Sample records for enhancing nitric oxide

  1. Enhanced biogenic emissions of nitric oxide and nitrous oxide following surface biomass burning

    Treesearch

    Iris C. Anderson; Joel S. Levine; Mark A. Poth; Philip J. Riggan

    1988-01-01

    Recent measurements indicate significantly enhanced biogenic soil emissions of both nitric oxide (NO) and nitrous oxide (N2O) following surface burning. These enhanced fluxes persisted for at least 6 months following the burn. Simultaneous measurements indicate enhanced levels of...

  2. Phenotypic Consequences of a Genetic Predisposition to Enhanced Nitric Oxide Signaling.

    PubMed

    Emdin, Connor A; Khera, Amit V; Klarin, Derek; Natarajan, Pradeep; Zekavat, Seyedeh M; Nomura, Akihiro; Haas, Mary; Aragam, Krishna; Ardissino, Diego; Wilson, James G; Schunkert, Heribert; McPherson, Ruth; Watkins, Hugh; Elosua, Roberto; Bown, Matthew J; Samani, Nilesh J; Baber, Usman; Erdmann, Jeanette; Gormley, Padhraig; Palotie, Aarno; Stitziel, Nathan O; Gupta, Namrata; Danesh, John; Saleheen, Danish; Gabriel, Stacey; Kathiresan, Sekar

    2018-01-16

    Nitric oxide signaling plays a key role in the regulation of vascular tone and platelet activation. Here, we seek to understand the impact of a genetic predisposition to enhanced nitric oxide signaling on risk for cardiovascular diseases, thus informing the potential utility of pharmacological stimulation of the nitric oxide pathway as a therapeutic strategy. We analyzed the association of common and rare genetic variants in 2 genes that mediate nitric oxide signaling (Nitric Oxide Synthase 3 [ NOS3 ] and Guanylate Cyclase 1, Soluble, Alpha 3 [ GUCY1A3 ]) with a range of human phenotypes. We selected 2 common variants (rs3918226 in NOS3 and rs7692387 in GUCY1A3 ) known to associate with increased NOS3 and GUCY1A3 expression and reduced mean arterial pressure, combined them into a genetic score, and standardized this exposure to a 5 mm Hg reduction in mean arterial pressure. Using individual-level data from 335 464 participants in the UK Biobank and summary association results from 7 large-scale genome-wide association studies, we examined the effect of this nitric oxide signaling score on cardiometabolic and other diseases. We also examined whether rare loss-of-function mutations in NOS3 and GUCY1A3 were associated with coronary heart disease using gene sequencing data from the Myocardial Infarction Genetics Consortium (n=27 815). A genetic predisposition to enhanced nitric oxide signaling was associated with reduced risks of coronary heart disease (odds ratio, 0.37; 95% confidence interval [CI], 0.31-0.45; P =5.5*10 -26 ], peripheral arterial disease (odds ratio 0.42; 95% CI, 0.26-0.68; P =0.0005), and stroke (odds ratio, 0.53; 95% CI, 0.37-0.76; P =0.0006). In a mediation analysis, the effect of the genetic score on decreased coronary heart disease risk extended beyond its effect on blood pressure. Conversely, rare variants that inactivate the NOS3 or GUCY1A3 genes were associated with a 23 mm Hg higher systolic blood pressure (95% CI, 12-34; P =5.6*10 -5

  3. Enhanced biogenic emissions of nitric oxide and nitrous oxide following surface biomass burning

    NASA Technical Reports Server (NTRS)

    Anderson, Iris C.; Levine, Joel S.; Poth, Mark A.; Riggan, Philip J.

    1988-01-01

    Recent measurements indicate significantly enhanced biogenic soil emissions of both nitric oxide (NO) and nitrous oxide (N2O) following surface burning. These enhanced fluxes persisted for at least six months following the burn. Simultaneous measurements indicate enhanced levels of exchangeable ammonium in the soil following the burn. Biomass burning is known to be an instantaneous source of NO and N2O resulting from high-temperature combustion. Now it is found that biomass burning also results in significantly enhanced biogenic emissions of these gases, which persist for months following the burn.

  4. Nitric Oxide Mediates Glutamate-Linked Enhancement of cGMP Levels in the Cerebellum

    NASA Astrophysics Data System (ADS)

    Bredt, David S.; Snyder, Solomon H.

    1989-11-01

    Nitric oxide, which mediates influences of numerous neurotransmitters and modulators on vascular smooth muscle and leukocytes, can be formed in the brain from arginine by an enzymatic activity that stoichiometrically generates citrulline. We show that glutamate and related amino acids, such as N-methyl-D-aspartate, markedly stimulate arginine-citrulline transformation in cerebellar slices stoichiometrically with enhancement of cGMP levels. Nω-monomethyl-L-arginine blocks the augmentation both of citrulline and cGMP with identical potencies. Arginine competitively reverses both effects of Nω-monomethyl-L-arginine with the same potencies. Hemoglobin, which complexes nitric oxide, prevents the stimulation by N-methyl-D-aspartate of cGMP levels, and superoxide dismutase, which elevates nitric oxide levels, increases cGMP formation. These data establish that nitric oxide mediates the stimulation by glutamate of cGMP formation.

  5. Nitric oxide enhances development of lateral roots in tomato (Solanum lycopersicum L.) under elevated carbon dioxide.

    PubMed

    Wang, Huan; Xiao, Wendan; Niu, Yaofang; Jin, Chongwei; Chai, Rushan; Tang, Caixian; Zhang, Yongsong

    2013-01-01

    Elevated carbon dioxide (CO₂) has been shown to enhance the growth and development of plants, especially of roots. Amongst them, lateral roots play an important role in nutrient uptake, and thus alleviate the nutrient limitation to plant growth under elevated CO₂. This paper examined the mechanism underlying CO₂ elevation-induced lateral root formation in tomato. The endogenous nitric oxide (NO) in roots was detected by the specific probe 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM DA). We suggest that CO₂ elevation-induced NO accumulation was important for lateral root formation. Elevated CO₂ significantly increased the activity of nitric oxide synthase in roots, but not nitrate reductase activity. Moreover, the pharmacological evidence showed that nitric oxide synthase rather than nitrate reductase was responsible for CO₂ elevation-induced NO accumulation. Elevated CO₂ enhanced the activity of nitric oxide synthase and promoted production of NO, which was involved in lateral root formation in tomato under elevated CO₂.

  6. Nitric oxide alleviates oxidative damage induced by enhanced ultraviolet-B radiation in cyanobacterium.

    PubMed

    Xue, Lingui; Li, Shiweng; Sheng, Hongmei; Feng, Huyuan; Xu, Shijian; An, Lizhe

    2007-10-01

    To study the role of nitric oxide (NO) on enhanced ultraviolet-B (UV-B) radiation (280-320 nm)-induced damage of Cyanobacterium, the growth, pigment content, and antioxidative activity of Spirulina platensis-794 cells were investigated under enhanced UV-B radiation and under different chemical treatments with or without UV-B radiation for 6 h. The changes in chlorophyll-a, malondialdehyde content, and biomass confirmed that 0.5 mM: sodium nitroprusside (SNP), a donor of nitric oxide (NO), could markedly alleviate the damage caused by enhanced UV-B. Specifically, the biomass and the chlorophyll-a content in S. platensis-794 cells decreased 40% and 42%, respectively under enhanced UV-B stress alone, but they only decreased 10% and 18% in the cells treated with UV-B irradiation and 0.5 mM: SNP. Further experiments suggested that NO treatment significantly increased the activities of superoxide dismutase (SOD) and catalase (CAT), and decreased the accumulation of O (2)(-) in enhanced UV-B-irradiated cells. SOD and CAT activity increased 0.95- and 6.73-fold, respectively. The accumulation of reduced glutathione (GSH) increased during treatment with 0.5 mM: SNP in normal S. platensis cells, but SNP treatment could inhibit the increase of GSH in enhanced UV-B-stressed S. platensis cells. Thus, these results suggest that NO can strongly alleviate oxidative damage caused by UV-B stress by increasing the activities of SOD, peroxidase, CAT, and the accumulation of GSH, and by eliminating O (2)(-) in S. platensis-794 cells. In addition, the difference of NO origin between plants and cyanobacteria are discussed.

