3, 5, and 9-10 showed modest proteasome inhibition activities, while compound 8 showed strong activity with an IC50 of 1.2 ± 0.3 μM. This is the first study on the secondary metabolites produced by P. sydowiana and their proteasome inhibitory activities. The endophytic fungus P. sydowiana might be a good resource for proteasome inhibitors. PMID:27447600

  9. Structural Insights into Proteasome Activation by the 19S Regulatory Particle

    PubMed Central

    Ehlinger, Aaron; Walters, Kylie J.

    2013-01-01

    Since its discovery in the late 1970s, the ubiquitin-proteasome system (UPS) has become recognized as the major pathway for regulated cellular proteolysis. Processes ranging from cell cycle control, pathogen resistance, and protein quality control rely on selective protein degradation at the proteasome for homeostatic function. Perhaps as a consequence of the importance of this pathway, and the genesis of severe diseases upon its dysregulation, protein degradation by the UPS is highly controlled from the level of substrate recognition to proteolysis. Technological advances over the last decade have created an explosion of structural and mechanistic information that has underscored the complexity of the proteasome and its upstream regulatory factors. Significant insights have come from study of the 19S proteasome regulatory particle (RP) responsible for recognition and processing of ubiquitinated substrates destined for proteolysis. Established as a highly dynamic proteasome activator, a large number of both permanent and transient RP components with specialized functional roles are critical for proteasome function. In this review, we highlight recent mechanistic developments in the study of proteasome activation by the RP and how they provide context to our current understanding of the UPS. PMID:23672618

  10. Combination Treatment with Sublethal Ionizing Radiation and the Proteasome Inhibitor, Bortezomib, Enhances Death-Receptor Mediated Apoptosis and Anti-Tumor Immune Attack

    PubMed Central

    Cacan, Ercan; Spring, Alexander M.; Kumari, Anita; Greer, Susanna F.; Garnett-Benson, Charlie

    2015-01-01

    Sub-lethal doses of radiation can modulate gene expression, making tumor cells more susceptible to T-cell-mediated immune attack. Proteasome inhibitors demonstrate broad anti-tumor activity in clinical and pre-clinical cancer models. Here, we use a combination treatment of proteasome inhibition and irradiation to further induce immunomodulation of tumor cells that could enhance tumor-specific immune responses. We investigate the effects of the 26S proteasome inhibitor, bortezomib, alone or in combination with radiotherapy, on the expression of immunogenic genes in normal colon and colorectal cancer cell lines. We examined cells for changes in the expression of several death receptors (DR4, DR5 and Fas) commonly used by T cells for killing of target cells. Our results indicate that the combination treatment resulted in increased cell surface expression of death receptors by increasing their transcript levels. The combination treatment further increases the sensitivity of carcinoma cells to apoptosis through FAS and TRAIL receptors but does not change the sensitivity of normal non-malignant epithelial cells. Furthermore, the combination treatment significantly enhances tumor cell killing by tumor specific CD8+ T cells. This study suggests that combining radiotherapy and proteasome inhibition may simultaneously enhance tumor immunogenicity and the induction of antitumor immunity by enhancing tumor-specific T-cell activity. PMID:26703577

  11. Plasminogen Activator Inhibitor Type 1 Interacts with α3 Subunit of Proteasome and Modulates Its Activity*

    PubMed Central

    Boncela, Joanna; Przygodzka, Patrycja; Papiewska-Pajak, Izabela; Wyroba, Elzbieta; Osinska, Magdalena; Cierniewski, Czeslaw S.

    2011-01-01

    Plasminogen activator inhibitor type-1 (PAI-1), a multifunctional protein, is an important physiological regulator of fibrinolysis, extracellular matrix homeostasis, and cell motility. Recent observations show that PAI-1 may also be implicated in maintaining integrity of cells, especially with respect to cellular proliferation or apoptosis. In the present study we provide evidence that PAI-1 interacts with proteasome and affects its activity. First, by using the yeast two-hybrid system, we found that the α3 subunit of proteasome directly interacts with PAI-1. Then, to ensure that the PAI-1-proteasome complex is formed in vivo, both proteins were coimmunoprecipitated from endothelial cells and identified with specific antibodies. The specificity of this interaction was evidenced after transfection of HeLa cells with pCMV-PAI-1 and coimmunoprecipitation of both proteins with anti-PAI-1 antibodies. Subsequently, cellular distribution of the PAI-1-proteasome complexes was established by immunogold staining and electron microscopy analyses. Both proteins appeared in a diffuse cytosolic pattern but also could be found in a dense perinuclear and nuclear location. Furthermore, PAI-1 induced formation of aggresomes freely located in endothelial cytoplasm. Increased PAI-1 expression abrogated degradation of degron analyzed after cotransfection of HeLa cells with pCMV-PAI-1 and pd2EGFP-N1 and prevented degradation of p53 as well as IκBα, as evidenced both by confocal microscopy and Western immunoblotting. PMID:21135093

  12. Why does threonine, and not serine, function as the active site nucleophile in proteasomes?

    PubMed

    Kisselev, A F; Songyang, Z; Goldberg, A L

    2000-05-19

    Proteasomes belong to the N-terminal nucleophile group of amidases and function through a novel proteolytic mechanism, in which the hydroxyl group of the N-terminal threonines is the catalytic nucleophile. However, it is unclear why threonine has been conserved in all proteasomal active sites, because its replacement by a serine in proteasomes from the archaeon Thermoplasma acidophilum (T1S mutant) does not alter the rates of hydrolysis of Suc-LLVY-amc (Seemüller, E., Lupas, A., Stock, D., Lowe, J., Huber, R., and Baumeister, W. (1995) Science 268, 579-582) and other standard peptide amide substrates. However, we found that true peptide bonds in decapeptide libraries were cleaved by the T1S mutant 10-fold slower than by wild type (wt) proteasomes. In degrading proteins, the T1S proteasome was 3.5- to 6-fold slower than the wt, and this difference increased when proteolysis was stimulated using the proteasome-activating nucleotidase (PAN) ATPase complex. With mutant proteasomes, peptide bond cleavage appeared to be rate-limiting in protein breakdown, unlike with wt. Surprisingly, a peptide ester was hydrolyzed by both particles much faster than the corresponding amide, and the T1S mutant cleaved it faster than the wt. Moreover, the T1S mutant was inactivated by the ester inhibitor clasto-lactacystin-beta-lactone severalfold faster than the wt, but reacted with nonester irreversible inhibitors at similar rates. T1A and T1C mutants were completely inactive in all these assays. Thus, proteasomes lack additional active sites, and the N-terminal threonine evolved because it allows more efficient protein breakdown than serine. PMID:10809725

  13. A monoclonal antibody that distinguishes latent and active forms of the proteasome (multicatalytic proteinase complex)

    NASA Technical Reports Server (NTRS)

    Weitman, D.; Etlinger, J. D.

    1992-01-01

    Monoclonal antibodies (mAbs) were generated to proteasome purified from human erythrocytes. Five of six proteasome-specific mAbs reacted with three subunits in the molecular mass range of 25-28 kDa, indicating a common epitope. The other mAb (AP5C10) exhibited a more restricted reactivity, recognizing a 32-kDa subunit of the proteasome purified in its latent state. However, when the proteasome is isolated in its active state, AP5C10 reacts with a 28-kDa subunit, evidence for processing of the proteasome subunits during purification. Purified proteasome preparations which exhibited partial latency have both AP5C10 reactive subunits. Although the 32-kDa subunit appears required for latency, loss of this component and generation of the 28-kDa component are not obligatory for activation. The 32- and 28-kDa subunits can each be further resolved into three components by isoelectric focusing. The apparent loss of 4 kDa during the conversion of the 32- to 28-kDa subunit is accompanied by a shift to a more basic pI for each polypeptide. Western blots of the early steps of proteasome purification reveal an AP5C10-reactive protein at 41 kDa. This protein was separated from proteasomes by sizing chromatography and may represent a pool of precursor subunits. Since the 32-kDa subunit appears necessary for latency, it is speculated to play a regulatory role in ATP-dependent proteolytic activity.

  14. MiR-29b replacement inhibits proteasomes and disrupts aggresome+autophagosome formation to enhance the antimyeloma benefit of bortezomib.

    PubMed

    Jagannathan, S; Vad, N; Vallabhapurapu, S; Vallabhapurapu, S; Anderson, K C; Driscoll, J J

    2015-03-01

    Evading apoptosis is a cancer hallmark that remains a serious obstacle in current treatment approaches. Although proteasome inhibitors (PIs) have transformed management of multiple myeloma (MM), drug resistance emerges through induction of the aggresome+autophagy pathway as a compensatory protein clearance mechanism. Genome-wide profiling identified microRNAs (miRs) differentially expressed in bortezomib-resistant myeloma cells compared with drug-naive cells. The effect of individual miRs on proteasomal degradation of short-lived fluorescent reporter proteins was then determined in live cells. MiR-29b was significantly reduced in bortezomib-resistant cells as well as in cells resistant to second-generation PIs carfilzomib and ixazomib. Luciferase reporter assays demonstrated that miR-29b targeted PSME4 that encodes the proteasome activator PA200. Synthetically engineered miR-29b replacements impaired the growth of myeloma cells, patient tumor cells and xenotransplants. MiR-29b replacements also decreased PA200 association with proteasomes, reduced the proteasome's peptidase activity and inhibited ornithine decarboxylase turnover, a proteasome substrate degraded through ubiquitin-independent mechanisms. Immunofluorescence studies revealed that miR-29b replacements enhanced the bortezomib-induced accumulation of ubiquitinated proteins but did not reveal aggresome or autophagosome formation. Taken together, our study identifies miR-29b replacements as the first-in-class miR-based PIs that also disrupt the autophagy pathway and highlight their potential to synergistically enhance the antimyeloma effect of bortezomib. PMID:25234165

  15. MiR-29b replacement inhibits proteasomes and disrupts aggresome+autophagosome formation to enhance the antimyeloma benefit of bortezomib

    PubMed Central

    Jagannathan, S; Vad, N; Vallabhapurapu, S; Vallabhapurapu, S; Anderson, K C; Driscoll, J J

    2015-01-01

    Evading apoptosis is a cancer hallmark that remains a serious obstacle in current treatment approaches. Although proteasome inhibitors (PIs) have transformed management of multiple myeloma (MM), drug resistance emerges through induction of the aggresome+autophagy pathway as a compensatory protein clearance mechanism. Genome-wide profiling identified microRNAs (miRs) differentially expressed in bortezomib-resistant myeloma cells compared with drug-naive cells. The effect of individual miRs on proteasomal degradation of short-lived fluorescent reporter proteins was then determined in live cells. MiR-29b was significantly reduced in bortezomib-resistant cells as well as in cells resistant to second-generation PIs carfilzomib and ixazomib. Luciferase reporter assays demonstrated that miR-29b targeted PSME4 that encodes the proteasome activator PA200. Synthetically engineered miR-29b replacements impaired the growth of myeloma cells, patient tumor cells and xenotransplants. MiR-29b replacements also decreased PA200 association with proteasomes, reduced the proteasome's peptidase activity and inhibited ornithine decarboxylase turnover, a proteasome substrate degraded through ubiquitin-independent mechanisms. Immunofluorescence studies revealed that miR-29b replacements enhanced the bortezomib-induced accumulation of ubiquitinated proteins but did not reveal aggresome or autophagosome formation. Taken together, our study identifies miR-29b replacements as the first-in-class miR-based PIs that also disrupt the autophagy pathway and highlight their potential to synergistically enhance the antimyeloma effect of bortezomib. PMID:25234165

  16. Downregulation of 26S proteasome catalytic activity promotes epithelial-mesenchymal transition

    PubMed Central

    van Baarsel, Eric D.; Metz, Patrick J.; Fisch, Kathleen; Widjaja, Christella E.; Kim, Stephanie H.; Lopez, Justine; Chang, Aaron N.; Geurink, Paul P.; Florea, Bogdan I.; Overkleeft, Hermen S.; Ovaa, Huib; Bui, Jack D.; Yang, Jing; Chang, John T.

    2016-01-01

    The epithelial-mesenchymal transition (EMT) endows carcinoma cells with phenotypic plasticity that can facilitate the formation of cancer stem cells (CSCs) and contribute to the metastatic cascade. While there is substantial support for the role of EMT in driving cancer cell dissemination, less is known about the intracellular molecular mechanisms that govern formation of CSCs via EMT. Here we show that β2 and β5 proteasome subunit activity is downregulated during EMT in immortalized human mammary epithelial cells. Moreover, selective proteasome inhibition enabled mammary epithelial cells to acquire certain morphologic and functional characteristics reminiscent of cancer stem cells, including CD44 expression, self-renewal, and tumor formation. Transcriptomic analyses suggested that proteasome-inhibited cells share gene expression signatures with cells that have undergone EMT, in part, through modulation of the TGF-β signaling pathway. These findings suggest that selective downregulation of proteasome activity in mammary epithelial cells can initiate the EMT program and acquisition of a cancer stem cell-like phenotype. As proteasome inhibitors become increasingly used in cancer treatment, our findings highlight a potential risk of these therapeutic strategies and suggest a possible mechanism by which carcinoma cells may escape from proteasome inhibitor-based therapy. PMID:26930717

  17. Proteasome Inhibitor YSY01A Enhances Cisplatin Cytotoxicity in Cisplatin-Resistant Human Ovarian Cancer Cells

    PubMed Central

    Huang, Wei; Zhou, Quan; Yuan, Xia; Ge, Ze-mei; Ran, Fu-xiang; Yang, Hua-yu; Qiang, Guang-liang; Li, Run-tao; Cui, Jing-rong

    2016-01-01

    Cisplatin is one of the most common drugs used for treatment of solid tumors such as ovarian cancer. Unfortunately, the development of resistance against this cytotoxic agent limits its clinical use. Here we report that YSY01A, a novel proteasome inhibitor, is capable of suppressing survival of cisplatin-resistant ovarian cancer cells by inducing apoptosis. And YSY01A treatment enhances the cytotoxicity of cisplatin in drug-resistant ovarian cancer cells. Specifically, YSY01A abrogates regulatory proteins important for cell proliferation and anti-apoptosis including NF-κB p65 and STAT3, resulting in down-regulation of Bcl-2. A dramatic increase in cisplatin uptake was also observed by inductively coupled plasma-mass spectrometry following exposure to YSY01A. Taken together, YSY01A serves as a potential candidate for further development as anticancer therapeutics targeting the proteasome. PMID:27326257

  18. Human 20S proteasome activity towards fluorogenic peptides of various chain lengths.

    PubMed

    Rut, Wioletta; Drag, Marcin

    2016-09-01

    The proteasome is a multicatalytic protease responsible for the degradation of misfolded proteins. We have synthesized fluorogenic substrates in which the peptide chain was systematically elongated from two to six amino acids and evaluated the effect of peptide length on all three catalytic activities of human 20S proteasome. In the cases of five- and six-membered peptides, we have also synthesized libraries of fluorogenic substrates. Kinetic analysis revealed that six-amino-acid substrates are significantly better for chymotrypsin-like and caspase-like activity than shorter peptidic substrates. In the case of trypsin-like activity, a five-amino-acid substrate was optimal. PMID:27176742

  19. Proteasome activators, PA28γ and PA200, play indispensable roles in male fertility

    PubMed Central

    Huang, Lin; Haratake, Kousuke; Miyahara, Hatsumi; Chiba, Tomoki

    2016-01-01

    Protein degradation mediated by the proteasome is important for the protein homeostasis. Various proteasome activators, such as PA28 and PA200, regulate the proteasome function. Here we show double knockout (dKO) mice of Psme3 and Psme4 (genes for PA28γ and PA200), but not each single knockout mice, are completely infertile in male. The dKO sperms exhibited remarkable defects in motility, although most of them showed normal appearance in morphology. The proteasome activity of the mutant sperms decreased notably, and the sperms were strongly positive with ubiquitin staining. Quantitative analyses of proteins expressed in dKO sperms revealed up-regulation of several proteins involved in oxidative stress response. Furthermore, increased 8-OHdG staining was observed in dKO sperms head, suggesting defective response to oxidative damage. This report verified PA28γ and PA200 play indispensable roles in male fertility, and provides a novel insight into the role of proteasome activators in antioxidant response. PMID:27003159

  20. Effect of age on proteasomal activity of T cells and macrophages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    T cell function is impaired with aging. Proteasome activity in T cells is important for T cell activation and its activity in macrophages is required for processing antigens in order to be presented via class I major histocompatibility complex to CD8+ T cells. Since studies have demonstrated that pr...

  1. An evolutionarily conserved pathway controls proteasome homeostasis.

    PubMed

    Rousseau, Adrien; Bertolotti, Anne

    2016-08-11

    The proteasome is essential for the selective degradation of most cellular proteins, but how cells maintain adequate amounts of proteasome is unclear. Here we show that there is an evolutionarily conserved signalling pathway controlling proteasome homeostasis. Central to this pathway is TORC1, the inhibition of which induced all known yeast 19S regulatory particle assembly-chaperones (RACs), as well as proteasome subunits. Downstream of TORC1 inhibition, the yeast mitogen-activated protein kinase, Mpk1, acts to increase the supply of RACs and proteasome subunits under challenging conditions in order to maintain proteasomal degradation and cell viability. This adaptive pathway was evolutionarily conserved, with mTOR and ERK5 controlling the levels of the four mammalian RACs and proteasome abundance. Thus, the central growth and stress controllers, TORC1 and Mpk1/ERK5, endow cells with a rapid and vital adaptive response to adjust proteasome abundance in response to the rising needs of cells. Enhancing this pathway may be a useful therapeutic approach for diseases resulting from impaired proteasomal degradation. PMID:27462806

  2. Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1.

    PubMed

    Lehrbach, Nicolas J; Ruvkun, Gary

    2016-01-01

    Proteasomes are essential for protein homeostasis in eukaryotes. To preserve cellular function, transcription of proteasome subunit genes is induced in response to proteasome dysfunction caused by pathogen attacks or proteasome inhibitor drugs. In Caenorhabditis elegans, this response requires SKN-1, a transcription factor related to mammalian Nrf1/2. Here, we use comprehensive genetic analyses to identify the pathway required for C. elegans to detect proteasome dysfunction and activate SKN-1. Genes required for SKN-1 activation encode regulators of ER traffic, a peptide N-glycanase, and DDI-1, a conserved aspartic protease. DDI-1 expression is induced by proteasome dysfunction, and we show that DDI-1 is required to cleave and activate an ER-associated isoform of SKN-1. Mammalian Nrf1 is also ER-associated and subject to proteolytic cleavage, suggesting a conserved mechanism of proteasome surveillance. Targeting mammalian DDI1 protease could mitigate effects of proteasome dysfunction in aging and protein aggregation disorders, or increase effectiveness of proteasome inhibitor cancer chemotherapies. PMID:27528192

  3. Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1

    PubMed Central

    Lehrbach, Nicolas J; Ruvkun, Gary

    2016-01-01

    Proteasomes are essential for protein homeostasis in eukaryotes. To preserve cellular function, transcription of proteasome subunit genes is induced in response to proteasome dysfunction caused by pathogen attacks or proteasome inhibitor drugs. In Caenorhabditis elegans, this response requires SKN-1, a transcription factor related to mammalian Nrf1/2. Here, we use comprehensive genetic analyses to identify the pathway required for C. elegans to detect proteasome dysfunction and activate SKN-1. Genes required for SKN-1 activation encode regulators of ER traffic, a peptide N-glycanase, and DDI-1, a conserved aspartic protease. DDI-1 expression is induced by proteasome dysfunction, and we show that DDI-1 is required to cleave and activate an ER-associated isoform of SKN-1. Mammalian Nrf1 is also ER-associated and subject to proteolytic cleavage, suggesting a conserved mechanism of proteasome surveillance. Targeting mammalian DDI1 protease could mitigate effects of proteasome dysfunction in aging and protein aggregation disorders, or increase effectiveness of proteasome inhibitor cancer chemotherapies. DOI: http://dx.doi.org/10.7554/eLife.17721.001 PMID:27528192

  4. Denervation-Induced Activation of the Ubiquitin-Proteasome System Reduces Skeletal Muscle Quantity Not Quality.

    PubMed

    Baumann, Cory W; Liu, Haiming M; Thompson, LaDora V

    2016-01-01

    It is well known that the ubiquitin-proteasome system is activated in response to skeletal muscle wasting and functions to degrade contractile proteins. The loss of these proteins inevitably reduces skeletal muscle size (i.e., quantity). However, it is currently unknown whether activation of this pathway also affects function by impairing the muscle's intrinsic ability to produce force (i.e., quality). Therefore, the purpose of this study was twofold, (1) document how the ubiquitin-proteasome system responds to denervation and (2) identify the physiological consequences of these changes. To induce soleus muscle atrophy, C57BL6 mice underwent tibial nerve transection of the left hindlimb for 7 or 14 days (n = 6-8 per group). At these time points, content of several proteins within the ubiquitin-proteasome system were determined via Western blot, while ex vivo whole muscle contractility was specifically analyzed at day 14. Denervation temporarily increased several key proteins within the ubiquitin-proteasome system, including the E3 ligase MuRF1 and the proteasome subunits 19S, α7 and β5. These changes were accompanied by reductions in absolute peak force and power, which were offset when expressed relative to physiological cross-sectional area. Contrary to peak force, absolute and relative forces at submaximal stimulation frequencies were significantly greater following 14 days of denervation. Taken together, these data represent two keys findings. First, activation of the ubiquitin-proteasome system is associated with reductions in skeletal muscle quantity rather than quality. Second, shortly after denervation, it appears the muscle remodels to compensate for the loss of neural activity via changes in Ca2+ handling. PMID:27513942

  5. Denervation-Induced Activation of the Ubiquitin-Proteasome System Reduces Skeletal Muscle Quantity Not Quality

    PubMed Central

    Liu, Haiming M.; Thompson, LaDora V.

    2016-01-01

    It is well known that the ubiquitin-proteasome system is activated in response to skeletal muscle wasting and functions to degrade contractile proteins. The loss of these proteins inevitably reduces skeletal muscle size (i.e., quantity). However, it is currently unknown whether activation of this pathway also affects function by impairing the muscle’s intrinsic ability to produce force (i.e., quality). Therefore, the purpose of this study was twofold, (1) document how the ubiquitin-proteasome system responds to denervation and (2) identify the physiological consequences of these changes. To induce soleus muscle atrophy, C57BL6 mice underwent tibial nerve transection of the left hindlimb for 7 or 14 days (n = 6–8 per group). At these time points, content of several proteins within the ubiquitin-proteasome system were determined via Western blot, while ex vivo whole muscle contractility was specifically analyzed at day 14. Denervation temporarily increased several key proteins within the ubiquitin-proteasome system, including the E3 ligase MuRF1 and the proteasome subunits 19S, α7 and β5. These changes were accompanied by reductions in absolute peak force and power, which were offset when expressed relative to physiological cross-sectional area. Contrary to peak force, absolute and relative forces at submaximal stimulation frequencies were significantly greater following 14 days of denervation. Taken together, these data represent two keys findings. First, activation of the ubiquitin-proteasome system is associated with reductions in skeletal muscle quantity rather than quality. Second, shortly after denervation, it appears the muscle remodels to compensate for the loss of neural activity via changes in Ca2+ handling. PMID:27513942

  6. Indirect inhibition of 26S proteasome activity in a cellular model of Huntington’s disease

    PubMed Central

    Hipp, Mark S.; Patel, Chetan N.; Bersuker, Kirill; Riley, Brigit E.; Kaiser, Stephen E.; Shaler, Thomas A.; Brandeis, Michael

    2012-01-01

    Pathognomonic accumulation of ubiquitin (Ub) conjugates in human neurodegenerative diseases, such as Huntington’s disease, suggests that highly aggregated proteins interfere with 26S proteasome activity. In this paper, we examine possible mechanisms by which an N-terminal fragment of mutant huntingtin (htt; N-htt) inhibits 26S function. We show that ubiquitinated N-htt—whether aggregated or not—did not choke or clog the proteasome. Both Ub-dependent and Ub-independent proteasome reporters accumulated when the concentration of mutant N-htt exceeded a solubility threshold, indicating that stabilization of 26S substrates is not linked to impaired Ub conjugation. Above this solubility threshold, mutant N-htt was rapidly recruited to cytoplasmic inclusions that were initially devoid of Ub. Although synthetically polyubiquitinated N-htt competed with other Ub conjugates for access to the proteasome, the vast majority of mutant N-htt in cells was not Ub conjugated. Our data confirm that proteasomes are not directly impaired by aggregated N-terminal fragments of htt; instead, our data suggest that Ub accumulation is linked to impaired function of the cellular proteostasis network. PMID:22371559

  7. Enhanced efficacy against cervical carcinomas through polymeric micelles physically incorporating the proteasome inhibitor MG132.

    PubMed

    Matsumoto, Yoko; Miyamoto, Yuichiro; Cabral, Horacio; Matsumoto, Yu; Nagasaka, Kazunori; Nakagawa, Shunsuke; Yano, Tetsu; Maeda, Daichi; Oda, Katsutoshi; Kawana, Kei; Nishiyama, Nobuhiro; Kataoka, Kazunori; Fujii, Tomoyuki

    2016-06-01

    Treatment of recurrent or advanced cervical cancer is still limited, and new therapeutic choices are needed for improving prognosis and quality of life of patients. Because human papilloma virus (HPV) infection is critical in cervical carcinogenesis, with the E6 and E7 oncogenes of HPV degrading tumor suppressor proteins through the ubiquitin proteasome system, the inhibition of the ubiquitin proteasome system appears to be an ideal target to suppress the growth of cervical tumors. Herein, we focused on the ubiquitin proteasome inhibitor MG132 (carbobenzoxy-Leu-Leu-leucinal) as an anticancer agent against cervical cancer cells, and physically incorporated it into micellar nanomedicines for achieving selective delivery to solid tumors and improving its in vivo efficacy. These MG132-loaded polymeric micelles (MG132/m) showed strong tumor inhibitory in vivo effect against HPV-positive tumors from HeLa and CaSki cells, and even in HPV-negative tumors from C33A cells. Repeated injection of MG132/m showed no significant toxicity to mice under analysis by weight change or histopathology. Moreover, the tumors treated with MG132/m showed higher levels of tumor suppressing proteins, hScrib and p53, as well as apoptotic degree, than tumors treated with free MG132. This enhanced efficacy of MG132/m was attributed to their prolonged circulation in the bloodstream, which allowed their gradual extravasation and penetration within the tumor tissue, as determined by intravital microscopy. These results support the use of MG132 incorporated into polymeric micelles as a safe and effective therapeutic strategy against cervical tumors. PMID:26987571

  8. NMDAR-dependent proteasome activity in the gustatory cortex is necessary for conditioned taste aversion.

    PubMed

    Rosenberg, Tali; Elkobi, Alina; Dieterich, Daniela C; Rosenblum, Kobi

    2016-04-01

    Taste information is processed in different brain structures in the mammalian brain, including the gustatory cortex (GC), which resides within the insular cortex. N-methyl-d-aspartate receptor (NMDAR) activity in the GC is necessary for the acquisition of conditioned taste aversion (CTA) but not positive novel taste learning. Previous studies have shown that taste memory consolidation requires intact protein synthesis in the GC. In addition, the direct involvement of translation initiation and elongation factors was documented in the GC during taste learning. However, protein expression is defined by protein synthesis, degradation, and localization. Protein degradation is critical for the consolidation and reconsolidation of other forms of learning, such as fear learning and addiction behavior, but its role in cortical-dependent learning is not clear. Here, we show for the first time that proteasome activity is specifically increased in the GC 4h following experiencing of a novel taste. This increase in proteasome activity was abolished by local administration to the GC of the NMDA antagonist, APV, as well as a CaMKII inhibitor, at the time of acquisition. In addition, local application of lactacystin, a proteasome inhibitor, resulted in impaired CTA, but not novel taste learning. These results suggest that NMDAR-dependent proteasome activity in the GC participates in the association process between novel taste experience and negative visceral sensation. PMID:26785229

  9. Measuring activity in the ubiquitin-proteasome system: From large scale discoveries to single cells analysis

    PubMed Central

    Melvin, Adam T.; Woss, Gregery S.; Park, Jessica H.; Waters, Marcey L.; Allbritton, Nancy L.

    2013-01-01

    The ubiquitin proteasome system (UPS) is the primary pathway responsible for the recognition and degradation of misfolded, damaged, or tightly regulated proteins in addition to performing essential roles in DNA repair, cell cycle regulation, cell migration, and the immune response. While traditional biochemical techniques have proven useful in the identification of key proteins involved in this pathway, the implementation of novel reporters responsible for measuring enzymatic activity of the UPS have provided valuable insight into the effectiveness of therapeutics and role of the UPS in various human diseases such as multiple myeloma and Huntington’s disease. These reporters, usually consisting of a recognition sequences fused to an analytical handle, are designed to specifically evaluate enzymatic activity of certain members of the UPS including the proteasome, E3 ubiquitin ligases, and deubiquitinating enzymes (DUBs). This review highlights the more commonly used reporters employed in a variety of scenarios ranging from high-throughput screening of novel inhibitors to single cell microscopy techniques measuring E3 ligase or proteasome activity. Finally, recent work is presented highlighting the development of novel degron-based substrate designed to overcome the limitations of current reporting techniques in measuring E3 ligase and proteasome activity in patient samples. PMID:23686610

  10. Impaired enzymatic defensive activity, mitochondrial dysfunction and proteasome activation are involved in RTT cell oxidative damage.

    PubMed

    Cervellati, Carlo; Sticozzi, Claudia; Romani, Arianna; Belmonte, Giuseppe; De Rasmo, Domenico; Signorile, Anna; Cervellati, Franco; Milanese, Chiara; Mastroberardino, Pier Giorgio; Pecorelli, Alessandra; Savelli, Vinno; Forman, Henry J; Hayek, Joussef; Valacchi, Giuseppe

    2015-10-01

    A strong correlation between oxidative stress (OS) and Rett syndrome (RTT), a rare neurodevelopmental disorder affecting females in the 95% of the cases, has been well documented although the source of OS and the effect of a redox imbalance in this pathology has not been yet investigated. Using freshly isolated skin fibroblasts from RTT patients and healthy subjects, we have demonstrated in RTT cells high levels of H2O2 and HNE protein adducts. These findings correlated with the constitutive activation of NADPH-oxidase (NOX) and that was prevented by a NOX inhibitor and iron chelator pre-treatment, showing its direct involvement. In parallel, we demonstrated an increase in mitochondrial oxidant production, altered mitochondrial biogenesis and impaired proteasome activity in RTT samples. Further, we found that the key cellular defensive enzymes: glutathione peroxidase, superoxide dismutase and thioredoxin reductases activities were also significantly lower in RTT. Taken all together, our findings suggest that the systemic OS levels in RTT can be a consequence of both: increased endogenous oxidants as well as altered mitochondrial biogenesis with a decreased activity of defensive enzymes that leads to posttranslational oxidant protein modification and a proteasome activity impairment. PMID:26189585

  11. Syrbactin Structural Analog TIR-199 Blocks Proteasome Activity and Induces Tumor Cell Death.

    PubMed

    Bachmann, André S; Opoku-Ansah, John; Ibarra-Rivera, Tannya R; Yco, Lisette P; Ambadi, Sudhakar; Roberts, Christopher C; Chang, Chia-En A; Pirrung, Michael C

    2016-04-15

    Multiple myeloma is an aggressive hematopoietic cancer of plasma cells. The recent emergence of three effective FDA-approved proteasome-inhibiting drugs, bortezomib (Velcade®), carfilzomib (Kyprolis®), and ixazomib (Ninlaro®), confirms that proteasome inhibitors are therapeutically useful against neoplastic disease, in particular refractory multiple myeloma and mantle cell lymphoma. This study describes the synthesis, computational affinity assessment, and preclinical evaluation of TIR-199, a natural product-derived syrbactin structural analog. Molecular modeling and simulation suggested that TIR-199 covalently binds each of the three catalytic subunits (β1, β2, and β5) and revealed key interaction sites. In vitro and cell culture-based proteasome activity measurements confirmed that TIR-199 inhibits the proteasome in a dose-dependent manner and induces tumor cell death in multiple myeloma and neuroblastoma cells as well as other cancer types in the NCI-60 cell panel. It is particularly effective against kidney tumor cell lines, with >250-fold higher anti-tumor activities than observed with the natural product syringolin A. In vivo studies in mice revealed a maximum tolerated dose of TIR-199 at 25 mg/kg. The anti-tumor activity of TIR-199 was confirmed in hollow fiber assays in mice. Adverse drug reaction screens in a kidney panel revealed no off-targets of concern. This is the first study to examine the efficacy of a syrbactin in animals. Taken together, the results suggest that TIR-199 is a potent new proteasome inhibitor with promise for further development into a clinical drug for the treatment of multiple myeloma and other forms of cancer. PMID:26907687

  12. Graded Proteasome Dysfunction in Caenorhabditis elegans Activates an Adaptive Response Involving the Conserved SKN-1 and ELT-2 Transcription Factors and the Autophagy-Lysosome Pathway

    PubMed Central

    Chinchankar, Meghna N.; Ferguson, Annabel A.; Ghazi, Arjumand; Fisher, Alfred L.

    2016-01-01

    The maintenance of cellular proteins in a biologically active and structurally stable state is a vital endeavor involving multiple cellular pathways. One such pathway is the ubiquitin-proteasome system that represents a major route for protein degradation, and reductions in this pathway usually have adverse effects on the health of cells and tissues. Here, we demonstrate that loss-of-function mutants of the Caenorhabditis elegans proteasome subunit, RPN-10, exhibit moderate proteasome dysfunction and unexpectedly develop both increased longevity and enhanced resistance to multiple threats to the proteome, including heat, oxidative stress, and the presence of aggregation prone proteins. The rpn-10 mutant animals survive through the activation of compensatory mechanisms regulated by the conserved SKN-1/Nrf2 and ELT-2/GATA transcription factors that mediate the increased expression of genes encoding proteasome subunits as well as those mediating oxidative- and heat-stress responses. Additionally, we find that the rpn-10 mutant also shows enhanced activity of the autophagy-lysosome pathway as evidenced by increased expression of the multiple autophagy genes including atg-16.2, lgg-1, and bec-1, and also by an increase in GFP::LGG-1 puncta. Consistent with a critical role for this pathway, the enhanced resistance of the rpn-10 mutant to aggregation prone proteins depends on autophagy genes atg-13, atg-16.2, and prmt-1. Furthermore, the rpn-10 mutant is particularly sensitive to the inhibition of lysosome activity via either RNAi or chemical means. We also find that the rpn-10 mutant shows a reduction in the numbers of intestinal lysosomes, and that the elt-2 gene also plays a novel and vital role in controlling the production of functional lysosomes by the intestine. Overall, these experiments suggest that moderate proteasome dysfunction could be leveraged to improve protein homeostasis and organismal health and longevity, and that the rpn-10 mutant provides a unique

  13. Graded Proteasome Dysfunction in Caenorhabditis elegans Activates an Adaptive Response Involving the Conserved SKN-1 and ELT-2 Transcription Factors and the Autophagy-Lysosome Pathway.

    PubMed

    Keith, Scott A; Maddux, Sarah K; Zhong, Yayu; Chinchankar, Meghna N; Ferguson, Annabel A; Ghazi, Arjumand; Fisher, Alfred L

    2016-02-01

    The maintenance of cellular proteins in a biologically active and structurally stable state is a vital endeavor involving multiple cellular pathways. One such pathway is the ubiquitin-proteasome system that represents a major route for protein degradation, and reductions in this pathway usually have adverse effects on the health of cells and tissues. Here, we demonstrate that loss-of-function mutants of the Caenorhabditis elegans proteasome subunit, RPN-10, exhibit moderate proteasome dysfunction and unexpectedly develop both increased longevity and enhanced resistance to multiple threats to the proteome, including heat, oxidative stress, and the presence of aggregation prone proteins. The rpn-10 mutant animals survive through the activation of compensatory mechanisms regulated by the conserved SKN-1/Nrf2 and ELT-2/GATA transcription factors that mediate the increased expression of genes encoding proteasome subunits as well as those mediating oxidative- and heat-stress responses. Additionally, we find that the rpn-10 mutant also shows enhanced activity of the autophagy-lysosome pathway as evidenced by increased expression of the multiple autophagy genes including atg-16.2, lgg-1, and bec-1, and also by an increase in GFP::LGG-1 puncta. Consistent with a critical role for this pathway, the enhanced resistance of the rpn-10 mutant to aggregation prone proteins depends on autophagy genes atg-13, atg-16.2, and prmt-1. Furthermore, the rpn-10 mutant is particularly sensitive to the inhibition of lysosome activity via either RNAi or chemical means. We also find that the rpn-10 mutant shows a reduction in the numbers of intestinal lysosomes, and that the elt-2 gene also plays a novel and vital role in controlling the production of functional lysosomes by the intestine. Overall, these experiments suggest that moderate proteasome dysfunction could be leveraged to improve protein homeostasis and organismal health and longevity, and that the rpn-10 mutant provides a unique

  14. An assay for 26S proteasome activity based on fluorescence anisotropy measurements of dye-labeled protein substrates.

    PubMed

    Bhattacharyya, Sucharita; Renn, Jonathan P; Yu, Houqing; Marko, John F; Matouschek, Andreas

    2016-09-15

    The 26S proteasome is the molecular machine at the center of the ubiquitin proteasome system and is responsible for adjusting the concentrations of many cellular proteins. It is a drug target in several human diseases, and assays for the characterization of modulators of its activity are valuable. The 26S proteasome consists of two components: a core particle, which contains the proteolytic sites, and regulatory caps, which contain substrate receptors and substrate processing enzymes, including six ATPases. Current high-throughput assays of proteasome activity use synthetic fluorogenic peptide substrates that report directly on the proteolytic activity of the proteasome, but not on the activities of the proteasome caps that are responsible for protein recognition and unfolding. Here, we describe a simple and robust assay for the activity of the entire 26S proteasome using fluorescence anisotropy to follow the degradation of fluorescently labeled protein substrates. We describe two implementations of the assay in a high-throughput format and show that it meets the expected requirement of ATP hydrolysis and the presence of a canonical degradation signal or degron in the target protein. PMID:27296635

  15. Neuropeptide-inducible upregulation of proteasome activity precedes nuclear factor kappa B activation in androgen-independent prostate cancer cells

    PubMed Central

    2012-01-01

    Background Upregulation of nuclear factor kappa B (NFκB) activity and neuroendocrine differentiation are two mechanisms known to be involved in prostate cancer (PC) progression to castration resistance. We have observed that major components of these pathways, including NFκB, proteasome, neutral endopeptidase (NEP) and endothelin 1 (ET-1), exhibit an inverse and mirror image pattern in androgen-dependent (AD) and -independent (AI) states in vitro. Methods We have now investigated for evidence of a direct mechanistic connection between these pathways with the use of immunocytochemistry (ICC), western blot analysis, electrophoretic mobility shift assay (EMSA) and proteasome activity assessment. Results Neuropeptide (NP) stimulation induced nuclear translocation of NFκB in a dose-dependent manner in AI cells, also evident as reduced total inhibitor κB (IκB) levels and increased DNA binding in EMSA. These effects were preceded by increased 20 S proteasome activity at lower doses and at earlier times and were at least partially reversed under conditions of NP deprivation induced by specific NP receptor inhibitors, as well as NFκB, IκB kinase (IKK) and proteasome inhibitors. AD cells showed no appreciable nuclear translocation upon NP stimulation, with less intense DNA binding signal on EMSA. Conclusions Our results support evidence for a direct mechanistic connection between the NPs and NFκB/proteasome signaling pathways, with a distinct NP-induced profile in the more aggressive AI cancer state. PMID:22715899

  16. A cytosolic protein factor from the naked mole-rat activates proteasomes of other species and protects these from inhibition

    PubMed Central

    Rodriguez, Karl A.; Osmulski, Pawel A.; Pierce, Anson; Weintraub, Susan T.; Gaczynska, Maria; Buffenstein, Rochelle

    2015-01-01

    The naked mole-rat maintains robust proteostasis and high levels of proteasome-mediated proteolysis for most of its exceptional (~31y) life span. Here, we report that the highly active proteasome from the naked mole-rat liver resists attenuation by a diverse suite of proteasome-specific small molecule inhibitors. Moreover, mouse, human, and yeast proteasomes exposed to the proteasome-depleted, naked mole-rat cytosolic fractions, recapitulate the observed inhibition resistance, and mammalian proteasomes also show increased activity. Gel filtration coupled with mass spectrometry and atomic force microscopy indicates that these traits are supported by a protein factor that resides in the cytosol. This factor interacts with the proteasome and modulates its activity. Although HSP72 and HSP40 (Hdj1) are among the constituents of this factor, the observed phenomenon, such as increasing peptidase activity and protecting against inhibition cannot be reconciled with any known chaperone functions. This novel function may contribute to the exceptional protein homeostasis in the naked mole-rat and allow it to successfully defy aging. PMID:25018089

  17. Inhibition of Stat5a/b enhances proteasomal degradation of androgen receptor liganded by antiandrogens in prostate cancer

    PubMed Central

    Hoang, David T.; Gu, Lei; Liao, Zhiyong; Talati, Pooja G.; Shen, Feng; Koptyra, Mateusz; Tan, Shyh-Han; Ellsworth, Elyse; Gupta, Shilpa; Montie, Heather; Dagvadorj, Ayush; Savolainen, Saija; Leiby, Benjamin; Mirtti, Tuomas; Merry, Diane E.; Nevalainen, Marja T.

    2015-01-01

    Although poorly understood, androgen receptor (AR) signaling is sustained despite treatment of prostate cancer with antiandrogens and potentially underlies development of incurable castrate-resistant prostate cancer. However, therapies targeting the AR signaling axis eventually fail when prostate cancer progresses to the castrate-resistant stage. Stat5a/b, a candidate therapeutic target protein in prostate cancer, synergizes with AR to reciprocally enhance signaling of both proteins. In this work, we demonstrate that Stat5a/b sequesters antiandrogen-liganded (MDV3100, Bicalutamide, Flutamide) AR in prostate cancer cells and protects it against proteasomal degradation in prostate cancer. Active Stat5a/b increased nuclear levels of both unliganded and antiandrogen-liganded AR, as demonstrated in prostate cancer cell lines, xenograft tumors and clinical patient-derived prostate cancer samples. Physical interaction between Stat5a/b and AR in prostate cancer cells was mediated by the DNA-binding domain of Stat5a/b and the N-terminal domain of AR. Moreover, active Stat5a/b increased AR occupancy of the Prostate Specific Antigen promoter and AR-regulated gene expression in prostate cancer cells. Mechanistically, both Stat5a/b genetic knockdown and antiandrogen treatment induced proteasomal degradation of AR in prostate cancer cells, with combined inhibition of Stat5a/b and AR leading to maximal loss of AR protein and prostate cancer cell viability. Our results indicate that therapeutic targeting of AR in prostate cancer using antiandrogens may be substantially improved by targeting of Stat5a/b. PMID:25552366

  18. Disulfiram promotes the conversion of carcinogenic cadmium to a proteasome inhibitor with pro-apoptotic activity in human cancer cells

    SciTech Connect

    Li Lihua; Yang Huanjie; Chen Di; Cui, Cindy; Ping Dou, Q.

    2008-06-01

    The ubiquitin-proteasome system is involved in various cellular processes, including transcription, apoptosis, and cell cycle. In vitro, in vivo, and clinical studies suggest the potential use of proteasome inhibitors as anticancer drugs. Cadmium (Cd) is a widespread environmental pollutant that has been classified as a human carcinogen. Recent study in our laboratory suggested that the clinically used anti-alcoholism drug disulfiram (DSF) could form a complex with tumor cellular copper, resulting in inhibition of the proteasomal chymotrypsin-like activity and induction of cancer cell apoptosis. In the current study, we report, for the first time, that DSF is able to convert the carcinogen Cd to a proteasome-inhibitor and cancer cell apoptosis inducer. Although the DSF-Cd complex inhibited the chymotrypsin-like activity of a purified 20S proteasome with an IC{sub 50} value of 32 {mu}mol/L, this complex was much more potent in inhibiting the chymotrypsin-like activity of prostate cancer cellular 26S proteasome. Inhibition of cellular proteasome activity by the DSF-Cd complex resulted in the accumulation of ubiquitinated proteins and the natural proteasome substrate p27, which was followed by activation of calpain and induction of apoptosis. Importantly, human breast cancer MCF10DCIS cells were much more sensitive to the DSF-Cd treatment than immortalized but non-tumorigenic human breast MCF-10A cells, demonstrating that the DSF-Cd complex could selectively induce proteasome inhibition and apoptosis in human tumor cells. Our work suggests the potential use of DSF for treatment of cells with accumulated levels of carcinogen Cd.

  19. Zinc ionophores pyrithione inhibits herpes simplex virus replication through interfering with proteasome function and NF-κB activation.

    PubMed

    Qiu, Min; Chen, Yu; Chu, Ying; Song, Siwei; Yang, Na; Gao, Jie; Wu, Zhiwei

    2013-10-01

    Pyrithione (PT), known as a zinc ionophore, is effective against several pathogens from the Streptococcus and Staphylococcus genera. The antiviral activity of PT was also reported against a number of RNA viruses. In this paper, we showed that PT could effectively inhibit herpes simplex virus types 1 and 2 (HSV-1 and HSV-2). PT inhibited HSV late gene (Glycoprotein D, gD) expression and the production of viral progeny, and this action was dependent on Zn(2+). Further studies showed that PT suppressed the expression of HSV immediate early (IE) gene, the infected cell polypeptide 4 (ICP4), but had less effect on another regulatory IE protein, ICP0. It was found that PT treatment could interfere with cellular ubiquitin-proteasome system (UPS), leading to the inhibition of HSV-2-induced IκB-α degradation to inhibit NF-κB activation and enhanced promyelocytic leukemia protein (PML) stability in nucleus. However, PT did not show direct inhibition of 26S proteasome activity. Instead, it induced Zn(2+) influx, which facilitated the dysregulation of UPS and the accumulation of intracellular ubiquitin-conjugates. UPS inhibition by PT caused disruption of IκB-α degradation and NF-κB activation thus leading to marked reduction of viral titer. PMID:23867132

  20. A novel orally active proteasome inhibitor ONX 0912 triggers in vitro and in vivo cytotoxicity in multiple myeloma.

    PubMed

    Chauhan, Dharminder; Singh, Ajita V; Aujay, Monette; Kirk, Christopher J; Bandi, Madhavi; Ciccarelli, Bryan; Raje, Noopur; Richardson, Paul; Anderson, Kenneth C

    2010-12-01

    Bortezomib therapy has proven successful for the treatment of relapsed, relapsed/refractory, and newly diagnosed multiple myeloma (MM). At present, bortezomib is available as an intravenous injection, and its prolonged treatment is associated with toxicity and development of drug resistance. Here we show that the novel proteasome inhibitor ONX 0912, a tripeptide epoxyketone, inhibits growth and induces apoptosis in MM cells resistant to conventional and bortezomib therapies. The anti-MM activity of ONX-0912 is associated with activation of caspase-8, caspase-9, caspase-3, and poly(ADP) ribose polymerase, as well as inhibition of migration of MM cells and angiogenesis. ONX 0912, like bortezomib, predominantly inhibits chymotrypsin-like activity of the proteasome and is distinct from bortezomib in its chemical structure. Importantly, ONX 0912 is orally bioactive. In animal tumor model studies, ONX 0912 significantly reduced tumor progression and prolonged survival. Immununostaining of MM tumors from ONX 0912-treated mice showed growth inhibition, apoptosis, and a decrease in associated angiogenesis. Finally, ONX 0912 enhances anti-MM activity of bortezomib, lenalidomide dexamethasone, or pan-histone deacetylase inhibitor. Taken together, our study provides the rationale for clinical protocols evaluating ONX 0912, either alone or in combination, to improve patient outcome in MM. PMID:20805366

  1. Proteasome activities in the rectus abdominis muscle of young and older individuals.

    PubMed

    Bossola, Maurizio; Pacelli, Fabio; Costelli, Paola; Tortorelli, Antonio; Rosa, Fausto; Doglietto, Giovan Battista

    2008-08-01

    Sarcopenia is one of the most striking effects of age, the causes and the pathogenic mechanisms being largely unknown. Unfortunately, there is limited information on the effect of aging on muscle protein breakdown in basal conditions. The present study aimed at investigating if skeletal muscle ubiquitn mRNA levels and proteasome activities vary with age in healthy individuals. Ub mRNA levels were measured by northern blot analysis whereas proteasome activities were determined by evaluating the cleavage of specific fluorogenic substrates in the rectus abdominis muscle of 14 healthy male individuals. Patients were divided in three groups according to the age: (1) 20-30 years (N = 3); (2) 31-64 years (N = 5); (3) > or = 65 years (N = 6). Quantitation of the ubiquitin mRNA levels (expressed in arbitrary units) (mean (SD) showed no differences among the three groups of age (20-30 years: 1352 +/- 441; 31-64 years: 1324 +/- 439; > or = 65 years: 884 +/- 400; P = 0.33). The correlation between age and muscle ubiquitin mRNA levels was not statistically significant (r = -0.4, P = 0.26). The three proteasome activities, chymotrypsin-like (CTL), trypsin-like (TL) and peptidyl-gutamyl-peptidase (PGP), expressed as nkatal x 10(-3)/mg protein, were similar in the three groups of patients stratified according to the age. There was no correlation between age with either CTL (r = 0.22, P = 0.4), PGP (r = 0.002, P = 0.9), and TL (r = 0.28, P = 0.33) activities. In conclusion, the present study shows that the skeletal muscle proteasome activities do not differ with age in healthy male individuals. PMID:18330717

  2. Withaferin A inhibits the proteasome activity in mesothelioma in vitro and in vivo.

    PubMed

    Yang, Huanjie; Wang, Ying; Cheryan, Vino T; Wu, Wenjuan; Cui, Cindy Qiuzhi; Polin, Lisa A; Pass, Harvey I; Dou, Q Ping; Rishi, Arun K; Wali, Anil

    2012-01-01

    The medicinal plant Withania somnifera has been used for over centuries in Indian Ayurvedic Medicine to treat a wide spectrum of disorders. Withaferin A (WA), a bioactive compound that is isolated from this plant, has anti-inflammatory, immuno-modulatory, anti-angiogenic, and anti-cancer properties. Here we investigated malignant pleural mesothelioma (MPM) suppressive effects of WA and the molecular mechanisms involved. WA inhibited growth of the murine as well as patient-derived MPM cells in part by decreasing the chymotryptic activity of the proteasome that resulted in increased levels of ubiquitinated proteins and pro-apoptotic proteasome target proteins (p21, Bax, IκBα). WA suppression of MPM growth also involved elevated apoptosis as evidenced by activation of pro-apoptotic p38 stress activated protein kinase (SAPK) and caspase-3, elevated levels of pro-apoptotic Bax protein and cleavage of poly-(ADP-ribose)-polymerase (PARP). Our studies including gene-array based analyses further revealed that WA suppressed a number of cell growth and metastasis-promoting genes including c-myc. WA treatments also stimulated expression of the cell cycle and apoptosis regulatory protein (CARP)-1/CCAR1, a novel transducer of cell growth signaling. Knock-down of CARP-1, on the other hand, interfered with MPM growth inhibitory effects of WA. Intra-peritoneal administration of 5 mg/kg WA daily inhibited growth of murine MPM cell-derived tumors in vivo in part by inhibiting proteasome activity and stimulating apoptosis. Together our in vitro and in vivo studies suggest that WA suppresses MPM growth by targeting multiple pathways that include blockage of proteasome activity and stimulation of apoptosis, and thus holds promise as an anti-MPM agent. PMID:22912669

  3. A unified mechanism for proteolysis and autocatalytic activation in the 20S proteasome.

    PubMed

    Huber, Eva M; Heinemeyer, Wolfgang; Li, Xia; Arendt, Cassandra S; Hochstrasser, Mark; Groll, Michael

    2016-01-01

    Biogenesis of the 20S proteasome is tightly regulated. The N-terminal propeptides protecting the active-site threonines are autocatalytically released only on completion of assembly. However, the trigger for the self-activation and the reason for the strict conservation of threonine as the active site nucleophile remain enigmatic. Here we use mutagenesis, X-ray crystallography and biochemical assays to suggest that Lys33 initiates nucleophilic attack of the propeptide by deprotonating the Thr1 hydroxyl group and that both residues together with Asp17 are part of a catalytic triad. Substitution of Thr1 by Cys disrupts the interaction with Lys33 and inactivates the proteasome. Although a Thr1Ser mutant is active, it is less efficient compared with wild type because of the unfavourable orientation of Ser1 towards incoming substrates. This work provides insights into the basic mechanism of proteolysis and propeptide autolysis, as well as the evolutionary pressures that drove the proteasome to become a threonine protease. PMID:26964885

  4. A unified mechanism for proteolysis and autocatalytic activation in the 20S proteasome

    PubMed Central

    Huber, Eva M.; Heinemeyer, Wolfgang; Li, Xia; Arendt, Cassandra S.; Hochstrasser, Mark; Groll, Michael

    2016-01-01

    Biogenesis of the 20S proteasome is tightly regulated. The N-terminal propeptides protecting the active-site threonines are autocatalytically released only on completion of assembly. However, the trigger for the self-activation and the reason for the strict conservation of threonine as the active site nucleophile remain enigmatic. Here we use mutagenesis, X-ray crystallography and biochemical assays to suggest that Lys33 initiates nucleophilic attack of the propeptide by deprotonating the Thr1 hydroxyl group and that both residues together with Asp17 are part of a catalytic triad. Substitution of Thr1 by Cys disrupts the interaction with Lys33 and inactivates the proteasome. Although a Thr1Ser mutant is active, it is less efficient compared with wild type because of the unfavourable orientation of Ser1 towards incoming substrates. This work provides insights into the basic mechanism of proteolysis and propeptide autolysis, as well as the evolutionary pressures that drove the proteasome to become a threonine protease. PMID:26964885

  5. Clinical activity of carfilzomib correlates with inhibition of multiple proteasome subunits: application of a novel pharmacodynamic assay.

    PubMed

    Lee, Susan J; Levitsky, Konstantin; Parlati, Francesco; Bennett, Mark K; Arastu-Kapur, Shirin; Kellerman, Lois; Woo, Tina F; Wong, Alvin F; Papadopoulos, Kyriakos P; Niesvizky, Ruben; Badros, Ashraf Z; Vij, Ravi; Jagannath, Sundar; Siegel, David; Wang, Michael; Ahmann, Gregory J; Kirk, Christopher J

    2016-06-01

    While proteasome inhibition is a validated therapeutic approach for multiple myeloma (MM), inhibition of individual constitutive proteasome (c20S) and immunoproteasome (i20S) subunits has not been fully explored owing to a lack of effective tools. We utilized the novel proteasome constitutive/immunoproteasome subunit enzyme-linked immunosorbent (ProCISE) assay to quantify proteasome subunit occupancy in samples from five phase I/II and II trials before and after treatment with the proteasome inhibitor carfilzomib. Following the first carfilzomib dose (15-56 mg/m(2) ), dose-dependent inhibition of c20S and i20S chymotrypsin-like active sites was observed [whole blood: ≥67%; peripheral blood mononuclear cells (PBMCs): ≥75%]. A similar inhibition profile was observed in bone marrow-derived CD138(+) tumour cells. Carfilzomib-induced proteasome inhibition was durable, with minimal recovery in PBMCs after 24 h but near-complete recovery between cycles. Importantly, the ProCISE assay can be used to quantify occupancy of individual c20S and i20S subunits. We observed a relationship between MM patient response (n = 29), carfilzomib dose and occupancy of multiple i20S subunits, where greater occupancy was associated with an increased likelihood of achieving a clinical response at higher doses. ProCISE represents a new tool for measuring proteasome inhibitor activity in clinical trials and relating drug action to patient outcomes. PMID:27071340

  6. The fungal metabolite gliotoxin inhibits proteasome proteolytic activity and induces an irreversible pseudocystic transformation and cell death in Tritrichomonas foetus.

    PubMed

    Pereira-Neves, Antonio; Menna-Barreto, Rubem F S; Benchimol, Marlene

    2016-08-01

    Proteasomal proteolysis is required for a wide range of cellular processes, including protein quality control, cell cycle progression, cell death and metabolic adaptation to environment changes or stress responses. Proteasome inhibitors are useful compounds for determining the roles of proteasome in eukaryotic cells. Here, we investigated the effects of gliotoxin, a proteasome inhibitor, on the cell growth, replication, ultrastructure, DNA integrity and proteasomal proteolytic activity of the protist parasite Tritrichomonas foetus. The effect of gliotoxin on the transformation of T. foetus to endoflagellar form (EFF), also known as pseudocyst, was investigated. Gliotoxin inhibited the culture growth, arrested cell cycle, and provoked a trichomonacidal effect in a dose-dependent manner. Parasites treated with gliotoxin displayed features typical of cell death, such as membrane blebbing, concentric membrane whorls containing remnants of organelles, intense cytosolic and nuclear vacuolisation, chromatin condensation, DNA fragmentation, cytoplasmic disintegration and plasma membrane disruption. The proteasomal peptidase activity was inhibited by gliotoxin in a dose-dependent manner. Gliotoxin treatment also induced an irreversible EFF transformation in a dose/time-dependent manner. We compared morphological characteristics between gliotoxin- and cold-induced EFF parasites. Our results suggest that gliotoxin could induce EFF transformation by a mechanism distinct from that provoked by cold temperature. This study further contributes to a better understanding of the role of proteasome system in cell cycle, cell death and EFF transformation in T. foetus. PMID:27106236

  7. Simultaneous inhibition of the ubiquitin-proteasome system and autophagy enhances apoptosis induced by ER stress aggravators in human pancreatic cancer cells.

    PubMed

    Li, Xu; Zhu, Feng; Jiang, Jianxin; Sun, Chengyi; Zhong, Qing; Shen, Ming; Wang, Xin; Tian, Rui; Shi, Chengjian; Xu, Meng; Peng, Feng; Guo, Xingjun; Hu, Jun; Ye, Dawei; Wang, Min; Qin, Renyi

    2016-09-01

    In contrast to normal tissue, cancer cells display profound alterations in protein synthesis and degradation. Therefore, proteins that regulate endoplasmic reticulum (ER) homeostasis are being increasingly recognized as potential therapeutic targets. The ubiquitin-proteasome system and autophagy are crucially important for proteostasis in cells. However, interactions between autophagy, the proteasome, and ER stress pathways in cancer remain largely undefined. This study demonstrated that withaferin-A (WA), the biologically active withanolide extracted from Withania somnifera, significantly increased autophagosomes, but blocked the degradation of autophagic cargo by inhibiting SNARE-mediated fusion of autophagosomes and lysosomes in human pancreatic cancer (PC) cells. WA specifically induced proteasome inhibition and promoted the accumulation of ubiquitinated proteins, which resulted in ER stress-mediated apoptosis. Meanwhile, the impaired autophagy at early stage induced by WA was likely activated in response to ER stress. Importantly, combining WA with a series of ER stress aggravators enhanced apoptosis synergistically. WA was well tolerated in mice, and displayed synergism with ER stress aggravators to inhibit tumor growth in PC xenografts. Taken together, these findings indicate that simultaneous suppression of 2 key intracellular protein degradation systems rendered PC cells vulnerable to ER stress, which may represent an avenue for new therapeutic combinations for this disease. PMID:27308733

  8. Hyposmotic stress induces cell growth arrest via proteasome activation and cyclin/cyclin-dependent kinase degradation.

    PubMed

    Tao, Guo-Zhong; Rott, Lusijah S; Lowe, Anson W; Omary, M Bishr

    2002-05-31

    Ordered cell cycle progression requires the expression and activation of several cyclins and cyclin-dependent kinases (Cdks). Hyperosmotic stress causes growth arrest possibly via proteasome-mediated degradation of cyclin D1. We studied the effect of hyposmotic conditions on three colonic (Caco2, HRT18, HT29) and two pancreatic (AsPC-1 and PaCa-2) cell lines. Hyposmosis caused reversible cell growth arrest of the five cell lines in a cell cycle-independent fashion, although some cell lines accumulated at the G(1)/S interface. Growth arrest was followed by apoptosis or by formation of multinucleated giant cells, which is consistent with cell cycle catastrophe. Hyposmosis dramatically decreased Cdc2, Cdk2, Cdk4, cyclin B1, and cyclin D3 expression in a time-dependent fashion, in association with an overall decrease in cellular protein synthesis. However, some protein levels remained unaltered, including cyclin E and keratin 8. Selective proteasome inhibition prevented Cdk and cyclin degradation and reversed hyposmotic stress-induced growth arrest, whereas calpain and lysosome enzyme inhibitors had no measurable effect on cell cycle protein degradation. Therefore, hyposmotic stress inhibits cell growth and, depending on the cell type, causes cell cycle catastrophe with or without apoptosis. The growth arrest is due to decreased protein synthesis and proteasome activation, with subsequent degradation of several cyclins and Cdks. PMID:11897780

  9. Anti-tumor activity of benzylideneacetophenone derivatives via proteasomal inhibition in prostate cancer cells.

    PubMed

    Lee, Yun-hee; Yun, Jaesuk; Jung, Jae-Chul; Oh, Seikwan; Jung, Young-Suk

    2016-05-01

    A number of some chalcone derivatives possess promising biological properties including anti-inflammation, anti-oxidant, and anti-tumor activity. Although it has been shown that some derivatives of chalcone induce apoptosis in different kinds of cancer cells, the involved mechanism of action is not well defined. The purpose of this study is to investigate the primary target of a benzylideneacetophenone derivative (JC3), which is a synthetic compound derived from the chalcone family, in human cancer, using prostate cancer cells as a working model. Herein, we show that JC3 inhibits proteasomal activity as indicated by both in vitro and in cell-based assays. Especially, the JC3-dimer was more potent than monomer in the aspect of proteasome inhibition, which induced apoptosis significantly in the prostate cancer cells. Owing to the critical roles of the proteasome in the biology of human tumor progression, invasion, and metastasis, these findings give an important clue for the development of novel anti-tumor agents. PMID:27348972

  10. Replication of the Rotavirus Genome Requires an Active Ubiquitin-Proteasome System▿

    PubMed Central

    López, Tomás; Silva-Ayala, Daniela; López, Susana; Arias, Carlos F.

    2011-01-01

    Here we show that the ubiquitin-proteasome system is required for the efficient replication of rotavirus RRV in MA104 cells. The proteasome inhibitor MG132 decreased the yield of infectious virus under conditions where it severely reduces the synthesis of not only viral but also cellular proteins. Addition of nonessential amino acids to the cell medium restored both viral protein synthesis and cellular protein synthesis, but the production of progeny viruses was still inhibited. In medium supplemented with nonessential amino acids, we showed that MG132 does not affect rotavirus entry but inhibits the replication of the viral genome. It was also shown that it prevents the efficient incorporation into viroplasms of viral polymerase VP1 and the capsid proteins VP2 and VP6, which could explain the inhibitory effect of MG132 on genome replication and infectious virus yield. We also showed that ubiquitination is relevant for rotavirus replication since the yield of rotavirus progeny in cells carrying a temperature-sensitive mutation in the E1 ubiquitin-activating enzyme was reduced at the restrictive temperature. In addition, overexpression of ubiquitin in MG132-treated MA104 cells partially reversed the effect of the inhibitor on virus yield. Altogether, these data suggest that the ubiquitin-proteasome (UP) system has a very complex interaction with the rotavirus life cycle, with both the ubiquitination and proteolytic activities of the system being relevant for virus replication. PMID:21900156

  11. Diaphragm Muscle Fiber Weakness and Ubiquitin–Proteasome Activation in Critically Ill Patients

    PubMed Central

    Hooijman, Pleuni E.; Beishuizen, Albertus; Witt, Christian C.; de Waard, Monique C.; Girbes, Armand R. J.; Spoelstra-de Man, Angelique M. E.; Niessen, Hans W. M.; Manders, Emmy; van Hees, Hieronymus W. H.; van den Brom, Charissa E.; Silderhuis, Vera; Lawlor, Michael W.; Labeit, Siegfried; Stienen, Ger J. M.; Hartemink, Koen J.; Paul, Marinus A.; Heunks, Leo M. A.

    2015-01-01

    Rationale: The clinical significance of diaphragm weakness in critically ill patients is evident: it prolongs ventilator dependency, and increases morbidity and duration of hospital stay. To date, the nature of diaphragm weakness and its underlying pathophysiologic mechanisms are poorly understood. Objectives: We hypothesized that diaphragm muscle fibers of mechanically ventilated critically ill patients display atrophy and contractile weakness, and that the ubiquitin–proteasome pathway is activated in the diaphragm. Methods: We obtained diaphragm muscle biopsies from 22 critically ill patients who received mechanical ventilation before surgery and compared these with biopsies obtained from patients during thoracic surgery for resection of a suspected early lung malignancy (control subjects). In a proof-of-concept study in a muscle-specific ring finger protein-1 (MuRF-1) knockout mouse model, we evaluated the role of the ubiquitin–proteasome pathway in the development of contractile weakness during mechanical ventilation. Measurements and Main Results: Both slow- and fast-twitch diaphragm muscle fibers of critically ill patients had approximately 25% smaller cross-sectional area, and had contractile force reduced by half or more. Markers of the ubiquitin–proteasome pathway were significantly up-regulated in the diaphragm of critically ill patients. Finally, MuRF-1 knockout mice were protected against the development of diaphragm contractile weakness during mechanical ventilation. Conclusions: These findings show that diaphragm muscle fibers of critically ill patients display atrophy and severe contractile weakness, and in the diaphragm of critically ill patients the ubiquitin–proteasome pathway is activated. This study provides rationale for the development of treatment strategies that target the contractility of diaphragm fibers to facilitate weaning. PMID:25760684

  12. Disulfiram promotes the conversion of carcinogenic cadmium to a proteasome inhibitor with pro-apoptotic activity in human cancer cells

    PubMed Central

    Li, Lihua; Yang, Huanjie; Chen, Di; Cui, Cindy; Dou, Q. Ping

    2013-01-01

    The ubiquitinproteasome system is involved in various cellular processes, including transcription, apoptosis, and cell cycle. In vitro, in vivo, and clinical studies suggest the potential use of proteasome inhibitors as anticancer drugs. Cadmium (Cd) is a widespread environmental pollutant that has been classified as a human carcinogen. Recent study in our laboratory suggested that the clinically used anti-alcoholism drug disulfiram (DSF) could form a complex with tumor cellular copper, resulting in inhibition of the proteasomal chymotrypsin-like activity and induction of cancer cell apoptosis. In the current study, we report, for the first time, that DSF is able to convert the carcinogen Cd to a proteasome-inhibitor and cancer cell apoptosis inducer. Although the DSF–Cd complex inhibited the chymotrypsin-like activity of a purified 20S proteasome with an IC50 value of 32 μmol/L, this complex was much more potent in inhibiting the chymotrypsin-like activity of prostate cancer cellular 26S proteasome. Inhibition of cellular proteasome activity by the DSF–Cd complex resulted in the accumulation of ubiquitinated proteins and the natural proteasome substrate p27, which was followed by activation of calpain and induction of apoptosis. Importantly, human breast cancer MCF10DCIS cells were much more sensitive to the DSF–Cd treatment than immortalized but non-tumorigenic human breast MCF-10A cells, demonstrating that the DSF–Cd complex could selectively induce proteasome inhibition and apoptosis in human tumor cells. Our work suggests the potential use of DSF for treatment of cells with accumulated levels of carcinogen Cd. PMID:18304598

  13. The proteasome activator 11 S REG (PA28) and class I antigen presentation.

    PubMed Central

    Rechsteiner, M; Realini, C; Ustrell, V

    2000-01-01

    There are two immune responses in vertebrates: humoral immunity is mediated by circulating antibodies, whereas cytotoxic T lymphocytes (CTL) confer cellular immunity. CTL lyse infected cells upon recognition of cell-surface MHC Class I molecules complexed with foreign peptides. The displayed peptides are produced in the cytosol by degradation of host proteins or proteins from intracellular pathogens that might be present. Proteasomes are cylindrical multisubunit proteases that generate many of the peptides eventually transferred to the cell surface for immune surveillance. In mammalian proteasomes, six active sites face a central chamber. As this chamber is sealed off from the enzyme's surface, there must be mechanisms to promote entry of substrates. Two protein complexes have been found to bind the ends of the proteasome and activate it. One of the activators is the 19 S regulatory complex of the 26 S proteasome; the other activator is '11 S REG' [Dubiel, Pratt, Ferrell and Rechsteiner (1992) J. Biol. Chem. 267, 22369-22377] or 'PA28' [Ma, Slaughter and DeMartino (1992) J. Biol. Chem. 267, 10515-10523]. During the past 7 years, our understanding of the structure of REG molecules has increased significantly, but much less is known about their biological functions. There are three REG subunits, namely alpha, beta and gamma. Recombinant REGalpha forms a ring-shaped heptamer of known crystal structure. 11 S REG is a heteroheptamer of alpha and beta subunits. REGgamma is also presumably a heptameric ring, and it is found in the nuclei of the nematode work Caenorhabditis elegans and higher organisms, where it may couple proteasomes to other nuclear components. REGalpha and REGbeta, which are abundant in vertebrate immune tissues, are located mostly in the cytoplasm. Synthesis of REG alpha and beta subunits is induced by interferon-gamma, and this has led to the prevalent hypothesis that REG alpha/beta hetero-oligomers play an important role in Class I antigen

  14. Regulation of c-Myc protein stability by proteasome activator REGγ.

    PubMed

    Li, S; Jiang, C; Pan, J; Wang, X; Jin, J; Zhao, L; Pan, W; Liao, G; Cai, X; Li, X; Xiao, J; Jiang, J; Wang, P

    2015-06-01

    c-Myc is a key transcriptional factor that has a prominent role in cell growth, differentiation and tumor development. Its protein levels are tightly controlled by ubiquitin-proteasome pathway and frequently deregulated in various cancers. Here, we report that the 11S proteasomal activator REGγ is a novel regulator of c-Myc abundance in cells. We showed that overexpression of wild-type REGγ, but not inactive mutants including N151Y and G250S, significantly promoted the degradation of c-Myc. Depletion of REGγ markedly increased the protein stability of c-Myc. REGγ interacts with the C-terminal region of c-Myc and regulates c-Myc protein turnover. Functionally, REGγ negatively regulates c-Myc-mediated cell proliferation. Interestingly, depletion of the Drosophila Reg homolog (dReg) in developing wings induced the upregulation of Drosophila Myc, which contributes to cell death. Collectively, these results suggest that REGγ proteasome has a conserved role in the regulation of Myc abundance in both mammalian cells and Drosophila. PMID:25412630

  15. Reactive center loop moiety is essential for the maspin activity on cellular invasion and ubiquitin-proteasome level.

