Science.gov

Sample records for enhances standards-compatible geospatial

  1. Grid computing enhances standards-compatible geospatial catalogue service

    NASA Astrophysics Data System (ADS)

    Chen, Aijun; Di, Liping; Bai, Yuqi; Wei, Yaxing; Liu, Yang

    2010-04-01

    A catalogue service facilitates sharing, discovery, retrieval, management of, and access to large volumes of distributed geospatial resources, for example data, services, applications, and their replicas on the Internet. Grid computing provides an infrastructure for effective use of computing, storage, and other resources available online. The Open Geospatial Consortium has proposed a catalogue service specification and a series of profiles for promoting the interoperability of geospatial resources. By referring to the profile of the catalogue service for Web, an innovative information model of a catalogue service is proposed to offer Grid-enabled registry, management, retrieval of and access to geospatial resources and their replicas. This information model extends the e-business registry information model by adopting several geospatial data and service metadata standards—the International Organization for Standardization (ISO)'s 19115/19119 standards and the US Federal Geographic Data Committee (FGDC) and US National Aeronautics and Space Administration (NASA) metadata standards for describing and indexing geospatial resources. In order to select the optimal geospatial resources and their replicas managed by the Grid, the Grid data management service and information service from the Globus Toolkits are closely integrated with the extended catalogue information model. Based on this new model, a catalogue service is implemented first as a Web service. Then, the catalogue service is further developed as a Grid service conforming to Grid service specifications. The catalogue service can be deployed in both the Web and Grid environments and accessed by standard Web services or authorized Grid services, respectively. The catalogue service has been implemented at the George Mason University/Center for Spatial Information Science and Systems (GMU/CSISS), managing more than 17 TB of geospatial data and geospatial Grid services. This service makes it easy to share and

  2. GeoSpatial Workforce Development: enhancing the traditional learning environment in geospatial information technology

    NASA Astrophysics Data System (ADS)

    Lawhead, Pamela B.; Aten, Michelle L.

    2003-04-01

    The Center for GeoSpatial Workforce Development is embarking on a new era in education by developing a repository of dynamic online courseware authored by the foremost industry experts within the remote sensing and GIS industries. Virtual classrooms equipped with the most advanced instructions, computations, communications, course evaluation, and management facilities amplify these courses to enhance the learning environment and provide rapid feedback between instructors and students. The launch of this program included the objective development of the Model Curriculum by an independent consortium of remote sensing industry leaders. The Center's research and development focus on recruiting additional industry experts to develop the technical content of the courseware and then utilize state-of-the-art technology to enhance their material with visually stimulating animations, compelling audio clips and entertaining, interactive exercises intended to reach the broadest audience possible by targeting various learning styles. The courseware will be delivered via various media: Internet, CD-ROM, DVD, and compressed video, that translates into anywhere, anytime delivery of GeoSpatial Information Technology education.

  3. The new geospatial tools: global transparency enhancing safeguards verification

    SciTech Connect

    Pabian, Frank Vincent

    2010-09-16

    This paper focuses on the importance and potential role of the new, freely available, geospatial tools for enhancing IAEA safeguards and how, together with commercial satellite imagery, they can be used to promote 'all-source synergy'. As additional 'open sources', these new geospatial tools have heralded a new era of 'global transparency' and they can be used to substantially augment existing information-driven safeguards gathering techniques, procedures, and analyses in the remote detection of undeclared facilities, as well as support ongoing monitoring and verification of various treaty (e.g., NPT, FMCT) relevant activities and programs. As an illustration of how these new geospatial tools may be applied, an original exemplar case study provides how it is possible to derive value-added follow-up information on some recent public media reporting of a former clandestine underground plutonium production complex (now being converted to a 'Tourist Attraction' given the site's abandonment by China in the early 1980s). That open source media reporting, when combined with subsequent commentary found in various Internet-based Blogs and Wikis, led to independent verification of the reporting with additional ground truth via 'crowdsourcing' (tourist photos as found on 'social networking' venues like Google Earth's Panoramio layer and Twitter). Confirmation of the precise geospatial location of the site (along with a more complete facility characterization incorporating 3-D Modeling and visualization) was only made possible following the acquisition of higher resolution commercial satellite imagery that could be correlated with the reporting, ground photos, and an interior diagram, through original imagery analysis of the overhead imagery.

  4. Enhancing climate literacy by melding the atmospheric and geospatial sciences

    NASA Astrophysics Data System (ADS)

    Dupigny-Giroux, L.; Toolin, R.; Morrissey, L.; Fortney, M. D.; Hogan, S.; Pontius, J.; Berryman, B.; Shafer, J.; Atkins, N.; Shepherd, M.; Mote, T. L.; Raphael, M. N.

    2012-12-01

    Climate literacy involves an understanding of the interconnectedness of various components of the climate system over space and time, as well as the influence of humans on that system and the ability to use that understanding to "act accordingly". Understanding the climate system relies on techniques that include statistics, modelling, visualization and geospatial technologies such as remote sensing and geographic information science (GIS). The melding of these geospatial technologies with the atmospheric and climate sciences has become increasingly common and ubiquitous from the nightly weather presentations to the weekly U.S. Drought Monitor. This presentation will delve into the successes and ongoing challenges for a climate literate society that exist at the transdisciplinary border of the atmospheric and geospatial sciences. Two National Science Foundation (NSF) funded programs will be highlighted. The first is the Satellites, Weather and Climate (SWAC) professional development program for K-12 teachers and the second is the Diversity Climate Network (D-ClimNet) for high school to graduate students.

  5. Geospatial Technologies as a Vehicle for Enhancing Graduate Education and Promoting the Value of Geography

    ERIC Educational Resources Information Center

    Oberle, Alex P.; Joseph, Sue A.; May, David W.

    2010-01-01

    Geospatial technologies (GSTs), such as geographic information systems, global positioning systems and remote sensing, present an avenue for expanding the already strong interdisciplinary nature of geography. This paper discusses how GSTs served as a common thread for a crosscutting faculty institute that was established to enhance graduate…

  6. Data Democracy and Decision Making: Enhancing the Use and Value of Geospatial Data and Scientific Information

    NASA Astrophysics Data System (ADS)

    Shapiro, C. D.

    2014-12-01

    Data democracy is a concept that has great relevance to the use and value of geospatial data and scientific information. Data democracy describes a world in which data and information are widely and broadly accessible, understandable, and useable. The concept operationalizes the public good nature of scientific information and provides a framework for increasing benefits from its use. Data democracy encompasses efforts to increase accessibility to geospatial data and to expand participation in its collection, analysis, and application. These two pillars are analogous to demand and supply relationships. Improved accessibility, or demand, includes increased knowledge about geospatial data and low barriers to retrieval and use. Expanded participation, or supply, encompasses a broader community involved in developing geospatial data and scientific information. This pillar of data democracy is characterized by methods such as citizen science or crowd sourcing.A framework is developed for advancing the use of data democracy. This includes efforts to assess the societal benefits (economic and social) of scientific information. This knowledge is critical to continued monitoring of the effectiveness of data democracy implementation and of potential impact on the use and value of scientific information. The framework also includes an assessment of opportunities for advancing data democracy both on the supply and demand sides. These opportunities include relatively inexpensive efforts to reduce barriers to use as well as the identification of situations in which participation can be expanded in scientific efforts to enhance the breadth of involvement as well as expanding participation to non-traditional communities. This framework provides an initial perspective on ways to expand the "scientific community" of data users and providers. It also describes a way forward for enhancing the societal benefits from geospatial data and scientific information. As a result, data

  7. GEOSPATIAL QA

    EPA Science Inventory

    Geospatial Science is increasingly becoming an important tool in making Agency decisions. Quality Control and Quality Assurance are required to be integrated during the planning, implementation and assessment of geospatial databases, processes and products. In order to ensure Age...

  8. Integration of Geospatial Technologies and Enhancing Science Initiatives in the North Dakota Tribal Colleges

    NASA Astrophysics Data System (ADS)

    Bennett, B.

    2005-12-01

    The integration of geospatial technologies into the curriculum of Tribal Colleges (TCU's) has quietly emerged as one of the leading initiatives across Indian Country. Currently, there are over 54,000 American Indians residing on and managing greater than 3.8 million acres of Tribal land in North Dakota and parts of South Dakota. The reservations are undergoing extremely fast population growth within rural states that are experiencing rapid population declines. This poses an important dilemma. How will the Tribes meet (1) the resource needs of a growing population, (2) the demand for a skilled workforce, and (3) resource management goals in ways that contribute to Tribal infrastructure and equate to sustainable resource management? Creating cadres of indigenous scientists that possess skills in geospatial technologies to manage Tribal resources is the key to filling this important Tribal niche. Further, successfully building these cadres will require effective and viable partnerships among the academic, scientific and geospatial communities. The objective of this project is to illustrate the growing trend in geospatial applications and curriculum development occurring in TCU's to meet Tribal workforce demands and to identify successful partnership strategies for TCU's to link with private, State and Federal Agencies. Preliminary results suggest that developing strength-based collaborations that create an environment of investment and ownership by all participants proves an effective model for meeting partnership objectives. A number of these projects and the mechanisms that define the successful collaborations will be illustrated.

  9. Geospatial Technology

    ERIC Educational Resources Information Center

    Reed, Philip A.; Ritz, John

    2004-01-01

    Geospatial technology refers to a system that is used to acquire, store, analyze, and output data in two or three dimensions. This data is referenced to the earth by some type of coordinate system, such as a map projection. Geospatial systems include thematic mapping, the Global Positioning System (GPS), remote sensing (RS), telemetry, and…

  10. Enhancing the Teaching of Digital Processing of Remote Sensing Image Course through Geospatial Web Processing Services

    NASA Astrophysics Data System (ADS)

    di, L.; Deng, M.

    2010-12-01

    Remote sensing (RS) is an essential method to collect data for Earth science research. Huge amount of remote sensing data, most of them in the image form, have been acquired. Almost all geography departments in the world offer courses in digital processing of remote sensing images. Such courses place emphasis on how to digitally process large amount of multi-source images for solving real world problems. However, due to the diversity and complexity of RS images and the shortcomings of current data and processing infrastructure, obstacles for effectively teaching such courses still remain. The major obstacles include 1) difficulties in finding, accessing, integrating and using massive RS images by students and educators, and 2) inadequate processing functions and computing facilities for students to freely explore the massive data. Recent development in geospatial Web processing service systems, which make massive data, computing powers, and processing capabilities to average Internet users anywhere in the world, promises the removal of the obstacles. The GeoBrain system developed by CSISS is an example of such systems. All functions available in GRASS Open Source GIS have been implemented as Web services in GeoBrain. Petabytes of remote sensing images in NASA data centers, the USGS Landsat data archive, and NOAA CLASS are accessible transparently and processable through GeoBrain. The GeoBrain system is operated on a high performance cluster server with large disk storage and fast Internet connection. All GeoBrain capabilities can be accessed by any Internet-connected Web browser. Dozens of universities have used GeoBrain as an ideal platform to support data-intensive remote sensing education. This presentation gives a specific example of using GeoBrain geoprocessing services to enhance the teaching of GGS 588, Digital Remote Sensing taught at the Department of Geography and Geoinformation Science, George Mason University. The course uses the textbook "Introductory

  11. Geospatial Authentication

    NASA Technical Reports Server (NTRS)

    Lyle, Stacey D.

    2009-01-01

    A software package that has been designed to allow authentication for determining if the rover(s) is/are within a set of boundaries or a specific area to access critical geospatial information by using GPS signal structures as a means to authenticate mobile devices into a network wirelessly and in real-time. The advantage lies in that the system only allows those with designated geospatial boundaries or areas into the server.

  12. An E-Learning System for Standard Compatible and Uniform Course Development

    ERIC Educational Resources Information Center

    Baudry, Andreas; Bungenstock, Michael; Mertsching, Baerbel

    2005-01-01

    This article introduces the architecture and implementation of an authoring system capable of modular and standard compatible course development. This system enables the aggregation of learning objects into higher course structures and reuse in different learning scenarios. The concept of modular course development is based on the construction kit…

  13. Geospatial Toolkit

    Energy Science and Technology Software Center (ESTSC)

    2010-10-14

    The Geospatial Toolkit is an NREL-developed map-based software application that integrates resource data and other geographic information systems (GIS) data for integrated resource assessment. The non-resource, country-specific data for each toolkit comes from a variety of agencies within each country as well as from global datasets. Originally developed in 2005, the Geospatial Toolkit was completely redesigned and re-released in November 2010 to provide a more modern, easier-to-use interface with considerably faster analytical querying capabilities. Themore » revised version of the Geospatial Toolkit has been released for all original toolkit countries/regions and each software package is made available on NREL's website,« less

  14. Geospatial Authentication

    NASA Technical Reports Server (NTRS)

    Lyle, Stacey D.

    2009-01-01

    A software package that has been designed to allow authentication for determining if the rover(s) is/are within a set of boundaries or a specific area to access critical geospatial information by using GPS signal structures as a means to authenticate mobile devices into a network wirelessly and in real-time has been developed. The advantage lies in that the system only allows those with designated geospatial boundaries or areas into the server. The Geospatial Authentication software has two parts Server and Client. The server software is a virtual private network (VPN) developed in Linux operating system using Perl programming language. The server can be a stand-alone VPN server or can be combined with other applications and services. The client software is a GUI Windows CE software, or Mobile Graphical Software, that allows users to authenticate into a network. The purpose of the client software is to pass the needed satellite information to the server for authentication.

  15. Geospatial Toolkit

    SciTech Connect

    2010-10-14

    The Geospatial Toolkit is an NREL-developed map-based software application that integrates resource data and other geographic information systems (GIS) data for integrated resource assessment. The non-resource, country-specific data for each toolkit comes from a variety of agencies within each country as well as from global datasets. Originally developed in 2005, the Geospatial Toolkit was completely redesigned and re-released in November 2010 to provide a more modern, easier-to-use interface with considerably faster analytical querying capabilities. The revised version of the Geospatial Toolkit has been released for all original toolkit countries/regions and each software package is made available on NREL's website,

  16. Integrating semantic web technologies and geospatial catalog services for geospatial information discovery and processing in cyberinfrastructure

    SciTech Connect

    Yue, Peng; Gong, Jianya; Di, Liping; He, Lianlian; Wei, Yaxing

    2011-04-01

    Abstract A geospatial catalogue service provides a network-based meta-information repository and interface for advertising and discovering shared geospatial data and services. Descriptive information (i.e., metadata) for geospatial data and services is structured and organized in catalogue services. The approaches currently available for searching and using that information are often inadequate. Semantic Web technologies show promise for better discovery methods by exploiting the underlying semantics. Such development needs special attention from the Cyberinfrastructure perspective, so that the traditional focus on discovery of and access to geospatial data can be expanded to support the increased demand for processing of geospatial information and discovery of knowledge. Semantic descriptions for geospatial data, services, and geoprocessing service chains are structured, organized, and registered through extending elements in the ebXML Registry Information Model (ebRIM) of a geospatial catalogue service, which follows the interface specifications of the Open Geospatial Consortium (OGC) Catalogue Services for the Web (CSW). The process models for geoprocessing service chains, as a type of geospatial knowledge, are captured, registered, and discoverable. Semantics-enhanced discovery for geospatial data, services/service chains, and process models is described. Semantic search middleware that can support virtual data product materialization is developed for the geospatial catalogue service. The creation of such a semantics-enhanced geospatial catalogue service is important in meeting the demands for geospatial information discovery and analysis in Cyberinfrastructure.

  17. Borderless Geospatial Web (bolegweb)

    NASA Astrophysics Data System (ADS)

    Cetl, V.; Kliment, T.; Kliment, M.

    2016-06-01

    The effective access and use of geospatial information (GI) resources acquires a critical value of importance in modern knowledge based society. Standard web services defined by Open Geospatial Consortium (OGC) are frequently used within the implementations of spatial data infrastructures (SDIs) to facilitate discovery and use of geospatial data. This data is stored in databases located in a layer, called the invisible web, thus are ignored by search engines. SDI uses a catalogue (discovery) service for the web as a gateway to the GI world through the metadata defined by ISO standards, which are structurally diverse to OGC metadata. Therefore, a crosswalk needs to be implemented to bridge the OGC resources discovered on mainstream web with those documented by metadata in an SDI to enrich its information extent. A public global wide and user friendly portal of OGC resources available on the web ensures and enhances the use of GI within a multidisciplinary context and bridges the geospatial web from the end-user perspective, thus opens its borders to everybody. Project "Crosswalking the layers of geospatial information resources to enable a borderless geospatial web" with the acronym BOLEGWEB is ongoing as a postdoctoral research project at the Faculty of Geodesy, University of Zagreb in Croatia (http://bolegweb.geof.unizg.hr/). The research leading to the results of the project has received funding from the European Union Seventh Framework Programme (FP7 2007-2013) under Marie Curie FP7-PEOPLE-2011-COFUND. The project started in the November 2014 and is planned to be finished by the end of 2016. This paper provides an overview of the project, research questions and methodology, so far achieved results and future steps.

  18. Maps and geospatial data for the Shorty’s Island and Myrtle Bend substrate enhancement pilot projects, Kootenai River near Bonners Ferry, Idaho, 2014

    USGS Publications Warehouse

    Fosness, Ryan L.

    2014-01-01

    This report presents the methods used to develop georeferenced portable document format maps and geospatial data that describe spawning locations and physical habitat characteristics (including egg mat locations, bathymetry, surficial sediment facies, and streamflow velocity) within the substrate enhancement pilot project study area. The results are presented as two maps illustrating the physical habitat characteristics along with proposed habitat enhancement areas, aerial imagery, and hydrography. The results of this study will assist researchers, policy makers, and management agencies in deciding the spatial location and extent of the substrate enhancement pilot project.

  19. EPA GEOSPATIAL QUALITY COUNCIL

    EPA Science Inventory

    The EPA Geospatial Quality Council (previously known as the EPA GIS-QA Team - EPA/600/R-00/009 was created to fill the gap between the EPA Quality Assurance (QA) and Geospatial communities. All EPA Offices and Regions were invited to participate. Currently, the EPA Geospatial Q...

  20. PLANNING QUALITY IN GEOSPATIAL PROJECTS

    EPA Science Inventory

    This presentation will briefly review some legal drivers and present a structure for the writing of geospatial Quality Assurance Projects Plans. In addition, the Geospatial Quality Council geospatial information life-cycle and sources of error flowchart will be reviewed.

  1. GEOSPATIAL QUALITY COUNCIL

    EPA Science Inventory

    Geospatial Science is increasingly becoming an important tool in making Agency decisions. QualIty Control and Quality Assurance are required to be integrated during the planning, implementation and assessment of geospatial databases, processes and products. In order to ensure Age...

  2. UASs for geospatial data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasingly, consumer organizations, businesses, and academic researchers are using UAS to gather geospatial, environmental data on natural and man-made phenomena. These data may be either remotely sensed or measured directly (e. g., sampling of atmospheric constituents). The term geospatial data r...

  3. The Virginia Geocoin Adventure: An Experiential Geospatial Learning Activity

    ERIC Educational Resources Information Center

    Johnson, Laura; McGee, John; Campbell, James; Hays, Amy

    2013-01-01

    Geospatial technologies have become increasingly prevalent across our society. Educators at all levels have expressed a need for additional resources that can be easily adopted to support geospatial literacy and state standards of learning, while enhancing the overall learning experience. The Virginia Geocoin Adventure supports the needs of 4-H…

  4. GEOSPATIAL DATA ACCURACY ASSESSMENT

    EPA Science Inventory

    The development of robust accuracy assessment methods for the validation of spatial data represent's a difficult scientific challenge for the geospatial science community. The importance and timeliness of this issue is related directly to the dramatic escalation in the developmen...

  5. Trusting Crowdsourced Geospatial Semantics

    NASA Astrophysics Data System (ADS)

    Goodhue, P.; McNair, H.; Reitsma, F.

    2015-08-01

    The degree of trust one can place in information is one of the foremost limitations of crowdsourced geospatial information. As with the development of web technologies, the increased prevalence of semantics associated with geospatial information has increased accessibility and functionality. Semantics also provides an opportunity to extend indicators of trust for crowdsourced geospatial information that have largely focused on spatio-temporal and social aspects of that information. Comparing a feature's intrinsic and extrinsic properties to associated ontologies provides a means of semantically assessing the trustworthiness of crowdsourced geospatial information. The application of this approach to unconstrained semantic submissions then allows for a detailed assessment of the trust of these features whilst maintaining the descriptive thoroughness this mode of information submission affords. The resulting trust rating then becomes an attribute of the feature, providing not only an indication as to the trustworthiness of a specific feature but is able to be aggregated across multiple features to illustrate the overall trustworthiness of a dataset.

  6. Geospatial Technology Strategic Plan 1997-2000

    USGS Publications Warehouse

    D'Erchia, Frank; D'Erchia, Terry D.; Getter, James; McNiff, Marcia; Root, Ralph; Stitt, Susan; White, Barbara

    1997-01-01

    Executive Summary -- Geospatial technology applications have been identified in many U.S. Geological Survey Biological Resources Division (BRD) proposals for grants awarded through internal and partnership programs. Because geospatial data and tools have become more sophisticated, accessible, and easy to use, BRD scientists frequently are using these tools and capabilities to enhance a broad spectrum of research activities. Bruce Babbitt, Secretary of the Interior, has acknowledged--and lauded--the important role of geospatial technology in natural resources management. In his keynote address to more than 5,500 people representing 87 countries at the Environmental Systems Research Institute Annual Conference (May 21, 1996), Secretary Babbitt stated, '. . .GIS [geographic information systems], if properly used, can provide a lot more than sets of data. Used effectively, it can help stakeholders to bring consensus out of conflict. And it can, by providing information, empower the participants to find new solutions to their problems.' This Geospatial Technology Strategic Plan addresses the use and application of geographic information systems, remote sensing, satellite positioning systems, image processing, and telemetry; describes methods of meeting national plans relating to geospatial data development, management, and serving; and provides guidance for sharing expertise and information. Goals are identified along with guidelines that focus on data sharing, training, and technology transfer. To measure success, critical performance indicators are included. The ability of the BRD to use and apply geospatial technology across all disciplines will greatly depend upon its success in transferring the technology to field biologists and researchers. The Geospatial Technology Strategic Planning Development Team coordinated and produced this document in the spirit of this premise. Individual Center and Program managers have the responsibility to implement the Strategic Plan

  7. Capacity Building through Geospatial Education in Planning and School Curricula

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Siddiqui, A.; Gupta, K.; Jain, S.; Krishna Murthy, Y. V. N.

    2014-11-01

    Geospatial technology has widespread usage in development planning and resource management. It offers pragmatic tools to help urban and regional planners to realize their goals. On the request of Ministry of Urban Development, Govt. of India, the Indian Institute of Remote Sensing (IIRS), Dehradun has taken an initiative to study the model syllabi of All India Council for Technical Education for planning curricula of Bachelor and Master (five disciplines) programmes. It is inferred that geospatial content across the semesters in various planning fields needs revision. It is also realized that students pursuing planning curricula are invariably exposed to spatial mapping tools but the popular digital drafting software have limitations on geospatial analysis of planning phenomena. Therefore, students need exposure on geospatial technologies to understand various real world phenomena. Inputs were given to seamlessly merge and incorporate geospatial components throughout the semesters wherever seems relevant. Another initiative by IIRS was taken to enhance the understanding and essence of space and geospatial technologies amongst the young minds at 10+2 level. The content was proposed in a manner such that youngsters start realizing the innumerable contributions made by space and geospatial technologies in their day-to-day life. This effort both at school and college level would help in not only enhancing job opportunities for young generation but also utilizing the untapped human resource potential. In the era of smart cities, higher economic growth and aspirations for a better tomorrow, integration of Geospatial technologies with conventional wisdom can no longer be ignored.

  8. Enhancing Tools and Geospatial Data to Support Operational Forest Management and Regional Forest Planning in the Face of Climate Change

    NASA Astrophysics Data System (ADS)

    Falkowski, M. J.; Fekety, P.; Hudak, A. T.; Kayastha, N.; Nagel, L. M.

    2014-12-01

    A detailed understanding of how forest composition, structure, and function will be impacted by projected climate change and related adaptive forest management activities are particularly lacking at local scales, where on-the-ground management activities are implemented. Climate sensitive forest dynamics models may prove to be effective tools for developing a comprehensive understanding. However, to be applicable to both regional forest planning and operational forest management, modeling approaches must be capable of simulating forest dynamics across large spatial extents (required for regional planning) while maintaining a high-level of spatial detail (required for operational management). LiDAR remote sensing has shown great utility for operational forest inventory and management, including forest dynamics modeling, albeit across relatively small spatial extents. We present a remote sensing driven approach to spatially initialize a climate-sensitive forest dynamics model (LANDIS-II) in the Pacific Northwest of the US via an integration of airborne LiDAR data with satellite remote sensing data. The system provides detailed forest inventory information - at the landscape level - that is subsequently employed to demonstrate how such models can be used to 1) investigate the potential impacts of climate change on future forest composition and structure, and 2) assess how various forest management practices may either enhance or degrade forest resilience to changing climate and disturbance regimes.

  9. Geospatial Information Response Team

    USGS Publications Warehouse

    Witt, Emitt C.

    2010-01-01

    Extreme emergency events of national significance that include manmade and natural disasters seem to have become more frequent during the past two decades. The Nation is becoming more resilient to these emergencies through better preparedness, reduced duplication, and establishing better communications so every response and recovery effort saves lives and mitigates the long-term social and economic impacts on the Nation. The National Response Framework (NRF) (http://www.fema.gov/NRF) was developed to provide the guiding principles that enable all response partners to prepare for and provide a unified national response to disasters and emergencies. The NRF provides five key principles for better preparation, coordination, and response: 1) engaged partnerships, 2) a tiered response, 3) scalable, flexible, and adaptable operations, 4) unity of effort, and 5) readiness to act. The NRF also describes how communities, tribes, States, Federal Government, privatesector, and non-governmental partners apply these principles for a coordinated, effective national response. The U.S. Geological Survey (USGS) has adopted the NRF doctrine by establishing several earth-sciences, discipline-level teams to ensure that USGS science, data, and individual expertise are readily available during emergencies. The Geospatial Information Response Team (GIRT) is one of these teams. The USGS established the GIRT to facilitate the effective collection, storage, and dissemination of geospatial data information and products during an emergency. The GIRT ensures that timely geospatial data are available for use by emergency responders, land and resource managers, and for scientific analysis. In an emergency and response capacity, the GIRT is responsible for establishing procedures for geospatial data acquisition, processing, and archiving; discovery, access, and delivery of data; anticipating geospatial needs; and providing coordinated products and services utilizing the USGS' exceptional pool of

  10. Geospatial Thinking of Information Professionals

    ERIC Educational Resources Information Center

    Bishop, Bradley Wade; Johnston, Melissa P.

    2013-01-01

    Geospatial thinking skills inform a host of library decisions including planning and managing facilities, analyzing service area populations, facility site location, library outlet and service point closures, as well as assisting users with their own geospatial needs. Geospatial thinking includes spatial cognition, spatial reasoning, and knowledge…

  11. Building asynchronous geospatial processing workflows with web services

    NASA Astrophysics Data System (ADS)

    Zhao, Peisheng; Di, Liping; Yu, Genong

    2012-02-01

    Geoscience research and applications often involve a geospatial processing workflow. This workflow includes a sequence of operations that use a variety of tools to collect, translate, and analyze distributed heterogeneous geospatial data. Asynchronous mechanisms, by which clients initiate a request and then resume their processing without waiting for a response, are very useful for complicated workflows that take a long time to run. Geospatial contents and capabilities are increasingly becoming available online as interoperable Web services. This online availability significantly enhances the ability to use Web service chains to build distributed geospatial processing workflows. This paper focuses on how to orchestrate Web services for implementing asynchronous geospatial processing workflows. The theoretical bases for asynchronous Web services and workflows, including asynchrony patterns and message transmission, are examined to explore different asynchronous approaches to and architecture of workflow code for the support of asynchronous behavior. A sample geospatial processing workflow, issued by the Open Geospatial Consortium (OGC) Web Service, Phase 6 (OWS-6), is provided to illustrate the implementation of asynchronous geospatial processing workflows and the challenges in using Web Services Business Process Execution Language (WS-BPEL) to develop them.

  12. Automated Geospatial Watershed Assessment

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment (AGWA) tool is a Geographic Information Systems (GIS) interface jointly developed by the U.S. Environmental Protection Agency, the U.S. Department of Agriculture (USDA) Agricultural Research Service, and the University of Arizona to a...

  13. Introduction to geospatial semantics and technology workshop handbook

    USGS Publications Warehouse

    Varanka, Dalia E.

    2012-01-01

    The workshop is a tutorial on introductory geospatial semantics with hands-on exercises using standard Web browsers. The workshop is divided into two sections, general semantics on the Web and specific examples of geospatial semantics using data from The National Map of the U.S. Geological Survey and the Open Ontology Repository. The general semantics section includes information and access to publicly available semantic archives. The specific session includes information on geospatial semantics with access to semantically enhanced data for hydrography, transportation, boundaries, and names. The Open Ontology Repository offers open-source ontologies for public use.

  14. Geospatial intelligence workforce

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-02-01

    A report on the future U.S. workforce for geospatial intelligence, requested by the U.S. National Geospatial-Intelligence Agency (NGA), found that the agency—which hires about 300 scientists and analysts annually—is probably finding sufficient experts to fill the needs in all of its core areas, with the possible exception of geographic information systems (GIS) and remote sensing. The report by the U.S. National Research Council, released on 25 January, noted that competition for GIS applications analysts is strong. While there appear to be enough cartographers, photogrammetrists, and geodesists to meet NGA's current needs in those core areas, the report cautioned that future shortages in these areas seem likely because of a relatively small number of graduates.

  15. Infrastructure for the Geospatial Web

    NASA Astrophysics Data System (ADS)

    Lake, Ron; Farley, Jim

    Geospatial data and geoprocessing techniques are now directly linked to business processes in many areas. Commerce, transportation and logistics, planning, defense, emergency response, health care, asset management and many other domains leverage geospatial information and the ability to model these data to achieve increased efficiencies and to develop better, more comprehensive decisions. However, the ability to deliver geospatial data and the capacity to process geospatial information effectively in these domains are dependent on infrastructure technology that facilitates basic operations such as locating data, publishing data, keeping data current and notifying subscribers and others whose applications and decisions are dependent on this information when changes are made. This chapter introduces the notion of infrastructure technology for the Geospatial Web. Specifically, the Geography Markup Language (GML) and registry technology developed using the ebRIM specification delivered from the OASIS consortium are presented as atomic infrastructure components in a working Geospatial Web.

  16. US EPA GEOSPATIAL QUALITY COUNCIL: ENSURING QUALITY GEOSPATIAL SOLUTIONS

    EPA Science Inventory

    This presentation will discuss the history, strategy, products, and future plans of the EPA Geospatial Quality Council (GQC). A topical review of GQC products will be presented including:

    o Guidance for Geospatial Data Quality Assurance Project Plans.

    o GPS - Tec...

  17. THE NEVADA GEOSPATIAL DATA BROWSER

    EPA Science Inventory

    The Landscape Ecology Branch of the U.S. Environmental Protection Agency (Las Vegas, NV) has developed the Nevada Geospatial Data Browser, a spatial data archive to centralize and distribute the geospatial data used to create the land cover, vertebrate habitat models, and land o...

  18. BPELPower—A BPEL execution engine for geospatial web services

    NASA Astrophysics Data System (ADS)

    Yu, Genong (Eugene); Zhao, Peisheng; Di, Liping; Chen, Aijun; Deng, Meixia; Bai, Yuqi

    2012-10-01

    The Business Process Execution Language (BPEL) has become a popular choice for orchestrating and executing workflows in the Web environment. As one special kind of scientific workflow, geospatial Web processing workflows are data-intensive, deal with complex structures in data and geographic features, and execute automatically with limited human intervention. To enable the proper execution and coordination of geospatial workflows, a specially enhanced BPEL execution engine is required. BPELPower was designed, developed, and implemented as a generic BPEL execution engine with enhancements for executing geospatial workflows. The enhancements are especially in its capabilities in handling Geography Markup Language (GML) and standard geospatial Web services, such as the Web Processing Service (WPS) and the Web Feature Service (WFS). BPELPower has been used in several demonstrations over the decade. Two scenarios were discussed in detail to demonstrate the capabilities of BPELPower. That study showed a standard-compliant, Web-based approach for properly supporting geospatial processing, with the only enhancement at the implementation level. Pattern-based evaluation and performance improvement of the engine are discussed: BPELPower directly supports 22 workflow control patterns and 17 workflow data patterns. In the future, the engine will be enhanced with high performance parallel processing and broad Web paradigms.

  19. Perspective on Department of Energy Geospatial Science: Past, Present, and Future

    SciTech Connect

    Bhaduri, Budhendra L

    2007-01-01

    For many decades, the Department of Energy (DOE) has been a leader in basic scientific and engineering research that utilizes geospatial science to advance the state of knowledge in disciplines impacting national security, energy sustainability, and environmental stewardship. DOE recently established a comprehensive Geospatial Science Program that will provide an enterprise geographic information system infrastructure connecting all elements of DOE to critical geospatial data and associated geographic information services (GIServices). The Geospatial Science Program will provide a common platform for enhanced scientific and technical collaboration across DOE's national laboratories and facilities.

  20. Examining the Enactment of Web GIS on Students' Geospatial Thinking and Reasoning and Tectonics Understandings

    ERIC Educational Resources Information Center

    Bodzin, Alec M.; Fu, Qiong; Bressler, Denise; Vallera, Farah L.

    2015-01-01

    Geospatially enabled learning technologies may enhance Earth science learning by placing emphasis on geographic space, visualization, scale, representation, and geospatial thinking and reasoning (GTR) skills. This study examined if and how a series of Web geographic information system investigations that the researchers developed improved urban…

  1. Measuring the Impact of a Pilot Geospatial Technology Apprenticeship Program for the Department of Labor

    ERIC Educational Resources Information Center

    Gaudet, Cyndi; Annulis, Heather; Kmiec, John

    2010-01-01

    The Geospatial Technology Apprenticeship Program (GTAP) pilot was designed as a replicable and sustainable program to enhance workforce skills in geospatial technologies to best leverage a $30 billion market potential. The purpose of evaluating GTAP was to ensure that investment in this high-growth industry was adding value. Findings from this…

  2. The Impact of a Geospatial Technology-Supported Energy Curriculum on Middle School Students' Science Achievement

    ERIC Educational Resources Information Center

    Kulo, Violet; Bodzin, Alec

    2013-01-01

    Geospatial technologies are increasingly being integrated in science classrooms to foster learning. This study examined whether a Web-enhanced science inquiry curriculum supported by geospatial technologies promoted urban middle school students' understanding of energy concepts. The participants included one science teacher and 108 eighth-grade…

  3. EPA Geospatial Quality Council Promoting Quality Assurance in the Geospatial Coummunity

    EPA Science Inventory

    After establishing a foundation for the EPA National Geospatial Program, the EPA Geospatial Quality Council (GQC) is, in part, focusing on improving administrative efficiency in the geospatial community. To realize this goal, the GQC is developing Standard Operating Procedures (S...

  4. NASA's Geospatial Interoperability Office(GIO)Program

    NASA Technical Reports Server (NTRS)

    Weir, Patricia

    2004-01-01

    NASA produces vast amounts of information about the Earth from satellites, supercomputer models, and other sources. These data are most useful when made easily accessible to NASA researchers and scientists, to NASA's partner Federal Agencies, and to society as a whole. A NASA goal is to apply its data for knowledge gain, decision support and understanding of Earth, and other planetary systems. The NASA Earth Science Enterprise (ESE) Geospatial Interoperability Office (GIO) Program leads the development, promotion and implementation of information technology standards that accelerate and expand the delivery of NASA's Earth system science research through integrated systems solutions. Our overarching goal is to make it easy for decision-makers, scientists and citizens to use NASA's science information. NASA's Federal partners currently participate with NASA and one another in the development and implementation of geospatial standards to ensure the most efficient and effective access to one another's data. Through the GIO, NASA participates with its Federal partners in implementing interoperability standards in support of E-Gov and the associated President's Management Agenda initiatives by collaborating on standards development. Through partnerships with government, private industry, education and communities the GIO works towards enhancing the ESE Applications Division in the area of National Applications and decision support systems. The GIO provides geospatial standards leadership within NASA, represents NASA on the Federal Geographic Data Committee (FGDC) Coordination Working Group and chairs the FGDC's Geospatial Applications and Interoperability Working Group (GAI) and supports development and implementation efforts such as Earth Science Gateway (ESG), Space Time Tool Kit and Web Map Services (WMS) Global Mosaic. The GIO supports NASA in the collection and dissemination of geospatial interoperability standards needs and progress throughout the agency including

  5. Geospatial services in the Cloud

    NASA Astrophysics Data System (ADS)

    Evangelidis, Konstantinos; Ntouros, Konstantinos; Makridis, Stathis; Papatheodorou, Constantine

    2014-02-01

    Data semantics play an extremely significant role in spatial data infrastructures by providing semantic specifications to geospatial data and enabling in this way data sharing and interoperability. By applying, on the fly, composite geospatial processes on the above data it is possible to produce valuable geoinformation over the web directly available and applicable to a wide range of geo-activities of significant importance for the research and industry community. Cloud computing may enable geospatial processing since it refers to, among other things, efficient computing resources providing on demand processing services. In this context, we attempt to provide a design and architectural framework for web applications based on open geospatial standards. Our approach includes, in addition to geospatial processing, data acquisition services that are essential especially when dealing with satellite images and applications in the area of remote sensing and similar fields. As a result, by putting in a common framework all data and geoprocesses available in the Cloud, it is possible to combine the appropriate services in order to produce a solution for a specific need.

  6. The Geospatial Web and Local Geographical Education

    ERIC Educational Resources Information Center

    Harris, Trevor M.; Rouse, L. Jesse; Bergeron, Susan J.

    2010-01-01

    Recent innovations in the Geospatial Web represent a paradigm shift in Web mapping by enabling educators to explore geography in the classroom by dynamically using a rapidly growing suite of impressive online geospatial tools. Coupled with access to spatial data repositories and User-Generated Content, the Geospatial Web provides a powerful…

  7. THE NEVADA GEOSPATIAL DATA BROWSER

    EPA Science Inventory

    The Nevada Geospatial Data Browser was developed by the Landscape Ecology Branch of the U.S. Environmental Protection Agency (Las Vegas, NV) with the assistance and collaboration of the University of Idaho (Moscow, ID) and Lockheed-Martin Environmental Services (Las Vegas, NV).

  8. A Geospatial Scavenger Hunt

    ERIC Educational Resources Information Center

    Martinez, Adriana E.; Williams, Nikki A.; Metoyer, Sandra K.; Morris, Jennifer N.; Berhane, Stephen A.

    2009-01-01

    With the use of technology such as Global Positioning System (GPS) units and Google Earth for a simple-machine scavenger hunt, you will transform a standard identification activity into an exciting learning experience that motivates students, incorporates practical skills in technology, and enhances students' spatial-thinking skills. In the…

  9. Grid Enabled Geospatial Catalogue Web Service

    NASA Technical Reports Server (NTRS)

    Chen, Ai-Jun; Di, Li-Ping; Wei, Ya-Xing; Liu, Yang; Bui, Yu-Qi; Hu, Chau-Min; Mehrotra, Piyush

    2004-01-01

    Geospatial Catalogue Web Service is a vital service for sharing and interoperating volumes of distributed heterogeneous geospatial resources, such as data, services, applications, and their replicas over the web. Based on the Grid technology and the Open Geospatial Consortium (0GC) s Catalogue Service - Web Information Model, this paper proposes a new information model for Geospatial Catalogue Web Service, named as GCWS which can securely provides Grid-based publishing, managing and querying geospatial data and services, and the transparent access to the replica data and related services under the Grid environment. This information model integrates the information model of the Grid Replica Location Service (RLS)/Monitoring & Discovery Service (MDS) with the information model of OGC Catalogue Service (CSW), and refers to the geospatial data metadata standards from IS0 19115, FGDC and NASA EOS Core System and service metadata standards from IS0 191 19 to extend itself for expressing geospatial resources. Using GCWS, any valid geospatial user, who belongs to an authorized Virtual Organization (VO), can securely publish and manage geospatial resources, especially query on-demand data in the virtual community and get back it through the data-related services which provide functions such as subsetting, reformatting, reprojection etc. This work facilitates the geospatial resources sharing and interoperating under the Grid environment, and implements geospatial resources Grid enabled and Grid technologies geospatial enabled. It 2!so makes researcher to focus on science, 2nd not cn issues with computing ability, data locztic, processir,g and management. GCWS also is a key component for workflow-based virtual geospatial data producing.

  10. A brief history of geospatial science in the Department of Energy

    SciTech Connect

    Bhaduri, Budhendra L

    2007-01-01

    The U.S. Department of Energy (DOE) has a rich history of significant contributions to geospatial science spanning the past four decades. In the early years, work focused on basic research, such as development of algorithms for processing geographic data and early use of LANDSAT imagery. The emphasis shifted in the mid-1970s to development of geographic information system (GIS) applications to support programs such as the National Uranium Resource Evaluation (NURE), and later to issue-oriented GIS applications supporting programs such as environmental restoration and management (mid-1980s through present). Throughout this period, the DOE national laboratories represented a strong chorus of voices advocating the importance of geospatial science and technology in the decades to come. The establishment of a Geospatial Science Program by the DOE Office of the Chief Information Officer in 2005 reflects the continued potential of geospatial science to enhance DOE's science, projects, and operations, as is well demonstrated by historical analysis.

  11. Assessing Embedded Geospatial Student Learning Outcomes

    ERIC Educational Resources Information Center

    Carr, John David

    2012-01-01

    Geospatial tools and technologies have become core competencies for natural resource professionals due to the monitoring, modeling, and mapping capabilities they provide. To prepare students with needed background, geospatial instructional activities were integrated across Forest Management; Natural Resources; Fisheries, Wildlife, &…

  12. Incorporating Geospatial Technology into Teacher Professional Development

    NASA Astrophysics Data System (ADS)

    Sproles, E. A.; Songer, L.

    2009-12-01

    The need for students to think spatially and use geospatial technologies is becoming more critical as these tools and concepts are increasingly incorporated into a broad range of occupations and academic disciplines. Geospatial Teaching Across the Curriculum (Geo-STAC) is a collaborative program that provides high school teachers with mentored professional development workshops in geospatial thought and technology. The seminars, led by community college faculty, give high school teachers the ability to incorporate geospatial technology into coursework across the curriculum — in Science, Technology, Engineering, and Math (STEM) and non-STEM disciplines. Students participating in the hands-on lessons gain experience in web-based and desktop Geographic Information Systems (GIS). The goals of the workshop are for teachers to: (1) understand the importance of geospatial thinking; (2) learn how to employ geospatial thinking in each discipline; (3) learn about geospatial technologies; (4) develop a Web-based GIS lesson; and, (5) implement a Web-based GIS lesson. Additionally, Geo-STAC works with high school students so that they: (1) understand the importance of geospatial technologies and careers in future job markets; (2) learn how to use Web-based GIS to solve problems; and, (3) visit the community college GIS lab and experience using desktop GIS. Geo-STAC actively disseminates this collaborative model to colleges to community colleges and high schools across the country.

  13. Integration of Geospatial Science in Teacher Education

    ERIC Educational Resources Information Center

    Hauselt, Peggy; Helzer, Jennifer

    2012-01-01

    One of the primary missions of our university is to train future primary and secondary teachers. Geospatial sciences, including GIS, have long been excluded from teacher education curriculum. This article explains the curriculum revisions undertaken to increase the geospatial technology education of future teachers. A general education class…

  14. Best Practices for Preparing Interoperable Geospatial Data

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Santhana Vannan, S.; Cook, R. B.; Wilson, B. E.; Beaty, T. W.

    2010-12-01

    Geospatial data is critically important for a wide scope of research and applications: carbon cycle and ecosystem, climate change, land use and urban planning, environmental protecting, etc. Geospatial data is created by different organizations using different methods, from remote sensing observations, field surveys, model simulations, etc., and stored in various formats. So geospatial data is diverse and heterogeneous, which brings a huge barrier for the sharing and using of geospatial data, especially when targeting a broad user community. Many efforts have been taken to address different aspects of using geospatial data by improving its interoperability. For example, the specification for Open Geospatial Consortium (OGC) catalog services defines a standard way for geospatial information discovery; OGC Web Coverage Services (WCS) and OPeNDAP define interoperable protocols for geospatial data access, respectively. But the reality is that only having the standard mechanisms for data discovery and access is not enough. The geospatial data content itself has to be organized in standard, easily understandable, and readily usable formats. The Oak Ridge National Lab Distributed Archived Data Center (ORNL DAAC) archives data and information relevant to biogeochemical dynamics, ecological data, and environmental processes. The Modeling and Synthesis Thematic Data Center (MAST-DC) prepares and distributes both input data and output data of carbon cycle models and provides data support for synthesis and terrestrial model inter-comparison in multi-scales. Both of these NASA-funded data centers compile and distribute a large amount of diverse geospatial data and have broad user communities, including GIS users, Earth science researchers, and ecosystem modeling teams. The ORNL DAAC and MAST-DC address this geospatial data interoperability issue by standardizing the data content and feeding them into a well-designed Spatial Data Infrastructure (SDI) which provides interoperable

  15. Geospatial Service Platform for Education and Research

    NASA Astrophysics Data System (ADS)

    Gong, J.; Wu, H.; Jiang, W.; Guo, W.; Zhai, X.; Yue, P.

    2014-04-01

    We propose to advance the scientific understanding through applications of geospatial service platforms, which can help students and researchers investigate various scientific problems in a Web-based environment with online tools and services. The platform also offers capabilities for sharing data, algorithm, and problem-solving knowledge. To fulfil this goal, the paper introduces a new course, named "Geospatial Service Platform for Education and Research", to be held in the ISPRS summer school in May 2014 at Wuhan University, China. The course will share cutting-edge achievements of a geospatial service platform with students from different countries, and train them with online tools from the platform for geospatial data processing and scientific research. The content of the course includes the basic concepts of geospatial Web services, service-oriented architecture, geoprocessing modelling and chaining, and problem-solving using geospatial services. In particular, the course will offer a geospatial service platform for handson practice. There will be three kinds of exercises in the course: geoprocessing algorithm sharing through service development, geoprocessing modelling through service chaining, and online geospatial analysis using geospatial services. Students can choose one of them, depending on their interests and background. Existing geoprocessing services from OpenRS and GeoPW will be introduced. The summer course offers two service chaining tools, GeoChaining and GeoJModelBuilder, as instances to explain specifically the method for building service chains in view of different demands. After this course, students can learn how to use online service platforms for geospatial resource sharing and problem-solving.

  16. Modeling and formal representation of geospatial knowledge for the Geospatial Semantic Web

    NASA Astrophysics Data System (ADS)

    Huang, Hong; Gong, Jianya

    2008-12-01

    GML can only achieve geospatial interoperation at syntactic level. However, it is necessary to resolve difference of spatial cognition in the first place in most occasions, so ontology was introduced to describe geospatial information and services. But it is obviously difficult and improper to let users to find, match and compose services, especially in some occasions there are complicated business logics. Currently, with the gradual introduction of Semantic Web technology (e.g., OWL, SWRL), the focus of the interoperation of geospatial information has shifted from syntactic level to Semantic and even automatic, intelligent level. In this way, Geospatial Semantic Web (GSM) can be put forward as an augmentation to the Semantic Web that additionally includes geospatial abstractions as well as related reasoning, representation and query mechanisms. To advance the implementation of GSM, we first attempt to construct the mechanism of modeling and formal representation of geospatial knowledge, which are also two mostly foundational phases in knowledge engineering (KE). Our attitude in this paper is quite pragmatical: we argue that geospatial context is a formal model of the discriminate environment characters of geospatial knowledge, and the derivation, understanding and using of geospatial knowledge are located in geospatial context. Therefore, first, we put forward a primitive hierarchy of geospatial knowledge referencing first order logic, formal ontologies, rules and GML. Second, a metamodel of geospatial context is proposed and we use the modeling methods and representation languages of formal ontologies to process geospatial context. Thirdly, we extend Web Process Service (WPS) to be compatible with local DLL for geoprocessing and possess inference capability based on OWL.

  17. Gamification and geospatial health management

    NASA Astrophysics Data System (ADS)

    Wortley, David

    2014-06-01

    Sensor and Measurement technologies are rapidly developing for many consumer applications which have the potential to make a major impact on business and society. One of the most important areas for building a sustainable future is in health management. This opportunity arises because of the growing popularity of lifestyle monitoring devices such as the Jawbone UP bracelet, Nike Fuelband and Samsung Galaxy GEAR. These devices measure physical activity and calorie consumption and, when visualised on mobile and portable devices, enable users to take more responsibility for their personal health. This presentation looks at how the process of gamification can be applied to develop important geospatial health management applications that could not only improve the health of nations but also significantly address some of the issues in global health such as the ageing society and obesity.

  18. Visualization and Ontology of Geospatial Intelligence

    NASA Astrophysics Data System (ADS)

    Chan, Yupo

    Recent events have deepened our conviction that many human endeavors are best described in a geospatial context. This is evidenced in the prevalence of location-based services, as afforded by the ubiquitous cell phone usage. It is also manifested by the popularity of such internet engines as Google Earth. As we commute to work, travel on business or pleasure, we make decisions based on the geospatial information provided by such location-based services. When corporations devise their business plans, they also rely heavily on such geospatial data. By definition, local, state and federal governments provide services according to geographic boundaries. One estimate suggests that 85 percent of data contain spatial attributes.

  19. Adoption of Geospatial Systems towards evolving Sustainable Himalayan Mountain Development

    NASA Astrophysics Data System (ADS)

    Murthy, M. S. R.; Bajracharya, B.; Pradhan, S.; Shestra, B.; Bajracharya, R.; Shakya, K.; Wesselmann, S.; Ali, M.; Bajracharya, S.; Pradhan, S.

    2014-11-01

    Natural resources dependence of mountain communities, rapid social and developmental changes, disaster proneness and climate change are conceived as the critical factors regulating sustainable Himalayan mountain development. The Himalayan region posed by typical geographic settings, diverse physical and cultural diversity present a formidable challenge to collect and manage data, information and understands varied socio-ecological settings. Recent advances in earth observation, near real-time data, in-situ measurements and in combination of information and communication technology have transformed the way we collect, process, and generate information and how we use such information for societal benefits. Glacier dynamics, land cover changes, disaster risk reduction systems, food security and ecosystem conservation are a few thematic areas where geospatial information and knowledge have significantly contributed to informed decision making systems over the region. The emergence and adoption of near-real time systems, unmanned aerial vehicles (UAV), board-scale citizen science (crowd-sourcing), mobile services and mapping, and cloud computing have paved the way towards developing automated environmental monitoring systems, enhanced scientific understanding of geophysical and biophysical processes, coupled management of socio-ecological systems and community based adaptation models tailored to mountain specific environment. There are differentiated capacities among the ICIMOD regional member countries with regard to utilization of earth observation and geospatial technologies. The region can greatly benefit from a coordinated and collaborative approach to capture the opportunities offered by earth observation and geospatial technologies. The regional level data sharing, knowledge exchange, and Himalayan GEO supporting geospatial platforms, spatial data infrastructure, unique region specific satellite systems to address trans-boundary challenges would go a long way in

  20. Marketing the Surveying and Geospatial Profession

    NASA Astrophysics Data System (ADS)

    Trinder, J.

    2014-04-01

    Many universities around the world are experiencing a decline in the number of students entering programs in surveying and geospatial engineering, including some institutions with prestigious pasts. For Australia, this raises the question of whether there will be adequate graduates in the future to replace the current cohort of surveying and geospatial professionals when they retire. It is not clear why it has not been possible to attract more school leavers into the surveying and geospatial programs, but it may be because the community at large is unaware of the many career opportunities. Several surveys have been carried out in Australia to determine the status of graduates entering the profession and the impact that shortages of graduates in the surveying and geospatial professions in the future. These shortages could seriously limit the development of infrastructure and housing if they are not overcome. Another issue is whether the demand for graduates is changing due to developments in technology that allow surveying and mapping to be undertaken more quickly and efficiently than in the past. Marketing of education programs into schools and the general population is essential. A solution maybe for a concerted global effort to encourage more school leavers to enrol in surveying and geospatial engineering programs and hence improve the viability of the profession for the future. The paper will review the impacts of shortages in graduates entering the profession and approaches to improve the marketing of the surveying and geospatial professions.

  1. Using the Geospatial Web to Deliver and Teach Giscience Education Programs

    NASA Astrophysics Data System (ADS)

    Veenendaal, B.

    2015-05-01

    Geographic information science (GIScience) education has undergone enormous changes over the past years. One major factor influencing this change is the role of the geospatial web in GIScience. In addition to the use of the web for enabling and enhancing GIScience education, it is also used as the infrastructure for communicating and collaborating among geospatial data and users. The web becomes both the means and the content for a geospatial education program. However, the web does not replace the traditional face-to-face environment, but rather is a means to enhance it, expand it and enable an authentic and real world learning environment. This paper outlines the use of the web in both the delivery and content of the GIScience program at Curtin University. The teaching of the geospatial web, web and cloud based mapping, and geospatial web services are key components of the program, and the use of the web and online learning are important to deliver this program. Some examples of authentic and real world learning environments are provided including joint learning activities with partner universities.

  2. Citing geospatial feature inventories with XML manifests

    NASA Astrophysics Data System (ADS)

    Bose, R.; McGarva, G.

    2006-12-01

    Today published scientific papers include a growing number of citations for online information sources that either complement or replace printed journals and books. We anticipate this same trend for cartographic citations used in the geosciences, following advances in web mapping and geographic feature-based services. Instead of using traditional libraries to resolve citations for print material, the geospatial citation life cycle will include requesting inventories of objects or geographic features from distributed geospatial data repositories. Using a case study from the UK Ordnance Survey MasterMap database, which is illustrative of geographic object-based products in general, we propose citing inventories of geographic objects using XML feature manifests. These manifests: (1) serve as a portable listing of sets of versioned features; (2) could be used as citations within the identification portion of an international geospatial metadata standard; (3) could be incorporated into geospatial data transfer formats such as GML; but (4) can be resolved only with comprehensive, curated repositories of current and historic data. This work has implications for any researcher who foresees the need to make or resolve references to online geospatial databases.

  3. The Impact of a Geospatial Technology-Supported Energy Curriculum on Middle School Students' Science Achievement

    NASA Astrophysics Data System (ADS)

    Kulo, Violet; Bodzin, Alec

    2013-02-01

    Geospatial technologies are increasingly being integrated in science classrooms to foster learning. This study examined whether a Web-enhanced science inquiry curriculum supported by geospatial technologies promoted urban middle school students' understanding of energy concepts. The participants included one science teacher and 108 eighth-grade students classified in three ability level tracks. Data were gathered through pre/posttest content knowledge assessments, daily classroom observations, and daily reflective meetings with the teacher. Findings indicated a significant increase in the energy content knowledge for all the students. Effect sizes were large for all three ability level tracks, with the middle and low track classes having larger effect sizes than the upper track class. Learners in all three tracks were highly engaged with the curriculum. Curriculum effectiveness and practical issues involved with using geospatial technologies to support science learning are discussed.

  4. 76 FR 28449 - Announcement of National Geospatial Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... Geological Survey Announcement of National Geospatial Advisory Committee Meeting AGENCY: U.S. Geological Survey, Interior. ACTION: Notice of meeting. ] SUMMARY: The National Geospatial Advisory Committee (NGAC.... --Transportation for the Nation. --Census Update. --Parcel Data. --National Map Users Conference. --NGAC...

  5. Fire Alerts for the Geospatial Web

    NASA Astrophysics Data System (ADS)

    McFerren, Graeme; Roos, Stacey; Terhorst, Andrew

    The Advanced Fire Information System (AFIS) is a joint initiative between CSIR and Eskom, the South African electricity utility. AFIS infers fire occurrences from processed, remotely sensed data and triggers alarms to Eskom operators based on the proximity of fire events to Eskom's infrastructure. We intend on migrating AFIS from a narrowly focussed “black-box” application to one servicing users in multiple fire-related scenarios, enabling rapid development and deployment of new applications through concept-based queries of data and knowledge repositories. Future AFIS versions would supply highly tuned, meaningful and customized fire alerts to users based on an open framework of Geo-spatial Web services, ontologies and software agents. Other Geospatial Web applications may have to follow a similar path via Web services and standards-based architectures, thereby providing the foundation for the Geospatial Web.

  6. Discovering geospatial networks from ambiguous track data

    NASA Astrophysics Data System (ADS)

    Bevington, James E.; Evans, Michael R.; Shekhar, Shashi

    2011-06-01

    Wide area motion imagery (WAMI) sensors increasingly are being used for persistent surveillance of large urban areas. One of the potential uses for such surveillance is the discovery of geo-spatial networks, which are sets of locations linked by repeated traffic flow over an extended period of time. In this work we present a simple method of deriving geo-spatial network links automatically from ambiguous track segments or tracklets. The method avoids making explicit tracklet linking decisions and relies on temporal aggregation to identify the persistent origin-destination location pairs. We present experimental network discovery results using simulated high density track data for a downtown urban setting.

  7. Geospatial Data Curation at the University of Idaho

    ERIC Educational Resources Information Center

    Kenyon, Jeremy; Godfrey, Bruce; Eckwright, Gail Z.

    2012-01-01

    The management and curation of digital geospatial data has become a central concern for many academic libraries. Geospatial data is a complex type of data critical to many different disciplines, and its use has become more expansive in the past decade. The University of Idaho Library maintains a geospatial data repository called the Interactive…

  8. Development of a National Digital Geospatial Data Framework

    USGS Publications Warehouse

    Federal Geographic Data Committee

    1995-01-01

    This proposal of a data framework to organize and enhance the activities of the geospatial data community to meet needs for basic themes of data was developed in response to a request in Executive Order 12906, Coordinating Geographic Data Acquisition and Access: The National Spatial Data Infrastructure (U.S. Executive Office of the President, 1994). The request stated: in consultation with State, local, and tribal governments and within 9 months of the date of this order, the FGDC shall submit a plan and schedule to OMB [U.S. Office of Management and Budget] for completing the initial implementation of a national digital geospatial data framework ("framework") by January 2000 and for establishing a process of ongoing data maintenance. The framework shall include geospatial data that are significant, in the determination of the FGDC, to a broad variety of users within any geographic area or nationwide. At a minimum, the plan shall address how the initial transportation, hydrology, and boundary elements of the framework might be completed by January 1998 in order to support the decennial census of 2000. The proposal was developed by representatives of local, regional, State, and Federal agencies under the auspices of the Federal Geographic Data Committee (FGDC). The individuals are listed in the appendix of this report. This Framework Working Group identified the purpose and goals for the framework; identified incentives for participation; defined the information content; developed preliminary technical, operational, and business contexts; specified the institutional roles needed; and developed a strategy for a phased implementation of the framework.Members of the working group presented the concepts of the framework for discussion at several national and regional public meetings. The draft of the report also was provided for public, written review. These discussions and reviews were the source of many improvements to the report.The FGDC approved the report for

  9. Examining the Effect of Enactment of a Geospatial Curriculum on Students' Geospatial Thinking and Reasoning

    ERIC Educational Resources Information Center

    Bodzin, Alec M.; Fu, Qiong; Kulo, Violet; Peffer, Tamara

    2014-01-01

    A potential method for teaching geospatial thinking and reasoning (GTR) is through geospatially enabled learning technologies. We developed an energy resources geospatial curriculum that included learning activities with geographic information systems and virtual globes. This study investigated how 13 urban middle school teachers implemented and…

  10. The African Geospatial Sciences Institute (agsi): a New Approach to Geospatial Training in North Africa

    NASA Astrophysics Data System (ADS)

    Oeldenberger, S.; Khaled, K. B.

    2012-07-01

    The African Geospatial Sciences Institute (AGSI) is currently being established in Tunisia as a non-profit, non-governmental organization (NGO). Its objective is to accelerate the geospatial capacity development in North-Africa, providing the facilities for geospatial project and management training to regional government employees, university graduates, private individuals and companies. With typical course durations between one and six months, including part-time programs and long-term mentoring, its focus is on practical training, providing actual project execution experience. The AGSI will complement formal university education and will work closely with geospatial certification organizations and the geospatial industry. In the context of closer cooperation between neighboring North Africa and the European Community, the AGSI will be embedded in a network of several participating European and African universities, e. g. the ITC, and international organizations, such as the ISPRS, the ICA and the OGC. Through a close cooperation with African organizations, such as the AARSE, the RCMRD and RECTAS, the network and exchange of ideas, experiences, technology and capabilities will be extended to Saharan and sub-Saharan Africa. A board of trustees will be steering the AGSI operations and will ensure that practical training concepts and contents are certifiable and can be applied within a credit system to graduate and post-graduate education at European and African universities. The geospatial training activities of the AGSI are centered on a facility with approximately 30 part- and full-time general staff and lecturers in Tunis during the first year. The AGSI will operate a small aircraft with a medium-format aerial camera and compact LIDAR instrument for local, community-scale data capture. Surveying training, the photogrammetric processing of aerial images, GIS data capture and remote sensing training will be the main components of the practical training courses

  11. 77 FR 5820 - National Geospatial Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... geospatial community. FOR FURTHER INFORMATION CONTACT: John Mahoney, USGS (phone: (206) 220- 4621, email: jmahoney@usgs.gov ). SUPPLEMENTARY INFORMATION: We are publishing this notice in accordance with the.... Geological Survey (USGS). The USGS will provide necessary support services to the Committee....

  12. Transforming the History Curriculum with Geospatial Tools

    ERIC Educational Resources Information Center

    Hammond, Thomas

    2014-01-01

    Martorella's "sleeping giant" is awakening via geospatial tools. As this technology is adopted, it will transform the history curriculum in three ways: deepening curricular content, making conceptual frameworks more prominent, and increasing connections to local history. These changes may not be profound and they may not be sudden,…

  13. AGWA: The Automated Geospatial Watershed Assessment Tool

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment Tool (AGWA, see: www.tucson.ars.ag.gov/agwa or http://www.epa.gov/esd/land-sci/agwa/) is a GIS interface jointly developed by the USDA-Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona...

  14. Automated Geospatial Watershed Assessment Tool (AGWA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Automated Geospatial Watershed Assessment tool (AGWA, see: www.tucson.ars.ag.gov/agwa or http://www.epa.gov/esd/land-sci/agwa/) is a GIS interface jointly developed by the USDA Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona, and the University ...

  15. Impacts of Geospatial Information for Decision Making

    NASA Astrophysics Data System (ADS)

    Pearlman, F.; Coote, A.; Friedl, L.; Stewart, M.

    2012-12-01

    Geospatial information contributes to decisions by both societal and individual decision-makers. More effective use of this information is essential as issues are increasingly complex and consequences can be critical for future economic and social development. To address this, a workshop brought together analysts, communicators, officials, and researchers from academia, government, non-governmental organizations, and the private sector. A range of policy issues, management needs, and resource requirements were discussed and a wide array of analyses, geospatial data, methods of analysis, and metrics were presented for assessing and communicating the value of geospatial information. It is clear that there are many opportunities for integrating science and engineering disciplines with the social sciences for addressing societal issues that would benefit from using geospatial information and earth observations. However, these collaborations must have outcomes that can be easily communicated to decision makers. This generally requires either succinct quantitative statements of value based on rigorous models and/or user testimonials of actual applications that save real money. An outcome of the workshop is to pursue the development of a community of practice or society that encompasses a wide range of scientific, social, management, and communication disciplines and fosters collaboration across specialties, helping to build trust across social and science aspects. A resource base is also necessary. This presentation will address approaches for creating a shared knowledge database, containing a glossary of terms, reference materials and examples of case studies and the potential applications for benefit analyses.

  16. Geospatial Technologies: Real Projects in Real Classrooms

    ERIC Educational Resources Information Center

    Kolvoord, Bob

    2008-01-01

    Geospatial technologies of geographic information systems, global positioning systems, and remote sensing are just a few of the projects that evoke an unexpected drive and devotion from high school students in Virginia. Their integration into different curricular areas lets students focus on understanding their community and the many issues that…

  17. Geospatial Technologies and Higher Education in Argentina

    ERIC Educational Resources Information Center

    Leguizamon, Saturnino

    2010-01-01

    The term "geospatial technologies" encompasses a large area of fields involving cartography, spatial analysis, geographic information system, remote sensing, global positioning systems and many others. These technologies should be expected to be available (as "natural tools") for a country with a large surface and a variety of climates, such as…

  18. Examining the Effect of Enactment of a Geospatial Curriculum on Students' Geospatial Thinking and Reasoning

    NASA Astrophysics Data System (ADS)

    Bodzin, Alec M.; Fu, Qiong; Kulo, Violet; Peffer, Tamara

    2014-08-01

    A potential method for teaching geospatial thinking and reasoning (GTR) is through geospatially enabled learning technologies. We developed an energy resources geospatial curriculum that included learning activities with geographic information systems and virtual globes. This study investigated how 13 urban middle school teachers implemented and varied the enactment of the curriculum with their students and investigated which teacher- and student-level factors accounted for students' GTR posttest achievement. Data included biweekly implementation surveys from teachers and energy resources content and GTR pre- and posttest achievement measures from 1,049 students. Students significantly increased both their energy resources content knowledge and their GTR skills related to energy resources at the end of the curriculum enactment. Both multiple regression and hierarchical linear modeling found that students' initial GTR abilities and gain in energy content knowledge were significantly explanatory variables for their geospatial achievement at the end of curriculum enactment, p < .001. Teacher enactment factors, including adherence to implementing the critical components of the curriculum or the number of years the teachers had taught the curriculum, did not have significant effects on students' geospatial posttest achievement. The findings from this study provide support that learning with geospatially enabled learning technologies can support GTR with urban middle-level learners.

  19. Automatic search of geospatial features for disaster and emergency management

    NASA Astrophysics Data System (ADS)

    Zhang, Chuanrong; Zhao, Tian; Li, Weidong

    2010-12-01

    Although the fast development of OGC (Open Geospatial Consortium) WFS (Web Feature Service) technologies has undoubtedly improved the sharing and synchronization of feature-level geospatial information across diverse resources, literature shows that there are still apparent limitations in the current implementation of OGC WFSs. Currently, the implementation of OGC WFSs only emphasizes syntactic data interoperability via standard interfaces and cannot resolve semantic heterogeneity problems in geospatial data sharing. To help emergency responders and disaster managers find new ways of efficiently searching for needed geospatial information at the feature level, this paper aims to propose a framework for automatic search of geospatial features using Geospatial Semantic Web technologies and natural language interfaces. We focus on two major tasks: (1) intelligent geospatial feature retrieval using Geospatial Semantic Web technologies; (2) a natural language interface to a geospatial knowledge base and web feature services over the Semantic Web. Based on the proposed framework we implemented a prototype. Results show that it is practical to directly discover desirable geospatial features from multiple semantically heterogeneous sources using Geospatial Semantic Web technologies and natural language interfaces.

  20. Research and Practical Trends in Geospatial Sciences

    NASA Astrophysics Data System (ADS)

    Karpik, A. P.; Musikhin, I. A.

    2016-06-01

    In recent years professional societies have been undergoing fundamental restructuring brought on by extensive technological change and rapid evolution of geospatial science. Almost all professional communities have been affected. Communities are embracing digital techniques, modern equipment, software and new technological solutions at a staggering pace. In this situation, when planning financial investments and intellectual resource management, it is crucial to have a clear understanding of those trends that will be in great demand in 3-7 years. This paper reviews current scientific and practical activities of such non-governmental international organizations as International Federation of Surveyors, International Cartographic Association, and International Society for Photogrammetry and Remote Sensing, analyzes and groups most relevant topics brought up at their scientific events, forecasts most probable research and practical trends in geospatial sciences, outlines topmost leading countries and emerging markets for further detailed analysis of their activities, types of scientific cooperation and joint implementation projects.

  1. Geospatial Resource Access Analysis In Hedaru, Tanzania

    NASA Astrophysics Data System (ADS)

    Clark, Dylan G.; Premkumar, Deepak; Mazur, Robert; Kisimbo, Elibariki

    2013-12-01

    Populations around the world are facing increased impacts of anthropogenic-induced environmental changes and rapid population movements. These environmental and social shifts are having an elevated impact on the livelihoods of agriculturalists and pastoralists in developing countries. This appraisal integrates various tools—usually used independently— to gain a comprehensive understanding of the regional livelihood constraints in the rural Hedaru Valley of northeastern Tanzania. Conducted in three villages with different natural resources, using three primary methods: 1) participatory mapping of infrastructures; 2) administration of quantitative, spatially-tied surveys (n=80) and focus groups (n=14) that examined land use, household health, education, and demographics; 3) conducting quantitative time series analysis of Landsat- based Normalized Difference Vegetation Index images. Through various geospatial and multivariate linear regression analyses, significant geospatial trends emerged. This research added to the academic understanding of the region while establishing pathways for climate change adaptation strategies.