  7. Modulation of opioid actions by nitric oxide signaling.

    PubMed

    Toda, Noboru; Kishioka, Shiroh; Hatano, Yoshio; Toda, Hiroshi

    2009-01-01

    Nitric oxide (NO) plays pivotal roles in controlling physiological functions, participates in pathophysiological intervention, and is involved in mechanisms underlying beneficial or untoward actions of therapeutic agents. Endogenous nitric oxide is formed by three isoforms of nitric oxide synthase: endothelial, neurogenic and inducible. The former two are constitutively present mainly in the endothelium and nervous system, respectively, and the latter one is induced by lipopolysaccharides or cytokines mainly in mitochondria and glial cells. Constitutively formed nitric oxide modulates the actions of morphine and related analgesics by either enhancing or reducing antinociception. Tolerance to and dependence on morphine or its withdrawal syndrome are likely prevented by nitric oxide synthase inhibition. Information concerning modulation of morphine actions by nitric oxide is undoubtedly useful in establishing new strategies for efficient antinociceptive treatment and for minimizing noxious and unintended reactions.

  8. L-citrulline immunostaining identifies nitric oxide production sites within neurons

    NASA Technical Reports Server (NTRS)

    Martinelli, G. P. T.; Friedrich, V. L. Jr; Holstein, G. R.

    2002-01-01

    The cellular and subcellular localization of L-citrulline was analyzed in the adult rat brain and compared with that of traditional markers for the presence of nitric oxide synthase. Light, transmission electron, and confocal laser scanning microscopy were used to study tissue sections processed for immunocytochemistry employing a monoclonal antibody against L-citrulline or polyclonal anti-neuronal nitric oxide synthase sera, and double immunofluorescence to detect neuronal nitric oxide synthase and L-citrulline co-localization. The results demonstrate that the same CNS regions and cell types are labeled by neuronal nitric oxide synthase polyclonal antisera and L-citrulline monoclonal antibodies, using both immunocytochemistry and immunofluorescence. Short-term pretreatment with a nitric oxide synthase inhibitor reduces L-citrulline immunostaining, but does not affect neuronal nitric oxide synthase immunoreactivity. In the vestibular brainstem, double immunofluorescence studies show that many, but not all, neuronal nitric oxide synthase-positive cells co-express L-citrulline, and that local intracellular patches of intense L-citrulline accumulation are present in some neurons. Conversely, all L-citrulline-labeled neurons co-express neuronal nitric oxide synthase. Cells expressing neuronal nitric oxide synthase alone are interpreted as neurons with the potential to produce nitric oxide under other stimulus conditions, and the subcellular foci of enhanced L-citrulline staining are viewed as intracellular sites of nitric oxide production. This interpretation is supported by ultrastructural observations of subcellular foci with enhanced L-citrulline and/or neuronal nitric oxide synthase staining that are located primarily at postsynaptic densities and portions of the endoplasmic reticulum. We conclude that nitric oxide is produced and released at focal sites within neurons that are identifiable using L-citrulline as a marker. Copyright 2002 IBRO.

  9. Nitric oxide: a physiologic messenger.

    PubMed

    Lowenstein, C J; Dinerman, J L; Snyder, S H

    1994-02-01

    To review the physiologic role of nitric oxide, an unusual messenger molecule that mediates blood vessel relaxation, neurotransmission, and pathogen suppression. A MEDLINE search of articles published from 1987 to 1993 that addressed nitric oxide and the enzyme that synthesizes it, nitric oxide synthase. Animal and human studies were selected from 3044 articles to analyze the clinical importance of nitric oxide. Descriptions of the structure and function of nitric oxide synthase were selected to show how nitric oxide acts as a biological messenger molecule. Biochemical and physiologic studies were analyzed if the same results were found by three or more independent observers. Two major classes of nitric oxide synthase enzymes produce nitric oxide. The constitutive isoforms found in endothelial cells and neurons release small amounts of nitric oxide for brief periods to signal adjacent cells, whereas the inducible isoform found in macrophages releases large amounts of nitric oxide continuously to eliminate bacteria and parasites. By diffusing into adjacent cells and binding to enzymes that contain iron, nitric oxide plays many important physiologic roles. It regulates blood pressure, transmits signals between neurons, and suppresses pathogens. Excess amounts, however, can damage host cells, causing neurotoxicity during strokes and causing the hypotension associated with sepsis. Nitric oxide is a simple molecule with many physiologic roles in the cardiovascular, neurologic, and immune systems. Although the general principles of nitric oxide synthesis are known, further research is necessary to determine what role it plays in causing disease.

  10. Human endogenous retrovirus W env increases nitric oxide production and enhances the migration ability of microglia by regulating the expression of inducible nitric oxide synthase.

    PubMed

    Xiao, Ran; Li, Shan; Cao, Qian; Wang, Xiuling; Yan, Qiujin; Tu, Xiaoning; Zhu, Ying; Zhu, Fan

    2017-06-01

    Human endogenous retrovirus W env (HERV-W env) plays a critical role in many neuropsychological diseases such as schizophrenia and multiple sclerosis (MS). These diseases are accompanied by immunological reactions in the central nervous system (CNS). Microglia are important immunocytes in brain inflammation that can produce a gasotransmitter-nitric oxide (NO). NO not only plays a role in the function of neuronal cells but also participates in the pathogenesis of various neuropsychological diseases. In this study, we reported increased NO production in CHME-5 microglia cells after they were transfected with HERV-W env. Moreover, HERV-W env increased the expression and function of human inducible nitric oxide synthase (hiNOS) and enhanced the promoter activity of hiNOS. Microglial migration was also enhanced. These data revealed that HERV-W env might contribute to increase NO production and microglial migration ability in neuropsychological disorders by regulating the expression of inducible NOS. Results from this study might lead to the identification of novel targets for the treatment of neuropsychological diseases, including neuroinflammatory diseases, stroke, and neurodegenerative diseases.

  11. Intake of red wine increases the number and functional capacity of circulating endothelial progenitor cells by enhancing nitric oxide bioavailability.

    PubMed

    Huang, Po-Hsun; Chen, Yung-Hsiang; Tsai, Hsiao-Ya; Chen, Jia-Shiong; Wu, Tao-Cheng; Lin, Feng-Yen; Sata, Masataka; Chen, Jaw-Wen; Lin, Shing-Jong

    2010-04-01

    Red wine (RW) consumption has been associated with a reduction of cardiovascular events, but limited data are available on potential mediating mechanisms. This study tested the hypothesis that intake of RW may promote the circulating endothelial progenitor cell (EPC) level and function through enhancement of nitric oxide bioavailability. Eighty healthy, young subjects were randomized and assigned to consume water (100 mL), RW (100 mL), beer (250 mL), or vodka (30 mL) daily for 3 weeks. Flow cytometry was used to quantify circulating EPC numbers, and in vitro assays were used to evaluate EPC functions. After RW ingestion, endothelial function determined by flow-mediated vasodilation was significantly enhanced; however, it remained unchanged after water, beer, or vodka intake. There were significantly increased numbers of circulating EPC (defined as KDR(+)CD133(+), CD34(+)CD133(+), CD34(+)KDR(+)) and EPC colony-forming units only in the RW group (all P<0.05). Only RW ingestion significantly enhanced plasma levels of nitric oxide and decreased asymmetrical dimethylarginine (both P<0.01). Incubation of EPC with RW (but not beer or ethanol) and resveratrol in vitro attenuated tumor necrosis factor-alpha-induced EPC senescence and improved tumor necrosis factor-alpha-suppressed EPC functions and tube formation. Incubation with nitric oxide donor sodium nitroprusside significantly ameliorated the inhibition of tumor necrosis factor-alpha on EPC proliferation, but incubation with endothelial nitric oxide synthase inhibitor l-NAME and PI3K inhibitor markedly attenuated the effect of RW on EPC proliferation. The intake of RW significantly enhanced circulating EPC levels and improved EPC functions by modifying nitric oxide bioavailability. These findings may help explain the beneficial effects of RW on the cardiovascular system. This study demonstrated that a moderate intake of RW can enhance circulating levels of EPC in healthy subjects by increasing nitric oxide

  12. Rocuronium Bromide Inhibits Inflammation and Pain by Suppressing Nitric Oxide Production and Enhancing Prostaglandin E2 Synthesis in Endothelial Cells.