    PubMed

    Khanaree, Chakkrit; Chairatvit, Kongthawat; Roytrakul, Sittiruk; Wongnoppavich, Ariyaphong

    2013-01-01

    Maspin, a tumor suppressor (SERPINB5), inhibits cancer migration, invasion, and metastasis in vitro and in vivo. The tumor-suppressing effects of maspin depend in part on its ability to enhance cell adhesion to extracellular matrix. Although the molecular mechanism of maspin's action is still unclear, its functional domain is believed to be located at the reactive center loop (RCL). We have elucidated the role of maspin RCL on adhesion, migration, and invasion by transfecting the highly invasive human breast carcinoma MDA-MB-231 cell line with pcDNA3.1-His/FLAG containing wild-type maspin, ovalbumin, or maspin/ovalbumin RCL chimeric mutants in which maspin RCL is replaced by ovalbumin (MOM) and vice versa (OMO). MDA-MB-231 cells transfected with maspin- or OMO-containing recombinant expression plasmid manifested significant increase in adhesion to fibronectin and reduction in in vitro migration and invasion through Matrigel compared with mock transfection or cells transfected with ovalbumin or MOM. Proteomics analysis of maspin- or OMO-transfected MDA-MB-231 cells revealed reduction in contents of proteins known to promote cancer metastasis and those of ubiquitin-proteasome pathway, while those with tumor-suppressing properties were increased. Furthermore, MDA-MB-231 cells containing maspin or OMO transgene have significantly higher levels of ubiquitin and ubiquitinated conjugates, but reduced 20S proteasome chymotrypsin-like activity. These results clearly demonstrate that the tumor-suppressive properties of maspin reside in its RCL domain. PMID:23924927

  16. Cellular prion protein promotes post-ischemic neuronal survival, angioneurogenesis and enhances neural progenitor cell homing via proteasome inhibition

    PubMed Central

    Doeppner, T R; Kaltwasser, B; Schlechter, J; Jaschke, J; Kilic, E; Bähr, M; Hermann, D M; Weise, J

    2015-01-01

    Although cellular prion protein (PrPc) has been suggested to have physiological roles in neurogenesis and angiogenesis, the pathophysiological relevance of both processes remain unknown. To elucidate the role of PrPc in post-ischemic brain remodeling, we herein exposed PrPc wild type (WT), PrPc knockout (PrP−/−) and PrPc overexpressing (PrP+/+) mice to focal cerebral ischemia followed by up to 28 days reperfusion. Improved neurological recovery and sustained neuroprotection lasting over the observation period of 4 weeks were observed in ischemic PrP+/+ mice compared with WT mice. This observation was associated with increased neurogenesis and angiogenesis, whereas increased neurological deficits and brain injury were noted in ischemic PrP−/− mice. Proteasome activity and oxidative stress were increased in ischemic brain tissue of PrP−/− mice. Pharmacological proteasome inhibition reversed the exacerbation of brain injury induced by PrP−/−, indicating that proteasome inhibition mediates the neuroprotective effects of PrPc. Notably, reduced proteasome activity and oxidative stress in ischemic brain tissue of PrP+/+ mice were associated with an increased abundance of hypoxia-inducible factor 1α and PACAP-38, which are known stimulants of neural progenitor cell (NPC) migration and trafficking. To elucidate effects of PrPc on intracerebral NPC homing, we intravenously infused GFP+ NPCs in ischemic WT, PrP−/− and PrP+/+ mice, showing that brain accumulation of GFP+ NPCs was greatly reduced in PrP−/− mice, but increased in PrP+/+ animals. Our results suggest that PrPc induces post-ischemic long-term neuroprotection, neurogenesis and angiogenesis in the ischemic brain by inhibiting proteasome activity. PMID:26673668

  17. The Mycobacterium tuberculosis Proteasome Active Site Threonine Is Essential for Persistence Yet Dispensable for Replication and Resistance to Nitric Oxide

    PubMed Central

    Gandotra, Sheetal; Lebron, Maria B.; Ehrt, Sabine

    2010-01-01

    Previous work revealed that conditional depletion of the core proteasome subunits PrcB and PrcA impaired growth of Mycobacterium tuberculosis in vitro and in mouse lungs, caused hypersusceptibility to nitric oxide (NO) and impaired persistence of the bacilli during chronic mouse infections. Here, we show that genetic deletion of prcBA led to similar phenotypes. Surprisingly, however, an active site mutant proteasome complemented the in vitro and in vivo growth defects of the prcBA knockout (ΔprcBA) as well as its NO hypersensitivity. In contrast, long-term survival of M. tuberculosis in stationary phase and during starvation in vitro and in the chronic phase of mouse infection required a proteolytically active proteasome. Inhibition of inducible nitric oxide synthase did not rescue survival of ΔprcBA, revealing a function beyond NO defense, by which the proteasome contributes to M. tuberculosis fitness during chronic mouse infections. These findings suggest that proteasomal proteolysis facilitates mycobacterial persistence, that M. tuberculosis faces starvation during chronic mouse infections and that the proteasome serves a proteolysis-independent function. PMID:20711362

  18. Inhibition of Tumor Proteasome Activity by Gold Dithiocarbamato Complexes via both Redox-Dependent and –Independent Processes

    PubMed Central

    Milacic, Vesna; Ronconi, Luca; Fan, Yuhua; Bi, Caifeng; Fregona, Dolores; Dou, Q Ping

    2013-01-01

    We have previously reported on a gold(III) complex, namely [AuBr2(DMDT)] (N,N-dimethyldithiocarbamate) showing potent in vitro and in vivo growth inhibitory activities toward human cancer cells and identifying the cellular proteasome as one of the major targets. However, the importance of the oxidation state of the gold center and the involved mechanism of action has yet to be established. Here we show that both gold(III)- and gold(I)-dithiocarbamato species, namely [AuBr2(ESDT)] (AUL12) and [Au(ESDT)]2 (AUL15), could inhibit the chymotrypsin-like activity of purified 20S proteasome and 26S proteasome in human breast cancer MDA-MB-231 cells, resulting in accumulation of ubiquitinated proteins and proteasome target proteins, and induction of cell death, but at significantly different levels. Gold(I) and gold(III) compounds-mediated proteasome inhibition and cell death induction were completely reversed by the addition of a reducing agent, dithiothreitol or N-acetyl-l-cysteine, suggesting the involvement of redox processes. Furthermore, treatment of MDA-MB-231 cells with gold(III) compound (AUL12), but not the gold(I) analogue (AUL15), resulted in the production of significant level of reactive oxygen species. Our study provides strong evidence that the cellular proteasome is an imporant target of both gold(I) and gold(III) dithiocarbamates, but distinct cellular mechanisms of action are responsible for their different overall effect. PMID:19911377

  19. Chemical analysis of Greek pollen - Antioxidant, antimicrobial and proteasome activation properties

    PubMed Central

    2011-01-01

    Background Pollen is a bee-product known for its medical properties from ancient times. In our days is increasingly used as health food supplement and especially as a tonic primarily with appeal to the elderly to ameliorate the effects of ageing. In order to evaluate the chemical composition and the biological activity of Greek pollen which has never been studied before, one sample with identified botanical origin from sixteen different common plant taxa of Greece has been evaluated. Results Three different extracts of the studied sample of Greek pollen, have been tested, in whether could induce proteasome activities in human fibroblasts. The water extract was found to induce a highly proteasome activity, showing interesting antioxidant properties. Due to this activity the aqueous extract was further subjected to chemical analysis and seven flavonoids have been isolated and identified by modern spectral means. From the methanolic extract, sugars, lipid acids, phenolic acids and their esters have been also identified, which mainly participate to the biosynthetic pathway of pollen phenolics. The total phenolics were estimated with the Folin-Ciocalteau reagent and the total antioxidant activity was determined by the DPPH method while the extracts and the isolated compounds were also tested for their antimicrobial activity by the dilution technique. Conclusions The Greek pollen is rich in flavonoids and phenolic acids which indicate the observed free radical scavenging activity, the effects of pollen on human fibroblasts and the interesting antimicrobial profile. PMID:21699688

  20. Elastase-like Activity Is Dominant to Chymotrypsin-like Activity in 20S Proteasome's β5 Catalytic Subunit.

    PubMed

    Bensinger, Dennis; Neumann, Theresa; Scholz, Christoph; Voss, Constantin; Knorr, Sabine; Kuckelkorn, Ulrike; Hamacher, Kay; Kloetzel, Peter-Michael; Schmidt, Boris

    2016-07-15

    The ubiquitin/proteasome system is the major protein degradation pathway in eukaryotes with several key catalytic cores. Targeting the β5 subunit with small-molecule inhibitors is an established therapeutic strategy for hematologic cancers. Herein, we report a mouse-trap-like conformational change that influences molecular recognition depending on the substitution pattern of a bound ligand. Variation of the size of P1 residues from the highly β5-selective proteasome inhibitor BSc2118 allows for discrimination between inhibitory strength and substrate conversion. We found that increasing molecular size strengthens inhibition, whereas decreasing P1 size accelerates substrate conversion. Evaluation of substrate hydrolysis after silencing of β5 activity reveals significant residual activity for large residues exclusively. Thus, classification of the β5 subunit as chymotrypsin-like and the use of the standard tyrosine-containing substrate should be reconsidered. PMID:27111844

  1. 1,10-Phenanthroline promotes copper complexes into tumor cells and induces apoptosis by inhibiting the proteasome activity.

    PubMed

    Zhang, Zhen; Bi, Caifeng; Schmitt, Sara M; Fan, Yuhua; Dong, Lili; Zuo, Jian; Dou, Q Ping

    2012-12-01

    Indole-3-acetic acid and indole-3-propionic acid, two potent natural plant growth hormones, have attracted attention as promising prodrugs in cancer therapy. Copper is known to be a cofactor essential for tumor angiogenesis. We have previously reported that taurine, L-glutamine, and quinoline-2-carboxaldehyde Schiff base copper complexes inhibit cell proliferation and proteasome activity in human cancer cells. In the current study, we synthesized two types of copper complexes, dinuclear complexes and ternary complexes, to investigate whether a certain structure could easily carry copper into cancer cells and consequently inhibit tumor proteasome activity and induce apoptosis. We observed that ternary complexes binding with 1,10-phenanthroline are more potent proteasome inhibitors and apoptosis inducers than dinuclear complexes in PC-3 human prostate cancer cells. Furthermore, the ternary complexes potently inhibit proteasome activity before induction of apoptosis in MDA-MB-231 human breast cancer cells, but not in nontumorigenic MCF-10A cells. Our results suggest that copper complexes binding with 1,10-phenanthroline as the third ligand could serve as potent, selective proteasome inhibitors and apoptosis inducers in tumor cells, and that the ternary complexes may be good potential anticancer drugs. PMID:23053530

  2. Spatial arrangement and functional role of α subunits of proteasome activator PA28 in hetero-oligomeric form

    SciTech Connect

    Sugiyama, Masaaki; Sahashi, Hiroki; Kurimoto, Eiji; Takata, Shin-ichi; Yagi, Hirokazu; Kanai, Keita; Sakata, Eri; Minami, Yasufumi; Tanaka, Keiji; Kato, Koichi

    2013-03-01

    Highlights: ► Homologous α and β subunits are alternatively arranged in the PA28 heptameric ring. ► The flexible loops of the three α subunits surround the site of substrate entry. ► The loops serve as gatekeepers that selectively hinder passage of longer peptides. - Abstract: A major form of proteasome activator PA28 is a heteroheptamer composed of interferon-γ-inducible α and β subunits, which share approximately 50% amino acid identity and possess distinct insert loops. This activator forms a complex with the 20S proteasome and thereby stimulates proteasomal degradation of peptides in an ATP-independent manner, giving rise to smaller antigenic peptides presented by major histocompatibility complex class I molecules. In this study, we performed biophysical and biochemical characterization of the structure and function of the PA28 hetero-oligomer. Deuteration-assisted small-angle neutron scattering demonstrated three α and four β subunits are alternately arranged in the heptameric ring. In this arrangement, PA28 loops surround the central pore of the heptameric ring (site for peptide entry). Activating the 20S proteasome with a PA28 mutant that lacked the α subunit loops cleaved model substrates longer than a nonapeptide with better efficiency when compared to wild-type PA28. Based on these data, we hypothesize that the flexible PA28 loops act as gatekeepers, which function to select the length of peptide substrates to be transported between the proteolytic chamber and the extra-proteasomal medium.

  3. Pyrrolidine dithiocarbamate-zinc(II) and -copper(II) complexes induce apoptosis in tumor cells by inhibiting the proteasomal activity

    SciTech Connect

    Milacic, Vesna; Chen Di; Giovagnini, Lorena; Diez, Alejandro; Fregona, Dolores; Dou, Q. Ping

    2008-08-15

    Zinc and copper are trace elements essential for proper folding, stabilization and catalytic activity of many metalloenzymes in living organisms. However, disturbed zinc and copper homeostasis is reported in many types of cancer. We have previously demonstrated that copper complexes induced proteasome inhibition and apoptosis in cultured human cancer cells. In the current study we hypothesized that zinc complexes could also inhibit the proteasomal chymotrypsin-like activity responsible for subsequent apoptosis induction. We first showed that zinc(II) chloride was able to inhibit the chymotrypsin-like activity of a purified 20S proteasome with an IC{sub 50} value of 13.8 {mu}M, which was less potent than copper(II) chloride (IC{sub 50} 5.3 {mu}M). We then compared the potencies of a pyrrolidine dithiocarbamate (PyDT)-zinc(II) complex and a PyDT-copper(II) complex to inhibit cellular proteasomal activity, suppress proliferation and induce apoptosis in various human breast and prostate cancer cell lines. Consistently, zinc complex was less potent than copper complex in inhibiting the proteasome and inducing apoptosis. Additionally, zinc and copper complexes appear to use somewhat different mechanisms to kill tumor cells. Zinc complexes were able to activate calpain-, but not caspase-3-dependent pathway, while copper complexes were able to induce activation of both proteases. Furthermore, the potencies of these PyDT-metal complexes depend on the nature of metals and also on the ratio of PyDT to the metal ion within the complex, which probably affects their stability and availability for interacting with and inhibiting the proteasome in tumor cells.

  4. Ni(II), Cu(II), and Zn(II) Diethyldithiocarbamate Complexes Show Various Activities Against the Proteasome in Breast Cancer Cells

    PubMed Central

    Cvek, Boris; Milacic, Vesna; Taraba, Jan; Dou, Q. Ping

    2008-01-01

    A series of three complexes with diethyldithiocarbamate ligand and three different metals (Ni, Cu, Zn) was prepared, confirmed by X-ray crystallography, and tested in human breast cancer MDA-MB-231 cells. Zinc and copper complexes, but not nickel complex, were found to be more active against cellular 26S proteasome than against purified 20S proteasome core particle. One of the possible explanations is inhibition of JAMM domain in the 19S proteasome lid. PMID:18816109

  5. Inducible expression of mutant alpha-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis.

    PubMed

    Tanaka, Y; Engelender, S; Igarashi, S; Rao, R K; Wanner, T; Tanzi, R E; Sawa, A; L Dawson, V; Dawson, T M; Ross, C A

    2001-04-15

    Parkinson's disease (PD) is a common progressive neurodegenerative disorder caused by the loss of dopaminergic neurons in the substantia nigra. Although mutations in alpha-synuclein have been identified in autosomal dominant PD, the mechanism by which dopaminergic neural cell death occurs remains unknown. Proteins encoded by two other genes in which mutations cause familial PD, parkin and UCH-L1, are involved in regulation of the ubiquitin-proteasome pathway, suggesting that dysregulation of the ubiquitin-proteasome pathway is involved in the mechanism by which these mutations cause PD. We established inducible PC12 cell lines in which wild-type or mutant alpha-synuclein can be de-repressed by removing doxycycline. Differentiated PC12 cell lines expressing mutant alpha-synuclein showed decreased activity of proteasomes without direct toxicity. Cells expressing mutant alpha-synuclein showed increased sensitivity to apoptotic cell death when treated with sub-toxic concentrations of an exogenous proteasome inhibitor. Apoptosis was accompanied by mitochondrial depolarization and elevation of caspase-3 and -9, and was blocked by cyclosporin A. These data suggest that expression of mutant alpha-synuclein results in sensitivity to impairment of proteasome activity, leading to mitochondrial abnormalities and neuronal cell death. PMID:11309365

  6. THE BTK INHIBITOR PCI-32765 SYNERGISTICALLY INCREASES PROTEASOME INHIBITOR ACTIVITY IN DLBCL AND MCL CELLS SENSITIVE OR RESISTANT TO BORTEZOMIB

    PubMed Central

    Dasmahapatra, Girija; Patel, Hiral; Dent, Paul; Fisher, Richard I.; Friedberg, Jonathan; Grant, Steven

    2012-01-01

    Summary Interactions between the Bruton tyrosine kinase (BTK) inhibitor PCI-32765 and the proteasome inhibitor (bortezomib) were examined in diffuse large-B cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) cells, including those highly resistant to bortezomib. Co-administration of PCI-32765/bortezomib synergistically increased mitochondrial injury and apoptosis in germinal centre- or activated B-cell-like-DLBCL cells and in MCL cells. These events were accompanied by marked AKT and nuclear factor (NF)-κB (NFKB1) inactivation, down-regulation of Mcl-1 (MCL1), Bcl-xL (BCL2L1), and XIAP, and enhanced DNA damage (e.g., γH2A.X formation) and endoplasmic reticulum (ER) stress. Similar interactions were observed in highly bortezomib-resistant DLBCL and MCL cells, and in primary DLBCL cells. In contrast, PCI-32765/bortezomib regimens displayed minimal toxicity toward normal CD34+ bone marrow cells. Transfection of DLBCL cells with a constitutively active AKT construct attenuated AKT inactivation and significantly diminished cell death, whereas expression of an NF-κB “super-repressor” (IκBαser34/36) increased both PCI-32765 and bortezomib lethality. Moreover, cells in which the ER stress response was disabled by a dominant-negative eIF2α construct were resistant to this regimen. Finally, combined exposure to PCI-32765 and bortezomib resulted in more pronounced and sustained reactive oxygen species (ROS) generation, and ROS scavengers significantly diminished lethality. Given promising early clinical results for PCI-32765 in DLBCL and MCL, a strategy combining BTK/ proteasome inhibitor warrants attention in these malignancies. PMID:23360303

  7. Heat Shock Proteins Regulate Activation-induced Proteasomal Degradation of the Mature Phosphorylated Form of Protein Kinase C*

    PubMed Central

    Lum, Michelle A.; Balaburski, Gregor M.; Murphy, Maureen E.; Black, Adrian R.; Black, Jennifer D.

    2013-01-01

    Although alterations in stimulus-induced degradation of PKC have been implicated in disease, mechanistic understanding of this process remains limited. Evidence supports the existence of both proteasomal and lysosomal mechanisms of PKC processing. An established pathway involves rate-limiting priming site dephosphorylation of the activated enzyme and proteasomal clearance of the dephosphorylated protein. However, here we show that agonists promote down-regulation of endogenous PKCα with minimal accumulation of a nonphosphorylated species in multiple cell types. Furthermore, proteasome and lysosome inhibitors predominantly protect fully phosphorylated PKCα, pointing to this form as a substrate for degradation. Failure to detect substantive dephosphorylation of activated PKCα was not due to rephosphorylation because inhibition of Hsp70/Hsc70, which is required for re-priming, had only a minor effect on agonist-induced accumulation of nonphosphorylated protein. Thus, PKC degradation can occur in the absence of dephosphorylation. Further analysis revealed novel functions for Hsp70/Hsc70 and Hsp90 in the control of agonist-induced PKCα processing. These chaperones help to maintain phosphorylation of activated PKCα but have opposing effects on degradation of the phosphorylated protein; Hsp90 is protective, whereas Hsp70/Hsc70 activity is required for proteasomal processing of this species. Notably, down-regulation of nonphosphorylated PKCα shows little Hsp70/Hsc70 dependence, arguing that phosphorylated and nonphosphorylated species are differentially targeted for proteasomal degradation. Finally, lysosomal processing of activated PKCα is not regulated by phosphorylation or Hsps. Collectively, these data demonstrate that phosphorylated PKCα is a direct target for agonist-induced proteasomal degradation via an Hsp-regulated mechanism, and highlight the existence of a novel pathway of PKC desensitization in cells. PMID:23900841

  8. Sorafenib enhances proteasome inhibitor-mediated cytotoxicity via inhibition of unfolded protein response and keratin phosphorylation

    SciTech Connect

    Honma, Yuichi; Harada, Masaru

    2013-08-15

    Hepatocellular carcinoma (HCC) is highly resistant to conventional systemic therapies and prognosis for advanced HCC patients remains poor. Recent studies of the molecular mechanisms responsible for tumor initiation and progression have identified several potential molecular targets in HCC. Sorafenib is a multi-kinase inhibitor shown to have survival benefits in advanced HCC. It acts by inhibiting the serine/threonine kinases and the receptor type tyrosine kinases. In preclinical experiments sorafenib had anti-proliferative activity in hepatoma cells and it reduced tumor angiogenesis and increased apoptosis. Here, we demonstrate for the first time that the cytotoxic mechanisms of sorafenib include its inhibitory effects on protein ubiquitination, unfolded protein response (UPR) and keratin phosphorylation in response to endoplasmic reticulum (ER) stress. Moreover, we show that combined treatment with sorafenib and proteasome inhibitors (PIs) synergistically induced a marked increase in cell death in hepatoma- and hepatocyte-derived cells. These observations may open the way to potentially interesting treatment combinations that may augment the effect of sorafenib, possibly including drugs that promote ER stress. Because sorafenib blocked the cellular defense mechanisms against hepatotoxic injury not only in hepatoma cells but also in hepatocyte-derived cells, we must be careful to avoid severe liver injury. -- Graphical abstract: Display Omitted -- Highlights: •We examined the cytotoxic mechanisms of sorafenib in hepatoma cells. •Sorafenib induces cell death via apoptotic and necrotic fashion. •Sorafenib inhibits protein ubiquitination and unfolded protein response. •Autophagy induced by sorafenib may affect its cytotoxicity. •Sorafenib inhibits keratin phosphorylation and cytoplasmic inclusion formation.

  9. Priming the proteasome by protein kinase G: a novel cardioprotective mechanism of sildenafil

    PubMed Central

    Zhang, Hanming; Wang, Xuejun

    2015-01-01

    The proteasome mediates the degradation of most cellular proteins including misfolded proteins, pivotal to intracellular protein hemostasis. Proteasome functional insufficiency is implicated in a large subset of human failing hearts. Experimental studies have established proteasome functional insufficiency as a major pathogenic factor, rationalizing proteasome enhancement as a potentially new therapeutic strategy for congestive heart failure. Protein kinase G activation known to be cardioprotective was recently found to facilitate proteasomal degradation of misfolded proteins in cardiomyocytes; sildenafil was shown to activate myocardial protein kinase G, improve cardiac protein quality control and slow down the progression of cardiac proteinopathy in mice. This identifies the first clinically used drug that is capable of benign proteasome enhancement and unveils a potentially novel cardioprotective mechanism for sildenafil. PMID:25760877

  10. Methylene blue reduces Aβ levels and rescues early cognitive deficit by increasing proteasome activity

    PubMed Central

    Medina, David X.; Caccamo, Antonella; Oddo, Salvatore

    2010-01-01

    Promising results have emerged from a phase II clinical trial testing Methylene blue (MB) as a potential therapeutic for Alzheimer disease (AD), where improvements in cognitive functions of AD patients after 6 months of MB administration have been reported. Despite these reports, no preclinical testing of MB in mammals has been published, and thus its mechanism of action in relation to AD pathology remains unknown. In order to elucidate the effects of MB on AD pathology and to determine its mechanism of action, we used a mouse model (3xTg-AD) that develops age-dependent accumulation of Aβ and tau and cognitive decline. Here, we report that chronic dietary MB treatment reduces Aβ levels and improves learning and memory deficits in the 3xTg-AD mice. The mechanisms underlying the effects of MB on Aβ pathology appears to be mediated by an increase in Aβ clearance as we show that MB increases the chymotrypsin-and trypsin-like activities of the proteasome in the brain. To our knowledge, this is the first report showing that MB increases proteasome function and ameliorates AD-like pathology in vivo. Overall, the data presented here support the use of MB for the treatment of AD and offer a possible mechanism of action. PMID:20731659

  11. Proteasome activity or expression is not altered by activation of the heat shock transcription factor Hsf1 in cultured fibroblasts or myoblasts.

    PubMed

    Taylor, David M; Kabashi, Edor; Agar, Jeffrey N; Minotti, Sandra; Durham, Heather D

    2005-01-01

    Heat shock proteins (Hsps) with chaperoning function work together with the ubiquitin-proteasome pathway to prevent the accumulation of misfolded, potentially toxic proteins, as well as to control catabolism of the bulk of cytoplasmic, cellular protein. There is evidence for the involvement of both systems in neurodegenerative disease, and a therapeutic target is the heat shock transcription factor, Hsf1, which mediates upregulation of Hsps in response to cellular stress. The mechanisms regulating expression of proteasomal proteins in mammalian cells are less well defined. To assess any direct effect of Hsf1 on expression of proteasomal subunits and activity in mammalian cells, a plasmid encoding a constitutively active form of Hsf1 (Hsf1act) was expressed in mouse embryonic fibroblasts lacking Hsf1 and in cultured human myoblasts. Plasmid encoding an inactivatible form of Hsf1 (Hsf1inact) served as control. In cultures transfected with plasmid hsf1act, robust expression of the major stress-inducible Hsp, Hsp70, occurred but not in cultures transfected with hsf1inact. No significant changes in the level of expression of representative proteasomal proteins (structural [20Salpha], a nonpeptidase beta subunit [20Sbeta3], or 2 regulatory subunits [19S subunit 6b, 11 Salpha]) or in chymotrypsin-, trypsin-, and caspaselike activities of the proteasome were measured. Thus, stress-induced or pharmacological activation of Hsf1 in mammalian cells would upregulate Hsps but not directly affect expression or activity of proteasomes. PMID:16184768

  12. Synergistic anti-myeloma activity of the proteasome inhibitor marizomib and the IMiD immunomodulatory drug pomalidomide.

    PubMed

    Das, Deepika S; Ray, Arghya; Song, Yan; Richardson, Paul; Trikha, Mohit; Chauhan, Dharminder; Anderson, Kenneth C

    2015-12-01

    The proteasome inhibitor bortezomib is an effective therapy for the treatment of relapsed and refractory multiple myeloma (RRMM); however, prolonged treatment can be associated with toxicity, peripheral neuropathy and drug resistance. Our earlier studies showed that the novel proteasome inhibitor marizomib is distinct from bortezomib in its chemical structure, mechanisms of action and effects on proteasomal activities, and that it can overcome bortezomib resistance. Pomalidomide, like lenalidomide, has potent immunomodulatory activity and has been approved by the US Food and Drug Administration for the treatment of RRMM. Here, we demonstrate that combining low concentrations of marizomib with pomalidomide induces synergistic anti-MM activity. Marizomib plus pomalidomide-induced apoptosis is associated with: (i) activation of caspase-8, caspase-9, caspase-3 and PARP cleavage, (ii) downregulation of cereblon (CRBN), IRF4, MYC and MCL1, and (iii) suppression of chymotrypsin-like, caspase-like, and trypsin-like proteasome activities. CRBN-siRNA attenuates marizomib plus pomalidomide-induced MM cells death. Furthermore, marizomib plus pomalidomide inhibits the migration of MM cells and tumour-associated angiogenesis, as well as overcomes cytoprotective effects of bone marrow microenvironment. In human MM xenograft model studies, the combination of marizomib and pomalidomide is well tolerated, inhibits tumour growth and prolongs survival. These preclinical studies provide the rationale for on-going clinical trials of combined marizomib and pomalidomide to improve outcome in patients with RRMM. PMID:26456076

  13. Proteasomal Degradation of Mcl-1 by Maritoclax Induces Apoptosis and Enhances the Efficacy of ABT-737 in Melanoma Cells

    PubMed Central

    Doi, Kenichiro; Sharma, Arun K.; Wang, Hong-Gang; Amin, Shantu

    2013-01-01

    Background and purpose Metastatic melanoma remains one of the most invasive and highly drug resistant cancers. The over expression of anti-apoptotic protein Mcl-1 has been associated with inferior survival, poor prognosis and chemoresistance of malignant melanoma. A BH3 mimetic, ABT-737, has demonstrated efficacy in several forms of cancers. However, the efficacy of ABT-737 depends on Mcl-1. Because the over expression of Mcl-1 is frequently observed in melanoma, specifically targeting of Mcl-1 may overcome the resistance of ABT-737. In this study, we investigated the effects of Maritoclax, a novel Mcl-1-selective inhibitor, alone and in combination with ABT-737, on the survival of human melanoma cells. Experimental approach For cell viability assessment we performed MTT assay. Apoptosis was determined using western blot and flow cytometric analysis. Key results The treatment of Maritoclax reduced the cell viability of melanoma cells with an IC50 of between 2.2–5.0 µM. Further, treatment of melanoma cells with Maritoclax showed significant decrease in Mcl-1 expression. We found that Maritoclax was able to induce apoptosis in melanoma cells in a caspase-dependent manner. Moreover, Maritoclax induced Mcl-1 degradation via the proteasome system, which was associated with its pro-apoptotic activity. We also found that Maritoclax treatment increased mitochondrial translocation of Bim and Bmf. Importantly, Maritoclax markedly enhanced the efficacy of ABT-737 against melanoma cells in both two- and three-dimensional spheroids. Conclusions and implications Taken together, these results suggest that targeting of Mcl-1 by Maritoclax may represent a new therapeutic strategy for melanoma treatment that warrants further investigation as a single therapy or in combination with other agents such as Bcl-2 inhibitors. PMID:24223823

  14. Pseudomonas aeruginosa Cif Protein Enhances the Ubiquitination and Proteasomal Degradation of the Transporter Associated with Antigen Processing (TAP) and Reduces Major Histocompatibility Complex (MHC) Class I Antigen Presentation*

    PubMed Central

    Bomberger, Jennifer M.; Ely, Kenneth H.; Bangia, Naveen; Ye, Siying; Green, Kathy A.; Green, William R.; Enelow, Richard I.; Stanton, Bruce A.

    2014-01-01

    Cif (PA2934), a bacterial virulence factor secreted in outer membrane vesicles by Pseudomonas aeruginosa, increases the ubiquitination and lysosomal degradation of some, but not all, plasma membrane ATP-binding cassette transporters (ABC), including the cystic fibrosis transmembrane conductance regulator and P-glycoprotein. The goal of this study was to determine whether Cif enhances the ubiquitination and degradation of the transporter associated with antigen processing (TAP1 and TAP2), members of the ABC transporter family that play an essential role in antigen presentation and intracellular pathogen clearance. Cif selectively increased the amount of ubiquitinated TAP1 and increased its degradation in the proteasome of human airway epithelial cells. This effect of Cif was mediated by reducing USP10 deubiquitinating activity, resulting in increased polyubiquitination and proteasomal degradation of TAP1. The reduction in TAP1 abundance decreased peptide antigen translocation into the endoplasmic reticulum, an effect that resulted in reduced antigen available to MHC class I molecules for presentation at the plasma membrane of airway epithelial cells and recognition by CD8+ T cells. Cif is the first bacterial factor identified that inhibits TAP function and MHC class I antigen presentation. PMID:24247241

  15. Inhibition of Proteasome Activity Impairs Centrosome-dependent Microtubule Nucleation and Organization

    PubMed Central

    Didier, Christine; Merdes, Andreas; Gairin, Jean-Edouard

    2008-01-01

    Centrosomes are dynamic organelles that consist of a pair of cylindrical centrioles, surrounded by pericentriolar material. The pericentriolar material contains factors that are involved in microtubule nucleation and organization, and its recruitment varies during the cell cycle. We report here that proteasome inhibition in HeLa cells induces the accumulation of several proteins at the pericentriolar material, including gamma-tubulin, GCP4, NEDD1, ninein, pericentrin, dynactin, and PCM-1. The effect of proteasome inhibition on centrosome proteins does not require intact microtubules and is reversed after removal of proteasome inhibitors. This accrual of centrosome proteins is paralleled by accumulation of ubiquitin in the same area and increased polyubiquitylation of nonsoluble gamma-tubulin. Cells that have accumulated centrosome proteins in response to proteasome inhibition are impaired in microtubule aster formation. Our data point toward a role of the proteasome in the turnover of centrosome proteins, to maintain proper centrosome function. PMID:18094058

  16. Ubiquitin-proteasome pathway and cellular responses to oxidative stress

    PubMed Central

    Taylor, Allen

    2011-01-01

    The ubiquitin-proteasome pathway (UPP) is the primary cytosolic proteolytic machinery for the selective degradation of various forms of damaged proteins. Thus, the UPP is an important protein quality control mechanism. In the canonical UPP, both ubiquitin and the 26S proteasome are involved. Substrate proteins of the canonical UPP are first tagged by multiple ubiquitin molecules and then degraded by the 26S proteasome. However, in non-canonical UPP, proteins can be degraded by the 26S or the 20S proteasome without being ubiquitinated. It is clear that a proteasome is responsible for selective degradation of oxidized proteins, but the extent to which ubiquitination is involved in this process remains a subject of debate. While many publications suggest that the 20S proteasome degrades oxidized proteins independent of ubiquitin, there is also solid evidence indicating that ubiquitin and ubiquitination are involved in degradation of some forms of oxidized proteins. A fully functional UPP is required for cells to cope with oxidative stress and the activity of the UPP is also modulated by cellular redox status. Mild or transient oxidative stress up-regulates the ubiquitination system and proteasome activity in cells and tissues and transiently enhances intracellular proteolysis. Severe or sustained oxidative stress impairs the function of the UPP and decreases intracellular proteolysis. Both the ubiquitin conjugation enzymes and the proteasome can be inactivated by sustained oxidative stress, especially the 26S proteasome. Differential susceptibilities of the ubiquitin conjugation enzymes and the 26S proteasome to oxidative damage lead to an accumulation of ubiquitin conjugates in cells in response to mild oxidative stress. Thus, increased levels of ubiquitin conjugates in cells appear to be an indicator of mild oxidative stress. PMID:21530648

  17. Antileukemic Activity and Mechanism of Drug Resistance to the Marine Salinispora tropica Proteasome Inhibitor Salinosporamide A (Marizomib)

    PubMed Central

    Niewerth, Denise; Jansen, Gerrit; Riethoff, Lesley F. V.; van Meerloo, Johan; Kale, Andrew J.; Moore, Bradley S.; Assaraf, Yehuda G.; Anderl, Janet L.; Zweegman, Sonja; Kaspers, Gertjan J. L.

    2014-01-01

    Salinosporamide A (NPI-0052, marizomib) is a naturally occurring proteasome inhibitor derived from the marine actinobacterium Salinispora tropica, and represents a promising clinical agent in the treatment of hematologic malignancies. Recently, these actinobacteria were shown to harbor self-resistance properties to salinosporamide A by expressing redundant catalytically active mutants of the 20S proteasome β-subunit, reminiscent of PSMB5 mutations identified in cancer cells with acquired resistance to the founding proteasome inhibitor bortezomib (BTZ). Here, we assessed the growth inhibitory potential of salinosporamide A in human acute lymphocytic leukemia CCRF-CEM cells, and its 10-fold (CEM/BTZ7) and 123-fold (CEM/BTZ200) bortezomib-resistant sublines harboring PSMB5 mutations. Parental cells displayed sensitivity to salinosporamide A (IC50 = 5.1 nM), whereas their bortezomib-resistant sublines were 9- and 17-fold cross-resistant to salinosporamide A, respectively. Notably, combination experiments of salinosporamide A and bortezomib showed synergistic activity in CEM/BTZ200 cells. CEM cells gradually exposed to 20 nM salinosporamide A (CEM/S20) displayed stable 5-fold acquired resistance to salinosporamide A and were 3-fold cross-resistant to bortezomib. Consistent with the acquisition of a PSMB5 point mutation (M45V) in CEM/S20 cells, salinosporamide A displayed a markedly impaired capacity to inhibit β5-associated catalytic activity. Last, compared with parental CEM cells, CEM/S20 cells exhibited up to 2.5-fold upregulation of constitutive proteasome subunits, while retaining unaltered immunoproteasome subunit expression. In conclusion, salinosporamide A displayed potent antileukemic activity against bortezomib-resistant leukemia cells. β-Subunit point mutations as a common feature of acquired resistance to salinosporamide A and bortezomib in hematologic cells and S. tropica suggest an evolutionarily conserved mechanism of resistance to proteasome

  18. Proteasome inhibition mediates p53 reactivation and anti-cancer activity of 6-gingerol in cervical cancer cells.

    PubMed

    Rastogi, Namrata; Duggal, Shivali; Singh, Shailendra Kumar; Porwal, Konica; Srivastava, Vikas Kumar; Maurya, Rakesh; Bhatt, M L B; Mishra, Durga Prasad

    2015-12-22

    Human papilloma virus (HPV) expressing E6 and E7 oncoproteins, is known to inactivate the tumor suppressor p53 through proteasomal degradation in cervical cancers. Therefore, use of small molecules for inhibition of proteasome function and induction of p53 reactivation is a promising strategy for induction of apoptosis in cervical cancer cells. The polyphenolic alkanone, 6-Gingerol (6G), present in the pungent extracts of ginger (Zingiber officinale Roscoe) has shown potent anti-tumorigenic and pro-apoptotic activities against a variety of cancers. In this study we explored the molecular mechanism of action of 6G in human cervical cancer cells in vitro and in vivo. 6G potently inhibited proliferation of the HPV positive cervical cancer cells. 6G was found to: (i) inhibit the chymotrypsin activity of proteasomes, (ii) induce reactivation of p53, (iii) increase levels of p21, (iv) induce DNA damage and G2/M cell cycle arrest, (v) alter expression levels of p53-associated apoptotic markers like, cleaved caspase-3 and PARP, and (vi) potentiate the cytotoxicity of cisplatin. 6G treatment induced significant reduction of tumor volume, tumor weight, proteasome inhibition and p53 accumulation in HeLa xenograft tumor cells in vivo. The 6G treatment was devoid of toxic effects as it did not affect body weights, hematological and osteogenic parameters. Taken together, our data underscores the therapeutic and chemosensitizing effects of 6G in the management and treatment of cervical cancer. PMID:26621832

  19. Proteasome inhibition mediates p53 reactivation and anti-cancer activity of 6-Gingerol in cervical cancer cells

    PubMed Central

    Rastogi, Namrata; Duggal, Shivali; Singh, Shailendra Kumar; Porwal, Konica; Srivastava, Vikas Kumar; Maurya, Rakesh; Bhatt, Madan L.B.; Mishra, Durga Prasad

    2015-01-01

    Human papilloma virus (HPV) expressing E6 and E7 oncoproteins, is known to inactivate the tumor suppressor p53 through proteasomal degradation in cervical cancers. Therefore, use of small molecules for inhibition of proteasome function and induction of p53 reactivation is a promising strategy for induction of apoptosis in cervical cancer cells. The polyphenolic alkanone, 6-Gingerol (6G), present in the pungent extracts of ginger (Zingiber officinale Roscoe) has shown potent anti-tumorigenic and pro-apoptotic activities against a variety of cancers. In this study we explored the molecular mechanism of action of 6G in human cervical cancer cells in vitro and in vivo. 6G potently inhibited proliferation of the HPV positive cervical cancer cells. 6G was found to: (i) inhibit the chymotrypsin activity of proteasomes, (ii) induce reactivation of p53, (iii) increase levels of p21, (iv) induce DNA damage and G2/M cell cycle arrest, (v) alter expression levels of p53-associated apoptotic markers like, cleaved caspase-3 and PARP, and (vi) potentiate the cytotoxicity of cisplatin. 6G treatment induced significant reduction of tumor volume, tumor weight, proteasome inhibition and p53 accumulation in HeLa xenograft tumor cells in vivo. The 6G treatment was devoid of toxic effects as it did not affect body weights, hematological and osteogenic parameters. Taken together, our data underscores the therapeutic and chemosensitizing effects of 6G in the management and treatment of cervical cancer. PMID:26621832

  20. Structure of an endogenous yeast 26S proteasome reveals two major conformational states

    PubMed Central

    Luan, Bai; Huang, Xiuliang; Wu, Jianping; Mei, Ziqing; Wang, Yiwei; Xue, Xiaobin; Yan, Chuangye; Wang, Jiawei; Finley, Daniel J.; Shi, Yigong; Wang, Feng

    2016-01-01

    The eukaryotic proteasome mediates degradation of polyubiquitinated proteins. Here we report the single-particle cryoelectron microscopy (cryo-EM) structures of the endogenous 26S proteasome from Saccharomyces cerevisiae at 4.6- to 6.3-Å resolution. The fine features of the cryo-EM maps allow modeling of 18 subunits in the regulatory particle and 28 in the core particle. The proteasome exhibits two distinct conformational states, designated M1 and M2, which correspond to those reported previously for the proteasome purified in the presence of ATP-γS and ATP, respectively. These conformations also correspond to those of the proteasome in the presence and absence of exogenous substrate. Structure-guided biochemical analysis reveals enhanced deubiquitylating enzyme activity of Rpn11 upon assembly of the lid. Our structures serve as a molecular basis for mechanistic understanding of proteasome function. PMID:26929360

  1. Intracellular colocalization of HAP1/STBs with steroid hormone receptors and its enhancement by a proteasome inhibitor

    SciTech Connect

    Fujinaga, Ryutaro; Takeshita, Yukio; Yoshioka, Kazuhiro; Nakamura, Hiroyuki; Shinoda, Shuhei; Islam, Md. Nabiul; Jahan, Mir Rubayet; Yanai, Akie; Kokubu, Keiji; Shinoda, Koh

    2011-07-15

    The stigmoid body (STB) is a cytoplasmic inclusion containing huntingtin-associated protein 1 (HAP1), and HAP1/STB formation is induced by transfection of the HAP1 gene into cultured cells. In the present study, we examined the intracellular colocalization of HAP1/STBs with steroid hormone receptors (SHRs), including the androgen receptor (AR), estrogen receptor, glucocorticoid receptor (GR), and mineralocorticoid receptor, in COS-7 cells cotransfected with HAP1 and each receptor. We found that C-terminal ligand-binding domains of all SHRs had potential for colocalization with HAP1/STBs, whereas only AR and GR were clearly colocalized with HAP1/STBs when each full-length SHR was coexpressed with HAP1. In addition, it appeared that HAP1/STBs did not disrupt GR and AR functions because the receptors on HAP1/STBs maintained nuclear translocation activity in response to their specific ligands. When the cells were treated with a proteasome inhibitor, GR and AR localized outside HAP1/STBs translocated into the nucleus, whereas the receptors colocalized with HAP1/STBs persisted in their colocalization even after treatment with their ligands. Therefore, HAP1/STBs may be involved in cytoplasmic modifications of the nuclear translocation of GR and AR in a ubiquitin-proteasome system.

  2. Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling

    PubMed Central

    Myeku, Natura; Clelland, Catherine L; Emrani, Sheina; Kukushkin, Nikolay V; Yu, Wai Haung; Goldberg, Alfred L; Duff, Karen E

    2016-01-01

    The ubiquitin proteasome system (UPS) degrades misfolded proteins including those implicated in neurodegenerative diseases. We investigated the effects of tau accumulation on proteasome function in a mouse model of tauopathy and in a cross to a UPS reporter mouse (line Ub-G76V-GFP). Accumulation of insoluble tau was associated with a decrease in the peptidase activity of brain 26S proteasomes, higher levels of ubiquitinated proteins and undegraded Ub-G76V-GFP. 26S proteasomes from mice with tauopathy were physically associated with tau and were less active in hydrolyzing ubiquitinated proteins, small peptides and ATP. 26S proteasomes from normal mice incubated with recombinant oligomers or fibrils also showed lower hydrolyzing capacity in the same assays, implicating tau as a proteotoxin. Administration of an agent that activates cAMP–protein kinase A (PKA) signaling led to attenuation of proteasome dysfunction, probably through proteasome subunit phosphorylation. In vivo, this led to lower levels of aggregated tau and improvements in cognitive performance. PMID:26692334

  3. Myostatin Activates the Ubiquitin-Proteasome and Autophagy-Lysosome Systems Contributing to Muscle Wasting in Chronic Kidney Disease.

    PubMed

    Wang, Dong-Tao; Yang, Ya-Jun; Huang, Ren-Hua; Zhang, Zhi-Hua; Lin, Xin

    2015-01-01

    Our evidence demonstrated that CKD upregulated the expression of myostatin, TNF-α, and p-IkBa and downregulated the phosphorylation of PI3K, Akt, and FoxO3a, which were also associated with protein degradation and muscle atrophy. The autophagosome formation and protein expression of autophagy-related genes were increased in muscle of CKD rats. The mRNA level and protein expression of MAFbx and MuRF-1 were also upregulated in CKD rats, as well as proteasome activity of 26S. Moreover, activation of myostatin elicited by TNF-α induces C2C12 myotube atrophy via upregulating the expression of autophagy-related genes, including MAFbx and MuRF1 and proteasome subunits. Inactivation of FoxO3a triggered by PI3K inhibitor LY294002 prevented the myostatin-induced increase of expression of MuRF1, MAFbx, and LC3-II protein in C2C12 myotubes. The findings were further consolidated by using siRNA interference and overexpression of myostatin. Additionally, expression of myostatin was activated by TNF-α via a NF-κB dependent pathway in C2C12 myotubes, while inhibition of NF-κB activity suppressed myostatin and improved myotube atrophy. Collectively, myostatin mediated CKD-induced muscle catabolism via coordinate activation of the autophagy and the ubiquitin-proteasome systems. PMID:26448817

  4. Biochemical and toxicological evaluation of nano-heparins in cell functional properties, proteasome activation and expression of key matrix molecules.

    PubMed

    Piperigkou, Zoi; Karamanou, Konstantina; Afratis, Nikolaos A; Bouris, Panagiotis; Gialeli, Chrysostomi; Belmiro, Celso L R; Pavão, Mauro S G; Vynios, Dimitrios H; Tsatsakis, Aristidis M

    2016-01-01

    The glycosaminoglycan heparin and its derivatives act strongly on blood coagulation, controlling the activity of serine protease inhibitors in plasma. Nonetheless, there is accumulating evidence highlighting different anticancer activities of these molecules in numerous types of cancer. Nano-heparins may have great biological significance since they can inhibit cell proliferation and invasion as well as inhibiting proteasome activation. Moreover, they can cause alterations in the expression of major modulators of the tumor microenvironment, regulating cancer cell behavior. In the present study, we evaluated the effects of two nano-heparin formulations: one isolated from porcine intestine and the other from the sea squirt Styela plicata, on a breast cancer cell model. We determined whether these nano-heparins are able to affect cell proliferation, apoptosis and invasion, as well as proteasome activity and the expression of extracellular matrix molecules. Specifically, we observed that nano-Styela compared to nano-Mammalian analogue has higher inhibitory role on cell proliferation, invasion and proteasome activity. Moreover, nano-Styela regulates cell apoptosis, expression of inflammatory molecules, such as IL-6 and IL-8 and reduces the expression levels of extracellular matrix macromolecules, such as the proteolytic enzymes MT1-MMP, uPA and the cell surface proteoglycans syndecan-1 and -2, but not on syndecan-4. The observations reported in the present article indicate that nano-heparins and especially ascidian heparin are effective agents for heparin-induced effects in critical cancer cell functions, providing an important possibility in pharmacological targeting. PMID:26476401

  5. Hsp70-GlcNAc-binding activity is released by stress, proteasome inhibition, and protein misfolding

    SciTech Connect

    Guinez, Celine; Mir, Anne-Marie; Leroy, Yves; Cacan, Rene; Michalski, Jean-Claude; Lefebvre, Tony . E-mail: tony.lefebvre@univ-lille1.fr

    2007-09-21

    Numerous recent works strengthen the idea that the nuclear and cytosolic-specific O-GlcNAc glycosylation protects cells against injuries. We have first investigated O-GlcNAc level and Hsp70-GlcNAc-binding activity (HGBA) behaviour after exposure of HeLa and HepG{sub 2} cells to a wide variety of stresses. O-GlcNAc and HGBA responses were different according to the stress and according to the cell. HGBA was released for almost all stresses, while O-GlcNAc level was modified either upwards or downwards, depending to the stress. Against all expectations, we demonstrated that energy charge did not significantly vary with stress whereas UDP-GlcNAc pools were more dramatically affected even if differences in UDP-GlcNAc contents were not correlated with O-GlcNAc variations suggesting that O-GlcNAc transferase is itself finely regulated during cell injury. Finally, HGBA could be triggered by proteasome inhibition and by L-azetidine-2-carboxylic acid (a proline analogue) incorporation demonstrating that protein misfolding is one of the key-activator of this Hsp70 property.

  6. Site-specific Proteasome Phosphorylation Controls Cell Proliferation and Tumorigenesis

    PubMed Central

    Guo, Xing; Wang, Xiaorong; Wang, Zhiping; Banerjee, Sourav; Yang, Jing; Huang, Lan; Dixon, Jack E.

    2015-01-01

    Despite the fundamental importance of proteasomal degradation in cells, little is known about whether and how the 26S proteasome itself is regulated in coordination with various physiological processes. Here we show that the proteasome is dynamically phosphorylated during cell cycle at Thr25 of the 19S subunit Rpt3. CRISPR/Cas9-mediated genome editing, RNA interference and biochemical studies demonstrate that blocking Rpt3-Thr25 phosphorylation markedly impairs proteasome activity and impedes cell proliferation. Through a kinome-wide screen, we have identified dual-specificity tyrosine-regulated kinase 2 (DYRK2) as the primary kinase that phosphorylates Rpt3-Thr25, leading to enhanced substrate translocation and degradation. Importantly, loss of the single phosphorylation of Rpt3-Thr25 or knockout of DYRK2 significantly inhibits tumor formation by proteasome-addicted human breast cancer cells in mice. These findings define an important mechanism for proteasome regulation and demonstrate the biological significance of proteasome phosphorylation in regulating cell proliferation and tumorigenesis. PMID:26655835

  7. Synthesis and evaluation of derivatives of the proteasome deubiquitinase inhibitor b-AP15.

    PubMed

    Wang, Xin; D'Arcy, Pádraig; Caulfield, Thomas R; Paulus, Aneel; Chitta, Kasyapa; Mohanty, Chitralekha; Gullbo, Joachim; Chanan-Khan, Asher; Linder, Stig

    2015-11-01

    The ubiquitin-proteasome system (UPS) is increasingly recognized as a therapeutic target for the development of anticancer therapies. The success of the 20S proteasome core particle (20S CP) inhibitor bortezomib in the clinical management of multiple myeloma has raised the possibility of identifying other UPS components for therapeutic intervention. We previously identified the small molecule b-AP15 as an inhibitor of 19S proteasome deubiquitinase (DUB) activity. Building upon our previous data, we performed a structure-activity relationship (SAR) study on b-AP15 and identified VLX1570 as an analog with promising properties, including enhanced potency and improved solubility in aqueous solution. In silico modeling was consistent with interaction of VLX1570 with key cysteine residues located at the active sites of the proteasome DUBs USP14 and UCHL5. VLX1570 was found to inhibit proteasome deubiquitinase activity in vitro in a manner consistent with competitive inhibition. Furthermore, using active-site-directed probes, VLX1570 also inhibited proteasome DUB activity in exposed cells. Importantly, VLX1570 did not show inhibitory activity on a panel of recombinant non-proteasome DUBs, on recombinant kinases, or on caspase-3 activity, suggesting that VLX1570 is not an overtly reactive general enzyme inhibitor. Taken together, our data shows the chemical and biological properties of VLX1570 as an optimized proteasome DUB inhibitor. PMID:25854145

  8. Cystic Fibrosis Transmembrane Conductance Regulator Controls Lung Proteasomal Degradation and Nuclear Factor-κB Activity in Conditions of Oxidative Stress

    PubMed Central

    Boncoeur, Emilie; Roque, Telma; Bonvin, Elise; Saint-Criq, Vinciane; Bonora, Monique; Clement, Annick; Tabary, Olivier; Henrion-Caude, Alexandra; Jacquot, Jacky

    2008-01-01

    Cystic fibrosis is a lethal inherited disorder caused by mutations in a single gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein, resulting in progressive oxidative lung damage. In this study, we evaluated the role of CFTR in the control of ubiquitin-proteasome activity and nuclear factor (NF)-κB/IκB-α signaling after lung oxidative stress. After a 64-hour exposure to hyperoxia-mediated oxidative stress, CFTR-deficient (cftr−/−) mice exhibited significantly elevated lung proteasomal activity compared with wild-type (cftr+/+) animals. This was accompanied by reduced lung caspase-3 activity and defective degradation of NF-κB inhibitor IκB-α. In vitro, human CFTR-deficient lung cells exposed to oxidative stress exhibited increased proteasomal activity and decreased NF-κB-dependent transcriptional activity compared with CFTR-sufficient lung cells. Inhibition of the CFTR Cl− channel by CFTRinh-172 in the normal bronchial immortalized cell line 16HBE14o− increased proteasomal degradation after exposure to oxidative stress. Caspase-3 inhibition by Z-DQMD in CFTR-sufficient lung cells mimicked the response profile of increased proteasomal degradation and reduced NF-κB activity observed in CFTR-deficient lung cells exposed to oxidative stress. Taken together, these results suggest that functional CFTR Cl− channel activity is crucial for regulation of lung proteasomal degradation and NF-κB activity in conditions of oxidative stress. PMID:18372427

  9. Inhibition of Proteasome Activity by Low-dose Bortezomib Attenuates Angiotensin II-induced Abdominal Aortic Aneurysm in Apo E−/− Mice

    PubMed Central

    Ren, Hualiang; Li, Fangda; Tian, Cui; Nie, Hao; Wang, Lei; Li, Hui-Hua; Zheng, Yuehong

    2015-01-01

    Abdominal aortic aneurysm (AAA) is a leading cause of sudden death in aged people. Activation of ubiquitin proteasome system (UPS) plays a critical role in the protein quality control and various diseases. However, the functional role of UPS in AAA formation remains unclear. In this study, we found that the proteasome activities and subunit expressions in AAA tissues from human and angiotensin II (Ang II)-infused apolipoprotein E knockout (Apo E−/−) mice were significantly increased. To investigate the effect of proteasome activation on the AAA formation, Apo E−/− mice were cotreated with bortezomib (BTZ) (a proteasome inhibitor, 50 μg/kg, 2 times per week) and Ang II (1000 ng/kg/min) up to 28 days. Ang II infusion significantly increased the incidence and severity of AAA in Apo E−/− mice, whereas BTZ treatment markedly inhibited proteasome activities and prevented AAA formation. Furthermore, BTZ treatment significantly reduced the inflammation, inhibited the metal matrix metalloprotease activity, and reversed the phenotypic SMC modulation in AAA tissue. In conclusion, these results provide a new evidence that proteasome activation plays a critical role in AAA formation through multiple mechanisms, and suggest that BTZ might be a novel therapeutic target for treatment of AAA formation. PMID:26508670

  10. LPS-Induced Formation of Immunoproteasomes: TNF-α and Nitric Oxide Production are Regulated by Altered Composition of Proteasome-Active Sites

    PubMed Central

    Reis, Julia; Guan, Xiu Qin; Kisselev, Alexei F.; Papasian, Christopher J.; Qureshi, Asaf A.; Morrison, David C.; Van Way, Charles W.; Vogel, Stefanie N.

    2011-01-01

    Stimulation of mouse macrophages with LPS leads to tumor necrosis factor (TNF-α) secretion and nitric oxide (NO) release at different times through independent signaling pathways. While the precise regulatory mechanisms responsible for these distinct phenotypic responses have not been fully delineated, results of our recent studies strongly implicate the cellular cytoplasmic ubiquitin–proteasome pathway as a key regulator of LPS-induced macrophage inflammatory responses. Our objective in this study was to define the relative contribution of specific proteasomal active-sites in induction of TNF-α and NO after LPS treatment of RAW 264.7 macrophages using selective inhibitors of these active sites. Our data provide evidence that LPS stimulation of mouse macrophages triggers a selective increase in the levels of gene and protein expression of the immunoproteasomes, resulting in a modulation of specific functional activities of the proteasome and a corresponding increase in NO production as compared to untreated controls. These findings suggest the LPS-dependent induction of immunoproteasome. In contrast, we also demonstrate that TNF-α expression is primarily dependent on both the chymotrypsin- and the trypsin-like activities of X, Y, Z subunits of the proteasome. Proteasome-associated post-acidic activity alone also contributes to LPS-induced expression of TNF-α. Taken together; our results indicate that LPS-induced TNF-α in macrophages is differentially regulated by each of the three proteasome activities. Since addition of proteasome inhibitors to mouse macrophages profoundly affects the degradation of proteins involved in signal transduction, we conclude that proteasome-specific degradation of several signaling proteins is likely involved in differential regulation of LPS-dependent secretion of proinflammatory mediators. PMID:21455682

  11. Silica-coated magnetic nanoparticles impair proteasome activity and increase the formation of cytoplasmic inclusion bodies in vitro

    PubMed Central

    Phukan, Geetika; Shin, Tae Hwan; Shim, Jeom Soon; Paik, Man Jeong; Lee, Jin-Kyu; Choi, Sangdun; Kim, Yong Man; Kang, Seong Ho; Kim, Hyung Sik; Kang, Yup; Lee, Soo Hwan; Mouradian, M. Maral; Lee, Gwang

    2016-01-01

    The potential toxicity of nanoparticles, particularly to neurons, is a major concern. In this study, we assessed the cytotoxicity of silica-coated magnetic nanoparticles containing rhodamine B isothiocyanate dye (MNPs@SiO2(RITC)) in HEK293 cells, SH-SY5Y cells, and rat primary cortical and dopaminergic neurons. In cells treated with 1.0 μg/μl MNPs@SiO2(RITC), the expression of several genes related to the proteasome pathway was altered, and proteasome activity was significantly reduced, compared with control and with 0.1 μg/μl MNPs@SiO2(RITC)-treated cells. Due to the reduction of proteasome activity, formation of cytoplasmic inclusions increased significantly in HEK293 cells over-expressing the α–synuclein interacting protein synphilin-1 as well as in primary cortical and dopaminergic neurons. Primary neurons, particularly dopaminergic neurons, were more vulnerable to MNPs@SiO2(RITC) than SH-SY5Y cells. Cellular polyamines, which are associated with protein aggregation, were significantly altered in SH-SY5Y cells treated with MNPs@SiO2(RITC). These findings highlight the mechanisms of neurotoxicity incurred by nanoparticles. PMID:27378605

  12. Proteasome Inhibition Enhances the Induction and Impairs the Maintenance of Late-Phase Long-Term Potentiation

    ERIC Educational Resources Information Center

    Dong, Chenghai; Upadhya, Sudarshan C.; Ding, Lan; Smith, Thuy K.; Hegde, Ashok N.

    2008-01-01

    Protein degradation by the ubiquitin-proteasome pathway plays important roles in synaptic plasticity, but the molecular mechanisms by which proteolysis regulates synaptic strength are not well understood. We investigated the role of the proteasome in hippocampal late-phase long-term potentiation (L-LTP), a model for enduring synaptic plasticity.…

  13. Angelman syndrome-associated ubiquitin ligase UBE3A/E6AP mutants interfere with the proteolytic activity of the proteasome

    PubMed Central

    Tomaić, V; Banks, L

    2015-01-01

    Angelman syndrome, a severe neurodevelopmental disease, occurs primarily due to genetic defects, which cause lack of expression or mutations in the wild-type E6AP/UBE3A protein. A proportion of the Angelman syndrome patients bear UBE3A point mutations, which do not interfere with the expression of the full-length protein, however, these individuals still develop physiological conditions of the disease. Interestingly, most of these mutations are catalytically defective, thereby indicating the importance of UBE3A enzymatic activity role in the Angelman syndrome pathology. In this study, we show that Angelman syndrome-associated mutants interact strongly with the proteasome via the S5a proteasomal subunit, resulting in an overall inhibitory effect on the proteolytic activity of the proteasome. Our results suggest that mutated catalytically inactive forms of UBE3A may cause defects in overall proteasome function, which could have an important role in the Angelman syndrome pathology. PMID:25633294

  14. Proteasome activity is important for replication recovery, CHK1 phosphorylation and prevention of G2 arrest after low-dose formaldehyde

    PubMed Central

    Ortega-Atienza, Sara; Green, Samantha E.; Zhitkovich, Anatoly

    2015-01-01

    Formaldehyde (FA) is a human carcinogen with numerous sources of environmental and occupational exposures. This reactive aldehyde is also produced endogenously during metabolism of drugs and other processes. DNA-protein crosslinks (DPC) are considered to be the main genotoxic lesions for FA. Accumulating evidence suggests that DPC repair in high eukaryotes involves proteolysis of crosslinked proteins. Here, we examined a role of the main cellular proteolytic machinery proteasomes in toxic responses of human lung cells to low FA doses. We found that transient inhibition of proteasome activity increased cytotoxicity and diminished clonogenic viability of FA-treated cells. Proteasome inactivation exacerbated suppressive effects of FA on DNA replication and increased the levels of the genotoxic stress marker γ-H2AX in normal human cells. A transient loss of proteasome activity in FA-exposed cells also caused delayed perturbations of cell cycle, which included G2 arrest and a depletion of S-phase populations at FA doses that had no effects in control cells. Proteasome activity diminished p53-Ser15 phosphorylation but was important for FA-induced CHK1 phosphorylation, which is a biochemical marker of DPC proteolysis in replicating cells. Unlike FA, proteasome inhibition had no effect on cell survival and CHK1 phosphorylation by the non-DPC replication stressor hydroxyurea. Overall, we obtained evidence for the importance of proteasomes in protection of human cells against biologically relevant doses of FA. Biochemically, our findings indicate the involvement of proteasomes in proteolytic repair of DPC, which removes replication blockage by these highly bulky lesions. PMID:25817892

  15. Negatively Charged Metal Oxide Nanoparticles Interact with the 20S Proteasome and Differentially Modulate Its Biologic Functional Effects

    PubMed Central

    Falaschetti, Christine A.; Paunesku, Tatjana; Kurepa, Jasmina; Nanavati, Dhaval; Chou, Stanley S.; De, Mrinmoy; Song, MinHa; Jang, Jung-tak; Wu, Aiguo; Dravid, Vinayak P.; Cheon, Jinwoo; Smalle, Jan; Woloschak, Gayle E.

    2013-01-01

    The multicatalytic ubiquitin-proteasome system (UPS) carries out proteolysis in a highly orchestrated way and regulates a large number of cellular processes. Deregulation of the UPS in many disorders has been documented. In some cases, e.g. carcinogenesis, elevated proteasome activity has been implicated in disease development, while the etiology of other diseases, e.g. neurodegeneration, includes decreased UPS activity. Therefore, agents that alter proteasome activity could suppress as well as enhance a multitude of diseases. Metal oxide nanoparticles, often developed as diagnostic tools, have not previously been tested as modulators of proteasome activity. Here, several types of metal oxide nanoparticles were found to adsorb to the proteasome and show variable preferential binding for particular proteasome subunits with several peptide binding “hotspots” possible. These interactions depend on the size, charge, and concentration of the nanoparticles and affect proteasome activity in a time-dependent manner. Should metal oxide nanoparticles increase proteasome activity in cells, as they do in vitro, unintended effects related to changes in proteasome function can be expected. PMID:23930940

  16. Inhibition of Stat3 activation suppresses caspase-3 and the ubiquitin-proteasome system, leading to preservation of muscle mass in cancer cachexia.

    PubMed

    Silva, Kleiton Augusto Santos; Dong, Jiangling; Dong, Yanjun; Dong, Yanlan; Schor, Nestor; Tweardy, David J; Zhang, Liping; Mitch, William E

    2015-04-24

    Cachexia occurs in patients with advanced cancers. Despite the adverse clinical impact of cancer-induced muscle wasting, pathways causing cachexia are controversial, and clinically reliable therapies are not available. A trigger of muscle protein loss is the Jak/Stat pathway, and indeed, we found that conditioned medium from C26 colon carcinoma (C26) or Lewis lung carcinoma cells activates Stat3 (p-Stat3) in C2C12 myotubes. We identified two proteolytic pathways that are activated in muscle by p-Stat3; one is activation of caspase-3, and the other is p-Stat3 to myostatin, MAFbx/Atrogin-1, and MuRF-1 via CAAT/enhancer-binding protein δ (C/EBPδ). Using sequential deletions of the caspase-3 promoter and CHIP assays, we determined that Stat3 activation increases caspase-3 expression in C2C12 cells. Caspase-3 expression and proteolytic activity were stimulated by p-Stat3 in muscles of tumor-bearing mice. In mice with cachexia caused by Lewis lung carcinoma or C26 tumors, knock-out of p-Stat3 in muscle or with a small chemical inhibitor of p-Stat3 suppressed muscle mass losses, improved protein synthesis and degradation in muscle, and increased body weight and grip strength. Activation of p-Stat3 stimulates a pathway from C/EBPδ to myostatin and expression of MAFbx/Atrogin-1 and increases the ubiquitin-proteasome system. Indeed, C/EBPδ KO decreases the expression of MAFbx/Atrogin-1 and myostatin, while increasing muscle mass and grip strength. In conclusion, cancer stimulates p-Stat3 in muscle, activating protein loss by stimulating caspase-3, myostatin, and the ubiquitin-proteasome system. These results could lead to novel strategies for preventing cancer-induced muscle wasting. PMID:25787076

  17. Modifications in endopeptidase and 20S proteasome expression and activities in cadmium treated tomato (Solanum lycopersicum L.) plants.

    PubMed

    Djebali, Wahbi; Gallusci, Philippe; Polge, Cécile; Boulila, Latifa; Galtier, Nathalie; Raymond, Philippe; Chaibi, Wided; Brouquisse, Renaud

    2008-02-01

    The effects of cadmium (Cd) on cellular proteolytic responses were investigated in the roots and leaves of tomato (Solanum lycopersicum L., var Ibiza) plants. Three-week-old plants were grown for 3 and 10 days in the presence of 0.3-300 microM Cd and compared to control plants grown in the absence of Cd. Roots of Cd treated plants accumulated four to fivefold Cd as much as mature leaves. Although 10 days of culture at high Cd concentrations inhibited plant growth, tomato plants recovered and were still able to grow again after Cd removal. Tomato roots and leaves are not modified in their proteolytic response with low Cd concentrations (< or =3 microM) in the incubation medium. At higher Cd concentration, protein oxidation state and protease activities are modified in roots and leaves although in different ways. The soluble protein content of leaves decreased and protein carbonylation level increased indicative of an oxidative stress. Conversely, protein content of roots increased from 30 to 50%, but the amount of oxidized proteins decreased by two to threefold. Proteolysis responded earlier in leaves than in root to Cd stress. Additionally, whereas cysteine- and metallo-endopeptidase activities, as well as proteasome chymotrypsin activity and subunit expression level, increased in roots and leaves, serine-endopeptidase activities increased only in leaves. This contrasted response between roots and leaves may reflect differences in Cd compartmentation and/or complexation, antioxidant responses and metabolic sensitivity to Cd between plant tissues. The up-regulation of the 20S proteasome gene expression and proteolytic activity argues in favor of the involvement of the 20S proteasome in the degradation of oxidized proteins in plants. PMID:17952456

  18. Essential role of proteasomes in maintaining self-renewal in neural progenitor cells

    PubMed Central

    Zhao, Yunhe; Liu, Xueqin; He, Zebin; Niu, Xiaojie; Shi, Weijun; Ding, Jian M.; Zhang, Li; Yuan, Tifei; Li, Ang; Yang, Wulin; Lu, Li

    2016-01-01

    Protein turnover and homeostasis are regulated by the proteasomal system, which is critical for cell function and viability. Pluripotency of stem cells also relies on normal proteasomal activity that mitigates senescent phenotypes induced by intensive cell replications, as previously demonstrated in human bone marrow stromal cells. In this study, we investigated the role of proteasomes in self-renewal of neural progenitor cells (NPCs). Through both in vivo and in vitro analyses, we found that the expression of proteasomes was progressively decreased during aging. Likewise, proliferation and self-renewal of NPCs were also impaired in aged mice, suggesting that the down-regulation of proteasomes might be responsible for this senescent phenotype. Lowering proteasomal activity by loss-of-function manipulations mimicked the senescence of NPCs both in vitro and in vivo; conversely, enhancing proteasomal activity restored and improved self-renewal in aged NPCs. These results collectively indicate that proteasomes work as a key regulator in promoting self-renewal of NPCs. This potentially provides a promising therapeutic target for age-dependent neurodegenerative diseases. PMID:26804982

  19. Aerobic exercise training improves oxidative stress and ubiquitin proteasome system activity in heart of spontaneously hypertensive rats.