  2. Developing a distributed HTML5-based search engine for geospatial resource discovery

    NASA Astrophysics Data System (ADS)

    ZHOU, N.; XIA, J.; Nebert, D.; Yang, C.; Gui, Z.; Liu, K.

    2013-12-01

    With explosive growth of data, Geospatial Cyberinfrastructure(GCI) components are developed to manage geospatial resources, such as data discovery and data publishing. However, the efficiency of geospatial resources discovery is still challenging in that: (1) existing GCIs are usually developed for users of specific domains. Users may have to visit a number of GCIs to find appropriate resources; (2) The complexity of decentralized network environment usually results in slow response and pool user experience; (3) Users who use different browsers and devices may have very different user experiences because of the diversity of front-end platforms (e.g. Silverlight, Flash or HTML). To address these issues, we developed a distributed and HTML5-based search engine. Specifically, (1)the search engine adopts a brokering approach to retrieve geospatial metadata from various and distributed GCIs; (2) the asynchronous record retrieval mode enhances the search performance and user interactivity; (3) the search engine based on HTML5 is able to provide unified access capabilities for users with different devices (e.g. tablet and smartphone).

  3. Identifying high energy density stream-reaches through refined geospatial resolution in hydropower resource assessment

    DOE PAGESBeta

    Pasha, M. Fayzul K.; Yang, Majntxov; Yeasmin, Dilruba; Saetern, Sen; Kao, Shih -Chieh; Smith, Brennan T.

    2016-01-07

    Benefited from the rapid development of multiple geospatial data sets on topography, hydrology, and existing energy-water infrastructures, the reconnaissance level hydropower resource assessment can now be conducted using geospatial models in all regions of the US. Furthermore, the updated techniques can be used to estimate the total undeveloped hydropower potential across all regions, and may eventually help identify further hydropower opportunities that were previously overlooked. To enhance the characterization of higher energy density stream-reaches, this paper explored the sensitivity of geospatial resolution on the identification of hydropower stream-reaches using the geospatial merit matrix based hydropower resource assessment (GMM-HRA) model. GMM-HRAmore » model simulation was conducted with eight different spatial resolutions on six U.S. Geological Survey (USGS) 8-digit hydrologic units (HUC8) located at three different terrains; Flat, Mild, and Steep. The results showed that more hydropower potential from higher energy density stream-reaches can be identified with increasing spatial resolution. Both Flat and Mild terrains exhibited lower impacts compared to the Steep terrain. Consequently, greater attention should be applied when selecting the discretization resolution for hydropower resource assessments in the future study.« less

  4. Interoperability Between Geoscience And Geospatial Catalog Protocols

    NASA Astrophysics Data System (ADS)

    Hu, C.; di, L.; Yang, W.; Lynnes, C.; Domenico, B.; Rutledge, G. K.; Enloe, Y.

    2007-12-01

    In the past several years, interoperability gaps have made cross-protocol and cross-community data access a challenge within the Earth science community. One such gap is between two protocol families developed within the geospatial and Earth science communities. The Earth science community has developed a family of related geoscience protocols that includes OPeNDAP for data access and the Thematic Real-time Environmental Distributed Data Services (THREDDS) catalog capability. The corresponding protocols in the geospatial community are the Open Geospatial Consortium (OGC) protocols Web Coverage Service for geospatial data access and Catalog Services for Web (CSW) for data search. We have developed a catalog gateway to mediate client/server interactions between OGC catalog clients and THREDDS servers. In essence, the gateway is an OGC Catalog server that enables OGC clients to search for data registered in THREDDS catalogs. The gateway comprises two parts: the CSW server and a THREDDS-to-CSW ingestion tool. There are two key challenges in constructing such gateway, the first is to define the mapping relationship between the catalog metadata schema of CSW and that of the THREDDS, and the second one is to ingest the THREDDS catalog content into the CSW server. Since our CSW server is based on the ISO19115/ISO19119 Application Profile, a key challenge is to semantically map the ISO 19115 metadata attributes in ISO Application Profile to the THREDDS metadata attributes in the THREDDS Dataset Inventory Catalog Specification Version 1.0. With the mapping established, tools that translate the THREDDS catalog information model into the CSW/ISO Profile information model were developed. These dynamically poll THREDDS catalog servers and ingest the THREDDS catalog information into the CSW server's database, maintaining the hierarchical relationships inherent in the THREDDS catalogs. A prototype system has been implemented to demonstrate the concept and approach.

  5. Introduction to This Special Issue on Geostatistics and Geospatial Techniques in Remote Sensing

    NASA Technical Reports Server (NTRS)

    Atkinson, Peter; Quattrochi, Dale A.; Goodman, H. Michael (Technical Monitor)

    2000-01-01

    The germination of this special Computers & Geosciences (C&G) issue began at the Royal Geographical Society (with the Institute of British Geographers) (RGS-IBG) annual meeting in January 1997 held at the University of Exeter, UK. The snow and cold of the English winter were tempered greatly by warm and cordial discussion of how to stimulate and enhance cooperation on geostatistical and geospatial research in remote sensing 'across the big pond' between UK and US researchers. It was decided that one way forward would be to hold parallel sessions in 1998 on geostatistical and geospatial research in remote sensing at appropriate venues in both the UK and the US. Selected papers given at these sessions would be published as special issues of C&G on the UK side and Photogrammetric Engineering and Remote Sensing (PE&RS) on the US side. These issues would highlight the commonality in research on geostatistical and geospatial research in remote sensing on both sides of the Atlantic Ocean. As a consequence, a session on "Geostatistics and Geospatial Techniques for Remote Sensing of Land Surface Processes" was held at the RGS-IBG annual meeting in Guildford, Surrey, UK in January 1998, organized by the Modeling and Advanced Techniques Special Interest Group (MAT SIG) of the Remote Sensing Society (RSS). A similar session was held at the Association of American Geographers (AAG) annual meeting in Boston, Massachusetts in March 1998, sponsored by the AAG's Remote Sensing Specialty Group (RSSG). The 10 papers that make up this issue of C&G, comprise 7 papers from the UK and 3 papers from the LIS. We are both co-editors of each of the journal special issues, with the lead editor of each journal issue being from their respective side of the Atlantic. The special issue of PE&RS (vol. 65) that constitutes the other half of this co-edited journal series was published in early 1999, comprising 6 papers by US authors. We are indebted to the International Association for Mathematical

  6. Development of Geospatial Map Based Election Portal

    NASA Astrophysics Data System (ADS)

    Gupta, A. Kumar Chandra; Kumar, P.; Vasanth Kumar, N.

    2014-11-01

    The Geospatial Delhi Limited (GSDL), a Govt. of NCT of Delhi Company formed in order to provide the geospatial information of National Capital Territory of Delhi (NCTD) to the Government of National Capital Territory of Delhi (GNCTD) and its organs such as DDA, MCD, DJB, State Election Department, DMRC etc., for the benefit of all citizens of Government of National Capital Territory of Delhi (GNCTD). This paper describes the development of Geospatial Map based Election portal (GMEP) of NCT of Delhi. The portal has been developed as a map based spatial decision support system (SDSS) for pertain to planning and management of Department of Chief Electoral Officer, and as an election related information searching tools (Polling Station, Assembly and parliamentary constituency etc.,) for the citizens of NCTD. The GMEP is based on Client-Server architecture model. It has been developed using ArcGIS Server 10.0 with J2EE front-end on Microsoft Windows environment. The GMEP is scalable to enterprise SDSS with enterprise Geo Database & Virtual Private Network (VPN) connectivity. Spatial data to GMEP includes delimited precinct area boundaries of Voters Area of Polling stations, Assembly Constituency, Parliamentary Constituency, Election District, Landmark locations of Polling Stations & basic amenities (Police Stations, Hospitals, Schools and Fire Stations etc.). GMEP could help achieve not only the desired transparency and easiness in planning process but also facilitates through efficient & effective tools for management of elections. It enables a faster response to the changing ground realities in the development planning, owing to its in-built scientific approach and open-ended design.

  7. Streamlining geospatial metadata in the Semantic Web

    NASA Astrophysics Data System (ADS)

    Fugazza, Cristiano; Pepe, Monica; Oggioni, Alessandro; Tagliolato, Paolo; Carrara, Paola

    2016-04-01

    In the geospatial realm, data annotation and discovery rely on a number of ad-hoc formats and protocols. These have been created to enable domain-specific use cases generalized search is not feasible for. Metadata are at the heart of the discovery process and nevertheless they are often neglected or encoded in formats that either are not aimed at efficient retrieval of resources or are plainly outdated. Particularly, the quantum leap represented by the Linked Open Data (LOD) movement did not induce so far a consistent, interlinked baseline in the geospatial domain. In a nutshell, datasets, scientific literature related to them, and ultimately the researchers behind these products are only loosely connected; the corresponding metadata intelligible only to humans, duplicated on different systems, seldom consistently. Instead, our workflow for metadata management envisages i) editing via customizable web- based forms, ii) encoding of records in any XML application profile, iii) translation into RDF (involving the semantic lift of metadata records), and finally iv) storage of the metadata as RDF and back-translation into the original XML format with added semantics-aware features. Phase iii) hinges on relating resource metadata to RDF data structures that represent keywords from code lists and controlled vocabularies, toponyms, researchers, institutes, and virtually any description one can retrieve (or directly publish) in the LOD Cloud. In the context of a distributed Spatial Data Infrastructure (SDI) built on free and open-source software, we detail phases iii) and iv) of our workflow for the semantics-aware management of geospatial metadata.

  8. Open Technology Approaches to Geospatial Interface Design

    NASA Astrophysics Data System (ADS)

    Crevensten, B.; Simmons, D.; Alaska Satellite Facility

    2011-12-01

    What problems do you not want your software developers to be solving? Choosing open technologies across the entire stack of software development-from low-level shared libraries to high-level user interaction implementations-is a way to help ensure that customized software yields innovative and valuable tools for Earth Scientists. This demonstration will review developments in web application technologies and the recurring patterns of interaction design regarding exploration and discovery of geospatial data through the Vertex: ASF's Dataportal interface, a project utilizing current open web application standards and technologies including HTML5, jQueryUI, Backbone.js and the Jasmine unit testing framework.

  9. Intelligence, mapping, and geospatial exploitation system (IMAGES)

    NASA Astrophysics Data System (ADS)

    Moellman, Dennis E.; Cain, Joel M.

    1998-08-01

    This paper provides further detail to one facet of the battlespace visualization concept described in last year's paper Battlespace Situation Awareness for Force XXI. It focuses on the National Imagery and Mapping Agency (NIMA) goal to 'provide customers seamless access to tailorable imagery, imagery intelligence, and geospatial information.' This paper describes Intelligence, Mapping, and Geospatial Exploitation System (IMAGES), an exploitation element capable of CONUS baseplant operations or field deployment to provide NIMA geospatial information collaboratively into a reconnaissance, surveillance, and target acquisition (RSTA) environment through the United States Imagery and Geospatial Information System (USIGS). In a baseplant CONUS setting IMAGES could be used to produce foundation data to support mission planning. In the field it could be directly associated with a tactical sensor receiver or ground station (e.g. UAV or UGV) to provide near real-time and mission specific RSTA to support mission execution. This paper provides IMAGES functional level design; describes the technologies, their interactions and interdependencies; and presents a notional operational scenario to illustrate the system flexibility. Using as a system backbone an intelligent software agent technology, called Open Agent ArchitectureTM (OAATM), IMAGES combines multimodal data entry, natural language understanding, and perceptual and evidential reasoning for system management. Configured to be DII COE compliant, it would utilize, to the extent possible, COTS applications software for data management, processing, fusion, exploitation, and reporting. It would also be modular, scaleable, and reconfigurable. This paper describes how the OAATM achieves data synchronization and enables the necessary level of information to be rapidly available to various command echelons for making informed decisions. The reasoning component will provide for the best information to be developed in the timeline

  10. Open Source Testing Capability for Geospatial Software

    NASA Astrophysics Data System (ADS)

    Bermudez, L. E.

    2013-12-01

    Geospatial Software enables scientists to discover, access and process information for better understanding of the Earth. Hundreds, if not thousands, of geospatial software packages exist today. Many of these implement open standards. The OGC Implementation Statistics page [1] reports, for example, more than 450 software products that implement the OGC Web Map Service (WMS) 1.1.1 standard. Even though organizations voluntarily report their products as implementing the WMS standard, not all of these implementations can interoperate with each other. For example, a WMS client may not interact with all these WMS servers in the same functional way. Making the software work with other software, even when implementing the same standard, still remains a challenge, and the main reason is that not all implementations implement the standard correctly. The Open Geospatial Consortium (OGC) Compliance Program provides a testing infrastructure to test for the correct implementation of OGC standards in interfaces and encodings that enable communication between geospatial clients and servers. The OGC testing tool and the tests are all freely available, including the source code and access to the testing facility. The Test, Evaluation, And Measurement (TEAM) Engine is a test harness that executes test suites written using the OGC Compliance Testing Language (CTL) or the TestNG framework. TEAM Engine is available in Sourceforge. OGC hosts an official stable [2] deployment of TEAM Engine with the approved test suites. OGC also hosts a Beta TEAM Engine [3] with the tests in Beta and with new TEAM Engine functionality. Both deployments are freely available to everybody. The OGC testing infrastructure not only enables developers to test OGC standards, but it can be configured to test profiles of OGC standards and community-developed application agreements. These agreements can be any interface and encoding agreement, not only OGC based. The OGC Compliance Program is thus an important

  11. HydroQGIS: Hydrological Geospatial Data Manipulation

    NASA Astrophysics Data System (ADS)

    Frazier, N.

    2015-12-01

    Many aspects of hydrology are tightly coupled with geospatial data. For this reason, geospatial information systems (GIS) are often incorporated into work flows for analyzing hydrological data. These disjoint work flows, however, often require many steps and different applications to achieve the desired results. Simplifying the workflow involved in regional flood peak scaling studies motivated the creation of the HydroQGIS plugin. Flood frequency analysis presents one of the largest hurdles in studying regional flood peak scaling. HydroQGIS aids these studies with a set of tools that reduce the time to perform flood frequency analsyis on USGS gauging stations. HydroQGIS is a framework for hydrological geospatial plugin development for Quantum GIS (QGIS). It uses the cross-platform nature of QGIS, QT, and Python to create a set of tools to help simplify the work flow of hydrological data searching, gathering, and analysis into a single application that can be used by users on any platform. HydroQGIS combines the Quantum GIS plugin framework with various web-services to couple data and analysis in a uniform environment. QGIS provides a fully functioning GIS application on top of which plugins can be developed. The HydroQGIS plugin focuses on data acquisition and analysis from the geospatial domain. The design of HydroQGIS facilitates quick development of additional tools, used independently or in conjunction with other developed utilities, to streamline data acquisition and analysis. HydroQGIS currently implements an Environmental Protection Agency (EPA) Watershed Delineation tool using the EPA Waters web service, as well as a United States Geological Survey (USGS) gauging station search using the USGS Instantaneous Values web service. These tools provide a unified GIS interface that allows users to locate and map gauging stations and watersheds using any base map of their choice. These tools, while useful by themselves, also support a flood frequency analysis (FFA

  12. Incidental Learning of Geospatial Concepts across Grade Levels: Map Overlay

    ERIC Educational Resources Information Center

    Battersby, Sarah E.; Golledge, Reginald G.; Marsh, Meredith J.

    2006-01-01

    In this paper, the authors evaluate map overlay, a concept central to geospatial thinking, to determine how it is naively and technically understood, as well as to identify when it is leaner innately. The evaluation is supported by results from studies at three grade levels to show the progression of incidentally learned geospatial knowledge as…

  13. US EPA GEOSPATIAL QUALITY COUNCIL: ENSURING QUALITY IN GEOPSPATIAL SOLUTIONS

    EPA Science Inventory

    In 1999, the U.S. Environmental Protection Agency (EPA), Office of Research and Development, Environmental Sciences Division, created the EPA Geospatial Quality Council (GQC) to fill the gap between the EPA Quality Assurance (QA) and Geospatial communities. GQC participants inclu...

  14. Introduction to the Complex Geospatial Web in Geographical Education

    ERIC Educational Resources Information Center

    Papadimitriou, Fivos

    2010-01-01

    The Geospatial Web is emerging in the geographical education landscape in all its complexity. How will geographers and educators react? What are the most important facets of this development? After reviewing the possible impacts on geographical education, it can be conjectured that the Geospatial Web will eventually replace the usual geographical…

  15. Fostering 21st Century Learning with Geospatial Technologies

    ERIC Educational Resources Information Center

    Hagevik, Rita A.

    2011-01-01

    Global positioning systems (GPS) receivers and other geospatial tools can help teachers create engaging, hands-on activities in all content areas. This article provides a rationale for using geospatial technologies in the middle grades and describes classroom-tested activities in English language arts, science, mathematics, and social studies.…

  16. Geospatial Services in Special Libraries: A Needs Assessment Perspective

    ERIC Educational Resources Information Center

    Barnes, Ilana

    2013-01-01

    Once limited to geographers and mapmakers, Geographic Information Systems (GIS) has taken a growing central role in information management and visualization. Geospatial services run a gamut of different products and services from Google maps to ArcGIS servers to Mobile development. Geospatial services are not new. Libraries have been writing about…

  17. Three-dimensional geospatial information service based on cloud computing

    NASA Astrophysics Data System (ADS)

    Zhai, Xi; Yue, Peng; Jiang, Liangcun; Wang, Linnan

    2014-01-01

    Cloud computing technologies can support high-performance geospatial services in various domains, such as smart city and agriculture. Apache Hadoop, an open-source software framework, can be used to build a cloud environment on commodity clusters for storage and large-scale processing of data sets. The Open Geospatial Consortium (OGC) Web 3-D Service (W3DS) is a portrayal service for three-dimensional (3-D) geospatial data. Its performance could be improved by cloud computing technologies. This paper investigates how OGC W3DS could be developed in a cloud computing environment. It adopts the Apache Hadoop as the framework to provide a cloud implementation. The design and implementation of the 3-D geospatial information cloud service is presented. The performance evaluation is performed over data retrieval tests running in a cloud platform built by Hadoop clusters. The evaluation results provide a valuable reference on providing high-performance 3-D geospatial information cloud services.

  18. The geospatial data quality REST API for primary biodiversity data

    PubMed Central

    Otegui, Javier; Guralnick, Robert P.

    2016-01-01

    Summary: We present a REST web service to assess the geospatial quality of primary biodiversity data. It enables access to basic and advanced functions to detect completeness and consistency issues as well as general errors in the provided record or set of records. The API uses JSON for data interchange and efficient parallelization techniques for fast assessments of large datasets. Availability and implementation: The Geospatial Data Quality API is part of the VertNet set of APIs. It can be accessed at http://api-geospatial.vertnet-portal.appspot.com/geospatial and is already implemented in the VertNet data portal for quality reporting. Source code is freely available under GPL license from http://www.github.com/vertnet/api-geospatial. Contact: javier.otegui@gmail.com or rguralnick@flmnh.ufl.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26833340

  19. Geospatial Brokering - Challenges and Future Directions

    NASA Astrophysics Data System (ADS)

    White, C. E.

    2012-12-01

    An important feature of many brokers is to facilitate straightforward human access to scientific data while maintaining programmatic access to it for system solutions. Standards-based protocols are critical for this, and there are a number of protocols to choose from. In this discussion, we will present a web application solution that leverages certain protocols - e.g., OGC CSW, REST, and OpenSearch - to provide programmatic as well as human access to geospatial resources. We will also discuss managing resources to reduce duplication yet increase discoverability, federated search solutions, and architectures that combine human-friendly interfaces with powerful underlying data management. The changing requirements witnessed in brokering solutions over time, our recent experience participating in the EarthCube brokering hack-a-thon, and evolving interoperability standards provide insight to future technological and philosophical directions planned for geospatial broker solutions. There has been much change over the past decade, but with the unprecedented data collaboration of recent years, in many ways the challenges and opportunities are just beginning.

  20. Nebraska NativeGEM (Geospatial Extension Model)

    NASA Technical Reports Server (NTRS)

    Bowen, Brent

    2004-01-01

    This proposal, Nebraska NativeGEM (Geospatial Extension Model) features a unique diversity component stemming from the exceptional reputation NNSGC has built by delivering geospatial science experiences to Nebraska s Native Americans. For 7 years, NNSGC has partner4 with the 2 tribal colleges and 4 reservation school districts in Nebraska to form the Nebraska Native American Outreach Program (NNAOP), a partnership among tribal community leaders, academia, tribal schools, and industry reaching close to 1,OOO Native American youth, over 1,200 community members (Lehrer & Zendajas, 2001).NativeGEM addresses all three key components of Cooperative State Research, Education, and Extension Service (CSREES) goals for advancing decision support, education, and workforce development through the GES. The existing long term commitments that the NNSGC and the GES have in these areas allow for the pursuit of a broad range of activities. NativeGEM builds upon these existing successful programs and collaborations. Outcomes and metrics for each proposed project are detailed in the Approach section of this document.

  1. Geospatial Data Management Platform for Urban Groundwater

    NASA Astrophysics Data System (ADS)

    Gaitanaru, D.; Priceputu, A.; Gogu, C. R.

    2012-04-01

    Due to the large amount of civil work projects and research studies, large quantities of geo-data are produced for the urban environments. These data are usually redundant as well as they are spread in different institutions or private companies. Time consuming operations like data processing and information harmonisation represents the main reason to systematically avoid the re-use of data. The urban groundwater data shows the same complex situation. The underground structures (subway lines, deep foundations, underground parkings, and others), the urban facility networks (sewer systems, water supply networks, heating conduits, etc), the drainage systems, the surface water works and many others modify continuously. As consequence, their influence on groundwater changes systematically. However, these activities provide a large quantity of data, aquifers modelling and then behaviour prediction can be done using monitored quantitative and qualitative parameters. Due to the rapid evolution of technology in the past few years, transferring large amounts of information through internet has now become a feasible solution for sharing geoscience data. Furthermore, standard platform-independent means to do this have been developed (specific mark-up languages like: GML, GeoSciML, WaterML, GWML, CityML). They allow easily large geospatial databases updating and sharing through internet, even between different companies or between research centres that do not necessarily use the same database structures. For Bucharest City (Romania) an integrated platform for groundwater geospatial data management is developed under the framework of a national research project - "Sedimentary media modeling platform for groundwater management in urban areas" (SIMPA) financed by the National Authority for Scientific Research of Romania. The platform architecture is based on three components: a geospatial database, a desktop application (a complex set of hydrogeological and geological analysis

  2. Online Resources to Support Professional Development for Managing and Preserving Geospatial Data

    NASA Astrophysics Data System (ADS)

    Downs, R. R.; Chen, R. S.

    2013-12-01

    tutorials, primers, guides, and online learning modules. The site enables users to find and access standards, real-world examples, and websites of other resources about geospatial data management. Quick links to lists of resources are available for data managers, system developers, and researchers. New resources are featured regularly to highlight current developments in practice and research. A user-centered approach was taken to design and develop the site iteratively, based on a survey of the expectations and needs of community members who have an interest in the management and preservation of geospatial data. Formative and summative evaluation activities have informed design, content, and feature enhancements to enable users to use the website efficiently and effectively. Continuing management and evaluation of the website keeps the content and the infrastructure current with evolving research, practices, and technology. The design, development, evaluation, and use of the website are described along with selected resources and activities that support education and professional development for the management, preservation, and stewardship of geospatial data.

  3. Establishing Transportation Framework Services Using the Open Geospatial Consortium Web Feature Service Specification

    NASA Astrophysics Data System (ADS)

    Yang, C.; Wong, D. W.; Phillips, T.; Wright, R. A.; Lindsey, S.; Kafatos, M.

    2005-12-01

    /DOT, and Intergraph; and 5) develop WFS-based solutions and technical documents using the GeoMedia WebMap WFS toolkit. Geospatial Web Feature Service is demonstrated to be more efficient in sharing vector data and supports direct Internet access transportation data. Developed WFS solutions also enhanced the interoperable service provided by CEOSR through the FGDC clearinghouse node and the GOS Portal.

  4. Coupling environmental models and geospatial data processing

    NASA Astrophysics Data System (ADS)

    Brandmeyer, Jo Ellen

    2000-10-01

    This research investigated geospatial functions for solving environmental problems from the perspective of the environmental modeler. Its purpose is to better understand the different approaches to coupling complex models and geospatial data processing, plus the implications for the coupled system. To this end, various coupling methodologies were systematically explored using a geographic information system (GIS) and an emissions processor (SMOKE) for air quality models (AQMs). SMOKE converts an emissions inventory into the format required by an AQM. A GIS creates a file describing the spatial distribution of emissions among the cells in a modeling domain. To demonstrate advantages of a coupled GIS---environmental model system, two methods of spatially distributing on-road mobile emissions to cells were examined. The existing method calculates emissions for each road class, but distributes emissions to the cells using population density. For the new method a GIS builds road density by class and then distributes the emissions using road density. Comparing these methods reveals a significantly different spatial pattern of emissions. Next, various model-coupling methodologies were analyzed, revealing numerous coupling approaches, some of which were categorized in the literature. Critiquing these categorizations while comparing them with documented implementations led to the development of a new coupling hierarchy. The properties of each hierarchical level are discussed with the advantages and limitations of each design. To successfully couple models, the spatial and temporal scales of all models in the coupled system and the spatiotemporal extents of the data must be reconciled. Finally, a case study demonstrated methodologies for coupling SMOKE and a GIS. One methodology required a new approach utilizing dynamically linked libraries. Consequently, emissions were processed using SMOKE from a GIS. Also, a new method of converting data from netCDF files into a database

  5. Geospatial Data Provenance in the Semantic Web Environment

    NASA Astrophysics Data System (ADS)

    di, L.; Yue, P.

    2008-12-01

    Geospatial data will grow to multi-exabytes very soon. The major form of geospatial data is imagery collected by the Earth observing community through remote sensing methods. Those data, along with their derived products and model outputs, are archived in many data centers around the world. Geospatial data has to be converted to user-specific information and knowledge before they become useful. Such a user-specific information and knowledge is normally derived from multi-source data through a set of geoprocess steps. Recent technology advances in the united representation of geospatial data, information, and knowledge, the geospatial semantic web, the geospatial interoperability, and the artificial intelligence have made the automatic derivation of user-specific information and knowledge from diverse data sources in the web service environment possible. A prototype system for proofing such technologies has been constructed and successfully demonstrated. An operational systems is being development. With the ontology support, the system automatically constructs the executable workflow based on users' descriptions of what they want and the available services and the input data over the web, and execute the workflow to generate the user- specific product. In order for users to have the confidence to use such automatically generated products in real applications, complete and accurate provenance information must be provided to users, even before such user-specific products are generated. In this presentation, we will discuss the representation of geospatial data provenance, the automatic capturing of geospatial data provenance in the semantic web environment, and the management of geospatial data provenance. We will also discuss a prototype provenance management system that allows the users to query and access providence information.

  6. A flexible integration framework for a Semantic Geospatial Web application

    NASA Astrophysics Data System (ADS)

    Yuan, Ying; Mei, Kun; Bian, Fuling

    2008-10-01

    With the growth of the World Wide Web technologies, the access to and use of geospatial information changed in the past decade radically. Previously, the data processed by a GIS as well as its methods had resided locally and contained information that was sufficiently unambiguous in the respective information community. Now, both data and methods may be retrieved and combined from anywhere in the world, escaping their local contexts. The last few years have seen a growing interest in the field of semantic geospatial web. With the development of semantic web technologies, we have seen the possibility of solving the heterogeneity/interoperation problem in the GIS community. The semantic geospatial web application can support a wide variety of tasks including data integration, interoperability, knowledge reuse, spatial reasoning and many others. This paper proposes a flexible framework called GeoSWF (short for Geospatial Semantic Web Framework), which supports the semantic integration of the distributed and heterogeneous geospatial information resources and also supports the semantic query and spatial relationship reasoning. We design the architecture of GeoSWF by extending the MVC Pattern. The GeoSWF use the geo-2007.owl proposed by W3C as the reference ontology of the geospatial information and design different application ontologies according to the situation of heterogeneous geospatial information resources. A Geospatial Ontology Creating Algorithm (GOCA) is designed for convert the geospatial information to the ontology instances represented by RDF/OWL. On the top of these ontology instances, the GeoSWF carry out the semantic reasoning by the rule set stored in the knowledge base to generate new system query. The query result will be ranking by ordering the Euclidean distance of each ontology instances. At last, the paper gives the conclusion and future work.

  7. The Challenges to Coupling Dynamic Geospatial Models

    SciTech Connect

    Goldstein, N

    2006-06-23

    Many applications of modeling spatial dynamic systems focus on a single system and a single process, ignoring the geographic and systemic context of the processes being modeled. A solution to this problem is the coupled modeling of spatial dynamic systems. Coupled modeling is challenging for both technical reasons, as well as conceptual reasons. This paper explores the benefits and challenges to coupling or linking spatial dynamic models, from loose coupling, where information transfer between models is done by hand, to tight coupling, where two (or more) models are merged as one. To illustrate the challenges, a coupled model of Urbanization and Wildfire Risk is presented. This model, called Vesta, was applied to the Santa Barbara, California region (using real geospatial data), where Urbanization and Wildfires occur and recur, respectively. The preliminary results of the model coupling illustrate that coupled modeling can lead to insight into the consequences of processes acting on their own.

  8. Strengthened IAEA Safeguards-Imagery Analysis: Geospatial Tools for Nonproliferation Analysis

    SciTech Connect

    Pabian, Frank V

    2012-08-14

    This slide presentation focuses on the growing role and importance of imagery analysis for IAEA safeguards applications and how commercial satellite imagery, together with the newly available geospatial tools, can be used to promote 'all-source synergy.' As additional sources of openly available information, satellite imagery in conjunction with the geospatial tools can be used to significantly augment and enhance existing information gathering techniques, procedures, and analyses in the remote detection and assessment of nonproliferation relevant activities, facilities, and programs. Foremost of the geospatial tools are the 'Digital Virtual Globes' (i.e., GoogleEarth, Virtual Earth, etc.) that are far better than previously used simple 2-D plan-view line drawings for visualization of known and suspected facilities of interest which can be critical to: (1) Site familiarization and true geospatial context awareness; (2) Pre-inspection planning; (3) Onsite orientation and navigation; (4) Post-inspection reporting; (5) Site monitoring over time for changes; (6) Verification of states site declarations and for input to State Evaluation reports; and (7) A common basis for discussions among all interested parties (Member States). Additionally, as an 'open-source', such virtual globes can also provide a new, essentially free, means to conduct broad area search for undeclared nuclear sites and activities - either alleged through open source leads; identified on internet BLOGS and WIKI Layers, with input from a 'free' cadre of global browsers and/or by knowledgeable local citizens (a.k.a.: 'crowdsourcing'), that can include ground photos and maps; or by other initiatives based on existing information and in-house country knowledge. They also provide a means to acquire ground photography taken by locals, hobbyists, and tourists of the surrounding locales that can be useful in identifying and discriminating between relevant and non-relevant facilities and their associated

  9. Conference on Geospatial Approaches to Cancer Control and Population Sciences

    Cancer.gov

    The purpose of this conference is to bring together a community of researchers across the cancer control continuum using geospatial tools, models and approaches to address cancer prevention and control.

  10. Assessing the socioeconomic impact and value of open geospatial information

    USGS Publications Warehouse

    Pearlman, Francoise; Pearlman, Jay; Bernknopf, Richard; Coote, Andrew; Craglia, Massimo; Friedl, Lawrence; Gallo, Jason; Hertzfeld, Henry; Jolly, Claire; Macauley, Molly; Shapiro, Carl; Smart, Alan

    2016-01-01

    The workshop included 68 participants coming from international organizations, the U.S. public and private sectors, nongovernmental organizations, and academia. Participants included policy makers and analysts, financial analysts, economists, information scientists, geospatial practitioners, and other discipline experts.

  11. 78 FR 49282 - Announcement of National Geospatial Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... FGDC Activities --Geospatial Platform --NSDI Strategic Plan --3D Elevation Program --Landsat --Emerging... the NGAC and the meeting are available at www.fgdc.gov/ngac . Dated: August 7, 2013. Ivan...

  12. a Framework for AN Open Source Geospatial Certification Model

    NASA Astrophysics Data System (ADS)

    Khan, T. U. R.; Davis, P.; Behr, F.-J.

    2016-06-01

    The geospatial industry is forecasted to have an enormous growth in the forthcoming years and an extended need for well-educated workforce. Hence ongoing education and training play an important role in the professional life. Parallel, in the geospatial and IT arena as well in the political discussion and legislation Open Source solutions, open data proliferation, and the use of open standards have an increasing significance. Based on the Memorandum of Understanding between International Cartographic Association, OSGeo Foundation, and ISPRS this development led to the implementation of the ICA-OSGeo-Lab imitative with its mission "Making geospatial education and opportunities accessible to all". Discussions in this initiative and the growth and maturity of geospatial Open Source software initiated the idea to develop a framework for a worldwide applicable Open Source certification approach. Generic and geospatial certification approaches are already offered by numerous organisations, i.e., GIS Certification Institute, GeoAcademy, ASPRS, and software vendors, i. e., Esri, Oracle, and RedHat. They focus different fields of expertise and have different levels and ways of examination which are offered for a wide range of fees. The development of the certification framework presented here is based on the analysis of diverse bodies of knowledge concepts, i.e., NCGIA Core Curriculum, URISA Body Of Knowledge, USGIF Essential Body Of Knowledge, the "Geographic Information: Need to Know", currently under development, and the Geospatial Technology Competency Model (GTCM). The latter provides a US American oriented list of the knowledge, skills, and abilities required of workers in the geospatial technology industry and influenced essentially the framework of certification. In addition to the theoretical analysis of existing resources the geospatial community was integrated twofold. An online survey about the relevance of Open Source was performed and evaluated with 105

  13. Geospatial Information is the Cornerstone of Effective Hazards Response

    USGS Publications Warehouse

    Newell, Mark

    2008-01-01

    Every day there are hundreds of natural disasters world-wide. Some are dramatic, whereas others are barely noticeable. A natural disaster is commonly defined as a natural event with catastrophic consequences for living things in the vicinity. Those events include earthquakes, floods, hurricanes, landslides, tsunami, volcanoes, and wildfires. Man-made disasters are events that are caused by man either intentionally or by accident, and that directly or indirectly threaten public health and well-being. These occurrences span the spectrum from terrorist attacks to accidental oil spills. To assist in responding to natural and potential man-made disasters, the U.S. Geological Survey (USGS) has established the Geospatial Information Response Team (GIRT) (http://www.usgs.gov/emergency/). The primary purpose of the GIRT is to ensure rapid coordination and availability of geospatial information for effective response by emergency responders, and land and resource managers, and for scientific analysis. The GIRT is responsible for establishing monitoring procedures for geospatial data acquisition, processing, and archiving; discovery, access, and delivery of data; anticipating geospatial needs; and providing relevant geospatial products and services. The GIRT is focused on supporting programs, offices, other agencies, and the public in mission response to hazards. The GIRT will leverage the USGS Geospatial Liaison Network and partnerships with the Department of Homeland Security (DHS), National Geospatial-Intelligence Agency (NGA), and Northern Command (NORTHCOM) to coordinate the provisioning and deployment of USGS geospatial data, products, services, and equipment. The USGS geospatial liaisons will coordinate geospatial information sharing with State, local, and tribal governments, and ensure geospatial liaison back-up support procedures are in place. The GIRT will coordinate disposition of USGS staff in support of DHS response center activities as requested by DHS. The GIRT

  14. Updating Geospatial Data from Large Scale Data Sources

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Chen, J.; Wang, D.; Shang, Y.; Wang, Z.; Li, X.; Ai, T.

    2011-08-01

    In the past decades, many geospatial databases have been established at national, regional and municipal levels over the world. Nowadays, it has been widely recognized that how to update these established geo-spatial database and keep them up to date is most critical for the value of geo-spatial database. So, more and more efforts have been devoted to the continuous updating of these geospatial databases. Currently, there exist two main types of methods for Geo-spatial database updating: directly updating with remote sensing images or field surveying materials, and indirectly updating with other updated data result such as larger scale newly updated data. The former method is the basis because the update data sources in the two methods finally root from field surveying and remote sensing. The later method is often more economical and faster than the former. Therefore, after the larger scale database is updated, the smaller scale database should be updated correspondingly in order to keep the consistency of multi-scale geo-spatial database. In this situation, it is very reasonable to apply map generalization technology into the process of geo-spatial database updating. The latter is recognized as one of most promising methods of geo-spatial database updating, especially in collaborative updating environment in terms of map scale, i.e , different scale database are produced and maintained separately by different level organizations such as in China. This paper is focused on applying digital map generalization into the updating of geo-spatial database from large scale in the collaborative updating environment for SDI. The requirements of the application of map generalization into spatial database updating are analyzed firstly. A brief review on geospatial data updating based digital map generalization is then given. Based on the requirements analysis and review, we analyze the key factors for implementing updating geospatial data from large scale including technical

  15. Geospatial Visualization of Scientific Data Through Keyhole Markup Language

    NASA Astrophysics Data System (ADS)

    Wernecke, J.; Bailey, J. E.

    2008-12-01

    The development of virtual globes has provided a fun and innovative tool for exploring the surface of the Earth. However, it has been the paralleling maturation of Keyhole Markup Language (KML) that has created a new medium and perspective through which to visualize scientific datasets. Originally created by Keyhole Inc., and then acquired by Google in 2004, in 2007 KML was given over to the Open Geospatial Consortium (OGC). It became an OGC international standard on 14 April 2008, and has subsequently been adopted by all major geobrowser developers (e.g., Google, Microsoft, ESRI, NASA) and many smaller ones (e.g., Earthbrowser). By making KML a standard at a relatively young stage in its evolution, developers of the language are seeking to avoid the issues that plagued the early World Wide Web and development of Hypertext Markup Language (HTML). The popularity and utility of Google Earth, in particular, has been enhanced by KML features such as the Smithsonian volcano layer and the dynamic weather layers. Through KML, users can view real-time earthquake locations (USGS), view animations of polar sea-ice coverage (NSIDC), or read about the daily activities of chimpanzees (Jane Goodall Institute). Perhaps even more powerful is the fact that any users can create, edit, and share their own KML, with no or relatively little knowledge of manipulating computer code. We present an overview of the best current scientific uses of KML and a guide to how scientists can learn to use KML themselves.

  16. Contextual object understanding through geospatial analysis and reasoning (COUGAR)

    NASA Astrophysics Data System (ADS)

    Douglas, Joel; Antone, Matthew; Coggins, James; Rhodes, Bradley J.; Sobel, Erik; Stolle, Frank; Vinciguerra, Lori; Zandipour, Majid; Zhong, Yu

    2009-05-01

    Military operations in urban areas often require detailed knowledge of the location and identity of commonly occurring objects and spatial features. The ability to rapidly acquire and reason over urban scenes is critically important to such tasks as mission and route planning, visibility prediction, communications simulation, target recognition, and inference of higher-level form and function. Under DARPA's Urban Reasoning and Geospatial ExploitatioN Technology (URGENT) Program, the BAE Systems team has developed a system that combines a suite of complementary feature extraction and matching algorithms with higher-level inference and contextual reasoning to detect, segment, and classify urban entities of interest in a fully automated fashion. Our system operates solely on colored 3D point clouds, and considers object categories with a wide range of specificity (fire hydrants, windows, parking lots), scale (street lights, roads, buildings, forests), and shape (compact shapes, extended regions, terrain). As no single method can recognize the diverse set of categories under consideration, we have integrated multiple state-of-the-art technologies that couple hierarchical associative reasoning with robust computer vision and machine learning techniques. Our solution leverages contextual cues and evidence propagation from features to objects to scenes in order to exploit the combined descriptive power of 3D shape, appearance, and learned inter-object spatial relationships. The result is a set of tools designed to significantly enhance the productivity of analysts in exploiting emerging 3D data sources.

  17. Automated geospatial Web Services composition based on geodata quality requirements

    NASA Astrophysics Data System (ADS)

    Cruz, Sérgio A. B.; Monteiro, Antonio M. V.; Santos, Rafael

    2012-10-01

    Service-Oriented Architecture and Web Services technologies improve the performance of activities involved in geospatial analysis with a distributed computing architecture. However, the design of the geospatial analysis process on this platform, by combining component Web Services, presents some open issues. The automated construction of these compositions represents an important research topic. Some approaches to solving this problem are based on AI planning methods coupled with semantic service descriptions. This work presents a new approach using AI planning methods to improve the robustness of the produced geospatial Web Services composition. For this purpose, we use semantic descriptions of geospatial data quality requirements in a rule-based form. These rules allow the semantic annotation of geospatial data and, coupled with the conditional planning method, this approach represents more precisely the situations of nonconformities with geodata quality that may occur during the execution of the Web Service composition. The service compositions produced by this method are more robust, thus improving process reliability when working with a composition of chained geospatial Web Services.

  18. Spatio-temporal evaluation matrices for geospatial data

    NASA Astrophysics Data System (ADS)

    Triglav, Joc; Petrovič, Dušan; Stopar, Bojan

    2011-02-01

    The global geospatial community is investing substantial effort in providing tools for geospatial data-quality information analysis and systematizing the criteria for geospatial data quality. The importance of these activities is increasing, especially in the last decade, which has witnessed an enormous expansion of geospatial data use in general and especially among mass users. Although geospatial data producers are striving to define and present data-quality standards to users and users increasingly need to assess the fitness for use of the data, the success of these activities is still far from what is expected or required. As a consequence, neglect or misunderstanding of data quality among users results in misuse or risks. This paper presents an aid in spatio-temporal quality evaluation through the use of spatio-temporal evaluation matrices (STEM) and the index of spatio-temporal anticipations (INSTANT) matrices. With the help of these two simple tools, geospatial data producers can systematically categorize and visualize the granularity of their spatio-temporal data, and users can present their requirements in the same way using business intelligence principles and a Web 2.0 approach. The basic principles and some examples are presented in the paper, and potential further applied research activities are briefly described.

  19. The Value of Information - Accounting for a New Geospatial Paradigm

    NASA Astrophysics Data System (ADS)

    Pearlman, J.; Coote, A. M.

    2014-12-01

    A new frontier in consideration of socio-economic benefit is valuing information as an asset, often referred to as Infonomics. Conventional financial practice does not easily provide a mechanism for valuing information and yet clearly for many of the largest corporations, such as Google and Facebook, it is their principal asset. This is exacerbated for public sector organizations, as those that information-centric rather than information-enabled are relatively few - statistics, archiving and mapping agencies are perhaps the only examples - so it's not at the top of the agenda for Government. However, it is a hugely important issue when valuing Geospatial data and information. Geospatial data allows public institutions to operate, and facilitates the provision of essential services for emergency response and national defense. In this respect, geospatial data is strongly analogous to other types of public infrastructure, such as utilities and roads. The use of Geospatial data is widespread from companies in the transportation or construction sectors to individual planning for daily events. The categorization of geospatial data as infrastructure is critical to decisions related to investment in its management, maintenance and upgrade over time. Geospatial data depreciates in the same way that physical infrastructure depreciates. It needs to be maintained otherwise its functionality and value in use declines. We have coined the term geo-infonomics to encapsulate the concept. This presentation will develop the arguments around its importance and current avenues of research.

  20. Mapping a Difference: The Power of Geospatial Visualization

    NASA Astrophysics Data System (ADS)

    Kolvoord, B.

    2015-12-01

    Geospatial Technologies (GST), such as GIS, GPS and remote sensing, offer students and teachers the opportunity to study the "why" of where. By making maps and collecting location-based data, students can pursue authentic problems using sophisticated tools. The proliferation of web- and cloud-based tools has made these technologies broadly accessible to schools. In addition, strong spatial thinking skills have been shown to be a key factor in supporting students that want to study science, technology, engineering, and mathematics (STEM) disciplines (Wai, Lubinski and Benbow) and pursue STEM careers. Geospatial technologies strongly scaffold the development of these spatial thinking skills. For the last ten years, the Geospatial Semester, a unique dual-enrollment partnership between James Madison University and Virginia high schools, has provided students with the opportunity to use GST's to hone their spatial thinking skills and to do extended projects of local interest, including environmental, geological and ecological studies. Along with strong spatial thinking skills, these students have also shown strong problem solving skills, often beyond those of fellow students in AP classes. Programs like the Geospatial Semester are scalable and within the reach of many college and university departments, allowing strong engagement with K-12 schools. In this presentation, we'll share details of the Geospatial Semester and research results on the impact of the use of these technologies on students' spatial thinking skills, and discuss the success and challenges of developing K-12 partnerships centered on geospatial visualization.

  1. a New Framework for Geospatial Site Selection Using Artificial Neural Networks as Decision Rules: a Case Study on Landfill Sites

    NASA Astrophysics Data System (ADS)

    Abujayyab, S. K. M.; Ahamad, M. A. S.; Yahya, A. S.; Saad, A.-M. H. Y.

    2015-10-01

    This paper briefly introduced the theory and framework of geospatial site selection (GSS) and discussed the application and framework of artificial neural networks (ANNs). The related literature on the use of ANNs as decision rules in GSS is scarce from 2000 till 2015. As this study found, ANNs are not only adaptable to dynamic changes but also capable of improving the objectivity of acquisition in GSS, reducing time consumption, and providing high validation. ANNs make for a powerful tool for solving geospatial decision-making problems by enabling geospatial decision makers to implement their constraints and imprecise concepts. This tool offers a way to represent and handle uncertainty. Specifically, ANNs are decision rules implemented to enhance conventional GSS frameworks. The main assumption in implementing ANNs in GSS is that the current characteristics of existing sites are indicative of the degree of suitability of new locations with similar characteristics. GSS requires several input criteria that embody specific requirements and the desired site characteristics, which could contribute to geospatial sites. In this study, the proposed framework consists of four stages for implementing ANNs in GSS. A multilayer feed-forward network with a backpropagation algorithm was used to train the networks from prior sites to assess, generalize, and evaluate the outputs on the basis of the inputs for the new sites. Two metrics, namely, confusion matrix and receiver operating characteristic tests, were utilized to achieve high accuracy and validation. Results proved that ANNs provide reasonable and efficient results as an accurate and inexpensive quantitative technique for GSS.

  2. Deductive Coordination of Multiple Geospatial Knowledge Sources

    NASA Astrophysics Data System (ADS)

    Waldinger, R.; Reddy, M.; Culy, C.; Hobbs, J.; Jarvis, P.; Dungan, J. L.

    2002-12-01

    Deductive inference is applied to choreograph the cooperation of multiple knowledge sources to respond to geospatial queries. When no one source can provide an answer, the response may be deduced from pieces of the answer provided by many sources. Examples of sources include (1) The Alexandria Digital Library Gazetteer, a repository that gives the locations for almost six million place names, (2) The Cia World Factbook, an online almanac with basic information about more than 200 countries. (3) The SRI TerraVision 3D Terrain Visualization System, which displays a flight-simulator-like interactive display of geographic data held in a database, (4) The NASA GDACC WebGIS client for searching satellite and other geographic data available through OpenGIS Consortium (OGC) Web Map Servers, and (5) The Northern Arizona University Latitude/Longitude Distance Calculator. Queries are phrased in English and are translated into logical theorems by the Gemini Natural Language Parser. The theorems are proved by SNARK, a first-order-logic theorem prover, in the context of an axiomatic geospatial theory. The theory embodies a representational scheme that takes into account the fact that the same place may have many names, and the same name may refer to many places. SNARK has built-in procedures (RCC8 and the Allen calculus, respectively) for reasoning about spatial and temporal concepts. External knowledge sources may be consulted by SNARK as the proof is in progress, so that most knowledge need not be stored axiomatically. The Open Agent Architecture (OAA) facilitates communication between sources that may be implemented on different machines in different computer languages. An answer to the query, in the form of text or an image, is extracted from the proof. Currently, three-dimensional images are displayed by TerraVision but other displays are possible. The combined system is called Geo-Logica. Some example queries that can be handled by Geo-Logica include: (1) show the

  3. Geospatial database for heritage building conservation

    NASA Astrophysics Data System (ADS)

    Basir, W. N. F. W. A.; Setan, H.; Majid, Z.; Chong, A.

    2014-02-01

    Heritage buildings are icons from the past that exist in present time. Through heritage architecture, we can learn about economic issues and social activities of the past. Nowadays, heritage buildings are under threat from natural disaster, uncertain weather, pollution and others. In order to preserve this heritage for the future generation, recording and documenting of heritage buildings are required. With the development of information system and data collection technique, it is possible to create a 3D digital model. This 3D information plays an important role in recording and documenting heritage buildings. 3D modeling and virtual reality techniques have demonstrated the ability to visualize the real world in 3D. It can provide a better platform for communication and understanding of heritage building. Combining 3D modelling with technology of Geographic Information System (GIS) will create a database that can make various analyses about spatial data in the form of a 3D model. Objectives of this research are to determine the reliability of Terrestrial Laser Scanning (TLS) technique for data acquisition of heritage building and to develop a geospatial database for heritage building conservation purposes. The result from data acquisition will become a guideline for 3D model development. This 3D model will be exported to the GIS format in order to develop a database for heritage building conservation. In this database, requirements for heritage building conservation process are included. Through this research, a proper database for storing and documenting of the heritage building conservation data will be developed.

  4. Geospatial Characterization of Biodiversity: Need and Challenges

    NASA Astrophysics Data System (ADS)

    Roy, P. S.

    2011-08-01

    Explaining the distribution of species and understanding their abundance and spatial distribution at multiple scales using remote sensing and ground based observation have been the central aspect of the meeting of COP10 for achieving CBD 2020 targets. In this respect the Biodiveristy Characterization at Landscape Level for India is a milestone in biodiversity study in this country. Satellite remote sensing has been used to derive the spatial extent and vegetation composition patterns. Sensitivity of different multi-scale landscape metrics, species composition, ecosystem uniqueness and diversity in distribution of biological diversity is assessed through customized landscape analysis software to generate the biological richness surface. The uniqueness of the study lies in the creation of baseline geo-spatial data on vegetation types using multi-temporal satellite remote sensing data (IRS LISS III), deriving biological richness based on spatial landscape analysis and inventory of location specific information about 7964 unique plant species recorded in 20,000 sample plots in India and their status with respect to endemic, threatened and economic/medicinal importance. The results generated will serve as a baseline database for various assessment of the biodiversity for addressing CBD 2020 targets.

  5. With Geospatial in Path of Smart City

    NASA Astrophysics Data System (ADS)

    Homainejad, A. S.

    2015-04-01

    With growth of urbanisation, there is a requirement for using the leverage of smart city in city management. The core of smart city is Information and Communication Technologies (ICT), and one of its elements is smart transport which includes sustainable transport and Intelligent Transport Systems (ITS). Cities and especially megacities are facing urgent transport challenge in traffic management. Geospatial can provide reliable tools for monitoring and coordinating traffic. In this paper a method for monitoring and managing the ongoing traffic in roads using aerial images and CCTV will be addressed. In this method, the road network was initially extracted and geo-referenced and captured in a 3D model. The aim is to detect and geo-referenced any vehicles on the road from images in order to assess the density and the volume of vehicles on the roads. If a traffic jam was recognised from the images, an alternative route would be suggested for easing the traffic jam. In a separate test, a road network was replicated in the computer and a simulated traffic was implemented in order to assess the traffic management during a pick time using this method.

  6. The Implementation of a Geospatial Information Technology (GIT)-Supported Land Use Change Curriculum with Urban Middle School Learners to Promote Spatial Thinking

    ERIC Educational Resources Information Center

    Bodzin, Alec M.

    2011-01-01

    This study investigated whether a geospatial information technology (GIT)-supported science curriculum helped students in an urban middle school understand land use change (LUC) concepts and enhanced their spatial thinking. Five 8th grade earth and space science classes in an urban middle school consisting of three different ability level tracks…

  7. A Geospatial Semantic Enrichment and Query Service for Geotagged Photographs

    PubMed Central

    Ennis, Andrew; Nugent, Chris; Morrow, Philip; Chen, Liming; Ioannidis, George; Stan, Alexandru; Rachev, Preslav

    2015-01-01

    With the increasing abundance of technologies and smart devices, equipped with a multitude of sensors for sensing the environment around them, information creation and consumption has now become effortless. This, in particular, is the case for photographs with vast amounts being created and shared every day. For example, at the time of this writing, Instagram users upload 70 million photographs a day. Nevertheless, it still remains a challenge to discover the “right” information for the appropriate purpose. This paper describes an approach to create semantic geospatial metadata for photographs, which can facilitate photograph search and discovery. To achieve this we have developed and implemented a semantic geospatial data model by which a photograph can be enrich with geospatial metadata extracted from several geospatial data sources based on the raw low-level geo-metadata from a smartphone photograph. We present the details of our method and implementation for searching and querying the semantic geospatial metadata repository to enable a user or third party system to find the information they are looking for. PMID:26205265

  8. A Geospatial Semantic Enrichment and Query Service for Geotagged Photographs.

    PubMed

    Ennis, Andrew; Nugent, Chris; Morrow, Philip; Chen, Liming; Ioannidis, George; Stan, Alexandru; Rachev, Preslav

    2015-01-01

    With the increasing abundance of technologies and smart devices, equipped with a multitude of sensors for sensing the environment around them, information creation and consumption has now become effortless. This, in particular, is the case for photographs with vast amounts being created and shared every day. For example, at the time of this writing, Instagram users upload 70 million photographs a day. Nevertheless, it still remains a challenge to discover the "right" information for the appropriate purpose. This paper describes an approach to create semantic geospatial metadata for photographs, which can facilitate photograph search and discovery. To achieve this we have developed and implemented a semantic geospatial data model by which a photograph can be enrich with geospatial metadata extracted from several geospatial data sources based on the raw low-level geo-metadata from a smartphone photograph. We present the details of our method and implementation for searching and querying the semantic geospatial metadata repository to enable a user or third party system to find the information they are looking for. PMID:26205265

  9. Restful Implementation of Catalogue Service for Geospatial Data Provenance

    NASA Astrophysics Data System (ADS)

    Jiang, L. C.; Yue, P.; Lu, X. C.

    2013-10-01

    Provenance, also known as lineage, is important in understanding the derivation history of data products. Geospatial data provenance helps data consumers to evaluate the quality and reliability of geospatial data. In a service-oriented environment, where data are often consumed or produced by distributed services, provenance could be managed by following the same service-oriented paradigm. The Open Geospatial Consortium (OGC) Catalogue Service for the Web (CSW) is used for the registration and query of geospatial data provenance by extending ebXML Registry Information Model (ebRIM). Recent advance of the REpresentational State Transfer (REST) paradigm has shown great promise for the easy integration of distributed resources. RESTful Web Service aims to provide a standard way for Web clients to communicate with servers based on REST principles. The existing approach for provenance catalogue service could be improved by adopting the RESTful design. This paper presents the design and implementation of a catalogue service for geospatial data provenance following RESTful architecture style. A middleware named REST Converter is added on the top of the legacy catalogue service to support a RESTful style interface. The REST Converter is composed of a resource request dispatcher and six resource handlers. A prototype service is developed to demonstrate the applicability of the approach.

  10. COMPASS: A Geospatial Knowledge Infrastructure Managed with Ontologies

    NASA Astrophysics Data System (ADS)

    Stock, K.

    2009-04-01

    COMPASS: A Geospatial Knowledge Infrastructure Managed with Ontologies Dr Kristin Stock Allworlds Geothinking, United Kingdom and EDINA, University of Edinburgh, United Kingdom and Centre for Geospatial Science University of Nottingham Nottingham United Kingdom The research and decision-making process in any discipline is supported by a vast quantity and diversity of scientific resources, including journal articles; scientific models; scientific theories; data sets and web services that implement scientific models or provide other functionality. Improved discovery and access to these scientific resources has the potential to make the process of using and developing scientific knowledge more effective and efficient. Current scientific research or decision making that relies on scientific resources requires an extensive search for relevant resources. Published journal papers may be discovered using web searches on the basis of words that appear in the title or metadata, but this approach is limited by the need to select the appropriate words, and does not identify articles that may be of interest because they use a similar approach, methodology or technique but are in a different discipline, or that are likely to be helpful despite not sharing the same keywords. The COMPASS project is developing a knowledge infrastructure that is intended to enhance the user experience in discovering scientific resources. This is being achieved with an approach that uses ontologies to manage the knowledge infrastructure in two ways: 1. A set of ontologies describe the resources in the knowledge infrastructure (for example, publications and web services) in terms of the domain concepts to which they relate, the scientific theories and models that they depend on, and the characteristics of the resources themselves. These ontologies are provided to users either directly or with assisted search tools to aid them in the discovery process. OWL-S ontologies are being used to describe web

  11. Geospatial decision support systems for societal decision making

    USGS Publications Warehouse

    Bernknopf, R.L.

    2005-01-01

    While science provides reliable information to describe and understand the earth and its natural processes, it can contribute more. There are many important societal issues in which scientific information can play a critical role. Science can add greatly to policy and management decisions to minimize loss of life and property from natural and man-made disasters, to manage water, biological, energy, and mineral resources, and in general, to enhance and protect our quality of life. However, the link between science and decision-making is often complicated and imperfect. Technical language and methods surround scientific research and the dissemination of its results. Scientific investigations often are conducted under different conditions, with different spatial boundaries, and in different timeframes than those needed to support specific policy and societal decisions. Uncertainty is not uniformly reported in scientific investigations. If society does not know that data exist, what the data mean, where to use the data, or how to include uncertainty when a decision has to be made, then science gets left out -or misused- in a decision making process. This paper is about using Geospatial Decision Support Systems (GDSS) for quantitative policy analysis. Integrated natural -social science methods and tools in a Geographic Information System that respond to decision-making needs can be used to close the gap between science and society. The GDSS has been developed so that nonscientists can pose "what if" scenarios to evaluate hypothetical outcomes of policy and management choices. In this approach decision makers can evaluate the financial and geographic distribution of potential policy options and their societal implications. Actions, based on scientific information, can be taken to mitigate hazards, protect our air and water quality, preserve the planet's biodiversity, promote balanced land use planning, and judiciously exploit natural resources. Applications using the

  12. Building Geospatial Web Services for Ecological Monitoring and Forecasting

    NASA Astrophysics Data System (ADS)

    Hiatt, S. H.; Hashimoto, H.; Melton, F. S.; Michaelis, A. R.; Milesi, C.; Nemani, R. R.; Wang, W.

    2008-12-01

    The Terrestrial Observation and Prediction System (TOPS) at NASA Ames Research Center is a modeling system that generates a suite of gridded data products in near real-time that are designed to enhance management decisions related to floods, droughts, forest fires, human health, as well as crop, range, and forest production. While these data products introduce great possibilities for assisting management decisions and informing further research, realization of their full potential is complicated by their shear volume and by the need for a necessary infrastructure for remotely browsing, visualizing, and analyzing the data. In order to address these difficulties we have built an OGC-compliant WMS and WCS server based on an open source software stack that provides standardized access to our archive of data. This server is built using the open source Java library GeoTools which achieves efficient I/O and image rendering through Java Advanced Imaging. We developed spatio-temporal raster management capabilities using the PostGrid raster indexation engine. We provide visualization and browsing capabilities through a customized Ajax web interface derived from the kaMap project. This interface allows resource managers to quickly assess ecosystem conditions and identify significant trends and anomalies from within their web browser without the need to download source data or install special software. Our standardized web services also expose TOPS data to a range of potential clients, from web mapping applications to virtual globes and desktop GIS packages. However, support for managing the temporal dimension of our data is currently limited in existing software systems. Future work will attempt to overcome this shortcoming by building time-series visualization and analysis tools that can be integrated with existing geospatial software.

  13. Narrative Geospatial Knowledge in Ethnographies: Representation and Reasoning

    NASA Astrophysics Data System (ADS)

    Chang, Chin-Lung; Chang, Yi-Hong; Chuang, Tyng-Ruey; Deng, Dong-Po; Huang, Andrea Wei-Ching

    Narrative descriptions about populated places are very common in ethnographies. In old articles and books on the migration history of Taiwan aborigines, for example, narrative sentences are the norms for describing the locations of aboriginal settlements. These narratives constitute a form of geospatial knowledge, and there is a need to develop knowledge representation and reasoning techniques to help analyze literatures, and to aid field works. In this paper, we outline the design of a formal vocabulary to represent and reason about geospatial narratives about populated places, keeping as close as possible to the phrases used in ethnographies. The vocabulary is implemented as OWL concepts and properties, and the rules for geospatial reasoning are expressed in SWRL.

  14. Kingdom of Saudi Arabia Geospatial Information Infrastructure - AN Initial Study

    NASA Astrophysics Data System (ADS)

    Alsultan, S. H.; Rahman, A. A.

    2015-10-01

    This paper reviews the current Geographic Information System (Longley et al.) implementation and status in the Kingdom of Saudi Arabia (KSA). Based on the review, several problems were identified and discussed. The characteristic of these problems show that the country needs a national geospatial centre. As a new initiative for a national geospatial centre, a study is being conducted especially on best practice from other countries, availability of national committee for standards and policies on data sharing, and the best proposed organization structure inside the administration for the KSA. The study also covers the degree of readiness and awareness among the main GIS stakeholders within the country as well as private parties. At the end of this paper, strategic steps for the national geospatial management centre were proposed as the initial output of the study.

  15. Making geospatial data in ASF archive readily accessible

    NASA Astrophysics Data System (ADS)

    Gens, R.; Hogenson, K.; Wolf, V. G.; Drew, L.; Stern, T.; Stoner, M.; Shapran, M.

    2015-12-01

    The way geospatial data is searched, managed, processed and used has changed significantly in recent years. A data archive such as the one at the Alaska Satellite Facility (ASF), one of NASA's twelve interlinked Distributed Active Archive Centers (DAACs), used to be searched solely via user interfaces that were specifically developed for its particular archive and data sets. ASF then moved to using an application programming interface (API) that defined a set of routines, protocols, and tools for distributing the geospatial information stored in the database in real time. This provided a more flexible access to the geospatial data. Yet, it was up to user to develop the tools to get a more tailored access to the data they needed. We present two new approaches for serving data to users. In response to the recent Nepal earthquake we developed a data feed for distributing ESA's Sentinel data. Users can subscribe to the data feed and are provided with the relevant metadata the moment a new data set is available for download. The second approach was an Open Geospatial Consortium (OGC) web feature service (WFS). The WFS hosts the metadata along with a direct link from which the data can be downloaded. It uses the open-source GeoServer software (Youngblood and Iacovella, 2013) and provides an interface to include the geospatial information in the archive directly into the user's geographic information system (GIS) as an additional data layer. Both services are run on top of a geospatial PostGIS database, an open-source geographic extension for the PostgreSQL object-relational database (Marquez, 2015). Marquez, A., 2015. PostGIS essentials. Packt Publishing, 198 p. Youngblood, B. and Iacovella, S., 2013. GeoServer Beginner's Guide, Packt Publishing, 350 p.

  16. Commercial observation satellites: broadening the sources of geospatial data

    NASA Astrophysics Data System (ADS)

    Baker, John C.; O'Connell, Kevin M.; Venzor, Jose A.

    2002-09-01

    Commercial observation satellites promise to broaden substantially the sources of imagery data available to potential users of geospatial data and related information products. We examine the new trend toward private firms acquiring and operating high-resolution imagery satellites. These commercial observation satellites build on the substantial experience in Earth observation operations provided by government-owned imaging satellites for civilian and military purposes. However, commercial satellites will require governments and companies to reconcile public and private interests in allowing broad public access to high-resolution satellite imagery data without creating national security risks or placing the private firms at a disadvantage compared with other providers of geospatial data.

  17. Geo-spatial Informatics in International Public Health Nursing Education.

    PubMed

    Kerr, Madeleine J; Honey, Michelle L L; Krzyzanowski, Brittany

    2016-01-01

    This poster describes results of an undergraduate nursing informatics experience. Students applied geo-spatial methods to community assessments in two urban regions of New Zealand and the United States. Students used the Omaha System standardized language to code their observations during a brief community assessment activity and entered their data into a mapping program developed in Esri ArcGIS Online, a geographic information system. Results will be displayed in tables and maps to allow comparison among the communities. The next generation of nurses can employ geo-spatial informatics methods to contribute to innovative community assessment, planning and policy development. PMID:27332443

  18. 3-D HYDRODYNAMIC MODELING IN A GEOSPATIAL FRAMEWORK

    SciTech Connect

    Bollinger, J; Alfred Garrett, A; Larry Koffman, L; David Hayes, D

    2006-08-24

    3-D hydrodynamic models are used by the Savannah River National Laboratory (SRNL) to simulate the transport of thermal and radionuclide discharges in coastal estuary systems. Development of such models requires accurate bathymetry, coastline, and boundary condition data in conjunction with the ability to rapidly discretize model domains and interpolate the required geospatial data onto the domain. To facilitate rapid and accurate hydrodynamic model development, SRNL has developed a pre- and post-processor application in a geospatial framework to automate the creation of models using existing data. This automated capability allows development of very detailed models to maximize exploitation of available surface water radionuclide sample data and thermal imagery.

  19. Geospatial Perspective: Toward a Visual Political Literacy Project in Education, Health, and Human Services

    ERIC Educational Resources Information Center

    Hogrebe, Mark C.; Tate, William F., IV

    2012-01-01

    In this chapter, "geospatial" refers to geographic space that includes location, distance, and the relative position of things on the earth's surface. Geospatial perspective calls for the addition of a geographic lens that focuses on place and space as important contextual variables. A geospatial view increases one's understanding of education,…

  20. EPA Geospatial Quality Council Strategic and Implementation Plan 2010 to 2015

    EPA Science Inventory

    The EPA Geospatial Quality Council (GQC) was created to promote and provide Quality Assurance guidance for the development, use, and products of geospatial science. The GQC was created when the gap between the EPA Quality Assurance (QA) and Geospatial communities was recognized. ...