    PubMed

    Baek, Sang Bin; Shin, Mal Soon; Han, Jin Hee; Moon, Sang Woong; Chang, Boksoon; Jeon, Jung Won; Yi, Jae Woo; Chung, Jun Young

    2016-12-01

    Rocuronium bromide is a nondepolarizing neuromuscular blocking drug and has been used as an adjunct for relaxation or paralysis of the skeletal muscles, facilitation of endotracheal intubation, and improving surgical conditions during general anesthesia. However, intravenous injection of rocuronium bromide induces injection pain or withdrawal movement. The exact mechanism of rocuronium bromide-induced injection pain or withdrawal movement is not yet understood. We investigated whether rocuronium bromide treatment is involved in the induction of inflammation and pain in vascular endothelial cells. For this study, calf pulmonary artery endothelial (CPAE) cells were used, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Western blot, nitric oxide detection, and prostaglandin E 2 immunoassay were conducted. Rocuronium bromide treatment inhibited endothelial nitric oxide synthase and suppressed nitric oxide production in CPAE cells. Rocuronium bromide activated cyclooxygenase-2, inducible nitric oxide synthase and increased prostaglandin E 2 synthesis in CPAE cells. Rocuronium bromide induced inflammation and pain in CPAE cells. Suppressing nitric oxide production and enhancing prostaglandin E 2 synthesis might be associated with rocuronium bromide-induced injection pain or withdrawal movement.

  13. Neural mechanisms in nitric-oxide-deficient hypertension

    NASA Technical Reports Server (NTRS)

    Sander, M.; Victor, R. G.; Blomqvist, C. G. (Principal Investigator)

    1999-01-01

    Nitric oxide is hypothesized to be an inhibitory modulator of central sympathetic nervous outflow, and deficient neuronal nitric oxide production to cause sympathetic overactivity, which then contributes to nitric-oxide-deficient hypertension. The biochemical and neuroanatomical basis for this concept revolves around nitric oxide modulation of glutamatergic neurotransmission within brainstem vasomotor centers. The functional consequence of neuronal nitric oxide in blood pressure regulation is, however, marked by an apparent conflict in the literature. On one hand, conscious animal studies using sympathetic blockade suggest a significant role for neuronal nitric oxide deficiency in the development of nitric-oxide-deficient hypertension, and on the other hand, there is evidence against such a role derived from 'knock-out' mice lacking nitric-oxide synthase 1, the major source of neuronal nitric oxide.

  14. Enhancement of fracture healing in the rat, modulated by compounds that stimulate inducible nitric oxide synthase: Acceleration of fracture healing via inducible nitric oxide synthase.

    PubMed

    Rajfer, R A; Kilic, A; Neviaser, A S; Schulte, L M; Hlaing, S M; Landeros, J; Ferrini, M G; Ebramzadeh, E; Park, S-H

    2017-02-01

    We investigated the effects on fracture healing of two up-regulators of inducible nitric oxide synthase (iNOS) in a rat model of an open femoral osteotomy: tadalafil, a phosphodiesterase inhibitor, and the recently reported nutraceutical, COMB-4 (consisting of L-citrulline, Paullinia cupana, ginger and muira puama), given orally for either 14 or 42 days. Unilateral femoral osteotomies were created in 58 male rats and fixed with an intramedullary compression nail. Rats were treated daily either with vehicle, tadalafil or COMB-4. Biomechanical testing of the healed fracture was performed on day 42. The volume, mineral content and bone density of the callus were measured by quantitative CT on days 14 and 42. Expression of iNOS was measured by immunohistochemistry. When compared with the control group, the COMB-4 group exhibited 46% higher maximum strength ( t -test, p = 0.029) and 92% higher stiffness ( t -test, p = 0.023), but no significant changes were observed in the tadalafil group. At days 14 and 42, there was no significant difference between the three groups with respect to callus volume, mineral content and bone density. Expression of iNOS at day 14 was significantly higher in the COMB-4 group which, as expected, had returned to baseline levels at day 42. This study demonstrates an enhancement in fracture healing by an oral natural product known to augment iNOS expression. Cite this article: R. A. Rajfer, A. Kilic, A. S. Neviaser, L. M. Schulte, S. M. Hlaing, J. Landeros, M. G. Ferrini, E. Ebramzadeh, S-H. Park. Enhancement of fracture healing in the rat, modulated by compounds that stimulate inducible nitric oxide synthase: Acceleration of fracture healing via inducible nitric oxide synthase. Bone Joint Res 2017:6:-97. DOI: 10.1302/2046-3758.62.BJR-2016-0164.R2. © 2017 Park et al.

  15. JS-K, a Nitric Oxide Prodrug, Has Enhanced Cytotoxicity in Colon Cancer Cells with Knockdown of Thioredoxin Reductase 1

    PubMed Central

    Edes, Kornelia; Cassidy, Pamela; Shami, Paul J.; Moos, Philip J.

    2010-01-01

    Background The selenoenzyme thioredoxin reductase 1 has a complex role relating to cell growth. It is induced as a component of the cellular response to potentially mutagenic oxidants, but also appears to provide growth advantages to transformed cells by inhibiting apoptosis. In addition, selenocysteine-deficient or alkylated forms of thioredoxin reductase 1 have also demonstrated oxidative, pro-apoptotic activity. Therefore, a greater understanding of the role of thioredoxin reductase in redox initiated apoptotic processes is warranted. Methodology The role of thioredoxin reductase 1 in RKO cells was evaluated by attenuating endogenous thioredoxin reductase 1 expression with siRNA and then either inducing a selenium-deficient thioredoxin reductase or treatment with distinct redox challenges including, hydrogen peroxide, an oxidized lipid, 4-hydroxy-2-nonenol, and a nitric oxide donating prodrug. Thioredoxin redox status, cellular viability, and effector caspase activity were measured. Conclusions/Significance In cells with attenuated endogenous thioredoxin reductase 1, a stably integrated selenocysteine-deficient form of the enzyme was induced but did not alter either the thioredoxin redox status or the cellular growth kinetics. The oxidized lipid and the nitric oxide donor demonstrated enhanced cytotoxicity when thioredoxin reductase 1 was knocked-down; however, the effect was more pronounced with the nitric oxide prodrug. These results are consistent with the hypothesis that attenuation of the thioredoxin-system can promote apoptosis in a nitric oxide-dependent manner. PMID:20098717

  16. Nitric Oxide and ERK mediates regulation of cellular processes by Ecdysterone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omanakuttan, Athira; Bose, Chinchu; Pandurangan, Nanjan

    The complex process of wound healing is a major problem associated with diabetes, venous or arterial disease, old age and infection. A wide range of pharmacological effects including anabolic, anti-diabetic and hepato-protective activities have been attributed to Ecdysterone. In earlier studies, Ecdysterone has been shown to modulate eNOS and iNOS expression in diabetic animals and activate osteogenic differentiation through the Extracellular-signal-Regulated Kinase (ERK) pathway in periodontal ligament stem cells. However, in the wound healing process, Ecdysterone has only been shown to enhance granulation tissue formation in rabbits. There have been no studies to date, which elucidate the molecular mechanism underlyingmore » the complex cellular process involved in wound healing. The present study, demonstrates a novel interaction between the phytosteroid Ecdysterone and Nitric Oxide Synthase (NOS), in an Epidermal Growth Factor Receptor (EGFR)-dependent manner, thereby promoting cell proliferation, cell spreading and cell migration. These observations were further supported by the 4-amino-5-methylamino- 2′ ,7′ -difluorofluorescein diacetate (DAF FM) fluorescence assay which indicated that Ecdysterone activates NOS resulting in increased Nitric Oxide (NO) production. Additionally, studies with inhibitors of both the EGFR and ERK, demonstrated that Ecdysterone activates NOS through modulation of EGFR and ERK. These results clearly demonstrate, for the first time, that Ecdysterone enhances Nitric Oxide production and modulates complex cellular processes by activating ERK1/2 through the EGF pathway. - Highlights: • Ecdysterone significantly enhances cell migration in a dose dependent manner. • Ecdysterone augments cell spreading during the initial phase of cell migration through actin cytoskeletal rearrangement. • Ecdysterone enhances cell proliferation in a nitric oxide dependent manner. • Ecdysterone enhances nitric oxide production via activation of

  17. Agmatine enhances the anticonvulsant effect of lithium chloride on pentylenetetrazole-induced seizures in mice: Involvement of L-arginine/nitric oxide pathway.