    PubMed

    de Andrade, Luiz Henrique Soares; de Moraes, Wilson Max Almeida Monteiro; Matsuo Junior, Eduardo Hiroshi; de Orleans Carvalho de Moura, Elizabeth; Antunes, Hanna Karen Moreira; Montemor, Jairo; Antonio, Ednei Luiz; Bocalini, Danilo Sales; Serra, Andrey Jorge; Tucci, Paulo José Ferreira; Brum, Patricia Chakur; Medeiros, Alessandra

    2015-04-01

    The activity of the ubiquitin proteasome system (UPS) and the level of oxidative stress contribute to the transition from compensated cardiac hypertrophy to heart failure in hypertension. Moreover, aerobic exercise training (AET) is an important therapy for the treatment of hypertension, but its effects on the UPS are not completely known. The aim of this study was to evaluate the effect of AET on UPS's activity and oxidative stress level in heart of spontaneously hypertensive rats (SHR). A total of 53 Wistar and SHR rats were randomly divided into sedentary and trained groups. The AET protocol was 5×/week in treadmill for 13 weeks. Exercise tolerance test, non-invasive blood pressure measurement, echocardiographic analyses, and left ventricle hemodynamics were performed during experimental period. The expression of ubiquitinated proteins, 4-hydroxynonenal (4-HNE), Akt, phospho-Akt(ser473), GSK3β, and phospho-GSK3β(ser9) were analyzed by western blotting. The evaluation of lipid hydroperoxide concentration was performed using the xylenol orange method, and the proteasomal chymotrypsin-like activity was measured by fluorimetric assay. Sedentary hypertensive group presented cardiac hypertrophy, unaltered expression of total Akt, phospho-Akt, total GSK3β and phospho-GSK3β, UPS hyperactivity, increased lipid hydroperoxidation as well as elevated expression of 4-HNE but normal cardiac function. In contrast, AET significantly increased exercise tolerance, decreased resting systolic blood pressure and heart rate in hypertensive animals. In addition, the AET increased phospho-Akt expression, decreased phospho-GSK3β, and did not alter the expression of total Akt, total GSK3β, and ubiquitinated proteins, however, significantly attenuated 4-HNE levels, lipid hydroperoxidation, and UPS's activity toward normotensive group levels. Our results provide evidence for the main effect of AET on attenuating cardiac ubiquitin proteasome hyperactivity and oxidative stress in SHR

  20. Selective Restriction of Nef-Defective Human Immunodeficiency Virus Type 1 by a Proteasome-Dependent Mechanism▿

    PubMed Central

    Qi, Mingli; Aiken, Christopher

    2007-01-01

    The Nef protein enhances human immunodeficiency virus type 1 (HIV-1) infectivity by facilitating an early postentry step in the virus life cycle. We report here that the addition of MG132 or lactacystin, each a specific inhibitor of cellular proteasome activity, preferentially enhances cellular permissiveness to infection by Nef-defective versus wild-type HIV-1. Pseudotyping by the glycoprotein of vesicular stomatitis virus rendered Nef-defective HIV-1 particles minimally responsive to the enhancing effects of proteasome inhibitors. These results suggest that Nef enhances the infectivity of HIV-1 particles by reducing their susceptibility to proteasomal degradation in target cells. PMID:17108041

  1. Phosphorylation and activation of ubiquitin-specific protease-14 by Akt regulates the ubiquitin-proteasome system

    PubMed Central

    Xu, Daichao; Shan, Bing; Lee, Byung-Hoon; Zhu, Kezhou; Zhang, Tao; Sun, Huawang; Liu, Min; Shi, Linyu; Liang, Wei; Qian, Lihui; Xiao, Juan; Wang, Lili; Pan, Lifeng; Finley, Daniel; Yuan, Junying

    2015-01-01

    Regulation of ubiquitin-proteasome system (UPS), which controls the turnover of short-lived proteins in eukaryotic cells, is critical in maintaining cellular proteostasis. Here we show that USP14, a major deubiquitinating enzyme that regulates the UPS, is a substrate of Akt, a serine/threonine-specific protein kinase critical in mediating intracellular signaling transducer for growth factors. We report that Akt-mediated phosphorylation of USP14 at Ser432, which normally blocks its catalytic site in the inactive conformation, activates its deubiquitinating activity in vitro and in cells. We also demonstrate that phosphorylation of USP14 is critical for Akt to regulate proteasome activity and consequently global protein degradation. Since Akt can be activated by a wide range of growth factors and is under negative control by phosphoinosotide phosphatase PTEN, we suggest that regulation of UPS by Akt-mediated phosphorylation of USP14 may provide a common mechanism for growth factors to control global proteostasis and for promoting tumorigenesis in PTEN-negative cancer cells. DOI: http://dx.doi.org/10.7554/eLife.10510.001 PMID:26523394

  2. Proteasome Assay in Cell Lysates

    PubMed Central

    Maher, Pamela

    2016-01-01

    The ubiquitin-proteasome system (UPS) mediates the majority of the proteolysis seen in the cytoplasm and nucleus of mammalian cells. As such it plays an important role in the regulation of a variety of physiological and pathophysiological processes including tumorigenesis, inflammation and cell death (Ciechanover, 2005; Kisselev and Goldberg, 2001). A number of recent studies have shown that proteasome activity is decreased in a variety of neurological disorders including Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis and stroke as well as during normal aging (Chung et al., 2001; Ciechanover and Brundin, 2003; Betarbet et al., 2005). This decrease in proteasome activity is thought to play a critical role in the accumulation of abnormal and oxidized proteins. Protein clearance by the UPS involves two sequential reactions. The first is the tagging of protein lysine residues with ubiquitin (Ub) and the second is the subsequent degradation of the tagged proteins by the proteasome. We herein describe an assay for the second of these two reactions (Valera et al., 2013). This assay uses fluorogenic substrates for each of the three activities of the proteasome: chymotrypsin-like activity, trypsin-like activity and caspase-like activity. Cleavage of the fluorophore from the substrate by the proteasome results in fluorescence that can be detected with a fluorescent plate reader.

  3. Proteasome Inhibitor Bortezomib Suppresses Nuclear Factor-Kappa B Activation and Ameliorates Eye Inflammation in Experimental Autoimmune Uveitis

    PubMed Central

    Hsu, Sheng-Min; Yang, Chang-Hao; Shen, Fang-Hsiu; Chen, Shun-Hua; Lin, Chia-Jhen; Shieh, Chi-Chang

    2015-01-01

    Bortezomib is a proteasome inhibitor used for hematologic cancer treatment. Since it can suppress NF-κB activation, which is critical for the inflammatory process, bortezomib has been found to possess anti-inflammatory activity. In this study, we evaluated the effect of bortezomib on experimental autoimmune uveitis (EAU) in mice and investigated the potential mechanisms related to NF-κB inactivation. High-dose bortezomib (0.75 mg/kg), low-dose bortezomib (0.15 mg/kg), or phosphate buffered saline was given after EAU induction. We found that the EAU is ameliorated by high-dose bortezomib treatment when compared with low-dose bortezomib or PBS treatment. The DNA-binding activity of NF-κB was suppressed and expression of several key inflammatory mediators including TNF-α, IL-1α, IL-1β, IL-12, IL-17, and MCP-1 was lowered in the high-dose bortezomib-treated group. These results suggest that proteasome inhibition is a promising treatment strategy for autoimmune uveitis. PMID:25653480

  4. Activation of the ATP-ubiquitin-proteasome pathway in skeletal muscle of cachectic rats bearing a hepatoma

    NASA Technical Reports Server (NTRS)

    Baracos, V. E.; DeVivo, C.; Hoyle, D. H.; Goldberg, A. L.

    1995-01-01

    Rats implanted with Yoshida ascites hepatoma (YAH) show a rapid and selective loss of muscle protein due mainly to a marked increase (63-95%) in the rate of protein degradation (compared with rates in muscles of pair-fed controls). To define which proteolytic pathways contribute to this increase, epitrochlearis muscles from YAH-bearing and control rats were incubated under conditions that modify different proteolytic systems. Overall proteolysis in either group of rats was not affected by removal of Ca2+ or by blocking the Ca(2+)-dependent proteolytic system. Inhibition of lysosomal function with methylamine reduced proteolysis (-12%) in muscles from YAH-bearing rats, but not in muscles of pair-fed rats. When ATP production was also inhibited, the remaining accelerated proteolysis in muscles of tumor-bearing rats fell to control levels. Muscles of YAH-bearing rats showed increased levels of ubiquitin-conjugated proteins and a 27-kDa proteasome subunit in Western blot analysis. Levels of mRNA encoding components of proteolytic systems were quantitated using Northern hybridization analysis. Although their total RNA content decreased 20-38%, pale muscles of YAH-bearing rats showed increased levels of ubiquitin mRNA (590-880%) and mRNA for multiple subunits of the proteasome (100-215%). Liver, kidney, heart, and brain showed no weight loss and no change in these mRNA species. Muscles of YAH-bearing rats also showed small increases (30-40%) in mRNA for cathepsins B and D, but not for calpain I or heat shock protein 70. Our findings suggest that accelerated muscle proteolysis and muscle wasting in tumor-bearing rats result primarily from activation of the ATP-dependent pathway involving ubiquitin and the proteasome.

  5. The role of hypercholesterolemic diet and vitamin E on Nrf2 pathway, endoplasmic reticulum stress and proteasome activity.

    PubMed

    Bozaykut, Perinur; Sozen, Erdi; Yazgan, Burak; Karademir, Betul; Kartal-Ozer, Nesrin

    2014-10-01

    Hypercholesterolemia is the major risk factor for the development of atherosclerosis and vitamin E is suggested to have a preventive role in this process (1), although the mechanism of action still remains unclear.The ubiquitin-proteasome system (UPS) may in?uence atherosclerosis by affecting disease-relevant cellular processes such as apoptosis, proliferation, and differentiation, or by affecting cellular stress responses and/or adaptive phenomena, such as ER stress, in?ammation, and redox homeostasis (2). NF-E2-related factor 2 (Nrf2) is a transcription factor that controls the expression of phase II detoxi?cation and antioxidant genes. Nrf2 signaling has additionally been shown to upregulate the expression of the proteasome catalytic subunits (3). In the present study, we investigated the role of Nrf2 pathway on oxidative and ER stress conditions induced by cholesterol diet and the effects of vitamin E on related signaling pathways in in vivo model of atherosclerosis. All experimental procedures were approved by the Marmara University Ethics Committee. Twenty-one male albino rabbits (23 months old) were assigned randomly to four groups fed for 8 weeks: (i) vitamin E deficient diet, (ii) vitamin E deficient diet containing 2% cholesterol, and (iii) vitamin E deficient diet containing 2% cholesterol with daily intramuscular injections of vitamin E (50mg/kg), (iv) vitamin E deficient diet with daily intramuscular injections of vitamin E (50mg/kg). In order to elucidate in vivo role of oxidative stress and ER stress in cardiovascular system of hypercholesterolemic rabbits, we investigated serum levels of cholesterol, MDA and vitamin E and Nrf2, GST-1, GRP78, GRP94, PERK, IRE1 protein levels and the proteasomal activity in aortic tissues will be discussed. PMID:26461313

  6. [Proteasome inhibitors in cancer therapy].

    PubMed

    Romaniuk, Wioletta; Ołdziej, Agnieszka Ewa; Zińczuk, Justyna; Kłoczko, Janusz

    2015-01-01

    Proteasomes are multisubunit enzyme complexes. They contain three enzymatic active sites which are termed chymotrypsin-like, trypsin-like, and caspase-like. The elementary function of the proteasomes is degradation of damaged proteins. Proteasome inhibition leads to accumulation of damaged protein, which leads to caspase activation and cell death. This relationship is used in cancer therapy. Bortezomib is the first proteasome inhibitor approved by the US Food and Drug Administration for the treatment of relapsed/refractory multiple myeloma. Carfilzomib belongs to the second generation of drugs, which was approved by the US FDA in 2012. Currently in the study phase there are four new inhibitors: ixazomib (MLN9780/MLN2238), delanzomib (CEP-18770), oprozomib (ONX0912/PR-047) and marizomib (NPI-0052). PMID:27259216

  7. Structural Biology of the Proteasome

    PubMed Central

    Kish-Trier, Erik

    2016-01-01

    The proteasome refers to a collection of complexes centered on the 20S proteasome core particle, a complex of 28 subunits that houses proteolytic sites in its hollow interior. Proteasomes are found in eukaryotes, archaea, and some eubacteria, and their activity is critical for many cellular pathways. Important advances include inhibitor binding studies and the structure of the immunoproteasome, whose specificity is altered by incorporation of inducible catalytic subunits. The inherent repression of the 20S CP is relieved by the ATP-independent activators, 11S and Blm10/PA200, whose structures reveal principles of proteasome mechanism. The structure of the ATP-dependent 19S regulatory particle, which mediates degradation of polyubiquitylated proteins, is being revealed by a combination of crystal or NMR structures of individual subunits and electron microscopy reconstruction of the intact complex. Other recent structural advances inform about mechanisms of assembly and the role of conformational changes in the functional cycle. PMID:23414347

  8. PKA turnover by the REGγ-proteasome modulates FoxO1 cellular activity and VEGF-induced angiogenesis

    PubMed Central

    Liu, Shuang; Lai, Li; Zuo, Qiuhong; Dai, Fujun; Wu, Lin; Wang, Yan; Zhou, Qingxia; Liu, Jian; Liu, Jiang; Li, Lei; Lin, Qingxiang; Creighton, Chad J.; Costello, Myra Grace; Huang, Shixia; Jia, Caifeng; Liao, Lujian; Luo, Honglin; Fu, Junjiang; Liu, Mingyao; Yi, Zhengfang; Xiao, Jianru; Li, Xiaotao

    2014-01-01

    The REGγ-proteasome serves as a short-cut for the destruction of certain intact mammalian proteins in the absence of ubiquitin-and ATP. The biological roles of the proteasome activator REGγ are not completely understood. Here we demonstrate that REGγ controls degradation of protein kinase A catalytic subunit-α (PKAca) both in primary human umbilical vein endothelial cells (HUVECs) and mouse embryonic fibroblast cells (MEFs). Accumulation of PKAca in REGγ-deficient HUVECs or MEFs results in phosphorylation and nuclear exclusion of the transcription factor FoxO1, indicating that REGγ is involved in preserving FoxO1 transcriptional activity. Consequently, VEGF-induced expression of the FoxO1 responsive genes, VCAM-1 and E-Selectin, was tightly controlled by REGγ in a PKA dependent manner. Functionally, REGγ is crucial for the migration of HUVECs. REGγ−/− mice display compromised VEGF-instigated neovascularization in cornea and aortic ring models. Implanted matrigel plugs containing VEGF in REGγ−/− mice induced fewer capillaries than in REGγ+/+ littermates. Taken together, our study identifies REGγ as a novel angiogenic factor that plays an important role in VEGF-induced expression of VCAM-1 and E-Selectin by antagonizing PKA signaling. Identification of the REGγ–PKA–FoxO1 pathway in endothelial cells (ECs) provides another potential target for therapeutic intervention in vascular diseases. PMID:24560667

  9. Direct cellular delivery of human proteasomes to delay tau aggregation.

    PubMed

    Han, Dong Hoon; Na, Hee-Kyung; Choi, Won Hoon; Lee, Jung Hoon; Kim, Yun Kyung; Won, Cheolhee; Lee, Seung-Han; Kim, Kwang Pyo; Kuret, Jeff; Min, Dal-Hee; Lee, Min Jae

    2014-01-01

    The 26S proteasome is the primary machinery that degrades ubiquitin (Ub)-conjugated proteins, including many proteotoxic proteins implicated in neurodegeneraton. It has been suggested that the elevation of proteasomal activity is tolerable to cells and may be beneficial to prevent the accumulation of protein aggregates. Here we show that purified proteasomes can be directly transported into cells through mesoporous silica nanoparticle-mediated endocytosis. Proteasomes that are loaded onto nanoparticles through non-covalent interactions between polyhistidine tags and nickel ions fully retain their proteolytic activity. Cells treated with exogenous proteasomes are more efficient in degrading overexpressed human tau than endogenous proteasomal substrates, resulting in decreased levels of tau aggregates. Moreover, exogenous proteasome delivery significantly promotes cell survival against proteotoxic stress caused by tau and reactive oxygen species. These data demonstrate that increasing cellular proteasome activity through the direct delivery of purified proteasomes may be an effective strategy for reducing cellular levels of proteotoxic proteins. PMID:25476420

  10. Arctigenin promotes degradation of inducible nitric oxide synthase through CHIP-associated proteasome pathway and suppresses its enzyme activity.

    PubMed

    Yao, Xiangyang; Li, Guilan; Lü, Chaotian; Xu, Hui; Yin, Zhimin

    2012-10-01

    Arctigenin, a natural dibenzylbutyrolactone lignan compound, has been reported to possess anti-inflammatory properties. Previous works showed that arctigenin decreased lipopolysaccharide (LPS)-induced iNOS at transcription level. However, whether arctigenin could regulate iNOS at the post-translational level is still unclear. In the present study, we demonstrated that arctigenin promoted the degradation of iNOS which is expressed under LPS stimulation in murine macrophage-like RAW 264.7 cells. Such degradation of iNOS protein is due to CHIP-associated ubiquitination and proteasome-dependency. Furthermore, arctigenin decreased iNOS phosphorylation through inhibiting ERK and Src activation, subsequently suppressed iNOS enzyme activity. In conclusion, our research displays a new finding that arctigenin can promote the ubiqitination and degradation of iNOS after LPS stimulation. iNOS activity regulated by arctigenin is likely to involve a multitude of crosstalking mechanisms. PMID:22770942

  11. Synthesis of (2R, 3R)-epigallocatechin-3-O-(4-hydroxybenzoate), a novel catechin from Cistus salvifolius, and evaluation of its proteasome inhibitory activities.

    PubMed

    Osanai, Kumi; Huo, Congde; Landis-Piwowar, Kristin R; Dou, Q Ping; Chan, Tak Hang

    2007-08-01

    The total and semi syntheses of (2R, 3R)-epigallocatechin-3-O-(4-hydroxybenzoate), a novel catechin from Cistus salvifolius, was accomplished. The proteasome inhibition and cytotoxic activities of the synthetic compound and its acetyl derivative were studied and compared with (2R, 3R)-epigallocatechin-3-gallate (EGCG), the active component from green tea. PMID:21152270

  12. A novel dithiocarbamate analogue with potentially decreased ALDH inhibition has copper-dependent proteasome-inhibitory and apoptosis-inducing activity in human breast cancer cells

    PubMed Central

    Wang, Fei; Zhai, Shumei; Liu, Xiaojun; Li, Liwen; Wu, Shirley; Dou, Q. Ping; Yan, Bing

    2013-01-01

    Dithiocarbamates are a class of sulfur-based metal-chelating compounds with various applications in medicine. We reported previously that certain members of dithiocarbamates, such as diethyldithiocarbamate, disulfiram (DSF) and pyrrolidine dithiocarbamate (PDTC), were able to bind with tumor cellular copper to inhibit tumor growth through the inhibition of proteasome activity and induction of cancer cell apoptosis. Since the DSF is an irreversible inhibitor of aldehyde dehydrogenase (ALDH), its ALDH-inhibitory activity might potentially affect its usefulness as an anti-cancer drug. For the purpose of selecting potent anti-cancer compounds that are not ALDH inhibitors and mapping out preliminary structure–activity relationship trends for these novel compounds, we synthesized a series of PDTC analogues and chose three novel compounds to study their ALDH-inhibitory activity, proteasome-inhibitory activity as well as the cancer cell apoptosis-inducing activity. The results showed that compared to DSF, compound 9 has less ALDH inhibition activity, and the in vitro results also proved the positive effects of 9-Cu in proteasome inhibition and apoptosis induction in breast cancer cells, suggesting that 9 as a lead compound could be developed into a novel proteasome inhibitor anti-cancer drug. PMID:21035945

  13. Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential.

    PubMed

    Patra, Jayanta Kumar; Baek, Kwang-Hyun

    2015-01-01

    Biological synthesis of nanoparticles using nontoxic, eco-friendly approaches is gaining importance owing to their fascinating biocompatibility and environmentally benign nature. This study describes the green synthesis approach for synthesis of gold nanoparticles (ANPs) using aqueous extract of the rind of watermelon as a fruit waste and evaluate its biopotential in terms of proteasome inhibitory activity, antibacterial, and antioxidant potential. The synthesized ANPs were characterized using UV-vis spectroscopy, scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The surface plasmon resonance spectra of ANPs were obtained at 560 nm. Scanning electron microscopy image revealed that particles had a spherical shape and have a size distribution of 20-140 nm, followed by the elemental analysis by energy-dispersive X-ray spectroscopy. X-ray diffraction analysis confirmed the crystallite nature of the ANPs and Fourier-transform infrared spectroscopy revealed the involvement of bioactive compounds from watermelon rind in the synthesis, capping, and stabilization of ANPs. ANPs exhibited potential antibacterial activity against five different foodborne pathogenic bacteria with diameter of inhibition zones ranged between 9.23 and 11.58 mm. They also displayed strong synergistic antibacterial activity together with kanamycin (11.93-21.08 mm inhibition zones) and rifampicin (10.32-24.84 mm inhibition zones). ANPs displayed strong antioxidant activity in terms of DPPH radical scavenging (24.69%), nitric oxide scavenging (25.62%), ABTS scavenging (29.42%), and reducing power. Significantly high proteasome inhibitory potential of the ANPs (28.16%) could be highly useful for cancer treatment and targeted cancer drug delivery. Overall, results highlight a potential low-cost green method of synthesizing ANPs from food waste materials. Significant biopotentials of synthesized ANPs could make it a potential

  14. Tomato 26S Proteasome subunit RPT4a regulates ToLCNDV transcription and activates hypersensitive response in tomato.

    PubMed

    Sahu, Pranav Pankaj; Sharma, Namisha; Puranik, Swati; Chakraborty, Supriya; Prasad, Manoj

    2016-01-01

    Involvement of 26S proteasomal subunits in plant pathogen-interactions, and the roles of each subunit in independently modulating the activity of many intra- and inter-cellular regulators controlling physiological and defense responses of a plant were well reported. In this regard, we aimed to functionally characterize a Solanum lycopersicum 26S proteasomal subunit RPT4a (SlRPT4) gene, which was differentially expressed after Tomato leaf curl New Delhi virus (ToLCNDV) infection in tolerant cultivar H-88-78-1. Molecular analysis revealed that SlRPT4 protein has an active ATPase activity. SlRPT4 could specifically bind to the stem-loop structure of intergenic region (IR), present in both DNA-A and DNA-B molecule of the bipartite viral genome. Lack of secondary structure in replication-associated gene fragment prevented formation of DNA-protein complex suggesting that binding of SlRPT4 with DNA is secondary structure specific. Interestingly, binding of SlRPT4 to IR inhibited the function of RNA Pol-II and subsequently reduced the bi-directional transcription of ToLCNDV genome. Virus-induced gene silencing of SlRPT4 gene incited conversion of tolerant attributes of cultivar H-88-78-1 into susceptibility. Furthermore, transient overexpression of SlRPT4 resulted in activation of programmed cell death and antioxidant enzymes system. Overall, present study highlights non-proteolytic function of SlRPT4 and their participation in defense pathway against virus infection in tomato. PMID:27252084

  15. Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential

    PubMed Central

    Patra, Jayanta Kumar; Baek, Kwang-Hyun

    2015-01-01

    Biological synthesis of nanoparticles using nontoxic, eco-friendly approaches is gaining importance owing to their fascinating biocompatibility and environmentally benign nature. This study describes the green synthesis approach for synthesis of gold nanoparticles (ANPs) using aqueous extract of the rind of watermelon as a fruit waste and evaluate its biopotential in terms of proteasome inhibitory activity, antibacterial, and antioxidant potential. The synthesized ANPs were characterized using UV–vis spectroscopy, scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The surface plasmon resonance spectra of ANPs were obtained at 560 nm. Scanning electron microscopy image revealed that particles had a spherical shape and have a size distribution of 20–140 nm, followed by the elemental analysis by energy-dispersive X-ray spectroscopy. X-ray diffraction analysis confirmed the crystallite nature of the ANPs and Fourier-transform infrared spectroscopy revealed the involvement of bioactive compounds from watermelon rind in the synthesis, capping, and stabilization of ANPs. ANPs exhibited potential antibacterial activity against five different foodborne pathogenic bacteria with diameter of inhibition zones ranged between 9.23 and 11.58 mm. They also displayed strong synergistic antibacterial activity together with kanamycin (11.93–21.08 mm inhibition zones) and rifampicin (10.32–24.84 mm inhibition zones). ANPs displayed strong antioxidant activity in terms of DPPH radical scavenging (24.69%), nitric oxide scavenging (25.62%), ABTS scavenging (29.42%), and reducing power. Significantly high proteasome inhibitory potential of the ANPs (28.16%) could be highly useful for cancer treatment and targeted cancer drug delivery. Overall, results highlight a potential low-cost green method of synthesizing ANPs from food waste materials. Significant biopotentials of synthesized ANPs could make it a potential

  16. Tomato 26S Proteasome subunit RPT4a regulates ToLCNDV transcription and activates hypersensitive response in tomato

    PubMed Central

    Sahu, Pranav Pankaj; Sharma, Namisha; Puranik, Swati; Chakraborty, Supriya; Prasad, Manoj

    2016-01-01

    Involvement of 26S proteasomal subunits in plant pathogen-interactions, and the roles of each subunit in independently modulating the activity of many intra- and inter-cellular regulators controlling physiological and defense responses of a plant were well reported. In this regard, we aimed to functionally characterize a Solanum lycopersicum 26S proteasomal subunit RPT4a (SlRPT4) gene, which was differentially expressed after Tomato leaf curl New Delhi virus (ToLCNDV) infection in tolerant cultivar H-88-78-1. Molecular analysis revealed that SlRPT4 protein has an active ATPase activity. SlRPT4 could specifically bind to the stem-loop structure of intergenic region (IR), present in both DNA-A and DNA-B molecule of the bipartite viral genome. Lack of secondary structure in replication-associated gene fragment prevented formation of DNA-protein complex suggesting that binding of SlRPT4 with DNA is secondary structure specific. Interestingly, binding of SlRPT4 to IR inhibited the function of RNA Pol-II and subsequently reduced the bi-directional transcription of ToLCNDV genome. Virus-induced gene silencing of SlRPT4 gene incited conversion of tolerant attributes of cultivar H-88-78-1 into susceptibility. Furthermore, transient overexpression of SlRPT4 resulted in activation of programmed cell death and antioxidant enzymes system. Overall, present study highlights non-proteolytic function of SlRPT4 and their participation in defense pathway against virus infection in tomato. PMID:27252084

  17. CDK11{sup p58} represses vitamin D receptor-mediated transcriptional activation through promoting its ubiquitin-proteasome degradation

    SciTech Connect

    Chi, Yayun; Hong, Yi; Zong, Hongliang; Wang, Yanlin; Zou, Weiying; Yang, Junwu; Kong, Xiangfei; Yun, Xiaojing; Gu, Jianxin

    2009-08-28

    Vitamin D receptor (VDR) is a member of the nuclear receptor superfamily and regulates transcription of target genes. In this study, we identified CDK11{sup p58} as a novel protein involved in the regulation of VDR. CDK11{sup p58}, a member of the large family of p34cdc2-related kinases, is associated with cell cycle progression, tumorigenesis, and apoptotic signaling. Our study demonstrated that CDK11{sup p58} interacted with VDR and repressed VDR-dependent transcriptional activation. Furthermore, overexpression of CDK11{sup p58} decreased the stability of VDR through promoting its ubiquitin-proteasome-mediated degradation. Taken together, these results suggest that CDK11{sup p58} is involved in the negative regulation of VDR.

  18. Thiostrepton interacts covalently with Rpt subunits of the 19S proteasome and proteasome substrates

    PubMed Central

    Sandu, Cristinel; Chandramouli, Nagaranjan; Glickman, Joseph Fraser; Molina, Henrik; Kuo, Chueh-Ling; Kukushkin, Nikolay; Goldberg, Alfred L; Steller, Hermann

    2015-01-01

    Here, we report a novel mechanism of proteasome inhibition mediated by Thiostrepton (Thsp), which interacts covalently with Rpt subunits of the 19S proteasome and proteasome substrates. We identified Thsp in a cell-based high-throughput screen using a fluorescent reporter sensitive to degradation by the ubiquitin–proteasome pathway. Thiostrepton behaves as a proteasome inhibitor in several paradigms, including cell-based reporters, detection of global ubiquitination status, and proteasome-mediated labile protein degradation. In vitro, Thsp does not block the chymotrypsin activity of the 26S proteasome. In a cell-based IκBα degradation assay, Thsp is a slow inhibitor and 4 hrs of treatment achieves the same effects as MG-132 at 30 min. We show that Thsp forms covalent adducts with proteins in human cells and demonstrate their nature by mass spectrometry. Furthermore, the ability of Thsp to interact covalently with the cysteine residues is essential for its proteasome inhibitory function. We further show that a Thsp modified peptide cannot be degraded by proteasomes in vitro. Importantly, we demonstrate that Thsp binds covalently to Rpt subunits of the 19S regulatory particle and forms bridges with a proteasome substrate. Taken together, our results uncover an important role of Thsp in 19S proteasome inhibition. PMID:26033448

  19. The ubiquitin proteasome system and efficacy of proteasome inhibitors in diseases.

    PubMed

    Chitra, Selvarajan; Nalini, Ganesan; Rajasekhar, Gopalakrishnan

    2012-06-01

    In eukaryotes the ubiquitin proteasome pathway plays an important role in cellular homeostasis and also it exerts a critical role in regulating a wide variety of cellular pathways, including cell growth and proliferation, apoptosis, DNA repair, transcription and immune response. Defects in these pathways have been implicated in a number of human pathologies. Inhibition of the ubiquitin proteasome pathway by proteasome inhibitors may be a rational therapeutic approach for various diseases, such as cancer and inflammatory diseases. Many of the critical cytokine and chemokine mediators of the progression of rheumatoid arthritis are regulated by nuclear factor kappa B (NF-κB). In peptidoglycan/polysaccharide-induced polyarthritis, proteasome inhibitors limit the overall inflammation, reduce NF-κB activation, decrease cellular adhesion molecule expression, inhibit nitric oxide synthase, attenuate circulating levels of proinflammatory cytokine interleukin-6 and reduce the arthritis index and swelling in the joints of the animals. Since proteasome inhibitors exhibit anti-inflammatory and anti proliferative effects, diseases characterized by both of these processes such as rheumatoid arthritis might also represent clinical opportunities for such drugs. The regulation of the proteasomal complex by proteasome inhibitors also has implications and potential benefits for the treatment of rheumatoid arthritis. This review summarizes the ubiquitin proteasome pathway, the structure of 26S proteasomes and types of proteasome inhibitors, with their actions, and clinical applications of proteasome inhibitors in various diseases. PMID:22709487

  20. Changes in autophagy, proteasome activity and metabolism to determine a specific signature for acute and chronic senescent mesenchymal stromal cells

    PubMed Central

    Capasso, Stefania; Alessio, Nicola; Squillaro, Tiziana; Di Bernardo, Giovanni; Melone, Mariarosa A.; Cipollaro, Marilena; Peluso, Gianfranco; Galderisi, Umberto

    2015-01-01

    A sharp definition of what a senescent cell is still lacking since we do not have in depth understanding of mechanisms that induce cellular senescence. In addition, senescent cells are heterogeneous, in that not all of them express the same genes and present the same phenotype. To further clarify the classification of senescent cells, hints may be derived by the study of cellular metabolism, autophagy and proteasome activity. In this scenario, we decided to study these biological features in senescence of Mesenchymal Stromal Cells (MSC). These cells contain a subpopulation of stem cells that are able to differentiate in mesodermal derivatives (adipocytes, chondrocytes, osteocytes). In addition, they can also contribute to the homeostatic maintenance of many organs, hence, their senescence could be very deleterious for human body functions. We induced MSC senescence by oxidative stress, doxorubicin treatment, X-ray irradiation and replicative exhaustion. The first three are considered inducers of acute senescence while extensive proliferation triggers replicative senescence also named as chronic senescence. In all conditions, but replicative and high IR dose senescence, we detected a reduction of the autophagic flux, while proteasome activity was impaired in peroxide-treated and irradiated cells. Differences were observed also in metabolic status. In general, all senescent cells evidenced metabolic inflexibility and prefer to use glucose as energy fuel. Irradiated cells with low dose of X-ray and replicative senescent cells show a residual capacity to use fatty acids and glutamine as alternative fuels, respectively. Our study may be useful to discriminate among different senescent phenotypes. PMID:26540573

  1. Changes in autophagy, proteasome activity and metabolism to determine a specific signature for acute and chronic senescent mesenchymal stromal cells.

    PubMed

    Capasso, Stefania; Alessio, Nicola; Squillaro, Tiziana; Di Bernardo, Giovanni; Melone, Mariarosa A; Cipollaro, Marilena; Peluso, Gianfranco; Galderisi, Umberto

    2015-11-24

    A sharp definition of what a senescent cell is still lacking since we do not have in depth understanding of mechanisms that induce cellular senescence. In addition, senescent cells are heterogeneous, in that not all of them express the same genes and present the same phenotype. To further clarify the classification of senescent cells, hints may be derived by the study of cellular metabolism, autophagy and proteasome activity. In this scenario, we decided to study these biological features in senescence of Mesenchymal Stromal Cells (MSC). These cells contain a subpopulation of stem cells that are able to differentiate in mesodermal derivatives (adipocytes, chondrocytes, osteocytes). In addition, they can also contribute to the homeostatic maintenance of many organs, hence, their senescence could be very deleterious for human body functions. We induced MSC senescence by oxidative stress, doxorubicin treatment, X-ray irradiation and replicative exhaustion. The first three are considered inducers of acute senescence while extensive proliferation triggers replicative senescence also named as chronic senescence. In all conditions, but replicative and high IR dose senescence, we detected a reduction of the autophagic flux, while proteasome activity was impaired in peroxide-treated and irradiated cells. Differences were observed also in metabolic status. In general, all senescent cells evidenced metabolic inflexibility and prefer to use glucose as energy fuel. Irradiated cells with low dose of X-ray and replicative senescent cells show a residual capacity to use fatty acids and glutamine as alternative fuels, respectively. Our study may be useful to discriminate among different senescent phenotypes. PMID:26540573

  2. A binuclear complex constituted by diethyldithiocarbamate and copper(I) functions as a proteasome activity inhibitor in pancreatic cancer cultures and xenografts

    SciTech Connect

    Han, Jinbin; Yue, Xiaoqiang; Chang, Jinjia; Shi, Weidong; Hua, Yongqiang

    2013-12-15

    It is a therapeutic strategy for cancers including pancreatic to inhibit proteasome activity. Disulfiram (DSF) may bind copper (Cu) to form a DSF–Cu complex. DSF–Cu is capable of inducing apoptosis in cancer cells by inhibiting proteasome activity. DSF is rapidly converted to diethyldithiocarbamate (DDTC) within bodies. Copper(II) absorbed by bodies is reduced to copper(I) when it enters cells. We found that DDTC and copper(I) could form a binuclear complex which might be entitled DDTC–Cu(I), and it had been synthesized by us in the laboratory. This study is to investigate the anticancer potential of this complex on pancreatic cancer and the possible mechanism. Pancreatic cancer cell lines, SW1990, PANC-1 and BXPC-3 were used for in vitro assays. Female athymic nude mice grown SW1990 xenografts were used as animal models. Cell counting kit-8 (cck-8) assay and flow cytometry were used for analyzing apoptosis in cells. A 20S proteasome assay kit was used in proteasome activity analysis. Western blot (WB) and immunohistochemistry (IHC) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were used in tumor sample analysis. The results suggest that DDTC–Cu(I) inhibit pancreatic cancer cell proliferation and proteasome activity in vitro and in vivo. Accumulation of ubiquitinated proteins, and increased p27 as well as decreased NF-κB expression were detected in tumor tissues of DDTC–Cu(I)-treated group. Our data indicates that DDTC–Cu(I) is an effective proteasome activity inhibitor with the potential to be explored as a drug for pancreatic cancer. - Highlights: • A new structure of DDTC–Cu(I) was reported for the first time. • DDTC–Cu(I) dissolved directly in water was for in vitro and in vivo uses. • DDTC–Cu(I) demonstrated significant anticancer effect in vitro and in vivo. • DDTC–Cu(I) is capable of inhibiting proteasome activity in vitro and in vivo.

  3. Nin1p, a regulatory subunit of the 26S proteasome, is necessary for activation of Cdc28p kinase of Saccharomyces cerevisiae.

    PubMed Central

    Kominami, K; DeMartino, G N; Moomaw, C R; Slaughter, C A; Shimbara, N; Fujimuro, M; Yokosawa, H; Hisamatsu, H; Tanahashi, N; Shimizu, Y

    1995-01-01

    The nin1-1 mutant of Saccharomyces cerevisiae cannot perform the G1/S and G2/M transitions at restrictive temperatures. At such temperatures, nin1-1 strains fail to activate histone H1 kinase after release from alpha factor-imposed G1 block and after release from hydroxyurea-imposed S block. The nin1-1 mutation shows synthetic lethality with certain cdc28 mutant alleles such as cdc28-IN. Two lines of evidence indicate that Nin1p is a component of the 26S proteasome complex: (i) Nin1p, as well as the known component of the 26S proteasome, shifted to the 26S proteasome peak in the glycerol density gradient after preincubation of crude extract with ATP-Mg2+, and (ii) nin1-1 cells accumulated polyubiquitinated proteins under restrictive conditions. These results suggest that activation of Cdc28p kinase requires proteolysis. We have cloned a human cDNA encoding a regulatory subunit of the 26S proteasome, p31, which was found to be a homolog of Nin1p. Images PMID:7621825

  4. Activation of the Ubiquitin Proteasome Pathway by Silk Fibroin Modified Chitosan Nanoparticles in Hepatic Cancer Cells

    PubMed Central

    Yang, Ming-Hui; Chung, Tze-Wen; Lu, Yi-Shan; Chen, Yi-Ling; Tsai, Wan-Chi; Jong, Shiang-Bin; Yuan, Shyng-Shiou; Liao, Pao-Chi; Lin, Po-Chiao; Tyan, Yu-Chang

    2015-01-01

    Silk fibroin (SF) is a protein with bulky hydrophobic domains and can be easily purified as sericin-free silk-based biomaterial. Silk fibroin modified chitosan nanoparticle (SF-CSNP), a biocompatible material, has been widely used as a potential drug delivery system. Our current investigation studied the bio-effects of the SF-CSNP uptake by liver cells. In this experiment, the characterizations of SF-CSNPs were measured by particle size analysis and protein assay. The average size of the SF-CSNP was 311.9 ± 10.7 nm, and the average zeta potential was +13.33 ± 0.3 mV. The SF coating on the SF-CSNP was 6.27 ± 0.17 μg/mL. Moreover, using proteomic approaches, several proteins involved in the ubiquitin proteasome pathway were identified by analysis of differential protein expressions of HepG2 cell uptake the SF-CSNP. Our experimental results have demonstrated that the SF-CSNP may be involved in liver cancer cell survival and proliferation. PMID:25588218

  5. Activation of the ubiquitin proteasome pathway by silk fibroin modified chitosan nanoparticles in hepatic cancer cells.

    PubMed

    Yang, Ming-Hui; Chung, Tze-Wen; Lu, Yi-Shan; Chen, Yi-Ling; Tsai, Wan-Chi; Jong, Shiang-Bin; Yuan, Shyng-Shiou; Liao, Pao-Chi; Lin, Po-Chiao; Tyan, Yu-Chang

    2015-01-01

    Silk fibroin (SF) is a protein with bulky hydrophobic domains and can be easily purified as sericin-free silk-based biomaterial. Silk fibroin modified chitosan nanoparticle (SF-CSNP), a biocompatible material, has been widely used as a potential drug delivery system. Our current investigation studied the bio-effects of the SF-CSNP uptake by liver cells. In this experiment, the characterizations of SF-CSNPs were measured by particle size analysis and protein assay. The average size of the SF-CSNP was 311.9 ± 10.7 nm, and the average zeta potential was +13.33 ± 0.3 mV. The SF coating on the SF-CSNP was 6.27 ± 0.17 μg/mL. Moreover, using proteomic approaches, several proteins involved in the ubiquitin proteasome pathway were identified by analysis of differential protein expressions of HepG2 cell uptake the SF-CSNP. Our experimental results have demonstrated that the SF-CSNP may be involved in liver cancer cell survival and proliferation. PMID:25588218

  6. Decreased proteasomal function accelerates cigarette smoke-induced pulmonary emphysema in mice.

    PubMed

    Yamada, Yosuke; Tomaru, Utano; Ishizu, Akihiro; Ito, Tomoki; Kiuchi, Takayuki; Ono, Ayako; Miyajima, Syota; Nagai, Katsura; Higashi, Tsunehito; Matsuno, Yoshihiro; Dosaka-Akita, Hirotoshi; Nishimura, Masaharu; Miwa, Soichi; Kasahara, Masanori

    2015-06-01

    Chronic obstructive pulmonary disease (COPD) is a disease common in elderly people, characterized by progressive destruction of lung parenchyma and chronic inflammation of the airways. The pathogenesis of COPD remains unclear, but recent studies suggest that oxidative stress-induced apoptosis in alveolar cells contributes to emphysematous lung destruction. The proteasome is a multicatalytic enzyme complex that plays a critical role in proteostasis by rapidly destroying misfolded and modified proteins generated by oxidative and other stresses. Proteasome activity decreases with aging in many organs including lungs, and an age-related decline in proteasomal function has been implicated in various age-related pathologies. However, the role of the proteasome system in the pathogenesis of COPD has not been investigated. Recently, we have established a transgenic (Tg) mouse model with decreased proteasomal chymotrypsin-like activity, showing age-related phenotypes. Using this model, we demonstrate here that decreased proteasomal function accelerates cigarette smoke (CS)-induced pulmonary emphysema. CS-exposed Tg mice showed remarkable airspace enlargement and increased foci of inflammation compared with wild-type controls. Importantly, apoptotic cells were found in the alveolar walls of the affected lungs. Impaired proteasomal activity also enhanced apoptosis in cigarette smoke extract (CSE)-exposed fibroblastic cells derived from mice and humans in vitro. Notably, aggresome formation and prominent nuclear translocation of apoptosis-inducing factor were observed in CSE-exposed fibroblastic cells isolated from Tg mice. Collective evidence suggests that CS exposure and impaired proteasomal activity coordinately enhance apoptotic cell death in the alveolar walls that may be involved in the development and progression of emphysema in susceptible individuals such as the elderly. PMID:25915723

  7. Modeling proteasome dynamics in Parkinson's disease.

    PubMed

    Sneppen, Kim; Lizana, Ludvig; Jensen, Mogens H; Pigolotti, Simone; Otzen, Daniel

    2009-01-01

    In Parkinson's disease (PD), there is evidence that alpha-synuclein (alphaSN) aggregation is coupled to dysfunctional or overburdened protein quality control systems, in particular the ubiquitin-proteasome system. Here, we develop a simple dynamical model for the on-going conflict between alphaSN aggregation and the maintenance of a functional proteasome in the healthy cell, based on the premise that proteasomal activity can be titrated out by mature alphaSN fibrils and their protofilament precursors. In the presence of excess proteasomes the cell easily maintains homeostasis. However, when the ratio between the available proteasome and the alphaSN protofilaments is reduced below a threshold level, we predict a collapse of homeostasis and onset of oscillations in the proteasome concentration. Depleted proteasome opens for accumulation of oligomers. Our analysis suggests that the onset of PD is associated with a proteasome population that becomes occupied in periodic degradation of aggregates. This behavior is found to be the general state of a proteasome/chaperone system under pressure, and suggests new interpretations of other diseases where protein aggregation could stress elements of the protein quality control system. PMID:19411740

  8. Modeling proteasome dynamics in Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Sneppen, Kim; Lizana, Ludvig; Jensen, Mogens H.; Pigolotti, Simone; Otzen, Daniel

    2009-09-01

    In Parkinson's disease (PD), there is evidence that α-synuclein (αSN) aggregation is coupled to dysfunctional or overburdened protein quality control systems, in particular the ubiquitin-proteasome system. Here, we develop a simple dynamical model for the on-going conflict between αSN aggregation and the maintenance of a functional proteasome in the healthy cell, based on the premise that proteasomal activity can be titrated out by mature αSN fibrils and their protofilament precursors. In the presence of excess proteasomes the cell easily maintains homeostasis. However, when the ratio between the available proteasome and the αSN protofilaments is reduced below a threshold level, we predict a collapse of homeostasis and onset of oscillations in the proteasome concentration. Depleted proteasome opens for accumulation of oligomers. Our analysis suggests that the onset of PD is associated with a proteasome population that becomes occupied in periodic degradation of aggregates. This behavior is found to be the general state of a proteasome/chaperone system under pressure, and suggests new interpretations of other diseases where protein aggregation could stress elements of the protein quality control system.

  9. In vivo pharmacodynamic imaging of proteasome inhibition.

    PubMed

    Kimbrel, Erin A; Davis, Tina N; Bradner, James E; Kung, Andrew L

    2009-01-01

    Inhibiting the proteolytic activity of the 26S proteasome has been shown to have selective apoptotic effects on cancer cells and to be clinically efficacious in certain malignancies. There is an unmet medical need for additional proteasome inhibitors, and their development will be facilitated by surrogate markers of proteasome function. Toward this end, ectopic fusion of the destruction domain from ornithine decarboxylase (ODC) to reporter proteins is often used for assessing proteasome function. For luciferase-based reporters, we hypothesized that the oxygen-dependent destruction domain (ODD) from hypoxia-inducible factor 1 alpha (HIF-1 alpha) may provide improved sensitivity over luciferase-ODC, owing to its extremely rapid turnover by the proteasome (HIF-1 alpha has a half-life of less than 5 minutes). In the current study, we show that ODD-luciferase affords a greater dynamic range and faster kinetics than luciferase-ODC in sensing proteasome inhibition in vitro. Importantly, ODD-luciferase also serves as an effective in vivo marker of proteasome function in xenograft tumor models, with inhibition being detected by noninvasive imaging within 3 hours of bortezomib administration. These data establish ODD-luciferase as a surrogate marker of proteasome function that can be used both in vitro and in vivo for the development of novel proteasome inhibitors. PMID:19723471

  10. HSF-1 activates the ubiquitin proteasome system to promote non-apoptotic developmental cell death in C. elegans

    PubMed Central

    Kinet, Maxime J; Malin, Jennifer A; Abraham, Mary C; Blum, Elyse S; Silverman, Melanie R; Lu, Yun; Shaham, Shai

    2016-01-01

    Apoptosis is a prominent metazoan cell death form. Yet, mutations in apoptosis regulators cause only minor defects in vertebrate development, suggesting that another developmental cell death mechanism exists. While some non-apoptotic programs have been molecularly characterized, none appear to control developmental cell culling. Linker-cell-type death (LCD) is a morphologically conserved non-apoptotic cell death process operating in Caenorhabditis elegans and vertebrate development, and is therefore a compelling candidate process complementing apoptosis. However, the details of LCD execution are not known. Here we delineate a molecular-genetic pathway governing LCD in C. elegans. Redundant activities of antagonistic Wnt signals, a temporal control pathway, and mitogen-activated protein kinase kinase signaling control heat shock factor 1 (HSF-1), a conserved stress-activated transcription factor. Rather than protecting cells, HSF-1 promotes their demise by activating components of the ubiquitin proteasome system, including the E2 ligase LET-70/UBE2D2 functioning with E3 components CUL-3, RBX-1, BTBD-2, and SIAH-1. Our studies uncover design similarities between LCD and developmental apoptosis, and provide testable predictions for analyzing LCD in vertebrates. DOI: http://dx.doi.org/10.7554/eLife.12821.001 PMID:26952214

  11. Hyperglycemia Impairs Proteasome Function by Methylglyoxal

    PubMed Central

    Queisser, Markus A.; Yao, Dachun; Geisler, Sven; Hammes, Hans-Peter; Lochnit, Günter; Schleicher, Erwin D.; Brownlee, Michael; Preissner, Klaus T.

    2010-01-01

    OBJECTIVE The ubiquitin-proteasome system is the main degradation machinery for intracellularly altered proteins. Hyperglycemia has been shown to increase intracellular levels of the reactive dicarbonyl methylglyoxal (MGO) in cells damaged by diabetes, resulting in modification of proteins and alterations of their function. In this study, the influence of MGO-derived advanced glycation end product (AGE) formation on the activity of the proteasome was investigated in vitro and in vivo. RESEARCH DESIGN AND METHODS MGO-derived AGE modification of proteasome subunits was analyzed by mass spectrometry, immunoprecipitation, and Western blots. Proteasome activity was analyzed using proteasome-specific fluorogenic substrates. Experimental models included bovine retinal endothelial cells, diabetic Ins2Akita mice, glyoxalase 1 (GLO1) knockdown mice, and streptozotocin (STZ)-injected diabetic mice. RESULTS In vitro incubation with MGO caused adduct formation on several 20S proteasomal subunit proteins. In cultured endothelial cells, the expression level of the catalytic 20S proteasome subunit was not altered but proteasomal chymotrypsin-like activity was significantly reduced. In contrast, levels of regulatory 19S proteasomal proteins were decreased. In diabetic Ins2Akita, STZ diabetic, and nondiabetic and diabetic G101 knockdown mice, chymotrypsin-like activity was also reduced and MGO modification of the 20S-β2 subunit was increased. CONCLUSIONS Hyperglycemia-induced formation of MGO covalently modifies the 20S proteasome, decreasing its activity in the diabetic kidney and reducing the polyubiquitin receptor 19S-S5a. The results indicate a new link between hyperglycemia and impairment of cell functions. PMID:20009088

  12. Clinical and marketed proteasome inhibitors for cancer treatment.

    PubMed

    Zhang, Jiankang; Wu, Peng; Hu, Yongzhou

    2013-01-01

    The ubiquitin-proteasome pathway (UPP), which influences essential cellular functions including cell growth, differentiation, apoptosis, signal transduction, antigen processing and inflammatory responses, has been considered as one of the most important cellular protein degradation approaches. Proteasome functions as a gatekeeper, which controls the execution of protein degradation and plays a critical role in the ubiquitin-proteasome pathway. The unfolding of the close connection between proteasome and cancer provides a potential strategy for cancer treatment by using proteasome inhibitors. Small molecular inhibitors of varied structures and potency against proteasome have been discovered in recent years, with bortezomib and carfilzomib having been successfully approved for clinical application while some other promising candidates are currently under clinical trials. Herein, we review the development history of drugs and candidates that target the 20S proteasome, structure-activity relationships (SARs) of various proteasome inhibitors, and related completed or ongoing clinical trials. PMID:23531219

  13. The NS1 protein of influenza A virus suppresses interferon-regulated activation of antigen-presentation and immune-proteasome pathways

    PubMed Central

    Tisoncik, Jennifer R.; Billharz, Rosalind; Burmakina, Svetlana; Belisle, Sarah E.; Proll, Sean C.; Korth, Marcus J.; García-Sastre, Adolfo

    2011-01-01

    The NS1 protein of influenza virus counters host antiviral defences primarily by antagonizing the type I interferon (IFN) response. Both the N-terminal dsRNA-binding domain and the C-terminal effector domain are required for optimal suppression of host responses during infection. To better understand the regulatory role of the NS1 effector domain, we used an NS1-truncated mutant virus derived from human H1N1 influenza isolate A/Texas/36/91 (Tx/91) and assessed global transcriptional profiles from two independent human lung cell-culture models. Relative to the wild-type Tx/91-induced gene expression, the NS1 mutant virus induced enhanced expression of innate immune genes, specifically NF-κB signalling-pathway genes and IFN-α and -β target genes. We queried an experimentally derived IFN gene set to gauge the proportion of IFN-responsive genes that are suppressed specifically by NS1. We show that the C-terminally truncated NS1 mutant virus is less efficient at suppressing IFN-regulated gene expression associated with activation of antigen-presentation and immune-proteasome pathways. This is the first report integrating genomic analysis from two independent human culture systems, including primary lung cells, using genetically similar H1N1 influenza viruses that differ only in the length of the NS1 protein. PMID:21593271

  14. Proteasome as a Molecular Target of Microcystin-LR

    PubMed Central

    Zhu, Zhu; Zhang, Li; Shi, Guoqing

    2015-01-01

    Proteasome degrades proteins in eukaryotic cells. As such, the proteasome is crucial in cell cycle and function. This study proved that microcystin-LR (MC-LR), which is a toxic by-product of algal bloom, can target cellular proteasome and selectively inhibit proteasome trypsin-like (TL) activity. MC-LR at 1 nM can inhibit up to 54% of the purified 20S proteasome TL activity and 43% of the proteasome TL activity in the liver of the cyprinid rare minnow (Gobiocypris rarus). Protein degradation was retarded in GFP-CL1-transfected PC-3 cells because MC-LR inhibited the proteasome TL activity. Docking studies indicated that MC-LR blocked the active site of the proteasome β2 subunit; thus, the proteasome TL activity was inhibited. In conclusion, MC-LR can target proteasome, selectively inhibit proteasome TL activity, and retard protein degradation. This study may be used as a reference of future research on the toxic mechanism of MC-LR. PMID:26090622

  15. Molecular sequelae of proteasome inhibition in human multiple myeloma cells

    PubMed Central

    Mitsiades, Nicholas; Mitsiades, Constantine S.; Poulaki, Vassiliki; Chauhan, Dharminder; Fanourakis, Galinos; Gu, Xuesong; Bailey, Charles; Joseph, Marie; Libermann, Towia A.; Treon, Steven P.; Munshi, Nikhil C.; Richardson, Paul G.; Hideshima, Teru; Anderson, Kenneth C.

    2002-01-01

    The proteasome inhibitor PS-341 inhibits IκB degradation, prevents NF-κB activation, and induces apoptosis in several types of cancer cells, including chemoresistant multiple myeloma (MM) cells. PS-341 has marked clinical activity even in the setting of relapsed refractory MM. However, PS-341-induced apoptotic cascade(s) are not yet fully defined. By using gene expression profiling, we characterized the molecular sequelae of PS-341 treatment in MM cells and further focused on molecular pathways responsible for the anticancer actions of this promising agent. The transcriptional profile of PS-341-treated cells involved down-regulation of growth/survival signaling pathways, and up-regulation of molecules implicated in proapoptotic cascades (which are both consistent with the proapoptotic effect of proteasome inhibition), as well as up-regulation of heat-shock proteins and ubiquitin/proteasome pathway members (which can correspond to stress responses against proteasome inhibition). Further studies on these pathways showed that PS-341 decreases the levels of several antiapoptotic proteins and triggers a dual apoptotic pathway of mitochondrial cytochrome c release and caspase-9 activation, as well as activation of Jun kinase and a Fas/caspase-8-dependent apoptotic pathway [which is inhibited by a dominant negative (decoy) Fas construct]. Stimulation with IGF-1, as well as overexpression of Bcl-2 or constitutively active Akt in MM cells also modestly attenuates PS-341-induced cell death, whereas inhibitors of the BH3 domain of Bcl-2 family members or the heat-shock protein 90 enhance tumor cell sensitivity to proteasome inhibition. These data provide both insight into the molecular mechanisms of antitumor activity of PS-341 and the rationale for future clinical trials of PS-341, in combination with conventional and novel therapies, to improve patient outcome in MM. PMID:12391322

  16. The Nuclear Factor (Erythroid-derived 2)-like 2 and Proteasome Maturation Protein Axis Mediate Bortezomib Resistance in Multiple Myeloma.

    PubMed

    Li, Bingzong; Fu, Jinxiang; Chen, Ping; Ge, Xueping; Li, Yali; Kuiatse, Isere; Wang, Hua; Wang, Huihan; Zhang, Xingding; Orlowski, Robert Z

    2015-12-11

    Resistance to the proteasome inhibitor bortezomib is an emerging clinical problem whose mechanisms have not been fully elucidated. We considered the possibility that this could be associated with enhanced proteasome activity in part through the action of the proteasome maturation protein (POMP). Bortezomib-resistant myeloma models were used to examine the correlation between POMP expression and bortezomib sensitivity. POMP expression was then modulated using genetic and pharmacologic approaches to determine the effects on proteasome inhibitor sensitivity in cell lines and in vivo models. Resistant cell lines were found to overexpress POMP, and while its suppression in cell lines enhanced bortezomib sensitivity, POMP overexpression in drug-naive cells conferred resistance. Overexpression of POMP was associated with increased levels of nuclear factor (erythroid-derived 2)-like (NRF2), and NRF2 was found to bind to and activate the POMP promoter. Knockdown of NRF2 in bortezomib-resistant cells reduced POMP levels and proteasome activity, whereas its overexpression in drug-naive cells increased POMP and proteasome activity. The NRF2 inhibitor all-trans-retinoic acid reduced cellular NRF2 levels and increased the anti-proliferative and pro-apoptotic activities of bortezomib in resistant cells, while decreasing proteasome capacity. Finally, the combination of all-trans-retinoic acid with bortezomib showed enhanced activity against primary patient samples and in a murine model of bortezomib-resistant myeloma. Taken together, these studies validate a role for the NRF2/POMP axis in bortezomib resistance and identify NRF2 and POMP as potentially attractive targets for chemosensitization to this proteasome inhibitor. PMID:26483548

  17. ORF2 protein of porcine circovirus type 2 promotes phagocytic activity of porcine macrophages by inhibiting proteasomal degradation of complement component 1, q subcomponent binding protein (C1QBP) through physical interaction.

    PubMed

    Choi, Chang-Yong; Oh, Hae-Na; Lee, Suk Jun; Chun, Taehoon

    2015-11-01

    Defining how each ORF of porcine circovirus type 2 (PCV2) manipulates the host immune system may be helpful to understand the disease progression of post-weaning multisystemic wasting syndrome. In this study, we demonstrated a direct interaction between the PCV2 ORF2 and complement component 1, q subcomponent binding protein (C1QBP) within the cytoplasm of host macrophages. The physical interaction between PCV2 ORF2 and C1QBP inhibited ubiquitin-mediated proteasomal degradation of C1QBP in macrophages. Increased stability of C1QBP by the interaction with PCV2 ORF2 further enhanced the phagocytic activity of porcine macrophages through the phosphoinositol 3-kinase signalling pathway. This may explain the molecular basis of how PCV2 ORF2 enhances the phagocytic activity of host macrophages. PMID:26361775

  18. Prolonged Proteasome Inhibition Cyclically Upregulates Oct3/4 and Nanog Gene Expression, but Reduces Induced Pluripotent Stem Cell Colony Formation

    PubMed Central

    Floyd, Elizabeth Z.; Staszkiewicz, Jaroslaw; Power, Rachel A.; Kilroy, Gail; Kirk-Ballard, Heather; Barnes, Christian W.; Strickler, Karen L.; Rim, Jong S.; Harkins, Lettie L.; Gao, Ru; Kim, Jeong

    2015-01-01

    Abstract There is ample evidence that the ubiquitin–proteasome system is an important regulator of transcription and its activity is necessary for maintaining pluripotency and promoting cellular reprogramming. Moreover, proteasome activity contributes to maintaining the open chromatin structure found in pluripotent stem cells, acting as a transcriptional inhibitor at specific gene loci generally associated with differentiation. The current study was designed to understand further the role of proteasome inhibition in reprogramming and its ability to modulate endogenous expression of pluripotency-related genes and induced pluripotent stem cells (iPSCs) colony formation. Herein, we demonstrate that acute combinatorial treatment with the proteasome inhibitors MG101 or MG132 and the histone deacetylase (HDAC) inhibitor valproic acid (VPA) increases gene expression of the pluripotency marker Oct3/4, and that MG101 alone is as effective as VPA in the induction of Oct3/4 mRNA expression in fibroblasts. Prolonged proteasome inhibition cyclically upregulates gene expression of Oct3/4 and Nanog, but reduces colony formation in the presence of the iPSC induction cocktail. In conclusion, our results demonstrate that the 26S proteasome is an essential modulator in the reprogramming process. Its inhibition enhances expression of pluripotency-related genes; however, efficient colony formation requires proteasome activity. Therefore, discovery of small molecules that increase proteasome activity might lead to more efficient cell reprogramming and generation of pluripotent cells. PMID:25826722

  19. Glucocorticoids regulate mRNA levels for subunits of the 19 S regulatory complex of the 26 S proteasome in fast-twitch skeletal muscles.

    PubMed Central

    Combaret, Lydie; Taillandier, Daniel; Dardevet, Dominique; Béchet, Daniel; Rallière, Cécile; Claustre, Agnès; Grizard, Jean; Attaix, Didier

    2004-01-01

    Circulating levels of glucocorticoids are increased in many traumatic and muscle-wasting conditions that include insulin-dependent diabetes, acidosis, infection, and starvation. On the basis of indirect findings, it appeared that these catabolic hormones are required to stimulate Ub (ubiquitin)-proteasome-dependent proteolysis in skeletal muscles in such conditions. The present studies were performed to provide conclusive evidence for an activation of Ub-proteasome-dependent proteolysis after glucocorticoid treatment. In atrophying fast-twitch muscles from rats treated with dexamethasone for 6 days, compared with pair-fed controls, we found (i) increased MG132-inhibitable proteasome-dependent proteolysis, (ii) an enhanced rate of substrate ubiquitination, (iii) increased chymotrypsin-like proteasomal activity of the proteasome, and (iv) a co-ordinate increase in the mRNA expression of several ATPase (S4, S6, S7 and S8) and non-ATPase (S1, S5a and S14) subunits of the 19 S regulatory complex, which regulates the peptidase and the proteolytic activities of the 26 S proteasome. These studies provide conclusive evidence that glucocorticoids activate Ub-proteasome-dependent proteolysis and the first in vivo evidence for a hormonal regulation of the expression of subunits of the 19 S complex. The results suggest that adaptations in gene expression of regulatory subunits of the 19 S complex by glucocorticoids are crucial in the regulation of the 26 S muscle proteasome. PMID:14636157

  20. Identification of noncovalent proteasome inhibitors with high selectivity for chymotrypsin-like activity by a multistep structure-based virtual screening.

    PubMed

    Di Giovanni, Carmen; Ettari, Roberta; Sarno, Serena; Rotondo, Archimede; Bitto, Alessandra; Squadrito, Francesco; Altavilla, Domenica; Schirmeister, Tanja; Novellino, Ettore; Grasso, Silvana; Zappalà, Maria; Lavecchia, Antonio

    2016-10-01

    Noncovalent proteasome inhibitors introduce an alternative mechanism of inhibition to that of covalent inhibitors, e.g. carfilzomib, used in cancer therapy. A multistep hierarchical structure-based virtual screening (SBVS) of the 65,375 NCI lead-like compound library led to the identification of two compounds (9 and 28) which noncovalently inhibited the chymotrypsin-like (ChT-L) activity (Ki = 2.18 and 2.12 μM, respectively) with little or no effects on the other two major proteasome proteolytic activities, trypsin-like (T-L) and post-glutamyl peptide hydrolase (PGPH) activities. A subsequent hierarchical similarity search over the full NCI database with the most active tripeptide-based inhibitor 9 resulted in the discovery of the β5/β6-specific tripeptide derivative 38 that noncovalently binds the ChT-L site (Ki = 0.42 μM). The solution structure of 9 and 38 was solved by (1)H NMR spectroscopy and the binding mode of the inhibitors was elucidated by docking experiments using the yeast 20S proteasome. Compound 38 (IC50 = 26.7 μM) is slightly more potent than 9 (IC50 = 34.3 μM) at inhibiting survival of dexamethasone-resistant (MM.1R) human multiple myeloma cells. The identified ligand thus provides valuable insights for the future structure-based design of subtype-specific proteasome inhibitors. PMID:27318981

  1. Proteasome inhibitor MG-132 lowers gastric adenocarcinoma TMK1 cell proliferation via bone morphogenetic protein signaling

    SciTech Connect

    Wu, William Ka Kei; Sung, Joseph Jao Yiu; Yu Le; Cho, C.H.

    2008-06-27

    Proteasome inhibitor is a novel class of cancer therapeutics, of which the mechanism of action is not fully understood. It is reported that proteasome inhibitor enhances bone morphogenetic protein (BMP) signaling in osteoblasts to stimulate bone formation. BMP signaling is also an important tumor-suppressing pathway in gastric carcinogenesis. We therefore sought to determine the anti-mitogenic effect of proteasome inhibition in relation to BMP signaling in gastric cancer cells. Results showed that proteasome inhibitor MG-132 significantly suppressed the proliferation and the colony-forming ability of gastric cancer TMK1 cells. In this connection, MG-132 activated BMP signaling, manifested as an increase in Smad1/5/8 phosphorylation and up-regulation of p21{sup Waf1/Cip1} mRNA and protein expression. Knockdown of BMP receptor II by RNA interference abolished Smad1/5/8 phosphorylation, p21{sup Waf1/Cip1} induction, and the inhibition of cell proliferation induced by MG-132. Further analysis revealed that MG-132 up-regulated the expression of BMP1 and BMP4 and suppressed the expression of Smad6. Knockdown of Smad6 also mimicked the effect of MG-132 on BMP signaling. Collectively, these findings suggest that inhibition of proteasome suppresses gastric cancer cell proliferation via activation of BMP signaling. This discovery may open up a novel therapeutic avenue to proteasome inhibitors for the management of gastric cancer.

  2. Microtubule disrupting chemotherapeutics result in enhanced proteasome-mediated degradation and disappearance of tubulin in neural cells

    PubMed Central

    Huff, Lyn M.; Sackett, Dan L.; Poruchynsky, Marianne S.; Fojo, Tito

    2010-01-01

    We sought to examine the effects of microtubule targeting agents (MTAs) on neural cells to better understand the problem of neurotoxicity, their principal side effect, and to possibly develop a model of clinical toxicity. Studies showed that microtubule-depolymerizing agents (MDAs) not only disassembled microtubules in neural HCN2 cells but also led to rapid disappearance of tubulin and that this was specific for MDAs. Tubulin levels fell to 20% as early as 8 hours after adding vincristine and to 1–30% (mean, 9.8 ± 7.6%; median of 7%) after 100 nM VCR for 24 hours. This disappearance was reversible. An increase in both glu-terminated and acetylated tubulin, markers of stable tubulin, preceded re-accumulation of soluble tubulin, suggesting a priority for stabilizing tubulin first as microtubules, prior to replenishing the soluble pool. Similar results were demonstrated with other MDAs. Furthermore, microtubule reassembly did not arise from a central focus but instead appeared to involve dispersed nucleation, as evidenced by the appearance of small stable microtubule stubs throughout the cytoplasm. In contrast, experiments with four non-neural “normal” cell lines and four cancer cell lines resulted in microtubule de-stabilization but only modest tubulin degradation. Evidence for proteasome-mediated degradation was obtained by demonstrating that adding a proteasome inhibitor prior to vincristine prevented tubulin disappearance. In summary, MDAs lead to rapid disappearance of tubulin in neural but not other normal cells or cancer cells. These results underscore the fine control that occurs in neural cells and may further our understanding of neurotoxicity following MDAs. PMID:20587529

  3. Involvement of the proteasome and caspase activation in hippocampal long-term depression induced by the serine protease subtilisin.

    PubMed

    Forrest, C M; Darlington, L G; Stone, T W

    2013-02-12

    The serine protease subtilisin-A produces a long-term depression (LTD) of synaptic potentials in hippocampal slices which differs mechanistically from classical LTD. Since caspases have been implicated in hippocampal plasticity, this study examined a possible role for these enzymes in subtilisin-induced LTD. Subtilisin produced a concentration-dependent decrease in the size of field excitatory synaptic potentials (fEPSPs), which was not prevented or modified by the caspase inhibitors Z-VAD(OMe)-fmk and Z-DEVD-fmk. Similarly Z-VAD(OMe)-fmk did not modify the selective loss of protein expression produced by subtilisin. Subtilisin reduced the expression of procaspase-3 and caspase-9 but, while caspase-9 was converted to its conventionally activated form (39 kDa), caspase-3 was metabolised along a non-canonical pathway to a 29/30 kDa protein rather than the classical 17/19 kDa fragments. Both Z-VAD(OMe)-fmk and Z-DEVD-fmk were unable to prevent the reduced expression of Postsynaptic Density Protein-95, Vesicle-Associated Membrane Protein-1 and Unco-ordinated 5H3 proteins produced by subtilisin, although MG132 did produce partial recovery from subtilisin-induced depression of fEPSPs. When tested on long-term potentiation (LTP) induced by theta stimulation in the stratum radiatum, MG132 inhibited the immediate increase in fEPSP size but generated a higher plateau LTP. Twin LTP stimulation generated a further increase in LTP amplitude in control slices but not in slices exposed to MG132. The results indicate that subtilisin does produce caspase activation but that this does not contribute to its induction of LTD. However, activation of the proteasome does contribute to subtilisin-induced LTD and may also play a modulatory role in electrically induced LTP. PMID:23206873

  4. The Proteasome Is a Molecular Target of Environmental Toxic Organotins

    PubMed Central

    Shi, Guoqing; Chen, Di; Zhai, Guangshu; Chen, Marina S.; Cui, Qiuzhi Cindy; Zhou, Qunfang; He, Bin; Dou, Q. Ping; Jiang, Guibin

    2009-01-01

    Background Because of the vital importance of the proteasome pathway, chemicals affecting proteasome activity could disrupt essential cellular processes. Although the toxicity of organotins to both invertebrates and vertebrates is well known, the essential cellular target of organotins has not been well identified. We hypothesize that the proteasome is a molecular target of environmental toxic organotins. Objectives Our goal was to test the above hypothesis by investigating whether organotins could inhibit the activity of purified and cellular proteasomes and, if so, the involved molecular mechanisms and downstream events. Results We found that some toxic organotins [e.g., triphenyltin (TPT)] can potently and preferentially inhibit the chymotrypsin-like activity of purified 20S proteasomes and human breast cancer cellular 26S proteasomes. Direct binding of tin atoms to cellular proteasomes is responsible for the observed irreversible inhibition. Inhibition of cellular proteasomes by TPT in several human cell lines results in the accumulation of ubiquitinated proteins and natural proteasome target proteins, accompanied by induction of cell death. Conclusions The proteasome is one of the molecular targets of environmental toxic organotins in human cells, and proteasome inhibition by organotins contributes to their cellular toxicity. PMID:19337512

  5. Ubiquitin/proteasome pathway impairment in neurodegeneration: therapeutic implications

    PubMed Central

    Huang, Qian; Figueiredo-Pereira, Maria E.