  1. Evaluation of groundwater potential using geospatial techniques

    NASA Astrophysics Data System (ADS)

    Hussein, Abdul-Aziz; Govindu, Vanum; Nigusse, Amare Gebre Medhin

    2016-06-01

    The issue of unsustainable groundwater utilization is becoming increasingly an evident problem and the key concern for many developing countries. One of the problems is the absence of updated spatial information on the quantity and distribution of groundwater resource. Like the other developing countries, groundwater evaluation in Ethiopia has been usually conducted using field survey which is not feasible in terms of time and resource. This study was conducted in Northern Ethiopia, Wollo Zone, in Gerardo River Catchment district to spatially delineate the groundwater potential areas using geospatial and MCDA tools. To do so, eight major biophysical and environmental factors like geomorphology, lithology, slope, rainfall, land use land cover (LULC), soil, lineament density and drainage density were considered. The sources of these data were satellite image, digital elevation model (DEM), existing thematic maps and metrological station data. Landsat image was used in ERDAS Imagine to drive the LULC of the area, while the geomorphology, soil, and lithology of the area were identified and classified through field survey and digitized from existing maps using the ArcGIS software. The slope, lineament and drainage density of the area were derived from DEM using spatial analysis tools. The rainfall surface map was generated using the thissen polygon interpolation. Finally, after all these thematic maps were organized, weighted value determination for each factor and its field value was computed using IDRSI software. At last, all the factors were integrated together and computed the model using the weighted overlay so that potential groundwater areas were mapped. The findings depicted that the most potential groundwater areas are found in the central and eastern parts of the study area, while the northern and western parts of the Gerado River Catchment have poor potential of groundwater availability. This is mainly due to the cumulative effect of steep topographic and

  2. Geospatial Technology Applications and Infrastructure in the Biological Resources Division

    USGS Publications Warehouse

    D'Erchia, Frank; Getter, James; D'Erchia, Terry D.; Root, Ralph; Stitt, Susan; White, Barbara

    1998-01-01

    Executive Summary -- Automated spatial processing technology such as geographic information systems (GIS), telemetry, and satellite-based remote sensing are some of the more recent developments in the long history of geographic inquiry. For millennia, humankind has endeavored to map the Earth's surface and identify spatial relationships. But the precision with which we can locate geographic features has increased exponentially with satellite positioning systems. Remote sensing, GIS, thematic mapping, telemetry, and satellite positioning systems such as the Global Positioning System (GPS) are tools that greatly enhance the quality and rapidity of analysis of biological resources. These technologies allow researchers, planners, and managers to more quickly and accurately determine appropriate strategies and actions. Researchers and managers can view information from new and varying perspectives using GIS and remote sensing, and GPS receivers allow the researcher or manager to identify the exact location of interest. These geospatial technologies support the mission of the U.S. Geological Survey (USGS) Biological Resources Division (BRD) and the Strategic Science Plan (BRD 1996) by providing a cost-effective and efficient method for collection, analysis, and display of information. The BRD mission is 'to work with others to provide the scientific understanding and technologies needed to support the sound management and conservation of our Nation's biological resources.' A major responsibility of the BRD is to develop and employ advanced technologies needed to synthesize, analyze, and disseminate biological and ecological information. As the Strategic Science Plan (BRD 1996) states, 'fulfilling this mission depends on effectively balancing the immediate need for information to guide management of biological resources with the need for technical assistance and long-range, strategic information to understand and predict emerging patterns and trends in ecological systems

  3. A resource-oriented architecture for a Geospatial Web

    NASA Astrophysics Data System (ADS)

    Mazzetti, Paolo; Nativi, Stefano

    2010-05-01

    In this presentation we discuss some architectural issues on the design of an architecture for a Geospatial Web, that is an information system for sharing geospatial resources according to the Web paradigm. The success of the Web in building a multi-purpose information space, has raised questions about the possibility of adopting the same approach for systems dedicated to the sharing of more specific resources, such as the geospatial information, that is information characterized by spatial/temporal reference. To this aim an investigation on the nature of the Web and on the validity of its paradigm for geospatial resources is required. The Web was born in the early 90's to provide "a shared information space through which people and machines could communicate" [Berners-Lee 1996]. It was originally built around a small set of specifications (e.g. URI, HTTP, HTML, etc.); however, in the last two decades several other technologies and specifications have been introduced in order to extend its capabilities. Most of them (e.g. the SOAP family) actually aimed to transform the Web in a generic Distributed Computing Infrastructure. While these efforts were definitely successful enabling the adoption of service-oriented approaches for machine-to-machine interactions supporting complex business processes (e.g. for e-Government and e-Business applications), they do not fit in the original concept of the Web. In the year 2000, R. T. Fielding, one of the designers of the original Web specifications, proposes a new architectural style for distributed systems, called REST (Representational State Transfer), aiming to capture the fundamental characteristics of the Web as it was originally conceived [Fielding 2000]. In this view, the nature of the Web lies not so much in the technologies, as in the way they are used. Maintaining the Web architecture conform to the REST style would then assure the scalability, extensibility and low entry barrier of the original Web. On the contrary

  4. Brokered virtual hubs for facilitating access and use of geospatial Open Data

    NASA Astrophysics Data System (ADS)

    Mazzetti, Paolo; Latre, Miguel; Kamali, Nargess; Brumana, Raffaella; Braumann, Stefan; Nativi, Stefano

    2016-04-01

    Open Data is a major trend in current information technology scenario and it is often publicised as one of the pillars of the information society in the near future. In particular, geospatial Open Data have a huge potential also for Earth Sciences, through the enablement of innovative applications and services integrating heterogeneous information. However, open does not mean usable. As it was recognized at the very beginning of the Web revolution, many different degrees of openness exist: from simple sharing in a proprietary format to advanced sharing in standard formats and including semantic information. Therefore, to fully unleash the potential of geospatial Open Data, advanced infrastructures are needed to increase the data openness degree, enhancing their usability. In October 2014, the ENERGIC OD (European NEtwork for Redistributing Geospatial Information to user Communities - Open Data) project, funded by the European Union under the Competitiveness and Innovation framework Programme (CIP), has started. In response to the EU call, the general objective of the project is to "facilitate the use of open (freely available) geographic data from different sources for the creation of innovative applications and services through the creation of Virtual Hubs". The ENERGIC OD Virtual Hubs aim to facilitate the use of geospatial Open Data by lowering and possibly removing the main barriers which hampers geo-information (GI) usage by end-users and application developers. Data and services heterogeneity is recognized as one of the major barriers to Open Data (re-)use. It imposes end-users and developers to spend a lot of effort in accessing different infrastructures and harmonizing datasets. Such heterogeneity cannot be completely removed through the adoption of standard specifications for service interfaces, metadata and data models, since different infrastructures adopt different standards to answer to specific challenges and to address specific use-cases. Thus

  5. Toward Open Science at the European Scale: Geospatial Semantic Array Programming for Integrated Environmental Modelling

    NASA Astrophysics Data System (ADS)

    de Rigo, Daniele; Corti, Paolo; Caudullo, Giovanni; McInerney, Daniel; Di Leo, Margherita; San-Miguel-Ayanz, Jesús

    2013-04-01

    Interfacing science and policy raises challenging issues when large spatial-scale (regional, continental, global) environmental problems need transdisciplinary integration within a context of modelling complexity and multiple sources of uncertainty [1]. This is characteristic of science-based support for environmental policy at European scale [1], and key aspects have also long been investigated by European Commission transnational research [2-5]. Parameters ofthe neededdata- transformations ? = {?1????m} (a.5) Wide-scale transdisciplinary modelling for environment. Approaches (either of computational science or of policy-making) suitable at a given domain-specific scale may not be appropriate for wide-scale transdisciplinary modelling for environment (WSTMe) and corresponding policy-making [6-10]. In WSTMe, the characteristic heterogeneity of available spatial information (a) and complexity of the required data-transformation modelling (D- TM) appeal for a paradigm shift in how computational science supports such peculiarly extensive integration processes. In particular, emerging wide-scale integration requirements of typical currently available domain-specific modelling strategies may include increased robustness and scalability along with enhanced transparency and reproducibility [11-15]. This challenging shift toward open data [16] and reproducible research [11] (open science) is also strongly suggested by the potential - sometimes neglected - huge impact of cascading effects of errors [1,14,17-19] within the impressively growing interconnection among domain-specific computational models and frameworks. From a computational science perspective, transdisciplinary approaches to integrated natural resources modelling and management (INRMM) [20] can exploit advanced geospatial modelling techniques with an awesome battery of free scientific software [21,22] for generating new information and knowledge from the plethora of composite data [23-26]. From the perspective

  6. A Research Agenda for Geospatial Technologies and Learning

    ERIC Educational Resources Information Center

    Baker, Tom R.; Battersby, Sarah; Bednarz, Sarah W.; Bodzin, Alec M.; Kolvoord, Bob; Moore, Steven; Sinton, Diana; Uttal, David

    2015-01-01

    Knowledge around geospatial technologies and learning remains sparse, inconsistent, and overly anecdotal. Studies are needed that are better structured; more systematic and replicable; attentive to progress and findings in the cognate fields of science, technology, engineering, and math education; and coordinated for multidisciplinary approaches.…

  7. Geospatial Analysis of Renewable Energy Technical Potential on Tribal Lands

    SciTech Connect

    Doris, E.; Lopez, A.; Beckley, D.

    2013-02-01

    This technical report uses an established geospatial methodology to estimate the technical potential for renewable energy on tribal lands for the purpose of allowing Tribes to prioritize the development of renewable energy resources either for community scale on-tribal land use or for revenue generating electricity sales.

  8. Automated Geospatial Watershed Assessment (AGWA) 3.0 Software Tool

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment (AGWA) tool has been developed under an interagency research agreement between the U.S. Environmental Protection Agency, Office of Research and Development, and the U.S. Department of Agriculture, Agricultural Research Service. AGWA i...

  9. Automated Geospatial Watershed Assessment (AGWA) Documentation Version 2.0

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment Http://www.epa.gov/nerlesd1/landsci/agwa/introduction.htm and www.tucson.ars.ag.gov/agwa) tool is a GIS interface jointly developed by the U.S. Environmental Protection Agency, USDA-Agricultural Research Service, University of Arizon...

  10. 78 FR 71638 - Announcement of National Geospatial Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ....S. Geological Survey Announcement of National Geospatial Advisory Committee Meeting AGENCY: U.S... be held on December 11, 2013, from 1:00 p.m. to 5:00 p.m. e.s.t. FOR FURTHER INFORMATION CONTACT: John Mahoney, U.S. Geological Survey (206-220-4621). SUPPLEMENTARY INFORMATION: Meetings of...

  11. Geospatial evaluations of potato production systems in Maine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maine consistently ranks in the top ten potato (Solanum tuberosum L.) production areas though yields are substantially lower than the mid- and western USA. Geospatial frameworks help resolve patterns and trends in production environments (at multiple scales) that may enable improvements in adaptive ...

  12. What Lives Where & Why? Understanding Biodiversity through Geospatial Exploration

    ERIC Educational Resources Information Center

    Trautmann, Nancy M.; Makinster, James G.; Batek, Michael

    2013-01-01

    Using an interactive map-based PDF, students learn key concepts related to biodiversity while developing data-analysis and critical-thinking skills. The Bird Island lesson provides students with experience in translating geospatial data into bar graphs, then interpreting these graphs to compare biodiversity across ecoregions on a fictional island.…

  13. Office of Biological Informatics and Outreach geospatial technology activities

    USGS Publications Warehouse

    U.S. Geological Survey

    1998-01-01

    The U.S. Geological Survey (USGS) Office of Biological Informatics and Outreach (OBIO) in Reston, Virginia, and its Center for Biological Informatics (CBI) in Denver, Colorado, provide leadership in the development and use of geospatial technologies to advance the Nation's biological science activities.

  14. - and Cloud-Supported Geospatial Service Aggregation for Flood Response

    NASA Astrophysics Data System (ADS)

    Tan, X.; Di, L.; Deng, M.; Chen, A.; Sun, Z.; Huang, C.; Shao, Y.; Ye, X.

    2015-07-01

    Flooding caused serious losses in China in the past two decades; therefore, responding to and mitigating the impact of flooding is a task of critical importance. The traditional flood response process is usually very time-consuming and labor-intensive. The Service-Oriented Architecture SOA-based flood response is a method with low efficiency due to the large volume of geospatial data transfer, and this method cannot meet the real-time requirement of a rapid response to flooding. This paper presents an Agent- and Cloud-supported geospatial service aggregation to obtain a more efficient geospatial service system for the response to flooding. The architecture of this method is designed and deployed on the Cloud environment, and the flooding response prototype system is built on the Amazon AWS Cloud to demonstrate that the proposed method can avoid transferring large volumes of geospatial data or Big Spatial Data. Consequently, this method is able to achieve better performance than that of the SOA-based method.

  15. Shared Geospatial Metadata Repository for Ontario University Libraries: Collaborative Approaches

    ERIC Educational Resources Information Center

    Forward, Erin; Leahey, Amber; Trimble, Leanne

    2015-01-01

    Successfully providing access to special collections of digital geospatial data in academic libraries relies upon complete and accurate metadata. Creating and maintaining metadata using specialized standards is a formidable challenge for libraries. The Ontario Council of University Libraries' Scholars GeoPortal project, which created a shared…

  16. An Assessment Instrument to Measure Geospatial Thinking Expertise

    ERIC Educational Resources Information Center

    Huynh, Niem Tu; Sharpe, Bob

    2013-01-01

    Spatial thinking is fundamental to the practice and theory of geography, however there are few valid and reliable assessment methods in geography to measure student performance in spatial thinking. This article presents the development and evaluation of a geospatial thinking assessment instrument to measure participant understanding of spatial…

  17. Challenges of Broadening Participation in the Geospatial Technology Workforce

    NASA Astrophysics Data System (ADS)

    DiBiase, D.

    2015-12-01

    In this presentation I'll describe the geospatial technology industry and its workforce needs, in relation to the geosciences. The talk will consider the special challenge of recruiting and retaining women and under-represented minorities in high tech firms like Esri. Finally, I'll discuss what my company is doing to help realize the benefits of a diverse workforce.

  18. A study on state of Geospatial courses in Indian Universities

    NASA Astrophysics Data System (ADS)

    Shekhar, S.

    2014-12-01

    Today the world is dominated by three technologies such as Nano technology, Bio technology and Geospatial technology. This increases the huge demand for experts in the respective field for disseminating the knowledge as well as for an innovative research. Therefore, the prime need is to train the existing fraternity to gain progressive knowledge in these technologies and impart the same to student community. The geospatial technology faces some peculiar problem than other two technologies because of its interdisciplinary, multi-disciplinary nature. It attracts students and mid career professionals from various disciplines including Physics, Computer science, Engineering, Geography, Geology, Agriculture, Forestry, Town Planning and so on. Hence there is always competition to crab and stabilize their position. The students of Master's degree in Geospatial science are facing two types of problem. The first one is no unique identity in the academic field. Neither they are exempted for National eligibility Test for Lecturer ship nor given an opportunity to have the exam in geospatial science. The second one is differential treatment by the industrial world. The students are either given low grade jobs or poorly paid for their job. Thus, it is a serious issue about the future of this course in the Universities and its recognition in the academic and industrial world. The universities should make this course towards more job oriented in consultation with the Industries and Industries should come forward to share their demands and requirements to the Universities, so that necessary changes in the curriculum can be made to meet the industrial requirements.

  19. Geospatial Intelligence (GEOINT) and Intelligence Surveillance and Reconnaissance (ISR) convergence

    NASA Astrophysics Data System (ADS)

    Lee, Michael G.

    2013-05-01

    An examination of the potentialities, benefits and challenges of the confluence, integration and operation of Geospatial Intelligence (GEOINT) capabilities, products and techniques within the larger context of the Intelligence, Surveillance and Reconnaissance (ISR) arena, particularly in regards to persistent surveillance and Full Motion Video (FMV).

  20. Geospatial decision support framework for critical infrastructure interdependency assessment

    NASA Astrophysics Data System (ADS)

    Shih, Chung Yan

    Critical infrastructures, such as telecommunications, energy, banking and finance, transportation, water systems and emergency services are the foundations of modern society. There is a heavy dependence on critical infrastructures at multiple levels within the supply chain of any good or service. Any disruptions in the supply chain may cause profound cascading effect to other critical infrastructures. A 1997 report by the President's Commission on Critical Infrastructure Protection states that a serious interruption in freight rail service would bring the coal mining industry to a halt within approximately two weeks and the availability of electric power could be reduced in a matter of one to two months. Therefore, this research aimed at representing and assessing the interdependencies between coal supply, transportation and energy production. A proposed geospatial decision support framework was established and applied to analyze interdependency related disruption impact. By utilizing the data warehousing approach, geospatial and non-geospatial data were retrieved, integrated and analyzed based on the transportation model and geospatial disruption analysis developed in the research. The results showed that by utilizing this framework, disruption impacts can be estimated at various levels (e.g., power plant, county, state, etc.) for preventative or emergency response efforts. The information derived from the framework can be used for data mining analysis (e.g., assessing transportation mode usages; finding alternative coal suppliers, etc.).

  1. Automated Geospatial Watershed Assessment Tool (AGWA) Poster Presentation

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment tool (AGWA, see: www.tucson.ars.ag.gov/agwa or http://www.epa.gov/esd/land-sci/agwa/) is a GIS interface jointly developed by the USDA-Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona...

  2. Advancing Geospatial Technologies in Science and Social Science: A Case Study in Collaborative Education

    NASA Astrophysics Data System (ADS)

    Williams, N. A.; Morris, J. N.; Simms, M. L.; Metoyer, S.

    2007-12-01

    The Advancing Geospatial Skills in Science and Social Sciences (AGSSS) program, funded by NSF, provides middle and high school teacher-partners with access to graduate student scientists for classroom collaboration and curriculum adaptation to incorporate and advance skills in spatial thinking. AGSSS Fellows aid in the delivery of geospatially-enhanced activities utilizing technology such as geographic information systems, remote sensing, and virtual globes. The partnership also provides advanced professional development for both participating teachers and fellows. The AGSSS program is mutually beneficial to all parties involved. This successful collaboration of scientists, teachers, and students results in greater understanding and enthusiasm for the use of spatial thinking strategies and geospatial technologies. In addition, the partnership produces measurable improvements in student efficacy and attitudes toward processes of spatial thinking. The teacher partner training and classroom resources provided by AGSSS will continue the integration of geospatial activities into the curriculum after the project concludes. Time and resources are the main costs in implementing this partnership. Graduate fellows invest considerable time and energy, outside of academic responsibilities, to develop materials for the classroom. Fellows are required to be available during K-12 school hours, which necessitates forethought in scheduling other graduate duties. However, the benefits far outweigh the costs. Graduate fellows gain experience in working in classrooms. In exchange, students gain exposure to working scientists and their research. This affords graduate fellows the opportunity to hone their communication skills, and specifically allows them to address the issue of translating technical information for a novice audience. Teacher-partners and students benefit by having scientific expertise readily available. In summation, these experiences result in changes in teacher

  3. Modeling photovoltaic diffusion: an analysis of geospatial datasets

    NASA Astrophysics Data System (ADS)

    Davidson, Carolyn; Drury, Easan; Lopez, Anthony; Elmore, Ryan; Margolis, Robert

    2014-07-01

    This study combines address-level residential photovoltaic (PV) adoption trends in California with several types of geospatial information—population demographics, housing characteristics, foreclosure rates, solar irradiance, vehicle ownership preferences, and others—to identify which subsets of geospatial information are the best predictors of historical PV adoption. Number of rooms, heating source and house age were key variables that had not been previously explored in the literature, but are consistent with the expected profile of a PV adopter. The strong relationship provided by foreclosure indicators and mortgage status have less of an intuitive connection to PV adoption, but may be highly correlated with characteristics inherent in PV adopters. Next, we explore how these predictive factors and model performance varies between different Investor Owned Utility (IOU) regions in California, and at different spatial scales. Results suggest that models trained with small subsets of geospatial information (five to eight variables) may provide similar explanatory power as models using hundreds of geospatial variables. Further, the predictive performance of models generally decreases at higher resolution, i.e., below ZIP code level since several geospatial variables with coarse native resolution become less useful for representing high resolution variations in PV adoption trends. However, for California we find that model performance improves if parameters are trained at the regional IOU level rather than the state-wide level. We also find that models trained within one IOU region are generally representative for other IOU regions in CA, suggesting that a model trained with data from one state may be applicable in another state.

  4. Global polar geospatial information service retrieval based on search engine and ontology reasoning

    USGS Publications Warehouse

    Chen, Nengcheng; E, Dongcheng; Di, Liping; Gong, Jianya; Chen, Zeqiang

    2007-01-01

    In order to improve the access precision of polar geospatial information service on web, a new methodology for retrieving global spatial information services based on geospatial service search and ontology reasoning is proposed, the geospatial service search is implemented to find the coarse service from web, the ontology reasoning is designed to find the refined service from the coarse service. The proposed framework includes standardized distributed geospatial web services, a geospatial service search engine, an extended UDDI registry, and a multi-protocol geospatial information service client. Some key technologies addressed include service discovery based on search engine and service ontology modeling and reasoning in the Antarctic geospatial context. Finally, an Antarctica multi protocol OWS portal prototype based on the proposed methodology is introduced.

  5. Geospatial challenges in a net centric environment: actionable information technology, design, and implementation

    NASA Astrophysics Data System (ADS)

    Hieb, Michael R.; Mackay, Sean; Powers, Michael W.; Yu, Harland; Kleiner, Martin; Pullen, J. Mark

    2007-04-01

    Terrain and weather effects represent fundamental battlefield information supporting situation awareness and the decision-making processes for Net Centric operations. Sensor information can have a greater impact when placed within a terrain and weather contextual framework. Realizing the promised potential of Net Centric operations is challenging with respect to these effects, since these effects can both enhance or constrain force tactics and behaviors, platform performance (ground and air), system performance (e.g. sensors) and the soldier. We have defined a methodology that starts with military objectives and determines the most useful terrain products to support these missions, taking into account weather effects and sensors. From this methodology we have designed a number of technical standards and components. A key standard is geospatial Battle Management Language (geoBML) to represent Mission input to Geospatial and Sensor Products. An example of components for creating these products are those in the Battlespace Terrain Reasoning and Awareness (BTRA) system. These standards and components enable interoperability between force elements that address not only syntactic consistency, but consistency of both a lexical and semantic representation to realize shared, coherent awareness. This paper presents a systemic approach for successful resolution of these challenges and describes an Actionable Geo-environmental Information Framework (AGeIF).

  6. A Compilation of Provisional Karst Geospatial Data for the Interior Low Plateaus Physiographic Region, Central United States

    USGS Publications Warehouse

    Taylor, Charles J.; Nelson, Hugh L.

    2008-01-01

    Geospatial data needed to visualize and evaluate the hydrogeologic framework and distribution of karst features in the Interior Low Plateaus physiographic region of the central United States were compiled during 2004-2007 as part of the Ground-Water Resources Program Karst Hydrology Initiative (KHI) project. Because of the potential usefulness to environmental and water-resources regulators, private consultants, academic researchers, and others, the geospatial data files created during the KHI project are being made available to the public as a provisional regional karst dataset. To enhance accessibility and visualization, the geospatial data files have been compiled as ESRI ArcReader data folders and user interactive Published Map Files (.pmf files), all of which are catalogued by the boundaries of surface watersheds using U.S. Geological Survey (USGS) eight-digit hydrologic unit codes (HUC-8s). Specific karst features included in the dataset include mapped sinkhole locations, sinking (or disappearing) streams, internally drained catchments, karst springs inventoried in the USGS National Water Information System (NWIS) database, relic stream valleys, and karst flow paths obtained from results of previously reported water-tracer tests.

  7. A resource-oriented architecture for a Geospatial Web

    NASA Astrophysics Data System (ADS)

    Mazzetti, Paolo; Nativi, Stefano

    2010-05-01

    In this presentation we discuss some architectural issues on the design of an architecture for a Geospatial Web, that is an information system for sharing geospatial resources according to the Web paradigm. The success of the Web in building a multi-purpose information space, has raised questions about the possibility of adopting the same approach for systems dedicated to the sharing of more specific resources, such as the geospatial information, that is information characterized by spatial/temporal reference. To this aim an investigation on the nature of the Web and on the validity of its paradigm for geospatial resources is required. The Web was born in the early 90's to provide "a shared information space through which people and machines could communicate" [Berners-Lee 1996]. It was originally built around a small set of specifications (e.g. URI, HTTP, HTML, etc.); however, in the last two decades several other technologies and specifications have been introduced in order to extend its capabilities. Most of them (e.g. the SOAP family) actually aimed to transform the Web in a generic Distributed Computing Infrastructure. While these efforts were definitely successful enabling the adoption of service-oriented approaches for machine-to-machine interactions supporting complex business processes (e.g. for e-Government and e-Business applications), they do not fit in the original concept of the Web. In the year 2000, R. T. Fielding, one of the designers of the original Web specifications, proposes a new architectural style for distributed systems, called REST (Representational State Transfer), aiming to capture the fundamental characteristics of the Web as it was originally conceived [Fielding 2000]. In this view, the nature of the Web lies not so much in the technologies, as in the way they are used. Maintaining the Web architecture conform to the REST style would then assure the scalability, extensibility and low entry barrier of the original Web. On the contrary

  8. Societal Impact of Improved Environment and Geospatial Information

    NASA Astrophysics Data System (ADS)

    Pearlman, J.; Andrzejewska, M.; Stonor, T.

    2013-12-01

    Geospatial projects are often dogged by the inability to establish a strong quantitative value proposition and are unable to sustain the attention of senior decision makers. In a tough economic climate, it is particularly important that any project that requires a significant investment can show a clear Return on Investment (ROI). In the case of commerce, benefit can be quantified through increase in sales/profit or reduction of risk. In the case of societal impact, quantification is more challenging. At the Geospatial World Forum (GWF) 2013 in Rotterdam, a number of case studies were presented on social impacts which used differing approaches to impact assessment. Some of the cases discussed projects with community issues and explained alternative means of conflict resolution. However, a comparison of the different case studies was not made at the GWF meeting. This presentation will take the next step and address the commonalities and differences in the approaches.

  9. Emerging Geospatial Sharing Technologies in Earth and Space Science Informatics

    NASA Astrophysics Data System (ADS)

    Singh, R.; Bermudez, L. E.

    2013-12-01

    Emerging Geospatial Sharing Technologies in Earth and Space Science Informatics The Open Geospatial Consortium (OGC) mission is to serve as a global forum for the collaboration of developers and users of spatial data products and services, and to advance the development of international standards for geospatial interoperability. The OGC coordinates with over 400 institutions in the development of geospatial standards. In the last years two main trends are making disruptions in geospatial applications: mobile and context sharing. People now have more and more mobile devices to support their work and personal life. Mobile devices are intermittently connected to the internet and have smaller computing capacity than a desktop computer. Based on this trend a new OGC file format standard called GeoPackage will enable greater geospatial data sharing on mobile devices. GeoPackage is perhaps best understood as the natural evolution of Shapefiles, which have been the predominant lightweight geodata sharing format for two decades. However the format is extremely limited. Four major shortcomings are that only vector points, lines, and polygons are supported; property names are constrained by the dBASE format; multiple files are required to encode a single data set; and multiple Shapefiles are required to encode multiple data sets. A more modern lingua franca for geospatial data is long overdue. GeoPackage fills this need with support for vector data, image tile matrices, and raster data. And it builds upon a database container - SQLite - that's self-contained, single-file, cross-platform, serverless, transactional, and open source. A GeoPackage, in essence, is a set of SQLite database tables whose content and layout is described in the candidate GeoPackage Implementation Specification available at https://portal.opengeospatial.org/files/?artifact_id=54838&version=1. The second trend is sharing client 'contexts'. When a user is looking into an article or a product on the web

  10. Findability : Making Geospatial Data on the Web Mainstream

    NASA Astrophysics Data System (ADS)

    Parsons, E.

    2014-12-01

    For too long the fields of GIS and Geoinformatics have been isolated from developments in mainstream information science and in particular the development of standard web protocols for information discovery and access. While concepts such as Spatial Data Infrastructures (SDI) offered the concept of integrated datasets and services, in practice, different SDI's do not interoperate well, despite considerable emphasis on comprehensive metadata creation. An alternative approach may be the use of developing web technologies which are generally described as following a Linked Data approach. This talk will look at the opportunities linked data technologies in particular the development of simple microdata formats by schema.org offer publishers of geospatial information, with the aim of making such information discoverable and accessible on the web. Berners-Lee's concept of five star open data will also be discussed as it reaches it's fifth anniversary, to what extent is the geospatial community a good citizen of the web?

  11. A Geospatial Integrated Problem Solving Environment for Homeland Security Applications

    SciTech Connect

    Koch, Daniel B

    2010-01-01

    Effective planning, response, and recovery (PRR) involving terrorist attacks or natural disasters come with a vast array of information needs. Much of the required information originates from disparate sources in widely differing formats. However, one common attribute the information often possesses is physical location. The organization and visualization of this information can be critical to the success of the PRR mission. Organizing information geospatially is often the most intuitive for the user. In the course of developing a field tool for the U.S. Department of Homeland Security (DHS) Office for Bombing Prevention, a geospatial integrated problem solving environment software framework was developed by Oak Ridge National Laboratory. This framework has proven useful as well in a number of other DHS, Department of Defense, and Department of Energy projects. An overview of the software architecture along with application examples are presented.

  12. ON THE VERIFICATION AND VALIDATION OF GEOSPATIAL IMAGE ANALYSIS ALGORITHMS

    SciTech Connect

    Roberts, Randy S.; Trucano, Timothy G.; Pope, Paul A.; Aragon, Cecilia R.; Jiang , Ming; Wei, Thomas; Chilton, Lawrence; Bakel, A. J.

    2010-07-25

    Verification and validation (V&V) of geospatial image analysis algorithms is a difficult task and is becoming increasingly important. While there are many types of image analysis algorithms, we focus on developing V&V methodologies for algorithms designed to provide textual descriptions of geospatial imagery. In this paper, we present a novel methodological basis for V&V that employs a domain-specific ontology, which provides a naming convention for a domain-bounded set of objects and a set of named relationship between these objects. We describe a validation process that proceeds through objectively comparing benchmark imagery, produced using the ontology, with algorithm results. As an example, we describe how the proposed V&V methodology would be applied to algorithms designed to provide textual descriptions of facilities

  13. 77 FR 67831 - Announcement of National Geospatial Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-14

    ...The National Geospatial Advisory Committee (NGAC) will meet on December 3, 2012, from 2:30 p.m. to 5:00 p.m. EST. The meeting will be held via web conference and teleconference. The NGAC, which is composed of representatives from governmental, private sector, non-profit, and academic organizations, has been established to advise the Chair of the Federal Geographic Data Committee on management......

  14. Leveraging Industry Standards for GeoSpatial Portal Development

    NASA Astrophysics Data System (ADS)

    Zimble, D.; Garegnani, J. J.

    2005-12-01

    Rapid advances in mainstream IT data sharing techniques through the leveraging of mainstream IT standards such as the World Wide Web Consortium (W3C) extensible markup language (XML), simple object access protocol (SOAP) based web services and the Java Community Process (JCP) driven portlet technology (JSR-0168) in addition to the wide adoption of Open Geospatial Consortium (OGC) GIS web service specifications (WMS, WFS, WCS, WMC, CS-W etc.) are intersecting within commercial GIS technologies. For example, the next generation GIS Portal technology for the U.S. Government's Geospatial One-Stop has been developed to help establish an industrial strength geospatial portal that can be used as the primary U.S. Government coordinating portal for geospatial related activities. In addition to these technologies providing common highly interoperable portals, heavier desktop and server applications are further integrating technologies that will enable the scientific communities to link into these mainstream information portals. By example, we will discuss the incorporation of the Open Source scripting language known as Python into the commercial GIS platform both on the desktop and on the server. For example, users have already developed python code that can be deployed providing the GIS user access to large repositories of scientific multidimensional data via the OpeNDAP protocol that can be incorporated into the GIS analysis and workflow. Additional development in the support of NetCDF and in the future additional scientific data formats will expand the use of such formats within the GIS community. This presentation will provide an overview and demonstrations of these technologies and how they are relevant to the Earth and Space Science Informatics Community.

  15. Progress of Interoperability in Planetary Research for Geospatial Data Analysis

    NASA Astrophysics Data System (ADS)

    Hare, T. M.; Gaddis, L. R.

    2015-12-01

    For nearly a decade there has been a push in the planetary science community to support interoperable methods of accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (i.e., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized image formats that retain geographic information (e.g., GeoTiff, GeoJpeg2000), digital geologic mapping conventions, planetary extensions for symbols that comply with U.S. Federal Geographic Data Committee cartographic and geospatial metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they have been modified to support the planetary domain. The motivation to support common, interoperable data format and delivery standards is not only to improve access for higher-level products but also to address the increasingly distributed nature of the rapidly growing volumes of data. The strength of using an OGC approach is that it provides consistent access to data that are distributed across many facilities. While data-steaming standards are well-supported by both the more sophisticated tools used in Geographic Information System (GIS) and remote sensing industries, they are also supported by many light-weight browsers which facilitates large and small focused science applications and public use. Here we provide an

  16. National Geospatial-Intelligence Agency Academic Research Program

    NASA Astrophysics Data System (ADS)

    Loomer, S. A.

    2004-12-01

    "Know the Earth.Show the Way." In fulfillment of its vision, the National Geospatial-Intelligence Agency (NGA) provides geospatial intelligence in all its forms and from whatever source-imagery, imagery intelligence, and geospatial data and information-to ensure the knowledge foundation for planning, decision, and action. To achieve this, NGA conducts a multi-disciplinary program of basic research in geospatial intelligence topics through grants and fellowships to the leading investigators, research universities, and colleges of the nation. This research provides the fundamental science support to NGA's applied and advanced research programs. The major components of the NGA Academic Research Program (NARP) are: - NGA University Research Initiatives (NURI): Three-year basic research grants awarded competitively to the best investigators across the US academic community. Topics are selected to provide the scientific basis for advanced and applied research in NGA core disciplines. - Historically Black College and University - Minority Institution Research Initiatives (HBCU-MI): Two-year basic research grants awarded competitively to the best investigators at Historically Black Colleges and Universities, and Minority Institutions across the US academic community. - Director of Central Intelligence Post-Doctoral Research Fellowships: Fellowships providing access to advanced research in science and technology applicable to the intelligence community's mission. The program provides a pool of researchers to support future intelligence community needs and develops long-term relationships with researchers as they move into career positions. This paper provides information about the NGA Academic Research Program, the projects it supports and how other researchers and institutions can apply for grants under the program.

  17. Temporal geospatial analysis of secondary school students’ examination performance

    NASA Astrophysics Data System (ADS)

    Nik Abd Kadir, ND; Adnan, NA

    2016-06-01

    Malaysia's Ministry of Education has improved the organization of the data to have the geographical information system (GIS) school database. However, no further analysis is done using geospatial analysis tool. Mapping has emerged as a communication tool and becomes effective way to publish the digital and statistical data such as school performance results. The objective of this study is to analyse secondary school student performance of science and mathematics scores of the Sijil Pelajaran Malaysia Examination result in the year 2010 to 2014 for the Kelantan's state schools with the aid of GIS software and geospatial analysis. The school performance according to school grade point average (GPA) from Grade A to Grade G were interpolated and mapped and query analysis using geospatial tools able to be done. This study will be beneficial to the education sector to analyse student performance not only in Kelantan but to the whole Malaysia and this will be a good method to publish in map towards better planning and decision making to prepare young Malaysians for the challenges of education system and performance.

  18. Wetland assessment, monitoring and management in India using geospatial techniques.

    PubMed

    Garg, J K

    2015-01-15

    Satellite remote sensing and GIS have emerged as the most powerful tools for inventorying, monitoring and management of natural resources and environment. In the special context of wetland ecosystems, remotely sensed data from orbital platforms have been extensively used in India for the inventory, monitoring and preparation of action plans for conservation and management. First scientific inventory of wetlands in India was carried out in 1998 by Space Applications Centre (ISRO), Ahmedabad using indigenous IRS (Indian Remote Sensing Satellite) data of 1992-93 timeframe, which stimulated extensive use of geospatial techniques for wetland conservation and management. Subsequently, with advances in GIS, studies were carried out for development of Wetland Information System for a state (West Bengal) and for Loktak lake wetland (a Ramsar site) as a prelude to National Wetland Information System. Research has also been carried out for preparation of action plans especially for Ramsar sites in the country. In a novel research, use of the geospatial technology has also been demonstrated for biodiversity conservation using landscape ecological metrics. A country-wide estimate of emission of methane, a Green House Gas, from wetlands has also been made using MODIS data. Present article critically reviews the work carried out in India for wetland conservation and management using geospatial techniques. PMID:24486190

  19. Multi-source Geospatial Data Analysis with Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Erickson, T.

    2014-12-01

    The Google Earth Engine platform is a cloud computing environment for data analysis that combines a public data catalog with a large-scale computational facility optimized for parallel processing of geospatial data. The data catalog is a multi-petabyte archive of georeferenced datasets that include images from Earth observing satellite and airborne sensors (examples: USGS Landsat, NASA MODIS, USDA NAIP), weather and climate datasets, and digital elevation models. Earth Engine supports both a just-in-time computation model that enables real-time preview and debugging during algorithm development for open-ended data exploration, and a batch computation mode for applying algorithms over large spatial and temporal extents. The platform automatically handles many traditionally-onerous data management tasks, such as data format conversion, reprojection, and resampling, which facilitates writing algorithms that combine data from multiple sensors and/or models. Although the primary use of Earth Engine, to date, has been the analysis of large Earth observing satellite datasets, the computational platform is generally applicable to a wide variety of use cases that require large-scale geospatial data analyses. This presentation will focus on how Earth Engine facilitates the analysis of geospatial data streams that originate from multiple separate sources (and often communities) and how it enables collaboration during algorithm development and data exploration. The talk will highlight current projects/analyses that are enabled by this functionality.https://earthengine.google.org

  20. Supporting the Temporal Dimension in Geospatial Information Interoperability

    NASA Astrophysics Data System (ADS)

    Falke, S.; Ressler, J.

    2006-05-01

    In 2005-06, a study on temporal geospatial standards and technology was undertaken by the National Technology Alliance. The project, called Temporal Evaluation and Assessment, examined challenges in accessing, processing, analyzing and visualizing temporal characteristics of geospatial data. Service oriented architecture principles were applied in developing prototype web services based on web standards, including specifications from the Open Geospatial Consortium. The prototypes were tested through a series of demonstrations. Questions addressed included detection , data modeling and depiction of change in features over time, both static and moving; collection and reporting sensor observations; use of web services with temporal interfaces; application of the Geography Markup Language (GML) to temporal features; comparison of imagery changes over time; search and retrieval of spatiotemporal data from multiple sources. Some of the key results from these demonstrations were in the areas of spatiotemporal data modeling, multi- source analysis of temporal images, features, moving features and sensor time-value data, exchange formats and workflow for feature updates, the use of catalogs to search and retrieve spatiotemporal data sources. The recommendations from the temporal evaluation were provided to standards organizations and technology developers. This paper describes the results of the research, the state of standards and technology, and future recommendations for using spatiotemporal data in a service oriented architecture.

  1. A Hybrid Classification Scheme for Mining Multisource Geospatial Data

    SciTech Connect

    Vatsavai, Raju; Bhaduri, Budhendra L

    2007-01-01

    Supervised learning methods such as Maximum Likelihood (ML) are often used in land cover (thematic) classification of remote sensing imagery. ML classifier relies exclusively on spectral characteristics of thematic classes whose statistical distributions are often overlapping. The spectral response distributions of thematic classes are dependent on many factors including elevation, soil types, and atmospheric conditions present at the time of data acquisition. A second problem with statistical classifiers is the requirement of large number of accurate training samples, which are often costly and time consuming to acquire over large geographic regions. With the increasing availability of geospatial databases, it is possible to exploit the knowledge derived from these ancillary datasets to improve classification accuracies even when the class distributions are highly overlapping. Likewise newer semi-supervised techniques can be adopted to improve the parameter estimates of statistical model by utilizing a large number of easily available unlabeled training samples. Unfortunately there is no convenient multivariate statistical model that can be employed for mulitsource geospatial databases. In this paper we present a hybrid semi-supervised learning algorithm that effectively exploits freely available unlabeled training samples from multispectral remote sensing images and also incorporates ancillary geospatial databases. We have conducted several experiments on real datasets, and our new hybrid approach shows over 15% improvement in classification accuracy over conventional classification schemes.

  2. Diy Geospatial Web Service Chains: Geochaining Make it Easy

    NASA Astrophysics Data System (ADS)

    Wu, H.; You, L.; Gui, Z.

    2011-08-01

    It is a great challenge for beginners to create, deploy and utilize a Geospatial Web Service Chain (GWSC). People in Computer Science are usually not familiar with geospatial domain knowledge. Geospatial practitioners may lack the knowledge about web services and service chains. The end users may lack both. However, integrated visual editing interfaces, validation tools, and oneclick deployment wizards may help to lower the learning curve and improve modelling skills so beginners will have a better experience. GeoChaining is a GWSC modelling tool designed and developed based on these ideas. GeoChaining integrates visual editing, validation, deployment, execution etc. into a unified platform. By employing a Virtual Globe, users can intuitively visualize raw data and results produced by GeoChaining. All of these features allow users to easily start using GWSC, regardless of their professional background and computer skills. Further, GeoChaining supports GWSC model reuse, meaning that an entire GWSC model created or even a specific part can be directly reused in a new model. This greatly improves the efficiency of creating a new GWSC, and also contributes to the sharing and interoperability of GWSC.

  3. SATELLITES: A Geo-spatial Program for all Students

    NASA Astrophysics Data System (ADS)

    Hedley, M.

    2006-12-01

    SATELLITES (Students And Teachers Exploring Local Landscapes to Interpret The Earth from Space) is a program that introduces cutting-edge geo-spatial technologies including satellite remote sensing, GPS, and GIS to teachers and their students. In the last six years over 200 teachers and their students have been involved in this program. The program has grown to include inquiry-based, fun, simple activities, hands-on GPS and InfraRed Thermometer (IRT)) instruments, and a "real" science project. The students participate in the Surface Temperature Research Project, through the GLOBE program. The 2006-2007 Campaign's focus is on the International Polar Year (IPY). Students will present a poster reflecting their inquiry based IPY investigation at the inaugural SATELLITES Conference hosted at the Great Lakes Science Center in Cleveland, Ohio on April 20th, 2007. Since geo-spatial technologies are the 3rd largest growing career path in the United States, it is important that schools introduce these technologies to students in their curriculum. The program is aligned with the state of Ohio and the National Science, Mathematics, and Technology content standards. OhioView, a consortium of 12 universities in the state of Ohio, whose purpose is to promote geo-spatial technologies, developed the program. The University of Toledo, Kent State University, Youngstown State University, and The Ohio State University implement the program.

  4. The growing role of web-based geospatial technology in disaster response and support.

    PubMed

    Kawasaki, Akiyuki; Berman, Merrick Lex; Guan, Wendy

    2013-04-01

    This paper examines changes in disaster response and relief efforts and recent web-based geospatial technological developments through an evaluation of the experiences of the Center for Geographic Analysis, Harvard University, of the Sichuan (2008) and Haiti (2010) earthquake responses. This paper outlines how conventional GIS (geographic information systems) disaster responses by governmental agencies and relief response organisations and the means for geospatial data-sharing have been transformed into a more dynamic, more transparent, and decentralised form with a wide participation. It begins by reviewing briefly at historical changes in the employment of geospatial technologies in major devastating disasters, including the Sichuan and Haiti earthquakes (case studies for our geospatial portal project). It goes on to assess changes in the available dataset type and in geospatial disaster responders, as well as the impact of geospatial technological changes on disaster relief effort. Finally, the paper discusses lessons learned from recent responses and offers some thoughts for future development. PMID:23278379

  5. Nebhydro: Sharing Geospatial Data to Supportwater Management in Nebraska

    NASA Astrophysics Data System (ADS)

    Kamble, B.; Irmak, A.; Hubbard, K.; Deogun, J.; Dvorak, B.

    2012-12-01

    Recent advances in web-enabled geographical technologies have the potential to make a dramatic impact on development of highly interactive spatial applications on the web for visualization of large-scale geospatial data by water resources and irrigation scientists. Spatial and point scale water resources data visualization are an emerging and challenging application domain. Query based visual explorations of geospatial hydrological data can play an important role in stimulating scientific hypotheses and seeking causal relationships among hydro variables. The Nebraska Hydrological Information System (NebHydro) utilizes ESRI's ArcGIS server technology to increase technological awareness among farmers, irrigation managers and policy makers. Web-based geospatial applications are an effective way to expose scientific hydrological datasets to the research community and the public. NebHydro uses Adobe Flex technology to offer an online visualization and data analysis system for presentation of social and economic data. Internet mapping services is an integrated product of GIS and Internet technologies; it is a favored solution to achieve the interoperability of GIS. The development of Internet based GIS services in the state of Nebraska showcases the benefits of sharing geospatial hydrological data among agencies, resource managers and policy makers. Geospatial hydrological Information (Evapotranspiration from Remote Sensing, vegetation indices (NDVI), USGS Stream gauge data, Climatic data etc.) is generally generated through model simulation (METRIC, SWAP, Linux, Python based scripting etc). Information is compiled into and stored within object oriented relational spatial databases using a geodatabase information model that supports the key data types needed by applications including features, relationships, networks, imagery, terrains, maps and layers. The system provides online access, querying, visualization, and analysis of the hydrological data from several sources

  6. Geospatial Information from Satellite Imagery for Geovisualisation of Smart Cities in India

    NASA Astrophysics Data System (ADS)

    Mohan, M.

    2016-06-01

    In the recent past, there have been large emphasis on extraction of geospatial information from satellite imagery. The Geospatial information are being processed through geospatial technologies which are playing important roles in developing of smart cities, particularly in developing countries of the world like India. The study is based on the latest geospatial satellite imagery available for the multi-date, multi-stage, multi-sensor, and multi-resolution. In addition to this, the latest geospatial technologies have been used for digital image processing of remote sensing satellite imagery and the latest geographic information systems as 3-D GeoVisualisation, geospatial digital mapping and geospatial analysis for developing of smart cities in India. The Geospatial information obtained from RS and GPS systems have complex structure involving space, time and presentation. Such information helps in 3-Dimensional digital modelling for smart cities which involves of spatial and non-spatial information integration for geographic visualisation of smart cites in context to the real world. In other words, the geospatial database provides platform for the information visualisation which is also known as geovisualisation. So, as a result there have been an increasing research interest which are being directed to geospatial analysis, digital mapping, geovisualisation, monitoring and developing of smart cities using geospatial technologies. However, the present research has made an attempt for development of cities in real world scenario particulary to help local, regional and state level planners and policy makers to better understand and address issues attributed to cities using the geospatial information from satellite imagery for geovisualisation of Smart Cities in emerging and developing country, India.

  7. Geospatial considerations for a multi-organization landscape-scale program

    USGS Publications Warehouse

    O'Donnell, Michael S.; Assal, Timothy J.; Anderson, Patrick J.; Bowen, Zachary H.

    2013-01-01

    Geospatial data play an increasingly important role in natural resources management, conservation, and science-based projects. The management and effective use of spatial data becomes significantly more complex when the efforts involve a myriad of landscape-scale projects combined with a multiorganizational collaboration. There is sparse literature to guide users on this daunting subject; therefore, we present a framework of considerations for working with geospatial data that will provide direction to data stewards, scientists, collaborators, and managers for developing geospatial management plans. The concepts we present apply to a variety of geospatial programs or projects, which we describe as a “scalable framework” of processes for integrating geospatial efforts with management, science, and conservation initiatives. Our framework includes five tenets of geospatial data management: (1) the importance of investing in data management and standardization, (2) the scalability of content/efforts addressed in geospatial management plans, (3) the lifecycle of a geospatial effort, (4) a framework for the integration of geographic information systems (GIS) in a landscape-scale conservation or management program, and (5) the major geospatial considerations prior to data acquisition. We conclude with a discussion of future considerations and challenges.

  8. Ontology for Transforming Geo-Spatial Data for Discovery and Integration of Scientific Data

    NASA Astrophysics Data System (ADS)

    Nguyen, L.; Chee, T.; Minnis, P.

    2013-12-01

    Discovery and access to geo-spatial scientific data across heterogeneous repositories and multi-discipline datasets can present challenges for scientist. We propose to build a workflow for transforming geo-spatial datasets into semantic environment by using relationships to describe the resource using OWL Web Ontology, RDF, and a proposed geo-spatial vocabulary. We will present methods for transforming traditional scientific dataset, use of a semantic repository, and querying using SPARQL to integrate and access datasets. This unique repository will enable discovery of scientific data by geospatial bound or other criteria.

  9. Partnering for Geospatial Innovations in Indian Country

    NASA Astrophysics Data System (ADS)

    Jhon Goes in Center, . D.

    2003-12-01

    In the spirit of collaboration and reciprocity, Sinte Gleska University on the Rosebud Reservation of South Dakota will present recent developments, experiences, insights and a vision for education in Native America. As a thirty year young institution, Sinte Gleska University is founded by a strong vision of ancestral leadership and the values of the Lakota Way of Life. A recent relationship building endeavor that utilized a recent Executive Order to empower federal agencies to work hand in hand with tribal colleges has resulted in a formal Memorandum of Understanding with the United States Geologic Survey. This relationship has paved the way toward significant progress that is measured in the enhanced educational services and relevant research for Sinte Gleska University and the Lakota Nation. As an institution of higher learning for the region in the Great Plains, SGU's leadership is unparalleled. Sinte Gleska University proposes to share a vision of collaboration with not only sister institutions but with the greater national and global community. This vision is already in place with SGU's leadership in developing and participating in the World Indigenous Higher Education Consortium. As a recent recipient of the NASA REASoN CAN award and ongoing projects with the NSF and NOAA, SGU will exemplify the culmination of these endeavors to illustrate and promote innovative partnerships with Federal Agencies, Industry Partners, mainstream academic institutions and other tribal colleges.

  10. Development and implementation of a NATO-wide state-of-the-art interim geospatial intelligence support tool

    NASA Astrophysics Data System (ADS)

    Teufert, John F.

    2004-09-01

    In order to enhance operational planning capabilities of the NATO Force Headquarters (KFOR, SFOR, ISAF), the NC3A Geo Team has developed a web-based interim geospatial intelligence support tool (IGEOSIT). The NC3A IGEOSIT displays geospatial data, such as digital topographic maps and satellite/air photo imagery, together with selectable overlay objects retrieved from distributed operational databases (DBs), for example minefields, bridges, culverts and military units. The NC3A IGEOSIT is a state-of-the-art web-based and Java-based multi-tier solution consisting of applications distributed over multiple servers within each Force HQ. The IGEOSIT provides advanced GIS terrain analysis capabilities based on the available Geo-data, including line-of-sight, 3-D perspective views, terrain profiles, and the definition of go/no-go areas. The system also performs vector-based route analysis and enhances the real-time tracking capabilities of mobile vehicles and troops. The IGEOSIT analyzes overlay data sets according to their attributes and dependencies in order to highlight otherwise hidden spatial relations that may be critical for mission planning. After performing geospatial analysis, the system compiles maps automatically to provide the user with immediate hard copy results, according to NATO standards, if necessary. The successful implementation of the IGEOSIT currently provides all NATO FORCE HQ staff members with a common operational picture of the theatre. This ensures that a common set of recently-updated information overlays forms the basis for all operational decisions. This paper describes the architecture, technology, performance tests (including test environment, analysis and measurement tools, hardware, selected test scenarios and results) and the lessons learned implementing advanced network and Java-based multi-tier solutions within the NATO Force Headquarters.

  11. Improving the Slum Planning Through Geospatial Decision Support System

    NASA Astrophysics Data System (ADS)

    Shekhar, S.

    2014-11-01

    In India, a number of schemes and programmes have been launched from time to time in order to promote integrated city development and to enable the slum dwellers to gain access to the basic services. Despite the use of geospatial technologies in planning, the local, state and central governments have only been partially successful in dealing with these problems. The study on existing policies and programmes also proved that when the government is the sole provider or mediator, GIS can become a tool of coercion rather than participatory decision-making. It has also been observed that local level administrators who have adopted Geospatial technology for local planning continue to base decision-making on existing political processes. In this juncture, geospatial decision support system (GSDSS) can provide a framework for integrating database management systems with analytical models, graphical display, tabular reporting capabilities and the expert knowledge of decision makers. This assists decision-makers to generate and evaluate alternative solutions to spatial problems. During this process, decision-makers undertake a process of decision research - producing a large number of possible decision alternatives and provide opportunities to involve the community in decision making. The objective is to help decision makers and planners to find solutions through a quantitative spatial evaluation and verification process. The study investigates the options for slum development in a formal framework of RAY (Rajiv Awas Yojana), an ambitious program of Indian Government for slum development. The software modules for realizing the GSDSS were developed using the ArcGIS and Community -VIZ software for Gulbarga city.

  12. Geospatial Modeling of Asthma Population in Relation to Air Pollution

    NASA Technical Reports Server (NTRS)

    Kethireddy, Swatantra R.; Tchounwou, Paul B.; Young, John H.; Luvall, Jeffrey C.; Alhamdan, Mohammad

    2013-01-01

    Current observations indicate that asthma is growing every year in the United States, specific reasons for this are not well understood. This study stems from an ongoing research effort to investigate the spatio-temporal behavior of asthma and its relatedness to air pollution. The association between environmental variables such as air quality and asthma related health issues over Mississippi State are investigated using Geographic Information Systems (GIS) tools and applications. Health data concerning asthma obtained from Mississippi State Department of Health (MSDH) for 9-year period of 2003-2011, and data of air pollutant concentrations (PM2.5) collected from USEPA web resources, and are analyzed geospatially to establish the impacts of air quality on human health specifically related to asthma. Disease mapping using geospatial techniques provides valuable insights into the spatial nature, variability, and association of asthma to air pollution. Asthma patient hospitalization data of Mississippi has been analyzed and mapped using quantitative Choropleth techniques in ArcGIS. Patients have been geocoded to their respective zip codes. Potential air pollutant sources of Interstate highways, Industries, and other land use data have been integrated in common geospatial platform to understand their adverse contribution on human health. Existing hospitals and emergency clinics are being injected into analysis to further understand their proximity and easy access to patient locations. At the current level of analysis and understanding, spatial distribution of Asthma is observed in the populations of Zip code regions in gulf coast, along the interstates of south, and in counties of Northeast Mississippi. It is also found that asthma is prevalent in most of the urban population. This GIS based project would be useful to make health risk assessment and provide information support to the administrators and decision makers for establishing satellite clinics in future.

  13. Geospatial Exposure to Point-of-Sale Tobacco

    PubMed Central

    Kirchner, Thomas R.; Cantrell, Jennifer; Anesetti-Rothermel, Andrew; Ganz, Ollie; Vallone, Donna M.; Abrams, David B.

    2013-01-01

    Background Little is known about the factors that drive the association between point-of-sale marketing and behavior, because methods that directly link individual-level use outcomes to real-world point-of-sale exposure are only now beginning to be developed. Purpose Daily outcomes during smoking cessation were examined as a function of both real-time geospatial exposure to point-of-sale tobacco (POST) and subjective craving to smoke. Methods Continuous individual geospatial location data collected over the first month of a smoking cessation attempt (N=475) in 2010–2012 were overlaid on a POST outlet geodatabase (N=1060). Participants’ mobility data were used to quantify the number of times they came into contact with a POST outlet. Participants recorded real-time craving levels and smoking status via ecologic momentary assessment (EMA) on cellular telephones. Results The final data set spanned a total of 12,871 days of EMA and geospatial tracking. Lapsing was significantly more likely on days with any POST contact (OR=1.19 [95% CI=1.18, 1.20]), and increasingly likely as the number of daily POST contacts increased (OR=1.07 [95% CI=1.06, 1.08]). Overall, daily POST exposure was significantly associated with lapsing when craving was low (OR=1.22 [95% CI=1.20, 1.23]); high levels of craving were more directly associated with lapse outcomes. Conclusions These data shed light on the way mobility patterns drive a dynamic interaction between individuals and the POST environment, demonstrating that quantification of individuals’ exposure to POST marketing can be used to identify previously unrecognized patterns of association among individual mobility, the built environment, and behavioral outcomes. PMID:24050412

  14. Collaborative Geospatial Data as Applied to Disaster Relief: Haiti 2010

    NASA Astrophysics Data System (ADS)

    Clark, A. J.; Holliday, Patton; Chau, Robyn; Eisenberg, Harris; Chau, Melinda

    The aftermath of Haiti's January 12 earthquake typified disaster relief in that efficiency and situational awareness were reduced by the chaotic, uncoordinated influx of relief and aid. The lack of an environment in which information could be shared was a major component of this chaos. The application of geographic information (GIS) technology was a significant contribution to the relief efforts due to the centrality of location to issues of danger, resources, safety, communications, and so on, and due to the universal understanding of information rendered geospatially using 3-D globes.

  15. Geospatial Products and Techniques at the Center for Transportation Analysis

    SciTech Connect

    Chin, Shih-Miao; Hwang, Ho-Ling; Peterson, Bruce E

    2008-01-01

    This paper highlights geospatial science-related innovations and developments conducted by the Center for Transportation Analysis (CTA) at the Oak Ridge National Laboratory. CTA researchers have been developing integrated inter-modal transportation solutions through innovative and cost-effective research and development for many years. Specifically, this paper profiles CTA-developed Geographic Information System (GIS) products that are publicly available. Examples of these GIS-related products include: the CTA Transportation Networks; GeoFreight system; and the web-based Multi-Modal Routing Analysis System. In addition, an application on assessment of railroad Hazmat routing alternatives is also discussed.

  16. Geospatial Analysis and Technical Assistance for Power Plant Siting Interagency

    SciTech Connect

    Neher, L A

    2002-03-07

    The focus of this contract (in the summer and fall of 2001) was originally to help the California Energy Commission (CEC) locate and evaluate potential sites for electric power generation facilities and to assist the CEC in addressing areas of congestion on transmission lines and natural gas supply line corridors. Subsequent events have reduced the immediate urgency, although not the ultimate need for such analyses. Software technology for deploying interactive geographic information systems (GIS) accessible over the Internet have developed to the point that it is now practical to develop and publish GIS web sites that have substantial viewing, movement, query, and even map-making capabilities. As part of a separate project not funded by the CEC, the GIS Center at LLNL, on an experimental basis, has developed a web site to explore the technical difficulties as well as the interest in such a web site by agencies and others concerned with energy research. This exploratory effort offers the potential or developing an interactive GIS web site for use by the CEC for energy research, policy analysis, site evaluation, and permit and regulatory matters. To help ground the geospatial capabilities in the realistic requirements and needs of the CEC staff, the CEC requested that the GIS Center conduct interviews of several CEC staff persons to establish their current and envisioned use of spatial data and requirements for geospatial analyses. This survey will help define a web-accessible central GIS database for the CEC, which will augment the well-received work of the CEC Cartography Unit. Individuals within each siting discipline have been contacted and their responses to three question areas have been summarized. The web-based geospatial data and analytical tools developed within this project will be available to CEC staff for initial area studies, queries, and informal, small-format maps. It is not designed for fine cartography or for large-format posters such as the

  17. The Efficacy of Educative Curriculum Materials to Support Geospatial Science Pedagogical Content Knowledge

    ERIC Educational Resources Information Center

    Bodzin, Alec; Peffer, Tamara; Kulo, Violet

    2012-01-01

    Teaching and learning about geospatial aspects of energy resource issues requires that science teachers apply effective science pedagogical approaches to implement geospatial technologies into classroom instruction. To address this need, we designed educative curriculum materials as an integral part of a comprehensive middle school energy…

  18. Real Time Semantic Interoperability in AD HOC Networks of Geospatial Data Sources: Challenges, Achievements and Perspectives

    NASA Astrophysics Data System (ADS)

    Mostafavi, M. A.; Bakillah, M.

    2012-07-01

    Recent advances in geospatial technologies have made available large amount of geospatial data. Meanwhile, new developments in Internet and communication technologies created a shift from isolated geospatial databases to ad hoc networks of geospatial data sources, where data sources can join or leave the network, and form groups to share data and services. However, effective integration and sharing of geospatial data among these data sources and their users are hampered by semantic heterogeneities. These heterogeneities affect the spatial, temporal and thematic aspects of geospatial concepts. There have been many efforts to address semantic interoperability issues in the geospatial domain. These efforts were mainly focused on resolving heterogeneities caused by different and implicit representations of the concepts. However, many approaches have focused on the thematic aspects, leaving aside the explicit representation of spatial and temporal aspects. Also, most semantic interoperability approaches for networks have focused on automating the semantic mapping process. However, the ad hoc network structure is continuously modified by source addition or removal, formation of groups, etc. This dynamic aspect is often neglected in those approaches. This paper proposes a conceptual framework for real time semantic interoperability in ad hoc networks of geospatial data sources. The conceptual framework presents the fundamental elements of real time semantic interoperability through a hierarchy of interrelated semantic states and processes. Then, we use the conceptual framework to set the discussion on the achievements that have already been made, the challenges that remain to be addressed and perspectives with respect to these challenges.

  19. Mapping and monitoring potato cropping systems in Maine: geospatial methods and land use assessments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Geospatial frameworks and GIS-based approaches were used to assess current cropping practices in potato production systems in Maine. Results from the geospatial integration of remotely-sensed cropland layers (2008-2011) and soil datasets for Maine revealed a four-year potato systems footprint estima...

  20. The Impact of Professional Development in Natural Resource Investigations Using Geospatial Technologies

    ERIC Educational Resources Information Center

    Hanley, Carol D.; Davis, Hilarie B.; Davey, Bradford T.

    2012-01-01

    As use of geospatial technologies has increased in the workplace, so has interest in using these technologies in the K-12 classroom. Prior research has identified several reasons for using geospatial technologies in the classroom, such as developing spatial thinking, supporting local investigations, analyzing changes in the environment, and…

  1. Mapping the Future Today: The Community College of Baltimore County Geospatial Applications Program

    ERIC Educational Resources Information Center

    Jeffrey, Scott; Alvarez, Jaime

    2010-01-01

    The Geospatial Applications Program at the Community College of Baltimore County (CCBC), located five miles west of downtown Baltimore, Maryland, provides comprehensive instruction in geographic information systems (GIS), remote sensing and global positioning systems (GPS). Geospatial techniques, which include computer-based mapping and remote…

  2. 77 FR 32978 - Call for Nominations to the National Geospatial Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    ....S. Geological Survey Call for Nominations to the National Geospatial Advisory Committee AGENCY: U.S... nominations to serve on the National Geospatial Advisory Committee (NGAC). The NGAC is a Federal Advisory Committee established under the authority of the Federal Advisory Committee Act (FACA). The...

  3. 78 FR 40764 - Call for Nominations to the National Geospatial Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-08

    ... Geological Survey Call for Nominations to the National Geospatial Advisory Committee AGENCY: U.S. Geological... nominations to serve on the National Geospatial Advisory Committee (NGAC). The NGAC is a Federal Advisory Committee established under the authority of the Federal Advisory Committee Act (FACA). The...

  4. 75 FR 39272 - Call for Nominations to the National Geospatial Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ....S. Geological Survey Call for Nominations to the National Geospatial Advisory Committee AGENCY: U.S. Geological Survey, Interior. ACTION: Call for Nominations, National Geospatial Advisory Committee. SUMMARY... Committee (NGAC). The NGAC is a Federal Advisory Committee established ] under the authority of the...

  5. The Sky's the Limit: Integrating Geospatial Tools with Pre-College Youth Education

    ERIC Educational Resources Information Center

    McGee, John; Kirwan, Jeff

    2010-01-01

    Geospatial tools, which include global positioning systems (GPS), geographic information systems (GIS), and remote sensing, are increasingly driving a variety of applications. Local governments and private industry are embracing these tools, and the public is beginning to demand geospatial services. The U.S. Department of Labor (DOL) reported that…

  6. Geospatial big data handling theory and methods: A review and research challenges

    NASA Astrophysics Data System (ADS)

    Li, Songnian; Dragicevic, Suzana; Castro, Francesc Antón; Sester, Monika; Winter, Stephan; Coltekin, Arzu; Pettit, Christopher; Jiang, Bin; Haworth, James; Stein, Alfred; Cheng, Tao

    2016-05-01

    Big data has now become a strong focus of global interest that is increasingly attracting the attention of academia, industry, government and other organizations. Big data can be situated in the disciplinary area of traditional geospatial data handling theory and methods. The increasing volume and varying format of collected geospatial big data presents challenges in storing, managing, processing, analyzing, visualizing and verifying the quality of data. This has implications for the quality of decisions made with big data. Consequently, this position paper of the International Society for Photogrammetry and Remote Sensing (ISPRS) Technical Commission II (TC II) revisits the existing geospatial data handling methods and theories to determine if they are still capable of handling emerging geospatial big data. Further, the paper synthesises problems, major issues and challenges with current developments as well as recommending what needs to be developed further in the near future. Keywords: Big data, Geospatial, Data handling, Analytics, Spatial Modeling, Review

  7. Some aspects of optimal human-computer symbiosis in multisensor geospatial data fusion

    NASA Astrophysics Data System (ADS)

    Levin, E.; Sergeyev, A.

    Nowadays vast amount of the available geospatial data provides additional opportunities for the targeting accuracy increase due to possibility of geospatial data fusion. One of the most obvious operations is determining of the targets 3D shapes and geospatial positions based on overlapped 2D imagery and sensor modeling. 3D models allows for the extraction of such information about targets, which cannot be measured directly based on single non-fused imagery. Paper describes ongoing research effort at Michigan Tech attempting to combine advantages of human analysts and computer automated processing for efficient human computer symbiosis for geospatial data fusion. Specifically, capabilities provided by integration into geospatial targeting interfaces novel human-computer interaction method such as eye-tracking and EEG was explored. Paper describes research performed and results in more details.

  8. Towards the Geospatial Web: Media Platforms for Managing Geotagged Knowledge Repositories

    NASA Astrophysics Data System (ADS)

    Scharl, Arno

    International media have recognized the visual appeal of geo-browsers such as NASA World Wind and Google Earth, for example, when Web and television coverage on Hurricane Katrina used interactive geospatial projections to illustrate its path and the scale of destruction in August 2005. Yet these early applications only hint at the true potential of geospatial technology to build and maintain virtual communities and to revolutionize the production, distribution and consumption of media products. This chapter investigates this potential by reviewing the literature and discussing the integration of geospatial and semantic reference systems, with an emphasis on extracting geospatial context from unstructured text. A content analysis of news coverage based on a suite of text mining tools (webLyzard) sheds light on the popularity and adoption of geospatial platforms.

  9. Aeromedical evacuation planning using geospatial decision-support.

    PubMed

    Bastian, Nathaniel D; Fulton, Lawrence V

    2014-02-01

    In this study, we proffer an algorithmic, geospatial-based decision-support methodology that assists military decision-makers in determining which aeromedical evacuation (MEDEVAC) assets to launch after receiving an injury location, given knowledge only of terrain, aircraft location, and aircraft capabilities. The objective is for military medical planners to use this decision-support tool (1) to improve real-time situational awareness by visualization of MEDEVAC coverage, showing which areas can be reached within established timelines; (2) to support medical planning by visualizing the impact of changes in the medical footprint to the MEDEVAC coverage; and (3) to support decision-making by providing a time-sorted list of MEDEVAC asset packages to select from, given the location of the patients. This same geospatial-based decision tool can be used for proper emplacement of evacuation assets such that the theater is covered within a truly representative 1-hour response time. We conclude with a discussion of applicability of this tool in medical force structure planning. PMID:24491614

  10. Geospatial Visualization of Global Satellite Images with Vis-EROS

    SciTech Connect

    Standart, G. D.; Stulken, K. R.; Zhang, Xuesong; Zong, Ziliang

    2011-04-13

    The Earth Resources Observation and Science (EROS) Center of U.S. Geological Survey is currently managing and maintaining the world largest satellite images distribution system, which provides 24/7 free download service for researchers all over the globe in many areas such as Geology, Hydrology, Climate Modeling, and Earth Sciences. A large amount of geospatial data contained in satellite images maintained by EROS is generated every day. However, this data is not well utilized due to the lack of efficient data visualization tools. This software implements a method for visualizing various characteristics of the global satellite image download requests. More specifically, Keyhole Markup Language (KML) files are generated which can be loaded into an earth browser such as Google Earth. Colored rectangles associated with stored satellite scenes are painted onto the earth browser; and the color and opacity of each rectangle is varied as a function of the popularity of the corresponding satellite image. An analysis of the geospatial information obtained relative to specified time constraints provides an ability to relate image download requests to environmental, political, and social events.

  11. Geospatial Data Quality of the Servir CORS Network

    NASA Astrophysics Data System (ADS)

    Santos, J.; Teodoro, R.; Mira, N.; Mendes, V. B.

    2015-08-01

    The SERVIR Continuous Operation Reference Stations (CORS) network was implemented in 2006 to facilitate land surveying with Global Navigation Satellite Systems (GNSS) positioning techniques. Nowadays, the network covers all Portuguese mainland. The SERVIR data is provided to many users, such as surveyors, universities (for education and research purposes) and companies that deal with geographic information. By middle 2012, there was a significant change in the network accessing paradigm, the most important of all being the increase in the responsibility of managing the network to guarantee a permanent availability and the highest quality of the geospatial data. In addition, the software that is used to manage the network and to compute the differential corrections was replaced by a new software package. These facts were decisive to perform the quality control of the SERVIR network and evaluate positional accuracy. In order to perform such quality control, a significant number of geodetic monuments spread throughout the country were chosen. Some of these monuments are located in the worst location regarding the network geometry in order to evaluate the accuracy of positions for the worst case scenarios. Data collection was carried out using different GNSS positioning modes and were compared against the benchmark positions that were determined using data acquired in static mode in 3-hour sessions. We conclude the geospatial data calculated and provided to the users community by the network is, within the surveying purposes, accurate, precise and fits the needs of those users.

  12. Ontology-based geospatial data query and integration

    USGS Publications Warehouse

    Zhao, T.; Zhang, C.; Wei, M.; Peng, Z.-R.

    2008-01-01

    Geospatial data sharing is an increasingly important subject as large amount of data is produced by a variety of sources, stored in incompatible formats, and accessible through different GIS applications. Past efforts to enable sharing have produced standardized data format such as GML and data access protocols such as Web Feature Service (WFS). While these standards help enabling client applications to gain access to heterogeneous data stored in different formats from diverse sources, the usability of the access is limited due to the lack of data semantics encoded in the WFS feature types. Past research has used ontology languages to describe the semantics of geospatial data but ontology-based queries cannot be applied directly to legacy data stored in databases or shapefiles, or to feature data in WFS services. This paper presents a method to enable ontology query on spatial data available from WFS services and on data stored in databases. We do not create ontology instances explicitly and thus avoid the problems of data replication. Instead, user queries are rewritten to WFS getFeature requests and SQL queries to database. The method also has the benefits of being able to utilize existing tools of databases, WFS, and GML while enabling query based on ontology semantics. ?? 2008 Springer-Verlag Berlin Heidelberg.

  13. The National 3-D Geospatial Information Web-Based Service of Korea

    NASA Astrophysics Data System (ADS)

    Lee, D. T.; Kim, C. W.; Kang, I. G.