    PubMed

    Bahremand, Arash; Ziai, Pouya; Khodadad, Tina Kabiri; Payandemehr, Borna; Rahimian, Reza; Ghasemi, Abbas; Ghasemi, Mehdi; Hedayat, Tina; Dehpour, Ahmad Reza

    2010-07-01

    After nearly 60years, lithium is still the mainstay in the treatment of mood disorders. In addition to its antimanic and antidepressant effects, lithium also has anticonvulsant properties. Similar to lithium, agmatine plays a protective role in the central nervous system against seizures and has been reported to enhance the effect of different antiepileptic agents. Moreover, both agmatine and lithium have modulatory effects on the L-arginine/nitric oxide pathway. This study was designed to investigate: (1) whether agmatine and lithium exert a synergistic effect against clonic seizures induced by pentylenetetrazole and (2) whether or not this synergistic effect is mediated through inhibition of the L-arginine/nitric oxide pathway. In our study, acute administration of a single potent dose of lithium chloride (30mg/kg ip) increased seizure threshold, whereas pretreatment with a low and independently noneffective dose of agmatine (3mg/kg) potentiated a subeffective dose of lithium (10mg/kg). N(G)-L-arginine methyl ester (L-NAME, nonspecific nitric oxide synthase inhibitor) at 1 and 5mg/kg and 7-nitroindazole (7-NI, preferential neuronal nitric oxide synthase inhibitor) at 15 and 30mg/kg augmented the anticonvulsant effect of the noneffective combination of lithium (10mg/kg ip) and agmatine (1mg/kg), whereas several doses (20 and 40mg/kg) of aminoguanidine (inducible nitric oxide synthase inhibitor) failed to alter the seizure threshold of the same combination. Furthermore, pretreatment with independently noneffective doses (30 and 60mg/kg) of L-arginine (substrate for nitric oxide synthase) inhibited the potentiating effect of agmatine (3mg/kg) on lithium (10mg/kg). Our findings demonstrate that agmatine and lithium chloride have synergistic anticonvulsant properties that may be mediated through the L-arginine/nitric oxide pathway. In addition, the role of constitutive nitric oxide synthase versus inducible nitric oxide synthase is prominent in this phenomenon

  18. The Moraxella catarrhalis nitric oxide reductase is essential for nitric oxide detoxification.

    PubMed

    Wang, Wei; Kinkel, Traci; Martens-Habbena, Willm; Stahl, David A; Fang, Ferric C; Hansen, Eric J

    2011-06-01

    Moraxella catarrhalis is a Gram-negative obligate aerobe that is an important cause of human respiratory tract infections. The M. catarrhalis genome encodes a predicted truncated denitrification pathway that reduces nitrate to nitrous oxide. We have previously shown that expression of both the M. catarrhalis aniA (encoding a nitrite reductase) and norB (encoding a putative nitric oxide reductase) genes is repressed by the transcriptional regulator NsrR under aerobic conditions and that M. catarrhalis O35E nsrR mutants are unable to grow in the presence of low concentrations of nitrite (W. Wang, et al., J. Bacteriol. 190:7762-7772, 2008). In this study, we constructed an M. catarrhalis norB mutant and showed that planktonic growth of this mutant is inhibited by low levels of nitrite, whether or not an nsrR mutation is present. To determine the importance of NorB in this truncated denitrification pathway, we analyzed the metabolism of nitrogen oxides by norB, aniA norB, and nsrR norB mutants. We found that norB mutants are unable to reduce nitric oxide and produce little or no nitrous oxide from nitrite. Furthermore, nitric oxide produced from nitrite by the AniA protein is bactericidal for a Moraxella catarrhalis O35E norB mutant but not for wild-type O35E bacteria under aerobic growth conditions in vitro, suggesting that nitric oxide catabolism in M. catarrhalis is accomplished primarily by the norB gene product. Measurement of bacterial protein S-nitrosylation directly implicates nitrosative stress resulting from AniA-dependent nitric oxide formation as a cause of the growth inhibition of norB and nsrR mutants by nitrite.

  19. A sub-nanomolar real-time nitric oxide probe: in vivo nitric oxide release in heart.

    PubMed

    Mantione, Kirk J; Stefano, George B

    2004-04-01

    Amperometric nitric oxide probes are critical in evaluating real-time nitric oxide levels. This valuable tool enables one to measure spontaneous baseline levels of nitric oxide as well as 'puffs' of the gaseous signal molecule that may last for only seconds to minutes. However, in the past, many probes suffered from a lack of sensitivity, durability and reliability, causing investigators to design numerous controls to support their data. Our laboratory evaluated the new ISO-NOPF100 NO probe manufactured by World Precision Instruments of Sarasota, Florida. An invertebrate in vivo heart preparation was used, which presents a high degree of difficuly in obtaining nitric oxide measurements due to space limitations, resulting in physical contact of the probe with tissues. Additionally, we used in vitro invertebrate ganglionic preparations as a comparison since this tissue releases spontaneous and low levels of NO. Calibration of the new probe demonstrated high linearity and sensitivity. The detection limit for this new probe was determined to be approximately two times lower than probes previously used in our laboratory. Basal nitric oxide fluctuations in Mytilus edulis heart and excised ganglia were able to be resolved in the sub-nanomolar range. The ISO-NOPF100 NO probe represents a significant advancement for measuring nitric oxide in real-time.

  20. Nitric Oxide Homeostasis in Neurodegenerative Diseases.

    PubMed

    Hannibal, Luciana

    2016-01-01

    The role of nitric oxide in the pathogenesis and progression of neurodegenerative illnesses such as Parkinson's and Alzheimer's diseases has become prominent over the years. Increased activity of the enzymes that produce reactive oxygen species, decreased activity of antioxidant enzymes and imbalances in glutathione pools mediate and mark the neurodegenerative process. Much of the oxidative damage of proteins is brought about by the overproduction of nitric oxide by nitric oxide synthases (NOS) and its subsequent reactivity with reactive oxygen species. Proteomic methods have advanced the field tremendously, by facilitating the quantitative assessment of differential expression patterns and oxidative modifications of proteins and alongside, mapping their non-canonical functions. As a signaling molecule involved in multiple biochemical pathways, the level of nitric oxide is subject to tight regulation. All three NOS isoforms display aberrant patterns of expression in Alzheimer's disease, altering intracellular signaling and routing oxidative stress in directions that are uncompounded. This review discusses the prime factors that control nitric oxide biosynthesis, reactivity footprints and ensuing effects in the development of neurodegenerative diseases.

  1. Vasodilator responses to nitric oxide are enhanced in mesenteric arteries of portal hypertensive rats.

    PubMed

    Heinemann, A; Stauber, R E

    1996-09-01

    Nitric oxide (NO) is discussed as a mediator of the splanchnic hyperaemia in portal hypertension. We assessed the vasorelaxation by the NO-dependent vasodilator acetylcholine, the NO donor 3-morpholino-sydnonimine (SIN-1) and forskolin, a stimulator of the adenylate cyclase pathway in potassium-preconstricted isolated perfused mesenteric arteries of portal vein-ligated and sham-operated rats. Dilator responses to acetylcholine and SIN-1 were significantly enhanced in vessels of portal vein-ligated rats as compared to sham-operated rats, whereas no difference was found in forskolin-induced vasodilatation. This suggests enhanced reactivity of the vasculature to NO in experimental portal hypertension.

  2. Hydroxyurea enhances SMN2 gene expression through nitric oxide release.

    PubMed

    Xu, Cheng; Chen, Xin; Grzeschik, Susanna M; Ganta, Madhuri; Wang, Ching H

    2011-02-01

    Small molecules that increase full-length survivor motor neuron (SMN) gene transcript are promising therapeutic candidates for spinal muscular atrophy (SMA). Hydroxyurea (HU) has recently been shown to increase full-length SMN transcript in cultured lymphocytes from patients with SMA. We investigate the mechanism by which HU enhances full-length SMN2 gene expression in SMA lymphocytes. Nitric oxide (NO) is a major intracellular metabolite of HU. We test whether NO donors can themselves enhance full-length SMN2 expression. Eighteen cell lines (five type I, five type II, six type III SMA, and two non-SMA controls) were treated with or without NO donors for 48 h. SMA cells treated with HU and three NO donors: two long-acting donors, Deta-NONOate and S-nitrosoglutathione, and one short-acting donor, 3-ethyl-3-(ethylaminoethyl)-1-hydroxy-2-oxo-1-triazene, resulted in significant increase in full-length SMN2 mRNA. These effects were abolished by co-treatment with an NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide. One short-acting NO donor, S-nitroso-N-acetyl-DL-penicillamine, failed to show significant effect on full-length SMN2 expression, possibly due to high degree of cytotoxicity. These results were observed using both densitometry and quantitative PCR methods. We conclude that HU enhances SMN2 expression through the release of NO. NO donors may themselves be considered as new therapeutic candidates for SMA.