    2010-01-01

    The ubiquitin/proteasome pathway is the major proteolytic quality control system in cells. In this review we discuss the impact of a deregulation of this pathway on neuronal function and its causal relationship to the intracellular deposition of ubiquitin protein conjugates in pathological inclusion bodies in all the major chronic neurodegenerative disorders, such as Alzheimer’s, Parkinson’s and Huntington’s diseases as well as amyotrophic lateral sclerosis. We describe the intricate nature of the ubiquitin/proteasome pathway and discuss the paradox of protein aggregation, i.e. its potential toxic/protective effect in neurodegeneration. The relations between some of the dysfunctional components of the pathway and neurodegeneration are presented. We highlight possible ubiquitin/proteasome pathway-targeting therapeutic approaches, such as activating the proteasome, enhancing ubiquitination and promoting SUMOylation that might be important to slow/treat the progression of neurodegeneration. Finally, a model time line is presented for neurodegeneration starting at the initial injurious events up to protein aggregation and cell death, with potential time points for therapeutic intervention. PMID:20131003

  6. Genetics of proteasome diseases.

    PubMed

    Gomes, Aldrin V

    2013-01-01

    The proteasome is a large, multiple subunit complex that is capable of degrading most intracellular proteins. Polymorphisms in proteasome subunits are associated with cardiovascular diseases, diabetes, neurological diseases, and cancer. One polymorphism in the proteasome gene PSMA6 (-8C/G) is associated with three different diseases: type 2 diabetes, myocardial infarction, and coronary artery disease. One type of proteasome, the immunoproteasome, which contains inducible catalytic subunits, is adapted to generate peptides for antigen presentation. It has recently been shown that mutations and polymorphisms in the immunoproteasome catalytic subunit PSMB8 are associated with several inflammatory and autoinflammatory diseases including Nakajo-Nishimura syndrome, CANDLE syndrome, and intestinal M. tuberculosis infection. This comprehensive review describes the disease-related polymorphisms in proteasome genes associated with human diseases and the physiological modulation of proteasome function by these polymorphisms. Given the large number of subunits and the central importance of the proteasome in human physiology as well as the fast pace of detection of proteasome polymorphisms associated with human diseases, it is likely that other polymorphisms in proteasome genes associated with diseases will be detected in the near future. While disease-associated polymorphisms are now readily discovered, the challenge will be to use this genetic information for clinical benefit. PMID:24490108

  7. Serendipity in discovery of proteasome inhibitors.

    PubMed

    Dunn, Derek; Iqbal, Mohamed; Husten, Jean; Ator, Mark A; Chatterjee, Sankar

    2012-05-15

    Among its various catalytic activities, the 'chymotrypsin-like' activity of the proteasome, a large multicatalytic proteinase complex has emerged as the focus of drug discovery efforts in cancer therapy. Herein, a series of first generation (2S, 3R)-2-amino-3-hydroxybutyric acid derived proteasome inhibitors that were discovered serendipitously en route to original goal of generating a series of sterically constrained oxazoline derivatives has been reported. PMID:22503349

  8. Substituted quinolines as noncovalent proteasome inhibitors.

    PubMed

    McDaniel, Tanner J; Lansdell, Theresa A; Dissanayake, Amila A; Azevedo, Lauren M; Claes, Jacob; Odom, Aaron L; Tepe, Jetze J

    2016-06-01

    Screening of a library of diverse heterocyclic scaffolds identified substituted quinolines as inhibitors of the human proteasome. The heterocyclic library was prepared via a novel titanium-catalyzed multicomponent coupling reaction, which rendered a diverse set of isoxazoles, pyrimidines, pyrroles, pyrazoles and quinolines. SAR of the parent lead compound indicated that hydrophobic residues on the benzo-moiety significantly improved potency. Lead compound 25 inhibits the chymotryptic-like proteolytic activity of the proteasome (IC50 5.4μM), representing a new class of nonpeptidic, noncovalent proteasome inhibitors. PMID:27112450

  9. Proteasome-mediated turnover of the transcriptional activator FIT is required for plant iron-deficiency responses.

    PubMed

    Sivitz, Alicia; Grinvalds, Claudia; Barberon, Marie; Curie, Catherine; Vert, Grégory

    2011-06-01

    Plants display a number of responses to low iron availability in order to increase iron uptake from the soil. In the model plant Arabidopsis thaliana, the ferric-chelate reductase FRO2 and the ferrous iron transporter IRT1 control iron entry from the soil into the root epidermis. To maintain iron homeostasis, the expression of FRO2 and IRT1 is tightly controlled by iron deficiency at the transcriptional level. The basic helix-loop-helix (bHLH) transcription factor FIT represents the most upstream actor known in the iron-deficiency signaling pathway, and directly regulates the expression of the root iron uptake machinery genes FRO2 and IRT1. However, how FIT is controlled by iron and acts to activate transcription of its targets remains obscure. Here we show that FIT mRNA and endogenous FIT protein accumulate in Arabidopsis roots upon iron deficiency. However, using plants constitutively expressing FIT, we observed that FIT protein accumulation is reduced in iron-limited conditions. This post-transcriptional regulation of FIT is perfectly synchronized with the accumulation of endogenous FIT and IRT1 proteins, and therefore is part of the early responses to low iron. We demonstrated that such regulation affects FIT protein stability under iron deficiency as a result of 26S proteasome-dependent degradation. In addition, we showed that FIT post-translational regulation by iron is required for FRO2 and IRT1 gene expression. Taken together our results indicate that FIT transcriptional and post-translational regulations are integrated in plant roots to ensure that the positive regulator FIT accumulates as a short-lived protein following iron shortage, and to allow proper iron-deficiency responses. PMID:21426424

  10. MG132, a proteasome inhibitor, enhances LDL uptake in HepG2 cells in vitro by regulating LDLR and PCSK9 expression

    PubMed Central

    Yan, Hong; Ma, Yan-ling; Gui, Yu-zhou; Wang, Shu-mei; Wang, Xin-bo; Gao, Fei; Wang, Yi-ping

    2014-01-01

    Aim: Expression of liver low-density lipoprotein receptor (LDLR), a determinant regulator in cholesterol homeostasis, is tightly controlled at multiple levels. The aim of this study was to examine whether proteasome inhibition could affect LDLR expression and LDL uptake in liver cells in vitro. Methods: HepG2 cells were examined. Real-time PCR and Western blot analysis were used to determine the mRNA and protein levels, respectively. DiI-LDL uptake assay was used to quantify the LDLR function. Luciferase assay system was used to detect the activity of proprotein convertase subtilisin/kexin type 9 (PCSK9, a major protein mediating LDLR degradation) promoter. Specific siRNAs were used to verify the involvement of PCSK9. Results: Treatment of HepG2 cells with the specific proteasome inhibitor MG132 (0.03–3 μmol/L) dose-dependently increased LDLR mRNA and protein levels, as well as LDL uptake. Short-term treatment with MG132 (0.3 μmol/L, up to 8 h) significantly increased both LDLR mRNA and protein levels in HepG2 cells, which was blocked by the specific PKC inhibitors GF 109203X, Gö 6983 or staurosporine. In contrast, a longer treatment with MG132 (0.3 μmol/L, 24 h) did not change LDLR mRNA, but markedly increased LDLR protein by reducing PCSK9-mediated lysosome LDLR degradation. Furthermore, MG132 time-dependently suppressed PCSK9 expression in the HepG2 cells through a SREBP-1c related pathway. Combined treatment with MG132 (0.3 μmol/L) and pravastatin (5 μmol/L) strongly promoted LDLR expression and LDL uptake in HepG2 cells, and blocked the upregulation of PCSK9 caused by pravastatin alone. Conclusion: Inhibition of proteasome by MG132 in HepG2 cells plays dual roles in LDLR and PCSK9 expression, and exerts a beneficial effect on cholesterol homeostasis. PMID:25042549

  11. Induction of Tumor Cell Apoptosis by a Proteasome Deubiquitinase Inhibitor Is Associated with Oxidative Stress

    PubMed Central

    Brnjic, Slavica; Mazurkiewicz, Magdalena; Fryknäs, Mårten; Sun, Chao; Zhang, Xiaonan; Larsson, Rolf

    2014-01-01

    Abstract Aims: b-AP15 is a recently described inhibitor of the USP14/UCHL5 deubiquitinases (DUBs) of the 19S proteasome. Exposure to b-AP15 results in blocking of proteasome function and accumulation of polyubiquitinated protein substrates in cells. This novel mechanism of proteasome inhibition may potentially be exploited for cancer therapy, in particular for treatment of malignancies resistant to currently used proteasome inhibitors. The aim of the present study was to characterize the cellular response to b-AP15-mediated proteasome DUB inhibition. Results: We report that b-AP15 elicits a similar, but yet distinct, cellular response as the clinically used proteasome inhibitor bortezomib. b-AP15 induces a rapid apoptotic response, associated with enhanced induction of oxidative stress and rapid activation of Jun-N-terminal kinase 1/2 (JNK)/activating protein-1 signaling. Scavenging of reactive oxygen species and pharmacological inhibition of JNK reduced b-AP15-induced apoptosis. We further report that endoplasmic reticulum (ER) stress is induced by b-AP15 and is involved in apoptosis induction. In contrast to bortezomib, ER stress is associated with induction of α-subunit of eukaryotic initiation factor 2 phosphorylation. Innovation: The findings establish that different modes of proteasome inhibition result in distinct cellular responses, a finding of potential therapeutic importance. Conclusion: Our data show that enhanced oxidative stress and ER stress are major determinants of the strong apoptotic response elicited by the 19S DUB inhibitor b-AP15. Antioxid. Redox Signal. 21, 2271–2285. PMID:24011031

  12. The Keap1-Nrf2-antioxidant response element pathway: a review of its regulation by melatonin and the proteasome.

    PubMed

    Vriend, Jerry; Reiter, Russel J

    2015-02-01

    Both melatonin and proteasome inhibitors upregulate antioxidant enzymes including superoxide dismutase (SOD), glutathione peroxidase (GP), hemoxygenase 1 (HO-1), and NADPH:quinone oxidoreductase (NQO1). Recent evidence suggests that the antioxidant action of both melatonin and proteasome inhibitors involves the Keap1-ARE (Keap1 antioxidant response element) pathway via the upregulation of Nrf2. Melatonin and proteasome inhibitors suppress the degradation of Nrf2 and also enhance its nuclear translocation. In the nucleus Nrf2, together with a cofactor, stimulates the transcription of antioxidant enzymes and detoxifying enzymes. The ligase (E3) complex (Keap1-Cul3-Rbx1) responsible for ubiquitinating Nrf2, prior to proteasomal degradation, also ubiquitinates IkB kinase and the antiapoptotic factor Bcl-2, and possibly additional proteins. In various systems, NF-κB, which is inhibited by IkBα, is downregulated by proteasome inhibitors as well as by melatonin. Similarly in leukemic cells, Bcl-2 is down-regulated by the proteasome inhibitor, bortezomib, and also by melatonin. Thus melatonin administration modulates the activity of three separate substrates of the Keap1-Cul3-Rbx1 ubiquitin ligase. These facts could be accounted for by the hypothesis that melatonin interacts with the ubiquitin ligase complex or, more likely, by the hypothesis that melatonin acts as a proteasome inhibitor. A recent study documented that melatonin acts as a proteasome inhibitor in cancer cells as well as inhibiting chymotrypsin-like activity in cell-free systems of these cells. Further studies, however, are needed to clarify the interaction of melatonin and the ubiquitin-proteasome system as they relate to oxidative stress. PMID:25528518

  13. Sustained Oxidative Stress Inhibits NF-kB Activation Partially via Inactivating the Proteasome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NF-kB is a family of important transcription factors involved in many cellular functions, such as cell survival, proliferation and stress responses. Many studies indicate that NF-kB is a stress sensitive transcription factor and its activation is regulated by reactive oxygen species. In previous s...

  14. Induction of Caspase-3-like activity in Rice following release of cytochrome-f from the chloroplast and subsequent interaction with the Ubiquitin-Proteasome System

    PubMed Central

    Wang, Hongjuan; Zhu, Xiaonan; Li, Huan; Cui, Jing; Liu, Cheng; Chen, Xi; Zhang, Wei

    2014-01-01

    It has been known that the process of leaf senescence is accompanied by programmed cell death (PCD), and the previous study indicated that dark-induced senescence in detached leaves from rice led to the release of cytochrome f (Cyt f) from chloroplast into the cytoplasm. In this study, the effects of Cyt f on PCD were studied both in vitro and in vivo. In a cell-free system, purified Cyt f activated caspase-3-like protease and endonuclease OsNuc37, and induced DNA fragmentation. Furthermore, Cyt f-induced caspase-3-like activity could be inhibited by MG132, which suggests that the activity was attributed to the 26S proteasome. Conditional expression of Cyt f in the cytoplasm could also activate caspase-3-like activity and DNA fragmentation. Fluorescein diacetate staining and annexin V-FITC/PI double staining demonstrated that Cyt f expression in cytoplasm significantly increased the percentage of PCD protoplasts. Yeast two-hybrid screening showed that Cyt f might interact with E3-ubiquitin ligase and RPN9b, the subunits of the ubiquitin proteasome system (UPS), and other PCD-related proteins. Taken together, these results suggest that the released Cyt f from the chloroplast into the cytoplasm might activate or rescue caspase-3-like activity by interacting with the UPS, ultimately leading to the induction of PCD. PMID:25103621

  15. Induction of caspase-3-like activity in rice following release of cytochrome-f from the chloroplast and subsequent interaction with the ubiquitin-proteasome system.

    PubMed

    Wang, Hongjuan; Zhu, Xiaonan; Li, Huan; Cui, Jing; Liu, Cheng; Chen, Xi; Zhang, Wei

    2014-01-01

    It has been known that the process of leaf senescence is accompanied by programmed cell death (PCD), and the previous study indicated that dark-induced senescence in detached leaves from rice led to the release of cytochrome f (Cyt f) from chloroplast into the cytoplasm. In this study, the effects of Cyt f on PCD were studied both in vitro and in vivo. In a cell-free system, purified Cyt f activated caspase-3-like protease and endonuclease OsNuc37, and induced DNA fragmentation. Furthermore, Cyt f-induced caspase-3-like activity could be inhibited by MG132, which suggests that the activity was attributed to the 26S proteasome. Conditional expression of Cyt f in the cytoplasm could also activate caspase-3-like activity and DNA fragmentation. Fluorescein diacetate staining and annexin V-FITC/PI double staining demonstrated that Cyt f expression in cytoplasm significantly increased the percentage of PCD protoplasts. Yeast two-hybrid screening showed that Cyt f might interact with E3-ubiquitin ligase and RPN9b, the subunits of the ubiquitin proteasome system (UPS), and other PCD-related proteins. Taken together, these results suggest that the released Cyt f from the chloroplast into the cytoplasm might activate or rescue caspase-3-like activity by interacting with the UPS, ultimately leading to the induction of PCD. PMID:25103621

  16. Proteasome Modulates Positive and Negative Translational Regulators in Long-Term Synaptic Plasticity

    PubMed Central

    Dong, Chenghai; Bach, Svitlana V.; Haynes, Kathryn A.

    2014-01-01

    Proteolysis by the ubiquitin-proteasome pathway appears to have a complex role in synaptic plasticity, but its various functions remain to be elucidated. Using late phase long-term potentiation (L-LTP) in the hippocampus of the mouse as a model for long-term synaptic plasticity, we previously showed that inhibition of the proteasome enhances induction but blocks maintenance of L-LTP. In this study, we investigated the possible mechanisms by which proteasome inhibition has opposite effects on L-LTP induction and maintenance. Our results show that inhibiting phosphatidyl inositol-3 kinase or blocking the interaction between eukaryotic initiation factors 4E (eIF4E) and 4G (eIF4G) reduces the enhancement of L-LTP induction brought about by proteasome inhibition suggesting interplay between proteolysis and the signaling pathway mediated by mammalian target of rapamycin (mTOR). Also, proteasome inhibition leads to accumulation of translational activators in the mTOR pathway such as eIF4E and eukaryotic elongation factor 1A (eEF1A) early during L-LTP causing increased induction. Furthermore, inhibition of the proteasome causes a buildup of translational repressors, such as polyadenylate-binding protein interacting protein 2 (Paip2) and eukaryotic initiation factor 4E-binding protein 2 (4E-BP2), during late stages of L-LTP contributing to the blockade of L-LTP maintenance. Thus, the proteasome plays a critical role in regulating protein synthesis during L-LTP by tightly controlling translation. Our results provide novel mechanistic insights into the interplay between protein degradation and protein synthesis in long-term synaptic plasticity. PMID:24573276

  17. BcR-induced apoptosis involves differential regulation of C16 and C24-ceramide formation and sphingolipid-dependent activation of the proteasome.

    PubMed

    Kroesen, Bart-Jan; Jacobs, Susan; Pettus, Benjamin J; Sietsma, Hannie; Kok, Jan Willem; Hannun, Yusuf A; de Leij, Lou F M H

    2003-04-25

    In this study, we describe an ordered formation of long- and very long-chain ceramide species in relation to the progression of B-cell receptor (BcR) triggering induced apoptosis. An early and caspase-independent increase in long-chain ceramide species, in which C(16)- ceramide predominated, was observed 6 h after BcR triggering. In contrast, very long-chain ceramide species were generated later, 12-24 h after BcR triggering. The formation of these very long-chain ceramide species, in which C(24)-ceramide predominated, required the activation of effector caspases. BcR-induced formation of long-chain ceramide species resulted in proteasomal activation and degradation of XIAP and subsequent activation of effector caspases, demonstrating an important cell-biological mechanism through which long-chain ceramides may be involved in the progression of BcR triggering induced apoptosis and subsequent formation of very long-chain ceramide species. BcR-induced activation of the proteasome was blocked with ISP-1/myriocin, a potent and selective inhibitor of serine palmitoyl transferase that catalyzes the first and rate-limiting step in the de novo formation of ceramide. Both ISP-1 and clasto-lactacystin beta-lactone, an irreversible inhibitor of the proteasome, prevented BcR cross-linking-induced XIAP degradation. Also, a mutant XIAP lacking the ubiquitin-ligating ring finger motif was completely resistant to proteasome-mediated degradation, and Ramos cells overexpressing XIAP became highly resistant to BcR cross-linking-induced activation of caspases. The formation of C(16)-ceramide in response to BcR cross-linking was found unaltered in XIAP overexpressing Ramos cells, whereas C(24)-ceramide formation was completely abolished. These results demonstrate how de novo generated long-chain ceramide species may be involved in the activation of downstream effector caspases and subsequent formation of very long-chain ceramide species. As such, these results provide novel and

  18. Dual targeting of the proteasome regulates survival and homing in Waldenström macroglobulinemia

    PubMed Central

    Roccaro, Aldo M.; Leleu, Xavier; Sacco, Antonio; Jia, Xiaoying; Melhem, Molly; Moreau, Anne-Sophie; Ngo, Hai T.; Runnels, Judith; Azab, Abdelkareem; Azab, Feda; Burwick, Nicholas; Farag, Mena; Treon, Steven P.; Palladino, Michael A.; Hideshima, Teru; Chauhan, Dharminder; Anderson, Kenneth C.

    2008-01-01

    Waldenström macroglobulinemia (WM) is an incurable low-grade B-cell lymphoma characterized by high protein turnover. We dissected the biologic role of the proteasome in WM using 2 proteasome inhibitors, NPI-0052 and bortezomib. We found that NPI-0052 inhibited proliferation and induced apoptosis in WM cells, and that the combination of NPI-0052 and bortezomib induced synergistic cytotoxicity in WM cells, leading to inhibition of nuclear translocation of p65NF-κB and synergistic induction of caspases-3, -8, and -9 and PARP cleavage. These 2 agents inhibited the canonical and noncanonical NF-κB pathways and acted synergistically through their differential effect on Akt activity and on chymotrypsin-like, caspaselike, and trypsinlike activities of the proteasome. We demonstrated that NPI-0052–induced cytotoxicity was completely abrogated in an Akt knockdown cell line, indicating that its major activity is mediated through the Akt pathway. Moreover, we demonstrated that NPI-0052 and bortezomib inhibited migration and adhesion in vitro and homing of WM cells in vivo, and overcame resistance induced by mesenchymal cells or by the addition of interleukin-6 in a coculture in vitro system. Theses studies enhance our understanding of the biologic role of the proteasome pathway in WM, and provide the preclinical basis for clinical trials of combinations of proteasome inhibitors in WM. PMID:18316628

  19. Conjugation of the Ubiquitin Activating Enzyme UBE1 with the Ubiquitin-Like Modifier FAT10 Targets It for Proteasomal Degradation

    PubMed Central

    Bialas, Johanna; Groettrup, Marcus; Aichem, Annette

    2015-01-01

    The ubiquitin-like modifier HLA-F adjacent transcript 10 (FAT10) directly targets its substrates for proteasomal degradation by becoming covalently attached via its C-terminal diglycine motif to internal lysine residues of its substrate proteins. The conjugation machinery consists of the bispecific E1 activating enzyme Ubiquitin-like modifier activating enzyme 6 (UBA6), the likewise bispecific E2 conjugating enzyme UBA6-specific E2 enzyme 1 (USE1), and possibly E3 ligases. By mass spectrometry analysis the ubiquitin E1 activating enzyme ubiquitin-activating enzyme 1 (UBE1) was identified as putative substrate of FAT10. Here, we confirm that UBE1 and FAT10 form a stable non-reducible conjugate under overexpression as well as under endogenous conditions after induction of endogenous FAT10 expression with proinflammatory cytokines. FAT10ylation of UBE1 depends on the diglycine motif of FAT10. By specifically downregulating FAT10, UBA6 or USE1 with siRNAs, we show that UBE1 modification depends on the FAT10 conjugation pathway. Furthermore, we confirm that UBE1 does not act as a second E1 activating enzyme for FAT10 but that FAT10ylation of UBE1 leads to its proteasomal degradation, implying a putative regulatory role of FAT10 in the ubiquitin conjugation pathway. PMID:25768649

  20. Inhibitors Selective for Mycobacterial Versus Human Proteasomes

    SciTech Connect

    Lin, G.; Li, D; Sorio de Carvalho, L; Deng, H; Tao, H; Vogt, G; Wu, K; Schneider, J; Chidawanyika, T; et. al.

    2009-01-01

    Many anti-infectives inhibit the synthesis of bacterial proteins, but none selectively inhibits their degradation. Most anti-infectives kill replicating pathogens, but few preferentially kill pathogens that have been forced into a non-replicating state by conditions in the host. To explore these alternative approaches we sought selective inhibitors of the proteasome of Mycobacterium tuberculosis. Given that the proteasome structure is extensively conserved, it is not surprising that inhibitors of all chemical classes tested have blocked both eukaryotic and prokaryotic proteasomes, and no inhibitor has proved substantially more potent on proteasomes of pathogens than of their hosts. Here we show that certain oxathiazol-2-one compounds kill non-replicating M.?tuberculosis and act as selective suicide-substrate inhibitors of the M.?tuberculosis proteasome by cyclocarbonylating its active site threonine. Major conformational changes protect the inhibitor-enzyme intermediate from hydrolysis, allowing formation of an oxazolidin-2-one and preventing regeneration of active protease. Residues outside the active site whose hydrogen bonds stabilize the critical loop before and after it moves are extensively non-conserved. This may account for the ability of oxathiazol-2-one compounds to inhibit the mycobacterial proteasome potently and irreversibly while largely sparing the human homologue.

  1. Cisplatin triggers atrophy of skeletal C2C12 myotubes via impairment of Akt signalling pathway and subsequent increment activity of proteasome and autophagy systems

    SciTech Connect

    Fanzani, Alessandro Zanola, Alessandra; Rovetta, Francesca; Rossi, Stefania; Aleo, Maria Francesca

    2011-02-01

    Cisplatin (cisPt) is an antineoplastic drug which causes an array of adverse effects on different organs and tissues, including skeletal muscle. In this work we show that cisPt behaves as a potent trigger to activate protein hypercatabolism in skeletal C2C12 myotubes. Within 24 h of 50 {mu}M cisPt administration, C2C12 myotubes displayed unchanged cell viability but showed a subset of hallmark signs typically recognized during atrophy, including severe reduction in body size, repression of Akt phosphorylation, transcriptional up-regulation of atrophy-related genes, such as atrogin-1, gabarap, beclin-1 and bnip-3, and loss of myogenic markers. As a consequence, proteasomal activity and formation of autophagosomes were remarkably increased in cisPt-treated myotubes, but forced stimulation of Akt pathway, as obtained through insulin administration or delivery of a constitutively activated Akt form, was sufficient to counter the cisPt-induced protein breakdown, leading to rescue of atrophic size. Overall, these results indicate that cisPt induces atrophy of C2C12 myotubes via activation of proteasome and autophagy systems, suggesting that the Akt pathway represents one sensitive target of cisPt molecular action in skeletal muscle.

  2. Hinokitiol inhibits vasculogenic mimicry activity of breast cancer stem/progenitor cells through proteasome-mediated degradation of epidermal growth factor receptor

    PubMed Central

    TU, DOM-GENE; YU, YUN; LEE, CHE-HSIN; KUO, YU-LIANG; LU, YIN-CHE; TU, CHI-WEN; CHANG, WEN-WEI

    2016-01-01

    Hinokitiol, alternatively known as β-thujaplicin, is a tropolone-associated natural compound with antimicrobial, anti-inflammatory and antitumor activity. Breast cancer stem/progenitor cells (BCSCs) are a subpopulation of breast cancer cells associated with tumor initiation, chemoresistance and metastatic behavior, and may be enriched by mammosphere cultivation. Previous studies have demonstrated that BCSCs exhibit vasculogenic mimicry (VM) activity via the epidermal growth factor receptor (EGFR) signaling pathway. The present study investigated the anti-VM activity of hinokitiol in BCSCs. At a concentration below the half maximal inhibitory concentration, hinokitiol inhibited VM formation of mammosphere cells derived from two human breast cancer cell lines. Hinokitiol was additionally indicated to downregulate EGFR protein expression in mammosphere-forming BCSCs without affecting the expression of messenger RNA. The protein stability of EGFR in BCSCs was also decreased by hinokitiol. The EGFR protein expression and VM formation capability of hinokitiol-treated BCSCs were restored by co-treatment with MG132, a proteasome inhibitor. In conclusion, the present study indicated that hinokitiol may inhibit the VM activity of BCSCs through stimulating proteasome-mediated EGFR degradation. Hinokitiol may act as an anti-VM agent, and may be useful for the development of novel breast cancer therapeutic agents. PMID:27073579

  3. Proteasome inhibitor PS-341 limits macrophage necroptosis by promoting cIAPs-mediated inhibition of RIP1 and RIP3 activation.

    PubMed

    Zhang, Yuchen; Cheng, Junjun; Zhang, Junmeng; Wu, Xiaofan; Chen, Fang; Ren, Xuejun; Wang, Yunlong; Li, Quan; Li, Yu

    2016-09-01

    Apoptotic and necrotic macrophages have long been known for their existence in atherosclerotic lesions. However, the mechanisms underlying the choice of their death pattern have not been fully elucidated. Here, we report the effects of PS-341, a potent and specific proteasome inhibitor, on the cell death of primary bone marrow-derived macrophages (BMDMs) in vitro. The results showed that PS-341 could not induce macrophage apoptosis or promote TNF-induced macrophage apoptosis, on the other hand, PS-341 could significantly inhibit macrophage necroptosis induced by TNF and pan-caspase inhibitor z-VAD treatment. Remarkably, high-dose of PS-341 showed similar inhibitory effects on macrophage necroptosis comparable to that of kinase inhibition of RIP1 through specific inhibitor Nec-1 or inhibition of RIP3 via specific genetical ablation. Furthermore, the degradation of cellular inhibitor of apoptosis proteins (cIAPs) was suppressed by PS-341, which could antagonize the activation of RIP1 kinase via post-translational mechanism. Further evidences demonstrated reduced levels of both RIP1 and RIP 3 upon PS-341 treatment, concomitantly, a more strong association of RIP1 with cIAPs and less with RIP3 was found following PS-341 treatment, these findings suggested that PS-341 may disrupt the formation of RIP1-RIP3 complex (necrosome) through stabilizing cIAPs. Collectively, our results indicated that the proteasome-mediated degradation of cIAPs could be inhibited by PS-341 and followed by limited RIP1 and RIP3 kinase activities, which were indispensable for necroptosis, thus eliciting a significant necroptosis rescue in BMDMs in vitro. Overall, our study has identified a new role of PS-341 in the cell death of BMDMs and provided a novel insight into the atherosclerotic inflammation caused by proteasome-mediated macrophage necroptosis. PMID:27363341

  4. Identification of substrates of the Mycobacterium tuberculosis proteasome

    PubMed Central

    Pearce, Michael J; Arora, Pooja; Festa, Richard A; Butler-Wu, Susan M; Gokhale, Rajesh S; Darwin, K Heran

    2006-01-01

    The putative proteasome-associated proteins Mpa (Mycobaterium proteasomal ATPase) and PafA (proteasome accessory factor A) of the human pathogen Mycobacterium tuberculosis (Mtb) are essential for virulence and resistance to nitric oxide. However, a direct link between the proteasome protease and Mpa or PafA has never been demonstrated. Furthermore, protein degradation by bacterial proteasomes in vitro has not been accomplished, possibly due to the failure to find natural degradation substrates or other necessary proteasome co-factors. In this work, we identify the first bacterial proteasome substrates, malonyl Co-A acyl carrier protein transacylase and ketopantoate hydroxymethyltransferase, enzymes that are required for the biosynthesis of fatty acids and polyketides that are essential for the pathogenesis of Mtb. Maintenance of the physiological levels of these enzymes required Mpa and PafA in addition to proteasome protease activity. Mpa levels were also regulated in a proteasome-dependent manner. Finally, we found that a conserved tyrosine of Mpa was essential for function. Thus, these results suggest that Mpa, PafA, and the Mtb proteasome degrade bacterial proteins that are important for virulence in mice. PMID:17082771

  5. Characterization of the 26S proteasome network in Plasmodium falciparum

    PubMed Central

    Wang, Lihui; Delahunty, Claire; Fritz-Wolf, Karin; Rahlfs, Stefan; Helena Prieto, Judith; Yates, John R.; Becker, Katja

    2015-01-01

    In eukaryotic cells, the ubiquitin-proteasome system as a key regulator of protein quality control is an excellent drug target. We therefore aimed to analyze the 26S proteasome complex in the malaria parasite Plasmodium falciparum, which still threatens almost half of the world’s population. First, we established an affinity purification protocol allowing for the isolation of functional 26S proteasome complexes from the parasite. Subunit composition of the proteasome and component stoichiometry were studied and physiologic interacting partners were identified via in situ protein crosslinking. Furthermore, intrinsic ubiquitin receptors of the plasmodial proteasome were determined and their roles in proteasomal substrate recognition were analyzed. Notably, PfUSP14 was characterized as a proteasome-associated deubiquitinase resulting in the concept that targeting proteasomal deubiquitinating activity in P. falciparum may represent a promising antimalarial strategy. The data provide insights into a profound network orchestrated by the plasmodial proteasome and identified novel drug target candidates in the ubiquitin-proteasome system. PMID:26639022

  6. Pupylation-dependent and -independent proteasomal degradation in mycobacteria.

    PubMed

    Imkamp, Frank; Ziemski, Michal; Weber-Ban, Eilika

    2015-08-01

    Bacteria make use of compartmentalizing protease complexes, similar in architecture but not homologous to the eukaryotic proteasome, for the selective and processive removal of proteins. Mycobacteria as members of the actinobacteria harbor proteasomes in addition to the canonical bacterial degradation complexes. Mycobacterial proteasomal degradation, although not essential during normal growth, becomes critical for survival under particular environmental conditions, like, for example, during persistence of the pathogenic Mycobacterium tuberculosis in host macrophages or of environmental mycobacteria under starvation. Recruitment of protein substrates for proteasomal degradation is usually mediated by pupylation, the post-translational modification of lysine side chains with the prokaryotic ubiquitin-like protein Pup. This substrate recruitment strategy is functionally reminiscent of ubiquitination in eukaryotes, but is the result of convergent evolution, relying on chemically and structurally distinct enzymes. Pupylated substrates are recognized by the ATP-dependent proteasomal regulator Mpa that associates with the 20S proteasome core. A pupylation-independent proteasome degradation pathway has recently been discovered that is mediated by the ATP-independent bacterial proteasome activator Bpa (also referred to as PafE), and that appears to play a role under stress conditions. In this review, mechanistic principles of bacterial proteasomal degradation are discussed and compared with functionally related elements of the eukaryotic ubiquitin-proteasome system. Special attention is given to an understanding on the molecular level based on structural and biochemical analysis. Wherever available, discussion of in vivo studies is included to highlight the biological significance of this unusual bacterial degradation pathway. PMID:26352358

  7. Immunoaffinity purification of the functional 20S proteasome from human cells via transient overexpression of specific proteasome subunits.

    PubMed

    Livinskaya, Veronika A; Barlev, Nickolai A; Nikiforov, Andrey A

    2014-05-01

    The proteasome is a multi-subunit proteolytic complex that plays a central role in protein degradation in all eukaryotic cells. It regulates many vital cellular processes therefore its dysfunction can lead to various pathologies including cancer and neurodegeneration. Isolation of enzymatically active proteasomes is a key step to the successful study of the proteasome regulation and functions. Here we describe a simple and efficient protocol for immunoaffinity purification of the functional 20S proteasomes from human HEK 293T cells after transient overexpression of specific proteasome subunits tagged with 3xFLAG. To construct 3xFLAG-fusion proteins, DNA sequences encoding the 20S proteasome subunits PSMB5, PSMA5, and PSMA3 were cloned into mammalian expression vector pIRES-hrGFP-1a. The corresponding recombinant proteins PSMB5-3xFLAG, PSMA5-3xFLAG, or PSMA3-3xFLAG were transiently overexpressed in human HEK 293T cells and were shown to be partially incorporated into the intact proteasome complexes. 20S proteasomes were immunoprecipitated from HEK 293T cell extracts under mild conditions using antibodies against FLAG peptide. Isolation of highly purified 20S proteasomes were confirmed by SDS-PAGE and Western blotting using antibodies against different proteasome subunits. Affinity purified 20S proteasomes were shown to possess chymotrypsin- and trypsin-like peptidase activities confirming their functionality. This simple single-step affinity method of the 20S proteasome purification can be instrumental to subsequent functional studies of proteasomes in human cells. PMID:24583181

  8. The proteasome assembly line

    PubMed Central

    Madura, Kiran

    2013-01-01

    The assembly of the proteasome — the cellular machine that eliminates unwanted proteins — is a carefully choreographed affair, involving a complex sequence of steps overseen by dedicated protein chaperones. PMID:19516331

  9. 26S Proteasome: Hunter and Prey in Auxin Signaling.

    PubMed

    Kong, Xiangpei; Zhang, Liangran; Ding, Zhaojun

    2016-07-01

    Auxin binds to TRANSPORT INHIBITOR RESPONSE 1 and AUXIN SIGNALLING F-BOX proteins (TIR1/AFBs) and promotes the degradation of Aux/IAA transcriptional repressors. The proteasome regulator PROTEASOME REGULATOR1 (PTRE1) has now been shown to be required for auxin-mediated repression of 26S proteasome activity, thus providing new insights into the fine-tuning of the homoeostasis of Aux/IAA proteins and auxin signaling. PMID:27246455

  10. The proteasome and the degradation of oxidized proteins: Part III—Redox regulation of the proteasomal system

    PubMed Central

    Höhn, Tobias Jung Annika; Grune, Tilman

    2014-01-01

    Here, we review shortly the current knowledge on the regulation of the proteasomal system during and after oxidative stress. After addressing the components of the proteasomal system and the degradation of oxidatively damaged proteins in part I and II of this series, we address here which changes in activity undergo the proteasome and the ubiquitin-proteasomal system itself under oxidative conditions. While several components of the proteasomal system undergo direct oxidative modification, a number of redox-regulated events are modulating the proteasomal activity in a way it can address the major tasks in an oxidative stress situation: the removal of oxidized proteins and the adaptation of the cellular metabolism to the stress situation. PMID:24563857

  11. The novel β2-selective proteasome inhibitor LU-102 synergizes with bortezomib and carfilzomib to overcome proteasome inhibitor resistance of myeloma cells

    PubMed Central

    Kraus, Marianne; Bader, Juergen; Geurink, Paul P.; Weyburne, Emily S.; Mirabella, Anne C.; Silzle, Tobias; Shabaneh, Tamer B.; van der Linden, Wouter A.; de Bruin, Gerjan; Haile, Sarah R.; van Rooden, Eva; Appenzeller, Christina; Li, Nan; Kisselev, Alexei F.; Overkleeft, Herman; Driessen, Christoph

    2015-01-01

    Proteasome inhibitor resistance is a challenge for myeloma therapy. Bortezomib targets the β5 and β1 activity, but not the β2 activity of the proteasome. Bortezomib-resistant myeloma cells down-regulate the activation status of the unfolded protein response, and up-regulate β2 proteasome activity. To improve proteasome inhibition in bortezomib-resistant myeloma and to achieve more efficient UPR activation, we have developed LU-102, a selective inhibitor of the β2 proteasome activity. LU-102 inhibited the β2 activity in intact myeloma cells at low micromolar concentrations without relevant co-inhibition of β1 and β5 proteasome subunits. In proteasome inhibitor-resistant myeloma cells, significantly more potent proteasome inhibition was achieved by bortezomib or carfilzomib in combination with LU-102, compared to bortezomib/carfilzomib alone, resulting in highly synergistic cytotoxic activity of the drug combination via endoplasmatic reticulum stress-induced apoptosis. Combining bortezomib/carfilzomib with LU-102 significantly prolonged proteasome inhibition and increased activation of the unfolded protein response and IRE1-a activity. IRE1-α has recently been shown to control myeloma cell differentiation and bortezomib sensitivity (Leung-Hagesteijn, Cancer Cell 24:3, 289-304). Thus, β2-selective proteasome inhibition by LU-102 in combination with bortezomib or carfilzomib results in synergistic proteasome inhibition, activation of the unfolded protein response, and cytotoxicity, and overcomes bortezomib/carfilzomib resistance in myeloma cells in vitro PMID:26069288

  12. The novel β2-selective proteasome inhibitor LU-102 synergizes with bortezomib and carfilzomib to overcome proteasome inhibitor resistance of myeloma cells.

    PubMed

    Kraus, Marianne; Bader, Juergen; Geurink, Paul P; Weyburne, Emily S; Mirabella, Anne C; Silzle, Tobias; Shabaneh, Tamer B; van der Linden, Wouter A; de Bruin, Gerjan; Haile, Sarah R; van Rooden, Eva; Appenzeller, Christina; Li, Nan; Kisselev, Alexei F; Overkleeft, Herman; Driessen, Christoph

    2015-10-01

    Proteasome inhibitor resistance is a challenge for myeloma therapy. Bortezomib targets the β5 and β1 activity, but not the β2 activity of the proteasome. Bortezomib-resistant myeloma cells down-regulate the activation status of the unfolded protein response, and up-regulate β2 proteasome activity. To improve proteasome inhibition in bortezomib-resistant myeloma and to achieve more efficient UPR activation, we have developed LU-102, a selective inhibitor of the β2 proteasome activity. LU-102 inhibited the β2 activity in intact myeloma cells at low micromolar concentrations without relevant co-inhibition of β1 and β5 proteasome subunits. In proteasome inhibitor-resistant myeloma cells, significantly more potent proteasome inhibition was achieved by bortezomib or carfilzomib in combination with LU-102, compared to bortezomib/carfilzomib alone, resulting in highly synergistic cytotoxic activity of the drug combination via endoplasmatic reticulum stress-induced apoptosis. Combining bortezomib/carfilzomib with LU-102 significantly prolonged proteasome inhibition and increased activation of the unfolded protein response and IRE1-a activity. IRE1-α has recently been shown to control myeloma cell differentiation and bortezomib sensitivity (Leung-Hagesteijn, Cancer Cell 24:3, 289-304). Thus, β2-selective proteasome inhibition by LU-102 in combination with bortezomib or carfilzomib results in synergistic proteasome inhibition, activation of the unfolded protein response, and cytotoxicity, and overcomes bortezomib/carfilzomib resistance in myeloma cells in vitro. PMID:26069288

  13. Detection of O-propargyl-puromycin with SUMO and ubiquitin by click chemistry at PML-nuclear bodies during abortive proteasome activities.

    PubMed

    Uozumi, Naoki; Matsumoto, Hotaru; Saitoh, Hisato

    2016-05-27

    The amino-nucleoside antibiotic, puromycin, acts by covalently linking to elongating polypeptide chains on ribosomes to generate prematurely terminated immature polypeptides. The trafficking of puromycin-conjugated (puromycylated) immature polypeptides within cell has, however, remained elusive. In this study, using O-propargyl-puromycin (OP-Puro), the distribution of puromycylated polypeptides was assessed in HeLa cells by click chemistry. Under standard culture conditions, OP-Puro signals were detected in the cytoplasm and nucleus with the highest concentrations in the nucleolus. Intriguingly, when proteasome activities were aborted using MG132, OP-Puro signals began to accumulate at promyelocytic leukemia nuclear bodies (PML-NBs) in addition to the nucleolus. We also found promiscuous association of OP-Puro signals with SUMO-2/3 and ubiquitin at PML-NBs, but not at the nucleolus, during abortive proteasome activities. This study reveals a previously unknown distribution of OP-Puro that argues for a nuclear function in regulating immature protein homeostasis. PMID:27125456

  14. The regulation of glucose on milk fat synthesis is mediated by the ubiquitin-proteasome system in bovine mammary epithelial cells.

    PubMed

    Liu, Lily; Jiang, Li; Ding, Xiang-dong; Liu, Jian-feng; Zhang, Qin

    2015-09-11

    Glucose as one of the nutrition factors plays a vital role in the regulation of milk fat synthesis. Ubiquitin-proteasome system (UPS) is a vital proteolytic pathway in all eukaryotic cells through timely marking, recognizing and degrading the poly-ubiquitinated protein substrates. Previous studies indicated that UPS plays a considerable role in controlling the triglyceride (TG) synthesis. Therefore, the aim of this study is to confirm the link between high-glucose and UPS and its regulation mechanism on milk fat synthesis in BMEC (bovine mammary epithelial cells). We incubated BMEC with normal (17.5 mm/L) and high-glucose (25 mm/L) with and without proteasome inhibitor epoxomicin and found that, compared with the control (normal glucose and without proteasome inhibitor), both high-glucose concentration and proteasome inhibitor epoxomicin could increase the accumulation of TG and poly-ubiquitinated proteins, and reduce significantly three proteasome activities (chymotrypsin-like, caspase-like, and trypsin-like). In addition, high-glucose concentration combined with proteasome inhibitor further enhanced the increase of the poly-ubiquitinated protein level and the decrease of proteasome activities. Our results suggest that the regulation of high-glucose on milk fat synthesis is mediated by UPS in BMEC, and high-glucose exposure could lead to a hypersensitization of BMEC to UPS inhibition which in turn results in increased milk fat synthesis. PMID:26231798

  15. Substrate Ubiquitination Controls the Unfolding Ability of the Proteasome.

    PubMed

    Reichard, Eden L; Chirico, Giavanna G; Dewey, William J; Nassif, Nicholas D; Bard, Katelyn E; Millas, Nickolas E; Kraut, Daniel A

    2016-08-26

    In eukaryotic cells, proteins are targeted to the proteasome for degradation by polyubiquitination. These proteins bind to ubiquitin receptors, are engaged and unfolded by proteasomal ATPases, and are processively degraded. The factors determining to what extent the proteasome can successfully unfold and degrade a substrate are still poorly understood. We find that the architecture of polyubiquitin chains attached to a substrate affects the ability of the proteasome to unfold and degrade the substrate, with K48- or mixed-linkage chains leading to greater processivity than K63-linked chains. Ubiquitin-independent targeting of substrates to the proteasome gave substantially lower processivity of degradation than ubiquitin-dependent targeting. Thus, even though ubiquitin chains are removed early in degradation, during substrate engagement, remarkably they dramatically affect the later unfolding of a protein domain. Our work supports a model in which a polyubiquitin chain associated with a substrate switches the proteasome into an activated state that persists throughout the degradation process. PMID:27405762

  16. The subunits MECL-1 and LMP2 are mutually required for incorporation into the 20S proteasome

    PubMed Central

    Groettrup, Marcus; Standera, Sybille; Stohwasser, Ralf; Kloetzel, Peter M.

    1997-01-01

    Processing of antigens for presentation by major histocompatibility complex (MHC) class I molecules requires the activity of the proteasome. The 20S proteasome complex is composed of 14 different subunits, 2 of which can be substituted by the interferon γ (IFN-γ)-inducible and MHC-encoded subunits LMP2 and LMP7 (low molecular mass poylpeptides 2 and 7). A third subunit, MECL-1, is inducible by IFN-γ but is encoded outside the MHC. Here we show by cotransfection experiments that the incorporation of MECL-1 into the 20S proteasome is directly dependent on the expression of LMP2 but independent of LMP7. Conversely, the uptake of LMP2 is strongly enhanced by MECL-1 expression. The expression of MECL-1 caused a replacement of the homologous subunit Z in the 20S proteasome complex. LMP2 is required for MECL-1 incorporation at the level of proteasome precursor formation that guarantees the concerted incorporation of two IFN-γ-inducible proteasome subunits encoded inside and outside the MHC. The obligatory coincorporation of MECL-1 and LMP2 is an important parameter for the interpretation of results obtained with LMP2-deficient cell lines and mice as well as for the design of experiments addressing the function of MECL-1 in antigen presentation. PMID:9256419

  17. High Fat Diet-Induced Skeletal Muscle Wasting Is Decreased by Mesenchymal Stem Cells Administration: Implications on Oxidative Stress, Ubiquitin Proteasome Pathway Activation, and Myonuclear Apoptosis.

    PubMed

    Abrigo, Johanna; Rivera, Juan Carlos; Aravena, Javier; Cabrera, Daniel; Simon, Felipe; Ezquer, Fernando; Ezquer, Marcelo; Cabello-Verrugio, Claudio

    2016-01-01

    Obesity can lead to skeletal muscle atrophy, a pathological condition characterized by the loss of strength and muscle mass. A feature of muscle atrophy is a decrease of myofibrillar proteins as a result of ubiquitin proteasome pathway overactivation, as evidenced by increased expression of the muscle-specific ubiquitin ligases atrogin-1 and MuRF-1. Additionally, other mechanisms are related to muscle wasting, including oxidative stress, myonuclear apoptosis, and autophagy. Stem cells are an emerging therapy in the treatment of chronic diseases such as high fat diet-induced obesity. Mesenchymal stem cells (MSCs) are a population of self-renewable and undifferentiated cells present in the bone marrow and other mesenchymal tissues of adult individuals. The present study is the first to analyze the effects of systemic MSC administration on high fat diet-induced skeletal muscle atrophy in the tibialis anterior of mice. Treatment with MSCs reduced losses of muscle strength and mass, decreases of fiber diameter and myosin heavy chain protein levels, and fiber type transitions. Underlying these antiatrophic effects, MSC administration also decreased ubiquitin proteasome pathway activation, oxidative stress, and myonuclear apoptosis. These results are the first to indicate that systemically administered MSCs could prevent muscle wasting associated with high fat diet-induced obesity and diabetes. PMID:27579157

  18. High Fat Diet-Induced Skeletal Muscle Wasting Is Decreased by Mesenchymal Stem Cells Administration: Implications on Oxidative Stress, Ubiquitin Proteasome Pathway Activation, and Myonuclear Apoptosis

    PubMed Central

    Aravena, Javier; Cabrera, Daniel; Simon, Felipe; Ezquer, Fernando

    2016-01-01

    Obesity can lead to skeletal muscle atrophy, a pathological condition characterized by the loss of strength and muscle mass. A feature of muscle atrophy is a decrease of myofibrillar proteins as a result of ubiquitin proteasome pathway overactivation, as evidenced by increased expression of the muscle-specific ubiquitin ligases atrogin-1 and MuRF-1. Additionally, other mechanisms are related to muscle wasting, including oxidative stress, myonuclear apoptosis, and autophagy. Stem cells are an emerging therapy in the treatment of chronic diseases such as high fat diet-induced obesity. Mesenchymal stem cells (MSCs) are a population of self-renewable and undifferentiated cells present in the bone marrow and other mesenchymal tissues of adult individuals. The present study is the first to analyze the effects of systemic MSC administration on high fat diet-induced skeletal muscle atrophy in the tibialis anterior of mice. Treatment with MSCs reduced losses of muscle strength and mass, decreases of fiber diameter and myosin heavy chain protein levels, and fiber type transitions. Underlying these antiatrophic effects, MSC administration also decreased ubiquitin proteasome pathway activation, oxidative stress, and myonuclear apoptosis. These results are the first to indicate that systemically administered MSCs could prevent muscle wasting associated with high fat diet-induced obesity and diabetes. PMID:27579157

  19. Arabidopsis ABA-Activated Kinase MAPKKK18 is Regulated by Protein Phosphatase 2C ABI1 and the Ubiquitin–Proteasome Pathway

    PubMed Central

    Mitula, Filip; Tajdel, Malgorzata; Cieśla, Agata; Kasprowicz-Maluśki, Anna; Kulik, Anna; Babula-Skowrońska, Danuta; Michalak, Michal; Dobrowolska, Grazyna; Sadowski, Jan; Ludwików, Agnieszka

    2015-01-01

    Phosphorylation and dephosphorylation events play an important role in the transmission of the ABA signal. Although SnRK2 [sucrose non-fermenting1-related kinase2] protein kinases and group A protein phosphatase type 2C (PP2C)-type phosphatases constitute the core ABA pathway, mitogen-activated protein kinase (MAPK) pathways are also involved in plant response to ABA. However, little is known about the interplay between MAPKs and PP2Cs or SnRK2 in the regulation of ABA pathways. In this study, an effort was made to elucidate the role of MAP kinase kinase kinase18 (MKKK18) in relation to ABA signaling and response. The MKKK18 knockout lines showed more vigorous root growth, decreased abaxial stomatal index and increased stomatal aperture under normal growth conditions, compared with the control wild-type Columbia line. In addition to transcriptional regulation of the MKKK18 promoter by ABA, we demonstrated using in vitro and in vivo kinase assays that the kinase activity of MKKK18 was regulated by ABA. Analysis of the cellular localization of MKKK18 showed that the active kinase was targeted specifically to the nucleus. Notably, we identified abscisic acid insensitive 1 (ABI1) PP2C as a MKKK18-interacting protein, and demonstrated that ABI1 inhibited its activity. Using a cell-free degradation assay, we also established that MKKK18 was unstable and was degraded by the proteasome pathway. The rate of MKKK18 degradation was delayed in the ABI1 knockout line. Overall, we provide evidence that ABI1 regulates the activity and promotes proteasomal degradation of MKKK18. PMID:26443375

  20. Catabolism of endogenous and overexpressed APH1a and PEN2: evidence for artifactual involvement of the proteasome in the degradation of overexpressed proteins

    PubMed Central

    Dunys, Julie; Kawarai, Toshitaka; Wilk, Sherwin; St. George-Hyslop, Peter; Alves Da Costa, Cristine; Checler, Frédéric

    2005-01-01

    PS (presenilin)-dependent γ-secretase occurs as a high-molecular-mass complex composed of either PS1 or PS2 associated with Nct (nicastrin), PEN2 (presenilin enhancer 2 homologue) and APH1 (anterior pharynx defective 1 homologue). Numerous reports have documented the very complicated physical and functional cross-talk between these proteins that ultimately governs the biological activity of the γ-secretase, but very few studies examined the fate of the components of the complex. We show that, in both HEK-293 cells and the TSM1 neuronal cell line, the immunoreactivities of overexpressed myc-tagged-APH1a and -PEN2 were enhanced by the proteasome inhibitors ZIE and lactacystin, whereas a broad range of protease inhibitors had no effect. By contrast, proteasome inhibitors were totally unable to affect the cellular expression of endogenous APH1aL and PEN2 in HEK-293 cells, TSM1 and primary cultured cortical neurons. To explain this apparent discrepancy, we examined the degradation of myc-tagged-APH1a and -PEN2, in vitro, by cell extracts containing endogenous proteasome and by purified 20S proteasome. Strikingly, myc-tagged-APH1a and -PEN2 resist proteolysis by endogenous proteasome and purified 20S proteasome. We also show that endogenous PEN2 expression was drastically higher in wild-type than in PS- and Nct-deficient fibroblasts and was enhanced by proteasome inhibitors only in the two deficient cell systems. However, here again, purified 20S proteasome appeared unable to cleave endogenous PEN2 present in PS-deficient fibroblasts. The levels of endogenous APH1aL-like immunoreactivity were not modified by proteasome inhibitors and were unaffected by PS deficiency. Altogether, our results indicate that endogenous PEN2 and APH1aL do not undergo proteasomal degradation under physiological conditions in HEK-293 cells, TSM1 cells and fibroblasts and that the clearance of PEN2 in PS- and Nct-deficient fibroblasts is not mediated by 20S proteasome. Whether the 26S

  1. Impaired proteasome function in sporadic amyotrophic lateral sclerosis.

    PubMed

    Kabashi, Edor; Agar, Jeffrey N; Strong, Michael J; Durham, Heather D

    2012-06-01

    Abstract The ubiquitin-proteasome system, important for maintaining protein quality control, is compromised in experimental models of familial ALS. The objective of this study was to determine if proteasome function is impaired in sporadic ALS. Proteasomal activities and subunit composition were evaluated in homogenates of spinal cord samples obtained at autopsy from sporadic ALS and non-neurological control cases, compared to cerebellum as a clinically spared tissue. The level of 20S α structural proteasome subunits was assessed in motor neurons by immunohistochemistry. Catalysis of peptide substrates of the three major proteasomal activities was substantially reduced in ALS thoracic spinal cord, but not in cerebellum, accompanied by alterations in the constitutive proteasome machinery. Chymotrypsin-like activity was decreased to 60% and 65% of control in ventral and dorsal spinal cord, respectively, concomitant with reduction in the β5 subunit with this catalytic activity. Caspase- and trypsin-like activities were reduced to a similar extent (46% - 68% of control). Proteasome levels, although generally maintained, appeared reduced specifically in motor neurons by immunolabelling. In conclusion, there are commonalities of findings in sporadic ALS patients and presymptomatic SOD1-G93A transgenic mice and these implicate inadequate proteasome function in the pathogenesis of both familial and sporadic ALS. PMID:22632443

  2. Differential Influence on Cytotoxic T Lymphocyte Epitope Presentation by Controlled Expression of Either Proteasome Immunosubunits or Pa28

    PubMed Central

    van Hall, Thorbald; Sijts, Alice; Camps, Marcel; Offringa, Rienk; Melief, Cornelis; Kloetzel, Peter-M.; Ossendorp, Ferry

    2000-01-01

    The proteasome is the principal provider of major histocompatibility complex (MHC) class I–presented peptides. Interferon (IFN)-γ induces expression of three catalytically active proteasome subunits (LMP2, LMP7, and MECL-1) and the proteasome-associated activator PA28. These molecules are thought to optimize the generation of MHC class I–presented peptides. However, known information on their contribution in vivo is very limited. Here, we examined the antigen processing of two murine leukemia virus-encoded cytotoxic T lymphocyte (CTL) epitopes in murine cell lines equipped with a tetracycline-controlled, IFN-γ–independent expression system. We thus were able to segregate the role of the immunosubunits from the role of PA28. The presence of either immunosubunits or PA28 did not alter the presentation of a subdominant murine leukemia virus (MuLV)-derived CTL epitope. However, the presentation of the immunodominant MuLV-derived epitope was markedly enhanced upon induction of each of these two sets of genes. Thus, the IFN-γ–inducible proteasome subunits and PA28 can independently enhance antigen presentation of some CTL epitopes. Our data show that tetracycline-regulated expression of PA28 increases CTL epitope generation without affecting the 20S proteasome composition or half-life. The differential effect of these IFN-γ–inducible proteins on MHC class I processing may have a decisive influence on the quality of the CTL immune response. PMID:10952718

  3. Impaired methylation as a novel mechanism for proteasome suppression in liver cells

    SciTech Connect

    Osna, Natalia A.; White, Ronda L.; Donohue, Terrence M.; Beard, Michael R.; Tuma, Dean J.; Kharbanda, Kusum K.

    2010-01-08

    The proteasome is a multi-catalytic protein degradation enzyme that is regulated by ethanol-induced oxidative stress; such suppression is attributed to CYP2E1-generated metabolites. However, under certain conditions, it appears that in addition to oxidative stress, other mechanisms are also involved in proteasome regulation. This study investigated whether impaired protein methylation that occurs during exposure of liver cells to ethanol, may contribute to suppression of proteasome activity. We measured the chymotrypsin-like proteasome activity in Huh7CYP cells, hepatocytes, liver cytosols and nuclear extracts or purified 20S proteasome under conditions that maintain or prevent protein methylation. Reduction of proteasome activity of hepatoma cell and hepatocytes by ethanol or tubercidin was prevented by simultaneous treatment with S-adenosylmethionine (SAM). Moreover, the tubercidin-induced decline in proteasome activity occurred in both nuclear and cytosolic fractions. In vitro exposure of cell cytosolic fractions or highly purified 20S proteasome to low SAM:S-adenosylhomocysteine (SAH) ratios in the buffer also suppressed proteasome function, indicating that one or more methyltransferase(s) may be associated with proteasomal subunits. Immunoblotting a purified 20S rabbit red cell proteasome preparation using methyl lysine-specific antibodies revealed a 25 kDa proteasome subunit that showed positive reactivity with anti-methyl lysine. This reactivity was modified when 20S proteasome was exposed to differential SAM:SAH ratios. We conclude that impaired methylation of proteasome subunits suppressed proteasome activity in liver cells indicating an additional, yet novel mechanism of proteasome activity regulation by ethanol.

  4. Evolution of Proteasome Regulators in Eukaryotes

    PubMed Central

    Fort, Philippe; Kajava, Andrey V.; Delsuc, Fredéric; Coux, Olivier

    2015-01-01

    All living organisms require protein degradation to terminate biological processes and remove damaged proteins. One such machine is the 20S proteasome, a specialized barrel-shaped and compartmentalized multicatalytic protease. The activity of the 20S proteasome generally requires the binding of regulators/proteasome activators (PAs), which control the entrance of substrates. These include the PA700 (19S complex), which assembles with the 20S and forms the 26S proteasome and allows the efficient degradation of proteins usually labeled by ubiquitin tags, PA200 and PA28, which are involved in proteolysis through ubiquitin-independent mechanisms and PI31, which was initially identified as a 20S inhibitor in vitro. Unlike 20S proteasome, shown to be present in all Eukaryotes and Archaea, the evolutionary history of PAs remained fragmentary. Here, we made a comprehensive survey and phylogenetic analyses of the four types of regulators in 17 clades covering most of the eukaryotic supergroups. We found remarkable conservation of each PA700 subunit in all eukaryotes, indicating that the current complex PA700 structure was already set up in the last eukaryotic common ancestor (LECA). Also present in LECA, PA200, PA28, and PI31 showed a more contrasted evolutionary picture, because many lineages have subsequently lost one or two of them. The paramount conservation of PA700 composition in all eukaryotes and the dynamic evolution of PA200, PA28, and PI31 are discussed in the light of current knowledge on their physiological roles. PMID:25943340

  5. Processing and MHC class II presentation of exogenous soluble antigen involving a proteasome-dependent cytosolic pathway in CD40-activated B cells.

    PubMed

    Becker, Hans Jiro; Kondo, Eisei; Shimabukuro-Vornhagen, Alexander; Theurich, Sebastian; von Bergwelt-Baildon, Michael S

    2016-08-01

    Activated B cells have the capacity to present antigen and induce immune responses as potent antigen-presenting cells (APCs). As in other APCs, antigen presentation by B cells involves antigen internalization, antigen processing, and peptide loading onto MHC molecules. However, while the mechanism of antigen processing has been studied extensively in other APCs, this pathway remains elusive in B cells. The aim of this study was to investigate the MHC class II processing pathway in CD40-activated B cells (CD40Bs), as a model for activated, antigen-presenting B cells. Using CMV pp65 as a model antigen, we evaluated processing and presentation of the CD4 + T-cell epitope 509-523 (K509) by human CD40Bs in ELISPOT assays. As expected, stimulation of specific CD4 + T-cell clones was attenuated after pretreatment of CD40Bs with inhibitors of classic class II pathway components. However, proteasome inhibitors such as epoxomicin limited antigen presentation as well. This suggests that the antigen is processed in a non-classical, cytosolic MHC class II pathway. Further experiments with truncated protein variants revealed involvement of the proteasome in processing of the N and C extensions of the epitope. Access to the cytosol was shown to be size dependent. Epoxomicin sensitivity exclusively in CD40B cells, but not in dendritic cells, suggests a novel processing mechanism unique to this APC. Our data suggest that B cells process antigen using a distinct, non-classical class II pathway. PMID:26561366

  6. Design, Synthesis, and Biological Activity of Isosyringolin A.

    PubMed

    Kitahata, Shun; Chiba, Takuya; Yoshida, Takashi; Ri, Masaki; Iida, Shinsuke; Matsuda, Akira; Ichikawa, Satoshi

    2016-05-01

    Isosyringolin A, which is an isomer of the proteasome-inhibiting natural product syringolin A, was designed and synthesized to develop analogues that are step economical and synthetically accessible in a practical manner. It was revealed that isosyringolin A exhibited proteasome-inhibitory activity comparable to that of syringolin A and that its derivatization leads to great enhancement in its proteasome inhibitory activity as well as its cytotoxicity against human myeloma cells. PMID:27123978

  7. GSK-3β signaling determines autophagy activation in the breast tumor cell line MCF7 and inclusion formation in the non-tumor cell line MCF10A in response to proteasome inhibition

    PubMed Central

    Gavilán, E; Sánchez-Aguayo, I; Daza, P; Ruano, D

    2013-01-01

    The ubiquitin–proteasome system and the autophagy–lysosome pathway are the two main mechanisms for eukaryotic intracellular protein degradation. Proteasome inhibitors are used for the treatment of some types of cancer, whereas autophagy seems to have a dual role in tumor cell survival and death. However, the relationship between both pathways has not been extensively studied in tumor cells. We have investigated both proteolytic systems in the human epithelial breast non-tumor cell line MCF10A and in the human epithelial breast tumor cell line MCF7. In basal condition, tumor cells showed a lower proteasome function but a higher autophagy activity when compared with MCF10A cells. Importantly, proteasome inhibition (PI) leads to different responses in both cell types. Tumor cells showed a dose-dependent glycogen synthase kinase-3 (GSK-3)β inhibition, a huge increase in the expression of the transcription factor CHOP and an active processing of caspase-8. By contrast, MCF10A cells fully activated GSK-3β and showed a lower expression of both CHOP and processed caspase-8. These molecular differences were reflected in a dose-dependent autophagy activation and cell death in tumor cells, while non-tumor cells exhibited the formation of inclusion bodies and a decrease in the cell death rate. Importantly, the behavior of the MCF7 cells can be reproduced in MCF10A cells when GSK-3β and the proteasome were simultaneously inhibited. Under this situation, MCF10A cells strongly activated autophagy, showing minimal inclusion bodies, increased CHOP expression and cell death rate. These findings support GSK-3β signaling as a key mechanism in regulating autophagy activation or inclusion formation in human tumor or non-tumor breast cells, respectively, which may shed new light on breast cancer control. PMID:23559006

  8. TGF-β activates APC through Cdh1 binding for Cks1 and Skp2 proteasomal destruction stabilizing p27kip1 for normal endometrial growth.

    PubMed

    Pavlides, Savvas C; Lecanda, Jon; Daubriac, Julien; Pandya, Unnati M; Gama, Patricia; Blank, Stephanie; Mittal, Khushbakhat; Shukla, Pratibha; Gold, Leslie I

    2016-04-01

    We previously reported that aberrant TGF-β/Smad2/3 signaling in endometrial cancer (ECA) leads to continuous ubiquitylation of p27(kip1)(p27) by the E3 ligase SCF-Skp2/Cks1 causing its degradation, as a putative mechanism involved in the pathogenesis of this cancer. In contrast, normal intact TGF-β signaling prevents degradation of nuclear p27 by SCF-Skp2/Cks1 thereby accumulating p27 to block Cdk2 for growth arrest. Here we show that in ECA cell lines and normal primary endometrial epithelial cells, TGF-β increases Cdh1 and its binding to APC/C to form the E3 ligase complex that ubiquitylates Cks1 and Skp2 prompting their proteasomal degradation and thus, leaving p27 intact. Knocking-down Cdh1 in ECA cell lines increased Skp2/Cks1 E3 ligase activity, completely diminished nuclear and cytoplasmic p27, and obviated TGF-β-mediated inhibition of proliferation. Protein synthesis was not required for TGF-β-induced increase in nuclear p27 and decrease in Cks1 and Skp2. Moreover, half-lives of Cks1 and Skp2 were extended in the Cdh1-depleted cells. These results suggest that the levels of p27, Skp2 and Cks1 are strongly or solely regulated by proteasomal degradation. Finally, an inverse relationship of low p27 and high Cks1 in the nucleus was shown in patients in normal proliferative endometrium and grade I-III ECAs whereas differentiated secretory endometrium showed the reverse. These studies implicate Cdh1 as the master regulator of TGF-β-induced preservation of p27 tumor suppressor activity. Thus, Cdh1 is a potential therapeutic target for ECA and other human cancers showing an inverse relationship between Cks1/Skp2 and p27 and/or dysregulated TGF-β signaling. PMID:26963853

  9. New proteasome inhibitors in myeloma.

    PubMed

    Lawasut, Panisinee; Chauhan, Dharminder; Laubach, Jacob; Hayes, Catriona; Fabre, Claire; Maglio, Michelle; Mitsiades, Constantine; Hideshima, Teru; Anderson, Kenneth C; Richardson, Paul G

    2012-12-01

    Proteasome inhibition has a validated role in cancer therapy since the successful introduction of bortezomib for the treatment of multiple myeloma (MM) and mantle cell lymphoma, leading to the development of second-generation proteasome inhibitors (PI) for MM patients in whom currently approved therapies have failed. Five PIs have reached clinical evaluation, with the goals of improving efficacy and limiting toxicity, including peripheral neuropathy (PN). Carfilzomib, an epoxyketone with specific chymothrypsin-like activity, acts as an irreversible inhibitor and was recently FDA approved for the response benefit seen in relapsed and refractory MM patients previously treated with bortezomib, thalidomide and lenalidomide. ONX-0912 is now under evaluation as an oral form with similar activity. The boronate peptides MLN9708 and CEP-18770 are orally bioactive bortezomib analogs with prolonged activity and greater tissue penetration. NPI-0052 (marizomib) is a unique, beta-lactone non-selective PI that has been shown to potently overcome bortezomib resistance in vitro. All of these second-generation PIs demonstrate encouraging anti-MM activity and appear to reduce the incidence of PN, with clinical trials ongoing. PMID:23065395

  10. Proteasome modulators: essential chemical genetic tools for understanding human diseases.

    PubMed

    Wehenkel, Marie; Hong, Jin Tae; Kim, Kyung Bo

    2008-04-01

    Primarily used for medicinal purposes in the past, biologically active small molecules have been increasingly employed to explore complex biological processes in the era of "chemical genetics". Since the contributions of this small molecule approach to biology have been extensive, we limit the focus of our review to the use of small-molecule modulators in the exciting field of proteasomal biology, one that has benefited significantly from a chemical genetics approach. Specifically, as the contributions of general inhibitors of proteasomal activity to the fields of cell biology and clinical oncology have been extensively discussed in several excellent reviews, we instead outline recent progress towards the development of novel, specific classes of proteasome modulators for studies of proteasomal biology and the types of proteasome inhibitors emerging as important new treatment options for cancer therapeutics. PMID:18354780

  11. Potential role of 20S proteasome in maintaining stem cell integrity of human bone marrow stromal cells in prolonged culture expansion

    SciTech Connect

    Lu, Li; Song, Hui-Fang; Zhang, Wei-Guo; Liu, Xue-Qin; Zhu, Qian; Cheng, Xiao-Long; Yang, Gui-Jiao; Li, Ang; Xiao, Zhi-Cheng

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer Prolonged culture expansion retards proliferation and induces senescence of hBMSCs. Black-Right-Pointing-Pointer Reduced 20S proteasomal activity and expression potentially contribute to cell aging. Black-Right-Pointing-Pointer MG132-mediated 20S proteasomal inhibition induces senescence-like phenotype. Black-Right-Pointing-Pointer 18{alpha}-GA stimulates proteasomal activity and restores replicative senescence. Black-Right-Pointing-Pointer 18{alpha}-GA retains differentiation without affecting stem cell characterizations. -- Abstract: Human bone marrow stromal cells (hBMSCs) could be used in clinics as precursors of multiple cell lineages following proper induction. Such application is impeded by their characteristically short lifespan, together with the increasing loss of proliferation capability and progressive reduction of differentiation potential after the prolonged culture expansion. In the current study, we addressed the possible role of 20S proteasomes in this process. Consistent with prior reports, long-term in vitro expansion of hBMSCs decreased cell proliferation and increased replicative senescence, accompanied by reduced activity and expression of the catalytic subunits PSMB5 and PSMB1, and the 20S proteasome overall. Application of the proteasome inhibitor MG132 produced a senescence-like phenotype in early passages, whereas treating late-passage cells with 18{alpha}-glycyrrhetinic acid (18{alpha}-GA), an agonist of 20S proteasomes, delayed the senescence progress, enhancing the proliferation and recovering the capability of differentiation. The data demonstrate that activation of 20S proteasomes assists in counteracting replicative senescence of hBMSCs expanded in vitro.

  12. Trial Watch: Proteasomal inhibitors for anticancer therapy

    PubMed Central

    Obrist, Florine; Manic, Gwenola; Kroemer, Guido; Vitale, Ilio; Galluzzi, Lorenzo

    2015-01-01

    The so-called “ubiquitin-proteasome system” (UPS) is a multicomponent molecular apparatus that catalyzes the covalent attachment of several copies of the small protein ubiquitin to other proteins that are generally (but not always) destined to proteasomal degradation. This enzymatic cascade is crucial for the maintenance of intracellular protein homeostasis (both in physiological conditions and in the course of adaptive stress responses), and regulates a wide array of signaling pathways. In line with this notion, defects in the UPS have been associated with aging as well as with several pathological conditions including cardiac, neurodegenerative, and neoplastic disorders. As transformed cells often experience a constant state of stress (as a result of the hyperactivation of oncogenic signaling pathways and/or adverse microenvironmental conditions), their survival and proliferation are highly dependent on the integrity of the UPS. This rationale has driven an intense wave of preclinical and clinical investigation culminating in 2003 with the approval of the proteasomal inhibitor bortezomib by the US Food and Drug Administration for use in multiple myeloma patients. Another proteasomal inhibitor, carfilzomib, is now licensed by international regulatory agencies for use in multiple myeloma patients, and the approved indications for bortezomib have been extended to mantle cell lymphoma. This said, the clinical activity of bortezomib and carfilzomib is often limited by off-target effects, innate/acquired resistance, and the absence of validated predictive biomarkers. Moreover, the antineoplastic activity of proteasome inhibitors against solid tumors is poor. In this Trial Watch we discuss the contribution of the UPS to oncogenesis and tumor progression and summarize the design and/or results of recent clinical studies evaluating the therapeutic profile of proteasome inhibitors in cancer patients. PMID:27308423

  13. Trial Watch: Proteasomal inhibitors for anticancer therapy.

    PubMed

    Obrist, Florine; Manic, Gwenola; Kroemer, Guido; Vitale, Ilio; Galluzzi, Lorenzo

    2015-01-01

    The so-called "ubiquitin-proteasome system" (UPS) is a multicomponent molecular apparatus that catalyzes the covalent attachment of several copies of the small protein ubiquitin to other proteins that are generally (but not always) destined to proteasomal degradation. This enzymatic cascade is crucial for the maintenance of intracellular protein homeostasis (both in physiological conditions and in the course of adaptive stress responses), and regulates a wide array of signaling pathways. In line with this notion, defects in the UPS have been associated with aging as well as with several pathological conditions including cardiac, neurodegenerative, and neoplastic disorders. As transformed cells often experience a constant state of stress (as a result of the hyperactivation of oncogenic signaling pathways and/or adverse microenvironmental conditions), their survival and proliferation are highly dependent on the integrity of the UPS. This rationale has driven an intense wave of preclinical and clinical investigation culminating in 2003 with the approval of the proteasomal inhibitor bortezomib by the US Food and Drug Administration for use in multiple myeloma patients. Another proteasomal inhibitor, carfilzomib, is now licensed by international regulatory agencies for use in multiple myeloma patients, and the approved indications for bortezomib have been extended to mantle cell lymphoma. This said, the clinical activity of bortezomib and carfilzomib is often limited by off-target effects, innate/acquired resistance, and the absence of validated predictive biomarkers. Moreover, the antineoplastic activity of proteasome inhibitors against solid tumors is poor. In this Trial Watch we discuss the contribution of the UPS to oncogenesis and tumor progression and summarize the design and/or results of recent clinical studies evaluating the therapeutic profile of proteasome inhibitors in cancer patients. PMID:27308423

  14. Endothelial monocyte activating polypeptide-II modulates endothelial cell responses by degrading hypoxia-inducible factor-1alpha through interaction with PSMA7, a component of the proteasome

    SciTech Connect

    Tandle, Anita T.; Calvani, Maura; Uranchimeg, Badarch; Zahavi, David; Melillo, Giovanni; Libutti, Steven K.