    2013-09-01

    3D geospatial information systems should provide efficient spatial analysis tools and able to use all capabilities of the third dimension, and a visualization. Currently, many human activities make steps toward the third dimension like land use, urban and landscape planning, cadastre, environmental monitoring, transportation monitoring, real estate market, military applications, etc. To reflect this trend, the Korean government has been started to construct the 3D geospatial data and service platform. Since the geospatial information was introduced in Korea, the construction of geospatial information (3D geospatial information, digital maps, aerial photographs, ortho photographs, etc.) has been led by the central government. The purpose of this study is to introduce the Korean government-lead 3D geospatial information web-based service for the people who interested in this industry and we would like to introduce not only the present conditions of constructed 3D geospatial data but methodologies and applications of 3D geospatial information. About 15% (about 3,278.74 km2) of the total urban area's 3D geospatial data have been constructed by the national geographic information institute (NGII) of Korea from 2005 to 2012. Especially in six metropolitan cities and Dokdo (island belongs to Korea) on level of detail (LOD) 4 which is photo-realistic textured 3D models including corresponding ortho photographs were constructed in 2012. In this paper, we represented web-based 3D map service system composition and infrastructure and comparison of V-world with Google Earth service will be presented. We also represented Open API based service cases and discussed about the protection of location privacy when we construct 3D indoor building models. In order to prevent an invasion of privacy, we processed image blurring, elimination and camouflage. The importance of public-private cooperation and advanced geospatial information policy is emphasized in Korea. Thus, the progress of

  14. Distributed Multi-interface Catalogue for Geospatial Data

    NASA Astrophysics Data System (ADS)

    Nativi, S.; Bigagli, L.; Mazzetti, P.; Mattia, U.; Boldrini, E.

    2007-12-01

    Several geosciences communities (e.g. atmospheric science, oceanography, hydrology) have developed tailored data and metadata models and service protocol specifications for enabling online data discovery, inventory, evaluation, access and download. These specifications are conceived either profiling geospatial information standards or extending the well-accepted geosciences data models and protocols in order to capture more semantics. These artifacts have generated a set of related catalog -and inventory services- characterizing different communities, initiatives and projects. In fact, these geospatial data catalogs are discovery and access systems that use metadata as the target for query on geospatial information. The indexed and searchable metadata provide a disciplined vocabulary against which intelligent geospatial search can be performed within or among communities. There exists a clear need to conceive and achieve solutions to implement interoperability among geosciences communities, in the context of the more general geospatial information interoperability framework. Such solutions should provide search and access capabilities across catalogs, inventory lists and their registered resources. Thus, the development of catalog clearinghouse solutions is a near-term challenge in support of fully functional and useful infrastructures for spatial data (e.g. INSPIRE, GMES, NSDI, GEOSS). This implies the implementation of components for query distribution and virtual resource aggregation. These solutions must implement distributed discovery functionalities in an heterogeneous environment, requiring metadata profiles harmonization as well as protocol adaptation and mediation. We present a catalog clearinghouse solution for the interoperability of several well-known cataloguing systems (e.g. OGC CSW, THREDDS catalog and data services). The solution implements consistent resource discovery and evaluation over a dynamic federation of several well-known cataloguing and

  15. Generation of Multiple Metadata Formats from a Geospatial Data Repository

    NASA Astrophysics Data System (ADS)

    Hudspeth, W. B.; Benedict, K. K.; Scott, S.

    2012-12-01

    The Earth Data Analysis Center (EDAC) at the University of New Mexico is partnering with the CYBERShARE and Environmental Health Group from the Center for Environmental Resource Management (CERM), located at the University of Texas, El Paso (UTEP), the Biodiversity Institute at the University of Kansas (KU), and the New Mexico Geo- Epidemiology Research Network (GERN) to provide a technical infrastructure that enables investigation of a variety of climate-driven human/environmental systems. Two significant goals of this NASA-funded project are: a) to increase the use of NASA Earth observational data at EDAC by various modeling communities through enabling better discovery, access, and use of relevant information, and b) to expose these communities to the benefits of provenance for improving understanding and usability of heterogeneous data sources and derived model products. To realize these goals, EDAC has leveraged the core capabilities of its Geographic Storage, Transformation, and Retrieval Engine (Gstore) platform, developed with support of the NSF EPSCoR Program. The Gstore geospatial services platform provides general purpose web services based upon the REST service model, and is capable of data discovery, access, and publication functions, metadata delivery functions, data transformation, and auto-generated OGC services for those data products that can support those services. Central to the NASA ACCESS project is the delivery of geospatial metadata in a variety of formats, including ISO 19115-2/19139, FGDC CSDGM, and the Proof Markup Language (PML). This presentation details the extraction and persistence of relevant metadata in the Gstore data store, and their transformation into multiple metadata formats that are increasingly utilized by the geospatial community to document not only core library catalog elements (e.g. title, abstract, publication data, geographic extent, projection information, and database elements), but also the processing steps used to

  16. Bridging the Gap Between Surveyors and the Geo-Spatial Society

    NASA Astrophysics Data System (ADS)

    Müller, H.

    2016-06-01

    For many years FIG, the International Association of Surveyors, has been trying to bridge the gap between surveyors and the geospatial society as a whole, with the geospatial industries in particular. Traditionally the surveying profession contributed to the good of society by creating and maintaining highly precise and accurate geospatial data bases, based on an in-depth knowledge of spatial reference frameworks. Furthermore in many countries surveyors may be entitled to make decisions about land divisions and boundaries. By managing information spatially surveyors today develop into the role of geo-data managers, the longer the more. Job assignments in this context include data entry management, data and process quality management, design of formal and informal systems, information management, consultancy, land management, all that in close cooperation with many different stakeholders. Future tasks will include the integration of geospatial information into e-government and e-commerce systems. The list of professional tasks underpins the capabilities of surveyors to contribute to a high quality geospatial data and information management. In that way modern surveyors support the needs of a geo-spatial society. The paper discusses several approaches to define the role of the surveyor within the modern geospatial society.

  17. SWOT analysis on National Common Geospatial Information Service Platform of China

    NASA Astrophysics Data System (ADS)

    Zheng, Xinyan; He, Biao

    2009-09-01

    Currently, the trend of International Surveying and Mapping is shifting from map production to integrated service of geospatial information, such as GOS of U.S. etc. Under this circumstance, the Surveying and Mapping of China is inevitably shifting from 4D product service to NCGISPC (National Common Geospatial Information Service Platform of China)-centered service. Although State Bureau of Surveying and Mapping of China has already provided a great quantity of geospatial information service to various lines of business, such as emergency and disaster management, transportation, water resource, agriculture etc. The shortcomings of the traditional service mode are more and more obvious, due to the highly emerging requirement of e-government construction, the remarkable development of IT technology and emerging online geospatial service demands of various lines of business. NCGISPC, which aimed to provide multiple authoritative online one-stop geospatial information service and API for further development to government, business and public, is now the strategic core of SBSM (State Bureau of Surveying and Mapping of China). This paper focuses on the paradigm shift that NCGISPC brings up by using SWOT (Strength, Weakness, Opportunity and Threat) analysis, compared to the service mode that based on 4D product. Though NCGISPC is still at its early stage, it represents the future service mode of geospatial information of China, and surely will have great impact not only on the construction of digital China, but also on the way that everyone uses geospatial information service.

  18. SWOT analysis on National Common Geospatial Information Service Platform of China

    NASA Astrophysics Data System (ADS)

    Zheng, Xinyan; He, Biao

    2010-11-01

    Currently, the trend of International Surveying and Mapping is shifting from map production to integrated service of geospatial information, such as GOS of U.S. etc. Under this circumstance, the Surveying and Mapping of China is inevitably shifting from 4D product service to NCGISPC (National Common Geospatial Information Service Platform of China)-centered service. Although State Bureau of Surveying and Mapping of China has already provided a great quantity of geospatial information service to various lines of business, such as emergency and disaster management, transportation, water resource, agriculture etc. The shortcomings of the traditional service mode are more and more obvious, due to the highly emerging requirement of e-government construction, the remarkable development of IT technology and emerging online geospatial service demands of various lines of business. NCGISPC, which aimed to provide multiple authoritative online one-stop geospatial information service and API for further development to government, business and public, is now the strategic core of SBSM (State Bureau of Surveying and Mapping of China). This paper focuses on the paradigm shift that NCGISPC brings up by using SWOT (Strength, Weakness, Opportunity and Threat) analysis, compared to the service mode that based on 4D product. Though NCGISPC is still at its early stage, it represents the future service mode of geospatial information of China, and surely will have great impact not only on the construction of digital China, but also on the way that everyone uses geospatial information service.

  19. Developing a Cloud-Based Online Geospatial Information Sharing and Geoprocessing Platform to Facilitate Collaborative Education and Research

    NASA Astrophysics Data System (ADS)

    Yang, Z. L.; Cao, J.; Hu, K.; Gui, Z. P.; Wu, H. Y.; You, L.

    2016-06-01

    Efficient online discovering and applying geospatial information resources (GIRs) is critical in Earth Science domain as while for cross-disciplinary applications. However, to achieve it is challenging due to the heterogeneity, complexity and privacy of online GIRs. In this article, GeoSquare, a collaborative online geospatial information sharing and geoprocessing platform, was developed to tackle this problem. Specifically, (1) GIRs registration and multi-view query functions allow users to publish and discover GIRs more effectively. (2) Online geoprocessing and real-time execution status checking help users process data and conduct analysis without pre-installation of cumbersome professional tools on their own machines. (3) A service chain orchestration function enables domain experts to contribute and share their domain knowledge with community members through workflow modeling. (4) User inventory management allows registered users to collect and manage their own GIRs, monitor their execution status, and track their own geoprocessing histories. Besides, to enhance the flexibility and capacity of GeoSquare, distributed storage and cloud computing technologies are employed. To support interactive teaching and training, GeoSquare adopts the rich internet application (RIA) technology to create user-friendly graphical user interface (GUI). Results show that GeoSquare can integrate and foster collaboration between dispersed GIRs, computing resources and people. Subsequently, educators and researchers can share and exchange resources in an efficient and harmonious way.

  20. Establishment of the Northeast Coastal Watershed Geospatial Data Network (NECWGDN)

    SciTech Connect

    Hannigan, Robyn

    2014-02-17

    The goals of NECWGDN were to establish integrated geospatial databases that interfaced with existing open-source (water.html) environmental data server technologies (e.g., HydroDesktop) and included ecological and human data to enable evaluation, prediction, and adaptation in coastal environments to climate- and human-induced threats to the coastal marine resources within the Gulf of Maine. We have completed the development and testing of a "test bed" architecture that is compatible with HydroDesktop and have identified key metadata structures that will enable seamless integration and delivery of environmental, ecological, and human data as well as models to predict threats to end-users. Uniquely this database integrates point as well as model data and so offers capacities to end-users that are unique among databases. Future efforts will focus on the development of integrated environmental-human dimension models that can serve, in near real time, visualizations of threats to coastal resources and habitats.

  1. Geospatial and Contextual Approaches to Energy Balance and Health

    PubMed Central

    Berrigan, David; Hipp, J. Aaron; Hurvitz, Philip M.; James, Peter; Jankowska, Marta M.; Kerr, Jacqueline; Laden, Francine; Leonard, Tammy; McKinnon, Robin A.; Powell-Wiley, Tiffany M.; Tarlov, Elizabeth; Zenk, Shannon N.

    2016-01-01

    In the past 15 years, a major research enterprise has emerged that is aimed at understanding associations between geographic and contextual features of the environment (especially the built environment) and elements of human energy balance, including diet, weight, and physical activity. Here we highlight aspects of this research area with a particular focus on research and opportunities in the United States as an example. We address four main areas: 1) The importance of valid and comparable data concerning behavior across geographies, 2) The ongoing need to identify and explore new environmental variables, 3) The challenge of identifying the causally relevant context, and 4) The pressing need for stronger study designs and analytical methods. Additionally, we discuss existing sources of geo-referenced health data which might be exploited by interdisciplinary research teams, personnel challenges and some aspects of funding for geospatial research by the US National Institutes of Health in the past decade, including funding for international collaboration and training opportunities. PMID:27076868

  2. Geospatial Analysis of Oil and Gas Wells in California

    NASA Astrophysics Data System (ADS)

    Riqueros, N. S.; Kang, M.; Jackson, R. B.

    2015-12-01

    California currently ranks third in oil production by U.S. state and more than 200,000 wells have been drilled in the state. Oil and gas wells provide a potential pathway for subsurface migration, leading to groundwater contamination and emissions of methane and other fluids to the atmosphere. Here we compile available public databases on oil and gas wells from the California Department of Conservation's Division of Oil, Gas, and Geothermal Resources, the U.S. Geological Survey, and other state and federal sources. We perform geospatial analysis at the county and field levels to characterize depths, producing formations, spud/completion/abandonment dates, land cover, population, and land ownership of active, idle, buried, abandoned, and plugged wells in California. The compiled database is designed to serve as a quantitative platform for developing field-based groundwater and air emission monitoring plans.

  3. Advancing Collaborative Climate Studies through Globally Distributed Geospatial Analysis

    NASA Astrophysics Data System (ADS)

    Singh, R.; Percivall, G.

    2009-12-01

    (note: acronym glossary at end of abstract) For scientists to have confidence in the veracity of data sets and computational processes not under their control, operational transparency must be much greater than previously required. Being able to have a universally understood and machine-readable language for describing such things as the completeness of metadata, data provenance and uncertainty, and the discrete computational steps in a complex process take on increased importance. OGC has been involved with technological issues associated with climate change since 2005 when we, along with the IEEE Committee on Earth Observation, began a close working relationship with GEO and GEOSS (http://earthobservations.org). GEO/GEOS provide the technology platform to GCOS who in turn represents the earth observation community to UNFCCC. OGC and IEEE are the organizers of the GEO/GEOSS Architecture Implementation Pilot (see http://www.ogcnetwork.net/AIpilot). This continuing work involves closely working with GOOS (Global Ocean Observing System) and WMO (World Meteorological Organization). This session reports on the findings of recent work within the OGC’s community of software developers and users to apply geospatial web services to the climate studies domain. The value of this work is to evolve OGC web services, moving from data access and query to geo-processing and workflows. Two projects will be described, the GEOSS API-2 and the CCIP. AIP is a task of the GEOSS Architecture and Data Committee. During its duration, two GEO Tasks defined the project: AIP-2 began as GEO Task AR-07-02, to lead the incorporation of contributed components consistent with the GEOSS Architecture using a GEO Web Portal and a Clearinghouse search facility to access services through GEOSS Interoperability Arrangements in support of the GEOSS Societal Benefit Areas. AIP-2 concluded as GEOS Task AR-09-01b, to develop and pilot new process and infrastructure components for the GEOSS Common

  4. GIS information organization based on the Semantic Geospatial Web

    NASA Astrophysics Data System (ADS)

    Li, Shuxia; Su, Xuming; Li, Ke

    2008-10-01

    People typically use geographic names instead of coordinates to find geographic information on the web through a search engine. But the current keyword-based web search engines are poorly adapted to help people find information that relates to a particular geographic name, because they don't incorporate the geospatial semantic during the search process. The Semantic Web is a new semantic-based information-retrieval environment. We propose the information organization framework of the GIS semantic data according to the architecture of the Semantic Web, that is, the ontology, the metadata and the data source. Then we deal with the organization of the semantic data based on the three-layered framework respectively. As a focus, we present a novel method to disambiguate geographical name based on the ontology of the place.

  5. Geospatial Toolkits and Resource Maps for Selected Countries from the National Renewable Energy Laboratory (NREL)

    DOE Data Explorer

    NREL developed the Geospatial Toolkit (GsT), a map-based software application that integrates resource data and geographic information systems (GIS) for integrated resource assessment. A variety of agencies within countries, along with global datasets, provided country-specific data. Originally developed in 2005, the Geospatial Toolkit was completely redesigned and re-released in November 2010 to provide a more modern, easier-to-use interface with considerably faster analytical querying capabilities. Toolkits are available for 21 countries and each one can be downloaded separately. The source code for the toolkit is also available. [Taken and edited from http://www.nrel.gov/international/geospatial_toolkits.html

  6. Identification of Potential Fishing Grounds Using Geospatial Technique

    NASA Astrophysics Data System (ADS)

    Abdullah, Muhammad

    2016-07-01

    Fishery resources surveys using actual sampling and data collection methods require extensive ship time and sampling time. Informative data from satellite plays a vital role in fisheries application. Satellite Remote Sensing techniques can be used to detect fish aggregation just like visual fish identification ultimately these techniques can be used to predict the potential fishing zones by measuring the parameters which affect the distribution of fishes. Remote sensing is a time saving technique to locate fishery resources along the coast. Pakistan has a continental shelf area of 50,270 km2 and coastline length of 1,120 km. The total maritime zone of Pakistan is over 30 percent of the land area. Fishery plays an important role in the national economy. The marine fisheries sector is the main component, contributing about 57 percent in terms of production. Fishery is the most important economic activity in the villages and towns along the coast, and in most of the coastal villages and settlements it is the sole source of employment and income generation. Fishing by fishermen is done on the sole basis of repeated experiments and collection of information from other fishermen. Often they are in doubt about the location of potential fishing zones. This leads to waste of time and money, adversely affecting fishermen incomes and over or under-exploitation of fishing zones. The main purpose of this study was to map potential fishing grounds by identifying various environmental parameters which impact fish aggregation along the Pakistan coastline. The primary reason of this study is the fact that the fishing communities of Pakistan's coastal regions are extremely poor and lack knowledge of the modern tools and techniques that may be incorporated to enhance their yield and thus, improve their livelihood. Using geospatial techniques in order to accurately map the potential fishing zones based on sea surface temperature (SST) and chlorophyll -a content, in conjunction with

  7. Identification of Potential Fishing Grounds Using Geospatial Technique

    NASA Astrophysics Data System (ADS)

    Abdullah, Muhammad

    2016-07-01

    Fishery resources surveys using actual sampling and data collection methods require extensive ship time and sampling time. Informative data from satellite plays a vital role in fisheries application. Satellite Remote Sensing techniques can be used to detect fish aggregation just like visual fish identification ultimately these techniques can be used to predict the potential fishing zones by measuring the parameters which affect the distribution of fishes. Remote sensing is a time saving technique to locate fishery resources along the coast. Pakistan has a continental shelf area of 50,270 km2 and coastline length of 1,120 km. The total maritime zone of Pakistan is over 30 percent of the land area. Fishery plays an important role in the national economy. The marine fisheries sector is the main component, contributing about 57 percent in terms of production. Fishery is the most important economic activity in the villages and towns along the coast, and in most of the coastal villages and settlements it is the sole source of employment and income generation. Fishing by fishermen is done on the sole basis of repeated experiments and collection of information from other fishermen. Often they are in doubt about the location of potential fishing zones. This leads to waste of time and money, adversely affecting fishermen incomes and over or under-exploitation of fishing zones. The main purpose of this study was to map potential fishing grounds by identifying various environmental parameters which impact fish aggregation along the Pakistan coastline. The primary reason of this study is the fact that the fishing communities of Pakistan's coastal regions are extremely poor and lack knowledge of the modern tools and techniques that may be incorporated to enhance their yield and thus, improve their livelihood. Using geospatial techniques in order to accurately map the potential fishing zones based on sea surface temperature (SST) and chlorophyll -a content, in conjunction with

  8. Authoring Tours of Geospatial Data With KML and Google Earth

    NASA Astrophysics Data System (ADS)

    Barcay, D. P.; Weiss-Malik, M.

    2008-12-01

    As virtual globes become widely adopted by the general public, the use of geospatial data has expanded greatly. With the popularization of Google Earth and other platforms, GIS systems have become virtual reality platforms. Using these platforms, a casual user can easily explore the world, browse massive data-sets, create powerful 3D visualizations, and share those visualizations with millions of people using the KML language. This technology has raised the bar for professionals and academics alike. It is now expected that studies and projects will be accompanied by compelling, high-quality visualizations. In this new landscape, a presentation of geospatial data can be the most effective form of advertisement for a project: engaging both the general public and the scientific community in a unified interactive experience. On the other hand, merely dumping a dataset into a virtual globe can be a disorienting, alienating experience for many users. To create an effective, far-reaching presentation, an author must take care to make their data approachable to a wide variety of users with varying knowledge of the subject matter, expertise in virtual globes, and attention spans. To that end, we present techniques for creating self-guided interactive tours of data represented in KML and visualized in Google Earth. Using these methods, we provide the ability to move the camera through the world while dynamically varying the content, style, and visibility of the displayed data. Such tours can automatically guide users through massive, complex datasets: engaging a broad user-base, and conveying subtle concepts that aren't immediately apparent when viewing the raw data. To the casual user these techniques result in an extremely compelling experience similar to watching video. Unlike video though, these techniques maintain the rich interactive environment provided by the virtual globe, allowing users to explore the data in detail and to add other data sources to the presentation.

  9. Integrated Sustainable Planning for Industrial Region Using Geospatial Technology

    NASA Astrophysics Data System (ADS)

    Tiwari, Manish K.; Saxena, Aruna; Katare, Vivek

    2012-07-01

    The Geospatial techniques and its scope of applications have undergone an order of magnitude change since its advent and now it has been universally accepted as a most important and modern tool for mapping and monitoring of various natural resources as well as amenities and infrastructure. The huge and voluminous spatial database generated from various Remote Sensing platforms needs proper management like storage, retrieval, manipulation and analysis to extract desired information, which is beyond the capability of human brain. This is where the computer aided GIS technology came into existence. A GIS with major input from Remote Sensing satellites for the natural resource management applications must be able to handle the spatiotemporal data, supporting spatiotemporal quarries and other spatial operations. Software and the computer-based tools are designed to make things easier to the user and to improve the efficiency and quality of information processing tasks. The natural resources are a common heritage, which we have shared with the past generations, and our future generation will be inheriting these resources from us. Our greed for resource and our tremendous technological capacity to exploit them at a much larger scale has created a situation where we have started withdrawing from the future stocks. Bhopal capital region had attracted the attention of the planners from the beginning of the five-year plan strategy for Industrial development. However, a number of projects were carried out in the individual Districts (Bhopal, Rajgarh, Shajapur, Raisen, Sehore) which also gave fruitful results, but no serious efforts have been made to involve the entire region. No use of latest Geospatial technique (Remote Sensing, GIS, GPS) to prepare a well structured computerized data base without which it is very different to retrieve, analyze and compare the data for monitoring as well as for planning the developmental activities in future.

  10. 42 CFR 493.863 - Standard; Compatibility testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for Laboratories Performing Tests of Moderate Complexity (including the Subcategory), High Complexity... overall testing event score of at least 100 percent is unsatisfactory performance. (b) Failure to participate in a testing event is unsatisfactory performance and results in a score of 0 for the testing...

  11. LDRD final report : first application of geospatial semantic graphs to SAR image data.

    SciTech Connect

    Brost, Randolph C.; McLendon, William Clarence,

    2013-01-01

    Modeling geospatial information with semantic graphs enables search for sites of interest based on relationships between features, without requiring strong a priori models of feature shape or other intrinsic properties. Geospatial semantic graphs can be constructed from raw sensor data with suitable preprocessing to obtain a discretized representation. This report describes initial work toward extending geospatial semantic graphs to include temporal information, and initial results applying semantic graph techniques to SAR image data. We describe an efficient graph structure that includes geospatial and temporal information, which is designed to support simultaneous spatial and temporal search queries. We also report a preliminary implementation of feature recognition, semantic graph modeling, and graph search based on input SAR data. The report concludes with lessons learned and suggestions for future improvements.

  12. a Cloud-Based Platform Supporting Geospatial Collaboration for GIS Education

    NASA Astrophysics Data System (ADS)

    Cheng, X.; Gui, Z.; Hu, K.; Gao, S.; Shen, P.; Wu, H.

    2015-05-01

    GIS-related education needs support of geo-data and geospatial software. Although there are large amount of geographic information resources distributed on the web, the discovery, process and integration of these resources are still unsolved. Researchers and teachers always searched geo-data by common search engines but results were not satisfied. They also spent much money and energy on purchase and maintenance of various kinds of geospatial software. Aimed at these problems, a cloud-based geospatial collaboration platform called GeoSquare was designed and implemented. The platform serves as a geoportal encouraging geospatial data, information, and knowledge sharing through highly interactive and expressive graphic interfaces. Researchers and teachers can solve their problems effectively in this one-stop solution. Functions, specific design and implementation details are presented in this paper. Site of GeoSquare is: http://geosquare.tianditu.com/

  13. A geospatial modelling approach to predict seagrass habitat recovery under multiple stressor regimes

    EPA Science Inventory

    Restoration of estuarine seagrass habitats requires a clear understanding of the modes of action of multiple interacting stressors including nutrients, climate change, coastal land-use change, and habitat modification. We have developed and demonstrated a geospatial modeling a...

  14. 78 FR 49288 - Agency Information Collection Activities: Proposed Collection; Comments Requested: Geospatial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... other technological collection techniques or other forms of information technology, e.g., permitting electronic submission of responses. Overview of This Information Collection (1) Type of Information... Information Collection Activities: Proposed Collection; Comments Requested: Geospatial Capabilities...

  15. Application of Geo-Spatial Techniques for Precise Demarcation of Village/Panchayat Boundaries

    NASA Astrophysics Data System (ADS)

    Rao, S. S.; Banu, V.; Tiwari, A.; Bahuguna, S.; Uniyal, S.; Chavan, S. B.; Murthy, M. V. R.; Arya, V. S.; Nagaraja, R.; Sharma, J. R.

    2014-11-01

    In order to achieve the overall progress of the country with active and effective participation of all sections of society, the 12th Five Year Plan (FYP) would bring Panchayats centre-stage and achieve the inclusive growth agenda through inclusive governance. The concept of 'democratic decentralization' in the form of a three-tier administration was introduced in the name of "Panchayat Raj". Horizontally, it is a network of village Panchayats. Vertically, it is an organic growth of Panchayats rising up to national level. The Ministry of Panchayati Raj has three broad agenda: Empowerment, Enablement and Accountability. Space based Information Support for Decentralized Planning (SIS-DP) is one of the initiatives taken by Govt. of India with ISRO/DOS for generation and dissemination of spatial information for planning at the grass root level. The boundary layer for villages across different states/district/block is available with line departments. Most of these data exist at a much generalized scale. These boundaries do not overlay exactly with that of ground realities and may not be suitable for accurate analysis in terms of area, shape, position, etc. To deal with this problem, a strategy is adopted, which makes use of High Resolution Satellite Imagery (HRSI) from Indian Remote sensing satellites and cadastral maps at 1:4000 scale integrated with GIS techniques to enhance the accuracy of geo-spatial depiction of Village/Panchayat boundaries. Cadastral maps are used to depict the boundaries of land parcels and other features at the village level. These maps are registered to ortho products of HRSI using Ground Control Points. The cadastral maps are precisely overlaid on ortho-rectified HRSI and each parcel vertex is tagged with the real-world geographical coordinates. Village boundaries are extracted from the geo-referenced village cadastral maps. These boundaries are fine-tuned by considering under lap and overlap of neighboring villages and a mosaic is generated at

  16. Comparison results of forest cover mapping of Peninsular Malaysia using geospatial technology

    NASA Astrophysics Data System (ADS)

    Hamid, Wan Abdul; Abd Rahman, Shukri B. Wan

    2016-06-01

    Climate change and global warming transpire due to several factors. Among them is deforestation which occur mostly in developing countries including Malaysia where forested areas are converted to other land use for tangible economic returns and to a smaller extent, as subsistence for local communities. As a cause for concern, efforts have been taken by the World Resource Institute (WRI) and World Wildlife Fund (WWF) to monitor forest loss using geospatial technology - interpreting time-based remote sensing imageries and producing statistics of forested areas lost since 2001. In Peninsular Malaysia, the Forestry Department of Peninsular Malaysia(FDPM) has conducted forest cover mapping for the region using the same technology since 2011, producing GIS maps for 2009-2010,2011-2012,2013-2014 and 2015. This paper focuses on the comparative study of the results generated from WRI,WWF and FDPM interpretations between 2010 and 2015, the methodologies used, the similarities and differences, challenges and recommendations for future enhancement of forest cover mapping technique.

  17. Use of Open Geospatial Consortium (OGC) Standards to Disseminate and Access Scientific Data

    NASA Astrophysics Data System (ADS)

    Piper, M.; Justice, B.; Borsholm, A.; Harris, A. T.

    2011-12-01

    With the proliferation of scientific data in the public domain, improved methods for facilitating the discovery and dissemination of the data are sorely needed. NASA recently confronted this challenging problem within the context of the NextGen 4-D Weather Cube, a virtual database of weather observations and forecasts that, among other applications, will principally serve the reinvented US air traffic management system. Acknowledging the current trends toward the use of Open Geospatial Consortium (OGC) standards, ITT VIS worked closely with NASA sponsors to implement the ebXML RegRep standard, which defines support for the registration, management and retrieval of georeferenced data and related metadata. Use of this standard within a web-enabled software infrastructure allows consumers to discover datasets and access them via methods called "services". The OGC WFS, WMS, and WCS services provide different delivery mechanisms for datasets stored in public repositories and give users on-demand access within their local computing environment. Examples of how NASA, working on the NextGen project, researched and developed ways of using these technologies to further enhance their research will be emphasized. Lessons learned here may provide guidance for other scientific projects with similar requirements for disseminating public datasets.

  18. Supporting Red List threat assessments with GeoCAT: geospatial conservation assessment tool.

    PubMed

    Bachman, Steven; Moat, Justin; Hill, Andrew W; de Torre, Javier; Scott, Ben

    2011-01-01

    GeoCAT is an open source, browser based tool that performs rapid geospatial analysis to ease the process of Red Listing taxa. Developed to utilise spatially referenced primary occurrence data, the analysis focuses on two aspects of the geographic range of a taxon: the extent of occurrence (EOO) and the area of occupancy (AOO). These metrics form part of the IUCN Red List categories and criteria and have often proved challenging to obtain in an accurate, consistent and repeatable way. Within a familiar Google Maps environment, GeoCAT users can quickly and easily combine data from multiple sources such as GBIF, Flickr and Scratchpads as well as user generated occurrence data. Analysis is done with the click of a button and is visualised instantly, providing an indication of the Red List threat rating, subject to meeting the full requirements of the criteria. Outputs including the results, data and parameters used for analysis are stored in a GeoCAT file that can be easily reloaded or shared with collaborators. GeoCAT is a first step toward automating the data handling process of Red List assessing and provides a valuable hub from which further developments and enhancements can be spawned. PMID:22207809

  19. Generalized multiple kernel framework for multiclass geospatial objects detection in high-resolution remote sensing images

    NASA Astrophysics Data System (ADS)

    Li, Xiangjuan; Sun, Xian; Sun, Hao; Li, Yu; Wang, Hongqi

    2012-01-01

    Multiclass geospatial objects detection within complex environments is a challenging problem in remote-sensing areas. In this paper we propose a novel, generalized kernel-based learning framework for the purpose of enhanced object detection. There are two novel areas. (1) Multisource information, including shape, feature points, and appearance, was extracted to give a comprehensive representation of the objects. We improved a shape descriptor and introduced a two-level spatial pyramid to represent appearance, both global and local. Therefore, basis kernels were formed, one for each feature. (2) In order to illustrate the effect of each kind of feature on each pyramid level, a generalized and weighted combination method was first used to combine all of the levels and then the features. The weights and the classifier model are based on the support vector machine framework for obtaining balance between all basis kernels. This classifier was transformed into a powerful detector by using a sliding window. The reported results are for the detection on high-resolution remote-sensing images. This study demonstrates that the proposed generalized and weighted combination of kernels can yield better performance compared with traditional single-kernel classifier and other combination methods.

  20. Sustainable Urban Forestry Potential Based Quantitative And Qualitative Measurement Using Geospatial Technique

    NASA Astrophysics Data System (ADS)

    Rosli, A. Z.; Reba, M. N. M.; Roslan, N.; Room, M. H. M.

    2014-02-01

    In order to maintain the stability of natural ecosystems around urban areas, urban forestry will be the best initiative to maintain and control green space in our country. Integration between remote sensing (RS) and geospatial information system (GIS) serves as an effective tool for monitoring environmental changes and planning, managing and developing a sustainable urbanization. This paper aims to assess capability of the integration of RS and GIS to provide information for urban forest potential sites based on qualitative and quantitative by using priority parameter ranking in the new township of Nusajaya. SPOT image was used to provide high spatial accuracy while map of topography, landuse, soils group, hydrology, Digital Elevation Model (DEM) and soil series data were applied to enhance the satellite image in detecting and locating present attributes and features on the ground. Multi-Criteria Decision Making (MCDM) technique provides structural and pair wise quantification and comparison elements and criteria for priority ranking for urban forestry purpose. Slope, soil texture, drainage, spatial area, availability of natural resource, and vicinity of urban area are criteria considered in this study. This study highlighted the priority ranking MCDM is cost effective tool for decision-making in urban forestry planning and landscaping.

  1. Harvesting, Integrating and Distributing Large Open Geospatial Datasets Using Free and Open-Source Software

    NASA Astrophysics Data System (ADS)

    Oliveira, Ricardo; Moreno, Rafael

    2016-06-01

    Federal, State and Local government agencies in the USA are investing heavily on the dissemination of Open Data sets produced by each of them. The main driver behind this thrust is to increase agencies' transparency and accountability, as well as to improve citizens' awareness. However, not all Open Data sets are easy to access and integrate with other Open Data sets available even from the same agency. The City and County of Denver Open Data Portal distributes several types of geospatial datasets, one of them is the city parcels information containing 224,256 records. Although this data layer contains many pieces of information it is incomplete for some custom purposes. Open-Source Software were used to first collect data from diverse City of Denver Open Data sets, then upload them to a repository in the Cloud where they were processed using a PostgreSQL installation on the Cloud and Python scripts. Our method was able to extract non-spatial information from a `not-ready-to-download' source that could then be combined with the initial data set to enhance its potential use.

  2. Supporting Red List threat assessments with GeoCAT: geospatial conservation assessment tool

    PubMed Central

    Bachman, Steven; Moat, Justin; Hill, Andrew W.; de Torre, Javier; Scott, Ben

    2011-01-01

    Abstract GeoCAT is an open source, browser based tool that performs rapid geospatial analysis to ease the process of Red Listing taxa. Developed to utilise spatially referenced primary occurrence data, the analysis focuses on two aspects of the geographic range of a taxon: the extent of occurrence (EOO) and the area of occupancy (AOO). These metrics form part of the IUCN Red List categories and criteria and have often proved challenging to obtain in an accurate, consistent and repeatable way. Within a familiar Google Maps environment, GeoCAT users can quickly and easily combine data from multiple sources such as GBIF, Flickr and Scratchpads as well as user generated occurrence data. Analysis is done with the click of a button and is visualised instantly, providing an indication of the Red List threat rating, subject to meeting the full requirements of the criteria. Outputs including the results, data and parameters used for analysis are stored in a GeoCAT file that can be easily reloaded or shared with collaborators. GeoCAT is a first step toward automating the data handling process of Red List assessing and provides a valuable hub from which further developments and enhancements can be spawned. PMID:22207809

  3. Assessing Student Learning About Climate Change With Earth System Place-Based Geospatial Data

    NASA Astrophysics Data System (ADS)

    Zalles, D. R.; Krumhansl, R. A.; Acker, J. G.; Manitakos, J.; Elston, A.

    2012-12-01

    Powerful web-based data sets about geospatially situated Earth system phenomena are now available for analysis by the general public, including for any teacher or set of students who have the requisite skills to partake in the analyses. Unfortunately there exist impediments to successful use of these data. Teachers and students may lack (1) readiness to use the software interfaces for querying and representing the data, (2) needed scientific practice skills such as interpreting geographic information system-based maps and time series plots, and (3) needed understandings of the fundamental scientific concepts to make sense of the data. Hence, to evaluate any program designed to engage students and teachers with these data resources, there need to be assessment strategies to check for understanding. Assessment becomes the key to identifying learning needs and intervening appropriately with additional task scaffolding or other forms of instructional support. The paper will describe contrasting assessment strategies being carried out in two climate change education projects funded by NASA and NSF. The NASA project, Data Enhanced Investigations for Climate Change Education (DICCE), brings data from NASA satellite missions to the classroom. A bank of DICCE assessment items is being developed to measure students' abilities to transfer their skills in analyzing data about their local region to other regions of the world. Teachers choose pre-post assessment items for variables of Earth system phenomena that they target in their instruction. The data vary depending on what courses the teachers are teaching. For example, Earth science teachers are likely to choose data about atmospheric phenomena and biology teachers are more likely to choose land cover data. The NSF project, Studying Topography, Orographic Rainfall, and Ecosystems with Geospatial Information Technology (STORE), provides to teachers recent climatological and vegetation data about "study areas" in Central

  4. Advancements in Open Geospatial Standards for Photogrammetry and Remote Sensing from Ogc

    NASA Astrophysics Data System (ADS)

    Percivall, George; Simonis, Ingo

    2016-06-01

    The necessity of open standards for effective sharing and use of remote sensing continues to receive increasing emphasis in policies of agencies and projects around the world. Coordination on the development of open standards for geospatial information is a vital step to insure that the technical standards are ready to support the policy objectives. The mission of the Open Geospatial Consortium (OGC) is to advance development and use of international standards and supporting services that promote geospatial interoperability. To accomplish this mission, OGC serves as the global forum for the collaboration of geospatial data / solution providers and users. Photogrammetry and remote sensing are sources of the largest and most complex geospatial information. Some of the most mature OGC standards for remote sensing include the Sensor Web Enablement (SWE) standards, the Web Coverage Service (WCS) suite of standards, encodings such as NetCDF, GMLJP2 and GeoPackage, and the soon to be approved Discrete Global Grid Systems (DGGS) standard. In collaboration with ISPRS, OGC working with government, research and industrial organizations continue to advance the state of geospatial standards for full use of photogrammetry and remote sensing.

  5. Geospatial-enabled Data Exploration and Computation through Data Infrastructure Building Blocks

    NASA Astrophysics Data System (ADS)

    Song, C. X.; Biehl, L. L.; Merwade, V.; Villoria, N.

    2015-12-01

    Geospatial data are present everywhere today with the proliferation of location-aware computing devices and sensors. This is especially true in the scientific community where large amounts of data are driving research and education activities in many domains. Collaboration over geospatial data, for example, in modeling, data analysis and visualization, must still overcome the barriers of specialized software and expertise among other challenges. The GABBs project aims at enabling broader access to geospatial data exploration and computation by developing spatial data infrastructure building blocks that leverage capabilities of end-to-end application service and virtualized computing framework in HUBzero. Funded by NSF Data Infrastructure Building Blocks (DIBBS) initiative, GABBs provides a geospatial data architecture that integrates spatial data management, mapping and visualization and will make it available as open source. The outcome of the project will enable users to rapidly create tools and share geospatial data and tools on the web for interactive exploration of data without requiring significant software development skills, GIS expertise or IT administrative privileges. This presentation will describe the development of geospatial data infrastructure building blocks and the scientific use cases that help drive the software development, as well as seek feedback from the user communities.

  6. A web service for service composition to aid geospatial modelers

    NASA Astrophysics Data System (ADS)

    Bigagli, L.; Santoro, M.; Roncella, R.; Mazzetti, P.

    2012-04-01

    The identification of appropriate mechanisms for process reuse, chaining and composition is considered a key enabler for the effective uptake of a global Earth Observation infrastructure, currently pursued by the international geospatial research community. In the Earth and Space Sciences, such a facility could primarily enable integrated and interoperable modeling, for what several approaches have been proposed and developed, over the last years. In fact, GEOSS is specifically tasked with the development of the so-called "Model Web". At increasing levels of abstraction and generalization, the initial stove-pipe software tools have evolved to community-wide modeling frameworks, to Component-Based Architecture solution, and, more recently, started to embrace Service-Oriented Architectures technologies, such as the OGC WPS specification and the WS-* stack of W3C standards for service composition. However, so far, the level of abstraction seems too low for implementing the Model Web vision, and far too complex technological aspects must still be addressed by both providers and users, resulting in limited usability and, eventually, difficult uptake. As by the recent ICT trend of resource virtualization, it has been suggested that users in need of a particular processing capability, required by a given modeling workflow, may benefit from outsourcing the composition activities into an external first-class service, according to the Composition as a Service (CaaS) approach. A CaaS system provides the necessary interoperability service framework for adaptation, reuse and complementation of existing processing resources (including models and geospatial services in general) in the form of executable workflows. This work introduces the architecture of a CaaS system, as a distributed information system for creating, validating, editing, storing, publishing, and executing geospatial workflows. This way, the users can be freed from the need of a composition infrastructure and

  7. Geospatial climate monitoring products: Tools for food security assessment

    NASA Astrophysics Data System (ADS)

    Verdin, James Patrick

    Many of the 250 million people living in the drylands of Sub-Saharan Africa are food insecure---they lack access at all times to enough food for an active and healthy life. Their vulnerability is due in large measure to highly variable climatic conditions and a dependence on rainfed agriculture. Famine, the most extreme food security emergency, is caused by crop failure due to bad weather, conflict, or both. Famine is a slow onset disaster, culminating after two or more bad growing seasons. After the disastrous African famines of the 1970s and 1980s, the U.S. established the Famine Early Warning System (FEWS) to make the observations of climatic and socioeconomic variables needed for early detection of food security emergencies. Two geospatial climate monitoring products, rainfall estimate and vegetation index images derived from satellite data, are operationally used by FEWS analysts. This dissertation describes research to derive new products from them to reduce ambiguity and improve the link between early warning and early response. First, rainfall estimate images were used in a geospatial crop water accounting scheme. The resulting water requirement satisfaction index was used to estimate crop yield, and a correlation of 0.80 with conventional yield reports was obtained for the 1997 maize harvest in Zimbabwe. Thus, the agricultural significance of remotely sensed patterns of precipitation in time and space was made more clear. The second product tested was the expression of a seasonal climate forecast as a series of vegetation index anomaly images. Correlations between sea surface temperature anomalies in the equatorial Pacific and vegetation index anomalies in Southern Africa were established and predictive relationships cross-validated. Using model forecast values of Pacific sea surface temperature from the National Oceanic and Atmospheric Administration for January, February, and March, forecast images of vegetation index anomalies were prepared prior to the

  8. Mapping the physical location of Telecenter using the geospatial information systems: A requirement of spatial digital mapping

    NASA Astrophysics Data System (ADS)

    Bohari, Abdul Manaf; Hin, Cheng Wei; Fuad, Nurwahida

    2016-08-01

    Recently, a study of Telecenter lifetime value is vital to academician, government and non-profit organization where Telecenter has great contribute to the nation development of rural community. Telecenter as important location of enhance the relationship of socio-economic, where placed all non-profit activity into single location platform. Consistently, previous studies mentioned Telecenter have significance contribution toward the nation, however, research and knowledge still lacking regarding the location factors that affecting the Telecenter specifically on spatial aspects of physical location environment. This research aimed to understand the requirement of spatial digital mapping the physical location of Telecenter, according to location of user and it environment, by using the geospatial information systems references, as called grid coordinate systems. The suggestion and implications of this study are briefly explored where spatial location factor plays important role in determine the lifetime value of Telecenter.

  9. A geospatial tool for wildfire threat analysis in central Texas

    NASA Astrophysics Data System (ADS)

    Hunter, Bruce Allan

    Wildland fires in the United States are not always confined to wilderness areas. The growth of population centers and housing developments in wilderness areas has blurred the boundaries between rural and urban. This merger of human development and natural landscape is known in the wildland fire community as the wildland urban interface or WUI, and it is within this interface that many wildland fires increasingly occur. As wildland fire intrusions in the WUI increase so too does the need for tools to assess potential impact to valuable assets contained within the interface. This study presents a methodology that combines real-time weather data, a wildland fire behavior model, satellite remote sensing and geospatial data in a geographic information system to assess potential risk to human developments and natural resources within the Austin metropolitan area and surrounding ten counties of central Texas. The methodology uses readily available digital databases and satellite images within Texas, in combination with an industry standard fire behavior model to assist emergency and natural resource managers assess potential impacts from wildland fire. Results of the study will promote prevention of WUI fire disasters, facilitate watershed and habitat protection, and help direct efforts in post wildland fire mitigation and restoration.

  10. Industrial Geospatial Analysis Tool for Energy Evaluation (IGATE-E)

    SciTech Connect

    Alkadi, Nasr E; Starke, Michael R; Ma, Ookie; Nimbalkar, Sachin U; Cox, Daryl

    2013-01-01

    IGATE-E is an energy analysis tool for industrial energy evaluation. The tool applies statistical modeling to multiple publicly available datasets and provides information at the geospatial resolution of zip code using bottom up approaches. Within each zip code, the current version of the tool estimates electrical energy consumption of manufacturing industries based on each type of industries using DOE s Industrial Assessment Center database (IAC-DB) and DOE s Energy Information Administration Manufacturing Energy Consumption Survey database (EIA-MECS DB), in addition to other commercially available databases such as the Manufacturing News database (MNI, Inc.). Ongoing and future work include adding modules for the predictions of fuel energy consumption streams, manufacturing process steps energy consumption, major energy intensive processes (EIPs) within each industry type among other metrics of interest. The tool provides validation against DOE s EIA-MECS state level energy estimations and permits several statistical examinations. IGATE-E is intended to be a decision support and planning tool to a wide spectrum of energy analysts, researchers, government organizations, private consultants, industry partners, and alike.

  11. Quantitative, Qualitative and Geospatial Methods to Characterize HIV Risk Environments

    PubMed Central

    Conners, Erin E.; West, Brooke S.; Roth, Alexis M.; Meckel-Parker, Kristen G.; Kwan, Mei-Po; Magis-Rodriguez, Carlos; Staines-Orozco, Hugo; Clapp, John D.; Brouwer, Kimberly C.

    2016-01-01

    Increasingly, ‘place’, including physical and geographical characteristics as well as social meanings, is recognized as an important factor driving individual and community health risks. This is especially true among marginalized populations in low and middle income countries (LMIC), whose environments may also be more difficult to study using traditional methods. In the NIH-funded longitudinal study Mapa de Salud, we employed a novel approach to exploring the risk environment of female sex workers (FSWs) in two Mexico/U.S. border cities, Tijuana and Ciudad Juárez. In this paper we describe the development, implementation, and feasibility of a mix of quantitative and qualitative tools used to capture the HIV risk environments of FSWs in an LMIC setting. The methods were: 1) Participatory mapping; 2) Quantitative interviews; 3) Sex work venue field observation; 4) Time-location-activity diaries; 5) In-depth interviews about daily activity spaces. We found that the mixed-methodology outlined was both feasible to implement and acceptable to participants. These methods can generate geospatial data to assess the role of the environment on drug and sexual risk behaviors among high risk populations. Additionally, the adaptation of existing methods for marginalized populations in resource constrained contexts provides new opportunities for informing public health interventions. PMID:27191846

  12. Quantitative, Qualitative and Geospatial Methods to Characterize HIV Risk Environments.

    PubMed

    Conners, Erin E; West, Brooke S; Roth, Alexis M; Meckel-Parker, Kristen G; Kwan, Mei-Po; Magis-Rodriguez, Carlos; Staines-Orozco, Hugo; Clapp, John D; Brouwer, Kimberly C

    2016-01-01

    Increasingly, 'place', including physical and geographical characteristics as well as social meanings, is recognized as an important factor driving individual and community health risks. This is especially true among marginalized populations in low and middle income countries (LMIC), whose environments may also be more difficult to study using traditional methods. In the NIH-funded longitudinal study Mapa de Salud, we employed a novel approach to exploring the risk environment of female sex workers (FSWs) in two Mexico/U.S. border cities, Tijuana and Ciudad Juárez. In this paper we describe the development, implementation, and feasibility of a mix of quantitative and qualitative tools used to capture the HIV risk environments of FSWs in an LMIC setting. The methods were: 1) Participatory mapping; 2) Quantitative interviews; 3) Sex work venue field observation; 4) Time-location-activity diaries; 5) In-depth interviews about daily activity spaces. We found that the mixed-methodology outlined was both feasible to implement and acceptable to participants. These methods can generate geospatial data to assess the role of the environment on drug and sexual risk behaviors among high risk populations. Additionally, the adaptation of existing methods for marginalized populations in resource constrained contexts provides new opportunities for informing public health interventions. PMID:27191846

  13. A linear geospatial streamflow modeling system for data sparse environments

    USGS Publications Warehouse

    Asante, Kwabena O.; Arlan, Guleid A.; Pervez, Md Shahriar; Rowland, James

    2008-01-01

    In many river basins around the world, inaccessibility of flow data is a major obstacle to water resource studies and operational monitoring. This paper describes a geospatial streamflow modeling system which is parameterized with global terrain, soils and land cover data and run operationally with satellite‐derived precipitation and evapotranspiration datasets. Simple linear methods transfer water through the subsurface, overland and river flow phases, and the resulting flows are expressed in terms of standard deviations from mean annual flow. In sample applications, the modeling system was used to simulate flow variations in the Congo, Niger, Nile, Zambezi, Orange and Lake Chad basins between 1998 and 2005, and the resulting flows were compared with mean monthly values from the open‐access Global River Discharge Database. While the uncalibrated model cannot predict the absolute magnitude of flow, it can quantify flow anomalies in terms of relative departures from mean flow. Most of the severe flood events identified in the flow anomalies were independently verified by the Dartmouth Flood Observatory (DFO) and the Emergency Disaster Database (EM‐DAT). Despite its limitations, the modeling system is valuable for rapid characterization of the relative magnitude of flood hazards and seasonal flow changes in data sparse settings.

  14. A geospatial suitability model for drought-tolerant switchgrass

    NASA Astrophysics Data System (ADS)

    Lewis, S. M.; Kelly, M.

    2011-12-01

    A perennial grass native to the North America, switchgrass (Panicum virgatum) has been targeted by the USDA as a model mass bioenergy crop to replace petroleum energy products and meet policy demands. Although highly water use efficient, as a warm-season crop, switchgrass requires a significant amount of water during the growing season (April -September). However, locations that have highly reliable water availability are also ideal for profitable food crops (e.g. corn and soy growing regions) and food competition is a significant concern in regards to biofuel crops being grown on productive agricultural lands. Drier, marginal lands (lands on which normal agricultural crops are difficult to cultivate) are therefore potentially ideal locations to grow biofuel crops to ensure that food competition is not an issue. Genetics scientists at UC Davis are in the process of developing a modified variety of switchgrass that can withstand extended periods of drought while not substantially affecting overall yield. As this product is being developed, it is important to identify the potential geographical niche for this new drought-tolerant variety of switchgrass. This project introduces a geospatial approach that utilizes both physical and economic variables to identify ideal geographic locations for this innovative crop.

  15. Geospatial tools for landscape character assessment in Cyprus

    NASA Astrophysics Data System (ADS)

    Symons, N. P.; Vogiatzakis, I. N.; Griffiths, G. H.; Warnock, S.; Vassou, V.; Zomeni, M.; Trigkas, V.

    2013-08-01

    The development of Landscape Typologies in Europe relies upon advances in geospatial tools and increasing availability of digital datasets. Landscape Character Assessment (LCA) is a technique used to classify, describe and understand the combined physical, ecological and cultural characteristics of a landscape. LCA uses a range of data sources to identify and describe areas of common character and can operate at a range of scales i.e.national and regional and local. The paper describes the steps taken to develop an island wide landscape typology for Cyprus, based on the use of GIS and remote sensing tools. The methodology involved integrating physiographical, ecological and cultural information about the Cypriot landscape. Datasets on the cultural attributes (e.g. settlement and field patterns) were not available, so they were created de novo based on information from topographical maps (for settlement dispersion and density) and medium resolution satellite imagery from Google Earth, from which a number of distinctive field patterns could be distinguished. The mapping work is carried out on two levels using a hierarchical approach. The first level at a 1:100, 000 scale has been completed resulting in a map with 17 distinct landscape types. The second level is under way with the view of producing a more detailed landscape typology at 1:50, 000 scale which will incorporate the cultural aspects of the island. This is the first time that such a typology has been produced for Cyprus and it is expected to provide an invaluable tool for landscape planning and management.

  16. Geospatial Modelling Approach for 3d Urban Densification Developments

    NASA Astrophysics Data System (ADS)

    Koziatek, O.; Dragićević, S.; Li, S.

    2016-06-01

    With growing populations, economic pressures, and the need for sustainable practices, many urban regions are rapidly densifying developments in the vertical built dimension with mid- and high-rise buildings. The location of these buildings can be projected based on key factors that are attractive to urban planners, developers, and potential buyers. Current research in this area includes various modelling approaches, such as cellular automata and agent-based modelling, but the results are mostly linked to raster grids as the smallest spatial units that operate in two spatial dimensions. Therefore, the objective of this research is to develop a geospatial model that operates on irregular spatial tessellations to model mid- and high-rise buildings in three spatial dimensions (3D). The proposed model is based on the integration of GIS, fuzzy multi-criteria evaluation (MCE), and 3D GIS-based procedural modelling. Part of the City of Surrey, within the Metro Vancouver Region, Canada, has been used to present the simulations of the generated 3D building objects. The proposed 3D modelling approach was developed using ESRI's CityEngine software and the Computer Generated Architecture (CGA) language.

  17. Encoding and analyzing aerial imagery using geospatial semantic graphs

    SciTech Connect

    Watson, Jean-Paul; Strip, David R.; McLendon, William C.; Parekh, Ojas D.; Diegert, Carl F.; Martin, Shawn Bryan; Rintoul, Mark Daniel

    2014-02-01

    While collection capabilities have yielded an ever-increasing volume of aerial imagery, analytic techniques for identifying patterns in and extracting relevant information from this data have seriously lagged. The vast majority of imagery is never examined, due to a combination of the limited bandwidth of human analysts and limitations of existing analysis tools. In this report, we describe an alternative, novel approach to both encoding and analyzing aerial imagery, using the concept of a geospatial semantic graph. The advantages of our approach are twofold. First, intuitive templates can be easily specified in terms of the domain language in which an analyst converses. These templates can be used to automatically and efficiently search large graph databases, for specific patterns of interest. Second, unsupervised machine learning techniques can be applied to automatically identify patterns in the graph databases, exposing recurring motifs in imagery. We illustrate our approach using real-world data for Anne Arundel County, Maryland, and compare the performance of our approach to that of an expert human analyst.

  18. Geospatial Habitat Analysis in Pacific Northwest Coastal Estuaries

    SciTech Connect

    Borde, Amy B. ); Thom, Ronald M. ); Rumrill, Steven; Miller, L M.

    2003-08-01

    We assessed historical changes in the location and amount of estuarine habitat in three of the four largest coastal estuaries in the Pacific Northwest (Grays Harbor, Willapa Bay, and Coos Bay) as part of the Pacific Northwest Coastal Ecosystem Regional Study (PNCERS). To accomplish this, navigation charts, hydrographic survey data, maps, and published descriptions were used to gain information on the location of the shoreline, bathymetry, and vegetated habitats, which was then digitized and subjected to geospatial analysis using a geographic information system. In addition, we used present-day elevational boundaries for marshes, flats, and eelgrass meadows to help define habitat areas where they were not indicated on historical maps. The analysis showed that tidal flats have decreased in all study areas; potential eelgrass habitat has increased in Grays Harbor and Willapa Bay and decreased slightly in Coos Bay; tidal wetland area has declined in all three coastal estuaries, with increases in localized areas due to filling and sedimentation; and dramatic changes have occurred at the mouths of Grays Harbor and Willapa Bay. As has been shown before, these data illustrate that direct physical alteration (filling and diking) has resulted in large changes to habitats. However, indirect impacts from forest practices in the watershed, as well as variation in climatic factors and oceanographic processes, may also have contributed to changes. The information provides more evidence for managing estuarine habitats in the region and a employing a historical template to plan habitat restoration in the future.

  19. Integrated web system of geospatial data services for climate research

    NASA Astrophysics Data System (ADS)

    Okladnikov, Igor; Gordov, Evgeny; Titov, Alexander

    2016-04-01

    Georeferenced datasets are currently actively used for modeling, interpretation and forecasting of climatic and ecosystem changes on different spatial and temporal scales. Due to inherent heterogeneity of environmental datasets as well as their huge size (up to tens terabytes for a single dataset) a special software supporting studies in the climate and environmental change areas is required. An approach for integrated analysis of georefernced climatological data sets based on combination of web and GIS technologies in the framework of spatial data infrastructure paradigm is presented. According to this approach a dedicated data-processing web system for integrated analysis of heterogeneous georeferenced climatological and meteorological data is being developed. It is based on Open Geospatial Consortium (OGC) standards and involves many modern solutions such as object-oriented programming model, modular composition, and JavaScript libraries based on GeoExt library, ExtJS Framework and OpenLayers software. This work is supported by the Ministry of Education and Science of the Russian Federation, Agreement #14.613.21.0037.

  20. Discover, Visualize, and Deliver Geospatial Data through OGC Standards-based WebGIS System

    SciTech Connect

    Wei, Yaxing; SanthanaVannan, Suresh K; Cook, Robert B

    2009-01-01

    Geospatial data are important to understand the Earth - ecosystem dynamics, land cover changes, resource management, and human interactions with the Earth to name a few. One of the biggest difficulties users face is to discover, access, and assemble distributed, large volume, heterogeneous geospatial data to conduct geo-analysis. Traditional methods of geospatial data discovery, visualization, and delivery lack the capabilities of resource sharing and automation across systems or organizational boundaries. They require users to download the data ldquoas-isrdquo in their original file format, projection, and extent. Also, discovering data served by traditional methods requires prior knowledge of data location, and processing requires specialized expertise. These drawbacks of traditional methods create additional burden to users, introduce too much overhead to research, and also reduce the potential usage of the data. At the Oak Ridge National Laboratory (ORNL), researchers working on NASA-sponsored projects: Distributed Active Archive Center (DAAC) and Modeling and Synthesis Thematic Data Center (MAST-DC) have tapped into the benefits of Open Geospatial Consortium (OGC) standards to overcome the drawbacks of traditional methods of geospatial data discovery, visualization, and delivery. The OGC standards-based approach facilitates data sharing and interoperability across network, organizational, and geopolitical boundaries. Tools and services based on OGC standards deliver the data in many user defined formats and allow users to visualize the data prior to download. This paper introduces an approach taken to visualize and deliver ORNL DAAC, MAST-DC, and other relevant geospatial data through OGC standards-based Web Services, including Web Map Service (WMS), Web Coverage Service (WCS), and Web Feature Service (WFS). It also introduces a WebGIS system built on top of OGC services that helps users discover, visualize, and access geospatial data.

  1. A Practice Approach of Multi-source Geospatial Data Integration for Web-based Geoinformation Services

    NASA Astrophysics Data System (ADS)

    Huang, W.; Jiang, J.; Zha, Z.; Zhang, H.; Wang, C.; Zhang, J.

    2014-04-01

    Geospatial data resources are the foundation of the construction of geo portal which is designed to provide online geoinformation services for the government, enterprise and public. It is vital to keep geospatial data fresh, accurate and comprehensive in order to satisfy the requirements of application and development of geographic location, route navigation, geo search and so on. One of the major problems we are facing is data acquisition. For us, integrating multi-sources geospatial data is the mainly means of data acquisition. This paper introduced a practice integration approach of multi-source geospatial data with different data model, structure and format, which provided the construction of National Geospatial Information Service Platform of China (NGISP) with effective technical supports. NGISP is the China's official geo portal which provides online geoinformation services based on internet, e-government network and classified network. Within the NGISP architecture, there are three kinds of nodes: national, provincial and municipal. Therefore, the geospatial data is from these nodes and the different datasets are heterogeneous. According to the results of analysis of the heterogeneous datasets, the first thing we do is to define the basic principles of data fusion, including following aspects: 1. location precision; 2.geometric representation; 3. up-to-date state; 4. attribute values; and 5. spatial relationship. Then the technical procedure is researched and the method that used to process different categories of features such as road, railway, boundary, river, settlement and building is proposed based on the principles. A case study in Jiangsu province demonstrated the applicability of the principle, procedure and method of multi-source geospatial data integration.

  2. Towards the Development of a Taxonomy for Visualisation of Streamed Geospatial Data

    NASA Astrophysics Data System (ADS)

    Sibolla, B. H.; Van Zyl, T.; Coetzee, S.

    2016-06-01

    Geospatial data has very specific characteristics that need to be carefully captured in its visualisation, in order for the user and the viewer to gain knowledge from it. The science of visualisation has gained much traction over the last decade as a response to various visualisation challenges. During the development of an open source based, dynamic two-dimensional visualisation library, that caters for geospatial streaming data, it was found necessary to conduct a review of existing geospatial visualisation taxonomies. The review was done in order to inform the design phase of the library development, such that either an existing taxonomy can be adopted or extended to fit the needs at hand. The major challenge in this case is to develop dynamic two dimensional visualisations that enable human interaction in order to assist the user to understand the data streams that are continuously being updated. This paper reviews the existing geospatial data visualisation taxonomies that have been developed over the years. Based on the review, an adopted taxonomy for visualisation of geospatial streaming data is presented. Example applications of this taxonomy are also provided. The adopted taxonomy will then be used to develop the information model for the visualisation library in a further study.

  3. Issues on Building Kazakhstan Geospatial Portal to Implement E-Government

    NASA Astrophysics Data System (ADS)

    Sagadiyev, K.; Kang, H. K.; Li, K. J.

    2016-06-01

    A main issue in developing e-government is about how to integrate and organize many complicated processes and different stakeholders. Interestingly geospatial information provides an efficient framework to integrate and organized them. In particular, it is very useful to integrate the process of land management in e-government with geospatial information framework, since most of land management tasks are related with geospatial properties. In this paper, we present a use-case on the e-government project in Kazakhstan for land management. We develop a geoportal to connect many tasks and different users via geospatial information framework. This geoportal is based on open source geospatial software including GeoServer, PostGIS, and OpenLayers. With this geoportal, we expect three achievements as follows. First we establish a transparent governmental process, which is one of main goal of e-government. Every stakeholder monitors what is happening in land management process. Second, we can significantly reduce the time and efforts in the government process. For example, a grant procedure for a building construction has taken more than one year with more than 50 steps. It is expected that this procedure would be reduced to 2 weeks by the geoportal framework. Third we provide a collaborative environment between different governmental structures via the geoportal, while many conflicts and mismatches have been a critical issue of governmental administration processes.

  4. Intelligent services for discovery of complex geospatial features from remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Yue, Peng; Di, Liping; Wei, Yaxing; Han, Weiguo

    2013-09-01

    Remote sensing imagery has been commonly used by intelligence analysts to discover geospatial features, including complex ones. The overwhelming volume of routine image acquisition requires automated methods or systems for feature discovery instead of manual image interpretation. The methods of extraction of elementary ground features such as buildings and roads from remote sensing imagery have been studied extensively. The discovery of complex geospatial features, however, is still rather understudied. A complex feature, such as a Weapon of Mass Destruction (WMD) proliferation facility, is spatially composed of elementary features (e.g., buildings for hosting fuel concentration machines, cooling towers, transportation roads, and fences). Such spatial semantics, together with thematic semantics of feature types, can be used to discover complex geospatial features. This paper proposes a workflow-based approach for discovery of complex geospatial features that uses geospatial semantics and services. The elementary features extracted from imagery are archived in distributed Web Feature Services (WFSs) and discoverable from a catalogue service. Using spatial semantics among elementary features and thematic semantics among feature types, workflow-based service chains can be constructed to locate semantically-related complex features in imagery. The workflows are reusable and can provide on-demand discovery of complex features in a distributed environment.

  5. Imprementation of Vgi-Based Geoportal for Empowering Citizen's Geospatial Observatories Related to Urban Disaster Management

    NASA Astrophysics Data System (ADS)

    Lee, Sanghoon

    2016-06-01

    The volunteered geospatial information (VGI) will be efficient and cost-effective method for generating and sharing large disasterrelated geospatial data. The national mapping organizations have played the role of major geospatial collector have been moving toward the considering public participation data collecting method. Due to VGI can conduct to encourage public participation and empower citizens, mapping agency could make a partnership with members of the VGI community to help to provide well-structured geospatial data. In order to effectively be understood and sharing the public semantics, datasets and action model of the public participation GeoPortal, the implemented VGI-GeoPortal designated as the basis of ISO 19154, ISO 19101 and OGC Reference Model. The proof of concepts of VGI-GeoPortal has been implemented urban flooding use-case in Republic of Korea to collect from the public, and analyze disaster-related geospatial data including high-disaster potential information such as the location of poor drainage sewer, small signs of occurring landslide, flooding vulnerability of urban structure, and etc.

  6. Quantifying environmental limiting factors on tree cover using geospatial data.

    PubMed

    Greenberg, Jonathan A; Santos, Maria J; Dobrowski, Solomon Z; Vanderbilt, Vern C; Ustin, Susan L

    2015-01-01

    Environmental limiting factors (ELFs) are the thresholds that determine the maximum or minimum biological response for a given suite of environmental conditions. We asked the following questions: 1) Can we detect ELFs on percent tree cover across the eastern slopes of the Lake Tahoe Basin, NV? 2) How are the ELFs distributed spatially? 3) To what extent are unmeasured environmental factors limiting tree cover? ELFs are difficult to quantify as they require significant sample sizes. We addressed this by using geospatial data over a relatively large spatial extent, where the wall-to-wall sampling ensures the inclusion of rare data points which define the minimum or maximum response to environmental factors. We tested mean temperature, minimum temperature, potential evapotranspiration (PET) and PET minus precipitation (PET-P) as potential limiting factors on percent tree cover. We found that the study area showed system-wide limitations on tree cover, and each of the factors showed evidence of being limiting on tree cover. However, only 1.2% of the total area appeared to be limited by the four (4) environmental factors, suggesting other unmeasured factors are limiting much of the tree cover in the study area. Where sites were near their theoretical maximum, non-forest sites (tree cover < 25%) were primarily limited by cold mean temperatures, open-canopy forest sites (tree cover between 25% and 60%) were primarily limited by evaporative demand, and closed-canopy forests were not limited by any particular environmental factor. The detection of ELFs is necessary in order to fully understand the width of limitations that species experience within their geographic range. PMID:25692604

  7. A Geospatial Fabric (GF) for National Hydrological Modeling

    NASA Astrophysics Data System (ADS)

    Viger, R.; Bock, A.

    2014-12-01

    The US Geological Survey (USGS) Geospatial Fabric (GF) supports the USGS National Hydrologic Model (NHM) by defining a minimally sufficient, nationally consistent set of geographic information needed to simulate streamflow at almost 60,000 points of interest (POIs). POIs primarily are defined based on: (a) a high quality set of USGS stream gages (Gages-II), (b) National Weather Service forecast nodes, (c) the USGS National Water Quality Assessment's modeling network, (d) at inlets and outlets of selected water bodies, and (e) at confluences. Each POI is associated with a stream segment which typically has two adjacent land surface areas, referred to as hydrologic response units (HRUs). Parameter tables, largely based on the National Land Cover Databases, the Soil Survey Geographic Database (SSURGO), and the geometry of the spatial data, have been derived for these features. Configurations of GF features and attribute tables are defined and made available through the USGS ScienceBase (https://www.sciencebase.gov/catalog/item/537b7327e4b0929ba496f66f). Data are organized into 20 ESRI file geodatabases, each covering a different region of the United States (https://www.sciencebase.gov/catalog/item/535edb4ae4b08e65d60fc837). Future releases will include additional realizations of NHM parameter tables. These will serve to assess the impact of alternate data sources and processing methodologies on simulated streamflows. Tools for dynamically subsetting geodatabases and model inputs based on custom watersheds are currently being prototyped. The GF is a versatile framework for data integration because it maintains feature-level indexing back to NHDPlus and the National Hydrography Dataset, which is used in many water resource studies. In addition, the GF will help to ensure a minimum initial quality of parameter information, reduce the time of developing hydrological modeling applications in the United States, and generally improve the accuracy and scientific impact of

  8. Smart sensor-based geospatial architecture for dike monitoring

    NASA Astrophysics Data System (ADS)

    Herle, S.; Becker, R.; Blankenbach, J.

    2016-04-01

    Artificial hydraulic structures like dams or dikes used for water level regulations or flood prevention are continuously under the influence of the weather and variable river regimes. Thus, ongoing monitoring and simulation is crucial in order to determine the inner condition. Potentially life-threatening situations, in extreme case a failure, must be counteracted by all available means. Nowadays flood warning systems rely exclusively on water level forecast without considering the state of the structure itself. Area-covering continuous knowledge of the inner state including time dependent changes increases the capability of recognizing and locating vulnerable spots for early treatment. In case of a predicted breach, advance warning time for alerting affected citizens can be extended. Our approach is composed of smart sensors integrated in a service-oriented geospatial architecture to monitor and simulate artificial hydraulic structures continuously. The sensors observe the inner state of the construction like the soil moisture or the stress and deformation over time but also various external influences like water levels or wind speed. They are interconnected in distributed network architecture by a so-called sensor bus system based on lightweight protocols like Message Queue Telemetry Transport for Sensor Networks (MQTT-SN). These sensor data streams are transferred into an OGC Sensor Web Enablement (SWE) data structure providing high-level geo web services to end users. Bundled with 3rd party geo web services (WMS etc.) powerful processing and simulation tools can be invoked using the Web Processing Service (WPS) standard. Results will be visualized in a geoportal allowing user access to all information.

  9. Graduate Ethics Curricula for Future Geospatial Technology Professionals (Invited)

    NASA Astrophysics Data System (ADS)

    Wright, D. J.; Dibiase, D.; Harvey, F.; Solem, M.