  3. Role of oxidative stress and nitric oxide in atherothrombosis

    PubMed Central

    Lubos, Edith; Handy, Diane E.; Loscalzo, Joseph

    2008-01-01

    During the last decade basic and clinical research has highlighted the central role of reactive oxygen species (ROS) in cardiovascular disease. Enhanced production or attenuated degradation of ROS leads to oxidative stress, a process that affects endothelial and vascular function, and contributes to vascular disease. Nitric oxide (NO), a product of the normal endothelium, is a principal determinant of normal endothelial and vascular function. In states of inflammation, NO production by the vasculature increases considerably and, in conjunction with other ROS, contributes to oxidative stress. This review examines the role of oxidative stress and NO in mechanisms of endothelial and vascular dysfunction with an emphasis on atherothrombosis. PMID:18508590

  4. Hydrogen sulfide enhances nitric oxide-induced tolerance of hypoxia in maize (Zea mays L.).

    PubMed

    Peng, Renyi; Bian, Zhiyuan; Zhou, Lina; Cheng, Wei; Hai, Na; Yang, Changquan; Yang, Tao; Wang, Xinyu; Wang, Chongying

    2016-11-01

    Our data present H 2 S in a new role, serving as a multi-faceted transducer to different response mechanisms during NO-induced acquisition of tolerance to flooding-induced hypoxia in maize seedling roots. Nitric oxide (NO), serving as a secondary messenger, modulates physiological processes in plants. Recently, hydrogen sulfide (H 2 S) has been demonstrated to have similar signaling functions. This study focused on the effects of treatment with H 2 S on NO-induced hypoxia tolerance in maize seedlings. The results showed that treatment with the NO donor sodium nitroprusside (SNP) enhanced survival rate of submerged maize roots through induced accumulation of endogenous H 2 S. The induced H 2 S then enhanced endogenous Ca 2+ levels as well as the Ca 2+ -dependent activity of alcohol dehydrogenase (ADH), improving the capacity for antioxidant defense and, ultimately, the hypoxia tolerance in maize seedlings. In addition, NO induced the activities of key enzymes in H 2 S biosynthesis, such as L-cysteine desulfhydrases (L-CDs), O-acetyl-L-serine (thiol)lyase (OAS-TL), and β-Cyanoalanine Synthase (CAS). SNP-induced hypoxia tolerance was enhanced by the application of NaHS, but was eliminated by the H 2 S-synthesis inhibitor hydroxylamine (HA) and the H 2 S-scavenger hypotaurine (HT). H 2 S concurrently enhanced the transcriptional levels of relative hypoxia-induced genes. Together, our findings indicated that H 2 S serves as a multi-faceted transducer that enhances the nitric oxide-induced hypoxia tolerance in maize (Zea mays L.).

  5. Therapeutic strategies to address neuronal nitric oxide synthase deficiency and the loss of nitric oxide bioavailability in Duchenne Muscular Dystrophy.

    PubMed

    Timpani, Cara A; Hayes, Alan; Rybalka, Emma

    2017-05-25

    Duchenne Muscular Dystrophy is a rare and fatal neuromuscular disease in which the absence of dystrophin from the muscle membrane induces a secondary loss of neuronal nitric oxide synthase and the muscles capacity for endogenous nitric oxide synthesis. Since nitric oxide is a potent regulator of skeletal muscle metabolism, mass, function and regeneration, the loss of nitric oxide bioavailability is likely a key contributor to the chronic pathological wasting evident in Duchenne Muscular Dystrophy. As such, various therapeutic interventions to re-establish either the neuronal nitric oxide synthase protein deficit or the consequential loss of nitric oxide synthesis and bioavailability have been investigated in both animal models of Duchenne Muscular Dystrophy and in human clinical trials. Notably, the efficacy of these interventions are varied and not always translatable from animal model to human patients, highlighting a complex interplay of factors which determine the downstream modulatory effects of nitric oxide. We review these studies herein.

  6. 21 CFR 868.5165 - Nitric oxide administration apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nitric oxide administration apparatus. 868.5165... apparatus. (a) Identification. The nitric oxide administration apparatus is a device used to add nitric oxide to gases that are to be breathed by a patient. The nitric oxide administration apparatus is to be...

  7. 21 CFR 868.5165 - Nitric oxide administration apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nitric oxide administration apparatus. 868.5165... apparatus. (a) Identification. The nitric oxide administration apparatus is a device used to add nitric oxide to gases that are to be breathed by a patient. The nitric oxide administration apparatus is to be...

  8. Nitric oxide is cytoprotective to breast cancer spheroids vulnerable to estrogen-induced apoptosis

    PubMed Central

    Shafran, Yana; Zurgil, Naomi; Ravid-Hermesh, Orit; Sobolev, Maria; Afrimzon, Elena; Hakuk, Yaron; Shainberg, Asher; Deutsch, Mordechai

    2017-01-01

    Estrogen-induced apoptosis has become a successful treatment for postmenopausal metastatic, estrogen receptor-positive breast cancer. Nitric oxide involvement in the response to this endocrine treatment and its influence upon estrogen receptor-positive breast cancer progression is still unclear. Nitric oxide impact on the MCF7 breast cancer line, before and after estrogen-induced apoptosis, was investigated in 3D culture systems using unique live-cell imaging methodologies. Spheroids were established from MCF7 cells vulnerable to estrogen-induced apoptosis, before and after exposure to estrogen. Spheroids derived from estrogen-treated cells exhibited extensive apoptosis levels with downregulation of estrogen receptor expression, low proliferation rate and reduced metabolic activity, unlike spheroids derived from non-treated cells. In addition to basic phenotypic differences, these two cell cluster types are diverse in their reactions to exogenous nitric oxide. A dual effect of nitric oxide was observed in the breast cancer phenotype sensitive to estrogen-induced apoptosis. Nitric oxide, at the nanomolar level, induced cell proliferation, high metabolic activity, downregulation of estrogen receptor and enhanced collective invasion, contributing to a more aggressive phenotype. Following hormone supplementation, breast cancer 3D clusters were rescued from estrogen-induced apoptosis by these low nitric oxide-donor concentrations, since nitric oxide attenuates cell death levels, upregulates survivin expression and increases metabolic activity. Higher nitric oxide concentrations (100nM) inhibited cell growth, metabolism and promoted apoptosis. These results suggest that nitric oxide, in nanomolar concentrations, may inhibit estrogen-induced apoptosis, playing a major role in hormonal therapy. Inhibiting nitric oxide activity may benefit breast cancer patients and ultimately reduce tumor recurrence. PMID:29312577

  9. Piper sarmentosum increases nitric oxide production in oxidative stress: a study on human umbilical vein endothelial cells.

    PubMed

    Ugusman, Azizah; Zakaria, Zaiton; Hui, Chua Kien; Nordin, Nor Anita Megat Mohd

    2010-07-01

    Nitric oxide produced by endothelial nitric oxide synthase (eNOS) possesses multiple anti-atherosclerotic properties. Hence, enhanced expression of eNOS and increased Nitric oxide levels may protect against the development of atherosclerosis. Piper sarmentosum is a tropical plant with antioxidant and anti-inflammatory activities. This study aimed to investigate the effects of Piper sarmentosum on the eNOS and Nitric oxide pathway in cultured human umbilical vein endothelial cells (HUVECs). HUVECS WERE DIVIDED INTO FOUR GROUPS: control, treatment with 180 microM hydrogen peroxide (H(2)O(2)), treatment with 150 microg/mL aqueous extract of Piper sarmentosum, and concomitant treatment with aqueous extract of PS and H(2)O(2) for 24 hours. Subsequently, HUVECs were harvested and eNOS mRNA expression was determined using qPCR. The eNOS protein level was measured using ELISA, and the eNOS activity and Nitric oxide level were determined by the Griess reaction. Human umbilical vein endothelial cells treated with aqueous extract of Piper sarmentosum showed a marked induction of Nitric oxide. Treatment with PS also resulted in increased eNOS mRNA expression, eNOS protein level and eNOS activity in HUVECs. Aqueous extract of Piper sarmentosum may improve endothelial function by promoting NO production in HUVECs.