    2009-07-01

    The majority of human tumors are angiogenesis dependent. Understanding the specific mechanisms that contribute to angiogenesis may offer the best approach to develop therapies to inhibit angiogenesis in cancer. Endothelial monocyte activating polypeptide-II (EMAP-II) is an anti-angiogenic cytokine with potent effects on endothelial cells (ECs). It inhibits EC proliferation and cord formation, and it suppresses primary and metastatic tumor growth in-vivo. However, very little is known about the molecular mechanisms behind the anti-angiogenic activity of EMAP-II. In the present study, we explored the molecular mechanism behind the anti-angiogenic activity exerted by this protein on ECs. Our results demonstrate that EMAP-II binds to the cell surface {alpha}5{beta}1 integrin receptor. The cell surface binding of EMAP-II results in its internalization into the cytoplasmic compartment where it interacts with its cytoplasmic partner PSMA7, a component of the proteasome degradation pathway. This interaction increases hypoxia-inducible factor 1-alpha (HIF-1{alpha}) degradation under hypoxic conditions. The degradation results in the inhibition of HIF-1{alpha} mediated transcriptional activity as well as HIF-1{alpha} mediated angiogenic sprouting of ECs. HIF-1{alpha} plays a critical role in angiogenesis by activating a variety of angiogenic growth factors. Our results suggest that one of the major anti-angiogenic functions of EMAP-II is exerted through its inhibition of the HIF-1{alpha} activities.

  15. Identification of Novel Proteasome Inhibitors from an Enaminone Library.

    PubMed

    Elliott, Megan L; Thomas, Kevin; Kennedy, Steven; Koduri, Naga D; Hussaini, R Syed; Sheaff, Robert J

    2015-09-01

    A library of structurally distinct enaminones was synthesized using sonication or Ru(II) catalysis to couple primary, secondary, and tertiary thioamides with α-halocarbonyls or α-diazocarbonyls. Screening the library for proteasome inhibition using a luciferase-based assay identified seven structurally diverse compounds. Two of these molecules targeted luciferase, while the remaining five exhibited varying potency and specificity for the trypsin-like, chymotrypsin-like, or caspase-like protease activities of the proteasome. Physiological relevance was confirmed by showing these molecules inhibited proteasomal degradation of the full-length protein substrate p21cip1 expressed in tissue culture cells. A cell viability analysis revealed that the proteasome inhibitors differentially affected cell survival. Results indicate a subset of enaminones and precursor molecules identified in this study are good candidates for further development into novel proteasome inhibitors with potential therapeutic value. PMID:25494709

  16. KRAS Genotype Correlates with Proteasome Inhibitor Ixazomib Activity in Preclinical In Vivo Models of Colon and Non-Small Cell Lung Cancer: Potential Role of Tumor Metabolism

    PubMed Central

    Chattopadhyay, Nibedita; Berger, Allison J.; Koenig, Erik; Bannerman, Bret; Garnsey, James; Bernard, Hugues; Hales, Paul; Maldonado Lopez, Angel; Yang, Yu; Donelan, Jill; Jordan, Kristen; Tirrell, Stephen; Stringer, Bradley; Xia, Cindy; Hather, Greg; Galvin, Katherine; Manfredi, Mark; Rhodes, Nelson; Amidon, Ben

    2015-01-01

    In non-clinical studies, the proteasome inhibitor ixazomib inhibits cell growth in a broad panel of solid tumor cell lines in vitro. In contrast, antitumor activity in xenograft tumors is model-dependent, with some solid tumors showing no response to ixazomib. In this study we examined factors responsible for ixazomib sensitivity or resistance using mouse xenograft models. A survey of 14 non-small cell lung cancer (NSCLC) and 6 colon xenografts showed a striking relationship between ixazomib activity and KRAS genotype; tumors with wild-type (WT) KRAS were more sensitive to ixazomib than tumors harboring KRAS activating mutations. To confirm the association between KRAS genotype and ixazomib sensitivity, we used SW48 isogenic colon cancer cell lines. Either KRAS-G13D or KRAS-G12V mutations were introduced into KRAS-WT SW48 cells to generate cells that stably express activated KRAS. SW48 KRAS WT tumors, but neither SW48-KRAS-G13D tumors nor SW48-KRAS-G12V tumors, were sensitive to ixazomib in vivo. Since activated KRAS is known to be associated with metabolic reprogramming, we compared metabolite profiling of SW48-WT and SW48-KRAS-G13D tumors treated with or without ixazomib. Prior to treatment there were significant metabolic differences between SW48 WT and SW48-KRAS-G13D tumors, reflecting higher oxidative stress and glucose utilization in the KRAS-G13D tumors. Ixazomib treatment resulted in significant metabolic regulation, and some of these changes were specific to KRAS WT tumors. Depletion of free amino acid pools and activation of GCN2-eIF2α-pathways were observed both in tumor types. However, changes in lipid beta oxidation were observed in only the KRAS WT tumors. The non-clinical data presented here show a correlation between KRAS genotype and ixazomib sensitivity in NSCLC and colon xenografts and provide new evidence of regulation of key metabolic pathways by proteasome inhibition. PMID:26709701

  17. KRAS Genotype Correlates with Proteasome Inhibitor Ixazomib Activity in Preclinical In Vivo Models of Colon and Non-Small Cell Lung Cancer: Potential Role of Tumor Metabolism.

    PubMed

    Chattopadhyay, Nibedita; Berger, Allison J; Koenig, Erik; Bannerman, Bret; Garnsey, James; Bernard, Hugues; Hales, Paul; Maldonado Lopez, Angel; Yang, Yu; Donelan, Jill; Jordan, Kristen; Tirrell, Stephen; Stringer, Bradley; Xia, Cindy; Hather, Greg; Galvin, Katherine; Manfredi, Mark; Rhodes, Nelson; Amidon, Ben

    2015-01-01

    In non-clinical studies, the proteasome inhibitor ixazomib inhibits cell growth in a broad panel of solid tumor cell lines in vitro. In contrast, antitumor activity in xenograft tumors is model-dependent, with some solid tumors showing no response to ixazomib. In this study we examined factors responsible for ixazomib sensitivity or resistance using mouse xenograft models. A survey of 14 non-small cell lung cancer (NSCLC) and 6 colon xenografts showed a striking relationship between ixazomib activity and KRAS genotype; tumors with wild-type (WT) KRAS were more sensitive to ixazomib than tumors harboring KRAS activating mutations. To confirm the association between KRAS genotype and ixazomib sensitivity, we used SW48 isogenic colon cancer cell lines. Either KRAS-G13D or KRAS-G12V mutations were introduced into KRAS-WT SW48 cells to generate cells that stably express activated KRAS. SW48 KRAS WT tumors, but neither SW48-KRAS-G13D tumors nor SW48-KRAS-G12V tumors, were sensitive to ixazomib in vivo. Since activated KRAS is known to be associated with metabolic reprogramming, we compared metabolite profiling of SW48-WT and SW48-KRAS-G13D tumors treated with or without ixazomib. Prior to treatment there were significant metabolic differences between SW48 WT and SW48-KRAS-G13D tumors, reflecting higher oxidative stress and glucose utilization in the KRAS-G13D tumors. Ixazomib treatment resulted in significant metabolic regulation, and some of these changes were specific to KRAS WT tumors. Depletion of free amino acid pools and activation of GCN2-eIF2α-pathways were observed both in tumor types. However, changes in lipid beta oxidation were observed in only the KRAS WT tumors. The non-clinical data presented here show a correlation between KRAS genotype and ixazomib sensitivity in NSCLC and colon xenografts and provide new evidence of regulation of key metabolic pathways by proteasome inhibition. PMID:26709701

  18. Proteasomes generate spliced epitopes by two different mechanisms and as efficiently as non-spliced epitopes.

    PubMed

    Ebstein, F; Textoris-Taube, K; Keller, C; Golnik, R; Vigneron, N; Van den Eynde, B J; Schuler-Thurner, B; Schadendorf, D; Lorenz, F K M; Uckert, W; Urban, S; Lehmann, A; Albrecht-Koepke, N; Janek, K; Henklein, P; Niewienda, A; Kloetzel, P M; Mishto, M

    2016-01-01

    Proteasome-catalyzed peptide splicing represents an additional catalytic activity of proteasomes contributing to the pool of MHC-class I-presented epitopes. We here biochemically and functionally characterized a new melanoma gp100 derived spliced epitope. We demonstrate that the gp100(mel)47-52/40-42 antigenic peptide is generated in vitro and in cellulo by a not yet described proteasomal condensation reaction. gp100(mel)47-52/40-42 generation is enhanced in the presence of the β5i/LMP7 proteasome-subunit and elicits a peptide-specific CD8(+) T cell response. Importantly, we demonstrate that different gp100(mel)-derived spliced epitopes are generated and presented to CD8(+) T cells with efficacies comparable to non-spliced canonical tumor epitopes and that gp100(mel)-derived spliced epitopes trigger activation of CD8(+) T cells found in peripheral blood of half of the melanoma patients tested. Our data suggest that both transpeptidation and condensation reactions contribute to the frequent generation of spliced epitopes also in vivo and that their immune relevance may be comparable to non-spliced epitopes. PMID:27049119

  19. Proteasomes generate spliced epitopes by two different mechanisms and as efficiently as non-spliced epitopes

    PubMed Central

    Ebstein, F.; Textoris-Taube, K.; Keller, C.; Golnik, R.; Vigneron, N.; Van den Eynde, B. J.; Schuler-Thurner, B.; Schadendorf, D.; Lorenz, F. K. M.; Uckert, W.; Urban, S.; Lehmann, A.; Albrecht-Koepke, N.; Janek, K.; Henklein, P.; Niewienda, A.; Kloetzel, P. M.; Mishto, M.

    2016-01-01

    Proteasome-catalyzed peptide splicing represents an additional catalytic activity of proteasomes contributing to the pool of MHC-class I-presented epitopes. We here biochemically and functionally characterized a new melanoma gp100 derived spliced epitope. We demonstrate that the gp100mel47–52/40–42 antigenic peptide is generated in vitro and in cellulo by a not yet described proteasomal condensation reaction. gp100mel47–52/40–42 generation is enhanced in the presence of the β5i/LMP7 proteasome-subunit and elicits a peptide-specific CD8+ T cell response. Importantly, we demonstrate that different gp100mel-derived spliced epitopes are generated and presented to CD8+ T cells with efficacies comparable to non-spliced canonical tumor epitopes and that gp100mel-derived spliced epitopes trigger activation of CD8+ T cells found in peripheral blood of half of the melanoma patients tested. Our data suggest that both transpeptidation and condensation reactions contribute to the frequent generation of spliced epitopes also in vivo and that their immune relevance may be comparable to non-spliced epitopes. PMID:27049119

  20. Harnessing Proteasome Dynamics and Allostery in Drug Design

    PubMed Central

    Osmulski, Pawel A.

    2014-01-01

    Abstract Significance: The proteasome is the essential protease that is responsible for regulated cleavage of the bulk of intracellular proteins. Its central role in cellular physiology has been exploited in therapies against aggressive cancers where proteasome-specific competitive inhibitors that block proteasome active centers are very effectively used. However, drugs regulating this essential protease are likely to have broader clinical usefulness. The non-catalytic sites of the proteasome emerge as an attractive alternative target in search of highly specific and diverse proteasome regulators. Recent Advances: Crystallographic models of the proteasome leave the false impression of fixed structures with minimal molecular dynamics lacking long-distance allosteric signaling. However, accumulating biochemical and structural observations strongly support the notion that the proteasome is regulated by precise allosteric interactions arising from protein dynamics, encouraging the active search for allosteric regulators. Here, we discuss properties of several promising compounds that affect substrate gating and processing in antechambers, and interactions of the catalytic core with regulatory proteins. Critical Issues: Given the structural complexity of proteasome assemblies, it is a painstaking process to better understand their allosteric regulation and molecular dynamics. Here, we discuss the challenges and achievements in this field. We place special emphasis on the role of atomic force microscopy imaging in probing the allostery and dynamics of the proteasome, and in dissecting the mechanisms involving small-molecule allosteric regulators. Future Directions: New small-molecule allosteric regulators may become a next generation of drugs targeting the proteasome, which is critical to the development of new therapies in cancers and other diseases. Antioxid. Redox Signal. 21, 2286–2301. PMID:24410482

  1. A novel proteasome inhibitor suppresses tumor growth via targeting both 19S proteasome deubiquitinases and 20S proteolytic peptidases

    PubMed Central

    Liu, Ningning; Liu, Chunjiao; Li, Xiaofen; Liao, Siyan; Song, Wenbin; Yang, Changshan; Zhao, Chong; Huang, Hongbiao; Guan, Lixia; Zhang, Peiquan; Liu, Shouting; Hua, Xianliang; Chen, Xin; Zhou, Ping; Lan, Xiaoying; Yi, Songgang; Wang, Shunqing; Wang, Xuejun; Dou, Q. Ping; Liu, Jinbao

    2014-01-01

    The successful development of bortezomib-based therapy for treatment of multiple myeloma has established proteasome inhibition as an effective therapeutic strategy, and both 20S proteasome peptidases and 19S deubiquitinases (DUBs) are becoming attractive targets of cancer therapy. It has been reported that metal complexes, such as copper complexes, inhibit tumor proteasome. However, the involved mechanism of action has not been fully characterized. Here we report that (i) copper pyrithione (CuPT), an alternative to tributyltin for antifouling paint biocides, inhibits the ubiquitin-proteasome system (UPS) via targeting both 19S proteasome-specific DUBs and 20S proteolytic peptidases with a mechanism distinct from that of the FDA-approved proteasome inhibitor bortezomib; (ii) CuPT potently inhibits proteasome-specific UCHL5 and USP14 activities; (iii) CuPT inhibits tumor growth in vivo and induces cytotoxicity in vitro and ex vivo. This study uncovers a novel class of dual inhibitors of DUBs and proteasome and suggests a potential clinical strategy for cancer therapy. PMID:24912524

  2. A novel proteasome inhibitor suppresses tumor growth via targeting both 19S proteasome deubiquitinases and 20S proteolytic peptidases.

    PubMed

    Liu, Ningning; Liu, Chunjiao; Li, Xiaofen; Liao, Siyan; Song, Wenbin; Yang, Changshan; Zhao, Chong; Huang, Hongbiao; Guan, Lixia; Zhang, Peiquan; Liu, Shouting; Hua, Xianliang; Chen, Xin; Zhou, Ping; Lan, Xiaoying; Yi, Songgang; Wang, Shunqing; Wang, Xuejun; Dou, Q Ping; Liu, Jinbao

    2014-01-01

    The successful development of bortezomib-based therapy for treatment of multiple myeloma has established proteasome inhibition as an effective therapeutic strategy, and both 20S proteasome peptidases and 19S deubiquitinases (DUBs) are becoming attractive targets of cancer therapy. It has been reported that metal complexes, such as copper complexes, inhibit tumor proteasome. However, the involved mechanism of action has not been fully characterized. Here we report that (i) copper pyrithione (CuPT), an alternative to tributyltin for antifouling paint biocides, inhibits the ubiquitin-proteasome system (UPS) via targeting both 19S proteasome-specific DUBs and 20S proteolytic peptidases with a mechanism distinct from that of the FDA-approved proteasome inhibitor bortezomib; (ii) CuPT potently inhibits proteasome-specific UCHL5 and USP14 activities; (iii) CuPT inhibits tumor growth in vivo and induces cytotoxicity in vitro and ex vivo. This study uncovers a novel class of dual inhibitors of DUBs and proteasome and suggests a potential clinical strategy for cancer therapy. PMID:24912524

  3. Dinaciclib, a Cyclin-Dependent Kinase Inhibitor Promotes Proteasomal Degradation of Mcl-1 and Enhances ABT-737-Mediated Cell Death in Malignant Human Glioma Cell Lines.

    PubMed

    Jane, Esther P; Premkumar, Daniel R; Cavaleri, Jonathon M; Sutera, Philip A; Rajasekar, Thatchana; Pollack, Ian F

    2016-02-01

    ; phosphatidylserine exposure on the plasma membrane surface and activation of caspases and poly ADP-ribose polymerase. Mechanistic studies revealed that dinaciclib promoted proteasomal degradation of Mcl-1. These observations may have important clinical implications for the design of experimental treatment protocols for malignant human glioma. PMID:26585571

  4. The 26S proteasome is a multifaceted target for anti-cancer therapies.

    PubMed

    Grigoreva, Tatyana A; Tribulovich, Vyacheslav G; Garabadzhiu, Alexander V; Melino, Gerry; Barlev, Nickolai A

    2015-09-22

    Proteasomes play a critical role in the fate of proteins that are involved in major cellular processes, including signal transduction, gene expression, cell cycle, replication, differentiation, immune response, cellular response to stress, etc. In contrast to non-specific degradation by lysosomes, proteasomes are highly selective and destroy only the proteins that are covalently labelled with small proteins, called ubiquitins. Importantly, many diseases, including neurodegenerative diseases and cancers, are intimately connected to the activity of proteasomes making them an important pharmacological target. Currently, the vast majority of inhibitors are aimed at blunting the proteolytic activities of proteasomes. However, recent achievements in solving structures of proteasomes at very high resolution provided opportunities to design new classes of small molecules that target other physiologically-important enzymatic activities of proteasomes, including the de-ubiquitinating one. This review attempts to catalog the information available to date about novel classes of proteasome inhibitors that may have important pharmacological ramifications. PMID:26295307

  5. The 26S proteasome is a multifaceted target for anti-cancer therapies

    PubMed Central

    Grigoreva, Tatyana A; Tribulovich, Vyacheslav G.; Garabadzhiu, Alexander V.; Melino, Gerry; Barlev, Nickolai A.

    2015-01-01

    Proteasomes play a critical role in the fate of proteins that are involved in major cellular processes, including signal transduction, gene expression, cell cycle, replication, differentiation, immune response, cellular response to stress, etc. In contrast to non-specific degradation by lysosomes, proteasomes are highly selective and destroy only the proteins that are covalently labelled with small proteins, called ubiquitins. Importantly, many diseases, including neurodegenerative diseases and cancers, are intimately connected to the activity of proteasomes making them an important pharmacological target. Currently, the vast majority of inhibitors are aimed at blunting the proteolytic activities of proteasomes. However, recent achievements in solving structures of proteasomes at very high resolution provided opportunities to design new classes of small molecules that target other physiologically-important enzymatic activities of proteasomes, including the de-ubiquitinating one. This review attempts to catalog the information available to date about novel classes of proteasome inhibitors that may have important pharmacological ramifications. PMID:26295307

  6. Comparison of the SUMO1 and ubiquitin conjugation pathways during the inhibition of proteasome activity with evidence of SUMO1 recycling

    PubMed Central

    2005-01-01

    To investigate potential interplay between the SUMO1 (small ubiquitin-related modifier-1) and ubiquitin pathways of post-translational protein modification, we examined aspects of their localization and conjugation status during proteasome inhibition. Our results indicate that these pathways converge upon the discrete sub-nuclear domains known as PML (promyelocytic leukaemia protein) NBs (nuclear bodies). Proteasome inhibition generated an increased number of PML bodies, without any obvious increase in size. Using a cell line that constitutively expresses an epitope-tagged version of SUMO1, which was incorporated into high-molecular-mass conjugates, we observed SUMO1 accumulating in clusters around a subset of the NBs. Nuclear ubiquitin was initially observed in numerous speckles and foci, which bore no relationship to PML NBs in the absence of proteasome inhibition. However, during proteasome inhibition, total ubiquitin-conjugated species increased in the cell, as judged by Western blotting. Concomitantly the number of nuclear ubiquitin clusters decreased, and were almost quantitatively associated with the PML NBs, co-localizing with the SUMO-conjugated pool. Proteasome inhibition depleted the pool of free SUMO1 in the cell. Reversal of proteasome inhibition in the presence or absence of protein synthesis demonstrated that free SUMO1 was regenerated from the conjugated pool. The results indicate that a significant fraction of the free SUMO1 pool could be accounted for by recycling from the conjugated pool and indeed it may be that, as for ubiquitin, SUMO1 needs to be removed from conjugated species prior to processing by the proteasome. Taken together with other recent reports on the proteasome and PML NBs, these results suggest that the PML NBs may play an important role in integrating these pathways. PMID:16117725

  7. Therapeutic Potential of Proteasome Inhibition in Duchenne and Becker Muscular Dystrophies

    PubMed Central

    Gazzerro, Elisabetta; Assereto, Stefania; Bonetto, Andrea; Sotgia, Federica; Scarfì, Sonia; Pistorio, Angela; Bonuccelli, Gloria; Cilli, Michele; Bruno, Claudio; Zara, Federico; Lisanti, Michael P.; Minetti, Carlo

    2010-01-01

    Duchenne muscular dystrophy (DMD) and its milder allelic variant, Becker muscular dystrophy (BMD), result from mutations of the dystrophin gene and lead to progressive muscle deterioration. Enhanced activation of proteasomal degradation underlies critical steps in the pathogenesis of the DMD/BMD dystrophic process. Previously, we demonstrated that treatment with the proteasome inhibitor MG-132 rescues the cell membrane localization of dystrophin and the dystrophin glycoprotein complex in mdx mice, a natural genetic mouse model of DMD. The current work aims to thoroughly define the therapeutic potential in dystrophinopathies of Velcade, a drug that selectively blocks the ubiquitin-proteasome pathway. Velcade is particularly intriguing since it has been approved for the treatment of multiple myeloma. Therefore, its side effects in humans have been explored. Velcade effects were analyzed through two independent methodological approaches. First, we administered the drug systemically in mdx mice over a 2-week period. In this system, Velcade restores the membrane expression of dystrophin and dystrophin glycoprotein complex members and improves the dystrophic phenotype. In a second approach, we treated with the compound explants from muscle biopsies of DMD or BMD patients. We show that the inhibition of the proteasome pathway up-regulates dystrophin, α-sarcoglycan, and β-dystroglycan protein levels in explants from BMD patients, whereas it increases the proteins of the dystrophin glycoprotein complex in DMD cases. PMID:20304949

  8. A mechanistic insight into a proteasome-independent constitutive inhibitor kappaBalpha (IkappaBalpha) degradation and nuclear factor kappaB (NF-kappaB) activation pathway in WEHI-231 B-cells.

    PubMed Central

    Shumway, Stuart D; Miyamoto, Shigeki

    2004-01-01

    Inducible activation of the transcription factor NF-kappaB (nuclear factor kappaB) is classically mediated by proteasomal degradation of its associated inhibitors, IkappaBalpha (inhibitory kappaBalpha) and IkappaBbeta. However, certain B-lymphocytes maintain constitutively nuclear NF-kappaB activity (a p50-c-Rel heterodimer) which is resistant to inhibition by proteasome inhibitors. This activity in the WEHI-231 B-cell line is associated with continual and preferential degradation of IkappaBalpha, which is also unaffected by proteasome inhibitors. Pharmacological studies indicated that there was a correlation between inhibition of IkappaBalpha degradation and constitutive p50-c-Rel activity. Domain analysis of IkappaBalpha by deletion mutagenesis demonstrated that an N-terminal 36-amino-acid sequence of IkappaBalpha represented an instability determinant for constitutive degradation. Moreover, domain grafting studies indicated that this sequence was sufficient to cause IkappaBbeta, but not chloramphenicol acetyltransferase, to be rapidly degraded in WEHI-231 B-cells. However, this sequence was insufficient to target IkappaBbeta to the non-proteasome degradation pathway, suggesting that there was an additional cis-element(s) in IkappaBalpha that was required for complete targeting. Nevertheless, the NF-kappaB pool associated with IkappaBbeta now became constitutively active by virtue of IkappaBbeta instability in these cells. These findings further support the notion that IkappaB instability governs the maintenance of constitutive p50-c-Rel activity in certain B-cells via a unique degradation pathway. PMID:14763901

  9. Proteasome Regulation of ULBP1 Transcription

    PubMed Central

    Butler, James E.; Moore, Mikel B.; Presnell, Steven R.; Chan, Huei-Wei; Chalupny, N. Jan; Lutz, Charles T.

    2009-01-01

    Killer lymphocytes recognize stress-activated NKG2D ligands on tumors. We examined NKG2D ligand expression in head and neck squamous cell carcinoma (HNSCC) cells and other cell lines. HNSCC cells typically expressed MHC class I chain-related gene A (MICA), MICB, UL16-binding protein (ULBP)2, and ULBP3, but they were uniformly negative for cell surface ULBP1 and ULBP4. We then studied how cancer treatments affected NKG2D ligand expression. NKG2D ligand expression was not changed by most cancer-relevant treatments. However, bortezomib and other proteasome inhibitor drugs with distinct mechanisms of action dramatically and specifically up-regulated HNSCC ULBP1 mRNA and cell surface protein. Proteasome inhibition also increased RNA for ULBP1 and other NKG2D ligands in nontransformed human keratinocytes. Proteasome inhibitor drugs increased ULBP1 transcription by acting at a site in the 522-bp ULBP1 promoter. Although the DNA damage response pathways mediated by ATM (ataxia-telangiectasia, mutated) and ATR (ATM and Rad3-related) signaling had been reported to up-regulate NKG2D ligand expression, we found that ULBP1 up-regulation was not inhibited by caffeine and wortmannin, inhibitors of ATM/ATR signaling. ULBP1 expression in HNSCC cells was not increased by several ATM/ATR activating treatments, including bleomycin, cisplatin, aphidicolin, and hydroxyurea. Ionizing radiation caused ATM activation in HNSCC cells, but high-level ULBP1 expression was not induced by gamma radiation or UV radiation. Thus, ATM/ATR signaling was neither necessary nor sufficient for high-level ULBP1 expression in human HNSCC cell lines and could not account for the proteasome effect. The selective induction of ULBP1 expression by proteasome inhibitor drugs, along with variable NKG2D ligand expression by human tumor cells, indicates that NKG2D ligand genes are independently regulated. PMID:19414815

  10. The pan-HDAC inhibitor vorinostat potentiates the activity of the proteasome inhibitor carfilzomib in human DLBCL cells in vitro and in vivo.

    PubMed

    Dasmahapatra, Girija; Lembersky, Dmitry; Kramer, Lora; Fisher, Richard I; Friedberg, Jonathan; Dent, Paul; Grant, Steven

    2010-06-01

    Interactions between histone deacetylase inhibitors (HDACIs) and the novel proteasome inhibitor carfilzomib (CFZ) were investigated in GC- and activated B-cell-like diffuse large B-cell lymphoma (ABC-DLBCL) cells. Coadministration of subtoxic or minimally toxic concentrations of CFZ) with marginally lethal concentrations of HDACIs (vorinostat, SNDX-275, or SBHA) synergistically increased mitochondrial injury, caspase activation, and apoptosis in both GC- and ABC-DLBCL cells. These events were associated with Jun NH2-terminal kinase (JNK) and p38MAPK activation, abrogation of HDACI-mediated nuclear factor-kappaB activation, AKT inactivation, Ku70 acetylation, and induction of gammaH2A.X. Genetic or pharmacologic JNK inhibition significantly diminished CFZ/vorinostat lethality. CFZ/vorinostat induced pronounced lethality in 3 primary DLBCL specimens but minimally affected normal CD34(+) hematopoietic cells. Bortezomib-resistant GC (SUDHL16) and ABC (OCI-LY10) cells exhibited partial cross-resistance to CFZ. However, CFZ/vorinostat dramatically induced resistant cell apoptosis, accompanied by increased JNK activation and gammaH2A.X expression. Finally, subeffective vorinostat doses markedly increased CFZ-mediated tumor growth suppression and apoptosis in a murine xenograft OCI-LY10 model. These findings indicate that HDACIs increase CFZ activity in GC- and ABC-DLBCL cells sensitive or resistant to bortezomib through a JNK-dependent mechanism in association with DNA damage and inhibition of nuclear factor-kappaB activation. Together, they support further investigation of strategies combining CFZ and HDACIs in DLBCL. PMID:20233973

  11. The pan-HDAC inhibitor vorinostat potentiates the activity of the proteasome inhibitor carfilzomib in human DLBCL cells in vitro and in vivo

    PubMed Central

    Dasmahapatra, Girija; Lembersky, Dmitry; Kramer, Lora; Fisher, Richard I.; Friedberg, Jonathan; Dent, Paul

    2010-01-01

    Interactions between histone deacetylase inhibitors (HDACIs) and the novel proteasome inhibitor carfilzomib (CFZ) were investigated in GC- and activated B-cell–like diffuse large B-cell lymphoma (ABC-DLBCL) cells. Coadministration of subtoxic or minimally toxic concentrations of CFZ) with marginally lethal concentrations of HDACIs (vorinostat, SNDX-275, or SBHA) synergistically increased mitochondrial injury, caspase activation, and apoptosis in both GC- and ABC-DLBCL cells. These events were associated with Jun NH2-terminal kinase (JNK) and p38MAPK activation, abrogation of HDACI-mediated nuclear factor-κB activation, AKT inactivation, Ku70 acetylation, and induction of γH2A.X. Genetic or pharmacologic JNK inhibition significantly diminished CFZ/vorinostat lethality. CFZ/vorinostat induced pronounced lethality in 3 primary DLBCL specimens but minimally affected normal CD34+ hematopoietic cells. Bortezomib-resistant GC (SUDHL16) and ABC (OCI-LY10) cells exhibited partial cross-resistance to CFZ. However, CFZ/vorinostat dramatically induced resistant cell apoptosis, accompanied by increased JNK activation and γH2A.X expression. Finally, subeffective vorinostat doses markedly increased CFZ-mediated tumor growth suppression and apoptosis in a murine xenograft OCI-LY10 model. These findings indicate that HDACIs increase CFZ activity in GC- and ABC-DLBCL cells sensitive or resistant to bortezomib through a JNK-dependent mechanism in association with DNA damage and inhibition of nuclear factor-κB activation. Together, they support further investigation of strategies combining CFZ and HDACIs in DLBCL. PMID:20233973

  12. Enhanced NIF neutron activation diagnostics

    SciTech Connect

    Yeamans, C. B.; Bleuel, D. L.; Bernstein, L. A.

    2012-10-15

    The NIF neutron activation diagnostic suite relies on removable activation samples, leading to operational inefficiencies and a fundamental lower limit on the half-life of the activated product that can be observed. A neutron diagnostic system measuring activation of permanently installed samples could remove these limitations and significantly enhance overall neutron diagnostic capabilities. The physics and engineering aspects of two proposed systems are considered: one measuring the {sup 89}Zr/{sup 89m}Zr isomer ratio in the existing Zr activation medium and the other using potassium zirconate as the activation medium. Both proposed systems could improve the signal-to-noise ratio of the current system by at least a factor of 5 and would allow independent measurement of fusion core velocity and fuel areal density.

  13. Development of novel proteasome inhibitors based on phthalazinone scaffold.

    PubMed

    Yang, Lingfei; Wang, Wei; Sun, Qi; Xu, Fengrong; Niu, Yan; Wang, Chao; Liang, Lei; Xu, Ping

    2016-06-15

    In this study we designed a series of proteasome inhibitors using pyridazinone as initial scaffold, and extended the structure with rational design by computer aided drug design (CADD). Two different synthetic routes were explored and the biological evaluation of the phthalazinone derivatives was investigated. Most importantly, electron positive triphenylphosphine group was first introduced in the structure of proteasome inhibitors and potent inhibition was achieved. As 6c was the most potent inhibitor of proteasome, we examined the structure-activity relationship (SAR) of 6c analogs. PMID:27158142

  14. Proteasome Inhibitors: An Expanding Army Attacking a Unique Target

    PubMed Central

    Kisselev, Alexei F.; van der Linden, Wouter A.; Overkleeft, Herman S.

    2012-01-01

    Proteasomes are large, multisubunit proteolytic complexes presenting multiple targets for therapeutic intervention. The 26S proteasome consists of a 20S proteolytic core and one or two 19S regulatory particles. The 20S core contains three types of active sites. Many structurally diverse inhibitors of these active sites, both natural product and synthetic, have been discovered in the last two decades. One, bortezomib, is used clinically for treatment of multiple myeloma, mantle cell lymphoma, and acute allograft rejection. Five more recently developed proteasome inhibitors are in trials for treatment of myeloma and other cancers. Proteasome inhibitors also have activity in animal models of autoimmune and inflammatory diseases, reperfusion injury, promote bone and hair growth, and can potentially be used as anti-infectives. In addition, inhibitors of ATPases and deubiquitinases of 19S regulatory particles have been discovered in the last decade. PMID:22284358

  15. TRIM13 (RFP2) downregulation decreases tumour cell growth in multiple myeloma through inhibition of NF Kappa B pathway and proteasome activity

    PubMed Central

    Gatt, Moshe E; Takada, Kohichi; Mani, Mala; Lerner, Mikael; Pick, Marjorie; Hideshima, Teru; Carrasco, Daniel E.; Protopopov, Alexei; Ivanova, Elena; Sangfelt, Olle; Grandér, Dan; Barlogie, Bart; Shaughnessy, John D.; Anderson, Kenneth C.; Carrasco, Daniel R.

    2013-01-01

    Multiple myeloma (MM) is an incurable neoplasm caused by proliferation of malignant plasma cells in the bone marrow (BM). MM is characterized frequently by a complete or partial deletion of chromosome 13q14, seen in more than 50% of patients at diagnosis. Within this deleted region the tripartite motif containing 13 (TRIM13, also termed RFP2) gene product has been proposed to be a tumour suppressor gene (TSG). Here, we show that low expression levels of TRIM13 in MM are associated with chromosome 13q deletion and poor clinical outcome. We present a functional analysis of TRIM13 using a loss-of-function approach, and demonstrate that TRIM13 downregulation decreases tumour cell survival as well as cell cycle progression and proliferation of MM cells. In addition, we provide evidence for the involvement of TRIM13 downregulation in inhibiting the NF kappa B pathway and the activity of the 20S proteasome. Although this data does not support a role of TRIM13 as a TSG, it substantiates important roles of TRIM13 in MM tumour survival and proliferation, underscoring its potential role as a novel target for therapeutic intervention. PMID:23647456

  16. Structural Insights on the Mycobacterium tuberculosis Proteasomal ATPase Mpa

    SciTech Connect

    Wang, T.; Li, H; Lin, G; Tang, C; Li, D; Nathan, C; Heran Darwin, K

    2009-01-01

    Proteasome-mediated protein turnover in all domains of life is an energy-dependent process that requires ATPase activity. Mycobacterium tuberculosis (Mtb) was recently shown to possess a ubiquitin-like proteasome pathway that plays an essential role in Mtb resistance to killing by products of host macrophages. Here we report our structural and biochemical investigation of Mpa, the presumptive Mtb proteasomal ATPase. We demonstrate that Mpa binds to the Mtb proteasome in the presence of ATPS, providing the physical evidence that Mpa is the proteasomal ATPase. X-ray crystallographic determination of the conserved interdomain showed a five stranded double {beta} barrel structure containing a Greek key motif. Structure and mutational analysis indicate a major role of the interdomain for Mpa hexamerization. Our mutational and functional studies further suggest that the central channel in the Mpa hexamer is involved in protein substrate translocation and degradation. These studies provide insights into how a bacterial proteasomal ATPase interacts with and facilitates protein degradation by the proteasome.

  17. Abnormally high expression of proteasomes in human leukemic cells.

    PubMed Central

    Kumatori, A; Tanaka, K; Inamura, N; Sone, S; Ogura, T; Matsumoto, T; Tachikawa, T; Shin, S; Ichihara, A

    1990-01-01

    Proteasomes are eukaryotic ring-shaped or cylindrical particles with multicatalytic protease activities. To clarify the involvement of proteasomes in tumorigenesis of human blood cells, we compared their expression in human hematopoietic malignant tumor cells with that in normal peripheral blood mononuclear cells. Immunohistochemical staining showed considerably increased concentrations of proteasomes in leukemic cells from the bone marrow of patients with various types of leukemia and the predominant localization of these proteasomes in the nuclei. Moreover, enzyme immunoassay and Northern blot analysis indicated that the concentrations of proteasomes and their mRNA levels were consistently much higher in a variety of malignant human hematopoietic cell lines than in resting peripheral lymphocytes and monocytes from healthy adults. Proteasome expression was also greatly increased in normal blood mononuclear cells during blastogenic transformation induced by phytohemagglutinin; their expression increased in parallel with induction of DNA synthesis and returned to the basal level with progress of the cell cycle. Thus, abnormally high expression of proteasomes may play an important role in transformation and proliferation of blood cells and in specific functions of hematopoietic tumor cells. Images PMID:2205851

  18. Degradation of oxidized proteins by the proteasome: Distinguishing between the 20S, 26S, and immunoproteasome proteolytic pathways.

    PubMed

    Raynes, Rachel; Pomatto, Laura C D; Davies, Kelvin J A

    2016-08-01

    The proteasome is a ubiquitous and highly plastic multi-subunit protease with multi-catalytic activity that is conserved in all eukaryotes. The most widely known function of the proteasome is protein degradation through the 26S ubiquitin-proteasome system, responsible for the vast majority of protein degradation during homeostasis. However, the proteasome also plays an important role in adaptive immune responses and adaptation to oxidative stress. The unbound 20S proteasome, the core common to all proteasome conformations, is the main protease responsible for degrading oxidized proteins. During periods of acute stress, the 19S regulatory cap of the 26S proteasome disassociates from the proteolytic core, allowing for immediate ATP/ubiquitin-independent protein degradation by the 20S proteasome. Despite the abundance of unbound 20S proteasome compared to other proteasomal conformations, many publications fail to distinguish between the two proteolytic systems and often regard the 26S proteasome as the dominant protease. Further confounding the issue are the differential roles these two proteolytic systems have in adaptation and aging. In this review, we will summarize the increasing evidence that the 20S core proteasome constitutes the major conformation of the proteasome system and that it is far from a latent protease requiring activation by binding regulators. PMID:27155164

  19. Overview of proteasome inhibitor-based anti-cancer therapies: perspective on bortezomib and second generation proteasome inhibitors versus future generation inhibitors of ubiquitin-proteasome system.

    PubMed

    Dou, Q Ping; Zonder, Jeffrey A

    2014-01-01

    Over the past ten years, proteasome inhibition has emerged as an effective therapeutic strategy for treating multiple myeloma (MM) and some lymphomas. In 2003, Bortezomib (BTZ) became the first proteasome inhibitor approved by the U.S. Food and Drug Administration (FDA). BTZ-based therapies have become a staple for the treatment of MM at all stages of the disease. The survival rate of MM patients has improved significantly since clinical introduction of BTZ and other immunomodulatory drugs. However, BTZ has several limitations. Not all patients respond to BTZ based therapies and relapse occurs in many patients who initially responded. Solid tumors, in particular, are often resistant to BTZ. Furthermore, BTZ can induce dose-limiting peripheral neuropathy (PN). The second generation proteasome inhibitor Carfizomib (CFZ; U.S. FDA approved in August 2012) induces responses in a minority of MM patients relapsed from or refractory to BTZ. There is less PN compared to BTZ. Four other second-generation proteasome inhibitors (Ixazomib, Delanzomib, Oprozomib and Marizomib) with different pharmacologic properties and broader anticancer activities, have also shown some clinical activity in bortezomib-resistant cancers. While the mechanism of resistance to bortezomib in human cancers still remains to be fully understood, targeting the immunoproteasome, ubiquitin E3 ligases, the 19S proteasome and deubiquitinases in pre-clinical studies represents possible directions for future generation inhibitors of ubiquitin-proteasome system in the treatment of MM and other cancers. PMID:25092212

  20. Overview of Proteasome Inhibitor-Based Anti-cancer Therapies: Perspective on Bortezomib and Second Generation Proteasome Inhibitors versus Future Generation Inhibitors of Ubiquitin-Proteasome System

    PubMed Central

    Dou, Q. Ping; Zonder, Jeffrey A.

    2014-01-01

    Over the past ten years, proteasome inhibition has emerged as an effective therapeutic strategy for treating multiple myeloma (MM) and some lymphomas. In 2003, Bortezomib (BTZ) became the first proteasome inhibitor approved by the U.S. Food and Drug Administration (FDA). BTZ-based therapies have become a staple for the treatment of MM at all stages of the disease. The survival rate of MM patients has improved significantly since clinical introduction of BTZ and other immunomodulatory drugs. However, BTZ has several limitations. Not all patients respond to BTZ-based therapies and relapse occurs in many patients who initially responded. Solid tumors, in particular, are often resistant to BTZ. Furthermore, BTZ can induce dose-limiting peripheral neuropathy (PN). The second generation proteasome inhibitor Carfizomib (CFZ; U.S. FDA approved in August 2012) induces responses in a minority of MM patients relapsed from or refractory to BTZ. There is less PN compared to BTZ. Four other second-generation proteasome inhibitors (Ixazomib, Delanzomib, Oprozomib and Marizomib) with different pharmacologic properties and broader anticancer activities, have also shown some clinical activity in bortezomib-resistant cancers. While the mechanism of resistance to bortezomib in human cancers still remains to be fully understood, targeting the immunoproteasome, ubiquitin E3 ligases, the 19S proteasome and deubiquitinases in pre-clinical studies represents possible directions for future generation inhibitors of ubiquitin-proteasome system in the treatment of MM and other cancers. PMID:25092212

  1. MLN2238, a proteasome inhibitor, induces caspase-dependent cell death, cell cycle arrest, and potentiates the cytotoxic activity of chemotherapy agents in rituximab-chemotherapy-sensitive or rituximab-chemotherapy-resistant B-cell lymphoma preclinical models.

    PubMed

    Gu, Juan J; Hernandez-Ilizaliturri, Francisco J; Mavis, Cory; Czuczman, Natalie M; Deeb, George; Gibbs, John; Skitzki, Joseph J; Patil, Ritesh; Czuczman, Myron S

    2013-11-01

    To further develop therapeutic strategies targeting the proteasome system, we studied the antitumor activity and mechanisms of action of MLN2238, a reversible proteasome inhibitor, in preclinical lymphoma models. Experiments were conducted in rituximab-chemotherapy-sensitive cell lines, rituximab-chemotherapy-resistant cell lines (RRCL), and primary B-cell lymphoma cells. Cells were exposed to MLN2238 or caspase-dependent inhibitors, and differences in cell viability, alterations in apoptotic protein levels, effects on cell cycle, and the possibility of synergy when combined with chemotherapeutic agents were evaluated. MLN2238 showed more potent dose-dependent and time-dependent cytotoxicity and inhibition of cell proliferation in lymphoma cells than bortezomib. Our data suggest that MLN2238 can induce caspase-independent cell death in RRCL. MLN2238 (and to a much lesser degree bortezomib) reduced RRCL S phase and induced cell cycle arrest in the G2/M phase. Exposure of rituximab-chemotherapy-sensitive cell lines and RRCL to MLN2238 potentiated the cytotoxic effects of gemcitabine, doxorubicin, and paclitaxel and overcame resistance to chemotherapy in RRCL. MLN2238 is a potent proteasome inhibitor active in rituximab-chemotherapy-sensitive and rituximab-chemotherapy-resistant cell models and potentiates the antitumor activity of chemotherapy agents and has the potential of becoming an effective therapeutic agent in the treatment of therapy-resistant B-cell lymphoma. PMID:23995855

  2. A Heart That Beats for 500 Years: Age-Related Changes in Cardiac Proteasome Activity, Oxidative Protein Damage and Expression of Heat Shock Proteins, Inflammatory Factors, and Mitochondrial Complexes in Arctica islandica, the Longest-Living Noncolonial Animal

    PubMed Central

    Sosnowska, Danuta; Richardson, Chris; Sonntag, William E.; Csiszar, Anna; Ridgway, Iain

    2014-01-01

    Study of negligibly senescent animals may provide clues that lead to better understanding of the cardiac aging process. To elucidate mechanisms of successful cardiac aging, we investigated age-related changes in proteasome activity, oxidative protein damage and expression of heat shock proteins, inflammatory factors, and mitochondrial complexes in the heart of the ocean quahog Arctica islandica, the longest-lived noncolonial animal (maximum life span potential: 508 years). We found that in the heart of A. islandica the level of oxidatively damaged proteins did not change significantly up to 120 years of age. No significant aging-induced changes were observed in caspase-like and trypsin-like proteasome activity. Chymotrypsin-like proteasome activity showed a significant early-life decline, then it remained stable for up to 182 years. No significant relationship was observed between the extent of protein ubiquitination and age. In the heart of A. islandica, an early-life decline in expression of HSP90 and five mitochondrial electron transport chain complexes was observed. We found significant age-related increases in the expression of three cytokine-like mediators (interleukin-6, interleukin-1β, and tumor necrosis factor-α) in the heart of A. islandica. Collectively, in extremely long-lived molluscs, maintenance of protein homeostasis likely contributes to the preservation of cardiac function. Our data also support the concept that low-grade chronic inflammation in the cardiovascular system is a universal feature of the aging process, which is also manifest in invertebrates. PMID:24347613

  3. Proteasome-mediated degradation of IκBα and processing of p105 in Crohn disease and ulcerative colitis

    PubMed Central

    Visekruna, Alexander; Joeris, Thorsten; Seidel, Daniel; Kroesen, Anjo; Loddenkemper, Christoph; Zeitz, Martin; Kaufmann, Stefan H.E.; Schmidt-Ullrich, Ruth; Steinhoff, Ulrich

    2006-01-01

    Enhanced NF-κB activity is involved in the pathology of both forms of inflammatory bowel disease (IBD), Crohn disease (CD) and ulcerative colitis (UC). Here we analyzed the mechanism of proteasome-mediated NF-κB activation in CD and UC. Our studies demonstrate that the subunit composition and the proteolytic function of proteasomes differ between UC and CD. High expression of the immunoproteasome subunits β1i and β2i is characteristic of the inflamed mucosa of CD. In line with this, we found enhanced processing of NF-κB precursor p105 and degradation of inhibitor of NF-κB, IκBα, by immunoproteasomes isolated from the mucosa of CD patients. In comparison with healthy controls and CD patients, UC patients exhibited an intermediate phenotype regarding the proteasome-mediated processing/degradation of NF-κB components. Finally, increased expression of the NF-κB family member c-Rel in the inflamed mucosa of CD patients suggests that p50/c-Rel is important for IFN-γ–mediated induction of immunoproteasomes via IL-12–driven Th1 responses. These findings suggest that distinct proteasome subunits influence the intensity of NF-κB–mediated inflammation in IBD patients. PMID:17124531

  4. Fellutamide B is a Potent Inhibitor of the Mycobacterium tuberculosis Proteasome

    SciTech Connect

    Lin, G.; Li, D; Chidawanyika, T; Nathan, C; Li, H

    2010-01-01

    Via high-throughput screening of a natural compound library, we have identified a lipopeptide aldehyde, fellutamide B (1), as the most potent inhibitor of the Mycobacterium tuberculosis (Mtb) proteasome tested to date. Kinetic studies reveal that 1 inhibits both Mtb and human proteasomes in a time-dependent manner under steady-state condition. Remarkably, 1 inhibits the Mtb proteasome in a single-step binding mechanism with K{sub i} = 6.8 nM, whereas it inhibits the human proteasome {beta}5 active site following a two-step mechanism with K{sub i} = 11.5 nM and K*{sub i} = 0.93 nM. Co-crystallization of 1 bound to the Mtb proteasome revealed a structural basis for the tight binding of 1 to the active sites of the Mtb proteasome. The hemiacetal group of 1 in the Mtb proteasome takes the (R)-configuration, whereas in the yeast proteasome it takes the (S)-configuration, indicating that the pre-chiral CHO group of 1 binds to the active site Thr1 in a different orientation. Re-examination of the structure of the yeast proteasome in complex with 1 showed significant conformational changes at the substrate-binding cleft along the active site. These structural differences are consistent with the different kinetic mechanisms of 1 against Mtb and human proteasomes.

  5. Characterization of peptidyl boronic acid inhibitors of mammalian 20 S and 26 S proteasomes and their inhibition of proteasomes in cultured cells.

    PubMed Central

    Gardner, R C; Assinder, S J; Christie, G; Mason, G G; Markwell, R; Wadsworth, H; McLaughlin, M; King, R; Chabot-Fletcher, M C; Breton, J J; Allsop, D; Rivett, A J

    2000-01-01

    Proteasomes are large multisubunit proteinases which have several distinct catalytic sites. In this study a series of di- and tri-peptidyl boronic acids have been tested on the chymotrypsin-like activity of purified mammalian 20 S and 26 S proteasomes assayed with succinyl-Leu-Leu-Val-Tyr-amidomethylcoumarin (suc-Leu-Leu-Val-Tyr-AMC) as substrate. The inhibition of 20 S proteasomes is competitive but only slowly reversible. The K(i) values for the best inhibitors were in the range 10-100 nM with suc-Leu-Leu-Val-Tyr-AMC as substrate, but the compounds tested were much less effective on other proteasome activities measured with other substrates. Free boronic acid inhibitors exhibited equivalent potency to their pinacol esters. Both benzoyl (Bz)-Phe-boroLeu and benzyloxycarbonyl (Cbz)-Leu-Leu-boroLeu pinacol ester inhibited 20 S and 26 S proteasomes with non-ideal behaviour, differences in inhibition of the two forms of proteasomes becoming apparent at high inhibitor concentrations (above 3xK(i)). Both of these compounds were also potent inhibitors of 20 S and 26 S proteasomes in cultured cells. However, gel filtration of cell extracts prepared from cells treated with radiolabelled phenacetyl-Leu-Leu-boroLeu showed that only 20 S proteasomes were strongly labelled, demonstrating differences in the characteristics of inhibition of 20 S and 26 S proteasomes. The usefulness of peptidyl boronic acid inhibitors for investigations of proteasome-mediated protein degradation was confirmed by the observation that Bz-Phe-boroLeu and Cbz-Leu-Leu-boroLeu pinacol ester inhibited NFkappaB activation with IC(50) values comparable to their K(i) values for purified proteasomes. The latter result supports the view that the chymotrypsin-like activity of proteasomes assayed with suc-Leu-Leu-Val-Tyr-AMC is a critical one for protein degradation in cells. PMID:10677365

  6. Controlled Access of p53 to the Nucleus Regulates its Proteasomal Degradation by MDM2

    PubMed Central

    Davis, James R.; Mossalam, Mohanad; Lim, Carol S.

    2013-01-01

    The tumor suppressor p53 can be sent to the proteasome for degradation by placing its nucleo-cytoplasmic shuttling under ligand control. Endogenous p53 is ubiquitinated by MDM2 in the nucleus, and controlling the access of p53 to the nuclear compartment regulates its ubiquitination and proteasomal degradation. This was accomplished by the use of a “protein switch” that places nuclear translocation under the control of externally applied dexamethasone. Fluorescence microscopy revealed that sending protein switch p53 (PS-p53) to the nucleus produces a distinct punctate distribution in both the cytoplasm and nucleus. The nuclear role in accessing the proteasome was investigated by inhibiting classical nuclear export with leptomycin B. Trapping PS-p53 in the nucleus only allows this punctate staining in that compartment, suggesting that PS-p53 must translocate first to the nuclear compartment for cytoplasmic punctate staining to occur. The role of MDM2 binding was explored by inhibiting MDM2/p53 binding with nutlin-3. Inhibition of this interaction blocked both nuclear export and cytoplasmic and nuclear punctate staining, providing evidence that any change in localization after nuclear translocation is due to MDM2 binding. Further, blocking the proteolytic activity of the proteasome maintained the nuclear localization of the construct. Truncations of p53 were made to determine smaller constructs still capable of interacting with MDM2, and their subcellular localization and degradation potential was observed. PS-p53 and a smaller construct, construct containing the two MDM2 binding regions of p53 (Box I+V) were indeed degraded by the proteasome as measured by loss of enhanced green fluorescent protein that was also fused to the construct. The influence of these constructs on p53 gene transactivation function was assessed, and revealed that PS-p53 decreased gene transactivation, while PS-p53(BoxI+V) did not significantly change baseline gene transactivation. PMID

  7. Steroidogenic acute regulatory protein gene expression, steroid-hormone secretion and proliferative activity of adrenocortical cells in the presence of proteasome inhibitors: in vivo studies on the regenerating rat adrenal cortex.

    PubMed

    Rucinski, Marcin; Tortorella, Cinzia; Ziolkowska, Agnieszka; Nowak, Magdalena; Nussdorfer, Gastone G; Malendowicz, Ludwik K

    2008-05-01

    Previous studies have shown that proteasome inhibitors promote the accumulation of steroidogenic acute regulatory protein (StAR) in cultured rat adrenocortical cells. Unexpectedly, this response was associated with a moderate lowering in the corticosterone secretion and proliferation rate of cultured cells. Hence, we studied the effects of proteasome inhibitors MG115 and MG132 on the secretion and proliferative activity of the regenerating adrenal cortex in rats 5 days after surgery. Animals were given two subcutaneous injections of 0.15 or 1.5 nmol/100 g of inhibitors 24 and 12 h before decapitation. Real-time PCR and Western blotting showed that StAR expression, both mRNA and protein, was markedly lower in regenerating adrenals than in the intact gland of sham-operated rats. Neither MG115 nor MG132 affected StAR expression in regenerating gland. Inhibitors induced a slight decrease in the plasma concentrations of aldosterone and corticosterone, but did not significantly alter metaphase index of the regenerating adrenal cortex. Our findings provide the first evidence that down-regulation of StAR occurs during the early stages of adrenal regeneration. Moreover, this suggests that the steroidogenic pathway is more sensitive to proteasome inhibitors than that regulating proliferative activity of regenerating adrenal cortex in the rat. PMID:18425351

  8. Fine-Tuning of FACT by the Ubiquitin Proteasome System in Regulation of Transcriptional Elongation.

    PubMed

    Sen, Rwik; Ferdoush, Jannatul; Kaja, Amala; Bhaumik, Sukesh R

    2016-06-01

    FACT (facilitates chromatin transcription), an evolutionarily conserved histone chaperone involved in transcription and other DNA transactions, is upregulated in cancers, and its downregulation is associated with cellular death. However, it is not clearly understood how FACT is fine-tuned for normal cellular functions. Here, we show that the FACT subunit Spt16 is ubiquitylated by San1 (an E3 ubiquitin ligase) and degraded by the 26S proteasome. Enhanced abundance of Spt16 in the absence of San1 impairs transcriptional elongation. Likewise, decreased abundance of Spt16 also reduces transcription. Thus, an optimal level of Spt16 is required for efficient transcriptional elongation, which is maintained by San1 via ubiquitylation and proteasomal degradation. Consistently, San1 associates with the coding sequences of active genes to regulate Spt16's abundance. Further, we found that enhanced abundance of Spt16 in the absence of San1 impairs chromatin reassembly at the coding sequence, similarly to the results seen following inactivation of Spt16. Efficient chromatin reassembly enhances the fidelity of transcriptional elongation. Taken together, our results demonstrate for the first time a fine-tuning of FACT by a ubiquitin proteasome system in promoting chromatin reassembly in the wake of elongating RNA polymerase II and transcriptional elongation, thus revealing novel regulatory mechanisms of gene expression. PMID:27044865

  9. The Ubiquitin-Proteasome System as a Prospective Molecular Target for Cancer Treatment and Prevention

    PubMed Central

    Chen, Di; Dou, Q. Ping

    2012-01-01

    Proteasomes are large multicatalytic proteinase complexes located in the cytosol and the nucleus of eukaryotic cells. The ubiquitin-proteasome system is responsible for the degradation of most intracellular proteins and therefore plays an essential regulatory role in critical cellular processes including cell cycle progression, proliferation, differentiation, angiogenesis and apoptosis. Besides involving in normal cellular functions and homeostasis, the alteration of proteasomal activity contributes to the pathological states of several clinical disorders including inflammation, neurodegeneration and cancer. It has been reported that human cancer cells possess elevated level of proteasome activity and are more sensitive to proteasome inhibitors than normal cells, indicating that the inhibition of the ubiquitin-proteasome system could be used as a novel approach for cancer therapy. In this review we summarize several specific aspects of research for the proteasome complex, including the structure and catalytic activities of the proteasome, properties and mechanisms of action of various proteasome inhibitors, and finally the clinical development of proteasome inhibitors as novel anticancer agents. PMID:20491623

  10. Induction of 26S proteasome subunit PSMB5 by the bifunctional inducer 3-methylcholanthrene through the Nrf2-ARE, but not the AhR/Arnt-XRE, pathway

    SciTech Connect

    Kwak, Mi-Kyoung . E-mail: mkwak@yumail.ac.kr; Kensler, Thomas W.

    2006-07-14

    The 26S proteasome is responsible for degradation of abnormal intracellular proteins, including oxidatively damaged proteins and may play a role as a component of a cellular antioxidative system. However, little is known about regulation of proteasome expression. In the present study, regulation of proteasome expression by the bifunctional enzyme inducer and a specific signaling pathway for this regulation were investigated in murine neuroblastoma cells. Expression of catalytic core subunits including PSMB5 and peptidase activities of the proteasome were elevated following incubation with 3-methylcholanthrene (3-MC). Studies using reporter genes containing the murine Psmb5 promoter showed that transcriptional activity of this gene was enhanced by 3-MC. Overexpression of AhR/Arnt did not affect activation of the Pmsb5 promoter by 3-MC and deletion of the xenobiotic response elements (XREs) from this promoter exerted modest effects on inducibility in response to 3-MC. However, mutation of the proximal AREs of the Psmb5 promoter largely abrogated its inducibility by 3-MC. In addition, this promoter showed a blunted response toward 3-MC in the absence of nrf2; 3-MC incubation increased nuclear levels of Nrf2 only in wild-type cells. Collectively, these results indicate that expression of proteasome subunit PSMB5 is modulated by bifunctional enzyme inducers in a manner independent of the AhR/Arnt-XRE pathway but dependent upon the Nrf2-ARE pathway.

  11. Dynamic Association of Proteasomal Machinery with the Centrosome

    PubMed Central

    Christian Wigley, W.; Fabunmi, Rosalind P.; Lee, Min Goo; Marino, Christopher R.; Muallem, Shmuel; DeMartino, George N.; Thomas, Philip J.

    1999-01-01

    Although the number of pathologies known to arise from the inappropriate folding of proteins continues to grow, mechanisms underlying the recognition and ultimate disposition of misfolded polypeptides remain obscure. For example, how and where such substrates are identified and processed is unknown. We report here the identification of a specific subcellular structure in which, under basal conditions, the 20S proteasome, the PA700 and PA28 (700- and 180-kD proteasome activator complexes, respectively), ubiquitin, Hsp70 and Hsp90 (70- and 90-kD heat shock protein, respectively) concentrate in HEK 293 and HeLa cells. The structure is perinuclear, surrounded by endoplasmic reticulum, adjacent to the Golgi, and colocalizes with γ-tubulin, an established centrosomal marker. Density gradient fractions containing purified centrosomes are enriched in proteasomal components and cell stress chaperones. The centrosome-associated structure enlarges in response to inhibition of proteasome activity and the level of misfolded proteins. For example, folding mutants of CFTR form large inclusions which arise from the centrosome upon inhibition of proteasome activity. At high levels of misfolded protein, the structure not only expands but also extensively recruits the cytosolic pools of ubiquitin, Hsp70, PA700, PA28, and the 20S proteasome. Thus, the centrosome may act as a scaffold, which concentrates and recruits the systems which act as censors and modulators of the balance between folding, aggregation, and degradation. PMID:10225950

  12. Dynamic association of proteasomal machinery with the centrosome.

    PubMed

    Wigley, W C; Fabunmi, R P; Lee, M G; Marino, C R; Muallem, S; DeMartino, G N; Thomas, P J

    1999-05-01

    Although the number of pathologies known to arise from the inappropriate folding of proteins continues to grow, mechanisms underlying the recognition and ultimate disposition of misfolded polypeptides remain obscure. For example, how and where such substrates are identified and processed is unknown. We report here the identification of a specific subcellular structure in which, under basal conditions, the 20S proteasome, the PA700 and PA28 (700- and 180-kD proteasome activator complexes, respectively), ubiquitin, Hsp70 and Hsp90 (70- and 90-kD heat shock protein, respectively) concentrate in HEK 293 and HeLa cells. The structure is perinuclear, surrounded by endoplasmic reticulum, adjacent to the Golgi, and colocalizes with gamma-tubulin, an established centrosomal marker. Density gradient fractions containing purified centrosomes are enriched in proteasomal components and cell stress chaperones. The centrosome-associated structure enlarges in response to inhibition of proteasome activity and the level of misfolded proteins. For example, folding mutants of CFTR form large inclusions which arise from the centrosome upon inhibition of proteasome activity. At high levels of misfolded protein, the structure not only expands but also extensively recruits the cytosolic pools of ubiquitin, Hsp70, PA700, PA28, and the 20S proteasome. Thus, the centrosome may act as a scaffold, which concentrates and recruits the systems which act as censors and modulators of the balance between folding, aggregation, and degradation. PMID:10225950

  13. Oxidative stress and proteasome inhibitors in multiple myeloma.

    PubMed

    Lipchick, Brittany C; Fink, Emily E; Nikiforov, Mikhail A

    2016-03-01

    Multiple myeloma is a form of plasma cell neoplasm that accounts for approximately 10% of all hematological malignancies. Recently, several novel drugs have been discovered that almost doubled the overall survival of multiple myeloma patients. One of these drugs, the first-in-class proteasome inhibitor bortezomib (Velcade) has demonstrated remarkable response rates in multiple myeloma patients, and yet, currently this disease remains incurable. The major factor undermining the success of multiple myeloma treatment is a rapidly emerging resistance to the available therapy. Thus, the development of stand-alone or adjuvant anti-myeloma agents becomes of paramount importance. Overproduction of intracellular reactive oxygen species (ROS) often accompanies malignant transformation due to oncogene activation and/or enhanced metabolism in tumor cells. As a result, these cells possess higher levels of ROS and lower levels of antioxidant molecules compared to their normal counterparts. Unbalanced production of ROS leads to oxidative stress which, if left unchecked, could be toxic for the cell. In multiple myeloma cells where high rates of immunoglobulin synthesis is an additional factor contributing to overproduction of ROS, further induction of oxidative stress can be an effective strategy to cope with this disease. Here we will review the available data on the role of oxidative stress in the cytotoxicity of proteasome inhibitors and the use of ROS-inducing compounds as anti-myeloma agents. PMID:26827824

  14. Characterization of a new series of non-covalent proteasome inhibitors with exquisite potency and selectivity for the 20S β5-subunit

    PubMed Central

    Blackburn, Christopher; Gigstad, Kenneth M.; Hales, Paul; Garcia, Khristofer; Jones, Matthew; Bruzzese, Frank J.; Barrett, Cynthia; Liu, Jane X.; Soucy, Teresa A.; Sappal, Darshan S.; Bump, Nancy; Olhava, Edward J.; Fleming, Paul; Dick, Lawrence R.; Tsu, Christopher; Sintchak, Michael D.; Blank, Jonathan L.

    2010-01-01

    The mammalian 26S proteasome is a 2500 kDa multi-catalytic complex involved in intracellular protein degradation. We describe the synthesis and properties of a novel series of non-covalent di-peptide inhibitors of the proteasome used on a capped tri-peptide that was first identified by high-throughput screening of a library of approx. 350000 compounds for inhibitors of the ubiquitin–proteasome system in cells. We show that these compounds are entirely selective for the β5 (chymotrypsin-like) site over the β1 (caspase-like) and β2 (trypsin-like) sites of the 20S core particle of the proteasome, and over a panel of less closely related proteases. Compound optimization, guided by X-ray crystallography of the liganded 20S core particle, confirmed their non-covalent binding mode and provided a structural basis for their enhanced in vitro and cellular potencies. We demonstrate that such compounds show low nanomolar IC50 values for the human 20S β5 site in vitro, and that pharmacological inhibition of this site in cells is sufficient to potently inhibit the degradation of a tetra-ubiquitin–luciferase reporter, activation of NFκB (nuclear factor κB) in response to TNF-α (tumour necrosis factor-α) and the proliferation of cancer cells. Finally, we identified capped di-peptides that show differential selectivity for the β5 site of the constitutively expressed proteasome and immunoproteasome in vitro and in B-cell lymphomas. Collectively, these studies describe the synthesis, activity and binding mode of a new series of non-covalent proteasome inhibitors with unprecedented potency and selectivity for the β5 site, and which can discriminate between the constitutive proteasome and immunoproteasome in vitro and in cells. PMID:20632995

  15. Characterization of a new series of non-covalent proteasome inhibitors with exquisite potency and selectivity for the 20S [beta]5-subunit

    SciTech Connect

    Blackburn, Christopher; Gigstad, Kenneth M.; Hales, Paul; Garcia, Khristofer; Jones, Matthew; Bruzzese, Frank J.; Barrett, Cynthia; Liu, Jane X.; Soucy, Teresa A.; Sappal, Darshan S.; Bump, Nancy; Olhava, Edward J.; Fleming, Paul; Dick, Lawrence R.; Tsu, Christopher; Sintchak, Michael D.; Blank, Jonathan L.

    2012-04-30

    The mammalian 26S proteasome is a 2500 kDa multi-catalytic complex involved in intracellular protein degradation. We describe the synthesis and properties of a novel series of non-covalent di-peptide inhibitors of the proteasome used on a capped tri-peptide that was first identified by high-throughput screening of a library of approx. 350000 compounds for inhibitors of the ubiquitin-proteasome system in cells. We show that these compounds are entirely selective for the {beta}5 (chymotrypsin-like) site over the {beta}1 (caspase-like) and {beta}2 (trypsin-like) sites of the 20S core particle of the proteasome, and over a panel of less closely related proteases. Compound optimization, guided by X-ray crystallography of the liganded 20S core particle, confirmed their non-covalent binding mode and provided a structural basis for their enhanced in vitro and cellular potencies. We demonstrate that such compounds show low nanomolar IC{sub 50} values for the human 20S {beta}5 site in vitro, and that pharmacological inhibition of this site in cells is sufficient to potently inhibit the degradation of a tetra-ubiquitin-luciferase reporter, activation of NF{Kappa}B (nuclear factor {Kappa}B) in response to TNF-{alpha} (tumor necrosis factor-{alpha}) and the proliferation of cancer cells. Finally, we identified capped di-peptides that show differential selectivity for the {beta}5 site of the constitutively expressed proteasome and immunoproteasome in vitro and in B-cell lymphomas. Collectively, these studies describe the synthesis, activity and binding mode of a new series of non-covalent proteasome inhibitors with unprecedented potency and selectivity for the {beta}5 site, and which can discriminate between the constitutive proteasome and immunoproteasome in vitro and in cells.