    2009-12-01

    Professionalism in today's rapidly-growing, multidisciplinary geographic information science field (e.g., geographic information systems or GIS, remote sensing, cartography, quantitative spatial analysis), now involves a commitment to ethical practice as informed by a more sophisticated understanding of the ethical implications of geographic technologies. The lack of privacy introduced by mobile mapping devices, the use of GIS for military and surveillance purposes, the appropriate use of data collected using these technologies for policy decisions (especially for conservation and sustainability) and general consequences of inequities that arise through biased access to geospatial tools and derived data all continue to be challenging issues and topics of deep concern for many. Students and professionals working with GIS and related technologies should develop a sound grasp of these issues and a thorough comprehension of the concerns impacting their use and development in today's world. However, while most people agree that ethics matters for GIS, we often have difficulty putting ethical issues into practice. An ongoing project supported by NSF seeks to bridge this gap by providing a sound basis for future ethical consideration of a variety of issues. A model seminar curriculum is under development by a team of geographic information science and technology (GIS&T) researchers and professional ethicists, along with protocols for course evaluations. In the curricula students first investigate the nature of professions in general and the characteristics of a GIS&T profession in particular. They hone moral reasoning skills through methodical analyses of case studies in relation to various GIS Code of Ethics and Rules of Conduct. They learn to unveil the "moral ecologies" of a profession through actual interviews with real practitioners in the field. Assignments thus far include readings, class discussions, practitioner interviews, and preparations of original case

  10. Geospatial approaches to characterizing agriculture in the Chincoteague Bay subbasin.

    PubMed

    Kutz, Frederick W; Morgan, John M; Monn, Jeremy; Petrey, Chad P

    2012-01-01

    Most agricultural information is reported by government sources on a state or county basis. The purpose of this study was to demonstrate use of geospatial data, the 2002 Agricultural Cropland Data Layer (CDL) for the mid-Atlantic region, to characterize agricultural, environmental, and other scientific parameters for the Chincoteague Bay subbasin using geographic information systems. This study demonstrated that agriculture can be characterized accurately on subbasin and subwatershed bases, thus complimenting various assessment technologies. Approximately 28% of the dry land of the subbasin was cropland. Field corn was the largest crop. Soybeans, either singly or double-cropped with wheat, were the second most predominant crop. Although the subbasin is relatively small, cropping practices in the northern part were different from those in the southern portion. Other crops, such as fresh vegetables and vegetables grown for processing, were less than 10% of the total cropland. A conservative approximation of the total pesticide usage in the subbasin in 2002 was over 277,000 lbs of active ingredients. Herbicides represented the most frequently used pesticides in the subbasin, both in number (17) and in total active ingredients (over 261,000 lbs). Ten insecticides predominated in the watershed, while only small quantities of three fungicides were used. Total pesticide usage and intensity were estimated using the CDL. Nutrient inputs to cropland from animal manure, chemical fertilizer, and atmospheric deposition were modeled at over 30 million pounds of nitrogen and over 7 million pounds of phosphorous. Crops under conservation tillage had the largest input of both nutrients. PMID:21509516

  11. Validation techniques of agent based modelling for geospatial simulations

    NASA Astrophysics Data System (ADS)

    Darvishi, M.; Ahmadi, G.

    2014-10-01

    One of the most interesting aspects of modelling and simulation study is to describe the real world phenomena that have specific properties; especially those that are in large scales and have dynamic and complex behaviours. Studying these phenomena in the laboratory is costly and in most cases it is impossible. Therefore, Miniaturization of world phenomena in the framework of a model in order to simulate the real phenomena is a reasonable and scientific approach to understand the world. Agent-based modelling and simulation (ABMS) is a new modelling method comprising of multiple interacting agent. They have been used in the different areas; for instance, geographic information system (GIS), biology, economics, social science and computer science. The emergence of ABM toolkits in GIS software libraries (e.g. ESRI's ArcGIS, OpenMap, GeoTools, etc) for geospatial modelling is an indication of the growing interest of users to use of special capabilities of ABMS. Since ABMS is inherently similar to human cognition, therefore it could be built easily and applicable to wide range applications than a traditional simulation. But a key challenge about ABMS is difficulty in their validation and verification. Because of frequent emergence patterns, strong dynamics in the system and the complex nature of ABMS, it is hard to validate and verify ABMS by conventional validation methods. Therefore, attempt to find appropriate validation techniques for ABM seems to be necessary. In this paper, after reviewing on Principles and Concepts of ABM for and its applications, the validation techniques and challenges of ABM validation are discussed.

  12. Discovery of Marine Datasets and Geospatial Metadata Visualization

    NASA Astrophysics Data System (ADS)

    Schwehr, K. D.; Brennan, R. T.; Sellars, J.; Smith, S.

    2009-12-01

    NOAA's National Geophysical Data Center (NGDC) provides the deep archive of US multibeam sonar hydrographic surveys. NOAA stores the data as Bathymetric Attributed Grids (BAG; http://www.opennavsurf.org/) that are HDF5 formatted files containing gridded bathymetry, gridded uncertainty, and XML metadata. While NGDC provides the deep store and a basic ERSI ArcIMS interface to the data, additional tools need to be created to increase the frequency with which researchers discover hydrographic surveys that might be beneficial for their research. Using Open Source tools, we have created a draft of a Google Earth visualization of NOAA's complete collection of BAG files as of March 2009. Each survey is represented as a bounding box, an optional preview image of the survey data, and a pop up placemark. The placemark contains a brief summary of the metadata and links to directly download of the BAG survey files and the complete metadata file. Each survey is time tagged so that users can search both in space and time for surveys that meet their needs. By creating this visualization, we aim to make the entire process of data discovery, validation of relevance, and download much more efficient for research scientists who may not be familiar with NOAA's hydrographic survey efforts or the BAG format. In the process of creating this demonstration, we have identified a number of improvements that can be made to the hydrographic survey process in order to make the results easier to use especially with respect to metadata generation. With the combination of the NGDC deep archiving infrastructure, a Google Earth virtual globe visualization, and GeoRSS feeds of updates, we hope to increase the utilization of these high-quality gridded bathymetry. This workflow applies equally well to LIDAR topography and bathymetry. Additionally, with proper referencing and geotagging in journal publications, we hope to close the loop and help the community create a true “Geospatial Scholar

  13. Effective Management of Trans boundary Landscapes - Geospatial Applications

    NASA Astrophysics Data System (ADS)

    Kotru, R.; Rawal, R. S.; Mathur, P. K.; Chettri, N.; Chaudhari, S. A.; Uddin, K.; Murthy, M. S. R.; Singh, S.

    2014-11-01

    The Convention on Biological Diversity advocates the use of landscape and ecosystem approaches for managing biodiversity, in recognition of the need for increased regional cooperation. In this context, ICIMOD and regional partners have evolved Transboundary Landscape concept to address the issues of conservation and sustainable use of natural resources and systems (e.g., biodiversity, rangelands, farming systems, forests, wetlands, and watersheds, etc.). This concept defines the landscapes by ecosystems rather than political/administrative boundaries. The Hindu Kush Himalayan (HKH) region is extremely heterogeneous, with complex inter linkages of biomes and habitats as well as strong upstream-downstream linkages related to the provisioning of ecosystem services. Seven such transboundary landscapes, identified across west to east extent of HKH, have been considered for programmatic cooperation, include: Wakhan, Karakoram-Pamir, Kailash, Everest, Kangchenjunga, Brahmaputra-Salween, and Cherrapunjee- Chittagong. The approach is people centered and considers the cultural conservation as an essential first step towards resource conservation efforts in the region. Considering the multi-scale requirements of study, the geospatial technology has been effectively adopted towards: (i) understanding temporal changes in landscapes, (ii) long term ecological and social monitoring, (ii) identifying potential bio corridors, (iii) assessing landscape level vulnerability due to climatic and non-climatic drivers, and (iv) developing local plans on extractions of high value economic species supporting livelihoods, agroforestry system and ecotourism, etc. We present here our recent experiences across different landscapes on assessment of three decadal changes, vegetation type mapping, assessment of socio-ecological drivers, corridor assessment, ecosystem services assessment, models for optimal natural resource use systems and long term socio-ecological monitoring.

  14. Geospatial Water Quality Analysis of Dilla Town, Gadeo Zone, Ethiopia - A Case Study

    NASA Astrophysics Data System (ADS)

    Pakhale, G. K.; Wakeyo, T. B.

    2015-12-01

    Dilla is a socio-economically important town in Ethiopia, established on the international highway joining capital cities of Ethiopia and Kenya. It serves as an administrative center of the Gedeo Zone in SNNPR region of Ethiopia accommodating around 65000 inhabitants and also as an important trade centre for coffee. Due to the recent developments and urbanization in town and surrounding area, waste and sewage discharge has been raised significantly into the water resources. Also frequent rainfall in the region worsens the problem of water quality. In this view, present study aims to analyze water quality profile of Dilla town using 12 physico-chemical parameters. 15 Sampling stations are identified amongst the open wells, bore wells and from surface water, which are being extensively used for drinking and other domestic purposes. Spectrophotometer is used to analyze data and Gaussian process regression is used to interpolate the same in GIS environment to represent spatial distribution of parameters. Based on observed and desirable values of parameters, water quality index (WQI); an indicator of weighted estimate of the quantities of various parameters ranging from 1 to 100, is developed in GIS. Higher value of WQI indicates better while low value indicates poor water quality. This geospatial analysis is carried out before and after rainfall to understand temporal variation with reference to rainfall which facilitates in identifying the potential zones of drinking water. WQI indicated that 8 out of 15 locations come under acceptable category indicating the suitability of water for human use, however remaining locations are unfit. For example: the water sample at main_campus_ustream_1 (site name) site has very low WQI after rainfall, making it unfit for human usage. This suggests undertaking of certain measures in town to enhance the water quality. These results are useful for town authorities to take corrective measures and ameliorate the water quality for human

  15. Use of historical and geospatial data to guide the restoration of a Lake Erie coastal marsh

    USGS Publications Warehouse

    Kowalski, Kurt P.; Wilcox, Douglas A.

    1999-01-01

    Historical and geospatial data were used to identify the relationships between water levels, wetland vegetation, littoral drift of sediments, and the condition of a protective barrier beach at Metzger Marsh, a coastal wetland in western Lake Erie, to enhance and guide a joint federal and state wetland restoration project. Eleven sets of large-scale aerial photographs dating from 1940 through 1994 were interpreted to delineate major vegetation types and boundaries of the barrier beach. A geographic information system (GIS) was then used to digitize the data and calculate the vegetated area and length of barrier beach. Supplemented by paleoecological and sedimentological analyses, aerial photographic interpretation revealed that Metzger Marsh was once a drowned-river-mouth wetland dominated by sedges and protected by a sand barrier beach. Extremely high water levels, storm events, and reduction of sediments in the littoral drift contributed to the complete destruction of the barrier beach in 1973 and prevented its recovery. The extent of wetland vegetation, correlated to water levels and condition of the barrier beach, decreased from a high of 108 ha in 1940 to a low of 33 ha in 1994. The lack of an adequate sediment supply and low probability of a period of extremely low lake levels in the near future made natural reestablishment of the barrier beach and wetland vegetation unlikely. Therefore, the federal and state managers chose to construct a dike to replace the protective barrier beach. Recommendations stemming from this historical analysis, however, resulted in the incorporation of a water-control structure in the dike that will retain a hydrologic connection between wetland and lake. Management of the wetland will seek to mimic processes natural to the wetland type identified by this analysis.

  16. Working to define data curated geospatial services on a Research Campus, a Purdue University Libraries Example

    NASA Astrophysics Data System (ADS)

    Branch, B. D.; Kong, N.; Fosmire, M.; Rousi, A. M.

    2013-12-01

    As Data Curation is becoming a necessity of data science and library science, Purdue University Libraries has been a leader in data curation profiles research. Such research can be defined as a data stewardship protocol similar to a multiple use case analysis. In this this example, The Purdue University Libraries Geographical Information Systems (GIS) department has engaged in a data curation profiles assessment of the campus to baseline and qualify sustainable geospatial data services. It is the intent that other libraries will consider this IRB approved approach of grounded theory to assessment the geospatial data service capacity and potential on a parametric scale. Provided is the status of such research and the some highlights or considerations in the establishment of sustainable geospatial data services that include a full data curated lifecycle. Noted here are some of the essential engagement endeavors of the research.

  17. GX-Means: A model-based divide and merge algorithm for geospatial image clustering

    SciTech Connect

    Vatsavai, Raju; Symons, Christopher T; Chandola, Varun; Jun, Goo

    2011-01-01

    One of the practical issues in clustering is the specification of the appropriate number of clusters, which is not obvious when analyzing geospatial datasets, partly because they are huge (both in size and spatial extent) and high dimensional. In this paper we present a computationally efficient model-based split and merge clustering algorithm that incrementally finds model parameters and the number of clusters. Additionally, we attempt to provide insights into this problem and other data mining challenges that are encountered when clustering geospatial data. The basic algorithm we present is similar to the G-means and X-means algorithms; however, our proposed approach avoids certain limitations of these well-known clustering algorithms that are pertinent when dealing with geospatial data. We compare the performance of our approach with the G-means and X-means algorithms. Experimental evaluation on simulated data and on multispectral and hyperspectral remotely sensed image data demonstrates the effectiveness of our algorithm.

  18. Geospatial characteristics of Florida's coastal and offshore environments: Administrative and political boundaries and offshore sand resources

    USGS Publications Warehouse

    Demopoulos, Amanda W.J.; Foster, Ann M.; Jones, Michal L.; Gualtieri, Daniel J.

    2011-01-01

    The Geospatial Characteristics Geopdf of Florida's Coastal and Offshore Environments is a comprehensive collection of geospatial data describing the political and natural resources of Florida. This interactive map provides spatial information on bathymetry, sand resources, military areas, marine protected areas, cultural resources, locations of submerged cables, and shipping routes. The map should be useful to coastal resource managers and others interested in the administrative and political boundaries of Florida's coastal and offshore region. In particular, as oil and gas explorations continue to expand, the map may be used to explore information regarding sensitive areas and resources in the State of Florida. Users of this geospatial database will find that they have access to synthesized information in a variety of scientific disciplines concerning Florida's coastal zone. This powerful tool provides a one-stop assembly of data that can be tailored to fit the needs of many natural resource managers.

  19. Geospatial datasets for watershed delineation and characterization used in the Hawaii StreamStats web application

    USGS Publications Warehouse

    Rea, Alan; Skinner, Kenneth D.

    2012-01-01

    The U.S. Geological Survey Hawaii StreamStats application uses an integrated suite of raster and vector geospatial datasets to delineate and characterize watersheds. The geospatial datasets used to delineate and characterize watersheds on the StreamStats website, and the methods used to develop the datasets are described in this report. The datasets for Hawaii were derived primarily from 10 meter resolution National Elevation Dataset (NED) elevation models, and the National Hydrography Dataset (NHD), using a set of procedures designed to enforce the drainage pattern from the NHD into the NED, resulting in an integrated suite of elevation-derived datasets. Additional sources of data used for computing basin characteristics include precipitation, land cover, soil permeability, and elevation-derivative datasets. The report also includes links for metadata and downloads of the geospatial datasets.

  20. Flexibly Adaptive Professional Development in Support of Teaching Science with Geospatial Technology

    NASA Astrophysics Data System (ADS)

    Trautmann, Nancy M.; Makinster, James G.

    2010-04-01

    The flexibly adaptive model of professional development, developed in the GIT Ahead project, enables secondary science teachers to incorporate a variety of geospatial technology applications into wide-ranging classroom contexts. Teacher impacts were evaluated quantitatively and qualitatively. Post-questionnaire responses showed significant growth in teachers’ perceived technological expertise, interest, and ability to integrate geospatial technology into their science teaching. Application of the Technical Pedagogical Content Knowledge (TPACK) framework to three case studies illustrates such growth. Crucial aspects of professional development in support of teaching science with geospatial technology include intensive training, ongoing support, a supportive learning community, and flexibility in terms of support provided and implementation expectations. Implications are presented for design of professional development and use of TPACK in evaluating impacts.

  1. Promising Practices in Building Geospatial Academic Pathways and Educator Capacity: Findings from a Multiyear Evaluation Study.

    NASA Astrophysics Data System (ADS)

    Peery, B.; Wilkerson, S.

    2015-12-01

    Geospatial technology, including geographical information systems, global positioning systems, remote sensing and the analysis and interpretation of spatial data, is a rapidly growing industry in the United States and touches almost every discipline from business to the environment to health and sciences. The demand for a larger and more qualified geospatial workforce is simultaneously increasing. The GeoTEd project aims to meet this demand in Virginia and the surrounding region by 1) developing academic-to-workforce pathways, 2) providing professional development for educators, and 3) increasing student participation and impact. Since 2009, Magnolia Consulting has been evaluating the GeoTEd project, particularly its professional development work through the GeoTEd Institute. This presentation will provide a look into the challenges and successes of GeoTEd, and examine its impact on the geospatial academic pathways in the Virginia region. The presentation will highlight promising elements of this project that could serve as models for other endeavors.

  2. Assessment of forest geospatial patterns over the three giant forest areas of China

    USGS Publications Warehouse

    Li, M.-S.; Zhu, Z.-L.; Lu, H.; Xu, D.; Liu, A.-X.; Peng, S.-K.

    2008-01-01

    Geospatial patterns of forest fragmentation over the three traditional giant forested areas of China (Northeastern, southwestern and Southern China) were analyzed comparatively and reported based on a 250-m resolution land cover dataset. Specifically, the spatial patterns of forest fragmentation were characterized by combining geospatial metrics and forest fragmentation models. The driving forces resulting in the differences of the forest spatial patterns were also investigated. Results suggested that forests in southwest China had the highest severity of forest fragmentation, followed by south region and northeast region. The driving forces of forest fragmentation in China were primarily the giant population and improper exploitation of forests. In conclusion, the generated information in the study provided valuable insights and implications as to the fragmentation patterns and the conservation of biodiversity or genes, and the use of the chosen geospatial metrics and forest fragmentation models was quite useful for depicting forest fragmentation patterns. ?? 2008 Northeast Forestry University.

  3. An Investigation of the Use of Real-Time, Authentic Geospatial Data in the K-12 Classroom

    ERIC Educational Resources Information Center

    Doering, Aaron; Veletsianos, George

    2007-01-01

    This article situates geospatial technologies as a constructivist tool in the K-12 classroom and examines student experiences with real-time authentic geospatial data provided through a hybrid adventure learning environment. Qualitative data from seven student focus groups demonstrate the effectiveness of using real-time authentic data, peer…

  4. Geospatial Modeling and Disease Insect Vector Management at the USDA-ARS Center for Medical, Agricultural, and Veterinary Entomology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Geospatial modeling at the Center for Medical, Agricultural and Veterinary Entomology (CMAVE) is used assist in the surveillance of insect vectors and in the management of insect transmitted diseases. The most recent Geospatial Modeling/Technology Transfer success involves the prediction of Rift Val...

  5. Designing geo-spatial interfaces to scale process models: the GeoWEPP approach

    NASA Astrophysics Data System (ADS)

    Renschler, Chris S.

    2003-04-01

    Practical decision making in spatially distributed environmental assessment and management is increasingly based on environmental process models linked to geographical information systems. Powerful personal computers and Internet-accessible assessment tools are providing much greater public access to, and use of, environmental models and geo-spatial data. However traditional process models, such as the water erosion prediction project (WEPP), were not typically developed with a flexible graphical user interface (GUI) for applications across a wide range of spatial and temporal scales, utilizing readily available geo-spatial data of highly variable precision and accuracy, and communicating with a diverse spectrum of users with different levels of expertise. As the development of the geo-spatial interface for WEPP (GeoWEPP) demonstrates, the GUI plays a key role in facilitating effective communication between the tool developer and user about data and model scales. The GeoWEPP approach illustrates that it is critical to develop a scientific and functional framework for the design, implementation, and use of such geo-spatial model assessment tools. The way that GeoWEPP was developed and implemented suggests a framework and scaling theory leading to a practical approach for developing geo-spatial interfaces for process models. GeoWEPP accounts for fundamental water erosion processes, model, and users needs, but most important it also matches realistic data availability and environmental settings by enabling even non-GIS-literate users to assemble the available geo-spatial data quickly to start soil and water conservation planning. In general, it is potential users' spatial and temporal scales of interest, and scales of readily available data, that should drive model design or selection, as opposed to using or designing the most sophisticated process model as the starting point and then determining data needs and result scales.

  6. Long-term surveillance and maintenance Geo-spatial Environmental Mapping System

    SciTech Connect

    Appetta, J.; MacMillan, S.; Miller, K.; LaBonte, E.

    2007-07-01

    For sites currently under the U.S. Department of Energy (DOE) Office of Legacy Management (LM) and for sites transitioning to LM, technical, operational, and environmental monitoring information continues to be of great interest to stakeholders. The Web-based Geo-spatial Environmental Mapping System (GEMS) developed by LM provides stakeholders, DOE, regulators, project staff, and the public with a user-friendly mechanism for retrieving geo-spatial and environmental monitoring information about the sites. This paper discusses GEMS and its use by LM stakeholders. (authors)

  7. Participating in the Geospatial Web: Collaborative Mapping, Social Networks and Participatory GIS

    NASA Astrophysics Data System (ADS)

    Rouse, L. Jesse; Bergeron, Susan J.; Harris, Trevor M.

    In 2005, Google, Microsoft and Yahoo! released free Web mapping applications that opened up digital mapping to mainstream Internet users. Importantly, these companies also released free APIs for their platforms, allowing users to geo-locate and map their own data. These initiatives have spurred the growth of the Geospatial Web and represent spatially aware online communities and new ways of enabling communities to share information from the bottom up. This chapter explores how the emerging Geospatial Web can meet some of the fundamental needs of Participatory GIS projects to incorporate local knowledge into GIS, as well as promote public access and collaborative mapping.

  8. Student Focused Geospatial Curriculum Initiatives: Internships and Certificate Programs at NCCU

    NASA Astrophysics Data System (ADS)

    Vlahovic, G.; Malhotra, R.

    2009-12-01

    This paper reports recent efforts by the Department of Environmental, Earth and Geospatial Sciences faculty at North Carolina Central University (NCCU) to develop a leading geospatial sciences program that will be considered a model for other Historically Black College/University (HBCU) peers nationally. NCCU was established in 1909 and is the nation’s first state supported public liberal arts college funded for African Americans. In the most recent annual ranking of America’s best black colleges by the US News and World Report (Best Colleges 2010), NCCU was ranked 10th in the nation. As one of only two HBCUs in the southeast offering an undergraduate degree in Geography (McKee, J.O. and C. V. Dixon. Geography in Historically Black Colleges/ Universities in the Southeast, in The Role of the South in Making of American Geography: Centennial of the AAG, 2004), NCCU is uniquely positioned to positively affect talent and diversity of the geospatial discipline in the future. Therefore, successful creation of research and internship pathways for NCCU students has national implications because it will increase the number of minority students joining the workforce and applying to PhD programs. Several related efforts will be described, including research and internship projects with Fugro EarthData Inc., Center for Remote Sensing and Mapping Science at the University of Georgia, Center for Earthquake Research and Information at the University of Memphis and the City of Durham. The authors will also outline requirements and recent successes of ASPRS Provisional Certification Program, developed and pioneered as collaborative effort between ASPRS and NCCU. This certificate program allows graduating students majoring in geospatial technologies and allied fields to become provisionally certified by passing peer-review and taking the certification exam. At NCCU, projects and certification are conducted under the aegis of the Geospatial Research, Innovative Teaching and

  9. Towards Precise Metadata-set for Discovering 3D Geospatial Models in Geo-portals

    NASA Astrophysics Data System (ADS)

    Zamyadi, A.; Pouliot, J.; Bédard, Y.

    2013-09-01

    Accessing 3D geospatial models, eventually at no cost and for unrestricted use, is certainly an important issue as they become popular among participatory communities, consultants, and officials. Various geo-portals, mainly established for 2D resources, have tried to provide access to existing 3D resources such as digital elevation model, LIDAR or classic topographic data. Describing the content of data, metadata is a key component of data discovery in geo-portals. An inventory of seven online geo-portals and commercial catalogues shows that the metadata referring to 3D information is very different from one geo-portal to another as well as for similar 3D resources in the same geo-portal. The inventory considered 971 data resources affiliated with elevation. 51% of them were from three geo-portals running at Canadian federal and municipal levels whose metadata resources did not consider 3D model by any definition. Regarding the remaining 49% which refer to 3D models, different definition of terms and metadata were found, resulting in confusion and misinterpretation. The overall assessment of these geo-portals clearly shows that the provided metadata do not integrate specific and common information about 3D geospatial models. Accordingly, the main objective of this research is to improve 3D geospatial model discovery in geo-portals by adding a specific metadata-set. Based on the knowledge and current practices on 3D modeling, and 3D data acquisition and management, a set of metadata is proposed to increase its suitability for 3D geospatial models. This metadata-set enables the definition of genuine classes, fields, and code-lists for a 3D metadata profile. The main structure of the proposal contains 21 metadata classes. These classes are classified in three packages as General and Complementary on contextual and structural information, and Availability on the transition from storage to delivery format. The proposed metadata set is compared with Canadian Geospatial

  10. Estimated Perennial Streams of Idaho and Related Geospatial Datasets

    USGS Publications Warehouse

    Rea, Alan; Skinner, Kenneth D.

    2009-01-01

    record, generally would be considered to represent flow conditions better at a given site than flow estimates based on regionalized regression models. The geospatial datasets of modeled perennial streams are considered a first-cut estimate, and should not be construed to override site-specific flow data.

  11. The use of geospatial web services for exchanging utilities data

    NASA Astrophysics Data System (ADS)

    Kuczyńska, Joanna

    2013-04-01

    Geographic information technologies and related geo-information systems currently play an important role in the management of public administration in Poland. One of these tasks is to maintain and update Geodetic Evidence of Public Utilities (GESUT), part of the National Geodetic and Cartographic Resource, which contains an important for many institutions information of technical infrastructure. It requires an active exchange of data between the Geodesy and Cartography Documentation Centers and institutions, which administrate transmission lines. The administrator of public utilities, is legally obliged to provide information about utilities to GESUT. The aim of the research work was to develop a universal data exchange methodology, which can be implemented on a variety of hardware and software platforms. This methodology use Unified Modeling Language (UML), eXtensible Markup Language (XML), and Geography Markup Language (GML). The proposed methodology is based on the two different strategies: Model Driven Architecture (MDA) and Service Oriented Architecture (SOA). Used solutions are consistent with the INSPIRE Directive and ISO 19100 series standards for geographic information. On the basis of analysis of the input data structures, conceptual models were built for both databases. Models were written in the universal modeling language: UML. Combined model that defines a common data structure was also built. This model was transformed into developed for the exchange of geographic information GML standard. The structure of the document describing the data that may be exchanged is defined in the .xsd file. Network services were selected and implemented in the system designed for data exchange based on open source tools. Methodology was implemented and tested. Data in the agreed data structure and metadata were set up on the server. Data access was provided by geospatial network services: data searching possibilities by Catalog Service for the Web (CSW), data

  12. Preliminary Geospatial Analysis of Arctic Ocean Hydrocarbon Resources

    SciTech Connect

    Long, Philip E.; Wurstner, Signe K.; Sullivan, E. C.; Schaef, Herbert T.; Bradley, Donald J.

    2008-10-01

    Ice coverage of the Arctic Ocean is predicted to become thinner and to cover less area with time. The combination of more ice-free waters for exploration and navigation, along with increasing demand for hydrocarbons and improvements in technologies for the discovery and exploitation of new hydrocarbon resources have focused attention on the hydrocarbon potential of the Arctic Basin and its margins. The purpose of this document is to 1) summarize results of a review of published hydrocarbon resources in the Arctic, including both conventional oil and gas and methane hydrates and 2) develop a set of digital maps of the hydrocarbon potential of the Arctic Ocean. These maps can be combined with predictions of ice-free areas to enable estimates of the likely regions and sequence of hydrocarbon production development in the Arctic. In this report, conventional oil and gas resources are explicitly linked with potential gas hydrate resources. This has not been attempted previously and is particularly powerful as the likelihood of gas production from marine gas hydrates increases. Available or planned infrastructure, such as pipelines, combined with the geospatial distribution of hydrocarbons is a very strong determinant of the temporal-spatial development of Arctic hydrocarbon resources. Significant unknowns decrease the certainty of predictions for development of hydrocarbon resources. These include: 1) Areas in the Russian Arctic that are poorly mapped, 2) Disputed ownership: primarily the Lomonosov Ridge, 3) Lack of detailed information on gas hydrate distribution, and 4) Technical risk associated with the ability to extract methane gas from gas hydrates. Logistics may control areas of exploration more than hydrocarbon potential. Accessibility, established ownership, and leasing of exploration blocks may trump quality of source rock, reservoir, and size of target. With this in mind, the main areas that are likely to be explored first are the Bering Strait and Chukchi

  13. OpenSearch technology for geospatial resources discovery

    NASA Astrophysics Data System (ADS)

    Papeschi, Fabrizio; Enrico, Boldrini; Mazzetti, Paolo

    2010-05-01

    In 2005, the term Web 2.0 has been coined by Tim O'Reilly to describe a quickly growing set of Web-based applications that share a common philosophy of "mutually maximizing collective intelligence and added value for each participant by formalized and dynamic information sharing". Around this same period, OpenSearch a new Web 2.0 technology, was developed. More properly, OpenSearch is a collection of technologies that allow publishing of search results in a format suitable for syndication and aggregation. It is a way for websites and search engines to publish search results in a standard and accessible format. Due to its strong impact on the way the Web is perceived by users and also due its relevance for businesses, Web 2.0 has attracted the attention of both mass media and the scientific community. This explosive growth in popularity of Web 2.0 technologies like OpenSearch, and practical applications of Service Oriented Architecture (SOA) resulted in an increased interest in similarities, convergence, and a potential synergy of these two concepts. SOA is considered as the philosophy of encapsulating application logic in services with a uniformly defined interface and making these publicly available via discovery mechanisms. Service consumers may then retrieve these services, compose and use them according to their current needs. A great degree of similarity between SOA and Web 2.0 may be leading to a convergence between the two paradigms. They also expose divergent elements, such as the Web 2.0 support to the human interaction in opposition to the typical SOA machine-to-machine interaction. According to these considerations, the Geospatial Information (GI) domain, is also moving first steps towards a new approach of data publishing and discovering, in particular taking advantage of the OpenSearch technology. A specific GI niche is represented by the OGC Catalog Service for Web (CSW) that is part of the OGC Web Services (OWS) specifications suite, which provides a

  14. Global Fiducials Program Imagery: New Opportunities for Geospatial Research, Outreach, and Education

    NASA Astrophysics Data System (ADS)

    Price, S. D.

    2012-12-01

    MOLNIA, Bruce F., PRICE, Susan D. and, KING, Stephen E., U.S. Geological Survey (USGS), 562 National Center, Reston, VA 20192, sprice@usgs.gov The Civil Applications Committee (CAC), operated by the U.S. Geological Survey (USGS), is the Federal interagency committee that facilitates Federal civil agency access to U.S. National Systems space-based electro-optical (EO) imagery for natural disaster response; global change investigations; ecosystem monitoring; mapping, charting, and geodesy; and related topics. The CAC's Global Fiducials Program (GFP) has overseen the systematic collection of high-resolution imagery to provide geospatial data time series spanning a decade or more at carefully selected sites to study and monitor changes, and to facilitate a comprehensive understanding of dynamic and sensitive areas of our planet. Since 2008, more than 4,500 one-meter resolution EO images which comprise time series from 85 GFP sites have been released for unrestricted public use. Initial site selections were made by Federal and academic scientists based on each site's unique history, susceptibility, or environmental value. For each site, collection strategies were carefully defined to maximize information extraction capabilities. This consistency enhances our ability to understand Earth's dynamic processes and long-term trends. Individual time series focus on Arctic sea ice change; temperate glacier behavior; mid-continent wetland dynamics; barrier island response to hurricanes; coastline evolution; wildland fire recovery; Long-Term Ecological Resource (LTER) site processes; and many other topics. The images are available from a USGS website at no cost, in an orthorectified GeoTIFF format with supporting metadata, making them ideal for use in Earth science education and GIS projects. New on-line tools provide enhanced analysis of these time-series imagery. For additional information go to http://gfp.usgs.gov or http://gfl.usgs.gov.Bering Glacier is the largest and

  15. Two Contrasting Approaches to Building High School Teacher Capacity to Teach About Local Climate Change Using Powerful Geospatial Data and Visualization Technology

    NASA Astrophysics Data System (ADS)

    Zalles, D. R.

    2011-12-01

    The presentation will compare and contrast two different place-based approaches to helping high school science teachers use geospatial data visualization technology to teach about climate change in their local regions. The approaches are being used in the development, piloting, and dissemination of two projects for high school science led by the author: the NASA-funded Data-enhanced Investigations for Climate Change Education (DICCE) and the NSF funded Studying Topography, Orographic Rainfall, and Ecosystems with Geospatial Information Technology (STORE). DICCE is bringing an extensive portal of Earth observation data, the Goddard Interactive Online Visualization and Analysis Infrastructure, to high school classrooms. STORE is making available data for viewing results of a particular IPCC-sanctioned climate change model in relation to recent data about average temperatures, precipitation, and land cover for study areas in central California and western New York State. Across the two projects, partner teachers of academically and ethnically diverse students from five states are participating in professional development and pilot testing. Powerful geospatial data representation technologies are difficult to implement in high school science because of challenges that teachers and students encounter navigating data access and making sense of data characteristics and nomenclature. Hence, on DICCE, the researchers are testing the theory that by providing a scaffolded technology-supported process for instructional design, starting from fundamental questions about the content domain, teachers will make better instructional decisions. Conversely, the STORE approach is rooted in the perspective that co-design of curricular materials among researchers and teacher partners that work off of "starter" lessons covering focal skills and understandings will lead to the most effective utilizations of the technology in the classroom. The projects' goals and strategies for student

  16. AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT (AGWA): A GIS-BASED TOOL FOR WATERSHED ASSESSMENT AND PLANNING

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment tool (AGWA) is a GIS interface jointly developed by the USDA Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona, and the University of Wyoming to automate the parameterization and execu...

  17. A robust and flexible Geospatial Modeling Interface (GMI) for environmental model deployment and evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper provides an overview of the GMI (Geospatial Modeling Interface) simulation framework for environmental model deployment and assessment. GMI currently provides access to multiple environmental models including AgroEcoSystem-Watershed (AgES-W), Nitrate Leaching and Economic Analysis 2 (NLEA...

  18. Tiered Internship Model for Undergraduate Students in Geospatial Science and Technology

    ERIC Educational Resources Information Center

    Kopteva, Irina A.; Arkowski, Donna; Craft, Elaine L.

    2015-01-01

    This article discusses the development, implementation, and evaluation of a tiered internship program for undergraduate students in geospatial science and technology (TIMSGeoTech). The internship program assists education programs in providing skill development that is relevant and useful, and it aligns graduates and their skills with industry…

  19. Geospatial Assessments of Farmland Soils and Crop Production Systems in Maine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Geospatial assessments of current crop production systems are essential to modeling potential productivity and evaluating core issues of sustainability for local to regional food supply studies. The three-fold objectives of this GIS-based statewide investigation were to: (1) quantify the aerial exte...

  20. Integrating Geospatial Technologies, Action Research, and Curriculum Theory to Promote Ecological Literacy

    ERIC Educational Resources Information Center

    Agnello, Mary Frances; Carpenter, Penny

    2010-01-01

    Purpose: The purpose of this paper is to examine and report on the impact of integrating geospatial technology and ecological literacy into an educational leadership Master's class block comprised of action research and curriculum theory. Design/methodology/approach: Action and teacher research informed by environmental issues framed an action…

  1. INTERIM EPA GUIDANCE FOR GEOSPATIAL-RELATED QUALITY ASSURANCE PROJECT PLANS

    EPA Science Inventory

    This guidance supplements EPA Guidance for Quality,Assurance Project Plans (EPA QA/G-5), in that the focus here is on collection and use of geospatial rather than other environmental data (e.g., strictly chemical or biological data), including unique aspects of data storage, retr...

  2. Using Geo-Spatial Technologies for Field Applications in Higher Geography Education

    ERIC Educational Resources Information Center

    Karatepe, Akif

    2012-01-01

    Today's important geo-spatial technologies, GIS (Geographic Information Systems), GPS (Global Positioning Systems) and Google Earth have been widely used in geography education. Transferring spatially oriented data taken by GPS to the GIS and Google Earth has provided great benefits in terms of showing the usage of spatial technologies for field…

  3. ADDING GLOBAL SOILS DATA TO THE AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT TOOL (AGWA)

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment Tool (AGWA) is a GIS-based hydrologic modeling tool that is available as an extension for ArcView 3.x from the USDA-ARS Southwest Watershed Research Center (www.tucson.ars.ag.gov/agwa). AGWA is designed to facilitate the assessment of...

  4. A generic discriminative part-based model for geospatial object detection in optical remote sensing images

    NASA Astrophysics Data System (ADS)

    Zhang, Wanceng; Sun, Xian; Wang, Hongqi; Fu, Kun

    2015-01-01

    Detecting geospatial objects with complex structure has been explored for years and it is still a challenging task in high resolution optical remote sensing images (RSI) interpretation. In this paper, we mainly focus on the problem of rotation variance in detecting geospatial objects and propose a generic discriminative part-based model (GDPBM) to build a practical object detection framework. In our model, a geospatial object with arbitrary orientation is divided into several parts and represented via three terms: the appearance features, the spatial deformation features and the rotation deformation features. The appearance features characterize the local patch appearance of the object and parts, and we propose a new kind of rotation invariant feature to represent the appearance using the local intensity gradients. The spatial deformation features capture the geometric deformation of parts by representing the relative displacements among parts. The rotation deformation features define the pose variances of the parts relative to the objects based on their dominant orientations. In generating the two deformation features, we introduce the statistic methods to encode the features in the category level. Concatenating the three terms of the features, a classifier based on the support vector machine is learned to detect geospatial objects. In the experiments, two datasets in optical RSI are used to evaluate the performance of our model and the results demonstrate its robustness and effectiveness.

  5. EnviroAtlas: A New Geospatial Tool to Foster Ecosystem Services Science and Resource Management

    EPA Science Inventory

    In this article we present EnviroAtlas, a web-based, open access tool that seeks to meet a range of needs by bringing together environmental, economic and demographic data in an ecosystem services framework. Within EnviroAtlas, there are three primary types of geospatial data: r...

  6. The Gerrymandering of School Attendance Zones and the Segregation of Public Schools: A Geospatial Analysis

    ERIC Educational Resources Information Center

    Richards, Meredith P.

    2014-01-01

    In this study, I employ geospatial techniques to assess the impact of school attendance zone "gerrymandering" on the racial/ethnic segregation of schools, using a large national sample of 15,290 attendance zones in 663 districts. I estimate the effect of gerrymandering on school diversity and school district segregation by comparing the…

  7. Center of Excellence for Geospatial Information Science research plan 2013-18

    USGS Publications Warehouse

    Usery, E. Lynn

    2013-01-01

    The U.S. Geological Survey Center of Excellence for Geospatial Information Science (CEGIS) was created in 2006 and since that time has provided research primarily in support of The National Map. The presentations and publications of the CEGIS researchers document the research accomplishments that include advances in electronic topographic map design, generalization, data integration, map projections, sea level rise modeling, geospatial semantics, ontology, user-centered design, volunteer geographic information, and parallel and grid computing for geospatial data from The National Map. A research plan spanning 2013–18 has been developed extending the accomplishments of the CEGIS researchers and documenting new research areas that are anticipated to support The National Map of the future. In addition to extending the 2006–12 research areas, the CEGIS research plan for 2013–18 includes new research areas in data models, geospatial semantics, high-performance computing, volunteered geographic information, crowdsourcing, social media, data integration, and multiscale representations to support the Three-Dimensional Elevation Program (3DEP) and The National Map of the future of the U.S. Geological Survey.

  8. Automated Geospatial Watershed Assessment Tool (AGWA): Applications for Fire Management and Assessment.

    EPA Science Inventory

    New tools and functionality have been incorporated into the Automated Geospatial Watershed Assessment Tool (AGWA) to assess the impacts of wildland fire on runoff and erosion. AGWA (see: www.tucson.ars.ag.gov/agwa or http://www.epa.gov/esd/land-sci/agwa/) is a GIS interface joi...

  9. The Effectiveness of the Geospatial Curriculum Approach on Urban Middle-Level Students' Climate Change Understandings

    NASA Astrophysics Data System (ADS)

    Bodzin, Alec M.; Fu, Qiong

    2014-08-01

    Climate change science is a challenging topic for student learning. This quantitative study examined the effectiveness of a geospatial curriculum approach to promote climate change science understandings in an urban school district with eighth-grade students and investigated whether teacher- and student-level factors accounted for students' climate change knowledge achievement. The participants included 12 science teachers and 956 eighth-grade students. Data included a pre- and posttest climate change assessment measures for both teachers and students and a teacher measure of Geospatial Science-Technological Pedagogical Content Knowledge. Paired-sample t tests revealed statistically significant gains from pretest to posttest on their climate change knowledge ( p < .001; effect sizes being large on multiple-choice items and medium on the open-ended response assessment). Both ordinary least squares (OLS) multiple regression and 2-level hierarchical linear modeling found that students' initial climate change knowledge and gender were significant predictors for students' posttest scores, p < .05. Students' pretest scores were the strongest significant predictor of the posttest scores, p < .001. Neither the teachers' climate change knowledge nor their Geospatial Science-Technological Pedagogical Content Knowledge had significant association with the students' posttest scores. Teaching years was a significant predictor for students' posttest scores in OLS regression ( p < .001). The findings provide support that a geospatial curriculum approach is an effective science curriculum approach for learners in urban middle-level education.

  10. Geospatial assessments of cropping systems and farmland assemblages in New England

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Detailed assessments of the current state of crop production systems are essential to modeling potential productivity and evaluating core issues of sustainability for local to regional food supply studies. The main objective of this regionally-based geospatial investigation was to evaluate the most ...

  11. Developing Energy Literacy in US Middle-Level Students Using the Geospatial Curriculum Approach

    NASA Astrophysics Data System (ADS)

    Bodzin, Alec M.; Fu, Qiong; Peffer, Tamara E.; Kulo, Violet

    2013-06-01

    This quantitative study examined the effectiveness of a geospatial curriculum approach to promote energy literacy in an urban school district and examined factors that may account for energy content knowledge achievement. An energy literacy measure was administered to 1,044 eighth-grade students (ages 13-15) in an urban school district in Pennsylvania, USA. One group of students received instruction with a geospatial curriculum approach (geospatial technologies (GT)) and another group of students received 'business as usual' (BAU) curriculum instruction. For the GT students, findings revealed statistically significant gains from pretest to posttest (p < 0.001) on knowledge of energy resource acquisition, energy generation, storage and transport, and energy consumption and conservation. The GT students had year-end energy content knowledge scores significantly higher than those who learned with the BAU curriculum (p < 0.001; effect size being large). A multiple regression found that prior energy content knowledge was the only significant predictor to the year-end energy content knowledge achievement for the GT students (p < 0.001). The findings support that the implementation of a geospatial curriculum approach that employs learning activities that focus on the spatial nature of energy resources can improve the energy literacy of urban middle-level education students.

  12. Decision Performance Using Spatial Decision Support Systems: A Geospatial Reasoning Ability Perspective

    ERIC Educational Resources Information Center

    Erskine, Michael A.

    2013-01-01

    As many consumer and business decision makers are utilizing Spatial Decision Support Systems (SDSS), a thorough understanding of how such decisions are made is crucial for the information systems domain. This dissertation presents six chapters encompassing a comprehensive analysis of the impact of geospatial reasoning ability on…

  13. A High-performance Service-Oriented Geospatial Cyberinfrastructure for Rapid Disaster Response and Decision Making

    NASA Astrophysics Data System (ADS)

    Li, W.; Ren, Y.

    2013-12-01

    High population growth, urbanization and global climate change have resulted in more frequent occurrences of disasters, affecting people's life and property safety all over the world. Worse than the disaster it is the vulnerability of existing disaster management systems that are failed to realize timely collection of disaster-related data, estimation of damage, evacuation planning, resource scheduling and to make other decisions in the disastrous situation. The emerging geospatial cyberinfrastructure (GCI) provides a promising solution to address these issues. This paper reports our efforts in establishing a high-performance cyberinfrastructure for rapid disaster response and decision-making. This GCI is built upon a service-oriented architecture, with improved performance supported by a distributed computing cluster for efficient data transmission and rendering. Different from most works in literature in improving the client-side performance of geospatial web services, this cluster solves the fundamental performance issue on the server side. A web portal is also developed to integrate the real-time geospatial web services reporting disaster related information for integral analysis and collaborative decision-making. We expect this work to contribute to effective disaster management and geospatial interoperability.

  14. RETIGO: A web-based tool for geospatial time series visualization

    EPA Science Inventory

    This abstract is for a poster to be presented at the upcoming Air Sensors workshop in Research Triangle Park, NC on March 19-20. The poster will describe a geospatial data viewing tool that would be of interest to the audience.

  15. A Geospatial Statistical Analysis of the Density of Lottery Outlets within Ethnically Concentrated Neighborhoods

    ERIC Educational Resources Information Center

    Wiggins, Lyna; Nower, Lia; Mayers, Raymond Sanchez; Peterson, N. Andrew

    2010-01-01

    This study examines the density of lottery outlets within ethnically concentrated neighborhoods in Middlesex County, New Jersey, using geospatial statistical analyses. No prior studies have empirically examined the relationship between lottery outlet density and population demographics. Results indicate that lottery outlets were not randomly…

  16. Flexibly Adaptive Professional Development in Support of Teaching Science with Geospatial Technology

    ERIC Educational Resources Information Center

    Trautmann, Nancy M.; MaKinster, James G.

    2010-01-01

    The "flexibly adaptive" model of professional development, developed in the GIT Ahead project, enables secondary science teachers to incorporate a variety of geospatial technology applications into wide-ranging classroom contexts. Teacher impacts were evaluated quantitatively and qualitatively. Post-questionnaire responses showed significant…

  17. National Stream Quality Accounting Network and National Monitoring Network Basin Boundary Geospatial Dataset, 2008–13

    USGS Publications Warehouse

    Baker, Nancy T.

    2011-01-01

    This report and the accompanying geospatial data were created to assist in analysis and interpretation of water-quality data provided by the U.S. Geological Survey's National Stream Quality Accounting Network (NASQAN) and by the U.S. Coastal Waters and Tributaries National Monitoring Network (NMN), which is a cooperative monitoring program of Federal, regional, and State agencies. The report describes the methods used to develop the geospatial data, which was primarily derived from the National Watershed Boundary Dataset. The geospatial data contains polygon shapefiles of basin boundaries for 33 NASQAN and 5 NMN streamflow and water-quality monitoring stations. In addition, 30 polygon shapefiles of the closed and noncontributing basins contained within the NASQAN or NMN boundaries are included. Also included is a point shapefile of the NASQAN and NMN monitoring stations and associated basin and station attributes. Geospatial data for basin delineations, associated closed and noncontributing basins, and monitoring station locations are available at http://water.usgs.gov/GIS/metadata/usgswrd/XML/ds641_nasqan_wbd12.xml.

  18. A "Neogeographical Education"? The Geospatial Web, GIS and Digital Art in Adult Education

    ERIC Educational Resources Information Center

    Papadimitriou, Fivos

    2010-01-01

    Neogeography provides a link between the science of geography and digital art. The carriers of this link are geospatial technologies (global navigational satellite systems such as the global positioning system, Geographical Information System [GIS] and satellite imagery) along with ubiquitous information and communication technologies (such as…

  19. Archiving and Distributing Three Long-Term Interconnected Geospatial Data Sets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Repeat remote sensing field campaigns at experimental sites result in a valuable set of remote sensing data resources, geographic information systems (GIS) data sets, digitized maps, and tabular data that are tied to specific locations. Archiving and distributing these geospatial data generally bec...

  20. Development of a Web-Enabled Learning Platform for Geospatial Laboratories: Improving the Undergraduate Learning Experience

    ERIC Educational Resources Information Center

    Mui, Amy B.; Nelson, Sarah; Huang, Bruce; He, Yuhong; Wilson, Kathi

    2015-01-01

    This paper describes a web-enabled learning platform providing remote access to geospatial software that extends the learning experience outside of the laboratory setting. The platform was piloted in two undergraduate courses, and includes a software server, a data server, and remote student users. The platform was designed to improve the quality…

  1. A robust and flexible Geospatial Modeling Interface (GMI) for deploying and evaluating natural resource models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Geographical information systems (GIS) software packages have been used for nearly three decades as analytical tools in natural resource management for geospatial data assembly, processing, storage, and visualization of input data and model output. However, with increasing availability and use of fu...

  2. Implementing a High School Level Geospatial Technologies and Spatial Thinking Course

    ERIC Educational Resources Information Center

    Nielsen, Curtis P.; Oberle, Alex; Sugumaran, Ramanathan

    2011-01-01

    Understanding geospatial technologies (GSTs) and spatial thinking is increasingly vital to contemporary life including common activities and hobbies; learning in science, mathematics, and social science; and employment within fields as diverse as engineering, health, business, and planning. As such, there is a need for a stand-alone K-12…

  3. GeoSearcher: GeoSpatial Ranking of Search Engine Results.

    ERIC Educational Resources Information Center

    Watters, Carolyn; Amoudi, Ghada

    2002-01-01

    Discusses search engines and describes a prototype system that provides dynamic ranking of search engine results for geospatial queries based on the URL of the host site. Evaluates this approach using user queries and random Web pages, making a contribution to Web retrieval by providing an alternative ranking order for search engine results.…

  4. Distributed Storage Algorithm for Geospatial Image Data Based on Data Access Patterns

    PubMed Central

    Pan, Shaoming; Li, Yongkai; Xu, Zhengquan; Chong, Yanwen

    2015-01-01

    Declustering techniques are widely used in distributed environments to reduce query response time through parallel I/O by splitting large files into several small blocks and then distributing those blocks among multiple storage nodes. Unfortunately, however, many small geospatial image data files cannot be further split for distributed storage. In this paper, we propose a complete theoretical system for the distributed storage of small geospatial image data files based on mining the access patterns of geospatial image data using their historical access log information. First, an algorithm is developed to construct an access correlation matrix based on the analysis of the log information, which reveals the patterns of access to the geospatial image data. Then, a practical heuristic algorithm is developed to determine a reasonable solution based on the access correlation matrix. Finally, a number of comparative experiments are presented, demonstrating that our algorithm displays a higher total parallel access probability than those of other algorithms by approximately 10–15% and that the performance can be further improved by more than 20% by simultaneously applying a copy storage strategy. These experiments show that the algorithm can be applied in distributed environments to help realize parallel I/O and thereby improve system performance. PMID:26181628

  5. The geospatial modeling interface (GMI) framework for deploying and assessing environmental models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Geographical information systems (GIS) software packages have been used for close to three decades as analytical tools in environmental management for geospatial data assembly, processing, storage, and visualization of input data and model output. However, with increasing availability and use of ful...

  6. Impact of Robotics and Geospatial Technology Interventions on Youth STEM Learning and Attitudes

    ERIC Educational Resources Information Center

    Nugent, Gwen; Barker, Bradley; Grandgenett, Neal; Adamchuk, Viacheslav I.

    2010-01-01

    This study examined the impact of robotics and geospatial technologies interventions on middle school youth's learning of and attitudes toward science, technology, engineering, and mathematics (STEM). Two interventions were tested. The first was a 40-hour intensive robotics/GPS/GIS summer camp; the second was a 3-hour event modeled on the camp…

  7. Mapping Educational Opportunity Zones: A Geospatial Analysis of Neighborhood Block Groups

    ERIC Educational Resources Information Center

    Miller, Peter M.

    2012-01-01

    The author uses geospatial analysis to examine the "educational opportunity spaces" of two adjacent urban neighborhoods in Pittsburgh, Pennsylvania. Organizing insights are gathered from Bronfenbrenner's (1979) ecological perspectives on human development, which posit that students are significantly impacted by multiple environmental…

  8. GeoSearch: A lightweight broking middleware for geospatial resources discovery

    NASA Astrophysics Data System (ADS)

    Gui, Z.; Yang, C.; Liu, K.; Xia, J.

    2012-12-01

    With petabytes of geodata, thousands of geospatial web services available over the Internet, it is critical to support geoscience research and applications by finding the best-fit geospatial resources from the massive and heterogeneous resources. Past decades' developments witnessed the operation of many service components to facilitate geospatial resource management and discovery. However, efficient and accurate geospatial resource discovery is still a big challenge due to the following reasons: 1)The entry barriers (also called "learning curves") hinder the usability of discovery services to end users. Different portals and catalogues always adopt various access protocols, metadata formats and GUI styles to organize, present and publish metadata. It is hard for end users to learn all these technical details and differences. 2)The cost for federating heterogeneous services is high. To provide sufficient resources and facilitate data discovery, many registries adopt periodic harvesting mechanism to retrieve metadata from other federated catalogues. These time-consuming processes lead to network and storage burdens, data redundancy, and also the overhead of maintaining data consistency. 3)The heterogeneous semantics issues in data discovery. Since the keyword matching is still the primary search method in many operational discovery services, the search accuracy (precision and recall) is hard to guarantee. Semantic technologies (such as semantic reasoning and similarity evaluation) offer a solution to solve these issues. However, integrating semantic technologies with existing service is challenging due to the expandability limitations on the service frameworks and metadata templates. 4)The capabilities to help users make final selection are inadequate. Most of the existing search portals lack intuitive and diverse information visualization methods and functions (sort, filter) to present, explore and analyze search results. Furthermore, the presentation of the value

  9. Geospatial Data Stream Processing in Python Using FOSS4G Components

    NASA Astrophysics Data System (ADS)

    McFerren, G.; van Zyl, T.

    2016-06-01

    One viewpoint of current and future IT systems holds that there is an increase in the scale and velocity at which data are acquired and analysed from heterogeneous, dynamic sources. In the earth observation and geoinformatics domains, this process is driven by the increase in number and types of devices that report location and the proliferation of assorted sensors, from satellite constellations to oceanic buoy arrays. Much of these data will be encountered as self-contained messages on data streams - continuous, infinite flows of data. Spatial analytics over data streams concerns the search for spatial and spatio-temporal relationships within and amongst data "on the move". In spatial databases, queries can assess a store of data to unpack spatial relationships; this is not the case on streams, where spatial relationships need to be established with the incomplete data available. Methods for spatially-based indexing, filtering, joining and transforming of streaming data need to be established and implemented in software components. This article describes the usage patterns and performance metrics of a number of well known FOSS4G Python software libraries within the data stream processing paradigm. In particular, we consider the RTree library for spatial indexing, the Shapely library for geometric processing and transformation and the PyProj library for projection and geodesic calculations over streams of geospatial data. We introduce a message oriented Python-based geospatial data streaming framework called Swordfish, which provides data stream processing primitives, functions, transports and a common data model for describing messages, based on the Open Geospatial Consortium Observations and Measurements (O&M) and Unidata Common Data Model (CDM) standards. We illustrate how the geospatial software components are integrated with the Swordfish framework. Furthermore, we describe the tight temporal constraints under which geospatial functionality can be invoked when

  10. Real-time notification and improved situational awareness in fire emergencies using geospatial-based publish/subscribe

    NASA Astrophysics Data System (ADS)

    Kassab, Ala'; Liang, Steve; Gao, Yang

    2010-12-01

    Emergency agencies seek to maintain situational awareness and effective decision making through continuous monitoring of, and real-time alerting about, sources of information regarding current incidents and developing fire hazards. The nature of this goal requires integrating different, potentially numerous, sources of dynamic geospatial information on the one side, and a large number of clients having heterogeneous and specific interests in data on the other side. In such scenarios, the traditional request/reply communication style may function inefficiently, as it is based on point-to-point, synchronous, and pulling mode interaction between consumer clients and information providers/services. In this work, we propose Geospatial-based Publish/ Subscribe, an interaction framework that serves as a middleware for real-time transacting of spatially related information of interest, termed geospatial events, in distributed systems. Expressive data models, including geospatial event and geospatial subscription, as well as an efficient matching approach for fast dissemination of geospatial events to interested clients, are introduced. The proposed interaction framework is realized through the development of a Real-Time Fire Emergency Response System (RFERS) prototype. The prototype is designed for transacting several topics of geospatial events that are crucial within the context of fire emergencies, including GPS locations of emergency assets, meteorological observations of wireless sensors, fire incidents reports, and temporal sequences of remote sensing images of active wildfires. The performance of the system prototype has been evaluated in order to demonstrate its efficiency.

  11. Free and Open Source Software for Geospatial in the field of planetary science

    NASA Astrophysics Data System (ADS)

    Frigeri, A.

    2012-12-01

    Information technology applied to geospatial analyses has spread quickly in the last ten years. The availability of OpenData and data from collaborative mapping projects increased the interest on tools, procedures and methods to handle spatially-related information. Free Open Source Software projects devoted to geospatial data handling are gaining a good success as the use of interoperable formats and protocols allow the user to choose what pipeline of tools and libraries is needed to solve a particular task, adapting the software scene to his specific problem. In particular, the Free Open Source model of development mimics the scientific method very well, and researchers should be naturally encouraged to take part to the development process of these software projects, as this represent a very agile way to interact among several institutions. When it comes to planetary sciences, geospatial Free Open Source Software is gaining a key role in projects that commonly involve different subjects in an international scenario. Very popular software suites for processing scientific mission data (for example, ISIS) and for navigation/planning (SPICE) are being distributed along with the source code and the interaction between user and developer is often very strict, creating a continuum between these two figures. A very widely spread library for handling geospatial data (GDAL) has started to support planetary data from the Planetary Data System, and recent contributions enabled the support to other popular data formats used in planetary science, as the Vicar one. The use of Geographic Information System in planetary science is now diffused, and Free Open Source GIS, open GIS formats and network protocols allow to extend existing tools and methods developed to solve Earth based problems, also to the case of the study of solar system bodies. A day in the working life of a researcher using Free Open Source Software for geospatial will be presented, as well as benefits and

  12. Geospatial Image Stream Processing: Models, techniques, and applications in remote sensing change detection

    NASA Astrophysics Data System (ADS)

    Rueda-Velasquez, Carlos Alberto

    Detection of changes in environmental phenomena using remotely sensed data is a major requirement in the Earth sciences, especially in natural disaster related scenarios where real-time detection plays a crucial role in the saving of human lives and the preservation of natural resources. Although various approaches formulated to model multidimensional data can in principle be applied to the inherent complexity of remotely sensed geospatial data, there are still challenging peculiarities that demand a precise characterization in the context of change detection, particularly in scenarios of fast changes. In the same vein, geospatial image streams do not fit appropriately in the standard Data Stream Management System (DSMS) approach because these systems mainly deal with tuple-based streams. Recognizing the necessity for a systematic effort to address the above issues, the work presented in this thesis is a concrete step toward the foundation and construction of an integrated Geospatial Image Stream Processing framework, GISP. First, we present a data and metadata model for remotely sensed image streams. We introduce a precise characterization of images and image streams in the context of remotely sensed geospatial data. On this foundation, we define spatially-aware temporal operators with a consistent semantics for change analysis tasks. We address the change detection problem in settings where multiple image stream sources are available, and thus we introduce an architectural design for the processing of geospatial image streams from multiple sources. With the aim of targeting collaborative scientific environments, we construct a realization of our architecture based on Kepler, a robust and widely used scientific workflow management system, as the underlying computational support; and open data and Web interface standards, as a means to facilitate the interoperability of GISP instances with other processing infrastructures and client applications. We demonstrate our

  13. Enhancing RSS Feeds with Extracted Geospatial Information for Further Processing and Visualization

    NASA Astrophysics Data System (ADS)

    Wick, Marc; Becker, Torsten

    Internet users are flooded with information and are thankful for help in categorizing and visualizing textual content. Geographical categorization is one of the most important criterion for filtering, grouping and prioritizing information as users are naturally more interested in local information. We describe a way to extract geographical information from textual content using natural language processing, and we display the information within a geographical context on maps and satellite images. Using the widely supported RSS format as the input format, this approach allows us to process content from nearly all online news sites and blogs.

  14. A Geospatial Analysis of Stormwater Runoff and Capture for Enhanced Groundwater Recharge

    NASA Astrophysics Data System (ADS)

    Harmon, R. E.; Fisher, A. T.; Beganskas, S.; Russo, T. A.

    2014-12-01

    We developed and demonstrate use of data tools for identification of sites where managed aquifer recharge (MAR) might be accomplished through capture of stormwater runoff. This study was completed in the Pajaro Valley, central costal California, which relies heavily on groundwater to meet agricultural, municipal, and domestic demand. An earlier study evaluated regional suitability for MAR in the Pajaro Valley based on surface and subsurface conditions, but did not explore the availability of water sources. In the present study, we combine a digital elevation model of basin topography, soil type, land use information, and historical precipitation records to assess where in the Pajaro Valley there may be enough runoff generated by storms to justify establishment of local MAR projects on this basis. Attribute screening was used to position 600 hypothetical capture-recharge sites in the study region: 200 one-acre infiltration basins with 50-100-acre drainage areas, 200 two-acre infiltration basins with 100-200-acre drainage areas, and 200 three-acre infiltration basins with 200-300-acre drainage areas. Precipitation scenarios were applied for a period of 20 years, simulating the influence of the number of storms, storm duration, and storm intensity in each year. Results suggest that the large majority of drainage areas 50-100 acres in size would not produce adequate runoff to meet a project goal of ≥100 ac-ft/year/field site. Evaluation of long term (20 year) potentials for 100-200 acre drainage areas show that approximately 10% of hypothetical MAR projects have the potential to produce 100+ ac-ft/year of recharge under normal (median historical) precipitation conditions. Approximately 50% of hypothetical 200-300 acre drainage areas have the potential to meet this goal given the same conditions. This approach advances traditional methods of recharge mapping by incorporating precipitation and runoff analyses for specific sites, and has the potential to aid in the establishment of a distributed system of MAR projects to improve groundwater conditions in this and other basins.

  15. Software for Studying and Enhancing Educational Uses of Geospatial Semantics and Data

    ERIC Educational Resources Information Center

    Nodenot, Thierry; Sallaberry, Christian; Gaio, Mauro

    2010-01-01

    Geographically related queries form nearly one-fifth of all queries submitted to the Excite search engine and the most frequently occurring terms are names of places. This paper focuses on digital libraries and extends the basic services of existing library management systems to include new ones that are dedicated to geographic information…

  16. Using Geospatial Information Technologies and Field Research to Enhance Classroom Learning

    ERIC Educational Resources Information Center

    Schacht, Walter H.; Guru, Ashu; Reece, Patrick E.; Volesky, Jerry D.; Cotton, Dan

    2005-01-01

    A focus of grazing management courses is the cause-effect relationships between grazing livestock distribution and environmental and management variables. A learning module for the classroom was developed to enable students to actively study livestock distribution by analyzing recently collected data from an on-ranch situation. Data were collected…

  17. The Learning Benefits of Using Eye Trackers to Enhance the Geospatial Abilities of Elementary School Students

    ERIC Educational Resources Information Center

    Wang, Hsiao-shen; Chen, Yi-Ting; Lin, Chih-Hung

    2014-01-01

    In this study, we examined the spatial abilities of students using eye-movement tracking devices to identify and analyze their characteristics. For this research, 12 students aged 11-12 years participated as novices and 4 mathematics students participated as experts. A comparison of the visual-spatial abilities of each group showed key factors of…

  18. Toward Open Science at the European Scale: Geospatial Semantic Array Programming for Integrated Environmental Modelling

    NASA Astrophysics Data System (ADS)

    de Rigo, Daniele; Corti, Paolo; Caudullo, Giovanni; McInerney, Daniel; Di Leo, Margherita; San-Miguel-Ayanz, Jesús

    2013-04-01

    Interfacing science and policy raises challenging issues when large spatial-scale (regional, continental, global) environmental problems need transdisciplinary integration within a context of modelling complexity and multiple sources of uncertainty [1]. This is characteristic of science-based support for environmental policy at European scale [1], and key aspects have also long been investigated by European Commission transnational research [2-5]. Parameters ofthe neededdata- transformations ? = {?1????m} (a.5) Wide-scale transdisciplinary modelling for environment. Approaches (either of computational science or of policy-making) suitable at a given domain-specific scale may not be appropriate for wide-scale transdisciplinary modelling for environment (WSTMe) and corresponding policy-making [6-10]. In WSTMe, the characteristic heterogeneity of available spatial information (a) and complexity of the required data-transformation modelling (D- TM) appeal for a paradigm shift in how computational science supports such peculiarly extensive integration processes. In particular, emerging wide-scale integration requirements of typical currently available domain-specific modelling strategies may include increased robustness and scalability along with enhanced transparency and reproducibility [11-15]. This challenging shift toward open data [16] and reproducible research [11] (open science) is also strongly suggested by the potential - sometimes neglected - huge impact of cascading effects of errors [1,14,17-19] within the impressively growing interconnection among domain-specific computational models and frameworks. From a computational science perspective, transdisciplinary approaches to integrated natural resources modelling and management (INRMM) [20] can exploit advanced geospatial modelling techniques with an awesome battery of free scientific software [21,22] for generating new information and knowledge from the plethora of composite data [23-26]. From the perspective

  19. Cloud Computing for Geosciences--GeoCloud for standardized geospatial service platforms (Invited)

    NASA Astrophysics Data System (ADS)

    Nebert, D. D.; Huang, Q.; Yang, C.

    2013-12-01

    The 21st century geoscience faces challenges of Big Data, spike computing requirements (e.g., when natural disaster happens), and sharing resources through cyberinfrastructure across different organizations (Yang et al., 2011). With flexibility and cost-efficiency of computing resources a primary concern, cloud computing emerges as a promising solution to provide core capabilities to address these challenges. Many governmental and federal agencies are adopting cloud technologies to cut costs and to make federal IT operations more efficient (Huang et al., 2010). However, it is still difficult for geoscientists to take advantage of the benefits of cloud computing to facilitate the scientific research and discoveries. This presentation reports using GeoCloud to illustrate the process and strategies used in building a common platform for geoscience communities to enable the sharing, integration of geospatial data, information and knowledge across different domains. GeoCloud is an annual incubator project coordinated by the Federal Geographic Data Committee (FGDC) in collaboration with the U.S. General Services Administration (GSA) and the Department of Health and Human Services. It is designed as a staging environment to test and document the deployment of a common GeoCloud community platform that can be implemented by multiple agencies. With these standardized virtual geospatial servers, a variety of government geospatial applications can be quickly migrated to the cloud. In order to achieve this objective, multiple projects are nominated each year by federal agencies as existing public-facing geospatial data services. From the initial candidate projects, a set of common operating system and software requirements was identified as the baseline for platform as a service (PaaS) packages. Based on these developed common platform packages, each project deploys and monitors its web application, develops best practices, and documents cost and performance information. This

  20. Towards a Collaborative Knowledge Discovery System for Enriching Semantic Information about Risks of Geospatial Data

    NASA Astrophysics Data System (ADS)

    Grira, J.; Bédard, Y.; Roche, S.; Devillers, R.

    2013-05-01

    The aim of this research is to design and implement a knowledge discovery system that facilitates, using a web 2.0 collaborative approach, the identification of new risks of geospatial data misuse based on a contributed knowledge repository fed by application domain experts. [Context/Motivation] This research is motivated by the irregularity of risk analysis efforts and the poor semantic of the collected information about risks. In the context of risk analysis during geospatial database design, the knowledge about risks of geospatial data misuse is typically held by domain application experts. The collection and record of that knowledge are usually considered as optional activities. It is usually performed through face-to-face risk assessment meetings and reports. Such techniques end up by restricting the scope of risk analysis to a set of obvious risks usually already identified. Besides, little consideration is devoted to the storage of risk information in an appropriate format for automatic reasoning and new risk information discovery. As a consequence, many foreseeable risky aspects inherent to the data remain overlooked leading to ill-defined specification and faulty decisions. [Principal ideas/results] In this paper, we present a contributed knowledge discovery system that aims at enriching the semantic information about risks of geospatial data misuse in order to identify foreseeable risks. The proposed web-based system relies on a systematic and more active involvement of users in risk analysis. The approach consists of 1) providing an overview of the related work in the domains of risk analysis within the context of geospatial database design, 2) presenting an ontology-based knowledge discovery system that helps experts in risks identification based on an upper-level risk ontology and on a structured representation of the domain-specific knowledge and, 3) presenting the components of the proposed system architecture and how it may be implemented and used

  1. Geospatial Technology and Geosciences - Defining the skills and competencies in the geosciences needed to effectively use the technology (Invited)

    NASA Astrophysics Data System (ADS)

    Johnson, A.