  10. Oxidation of nitroxyl anion to nitric oxide by copper ions

    PubMed Central

    Nelli, Silvia; Hillen, Mark; Buyukafsar, Kansu; Martin, William

    2000-01-01

    This study made use of a nitric oxide-sensitive electrode to examine possible means of generating nitric oxide from nitroxyl anion (NO−) released upon the decomposition of Angeli's salt. Our results show that copper ions (from CuSO4) catalyze the rapid and efficient oxidation of nitroxyl to nitric oxide. Indeed, the concentrations of copper required to do so (0.1–100 μM) are roughly 100-times lower than those required to generate equivalent amounts of nitric oxide from S-nitroso-N-acetyl-D,L-penicillamine (SNAP). Experiments with ascorbate (1 mM), which reduces Cu2+ ions to Cu+, and with the Cu2+ chelators, EDTA and cuprizone, and the Cu+ chelator, neocuproine, each at 1 mM, suggest that the oxidation is catalyzed by copper ions in both valency states. Some compounds containing other transition metals, i.e. methaemoglobin, ferricytochrome c and Mn(III)TMPyP, were much less efficient than CuSO4 in catalyzing the formation of nitric oxide from nitroxyl, while FeSO4, FeCl3, MnCl2, and ZnSO4 were inactive. Of the copper containing enzymes examined, Cu-Zn superoxide dismutase and ceruloplasmin were weak generators of nitric oxide from nitroxyl, even at concentrations (2500 and 30 u ml−1, respectively) vastly greater than are present endogenously. Two others, ascorbate oxidase (10 u ml−1) and tyrosinase (250 u ml−1) were inactive. Our findings suggest that a copper-containing enzyme may be responsible for the rapid oxidation of nitroxyl to nitric oxide by cells, but the identity of such an enzyme remains elusive. PMID:10991931

  11. Stimulation of nitric oxide synthesis by the aqueous extract of Panax ginseng root in RAW 264.7 cells

    PubMed Central

    Friedl, Roswitha; Moeslinger, Thomas; Kopp, Brigitte; Spieckermann, Paul Gerhard

    2001-01-01

    In this study, we investigated the effect of Panax ginseng root aqueous extracts upon inducible nitric oxide synthesis in RAW 264.7 cells. Panax ginseng root extract has been used in the Asian world for centuries as a traditional herb to enhance physical strength and resistance and is becoming more and more popular in Europe and North America. Incubation of murine macrophages (RAW 264.7 cells) with increasing amounts of aqueous extracts of Panax ginseng (0.05 – 0.8 μg μl−1) showed a dose dependent stimulation of inducible nitric oxide synthesis. Polysaccharides isolated from Panax ginseng showed strong stimulation of inducible nitric oxide synthesis, whereas a triterpene-enriched fraction from an aqueous extract of Panax ginseng did not show any stimulation. Inducible nitric oxide synthase protein expression was enhanced in a dose dependent manner as revealed by immunoblotting when cells were incubated with increasing amounts of Panax ginseng extract. This was associated with an incline in inducible nitric oxide synthase mRNA-levels as determined by semiquantitative polymerase chain reaction and electromobility shift assay studies indicated enhanced nuclear factor-κB DNA binding activity. As nitric oxide plays an important role in immune function, Panax ginseng treatment could modulate several aspects of host defense mechanisms due to stimulation of the inducible nitric oxide synthase. PMID:11739242

  12. Unintended inhalation of nitric oxide by contamination of compressed air: physiologic effects and interference with intended nitric oxide inhalation in acute lung injury.

    PubMed

    Benzing, A; Loop, T; Mols, G; Geiger, K

    1999-10-01

    Compressed air from a hospital's central gas supply may contain nitric oxide as a result of air pollution. Inhaled nitric oxide may increase arterial oxygen tension and decrease pulmonary vascular resistance in patients with acute lung injury and acute respiratory distress syndrome. Therefore, the authors wanted to determine whether unintentional nitric oxide inhalation by contamination of compressed air influences arterial oxygen tension and pulmonary vascular resistance and interferes with the therapeutic use of nitric oxide. Nitric oxide concentrations in the compressed air of a university hospital were measured continuously by chemiluminescence during two periods (4 and 2 weeks). The effects of unintended nitric oxide inhalation on arterial oxygen tension (n = 15) and on pulmonary vascular resistance (n = 9) were measured in patients with acute lung injury and acute respiratory distress syndrome by changing the source of compressed air of the ventilator from the hospital's central gas supply to a nitric oxide-free gas tank containing compressed air. In five of these patients, the effects of an additional inhalation of 5 ppm nitric oxide were evaluated. During working days, compressed air of the hospital's central gas supply contained clinically effective nitric oxide concentrations (> 80 parts per billion) during 40% of the time. Change to gas tank-supplied nitric oxide-free compressed air decreased the arterial oxygen tension by 10% and increased pulmonary vascular resistance by 13%. The addition of 5 ppm nitric oxide had a minimal effect on arterial oxygen tension and pulmonary vascular resistance when added to hospital-supplied compressed air but improved both when added to tank-supplied compressed air. Unintended inhalation of nitric oxide increases arterial oxygen tension and decreases pulmonary vascular resistance in patients with acute lung injury and acute respiratory distress syndrome. The unintended nitric oxide inhalation interferes with the

  13. Effect of placental tissue on inhibition of uterine contraction by nitric oxide donors.

    PubMed

    Syal, A; Okawa, T; Vedernikov, Y; Chwalisz, K; Saade, G R; Garfield, R E

    1999-08-01

    Our purpose was to test the hypothesis that placental tissue modulates the effect of nitric oxide on spontaneous uterine contractility in pregnant rats. Rings (approximately 4 mm) of uterus taken from rats on day 14 (midpregnancy, n = 6), day 18 (late pregnancy, n = 4), and day 22 (term, n = 4) of gestation were placed in organ chambers filled with Krebs-bicarbonate buffer bubbled with 5% carbon dioxide in air (37 degrees C, pH approximately 7.4) for isometric tension recording. In some rings a piece of placenta was left attached to the uterine wall. In the other rings the fetuses, placentas, and membranes were removed completely. Change of spontaneous contractions of the rings (percentage change of basal integral activity for 10 minutes) in response to cumulative concentrations of the nitric oxide donors diethylamine-nitric oxide and nitroglycerin (10(-6) mol/L to 10(-4) mol/L) were compared between rings with and without placenta. Diethylamine-nitric oxide and nitroglycerin inhibited spontaneous uterine contractions in rings from midpregnancy, in both the absence and the presence of placenta. In rings from midpregnancy, the maximal inhibition of contractions by diethylamine-nitric oxide but not by nitroglycerin was significantly (P <.05) higher in the presence (26.7% +/- 3.5% of basal activity) than in the absence (39. 6% +/- 3.3%) of placenta. Inhibition of contraction by nitric oxide donors in rings from late and term pregnancy was less than in midpregnancy, and the presence of placental tissue did not influence the responses. The presence of placental tissue enhances inhibition of uterine contractility by agents that spontaneously release nitric oxide, such as diethylamine-nitric oxide, but not by nitroglycerin, which requires metabolic transformation for nitric oxide to be released. Refractoriness to nitric oxide near or at term does not depend on the presence or absence of placental tissue.

  14. Process for combined control of mercury and nitric oxide.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livengood, C. D.; Mendelsohn, M. H.

    Continuing concern about the effects of mercury in the environment may lead to requirements for the control of mercury emissions from coal-fired power plants. If such controls are mandated, the use of existing flue-gas cleanup systems, such as wet scrubbers currently employed for flue-gas desulfurization, would be desirable, Such scrubbers have been shown to be effective for capturing oxidized forms of mercury, but cannot capture the very insoluble elemental mercury (Hg{sup 0}) that can form a significant fraction of the total emissions. At Argonne National Laboratory, we have proposed and tested a concept for enhancing removal of Hg{sup 0}, as well as nitric oxide, through introduction of an oxidizing agent into the flue gas upstream of a scrubber, which readily absorbs the soluble reaction products. Recently, we developed a new method for introducing the oxidizing agent into the flue-gas stream that dramatically improved reactant utilization. The oxidizing agent employed was NOXSORB{trademark}, which is a commercial product containing chloric acid and sodium chlorate. When a dilute solution of this agent was introduced into a gas stream containing Hg{sup 0} and other typical flue-gas species at 300 F, we found that about 100% of the mercury was removed from the gas phase and recovered in process liquids. At the same time, approximately 80% of the nitric oxide was removed. The effect of sulfur dioxide on this process was also investigated and the results showed that it slightly decreased the amount of Hg{sup 0} oxidized while appearing to increase the removal of nitric oxide from the gas phase. We are currently testing the effects of variations in NOXSORB{trademark} concentration, sulfur dioxide concentration, nitric oxide concentration, and reaction time (residence time). Preliminary economic projections based on the results to date indicate that the chemical cost for nitric oxide oxidation could be less thanmore » $$5,000/ton removed, while for Hg{sup 0

  15. Enhancement of fracture healing in the rat, modulated by compounds that stimulate inducible nitric oxide synthase

    PubMed Central

    Rajfer, R. A.; Kilic, A.; Neviaser, A. S.; Schulte, L. M.; Hlaing, S. M.; Landeros, J.; Ferrini, M. G.; Ebramzadeh, E.