  16. Nuclear import of an intact preassembled proteasome particle

    PubMed Central

    Savulescu, Anca F.; Shorer, Hagai; Kleifeld, Oded; Cohen, Ilana; Gruber, Rita; Glickman, Michael H.; Harel, Amnon

    2011-01-01

    The 26S proteasome is a conserved 2.5 MDa protein degradation machine that localizes to different cellular compartments, including the nucleus. Little is known about the specific targeting mechanisms of proteasomes in eukaryotic cells. We used a cell-free nuclear reconstitution system to test for nuclear targeting and import of distinct proteasome species. Three types of stable, proteolytically active proteasomes particles were purified from Xenopus egg cytosol. Two of these, the 26S holoenzyme and the 20S core particle, were targeted to the nuclear periphery but did not reach the nucleoplasm. This targeting depends on the presence of mature nuclear pore complexes (NPCs) in the nuclear envelope. A third, novel form, designated here as 20S+, was actively imported through NPCs. The 20S+ proteasome particle resembles recently described structural intermediates from other systems. Nuclear import of this particle requires functional NPCs, but it is not directly regulated by the Ran GTPase cycle. The mere presence of the associated “+” factors is sufficient to reconstitute nuclear targeting and confer onto isolated 20S core particles the ability to be imported. Stable 20S+ particles found in unfertilized eggs may provide a means for quick mobilization of existing proteasome particles into newly formed nuclear compartments during early development. PMID:21289101

  17. Proteasome dysfunction induces muscle growth defects and protein aggregation

    PubMed Central

    Kitajima, Yasuo; Tashiro, Yoshitaka; Suzuki, Naoki; Warita, Hitoshi; Kato, Masaaki; Tateyama, Maki; Ando, Risa; Izumi, Rumiko; Yamazaki, Maya; Abe, Manabu; Sakimura, Kenji; Ito, Hidefumi; Urushitani, Makoto; Nagatomi, Ryoichi; Takahashi, Ryosuke; Aoki, Masashi

    2014-01-01

    ABSTRACT The ubiquitin–proteasome and autophagy–lysosome pathways are the two major routes of protein and organelle clearance. The role of the proteasome pathway in mammalian muscle has not been examined in vivo. In this study, we report that the muscle-specific deletion of a crucial proteasomal gene, Rpt3 (also known as Psmc4), resulted in profound muscle growth defects and a decrease in force production in mice. Specifically, developing muscles in conditional Rpt3-knockout animals showed dysregulated proteasomal activity. The autophagy pathway was upregulated, but the process of autophagosome formation was impaired. A microscopic analysis revealed the accumulation of basophilic inclusions and disorganization of the sarcomeres in young adult mice. Our results suggest that appropriate proteasomal activity is important for muscle growth and for maintaining myofiber integrity in collaboration with autophagy pathways. The deletion of a component of the proteasome complex contributed to myofiber degeneration and weakness in muscle disorders that are characterized by the accumulation of abnormal inclusions. PMID:25380823

  18. Focal dysfunction of the proteasome: a pathogenic factor in a mouse model of amyotrophic lateral sclerosis.

    PubMed

    Kabashi, Edor; Agar, Jeffrey N; Taylor, David M; Minotti, Sandra; Durham, Heather D

    2004-06-01

    Mutations in the Cu/Zn-superoxide dismutase (SOD-1) gene are responsible for a familial form of amyotrophic lateral sclerosis (fALS). The present study demonstrated impaired proteasomal function in the lumbar spinal cord of transgenic mice expressing human SOD-1 with the ALS-causing mutation G93A (SOD-1(G93A)) compared to non-transgenic littermates (LM) and SOD-1(WT) transgenic mice. Chymotrypsin-like activity was decreased as early as 45 days of age. By 75 days, chymotrypsin-, trypsin-, and caspase-like activities of the proteasome were impaired, at about 50% of control activity in lumbar spinal cord, but unchanged in thoracic spinal cord and liver. Both total and specific activities of the proteasome were reduced to a similar extent, indicating that a change in proteasome function, rather than a decrease in proteasome levels, had occurred. Similar decreases of total and specific activities of the proteasome were observed in NIH 3T3 cell lines expressing fALS mutants SOD-1(G93A) and SOD-1(G41S), but not in SOD-1(WT) controls. Although overall levels of proteasome were maintained in spinal cord of SOD-1(G93A) transgenic mice, the level of 20S proteasome was substantially reduced in lumbar spinal motor neurons relative to the surrounding neuropil. It is concluded that impairment of the proteasome is an early event and contributes to ALS pathogenesis. PMID:15189335

  19. Quantitative time-resolved analysis reveals intricate, differential regulation of standard- and immuno-proteasomes.

    PubMed

    Liepe, Juliane; Holzhütter, Hermann-Georg; Bellavista, Elena; Kloetzel, Peter M; Stumpf, Michael P H; Mishto, Michele

    2015-01-01

    Proteasomal protein degradation is a key determinant of protein half-life and hence of cellular processes ranging from basic metabolism to a host of immunological processes. Despite its importance the mechanisms regulating proteasome activity are only incompletely understood. Here we use an iterative and tightly integrated experimental and modelling approach to develop, explore and validate mechanistic models of proteasomal peptide-hydrolysis dynamics. The 20S proteasome is a dynamic enzyme and its activity varies over time because of interactions between substrates and products and the proteolytic and regulatory sites; the locations of these sites and the interactions between them are predicted by the model, and experimentally supported. The analysis suggests that the rate-limiting step of hydrolysis is the transport of the substrates into the proteasome. The transport efficiency varies between human standard- and immuno-proteasomes thereby impinging upon total degradation rate and substrate cleavage-site usage. PMID:26393687

  20. Cupriphilic compounds to aid in proteasome inhibition.

    PubMed

    Mukherjee, Sreya; Sparks, Robert; Metcalf, Rainer; Brooks, Wesley; Daniel, Kenyon; Guida, Wayne C

    2016-08-01

    It has been found that tumor cells and tissues, compared to normal cells, have higher levels of copper and possibly other metal ions. This presents a potential vulnerability of tumor cells that can serve as a physiological difference between cancer cells and normal cells and allows design of compounds that selectively target tumor cells while sparing normal cells. Recently we have identified compounds that have potential to inhibit the proteasome in tumor cells and induce cell death by mobilizing endogenous tumor copper resulting in in cellulo activation of the compound. These compounds hence act as pro-drugs, becoming active drugs in tumor cells with high copper content but remaining essentially inactive in normal cells, thereby greatly reducing adverse effects in patients. Such use would be of significant benefit in early detection and treatment of cancers, in particular, aggressive cancers such as pancreatic cancer which is usually not detected until it has reached an advanced stage. Six compounds were identified following virtual screening of the NCI Diversity Set with our proteasome computer model followed by confirmation with a biochemical assay that showed significant inhibition of the proteasome by the compounds in the presence of copper ions. In a dose response assay, NSC 37408 (6,7-dihydroxy-1-benzofuran-3-one), our best compound, exhibited an IC50 of 3μM in the presence of 100nM copper. PMID:27311892

  1. Distinct specificities of Mycobacterium tuberculosis and mammalian proteasomes for N-acetyl tripeptide substrates.

    PubMed

    Lin, Gang; Tsu, Christopher; Dick, Lawrence; Zhou, Xi K; Nathan, Carl

    2008-12-01

    The proteasome of Mycobacterium tuberculosis (Mtb) is a validated and drug-treatable target for therapeutics. To lay ground-work for developing peptide-based inhibitors with a useful degree of selectivity for the Mtb proteasome over those of the host, we used a library of 5,920 N-acetyl tripeptide-aminomethylcoumarins to contrast the substrate preferences of the recombinant Mtb proteasome wild type and open gate mutant, the Rhodococcus erythropolis proteasome, and the bovine proteasome with activator PA28. The Mtb proteasome was distinctive in strictly preferring P1 = tryptophan, particularly in combination with P3 = glycine, proline, lysine or arginine. Screening results were validated with Michalis-Menten kinetic analyses of 21 oligopeptide aminomethyl-coumarin substrates. Bortezomib, a proteasome inhibitor in clinical use, and 17 analogs varying only at P1 were used to examine the differential impact of inhibitors on human and Mtb proteasomes. The results with the inhibitor panel confirmed those with the substrate panel in demonstrating differential preferences of Mtb and mammalian proteasomes at the P1 amino acid. Changing P1 in bortezomib from Leu to m-CF(3)-Phe led to a 220-fold increase in IC(50) against the human proteasome, whereas changing a P1 Ala to m-F-Phe decreased the IC(50) 400-fold against the Mtb proteasome. The change of a P1 Ala to m-Cl-Phe led to an 8000-fold shift in inhibitory potency in favor of the Mtb proteasome, resulting in 8-fold selectivity. Combinations of preferred amino acids at different sites may thus improve the species selectivity of peptide-based inhibitors that target the Mtb proteasome. PMID:18829465

  2. Herceptin-geldanamycin immunoconjugates: pharmacokinetics, biodistribution, and enhanced antitumor activity.

    PubMed

    Mandler, Raya; Kobayashi, Hisataka; Hinson, Ella R; Brechbiel, Martin W; Waldmann, Thomas A

    2004-02-15

    The efficacy of monoclonal antibodies (mAbs) as single agents in targeted cancer therapy has proven to be limited. Arming mAbs with a potent toxic drug could enhance their activity. Here we report that conjugating geldanamycin (GA) to the anti-HER2 mAb Herceptin improved the activity of Herceptin. The IC(50)s of the immunoconjugate H-GA were 10-200-fold lower than that of Herceptin in antiproliferative assays, depending on the cell line. The H-GA mode of action involved HER2 degradation, which was partially lactacystin sensitive and thus proteasome dependent. The linkage between GA and Herceptin remained stable in the circulation, as suggested by the pharmacokinetics of Herceptin and conjugated GA, which were almost identical and significantly different from that of free GA. Tumor uptake of Herceptin and H-GA were similar (52 +/- 7 and 43 +/- 7% of the initial injected dose per gram tissue, respectively; P = 0.077), indicating no apparent damage attributable to conjugation. Therapy experiments in xenograft-bearing mice consisted of weekly i.p. doses, 4 mg/kg for 4 months. H-GA showed a greater antitumor effect than Herceptin because it induced tumor regression in 69% of the recipients compared with 7% by Herceptin alone. Median survival time was 145 days as opposed to 78 days, and 31% of the recipients remained tumor free 2 months after therapy was terminated versus 0% in the Herceptin group. Enhancement of Herceptin activity could be of significant clinical value. In addition, the chemical linkage and the considerations in therapeutic regimen described here could be applied to other immunoconjugates for targeted therapy of a broad spectrum of cancers. PMID:14973048

  3. Proteasome function is not impaired in healthy aging of the lung.

    PubMed

    Caniard, Anne; Ballweg, Korbinian; Lukas, Christina; Yildirim, Ali Ö; Eickelberg, Oliver; Meiners, Silke

    2015-10-01

    Aging is the progressive loss of cellular function which inevitably leads to death. Failure of proteostasis including the decrease in proteasome function is one hallmark of aging. In the lung, proteasome activity was shown to be impaired in age-related diseases such as chronic obstructive pulmonary disease. However, little is known on proteasome function during healthy aging. Here, we comprehensively analyzed healthy lung aging and proteasome function in wildtype, proteasome reporter and immunoproteasome knockout mice. Wildtype mice spontaneously developed senile lung emphysema while expression and activity of proteasome complexes and turnover of ubiquitinated substrates was not grossly altered in lungs of aged mice. Immunoproteasome subunits were specifically upregulated in the aged lung and the caspase-like proteasome activity concomitantly decreased. Aged knockout mice for the LMP2 or LMP7 immunoproteasome subunits showed no alteration in proteasome activities but exhibited typical lung aging phenotypes suggesting that immunoproteasome function is dispensable for physiological lung aging in mice. Our results indicate that healthy aging of the lung does not involve impairment of proteasome function. Apparently, the reserve capacity of the proteostasis systems in the lung is sufficient to avoid severe proteostasis imbalance during healthy aging. PMID:26540298

  4. Proteasome function is not impaired in healthy aging of the lung

    PubMed Central

    Lukas, Christina; Yildirim, Ali Ö.; Eickelberg, Oliver; Meiners, Silke

    2015-01-01

    Aging is the progressive loss of cellular function which inevitably leads to death. Failure of proteostasis including the decrease in proteasome function is one hallmark of aging. In the lung, proteasome activity was shown to be impaired in age‐related diseases such as chronic obstructive pulmonary disease. However, little is known on proteasome function during healthy aging. Here, we comprehensively analyzed healthy lung aging and proteasome function in wildtype, proteasome reporter and immunoproteasome knockout mice. Wildtype mice spontaneously developed senile lung emphysema while expression and activity of proteasome complexes and turnover of ubiquitinated substrates was not grossly altered in lungs of aged mice. Immunoproteasome subunits were specifically upregulated in the aged lung and the caspase‐like proteasome activity concomitantly decreased. Aged knockout mice for the LMP2 or LMP7 immunoproteasome subunits showed no alteration in proteasome activities but exhibited typical lung aging phenotypes suggesting that immunoproteasome function is dispensable for physiological lung aging in mice. Our results indicate that healthy aging of the lung does not involve impairment of proteasome function. Apparently, the reserve capacity of the proteostasis systems in the lung is sufficient to avoid severe proteostasis imbalance during healthy aging. PMID:26540298

  5. Involvement of the Nrf2-proteasome pathway in the endoplasmic reticulum stress response in pancreatic β-cells

    SciTech Connect

    Lee, Sanghwan; Hur, Eu-gene; Ryoo, In-geun; Jung, Kyeong-Ah; Kwak, Jiyeon; Kwak, Mi-Kyoung

    2012-11-01

    The ubiquitin-proteasome system plays a central role in protein quality control through endoplasmic reticulum (ER)-associated degradation (ERAD) of unfolded and misfolded proteins. NF-E2‐related factor 2 (Nrf2) is a transcription factor that controls the expression of an array of phase II detoxification and antioxidant genes. Nrf2 signaling has additionally been shown to upregulate the expression of the proteasome catalytic subunits in several cell types. Here, we investigated the role of Nrf2 in tunicamycin-induced ER stress using a murine insulinoma β-cell line, βTC-6. shRNA-mediated silencing of Nrf2 expression in βTC-6 cells significantly increased tunicamycin-induced cytotoxicity, elevated the expression of the pro-apoptotic ER stress marker Chop10, and inhibited tunicamycin-inducible expression of the proteasomal catalytic subunits Psmb5 and Psmb6. The effects of 3H-1,2-dithiole-3-thione (D3T), a small molecule Nrf2 activator, on ER stress were also examined in βTC-6 cells. D3T pretreatment reduced tunicamycin cytotoxicity and attenuated the tunicamycin-inducible Chop10 and protein kinase RNA-activated‐like ER kinase (Perk). The protective effect of D3T was shown to be associated with increased ERAD. D3T increased the expression of Psmb5 and Psmb6 and elevated chymotrypsin-like peptidase activity; proteasome inhibitor treatment blocked D3T effects on tunicamycin cytotoxicity and ER stress marker changes. Similarly, silencing of Nrf2 abolished the protective effect of D3T against ER stress. These results indicate that the Nrf2 pathway contributes to the ER stress response in pancreatic β-cells by enhancing proteasome-mediated ERAD. -- Highlights: ► Nrf2 silencing in pancreatic β-cells enhanced tunicamycin-mediated ER stress. ► Expression of the proteasome was inducible by Nrf2 signaling. ► Nrf2 activator D3T protected β-cells from tunicamycin-mediated ER stress. ► Protective effect of D3T was associated with Nrf2-dependent proteasome

  6. Halophilic 20S Proteasomes of the Archaeon Haloferax volcanii: Purification, Characterization, and Gene Sequence Analysis

    PubMed Central

    Wilson, Heather L.; Aldrich, Henry C.; Maupin-Furlow, Julie

    1999-01-01

    A 20S proteasome, composed of α1 and β subunits arranged in a barrel-shaped structure of four stacked rings, was purified from a halophilic archaeon Haloferax volcanii. The predominant peptide-hydrolyzing activity of the 600-kDa α1β-proteasome on synthetic substrates was cleavage carboxyl to hydrophobic residues (chymotrypsin-like [CL] activity) and was optimal at 2 M NaCl, pH 7.7 to 9.5, and 75°C. The α1β-proteasome also hydrolyzed insulin B-chain protein. Removal of NaCl inactivated the CL activity of the α1β-proteasome and dissociated the complex into monomers. Rapid equilibration of the monomers into buffer containing 2 M NaCl facilitated their reassociation into fully active α1β-proteasomes of 600 kDa. However, long-term incubation of the halophilic proteasome in the absence of salt resulted in hydrolysis and irreversible inactivation of the enzyme. Thus, the isolated proteasome has unusual salt requirements which distinguish it from any proteasome which has been described. Comparison of the β-subunit protein sequence with the sequence deduced from the gene revealed that a 49-residue propeptide is removed to expose a highly conserved N-terminal threonine which is proposed to serve as the catalytic nucleophile and primary proton acceptor during peptide bond hydrolysis. Consistent with this mechanism, the known proteasome inhibitors carbobenzoxyl-leucinyl-leucinyl-leucinal-H (MG132) and N-acetyl-leucinyl-leucinyl-norleucinal (calpain inhibitor I) were found to inhibit the CL activity of the H. volcanii proteasome (Ki = 0.2 and 8 μM, respectively). In addition to the genes encoding the α1 and β subunits, a gene encoding a second α-type proteasome protein (α2) was identified. All three genes coding for the proteasome subunits were mapped in the chromosome and found to be unlinked. Modification of the methods used to purify the α1β-proteasome resulted in the copurification of the α2 protein with the α1 and β subunits in nonstoichometric ratios

  7. DNA damage modulates interactions between microRNAs and the 26S proteasome

    PubMed Central

    Tsimokha, Anna S; Kulichkova, Valentina A.; Karpova, Elena V.; Zaykova, Julia J.; Aksenov, Nikolai D; Vasilishina, Anastasia A.; Kropotov, Andrei V.; Antonov, Alexey; Barlev, Nikolai A.

    2014-01-01

    26S proteasomes are known as major non-lysosomal cellular machines for coordinated and specific destruction of ubiquitinylated proteins. The proteolytic activities of proteasomes are controlled by various post-translational modifications in response to environmental cues, including DNA damage. Besides proteolysis, proteasomes also associate with RNA hydrolysis and splicing. Here, we extend the functional diversity of proteasomes by showing that they also dynamically associate with microRNAs (miRNAs) both in the nucleus and cytoplasm of cells. Moreover, DNA damage induced by an anti-cancer drug, doxorubicin, alters the repertoire of proteasome-associated miRNAs, enriching the population of miRNAs that target cell cycle checkpoint regulators and DNA repair proteins. Collectively, these data uncover yet another potential mode of action for proteasomes in the cell via their dynamic association with microRNAs. PMID:25004448

  8. Assembly of an Evolutionarily Conserved Alternative Proteasome Isoform in Human Cells

    PubMed Central

    Padmanabhan, Achuth; Vuong, Simone Anh-Thu; Hochstrasser, Mark

    2016-01-01

    Summary Targeted intracellular protein degradation in eukaryotes is largely mediated by the proteasome. Here we report formation of an alternative proteasome isoform in human cells, previously found only in budding yeast, which bears an altered subunit arrangement in the outer ring of the proteasome core particle. These proteasomes result from incorporation of an additional α4 (PSMA7) subunit in the position normally occupied by α3 (PSMA4). Assembly of ‘α4-α4’ proteasomes depends on the relative cellular levels of α4 and α3, and on the proteasome assembly chaperone PAC3. The oncogenic tyrosine kinases ABL and ARG and the tumor suppressor BRCA1 regulate cellular α4 levels and formation of α4-α4 proteasomes. Cells primed to assemble α4-α4 proteasomes exhibit enhanced resistance to toxic metal ions. Taken together, our results establish the existence of a novel mammalian proteasome isoform and suggest a potential role in enabling cells to adapt to environmental stresses. PMID:26997268

  9. Assembly of an Evolutionarily Conserved Alternative Proteasome Isoform in Human Cells.

    PubMed

    Padmanabhan, Achuth; Vuong, Simone Anh-Thu; Hochstrasser, Mark

    2016-03-29

    Targeted intracellular protein degradation in eukaryotes is largely mediated by the proteasome. Here, we report the formation of an alternative proteasome isoform in human cells, previously found only in budding yeast, that bears an altered subunit arrangement in the outer ring of the proteasome core particle. These proteasomes result from incorporation of an additional α4 (PSMA7) subunit in the position normally occupied by α3 (PSMA4). Assembly of "α4-α4" proteasomes depends on the relative cellular levels of α4 and α3 and on the proteasome assembly chaperone PAC3. The oncogenic tyrosine kinases ABL and ARG and the tumor suppressor BRCA1 regulate cellular α4 levels and formation of α4-α4 proteasomes. Cells primed to assemble α4-α4 proteasomes exhibit enhanced resistance to toxic metal ions. Taken together, our results establish the existence of an alternative mammalian proteasome isoform and suggest a potential role in enabling cells to adapt to environmental stresses. PMID:26997268

  10. Effects of aging and dietary restriction on ubiquitination, sumoylation, and the proteasome in the spleen

    PubMed Central

    Zhang, Le; Li, Feng; Dimayuga, Edgardo; Craddock, Jeffrey; Keller, Jeffrey N.

    2015-01-01

    In the present study we demonstrate for the first time that aging increases the levels of ubiquitinated protein in the spleen, and that dietary restriction (DR) significantly reduces these age-related increases in ubiquitinated protein. Sumoylated protein, proteasome subunits, and a protein essential for proteasome biogenesis (POMP1) were also increased with age in the spleen but were not significantly affected by DR. Chymotrypsin-like proteasome activity was elevated in the aged spleen, and was not significantly altered by DR. Together, these data demonstrate for the first time the multiple effects of aging and DR on ubiquitination, sumoylation, and the proteasome in the spleen. PMID:17991438

  11. Long-term morphine treatment enhances proteasome-dependent degradation of G beta in human neuroblastoma SH-SY5Y cells: correlation with onset of adenylate cyclase sensitization.

    PubMed

    Moulédous, Lionel; Neasta, Jérémie; Uttenweiler-Joseph, Sandrine; Stella, Alexandre; Matondo, Mariette; Corbani, Maïthé; Monsarrat, Bernard; Meunier, Jean-Claude

    2005-08-01

    The initial aim of this study was to identify protein changes associated with long-term morphine treatment in a recombinant human neuroblastoma SH-SY5Y clone (sc2) stably overexpressing the human mu-opioid (MOP) receptor. In MOP receptor-overexpressing sc2 cells, short-term morphine exposure was found to be much more potent and efficacious in inhibiting forskolin-elicited production of cAMP, and long-term morphine exposure was shown to induce a substantially higher degree of opiate dependence, as reflected by adenylate cyclase sensitization, than it did in wild-type neuroblastoma cells. Differential proteomic analysis of detergent-resistant membrane rafts isolated from untreated and chronically morphine-treated sc2 cells revealed long-term morphine exposure to have reliably induced a 30 to 40% decrease in the abundance of five proteins, subsequently identified by mass spectrometry as G protein subunits alphai(2), alphai(3), beta(1), and beta(2), and prohibitin. Quantitative Western blot analyses of whole-cell extracts showed that long-term morphine treatment-induced down-regulation of Gbeta but not of the other proteins is highly correlated (r(2) = 0.96) with sensitization of adenylate cyclase. Down-regulation of Gbeta and adenylate cyclase sensitization elicited by long-term morphine treatment were suppressed in the presence of carbobenzoxy-l-leucyl-l-leucyl-l-norvalinal (MG-115) or lactacystin. Thus, sustained activation of the MOP receptor by morphine in sc2 cells seems to promote proteasomal degradation of Gbeta to sensitize adenylate cyclase. Together, our data suggest that the long-term administration of opiates may elicit dependence by altering the neuronal balance of heterotrimeric G proteins and adenylate cyclases, with the ubiquitin-proteasome pathway playing a pivotal role. PMID:15901846

  12. The Archaeal Proteasome Is Regulated by a Network of AAA ATPases*

    PubMed Central

    Forouzan, Dara; Ammelburg, Moritz; Hobel, Cedric F.; Ströh, Luisa J.; Sessler, Nicole; Martin, Jörg; Lupas, Andrei N.

    2012-01-01

    The proteasome is the central machinery for targeted protein degradation in archaea, Actinobacteria, and eukaryotes. In its basic form, it consists of a regulatory ATPase complex and a proteolytic core particle. The interaction between the two is governed by an HbYX motif (where Hb is a hydrophobic residue, Y is tyrosine, and X is any amino acid) at the C terminus of the ATPase subunits, which stimulates gate opening of the proteasomal α-subunits. In archaea, the proteasome-interacting motif is not only found in canonical proteasome-activating nucleotidases of the PAN/ARC/Rpt group, which are absent in major archaeal lineages, but also in proteins of the CDC48/p97/VAT and AMA groups, suggesting a regulatory network of proteasomal ATPases. Indeed, Thermoplasma acidophilum, which lacks PAN, encodes one CDC48 protein that interacts with the 20S proteasome and activates the degradation of model substrates. In contrast, Methanosarcina mazei contains seven AAA proteins, five of which, both PAN proteins, two out of three CDC48 proteins, and the AMA protein, function as proteasomal gatekeepers. The prevalent presence of multiple, distinct proteasomal ATPases in archaea thus results in a network of regulatory ATPases that may widen the substrate spectrum of proteasomal protein degradation. PMID:22992741

  13. Eucommia ulmoides Oliver Extract, Aucubin, and Geniposide Enhance Lysosomal Activity to Regulate ER Stress and Hepatic Lipid Accumulation

    PubMed Central

    Lee, Hwa-Young; Lee, Geum-Hwa; Lee, Mi-Rin; Kim, Hye-Kyung; Kim, Nan-young; Kim, Seung-Hyun; Lee, Yong-Chul; Kim, Hyung-Ryong; Chae, Han-Jung

    2013-01-01

    Eucommia ulmoides Oliver is a natural product widely used as a dietary supplement and medicinal plant. Here, we examined the potential regulatory effects of Eucommia ulmoides Oliver extracts (EUE) on hepatic dyslipidemia and its related mechanisms by in vitro and in vivo studies. EUE and its two active constituents, aucubin and geniposide, inhibited palmitate-induced endoplasmic reticulum (ER) stress, reducing hepatic lipid accumulation through secretion of apolipoprotein B and associated triglycerides and cholesterol in human HepG2 hepatocytes. To determine how EUE diminishes the ER stress response, lysosomal and proteasomal protein degradation activities were analyzed. Although proteasomal activity was not affected, lysosomal enzyme activities including V-ATPase were significantly increased by EUE as well as aucubin and geniposide in HepG2 cells. Treatment with the V-ATPase inhibitor, bafilomycin, reversed the inhibition of ER stress, secretion of apolipoprotein B, and hepatic lipid accumulation induced by EUE or its component, aucubin or geniposide. In addition, EUE was determined to regulate hepatic dyslipidemia by enhancing lysosomal activity and to regulate ER stress in rats fed a high-fat diet. Together, these results suggest that EUE and its active components enhance lysosomal activity, resulting in decreased ER stress and hepatic dyslipidemia. PMID:24349058

  14. Proteasome Dysfunction Associated to Oxidative Stress and Proteotoxicity in Adipocytes Compromises Insulin Sensitivity in Human Obesity

    PubMed Central

    Díaz-Ruiz, Alberto; Guzmán-Ruiz, Rocío; Moreno, Natalia R.; García-Rios, Antonio; Delgado-Casado, Nieves; Membrives, Antonio; Túnez, Isaac; El Bekay, Rajaa; Fernández-Real, José M.; Tovar, Sulay; Diéguez, Carlos; Tinahones, Francisco J.; Vázquez-Martínez, Rafael; López-Miranda, José

    2015-01-01

    Abstract Aims: Obesity is characterized by a low-grade systemic inflammatory state and adipose tissue (AT) dysfunction, which predispose individuals to the development of insulin resistance (IR) and metabolic disease. However, a subset of obese individuals, referred to as metabolically healthy obese (MHO) individuals, are protected from obesity-associated metabolic abnormalities. Here, we aim at identifying molecular factors and pathways in adipocytes that are responsible for the progression from the insulin-sensitive to the insulin-resistant, metabolically unhealthy obese (MUHO) phenotype. Results: Proteomic analysis of paired samples of adipocytes from subcutaneous (SC) and omental (OM) human AT revealed that both types of cells are altered in the MUHO state. Specifically, the glutathione redox cycle and other antioxidant defense systems as well as the protein-folding machinery were dysregulated and endoplasmic reticulum stress was increased in adipocytes from IR subjects. Moreover, proteasome activity was also compromised in adipocytes of MUHO individuals, which was associated with enhanced accumulation of oxidized and ubiquitinated proteins in these cells. Proteasome activity was also impaired in adipocytes of diet-induced obese mice and in 3T3-L1 adipocytes exposed to palmitate. In line with these data, proteasome inhibition significantly impaired insulin signaling in 3T3-L1 adipocytes. Innovation: This study provides the first evidence of the occurrence of protein homeostasis deregulation in adipocytes in human obesity, which, together with oxidative damage, interferes with insulin signaling in these cells. Conclusion: Our results suggest that proteasomal dysfunction and impaired proteostasis in adipocytes, resulting from protein oxidation and/or misfolding, constitute major pathogenic mechanisms in the development of IR in obesity. Antioxid. Redox Signal. 23, 597–612. PMID:25714483

  15. Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates.

    PubMed

    Besche, Henrike C; Sha, Zhe; Kukushkin, Nikolay V; Peth, Andreas; Hock, Eva-Maria; Kim, Woong; Gygi, Steven; Gutierrez, Juan A; Liao, Hua; Dick, Lawrence; Goldberg, Alfred L

    2014-05-16

    Degradation rates of most proteins in eukaryotic cells are determined by their rates of ubiquitination. However, possible regulation of the proteasome's capacity to degrade ubiquitinated proteins has received little attention, although proteasome inhibitors are widely used in research and cancer treatment. We show here that mammalian 26S proteasomes have five associated ubiquitin ligases and that multiple proteasome subunits are ubiquitinated in cells, especially the ubiquitin receptor subunit, Rpn13. When proteolysis is even partially inhibited in cells or purified 26S proteasomes with various inhibitors, Rpn13 becomes extensively and selectively poly-ubiquitinated by the proteasome-associated ubiquitin ligase, Ube3c/Hul5. This modification also occurs in cells during heat-shock or arsenite treatment, when poly-ubiquitinated proteins accumulate. Rpn13 ubiquitination strongly decreases the proteasome's ability to bind and degrade ubiquitin-conjugated proteins, but not its activity against peptide substrates. This autoinhibitory mechanism presumably evolved to prevent binding of ubiquitin conjugates to defective or stalled proteasomes, but this modification may also be useful as a biomarker indicating the presence of proteotoxic stress and reduced proteasomal capacity in cells or patients. PMID:24811749

  16. From Bortezomib to other Inhibitors of the Proteasome and Beyond

    PubMed Central

    Buac, Daniela; Shen, Min; Schmitt, Sara; Kona, Fathima Rani; Deshmukh, Rahul; Zhang, Zhen; Neslund-Dudas, Christine; Mitra, Bharati; Dou, Q. Ping

    2013-01-01

    The cancer drug discovery field has placed much emphasis on the identification of novel and cancer-specific molecular targets. A rich source of such targets for the design of novel anti-tumor agents is the ubiqutin-proteasome system (UP-S), a tightly regulated, highly specific pathway responsible for the vast majority of protein turnover within the cell. Because of its critical role in almost all cell processes that ensure normal cellular function, its inhibition at one point in time was deemed non-specific and therefore not worth further investigation as a molecular drug target. However, today the proteasome is one of the most promising anti-cancer drug targets of the century. The discovery that tumor cells are in fact more sensitive to proteasome inhibitors than normal cells indeed paved the way for the design of its inhibitors. Such efforts have led to bortezomib, the first FDA approved proteasome inhibitor now used as a frontline treatment for newly diagnosed multiple myeloma (MM), relapsed/refractory MM and mantle cell lymphoma. Though successful in improving clinical outcomes for patients with hematological malignancies, relapse often occurs in those who initially responded to bortezomib. Therefore, the acquisition of bortezomib resistance is a major issue with its therapy. Furthermore, some neuro-toxicities have been associated with bortezomib treatment and its efficacy in solid tumors is lacking. These observations have encouraged researchers to pursue the next generation of proteasome inhibitors, which would ideally overcome bortezomib resistance, have reduced toxicities and a broader range of anti-cancer activity. This review summarizes the success and limitations of bortezomib, and describes recent advances in the field, including, and most notably, the most recent FDA approval of carfilzomib in July, 2012, a second generation proteasome inhibitor. Other proteasome inhibitors currently in clinical trials and those that are currently experimental grade

  17. Targeting Tumor Ubiquitin-Proteasome Pathway with Polyphenols for Chemosensitization

    PubMed Central

    Shen, Min; Chan, Tak Hang; Dou, Q. Ping

    2012-01-01

    The development of tumor drug resistance is one of the biggest obstacles on the way to achieve a favorable outcome of chemotherapy. Among various strategies that have been explored to overcome drug resistance, the combination of current chemotherapy with plant polyphenols as a chemosensitizer has emerged as a promising one. Plant polyphenols are a group of phytochemicals characterized by the presence of more than one phenolic group. Mechanistic studies suggest that polyphenols have multiple intracellular targets, one of which is the proteasome complex. The proteasome is a proteolytic enzyme complex responsible for intracellular protein degradation and has been shown to play an important role in tumor growth and the development of drug resistance. Therefore, proteasome inhibition by plant polyphenols could be one of the mechanisms contributing to their chemosensitizing effect. Plant polyphenols that have been identified to possess proteasome-inhibitory activity include (−)-epigallocatechins-3-gallate (EGCG), genistein, luteolin, apigenin, chrysin, quercetin, curcumin and tannic acid. These polyphenols have exhibited an appreciable effect on overcoming resistance to various chemotherapeutic drugs as well as multidrug resistance in a broad spectrum of tumors ranging from carcinoma and sarcoma to hematological malignances. The in vitro and in vivo studies on polyphenols with proteasome-inhibitory activity have built a solid foundation to support the idea that they could serve as a chemosensitizer for the treatment of cancer. In-depth mechanistic studies and identification of optimal regimen are needed in order to eventually translate this laboratory concept into clinical trials to actually benefit current chemotherapy. PMID:22292765

  18. Dietary apigenin potentiates the inhibitory effect of interferon-α on cancer cell viability through inhibition of 26S proteasome-mediated interferon receptor degradation

    PubMed Central

    Li, Sheng; Yang, Li-juan; Wang, Ping; He, Yu-jiao; Huang, Jun-mei; Liu, Han-wei; Shen, Xiao-fei; Wang, Fei

    2016-01-01

    Background Type I interferons (IFN-α/β) have broad and potent immunoregulatory and antiproliferative activities. However, it is still known whether the dietary flavonoids exhibit their antiviral and anticancer properties by modulating the function of type I IFNs. Objective This study aimed at determining the role of apigenin, a dietary plant flavonoid abundant in common fruits and vegetables, on the type I IFN-mediated inhibition of cancer cell viability. Design Inhibitory effect of apigenin on human 26S proteasome, a known negative regulator of type I IFN signaling, was evaluated in vitro. Molecular docking was conducted to know the interaction between apigenin and subunits of 26S proteasome. Effects of apigenin on JAK/STAT pathway, 26S proteasome-mediated interferon receptor stability, and cancer cells viability were also investigated. Results Apigenin was identified to be a potent inhibitor of human 26S proteasome in a cell-based assay. Apigenin inhibited the chymotrypsin-like, caspase-like, and trypsin-like activities of the human 26S proteasome and increased the ubiquitination of endogenous proteins in cells. Results from computational modeling of the potential interactions of apigenin with the chymotrypsin site (β5 subunit), caspase site (β1 subunit), and trypsin site (β2 subunit) of the proteasome were consistent with the observed proteasome inhibitory activity. Apigenin enhanced the phosphorylation of signal transducer and activator of transcription proteins (STAT1 and STAT2) and promoted the endogenous IFN-α-regulated gene expression. Apigenin inhibited the IFN-α-stimulated ubiquitination and degradation of type I interferon receptor 1 (IFNAR1). Apigenin also sensitized the inhibitory effect of IFN-α on viability of cervical carcinoma HeLa cells. Conclusion These results suggest that apigenin potentiates the inhibitory effect of IFN-α on cancer cell viability by activating JAK/STAT signaling pathway through inhibition of 26S proteasome

  19. Ginsenoside Rd Is Efficacious Against Acute Ischemic Stroke by Suppressing Microglial Proteasome-Mediated Inflammation.

    PubMed

    Zhang, Guangyun; Xia, Feng; Zhang, Yunxia; Zhang, Xiao; Cao, Yuhong; Wang, Ling; Liu, Xuedong; Zhao, Gang; Shi, Ming

    2016-05-01

    A great deal of attention has been paid to neuroprotective therapies for cerebral ischemic stroke. Our two recent clinical trials showed that ginsenoside Rd (Rd), a kind of monomeric compound extracted from Chinese herbs, Panax ginseng and Panax notoginseng, was safe and efficacious for the treatment of ischemic stroke. In this study, we conducted a pooled analysis of the data from 199 patients with acute ischemic stroke in the first trial and 390 in the second to reanalyze the efficacy and safety of Rd. Moreover, animal stroke models were carried out to explore the possible molecular mechanisms underlying Rd neuroprotection. The pooled analysis showed that compared with placebo group, Rd could improve patients' disability as assessed by modified Rankin Scale (mRS) score on day 90 post-stroke and reduce neurologic deficits on day 15 or day 90 post-stroke as assessed by NIH Stroke Scale (NIHSS) and Barthel Index (BI) scores. For neuroprotective mechanisms, administration of Rd 4 h after stroke could inhibit ischemia-induced microglial activation, decrease the expression levels of various proinflammatory cytokines, and suppress nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor, alpha (IκBα) phosphorylation and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) nuclear translocation. An in vitro proteasome activity assay revealed a significant inhibitory effect of Rd on proteasome activity in microglia. Interestingly, Rd was showed to have less side effects than glucocorticoid. Therefore, our study demonstrated that Rd could safely improve the outcome of patients with ischemic stroke, and this therapeutic effect may result from its capability of suppressing microglial proteasome activity and sequential inflammation. PMID:26081140

  20. The 26S Proteasome and Initiation of Gene Transcription

    PubMed Central

    Durairaj, Geetha; Kaiser, Peter

    2014-01-01

    Transcription activation is the foremost step of gene expression and is modulated by various factors that act in synergy. Misregulation of this process and its associated factors has severe effects and hence requires strong regulatory control. In recent years, growing evidence has highlighted the 26S proteasome as an important contributor to the regulation of transcription initiation. Well known for its role in protein destruction, its contribution to protein synthesis was initially viewed with skepticism. However, studies over the past several years have established the proteasome as an important component of transcription initiation through proteolytic and non-proteolytic activities. In this review, we discuss findings made so far in understanding the connections between transcription initiation and the 26S proteasome complex. PMID:25211636

  1. Transcriptional upregulation of BAG3 upon proteasome inhibition

    SciTech Connect

    Wang Huaqin Liu Haimei; Zhang Haiyan; Guan Yifu; Du Zhenxian

    2008-01-11

    Proteasome inhibitors exhibit antitumoral activity against malignancies of different histology. Emerging evidence indicates that antiapoptotic factors may also accumulate as a consequence of exposure to these drugs, thus it seems plausible that activation of survival signaling cascades might compromise their antitumoral effects. Bcl-2-associated athanogene (BAG) family proteins are characterized by their property of interaction with a variety of partners involved in modulating the proliferation/death balance, including heat shock proteins (HSP), Bcl-2, Raf-1. In this report, we demonstrated that BAG3 is a novel antiapoptotic molecule induced by proteasome inhibitors in various cancer cells at the transcriptional level. Moreover, we demonstrated that BAG3 knockdown by siRNA sensitized cancer cells to MG132-induced apoptosis. Taken together, our results suggest that BAG3 induction might represents as an unwanted molecular consequence of utilizing proteasome inhibitors to combat tumors.

  2. The class-I HDAC inhibitor MGCD0103 induces apoptosis in Hodgkin lymphoma cell lines and synergizes with proteasome inhibitors by an HDAC6-independent mechanism

    PubMed Central

    Buglio, Daniela; Mamidipudi, Vidya; Khaskhely, Noor M.; Brady, Helen; Heise, Carla; Besterman, Jeffrey; Martell, Robert E.; MacBeth, Kyle; Younes, Anas

    2011-01-01

    Summary Inhibition of histone deacetylase 6 (HDAC6)-dependent aggresome function by pan HDAC inhibitors was recently reported to be a key mechanism underlying the synergistic activity between proteasome inhibitors and HDAC inhibitors in a variety of tumour types. Because these combinations induce significant thrombocytopenia in vivo, we examined whether less toxic, isotype-selective HDAC inhibitors may still synergize with proteasome inhibitors, and if so, by what mechanisms. Here, we showed that the class I HDAC inhibitor, MGCD0103, has a potent antiproliferative activity in Hodgkin lymphoma (HL) cell lines. Furthermore, MGCD0103 induced tumour necrosis factor α (TNF-α) expression and secretion, which was associated with nuclear factor (NF)-κB activation. Selective inhibition of TNF- α expression by short interfering mRNA, or inhibition of MGCD0103-induced NF-kB activation by proteasome inhibitors enhanced MGCD0103-induced cell death. Thus, our results demonstrate that MGCD0103 may synergize with proteasome inhibitors by HDAC6-independent mechanisms, providing mechanistic rationale for exploring this potentially less toxic combination for the treatment of lymphoma. PMID:20880107

  3. Structure- and function-based design of Plasmodium-selective proteasome inhibitors.

    PubMed

    Li, Hao; O'Donoghue, Anthony J; van der Linden, Wouter A; Xie, Stanley C; Yoo, Euna; Foe, Ian T; Tilley, Leann; Craik, Charles S; da Fonseca, Paula C A; Bogyo, Matthew

    2016-02-11

    The proteasome is a multi-component protease complex responsible for regulating key processes such as the cell cycle and antigen presentation. Compounds that target the proteasome are potentially valuable tools for the treatment of pathogens that depend on proteasome function for survival and replication. In particular, proteasome inhibitors have been shown to be toxic for the malaria parasite Plasmodium falciparum at all stages of its life cycle. Most compounds that have been tested against the parasite also inhibit the mammalian proteasome, resulting in toxicity that precludes their use as therapeutic agents. Therefore, better definition of the substrate specificity and structural properties of the Plasmodium proteasome could enable the development of compounds with sufficient selectivity to allow their use as anti-malarial agents. To accomplish this goal, here we use a substrate profiling method to uncover differences in the specificities of the human and P. falciparum proteasome. We design inhibitors based on amino-acid preferences specific to the parasite proteasome, and find that they preferentially inhibit the β2-subunit. We determine the structure of the P. falciparum 20S proteasome bound to the inhibitor using cryo-electron microscopy and single-particle analysis, to a resolution of 3.6 Å. These data reveal the unusually open P. falciparum β2 active site and provide valuable information about active-site architecture that can be used to further refine inhibitor design. Furthermore, consistent with the recent finding that the proteasome is important for stress pathways associated with resistance of artemisinin family anti-malarials, we observe growth inhibition synergism with low doses of this β2-selective inhibitor in artemisinin-sensitive and -resistant parasites. Finally, we demonstrate that a parasite-selective inhibitor could be used to attenuate parasite growth in vivo without appreciable toxicity to the host. Thus, the Plasmodium proteasome is a

  4. Structure and function based design of Plasmodium-selective proteasome inhibitors

    PubMed Central

    Li, Hao; O'Donoghue, Anthony J.; van der Linden, Wouter A.; Xie, Stanley C.; Yoo, Euna; Foe, Ian T.; Tilley, Leann; Craik, Charles S.; da Fonseca, Paula C. A.; Bogyo, Matthew

    2016-01-01

    The proteasome is a multi-component protease complex responsible for regulating key processes such as the cell cycle and antigen presentation1. Compounds that target the proteasome are potentially valuable tools for the treatment of pathogens that depend on proteasome function for survival and replication. In particular, proteasome inhibitors have been shown to be toxic for the malaria parasite Plasmodium falciparum at all stages of its life cycle2-5. Most compounds that have been tested against the parasite also inhibit the mammalian proteasome resulting in toxicity that precludes their use as therapeutic agents2,6. Therefore, better definition of the substrate specificity and structural properties of the Plasmodium proteasome could enable the development of compounds with sufficient selectivity to allow their use as anti-malarial agents. To accomplish this goal, we used a substrate profiling method to uncover differences in the specificities of the human and P. falciparum proteasome. We designed inhibitors based on amino acid preferences specific to the parasite proteasome, and found that they preferentially inhibit the β 2 subunit. We determined the structure of the P. falciparum 20S proteasome bound to the inhibitor using cryo-electron microscopy (cryo-EM) and single particle analysis, to a resolution of 3.6 Å. These data reveal the unusually open P. falciparum β2 active site and provide valuable information regarding active site architecture that can be used to further refine inhibitor design. Furthermore, consistent with the recent finding that the proteasome is important for stress pathways associated with resistance of artemisinin (ART) family anti-malarials7,8, we observed growth inhibition synergism with low doses of this β 2 selective inhibitor in ART sensitive and resistant parasites. Finally, we demonstrated that a parasite selective inhibitor could be used to attenuate parasite growth in vivo without significant toxicity to the host. Thus, the

  5. Relationship between the proteasomal system and autophagy

    PubMed Central

    Lilienbaum, Alain

    2013-01-01

    Two major pathways degrade most cellular proteins in eukaryotic cells: the ubiquitin–proteasome system (UPS), which usually degrades the majority of proteins, and autophagy, primarily responsible for the degradation of most long-lived or aggregated proteins and cellular organelles. Disruption of these processes can contribute to pathology of a variety of diseases. Further, both pathways are critical for the maintenance of several aspects of cellular homeostasis, but, until recently, were thought to be largely distinct. Recent advances in this field, however, now strongly suggest that their activities are carefully orchestrated through several interfacing elements that are presented and discussed in this review. PMID:23638318

  6. Characterisation of 20S Proteasome in Tritrichomonas foetus and Its Role during the Cell Cycle and Transformation into Endoflagellar Form

    PubMed Central

    Pereira-Neves, Antonio; Gonzaga, Luiz; Menna-Barreto, Rubem F. S.; Benchimol, Marlene

    2015-01-01

    Proteasomes are intracellular complexes that control selective protein degradation in organisms ranging from Archaea to higher eukaryotes. These structures have multiple proteolytic activities that are required for cell differentiation, replication and maintaining cellular homeostasis. Here, we document the presence of the 20S proteasome in the protist parasite Tritrichomonas foetus. Complementary techniques, such as a combination of whole genome sequencing technologies, bioinformatics algorithms, cell fractionation and biochemistry and microscopy approaches were used to characterise the 20S proteasome of T. foetus. The 14 homologues of the typical eukaryotic proteasome subunits were identified in the T. foetus genome. Alignment analyses showed that the main regulatory and catalytic domains of the proteasome were conserved in the predicted amino acid sequences from T. foetus-proteasome subunits. Immunofluorescence assays using an anti-proteasome antibody revealed a labelling distributed throughout the cytosol as punctate cytoplasmic structures and in the perinuclear region. Electron microscopy of a T. foetus-proteasome-enriched fraction confirmed the presence of particles that resembled the typical eukaryotic 20S proteasome. Fluorogenic assays using specific peptidyl substrates detected presence of the three typical peptidase activities of eukaryotic proteasomes in T. foetus. As expected, these peptidase activities were inhibited by lactacystin, a well-known specific proteasome inhibitor, and were not affected by inhibitors of serine or cysteine proteases. During the transformation of T. foetus to endoflagellar form (EFF), also known as pseudocyst, we observed correlations between the EFF formation rates, increases in the proteasome activities and reduced levels of ubiquitin-protein conjugates. The growth, cell cycle and EFF transformation of T. foetus were inhibited after treatment with lactacystin in a dose-dependent manner. Lactacystin treatment also resulted in

  7. Characterisation of 20S Proteasome in Tritrichomonas foetus and Its Role during the Cell Cycle and Transformation into Endoflagellar Form.

    PubMed

    Pereira-Neves, Antonio; Gonzaga, Luiz; Menna-Barreto, Rubem F S; Benchimol, Marlene

    2015-01-01

    Proteasomes are intracellular complexes that control selective protein degradation in organisms ranging from Archaea to higher eukaryotes. These structures have multiple proteolytic activities that are required for cell differentiation, replication and maintaining cellular homeostasis. Here, we document the presence of the 20S proteasome in the protist parasite Tritrichomonas foetus. Complementary techniques, such as a combination of whole genome sequencing technologies, bioinformatics algorithms, cell fractionation and biochemistry and microscopy approaches were used to characterise the 20S proteasome of T. foetus. The 14 homologues of the typical eukaryotic proteasome subunits were identified in the T. foetus genome. Alignment analyses showed that the main regulatory and catalytic domains of the proteasome were conserved in the predicted amino acid sequences from T. foetus-proteasome subunits. Immunofluorescence assays using an anti-proteasome antibody revealed a labelling distributed throughout the cytosol as punctate cytoplasmic structures and in the perinuclear region. Electron microscopy of a T. foetus-proteasome-enriched fraction confirmed the presence of particles that resembled the typical eukaryotic 20S proteasome. Fluorogenic assays using specific peptidyl substrates detected presence of the three typical peptidase activities of eukaryotic proteasomes in T. foetus. As expected, these peptidase activities were inhibited by lactacystin, a well-known specific proteasome inhibitor, and were not affected by inhibitors of serine or cysteine proteases. During the transformation of T. foetus to endoflagellar form (EFF), also known as pseudocyst, we observed correlations between the EFF formation rates, increases in the proteasome activities and reduced levels of ubiquitin-protein conjugates. The growth, cell cycle and EFF transformation of T. foetus were inhibited after treatment with lactacystin in a dose-dependent manner. Lactacystin treatment also resulted in

  8. Proteasome Inhibitors in the Treatment of Multiple Myeloma

    PubMed Central

    Shah, Jatin J.; Orlowski, Robert Z.

    2016-01-01

    Targeting intracellular protein turnover by inhibiting the ubiquitin-proteasome pathway as a strategy for cancer therapy is a new addition to our chemotherapeutic armamentarium, and has seen its greatest successes against multiple myeloma. The first-in-class proteasome inhibitor bortezomib was initially approved for treatment of patients in the relapsed/refractory setting as a single agent, and was recently shown to induce even greater benefits as part of rationally-designed combinations that overcome chemoresistance. Modulation of proteasome function is also a rational approach to achieve chemosensitization to other anti-myeloma agents, and bortezomib has now been incorporated into the front-line setting. Bortezomib-based induction regimens are able to achieve higher overall response rates and response qualities than was the case with prior standards of care, and unlike these older approaches, maintain efficacy in patients with clinically- and molecularly-defined high-risk disease. Second-generation proteasome inhibitors with novel properties, such as NPI-0052 and carfilzomib, are entering the clinical arena, and showing evidence of anti-myeloma activity. In this spotlight review, we provide an overview of the current state of the art use of bortezomib and other proteasome inhibitors against multiple myeloma, and highlight areas for future study that will further optimize our ability to benefit patients with this disease. PMID:19741722

  9. Quiescent fibroblasts are protected from proteasome inhibition–mediated toxicity

    PubMed Central

    Legesse-Miller, Aster; Raitman, Irene; Haley, Erin M.; Liao, Albert; Sun, Lova L.; Wang, David J.; Krishnan, Nithya; Lemons, Johanna M. S.; Suh, Eric J.; Johnson, Elizabeth L.; Lund, Benjamin A.; Coller, Hilary A.

    2012-01-01

    Proteasome inhibition is used as a treatment strategy for multiple types of cancers. Although proteasome inhibition can induce apoptotic cell death in actively proliferating cells, it is less effective in quiescent cells. In this study, we used primary human fibroblasts as a model system to explore the link between the proliferative state of a cell and proteasome inhibition–mediated cell death. We found that proliferating and quiescent fibroblasts have strikingly different responses to MG132, a proteasome inhibitor; proliferating cells rapidly apoptosed, whereas quiescent cells maintained viability. Moreover, MG132 treatment of proliferating fibroblasts led to increased superoxide anion levels, juxtanuclear accumulation of ubiquitin- and p62/SQSTM1-positive protein aggregates, and apoptotic cell death, whereas MG132-treated quiescent cells displayed fewer juxtanuclear protein aggregates, less apoptosis, and higher levels of mitochondrial superoxide dismutase. In both cell states, reducing reactive oxygen species with N-acetylcysteine lessened protein aggregation and decreased apoptosis, suggesting that protein aggregation promotes apoptosis. In contrast, increasing cellular superoxide levels with 2-methoxyestradiol treatment or inhibition of autophagy/lysosomal pathways with bafilomycin A1 sensitized serum-starved quiescent cells to MG132-induced apoptosis. Thus, antioxidant defenses and the autophagy/lysosomal pathway protect serum-starved quiescent fibroblasts from proteasome inhibition–induced cytotoxicity. PMID:22875985

  10. Proteolysis, proteasomes and antigen presentation

    NASA Technical Reports Server (NTRS)

    Goldberg, A. L.; Rock, K. L.

    1992-01-01

    Proteins presented to the immune system must first be cleaved to small peptides by intracellular proteinases. Proteasomes are proteolytic complexes that degrade cytosolic and nuclear proteins. These particles have been implicated in ATP-ubiquitin-dependent proteolysis and in the processing of intracellular antigens for cytolytic immune responses.

  11. Aspirin Delimits Platelet Life Span by Proteasomal Inhibition

    PubMed Central

    Nayak, Manasa K.; Dash, Ayusman; Singh, Nitesh; Dash, Debabrata

    2014-01-01

    Aspirin is widely used in clinical settings as an anti-inflammatory and anti-platelet drug due its inhibitory effect on cyclooxygenase activity. Although the drug has long been considered to be an effective and safe therapeutic regime against inflammatory and cardiovascular disorders, consequences of its cyclooxygenase-independent attributes on platelets, the key players in thrombogenesis, beg serious investigation. In this report we explored the effect of aspirin on platelet lifespan in murine model and its possible cytotoxicity against human platelets in vitro. Aspirin administration in mice led to significant reduction in half-life of circulating platelets, indicative of enhanced rate of platelet clearance. Aspirin-treated human platelets were found to be phagocytosed more efficiently by macrophages, associated with attenuation in platelet proteasomal activity and upregulation of conformationally active Bax, which were consistent with enhanced platelet apoptosis. Although the dosage of aspirin administered in mice was higher than the therapeutic regimen against cardiovascular events, it is comparable with the recommended anti-inflammatory prescription. Thus, above observations provide cautionary framework to critically re-evaluate prophylactic and therapeutic dosage regime of aspirin in systemic inflammatory as well as cardiovascular ailments. PMID:25126950

  12. Ciliopathy proteins regulate paracrine signaling by modulating proteasomal degradation of mediators

    PubMed Central

    Liu, Yangfan P.; Tsai, I-Chun; Morleo, Manuela; Oh, Edwin C.; Leitch, Carmen C.; Massa, Filomena; Lee, Byung-Hoon; Parker, David S.; Finley, Daniel; Zaghloul, Norann A.; Franco, Brunella; Katsanis, Nicholas

    2014-01-01

    Cilia are critical mediators of paracrine signaling; however, it is unknown whether proteins that contribute to ciliopathies converge on multiple paracrine pathways through a common mechanism. Here, we show that loss of cilopathy-associated proteins Bardet-Biedl syndrome 4 (BBS4) or oral-facial-digital syndrome 1 (OFD1) results in the accumulation of signaling mediators normally targeted for proteasomal degradation. In WT cells, several BBS proteins and OFD1 interacted with proteasomal subunits, and loss of either BBS4 or OFD1 led to depletion of multiple subunits from the centrosomal proteasome. Furthermore, overexpression of proteasomal regulatory components or treatment with proteasomal activators sulforaphane (SFN) and mevalonolactone (MVA) ameliorated signaling defects in cells lacking BBS1, BBS4, and OFD1, in morphant zebrafish embryos, and in induced neurons from Ofd1-deficient mice. Finally, we tested the hypothesis that other proteasome-dependent pathways not known to be associated with ciliopathies are defective in the absence of ciliopathy proteins. We found that loss of BBS1, BBS4, or OFD1 led to decreased NF-κB activity and concomitant IκBβ accumulation and that these defects were ameliorated with SFN treatment. Taken together, our data indicate that basal body proteasomal regulation governs paracrine signaling pathways and suggest that augmenting proteasomal function might benefit ciliopathy patients. PMID:24691443

  13. Proteasome inhibitors prevent cytochrome c release during apoptosis but not in excitotoxic death of cerebellar granule neurons.

    PubMed

    Bobba, Antonella; Canu, Nadia; Atlante, Anna; Petragallo, Vito; Calissano, Pietro; Marra, Ersilia

    2002-03-27

    In order to find out whether and how proteasomes participate in the processes leading cerebellar granule cells to death either in necrosis, due to glutamate neurotoxicity, or in apoptosis, due to K(+) shift, we measured the three proteasome activities by using specific fluorescent probes and investigated the effect of several proteasome inhibitors, including MG132, on the cytochrome c release taking place in the early phase of both apoptosis and necrosis. We show that differently from apoptosis, the early phase of necrosis does not require proteasome activation. Inhibition of proteasome activity can prevent cytochrome c release in cerebellar granule cells undergoing apoptosis, thus improving cell survival, but not necrosis. These findings show that proteasomes play an important role in the early phase of apoptosis but not that of necrosis, and that these two types of cell death differ from each other in their mechanism of cytochrome c release. PMID:11943185

  14. Proteasome Subtypes and Regulators in the Processing of Antigenic Peptides Presented by Class I Molecules of the Major Histocompatibility Complex

    PubMed Central

    Vigneron, Nathalie; Van den Eynde, Benoît J.

    2014-01-01

    The proteasome is responsible for the breakdown of cellular proteins. Proteins targeted for degradation are allowed inside the proteasome particle, where they are cleaved into small peptides and released in the cytosol to be degraded into amino acids. In vertebrates, some of these peptides escape degradation in the cytosol, are loaded onto class I molecules of the major histocompatibility complex (MHC) and displayed at the cell surface for scrutiny by the immune system. The proteasome therefore plays a key role for the immune system: it provides a continued sampling of intracellular proteins, so that CD8-positive T-lymphocytes can kill cells expressing viral or tumoral proteins. Consequently, the repertoire of peptides displayed by MHC class I molecules at the cell surface depends on proteasome activity, which may vary according to the presence of proteasome subtypes and regulators. Besides standard proteasomes, cells may contain immunoproteasomes, intermediate proteasomes and thymoproteasomes. Cells may also contain regulators of proteasome activity, such as the 19S, PA28 and PA200 regulators. Here, we review the effects of these proteasome subtypes and regulators on the production of antigenic peptides. We also discuss an unexpected function of the proteasome discovered through the study of antigenic peptides: its ability to splice peptides. PMID:25412285

  15. A novel proteasome inhibitor NPI-0052 as an anticancer therapy

    PubMed Central

    Chauhan, D; Hideshima, T; Anderson, K C

    2006-01-01

    Proteasome inhibitor Bortezomib/Velcade has emerged as an effective anticancer therapy for the treatment of relapsed and/or refractory multiple myeloma (MM), but prolonged treatment can be associated with toxicity and development of drug resistance. In this review, we discuss the recent discovery of a novel proteasome inhibitor, NPI-0052, that is distinct from Bortezomib in its chemical structure, mechanisms of action, and effects on proteasomal activities; most importantly, it overcomes resistance to conventional and Bortezomib therapies. In vivo studies using human MM xenografts shows that NPI-0052 is well tolerated, prolongs survival, and reduces tumour recurrence. These preclinical studies provided the basis for Phase-I clinical trial of NPI-0052 in relapsed/refractory MM patients. PMID:17047643

  16. Complete subunit architecture of the proteasome regulatory particle

    PubMed Central

    Lander, Gabriel C.; Estrin, Eric; Matyskiela, Mary E.; Bashore, Charlene; Nogales, Eva; Martin, Andreas

    2011-01-01

    The proteasome is the major ATP-dependent protease in eukaryotic cells, but limited structural information strongly restricts a mechanistic understanding of its activities. The proteasome regulatory particle, consisting of the lid and base subcomplexes, recognizes and processes poly-ubiquitinated substrates. We used electron microscopy and a newly-developed heterologous expression system for the lid to delineate the complete subunit architecture of the regulatory particle. Our studies reveal the spatial arrangement of ubiquitin receptors, deubiquitinating enzymes, and the protein unfolding machinery at subnanometer resolution, outlining the substrate’s path to degradation. Unexpectedly, the ATPase subunits within the base unfoldase are arranged in a spiral staircase, providing insight into potential mechanisms for substrate translocation through the central pore. Large conformational rearrangements of the lid upon holoenzyme formation suggest allosteric regulation of deubiquitination. We provide a structural basis for the ability of the proteasome to degrade a diverse set of substrates and thus regulate vital cellular processes. PMID:22237024

  17. Subunit specific inhibitors of proteasomes and their potential for immunomodulation

    PubMed Central

    Kisselev, Alexei F; Groettrup, Marcus

    2015-01-01

    Specialized variants of the constitutive 20S proteasome in the immune system like the immunoproteasomes and the thymoproteasome contain active site-bearing subunits which differ in their cleavage priorities and substrate binding pockets. The immunoproteasome plays a crucial role in antigen processing and for the differentiation of pro-inflammatory T helper cells which are involved in the pathogenesis of autoimmunity. Selective inhibitors of the immunoproteasome and constitutive proteasome have recently been generated which interfere with the development and progression of autoimmune diseases. Here we describe these inhibitors and their therapeutic potential as predicted from preclinical models. PMID:25217863

  18. Structural Insights into the Regulatory Particle of the Proteasome from Methanocaldococcus jannaschii

    SciTech Connect

    Zhang, F.; Hu, M; Tian, G; Zhang, P; Finley, D; Jeffrey, P; Shi, Y

    2009-01-01

    Eukaryotic proteasome consists of a core particle (CP), which degrades unfolded protein, and a regulatory particle (RP), which is responsible for recognition, ATP-dependent unfolding, and translocation of polyubiquitinated substrate protein. In the archaea Methanocaldococcus jannaschii, the RP is a homohexameric complex of proteasome-activating nucleotidase (PAN). Here, we report the crystal structures of essential elements of the archaeal proteasome: the CP, the ATPase domain of PAN, and a distal subcomplex that is likely the first to encounter substrate. The distal subcomplex contains a coiled-coil segment and an OB-fold domain, both of which appear to be conserved in the eukaryotic proteasome. The OB domains of PAN form a hexameric ring with a 13 A pore, which likely constitutes the outermost constriction of the substrate translocation channel. These studies reveal structural codes and architecture of the complete proteasome, identify potential substrate-binding sites, and uncover unexpected asymmetry in the RP of archaea and eukaryotes.

  19. Distinct temporal requirements for autophagy and the proteasome in yeast meiosis.

    PubMed

    Wen, Fu-Ping; Guo, Yue-Shuai; Hu, Yang; Liu, Wei-Xiao; Wang, Qian; Wang, Yuan-Ting; Yu, Hai-Yan; Tang, Chao-Ming; Yang, Jun; Zhou, Tao; Xie, Zhi-Ping; Sha, Jia-Hao; Guo, Xuejiang; Li, Wei

    2016-04-01

    Meiosis is a special type of cellular renovation that involves 2 successive cell divisions and a single round of DNA replication. Two major degradation systems, the autophagy-lysosome and the ubiquitin-proteasome, are involved in meiosis, but their roles have yet to be elucidated. Here we show that autophagy mainly affects the initiation of meiosis but not the nuclear division. Autophagy works not only by serving as a dynamic recycling system but also by eliminating some negative meiotic regulators such as Ego4 (Ynr034w-a). In a quantitative proteomics study, the proteasome was found to be significantly upregulated during meiotic divisions. We found that proteasomal activity is essential to the 2 successive meiotic nuclear divisions but not for the initiation of meiosis. Our study defines the roles of autophagy and the proteasome in meiosis: Autophagy mainly affects the initiation of meiosis, whereas the proteasome mainly affects the 2 successive meiotic divisions. PMID:27050457

  20. HSP70 Mediates Dissociation and Reassociation of the 26S Proteasome During Adaptation to Oxidative Stress

    PubMed Central

    Grune, Tilman; Catalgol, Betül; Licht, Anke; Ermak, Gennady; Pickering, Andrew; Ngo, Jenny K.; Davies, Kelvin J. A.

    2011-01-01

    We report an entirely new role for the HSP70 chaperone in dissociating 26S proteasome complexes (into free 20S proteasomes and bound 19S regulators), preserving 19S regulators, and reconstituting 26S proteasomes in the first 1-3 hours following mild oxidative stress. These responses, coupled with direct 20S proteasome activation by poly-ADP ribose polymerase in the nucleus and by PA28αβ in the cytoplasm, instantly provides cells with increased capacity to degrade oxidatively damaged proteins and to survive the initial effects of stress exposure. Subsequent adaptive (hormetic) processes (3-24 hours following stress exposure), mediated by several signal transduction pathways and involving increased transcription/translation of 20S proteasomes, immunoproteasomes, and PA28αβ, abrogate the need for 26S proteasome dissociation. During this adaptive period, HSP70 releases its bound 19S regulators, 26S proteasomes are reconstituted, and ATP-stimulated proteolysis is restored. The 26S proteasome-dependent, and ATP-stimulated, turnover of ubiquitinylated proteins is essential for normal cell metabolism, and its restoration is required for successful stress-adaptation. PMID:21767633

  1. The Lysine 48 and Lysine 63 Ubiquitin Conjugates Are Processed Differently by the 26 S Proteasome*

    PubMed Central

    Jacobson, Andrew D.; Zhang, Nan-Yan; Xu, Ping; Han, Ke-Jun; Noone, Seth; Peng, Junmin; Liu, Chang-Wei

    2009-01-01

    The role of Lys-63 ubiquitin chains in targeting proteins for proteasomal degradation is still obscure. We systematically compared proteasomal processing of Lys-63 ubiquitin chains with that of the canonical proteolytic signal, Lys-48 ubiquitin chains. Quantitative mass spectrometric analysis of ubiquitin chains in HeLa cells determines that the levels of Lys-63 ubiquitin chains are insensitive to short-time proteasome inhibition. Also, the Lys-48/Lys-63 ratio in the 26 S proteasome-bound fraction is 1.7-fold more than that in the cell lysates, likely because some cellular Lys-63 ubiquitin conjugates are sequestered by Lys-63 chain-specific binding proteins. In vitro, Lys-48 and Lys-63 ubiquitin chains bind the 26 S proteasome comparably, whereas Lys-63 chains are deubiquitinated 6-fold faster than Lys-48 chains. Also, Lys-63 tetraubiquitin-conjugated UbcH10 is rapidly deubiquitinated into the monoubiquitinated form, whereas Lys-48 tetraubiquitin targets UbcH10 for degradation. Furthermore, we found that both the ubiquitin aldehyde- and 1,10-phenanthroline-sensitive deubiquitinating activities of the 26 S proteasome contribute to Lys-48- and Lys-63-linkage deubiquitination, albeit the inhibitory extents are different. Together, our findings suggest that compared with Lys-48 chains, cellular Lys-63 chains have less proteasomal accessibility, and proteasome-bound Lys-63 chains are more rapidly deubiquitinated, which could cause inefficient degradation of Lys-63 conjugates. PMID:19858201

  2. PI31 is a modulator of proteasome formation and antigen processing

    PubMed Central

    Zaiss, Dietmar M. W.; Standera, Sybille; Kloetzel, Peter-M.; Sijts, Alice J. A. M.

    2002-01-01

    Regulation of the proteasome system, which is responsible for the generation of most MHC class I-bound peptides, occurs through the interaction of the 20S proteasome with several regulatory proteins. One of these is PI31, which acts in vitro as an inhibitor of proteasome activity. Here, we demonstrate that, rather than inhibiting proteasome function, PI31 acts as a selective modulator of the proteasome-mediated steps in MHC class I antigen processing. Overexpression of PI31 in mouse embryonic cells has no impact on proteasome-mediated proteolysis. Instead, PI31, which localizes at the nuclear envelope/endoplasmic reticulum membrane, selectively interferes with the maturation of immunoproteasome precursor complexes. Consequently, overexpression of PI31 abrogates MHC class I presentation of an immunoproteasome-dependent cytotoxic T lymphocyte epitope and reduces the surface MHC class I levels on IFN-γ-treated mouse embryonic cells. Thus, PI31 represents a cellular regulator of proteasome formation and of proteasome-mediated antigen processing. PMID:12374861

  3. Regulation of dimethyl-fumarate toxicity by proteasome inhibitors.

    PubMed

    Booth, Laurence; Cruickshanks, Nichola; Tavallai, Seyedmehrad; Roberts, Jane L; Peery, Matthew; Poklepovic, Andrew; Dent, Paul

    2014-01-01

    The present studies examined the biology of the multiple sclerosis drug dimethyl-fumarate (DMF) or its in vivo breakdown product and active metabolite mono-methyl-fumarate (MMF), alone or in combination with proteasome inhibitors, in primary human glioblastoma (GBM) cells. MMF enhanced velcade and carfilzomib toxicity in multiple primary GBM isolates. Similar data were obtained in breast and colon cancer cells. MMF reduced the invasiveness of GBM cells, and enhanced the toxicity of ionizing radiation and temozolomide. MMF killed freshly isolated activated microglia which was associated with reduced IL-6, TGFβ and TNFα production. The combination of MMF and the multiple sclerosis drug Gilenya further reduced both GBM and activated microglia viability and cytokine production. Over-expression of c-FLIP-s or BCL(-)XL protected GBM cells from MMF and velcade toxicity. MMF and velcade increased plasma membrane localization of CD95, and knock down of CD95 or FADD blocked the drug interaction. The drug combination inactivated AKT, ERK1/2 and mTOR. Molecular inhibition of AKT/ERK/mTOR signaling enhanced drug combination toxicity whereas molecular activation of these pathways suppressed killing. MMF and velcade increased the levels of autophagosomes and autolysosomes and knock down of ATG5 or Beclin1 protected cells. Inhibition of the eIF2α/ATF4 arm or the IRE1α/XBP1 arm of the ER stress response enhanced drug combination lethality. This was associated with greater production of reactive oxygen species and quenching of ROS suppressed cell killing. PMID:25482938

  4. The Regulatory Particle of the Saccharomyces cerevisiae Proteasome

    PubMed Central

    Glickman, Michael H.; Rubin, David M.; Fried, Victor A.; Finley, Daniel

    1998-01-01

    The proteasome is a multisubunit protease responsible for degrading proteins conjugated to ubiquitin. The 670-kDa core particle of the proteasome contains the proteolytic active sites, which face an interior chamber within the particle and are thus protected from the cytoplasm. The entry of substrates into this chamber is thought to be governed by the regulatory particle of the proteasome, which covers the presumed channels leading into the interior of the core particle. We have resolved native yeast proteasomes into two electrophoretic variants and have shown that these represent core particles capped with one or two regulatory particles. To determine the subunit composition of the regulatory particle, yeast proteasomes were purified and analyzed by gradient sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Resolution of the individual polypeptides revealed 17 distinct proteins, whose identities were determined by amino acid sequence analysis. Six of the subunits have sequence features of ATPases (Rpt1 to Rpt6). Affinity chromatography was used to purify regulatory particles from various strains, each of which expressed one of the ATPases tagged with hexahistidine. In all cases, multiple untagged ATPases copurified, indicating that the ATPases assembled together into a heteromeric complex. Of the remaining 11 subunits that we have identified (Rpn1 to Rpn3 and Rpn5 to Rpn12), 8 are encoded by previously described genes and 3 are encoded by genes not previously characterized for yeasts. One of the previously unidentified subunits exhibits limited sequence similarity with deubiquitinating enzymes. Overall, regulatory particles from yeasts and mammals are remarkably similar, suggesting that the specific mechanistic features of the proteasome have been closely conserved over the course of evolution. PMID:9584156

  5. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production.