    2010-12-01

    Maps, spatial and temporal data and their use in analysis and visualization are integral components for studies in the geosciences. With the emergence of geospatial technology (Geographic Information Systems (GIS), remote sensing and imagery, Global Positioning Systems (GPS) and mobile technologies) scientists and the geosciences user community are now able to more easily accessed and share data, analyze their data and present their results. Educators are also incorporating geospatial technology into their geosciences programs by including an awareness of the technology in introductory courses to advanced courses exploring the capabilities to help answer complex questions in the geosciences. This paper will look how the new Geospatial Technology Competency Model from the Department of Labor can help ensure that geosciences programs address the skills and competencies identified by the workforce for geospatial technology as well as look at new tools created by the GeoTech Center to help do self and program assessments.

  2. Geo-spatial Hotspots of Hemorrhagic Fever with Renal Syndrome and Genetic Characterization of Seoul Variants in Beijing, China

    PubMed Central

    Zuo, Shu-Qing; Fang, Li-Qun; Zhan, Lin; Zhang, Pan-He; Jiang, Jia-Fu; Wang, Li-Ping; Ma, Jia-Qi; Wang, Bing-Cai; Wang, Ri-Min; Wu, Xiao-Ming; Yang, Hong; Cao, Zhi-Wei; Cao, Wu-Chun

    2011-01-01

    Background Hemorrhagic fever with renal syndrome (HFRS) is highly endemic in mainland China, and has extended from rural areas to cities recently. Beijing metropolis is a novel affected region, where the HFRS incidence seems to be diverse from place to place. Methodology/Principal Findings The spatial scan analysis based on geographical information system (GIS) identified three geo-spatial “hotspots” of HFRS in Beijing when the passive surveillance data from 2004 to 2006 were used. The Relative Risk (RR) of the three “hotspots” was 5.45, 3.57 and 3.30, respectively. The Phylogenetic analysis based on entire coding region sequence of S segment and partial L segment sequence of Seoul virus (SEOV) revealed that the SEOV strains circulating in Beijing could be classified into at least three lineages regardless of their host origins. Two potential recombination events that happened in lineage #1 were detected and supported by comparative phylogenetic analysis. The SEOV strains in different lineages and strains with distinct special amino acid substitutions for N protein were partially associated with different spatial clustered areas of HFRS. Conclusion/Significance Hotspots of HFRS were found in Beijing, a novel endemic region, where intervention should be enhanced. Our data suggested that the genetic variation and recombination of SEOV strains was related to the high risk areas of HFRS, which merited further investigation. PMID:21264354

  3. Geospatial Image Mining For Nuclear Proliferation Detection: Challenges and New Opportunities

    SciTech Connect

    Vatsavai, Raju; Bhaduri, Budhendra L; Cheriyadat, Anil M; Arrowood, Lloyd; Bright, Eddie A; Gleason, Shaun Scott; Diegert, Carl; Katsaggelos, Aggelos K; Pappas, Thrasos N; Porter, Reid; Bollinger, Jim; Chen, Barry; Hohimer, Ryan

    2010-01-01

    With increasing understanding and availability of nuclear technologies, and increasing persuasion of nuclear technologies by several new countries, it is increasingly becoming important to monitor the nuclear proliferation activities. There is a great need for developing technologies to automatically or semi-automatically detect nuclear proliferation activities using remote sensing. Images acquired from earth observation satellites is an important source of information in detecting proliferation activities. High-resolution remote sensing images are highly useful in verifying the correctness, as well as completeness of any nuclear program. DOE national laboratories are interested in detecting nuclear proliferation by developing advanced geospatial image mining algorithms. In this paper we describe the current understanding of geospatial image mining techniques and enumerate key gaps and identify future research needs in the context of nuclear proliferation.

  4. Facilitating the production of ISO-compliant metadata of geospatial datasets

    NASA Astrophysics Data System (ADS)

    Giuliani, Gregory; Guigoz, Yaniss; Lacroix, Pierre; Ray, Nicolas; Lehmann, Anthony

    2016-02-01

    Metadata are recognized as an essential element to enable efficient and effective discovery of geospatial data published in spatial data infrastructures (SDI). However, metadata production is still perceived as a complex, tedious and time-consuming task. This typically results in little metadata production and can seriously hinder the objective of facilitating data discovery. In response to this issue, this paper presents a proof of concept based on an interoperable workflow between a data publication server and a metadata catalog to automatically generate ISO-compliant metadata. The proposed approach facilitates metadata creation by embedding this task in daily data management workflows; ensures that data and metadata are permanently up-to-date; significantly reduces the obstacles of metadata production; and potentially facilitates contributions to initiatives like the Global Earth Observation System of Systems (GEOSS) by making geospatial resources discoverable.

  5. iGlobe: an interactive visualization and analysis framework for geospatial data

    SciTech Connect

    Chandola, Varun; Vatsavai, Raju; Bhaduri, Budhendra L

    2011-01-01

    We demonstrate an interactive visualization and analysis system for integrating climate data with other geospatial data sets, such as environmental and demographic data. The \\eviz system is a desktop-based visualization and analysis environment which allows seamless integration of multiple geospatial data sets from varied sources and provides an interface to interactively analyze the different data sets and apply sophisticated data analysis and mining algorithms in a near real time fashion. The framework is highly desirable in domains such as earth and climate sciences where great emphasis is placed on simultaneous analysis of different data sets such as remote sensing images, climate model simulation outputs, and other environmental and demographic databases, to understand weather and climate systems and the impact of climate change on nature and people.

  6. GeoCENS: A Geospatial Cyberinfrastructure for the World-Wide Sensor Web

    PubMed Central

    Liang, Steve H.L.; Huang, Chih-Yuan

    2013-01-01

    The world-wide sensor web has become a very useful technique for monitoring the physical world at spatial and temporal scales that were previously impossible. Yet we believe that the full potential of sensor web has thus far not been revealed. In order to harvest the world-wide sensor web's full potential, a geospatial cyberinfrastructure is needed to store, process, and deliver large amount of sensor data collected worldwide. In this paper, we first define the issue of the sensor web long tail followed by our view of the world-wide sensor web architecture. Then, we introduce the Geospatial Cyberinfrastructure for Environmental Sensing (GeoCENS) architecture and explain each of its components. Finally, with demonstration of three real-world powered-by-GeoCENS sensor web applications, we believe that the GeoCENS architecture can successfully address the sensor web long tail issue and consequently realize the world-wide sensor web vision. PMID:24152921

  7. Practical Examples and Benefits of Implementing Open Geospatial Consortium Data Formats

    NASA Astrophysics Data System (ADS)

    Bayer, E.

    2005-12-01

    "Open Systems" have become a re-occuring mantra expressed by all vendors in the GIS industry. One vendor's definition of Open defines system integration at an application tier while another at the data tier. As the Open Geospatial Consortium (OGC) data definitions (WFS and WMS) become more accepted in the market place we are seeing a more data centric approach to integrating Geospatial information. This benefits all in the GIS industry by: Reducing the cost of ownership for software Minimizing data maintenance requirements Eliminating the need to copy and translate data from one system to another Allowing end users to choose the best tool for the job We will review some practical examples of OGC compliant implementations for enterprise GIS data sharing.

  8. Integrated Geospatial Education and Technology Training for High School Age Youth (HiGETT)

    NASA Astrophysics Data System (ADS)

    Allen, J. E.

    2012-12-01

    The Landsat series of satellites provides high quality, consistent, 30 m resolution data for studies of landscape-scale change over time at no cost to the user. The availability of the Landsat data archive and the effectiveness and ease of its use to solve practical societal problems, particularly integrated with Geographic Information Systems (GIS), has been a key factor in a movement to bring remote sensing education to community colleges (as in the "iGETT" program funded by the National Science Foundation, 2007-2011) and now to younger students of high school age. "Integrated Geospatial Education and Technology Training for High School Age Youth (HiGETT)" was a two-day meeting convened April 4-5, 2011 to explore and articulate effective means of reaching teens with geospatial technology education and career awareness. Participants represented industry, government, academia, and informal education organizations such as 4-H and Girl Scouts. This poster will summarize a report on that meeting.

  9. Real-time geo-spatial registration of target images from the WAR HORSE sensor

    NASA Astrophysics Data System (ADS)

    Kendall, William B.

    2002-08-01

    The Naval Research Laboratory's airborne WAR HORSE sensor incorporates a hyperspectral line-scan sensor, a high- resolution video line-scanner, and a CMIGITS INS/GPS unit. Targets are detected in real time from the hyperspectral data, and images of the detected targets are chipped from the high-resolution video data for presentation to an operator. The INS/GPS data are used to geo-spatially register (georegister) both the hyperspectral data and the video chips. In this paper we show detection results for processing the hyperspectral data both before and after geo- spatial registration when assumed target size is incorporated into the detection algorithms. Then we illustrate the utility of presenting target image chips which are geo-spatially registered and fused with the hyperspectral data.

  10. Applying Geospatial Technologies for International Development and Public Health: The USAID/NASA SERVIR Program

    NASA Technical Reports Server (NTRS)

    Hemmings, Sarah; Limaye, Ashutosh; Irwin, Dan

    2011-01-01

    Background: SERVIR -- the Regional Visualization and Monitoring System -- helps people use Earth observations and predictive models based on data from orbiting satellites to make timely decisions that benefit society. SERVIR operates through a network of regional hubs in Mesoamerica, East Africa, and the Hindu Kush-Himalayas. USAID and NASA support SERVIR, with the long-term goal of transferring SERVIR capabilities to the host countries. Objective/Purpose: The purpose of this presentation is to describe how the SERVIR system helps the SERVIR regions cope with eight areas of societal benefit identified by the Group on Earth Observations (GEO): health, disasters, ecosystems, biodiversity, weather, water, climate, and agriculture. This presentation will describe environmental health applications of data in the SERVIR system, as well as ongoing and future efforts to incorporate additional health applications into the SERVIR system. Methods: This presentation will discuss how the SERVIR Program makes environmental data available for use in environmental health applications. SERVIR accomplishes its mission by providing member nations with access to geospatial data and predictive models, information visualization, training and capacity building, and partnership development. SERVIR conducts needs assessments in partner regions, develops custom applications of Earth observation data, and makes NASA and partner data available through an online geospatial data portal at SERVIRglobal.net. Results: Decision makers use SERVIR to improve their ability to monitor air quality, extreme weather, biodiversity, and changes in land cover. In past several years, the system has been used over 50 times to respond to environmental threats such as wildfires, floods, landslides, and harmful algal blooms. Given that the SERVIR regions are experiencing increased stress under larger climate variability than historic observations, SERVIR provides information to support the development of

  11. Academic research opportunities at the National Geospatial-Intelligence Agency(NGA)

    NASA Astrophysics Data System (ADS)

    Loomer, Scott A.

    2006-05-01

    The vision of the National Geospatial-Intelligence Agency (NGA) is to "Know the Earth...Show the Way." To achieve this vision, the NGA provides geospatial intelligence in all its forms and from whatever source-imagery, imagery intelligence, and geospatial data and information-to ensure the knowledge foundation for planning, decision, and action. Academia plays a key role in the NGA research and development program through the NGA Academic Research Program. This multi-disciplinary program of basic research in geospatial intelligence topics provides grants and fellowships to the leading investigators, research universities, and colleges of the nation. This research provides the fundamental science support to NGA's applied and advanced research programs. The major components of the NGA Academic Research Program are: *NGA University Research Initiatives (NURI): Three-year basic research grants awarded competitively to the best investigators across the US academic community. Topics are selected to provide the scientific basis for advanced and applied research in NGA core disciplines. *Historically Black College and University - Minority Institution Research Initiatives (HBCU-MI): Two-year basic research grants awarded competitively to the best investigators at Historically Black Colleges and Universities, and Minority Institutions across the US academic community. *Intelligence Community Post-Doctoral Research Fellowships: Fellowships providing access to advanced research in science and technology applicable to the intelligence community's mission. The program provides a pool of researchers to support future intelligence community needs and develops long-term relationships with researchers as they move into career positions. This paper provides information about the NGA Academic Research Program, the projects it supports and how researchers and institutions can apply for grants under the program. In addition, other opportunities for academia to engage with NGA through

  12. Interacting With A Near Real-Time Urban Digital Watershed Using Emerging Geospatial Web Technologies

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Fazio, D. J.; Abdelzaher, T.; Minsker, B.

    2007-12-01

    The value of real-time hydrologic data dissemination including river stage, streamflow, and precipitation for operational stormwater management efforts is particularly high for communities where flash flooding is common and costly. Ideally, such data would be presented within a watershed-scale geospatial context to portray a holistic view of the watershed. Local hydrologic sensor networks usually lack comprehensive integration with sensor networks managed by other agencies sharing the same watershed due to administrative, political, but mostly technical barriers. Recent efforts on providing unified access to hydrological data have concentrated on creating new SOAP-based web services and common data format (e.g. WaterML and Observation Data Model) for users to access the data (e.g. HIS and HydroSeek). Geospatial Web technology including OGC sensor web enablement (SWE), GeoRSS, Geo tags, Geospatial browsers such as Google Earth and Microsoft Virtual Earth and other location-based service tools provides possibilities for us to interact with a digital watershed in near-real-time. OGC SWE proposes a revolutionary concept towards a web-connected/controllable sensor networks. However, these efforts have not provided the capability to allow dynamic data integration/fusion among heterogeneous sources, data filtering and support for workflows or domain specific applications where both push and pull mode of retrieving data may be needed. We propose a light weight integration framework by extending SWE with open source Enterprise Service Bus (e.g., mule) as a backbone component to dynamically transform, transport, and integrate both heterogeneous sensor data sources and simulation model outputs. We will report our progress on building such framework where multi-agencies" sensor data and hydro-model outputs (with map layers) will be integrated and disseminated in a geospatial browser (e.g. Microsoft Virtual Earth). This is a collaborative project among NCSA, USGS Illinois Water

  13. Integration of Remotely Sensed Data Into Geospatial Reference Information Databases. Un-Ggim National Approach

    NASA Astrophysics Data System (ADS)

    Arozarena, A.; Villa, G.; Valcárcel, N.; Pérez, B.

    2016-06-01

    Remote sensing satellites, together with aerial and terrestrial platforms (mobile and fixed), produce nowadays huge amounts of data coming from a wide variety of sensors. These datasets serve as main data sources for the extraction of Geospatial Reference Information (GRI), constituting the "skeleton" of any Spatial Data Infrastructure (SDI). Since very different situations can be found around the world in terms of geographic information production and management, the generation of global GRI datasets seems extremely challenging. Remotely sensed data, due to its wide availability nowadays, is able to provide fundamental sources for any production or management system present in different countries. After several automatic and semiautomatic processes including ancillary data, the extracted geospatial information is ready to become part of the GRI databases. In order to optimize these data flows for the production of high quality geospatial information and to promote its use to address global challenges several initiatives at national, continental and global levels have been put in place, such as European INSPIRE initiative and Copernicus Programme, and global initiatives such as the Group on Earth Observation/Global Earth Observation System of Systems (GEO/GEOSS) and United Nations Global Geospatial Information Management (UN-GGIM). These workflows are established mainly by public organizations, with the adequate institutional arrangements at national, regional or global levels. Other initiatives, such as Volunteered Geographic Information (VGI), on the other hand may contribute to maintain the GRI databases updated. Remotely sensed data hence becomes one of the main pillars underpinning the establishment of a global SDI, as those datasets will be used by public agencies or institutions as well as by volunteers to extract the required spatial information that in turn will feed the GRI databases. This paper intends to provide an example of how institutional

  14. Study on uncertainty of geospatial semantic Web services composition based on broker approach and Bayesian networks

    NASA Astrophysics Data System (ADS)

    Yang, Xiaodong; Cui, Weihong; Liu, Zhen; Ouyang, Fucheng

    2008-10-01

    The Semantic Web has a major weakness which is lacking of a principled means to represent and reason about uncertainty. This is also located in the services composition approaches such as BPEL4WS and Semantic Description Model. We analyze the uncertainty of Geospatial Web Service composition through mining the knowledge in historical records of composition based on Broker approach and Bayesian Networks. We proved this approach is effective and efficient through a sample scenario in this paper.

  15. Investigating Climate Change Issues With Web-Based Geospatial Inquiry Activities

    NASA Astrophysics Data System (ADS)

    Dempsey, C.; Bodzin, A. M.; Sahagian, D. L.; Anastasio, D. J.; Peffer, T.; Cirucci, L.

    2011-12-01

    In the Environmental Literacy and Inquiry middle school Climate Change curriculum we focus on essential climate literacy principles with an emphasis on weather and climate, Earth system energy balance, greenhouse gases, paleoclimatology, and how human activities influence climate change (http://www.ei.lehigh.edu/eli/cc/). It incorporates a related set of a framework and design principles to provide guidance for the development of the geospatial technology-integrated Earth and environmental science curriculum materials. Students use virtual globes, Web-based tools including an interactive carbon calculator and geologic timeline, and inquiry-based lab activities to investigate climate change topics. The curriculum includes educative curriculum materials that are designed to promote and support teachers' learning of important climate change content and issues, geospatial pedagogical content knowledge, and geographic spatial thinking. The curriculum includes baseline instructional guidance for teachers and provides implementation and adaptation guidance for teaching with diverse learners including low-level readers, English language learners and students with disabilities. In the curriculum, students use geospatial technology tools including Google Earth with embedded spatial data to investigate global temperature changes, areas affected by climate change, evidence of climate change, and the effects of sea level rise on the existing landscape. We conducted a designed-based research implementation study with urban middle school students. Findings showed that the use of the Climate Change curriculum showed significant improvement in urban middle school students' understanding of climate change concepts.

  16. Visa: AN Automatic Aware and Visual Aids Mechanism for Improving the Correct Use of Geospatial Data

    NASA Astrophysics Data System (ADS)

    Hong, J. H.; Su, Y. T.

    2016-06-01

    With the fast growth of internet-based sharing mechanism and OpenGIS technology, users nowadays enjoy the luxury to quickly locate and access a variety of geospatial data for the tasks at hands. While this sharing innovation tremendously expand the possibility of application and reduce the development cost, users nevertheless have to deal with all kinds of "differences" implicitly hidden behind the acquired georesources. We argue the next generation of GIS-based environment, regardless internet-based or not, must have built-in knowledge to automatically and correctly assess the fitness of data use and present the analyzed results to users in an intuitive and meaningful way. The VISA approach proposed in this paper refer to four different types of visual aids that can be respectively used for addressing analyzed results, namely, virtual layer, informative window, symbol transformation and augmented TOC. The VISA-enabled interface works in an automatic-aware fashion, where the standardized metadata serve as the known facts about the selected geospatial resources, algorithms for analyzing the differences of temporality and quality of the geospatial resources were designed and the transformation of analyzed results into visual aids were automatically executed. It successfully presents a new way for bridging the communication gaps between systems and users. GIS has been long seen as a powerful integration tool, but its achievements would be highly restricted if it fails to provide a friendly and correct working platform.

  17. National Geospatial Data Asset Lifecycle Baseline Maturity Assessment for the Federal Geographic Data Committee

    NASA Astrophysics Data System (ADS)

    Peltz-Lewis, L. A.; Blake-Coleman, W.; Johnston, J.; DeLoatch, I. B.

    2014-12-01

    The Federal Geographic Data Committee (FGDC) is designing a portfolio management process for 193 geospatial datasets contained within the 16 topical National Spatial Data Infrastructure themes managed under OMB Circular A-16 "Coordination of Geographic Information and Related Spatial Data Activities." The 193 datasets are designated as National Geospatial Data Assets (NGDA) because of their significance in implementing to the missions of multiple levels of government, partners and stakeholders. As a starting point, the data managers of these NGDAs will conduct a baseline maturity assessment of the dataset(s) for which they are responsible. The maturity is measured against benchmarks related to each of the seven stages of the data lifecycle management framework promulgated within the OMB Circular A-16 Supplemental Guidance issued by OMB in November 2010. This framework was developed by the interagency Lifecycle Management Work Group (LMWG), consisting of 16 Federal agencies, under the 2004 Presidential Initiative the Geospatial Line of Business,using OMB Circular A-130" Management of Federal Information Resources" as guidance The seven lifecycle stages are: Define, Inventory/Evaluate, Obtain, Access, Maintain, Use/Evaluate, and Archive. This paper will focus on the Lifecycle Baseline Maturity Assessment, and efforts to integration the FGDC approach with other data maturity assessments.

  18. Creating a geospatial database of risks and resources to explore urban adolescent substance use.

    PubMed

    Mason, Michael; Cheung, Ivan; Walker, Leslie

    2009-01-01

    This article illustrates the methodology of creating a comprehensive geospatial database in order to systematically understand the social ecology of risk and protection for urban youth. The challenges and future opportunities involved with this complex work were reviewed, and specific examples were provided to guide researchers. Data were collected from a Washington, DC adolescent substance abuse treatment sample to construct a geospatial database to evaluate urban youths' social environmental risk and resources. A geographic information systems (GIS) approach was adopted to integrate a large array of variables at different levels of geography. For example, risk factors included proximity to crime hotspots, and other known potential establishments with negative influence (such as liquor stores). We also used GIS to assess the subjects' accessibility to protective resources such as public libraries, recreational, parks, and police stations. Unique to our method was the collecting and mapping of each teen's activity locations (places they typically frequent). These data form "risk and protection exposure" estimates for each teen. Finally, we illustrated the specific methods for creating a dynamic geospatial database for urban youth and present future analytical approaches and challenges with these type of data. PMID:19197672

  19. Geospatial database of estimates of groundwater discharge to streams in the Upper Colorado River Basin

    USGS Publications Warehouse

    Garcia, Adriana; Masbruch, Melissa D.; Susong, David D.

    2014-01-01

    The U.S. Geological Survey, as part of the Department of the Interior’s WaterSMART (Sustain and Manage America’s Resources for Tomorrow) initiative, compiled published estimates of groundwater discharge to streams in the Upper Colorado River Basin as a geospatial database. For the purpose of this report, groundwater discharge to streams is the baseflow portion of streamflow that includes contributions of groundwater from various flow paths. Reported estimates of groundwater discharge were assigned as attributes to stream reaches derived from the high-resolution National Hydrography Dataset. A total of 235 estimates of groundwater discharge to streams were compiled and included in the dataset. Feature class attributes of the geospatial database include groundwater discharge (acre-feet per year), method of estimation, citation abbreviation, defined reach, and 8-digit hydrologic unit code(s). Baseflow index (BFI) estimates of groundwater discharge were calculated using an existing streamflow characteristics dataset and were included as an attribute in the geospatial database. A comparison of the BFI estimates to the compiled estimates of groundwater discharge found that the BFI estimates were greater than the reported groundwater discharge estimates.

  20. An Interactive Visual Analytics Framework for Multi-Field Data in a Geo-Spatial Context

    SciTech Connect

    Zhang, Zhiyuan; Tong, Xiaonan; McDonnell, Kevin T.; Zelenyuk, Alla; Imre, D.; Mueller, Klaus

    2013-04-01

    Climate research produces a wealth of multivariate data. These data often have a geospatial reference and so it is of interest to show them within their geospatial context. One can consider this configuration as a multi field visualization problem, where the geospace provides the expanse of the field. However, there is a limit on the amount of multivariate information that can be fit within a certain spatial location, and the use of linked multivari ate information displays has previously been devised to bridge this gap. In this paper we focus on the interactions in the geographical display, present an implementation that uses Google Earth, and demonstrate it within a tightly linked parallel coordinates display. Several other visual representations, such as pie and bar charts are integrated into the Google Earth display and can be interactively manipulated. Further, we also demonstrate new brushing and visualization techniques for parallel coordinates, such as fixedwindow brushing and correlationenhanced display. We conceived our system with a team of climate researchers, who already made a few important discov eries using it. This demonstrates our system’s great potential to enable scientific discoveries, possibly also in oth er domains where data have a geospatial reference.

  1. High Resolution Dsm and Classified Volumetric Generation: AN Operational Approach to the Improvement of Geospatial Intelligence

    NASA Astrophysics Data System (ADS)

    Boccardo, P.; Gentili, G.

    2011-09-01

    As mentioned by Bacastow and Bellafiore, Geospatial Intelligence (GEOINT) is a field of knowledge, a process, and a profession. As knowledge, it is information integrated in a coherent space-time context that supports descriptions, explanations, or forecasts of human activities with which decision makers take action. As a process, it is the means by which data and information are collected, manipulated, geospatially reasoned, and disseminated to decision-makers. The geospatial intelligence professional establishes the scope of activities, interdisciplinary associations, competencies, and standards in academe, government, and the private sectors. Taking into account the fact that GEOINT is crucial for broad organizations, BLOM Group, a leading International provider within acquisition, processing and modeling of geographic information and ITHACA, a non-profit organization devoted to products and services delivering to the UN System in the field of geomatics, set up and provided GEOINT data to the main Italian companies operating in the field of mobile phone networking. This data, extremely useful for telecom network planning, have derived and produced using a standardized and effective (from the production point of view) approach. In this paper, all the procedures used for the production are described and tested with the aim to investigate the suitability of the data and the procedures themselves to any others possible fields of application.

  2. Data-based reconstruction of complex geospatial networks, nodal positioning and detection of hidden nodes

    PubMed Central

    Su, Ri-Qi; Wang, Wen-Xu; Wang, Xiao; Lai, Ying-Cheng

    2016-01-01

    Given a complex geospatial network with nodes distributed in a two-dimensional region of physical space, can the locations of the nodes be determined and their connection patterns be uncovered based solely on data? We consider the realistic situation where time series/signals can be collected from a single location. A key challenge is that the signals collected are necessarily time delayed, due to the varying physical distances from the nodes to the data collection centre. To meet this challenge, we develop a compressive-sensing-based approach enabling reconstruction of the full topology of the underlying geospatial network and more importantly, accurate estimate of the time delays. A standard triangularization algorithm can then be employed to find the physical locations of the nodes in the network. We further demonstrate successful detection of a hidden node (or a hidden source or threat), from which no signal can be obtained, through accurate detection of all its neighbouring nodes. As a geospatial network has the feature that a node tends to connect with geophysically nearby nodes, the localized region that contains the hidden node can be identified. PMID:26909187

  3. Bridging the Gap between NASA Hydrological Data and the Geospatial Community

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Teng, Bill; Vollmer, Bruce; Mocko, David M.; Beaudoing, Hiroko K.; Nigro, Joseph; Gary, Mark; Maidment, David; Hooper, Richard

    2011-01-01

    There is a vast and ever increasing amount of data on the Earth interconnected energy and hydrological systems, available from NASA remote sensing and modeling systems, and yet, one challenge persists: increasing the usefulness of these data for, and thus their use by, the geospatial communities. The Hydrology Data and Information Services Center (HDISC), part of the Goddard Earth Sciences DISC, has continually worked to better understand the hydrological data needs of the geospatial end users, to thus better able to bridge the gap between NASA data and the geospatial communities. This paper will cover some of the hydrological data sets available from HDISC, and the various tools and services developed for data searching, data subletting ; format conversion. online visualization and analysis; interoperable access; etc.; to facilitate the integration of NASA hydrological data by end users. The NASA Goddard data analysis and visualization system, Giovanni, is described. Two case examples of user-customized data services are given, involving the EPA BASINS (Better Assessment Science Integrating point & Non-point Sources) project and the CUAHSI Hydrologic Information System, with the common requirement of on-the-fly retrieval of long duration time series for a geographical point

  4. School Mapping and Geospatial Analysis of the Schools in Jasra Development Block of India

    NASA Astrophysics Data System (ADS)

    Agrawal, S.; Gupta, R. D.

    2016-06-01

    GIS is a collection of tools and techniques that works on the geospatial data and is used in the analysis and decision making. Education is an inherent part of any civil society. Proper educational facilities generate the high quality human resource for any nation. Therefore, government needs an efficient system that can help in analysing the current state of education and its progress. Government also needs a system that can support in decision making and policy framing. GIS can serve the mentioned requirements not only for government but also for the general public. In order to meet the standards of human development, it is necessary for the government and decision makers to have a close watch on the existing education policy and its implementation condition. School mapping plays an important role in this aspect. School mapping consists of building the geospatial database of schools that supports in the infrastructure development, policy analysis and decision making. The present research work is an attempt for supporting Right to Education (RTE) and Sarv Sikha Abhiyaan (SSA) programmes run by Government of India through the use of GIS. School mapping of the study area is performed which is followed by the geospatial analysis. This research work will help in assessing the present status of educational infrastructure in Jasra block of Allahabad district, India.

  5. Towards a voxel-based geographic automata for the simulation of geospatial processes

    NASA Astrophysics Data System (ADS)

    Jjumba, Anthony; Dragićević, Suzana

    2016-07-01

    Many geographic processes evolve in a three dimensional space and time continuum. However, when they are represented with the aid of geographic information systems (GIS) or geosimulation models they are modelled in a framework of two-dimensional space with an added temporal component. The objective of this study is to propose the design and implementation of voxel-based automata as a methodological approach for representing spatial processes evolving in the four-dimensional (4D) space-time domain. Similar to geographic automata models which are developed to capture and forecast geospatial processes that change in a two-dimensional spatial framework using cells (raster geospatial data), voxel automata rely on the automata theory and use three-dimensional volumetric units (voxels). Transition rules have been developed to represent various spatial processes which range from the movement of an object in 3D to the diffusion of airborne particles and landslide simulation. In addition, the proposed 4D models demonstrate that complex processes can be readily reproduced from simple transition functions without complex methodological approaches. The voxel-based automata approach provides a unique basis to model geospatial processes in 4D for the purpose of improving representation, analysis and understanding their spatiotemporal dynamics. This study contributes to the advancement of the concepts and framework of 4D GIS.

  6. A Hybrid Semi-supervised Classification Scheme for Mining Multisource Geospatial Data

    SciTech Connect

    Vatsavai, Raju; Bhaduri, Budhendra L

    2011-01-01

    Supervised learning methods such as Maximum Likelihood (ML) are often used in land cover (thematic) classification of remote sensing imagery. ML classifier relies exclusively on spectral characteristics of thematic classes whose statistical distributions (class conditional probability densities) are often overlapping. The spectral response distributions of thematic classes are dependent on many factors including elevation, soil types, and ecological zones. A second problem with statistical classifiers is the requirement of large number of accurate training samples (10 to 30 |dimensions|), which are often costly and time consuming to acquire over large geographic regions. With the increasing availability of geospatial databases, it is possible to exploit the knowledge derived from these ancillary datasets to improve classification accuracies even when the class distributions are highly overlapping. Likewise newer semi-supervised techniques can be adopted to improve the parameter estimates of statistical model by utilizing a large number of easily available unlabeled training samples. Unfortunately there is no convenient multivariate statistical model that can be employed for mulitsource geospatial databases. In this paper we present a hybrid semi-supervised learning algorithm that effectively exploits freely available unlabeled training samples from multispectral remote sensing images and also incorporates ancillary geospatial databases. We have conducted several experiments on real datasets, and our new hybrid approach shows over 25 to 35% improvement in overall classification accuracy over conventional classification schemes.

  7. Data Quality, Provenance and IPR Management services: their role in empowering geospatial data suppliers and users

    NASA Astrophysics Data System (ADS)

    Millard, Keiran

    2015-04-01

    This paper looks at current experiences of geospatial users and geospatial suppliers and how they have been limited by suitable frameworks for managing and communicating data quality, data provenance and intellectual property rights (IPR). Current political and technological drivers mean that increasing volumes of geospatial data are available through a plethora of different products and services, and whilst this is inherently a good thing it does create a new generation of challenges. This paper consider two examples of where these issues have been examined and looks at the challenges and possible solutions from a data user and data supplier perspective. The first example is the IQmulus project that is researching fusion environments for big geospatial point clouds and coverages. The second example is the EU Emodnet programme that is establishing thematic data portals for public marine and coastal data. IQmulus examines big geospatial data; the data from sources such as LIDAR, SONAR and numerical simulations; these data are simply too big for routine and ad-hoc analysis, yet they could realise a myriad of disparate, and readily useable, information products with the right infrastructure in place. IQmulus is researching how to deliver this infrastructure technically, but a financially sustainable delivery depends on being able to track and manage ownership and IPR across the numerous data sets being processed. This becomes complex when the data is composed of multiple overlapping coverages, however managing this allows for uses to be delivered highly-bespoke products to meet their budget and technical needs. The Emodnet programme delivers harmonised marine data at the EU scale across seven thematic portals. As part of the Emodnet programme a series of 'check points' have been initiated to examine how useful these services and other public data services actually are to solve real-world problems. One key finding is that users have been confused by the fact that often

  8. Comprehensive, Mixed-Methods Assessment of a Blended Learning Model for Geospatial Literacy Instruction

    NASA Astrophysics Data System (ADS)

    Brodeur, J. J.; Maclachlan, J. C.; Bagg, J.; Chiappetta-Swanson, C.; Vine, M. M.; Vajoczki, S.

    2013-12-01

    Geospatial literacy -- the ability to conceptualize, capture, analyze and communicate spatial phenomena -- represents an important competency for 21st Century learners in a period of 'Geospatial Revolution'. Though relevant to in-course learning, these skills are often taught externally, placing time and resource pressures on the service providers - commonly libraries - that are relied upon to provide instruction. The emergence of online and blended modes of instruction has presented a potential means of increasing the cost-effectiveness of such activities, by simultaneously reducing instructional costs, expanding the audience for these resources, and addressing student preferences for asynchronous learning and '24-7' access. During 2011 and 2012, McMaster University Library coordinated the development, implementation and assessment of blended learning modules for geospatial literacy instruction in first-year undergraduate Social Science courses. In this paper, we present the results of a comprehensive mixed-methods approach to assess the efficacy of implementing blended learning modules to replace traditional (face-to-face), library-led, first-year undergraduate geospatial literacy instruction. Focus groups, personal interviews and an online survey were used to assess modules across dimensions of: student use, satisfaction and accessibility requirements (via Universal Instructional Design [UID] principles); instructor and teaching staff perception of pedagogical efficacy and instructional effectiveness; and, administrator cost-benefit assessment of development and implementation. Results showed that both instructors and students identified significant value in using the online modules in a blended-learning setting. Reaffirming assumptions of students' '24/7' learning preferences, over 80% of students reported using the modules on a repeat basis. Students were more likely to use the modules to better understand course content than simply to increase their grade in

  9. Parallel Geospatial Data Management for Multi-Scale Environmental Data Analysis on GPUs

    NASA Astrophysics Data System (ADS)

    Wang, D.; Zhang, J.; Wei, Y.

    2013-12-01

    As the spatial and temporal resolutions of Earth observatory data and Earth system simulation outputs are getting higher, in-situ and/or post- processing such large amount of geospatial data increasingly becomes a bottleneck in scientific inquires of Earth systems and their human impacts. Existing geospatial techniques that are based on outdated computing models (e.g., serial algorithms and disk-resident systems), as have been implemented in many commercial and open source packages, are incapable of processing large-scale geospatial data and achieve desired level of performance. In this study, we have developed a set of parallel data structures and algorithms that are capable of utilizing massively data parallel computing power available on commodity Graphics Processing Units (GPUs) for a popular geospatial technique called Zonal Statistics. Given two input datasets with one representing measurements (e.g., temperature or precipitation) and the other one represent polygonal zones (e.g., ecological or administrative zones), Zonal Statistics computes major statistics (or complete distribution histograms) of the measurements in all regions. Our technique has four steps and each step can be mapped to GPU hardware by identifying its inherent data parallelisms. First, a raster is divided into blocks and per-block histograms are derived. Second, the Minimum Bounding Boxes (MBRs) of polygons are computed and are spatially matched with raster blocks; matched polygon-block pairs are tested and blocks that are either inside or intersect with polygons are identified. Third, per-block histograms are aggregated to polygons for blocks that are completely within polygons. Finally, for blocks that intersect with polygon boundaries, all the raster cells within the blocks are examined using point-in-polygon-test and cells that are within polygons are used to update corresponding histograms. As the task becomes I/O bound after applying spatial indexing and GPU hardware acceleration

  10. a Public Platform for Geospatial Data Sharing for Disaster Risk Management

    NASA Astrophysics Data System (ADS)

    Balbo, S.; Boccardo, P.; Dalmasso, S.; Pasquali, P.

    2013-01-01

    Several studies have been conducted in Africa to assist local governments in addressing the risk situation related to natural hazards. Geospatial data containing information on vulnerability, impacts, climate change, disaster risk reduction is usually part of the output of such studies and is valuable to national and international organizations to reduce the risks and mitigate the impacts of disasters. Nevertheless this data isn't efficiently widely distributed and often resides in remote storage solutions hardly reachable. Spatial Data Infrastructures are technical solutions capable to solve this issue, by storing geospatial data and making them widely available through the internet. Among these solutions, GeoNode, an open source online platform for geospatial data sharing, has been developed in recent years. GeoNode is a platform for the management and publication of geospatial data. It brings together mature and stable open-source software projects under a consistent and easy-to-use interface allowing users, with little training, to quickly and easily share data and create interactive maps. GeoNode data management tools allow for integrated creation of data, metadata, and map visualizations. Each dataset in the system can be shared publicly or restricted to allow access to only specific users. Social features like user profiles and commenting and rating systems allow for the development of communities around each platform to facilitate the use, management, and quality control of the data the GeoNode instance contains (http://geonode.org/). This paper presents a case study scenario of setting up a Web platform based on GeoNode. It is a public platform called MASDAP and promoted by the Government of Malawi in order to support development of the country and build resilience against natural disasters. A substantial amount of geospatial data has already been collected about hydrogeological risk, as well as several

  11. GeoViQua: quality-aware geospatial data discovery and evaluation

    NASA Astrophysics Data System (ADS)

    Bigagli, L.; Papeschi, F.; Mazzetti, P.; Nativi, S.

    2012-04-01

    GeoViQua (QUAlity aware VIsualization for the Global Earth Observation System of Systems) is a recently started FP7 project aiming at complementing the Global Earth Observation System of Systems (GEOSS) with rigorous data quality specifications and quality-aware capabilities, in order to improve reliability in scientific studies and policy decision-making. GeoViQua main scientific and technical objective is to enhance the GEOSS Common Infrastructure (GCI) providing the user community with innovative quality-aware search and evaluation tools, which will be integrated in the GEO-Portal, as well as made available to other end-user interfaces. To this end, GeoViQua will promote the extension of the current standard metadata for geographic information with accurate and expressive quality indicators, also contributing to the definition of a quality label (GEOLabel). GeoViQua proposed solutions will be assessed in several pilot case studies covering the whole Earth Observation chain, from remote sensing acquisition to data processing, to applications in the main GEOSS Societal Benefit Areas. This work presents the preliminary results of GeoViQua Work Package 4 "Enhanced geo-search tools" (WP4), started in January 2012. Its major anticipated technical innovations are search and evaluation tools that communicate and exploit data quality information from the GCI. In particular, GeoViQua will investigate a graphical search interface featuring a coherent and meaningful aggregation of statistics and metadata summaries (e.g. in the form of tables, charts), thus enabling end users to leverage quality constraints for data discovery and evaluation. Preparatory work on WP4 requirements indicated that users need the "best" data for their purpose, implying a high degree of subjectivity in judgment. This suggests that the GeoViQua system should exploit a combination of provider-generated metadata (objective indicators such as summary statistics), system-generated metadata (contextual

  12. Emergent Imaging and Geospatial Technologies for Soil Investigations

    NASA Technical Reports Server (NTRS)

    DeGloria, Stephen D.; Beaudette, Dylan E.; Irons, James R.; Libohova, Zamir; O'Neill, Peggy E.; Owens, Phillip R.; Schoeneberger, Philip J.; West, Larry T.; Wysocki, Douglas A.

    2014-01-01

    Soil survey investigations and inventories form the scientific basis for a wide spectrum of agronomic and environmental management programs. Soil data and information help formulate resource conservation policies of federal, state, and local governments that seek to sustain our agricultural production system while enhancing environmental quality on both public and private lands. The dual challenges of increasing agricultural production and ensuring environmental integrity require electronically available soil inventory data with both spatial and attribute quality. Meeting this societal need in part depends on development and evaluation of new methods for updating and maintaining soil inventories for sophisticated applications, and implementing an effective framework to conceptualize and communicate tacit knowledge from soil scientists to numerous stakeholders.

  13. Application of an imputation method for geospatial inventory of forest structural attributes across multiple spatial scales in the Lake States, U.S.A

    NASA Astrophysics Data System (ADS)

    Deo, Ram K.

    Credible spatial information characterizing the structure and site quality of forests is critical to sustainable forest management and planning, especially given the increasing demands and threats to forest products and services. Forest managers and planners are required to evaluate forest conditions over a broad range of scales, contingent on operational or reporting requirements. Traditionally, forest inventory estimates are generated via a design-based approach that involves generalizing sample plot measurements to characterize an unknown population across a larger area of interest. However, field plot measurements are costly and as a consequence spatial coverage is limited. Remote sensing technologies have shown remarkable success in augmenting limited sample plot data to generate stand- and landscape-level spatial predictions of forest inventory attributes. Further enhancement of forest inventory approaches that couple field measurements with cutting edge remotely sensed and geospatial datasets are essential to sustainable forest management. We evaluated a novel Random Forest based k Nearest Neighbors (RF-kNN) imputation approach to couple remote sensing and geospatial data with field inventory collected by different sampling methods to generate forest inventory information across large spatial extents. The forest inventory data collected by the FIA program of US Forest Service was integrated with optical remote sensing and other geospatial datasets to produce biomass distribution maps for a part of the Lake States and species-specific site index maps for the entire Lake State. Targeting small-area application of the state-of-art remote sensing, LiDAR (light detection and ranging) data was integrated with the field data collected by an inexpensive method, called variable plot sampling, in the Ford Forest of Michigan Tech to derive standing volume map in a cost-effective way. The outputs of the RF-kNN imputation were compared with independent validation

  14. Progress Report on the ASCII for Science Data, Airborne and Geospatial Working Groups of the 2014 ESDSWG for MEaSUREs

    NASA Astrophysics Data System (ADS)

    Evans, K. D.; Krotkov, N. A.; Mattmann, C. A.; Boustani, M.; Law, E.; Conover, H.; Chen, G.; Olding, S. W.; Walter, J.

    2014-12-01

    The Earth Science Data Systems Working Groups (ESDSWG) were setup by NASA HQ 10 years ago. The role of the ESDSWG is to make recommendations relevant to NASA's Earth science data systems from users experiences. Each group works independently focussing on a unique topic. Participation in ESDSWG groups comes from a variety of NASA-funded science and technology projects, NASA information technology experts, affiliated contractor staff and other interested community members from academia and industry. Recommendations from the ESDSWG groups will enhance NASA's efforts to develop long term data products. The ASCII for Science Data Working Group (WG) will define a minimum set of information that should be included in ASCII file headers so that the users will be able to access the data using only the header information. After reviewing various use cases, such as field data and ASCII data exported from software tools, and reviewing ASCII data guidelines documentation, this WG will deliver guidelines for creating ASCII files that contain enough header information to allow the user to access the science data. The Airborne WG's goal is to improve airborne data access and use for NASA science. The first step is to evaluate the state of airborne data and make recommendations focusing on data delivery to the DAACs (data centers). The long term goal is to improve airborne data use for Earth Science research. Many data aircraft observations are reported in ASCII format. The ASCII and Airborne WGs seem like the same group, but the Airborne WG is concerned with maintaining and using airborne for science research, not just the data format. The Geospatial WG focus is on the interoperability issues of Geospatial Information System (GIS) and remotely sensed data, in particular, focusing on DAAC(s) data from NASA's Earth Science Enterprise. This WG will provide a set of tools (GIS libraries) to use with training and/or cookbooks through the use of Open Source technologies. A progress

  15. Web mapping system for complex processing and visualization of environmental geospatial datasets

    NASA Astrophysics Data System (ADS)

    Titov, Alexander; Gordov, Evgeny; Okladnikov, Igor

    2016-04-01

    Environmental geospatial datasets (meteorological observations, modeling and reanalysis results, etc.) are used in numerous research applications. Due to a number of objective reasons such as inherent heterogeneity of environmental datasets, big dataset volume, complexity of data models used, syntactic and semantic differences that complicate creation and use of unified terminology, the development of environmental geodata access, processing and visualization services as well as client applications turns out to be quite a sophisticated task. According to general INSPIRE requirements to data visualization geoportal web applications have to provide such standard functionality as data overview, image navigation, scrolling, scaling and graphical overlay, displaying map legends and corresponding metadata information. It should be noted that modern web mapping systems as integrated geoportal applications are developed based on the SOA and might be considered as complexes of interconnected software tools for working with geospatial data. In the report a complex web mapping system including GIS web client and corresponding OGC services for working with geospatial (NetCDF, PostGIS) dataset archive is presented. There are three basic tiers of the GIS web client in it: 1. Tier of geospatial metadata retrieved from central MySQL repository and represented in JSON format 2. Tier of JavaScript objects implementing methods handling: --- NetCDF metadata --- Task XML object for configuring user calculations, input and output formats --- OGC WMS/WFS cartographical services 3. Graphical user interface (GUI) tier representing JavaScript objects realizing web application business logic Metadata tier consists of a number of JSON objects containing technical information describing geospatial datasets (such as spatio-temporal resolution, meteorological parameters, valid processing methods, etc). The middleware tier of JavaScript objects implementing methods for handling geospatial

  16. a New Initiative for Tiling, Stitching and Processing Geospatial Big Data in Distributed Computing Environments

    NASA Astrophysics Data System (ADS)

    Olasz, A.; Nguyen Thai, B.; Kristóf, D.

    2016-06-01

    Within recent years, several new approaches and solutions for Big Data processing have been developed. The Geospatial world is still facing the lack of well-established distributed processing solutions tailored to the amount and heterogeneity of geodata, especially when fast data processing is a must. The goal of such systems is to improve processing time by distributing data transparently across processing (and/or storage) nodes. These types of methodology are based on the concept of divide and conquer. Nevertheless, in the context of geospatial processing, most of the distributed computing frameworks have important limitations regarding both data distribution and data partitioning methods. Moreover, flexibility and expendability for handling various data types (often in binary formats) are also strongly required. This paper presents a concept for tiling, stitching and processing of big geospatial data. The system is based on the IQLib concept (https://github.com/posseidon/IQLib/) developed in the frame of the IQmulus EU FP7 research and development project (http://www.iqmulus.eu). The data distribution framework has no limitations on programming language environment and can execute scripts (and workflows) written in different development frameworks (e.g. Python, R or C#). It is capable of processing raster, vector and point cloud data. The above-mentioned prototype is presented through a case study dealing with country-wide processing of raster imagery. Further investigations on algorithmic and implementation details are in focus for the near future.

  17. Visualising the past: potential applications of Geospatial tools to paleoclimate research

    NASA Astrophysics Data System (ADS)

    Cook, A.; Turney, C. S.

    2012-12-01

    Recent advances in geospatial data acquisition, analysis and web-based data sharing offer new possibilities for understanding and visualising past modes of change. The availability, accessibility and cost-effectiveness of data is better than ever. Researchers can access remotely sensed data including terrain models; use secondary data from large consolidated repositories; make more accurate field measurements and combine data from disparate sources to form a single asset. An increase in the quantity and consistency of data is coupled with subtle yet significant improvements to the way in which geospatial systems manage data interoperability, topological and textual integrity, resulting in more stable analytical and modelling environments. Essentially, researchers now have greater control and more confidence in analytical tools and outputs. Web-based data sharing is growing rapidly, enabling researchers to publish and consume data directly into their spatial systems through OGC-compliant Web Map Services (WMS), Web Feature Services (WFS) and Web Coverage Services (WCS). This has been implemented at institutional, organisational and project scale around the globe. Some institutions have gone one step further and established Spatial Data Infrastructures (SDI) based on Federated Data Structures where the participating data owners retain control over who has access to what. It is important that advances in knowledge are transferred to audiences outside the scientific community in a way that is interesting and meaningful. The visualisation of paleodata through multi-media offers significant opportunities to highlight the parallels and distinctions between past climate dynamics and the challenges of today and tomorrow. Here we present an assessment of key innovations that demonstrate how Geospatial tools can be applied to palaeo-research and used to communicate the results to a diverse array of audiences in the digital age.

  18. Geospatial Analysis Using Remote Sensing Images: Case Studies of Zonguldak Test Field

    NASA Astrophysics Data System (ADS)

    Bayık, Çağlar; Topan, Hüseyin; Özendi, Mustafa; Oruç, Murat; Cam, Ali; Abdikan, Saygın

    2016-06-01

    Inclined topographies are one of the most challenging problems for geospatial analysis of air-borne and space-borne imageries. However, flat areas are mostly misleading to exhibit the real performance. For this reason, researchers generally require a study area which includes mountainous topography and various land cover and land use types. Zonguldak and its vicinity is a very suitable test site for performance investigation of remote sensing systems due to the fact that it contains different land use types such as dense forest, river, sea, urban area; different structures such as open pit mining operations, thermal power plant; and its mountainous structure. In this paper, we reviewed more than 120 proceeding papers and journal articles about geospatial analysis that are performed on the test field of Zonguldak and its surroundings. Geospatial analysis performed with imageries include elimination of systematic geometric errors, 2/3D georeferencing accuracy assessment, DEM and DSM generation and validation, ortho-image production, evaluation of information content, image classification, automatic feature extraction and object recognition, pan-sharpening, land use and land cover change analysis and deformation monitoring. In these applications many optical satellite images are used i.e. ASTER, Bilsat-1, IKONOS, IRS-1C, KOMPSAT-1, KVR-1000, Landsat-3-5-7, Orbview-3, QuickBird, Pleiades, SPOT-5, TK-350, RADARSAT-1, WorldView-1-2; as well as radar data i.e. JERS-1, Envisat ASAR, TerraSAR-X, ALOS PALSAR and SRTM. These studies are performed by Departments of Geomatics Engineering at Bülent Ecevit University, at İstanbul Technical University, at Yıldız Technical University, and Institute of Photogrammetry and GeoInformation at Leibniz University Hannover. These studies are financially supported by TÜBİTAK (Turkey), the Universities, ESA, Airbus DS, ERSDAC (Japan) and Jülich Research Centre (Germany).

  19. Knowledge-driven geospatial location resolution for phylogeographic models of virus migration

    PubMed Central

    Weissenbacher, Davy; Tahsin, Tasnia; Beard, Rachel; Figaro, Mari; Rivera, Robert; Scotch, Matthew; Gonzalez, Graciela

    2015-01-01

    Summary: Diseases caused by zoonotic viruses (viruses transmittable between humans and animals) are a major threat to public health throughout the world. By studying virus migration and mutation patterns, the field of phylogeography provides a valuable tool for improving their surveillance. A key component in phylogeographic analysis of zoonotic viruses involves identifying the specific locations of relevant viral sequences. This is usually accomplished by querying public databases such as GenBank and examining the geospatial metadata in the record. When sufficient detail is not available, a logical next step is for the researcher to conduct a manual survey of the corresponding published articles. Motivation: In this article, we present a system for detection and disambiguation of locations (toponym resolution) in full-text articles to automate the retrieval of sufficient metadata. Our system has been tested on a manually annotated corpus of journal articles related to phylogeography using integrated heuristics for location disambiguation including a distance heuristic, a population heuristic and a novel heuristic utilizing knowledge obtained from GenBank metadata (i.e. a ‘metadata heuristic’). Results: For detecting and disambiguating locations, our system performed best using the metadata heuristic (0.54 Precision, 0.89 Recall and 0.68 F-score). Precision reaches 0.88 when examining only the disambiguation of location names. Our error analysis showed that a noticeable increase in the accuracy of toponym resolution is possible by improving the geospatial location detection. By improving these fundamental automated tasks, our system can be a useful resource to phylogeographers that rely on geospatial metadata of GenBank sequences. Contact: davy.weissenbacher@asu.edu PMID:26072502

  20. Evaluation of Open Geospatial Consortium Standards fur Use In LLNL Geographic Information Systems (GIS)

    SciTech Connect

    Walker, H; Chou, R; Chubb, K; Schek, J

    2005-09-28

    The objective of this project is to evaluate existing and emerging Open Geospatial Consortium (OGC) standards for use in LLNL programs that rely heavily on geographic data. OGC standards are intended to facilitate interoperability between geospatial processing systems to avoid duplication of effort, lower development costs, and encourage competition based on improved capability and performance rather than vendor lock-in. Some of these standards appear to be gaining traction in the geospatial data community, the Federal government, DOE and DHS. A serious evaluation of this technology is appropriate at this time due to increasing interest and mandated compliance in the Federal government in some situations. A subset of OGC standards is identified and reviewed with a focus on applications to LLNL programs. Each standard or recommendation reviewed was evaluated in general terms. In addition, for specific programs such as Gen&SIS and NARAC, a specific evaluation was made of several of the standards and how they could be used most effectively. It is also important to evaluate the acceptance of these standards in the commercial arena. The implementation of OGC standards by the largest GIS vendor (ESRI) was reviewed. At present, OGC standards are primary useful in specific situations. More generally, many of the standards are immature and their impact on the government and commercial sectors is unclear. Consequently, OGC and related developments need to be observed. As specific standards or groups of standards mature and establish their relevance, these can also be incorporated in LLNL programs as requirements dictate, especially if open implementations and commercial products are available.

  1. Testing framework for GRASS GIS: ensuring reproducibility of scientific geospatial computing

    NASA Astrophysics Data System (ADS)

    Petras, V.; Gebbert, S.

    2014-12-01

    GRASS GIS, a free and open source GIS, is used by many scientists directly or through other projects such as R or QGIS to perform geoprocessing tasks. Thus, a large number of scientific geospatial computations depend on quality and correct functionality of GRASS GIS. Automatic functionality testing is therefore necessary to ensure software reliability. Here we present a testing framework for GRASS GIS which addresses different needs of GRASS GIS and geospatial software in general. It allows to test GRASS tools (referred to as GRASS modules) and examine outputs including large raster and vector maps as well as temporal datasets. Furthermore, it enables to test all levels of GRASS GIS architecture including C and Python application programming interface and GRASS modules invoked as subprocesses. Since GRASS GIS is used as a platform for development of geospatial algorithms and models, the testing framework allows not only to test GRASS GIS core functionality but also tools developed by scientists as a part of their research. Using testing framework we can test GRASS GIS and related tools automatically and repetitively and thus detect errors caused by code changes and new developments. Tools and code are then easier to maintain which results in preserving reproducibility of scientific results over time. Similarly to open source code, the test results are publicly accessible, so that all current and potential users can see them. The usage of testing framework will be presented on an example of a test suite for r.slope.aspect module, a tool for computation of terrain slope, aspect, curvatures and other terrain characteristics.

  2. Creating of Central Geospatial Database of the Slovak Republic and Procedures of its Revision

    NASA Astrophysics Data System (ADS)

    Miškolci, M.; Šafář, V.; Šrámková, R.

    2016-06-01

    The article describes the creation of initial three dimensional geodatabase from planning and designing through the determination of technological and manufacturing processes to practical using of Central Geospatial Database (CGD - official name in Slovak language is Centrálna Priestorová Databáza - CPD) and shortly describes procedures of its revision. CGD ensures proper collection, processing, storing, transferring and displaying of digital geospatial information. CGD is used by Ministry of Defense (MoD) for defense and crisis management tasks and by Integrated rescue system. For military personnel CGD is run on MoD intranet, and for other users outside of MoD is transmutated to ZbGIS (Primary Geodatabase of Slovak Republic) and is run on public web site. CGD is a global set of geo-spatial information. CGD is a vector computer model which completely covers entire territory of Slovakia. Seamless CGD is created by digitizing of real world using of photogrammetric stereoscopic methods and measurements of objects properties. Basic vector model of CGD (from photogrammetric processing) is then taken out to the field for inspection and additional gathering of objects properties in the whole area of mapping. Finally real-world objects are spatially modeled as a entities of three-dimensional database. CGD gives us opportunity, to get know the territory complexly in all the three spatial dimensions. Every entity in CGD has recorded the time of collection, which allows the individual to assess the timeliness of information. CGD can be utilized for the purposes of geographical analysis, geo-referencing, cartographic purposes as well as various special-purpose mapping and has the ambition to cover the needs not only the MoD, but to become a reference model for the national geographical infrastructure.

  3. Validation of 3 Food Outlet Databases: Completeness and Geospatial Accuracy in Rural and Urban Food Environments

    PubMed Central

    Liese, Angela D.; Colabianchi, Natalie; Lamichhane, Archana P.; Barnes, Timothy L.; Hibbert, James D.; Porter, Dwayne E.; Nichols, Michele D.; Lawson, Andrew B.

    2010-01-01

    Despite interest in the built food environment, little is known about the validity of commonly used secondary data. The authors conducted a comprehensive field census identifying the locations of all food outlets using a handheld global positioning system in 8 counties in South Carolina (2008–2009). Secondary data were obtained from 2 commercial companies, Dun & Bradstreet, Inc. (D&B) (Short Hills, New Jersey) and InfoUSA, Inc. (Omaha, Nebraska), and the South Carolina Department of Health and Environmental Control (DHEC). Sensitivity, positive predictive value, and geospatial accuracy were compared. The field census identified 2,208 food outlets, significantly more than the DHEC (n = 1,694), InfoUSA (n = 1,657), or D&B (n = 1,573). Sensitivities were moderate for DHEC (68%) and InfoUSA (65%) and fair for D&B (55%). Combining InfoUSA and D&B data would have increased sensitivity to 78%. Positive predictive values were very good for DHEC (89%) and InfoUSA (86%) and good for D&B (78%). Geospatial accuracy varied, depending on the scale: More than 80% of outlets were geocoded to the correct US Census tract, but only 29%–39% were correctly allocated within 100 m. This study suggests that the validity of common data sources used to characterize the food environment is limited. The marked undercount of food outlets and the geospatial inaccuracies observed have the potential to introduce bias into studies evaluating the impact of the built food environment. PMID:20961970

  4. A big data geospatial analytics platform - Physical Analytics Integrated Repository and Services (PAIRS)

    NASA Astrophysics Data System (ADS)

    Hamann, H.; Jimenez Marianno, F.; Klein, L.; Albrecht, C.; Freitag, M.; Hinds, N.; Lu, S.

    2015-12-01

    A big data geospatial analytics platform:Physical Analytics Information Repository and Services (PAIRS)Fernando Marianno, Levente Klein, Siyuan Lu, Conrad Albrecht, Marcus Freitag, Nigel Hinds, Hendrik HamannIBM TJ Watson Research Center, Yorktown Heights, NY 10598A major challenge in leveraging big geospatial data sets is the ability to quickly integrate multiple data sources into physical and statistical models and be run these models in real time. A geospatial data platform called Physical Analytics Information and Services (PAIRS) is developed on top of open source hardware and software stack to manage Terabyte of data. A new data interpolation and re gridding is implemented where any geospatial data layers can be associated with a set of global grid where the grid resolutions is doubling for consecutive layers. Each pixel on the PAIRS grid have an index that is a combination of locations and time stamp. The indexing allow quick access to data sets that are part of a global data layers and allowing to retrieve only the data of interest. PAIRS takes advantages of parallel processing framework (Hadoop) in a cloud environment to digest, curate, and analyze the data sets while being very robust and stable. The data is stored on a distributed no-SQL database (Hbase) across multiple server, data upload and retrieval is parallelized where the original analytics task is broken up is smaller areas/volume, analyzed independently, and then reassembled for the original geographical area. The differentiating aspect of PAIRS is the ability to accelerate model development across large geographical regions and spatial resolution ranging from 0.1 m up to hundreds of kilometer. System performance is benchmarked on real time automated data ingestion and retrieval of Modis and Landsat data layers. The data layers are curated for sensor error, verified for correctness, and analyzed statistically to detect local anomalies. Multi-layer query enable PAIRS to filter different data

  5. High performance geospatial and climate data visualization using GeoJS

    NASA Astrophysics Data System (ADS)

    Chaudhary, A.; Beezley, J. D.

    2015-12-01

    GeoJS (https://github.com/OpenGeoscience/geojs) is an open-source library developed to support interactive scientific and geospatial visualization of climate and earth science datasets in a web environment. GeoJS has a convenient application programming interface (API) that enables users to harness the fast performance of WebGL and Canvas 2D APIs with sophisticated Scalable Vector Graphics (SVG) features in a consistent and convenient manner. We started the project in response to the need for an open-source JavaScript library that can combine traditional geographic information systems (GIS) and scientific visualization on the web. Many libraries, some of which are open source, support mapping or other GIS capabilities, but lack the features required to visualize scientific and other geospatial datasets. For instance, such libraries are not be capable of rendering climate plots from NetCDF files, and some libraries are limited in regards to geoinformatics (infovis in a geospatial environment). While libraries such as d3.js are extremely powerful for these kinds of plots, in order to integrate them into other GIS libraries, the construction of geoinformatics visualizations must be completed manually and separately, or the code must somehow be mixed in an unintuitive way.We developed GeoJS with the following motivations:• To create an open-source geovisualization and GIS library that combines scientific visualization with GIS and informatics• To develop an extensible library that can combine data from multiple sources and render them using multiple backends• To build a library that works well with existing scientific visualizations tools such as VTKWe have successfully deployed GeoJS-based applications for multiple domains across various projects. The ClimatePipes project funded by the Department of Energy, for example, used GeoJS to visualize NetCDF datasets from climate data archives. Other projects built visualizations using GeoJS for interactively exploring

  6. Geospatial and Temporal Analysis of Thyroid Cancer Incidence in a Rural Population

    PubMed Central

    Hanley, John P.; Jackson, Erin; Morrissey, Leslie A.; Rizzo, Donna M.; Sprague, Brian L.; Sarkar, Indra Neil

    2015-01-01

    Background: The increasing incidence of thyroid cancer has resulted in the rate tripling over the past 30 years. Reasons for this increase have not been established. Geostatistics and geographic information system (GIS) tools have emerged as powerful geospatial technologies to identify disease clusters, map patterns and trends, and assess the impact of ecological and socioeconomic factors (SES) on the spatial distribution of diseases. In this study, these tools were used to analyze thyroid cancer incidence in a rural population. Methods: Thyroid cancer incidence and socio-demographic factors in Vermont (VT), United States, between 1994 and 2007 were analyzed by logistic regression and geospatial and temporal analyses. Results: The thyroid cancer age-adjusted incidence in Vermont (8.0 per 100,000) was comparable to the national level (8.4 per 100,000), as were the ratio of the incidence of females to males (3.1:1) and the mortality rate (0.5 per 100,000). However, the estimated annual percentage change was higher (8.3 VT; 5.7 U.S.). Incidence among females peaked at 30–59 years of age, reflecting a significant rise from 1994 to 2007, while incidence trends for males did not vary significantly by age. For both females and males, the distribution of tumors by size did not vary over time; ≤1.0 cm, 1.1–2.0 cm, and >2.0 cm represented 38%, 22%, and 40%, respectively. In females, papillary thyroid cancer (PTC) accounted for 89% of cases, follicular (FTC) 8%, medullary (MTC) 2%, and anaplastic (ATC) 0.6%, while in males PTC accounted for 77% of cases, FTC 15%, MTC 1%, and ATC 3%. Geospatial analysis revealed locations and spatial patterns that, when combined with multivariate incidence analyses, indicated that factors other than increased surveillance and access to healthcare (physician density or insurance) contributed to the increased thyroid cancer incidence. Nine thyroid cancer incidence hot spots, areas with very high normalized incidence, were identified

  7. iGlobe: An Interactive Visualization and Analysis Framework for Geospatial Data

    SciTech Connect

    2011-07-22

    The iGlobe system is a desktop-based visualization and analysis environment which allows seamless integration of multiple geospatial data sets from varied sources and provides an interface to interactively analyze the different data sets and apply sophisticated data analysis and mining algorithms in a near real time fashion. The framework is highly desirable in domains such as earth and climate sciences where great emphasis is placed on simultaneous analysis of different data sets such as remote sensing images, climate model simulation outputs, and other environmental and demographic databases, to understand weather and climate systems and the impact of climate change in nature and people.

  8. Using Place-Based Independent Class Projects as a Means to Hone Research Skills and Prepare a Future Geospatial Workforce

    NASA Astrophysics Data System (ADS)

    Prakash, A.; Gens, R.; Cristobal, J.; Waigl, C. F.; Balazs, M. S.; Graham, P. R.; Butcher, C. E.; Sparrow, E. B.

    2015-12-01

    It is never too early to bring in your own research into teaching. Considerable efforts have been made globally to introduce STEM research themes in K12 environments. These efforts a laudable as they help to create STEM identity in students and get students excited to pursue higher education. The task of a post-secondary educator is to build on that excitement and ensure that the students who enter higher education come out knowledgeable, skilled, and employable. At the University of Alaska Fairbanks we have structured our geospatial curricula to include place-based, independent research projects in several semester-long classes. These class-projects serve as mini capstone research experiences that take a student through the entire process of research including: identifying a problem or need; building a hypothesis; formulating the science question; searching, acquiring, and processing data; analyzing and interpreting the research results; and presenting the outcomes in written and oral format to a peer group. Over a decade of experience has shown that students tend to engage and perform well when the research addresses an authentic problem they can relate to and take ownership of. Over 150 student-lead class projects using a variety of freely available datasets have contributed not only to preparing the future workforce, but also to enhancing the research profile of UAF. We extended the same model to a summer internship program where graduate students who have gone through the experience of an in-class research project serve as mentors for undergraduate interns. Even the condensed time frame yields positive outcomes including joint publications between faculty, staff, graduate students and undergraduate students in the peer-reviewed literature.

  9. Ottawa's urban forest: A geospatial approach to data collection for the UFORE/i-Tree Eco ecosystem services valuation model

    NASA Astrophysics Data System (ADS)

    Palmer, Michael D.

    The i-Tree Eco model, developed by the U.S. Forest Service, is commonly used to estimate the value of the urban forest and the ecosystem services trees provide. The model relies on field-based measurements to estimate ecosystem service values. However, the methods for collecting the field data required for the model can be extensive and costly for large areas, and data collection can thus be a barrier to implementing the model for many cities. This study investigated the use of geospatial technologies as a means to collect urban forest structure measurements within the City of Ottawa, Ontario. Results show that geospatial data collection methods can serve as a proxy for urban forest structure parameters required by i-Tree Eco. Valuations using the geospatial approach are shown to be less accurate than those developed from field-based data, but significantly less expensive. Planners must weigh the limitations of either approach when planning assessment projects.

  10. Integrating geospatial data and cropping system simulation within a geographic information system to analyze spatial seed cotton yield, water use, and irrigation requirements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of sensors that provide geospatial information on crop and soil conditions has been a primary success for precision agriculture. However, further developments are needed to integrate geospatial data into computer algorithms that spatially optimize crop production while considering po...

  11. An Automated End-To Multi-Agent Qos Based Architecture for Selection of Geospatial Web Services

    NASA Astrophysics Data System (ADS)

    Shah, M.; Verma, Y.; Nandakumar, R.

    2012-07-01

    Over the past decade, Service-Oriented Architecture (SOA) and Web services have gained wide popularity and acceptance from researchers and industries all over the world. SOA makes it easy to build business applications with common services, and it provides like: reduced integration expense, better asset reuse, higher business agility, and reduction of business risk. Building of framework for acquiring useful geospatial information for potential users is a crucial problem faced by the GIS domain. Geospatial Web services solve this problem. With the help of web service technology, geospatial web services can provide useful geospatial information to potential users in a better way than traditional geographic information system (GIS). A geospatial Web service is a modular application designed to enable the discovery, access, and chaining of geospatial information and services across the web that are often both computation and data-intensive that involve diverse sources of data and complex processing functions. With the proliferation of web services published over the internet, multiple web services may provide similar functionality, but with different non-functional properties. Thus, Quality of Service (QoS) offers a metric to differentiate the services and their service providers. In a quality-driven selection of web services, it is important to consider non-functional properties of the web service so as to satisfy the constraints or requirements of the end users. The main intent of this paper is to build an automated end-to-end multi-agent based solution to provide the best-fit web service to service requester based on QoS.

  12. Spatial Data Access Tool: Enable visualization and access of geospatial data using OGC services and Google Earth

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Santhana Vannan, S.; Cook, R. B.; Wilson, B. E.; Beaty, T.

    2009-12-01

    The Spatial Data Access Tool (SDAT) deployed in the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC, http://daac.ornl.gov) and the Modeling and Synthesis Thematic Data Center (MAST-DC, http://nacp.ornl.gov/) provides visualization and access to a number of land cover, biophysical, elevation, ecosystem, climate, soil, and model output data sets using Open Geospatial Consortium (OGC) services. OGC services such as Web Map Service (WMS) and Web Coverage Service (WCS) provide applications and users visualization and access to geospatial data in different spatial/temporal extent, projection, resolution, and data format. OGC WMS allows users to visualize the data, and OGC WCS allows users to access the data. Based on OGC WMS, the SDAT tool provides two options for geospatial data visualization. The first option is a Web-based interface that utilizes open source library, OpenLayers, to interact with OGC WMS to produce dynamic maps. This interface also provides options for users to specify WCS parameters, such as projection and resolution, to download geospatial data. The second option is a Google Earth KMZ file created for each data set. The Google Earth KMZ files use the OGC WMS internally to provide visualization of the data dynamically within the Google Earth software. Using Google Earth and OGC WMS, it is possible for users to visualize the spatial pattern within a large extent and also to investigate the details in finer resolution. The KMZ files provide the capability to play time series animation if a data set contains multiple time steps. The KMZ files are also hyperlinked to the SDAT tool for each data granule so that users can easily download the geospatial data after visualizing them in Google Earth. Future work includes adding more geospatial data, supporting more data formats and projections, and deploying Web Feature Service (WFS) to support vector data.