    2017-01-01

    Objectives We investigated the effects on fracture healing of two up-regulators of inducible nitric oxide synthase (iNOS) in a rat model of an open femoral osteotomy: tadalafil, a phosphodiesterase inhibitor, and the recently reported nutraceutical, COMB-4 (consisting of L-citrulline, Paullinia cupana, ginger and muira puama), given orally for either 14 or 42 days. Materials and Methods Unilateral femoral osteotomies were created in 58 male rats and fixed with an intramedullary compression nail. Rats were treated daily either with vehicle, tadalafil or COMB-4. Biomechanical testing of the healed fracture was performed on day 42. The volume, mineral content and bone density of the callus were measured by quantitative CT on days 14 and 42. Expression of iNOS was measured by immunohistochemistry. Results When compared with the control group, the COMB-4 group exhibited 46% higher maximum strength (t-test, p = 0.029) and 92% higher stiffness (t-test, p = 0.023), but no significant changes were observed in the tadalafil group. At days 14 and 42, there was no significant difference between the three groups with respect to callus volume, mineral content and bone density. Expression of iNOS at day 14 was significantly higher in the COMB-4 group which, as expected, had returned to baseline levels at day 42. Conclusion This study demonstrates an enhancement in fracture healing by an oral natural product known to augment iNOS expression. Cite this article: R. A. Rajfer, A. Kilic, A. S. Neviaser, L. M. Schulte, S. M. Hlaing, J. Landeros, M. G. Ferrini, E. Ebramzadeh, S-H. Park. Enhancement of fracture healing in the rat, modulated by compounds that stimulate inducible nitric oxide synthase: Acceleration of fracture healing via inducible nitric oxide synthase. Bone Joint Res 2017:6:–97. DOI: 10.1302/2046-3758.62.BJR-2016-0164.R2. PMID:28188129

  16. Two Dimensional Polymer That Generates Nitric Oxide.

    DOEpatents

    McDonald, William F.; Koren, Amy B.

    2005-10-04

    A polymeric composition that generates nitric oxide and a process for rendering the surface of a substrate nonthrombogenic by applying a coating of the polymeric composition to the substrate are disclosed. The composition comprises: (1) a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, and (ii) a crosslinking agent containing functional groups capable of reacting with the amino groups; and (2) a plurality of nitric oxide generating functional groups associated with the crosslinked chemical combination. Once exposed to a physiological environment, the coating generates nitric oxide thereby inhibiting platelet aggregation. In one embodiment, the nitric oxide generating functional groups are provided by a nitrated compound (e.g., nitrocellulose) imbedded in the polymeric composition. In another embodiment, the nitric oxide generating functional groups comprise N2O2- groups covalently bonded to amino groups on the polymer.

  17. Regular exercise enhances blood pressure lowering effect of acetylcholine by increased contribution of nitric oxide.

    PubMed

    Dörnyei, G; Monos, E; Kaley, G; Koller, A

    2000-01-01

    This study is aimed to test the hypothesis, that short-term daily bouts of exercise alter the endothelial regulation of peripheral vascular resistance by nitric oxide. Rats ran on a treadmill once a day, 5 days a week, for an average of three weeks with gradually increasing intensity (EX), while a control group remained sedentary (SED). Dose dependent reductions in mean arterial blood pressure (resting MABP; SED: 120.0 +/- 3.4 and EX: 127.8 +/- 4.0 mm Hg) of pentobarbital anesthetized rats to intravenous endothelium independent dilator sodium nitropmsside (SNP; 0.6-3.0 microg/kg) were not different in EX and SED animals. In contrast, dose dependent reductions in MABP to endothelium dependent dilator acetylcholine (ACh) were significantly enhanced in EX compared to those in SED rats (at 0.5 and 1.0 microg/kg ACh: 60.3 +/- 2.4 and 66.5 +/- 1.8 vs 52.8 +/- 2.0 and 59.8 +/- 1.7 mmHg, respectively, p<0.01). There was no significant difference in the heart rate (HR) response to ACh and SNP in the two groups of rats. Intravenous administration of 20 mg/kg Nomega-nitro-L-arginine (L-NNA, a nitric oxide synthase inhibitor) elicited a similar increase (approximately 30%) in the MABP in the two groups and eliminated the difference between ACh-induced blood pressure lowering responses in EX and SED rats (at 0.5 and 1.0 microg/kg ACh: 44.6 +/- 4.7 and 56.3 +/- 4.4 vs 50.9 +/- 4.5 and 59.4 +/- 3.6 mm Hg, respectively). Thus, we suggest that the enhanced acetylcholine-induced decrease in systemic blood pressure following regular daily exercise is primarily due to the augmented synthesis of nitric oxide in the endothelium of peripheral vasculature. This change in the function of endothelium could be important in the adaptation of circulation to exercise training.

  18. Nitric oxide

    Integrated Risk Information System (IRIS)

    Nitric oxide ; CASRN 10102 - 43 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  19. Nitric oxide leads to cytoskeletal reorganization in the retinal pigment epithelium under oxidative stress.

    PubMed

    Sripathi, Srinivas R; He, Weilue; Um, Ji-Yeon; Moser, Trevor; Dehnbostel, Stevie; Kindt, Kimberly; Goldman, Jeremy; Frost, Megan C; Jahng, Wan Jin

    2012-01-01

    Light is a risk factor for various eye diseases, including age-related macular degeneration (AMD) and retinitis pigmentosa (RP). We aim to understand how cytoskeletal proteins in the retinal pigment epithetlium (RPE) respond to oxidative stress, including light and how these responses affect apoptotic signaling. Previously, proteomic analysis revealed that the expression levels of vimentin and serine/threonine protein phosphatase 2A (PP2A) are significantly increased when mice are exposed under continuous light for 7 days compared to a condition of 12 hrs light/dark cycling exposure using retina degeneration 1 (rd1) model. When melatonin is administered to animals while they are exposed to continuous light, the levels of vimentin and PP2A return to a normal level. Vimentin is a substrate of PP2A that directly binds to vimentin and dephosphorylates it. The current study shows that upregulation of PP2Ac (catalytic subunit) phosphorylation negatively correlates with vimentin phosphorylation under stress condition. Stabilization of vimentin appears to be achieved by decreased PP2Ac phosphorylation by nitric oxide induction. We tested our hypothesis that site-specific modifications of PP2Ac may drive cytoskeletal reorganization by vimentin dephosphorylation through nitric oxide signaling. We speculate that nitric oxide determines protein nitration under stress conditions. Our results demonstrate that PP2A and vimentin are modulated by nitric oxide as a key element involved in cytoskeletal signaling. The current study suggests that external stress enhances nitric oxide to regulate PP2Ac and vimentin phosphorylation, thereby stabilizing or destabilizing vimentin. Phosphorylation may result in depolymerization of vimentin, leading to nonfilamentous particle formation. We propose that a stabilized vimentin might act as an anti-apoptotic molecule when cells are under oxidative stress.