    PubMed

    Brehm, Anja; Liu, Yin; Sheikh, Afzal; Marrero, Bernadette; Omoyinmi, Ebun; Zhou, Qing; Montealegre, Gina; Biancotto, Angelique; Reinhardt, Adam; Almeida de Jesus, Adriana; Pelletier, Martin; Tsai, Wanxia L; Remmers, Elaine F; Kardava, Lela; Hill, Suvimol; Kim, Hanna; Lachmann, Helen J; Megarbane, Andre; Chae, Jae Jin; Brady, Jilian; Castillo, Rhina D; Brown, Diane; Casano, Angel Vera; Gao, Ling; Chapelle, Dawn; Huang, Yan; Stone, Deborah; Chen, Yongqing; Sotzny, Franziska; Lee, Chyi-Chia Richard; Kastner, Daniel L; Torrelo, Antonio; Zlotogorski, Abraham; Moir, Susan; Gadina, Massimo; McCoy, Phil; Wesley, Robert; Rother, Kristina I; Rother, Kristina; Hildebrand, Peter W; Brogan, Paul; Krüger, Elke; Aksentijevich, Ivona; Goldbach-Mansky, Raphaela

    2015-11-01

    Autosomal recessive mutations in proteasome subunit β 8 (PSMB8), which encodes the inducible proteasome subunit β5i, cause the immune-dysregulatory disease chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE), which is classified as a proteasome-associated autoinflammatory syndrome (PRAAS). Here, we identified 8 mutations in 4 proteasome genes, PSMA3 (encodes α7), PSMB4 (encodes β7), PSMB9 (encodes β1i), and proteasome maturation protein (POMP), that have not been previously associated with disease and 1 mutation in PSMB8 that has not been previously reported. One patient was compound heterozygous for PSMB4 mutations, 6 patients from 4 families were heterozygous for a missense mutation in 1 inducible proteasome subunit and a mutation in a constitutive proteasome subunit, and 1 patient was heterozygous for a POMP mutation, thus establishing a digenic and autosomal dominant inheritance pattern of PRAAS. Function evaluation revealed that these mutations variably affect transcription, protein expression, protein folding, proteasome assembly, and, ultimately, proteasome activity. Moreover, defects in proteasome formation and function were recapitulated by siRNA-mediated knockdown of the respective subunits in primary fibroblasts from healthy individuals. Patient-isolated hematopoietic and nonhematopoietic cells exhibited a strong IFN gene-expression signature, irrespective of genotype. Additionally, chemical proteasome inhibition or progressive depletion of proteasome subunit gene transcription with siRNA induced transcription of type I IFN genes in healthy control cells. Our results provide further insight into CANDLE genetics and link global proteasome dysfunction to increased type I IFN production. PMID:26524591

  6. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production

    PubMed Central

    Brehm, Anja; Liu, Yin; Sheikh, Afzal; Marrero, Bernadette; Omoyinmi, Ebun; Zhou, Qing; Montealegre, Gina; Biancotto, Angelique; Reinhardt, Adam; Almeida de Jesus, Adriana; Pelletier, Martin; Tsai, Wanxia L.; Remmers, Elaine F.; Kardava, Lela; Hill, Suvimol; Kim, Hanna; Lachmann, Helen J.; Megarbane, Andre; Chae, Jae Jin; Brady, Jilian; Castillo, Rhina D.; Brown, Diane; Casano, Angel Vera; Gao, Ling; Chapelle, Dawn; Huang, Yan; Stone, Deborah; Chen, Yongqing; Sotzny, Franziska; Lee, Chyi-Chia Richard; Kastner, Daniel L.; Torrelo, Antonio; Zlotogorski, Abraham; Moir, Susan; Gadina, Massimo; McCoy, Phil; Wesley, Robert; Rother, Kristina; Hildebrand, Peter W.; Brogan, Paul; Krüger, Elke; Aksentijevich, Ivona; Goldbach-Mansky, Raphaela

    2015-01-01

    Autosomal recessive mutations in proteasome subunit β 8 (PSMB8), which encodes the inducible proteasome subunit β5i, cause the immune-dysregulatory disease chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE), which is classified as a proteasome-associated autoinflammatory syndrome (PRAAS). Here, we identified 8 mutations in 4 proteasome genes, PSMA3 (encodes α7), PSMB4 (encodes β7), PSMB9 (encodes β1i), and proteasome maturation protein (POMP), that have not been previously associated with disease and 1 mutation in PSMB8 that has not been previously reported. One patient was compound heterozygous for PSMB4 mutations, 6 patients from 4 families were heterozygous for a missense mutation in 1 inducible proteasome subunit and a mutation in a constitutive proteasome subunit, and 1 patient was heterozygous for a POMP mutation, thus establishing a digenic and autosomal dominant inheritance pattern of PRAAS. Function evaluation revealed that these mutations variably affect transcription, protein expression, protein folding, proteasome assembly, and, ultimately, proteasome activity. Moreover, defects in proteasome formation and function were recapitulated by siRNA-mediated knockdown of the respective subunits in primary fibroblasts from healthy individuals. Patient-isolated hematopoietic and nonhematopoietic cells exhibited a strong IFN gene-expression signature, irrespective of genotype. Additionally, chemical proteasome inhibition or progressive depletion of proteasome subunit gene transcription with siRNA induced transcription of type I IFN genes in healthy control cells. Our results provide further insight into CANDLE genetics and link global proteasome dysfunction to increased type I IFN production. PMID:26524591

  7. Proteasome function shapes innate and adaptive immune responses.

    PubMed

    Kammerl, Ilona E; Meiners, Silke

    2016-08-01

    The proteasome system degrades more than 80% of intracellular proteins into small peptides. Accordingly, the proteasome is involved in many essential cellular functions, such as protein quality control, transcription, immune responses, cell signaling, and apoptosis. Moreover, degradation products are loaded onto major histocompatibility class I molecules to communicate the intracellular protein composition to the immune system. The standard 20S proteasome core complex contains three distinct catalytic active sites that are exchanged upon stimulation with inflammatory cytokines to form the so-called immunoproteasome. Immunoproteasomes are constitutively expressed in immune cells and have different proteolytic activities compared with standard proteasomes. They are rapidly induced in parenchymal cells upon intracellular pathogen infection and are crucial for priming effective CD8(+) T-cell-mediated immune responses against infected cells. Beyond shaping these adaptive immune reactions, immunoproteasomes also regulate the function of immune cells by degradation of inflammatory and immune mediators. Accordingly, they emerge as novel regulators of innate immune responses. The recently unraveled impairment of immunoproteasome function by environmental challenges and by genetic variations of immunoproteasome genes might represent a currently underestimated risk factor for the development and progression of lung diseases. In particular, immunoproteasome dysfunction will dampen resolution of infections, thereby promoting exacerbations, may foster autoimmunity in chronic lung diseases, and possibly contributes to immune evasion of tumor cells. Novel pharmacological tools, such as site-specific inhibitors of the immunoproteasome, as well as activity-based probes, however, hold promises as innovative therapeutic drugs for respiratory diseases and biomarker profiling, respectively. PMID:27343191

  8. Inhibition on Proteasome β1 Subunit Might Contribute to the Anti-Cancer Effects of Fangchinoline in Human Prostate Cancer Cells

    PubMed Central

    Sun, Peng; Feng, Li-Xing; Liu, Miao; Hu, Li-Hong; Wu, Wan-Ying; Jiang, Bao-Hong; Yang, Min; Qu, Xiao-Bo; Guo, De-An; Liu, Xuan

    2015-01-01

    Fangchinoline is a bisbenzylisoquinoline alkaloid isolated from Radix Stephaniae tetrandrae S. Moore. Fangchinoline and its structure analogue, tetrandrine, exhibited direct binding affinity with recombinant human proteasome β1 subunit and also inhibited its activity in vitro. In cultured prostate PC-3 cells and LnCap cells, fangchinoline could dose-dependently inhibit cell proliferation and caspase-like activity of cellular proteasome which was mediated by proteasome β1 subunit. The inhibitive effect of fangchinoline on caspase-like activity of proteasome was also observed in purified human erythrocyte 20S proteasome. In PC-3 cells, fangchinoline induced cell cycle arrest at G0/G1 phase and apoptosis. Treatment of PC-3 tumor-bearing nude mice with fangchinoline inhibited tumor growth, induced apoptosis and also caused decrease in proteasome activities in tumor xenografts. Dose-dependent and time-dependent accumulation of ubiquitinated proteins and important proteasome substrates such as p27, Bax and IκB-α were observed in fangchinoline-treated cells. Over-expression of proteasome β1 subunit by plasmid transfection increased sensitivity of cells to the cytotoxicity of fangchinoline while knockdown of proteasome β1 subunit ameliorated cytotoxicity of fangchinoline in PC-3 cells. Results of the present study suggested that proteasome inhibition was involved in the anti-cancer effects of fangchinoline. Fangchinoline and its structure analogues might be new natural proteasome inhibitors targeting β1 subunit. PMID:26512898

  9. Inhibition on Proteasome β1 Subunit Might Contribute to the Anti-Cancer Effects of Fangchinoline in Human Prostate Cancer Cells.

    PubMed

    Li, Dong; Lu, Yu; Sun, Peng; Feng, Li-Xing; Liu, Miao; Hu, Li-Hong; Wu, Wan-Ying; Jiang, Bao-Hong; Yang, Min; Qu, Xiao-Bo; Guo, De-An; Liu, Xuan

    2015-01-01

    Fangchinoline is a bisbenzylisoquinoline alkaloid isolated from Radix Stephaniae tetrandrae S. Moore. Fangchinoline and its structure analogue, tetrandrine, exhibited direct binding affinity with recombinant human proteasome β1 subunit and also inhibited its activity in vitro. In cultured prostate PC-3 cells and LnCap cells, fangchinoline could dose-dependently inhibit cell proliferation and caspase-like activity of cellular proteasome which was mediated by proteasome β1 subunit. The inhibitive effect of fangchinoline on caspase-like activity of proteasome was also observed in purified human erythrocyte 20S proteasome. In PC-3 cells, fangchinoline induced cell cycle arrest at G0/G1 phase and apoptosis. Treatment of PC-3 tumor-bearing nude mice with fangchinoline inhibited tumor growth, induced apoptosis and also caused decrease in proteasome activities in tumor xenografts. Dose-dependent and time-dependent accumulation of ubiquitinated proteins and important proteasome substrates such as p27, Bax and IκB-α were observed in fangchinoline-treated cells. Over-expression of proteasome β1 subunit by plasmid transfection increased sensitivity of cells to the cytotoxicity of fangchinoline while knockdown of proteasome β1 subunit ameliorated cytotoxicity of fangchinoline in PC-3 cells. Results of the present study suggested that proteasome inhibition was involved in the anti-cancer effects of fangchinoline. Fangchinoline and its structure analogues might be new natural proteasome inhibitors targeting β1 subunit. PMID:26512898

  10. Proteasome regulates turnover of toxic human amylin in pancreatic cells.

    PubMed

    Singh, Sanghamitra; Trikha, Saurabh; Sarkar, Anjali; Jeremic, Aleksandar M

    2016-09-01

    Toxic human amylin (hA) oligomers and aggregates are implicated in the pathogenesis of type 2 diabetes mellitus (T2DM). Although recent studies demonstrated a causal connection between hA uptake and toxicity in pancreatic cells, the mechanism of amylin's clearance following its internalization and its relationship to toxicity is yet to be determined, and hence was investigated here. Using pancreatic rat insulinoma β-cells and human islets as model systems, we show that hA, following its internalization, first accumulates in the cytosol followed by its translocation into nucleus, and to a lesser extent lysosomes, keeping the net cytosolic amylin content low. An increase in hA accumulation in the nucleus of pancreatic cells correlated with its cytotoxicity, suggesting that its excessive accumulation in the nucleus is detrimental. hA interacted with 20S core and 19S lid subunits of the β-cell proteasomal complex, as suggested by immunoprecipitation and confocal microscopy studies, which subsequently resulted in a decrease in the proteasome's proteolytic activity in these cells. In vitro binding and activity assays confirmed an intrinsic and potent ability of amylin to interact with the 20S core complex thereby modulating its proteolytic activity. Interestingly, less toxic and aggregation incapable rat amylin (rA) showed a comparable inhibitory effect on proteasome activity and protein ubiquitination, decoupling amylin aggregation/ toxicity and amylin-induced protein stress. In agreement with these studies, inhibition of proteasomal proteolytic activity significantly increased intracellular amylin content and toxicity. Taken together, our results suggest a pivotal role of proteasomes in amylin's turnover and detoxification in pancreatic cells. PMID:27340132

  11. The proteasome inhibitor bortezomib induces testicular toxicity by upregulation of oxidative stress, AMP-activated protein kinase (AMPK) activation and deregulation of germ cell development in adult murine testis

    SciTech Connect

    Li, Wei; Fu, Jianfang; Zhang, Shun; Zhao, Jie; Xie, Nianlin; Cai, Guoqing

    2015-06-01

    Understanding how chemotherapeutic agents mediate testicular toxicity is crucial in light of compelling evidence that male infertility, one of the severe late side effects of intensive cancer treatment, occurs more often than they are expected to. Previous study demonstrated that bortezomib (BTZ), a 26S proteasome inhibitor used to treat refractory multiple myeloma (MM), exerts deleterious impacts on spermatogenesis in pubertal mice via unknown mechanisms. Here, we showed that intermittent treatment with BTZ resulted in fertility impairment in adult mice, evidenced by testicular atrophy, desquamation of immature germ cells and reduced caudal sperm storage. These deleterious effects may originate from the elevated apoptosis in distinct germ cells during the acute phase and the subsequent disruption of Sertoli–germ cell anchoring junctions (AJs) during the late recovery. Mechanistically, balance between AMP-activated protein kinase (AMPK) activation and Akt/ERK pathway appeared to be indispensable for AJ integrity during the late testicular recovery. Of particular interest, the upregulated testicular apoptosis and the following disturbance of Sertoli–germ cell interaction may both stem from the excessive oxidative stress elicited by BTZ exposure. We also provided the in vitro evidence that AMPK-dependent mechanisms counteract follicle-stimulating hormone (FSH) proliferative effects in BTZ-exposed Sertoli cells. Collectively, BTZ appeared to efficiently prevent germ cells from normal development via multiple mechanisms in adult mice. Employment of antioxidants and/or AMPK inhibitor may represent an attractive strategy of fertility preservation in male MM patients exposed to conventional BTZ therapy and warrants further investigation. - Highlights: • Intermittent treatment with BTZ caused fertility impairment in adult mice. • BTZ treatment elicited apoptosis during early phase of testicular recovery. • Up-regulation of oxidative stress by BTZ treatment

  12. When Cancer Fights Back: Multiple Myeloma, Proteasome Inhibition, and the Heat Shock Response

    PubMed Central

    Shah, Shardule P.; Lonial, Sagar; Boise, Lawrence H.

    2015-01-01

    Multiple myeloma (MM) is a plasma cell malignancy with an estimated 26,850 new cases and 11,240 deaths in 2015 in the United States. Two main classes of agents are the mainstays of therapy - proteasome inhibitors (PIs) and immunomodulatory drugs (IMiDs). Other new targets are emerging rapidly, including monoclonal antibodies and histone deacetylase (HDAC) inhibitors. These therapeutic options have greatly improved overall survival but currently only 15-20% of patients experience long-term progression-free survival or are cured. Therefore, improvement in treatment options is needed. One potential means of improving clinical options is to target resistance mechanisms for current agents. For example, eliminating the cytoprotective heat shock response that protects myeloma cells from proteasome inhibition may enhance PI-based therapies. The transcription factor Heat Shock Factor 1 (HSF1) is the master regulator of the heat shock response. HSF1 is vital in the proteotoxic stress response and its activation is controlled by post-translational modifications (PTMs). This review details the mechanisms of HSF1 regulation and discusses leveraging that regulation to enhance PI activity. PMID:26013169

  13. Stronger proteasomal inhibition and higher CHOP induction are responsible for more effective induction of paraptosis by dimethoxycurcumin than curcumin.

    PubMed

    Yoon, M J; Kang, Y J; Lee, J A; Kim, I Y; Kim, M A; Lee, Y S; Park, J H; Lee, B Y; Kim, I A; Kim, H S; Kim, S-A; Yoon, A-R; Yun, C-O; Kim, E-Y; Lee, K; Choi, K S

    2014-01-01

    Although curcumin suppresses the growth of a variety of cancer cells, its poor absorption and low systemic bioavailability have limited its translation into clinics as an anticancer agent. In this study, we show that dimethoxycurcumin (DMC), a methylated, more stable analog of curcumin, is significantly more potent than curcumin in inducing cell death and reducing the clonogenicity of malignant breast cancer cells. Furthermore, DMC reduces the tumor growth of xenografted MDA-MB 435S cells more strongly than curcumin. We found that DMC induces paraptosis accompanied by excessive dilation of mitochondria and the endoplasmic reticulum (ER); this is similar to curcumin, but a much lower concentration of DMC is required to induce this process. DMC inhibits the proteasomal activity more strongly than curcumin, possibly causing severe ER stress and contributing to the observed dilation. DMC treatment upregulates the protein levels of CCAAT-enhancer-binding protein homologous protein (CHOP) and Noxa, and the small interfering RNA-mediated suppression of CHOP, but not Noxa, markedly attenuates DMC-induced ER dilation and cell death. Interestingly, DMC does not affect the viability, proteasomal activity or CHOP protein levels of human mammary epithelial cells, suggesting that DMC effectively induces paraptosis selectively in breast cancer cells, while sparing normal cells. Taken together, these results suggest that DMC triggers a stronger proteasome inhibition and higher induction of CHOP compared with curcumin, giving it more potent anticancer effects on malignant breast cancer cells. PMID:24625971

  14. Proteasome inhibitors prevent cell death and prolong survival of mice challenged by Shiga toxin

    PubMed Central

    Hattori, Takayuki; Watanabe-Takahashi, Miho; Ohoka, Nobumichi; Hamabata, Takashi; Furukawa, Koichi; Nishikawa, Kiyotaka; Naito, Mikihiko

    2015-01-01

    Shiga toxin (Stx) causes fatal systemic complications. Stx induces apoptosis, but the mechanism of which is unclear. We report that Stx induced rapid reduction of short-lived anti-apoptotic proteins followed by activation of caspase 9 and the progression of apoptosis. Proteasome inhibitors prevented the reduction of anti-apoptotic proteins, and inhibited caspase activation and apoptosis, suggesting that the reduction of anti-apoptotic proteins is a prerequisite for Stx-induced apoptosis. A clinically approved proteasome inhibitor, bortezomib, prolonged the survival of mice challenged by Stx. These results imply that proteasome inhibition may be a novel approach to prevent the fatal effects of Stx. PMID:26273560

  15. Bladder cancer detection using a peptide substrate of the 20S proteasome.

    PubMed

    Gruba, Natalia; Wysocka, Magdalena; Brzezińska, Magdalena; Dębowski, Dawid; Sieńczyk, Marcin; Gorodkiewicz, Ewa; Guszcz, Tomasz; Czaplewski, Cezary; Rolka, Krzysztof; Lesner, Adam

    2016-08-01

    The 20S catalytic core of the human 26S proteasome can be secreted from cells, and high levels of extracellular 20S proteasome have been linked to many types of cancers and autoimmune diseases. Several diagnostic approaches have been developed that detect 20S proteasome activity in plasma, but these suffer from problems with efficiency and sensitivity. In this report, we describe the optimization and synthesis of an internally quenched fluorescent substrate of the 20S proteasome, and investigate its use as a potential diagnostic test in bladder cancer. This peptide, 2-aminobenzoic acid (ABZ)-Val-Val-Ser-Tyr-Ala-Met-Gly-Tyr(3-NO2 )-NH2 , is cleaved by the chymotrypsin 20S proteasome subunit and displays an excellent specificity constant value (9.7 × 10(5)  m(-1) ·s(-1) ) and a high kcat (8 s(-1) ). Using this peptide, we identified chymotrypsin-like proteasome activity in the majority of urine samples obtained from patients with bladder cancer, whereas the proteasome activity in urine samples from healthy volunteers was below the detection limit (0.5 pm). These findings were confirmed by an inhibitory study and immunochemistry methods. PMID:27326540

  16. Targeting the ubiquitin proteasome pathway for the treatment of septic shock in patients

    PubMed Central

    2009-01-01

    Endotoxic shock is a serious systemic inflammatory response to an external biological stressor. The responsiveness of NF-κB is built upon rapid protein modification and degradation involving the ubiquitin proteasome pathway. Using transgenic mice, we have obtained in vivo evidence that interference with this pathway can alleviate the symptoms of toxic shock. We posit that administration of proteasome inhibitors may enhance the survival of patients with septic shock. PMID:19691815

  17. A potent and selective inhibitor for the UBLCP1 proteasome phosphatase

    PubMed Central

    He, Yantao; Guo, Xing; Yu, Zhi-Hong; Wu, Li; Gunawan, Andrea M.; Zhang, Yan; Dixon, Jack E.; Zhang, Zhong-Yin

    2015-01-01

    The ubiquitin-like domain-containing C-terminal domain phosphatase 1 (UBLCP1) has been implicated as a negative regulator of the proteasome, a key mediator in the ubiquitin-dependent protein degradation. Small molecule inhibitors that block UBLCP1 activity would be valuable as research tools and potential therapeutics for human diseases caused by the cellular accumulation of misfold/damaged proteins. We report a salicylic acid fragment-based library approach aimed at targeting both the phosphatase active site and its adjacent binding pocket for enhanced affinity and selectivity. Screening of the focused libraries led to the identification of the first potent and selective UBLCP1 inhibitor 13. Compound 13 exhibits an IC50 of 1.0 μM for UBLCP1 and greater than 5-fold selectivity against a large panel of protein phosphatases from several distinct families. Importantly, the inhibitor possesses efficacious cellular activity and is capable of inhibiting UBLCP1 function in cells, which in turn up-regulates nuclear proteasome activity. These studies set the groundwork for further developing compound 13 into chemical probes or potential therapeutic agents targeting the UBLCP1 phosphatase. PMID:25907364

  18. The proteasome inhibitor bortezomib induces testicular toxicity by upregulation of oxidative stress, AMP-activated protein kinase (AMPK) activation and deregulation of germ cell development in adult murine testis.

    PubMed

    Li, Wei; Fu, Jianfang; Zhang, Shun; Zhao, Jie; Xie, Nianlin; Cai, Guoqing

    2015-06-01

    Understanding how chemotherapeutic agents mediate testicular toxicity is crucial in light of compelling evidence that male infertility, one of the severe late side effects of intensive cancer treatment, occurs more often than they are expected to. Previous study demonstrated that bortezomib (BTZ), a 26S proteasome inhibitor used to treat refractory multiple myeloma (MM), exerts deleterious impacts on spermatogenesis in pubertal mice via unknown mechanisms. Here, we showed that intermittent treatment with BTZ resulted in fertility impairment in adult mice, evidenced by testicular atrophy, desquamation of immature germ cells and reduced caudal sperm storage. These deleterious effects may originate from the elevated apoptosis in distinct germ cells during the acute phase and the subsequent disruption of Sertoli-germ cell anchoring junctions (AJs) during the late recovery. Mechanistically, balance between AMP-activated protein kinase (AMPK) activation and Akt/ERK pathway appeared to be indispensable for AJ integrity during the late testicular recovery. Of particular interest, the upregulated testicular apoptosis and the following disturbance of Sertoli-germ cell interaction may both stem from the excessive oxidative stress elicited by BTZ exposure. We also provided the in vitro evidence that AMPK-dependent mechanisms counteract follicle-stimulating hormone (FSH) proliferative effects in BTZ-exposed Sertoli cells. Collectively, BTZ appeared to efficiently prevent germ cells from normal development via multiple mechanisms in adult mice. Employment of antioxidants and/or AMPK inhibitor may represent an attractive strategy of fertility preservation in male MM patients exposed to conventional BTZ therapy and warrants further investigation. PMID:25886977

  19. The proteasomal and apoptotic phenotype determine bortezomib sensitivity of non-small cell lung cancer cells

    PubMed Central

    Voortman, Jens; Chęcińska, Agnieszka; Giaccone, Giuseppe

    2007-01-01

    Bortezomib is a novel anti-cancer agent which has shown promising activity in non-small lung cancer (NSCLC) patients. However, only a subset of patients respond to this treatment. We show that NSCLC cell lines are differentially sensitive to bortezomib, IC50 values ranging from 5 to 83 nM. The apoptosis-inducing potential of bortezomib in NSCLC cells was found to be dependent not only on the apoptotic phenotype but also on the proteasomal phenotype of individual cell lines. Upon effective proteasome inhibition, H460 cells were more susceptible to apoptosis induction by bortezomib than SW1573 cells, indicating a different apoptotic phenotype. However, exposure to a low dose of bortezomib did only result in SW1573 cells, and not in H460 cells, in inhibition of proteasome activity and subsequent apoptosis. This suggests a different proteasomal phenotype as well. Additionally, overexpression of anti-apoptotic protein Bcl-2 in H460 cells did not affect the proteasomal phenotype of H460 cells but did result in decreased bortezomib-induced apoptosis. In conclusion, successful proteasome-inhibitor based treatment strategies in NSCLC face the challenge of having to overcome apoptosis resistance as well as proteasomal resistance of individual lung cancer cells. Further studies in NSCLC are warranted to elucidate underlying mechanisms. PMID:18021420

  20. Inhibition of Proteasome Activity Promotes the Correct Localization of Disease-Causing α-Sarcoglycan Mutants in HEK-293 Cells Constitutively Expressing β-, γ-, and δ-Sarcoglycan

    PubMed Central

    Gastaldello, Stefano; D'Angelo, Simona; Franzoso, Susanna; Fanin, Marina; Angelini, Corrado; Betto, Romeo; Sandonà, Dorianna

    2008-01-01

    Sarcoglycanopathies are progressive muscle-wasting disorders caused by genetic defects of four proteins, α-, β-, γ-, and δ-sarcoglycan, which are elements of a key transmembrane complex of striated muscle. The proper assembly of the sarcoglycan complex represents a critical issue of sarcoglycanopathies, as several mutations severely perturb tetramer formation. Misfolded proteins are generally degraded through the cell’s quality-control system; however, this can also lead to the removal of some functional polypeptides. To explore whether it is possible to rescue sarcoglycan mutants by preventing their degradation, we generated a heterologous cell system, based on human embryonic kidney (HEK) 293 cells, constitutively expressing three (β, γ, and δ) of the four sarcoglycans. In these βγδ-HEK cells, the lack of α-sarcoglycan prevented complex formation and cell surface localization, wheras the presence of α-sarcoglycan allowed maturation and targeting of the tetramer. As in muscles of sarcoglycanopathy patients, transfection of βγδ-HEK cells with disease-causing α-sarcoglycan mutants led to dramatic reduction of the mutated proteins and the absence of the complex from the cell surface. Proteasomal inhibition reduced the degradation of mutants and facilitated the assembly and targeting of the sarcoglycan complex to the plasma membrane. These data provide important insights for the potential development of pharmacological therapies for sarcoglycanopathies. PMID:18535179

  1. Intracellular NAD+ depletion enhances bortezomib-induced anti-myeloma activity

    PubMed Central

    Cagnetta, Antonia; Calimeri, Teresa; Acharya, Chirag; Fulciniti, Mariateresa; Tai, Yu-Tzu; Hideshima, Teru; Chauhan, Dharminder; Zhong, Mike Y.; Patrone, Franco; Nencioni, Alessio; Gobbi, Marco; Richardson, Paul; Munshi, Nikhil

    2013-01-01

    We recently demonstrated that Nicotinamide phosphoribosyltransferase (Nampt) inhibition depletes intracellular NAD+ content leading, to autophagic multiple myeloma (MM) cell death. Bortezomib has remarkably improved MM patient outcome, but dose-limiting toxicities and development of resistance limit its long-term utility. Here we observed higher Nampt messenger RNA levels in bortezomib-resistant patient MM cells, which correlated with decreased overall survival. We demonstrated that combining the NAD+ depleting agent FK866 with bortezomib induces synergistic anti-MM cell death and overcomes bortezomib resistance. This effect is associated with (1) activation of caspase-8, caspase-9, caspase-3, poly (ADP-ribose) polymerase, and downregulation of Mcl-1; (2) enhanced intracellular NAD+ depletion; (3) inhibition of chymotrypsin-like, caspase-like, and trypsin-like proteasome activities; (4) inhibition of nuclear factor κB signaling; and (5) inhibition of angiogenesis. Furthermore, Nampt knockdown significantly enhances the anti-MM effect of bortezomib, which can be rescued by ectopically overexpressing Nampt. In a murine xenograft MM model, low-dose combination FK866 and Bortezomib is well tolerated, significantly inhibits tumor growth, and prolongs host survival. Taken together, these findings indicate that intracellular NAD+ level represents a major determinant in the ability of bortezomib to induce apoptosis in MM cells and provide proof of concept for the combination with FK866 as a new strategy to enhance sensitivity or overcome resistance to bortezomib. PMID:23823317

  2. Intracellular NAD⁺ depletion enhances bortezomib-induced anti-myeloma activity.

    PubMed

    Cagnetta, Antonia; Cea, Michele; Calimeri, Teresa; Acharya, Chirag; Fulciniti, Mariateresa; Tai, Yu-Tzu; Hideshima, Teru; Chauhan, Dharminder; Zhong, Mike Y; Patrone, Franco; Nencioni, Alessio; Gobbi, Marco; Richardson, Paul; Munshi, Nikhil; Anderson, Kenneth C

    2013-08-15

    We recently demonstrated that Nicotinamide phosphoribosyltransferase (Nampt) inhibition depletes intracellular NAD⁺ content leading, to autophagic multiple myeloma (MM) cell death. Bortezomib has remarkably improved MM patient outcome, but dose-limiting toxicities and development of resistance limit its long-term utility. Here we observed higher Nampt messenger RNA levels in bortezomib-resistant patient MM cells, which correlated with decreased overall survival. We demonstrated that combining the NAD⁺ depleting agent FK866 with bortezomib induces synergistic anti-MM cell death and overcomes bortezomib resistance. This effect is associated with (1) activation of caspase-8, caspase-9, caspase-3, poly (ADP-ribose) polymerase, and downregulation of Mcl-1; (2) enhanced intracellular NAD⁺ depletion; (3) inhibition of chymotrypsin-like, caspase-like, and trypsin-like proteasome activities; (4) inhibition of nuclear factor κB signaling; and (5) inhibition of angiogenesis. Furthermore, Nampt knockdown significantly enhances the anti-MM effect of bortezomib, which can be rescued by ectopically overexpressing Nampt. In a murine xenograft MM model, low-dose combination FK866 and Bortezomib is well tolerated, significantly inhibits tumor growth, and prolongs host survival. Taken together, these findings indicate that intracellular NAD⁺ level represents a major determinant in the ability of bortezomib to induce apoptosis in MM cells and provide proof of concept for the combination with FK866 as a new strategy to enhance sensitivity or overcome resistance to bortezomib. PMID:23823317

  3. Proteasome inhibitors induce apoptosis and reduce viral replication in primary effusion lymphoma cells

    SciTech Connect

    Saji, Chiaki; Higashi, Chizuka; Niinaka, Yasufumi; Yamada, Koji; Noguchi, Kohji; Fujimuro, Masahiro

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Constitutive NF-{kappa}B signaling is essential for the survival and growth of PEL cells. Black-Right-Pointing-Pointer NF-{kappa}B signaling is upregulated by the proteasome-dependent degradation of I{kappa}B{alpha}. Black-Right-Pointing-Pointer Proteasome inhibitors suppress NF-{kappa}B signaling and induce apoptosis in PEL cells through stabilization of I{kappa}B{alpha}. Black-Right-Pointing-Pointer Proteasome inhibitors suppress viral replication in PEL cells during lytic KSHV infection. -- Abstract: Primary effusion lymphoma (PEL) is an aggressive neoplasm caused by Kaposi's sarcoma-associated herpesvirus (KSHV). This study provides evidence that proteasomal activity is required for both survival of PEL cells stably harboring the KSHV genome and viral replication of KSHV. We evaluated the cytotoxic effects of proteasome inhibitors on PEL cells. The proteasome inhibitors MG132, lactacystin, and proteasome inhibitor I dramatically inhibited cell proliferation and induced apoptosis of PEL cells through the accumulation of p21 and p27. Furthermore, proteasome inhibitors induced the stabilization of NF-{kappa}B inhibitory molecule (I{kappa}B{alpha}) and suppressed the transcriptional activity of NF-{kappa}B in PEL cells. The NF-{kappa}B specific inhibitor BAY11-7082 also induced apoptosis in PEL cells. The constitutive activation of NF-{kappa}B signaling is essential for the survival and growth of B cell lymphoma cells, including PEL cells. NF-{kappa}B signaling is upregulated by proteasome-dependent degradation of I{kappa}B{alpha}. The suppression of NF-{kappa}B signaling by proteasome inhibitors may contribute to the induction of apoptosis in PEL cells. In addition, proteasome activity is required for KSHV replication in KSHV latently infected PEL cells. MG132 reduced the production of progeny virus from PEL cells at low concentrations, which do not affect PEL cell growth. These findings suggest that proteasome inhibitors

  4. Analysing properties of proteasome inhibitors using kinetic and X-ray crystallographic studies.

    PubMed

    Gallastegui, Nerea; Groll, Michael

    2012-01-01

    The combination of X-ray crystallography and kinetic studies of proteasome:ligand complexes has proven to be an important tool in inhibitor analysis of this crucial protein degradation machinery. Here, we describe in detail the purification protocols, proteolytic activity assays, crystallisation methods, and structure determination for the yeast 20S proteasome (CP) in complex with its inhibitors. The fusion of these advanced techniques offers the opportunity to further optimise drugs which are already tested in different clinical phase studies, as well as to design new promising proteasome lead structures which might be suitable for their application in medicine, plant protection, and antibiotics. PMID:22350899

  5. Mutational analysis of subunit i beta2 (MECL-1) demonstrates conservation of cleavage specificity between yeast and mammalian proteasomes.

    PubMed

    Salzmann, U; Kral, S; Braun, B; Standera, S; Schmidt, M; Kloetzel, P M; Sijts, A

    1999-07-01

    Proteasomes are the major protein-degrading complexes in the cytosol and regulate many cellular processes. To examine the functional importance of the MC14/MECL-1 proteasome active site subunits, cell lines expressing a catalytically inactive form of MECL-1 were established. Whereas mutant MECL-1 was readily incorporated into cytosolic proteasomes, replacing the constitutive MC14 subunit, removal of the prosequence was incomplete indicating that its processing required autocatalytic cleavage. Functional analyses showed that the absence of the MC14/MECL-1 active sites abrogated proteasomal trypsin-like activity, but did not affect other catalytic activities. Our data demonstrate a conservation of cleavage specificity between mammalian and yeast proteasomes. PMID:10413086

  6. Structural characterization of the interaction of Ubp6 with the 26S proteasome.

    PubMed

    Aufderheide, Antje; Beck, Florian; Stengel, Florian; Hartwig, Michaela; Schweitzer, Andreas; Pfeifer, Günter; Goldberg, Alfred L; Sakata, Eri; Baumeister, Wolfgang; Förster, Friedrich

    2015-07-14

    In eukaryotic cells, the 26S proteasome is responsible for the regulated degradation of intracellular proteins. Several cofactors interact transiently with this large macromolecular machine and modulate its function. The deubiquitylating enzyme ubiquitin C-terminal hydrolase 6 [Ubp6; ubiquitin-specific protease (USP) 14 in mammals] is the most abundant proteasome-interacting protein and has multiple roles in regulating proteasome function. Here, we investigate the structural basis of the interaction between Ubp6 and the 26S proteasome in the presence and absence of the inhibitor ubiquitin aldehyde. To this end we have used single-particle electron cryomicroscopy in combination with cross-linking and mass spectrometry. Ubp6 binds to the regulatory particle non-ATPase (Rpn) 1 via its N-terminal ubiquitin-like domain, whereas its catalytic USP domain is positioned variably. Addition of ubiquitin aldehyde stabilizes the binding of the USP domain in a position where it bridges the proteasome subunits Rpn1 and the regulatory particle triple-A ATPase (Rpt) 1. The USP domain binds to Rpt1 in the immediate vicinity of the Ubp6 active site, which may effect its activation. The catalytic triad is positioned in proximity to the mouth of the ATPase module and to the deubiquitylating enzyme Rpn11, strongly implying their functional linkage. On the proteasome side, binding of Ubp6 favors conformational switching of the 26S proteasome into an intermediate-energy conformational state, in particular upon the addition of ubiquitin aldehyde. This modulation of the conformational space of the 26S proteasome by Ubp6 explains the effects of Ubp6 on the kinetics of proteasomal degradation. PMID:26130806

  7. Structural characterization of the interaction of Ubp6 with the 26S proteasome

    PubMed Central

    Aufderheide, Antje; Beck, Florian; Stengel, Florian; Hartwig, Michaela; Schweitzer, Andreas; Pfeifer, Günter; Goldberg, Alfred L.; Sakata, Eri; Baumeister, Wolfgang; Förster, Friedrich

    2015-01-01

    In eukaryotic cells, the 26S proteasome is responsible for the regulated degradation of intracellular proteins. Several cofactors interact transiently with this large macromolecular machine and modulate its function. The deubiquitylating enzyme ubiquitin C-terminal hydrolase 6 [Ubp6; ubiquitin-specific protease (USP) 14 in mammals] is the most abundant proteasome-interacting protein and has multiple roles in regulating proteasome function. Here, we investigate the structural basis of the interaction between Ubp6 and the 26S proteasome in the presence and absence of the inhibitor ubiquitin aldehyde. To this end we have used single-particle electron cryomicroscopy in combination with cross-linking and mass spectrometry. Ubp6 binds to the regulatory particle non-ATPase (Rpn) 1 via its N-terminal ubiquitin-like domain, whereas its catalytic USP domain is positioned variably. Addition of ubiquitin aldehyde stabilizes the binding of the USP domain in a position where it bridges the proteasome subunits Rpn1 and the regulatory particle triple-A ATPase (Rpt) 1. The USP domain binds to Rpt1 in the immediate vicinity of the Ubp6 active site, which may effect its activation. The catalytic triad is positioned in proximity to the mouth of the ATPase module and to the deubiquitylating enzyme Rpn11, strongly implying their functional linkage. On the proteasome side, binding of Ubp6 favors conformational switching of the 26S proteasome into an intermediate-energy conformational state, in particular upon the addition of ubiquitin aldehyde. This modulation of the conformational space of the 26S proteasome by Ubp6 explains the effects of Ubp6 on the kinetics of proteasomal degradation. PMID:26130806

  8. Two-substrate association with the 20S proteasome at single-molecule level.

    PubMed

    Hutschenreiter, Silke; Tinazli, Ali; Model, Kirstin; Tampé, Robert

    2004-07-01

    The bipartite structure of the proteasome raises the question of functional significance. A rational design for unraveling mechanistic details of the highly symmetrical degradation machinery from Thermoplasma acidophilum pursues orientated immobilization at metal-chelating interfaces via affinity tags fused either around the pore apertures or at the sides. End-on immobilization of the proteasome demonstrates that one pore is sufficient for substrate entry and product release. Remarkably, a 'dead-end' proteasome can process only one substrate at a time. In contrast, the side-on immobilized and free proteasome can bind two substrates, presumably one in each antechamber, with positive cooperativity as analyzed by surface plasmon resonance and single-molecule cross-correlation spectroscopy. Thus, the two-stroke engine offers the advantage of speeding up degradation without enhancing complexity. PMID:15175655

  9. USP15 stabilizes the transcription factor Nrf1 in the nucleus, promoting the proteasome gene expression.

    PubMed

    Fukagai, Kousuke; Waku, Tsuyoshi; Chowdhury, A M Masudul Azad; Kubo, Kaori; Matsumoto, Mariko; Kato, Hiroki; Natsume, Tohru; Tsuruta, Fuminori; Chiba, Tomoki; Taniguchi, Hiroaki; Kobayashi, Akira

    2016-09-01

    The transcriptional factor Nrf1 (NF-E2-related factor 1) sustains protein homeostasis (proteostasis) by regulating the expression of proteasome genes. Under physiological conditions, the transcriptional activity of Nrf1 is repressed by its sequestration into the endoplasmic reticulum (ER) and furthermore by two independent ubiquitin-proteasome pathways, comprising Hrd1 and β-TrCP in the cytoplasm and nucleus, respectively. However, the molecular mechanisms underlying Nrf1 activation remain unclear. Here, we report that USP15 (Ubiquitin-Specific Protease 15) activates Nrf1 in the nucleus by stabilizing it through deubiquitination. We first identified USP15 as an Nrf1-associated factor through proteome analysis. USP15 physically interacts with Nrf1, and it markedly stabilizes Nrf1 by removing its ubiquitin moieties. USP15 activates the Nrf1-mediated expression of a proteasome gene luciferase reporter and endogenous proteasome activity. The siRNA-mediated knockdown of USP15 diminishes the Nrf1-induced proteasome gene expression in response to proteasome inhibition. These results uncover a new regulatory mechanism that USP15 activates Nrf1 against the β-TrCP inhibition to maintain proteostasis. PMID:27416755

  10. Auto-ubiquitination of Mdm2 Enhances Its Substrate Ubiquitin Ligase Activity*

    PubMed Central

    Ranaweera, Ruchira S.; Yang, Xiaolu

    2013-01-01

    The RING domain E3 ubiquitin ligase Mdm2 is the master regulator of the tumor suppressor p53. It targets p53 for proteasomal degradation, restraining the potent activity of p53 and enabling cell survival and proliferation. Like most E3 ligases, Mdm2 can also ubiquitinate itself. How Mdm2 auto-ubiquitination may influence its substrate ubiquitin ligase activity is undefined. Here we show that auto-ubiquitination of Mdm2 is an activating event. Mdm2 that has been conjugated to polyubiquitin chains, but not to single ubiquitins, exhibits substantially enhanced activity to polyubiquitinate p53. Mechanistically, auto-ubiquitination of Mdm2 facilitates the recruitment of the E2 ubiquitin-conjugating enzyme. This occurs through noncovalent interactions between the ubiquitin chains on Mdm2 and the ubiquitin binding domain on E2s. Mutations that diminish the noncovalent interactions render auto-ubiquitination unable to stimulate Mdm2 substrate E3 activity. These results suggest a model in which polyubiquitin chains on an E3 increase the local concentration of E2 enzymes and permit the processivity of substrate ubiquitination. They also support the notion that autocatalysis may be a prevalent mode for turning on the activity of latent enzymes. PMID:23671280

  11. The immunoproteasome, the 20S proteasome and the PA28αβ proteasome regulator are oxidative-stress-adaptive proteolytic complexes.

    PubMed

    Pickering, Andrew M; Koop, Alison L; Teoh, Cheryl Y; Ermak, Gennady; Grune, Tilman; Davies, Kelvin J A

    2010-12-15

    Oxidized cytoplasmic and nuclear proteins are normally degraded by the proteasome, but accumulate with age and disease. We demonstrate the importance of various forms of the proteasome during transient (reversible) adaptation (hormesis), to oxidative stress in murine embryonic fibroblasts. Adaptation was achieved by 'pre-treatment' with very low concentrations of H2O2, and tested by measuring inducible resistance to a subsequent much higher 'challenge' dose of H2O2. Following an initial direct physical activation of pre-existing proteasomes, the 20S proteasome, immunoproteasome and PA28αβ regulator all exhibited substantially increased de novo synthesis during adaptation over 24 h. Cellular capacity to degrade oxidatively damaged proteins increased with 20S proteasome, immunoproteasome and PA28αβ synthesis, and was mostly blocked by the 20S proteasome, immunoproteasome and PA28 siRNA (short interfering RNA) knockdown treatments. Additionally, PA28αβ-knockout mutants achieved only half of the H2O2-induced adaptive increase in proteolytic capacity of wild-type controls. Direct comparison of purified 20S proteasome and immunoproteasome demonstrated that the immunoproteasome can selectively degrade oxidized proteins. Cell proliferation and DNA replication both decreased, and oxidized proteins accumulated, during high H2O2 challenge, but prior H2O2 adaptation was protective. Importantly, siRNA knockdown of the 20S proteasome, immunoproteasome or PA28αβ regulator blocked 50-100% of these adaptive increases in cell division and DNA replication, and immunoproteasome knockdown largely abolished protection against protein oxidation. PMID:20919990

  12. Polyvalent effect enhances diglycosidic antiplasmodial activity.

    PubMed

    Zhang, Wen-Qiang; He, Yun; Yu, Qun; Liu, Hai-Peng; Wang, De-Min; Li, Xiao-Bin; Luo, Jian; Meng, Xin; Qin, Hai-Juan; Lucchi, Naomi W; Udhayakumar, Venkatachalam; Iyer, Suri S; Yang, Yang; Yu, Peng

    2016-10-01

    An efficient and facile total synthesis of diglycoside Matayoside D isolated from the root bark of Matayba guianensis with antiplasmodial activity have been accomplished in 11 steps with 5% overall yields starting from commercially available glucose and rhamnose. Furthermore, a class of the diglycosidic derivatives with different lengths of the linker and valences were also prepared and evaluated for their antiplasmodial activities against chloroquine-susceptible (3D7) and chloroquine-resistant (W2) strains of Plasmodium falciparum. Low valent and short linker attached diglycoside show no enhancement of the antiplasmodial activity while polyvalent conjugates showed enhanced antiplasmodial activity with IC50 value at least 20 fold better than that of the corresponding diglycosidic monomer. The polyvalent diglycoside were non-cytotoxic against normal mammalian cells under 50,000 μg/L. PMID:27318984

  13. Structural basis for proteasome formation controlled by an assembly chaperone nas2.

    PubMed

    Satoh, Tadashi; Saeki, Yasushi; Hiromoto, Takeshi; Wang, Ying-Hui; Uekusa, Yoshinori; Yagi, Hirokazu; Yoshihara, Hidehito; Yagi-Utsumi, Maho; Mizushima, Tsunehiro; Tanaka, Keiji; Kato, Koichi

    2014-05-01

    Proteasome formation does not occur due to spontaneous self-organization but results from a highly ordered process assisted by several assembly chaperones. The assembly of the proteasome ATPase subunits is assisted by four client-specific chaperones, of which three have been structurally resolved. Here, we provide the structural basis for the working mechanisms of the last, hereto structurally uncharacterized assembly chaperone, Nas2. We revealed that Nas2 binds to the Rpt5 subunit in a bivalent mode: the N-terminal helical domain of Nas2 masks the Rpt1-interacting surface of Rpt5, whereas its C-terminal PDZ domain caps the C-terminal proteasome-activating motif. Thus, Nas2 operates as a proteasome activation blocker, offering a checkpoint during the formation of the 19S ATPase prior to its docking onto the proteolytic 20S core particle. PMID:24685148

  14. Role of proteasomes in the formation of neurofilamentous inclusions in spinal motor neurons of aluminum-treated rabbits.

    PubMed

    Kimura, Noriyuki; Kumamoto, Toshihide; Ueyama, Hidetsugu; Horinouchi, Hideo; Ohama, Eisaku

    2007-12-01

    We examined the role of the 20S proteasome in pathologic changes, including abnormal aggregation of phosphorylated neurofilaments, of spinal motor nerve cells from aluminum-treated rabbits. Immunohistochemistry for the 20S proteasome revealed that many lumbar spinal motor neurons without intracytoplasmic neurofilamentous inclusions or with small inclusions were more intensely stained in aluminum-treated rabbits than in controls, whereas the immunoreactivity was greatly decreased in some enlarged neurons containing large neurofilamentous inclusions. Proteasome activity in whole spinal cord extracts was significantly increased in aluminum-treated rabbits compared with controls. Furthermore, Western blot analysis indicated that the 20S proteasome degraded non-phosphorylated high molecular weight neurofilament (neurofilament-H) protein in vitro. These results suggest that aluminum does not inhibit 20S proteasome activity, and the 20S proteasome degrades neurofilament-H protein. We propose that abnormal aggregation of phosphorylated neurofilaments is induced directly by aluminum, and is not induced by the proteasome inhibition in the aluminum-treated rabbits. Proteasome activation might be involved in intracellular proteolysis, especially in the earlier stages of motor neuron degeneration in aluminum-treated rabbits. PMID:18021372

  15. Glycogen synthase kinase (GSK) 3β phosphorylates and protects nuclear myosin 1c from proteasome-mediated degradation to activate rDNA transcription in early G1 cells.

    PubMed

    Sarshad, Aishe A; Corcoran, Martin; Al-Muzzaini, Bader; Borgonovo-Brandter, Laura; Von Euler, Anne; Lamont, Douglas; Visa, Neus; Percipalle, Piergiorgio

    2014-06-01

    Nuclear myosin 1c (NM1) mediates RNA polymerase I (pol I) transcription activation and cell cycle progression by facilitating PCAF-mediated H3K9 acetylation, but the molecular mechanism by which NM1 is regulated remains unclear. Here, we report that at early G1 the glycogen synthase kinase (GSK) 3β phosphorylates and stabilizes NM1, allowing for NM1 association with the chromatin. Genomic analysis by ChIP-Seq showed that this mechanism occurs on the rDNA as active GSK3β selectively occupies the gene. ChIP assays and transmission electron microscopy in GSK3β-/- mouse embryonic fibroblasts indicated that at G1 rRNA synthesis is suppressed due to decreased H3K9 acetylation leading to a chromatin state incompatible with transcription. We found that GSK3β directly phosphorylates the endogenous NM1 on a single serine residue (Ser-1020) located within the NM1 C-terminus. In G1 this phosphorylation event stabilizes NM1 and prevents NM1 polyubiquitination by the E3 ligase UBR5 and proteasome-mediated degradation. We conclude that GSK3β-mediated phosphorylation of NM1 is required for pol I transcription activation. PMID:24901984

  16. Chromatin remodeling effects on enhancer activity.

    PubMed

    García-González, Estela; Escamilla-Del-Arenal, Martín; Arzate-Mejía, Rodrigo; Recillas-Targa, Félix

    2016-08-01

    During organism development, a diversity of cell types emerges with disparate, yet stable profiles of gene expression with distinctive cellular functions. In addition to gene promoters, the genome contains enhancer regulatory sequences, which are implicated in cellular specialization by facilitating cell-type and tissue-specific gene expression. Enhancers are DNA binding elements characterized by highly sophisticated and various mechanisms of action allowing for the specific interaction of general and tissue-specific transcription factors (TFs). However, eukaryotic organisms package their genetic material into chromatin, generating a physical barrier for TFs to interact with their cognate sequences. The ability of TFs to bind DNA regulatory elements is also modulated by changes in the chromatin structure, including histone modifications, histone variants, ATP-dependent chromatin remodeling, and the methylation status of DNA. Furthermore, it has recently been revealed that enhancer sequences are also transcribed into a set of enhancer RNAs with regulatory potential. These interdependent processes act in the context of a complex network of chromatin interactions, which together contributes to a renewed vision of how gene activation is coordinated in a cell-type-dependent manner. In this review, we describe the interplay between genetic and epigenetic aspects associated with enhancers and discuss their possible roles on enhancer function. PMID:27026300

  17. The therapeutic potential of microbial proteasome inhibitors.

    PubMed

    Momose, Isao; Kawada, Manabu

    2016-08-01

    The proteasome influences cellular homeostasis through the degradation of regulatory proteins, many of which are also involved in disease pathogenesis. In particular, numerous regulatory proteins associated with tumor growth, such as cyclins, cyclin-dependent kinase inhibitors, tumor suppressors, and NF-κB inhibitors are degraded by the proteasome. Proteasome inhibitors can stabilize these regulatory proteins, resulting in the suppression of tumor development and the regulation of immune responses. Thus, proteasome inhibitors are promising candidate antitumor agents and immune-regulatory agents. Bortezomib is the first-in-class proteasome inhibitor approved for the treatment of multiple myeloma. Despite its high efficiency, however, a large proportion of patients do not attain sufficient clinical response due to toxicity and drug resistance. Therefore, the development of new proteasome inhibitors with improved pharmacological properties is needed. Natural products produced by microorganisms are a promising source of such compounds. This review provides an overview of proteasome inhibitors produced by microorganisms, with special focus on inhibitors isolated from actinomycetes. PMID:26589840

  18. Mifepristone increases mRNA translation rate, triggers the unfolded protein response, increases autophagic flux, and kills ovarian cancer cells in combination with proteasome or lysosome inhibitors.

    PubMed

    Zhang, Lei; Hapon, Maria B; Goyeneche, Alicia A; Srinivasan, Rekha; Gamarra-Luques, Carlos D; Callegari, Eduardo A; Drappeau, Donis D; Terpstra, Erin J; Pan, Bo; Knapp, Jennifer R; Chien, Jeremy; Wang, Xuejun; Eyster, Kathleen M; Telleria, Carlos M

    2016-08-01

    The synthetic steroid mifepristone blocks the growth of ovarian cancer cells, yet the mechanism driving such effect is not entirely understood. Unbiased genomic and proteomic screenings using ovarian cancer cell lines of different genetic backgrounds and sensitivities to platinum led to the identification of two key genes upregulated by mifepristone and involved in the unfolded protein response (UPR): the master chaperone of the endoplasmic reticulum (ER), glucose regulated protein (GRP) of 78 kDa, and the CCAAT/enhancer binding protein homologous transcription factor (CHOP). GRP78 and CHOP were upregulated by mifepristone in ovarian cancer cells regardless of p53 status and platinum sensitivity. Further studies revealed that the three UPR-associated pathways, PERK, IRE1α, and ATF6, were activated by mifepristone. Also, the synthetic steroid acutely increased mRNA translation rate, which, if prevented, abrogated the splicing of XBP1 mRNA, a non-translatable readout of IRE1α activation. Moreover, mifepristone increased LC3-II levels due to increased autophagic flux. When the autophagic-lysosomal pathway was inhibited with chloroquine, mifepristone was lethal to the cells. Lastly, doses of proteasome inhibitors that are inadequate to block the activity of the proteasomes, caused cell death when combined with mifepristone; this phenotype was accompanied by accumulation of poly-ubiquitinated proteins denoting proteasome inhibition. The stimulation by mifepristone of ER stress and autophagic flux offers a therapeutic opportunity for utilizing this compound to sensitize ovarian cancer cells to proteasome or lysosome inhibitors. PMID:27233943

  19. Characterizing the Dynamics of Proteasome Complexes by Proteomics Approaches

    PubMed Central

    Kaake, Robyn M.; Kao, Athit; Yu, Clinton

    2014-01-01

    Abstract Significance: The proteasome is the degradation machine of the ubiquitin-proteasome system, which is critical in controlling many essential biological processes. Aberrant regulation of proteasome-dependent protein degradation can lead to various human diseases, and general proteasome inhibitors have shown efficacy for cancer treatments. Though clinically effective, current proteasome inhibitors have detrimental side effects and, thus, better therapeutic strategies targeting proteasomes are needed. Therefore, a comprehensive characterization of proteasome complexes will provide the molecular details that are essential for developing new and improved drugs. Recent Advances: New mass spectrometry (MS)-based proteomics approaches have been developed to study protein interaction networks and structural topologies of proteasome complexes. The results have helped define the dynamic proteomes of proteasome complexes, thus providing new insights into the mechanisms underlying proteasome function and regulation. Critical Issues: The proteasome exists as heterogeneous populations in tissues/cells, and its proteome is highly dynamic and complex. In addition, proteasome complexes are regulated by various mechanisms under different physiological conditions. Consequently, complete proteomic profiling of proteasome complexes remains a major challenge for the field. Future Directions: We expect that proteomic methodologies enabling full characterization of proteasome complexes will continue to evolve. Further advances in MS instrumentation and protein separation techniques will be needed to facilitate the detailed proteomic analysis of low-abundance components and subpopulations of proteasome complexes. The results will help us understand proteasome biology as well as provide new therapeutic targets for disease diagnostics and treatment. Antioxid. Redox Signal. 21, 2444–2456. PMID:24423446

  20. Paradoxical resistance of multiple myeloma to proteasome inhibitors by decreased levels of 19S proteasomal subunits

    PubMed Central

    Acosta-Alvear, Diego; Cho, Min Y; Wild, Thomas; Buchholz, Tonia J; Lerner, Alana G; Simakova, Olga; Hahn, Jamie; Korde, Neha; Landgren, Ola; Maric, Irina; Choudhary, Chunaram; Walter, Peter; Weissman, Jonathan S; Kampmann, Martin

    2015-01-01

    Hallmarks of cancer, including rapid growth and aneuploidy, can result in non-oncogene addiction to the proteostasis network that can be exploited clinically. The defining example is the exquisite sensitivity of multiple myeloma (MM) to 20S proteasome inhibitors, such as carfilzomib. However, MM patients invariably acquire resistance to these drugs. Using a next-generation shRNA platform, we found that proteostasis factors, including chaperones and stress-response regulators, controlled the response to carfilzomib. Paradoxically, 19S proteasome regulator knockdown induced resistance to carfilzomib in MM and non-MM cells. 19S subunit knockdown did not affect the activity of the 20S subunits targeted by carfilzomib nor their inhibition by the drug, suggesting an alternative mechanism, such as the selective accumulation of protective factors. In MM patients, lower 19S levels predicted a diminished response to carfilzomib-based therapies. Together, our findings suggest that an understanding of network rewiring can inform development of new combination therapies to overcome drug resistance. DOI: http://dx.doi.org/10.7554/eLife.08153.001 PMID:26327694

  1. Phosphorylation of Kif26b promotes its polyubiquitination and subsequent proteasomal degradation during kidney development.

    PubMed

    Terabayashi, Takeshi; Sakaguchi, Masaji; Shinmyozu, Kaori; Ohshima, Toshio; Johjima, Ai; Ogura, Teru; Miki, Hiroaki; Nishinakamura, Ryuichi

    2012-01-01

    Kif26b, a member of the kinesin superfamily proteins (KIFs), is essential for kidney development. Kif26b expression is restricted to the metanephric mesenchyme, and its transcription is regulated by a zinc finger transcriptional regulator Sall1. However, the mechanism(s) by which Kif26b protein is regulated remain unknown. Here, we demonstrate phosphorylation and subsequent polyubiquitination of Kif26b in the developing kidney. We find that Kif26b interacts with an E3 ubiquitin ligase, neural precursor cell expressed developmentally down-regulated protein 4 (Nedd4) in developing kidney. Phosphorylation of Kif26b at Thr-1859 and Ser-1962 by the cyclin-dependent kinases (CDKs) enhances the interaction of Kif26b with Nedd4. Nedd4 polyubiquitinates Kif26b and thereby promotes degradation of Kif26b via the ubiquitin-proteasome pathway. Furthermore, Kif26b lacks ATPase activity but does associate with microtubules. Nocodazole treatment not only disrupts the localization of Kif26b to microtubules but also promotes phosphorylation and polyubiquitination of Kif26b. These results suggest that the function of Kif26b is microtubule-based and that Kif26b degradation in the metanephric mesenchyme via the ubiquitin-proteasome pathway may be important for proper kidney development. PMID:22768111

  2. Disulfide Engineering to Map Subunit Interactions in the Proteasome and Other Macromolecular Complexes

    PubMed Central

    Hochstrasser, Mark; Funakoshi, Minoru

    2013-01-01

    Summary In studies of protein complexes for which high-resolution structural data are unavailable, it is often still possible to determine both nearest-neighbor relationships between subunits and atomic-resolution details of these interactions. The eukaryotic 26S proteasome, a ~2.5 MDa protein complex with at least 33 different subunits, is a prime example. Important information about quaternary organization and assembly of proteasomes has been gained using a combination of sequence alignments with related proteins of known tertiary structure, molecular modeling, and disulfide engineering to allow oxidative crosslinking between predicted polypeptide neighbors. Here we provide detailed protocols for engineered cysteine crosslinking of yeast proteasome subunits in whole cell extracts, in active 26S proteasome complexes first isolated by native polyacrylamide gel electrophoresis, and in subcomplexes that function as potential assembly intermediates. PMID:22350897

  3. cAMP stimulates the ubiquitin/proteasome pathway in rat spinal cord neurons.

    PubMed

    Myeku, Natura; Wang, Hu; Figueiredo-Pereira, Maria E

    2012-10-11

    Proteasome impairment and accumulation of ubiquitinated proteins are implicated in neurodegeneration associated with different forms of spinal cord injury. We show herein that elevating cAMP in rat spinal cord neurons increases 26S proteasome activity in a protein kinase A-dependent manner. Treating spinal cord neurons with dibutyryl-cAMP (db-cAMP) also raised the levels of various components of the UPP including proteasome subunits Rpt6 and β5, polyubiquitin shuttling factor p62/sequestosome1, E3 ligase CHIP, AAA-ATPase p97 and the ubiquitin gene ubB. Finally, db-cAMP reduced the accumulation of ubiquitinated proteins, proteasome inhibition, and neurotoxicity triggered by the endogenous product of inflammation prostaglandin J2. We propose that optimizing the effects of cAMP/PKA-signaling on the UPP could offer an effective therapeutic approach to prevent UPP-related proteotoxicity in spinal cord neurons. PMID:22982149

  4. Enhanced kappa-Cygnid activity 2014

    NASA Astrophysics Data System (ADS)

    Rendtel, Jürgen; Molau, Sirko

    2015-04-01

    The κ-Cygnid (012 KCG) meteor shower produced about 3-4 times the average visual rate and video flux in August 2014 for about four days. We are able to trace the increased activity to one component of the Cygnid complex proposed by Koseki recently. Video data indicate that the population index of all shower components is lower than that of the sporadic meteors, probably r≈ 2.6. Our analysis supports the suggested 7-year periodicity in activity enhancement of the κ-Cygnids

  5. Regulation of Sperm Capacitation by the 26S Proteasome: An Emerging New Paradigm in Spermatology.

    PubMed

    Kerns, Karl; Morales, Patricio; Sutovsky, Peter

    2016-05-01

    The ubiquitin proteasome system (UPS) participates in many biological processes ranging from cell cycle and antigen processing to cellular defense and signaling. Work of the last decade has made it evident that the UPS is involved in many sperm-related processes leading up to and as part of fertilization. The current knowledge of UPS involvement and changes during sperm capacitation are reviewed together with a list of known proteasome-associated sperm proteins and a discussion of the relationships between these proteins and the proteasome. Proteasomal inhibitors such as MG-132 and epoxomicin significantly alter capacitation and prevent acrosome reaction. The 26S proteasome degrades AKAP3, an A-kinase anchoring protein, partially regulating the release of protein-kinase A (PKA), a vital component necessary for the steps leading up to capacitation. Further, changes occur in 20S core subunit localization and abundance throughout capacitation. Proteasome-interacting valosine-containing protein (VCP) undergoes tyrosine phosphorylation; however, its physiological roles in capacitation and fertilization remain unknown. The E1-type ubiquitin-activating enzyme (UBA1) inhibitor PYR-41 also alters acrosomal membrane remodeling during capacitation. Furthermore, after capacitation, the acrosomal proteasomes facilitate the degradation of zona pellucida glycoproteins leading up to fertilization. Methods to modulate the sperm proteasome activity during sperm storage and capacitation may translate to increased reproductive efficiency in livestock animals. Human male infertility diagnostics may benefit from incorporation of research outcomes built upon relationships between UPS and capacitation. Altogether, the studies reviewed here support the involvement of UPS in sperm capacitation and present opportunities for new discoveries. PMID:27053366

  6. Validation of the 2nd Generation Proteasome Inhibitor Oprozomib for Local Therapy of Pulmonary Fibrosis.

    PubMed

    Semren, Nora; Habel-Ungewitter, Nunja C; Fernandez, Isis E; Königshoff, Melanie; Eickelberg, Oliver; Stöger, Tobias; Meiners, Silke

    2015-01-01

    Proteasome inhibition has been shown to prevent development of fibrosis in several organs including the lung. However, effects of proteasome inhibitors on lung fibrosis are controversial and cytotoxic side effects of the overall inhibition of proteasomal protein degradation cannot be excluded. Therefore, we hypothesized that local lung-specific application of a novel, selective proteasome inhibitor, oprozomib (OZ), provides antifibrotic effects without systemic toxicity in a mouse model of lung fibrosis. Oprozomib was first tested on the human alveolar epithelial cancer cell line A549 and in primary mouse alveolar epithelial type II cells regarding its cytotoxic effects on alveolar epithelial cells and compared to the FDA approved proteasome inhibitor bortezomib (BZ). OZ was less toxic than BZ and provided high selectivity for the chymotrypsin-like active site of the proteasome. In primary mouse lung fibroblasts, OZ showed significant anti-fibrotic effects, i.e. reduction of collagen I and α smooth muscle actin expression, in the absence of cytotoxicity. When applied locally into the lungs of healthy mice via instillation, OZ was well tolerated and effectively reduced proteasome activity in the lungs. In bleomycin challenged mice, however, locally applied OZ resulted in accelerated weight loss and increased mortality of treated mice. Further, OZ failed to reduce fibrosis in these mice. While upon systemic application OZ was well tolerated in healthy mice, it rather augmented instead of attenuated fibrotic remodelling of the lung in bleomycin challenged mice. To conclude, low toxicity and antifibrotic effects of OZ in pulmonary fibroblasts could not be confirmed for pulmonary fibrosis of bleomycin-treated mice. In light of these data, the use of proteasome inhibitors as therapeutic agents for the treatment of fibrotic lung diseases should thus be considered with caution. PMID:26340365

  7. Validation of the 2nd Generation Proteasome Inhibitor Oprozomib for Local Therapy of Pulmonary Fibrosis

    PubMed Central

    Semren, Nora; Habel-Ungewitter, Nunja C.; Fernandez, Isis E.; Königshoff, Melanie; Eickelberg, Oliver; Stöger, Tobias; Meiners, Silke

    2015-01-01

    Proteasome inhibition has been shown to prevent development of fibrosis in several organs including the lung. However, effects of proteasome inhibitors on lung fibrosis are controversial and cytotoxic side effects of the overall inhibition of proteasomal protein degradation cannot be excluded. Therefore, we hypothesized that local lung-specific application of a novel, selective proteasome inhibitor, oprozomib (OZ), provides antifibrotic effects without systemic toxicity in a mouse model of lung fibrosis. Oprozomib was first tested on the human alveolar epithelial cancer cell line A549 and in primary mouse alveolar epithelial type II cells regarding its cytotoxic effects on alveolar epithelial cells and compared to the FDA approved proteasome inhibitor bortezomib (BZ). OZ was less toxic than BZ and provided high selectivity for the chymotrypsin-like active site of the proteasome. In primary mouse lung fibroblasts, OZ showed significant anti-fibrotic effects, i.e. reduction of collagen I and α smooth muscle actin expression, in the absence of cytotoxicity. When applied locally into the lungs of healthy mice via instillation, OZ was well tolerated and effectively reduced proteasome activity in the lungs. In bleomycin challenged mice, however, locally applied OZ resulted in accelerated weight loss and increased mortality of treated mice. Further, OZ failed to reduce fibrosis in these mice. While upon systemic application OZ was well tolerated in healthy mice, it rather augmented instead of attenuated fibrotic remodelling of the lung in bleomycin challenged mice. To conclude, low toxicity and antifibrotic effects of OZ in pulmonary fibroblasts could not be confirmed for pulmonary fibrosis of bleomycin-treated mice. In light of these data, the use of proteasome inhibitors as therapeutic agents for the treatment of fibrotic lung diseases should thus be considered with caution. PMID:26340365

  8. Induction of autophagy by proteasome inhibitor is associated with proliferative arrest in colon cancer cells

    SciTech Connect

    Wu, William Ka Kei Wu Yachun; Yu Le; Li Zhijie; Sung, Joseph Jao Yiu; Cho, C.H.

    2008-09-19

    The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation. Blockade of UPS by proteasome inhibitors has been shown to activate autophagy. Recent evidence also suggests that proteasome inhibitors may inhibit cancer growth. In this study, the effect of a proteasome inhibitor MG-132 on the proliferation and autophagy of cultured colon cancer cells (HT-29) was elucidated. Results showed that MG-132 inhibited HT-29 cell proliferation and induced G{sub 2}/M cell cycle arrest which was associated with the formation of LC3{sup +} autophagic vacuoles and the accumulation of acidic vesicular organelles. MG-132 also increased the protein expression of LC3-I and -II in a time-dependent manner. In this connection, 3-methyladenine, a Class III phosphoinositide 3-kinase inhibitor, significantly abolished the formation of LC3{sup +} autophagic vacuoles and the expression of LC3-II but not LC3-I induced by MG-132. Taken together, this study demonstrates that inhibition of proteasome in colon cancer cells lowers cell proliferation and activates autophagy. This discovery may shed a new light on the novel function of proteasome in the regulation of autophagy and proliferation in colon cancer cells.

  9. Enhancement of polyether biodegradation in activated sludge

    SciTech Connect

    Christopher, L.J.

    1993-01-01

    Previous studies in this laboratory showed that pretreatment with Petroleum Chemical Extinguisher[reg sign] (PCE), a C[sub 18] unsaturated fatty acid diester of polyethylene glycol (PEG), enhanced the biodegradation of PEG 1,000 and PEG 1,450 in soil. In this study the ability of PCE and other PEG-fatty acid diesters to enhance biodegradation of PEGs in activated sludge was investigated. Additionally, polyether-fatty acid esters similar to PCE were synthesized and tested to determine how they affected biodegradation of PEGs and other polyethers. Attempts were made to understand the mechanism for enhancement of biodegradation. Carbon-dioxide evolution and thin-layer chromatographic analysis indicated degradation of PEG 1,000, PEG 1,450, and PEG 3,350 in sludge samples which were previously exposed to PCE. Those samples which were not pre-treated with PCE showed no detectable PEG degradation during the two-week study. Preexposure to PCE did not enhance subsequent degradation of PEG 8,000, nor polypropylene glycol (PPG) 1,025. However, pretreatment of sludge with a PPG 1,025-di oleic acid ester promoted PPG 1,205 degradation. Interestingly, microbial populations do not seem to be gaining much biomass or energy from the degradation of PEG-di fatty acid esters or PEGs. When PCE-pretreated sludge samples were given [sup 14]C-PEG 3,350 as substrate, evolution of [sup 14]CO[sub 2] occurred and little (<5%) of the [sup 14]C was assimilated by the microorganisms in the sludge. Futhermore, determinations of ATP content and esterase activity of sludge samples suggested that there was not a substantial increase in biomass as a result of degradation of either PCE or PEGs. PCE preexposure effected an increase in PEG dehydrogenase activity. This increase may be due to induction of enzymes responsible for PEG biodegradation or selection for organisms in the microbial population which are PEG degraders.

  10. The ubiquitin-proteasome system regulates plant hormone signaling

    PubMed Central

    Santner, Aaron; Estelle, Mark

    2011-01-01

    SUMMARY Plants utilize the ubiquitin-proteasome system (UPS) to modulate nearly every aspect of growth and development. Ubiquitin is covalently attached to target proteins through the action of three enzymes known as E1, E2, and E3. The ultimate outcome of this post-translational modification depends on the nature of the ubiquitin linkage and the extent of polyubiquitination. In most cases, ubiquitination results in degradation of the target protein in the 26S proteasome. During the last 10 years it has become clear that the UPS plays a prominent regulatory role in hormone biology. E3 ubiquitin ligases in particular actively participate in hormone perception, de-repression of hormone signaling pathways, degradation of hormone specific transcription factors, and regulation of hormone biosynthesis. It is certain that additional functions will be discovered as more of the nearly 1200 potential E3s in plants are elucidated. PMID:20409276

  11. Colorectal Carcinogenesis, Radiation Quality, and the Ubiquitin-Proteasome Pathway

    PubMed Central

    Datta, Kamal; Suman, Shubhankar; Kumar, Santosh; Fornace, Albert J

    2016-01-01

    Adult colorectal epithelium undergoes continuous renewal and maintains homeostatic balance through regulated cellular proliferation, differentiation, and migration. The canonical Wnt signaling pathway involving the transcriptional co-activator β-catenin is important for colorectal development and normal epithelial maintenance, and deregulated Wnt/β-catenin signaling has been implicated in colorectal carcinogenesis. Colorectal carcinogenesis has been linked to radiation exposure, and radiation has been demonstrated to alter Wnt/β-catenin signaling, as well as the proteasomal pathway involved in the degradation of the signaling components and thus regulation of β-catenin. The current review discusses recent progresses in our understanding of colorectal carcinogenesis in relation to different types of radiation and roles that radiation quality plays in deregulating β-catenin and ubiquitin-proteasome pathway (UPP) for colorectal cancer initiation and progression. PMID:26819641

  12. MG132, a proteasome inhibitor, induces apoptosis in tumor cells.

    PubMed

    Guo, Na; Peng, Zhilan

    2013-03-01

    The balance between cell proliferation and apoptosis is critical for normal development and for the maintenance of homeostasis in adult organisms. Disruption of this balance has been implicated in a large number of disease processes, ranging from autoimmunity and neurodegenerative disorders to cancer. The ubiquitin-proteasome pathway, responsible for mediating the majority of intracellular proteolysis, plays a crucial role in the regulation of many normal cellular processes, including the cell cycle, differentiation and apoptosis. Apoptosis in cancer cells is closely connected with the activity of ubiquitin-proteasome pathway. The peptide-aldehyde proteasome inhibitor MG132 (carbobenzoxyl-L-leucyl-L-leucyl-L-leucine) induces the apoptosis of cells by a different intermediary pathway. Although the pathway of induction of apoptosis is different, it plays a crucial role in anti-tumor treatment. There are many cancer-related molecules in which the protein levels present in cells are regulated by a proteasomal pathway; for example, tumor inhibitors (P53, E2A, c-Myc, c-Jun, c-Fos), transcription factors (transcription factor nuclear factor-kappa B, IκBα, HIFI, YYI, ICER), cell cycle proteins (cyclin A and B, P27, P21, IAP1/3), MG132 induces cell apoptosis through formation of reactive oxygen species or the upregulation and downregulation of these factors, which is ultimately dependent upon the activation of the caspase family of cysteine proteases. In this article we review the mechanism of the induction of apoptosis in order to provide information required for research. PMID:22897979

  13. Reduced Levels of Proteasome Products in a Mouse Striatal Cell Model of Huntington’s Disease

    PubMed Central

    Dasgupta, Sayani; Fishman, Michael A.; Mahallati, Hana; Castro, Leandro M.; Tashima, Alexandre K.; Ferro, Emer S.; Fricker, Lloyd D.