  13. A geospatial reference framework for a university campus: a case study for managing student surveyed topographic data

    NASA Astrophysics Data System (ADS)

    Fraser, D.; Sepehr, S.; Stefanakis, E.

    2014-11-01

    This presentation describes a geospatial reference framework for managing student surveyed topographic data of a university campus. This topographic data is collected annually by Geodesy and Geomatics Engineering (GGE) students at the University of New Brunswick (UNB) as part of the requirements for a UNB course. Examples of the type of features collected include: buildings, roads, sidewalks, walking paths, bike racks, parking lots and parking designation (e.g. accessibility parking). The applications and the information products built for managing this student surveyed topographic data can be viewed as a geospatial reference framework for this GGE survey camp.

  14. Multi-class geospatial object detection and geographic image classification based on collection of part detectors

    NASA Astrophysics Data System (ADS)

    Cheng, Gong; Han, Junwei; Zhou, Peicheng; Guo, Lei

    2014-12-01

    The rapid development of remote sensing technology has facilitated us the acquisition of remote sensing images with higher and higher spatial resolution, but how to automatically understand the image contents is still a big challenge. In this paper, we develop a practical and rotation-invariant framework for multi-class geospatial object detection and geographic image classification based on collection of part detectors (COPD). The COPD is composed of a set of representative and discriminative part detectors, where each part detector is a linear support vector machine (SVM) classifier used for the detection of objects or recurring spatial patterns within a certain range of orientation. Specifically, when performing multi-class geospatial object detection, we learn a set of seed-based part detectors where each part detector corresponds to a particular viewpoint of an object class, so the collection of them provides a solution for rotation-invariant detection of multi-class objects. When performing geographic image classification, we utilize a large number of pre-trained part detectors to discovery distinctive visual parts from images and use them as attributes to represent the images. Comprehensive evaluations on two remote sensing image databases and comparisons with some state-of-the-art approaches demonstrate the effectiveness and superiority of the developed framework.

  15. Illustrating Latin American Geology With Free Geospatial Data Obtained Through the Internet

    NASA Astrophysics Data System (ADS)

    Abolins, M. J.; Cole, L.; Estep, T.; Collins, L.; Travers, L.

    2006-12-01

    Geoscience educators can use images from global geospatial data archives to illustrate the geology of any part of the world. For example, Middle Tennessee State University (MTSU) Geosciences faculty and students used free geospatial data obtained through the internet to prepare illustrations for a "Geology for Teachers" course to be taught in Costa Rica during Summer 2007. MTSU geoscientists downloaded data with the freeware Multi-protocol Geoinformation Client (MPGC) developed by the NASA Earth Observing System Higher-Education Alliance ("GeoBrain"). MTSU geoscientists used MPGC to download images from the Jet Propulsion Laboratory World Map Service and the Integrated Committee on Earth Observing Satellites (CEOS) European Data Server. These images were derived from Shuttle Radar Topography Mapping (SRTM), Blue Marble Next Generation (BMNG), Defense Meteorological Satellite Mapping (DMSP) and Moderate Resolution Imaging Spectroradiometer (MODIS) data. MTSU geoscientists also downloaded SRTM data through the U.S. Geological Survey Seamless Data Distribution System, and they downloaded bathymetry through the University of California, San Diego's Satellite Geodesy web site. After downloading the data, MTSU geoscientists used Environmental Systems Research Institute (ESRI) software to prepare the illustrations. Features visible on illustrations include the geomorphic regions of Costa Rica, the Middle America Trench off Costa Rica's Pacific Coast, faults, active volcanoes and human settlements. With data downloaded through MPGC and the other internet data sources listed above, geoscientists can illustrate the geology of any part of Latin America.

  16. GEOSS Registry System: Enabling the Registering and Discovering of Geospatial Web Services Worldwide

    NASA Astrophysics Data System (ADS)

    Bai, Y.; di, L.; Nebert, D.; Wei, Y.

    2007-12-01

    Web Service registry, as a key infrastructural component and cornerstone for Service-Oriented-Architecture deployments, meets the critical need to register, discover, and govern available Web services that provide a promising plan to promote the online discovering and sharing of massive valuable geospatial data. The Global Earth Observation System of Systems (GEOSS) Registry System includes mechanisms to register components and have them approved by the GEO Secretariat, to register services and associate them with GEOSS-recognized standards -- and special arrangements for implementations using non-recognized approaches. A taxonomy of standard types is also proposed to assist in the discovery and classification of GEOSS service implementations. This GEOSS registry exposes Universal Description, Discovery and Integration (UDDI), OASIS ebXML-ebRS, and OpenGIS Consortium (OGC) Catalogue Service for Web (CSW) interfaces to be accessed by other applications, including GEOSS Web Portal solutions. Clearinghouse implementations can use the GEOSS registry to register and locate GEOSS catalog services as a basis for evaluation, configuration, harvest, and distributed query. The details of the system design and implementation will be presented, along with the lessons learned from this effort to promote the discovery and system integration of geospatial Web Services worldwide.

  17. Analyzing Personal Happiness from Global Survey and Weather Data: A Geospatial Approach.

    PubMed

    Peng, Yi-Fan; Tang, Jia-Hong; Fu, Yang-chih; Fan, I-chun; Hor, Maw-Kae; Chan, Ta-Chien

    2016-01-01

    Past studies have shown that personal subjective happiness is associated with various macro- and micro-level background factors, including environmental conditions, such as weather and the economic situation, and personal health behaviors, such as smoking and exercise. We contribute to this literature of happiness studies by using a geospatial approach to examine both macro and micro links to personal happiness. Our geospatial approach incorporates two major global datasets: representative national survey data from the International Social Survey Program (ISSP) and corresponding world weather data from the National Oceanic and Atmospheric Administration (NOAA). After processing and filtering 55,081 records of ISSP 2011 survey data from 32 countries, we extracted 5,420 records from China and 25,441 records from 28 other countries. Sensitivity analyses of different intervals for average weather variables showed that macro-level conditions, including temperature, wind speed, elevation, and GDP, are positively correlated with happiness. To distinguish the effects of weather conditions on happiness in different seasons, we also adopted climate zone and seasonal variables. The micro-level analysis indicated that better health status and eating more vegetables or fruits are highly associated with happiness. Never engaging in physical activity appears to make people less happy. The findings suggest that weather conditions, economic situations, and personal health behaviors are all correlated with levels of happiness. PMID:27078263

  18. WCPS: An Open Geospatial Consortium Standard Applied to Flight Hardware/Software

    NASA Astrophysics Data System (ADS)

    Cappelaere, P. G.; Mandl, D.; Stanley, J.; Frye, S.; Baumann, P.

    2009-12-01

    The Open GeoSpatial Consortium Web Coverage Processing Service (WCPS) has the potential to allow advanced users to define processing algorithms using the web environment and seamlessly provide the capability to upload them directly to the satellite for autonomous execution using smart agent technology. The Open Geospatial Consortium recently announced the adoption of a specification for a Web Coverage Processing Service on Mar 25, 2009. This effort has been spearheaded by Dr. Peter Baumann, Jacobs University, Bremen, Germany. The WCPS specifies a coverage processing language allowing clients to send processing requests for evaluation to a server. NASA has been taking the next step by wrapping the user-defined requests into dynamic agents that can be uploaded to a spacecraft for onboard processing. This could have a dramatic impact to the new decadal missions such as HyspIRI. Dynamic onboard classifiers are key to providing level 2 products in near-realtime directly to end-users on the ground. This capability, currently implemented on the Hyspiri pathfinder testbed using the NASA SpaceCube, will be demonstrated on EO-1, a NASA Hyperspectral/Multispectral imager, as the next capability for agile autonomous science experiments.

  19. OpenClimateGIS - A Web Service Providing Climate Model Data in Commonly Used Geospatial Formats

    NASA Astrophysics Data System (ADS)

    Erickson, T. A.; Koziol, B. W.; Rood, R. B.

    2011-12-01

    The goal of the OpenClimateGIS project is to make climate model datasets readily available in commonly used, modern geospatial formats used by GIS software, browser-based mapping tools, and virtual globes.The climate modeling community typically stores climate data in multidimensional gridded formats capable of efficiently storing large volumes of data (such as netCDF, grib) while the geospatial community typically uses flexible vector and raster formats that are capable of storing small volumes of data (relative to the multidimensional gridded formats). OpenClimateGIS seeks to address this difference in data formats by clipping climate data to user-specified vector geometries (i.e. areas of interest) and translating the gridded data on-the-fly into multiple vector formats. The OpenClimateGIS system does not store climate data archives locally, but rather works in conjunction with external climate archives that expose climate data via the OPeNDAP protocol. OpenClimateGIS provides a RESTful API web service for accessing climate data resources via HTTP, allowing a wide range of applications to access the climate data.The OpenClimateGIS system has been developed using open source development practices and the source code is publicly available. The project integrates libraries from several other open source projects (including Django, PostGIS, numpy, Shapely, and netcdf4-python).OpenClimateGIS development is supported by a grant from NOAA's Climate Program Office.

  20. Targeted Satellite Image Classification for Urban Map Updating Using Geospatial Information System Platform

    NASA Astrophysics Data System (ADS)

    Davoodianidaliki, M.; Abedini, A.

    2015-12-01

    Traditional map production and updating methods which usually involve field surveying and/or photogrammetry, while established and used for a long time, are time consuming and costly. Whereas satellite imagery have provided great amounts of data with high resolutions suitable for different geospatial applications. This paper focuses on taking advantage of geospatial information systems for enabling automated supervised classification of satellite images in urban areas. Such ability is provided through some attributes that determine whether features in current map have changed or not. The overall process consists of three stages: i: Geo database upgrade for addition of some attributes; ii: Classification by Support Vector Machine (SVM) and iii: Change analysis. The proposed method is applied on a sample data of Worldview 3 image of Hormozgan, Iran. The obtained results show that using such method not only can automate supervised classification but also can decrease misclassification errors through local training. Also its independent of classification method provides the ability to deploy other classification methods.

  1. I Want It, You've Got It - Effectively Connect Users to Geospatial Resources

    NASA Astrophysics Data System (ADS)

    White, C. E.

    2012-12-01

    How do users of scientific data find what they need? How do they know where to look, what to look for, how to evaluate, and - if they find the right resource - then how to get it? When the data is of a geospatial nature, other factors also come into play - is the data in a format/projection compatible with other data being used, does the user have access to tools that can analyze and display the data to adequately evaluate it, and does the user have knowledge on how to manage that access - especially if the data is being exposed by web services. Supporting users to connect them to geospatial data in a continually evolving technological climate is a challenge that reaches deeply into all levels of data management. In this talk, we will discuss specific challenges in how users discover and access resources, and how Esri has evolved solutions over time to more effectively connect users to what they need. Some of the challenges - and current solutions - that will be discussed are: balancing a straightforward user experience with rich functionality, providing simple descriptions while maintaining complete metadata, enabling data access to work with an organization's content while being compatible with other organizations' access mechanisms, and the ability to publish data once yet share it in many venues.

  2. Newspaper archives + text mining = rich sources of historical geo-spatial data

    NASA Astrophysics Data System (ADS)

    Yzaguirre, A.; Smit, M.; Warren, R.

    2016-04-01

    Newspaper archives are rich sources of cultural, social, and historical information. These archives, even when digitized, are typically unstructured and organized by date rather than by subject or location, and require substantial manual effort to analyze. The effort of journalists to be accurate and precise means that there is often rich geo-spatial data embedded in the text, alongside text describing events that editors considered to be of sufficient importance to the region or the world to merit column inches. A regional newspaper can add over 100,000 articles to its database each year, and extracting information from this data for even a single country would pose a substantial Big Data challenge. In this paper, we describe a pilot study on the construction of a database of historical flood events (location(s), date, cause, magnitude) to be used in flood assessment projects, for example to calibrate models, estimate frequency, establish high water marks, or plan for future events in contexts ranging from urban planning to climate change adaptation. We then present a vision for extracting and using the rich geospatial data available in unstructured text archives, and suggest future avenues of research.

  3. EO Underpinning the Quality of Ecosystem Services with Geospatial Data- The Case of Sustainable Forest Management

    NASA Astrophysics Data System (ADS)

    Crosthwaite Eyre, Charles

    2010-12-01

    Payments for Ecosystem Services (PES) is an exciting and expanding opportunity for sustainably managed forests. PES are derived from a range of ecosystem benefits from forests including climate change mitigation through afforestation and avoided deforestation, green power generation, wetland and watershed rehabilitation, water quality improvement, marine flood defence and the reduction in desertification and soil erosion. Forests are also the ancestral home to many vulnerable communities which need protection. Sustainable forest management plays a key role in many of these services which generates a potentially critical source of finance. However, for forests to realise revenues from these PES, they must meet demanding standards of project validation and service verification. They also need geospatial data to manage and monitor operational risk. In many cases the data is difficult to collect on the ground - in some cases impossible. This will create a new demand for data that must be impartial, timely, area wide, accurate and cost effective. This presentation will highlight the unique capacity of EO to provide these geospatial inputs required in the generation of PES from forestry and demonstrate products with practical examples.

  4. Analyzing Personal Happiness from Global Survey and Weather Data: A Geospatial Approach

    PubMed Central

    Peng, Yi-Fan; Tang, Jia-Hong; Fu, Yang-chih; Fan, I-chun; Hor, Maw-Kae; Chan, Ta-Chien

    2016-01-01

    Past studies have shown that personal subjective happiness is associated with various macro- and micro-level background factors, including environmental conditions, such as weather and the economic situation, and personal health behaviors, such as smoking and exercise. We contribute to this literature of happiness studies by using a geospatial approach to examine both macro and micro links to personal happiness. Our geospatial approach incorporates two major global datasets: representative national survey data from the International Social Survey Program (ISSP) and corresponding world weather data from the National Oceanic and Atmospheric Administration (NOAA). After processing and filtering 55,081 records of ISSP 2011 survey data from 32 countries, we extracted 5,420 records from China and 25,441 records from 28 other countries. Sensitivity analyses of different intervals for average weather variables showed that macro-level conditions, including temperature, wind speed, elevation, and GDP, are positively correlated with happiness. To distinguish the effects of weather conditions on happiness in different seasons, we also adopted climate zone and seasonal variables. The micro-level analysis indicated that better health status and eating more vegetables or fruits are highly associated with happiness. Never engaging in physical activity appears to make people less happy. The findings suggest that weather conditions, economic situations, and personal health behaviors are all correlated with levels of happiness. PMID:27078263

  5. Integrated Geospatial Education and Technology Training (iGETT) for Workforce Development

    NASA Astrophysics Data System (ADS)

    Allen, J. E.; Johnson, A.; Headley, R. K.

    2009-12-01

    The increasing availability of no-cost remote sensing data and improvements in analysis software have presented an unprecedented opportunity for the integration of geospatial technologies into a wide variety of disciplines for learning and teaching at community colleges and Tribal colleges. These technologies magnify the effectiveness of problem solving in agriculture, disaster management, environmental sciences, urbanization monitoring, and multiple other domains for societal benefit. This session will demonstrate the approach and lessons learned by federal and private industry partners leading a professional development program, “Integrated Geospatial Education and Technology Training” (iGETT; http://igett.delmar.edu), 2007-2010. iGETT is funded by the National Science Foundation’s Advanced Technological Education Program, (NSF DUE 0703185). 40 participants were selected from a nationwide pool and received training in how to understand, identify, download, and integrate federal land remote sensing data into existing Geographic Information Systems programs to address specific issues of concern to the local workforce. Each participant has authored a “Learning Unit” that covers at least two weeks of class time. All training resources and Learning Units are publicly available on the iGETT Web site. A follow-on project is under consideration to develop core competencies for the remote sensing technician. Authors: Jeannie Allen, Sigma Space Corp. for NASA Landsat, at Goddard Space Flight Center; Ann Johnson, ESRI Higher Education; Rachel Headley, USGS EROS Land Remote Sensing Program

  6. Operational Marine Data Acquisition and Delivery Powered by Web and Geospatial Standards

    NASA Astrophysics Data System (ADS)

    Thomas, R.; Buck, J. J. H.

    2015-12-01

    As novel sensor types and new platforms are deployed to monitor the global oceans, the volumes of scientific and environmental data collected in the marine context are rapidly growing. In order to use these data in both the traditional operational modes and in innovative "Big Data" applications the data must be readily understood by software agents. One approach to achieving this is the application of both World Wide Web and Open Geospatial Consortium standards: namely Linked Data1 and Sensor Web Enablement2 (SWE). The British Oceanographic Data Centre (BODC) is adopting this strategy in a number of European Commission funded projects (NETMAR; SenseOCEAN; Ocean Data Interoperability Platform - ODIP; and AtlantOS) to combine its existing data archiving architecture with SWE components (such as Sensor Observation Services) and a Linked Data interface. These will evolve the data management and data transfer from a process that requires significant manual intervention to an automated operational process enabling the rapid, standards-based, ingestion and delivery of data. This poster will show the current capabilities of BODC and the status of on-going implementation of this strategy. References1. World Wide Web Consortium. (2013). Linked Data. Available:http://www.w3.org/standards/semanticweb/data. Last accessed 7th April 20152. Open Geospatial Consortium. (2014). Sensor Web Enablement (SWE). Available:http://www.opengeospatial.org/ogc/markets-technologies/swe. Last accessed 8th October 2014

  7. Spectral Color Indices Based Geospatial Modeling of Soil Organic Matter in Chitwan District, Nepal

    NASA Astrophysics Data System (ADS)

    Mandal, Umesh K.

    2016-06-01

    Space Technology provides a resourceful-cost effective means to assess soil nutrients essential for soil management plan. Soil organic matter (SOM) is one of valuable controlling productivity of crops by providing nutrient in farming systems. Geospatial modeling of soil organic matter is essential if there is unavailability of soil test laboratories and its strong spatial correlation. In the present analysis, soil organic matter is modeled from satellite image derived spectral color indices. Brightness Index (BI), Coloration Index (CI), Hue Index (HI), Redness Index (RI) and Saturation Index (SI) were calculated by converting DN value to radiance and radiance to reflectance from Thematic Mapper image. Geospatial model was developed by regressing SOM with color indices and producing multiple regression model using stepwise regression technique. The multiple regression equation between SOM and spectral indices was significant with R = 0. 56 at 95% confidence level. The resulting MLR equation was then used for the spatial prediction for the entire study area. Redness Index was found higher significance in estimating the SOM. It was used to predict SOM as auxiliary variables using cokringing spatial interpolation technique. It was tested in seven VDCs of Chitwan district of Nepal using Thematic Mapper remotely sensed data. SOM was found to be measured ranging from 0.15% to 4.75 %, with a mean of 2.24 %. Remotely sensed data derived spectral color indices have the potential as useful auxiliary variables for estimating SOM content to generate soil fertility management plans.

  8. KML Tours: A New Platform for Exploring and Sharing Geospatial Data

    NASA Astrophysics Data System (ADS)

    Barcay, D. P.; Weiss-Malik, M.

    2009-12-01

    Google Earth and other virtual globes have allowed millions of people to explore the world from their own home. This technology has also raised the bar for professional visualizations: enabling interactive 3D visualizations to be created from massive data-sets, and shared using the KML language. For academics and professionals alike, an engaging presentation of your geospatial data is generally expected and can be the most effective form of advertisement. To that end, we released 'Touring' in Google Earth 5.0: a new medium for cinematic expression, visualized in Google Earth and written as extensions to the KML language. In a KML tour, the author has fine-grained control over the entire visual experience: precisely moving the virtual camera through the world while dynamically modifying the content, style, position, and visibility of the displayed data. An author can synchronize audio to this experience, bringing further immersion to a visualization. KML tours can help engage a broad user-base and conveying subtle concepts that aren't immediately apparent in traditional geospatial content. Unlike a pre-rendered video, a KML Tour maintains the rich interactivity of Google Earth, allowing users to continue exploring your content, and to mash-up other content with your visualization. This session will include conceptual explanations of the Touring feature in Google Earth, the structure of the touring KML extensions, as well as examples of compelling tours.

  9. Monitoring of In-Field Variability for Site Specific Crop Management Through Open Geospatial Information

    NASA Astrophysics Data System (ADS)

    Řezník, T.; Lukas, V.; Charvát, K.; Charvát, K., Jr.; Horáková, Š.; Křivánek, Z.; Herman, L.

    2016-06-01

    The agricultural sector is in a unique position due to its strategic importance around the world. It is crucial for both citizens (consumers) and the economy (both regional and global), which, ideally, should ensure that the whole sector is a network of interacting organisations. It is important to develop new tools, management methods, and applications to improve the management and logistic operations of agricultural producers (farms) and agricultural service providers. From a geospatial perspective, this involves identifying cost optimization pathways, reducing transport, reducing environmental loads, and improving the energy balance, while maintaining production levels, etc. This paper describes the benefits of, and open issues arising from, the development of the Open Farm Management Information System. Emphasis is placed on descriptions of available remote sensing and other geospatial data, and their harmonization, processing, and presentation to users. At the same time, the FOODIE platform also offers a novel approach of yield potential estimations. Validation for one farm demonstrated 70% successful rate when comparing yield results at a farm counting 1'284 hectares on one hand and results of a theoretical model of yield potential on the other hand. The presented Open Farm Management Information System has already been successfully registered under Phase 8 of the Global Earth Observation System of Systems (GEOSS) Architecture Implementation Pilot in order to support the wide variety of demands that are primarily aimed at agriculture and water pollution monitoring by means of remote sensing.

  10. An on-demand provision model for geospatial multisource information with active self-adaption services

    NASA Astrophysics Data System (ADS)

    Fan, Hong; Li, Huan

    2015-12-01

    Location-related data are playing an increasingly irreplaceable role in business, government and scientific research. At the same time, the amount and types of data are rapidly increasing. It is a challenge how to quickly find required information from this rapidly growing volume of data, as well as how to efficiently provide different levels of geospatial data to users. This paper puts forward a data-oriented access model for geographic information science data. First, we analyze the features of GIS data including traditional types such as vector and raster data and new types such as Volunteered Geographic Information (VGI). Taking into account these analyses, a classification scheme for geographic data is proposed and TRAFIE is introduced to describe the establishment of a multi-level model for geographic data. Based on this model, a multi-level, scalable access system for geospatial information is put forward. Users can select different levels of data according to their concrete application needs. Pull-based and push-based data access mechanisms based on this model are presented. A Service Oriented Architecture (SOA) was chosen for the data processing. The model of this study has been described by providing decision-making process of government departments with a simulation of fire disaster data collection. The use case shows this data model and the data provision system is flexible and has good adaptability.

  11. Increasing Diversity in Geosciences: Geospatial Initiatives at North Carolina Central University

    NASA Astrophysics Data System (ADS)

    Vlahovic, G.; Malhotra, R.; Renslow, M.; Harris, J.; Barnett, A.

    2006-12-01

    Two new initiatives funded by the NSF-GEO and NSF-HRD directorates have potential to advance the geospatial program at the North Carolina Central University (NCCU). As one of only two Historically Black Colleges and Universities (HBCUs) in the southeast offering Geography as a major, NCCU is establishing a GIS Research, Innovative Teaching, and Service (GRITS) Laboratory and has partnered with American Society for Photogrammetry and Remote Sensing (ASPRS) to offer GIS certification to Geography graduates. This presentation will focus on the role that GRITS and GIS certification will play in attracting students to the geoscience majors, the planned curriculum changes, and the emerging partnership with ASPRS to develop and offer "provisional certification" to NCCU students. In addition, authors would also like to describe plans to promote geospatial education in partnership with other educational institutions. NCCUs high minority enrollment (at the present approximately 90%) and quality and tradition of geoscience program make it an ideal incubator for accreditation and certification activities and possible role model for other HBCUs.

  12. Exchanging the Context between OGC Geospatial Web clients and GIS applications using Atom

    NASA Astrophysics Data System (ADS)

    Maso, Joan; Díaz, Paula; Riverola, Anna; Pons, Xavier

    2013-04-01

    Currently, the discovery and sharing of geospatial information over the web still presents difficulties. News distribution through website content was simplified by the use of Really Simple Syndication (RSS) and Atom syndication formats. This communication exposes an extension of Atom to redistribute references to geospatial information in a Spatial Data Infrastructure distributed environment. A geospatial client can save the status of an application that involves several OGC services of different kind and direct data and share this status with other users that need the same information and use different client vendor products in an interoperable way. The extensibility of the Atom format was essential to define a format that could be used in RSS enabled web browser, Mass Market map viewers and emerging geospatial enable integrated clients that support Open Geospatial Consortium (OGC) services. Since OWS Context has been designed as an Atom extension, it is possible to see the document in common places where Atom documents are valid. Internet web browsers are able to present the document as a list of items with title, abstract, time, description and downloading features. OWS Context uses GeoRSS so that, the document can be to be interpreted by both Google maps and Bing Maps as items that have the extent represented in a dynamic map. Another way to explode a OWS Context is to develop an XSLT to transform the Atom feed into an HTML5 document that shows the exact status of the client view window that saved the context document. To accomplish so, we use the width and height of the client window, and the extent of the view in world (geographic) coordinates in order to calculate the scale of the map. Then, we can mix elements in world coordinates (such as CF-NetCDF files or GML) with elements in pixel coordinates (such as WMS maps, WMTS tiles and direct SVG content). A smarter map browser application called MiraMon Map Browser is able to write a context document and read

  13. AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT (AGWA): A GIS-BASED HYDROLOGIC MODELING TOOL FOR WATERSHED ASSESSMENT AND ANALYSIS

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment tool (AGWA) is a GIS interface jointly developed by the USDA Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona, and the University of Wyoming to automate the parameterization and execu...

  14. EVALUATING HYDROLOGICAL RESPONSE TO FORECASTED LAND-USE CHANGE: SCENARIO TESTING WITH THE AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT TOOL

    EPA Science Inventory

    It is currently possible to measure landscape change over large areas and determine trends in environmental condition using advanced space-based technologies accompanied by geospatial analyses of the remotely sensed data. There are numerous earth-observing satellite platforms fo...

  15. AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT (AGWA): A GIS-BASED HYRDOLOGIC MODELING TOOL FOR WATERSHED ASSESSMENT AND ANALYSIS

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment tool (AGWA) is a GIS interface jointly

    developed by the USDA Agricultural Research Service, the U.S. Environmental Protection

    Agency, the University of Arizona, and the University of Wyoming to automate the

    parame...

  16. Investigating metrics of geospatial web services: The case of a CEOS federated catalog service for earth observation data

    NASA Astrophysics Data System (ADS)

    Han, Weiguo; Di, Liping; Yu, Genong; Shao, Yuanzheng; Kang, Lingjun

    2016-07-01

    Geospatial Web Services (GWS) make geospatial information and computing resources discoverable and accessible over the Web. Among them, Open Geospatial Consortium (OGC) standards-compliant data, catalog and processing services are most popular, and have been widely adopted and leveraged in geospatial research and applications. The GWS metrics, such as visit count, average processing time, and user distribution, are important to evaluate their overall performance and impacts. However, these metrics, especially of federated catalog service, have not been systematically evaluated and reported to relevant stakeholders from the point of view of service providers. Taking an integrated catalog service for earth observation data as an example, this paper describes metrics information retrieval, organization, and representation of a catalog service federation. An extensible and efficient log file analyzer is implemented to retrieve a variety of service metrics from the log file and store analysis results in an easily programmable format. An Ajax powered Web portal is built to provide stakeholders, sponsors, developers, partners, and other types of users with specific and relevant insights into metrics information in an interactive and informative form. The deployed system has provided useful information for periodical reports, service delivery, and decision support. The proposed measurement strategy and analytics framework can be a guidance to help GWS providers evaluate their services.

  17. AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT (AGWA): A GIS-BASED HYDROLOGICAL MODELING TOOL FOR WATERSHED MANAGEMENT AND LANDSCAPE ASSESSMENT

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment (http://www.epa.gov/nerlesd1/land-sci/agwa/introduction.htm and www.tucson.ars.ag.gov/agwa) tool is a GIS interface jointly developed by the U.S. Environmental Protection Agency, USDA-Agricultural Research Service, and the University ...

  18. DATA-DRIVEN DISCOVERY OF TEMPORAL AND GEOSPATIAL PATTERNS OF DISEASE TRANSMISSION: WEST NILE VIRUS IN MARYLAND

    EPA Science Inventory

    The necessity of rapid response to a developing disease outbreak often precludes systematic investigation of the mechanisms and patterns (temporal and geospatial) of spread. In order to deploy the most rapid response possible, we must exploit existing data to its maximum extent....

  19. The Effectiveness of the Geospatial Curriculum Approach on Urban Middle-Level Students' Climate Change Understandings

    ERIC Educational Resources Information Center

    Bodzin, Alec M.; Fu, Qiong

    2014-01-01

    Climate change science is a challenging topic for student learning. This quantitative study examined the effectiveness of a geospatial curriculum approach to promote climate change science understandings in an urban school district with eighth-grade students and investigated whether teacher- and student-level factors accounted for students'…

  20. Cloud computing geospatial application for water resources based on free and open source software and open standards - a prototype

    NASA Astrophysics Data System (ADS)

    Delipetrev, Blagoj

    2016-04-01

    Presently, most of the existing software is desktop-based, designed to work on a single computer, which represents a major limitation in many ways, starting from limited computer processing, storage power, accessibility, availability, etc. The only feasible solution lies in the web and cloud. This abstract presents research and development of a cloud computing geospatial application for water resources based on free and open source software and open standards using hybrid deployment model of public - private cloud, running on two separate virtual machines (VMs). The first one (VM1) is running on Amazon web services (AWS) and the second one (VM2) is running on a Xen cloud platform. The presented cloud application is developed using free and open source software, open standards and prototype code. The cloud application presents a framework how to develop specialized cloud geospatial application that needs only a web browser to be used. This cloud application is the ultimate collaboration geospatial platform because multiple users across the globe with internet connection and browser can jointly model geospatial objects, enter attribute data and information, execute algorithms, and visualize results. The presented cloud application is: available all the time, accessible from everywhere, it is scalable, works in a distributed computer environment, it creates a real-time multiuser collaboration platform, the programing languages code and components are interoperable, and it is flexible in including additional components. The cloud geospatial application is implemented as a specialized water resources application with three web services for 1) data infrastructure (DI), 2) support for water resources modelling (WRM), 3) user management. The web services are running on two VMs that are communicating over the internet providing services to users. The application was tested on the Zletovica river basin case study with concurrent multiple users. The application is a state

  1. Mining User spatiotemporal Behavior in Geospatial Cyberinfrastructure --using GEOSS Clearinghouse as an example

    NASA Astrophysics Data System (ADS)

    XIA, J.; Yang, C.; Liu, K.; Huang, Q.; Li, Z.

    2013-12-01

    Big Data becomes increasingly important in almost all scientific domains, especially in geoscience where hundreds to millions of sensors are collecting data of the Earth continuously (Whitehouse News 2012). With the explosive growth of data, various Geospatial Cyberinfrastructure (GCI) (Yang et al. 2010) components are developed to manage geospatial resources and provide data access for the public. These GCIs are accessed by different users intensively on a daily basis. However, little research has been done to analyze the spatiotemporal patterns of user behavior, which could be critical to the management of Big Data and the operation of GCIs (Yang et al. 2011). For example, the spatiotemporal distribution of end users helps us better arrange and locate GCI computing facilities. A better indexing and caching mechanism could be developed based on the spatiotemporal pattern of user queries. In this paper, we use GEOSS Clearinghouse as an example to investigate spatiotemporal patterns of user behavior in GCIs. The investigation results show that user behaviors are heterogeneous but with patterns across space and time. Identified patterns include (1) the high access frequency regions; (2) local interests; (3) periodical accesses and rush hours; (4) spiking access. Based on identified patterns, this presentation reports several solutions to better support the operation of the GEOSS Clearinghouse and other GCIs. Keywords: Big Data, EarthCube, CyberGIS, Spatiotemporal Thinking and Computing, Data Mining, User Behavior Reference: Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., & Uthurusamy, R. 1996. Advances in knowledge discovery and data mining. Whitehouse. 2012. Obama administration unveils 'BIG DATA' initiative: announces $200 million in new R&D investments. Whitehouse. Retrieved from http://www.whitehouse.gov/sites/default/files/microsites/ostp/big_data_press_release_final_2.pdf [Accessed 14 June 2013] Yang, C., Wu, H., Huang, Q., Li, Z., & Li, J. 2011. Using spatial

  2. Geospatial data infrastructure: The development of metadata for geo-information in China

    NASA Astrophysics Data System (ADS)

    Xu, Baiquan; Yan, Shiqiang; Wang, Qianju; Lian, Jian; Wu, Xiaoping; Ding, Keyong

    2014-03-01

    Stores of geoscience records are in constant flux. These stores are continually added to by new information, ideas and data, which are frequently revised. The geoscience record is in restrained by human thought and technology for handling information. Conventional methods strive, with limited success, to maintain geoscience records which are readily susceptible and renewable. The information system must adapt to the diversity of ideas and data in geoscience and their changes through time. In China, more than 400,000 types of important geological data are collected and produced in geological work during the last two decades, including oil, natural gas and marine data, mine exploration, geophysical, geochemical, remote sensing and important local geological survey and research reports. Numerous geospatial databases are formed and stored in National Geological Archives (NGA) with available formats of MapGIS, ArcGIS, ArcINFO, Metalfile, Raster, SQL Server, Access and JPEG. But there is no effective way to warrant that the quality of information is adequate in theory and practice for decision making. The need for fast, reliable, accurate and up-to-date information by providing the Geographic Information System (GIS) communities are becoming insistent for all geoinformation producers and users in China. Since 2010, a series of geoinformation projects have been carried out under the leadership of the Ministry of Land and Resources (MLR), including (1) Integration, update and maintenance of geoinformation databases; (2) Standards research on clusterization and industrialization of information services; (3) Platform construction of geological data sharing; (4) Construction of key borehole databases; (5) Product development of information services. "Nine-System" of the basic framework has been proposed for the development and improvement of the geospatial data infrastructure, which are focused on the construction of the cluster organization, cluster service, convergence

  3. GIS-and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development

    SciTech Connect

    Zhou, Wei; Minnick, Matthew; Geza, Mengistu; Murray, Kyle; Mattson, Earl

    2012-09-30

    The Colorado School of Mines (CSM) was awarded a grant by the National Energy Technology Laboratory (NETL), Department of Energy (DOE) to conduct a research project en- titled GIS- and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development in October of 2008. The ultimate goal of this research project is to develop a water resource geo-spatial infrastructure that serves as “baseline data” for creating solutions on water resource management and for supporting decisions making on oil shale resource development. The project came to the end on September 30, 2012. This final project report will report the key findings from the project activity, major accomplishments, and expected impacts of the research. At meantime, the gamma version (also known as Version 4.0) of the geodatabase as well as other various deliverables stored on digital storage media will be send to the program manager at NETL, DOE via express mail. The key findings from the project activity include the quantitative spatial and temporal distribution of the water resource throughout the Piceance Basin, water consumption with respect to oil shale production, and data gaps identified. Major accomplishments of this project include the creation of a relational geodatabase, automated data processing scripts (Matlab) for database link with surface water and geological model, ArcGIS Model for hydrogeologic data processing for groundwater model input, a 3D geological model, surface water/groundwater models, energy resource development systems model, as well as a web-based geo-spatial infrastructure for data exploration, visualization and dissemination. This research will have broad impacts of the devel- opment of the oil shale resources in the US. The geodatabase provides a “baseline” data for fur- ther study of the oil shale development and identification of further data collection needs. The 3D geological model provides better understanding through data interpolation and

  4. Interactive Visualization and Analysis of Geospatial Data Sets - TrikeND-iGlobe

    NASA Astrophysics Data System (ADS)

    Rosebrock, Uwe; Hogan, Patrick; Chandola, Varun

    2013-04-01

    The visualization of scientific datasets is becoming an ever-increasing challenge as advances in computing technologies have enabled scientists to build high resolution climate models that have produced petabytes of climate data. To interrogate and analyze these large datasets in real-time is a task that pushes the boundaries of computing hardware and software. But integration of climate datasets with geospatial data requires considerable amount of effort and close familiarity of various data formats and projection systems, which has prevented widespread utilization outside of climate community. TrikeND-iGlobe is a sophisticated software tool that bridges this gap, allows easy integration of climate datasets with geospatial datasets and provides sophisticated visualization and analysis capabilities. The objective for TrikeND-iGlobe is the continued building of an open source 4D virtual globe application using NASA World Wind technology that integrates analysis of climate model outputs with remote sensing observations as well as demographic and environmental data sets. This will facilitate a better understanding of global and regional phenomenon, and the impact analysis of climate extreme events. The critical aim is real-time interactive interrogation. At the data centric level the primary aim is to enable the user to interact with the data in real-time for the purpose of analysis - locally or remotely. TrikeND-iGlobe provides the basis for the incorporation of modular tools that provide extended interactions with the data, including sub-setting, aggregation, re-shaping, time series analysis methods and animation to produce publication-quality imagery. TrikeND-iGlobe may be run locally or can be accessed via a web interface supported by high-performance visualization compute nodes placed close to the data. It supports visualizing heterogeneous data formats: traditional geospatial datasets along with scientific data sets with geographic coordinates (NetCDF, HDF, etc

  5. State-of-the-art remote sensing geospatial technologies in support of transportation monitoring and management

    NASA Astrophysics Data System (ADS)

    Paska, Eva Petra

    The widespread use of digital technologies, combined with rapid sensor advancements resulted in a paradigm shift in geospatial technologies the end of the last millennium. The improved performance provided by the state-of-the-art airborne remote sensing technology created opportunities for new applications that require high spatial and temporal resolution data. Transportation activities represent a major segment of the economy in industrialized nations. As such both the transportation infrastructure and traffic must be carefully monitored and planned. Engineering scale topographic mapping has been a long-time geospatial data user, but the high resolution geospatial data could also be considered for vehicle extraction and velocity estimation to support traffic flow analysis. The objective of this dissertation is to provide an assessment on what state-of-the-art remote sensing technologies can offer in both areas: first, to further improve the accuracy and reliability of topographic, in particular, roadway corridor mapping systems, and second, to assess the feasibility of extracting primary data to support traffic flow computation. The discussion is concerned with airborne LiDAR (Light Detection And Ranging) and digital camera systems, supported by direct georeferencing. The review of the state-of-the-art remote sensing technologies is dedicated to address the special requirements of the two transportation applications of airborne remotely sensed data. The performance characteristics of the geospatial sensors and the overall error budget are discussed. The error analysis part is focused on the overall achievable point positioning accuracy performance of directly georeferenced remote sensing systems. The QA/QC (Quality Assurance/Quality Control) process is a challenge for any airborne direct georeferencing-based remote sensing system. A new method to support QA/QC is introduced that uses the road pavement markings to improve both sensor data accuracy as well as the

  6. Geospatial Issues in Energy-Climate Modeling: Implications for Modelers, Economists, Climate Scientists and Policy Makers

    NASA Astrophysics Data System (ADS)

    Newmark, R. L.; Arent, D.; Sullivan, P.; Short, W.

    2010-12-01

    Accurate characterizations of renewable energy technologies, particularly wind, solar, geothermal, and biomass, require an increasingly sophisticated understanding of location-specific attributes, including generation or production costs and the cost of transmission or transportation to a point of use, and climate induced changes to the resource base. Capturing these site-specific characteristics in national and global models presents both unique opportunities and challenges. National and global decisions, ideally, should be informed by geospatially rich data and analysis. Here we describe issues related to and initial advances in representing renewable energy technologies in global models, and the resulting implications for climate stabilization analysis and global assessments, including IPCC’s Assessment Round 5 and IEA’s World Energy Outlook.

  7. Computing quality scores and uncertainty for approximate pattern matching in geospatial semantic graphs

    DOE PAGESBeta

    Stracuzzi, David John; Brost, Randolph C.; Phillips, Cynthia A.; Robinson, David G.; Wilson, Alyson G.; Woodbridge, Diane M. -K.

    2015-09-26

    Geospatial semantic graphs provide a robust foundation for representing and analyzing remote sensor data. In particular, they support a variety of pattern search operations that capture the spatial and temporal relationships among the objects and events in the data. However, in the presence of large data corpora, even a carefully constructed search query may return a large number of unintended matches. This work considers the problem of calculating a quality score for each match to the query, given that the underlying data are uncertain. As a result, we present a preliminary evaluation of three methods for determining both match qualitymore » scores and associated uncertainty bounds, illustrated in the context of an example based on overhead imagery data.« less

  8. Computing quality scores and uncertainty for approximate pattern matching in geospatial semantic graphs

    SciTech Connect

    Stracuzzi, David John; Brost, Randolph C.; Phillips, Cynthia A.; Robinson, David G.; Wilson, Alyson G.; Woodbridge, Diane M. -K.

    2015-09-26

    Geospatial semantic graphs provide a robust foundation for representing and analyzing remote sensor data. In particular, they support a variety of pattern search operations that capture the spatial and temporal relationships among the objects and events in the data. However, in the presence of large data corpora, even a carefully constructed search query may return a large number of unintended matches. This work considers the problem of calculating a quality score for each match to the query, given that the underlying data are uncertain. As a result, we present a preliminary evaluation of three methods for determining both match quality scores and associated uncertainty bounds, illustrated in the context of an example based on overhead imagery data.

  9. Geospatial Technology in Disease Mapping, E- Surveillance and Health Care for Rural Population in South India

    NASA Astrophysics Data System (ADS)

    Praveenkumar, B. A.; Suresh, K.; Nikhil, A.; Rohan, M.; Nikhila, B. S.; Rohit, C. K.; Srinivas, A.

    2014-11-01

    Providing Healthcare to rural population has been a challenge to the medical service providers especially in developing countries. For this to be effective, scalable and sustainable, certain strategic decisions have to be taken during the planning phase. Also, there is a big gap between the services available and the availability of doctors and medical resources in rural areas. Use of Information Technology can aid this deficiency to a good extent. In this paper, a mobile application has been developed to gather data from the field. A cloud based interface has been developed to store the data in the cloud for effective usage and management of the data. A decision tree based solution developed in this paper helps in diagnosing a patient based on his health parameters. Interactive geospatial maps have been developed to provide effective data visualization facility. This will help both the user community as well as decision makers to carry out long term strategy planning.

  10. Fuzzy Logic-Supported Detection of Complex Geospatial Features in a Web Service Environment

    NASA Astrophysics Data System (ADS)

    He, L. L.; Di, L. P.; Yue, P.; Zhang, M. D.

    2013-10-01

    Spatial relations among simple features can be used to characterize complex geospatial features. These spatial relations are often represented using linguistic terms such as near, which have inherent vagueness and imprecision. Fuzzy logic can be used to modeling fuzziness of the terms. Once simple features are extracted from remote sensing imagery, degree of satisfaction of spatial relations among these simple features can be derived to detect complex features. The derivation process can be performed in a distributed service environment, which benefits Earth science society in the last decade. Workflow-based service can provide ondemand uncertainty-aware discovery of complex features in a distributed environment. A use case on the complex facility detection illustrates the applicability of the fuzzy logic-supported service-oriented approach.

  11. Comparing children's GPS tracks with geospatial proxies for exposure to junk food.

    PubMed

    Sadler, Richard C; Gilliland, Jason A

    2015-01-01

    Various geospatial techniques have been employed to estimate children's exposure to environmental cardiometabolic risk factors, including junk food. But many studies uncritically rely on exposure proxies which differ greatly from actual exposure. Misrepresentation of exposure by researchers could lead to poor decisions and ineffective policymaking. This study conducts a GIS-based analysis of GPS tracks--'activity spaces'--and 21 proxies for activity spaces (e.g. buffers, container approaches) for a sample of 526 children (ages 9-14) in London, Ontario, Canada. These measures are combined with a validated food environment database (including fast food and convenience stores) to create a series of junk food exposure estimates and quantify the errors resulting from use of different proxy methods. Results indicate that exposure proxies consistently underestimate exposure to junk foods by as much as 68%. This underestimation is important to policy development because children are exposed to more junk food than estimated using typical methods. PMID:26530823

  12. iGlobe: An Interactive Visualization and Analysis Framework for Geospatial Data

    Energy Science and Technology Software Center (ESTSC)

    2011-07-22

    The iGlobe system is a desktop-based visualization and analysis environment which allows seamless integration of multiple geospatial data sets from varied sources and provides an interface to interactively analyze the different data sets and apply sophisticated data analysis and mining algorithms in a near real time fashion. The framework is highly desirable in domains such as earth and climate sciences where great emphasis is placed on simultaneous analysis of different data sets such as remotemore » sensing images, climate model simulation outputs, and other environmental and demographic databases, to understand weather and climate systems and the impact of climate change in nature and people.« less

  13. Development of Rural Emergency Medical System (REMS) with Geospatial Technology in Malaysia

    NASA Astrophysics Data System (ADS)

    Ooi, W. H.; Shahrizal, I. M.; Noordin, A.; Nurulain, M. I.; Norhan, M. Y.

    2014-02-01

    Emergency medical services are dedicated services in providing out-of-hospital transport to definitive care or patients with illnesses and injuries. In this service the response time and the preparedness of medical services is of prime importance. The application of space and geospatial technology such as satellite navigation system and Geographical Information System (GIS) was proven to improve the emergency operation in many developed countries. In collaboration with a medical service NGO, the National Space Agency (ANGKASA) has developed a prototype Rural Emergency Medical System (REMS), focusing on providing medical services to rural areas and incorporating satellite based tracking module integrated with GIS and patience database to improve the response time of the paramedic team during emergency. With the aim to benefit the grassroots community by exploiting space technology, the project was able to prove the system concept which will be addressed in this paper.

  14. Quality Metadata Management for Geospatial Scientific Workflows: from Retrieving to Assessing with Online Tools

    NASA Astrophysics Data System (ADS)

    Leibovici, D. G.; Pourabdollah, A.; Jackson, M.

    2011-12-01

    Experts and decision-makers use or develop models to monitor global and local changes of the environment. Their activities require the combination of data and processing services in a flow of operations and spatial data computations: a geospatial scientific workflow. The seamless ability to generate, re-use and modify a geospatial scientific workflow is an important requirement but the quality of outcomes is equally much important [1]. Metadata information attached to the data and processes, and particularly their quality, is essential to assess the reliability of the scientific model that represents a workflow [2]. Managing tools, dealing with qualitative and quantitative metadata measures of the quality associated with a workflow, are, therefore, required for the modellers. To ensure interoperability, ISO and OGC standards [3] are to be adopted, allowing for example one to define metadata profiles and to retrieve them via web service interfaces. However these standards need a few extensions when looking at workflows, particularly in the context of geoprocesses metadata. We propose to fill this gap (i) at first through the provision of a metadata profile for the quality of processes, and (ii) through providing a framework, based on XPDL [4], to manage the quality information. Web Processing Services are used to implement a range of metadata analyses on the workflow in order to evaluate and present quality information at different levels of the workflow. This generates the metadata quality, stored in the XPDL file. The focus is (a) on the visual representations of the quality, summarizing the retrieved quality information either from the standardized metadata profiles of the components or from non-standard quality information e.g., Web 2.0 information, and (b) on the estimated qualities of the outputs derived from meta-propagation of uncertainties (a principle that we have introduced [5]). An a priori validation of the future decision-making supported by the

  15. Neighborhood-Level LGBT Hate Crimes and Bullying Among Sexual Minority Youths: A Geospatial Analysis.

    PubMed

    Hatzenbuehler, Mark L; Duncan, Dustin; Johnson, Renee

    2015-01-01

    The goal of this study was to evaluate a novel measure of environmental risk factors for bullying among sexual minority youths. Data on lesbian, gay, bisexual, and transgender (LGBT) assault hate crimes were obtained from police records, geocoded, and then linked to individual-level data on bullying and sexual orientation from the 2008 Boston Youth Survey Geospatial Dataset (N = 1,292; 108 sexual minorities). Results indicated that sexual minority youths who reported relational and electronic bullying were more likely to reside in neighborhoods with higher LGBT assault hate crime rates. There was no asso- ciation between LGBT assault hate crimes and bullying among heterosexual youths, pro- viding evidence for specificity to sexual minority youth. Moreover, no relationships were observed between sexual minority bullying and neighborhood-level violent and property crimes, indicating that the results were specific to LGBT assault hate crimes. PMID:26160063

  16. Socio-economic Value Analysis in Geospatial and Earth Observation: A methodology review (Invited)

    NASA Astrophysics Data System (ADS)

    Coote, A. M.; Bernknopf, R.; Smart, A.

    2013-12-01

    Many industries have long since realised that applying macro-economic analysis methodologies to assess the socio-economic value of a programme is a critical step to convincing decision makers to authorise investment. The geospatial and earth observation industry has however been slow to embrace economic analysis. There are however a growing number of studies, published in the last few years, that have applied economic principles to this domain. They have adopted a variety of different approaches, including: - Computable General Equilibrium Modelling (CGE) - Revealed preference, stated preference (Willingness to Pay surveys) - Partial Analysis - Simulations - Cost-benefit analysis (with and without risk analysis) This paper will critically review these approaches and assess their applicability to different situations and to meet multiple objectives.

  17. Digital Geospatial Datasets in Support of Hydrologic Investigations of the Colorado Front Range Infrastructure Resources Project

    USGS Publications Warehouse

    Rafferty, Sharon A.; Arnold, L.R.; Char, Stephen J.

    2002-01-01

    The U.S. Geological Survey developed this dataset as part of the Colorado Front Range Infrastructure Resources Project (FRIRP). One goal of the FRIRP was to provide information on the availability of those hydrogeologic resources that are either critical to maintaining infrastructure along the northern Front Range or that may become less available because of urban expansion in the northern Front Range. This dataset extends from the Boulder-Jefferson County line on the south, to the middle of Larimer and Weld Counties on the North. On the west, this dataset is bounded by the approximate mountain front of the Front Range of the Rocky Mountains; on the east, by an arbitrary north-south line extending through a point about 6.5 kilometers east of Greeley. This digital geospatial dataset consists of digitized contours of unconsolidated-sediment thickness (depth to bedrock).

  18. Developing Daily Quantitative Damage Estimates From Geospatial Layers To Support Post Event Recovery

    NASA Astrophysics Data System (ADS)

    Woods, B. K.; Wei, L. H.; Connor, T. C.

    2014-12-01

    With the growth of natural hazard data available in near real-time it is increasingly feasible to deliver damage estimates caused by natural disasters. These estimates can be used in disaster management setting or by commercial entities to optimize the deployment of resources and/or routing of goods and materials. This work outlines an end-to-end, modular process to generate estimates of damage caused by severe weather. The processing stream consists of five generic components: 1) Hazard modules that provide quantitate data layers for each peril. 2) Standardized methods to map the hazard data to an exposure layer based on atomic geospatial blocks. 3) Peril-specific damage functions that compute damage metrics at the atomic geospatial block level. 4) Standardized data aggregators, which map damage to user-specific geometries. 5) Data dissemination modules, which provide resulting damage estimates in a variety of output forms. This presentation provides a description of this generic tool set, and an illustrated example using HWRF-based hazard data for Hurricane Arthur (2014). In this example, the Python-based real-time processing ingests GRIB2 output from the HWRF numerical model, dynamically downscales it in conjunctions with a land cover database using a multiprocessing pool, and a just-in-time compiler (JIT). The resulting wind fields are contoured, and ingested into a PostGIS database using OGR. Finally, the damage estimates are calculated at the atomic block level and aggregated to user-defined regions using PostgreSQL queries to construct application specific tabular and graphics output.

  19. Infant and Child Mortality in India in the Last Two Decades: A Geospatial Analysis

    PubMed Central

    Singh, Abhishek; Pathak, Praveen Kumar; Chauhan, Rajesh Kumar; Pan, William

    2011-01-01

    Background Studies examining the intricate interplay between poverty, female literacy, child malnutrition, and child mortality are rare in demographic literature. Given the recent focus on Millennium Development Goals 4 (child survival) and 5 (maternal health), we explored whether the geographic regions that were underprivileged in terms of wealth, female literacy, child nutrition, or safe delivery were also grappling with the elevated risk of child mortality; whether there were any spatial outliers; whether these relationships have undergone any significant change over historical time periods. Methodology The present paper attempted to investigate these critical questions using data from household surveys like NFHS 1992–1993, NFHS 1998–1999 and DLHS 2002–2004. For the first time, we employed geo-spatial techniques like Moran's-I, univariate LISA, bivariate LISA, spatial error regression, and spatiotemporal regression to address the research problem. For carrying out the geospatial analysis, we classified India into 76 natural regions based on the agro-climatic scheme proposed by Bhat and Zavier (1999) following the Census of India Study and all estimates were generated for each of the geographic regions. Result/Conclusions This study brings out the stark intra-state and inter-regional disparities in infant and under-five mortality in India over the past two decades. It further reveals, for the first time, that geographic regions that were underprivileged in child nutrition or wealth or female literacy were also likely to be disadvantaged in terms of infant and child survival irrespective of the state to which they belong. While the role of economic status in explaining child malnutrition and child survival has weakened, the effect of mother's education has actually become stronger over time. PMID:22073208

  20. Linking Places to Problems: Geospatial Theories of Neighborhoods, Alcohol and Crime.

    PubMed

    Gorman, Dennis M; Gruenewald, Paul J; Waller, Lance A

    2013-06-01

    This paper provides a critical review of two broad categories of social ecological theories of crime, social integration and place-based theories, and their relationships to spatial assessments of crime patterns. Social integration theories emphasize the role of neighborhood disorganization on crime, while place theories stress the social interactions within and between places as a source of crime. We provide an analysis of the extent to which these two types of theorizing describe processes and mechanisms that are truly ecologic (identify specific interactions between individuals and their environments) and truly spatial (identify specific movement and interaction patterns of individuals and groups) as they endeavor to explain crime outcomes. We suggest that social integration theories do not provide spatial signatures of sufficient specificity to justify the application of spatial statistical techniques as quantitative arbiters of the theory. On the other hand, place based theories go some way toward addressing these issues because the emphasis is placed on understanding the exact physical and social characteristics of place and the activities that occur around locations as sources of crime. Routine activities and crime potential theories attempt to explain clustering or "hot spots" of crime in ways that give clear spatial dimension by looking at micro-spatial interactions between offenders and targets of crime. These theories have strong ecological implications as well, since they contain specific statements about how people use the space around them and how these patterns of use are related to patterns of criminal activity. We conclude by identifying a set of requirements for successful empirical tests of geospatial theories, including the development of valid measures of key theoretical constructs and the formulation of critical empirical assessments of geospatial hypotheses derived from motivating theory. PMID:23750067

  1. Geospatial intelligence and visual classification of environmentally observed species in the Future Internet

    NASA Astrophysics Data System (ADS)

    Arbab-Zavar, B.; Chakravarthy, A.; Sabeur, Z. A.

    2012-04-01

    The rapid development of advanced smart communication tools with good quality and resolution video cameras, audio and GPS devices in the last few years shall lead to profound impacts on the way future environmental observations are conducted and accessed by communities. The resulting large scale interconnections of these "Future Internet Things" form a large environmental sensing network which will generate large volumes of quality environmental observations and at highly localised spatial scales. This enablement in environmental sensing at local scales will be of great importance to contribute in the study of fauna and flora in the near future, particularly on the effect of climate change on biodiversity in various regions of Europe and beyond. The Future Internet could also potentially become the de facto information space to provide participative real-time sensing by communities and improve our situation awarness of the effect of climate on local environments. In the ENVIROFI(2011-2013) Usage Area project in the FP7 FI-PPP programme, a set of requirements for specific (and generic) enablers is achieved with the potential establishement of participating community observatories of the future. In particular, the specific enablement of interest concerns the building of future interoperable services for the management of environmental data intelligently with tagged contextual geo-spatial information generated by multiple operators in communities (Using smart phones). The classification of observed species in the resulting images is achieved with structured data pre-processing, semantic enrichement using contextual geospatial information, and high level fusion with controlled uncertainty estimations. The returned identification of species is further improved using future ground truth corrections and learning by the specific enablers.

  2. Mapping and Analysis of Forest and Land Fire Potential Using Geospatial Technology and Mathematical Modeling

    NASA Astrophysics Data System (ADS)

    Suliman, M. D. H.; Mahmud, M.; Reba, M. N. M.; S, L. W.

    2014-02-01

    Forest and land fire can cause negative implications for forest ecosystems, biodiversity, air quality and soil structure. However, the implications involved can be minimized through effective disaster management system. Effective disaster management mechanisms can be developed through appropriate early warning system as well as an efficient delivery system. This study tried to focus on two aspects, namely by mapping the potential of forest fire and land as well as the delivery of information to users through WebGIS application. Geospatial technology and mathematical modeling used in this study for identifying, classifying and mapping the potential area for burning. Mathematical models used is the Analytical Hierarchy Process (AHP), while Geospatial technologies involved include remote sensing, Geographic Information System (GIS) and digital field data collection. The entire Selangor state was chosen as our study area based on a number of cases have been reported over the last two decades. AHP modeling to assess the comparison between the three main criteria of fuel, topography and human factors design. Contributions of experts directly involved in forest fire fighting operations and land comprising officials from the Fire and Rescue Department Malaysia also evaluated in this model. The study found that about 32.83 square kilometers of the total area of Selangor state are the extreme potential for fire. Extreme potential areas identified are in Bestari Jaya and Kuala Langat High Ulu. Continuity of information and terrestrial forest fire potential was displayed in WebGIS applications on the internet. Display information through WebGIS applications is a better approach to help the decision-making process at a high level of confidence and approximate real conditions. Agencies involved in disaster management such as Jawatankuasa Pengurusan Dan Bantuan Bencana (JPBB) of District, State and the National under the National Security Division and the Fire and Rescue

  3. MapReady: An Open Source Tool for the Utilization of SAR in Geospatial Applications

    NASA Astrophysics Data System (ADS)

    Atwood, D.; Denny, P.; Hogenson, K.; Dixon, B.; Gens, R.

    2008-12-01

    Users of remote sensing data can now benefit from the wide availability of Synthetic Aperture Radar (SAR) satellites, including ERS-2, RADARSAT-2, ALOS PALSAR, Envisat, and TerraSAR-X. As an active sensor, SAR can acquire data independently of weather and at any time of day or night. Unfortunately, SAR data has not seen wide-spread usage by those engaged in mapping or Earth studies. The reason for this is two-fold: 1) the data comes in a format that most geospatial tools cannot ingest, and 2) SAR imagery is subject to geometric distortions that keep it from being co-registered with more conventional imagery. The Alaska Satellite Facility (ASF) has developed the free, open source MapReady Remote Sensing Tool Kit to facilitate the use of SAR data for even novice users of geospatial data. Through MapReady's intuitive GUI interface, the user is able to ingest a SAR image in its native format and process it to an orthorectified image in GeoTIFF format; ready to be used as a layer in a geographic information system (GIS). This presentation will outline the challenges facing the user of SAR and show how they are overcome through the use of MapReady. The principal innovation in the newest generation of SAR satellites is the implementation of polarimetric SAR, for which data exists in two or more polarizations. Like the bands in optical data, polarimetric bands reveal a great deal about targets in the imagery. In its most recent version, MapReady includes the ability to perform polarimetric decompositions and classifications. Specific examples will be shown using polarimetric data from the ALOS PALSAR sensor. Derived products will be analyzed and interpreted to show how SAR polarimetry can be used to perform land classification and identify land change.

  4. Planetary-Scale Geospatial Data Analysis Techniques in Google's Earth Engine Platform (Invited)

    NASA Astrophysics Data System (ADS)

    Hancher, M.

    2013-12-01

    Geoscientists have more and more access to new tools for large-scale computing. With any tool, some tasks are easy and other tasks hard. It is natural to look to new computing platforms to increase the scale and efficiency of existing techniques, but there is a more exiting opportunity to discover and develop a new vocabulary of fundamental analysis idioms that are made easy and effective by these new tools. Google's Earth Engine platform is a cloud computing environment for earth data analysis that combines a public data catalog with a large-scale computational facility optimized for parallel processing of geospatial data. The data catalog includes a nearly complete archive of scenes from Landsat 4, 5, 7, and 8 that have been processed by the USGS, as well as a wide variety of other remotely-sensed and ancillary data products. Earth Engine supports a just-in-time computation model that enables real-time preview during algorithm development and debugging as well as during experimental data analysis and open-ended data exploration. Data processing operations are performed in parallel across many computers in Google's datacenters. The platform automatically handles many traditionally-onerous data management tasks, such as data format conversion, reprojection, resampling, and associating image metadata with pixel data. Early applications of Earth Engine have included the development of Google's global cloud-free fifteen-meter base map and global multi-decadal time-lapse animations, as well as numerous large and small experimental analyses by scientists from a range of academic, government, and non-governmental institutions, working in a wide variety of application areas including forestry, agriculture, urban mapping, and species habitat modeling. Patterns in the successes and failures of these early efforts have begun to emerge, sketching the outlines of a new set of simple and effective approaches to geospatial data analysis.

  5. Categorizing natural disaster damage assessment using satellite-based geospatial techniques

    USGS Publications Warehouse

    Myint, S.W.; Yuan, M.; Cerveny, R.S.; Giri, C.

    2008-01-01

    Remote sensing of a natural disaster's damage offers an exciting backup and/or alternative to traditional means of on-site damage assessment. Although necessary for complete assessment of damage areas, ground-based damage surveys conducted in the aftermath of natural hazard passage can sometimes be potentially complicated due to on-site difficulties (e.g., interaction with various authorities and emergency services) and hazards (e.g., downed power lines, gas lines, etc.), the need for rapid mobilization (particularly for remote locations), and the increasing cost of rapid physical transportation of manpower and equipment. Satellite image analysis, because of its global ubiquity, its ability for repeated independent analysis, and, as we demonstrate here, its ability to verify on-site damage assessment provides an interesting new perspective and investigative aide to researchers. Using one of the strongest tornado events in US history, the 3 May 1999 Oklahoma City Tornado, as a case example, we digitized the tornado damage path and co-registered the damage path using pre- and post-Landsat Thematic Mapper image data to perform a damage assessment. We employed several geospatial approaches, specifically the Getis index, Geary's C, and two lacunarity approaches to categorize damage characteristics according to the original Fujita tornado damage scale (F-scale). Our results indicate strong relationships between spatial indices computed within a local window and tornado F-scale damage categories identified through the ground survey. Consequently, linear regression models, even incorporating just a single band, appear effective in identifying F-scale damage categories using satellite imagery. This study demonstrates that satellite-based geospatial techniques can effectively add spatial perspectives to natural disaster damages, and in particular for this case study, tornado damages.

  6. Geospatial techniques for developing a sampling frame of watersheds across a region

    USGS Publications Warehouse

    Gresswell, Robert E.; Bateman, Doug; Lienkaemper, George; Guy, T.J.

    2004-01-01

    Current land-management decisions that affect the persistence of native salmonids are often influenced by studies of individual sites that are selected based on judgment and convenience. Although this approach is useful for some purposes, extrapolating results to areas that were not sampled is statistically inappropriate because the sampling design is usually biased. Therefore, in recent investigations of coastal cutthroat trout (Oncorhynchus clarki clarki) located above natural barriers to anadromous salmonids, we used a methodology for extending the statistical scope of inference. The purpose of this paper is to apply geospatial tools to identify a population of watersheds and develop a probability-based sampling design for coastal cutthroat trout in western Oregon, USA. The population of mid-size watersheds (500-5800 ha) west of the Cascade Range divide was derived from watershed delineations based on digital elevation models. Because a database with locations of isolated populations of coastal cutthroat trout did not exist, a sampling frame of isolated watersheds containing cutthroat trout had to be developed. After the sampling frame of watersheds was established, isolated watersheds with coastal cutthroat trout were stratified by ecoregion and erosion potential based on dominant bedrock lithology (i.e., sedimentary and igneous). A stratified random sample of 60 watersheds was selected with proportional allocation in each stratum. By comparing watershed drainage areas of streams in the general population to those in the sampling frame and the resulting sample (n = 60), we were able to evaluate the how representative the subset of watersheds was in relation to the population of watersheds. Geospatial tools provided a relatively inexpensive means to generate the information necessary to develop a statistically robust, probability-based sampling design.

  7. GeoPAT: A toolbox for pattern-based information retrieval from large geospatial databases

    NASA Astrophysics Data System (ADS)

    Jasiewicz, Jarosław; Netzel, Paweł; Stepinski, Tomasz

    2015-07-01

    Geospatial Pattern Analysis Toolbox (GeoPAT) is a collection of GRASS GIS modules for carrying out pattern-based geospatial analysis of images and other spatial datasets. The need for pattern-based analysis arises when images/rasters contain rich spatial information either because of their very high resolution or their very large spatial extent. Elementary units of pattern-based analysis are scenes - patches of surface consisting of a complex arrangement of individual pixels (patterns). GeoPAT modules implement popular GIS algorithms, such as query, overlay, and segmentation, to operate on the grid of scenes. To achieve these capabilities GeoPAT includes a library of scene signatures - compact numerical descriptors of patterns, and a library of distance functions - providing numerical means of assessing dissimilarity between scenes. Ancillary GeoPAT modules use these functions to construct a grid of scenes or to assign signatures to individual scenes having regular or irregular geometries. Thus GeoPAT combines knowledge retrieval from patterns with mapping tasks within a single integrated GIS environment. GeoPAT is designed to identify and analyze complex, highly generalized classes in spatial datasets. Examples include distinguishing between different styles of urban settlements using VHR images, delineating different landscape types in land cover maps, and mapping physiographic units from DEM. The concept of pattern-based spatial analysis is explained and the roles of all modules and functions are described. A case study example pertaining to delineation of landscape types in a subregion of NLCD is given. Performance evaluation is included to highlight GeoPAT's applicability to very large datasets. The GeoPAT toolbox is available for download from

  8. Linking Places to Problems: Geospatial Theories of Neighborhoods, Alcohol and Crime

    PubMed Central

    Gorman, Dennis M.; Gruenewald, Paul J.; Waller, Lance A.

    2010-01-01

    This paper provides a critical review of two broad categories of social ecological theories of crime, social integration and place-based theories, and their relationships to spatial assessments of crime patterns. Social integration theories emphasize the role of neighborhood disorganization on crime, while place theories stress the social interactions within and between places as a source of crime. We provide an analysis of the extent to which these two types of theorizing describe processes and mechanisms that are truly ecologic (identify specific interactions between individuals and their environments) and truly spatial (identify specific movement and interaction patterns of individuals and groups) as they endeavor to explain crime outcomes. We suggest that social integration theories do not provide spatial signatures of sufficient specificity to justify the application of spatial statistical techniques as quantitative arbiters of the theory. On the other hand, place based theories go some way toward addressing these issues because the emphasis is placed on understanding the exact physical and social characteristics of place and the activities that occur around locations as sources of crime. Routine activities and crime potential theories attempt to explain clustering or “hot spots” of crime in ways that give clear spatial dimension by looking at micro-spatial interactions between offenders and targets of crime. These theories have strong ecological implications as well, since they contain specific statements about how people use the space around them and how these patterns of use are related to patterns of criminal activity. We conclude by identifying a set of requirements for successful empirical tests of geospatial theories, including the development of valid measures of key theoretical constructs and the formulation of critical empirical assessments of geospatial hypotheses derived from motivating theory. PMID:23750067

  9. The role of national and international geospatial data sources in the management of natural disasters

    NASA Astrophysics Data System (ADS)

    Kayi, A.; Erdogan, M.; Yilmaz, A.

    2014-11-01

    An earthquake occurred at Van City on 23 October 2011 at 13:41 local time. The magnitude, moment magnitude and depth of earthquake were respectively MI:6.7, Mw:7.0 and 19.07 km. Van city centre and its surrounding villages were affected from this destructive earthquake. Many buildings were ruined and approximately 600 people died. Acquisition and use of geospatial data is very important and crucial for the management of such kind of natural disasters. In this paper, the role of national and international geospatial data in the management of Van earthquake is investigated.. With an international collaboration with Charter, pre and post-earthquake satellite images were acquired in 24 hours following the Earthquake. Also General Command of Mapping (GCM), the national mapping agency of Turkey, produced the high resolution multispectral orthophotos of the region. Charter presented the orthophotos through 26-28 October 2012. Just after the earthquake with a quick reaction, GCM made the flight planning of the 1296 km2 disaster area to acquire aerial photos. The aerial photos were acquired on 24 October 2012 (one day after the earthquake) by UltraCamX large format digital aerial camera. 152 images were taken with 30 cm ground sample distance (GSD) by %30 sidelap and %60 overlap. In the evening of same flight day, orthophotos were produced without ground control points by direct georeferencing and GCM supplied the orthophotos to the disaster management authorities. Also 45 cm GSD archive orthophotos, acquired in 2010, were used as a reference in order to find out the effects of the disaster. The subjects written here do not represent the ideas of Turkish Armed Forces.