    2015-01-01

    Huntington’s disease is the result of a long polyglutamine tract in the gene encoding huntingtin protein, which in turn causes a large number of cellular changes and ultimately results in neurodegeneration of striatal neurons. Although many theories have been proposed, the precise mechanism by which the polyglutamine expansion causes cellular changes is not certain. Some evidence supports the hypothesis that the long polyglutamine tract inhibits the proteasome, a multiprotein complex involved in protein degradation. However, other studies report normal proteasome function in cells expressing long polyglutamine tracts. The controversy may be due to the methods used to examine proteasome activity in each of the previous studies. In the present study, we measured proteasome function by examining levels of endogenous peptides that are products of proteasome cleavage. Peptide levels were compared among mouse striatal cell lines expressing either 7 glutamines (STHdhQ7/Q7) or 111 glutamines in the huntingtin protein, either heterozygous (STHdhQ7/Q111) or homozygous (STHdhQ111/Q111). Both of the cell lines expressing huntingtin with 111 glutamines showed a large reduction in nearly all of the peptides detected in the cells, relative to levels of these peptides in cells homozygous for 7 glutamines. Treatment of STHdhQ7/Q7 cells with proteasome inhibitors epoxomicin or bortezomib also caused a large reduction in most of these peptides, suggesting that they are products of proteasome-mediated cleavage of cellular proteins. Taken together, these results support the hypothesis that proteasome function is impaired by the expression of huntingtin protein containing long polyglutamine tracts. PMID:26691307

  14. The mycobacterial Mpa–proteasome unfolds and degrades pupylated substrates by engaging Pup's N-terminus

    PubMed Central

    Striebel, Frank; Hunkeler, Moritz; Summer, Heike; Weber-Ban, Eilika

    2010-01-01

    Mycobacterium tuberculosis, along with other actinobacteria, harbours proteasomes in addition to members of the general bacterial repertoire of degradation complexes. In analogy to ubiquitination in eukaryotes, substrates are tagged for proteasomal degradation with prokaryotic ubiquitin-like protein (Pup) that is recognized by the N-terminal coiled-coil domain of the ATPase Mpa (also called ARC). Here, we reconstitute the entire mycobacterial proteasome degradation system for pupylated substrates and establish its mechanistic features with respect to substrate recruitment, unfolding and degradation. We show that the Mpa–proteasome complex unfolds and degrades Pup-tagged proteins and that this activity requires physical interaction of the ATPase with the proteasome. Furthermore, we establish the N-terminal region of Pup as the structural element required for engagement of pupylated substrates into the Mpa pore. In this process, Mpa pulls on Pup to initiate unfolding of substrate proteins and to drag them toward the proteasome chamber. Unlike the eukaryotic ubiquitin, Pup is not recycled but degraded with the substrate. This assigns a dual function to Pup as both the Mpa recognition element as well as the threading determinant. PMID:20203624

  15. Distinct Proteasome Subpopulations in the Alveolar Space of Patients with the Acute Respiratory Distress Syndrome

    PubMed Central

    Sixt, S. U.; Alami, R.; Hakenbeck, J.; Adamzik, M.; Kloß, A.; Costabel, U.; Jungblut, P. R.; Dahlmann, B.; Peters, J.

    2012-01-01

    There is increasing evidence that proteasomes have a biological role in the extracellular alveolar space, but inflammation could change their composition. We tested whether immunoproteasome protein-containing subpopulations are present in the alveolar space of patients with lung inflammation evoking the acute respiratory distress syndrome (ARDS). Bronchoalveolar lavage (BAL) supernatants and cell pellet lysate from ARDS patients (n = 28) and healthy subjects (n = 10) were analyzed for the presence of immunoproteasome proteins (LMP2 and LMP7) and proteasome subtypes by western blot, chromatographic purification, and 2D-dimensional gelelectrophoresis. In all ARDS patients but not in healthy subjects LMP7 and LMP2 were observed in BAL supernatants. Proteasomes purified from pooled ARDS BAL supernatant showed an altered enzyme activity ratio. Chromatography revealed a distinct pattern with 7 proteasome subtype peaks in BAL supernatant of ARDS patients that differed from healthy subjects. Total proteasome concentration in BAL supernatant was increased in ARDS (971 ng/mL ± 1116 versus 59 ± 25; P < 0.001), and all fluorogenic substrates were hydrolyzed, albeit to a lesser extent, with inhibition by epoxomicin (P = 0.0001). Thus, we identified for the first time immunoproteasome proteins and a distinct proteasomal subtype pattern in the alveolar space of ARDS patients, presumably in response to inflammation. PMID:22363101

  16. The LeATL6-associated ubiquitin/proteasome system may contribute to fungal elicitor-activated defense response via the jasmonic acid-dependent signaling pathway in tomato.

    PubMed

    Hondo, Daisuke; Hase, Shu; Kanayama, Yoshinori; Yoshikawa, Nobuyuki; Takenaka, Shigehito; Takahashi, Hideki

    2007-01-01

    The expression of LeATL6, an ortholog of Arabidopsis ATL6 that encodes a RING-H2 finger protein, was induced in tomato roots treated with a cell wall protein fraction (CWP) elicitor of the biocontrol agent Pythium oligandrum. The LeATL6 protein was expressed as a fusion protein with a maltose-binding protein (MBP) in Escherichia coli, and it catalyzed the transfer of ubiquitin to the MBP moiety on incubation with ubiquitin, the ubiquitin-activating enzyme E1, and the ubiquitin-conjugating enzyme E2; this indicated that LeATL6 represents ubiquitin ligase E3. LeATL6 expression also was induced by elicitor treatment of jail-1 mutant tomato cells in which the jasmonic acid (JA)-mediated signaling pathway was impaired; however, JA-dependent expression of the basic PR-6 and TPI-1 genes that encode proteinase inhibitor II and I, respectively, was not induced in elicitor-treated jail-1 mutants. Furthermore, transient overexpression of LeATL6 under the control of the Cauliflower mosaic virus 35S promoter induced the basic PR6 and TPI-1 expression in wild tomato but not in the jail-1 mutant. In contrast, LeATL6 overexpression did not activate salicylic acid-responsive acidic PR-1 and PR-2 promoters in wild tomato. These results indicated that elicitor-responsive LeATL6 probably regulates JA-dependent basic PR6 and TPI-1 gene expression in tomato. The LeATL6-associated ubiquitin/proteasome system may contribute to elicitor-activated defense responses via a JA-dependent signaling pathway in plants. PMID:17249424

  17. The role of allostery in the ubiquitin-proteasome system

    PubMed Central

    Liu, Jin; Nussinov, Ruth

    2012-01-01

    The Ubiquitin-Proteasome System is involved in many cellular processes including protein degradation. Degradation of a protein via this system involves two successive steps: ubiquitination and degradation. Ubiquitination tags the target protein with ubiquitin-like proteins, such as ubiquitin, SUMO and NEDD8, via a cascade involving three enzymes: activating enzyme E1, conjugating enzyme E2, and E3 ubiquitin ligases. The proteasomes recognize the ubiquitin-like protein tagged substrate proteins and degrade them. Accumulating evidence indicates that allostery is a central player in the regulation of ubiquitination, as well as deubiquitination and degradation. Here, we provide an overview of the key mechanistic roles played by allostery in all steps of these processes, and highlight allosteric drugs targeting them. Throughout the review, we emphasize the crucial mechanistic role played by linkers in allosterically controlling the Ubiquitin-Proteasome System action by biasing the sampling of the conformational space, which facilitate the catalytic reactions of the ubiquitination and degradation. Finally, we propose that allostery may similarly play key roles in the regulation of molecular machines in the cell, and as such allosteric drugs can be expected to be increasingly exploited in therapeutic regimes. PMID:23234564

  18. Proteasomal Degradation of TRIM5α during Retrovirus Restriction

    PubMed Central

    Rold, Christopher James; Aiken, Christopher

    2008-01-01

    The host protein TRIM5α inhibits retroviral infection at an early post-penetration stage by targeting the incoming viral capsid. While the detailed mechanism of restriction remains unclear, recent studies have implicated the activity of cellular proteasomes in the restriction of retroviral reverse transcription imposed by TRIM5α. Here, we show that TRIM5α is rapidly degraded upon encounter of a restriction-susceptible retroviral core. Inoculation of TRIM5α-expressing human 293T cells with a saturating level of HIV-1 particles resulted in accelerated degradation of the HIV-1-restrictive rhesus macaque TRIM5α protein but not the nonrestrictive human TRIM5α protein. Exposure of cells to HIV-1 also destabilized the owl monkey restriction factor TRIMCyp; this was prevented by addition of the inhibitor cyclosporin A and was not observed with an HIV-1 virus containing a mutation in the capsid protein that relieves restriction by TRIMCyp IVHIV. Likewise, human TRIM5α was rapidly degraded upon encounter of the restriction-sensitive N-tropic murine leukemia virus (N-MLV) but not the unrestricted B-MLV. Pretreatment of cells with proteasome inhibitors prevented the HIV-1-induced loss of both rhesus macaque TRIM5α and TRIMCyp proteins. We also detected degradation of endogenous TRIM5α in rhesus macaque cells following HIV-1 infection. We conclude that engagement of a restriction-sensitive retrovirus core results in TRIM5α degradation by a proteasome-dependent mechanism. PMID:18497858

  19. Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening

    PubMed Central

    Sadre-Bazzaz, Kianoush; Whitby, Frank G.; Robinson, Howard; Formosa, Tim; Hill, Christopher P.

    2010-01-01

    Summary The proteasome is an abundant protease that is critically important for numerous cellular pathways. Proteasomes are activated in vitro by three known classes of proteins/complexes, including Blm10/PA200. Here we report a 3.4Å resolution crystal structure of a proteasome-Blm10 complex, which reveals that Blm10 surrounds the proteasome entry pore in the 1.2 MDa complex to form a largely closed dome that is expected to restrict access of potential substrates. This architecture, and the observation that Blm10 induces a disordered proteasome gate structure, challenges the assumption that Blm10 functions as an activator of proteolysis in vivo. The Blm10 C-terminus binds in the same manner as seen for 11S activators and inferred for 19S/PAN activators, and indicates a unified model for gate opening. We also demonstrate that Blm10 acts to maintain mitochondrial function. Consistent with the structural data, the C-terminal residues of Blm10 are needed for this activity. PMID:20227375

  20. Cables1 controls p21/Cip1 protein stability by antagonizing proteasome subunit alpha type 3

    PubMed Central

    Shi, Zhi; Li, Zenggang; Li, Zijian; Cheng, Kejun; Du, Yuhong; Fu, Haian; Khuri, Fadlo R.

    2014-01-01

    The cyclin-dependent kinase inhibitor 1A (CDKN1A), p21/Cip1, is a vital cell cycle regulator, dysregulation of which has been associated with a large number of human malignancies. One critical mechanism that controls p21 function is through its degradation, which allows the activation of its associated cell cycle promoting kinases, CDK2 and CDK4. Thus, delineating how p21 is stabilized and degraded will enhance our understanding of cell growth control and offer a basis for potential therapeutic interventions. Here, we report a novel regulatory mechanism that controls the dynamic status of p21 through its interaction with Cdk5 and Abl enzyme substrate 1 (Cables1). Cables1 has a proposed role as a tumor suppressor. We found that upregulation of Cables1 protein was correlated with increased half-life of p21 protein, which was attributed to Cables1/p21 complex formation and supported by their co-localization in the nucleus. Mechanistically, Cables1 interferes with the proteasome (Prosome, Macropain) subunit alpha type 3 (PSMA3) binding to p21 and protects p21 from PSMA3-mediated proteasomal degradation. Moreover, silencing of p21 partially reverses the ability of Cables1 to induce cell death and inhibit cell proliferation. In further support of a potential pathophysiological role of Cables1, the expression level of Cables1 is tightly associated with p21 in both cancer cell lines and human lung cancer patient tumor samples. Together, these results suggest Cables1 as a novel p21 regulator through maintaining p21 stability, and support the model that the tumor suppressive function of Cables1 occurs at least in part through enhancing the tumor suppressive activity of p21. PMID:24975575

  1. Serine deprivation enhances antineoplastic activity of biguanides.

    PubMed

    Gravel, Simon-Pierre; Hulea, Laura; Toban, Nader; Birman, Elena; Blouin, Marie-José; Zakikhani, Mahvash; Zhao, Yunhua; Topisirovic, Ivan; St-Pierre, Julie; Pollak, Michael

    2014-12-15

    Metformin, a biguanide widely used in the treatment of type II diabetes, clearly exhibits antineoplastic activity in experimental models and has been reported to reduce cancer incidence in diabetics. There are ongoing clinical trials to evaluate its antitumor properties, which may relate to its fundamental activity as an inhibitor of oxidative phosphorylation. Here, we show that serine withdrawal increases the antineoplastic effects of phenformin (a potent biguanide structurally related to metformin). Serine synthesis was not inhibited by biguanides. Instead, metabolic studies indicated a requirement for serine to allow cells to compensate for biguanide-induced decrease in oxidative phosphorylation by upregulating glycolysis. Furthermore, serine deprivation modified the impact of metformin on the relative abundance of metabolites within the citric acid cycle. In mice, a serine-deficient diet reduced serine levels in tumors and significantly enhanced the tumor growth-inhibitory actions of biguanide treatment. Our results define a dietary manipulation that can enhance the efficacy of biguanides as antineoplastic agents that target cancer cell energy metabolism. PMID:25377470

  2. Proteasome inhibition improves fractionated radiation treatment against non-small cell lung cancer: an antioxidant connection.

    PubMed

    Grimes, Kristopher Ray; Daosukho, Chotiros; Zhao, Yunfeng; Meigooni, Ali; St Clair, William

    2005-10-01

    Non-small cell lung cancer frequently presents as a locally advanced disease. In this setting, radiation has a prominent role in cancer therapy. However, tumor adaptation to oxidative stress may lessen the efficacy of radiation therapy. Recent studies demonstrate that proteasome inhibitors increase the efficacy of radiation against a range of tumors. Although proteasome inhibition impacts on NF-kappaB translocation, the precise mechanism through which proteasome inhibitors induce tumor cell death and promote radiation efficacy remains unclear. The purpose of this study is to evaluate the potential of the proteasome inhibitor, MG-132, to improve the efficacy of radiation therapy and to determine whether its effect is linked to the suppression of the antioxidant enzyme, manganese superoxide dismutase (MnSOD). Human NSCLC (A549) cells were utilized both in vivo and in vitro to evaluate proteasome inhibition on radiation response. In vivo, mice that received combined treatments of 2.5 microg/g body weight MG-132 and 30 Gy demonstrated a delay in tumor regrowth in comparison to the 30 Gy control group. In vitro, clonegenic survival assays confirmed a dose-dependent enhancement of radiation sensitivity in combination with MG-132 and a significant interaction between the two. The levels of IkappaB-alpha, a NF-kappaB target gene and also an inhibitor of NF-kappaB nuclear translocation, decreased in a time-dependent manner following administration of MG-132 confirming the inhibition of the 26S proteasome. The MnSOD protein level was increased consistent with lower levels of IkappaB-alpha, confirming a NF-kappaB-mediated effect. Cells treated with radiation demonstrated an induction of MnSOD; however, the administration of MG-132 suppressed this induction These results support the hypothesis that proteasome inhibitors such as MG-132 can increase the efficacy of radiation therapy, in part, by suppression of cytoprotective NF-kappaB-mediated MnSOD expression. PMID:16142322

  3. Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome

    PubMed Central

    Shi, Yuan; Chen, Xiang; Elsasser, Suzanne; Stocks, Bradley B.; Tian, Geng; Lee, Byung-Hoon; Shi, Yanhong; Zhang, Naixia; de Poot, Stefanie A. H.; Tuebing, Fabian; Sun, Shuangwu; Vannoy, Jacob; Tarasov, Sergey G.; Engen, John R.; Finley, Daniel; Walters, Kylie J.

    2016-01-01

    Structured Abstract INTRODUCTION The ubiquitin-proteasome system comprises hundreds of distinct pathways of degradation, which converge at the step of ubiquitin recognition by the proteasome. Five proteasomal ubiquitin receptors have been identified, two that are intrinsic to the proteasome (Rpn10 and Rpn13) and three reversibly associated proteasomal ubiquitin receptors (Rad23, Dsk2, and Ddi1). RATIONALE We found that the five known proteasomal ubiquitin receptors of yeast are collectively nonessential for ubiquitin recognition by the proteasome. We therefore screened for additional ubiquitin receptors in the proteasome and identified subunit Rpn1 as a candidate. We used nuclear magnetic resonance (NMR) spectroscopy to characterize the structure of the binding site within Rpn1, which we term the T1 site. Mutational analysis of this site showed its functional importance within the context of intact proteasomes. T1 binds both ubiquitin and ubiquitin-like (UBL) proteins, in particular the substrate-delivering shuttle factor Rad23. A second site within the Rpn1 toroid, T2, recognizes the UBL domain of deubiquitinating enzyme Ubp6, as determined by hydrogen-deuterium exchange mass spectrometry analysis and validated by amino acid substitution and functional assays. The Rpn1 toroid thus serves a critical scaffolding role within the proteasome, helping to assemble multiple proteasome cofactors as well as substrates. RESULTS Our results indicate that proteasome subunit Rpn1 can recognize both ubiquitin and UBL domains of substrate shuttling factors that themselves bind ubiquitin and function as reversibly-associated proteasomal ubiquitin receptors. Recognition is mediated by the T1 site within the Rpn1 toroid, which supports proteasome function in vivo. We found that the capacity of T1 to recognize both ubiquitin and UBL proteins was shared with Rpn10 and Rpn13. The surprising multiplicity of ubiquitin-recognition domains within the proteasome may promote enhanced

  4. : Synthesis, Characterization, and Enhanced Photocatalytic Activity

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoming; Fu, Feng; Li, Wenhong

    2014-12-01

    3D hierarchical microspheres of Cu-loaded Bi2WO6 are successfully prepared by the hydrothermal synthesis method on a large scale. The as-prepared samples are characterized by UV-Vis DRS, BET, XRD, XPS, and SEM. The results reveal that the light absorption of Cu-loaded Bi2WO6 has higher intensity in the visible range and a bathochromic shift of the absorption edge compared to that of pure Bi2WO6. The photocatalytic activity is evaluated by phenol removal from aqueous solution under visible-light irradiation. The results demonstrate that loaded Cu significantly enhances the photocatalytic activity of Bi2WO6, for the loaded Cu acts as the electron receptor on the surface of Bi2WO6, and inhibits the recombination of photogenerated electron-hole. The content of loaded Cu has an impact on the catalytic activity, and the 1.0 wt.% Cu-loaded Bi2WO6 exhibits the best photocatalytic activity in the degradation of phenol. Furthermore, the reaction kinetics of phenol removal from aqueous solution over the Cu-loaded Bi2WO6 is established by the way of the Langmuir-Hinshelwood model. The results indicate that the process of photodegradation of phenol on Cu-loaded Bi2WO6 match the Langmuir-Hinshelwood kinetic model.

  5. Enhanced interleukin activity following asbestos inhalation.

    PubMed Central

    Hartmann, D P; Georgian, M M; Oghiso, Y; Kagan, E

    1984-01-01

    Asbestos inhalation can cause pulmonary fibrosis and is associated with a variety of immunological abnormalities. The purpose of this study was to evaluate the effects of asbestos inhalation on interleukin-1 (IL-1) and interleukin-2 (IL-2) production in a rodent model. Two groups of rats were exposed, by intermittent inhalation, to either amphibole (crocidolite) or serpentine (chrysotile) asbestos. A third (control) group of rats was sham exposed to clean air. Animals from the three exposure groups were thereafter immunized (or not immunized) with fetal calf serum antigens. In order to assay interleukin activity, supernatants were generated from cultures containing alveolar macrophages and autologous splenic lymphocytes, and from cultures containing alveolar macrophages alone. Using assay systems designed to detect IL-1 and IL-2 functional activity, the supernatants were evaluated for their capacity to stimulate lymphoproliferation and fibroblast DNA synthesis. Macrophage-lymphocyte co-culture supernatants, when obtained from immunized, asbestos exposed rats, contained greater IL-1 and IL-2 activity than identical supernatants from immunized, sham exposed animals. These between group differences were not, however, observed in supernatants from unimmunized rats, or when supernatants were generated in the absence of immune lymphocytes. These observations suggest that asbestos exposure is associated with enhanced activation of lymphocytes by antigens. The possible relevance of these findings to asbestos related fibrogenesis and immunological stimulation is discussed. PMID:6608427

  6. Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer.

    PubMed

    Kupperman, Erik; Lee, Edmund C; Cao, Yueying; Bannerman, Bret; Fitzgerald, Michael; Berger, Allison; Yu, Jie; Yang, Yu; Hales, Paul; Bruzzese, Frank; Liu, Jane; Blank, Jonathan; Garcia, Khristofer; Tsu, Christopher; Dick, Larry; Fleming, Paul; Yu, Li; Manfredi, Mark; Rolfe, Mark; Bolen, Joe

    2010-03-01

    The proteasome was validated as an oncology target following the clinical success of VELCADE (bortezomib) for injection for the treatment of multiple myeloma and recurring mantle cell lymphoma. Consequently, several groups are pursuing the development of additional small-molecule proteasome inhibitors for both hematologic and solid tumor indications. Here, we describe MLN9708, a selective, orally bioavailable, second-generation proteasome inhibitor that is in phase I clinical development. MLN9708 has a shorter proteasome dissociation half-life and improved pharmacokinetics, pharmacodynamics, and antitumor activity compared with bortezomib. MLN9708 has a larger blood volume distribution at steady state, and analysis of 20S proteasome inhibition and markers of the unfolded protein response confirmed that MLN9708 has greater pharmacodynamic effects in tissues than bortezomib. MLN9708 showed activity in both solid tumor and hematologic preclinical xenograft models, and we found a correlation between greater pharmacodynamic responses and improved antitumor activity. Moreover, antitumor activity was shown via multiple dosing routes, including oral gavage. Taken together, these data support the clinical development of MLN9708 for both hematologic and solid tumor indications. PMID:20160034

  7. Synthesis and Biological Evaluation of Naphthoquinone Analogs as a Novel Class of Proteasome Inhibitors

    PubMed Central

    Lawrence, Harshani R.; Kazi, Aslamuzzaman; Luo, Yunting; Kendig, Robert; Ge, Yiyu; Jain, Sanjula; Daniel, Kenyon; Santiago, Daniel; Guida, Wayne C.; Sebti, Saïd M.

    2012-01-01

    Screening of the NCI Diversity Set-1 identified PI-083 (NSC-45382) a proteasome inhibitor selective for cancer over normal cells. Focused libraries of novel compounds based on PI-083 chloronaphthoquinone and sulfonamide moieties were synthesized to gain a better understanding of the structure activity relationship responsible for chymotrypsin-like proteasome inhibitory activity. This led to the demonstration that the chloronaphthoquinone and the sulfonamide moieties are critical for inhibitory activity. The pyridyl group in PI-083 can be replaced with other heterocyclic groups without significant loss of activity. Molecular modeling studies were also performed to explore the detailed interactions of PI-083 and its derivatives with the β5 and β6 subunits of the 20S proteasome. The refined model showed an H-bond interaction between the Asp-114 and the sulfonamide moiety of the PI-083 in the β6 subunit. PMID:20621484

  8. Titanium surface hydrophilicity enhances platelet activation.

    PubMed

    Alfarsi, Mohammed A; Hamlet, Stephen M; Ivanovski, Saso

    2014-01-01

    Titanium implant surface modification is a key strategy used to enhance osseointegration. Platelets are the first cells that interact with the implant surface whereupon they release a wide array of proteins that influence the subsequent healing process. This study therefore investigated the effect of titanium surface modification on the attachment and activation of human platelets. The surface characteristics of three titanium surfaces: smooth (SMO), micro-rough (SLA) and hydrophilic micro-rough (SLActive) and the subsequent attachment and activation of platelets following exposure to these surfaces were determined. The SLActive surface showed the presence of significant nanoscale topographical features. While attached platelets appeared to be morphologically similar, significantly fewer platelets attached to the SLActive surface compared to both the SMO and SLA surfaces. The SLActive surface however induced the release of the higher levels of chemokines β-thromboglobulin and platelet factor 4 from platelets. This study shows that titanium surface topography and chemistry have a significant effect on platelet activation and chemokine release. PMID:25311339

  9. Phanerochaete mutants with enhanced ligninolytic activity

    SciTech Connect

    Kakar, S.N.; Perez, A.; Gonzales, J.

    1993-06-01

    In addition to lignin, the white rot fungus Phanerochaete chrysosporium has the ability to degrade a wide spectrum of recalcitrant organopollutants in soils and aqueous media. Although some of the organic compounds are degraded under nonligninolytic conditions, most are degraded under ligninolytic conditions with the involvement of the extracellular enzymes, lignin peroxidases, and manganese-dependent peroxidases, which are produced as secondary metabolites triggered by conditions of nutrient starvation (e.g., nitrogen limitation). The fungus and its enzymes can thus provide alternative technologies for bioremediation, biopulping, biobleaching, and other industrial applications. The efficiency and effectiveness of the fungus can be enhanced by increasing production and secretion of the important enzymes in large quantities and as primary metabolites under enriched conditions. One way this can be achieved is through isolation of mutants that are deregulated or are hyperproducers or supersecretors of key enzymes under enriched conditions. Through ultraviolet-light and gamma-rays mutagenesis we have isolated a variety of mutants, some of which produce key enzymes of the ligninolytic system under high-nitrogen growth conditions. One of the mutants produced 272 units (U) of lignin peroxidases enzyme activity per liter after nine days under high nitrogen. The mutant and the parent strains produced up to 54 U/L and 62 U/L, respectively, of the enzyme activity under low-nitrogen growth conditions during this period. In some experiments the mutant showed 281 U/L of enzyme activity under high nitrogen after 17 days.

  10. How Soluble GARP Enhances TGFβ Activation

    PubMed Central

    Fridrich, Sven; Hahn, Susanne A.; Linzmaier, Marion; Felten, Matthias; Zwarg, Jenny; Lennerz, Volker; Tuettenberg, Andrea; Stöcker, Walter

    2016-01-01

    GARP (glycoprotein A repetitions predominant) is a cell surface receptor on regulatory T-lymphocytes, platelets, hepatic stellate cells and certain cancer cells. Its described function is the binding and accommodation of latent TGFβ (transforming growth factor), before the activation and release of the mature cytokine. For regulatory T cells it was shown that a knockdown of GARP or a treatment with blocking antibodies dramatically decreases their immune suppressive capacity. This confirms a fundamental role of GARP in the basic function of regulatory T cells. Prerequisites postulated for physiological GARP function include membrane anchorage of GARP, disulfide bridges between the propeptide of TGFβ and GARP and connection of this propeptide to αvβ6 or αvβ8 integrins of target cells during mechanical TGFβ release. Other studies indicate the existence of soluble GARP complexes and a functionality of soluble GARP alone. In order to clarify the underlying molecular mechanism, we expressed and purified recombinant TGFβ and a soluble variant of GARP. Surprisingly, soluble GARP and TGFβ formed stable non-covalent complexes in addition to disulfide-coupled complexes, depending on the redox conditions of the microenvironment. We also show that soluble GARP alone and the two variants of complexes mediate different levels of TGFβ activity. TGFβ activation is enhanced by the non-covalent GARP-TGFβ complex already at low (nanomolar) concentrations, at which GARP alone does not show any effect. This supports the idea of soluble GARP acting as immune modulator in vivo. PMID:27054568

  11. Proteasome inhibitor associated thrombotic microangiopathy.

    PubMed

    Yui, Jennifer C; Van Keer, Jan; Weiss, Brendan M; Waxman, Adam J; Palmer, Matthew B; D'Agati, Vivette D; Kastritis, Efstathios; Dimopoulos, Meletios A; Vij, Ravi; Bansal, Dhruv; Dingli, David; Nasr, Samih H; Leung, Nelson

    2016-09-01

    A variety of medications have been implicated in the causation of thrombotic microangiopathy (TMA). Recently, a few case reports have emerged of TMA attributed to the proteasome inhibitors (PI) bortezomib and carfilzomib in patients with multiple myeloma. The aim of this case series was to better characterize the role of PI in the etiology of drug-induced TMA. We describe eleven patients from six medical centers from around the world who developed TMA while being treated with PI. The median time between medication initiation and diagnosis of TMA was 21 days (range 5 days to 17 months). Median laboratory values at diagnosis included hemoglobin-7.5 g dL(-1) , platelet count-20 × 10(9) /L, LDH-698 U L(-1) , creatinine-3.12 mg dL(-1) . No patient had any other cause of TMA, including ADAMTS13 inhibition, other malignancy or use of any other medication previously associated with TMA. Nine patients had resolution of TMA without evidence of hemolysis after withdrawal of PI. Two patients had stabilization of laboratory values but persistent evidence of hemolysis despite medication withdrawal. One patient had recurrence of TMA with rechallenge of PI. There is a strong level of evidence that PI can cause DITMA. In evaluating patients with suspected TMA, PI use should be recognized as a potential etiology, and these medications should be discontinued promptly if thought to be the cause of TMA. Am. J. Hematol. 91:E348-E352, 2016. © 2016 Wiley Periodicals, Inc. PMID:27286661

  12. Role of ubiquitin-proteasome system (UPS) in left ventricular hypertrophy (LVH)

    PubMed Central

    Cacciapuoti, Federico

    2014-01-01

    Cardiac hypertrophy is a key compensatory mechanism acting in response to pressure or volume overload, involving some alterations in signaling transduction pathways and transcription factors-regulation. These changes result in enhanced proteins’ synthesis leading to Left Ventricular Hypertrophy (LVH). It is known that the main function of Ubiquitin-Proteasome System (UPS) is to prevent accumulation of damaged, misfolded and mutant proteins by proteolysis. But emerging evidences suggest that UPS also attends to the cells’ growth, favoring proteins’ synthesis, subsequently evolving in LVH. The role of the proteasome in to favor cellular hypertrophy consists in upregulation of the catalytic proteasome subunit, with prevalence of proteins-synthesis on proteins degradation. It is also evident that UPS inhibition may prevent cells’ growth opposing to the hypertrophy. In fact in several experimental models, UPS inhibition demonstrated to be able to prevent or reverse cardiac hypertrophy induced by abdominal aortic banding (AAB). That can happen with several proteasome inhibitors acting by multifactorial mechanisms. These evidences induce to hypothesize that, in the future, in patients with the increased volume overload by systemic hypertension, some proteasome-inhibitors could be used to antagonize or prevent LVH without reducing peripheral high blood pressure levels too. PMID:24551479

  13. NITRIC OXIDE-DEPENDENT PROTEASOMAL DEGRADATION OF CYTOCHROME P450 2B PROTEINS*

    PubMed Central

    Lee, Choon-Myung; Kim, Bong-Yoon; Li, Lian; Morgan, Edward T.

    2007-01-01

    Exposure to inflammatory agents or cytokines causes the suppression of cytochrome P450 (CYP) enzyme activities and expression in liver and primary hepatocyte cultures. We showed previously that phenobarbital-induced CYP2B protein is down-regulated in primary cultures of rat hepatocytes following exposure to bacterial endotoxin (LPS) in a nitric oxide (NO)-dependent manner. In the present study, we found that CYP2B proteins in primary rat hepatocyte cultures were suppressed more than 60% after 6h treatment with interleukin-1β (IL-1). This effect was NO-dependent, and treatment of cells with the NO-donors (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino] diazen-1-ium-1,2-diolate (NOC-18), S-nitrosoglutathione (GSNO), and S-nitroso, N-acetylpenicillamine (SNAP) also suppressed CYP2B proteins. However, the down-regulation by IL-1 was insensitive to inhibition of cGMP-dependent protein kinases. The down-regulation by IL-1 or NO donors was abolished by treatments with the proteasome inhibitors MG132 and lactacystin that did not affect NO production. The calpain inhibitor E64-d or the lysosomal protease inhibitors NH4Cl and chloroquine did not attenuate the down-regulation of CYP2B by IL-1. Treatment of HeLa cells expressing c-myc-tagged CYP2B1 with NOC-18 down-regulated its expression and enhanced its ubiquitination. Treatment of rat liver microsomes with GSNO caused S-nitrosylation of CYP2B protein, and enhanced the ubiquitination pattern of CYP2B compared to unmodified CYP2B in an in vitro ubiquitination assay. These data are consistent with the hypothesis that NO-dependent CYP2B ubiquitination and proteasomal degradation are dependent on protein modification by reactive nitrogen species. PMID:17993647

  14. Proteasome inhibitor MG-132 enhances histone deacetylase inhibitor SAHA-induced cell death of chronic myeloid leukemia cells by an ROS-mediated mechanism and downregulation of the Bcr-Abl fusion protein

    PubMed Central

    ZHOU, WENJING; ZHU, WEIWEI; MA, LIYA; XIAO, FENG; QIAN, WENBIN

    2015-01-01

    Recently, there has been progress in the treatment of chronic myeloid leukemia (CML). However, novel therapeutic strategies are required in order to address the emerging problem of imatinib resistance. Histone deacetylase inhibitors (HDACi) and proteasome inhibitors are promising alternatives, and may be amenable to integration with current therapeutic approaches. However, the mechanisms underlying the interaction between these two agents remain unclear. The present study assessed the cytotoxic effect of the HDACi, suberoylanilide hydroxamic acid (SAHA), in combination with the proteasome inhibitor, MG-132, in imatinib-sensitive K562 and imatinib-resistant K562G cells, and investigated the mechanism underlying this effect. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method and protein expression levels were determined by western blotting. Reactive oxygen species (ROS) generation levels were observed under a fluorescence microscope The results indicated that SAHA and MG-132 act in a synergistic manner to induce cell death in K562 and K562G cells. This effect was associated with Bcr-Abl downregulation and the production of ROS. Notably, the ROS scavenger, N-acetyl-L-cysteine, almost fully reversed the cell death and Bcr-Abl downregulation that was induced by the combination of SAHA and MG-132. By contrast, the pan-caspase inhibitor, z-VAD-fmk, only partially reversed the cell death induced by these two drugs in CML cells. These results indicated that increased intracellular ROS levels are important in the induction of cell death and the downregulation of Bcr-Abl. In conclusion, the present results suggested that combined SAHA and MG-132 may be a promising treatment for CML. PMID:26722260

  15. Fluorescent Tools for In Vivo Studies on the Ubiquitin-Proteasome System.

    PubMed

    Matilainen, Olli; Jha, Sweta; Holmberg, Carina I

    2016-01-01

    The ubiquitin-proteasome system (UPS) plays a key role in maintaining proteostasis by degrading most of the cellular proteins. Traditionally, UPS activity is studied in vitro, in yeast, or in mammalian cell cultures by using short-lived GFP-based UPS reporters. Here, we present protocols for two fluorescent tools facilitating real-time imaging of UPS activity in living animals. We have generated transgenic Caenorhabditis elegans (C. elegans) expressing a photoconvertible UbG76V-Dendra2 UPS reporter, which permits measurement of reporter degradation by the proteasome independently of reporter protein synthesis, and a fluorescent polyubiquitin-binding reporter for detection of the endogenous pool of Lys48-linked polyubiquitinated proteasomal substrates. These reporter systems facilitate cell- and tissue-specific analysis of UPS activity especially in young adult animals, but can also be used for studies during development, aging, and for example stress conditions. PMID:27613038

  16. Biochemical analysis of proteasomes from mouse microglia: induction of immunoproteasomes by interferon-gamma and lipopolysaccharide.

    PubMed

    Stohwasser, R; Giesebrecht, J; Kraft, R; Müller, E C; Häusler, K G; Kettenmann, H; Hanisch, U K; Kloetzel, P M

    2000-02-15

    The 20S proteasome is a multicatalytic threonine protease and serves to process peptides that are subsequently presented as antigenic epitopes by MHC class I molecules. In the brain, microglial cells are the major antigen presenting cells and they respond sensitive to pathologic events. We used cultured mouse microglia and a microglial cell line, the BV-2 line, as a model to study the correlation between microglial activation parameters and structural plasticity of the 20S/26S proteasome. Lipopolysaccharide (LPS)- or interferon-gamma (IFN-gamma)-stimulated microglia or BV-2 cells exhibit properties of activated microglia such as high levels of TNFalpha and IL-6 release. In response to IFN-gamma or LPS, three constitutive beta subunits (beta1/Delta, beta2/MC14, beta5/MB1) were replaced by the immunoproteasome subunits ibeta1/LMP2, ibeta2/MECL-1, and ibeta5/LMP7, indicating that activated microglia adapts its proteasomal subunit composition to the requirements of an optimized MHC class I epitope processing. Induction of immunoproteasomes in BV-2 cells was solely provoked by IFN-gamma, but not by LPS. Moreover, LPS (but not IFN-gamma) triggered the expression of a novel protein of approximately 50 kD as part of the proteasome activator PA700, that is the substrate-recognizing and unfolding unit of the 26S proteasome. These results indicate that both the 20S core protease as well as the proteasome activator PA700 are targets of modulatory subunit replacements or transient association of regulatory components in the course of microglial activation. PMID:10652445

  17. LRRK2 autophosphorylation enhances its GTPase activity.

    PubMed

    Liu, Zhiyong; Mobley, James A; DeLucas, Lawrence J; Kahn, Richard A; West, Andrew B

    2016-01-01

    The leucine-rich repeat kinase (LRRK)-2 protein contains nonoverlapping GTPase and kinase domains, and mutation in either domain can cause Parkinson disease. GTPase proteins are critical upstream modulators of many effector protein kinases. In LRRK2, this paradigm may be reversed, as the kinase domain phosphorylates its own GTPase domain. In this study, we found that the ameba LRRK2 ortholog ROCO4 phosphorylates the GTPase domain [termed Ras-of-complex (ROC) domain in this family] of human LRRK2 on the same residues as the human LRRK2 kinase. Phosphorylation of ROC enhances its rate of GTP hydrolysis [from kcat (catalytic constant) 0.007 to 0.016 min(-1)], without affecting GTP or GDP dissociation kinetics [koff = 0.093 and 0.148 min(-1) for GTP and GDP, respectively). Phosphorylation also promotes the formation of ROC dimers, although GTPase activity appears to be equivalent between purified dimers and monomers. Modeling experiments show that phosphorylation induces conformational changes at the critical p-loop structure. Finally, ROC appears to be one of many GTPases phosphorylated in p-loop residues, as revealed by alignment of LRRK2 autophosphorylation sites with GTPases annotated in the phosphoproteome database. These results provide an example of a novel mechanism for kinase-mediated control of GTPase activity. PMID:26396237

  18. Cellular and computational studies of proteasome inhibition and apoptosis induction in human cancer cells by amino acid Schiff base–copper complexes

    PubMed Central

    Zuo, Jian; Bi, Caifeng; Fan, Yuhua; Buac, Daniela; Nardon, Chiara; Daniel, Kenyon G.; Dou, Q. Ping

    2013-01-01

    Proliferation and apoptosis pathways are tightly regulated in a cell by the ubiquitin–proteasome system (UPS) and alterations in the UPS may result in cellular transformation or other pathological conditions. Indeed, the proteasome is often found to be overactive in cancer cells. It has also been found that cancer cells are more sensitive to proteasome inhibition than normal cells, and therefore proteasome inhibitors are pursued as antitumor drugs. The use of the proteasome inhibitor Bortezomib for treatment of multiple myeloma and mantle cell lymphoma has proved this principle. Recent studies have suggested that copper complexes can inhibit proteasome activity and induce apoptosis in some human cancer cells. However, the involved molecular mechanism is unknown. In this study, we investigated the biological activities of four amino acid Schiff base–copper(II) complexes by using human breast (MDA-MB-231 and MCF-7) and prostate (PC-3) cancer cells. The complexes C1 and C3, but not their counterparts C2 and C4, inhibit the chymotrypsin-like activity of purified 20S proteasome and human cancer cellular 26S proteasome, cause accumulation of proteasome target proteins Bax and IκB-α, and induce growth inhibition and apoptosis in concentration- and time-dependent manners. Docking analysis shows that C1, but not C2 has hydrophobic, pi–pi, pi–cation and hydrogen bond interactions with the proteasomal chymotrypsin-like pocket and could stably fit into the S3 region, leading to specific inhibition. Our study has identified the mechanism of action of these copper complexes on inhibiting tumor cell proteasome and suggested their great potential as novel anticancer agents. PMID:23142973

  19. TM-233, a novel analog of 1′-acetoxychavicol acetate, induces cell death in myeloma cells by inhibiting both JAK/STAT and proteasome activities

    PubMed Central

    Sagawa, Morihiko; Tabayashi, Takayuki; Kimura, Yuta; Tomikawa, Tatsuki; Nemoto-Anan, Tomoe; Watanabe, Reiko; Tokuhira, Michihide; Ri, Masaki; Hashimoto, Yuichi; Iida, Shinsuke; Kizaki, Masahiro

    2015-01-01

    Although the introduction of bortezomib and immunomodulatory drugs has led to improved outcomes in patients with multiple myeloma, the disease remains incurable. In an effort to identify more potent and well-tolerated agents for myeloma, we have previously reported that 1′-acetoxychavicol acetate (ACA), a natural condiment from South-East Asia, induces apoptotic cell death of myeloma cells in vitro and in vivo through inhibition of NF-κB-related functions. Searching for more potent NF-κB inhibitors, we developed several ACA analogs based on quantitative structure–activity relationship analysis. TM-233, one of these ACA analogs, inhibited cellular proliferation and induced cell death in various myeloma cell lines with a lower IC50 than ACA. Treatment with TM-233 inhibited constitutive activation of JAK2 and STAT3, and then downregulated the expression of anti-apoptotic Mcl-1 protein, but not Bcl-2 and Bcl-xL proteins. In addition, TM-233 rapidly decreased the nuclear expression of NF-κB and also decreased the accumulation of cytosolic NF-κB. We also examined the effects of TM-233 on bortezomib-resistant myeloma cells that we recently established, KMS-11/BTZ and OPM-2/BTZ. TM-233, but not bortezomib, inhibited cellular proliferation and induced cell death in KMS-11/BTZ and OPM-2/BTZ cells. Interestingly, the combination of TM-233 and bortezomib significantly induced cell death in these bortezomib-resistant myeloma cells through inhibition of NF-κB activity. These results indicate that TM-233 could overcome bortezomib resistance in myeloma cells mediated through different mechanisms, possibly inhibiting the JAK/STAT pathway. In conclusion, TM-233 might be a more potent NF-κB inhibitor than ACA, and could overcome bortezomib resistance in myeloma cells. PMID:25613668

  20. Proteasome inhibition and oxidative reactions disrupt cellular homeostasis during heme stress

    PubMed Central

    Vallelian, F; Deuel, J W; Opitz, L; Schaer, C A; Puglia, M; Lönn, M; Engelsberger, W; Schauer, S; Karnaukhova, E; Spahn, D R; Stocker, R; Buehler, P W; Schaer, D J

    2015-01-01

    Dual control of cellular heme levels by extracellular scavenger proteins and degradation by heme oxygenases is essential in diseases associated with increased heme release. During severe hemolysis or rhabdomyolysis, uncontrolled heme exposure can cause acute kidney injury and endothelial cell damage. The toxicity of heme was primarily attributed to its pro-oxidant effects; however additional mechanisms of heme toxicity have not been studied systematically. In addition to redox reactivity, heme may adversely alter cellular functions by binding to essential proteins and impairing their function. We studied inducible heme oxygenase (Hmox1)-deficient mouse embryo fibroblast cell lines as a model to systematically explore adaptive and disruptive responses that were triggered by intracellular heme levels exceeding the homeostatic range. We extensively characterized the proteome phenotype of the cellular heme stress responses by quantitative mass spectrometry of stable isotope-labeled cells that covered more than 2000 individual proteins. The most significant signals specific to heme toxicity were consistent with oxidative stress and impaired protein degradation by the proteasome. This ultimately led to an activation of the response to unfolded proteins. These observations were explained mechanistically by demonstrating binding of heme to the proteasome that was linked to impaired proteasome function. Oxidative heme reactions and proteasome inhibition could be differentiated as synergistic activities of the porphyrin. Based on the present data a novel model of cellular heme toxicity is proposed, whereby proteasome inhibition by heme sustains a cycle of oxidative stress, protein modification, accumulation of damaged proteins and cell death. PMID:25301065

  1. Antitumor effects of tyropeptin-boronic acid derivatives: New proteasome inhibitors

    PubMed Central

    Momose, Isao; Abe, Hikaru; Watanabe, Takumi; Ohba, Shun-ichi; Yamazaki, Kanami; Dan, Shingo; Yamori, Takao; Masuda, Tohru; Nomoto, Akio

    2014-01-01

    The proteasome degrades numerous regulatory proteins that are critical for tumor growth. Thus, proteasome inhibitors are promising antitumor agents. New proteasome inhibitors, such as tyropeptins and tyropeptin-boronic acid derivatives, have a potent inhibitory activity. Here we report the antitumor effects of two new tyropeptin-boronic acid derivatives, AS-06 and AS-29. AS-06 and AS-29 significantly suppress the degradation of the proteasome-sensitive fluorescent proteins in HEK293PS cells, and induce the accumulation of ubiquitinated proteins in human multiple myeloma cells. We show that these derivatives also suppress the degradation of the NF-κB inhibitor IκB-α and the nuclear translocation of NF-κB p65 in multiple myeloma cells, resulting in the inhibition of NF-κB activation. Furthermore, we demonstrate that AS-06 and AS-29 induce apoptosis through the caspase-8 and caspase-9 cascades. In a xenograft mouse model, i.v. administration of tyropeptin-boronic acid derivatives inhibits proteasome in tumors and clearly suppresses tumor growth in mice bearing human multiple myeloma. Our results indicate that tyropeptin-boronic acid derivatives could be lead therapeutic agents against human multiple myeloma. PMID:25251038

  2. Mitochondrial Bax translocation partially mediates synergistic cytotoxicity between histone deacetylase inhibitors and proteasome inhibitors in glioma cells

    PubMed Central

    Yu, Chunrong; Friday, Bret B.; Yang, Lin; Atadja, Peter; Wigle, Dennis; Sarkaria, Jann; Adjei, Alex A.

    2008-01-01

    The effects of combining histone deacetylase (HDAC) inhibitors and proteasome inhibitors were evaluated in both established glioblastoma multiforme (GBM) cell lines and short-term cultures derived from the Mayo Clinic xenograft GBM panel. Coexposure of LBH589 and bortezomib at minimally toxic doses of either drug alone resulted in a striking induction of apoptosis in established U251, U87, and D37 GBM cell lines, as well as in GBM8, GBM10, GBM12, GBM14, and GBM56 short-term cultured cell lines. Synergism of apoptosis induction was also observed in U251 cells when coexposing cells to other HDAC inhibitors, including LAQ824 and trichostatin A, with the proteasome inhibitor MG132, thus demonstrating a class effect. In U251 cells, bortezomib alone or in combination with LBH589 decreased Raf-1 levels and suppressed Akt and Erk activation. LBH589 or bortezomib alone increased expression of the cell cycle regulators p21 and p27. Additionally, the combination, but not the individual agents, markedly enhanced JNK activation. Synergistic induction of apoptosis after exposure to LBH589 and bortezomib was partially mediated by Bax translocation from the cytosol to the mitochondria resulting from Bax conformational changes. Bax translocation precedes cytochrome c release and apoptosis, and selective down-regulation of Bax using siRNA significantly mitigates the cytotoxicity of LBH589 and bortezomib. This combination regimen warrants further preclinical and possible clinical study for glioma patients. PMID:18445700

  3. Oxathiazolones Selectively Inhibit the Human Immunoproteasome over the Constitutive Proteasome

    PubMed Central

    2014-01-01

    Selective inhibitors for the human immunoproteasome LMP7 (β5i) subunit over the constitutive proteasome hold promise for the treatment of autoimmune and inflammatory diseases and hematologic malignancies. Here we report that oxathiazolones inhibit the immunoproteasome β5i with up to 4700-fold selectivity over the constitutive proteasome, are cell permeable, and inhibit proteasomes inside cells. PMID:24900849

  4. Roles of the ubiquitin proteasome system in the effects of drugs of abuse

    PubMed Central

    Massaly, Nicolas; Francès, Bernard; Moulédous, Lionel

    2015-01-01

    Because of its ability to regulate the abundance of selected proteins the ubiquitin proteasome system (UPS) plays an important role in neuronal and synaptic plasticity. As a result various stages of learning and memory depend on UPS activity. Drug addiction, another phenomenon that relies on neuroplasticity, shares molecular substrates with memory processes. However, the necessity of proteasome-dependent protein degradation for the development of addiction has been poorly studied. Here we first review evidences from the literature that drugs of abuse regulate the expression and activity of the UPS system in the brain. We then provide a list of proteins which have been shown to be targeted to the proteasome following drug treatment and could thus be involved in neuronal adaptations underlying behaviors associated with drug use and abuse. Finally we describe the few studies that addressed the need for UPS-dependent protein degradation in animal models of addiction-related behaviors. PMID:25610367

  5. "Depupylation" of Prokaryotic Ubiquitin-like Protein from Mycobacterial Proteasome Substrates

    SciTech Connect

    Burns, K.E.; Li, H.; Cerda-Maira, F. A.; Wang, T.; Bishai, W. R.; Darwin, K. H.

    2010-09-10

    Ubiquitin (Ub) provides the recognition and specificity required to deliver proteins to the eukaryotic proteasome for destruction. Prokaryotic ubiquitin-like protein (Pup) is functionally analogous to Ub in Mycobacterium tuberculosis (Mtb), as it dooms proteins to the Mtb proteasome. Studies suggest that Pup and Ub do not share similar mechanisms of activation and conjugation to target proteins. Dop (deamidase of Pup; Mtb Rv2112c/MT2172) deamidates the C-terminal glutamine of Pup to glutamate, preparing it for ligation to target proteins by proteasome accessory factor A (PafA). While studies have shed light on the conjugation of Pup to proteins, it was not known if Pup could be removed from substrates in a manner analogous to the deconjugation of Ub from eukaryotic proteins. Here, we show that Mycobacteria have a depupylase activity provided by Dop. The discovery of a depupylase strengthens the parallels between the Pup- and Ub-tagging systems of prokaryotes and eukaryotes, respectively.

  6. Proteomics of the 26S proteasome in Spodoptera frugiperda cells infected with the nucleopolyhedrovirus, AcMNPV.

    PubMed

    Lyupina, Yulia V; Zatsepina, Olga G; Serebryakova, Marina V; Erokhov, Pavel A; Abaturova, Svetlana B; Kravchuk, Oksana I; Orlova, Olga V; Beljelarskaya, Svetlana N; Lavrov, Andrey I; Sokolova, Olga S; Mikhailov, Victor S

    2016-06-01

    Baculoviruses are large DNA viruses that infect insect species such as Lepidoptera and are used in biotechnology for protein production and in agriculture as insecticides against crop pests. Baculoviruses require activity of host proteasomes for efficient reproduction, but how they control the cellular proteome and interact with the ubiquitin proteasome system (UPS) of infected cells remains unknown. In this report, we analyzed possible changes in the subunit composition of 26S proteasomes of the fall armyworm, Spodoptera frugiperda (Sf9), cells in the course of infection with the Autographa californica multiple nucleopolyhedrovirus (AcMNPV). 26S proteasomes were purified from Sf9 cells by an immune affinity method and subjected to 2D gel electrophoresis followed by MALDI-TOF mass spectrometry and Mascot search in bioinformatics databases. A total of 34 homologues of 26S proteasome subunits of eukaryotic species were identified including 14 subunits of the 20S core particle (7 α and 7 β subunits) and 20 subunits of the 19S regulatory particle (RP). The RP contained homologues of 11 of RPN-type and 6 of RPT-type subunits, 2 deubiquitinating enzymes (UCH-14/UBP6 and UCH-L5/UCH37), and thioredoxin. Similar 2D-gel maps of 26S proteasomes purified from uninfected and AcMNPV-infected cells at 48hpi confirmed the structural integrity of the 26S proteasome in insect cells during baculovirus infection. However, subtle changes in minor forms of some proteasome subunits were detected. A portion of the α5(zeta) cellular pool that presumably was not associated with the proteasome underwent partial proteolysis at a late stage in infection. PMID:26945516

  7. Optimization and Evaluation of 5-Styryl-Oxathiazol-2-one Mycobacterium tuberculosis Proteasome Inhibitors as Potential Antitubercular Agents

    PubMed Central

    Russo, Francesco; Gising, Johan; Åkerbladh, Linda; Roos, Annette K; Naworyta, Agata; Mowbray, Sherry L; Sokolowski, Anders; Henderson, Ian; Alling, Torey; Bailey, Mai A; Files, Megan; Parish, Tanya; Karlén, Anders; Larhed, Mats

    2015-01-01

    This is the first report of 5-styryl-oxathiazol-2-ones as inhibitors of the Mycobacterium tuberculosis (Mtb) proteasome. As part of the study, the structure–activity relationship of oxathiazolones as Mtb proteasome inhibitors has been investigated. Furthermore, the prepared compounds displayed a good selectivity profile for Mtb compared to the human proteasome. The 5-styryl-oxathiazol-2-one inhibitors identified showed little activity against replicating Mtb, but were rapidly bactericidal against nonreplicating bacteria. (E)-5-(4-Chlorostyryl)-1,3,4-oxathiazol-2-one) was most effective, reducing the colony-forming units (CFU)/mL below the detection limit in only seven days at all concentrations tested. The results suggest that this new class of Mtb proteasome inhibitors has the potential to be further developed into novel antitubercular agents for synergistic combination therapies with existing drugs. PMID:26246997

  8. The proteasome stress regulon is controlled by a pair of NAC transcription factors in arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteotoxic stress is mitigated by a variety of mechanisms, including activation of the unfolded protein response and coordinated increases in protein chaperones and activities that direct proteolysis such as the 26S proteasome. Using RNA-seq analyses combined with either chemical inhibitors or mut...

  9. Proteasome-dependent regulation of signal transduction in retinal pigment epithelial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As in many other types of cells, retinal pigment epithelial (RPE) cells have an active ubiquitin-proteasome pathway (UPP). However, the function of the UPP in RPE remains to be elucidated. The objective of this study is to determine the role of the UPP in controlling the levels and activities of tra...

  10. JMJ24 targets CHROMOMETHYLASE3 for proteasomal degradation in Arabidopsis

    PubMed Central

    Deng, Shulin; Jang, In-Cheol; Su, Linlin; Xu, Jun; Chua, Nam-Hai

    2016-01-01

    H3K9 methylation is usually associated with DNA methylation, and together they symbolize transcriptionally silenced heterochromatin. A number of proteins involved in epigenetic processes have been characterized. However, how the stability of these proteins is regulated at the post-translational level is largely unknown. Here, we show that an Arabidopsis JmjC domain protein, JMJ24, possesses ubiquitin E3 ligase activity. JMJ24 directly targets a DNA methyltransferase, CHROMOMETHYLASE 3 (CMT3), for proteasomal degradation to initiate destabilization of the heterochromatic state of endogenous silenced loci. Our results uncover an additional connection between two conserved epigenetic modifications: histone modification and DNA methylation. PMID:26798133

  11. The ubiquitin–proteasome pathway protects Chlamydomonas reinhardtii against selenite toxicity, but is impaired as reactive oxygen species accumulate

    PubMed Central

    Vallentine, Patrick; Hung, Chiu-Yueh; Xie, Jiahua; Van Hoewyk, Doug

    2014-01-01

    The ubiquitin–proteasome pathway (UPP) coordinates a myriad of physiological processes in higher plants, including abiotic stress responses, but it is less well characterized in algal species. In this study, the green alga Chlamydomonas reinhardtii was used to gain insights into the role of the UPP during moderate and severe selenite stress at three different time points. The data indicate that activity of the UPP in response to selenium (Se) stress was both time and dose dependent. Moderate selenite stress increased proteasome activity, protein ubiquitination and the proteasomal removal of malformed selenoproteins. However, severe Se stress caused by prolonged selenite treatment or high selenite concentration decreased proteasome activity, inhibited protein ubiquitination and prevented the proteasomal removal of selenoproteins. The UPP impairment during severe Se stress was associated with the observed accumulation of reactive oxygen species (ROS), including mitochondrial superoxide. Additionally, proteasomal inhibition decreased the concentration of chlorophyll in cultures challenged with Se. Therefore, although the UPP protects Chlamydomonas against Se stress, severe oxidative stress induced by selenite toxicity likely hinders the UPP's capacity to mediate a stress response. The possibility that stress tolerance in plants is dependent upon optimal UPP activity and maintenance is discussed. PMID:25301821

  12. Intracellular Dynamics of the Ubiquitin-Proteasome-System.

    PubMed

    Chowdhury, Maisha; Enenkel, Cordula

    2015-01-01

    The ubiquitin-proteasome system is the major degradation pathway for short-lived proteins in eukaryotic cells. Targets of the ubiquitin-proteasome-system are proteins regulating a broad range of cellular processes including cell cycle progression, gene expression, the quality control of proteostasis and the response to geno- and proteotoxic stress. Prior to degradation, the proteasomal substrate is marked with a poly-ubiquitin chain. The key protease of the ubiquitin system is the proteasome. In dividing cells, proteasomes exist as holo-enzymes composed of regulatory and core particles. The regulatory complex confers ubiquitin-recognition and ATP dependence on proteasomal protein degradation. The catalytic sites are located in the proteasome core particle. Proteasome holo-enzymes are predominantly nuclear suggesting a major requirement for proteasomal proteolysis in the nucleus. In cell cycle arrested mammalian or quiescent yeast cells, proteasomes deplete from the nucleus and accumulate in granules at the nuclear envelope (NE) / endoplasmic reticulum (ER) membranes. In prolonged quiescence, proteasome granules drop off the NE / ER membranes and migrate as stable organelles throughout the cytoplasm, as thoroughly investigated in yeast. When quiescence yeast cells are allowed to resume growth, proteasome granules clear and proteasomes are rapidly imported into the nucleus. Here, we summarize our knowledge about the enigmatic structure of proteasome storage granules and the trafficking of proteasomes and their substrates between the cyto- and nucleoplasm. Most of our current knowledge is based on studies in yeast. Their translation to mammalian cells promises to provide keen insight into protein degradation in non-dividing cells which comprise the majority of our body's cells. PMID:26339477

  13. USP14 deubiquitinates proteasome-bound substrates that are ubiquitinated at multiple sites.

    PubMed

    Lee, Byung-Hoon; Lu, Ying; Prado, Miguel A; Shi, Yuan; Tian, Geng; Sun, Shuangwu; Elsasser, Suzanne; Gygi, Steven P; King, Randall W; Finley, Daniel

    2016-04-21

    USP14 is a major regulator of the proteasome and one of three proteasome-associated deubiquitinating enzymes. Its effects on protein turnover are substrate-specific, for unknown reasons. We report that USP14 shows a marked preference for ubiquitin-cyclin B conjugates that carry more than one ubiquitin modification or chain. This specificity is conserved from yeast to humans and is independent of chain linkage type. USP14 has been thought to cleave single ubiquitin groups from the distal tip of a chain, but we find that it removes chains from cyclin B en bloc, proceeding until a single chain remains. The suppression of degradation by USP14's catalytic activity reflects its capacity to act on a millisecond time scale, before the proteasome can initiate degradation of the substrate. In addition, single-molecule studies showed that the dwell time of ubiquitin conjugates at the proteasome was reduced by USP14-dependent deubiquitination. In summary, the specificity of the proteasome can be regulated by rapid ubiquitin chain removal, which resolves substrates based on a novel aspect of ubiquitin conjugate architecture. PMID:27074503

  14. Phosphorylation and Methylation of Proteasomal Proteins of the Haloarcheon Haloferax volcanii

    DOE PAGESBeta

    Humbard, Matthew A.; Reuter, Christopher J.; Zuobi-Hasona, Kheir; Zhou, Guangyin; Maupin-Furlow, Julie A.

    2010-01-01

    Promore » teasomes are composed of 20S core particles (CPs) of α - and β -type subunits that associate with regulatory particle AAA ATPases such as the proteasome-activating nucleotidase (PAN) complexes of archaea. In this study, the roles and additional sites of post-translational modification of proteasomes were investigated using the archaeon Haloferax volcanii as a model. Indicative of phosphorylation, phosphatase-sensitive isoforms of α 1 and α 2 were detected by 2-DE immunoblot. To map these and other potential sites of post-translational modification, proteasomes were purified and analyzed by tandem mass spectrometry (MS/MS). Using this approach, several phosphosites were mapped including α 1 Thr147, α 2 Thr13/Ser14 and PAN-A Ser340. Multiple methylation sites were also mapped to α 1 , thus, revealing a new type of proteasomal modification.bing the biological role of α 1 and PAN-A phosphorylation by site-directed mutagenesis revealed dominant negative phenotypes for cell viability and/or pigmentation for α 1 variants including Thr147Ala, Thr158Ala and Ser58Ala. An H. volcanii Rio1p Ser/Thr kinase homolog was purified and shown to catalyze autophosphorylation and phosphotransfer to α 1 . The α 1 variants in Thr and Ser residues that displayed dominant negative phenotypes were significantly reduced in their ability to accept phosphoryl groups from Rio1p, thus, providing an important link between cell physiology and proteasomal phosphorylation.« less

  15. Acetylation-Mediated Proteasomal Degradation of Core Histones during DNA Repair and Spermatogenesis

    PubMed Central

    Qian, Min-Xian; Pang, Ye; Liu, Cui Hua; Haratake, Kousuke; Du, Bo-Yu; Ji, Dan-Yang; Wang, Guang-Fei; Zhu, Qian-Qian; Song, Wei; Yu, Yadong; Zhang, Xiao-Xu; Huang, Hai-Tao; Miao, Shiying; Chen, Lian-Bin; Zhang, Zi-Hui; Liang, Ya-Nan; Liu, Shan; Cha, Hwangho; Yang, Dong; Zhai, Yonggong; Komatsu, Takuo; Tsuruta, Fuminori; Li, Haitao; Cao, Cheng; Li, Wei; Li, Guo-Hong; Cheng, Yifan; Chiba, Tomoki; Wang, Linfang; Goldberg, Alfred L.; Shen, Yan; Qiu, Xiao-Bo

    2013-01-01

    SUMMARY Histone acetylation plays critical roles in chromatin remodeling, DNA repair, and epigenetic regulation of gene expression, but the underlying mechanisms are unclear. Proteasomes usually catalyze ATP- and polyubiquitin-dependent proteolysis. Here we show that the proteasomes containing the activator PA200 catalyze the polyubiquitin-independent degradation of histones. Most proteasomes in mammalian testes (“spermatoproteasomes”) contain a spermatid/sperm-specific α-subunit α4s/PSMA8 and/or the catalytic β-subunits of immunoproteasomes in addition to PA200. Deletion of PA200 in mice abolishes acetylation-dependent degradation of somatic core histones during DNA double-strand breaks, and delays core histone disappearance in elongated spermatids. Purified PA200 greatly promotes ATP-independent proteasomal degradation of the acetylated core histones, but not polyubiquitinated proteins. Furthermore, acetylation on histones is required for their binding to the bromodomain-like regions in PA200 and its yeast ortholog, Blm10. Thus, PA200/Blm10 specifically targets the core histones for acetylation-mediated degradation by proteasomes, providing mechanisms by which acetylation regulates histone degradation, DNA repair, and spermatogenesis. PMID:23706739

  16. Proteasome inhibitors attenuated cholesterol-induced cardiac hypertrophy in H9c2 cells.

    PubMed

    Lee, Hyunjung; Park, Jinyoung; Kim, Eunice EunKyeong; Yoo, Young Sook; Song, Eun Joo

    2016-05-01

    The Ubiquitin proteasome system (UPS) plays roles in protein degradation, cell cycle control, and growth and inflammatory cell signaling. Dysfunction of UPS in cardiac diseases has been seen in many studies. Cholesterol acts as an inducer of cardiac hypertrophy. In this study, the effect of proteasome inhibitors on the cholesterol-induced hypertrophic growth in H9c2 cells is examined in order to observe whether UPS is involved in cardiac hypertrophy. The treatment of proteasome inhibitors MG132 and Bortezomib markedly reduced cellular surface area and mRNA expression of β-MHC in cholesterol-induced cardiac hypertrophy. In addition, activated AKT and ERK were significantly attenuated by MG132 and Bortezomib in cholesterol- induced cardiac hypertrophy. We demonstrated that cholesterol- induced cardiac hypertrophy was suppressed by proteasome inhibitors. Thus, regulatory mechanism of cholesterol- induced cardiac hypertrophy by proteasome inhibitors may provide a new therapeutic strategy to prevent the progression of heart failure. [BMB Reports 2016; 49(5): 270-275]. PMID:26592933

  17. The Role of the Ubiquitin Proteasome System in Ischemia and Ischemic Tolerance

    PubMed Central

    Meller, Robert

    2010-01-01

    Ubiquitin modification targets a protein for rapid degradation by the proteasome. However, poly-ubiquitination of proteins can result in multiple functions depending on the topology of the ubiquitin chain. Therefore ubiquitin signaling offers a more complex and versatile biology compared to many other post translational modifications. One area of potential for the application of this knowledge is the field of ischemia-induced brain damage, as occurs following a stroke. The ubiquitin proteasome system may exert a dual role on neuronal outcome following ischemia. Harmful ischemia results in an overload of the ubiquitin proteasome system, and blocking the proteasome reduces brain infarction following ischemia. However, the rapid and selective degradation of proteins following brief ischemia results in endogenous protection against ischemia. Therefore further understanding of the molecular signaling mechanisms which regulate the ubiquitin proteasome system may reveal novel therapeutic targets to reduce brain damage when ischemia is predicted, or to reduce the activation of the cell death mechanisms and the inflammatory response following stroke. The aim of this review is to discuss some of the recent advances in the understanding of protein ubiquitination and its implications for novel stroke therapies. PMID:19181875

  18. Compromising the 19S proteasome complex protects cells from reduced flux through the proteasome

    PubMed Central

    Tsvetkov, Peter; Mendillo, Marc L; Zhao, Jinghui; Carette, Jan E; Merrill, Parker H; Cikes, Domagoj; Varadarajan, Malini; van Diemen, Ferdy R; Penninger, Josef M; Goldberg, Alfred L; Brummelkamp, Thijn R; Santagata, Sandro; Lindquist, Susan

    2015-01-01

    Proteasomes are central regulators of protein homeostasis in eukaryotes. Proteasome function is vulnerable to environmental insults, cellular protein imbalance and targeted pharmaceuticals. Yet, mechanisms that cells deploy to counteract inhibition of this central regulator are little understood. To find such mechanisms, we reduced flux through the proteasome to the point of toxicity with specific inhibitors and performed genome-wide screens for mutations that allowed cells to survive. Counter to expectation, reducing expression of individual subunits of the proteasome's 19S regulatory complex increased survival. Strong 19S reduction was cytotoxic but modest reduction protected cells from inhibitors. Protection was accompanied by an increased ratio of 20S to 26S proteasomes, preservation of protein degradation capacity and reduced proteotoxic stress. While compromise of 19S function can have a fitness cost under basal conditions, it provided a powerful survival advantage when proteasome function was impaired. This means of rebalancing proteostasis is conserved from yeast to humans. DOI: http://dx.doi.org/10.7554/eLife.08467.001 PMID:26327695

  19. High-throughput functional comparison of promoter and enhancer activities.

    PubMed

    Nguyen, Thomas A; Jones, Richard D; Snavely, Andrew R; Pfenning, Andreas R; Kirchner, Rory; Hemberg, Martin; Gray, Jesse M

    2016-08-01

    Promoters initiate RNA synthesis, and enhancers stimulate promoter activity. Whether promoter and enhancer activities are encoded distinctly in DNA sequences is unknown. We measured the enhancer and promoter activities of thousands of DNA fragments transduced into mouse neurons. We focused on genomic loci bound by the neuronal activity-regulated coactivator CREBBP, and we measured enhancer and promoter activities both before and after neuronal activation. We find that the same sequences typically encode both enhancer and promoter activities. However, gene promoters generate more promoter activity than distal enhancers, despite generating similar enhancer activity. Surprisingly, the greater promoter activity of gene promoters is not due to conventional core promoter elements or splicing signals. Instead, we find that particular transcription factor binding motifs are intrinsically biased toward the generation of promoter activity, whereas others are not. Although the specific biases we observe may be dependent on experimental or cellular context, our results suggest that gene promoters are distinguished from distal enhancers by specific complements of transcriptional activators. PMID:27311442

  20. Cytosolic PINK1 promotes the targeting of ubiquitinated proteins to the aggresome-autophagy pathway during proteasomal stress.

    PubMed

    Gao, Ju; Li, Mengen; Qin, Siyue; Zhang, Ting; Jiang, Sicong; Hu, Yuan; Deng, Yongkang; Zhang, Chenliang; You, Dujuan; Li, Hongchang; Mu, Dezhi; Zhang, Zhuohua; Jiang, Changan

    2016-04-01

    During proteasomal stress, cells can alleviate the accumulation of polyubiquitinated proteins by targeting them to perinuclear aggresomes for autophagic degradation, but the mechanism underlying the activation of this compensatory pathway remains unclear. Here we report that PINK1-s, a short form of Parkinson disease (PD)-related protein kinase PINK1 (PTEN induced putative kinase 1), is a major regulator of aggresome formation. PINK1-s is extremely unstable due to its recognition by the N-end rule pathway, and tends to accumulate in the cytosol during proteasomal stress. Overexpression of PINK1-s induces aggresome formation in cells with normal proteasomal activities, while loss of PINK1-s function leads to a significant decrease in the efficiency of aggresome formation induced by proteasomal inhibition. PINK1-s exerts its effect through phosphorylation of the ubiquitin-binding protein SQSTM1 (sequestosome 1) and increasing its ability to sequester polyubiquitinated proteins into aggresomes. These findings pinpoint PINK1-s as a sensor of proteasomal activities that transduces the proteasomal impairment signal to the aggresome formation machinery. PMID:27050454