  10. The application of geospatial interpolation methods in the reconstruction of Quaternary landform records

    NASA Astrophysics Data System (ADS)

    Geach, M. R.; Stokes, M.; Telfer, M. W.; Mather, A. E.; Fyfe, R. M.; Lewin., S.

    2014-07-01

    Erosional landform features and their associated sedimentary assemblages (river terraces) often provide important records of long-term landscape evolution. However, the methods available for spatial representations of such records are typically limited to the generation of two-dimensional transects (valley long profiles and cross sections). Such transects limit the full quantification of system responses in a three-dimensional landscape (e.g., the identification of spatial changes in net sediment flux within a hydrological basin). The purpose of this paper is to explore the use of geospatial interpolation methods in the reconstruction of Quaternary landform records. This approach enables more precise quantifications of terrace landform records at a range of spatial scales (from a single river reach to geological basin scales). Here we use a case study from the Tabernas basin in SE Spain to test the applicability of multiple methods of geospatial interpolation in the reconstruction of Quaternary landforms (river terrace and alluvial fan remnants). We take steps in (1) refining the terrace data sets and the methods of technique application in order to reduce modelling errors, and (2) in highlighting the requirements for an assessment of interpolation method suitability when modelling highly fragmented landform records. The results from our study show that the performance of interpolation methods varies considerably and is dependent upon the data modelled. Method performance is primarily controlled by the inherent geomorphological characteristics (surface morphology and elevation) of the data; however, the attributes of data structure are significant. We further identify the importance of predefined model parameters (e.g., search radius) upon technique performance, increasing the appreciation of these commonly neglected variables in such studies. Ultimately, the overall applicability of the interpolation process is evidenced by the close correlation of surface volume

  11. Evaluating Urbanization Impacts from Non-Point Stormwater Runoff using Geospatial Analysis

    NASA Astrophysics Data System (ADS)

    Zivkovich, B. R.; Mays, D. C.

    2015-12-01

    Sediments, nutrients and other chemical impairments caused by urbanization continue to deteriorate natural ecosystem processes, resulting in the current degraded state of urban surface waters. Understanding non-point source impacts on these natural ecosystems has become a prevalent topic in sustainable urban infrastructure design as efforts to restore the urban hydrologic regime continue to drive engineers, planners, and environmentalists to develop optimal design practices for rapidly expanding built environments. To best understand how and where these impairments are received, the U.S. Environmental Protection Agency and other organizations have adopted urban runoff programs to identify contributions from non-point sources. This presentation provides a geospatial analysis method for identifying non-point source watersheds, and associated sub-basins, that contribute the highest loads of pollutants to receiving urban streams and lakes. This method, using a form of linear matrix inversion, is an area-averaged weighting method for non-point pollutants that corresponds to a geospatial land cover analysis. This two-phase analysis can be used to aid all parties in understanding how different land use types affect urban stream systems and processes. Optimal locations for water quality features (i.e., best management practices) can be evaluated in order to reduce, capture, and treat stormwater runoff as close to the source as possible. These best management practices have the ability to operate most effectively when located properly, because their ability to act as a minor treatment and prevention system is of great important for the restoration of the urban hydrologic regime.

  12. Dynamic Server-Based KML Code Generator Method for Level-of-Detail Traversal of Geospatial Data

    NASA Technical Reports Server (NTRS)

    Baxes, Gregory; Mixon, Brian; Linger, TIm

    2013-01-01

    Web-based geospatial client applications such as Google Earth and NASA World Wind must listen to data requests, access appropriate stored data, and compile a data response to the requesting client application. This process occurs repeatedly to support multiple client requests and application instances. Newer Web-based geospatial clients also provide user-interactive functionality that is dependent on fast and efficient server responses. With massively large datasets, server-client interaction can become severely impeded because the server must determine the best way to assemble data to meet the client applications request. In client applications such as Google Earth, the user interactively wanders through the data using visually guided panning and zooming actions. With these actions, the client application is continually issuing data requests to the server without knowledge of the server s data structure or extraction/assembly paradigm. A method for efficiently controlling the networked access of a Web-based geospatial browser to server-based datasets in particular, massively sized datasets has been developed. The method specifically uses the Keyhole Markup Language (KML), an Open Geospatial Consortium (OGS) standard used by Google Earth and other KML-compliant geospatial client applications. The innovation is based on establishing a dynamic cascading KML strategy that is initiated by a KML launch file provided by a data server host to a Google Earth or similar KMLcompliant geospatial client application user. Upon execution, the launch KML code issues a request for image data covering an initial geographic region. The server responds with the requested data along with subsequent dynamically generated KML code that directs the client application to make follow-on requests for higher level of detail (LOD) imagery to replace the initial imagery as the user navigates into the dataset. The approach provides an efficient data traversal path and mechanism that can be

  13. Development of a Cartographic Strategy and Geospatial Services for Disaster Early Warning and Mitigation in the Ecowas Subregion

    NASA Astrophysics Data System (ADS)

    Gueye, L. A.; Keita, M. S.; Akinyede, J. O.; Kufoniyi, O.; Erin, G.

    2015-08-01

    The West Africa Sub-region has been crisis and disaster ridden in recent times with enormous challenges for disaster mitigation. The crisis/disasters range from conflicts fuelled by political upheaval to epidemics that take their tolls on the population of some countries in the sub-region. The crisis and disaster events have overwhelming magnitudes and are highly dynamic, requiring a well-articulated plan for immediate response in order to mitigate their effects. A study carried out by the Early Warning Directorate (EWD) of the Economic Commission of West African States (ECOWAS) highlighted the risks and vulnerabilities of the region despite the considerable progress made in development and peace consolidation in some parts of the region. The study identified apparent institutional and infrastructural deficiencies, such as the lack of up-to-date geospatial data and information, and inadequate platforms for data gathering and data sharing among the relevant national agencies, which have made much of the region particularly vulnerable to the emerging threats. It is against the foregoing that the development of a Cartographic Strategy and Geospatial Services for EWD and the ECOWAS is being proposed. In addition to the resolution of the crucial need of reliable geospatial data capacity of member states, this initiative will spearhead the realisation of a Geospatial Data Infrastructure for ECOWAS Commission, through the appropriate policy formulation and implementation. Through the proper implementation of the Cartographic Strategy and Geospatial Services, ECOWAS will have the capacity to provide geospatial analysis and mapping support focusing on areas related to conflict prevention and resolution, regional planning for food security, early warning of viral diseases and epidemics, disaster preparedness, mitigation and response, infrastructural development and refugee resettlement, and a host of other vital projects/programmes for promoting ECOWAS regional integration

  14. The Development of an Interoperable Open Source Geographic Information Technology Stack for Ingest, Management, and Delivery of Earth Observation and Geospatial Products

    NASA Astrophysics Data System (ADS)

    Benedict, K. K.; Sanchez-Silva, R.; Cavner, J. A.; Hudspeth, W. B.

    2009-12-01

    The rapid growth of geospatial data volume and number of sources has highlighted the need for, and spurred the growth and adoption of interoperable geospatial data services. For nearly a decade the Earth Data Analysis Center at The University of New Mexico has been developing standards-based geospatial data management systems based upon a core collection of Open Source technologies, with the collection of employed technologies contributing to a unified information architecture that is enabled by interoperability standards. These technologies include geodatabases (PostGIS), geospatial data access libraries and associated utility programs (GDAL and OGR), scripting languages that enable automated data processing and management (Python), online mapping servers (MapServer), online mapping (OpenLayers, MapFish, GeoEXT), and desktop GIS applications (uDig, QGIS, and GRASS). The interoperability standards upon which EDAC's geospatial information architectures are built include those coming out of the Open Geospatial Consortium (WMS, WFS, WCS, KML, GML), the World Wide Web Consortium (HTML, CSS, SOAP, XML), and ECMA (ECMAscript AKA Javascript). This paper outlines the complementary roles that these various Open Source applications play in the multi-tiered Services Oriented Architectures developed by EDAC in support of a variety of projects, and provides an illustration of how the capabilities enabled by these technologies are interconnected using well-defined open standards. These capabilities include data ingest and query services that support searching for data content based upon keywords and defined spatial extent. They also include data administration services that support data product ingest and registration, data product modification, and deletion from the data registry. Finally, the system supports dynamic generation of Open Geospatial Consortium services for each geospatial data product in the system, enabling integration of data from the system into a wide variety

  15. A sub-national scale geospatial analysis of diamond deposit lootability: the case of the Central African Republic

    USGS Publications Warehouse

    Malpeli, Katherine C.; Chirico, Peter G.

    2014-01-01

    The Central African Republic (CAR), a country with rich diamond deposits and a tumultuous political history, experienced a government takeover by the Seleka rebel coalition in 2013. It is within this context that we developed and implemented a geospatial approach for assessing the lootability of high value-to-weight resource deposits, using the case of diamonds in CAR as an example. According to current definitions of lootability, or the vulnerability of deposits to exploitation, CAR's two major diamond deposits are similarly lootable. However, using this geospatial approach, we demonstrate that the deposits experience differing political geographic, spatial location, and cultural geographic contexts, rendering the eastern deposits more lootable than the western deposits. The patterns identified through this detailed analysis highlight the geographic complexities surrounding the issue of conflict resources and lootability, and speak to the importance of examining these topics at the sub-national scale, rather than relying on national-scale statistics.

  16. Grid enablement of OpenGeospatial Web Services: the G-OWS Working Group

    NASA Astrophysics Data System (ADS)

    Mazzetti, Paolo

    2010-05-01

    In last decades two main paradigms for resource sharing emerged and reached maturity: the Web and the Grid. They both demonstrate suitable for building Distributed Computing Infrastructures (DCIs) supporting the coordinated sharing of resources (i.e. data, information, services, etc) on the Internet. Grid and Web DCIs have much in common as a result of their underlying Internet technology (protocols, models and specifications). However, being based on different requirements and architectural approaches, they show some differences as well. The Web's "major goal was to be a shared information space through which people and machines could communicate" [Berners-Lee 1996]. The success of the Web, and its consequent pervasiveness, made it appealing for building specialized systems like the Spatial Data Infrastructures (SDIs). In this systems the introduction of Web-based geo-information technologies enables specialized services for geospatial data sharing and processing. The Grid was born to achieve "flexible, secure, coordinated resource sharing among dynamic collections of individuals, institutions, and resources" [Foster 2001]. It specifically focuses on large-scale resource sharing, innovative applications, and, in some cases, high-performance orientation. In the Earth and Space Sciences (ESS) the most part of handled information is geo-referred (geo-information) since spatial and temporal meta-information is of primary importance in many application domains: Earth Sciences, Disasters Management, Environmental Sciences, etc. On the other hand, in several application areas there is the need of running complex models which require the large processing and storage capabilities that the Grids are able to provide. Therefore the integration of geo-information and Grid technologies might be a valuable approach in order to enable advanced ESS applications. Currently both geo-information and Grid technologies have reached a high level of maturity, allowing to build such an

  17. Distributed Earth observation data integration and on-demand services based on a collaborative framework of geospatial data service gateway

    NASA Astrophysics Data System (ADS)

    Xie, Jibo; Li, Guoqing

    2015-04-01

    Earth observation (EO) data obtained by air-borne or space-borne sensors has the characteristics of heterogeneity and geographical distribution of storage. These data sources belong to different organizations or agencies whose data management and storage methods are quite different and geographically distributed. Different data sources provide different data publish platforms or portals. With more Remote sensing sensors used for Earth Observation (EO) missions, different space agencies have distributed archived massive EO data. The distribution of EO data archives and system heterogeneity makes it difficult to efficiently use geospatial data for many EO applications, such as hazard mitigation. To solve the interoperable problems of different EO data systems, an advanced architecture of distributed geospatial data infrastructure is introduced to solve the complexity of distributed and heterogeneous EO data integration and on-demand processing in this paper. The concept and architecture of geospatial data service gateway (GDSG) is proposed to build connection with heterogeneous EO data sources by which EO data can be retrieved and accessed with unified interfaces. The GDSG consists of a set of tools and service to encapsulate heterogeneous geospatial data sources into homogenous service modules. The GDSG modules includes EO metadata harvesters and translators, adaptors to different type of data system, unified data query and access interfaces, EO data cache management, and gateway GUI, etc. The GDSG framework is used to implement interoperability and synchronization between distributed EO data sources with heterogeneous architecture. An on-demand distributed EO data platform is developed to validate the GDSG architecture and implementation techniques. Several distributed EO data achieves are used for test. Flood and earthquake serves as two scenarios for the use cases of distributed EO data integration and interoperability.

  18. Assessment of economically optimal water management and geospatial potential for large-scale water storage

    NASA Astrophysics Data System (ADS)

    Weerasinghe, Harshi; Schneider, Uwe A.

    2010-05-01

    Assessment of economically optimal water management and geospatial potential for large-scale water storage Weerasinghe, Harshi; Schneider, Uwe A Water is an essential but limited and vulnerable resource for all socio-economic development and for maintaining healthy ecosystems. Water scarcity accelerated due to population expansion, improved living standards, and rapid growth in economic activities, has profound environmental and social implications. These include severe environmental degradation, declining groundwater levels, and increasing problems of water conflicts. Water scarcity is predicted to be one of the key factors limiting development in the 21st century. Climate scientists have projected spatial and temporal changes in precipitation and changes in the probability of intense floods and droughts in the future. As scarcity of accessible and usable water increases, demand for efficient water management and adaptation strategies increases as well. Addressing water scarcity requires an intersectoral and multidisciplinary approach in managing water resources. This would in return safeguard the social welfare and the economical benefit to be at their optimal balance without compromising the sustainability of ecosystems. This paper presents a geographically explicit method to assess the potential for water storage with reservoirs and a dynamic model that identifies the dimensions and material requirements under an economically optimal water management plan. The methodology is applied to the Elbe and Nile river basins. Input data for geospatial analysis at watershed level are taken from global data repositories and include data on elevation, rainfall, soil texture, soil depth, drainage, land use and land cover; which are then downscaled to 1km spatial resolution. Runoff potential for different combinations of land use and hydraulic soil groups and for mean annual precipitation levels are derived by the SCS-CN method. Using the overlay and decision tree algorithms

  19. Geospatial analysis of a coastal sand dune field evolution: Jockey's Ridge, North Carolina

    NASA Astrophysics Data System (ADS)

    Mitasova, Helena; Overton, Margery; Harmon, Russell S.

    2005-12-01

    Preservation and effective management of highly dynamic coastal features located in areas under development pressures requires in-depth understanding of their evolution. Modern geospatial technologies such as lidar, real time kinematic GPS, and three-dimensional GIS provide tools for efficient acquisition of high resolution data, geospatial analysis, feature extraction, and quantification of change. These techniques were applied to the Jockey's Ridge, North Carolina, the largest active dune field on the east coast of the United States, with the goal to quantify its deflation and rapid horizontal migration. Digitized contours, photogrammetric, lidar and GPS point data were used to compute a multitemporal elevation model of the dune field capturing its evolution for the period of 1974- 2004. In addition, peak elevation data were available for 1915 and 1953. Analysis revealed possible rapid growth of the dune complex between 1915-1953, followed by a slower rate of deflation that continues today. The main dune peak grew from 20.1 m in 1915 to 41.8 m in 1953 and has since eroded to 21.9 m in 2004. Two of the smaller peaks within the dune complex have recently gained elevation, approaching the current height of the main dune. Steady annual rate of main peak elevation loss since 1953 suggests that increase in the number of visitors after the park was established in 1974 had little effect on the rate of dune deflation. Horizontal dune migration of 3-6 m/yr in southerly direction has carried the sand out of the park boundaries and threatened several houses. As a result, the south dune section was removed and the sand was placed at the northern end of the park to serve as a potential source. Sand fencing has been an effective management strategy for both slowing the dune migration and forcing growth in dune elevation. Understanding the causes of the current movements can point to potential solutions and suggest new perspectives on management of the dune as a tourist

  20. Accuracy VS Performance: Finding the Sweet Spot in the Geospatial Resolution of Satellite Metadata

    NASA Astrophysics Data System (ADS)

    Baskin, W. E.; Mangosing, D. C.; Rinsland, P. L.

    2010-12-01

    NASA’s Atmospheric Science Data Center (ASDC) and the Cloud-Aerosol LIDAR and Infrared Pathfinder Satellite Observation (CALIPSO) team at the NASA Langley Research Center recently collaborated in the development of a new CALIPSO Search and Subset web application. The web application is comprised of three elements: (1) A PostGIS-enabled PostgreSQL database system, which is used to store temporal and geospatial metadata from CALIPSO’s LIDAR, Infrared, and Wide Field Camera datasets, (2) the SciFlo engine, which is a data flow engine that enables semantic, scientific data flow executions in a grid or clustered network computational environment, and (3) PHP-based web application that incorporates some Web 2.0 / AJAX technologies used in the web interface. The search portion of the web application leverages geodetic indexing and search capabilities that became available in the February 2010 release of PostGIS version1.5. This presentation highlights the lessons learned in experimenting with various geospatial resolutions of CALIPSO’s LIDAR sensor ground track metadata. Details of the various spatial resolutions, spatial database schema designs, spatial indexing strategies, and performance results will be discussed. The focus will be on illustrating our findings on the spatial resolutions for ground track metadata that optimized search time and search accuracy in the CALIPSO Search and Subset Application. The CALIPSO satellite provides new insight into the role that clouds and atmospheric aerosols (airborne particles) play in regulating Earth's weather, climate, and air quality. CALIPSO combines an active LIDAR instrument with passive infrared and visible imagers to probe the vertical structure and properties of thin clouds and aerosols over the globe. The CALIPSO satellite was launched on April 28, 2006 and is part of the A-train satellite constellation. The ASDC in Langley’s Science Directorate leads NASA’s program for the processing, archival and

  1. GeoIRIS: Geospatial Information Retrieval and Indexing System—Content Mining, Semantics Modeling, and Complex Queries

    PubMed Central

    Shyu, Chi-Ren; Klaric, Matt; Scott, Grant J.; Barb, Adrian S.; Davis, Curt H.; Palaniappan, Kannappan

    2007-01-01

    Searching for relevant knowledge across heterogeneous geospatial databases requires an extensive knowledge of the semantic meaning of images, a keen eye for visual patterns, and efficient strategies for collecting and analyzing data with minimal human intervention. In this paper, we present our recently developed content-based multimodal Geospatial Information Retrieval and Indexing System (GeoIRIS) which includes automatic feature extraction, visual content mining from large-scale image databases, and high-dimensional database indexing for fast retrieval. Using these underpinnings, we have developed techniques for complex queries that merge information from heterogeneous geospatial databases, retrievals of objects based on shape and visual characteristics, analysis of multiobject relationships for the retrieval of objects in specific spatial configurations, and semantic models to link low-level image features with high-level visual descriptors. GeoIRIS brings this diverse set of technologies together into a coherent system with an aim of allowing image analysts to more rapidly identify relevant imagery. GeoIRIS is able to answer analysts’ questions in seconds, such as “given a query image, show me database satellite images that have similar objects and spatial relationship that are within a certain radius of a landmark.” PMID:18270555

  2. New directions in valuing geospatial information - how to value goespatial information for policy and business decisioins in the future

    NASA Astrophysics Data System (ADS)

    Smart, A. C.

    2014-12-01

    Governments are increasingly asking for more evidence of the benefits of investing in geospatial data and infrastructure before investing. They are looking for a clearer articulation of the economic, environmental and social benefits than has been possble in the past. Development of techniques has accelerated in the past five years as governments and industry become more involved in the capture and use of geospatial data. However evaluation practitioners have struggled to answer these emerging questions. The paper explores the types of questions that decision makers are asking and discusses the different approaches and methods that have been used recently to answer them. It explores the need for better buisness case models. The emerging approaches are then discussed and their attributes reviewed. These include methods of analysing tengible economic benefits, intangible benefits and societal benefits. The paper explores the use of value chain analysis and real options analysis to better articulate the impacts on international competitiveness and how to value the potential benefits of innovations enabled by the geospatial data that is produced. The paper concludes by illustrating the potential for these techniques in current and future decision making.

  3. Tsunami vertical-evacuation planning in the U.S. Pacific Northwest as a geospatial, multi-criteria decision problem

    USGS Publications Warehouse

    Wood, Nathan; Jones, Jeanne; Schelling, John; Schmidtlein, Mathew

    2014-01-01

    Tsunami vertical-evacuation (TVE) refuges can be effective risk-reduction options for coastal communities with local tsunami threats but no accessible high ground for evacuations. Deciding where to locate TVE refuges is a complex risk-management question, given the potential for conflicting stakeholder priorities and multiple, suitable sites. We use the coastal community of Ocean Shores (Washington, USA) and the local tsunami threat posed by Cascadia subduction zone earthquakes as a case study to explore the use of geospatial, multi-criteria decision analysis for framing the locational problem of TVE siting. We demonstrate a mixed-methods approach that uses potential TVE sites identified at community workshops, geospatial analysis to model changes in pedestrian evacuation times for TVE options, and statistical analysis to develop metrics for comparing population tradeoffs and to examine influences in decision making. Results demonstrate that no one TVE site can save all at-risk individuals in the community and each site provides varying benefits to residents, employees, customers at local stores, tourists at public venues, children at schools, and other vulnerable populations. The benefit of some proposed sites varies depending on whether or not nearby bridges will be functioning after the preceding earthquake. Relative rankings of the TVE sites are fairly stable under various criteria-weighting scenarios but do vary considerably when comparing strategies to exclusively protect tourists or residents. The proposed geospatial framework can serve as an analytical foundation for future TVE siting discussions.

  4. Geospatial datasets for assessing the effects of rangeland conditions on dissolved-solids yields in the Upper Colorado River Basin

    USGS Publications Warehouse

    Tillman, Fred D; Flynn, Marilyn E.; Anning, David W.

    2015-01-01

    In 2009, the U.S. Geological Survey (USGS) developed a Spatially Referenced Regressions on Watershed Attributes (SPARROW) surface-water quality model for the Upper Colorado River Basin (UCRB) relating dissolved-solids sources and transport in the 1991 water year to upstream catchment characteristics. The SPARROW model focused on geologic and agricultural sources of dissolved solids in the UCRB and was calibrated using water-year 1991 dissolved-solids loads from 218 monitoring sites. A new UCRB SPARROW model is planned that will update the investigation of dissolved-solids sources and transport in the basin to circa 2010 conditions and will improve upon the 2009 model by incorporating more detailed information about agricultural-irrigation and rangeland-management practices, among other improvements. Geospatial datasets relating to circa 2010 rangeland conditions are required for the new UCRB SPARROW modeling effort. This study compiled geospatial datasets for the UCRB that relate to the biotic alterations and rangeland conditions of grazing, fire and other land disturbance, and vegetation type and cover. Datasets representing abiotic alterations of access control (off-highway vehicles) and sediment generation and transport in general, were also compiled. These geospatial datasets may be tested in the upcoming SPARROW model to better understand the potential contribution of rangelands to dissolved-solids loading in UCRB streams.

  5. Assessing the utility of geospatial technologies to investigate environmental change within lake systems.

    PubMed

    Politi, Eirini; Rowan, John S; Cutler, Mark E J

    2016-02-01

    Over 50% of the world's population live within 3 km of rivers and lakes highlighting the on-going importance of freshwater resources to human health and societal well-being. Whilst covering c. 3.5% of the Earth's non-glaciated land mass, trends in the environmental quality of the world's standing waters (natural lakes and reservoirs) are poorly understood, at least in comparison with rivers, and so evaluation of their current condition and sensitivity to change are global priorities. Here it is argued that a geospatial approach harnessing existing global datasets, along with new generation remote sensing products, offers the basis to characterise trajectories of change in lake properties e.g., water quality, physical structure, hydrological regime and ecological behaviour. This approach furthermore provides the evidence base to understand the relative importance of climatic forcing and/or changing catchment processes, e.g. land cover and soil moisture data, which coupled with climate data provide the basis to model regional water balance and runoff estimates over time. Using examples derived primarily from the Danube Basin but also other parts of the World, we demonstrate the power of the approach and its utility to assess the sensitivity of lake systems to environmental change, and hence better manage these key resources in the future. PMID:26521989

  6. Providing Geospatial Education and Real World Applications of Data across the Climate Initiative Themes

    NASA Astrophysics Data System (ADS)

    Weigel, A. M.; Griffin, R.; Bugbee, K.

    2015-12-01

    Various organizations such as the Group on Earth Observations (GEO) have developed a structure for general thematic areas in Earth science research, however the Climate Data Initiative (CDI) is addressing the challenging goal of organizing such datasets around core themes specifically related to climate change impacts. These thematic areas, which currently include coastal flooding, food resilience, ecosystem vulnerability, water, transportation, energy infrastructure, and human health, form the core of a new college course at the University of Alabama in Huntsville developed around real-world applications in the Earth sciences. The goal of this course is to educate students on the data available and scope of GIS applications in Earth science across the CDI climate themes. Real world applications and datasets serve as a pedagogical tool that provide a useful medium for instruction in scientific geospatial analysis and GIS software. With a wide range of potential research areas that fall under the rubric of "Earth science", thematic foci can help to structure a student's understanding of the potential uses of GIS across sub-disciplines, while communicating core data processing concepts. The learning modules and use-case scenarios for this course demonstrate the potential applications of CDI data to undergraduate and graduate Earth science students.

  7. Comprehensive geo-spatial data creation for Asir region in the KSA

    NASA Astrophysics Data System (ADS)

    Alrajhi, M.; Hawarey, M.

    2009-04-01

    The General Directorate for Surveying and Mapping (GDSM) of the Deputy Ministry for Land and Surveying (DMLS) of the Ministry of Municipal and Rural Affairs (MOMRA) in the Kingdom of Saudi Arabia (KSA) has the exclusive mandate to carry out aerial photography and produce large-scale detailed maps for about 220 cities and villages in the KSA. This presentation is about the comprehensive geo-spatial data creation for the Asir region, South West KSA, that was founded on country-wide horizontal geodetic ground control using Global Navigation Satellite Systems (GNSS) within the MOMRA's Terrestrial Reference Frame 2000 (MTRF2000) that is tied to International Terrestrial Reference Frame 2000 (ITRF2000) Epoch 2004.0, and vertical geodetic ground control using precise digital leveling in reference to Jeddah 1969 mean sea level, and included aerial photography of area 2,188 km2 at 1:5,500 scale and 32,640 km2 at 1:45,000 scale, full aerial triangulation, and production of orthophoto maps at scale of 1:10,000 (680 sheets) for 32,640 km2, with aerial photography lasting from July 2007 thru October 2007.

  8. Comprehensive geo-spatial data creation for Najran region in the KSA

    NASA Astrophysics Data System (ADS)

    Alrajhi, M.; Hawarey, M.

    2009-04-01

    The General Directorate for Surveying and Mapping (GDSM) of the Deputy Ministry for Land and Surveying (DMLS) of the Ministry of Municipal and Rural Affairs (MOMRA) in the Kingdom of Saudi Arabia (KSA) has the exclusive mandate to carry out aerial photography and produce large-scale detailed maps for about 220 cities and villages in the KSA. This presentation is about the comprehensive geo-spatial data creation for the Najran region, South KSA, that was founded on country-wide horizontal geodetic ground control using Global Navigation Satellite Systems (GNSS) within the MOMRA's Terrestrial Reference Frame 2000 (MTRF2000) that is tied to International Terrestrial Reference Frame 2000 (ITRF2000) Epoch 2004.0, and vertical geodetic ground control using precise digital leveling in reference to Jeddah 1969 mean sea level, and included aerial photography of area 917 km2 at 1:5,500 scale and 14,304 km2 at 1:45,000 scale, full aerial triangulation, and production of orthophoto maps at scale of 1:10,000 (298 sheets) for 14,304 km2, with aerial photography lasting from May 2006 until July 2006.

  9. Bayesian spatio-temporal analysis and geospatial risk factors of human monocytic ehrlichiosis.

    PubMed

    Raghavan, Ram K; Neises, Daniel; Goodin, Douglas G; Andresen, Daniel A; Ganta, Roman R

    2014-01-01

    Variations in spatio-temporal patterns of Human Monocytic Ehrlichiosis (HME) infection in the state of Kansas, USA were examined and the relationship between HME relative risk and various environmental, climatic and socio-economic variables were evaluated. HME data used in the study was reported to the Kansas Department of Health and Environment between years 2005-2012, and geospatial variables representing the physical environment [National Land cover/Land use, NASA Moderate Resolution Imaging Spectroradiometer (MODIS)], climate [NASA MODIS, Prediction of Worldwide Renewable Energy (POWER)], and socio-economic conditions (US Census Bureau) were derived from publicly available sources. Following univariate screening of candidate variables using logistic regressions, two Bayesian hierarchical models were fit; a partial spatio-temporal model with random effects and a spatio-temporal interaction term, and a second model that included additional covariate terms. The best fitting model revealed that spatio-temporal autocorrelation in Kansas increased steadily from 2005-2012, and identified poverty status, relative humidity, and an interactive factor, 'diurnal temperature range x mixed forest area' as significant county-level risk factors for HME. The identification of significant spatio-temporal pattern and new risk factors are important in the context of HME prevention, for future research in the areas of ecology and evolution of HME, and as well as climate change impacts on tick-borne diseases. PMID:24992684

  10. Water sources and mixing in riparian wetlands revealed by tracers and geospatial analysis

    NASA Astrophysics Data System (ADS)

    Lessels, Jason S.; Tetzlaff, Doerthe; Birkel, Christian; Dick, Jonathan; Soulsby, Chris

    2016-01-01

    Mixing of waters within riparian zones has been identified as an important influence on runoff generation and water quality. Improved understanding of the controls on the spatial and temporal variability of water sources and how they mix in riparian zones is therefore of both fundamental and applied interest. In this study, we have combined topographic indices derived from a high-resolution Digital Elevation Model (DEM) with repeated spatially high-resolution synoptic sampling of multiple tracers to investigate such dynamics of source water mixing. We use geostatistics to estimate concentrations of three different tracers (deuterium, alkalinity, and dissolved organic carbon) across an extended riparian zone in a headwater catchment in NE Scotland, to identify spatial and temporal influences on mixing of source waters. The various biogeochemical tracers and stable isotopes helped constrain the sources of runoff and their temporal dynamics. Results show that spatial variability in all three tracers was evident in all sampling campaigns, but more pronounced in warmer dryer periods. The extent of mixing areas within the riparian area reflected strong hydroclimatic controls and showed large degrees of expansion and contraction that was not strongly related to topographic indices. The integrated approach of using multiple tracers, geospatial statistics, and topographic analysis allowed us to classify three main riparian source areas and mixing zones. This study underlines the importance of the riparian zones for mixing soil water and groundwater and introduces a novel approach how this mixing can be quantified and the effect on the downstream chemistry be assessed.

  11. Implications of the spatial variability of landfill emission rates on geospatial analyses.

    PubMed

    Spokas, K; Graff, C; Morcet, M; Aran, C

    2003-01-01

    Accurate methods quantifying whole landfill surface flux of methane are important for regulatory and research purposes. This paper presents the results from the analysis of chamber measurements utilizing geospatial techniques [kriging and inverse distance weighting (IDW)] to arrive at an estimation of the whole landfill surface flux from the spatially distributed chamber measurement points. The difficulties in utilizing these methods will be discussed. Methane flux was determined on approximately 20 m grid spacing and variogram analysis was performed in order to model spatial structure, which was used to estimate methane flux at unsampled locations through kriging. Our analysis indicates that while the semi-variogram model showed some spatial structure, IDW was a more accurate interpolation method for this particular site. This was seen in the comparison of the resulting contour maps. IDW, coupled with surface area algorithms to extract the total area of user defined contour intervals, provides a superior estimate of the methane flux as confirmed through the methane balance. It is critical that the results of the emissions estimates be viewed in light of the whole cell methane balance; otherwise, there is no rational check and balance system to validate the results. PMID:12957155

  12. GeMInA, Genomic Metadata for Infectious Agents, a geospatial surveillance pathogen database

    PubMed Central

    Schriml, Lynn M.; Arze, Cesar; Nadendla, Suvarna; Ganapathy, Anu; Felix, Victor; Mahurkar, Anup; Phillippy, Katherine; Gussman, Aaron; Angiuoli, Sam; Ghedin, Elodie; White, Owen; Hall, Neil

    2010-01-01

    The Gemina system (http://gemina.igs.umaryland.edu) identifies, standardizes and integrates the outbreak metadata for the breadth of NIAID category A–C viral and bacterial pathogens, thereby providing an investigative and surveillance tool describing the Who [Host], What [Disease, Symptom], When [Date], Where [Location] and How [Pathogen, Environmental Source, Reservoir, Transmission Method] for each pathogen. The Gemina database will provide a greater understanding of the interactions of viral and bacterial pathogens with their hosts and infectious diseases through in-depth literature text-mining, integrated outbreak metadata, outbreak surveillance tools, extensive ontology development, metadata curation and representative genomic sequence identification and standards development. The Gemina web interface provides metadata selection and retrieval of a pathogen's; Infection Systems (Pathogen, Host, Disease, Transmission Method and Anatomy) and Incidents (Location and Date) along with a hosts Age and Gender. The Gemina system provides an integrated investigative and geospatial surveillance system connecting pathogens, pathogen products and disease anchored on the taxonomic ID of the pathogen and host to identify the breadth of hosts and diseases known for these pathogens, to identify the extent of outbreak locations, and to identify unique genomic regions with the DNA Signature Insignia Detection Tool. PMID:19850722

  13. Path Network Recovery Using Remote Sensing Data and Geospatial-Temporal Semantic Graphs

    SciTech Connect

    William C. McLendon III; Brost, Randy C.

    2015-09-01

    Remote sensing systems produce large volumes of high-resolution images that are difficult to search. The GeoGraphy (pronounced Geo-Graph-y) framework [2, 20] encodes remote sensing imagery into a geospatial-temporal semantic graph representation to enable high level semantic searches to be performed. Typically scene objects such as buildings and trees tend to be shaped like blocks with few holes, but other shapes generated from path networks tend to have a large number of holes and can span a large geographic region due to their connectedness. For example, we have a dataset covering the city of Philadelphia in which there is a single road network node spanning a 6 mile x 8 mile region. Even a simple question such as "find two houses near the same street" might give unexpected results. More generally, nodes arising from networks of paths (roads, sidewalks, trails, etc.) require additional processing to make them useful for searches in GeoGraphy. We have assigned the term Path Network Recovery to this process. Path Network Recovery is a three-step process involving (1) partitioning the network node into segments, (2) repairing broken path segments interrupted by occlusions or sensor noise, and (3) adding path-aware search semantics into GeoQuestions. This report covers the path network recovery process, how it is used, and some example use cases of the current capabilities.

  14. Uncertainty analysis in geospatial merit matrix–based hydropower resource assessment

    DOE PAGESBeta

    Pasha, M. Fayzul K.; Yeasmin, Dilruba; Saetern, Sen; Yang, Majntxov; Kao, Shih -Chieh; Smith, Brennan T.

    2016-03-30

    Hydraulic head and mean annual streamflow, two main input parameters in hydropower resource assessment, are not measured at every point along the stream. Translation and interpolation are used to derive these parameters, resulting in uncertainties. This study estimates the uncertainties and their effects on model output parameters: the total potential power and the number of potential locations (stream-reach). These parameters are quantified through Monte Carlo Simulation (MCS) linking with a geospatial merit matrix based hydropower resource assessment (GMM-HRA) Model. The methodology is applied to flat, mild, and steep terrains. Results show that the uncertainty associated with the hydraulic head ismore » within 20% for mild and steep terrains, and the uncertainty associated with streamflow is around 16% for all three terrains. Output uncertainty increases as input uncertainty increases. However, output uncertainty is around 10% to 20% of the input uncertainty, demonstrating the robustness of the GMM-HRA model. Hydraulic head is more sensitive to output parameters in steep terrain than in flat and mild terrains. Furthermore, mean annual streamflow is more sensitive to output parameters in flat terrain.« less

  15. Geospatial revolution and remote sensing LiDAR in Mesoamerican archaeology

    PubMed Central

    Chase, Arlen F.; Fisher, Christopher T.; Leisz, Stephen J.; Weishampel, John F.

    2012-01-01

    The application of light detection and ranging (LiDAR), a laser-based remote-sensing technology that is capable of penetrating overlying vegetation and forest canopies, is generating a fundamental shift in Mesoamerican archaeology and has the potential to transform research in forested areas world-wide. Much as radiocarbon dating that half a century ago moved archaeology forward by grounding archaeological remains in time, LiDAR is proving to be a catalyst for an improved spatial understanding of the past. With LiDAR, ancient societies can be contextualized within a fully defined landscape. Interpretations about the scale and organization of densely forested sites no longer are constrained by sample size, as they were when mapping required laborious on-ground survey. The ability to articulate ancient landscapes fully permits a better understanding of the complexity of ancient Mesoamerican urbanism and also aids in modern conservation efforts. The importance of this geospatial innovation is demonstrated with newly acquired LiDAR data from the archaeological sites of Caracol, Cayo, Belize and Angamuco, Michoacán, Mexico. These data illustrate the potential of technology to act as a catalytic enabler of rapid transformational change in archaeological research and interpretation and also underscore the value of on-the-ground archaeological investigation in validating and contextualizing results. PMID:22802623

  16. Geospatial Analysis of Near-Surface Soil Moisture Time Series Data Over Indian Region

    NASA Astrophysics Data System (ADS)

    Berwal, P.; Murthy, C. S.; Raju, P. V.; Sesha Sai, M. V. R.

    2016-06-01

    The present study has developed the time series database surface soil moisture over India, for June, July and August months for the period of 20 years from 1991 to 2010, using data products generated under Climate Change Initiative Programme of European Space Agency. These three months represent the crop sowing period in the prime cropping season in the country and the soil moisture data during this period is highly useful to detect the drought conditions and assess the drought impact. The time series soil moisture data which is in 0.25 degree spatial resolution was analyzed to generate different indicators. Rainfall data of same spatial resolution for the same period, generated by India Meteorological Department was also procured and analyzed. Geospatial analysis of soil moisture and rainfall derived indicators was carried out to study (1) inter annual variability of soil moisture and rainfall, (2) soil moisture deviations from normal during prominent drought years, (3) soil moisture and rainfall correlations and (4) drought exposure based on soil moisture and rainfall variability. The study has successfully demonstrated the potential of these soil moisture time series data sets for generating regional drought surveillance information products, drought hazard mapping, drought exposure analysis and detection of drought sensitive areas in the crop planting period.

  17. NASA World Wind, Open Source 4D Geospatial Visualization Platform: *.NET & Java* for EDUCATION

    NASA Astrophysics Data System (ADS)

    Hogan, P.; Kuehnel, F.

    2006-12-01

    NASA World Wind has only one goal, to provide the maximum opportunity for geospatial information to be experienced, be it education, science, research, business, or government. The benefits to understanding for information delivered in the context of its 4D virtual reality are extraordinary. The NASA World Wind visualization platform is open source and therefore lends itself well to being extended to service *any* requirements, be they proprietary and commercial or simply available. Data accessibility is highly optimized using standard formats including internationally certified open standards (W*S). Although proprietary applications can be built based on World Wind, and proprietary data delivered that leverage World Wind, there is nothing proprietary about the visualization platform itself or the multiple planetary data sets readily available, including global animations of live weather. NASA World Wind is being used by NASA research teams as well as being a formal part of high school and university curriculum. The National Guard uses World Wind for emergency response activities and State governments have incorporated high resolution imagery for GIS management as well as for their cross-agency emergency response activities. The U.S. federal government uses NASA World Wind for a myriad of GIS and security-related issues (NSA, NGA, DOE, FAA, etc.).

  18. An Integrated Geospatial System for earthquake precursors assessment in Vrancea tectonic active zone in Romania

    NASA Astrophysics Data System (ADS)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.

    2015-10-01

    With the development of space-based technologies to measure surface geophysical parameters and deformation at the boundaries of tectonic plates and large faults, earthquake science has entered a new era. Using time series satellite data for earthquake prediction, it is possible to pursue the behaviors of earthquake precursors in the future and to announce early warnings when the differences between the predicted value and the observed value exceed the pre-define threshold value. Starting with almost one week prior to a moderate or strong earthquake a transient thermal infrared rise in LST of several Celsius degrees (oC) and the increased OLR values higher than the normal have been recorded around epicentral areas, function of the magnitude and focal depth, which disappeared after the main shock. Also are recorded associated geomagnetic and ionospheric distrurbances. Vrancea tectonic active zone in Romania is characterized by a high seismic hazard in European- Mediterranean region, being responsible of strong or moderate intermediate depth and normal earthquakes generation on a confined epicentral area. Based on recorded geophysical parameters anomalies was developed an integrated geospatial system for earthquake precursors assessment in Vrancea active seismic zone. This system integrates derived from time series MODIS Terra/Aqua, NOAA-AVHRR, ASTER, Landsat TM/ETM satellite data multi geophysical parameters (land surface temperature -LST, outgoing long-wave radiation- OLR, and mean air temperature- AT as well as geomagnetic and ionospheric data in synergy with in-situ data for surveillance and forecasting of seismic events.

  19. Prevalence and geospatial distribution of bovine cysticercosis in the state of Mato Grosso, Brazil.

    PubMed

    Rossi, Gabriel Augusto Marques; de Simoni, Heloisa Adélia Stefanoni; Lopes, Welber Daniel Zanetti; Almeida, Henrique Meiroz de Souza; Soares, Vando Edésio; Vidal, Ana Maria Centola; Ferraudo, Antonio Sergio; Mathias, Luis Antonio

    2016-08-01

    This study focused on estimating the prevalence and evaluating the geospatial distribution of bovine cysticercosis in the state of Mato Grosso, Brazil. To this, we used data of 6,200,497 animals slaughtered during the years of 2013 and 2014, and from 141 municipalities of the state. The prevalence observed for this period was 0.0873% (95% CI 0.0851-0.0897). Regarding the cysticerci detected, the calcified ones were the most frequent (74.43%). The high odds ratios were observed in animals reared in the Administrative Regions of Sinop, Barra do Garças, Água Boa, Cáceres, Barra do Bugres, Cuiabá, Pontes Lacerda, Rondonópolis, Matupa, São Félix do Araguaia and Lucas do Rio Verde, respectively. Furthermore, the results indicate the existence of a relation between the areas with high cysticercosis prevalence and human population density. We highlight the need of the development of a risk model based on the origin to improve cysticercosis detection in endemic areas. PMID:27435651

  20. A program for handling map projections of small-scale geospatial raster data

    USGS Publications Warehouse

    Finn, Michael P.; Steinwand, Daniel R.; Trent, Jason R.; Buehler, Robert A.; Mattli, David M.; Yamamoto, Kristina H.

    2012-01-01

    Scientists routinely accomplish small-scale geospatial modeling using raster datasets of global extent. Such use often requires the projection of global raster datasets onto a map or the reprojection from a given map projection associated with a dataset. The distortion characteristics of these projection transformations can have significant effects on modeling results. Distortions associated with the reprojection of global data are generally greater than distortions associated with reprojections of larger-scale, localized areas. The accuracy of areas in projected raster datasets of global extent is dependent on spatial resolution. To address these problems of projection and the associated resampling that accompanies it, methods for framing the transformation space, direct point-to-point transformations rather than gridded transformation spaces, a solution to the wrap-around problem, and an approach to alternative resampling methods are presented. The implementations of these methods are provided in an open-source software package called MapImage (or mapIMG, for short), which is designed to function on a variety of computer architectures.

  1. Integrating statistical genetic and geospatial methods brings new power to phylogeography.

    PubMed

    Chan, Lauren M; Brown, Jason L; Yoder, Anne D

    2011-05-01

    The field of phylogeography continues to grow in terms of power and accessibility. Initially uniting population genetics and phylogenetics, it now spans disciplines as diverse as geology, statistics, climatology, ecology, physiology, and bioinformatics to name a few. One major and recent integration driving the field forward is between "statistical phylogeography" and Geographic Information Systems (GIS) (Knowles, 2009). Merging genetic and geospatial data, and their associated methodological toolkits, is helping to bring explicit hypothesis testing to the field of phylogeography. Hypotheses derived from one approach can be reciprocally tested with data derived from the other field and the synthesis of these data can help place demographic events in an historical and spatial context, guide genetic sampling, and point to areas for further investigation. Here, we present three practical examples of empirical analysis that integrate statistical genetic and GIS tools to construct and test phylogeographic hypotheses. Insights into the evolutionary mechanisms underlying recent divergences can benefit from simultaneously considering diverse types of information to iteratively test and reformulate hypotheses. Our goal is to provide the reader with an introduction to the variety of available tools and their potential application to typical questions in phylogeography with the hope that integrative methods will be more broadly and commonly applied to other biological systems and data sets. PMID:21352934

  2. Geospatial revolution and remote sensing LiDAR in Mesoamerican archaeology.

    PubMed

    Chase, Arlen F; Chase, Diane Z; Fisher, Christopher T; Leisz, Stephen J; Weishampel, John F

    2012-08-01

    The application of light detection and ranging (LiDAR), a laser-based remote-sensing technology that is capable of penetrating overlying vegetation and forest canopies, is generating a fundamental shift in Mesoamerican archaeology and has the potential to transform research in forested areas world-wide. Much as radiocarbon dating that half a century ago moved archaeology forward by grounding archaeological remains in time, LiDAR is proving to be a catalyst for an improved spatial understanding of the past. With LiDAR, ancient societies can be contextualized within a fully defined landscape. Interpretations about the scale and organization of densely forested sites no longer are constrained by sample size, as they were when mapping required laborious on-ground survey. The ability to articulate ancient landscapes fully permits a better understanding of the complexity of ancient Mesoamerican urbanism and also aids in modern conservation efforts. The importance of this geospatial innovation is demonstrated with newly acquired LiDAR data from the archaeological sites of Caracol, Cayo, Belize and Angamuco, Michoacán, Mexico. These data illustrate the potential of technology to act as a catalytic enabler of rapid transformational change in archaeological research and interpretation and also underscore the value of on-the-ground archaeological investigation in validating and contextualizing results. PMID:22802623

  3. Comprehensive geo-spatial data creation for Ar-Riyadh region in the KSA

    NASA Astrophysics Data System (ADS)

    Alrajhi, M.; Hawarey, M.

    2009-04-01

    The General Directorate for Surveying and Mapping (GDSM) of the Deputy Ministry for Land and Surveying (DMLS) of the Ministry of Municipal and Rural Affairs (MOMRA) in the Kingdom of Saudi Arabia (KSA) has the exclusive mandate to carry out aerial photography and produce large-scale detailed maps for about 220 cities and villages in the KSA. This presentation is about the comprehensive geo-spatial data creation for the Ar-Riyadh region, Central KSA, that was founded on country-wide horizontal geodetic ground control using Global Navigation Satellite Systems (GNSS) within the MOMRA's Terrestrial Reference Frame 2000 (MTRF2000) that is tied to International Terrestrial Reference Frame 2000 (ITRF2000) Epoch 2004.0, and vertical geodetic ground control using precise digital leveling in reference to Jeddah 1969 mean sea level, and included aerial photography of area 3,000 km2 at 1:5,500 scale and 10,000 km2 at 1:45,000 scale, full aerial triangulation, and production of orthophoto maps at scale of 1:10,000 (480 sheets) for 10,000 km2, with aerial photography lasting from July 2007 thru August 2007.

  4. NASA World Wind, Open Source 4D Geospatial Visualization Platform: *.NET & Java*

    NASA Astrophysics Data System (ADS)

    Hogan, P.; Coughlan, J.

    2006-12-01

    NASA World Wind has only one goal, to provide the maximum opportunity for geospatial information to be experienced, be it education, science, research, business, or government. The benefits to understanding for information delivered in the context of its 4D virtual reality are extraordinary. The NASA World Wind visualization platform is open source and therefore lends itself well to being extended to service *any* requirements, be they proprietary and commercial or simply available. Data accessibility is highly optimized using standard formats including internationally certified open standards (W*S). Although proprietary applications can be built based on World Wind, and proprietary data delivered that leverage World Wind, there is nothing proprietary about the visualization platform itself or the multiple planetary data sets readily available, including global animations of live weather. NASA World Wind is being used by NASA research teams as well as being a formal part of high school and university curriculum. The National Guard uses World Wind for emergency response activities and State governments have incorporated high resolution imagery for GIS management as well as for their cross-agency emergency response activities. The U.S. federal government uses NASA World Wind for a myriad of GIS and security-related issues (NSA, NGA, DOE, FAA, etc.).

  5. Water sources and mixing in riparian wetlands revealed by tracers and geospatial analysis

    PubMed Central

    Tetzlaff, Doerthe; Birkel, Christian; Dick, Jonathan; Soulsby, Chris

    2016-01-01

    Abstract Mixing of waters within riparian zones has been identified as an important influence on runoff generation and water quality. Improved understanding of the controls on the spatial and temporal variability of water sources and how they mix in riparian zones is therefore of both fundamental and applied interest. In this study, we have combined topographic indices derived from a high‐resolution Digital Elevation Model (DEM) with repeated spatially high‐resolution synoptic sampling of multiple tracers to investigate such dynamics of source water mixing. We use geostatistics to estimate concentrations of three different tracers (deuterium, alkalinity, and dissolved organic carbon) across an extended riparian zone in a headwater catchment in NE Scotland, to identify spatial and temporal influences on mixing of source waters. The various biogeochemical tracers and stable isotopes helped constrain the sources of runoff and their temporal dynamics. Results show that spatial variability in all three tracers was evident in all sampling campaigns, but more pronounced in warmer dryer periods. The extent of mixing areas within the riparian area reflected strong hydroclimatic controls and showed large degrees of expansion and contraction that was not strongly related to topographic indices. The integrated approach of using multiple tracers, geospatial statistics, and topographic analysis allowed us to classify three main riparian source areas and mixing zones. This study underlines the importance of the riparian zones for mixing soil water and groundwater and introduces a novel approach how this mixing can be quantified and the effect on the downstream chemistry be assessed. PMID:27478256

  6. Bayesian Spatio-Temporal Analysis and Geospatial Risk Factors of Human Monocytic Ehrlichiosis

    PubMed Central

    Raghavan, Ram K.; Neises, Daniel; Goodin, Douglas G.; Andresen, Daniel A.; Ganta, Roman R.

    2014-01-01

    Variations in spatio-temporal patterns of Human Monocytic Ehrlichiosis (HME) infection in the state of Kansas, USA were examined and the relationship between HME relative risk and various environmental, climatic and socio-economic variables were evaluated. HME data used in the study was reported to the Kansas Department of Health and Environment between years 2005–2012, and geospatial variables representing the physical environment [National Land cover/Land use, NASA Moderate Resolution Imaging Spectroradiometer (MODIS)], climate [NASA MODIS, Prediction of Worldwide Renewable Energy (POWER)], and socio-economic conditions (US Census Bureau) were derived from publicly available sources. Following univariate screening of candidate variables using logistic regressions, two Bayesian hierarchical models were fit; a partial spatio-temporal model with random effects and a spatio-temporal interaction term, and a second model that included additional covariate terms. The best fitting model revealed that spatio-temporal autocorrelation in Kansas increased steadily from 2005–2012, and identified poverty status, relative humidity, and an interactive factor, ‘diurnal temperature range x mixed forest area’ as significant county-level risk factors for HME. The identification of significant spatio-temporal pattern and new risk factors are important in the context of HME prevention, for future research in the areas of ecology and evolution of HME, and as well as climate change impacts on tick-borne diseases. PMID:24992684

  7. Data management for geospatial vulnerability assessment of interdependencies in US power generation

    SciTech Connect

    Shih, C.Y.; Scown, C.D.; Soibelman, L.; Matthews, H.S.; Garrett, J.H.; Dodrill, K.; McSurdy, S.

    2009-09-15

    Critical infrastructures maintain our society's stability, security, and quality of life. These systems are also interdependent, which means that the disruption of one infrastructure system can significantly impact the operation of other systems. Because of the heavy reliance on electricity production, it is important to assess possible vulnerabilities. Determining the source of these vulnerabilities can provide insight for risk management and emergency response efforts. This research uses data warehousing and visualization techniques to explore the interdependencies between coal mines, rail transportation, and electric power plants. By merging geospatial and nonspatial data, we are able to model the potential impacts of a disruption to one or more mines, rail lines, or power plants, and visually display the results using a geographical information system. A scenario involving a severe earthquake in the New Madrid Seismic Zone is used to demonstrate the capabilities of the model when given input in the form of a potentially impacted area. This type of interactive analysis can help decision makers to understand the vulnerabilities of the coal distribution network and the potential impact it can have on electricity production.

  8. Environmental consequences of Pollution and its Impact on earth's surface climate Using Geospatial Technology

    NASA Astrophysics Data System (ADS)

    Kumar, Amit

    2016-07-01

    Modern transportation is an indispensable ingredient for development, allowing the pressure group of labor, supplies and goods, and enabling general public to access key resources and services. Climate change is a most important threat to sustainable development in any developing or developed country. Urban air pollution is on the rise, due to rapid economic and inhabitants growth and an increase in motorization. Modern transport is fundamental for improvement, allowing the movement of goods and enabling general public to access key resources and services. Travel today is relatively faster and people across the world are travelling more than ever before. Its stipulate regarding forecast is an indispensable part of transportation development in order to evaluate future needs of an urban area. Over increasing traffic concentration posed continued threat to ambient air quality and responsible for producing agents of physical condition hazards. Geospatial technology provides the smartest approach to resolve these inconvenience as it can cover a large area in a fraction of time. The research work focuses on the recognition of traffic intensities with increasing of SO2, NO2 and noise level considered at particular traffic sites in the Varanasi, Uttar Pradesh, India. SO2, NO2 and Noise levels recorded in the city, are much higher than the permissible level and are likely to causes associated health and psychological illnesses to nearby inhabitant.

  9. Environmental consequences of Pollution and its Impact on climate Using Geospatial Technology

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Vandana, Vandana

    2016-07-01

    Modern transportation is an indispensable ingredient for development, allowing the pressure group of labor, supplies and goods, and enabling general public to access key resources and services. Climate change is a most important threat to sustainable development in any developing or developed country. Urban air pollution is on the rise, due to rapid economic and inhabitants growth and an increase in motorization. Modern transport is fundamental for improvement, allowing the movement of goods and enabling general public to access key resources and services. Travel today is relatively faster and people across the world are travelling more than ever before. Its stipulate regarding forecast is an indispensable part of transportation development in order to evaluate future needs of an urban area. Over increasing traffic concentration posed continued threat to ambient air quality and responsible for producing agents of physical condition hazards. Geospatial technology provides the smartest approach to resolve these inconvenience as it can cover a large area in a fraction of time. The research work focuses on the recognition of traffic intensities with increasing of SO2, NO2 and noise level considered at particular traffic sites in the Varanasi, Uttar Pradesh, India. SO2, NO2 and Noise levels recorded in the city, are much higher than the permissible level and are likely to causes associated health and psychological illnesses to nearby inhabitant. Keywords: Population growth; Traffic; Transportation

  10. Application of geo-spatial technology in schistosomiasis modelling in Africa: a review.

    PubMed

    Manyangadze, Tawanda; Chimbari, Moses John; Gebreslasie, Michael; Mukaratirwa, Samson

    2015-01-01

    Schistosomiasis continues to impact socio-economic development negatively in sub-Saharan Africa. The advent of spatial technologies, including geographic information systems (GIS), Earth observation (EO) and global positioning systems (GPS) assist modelling efforts. However, there is increasing concern regarding the accuracy and precision of the current spatial models. This paper reviews the literature regarding the progress and challenges in the development and utilization of spatial technology with special reference to predictive models for schistosomiasis in Africa. Peer-reviewed papers identified through a PubMed search using the following keywords: geo-spatial analysis OR remote sensing OR modelling OR earth observation OR geographic information systems OR prediction OR mapping AND schistosomiasis AND Africa were used. Statistical uncertainty, low spatial and temporal resolution satellite data and poor validation were identified as some of the factors that compromise the precision and accuracy of the existing predictive models. The need for high spatial resolution of remote sensing data in conjunction with ancillary data viz. ground-measured climatic and environmental information, local presence/absence intermediate host snail surveys as well as prevalence and intensity of human infection for model calibration and validation are discussed. The importance of a multidisciplinary approach in developing robust, spatial data capturing, modelling techniques and products applicable in epidemiology is highlighted. PMID:26618307

  11. An alternative approach for delineating eco-sensitive zones around a wildlife sanctuary applying geospatial techniques.

    PubMed

    Deb, Shovik; Ahmed, Akram; Datta, Debajit

    2014-04-01

    The dynamics, degradation, and conservation of forest ecosystems are matters of prime concerns worldwide at the present. Proper planning and management of a forest area are essentially needed to protect it from the grasp of burgeoning pressure of urban-industrial sprawl. Establishment of eco-sensitive zones (ESZs), which act as buffer areas around the core forests, is one of the key approaches towards achieving this goal. This paper deals with the applicability of geospatial techniques to identify the ESZ around an Indian wildlife sanctuary following the different rules and acts prescribed by the Government of India. Gumti Wildlife Sanctuary, located in the northeastern state of Tripura in India, has been selected here as a case study. Collected pieces of information on the distribution of biodiversity and human population in the area were also used to make the approach more holistic. As inferred from this study, remote sensing and geographical information systems were found to be easily implementable and time as well as cost-effective tools for this purpose with a distinct advantage of spatial as well as temporal accuracy in identifying the existing land use and land cover patterns in pilot assessments. However, the results indicated that only appropriate hybridization of field-based information on the biodiversity and ecological aspects of the forest as well as patterns of human interferences with the remote sensing and GIS-based data could make this approach more relevant in actual implementations. PMID:24338098

  12. Geospatial Multi-Agency Coordination (GeoMAC) wildland fire perimeters, 2008

    USGS Publications Warehouse

    Walters, Sandra P.; Schneider, Norma J.; Guthrie, John D.

    2011-01-01

    The Geospatial Multi-Agency Coordination (GeoMAC) has been collecting and storing data on wildland fire perimeters since August 2000. The dataset presented via this U.S. Geological Survey Data Series product contains the GeoMAC wildland fire perimeter data for the calendar year 2008, which are based upon input from incident intelligence sources, Global Positioning System (GPS) data, and infrared (IR) imagery. Wildland fire perimeter data are obtained from the incidents, evaluated for completeness and accuracy, and processed to reflect consistent field names and attributes. After a quality check, the perimeters are loaded to GeoMAC databases, which support the GeoMAC Web application for access by wildland fire managers and the public. The wildland fire perimeters are viewed through the Web application. The data are subsequently archived according to year and state and are made available for downloading through the Internet in shapefile and Keyhole Markup Language (KML) format. These wildland fire perimeter data are also retained for historical, planning, and research purposes. The datasets that pertain to this report can be found on the Rocky Mountain Geographic Science Center HTTP site at http://rmgsc.cr.usgs.gov/outgoing/GeoMAC/historic_fire_data/. The links are also provided on the sidebar.

  13. Field Study of all GSM and WiFi Networks in Amman City from Geospatial Perspective

    NASA Astrophysics Data System (ADS)

    Hawarey, Mosab; Alibrahim, Mustafa; Jetto, Hamza; Salah Mahmoud, Firas

    2016-04-01

    A thorough field study over multiple months has been conducted in the streets of Amman, the capital city of Jordan, in order to collect massive amounts of GSM and WiFi data and analyze them from geospatial perspective. Some interesting realities have been detected; e.g. the North and West of Amman are much better served by GSM operators than the East, South, and Center. Also, the security measures taken to protect WiFi networks in the North and West are much better than those in the East, South, and Center. This has led to the recognition of an interesting pattern that groups the North and West together, while the East, South, and Center constitute another group. Extremely interesting finding was found; the GSM signals are so strong at certain locations that they constitute direct lethal threat to human health; it is scientifically documented that such strengths would lead to certain human cell mutations and cancer. The exact locations and contributors of such hazards will be disclosed in this paper for the first time. Many tabular and graphical presentations of the data will be presented.

  14. Geospatial data for coal beds in the Powder River Basin, Wyoming and Montana

    USGS Publications Warehouse

    Kinney, Scott A.; Scott, David C.; Osmonson, Lee M.; Luppens, James A.

    2015-01-01

    The purpose of this report is to provide geospatial data for various layers and themes in a Geographic Information System (GIS) format for the Powder River Basin, Wyoming and Montana. In 2015, as part of the U.S. Coal Resources and Reserves Assessment Project, the U.S. Geological Survey (USGS) completed an assessment of coal resources and reserves within the Powder River Basin, Wyoming and Montana. This report is supplemental to USGS Professional Paper 1809 and contains GIS data that can be used to view digital layers or themes, including the Tertiary limit of the Powder River Basin boundary, locations of drill holes, clinker, mined coal, land use and technical restrictions, geology, mineral estate ownership, coal thickness, depth to the top of the coal bed (overburden), and coal reliability categories. Larger scale maps may be viewed using the GIS data provided in this report supplemental to the page-size maps provided in USGS Professional Paper 1809. Additionally, these GIS data can be exported to other digital applications as needed by the user. The database used for this report contains a total of 29,928 drill holes, of which 21,393 are in the public domain. The public domain database is linked to the geodatabase in this report so that the user can access the drill-hole data through GIS applications. Results of this report are available at the USGS Energy Resources Program Web site,http://energy.usgs.gov/RegionalStudies/PowderRiverBasin.aspx.

  15. USGS Geospatial Fabric and Geo Data Portal for Continental Scale Hydrology Simulations

    NASA Astrophysics Data System (ADS)

    Sampson, K. M.; Newman, A. J.; Blodgett, D. L.; Viger, R.; Hay, L.; Clark, M. P.

    2013-12-01

    This presentation describes use of United States Geological Survey (USGS) data products and server-based resources for continental-scale hydrologic simulations. The USGS Modeling of Watershed Systems (MoWS) group provides a consistent national geospatial fabric built on NHDPlus. They have defined more than 100,000 hydrologic response units (HRUs) over the continental United States based on points of interest (POIs) and split into left and right bank based on the corresponding stream segment. Geophysical attributes are calculated for each HRU that can be used to define parameters in hydrologic and land-surface models. The Geo Data Portal (GDP) project at the USGS Center for Integrated Data Analytics (CIDA) provides access to downscaled climate datasets and processing services via web-interface and python modules for creating forcing datasets for any polygon (such as an HRU). These resources greatly reduce the labor required for creating model-ready data in-house, contributing to efficient and effective modeling applications. We will present an application of this USGS cyber-infrastructure for assessments of impacts of climate change on hydrology over the continental United States.

  16. Using Label Noise Robust Logistic Regression for Automated Updating of Topographic Geospatial Databases

    NASA Astrophysics Data System (ADS)

    Maas, A.; Rottensteiner, F.; Heipke, C.

    2016-06-01

    Supervised classification of remotely sensed images is a classical method to update topographic geospatial databases. The task requires training data in the form of image data with known class labels, whose generation is time-consuming. To avoid this problem one can use the labels from the outdated database for training. As some of these labels may be wrong due to changes in land cover, one has to use training techniques that can cope with wrong class labels in the training data. In this paper we adapt a label noise tolerant training technique to the problem of database updating. No labelled data other than the existing database are necessary. The resulting label image and transition matrix between the labels can help to update the database and to detect changes between the two time epochs. Our experiments are based on different test areas, using real images with simulated existing databases. Our results show that this method can indeed detect changes that would remain undetected if label noise were not considered in training.

  17. Elucidating hydraulic fracturing impacts on groundwater quality using a regional geospatial statistical modeling approach.

    PubMed

    Burton, Taylour G; Rifai, Hanadi S; Hildenbrand, Zacariah L; Carlton, Doug D; Fontenot, Brian E; Schug, Kevin A

    2016-03-01

    Hydraulic fracturing operations have been viewed as the cause of certain environmental issues including groundwater contamination. The potential for hydraulic fracturing to induce contaminant pathways in groundwater is not well understood since gas wells are completed while isolating the water table and the gas-bearing reservoirs lay thousands of feet below the water table. Recent studies have attributed ground water contamination to poor well construction and leaks in the wellbore annulus due to ruptured wellbore casings. In this paper, a geospatial model of the Barnett Shale region was created using ArcGIS. The model was used for spatial analysis of groundwater quality data in order to determine if regional variations in groundwater quality, as indicated by various groundwater constituent concentrations, may be associated with the presence of hydraulically fractured gas wells in the region. The Barnett Shale reservoir pressure, completions data, and fracture treatment data were evaluated as predictors of groundwater quality change. Results indicated that elevated concentrations of certain groundwater constituents are likely related to natural gas production in the study area and that beryllium, in this formation, could be used as an indicator variable for evaluating fracturing impacts on regional groundwater quality. Results also indicated that gas well density and formation pressures correlate to change in regional water quality whereas proximity to gas wells, by itself, does not. The results also provided indirect evidence supporting the possibility that micro annular fissures serve as a pathway transporting fluids and chemicals from the fractured wellbore to the overlying groundwater aquifers. PMID:26745299

  18. Geospatial Ecology of Adolescent Problem Behavior: Contributions of Community Factors and Parental Monitoring

    PubMed Central

    Gartstein, Maria; Seamon, Erich; Dishion, Thomas J.

    2015-01-01

    Addressed the ecology of deviant peer involvement, antisocial behavior and alcohol use, utilizing publically available information for indices of community risk/protective factors. A geospatial model was developed, combining geographic data (census, crime proximity, race/ethnicity, transportation accessibility) with information gathered for individual adolescents/household, geo-coded by home address. Adolescent-report of delinquency, association with deviant peers, substance use, and parental monitoring was obtained, along with parent-report of demographic characteristics. Deviant peer involvement was predicted by the Crime Proximity Index, with closeness of crime being associated with more deviant peer affiliation, as well as the Transportation Index, with greater accessibility leading to more involvement with troubled peers. Antisocial behaviors also increased with greater access to transportation. Adolescent alcohol use was lower in communities with a higher proportion of a non-Caucasian population, and increased with greater transportation access. Adolescent outcomes were associated with different prediction models, yet parental monitoring emerged as a consistent contributing factor. PMID:25825548

  19. Synthesized Population Databases: A US Geospatial Database for Agent-Based Models

    PubMed Central

    Wheaton, William D.; Cajka, James C.; Chasteen, Bernadette M.; Wagener, Diane K.; Cooley, Philip C.; Ganapathi, Laxminarayana; Roberts, Douglas J.; Allpress, Justine L.

    2010-01-01

    Agent-based models simulate large-scale social systems. They assign behaviors and activities to “agents” (individuals) within the population being modeled and then allow the agents to interact with the environment and each other in complex simulations. Agent-based models are frequently used to simulate infectious disease outbreaks, among other uses. RTI used and extended an iterative proportional fitting method to generate a synthesized, geospatially explicit, human agent database that represents the US population in the 50 states and the District of Columbia in the year 2000. Each agent is assigned to a household; other agents make up the household occupants. For this database, RTI developed the methods for generating synthesized households and personsassigning agents to schools and workplaces so that complex interactions among agents as they go about their daily activities can be taken into accountgenerating synthesized human agents who occupy group quarters (military bases, college dormitories, prisons, nursing homes).In this report, we describe both the methods used to generate the synthesized population database and the final data structure and data content of the database. This information will provide researchers with the information they need to use the database in developing agent-based models. Portions of the synthesized agent database are available to any user upon request. RTI will extract a portion (a county, region, or state) of the database for users who wish to use this database in their own agent-based models. PMID:20505787

  20. Geospatial strategy for sustainable management of municipal solid waste for growing urban environment.

    PubMed

    Pandey, Prem Chandra; Sharma, Laxmi Kant; Nathawat, Mahendra Singh

    2012-04-01

    This paper presents the implementation of a Geospatial approach for improving the Municipal Solid Waste (MSW) disposal suitability site assessment in growing urban environment. The increasing trend of population growth and the absolute amounts of waste disposed of worldwide have increased substantially reflecting changes in consumption patterns, consequently worldwide. MSW is now a bigger problem than ever. Despite an increase in alternative techniques for disposing of waste, land-filling remains the primary means. In this context, the pressures and requirements placed on decision makers dealing with land-filling by government and society have increased, as they now have to make decisions taking into considerations environmental safety and economic practicality. The waste disposed by the municipal corporation in the Bhagalpur City (India) is thought to be different from the landfill waste where clearly scientific criterion for locating suitable disposal sites does not seem to exist. The location of disposal sites of Bhagalpur City represents the unconsciousness about the environmental and public health hazards arising from disposing of waste in improper location. Concerning about urban environment and health aspects of people, a good method of waste management and appropriate technologies needed for urban area of Bhagalpur city to improve this trend using Multi Criteria Geographical Information System and Remote Sensing for selection of suitable disposal sites. The purpose of GIS was to perform process to part restricted to highly suitable land followed by using chosen criteria. GIS modeling with overlay operation has been used to find the suitability site for MSW. PMID:21660550