  20. Nitric oxide leads to cytoskeletal reorganization in the retinal pigment epithelium under oxidative stress

    PubMed Central

    Um, Ji-Yeon; Moser, Trevor; Dehnbostel, Stevie; Kindt, Kimberly; Goldman, Jeremy; Frost, Megan C.; Jahng, Wan Jin

    2016-01-01

    Light is a risk factor for various eye diseases, including age-related macular degeneration (AMD) and retinitis pigmentosa (RP). We aim to understand how cytoskeletal proteins in the retinal pigment epithetlium (RPE) respond to oxidative stress, including light and how these responses affect apoptotic signaling. Previously, proteomic analysis revealed that the expression levels of vimentin and serine/threonine protein phosphatase 2A (PP2A) are significantly increased when mice are exposed under continuous light for 7 days compared to a condition of 12 hrs light/dark cycling exposure using retina degeneration 1 (rd1) model. When melatonin is administered to animals while they are exposed to continuous light, the levels of vimentin and PP2A return to a normal level. Vimentin is a substrate of PP2A that directly binds to vimentin and dephosphorylates it. The current study shows that upregulation of PP2Ac (catalytic subunit) phosphorylation negatively correlates with vimentin phosphorylation under stress condition. Stabilization of vimentin appears to be achieved by decreased PP2Ac phosphorylation by nitric oxide induction. We tested our hypothesis that site-specific modifications of PP2Ac may drive cytoskeletal reorganization by vimentin dephosphorylation through nitric oxide signaling. We speculate that nitric oxide determines protein nitration under stress conditions. Our results demonstrate that PP2A and vimentin are modulated by nitric oxide as a key element involved in cytoskeletal signaling. The current study suggests that external stress enhances nitric oxide to regulate PP2Ac and vimentin phosphorylation, thereby stabilizing or destabilizing vimentin. Phosphorylation may result in depolymerization of vimentin, leading to nonfilamentous particle formation. We propose that a stabilized vimentin might act as an anti-apoptotic molecule when cells are under oxidative stress. PMID:27974994

  1. Nitric oxide synthase generates nitric oxide locally to regulate compartmentalized protein S-nitrosylation and protein trafficking

    PubMed Central

    Iwakiri, Yasuko; Satoh, Ayano; Chatterjee, Suvro; Toomre, Derek K.; Chalouni, Cecile M.; Fulton, David; Groszmann, Roberto J.; Shah, Vijay H.; Sessa, William C.

    2006-01-01

    Nitric oxide (NO) is a highly diffusible and short-lived physiological messenger. Despite its diffusible nature, NO modifies thiol groups of specific cysteine residues in target proteins and alters protein function via S-nitrosylation. Although intracellular S-nitrosylation is a specific posttranslational modification, the defined localization of an NO source (nitric oxide synthase, NOS) with protein S-nitrosylation has never been directly demonstrated. Endothelial NOS (eNOS) is localized mainly on the Golgi apparatus and in plasma membrane caveolae. Here, we show by using eNOS targeted to either the Golgi or the nucleus that S-nitrosylation is concentrated at the primary site of eNOS localization. Furthermore, localization of eNOS on the Golgi enhances overall Golgi protein S-nitrosylation, the specific S-nitrosylation of N-ethylmaleimide-sensitive factor and reduces the speed of protein transport from the endoplasmic reticulum to the plasma membrane in a reversible manner. These data indicate that local NOS action generates organelle-specific protein S-nitrosylation reactions that can regulate intracellular transport processes. PMID:17170139

  2. Modulation of parathion toxicity by glucose feeding: Is nitric oxide involved?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Jing; Gupta, Ramesh C.; Goad, John T.

    2007-03-15

    Glucose feeding can markedly exacerbate the toxicity of the anticholinesterase insecticide, parathion. We determined the effects of parathion on brain nitric oxide and its possible role in potentiation of toxicity by glucose feeding. Adult rats were given water or 15% glucose in water for 3 days and challenged with vehicle or parathion (18 mg/kg, s.c.) on day 4. Functional signs, plasma glucose and brain cholinesterase, citrulline (an indicator of nitric oxide production) and high-energy phosphates (HEPs) were measured 1-3 days after parathion. Glucose feeding exacerbated cholinergic toxicity. Parathion increased plasma glucose (15-33%) and decreased cortical cholinesterase activity (81-90%), with nomore » significant differences between water and glucose treatment groups. In contrast, parathion increased brain regional citrulline (40-47%) and decreased HEPs (18-40%) in rats drinking water, with significantly greater changes in glucose-fed rats (248-363% increase and 31-61% decrease, respectively). We then studied the effects of inhibiting neuronal nitric oxide synthase (nNOS) by 7-nitroindazole (7NI, 30 mg/kg, i.p. x4) on parathion toxicity and its modulation by glucose feeding. Co-exposure to parathion and 7NI led to a marked increase in cholinergic signs of toxicity and lethality, regardless of glucose intake. Thus, glucose feeding enhanced the accumulation of brain nitric oxide following parathion exposure, but inhibition of nitric oxide synthesis was ineffective at counteracting increased parathion toxicity associated with glucose feeding. Evidence is therefore presented to suggest that nitric oxide may play both toxic and protective roles in cholinergic toxicity, and its precise contribution to modulation by glucose feeding requires further investigation.« less

  3. Nitric oxide scavengers differentially inhibit ammonia oxidation in ammonia-oxidizing archaea and bacteria.

    PubMed

    Sauder, Laura A; Ross, Ashley A; Neufeld, Josh D

    2016-04-01

    Differential inhibitors are important for measuring the relative contributions of microbial groups, such as ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), to biogeochemical processes in environmental samples. In particular, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) represents a nitric oxide scavenger used for the specific inhibition of AOA, implicating nitric oxide as an intermediate of thaumarchaeotal ammonia oxidation. This study investigated four alternative nitric oxide scavengers for their ability to differentially inhibit AOA and AOB in comparison to PTIO. Caffeic acid, curcumin, methylene blue hydrate and trolox were tested onNitrosopumilus maritimus, two unpublished AOA representatives (AOA-6f and AOA-G6) as well as the AOB representative Nitrosomonas europaea All four scavengers inhibited ammonia oxidation by AOA at lower concentrations than for AOB. In particular, differential inhibition of AOA and AOB by caffeic acid (100 μM) and methylene blue hydrate (3 μM) was comparable to carboxy-PTIO (100 μM) in pure and enrichment culture incubations. However, when added to aquarium sponge biofilm microcosms, both scavengers were unable to inhibit ammonia oxidation consistently, likely due to degradation of the inhibitors themselves. This study provides evidence that a variety of nitric oxide scavengers result in differential inhibition of ammonia oxidation in AOA and AOB, and provides support to the proposed role of nitric oxide as a key intermediate in the thaumarchaeotal ammonia oxidation pathway. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Role of nitric oxide in long-term potentiation of the rat medial vestibular nuclei.

    PubMed

    Grassi, S; Pettorossi, V E

    2000-01-01

    In rat brainstem slices, we investigated the role of nitric oxide in long-term potentiation induced in the ventral portion of the medial vestibular nuclei by high-frequency stimulation of the primary vestibular afferents. The nitric oxide scavenger [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide ] and the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester were administered before and after induction of potentiation. Both drugs completely prevented long-term potentiation, whereas they did not impede the potentiation build-up, or affect the already established potentiation. These results demonstrate that the induction, but not the maintenance of vestibular long-term potentiation, depends on the synthesis and release into the extracellular medium of nitric oxide. In addition, we analysed the effect of the nitric oxide donor sodium nitroprusside on vestibular responses. Sodium nitroprusside induced long-term potentiation, as evidenced through the field potential enhancement and unit peak latency decrease. This potentiation was impeded by D, L-2-amino-5-phosphonopentanoic acid, and was reduced under blockade of synaptosomal platelet-activating factor receptors by ginkgolide B and group I metabotropic glutamate receptors by (R,S)-1-aminoindan-1, 5-dicarboxylic acid. When reduced, potentiation fully developed following the washout of antagonist, demonstrating an involvement of platelet-activating factor and group I metabotropic glutamate receptors in its full development. Potentiation induced by sodium nitroprusside was also associated with a decrease in the paired-pulse facilitation ratio, which persisted under ginkgolide B, indicating that nitric oxide increases glutamate release independently of platelet-activating factor-mediated presynaptic events. We suggest that nitric oxide, released after the activation of N-methyl-D-aspartate receptors, acts as a retrograde messenger leading to an enhancement of glutamate release to a

  5. Nitric oxide protects murine embryonic liver cells (BNL CL.2) from cytotoxicity induced by glucose deprivation.

    PubMed

    Pae, H O; Kim, H G; Paik, Y S; Paik, S G; Kim, Y M; Oh, G S; Chung, H T

    2000-03-01

    We investigated the protective effects of nitric oxide on cell death of murine embryonic liver cells (BNL CL.2) after glucose deprivation. Endogenous nitric oxide production by BNL CL.2 cells was induced by 6 hr pretreatment with interferon-gamma and lipopolysaccharide. We used sodium nitroprusside and S-nitroso-L-glutathione as exogenous nitric oxide-generating compounds. All agents were used at doses that did not show direct cytotoxicity as measured by crystal violet staining assay. In the BNL CL.2 cells, the viability dropped very steeply after 24 hr incubation with glucose-free media. Endogenous nitric oxide produced by treatment of the cells with interferon-gamma and lipopolysaccharide protected the cells from glucose deprivation-induced cytotoxicity, but did not protect them in the presence of the nitric oxide synthesis inhibitor, N(G)-monomethyl-L-arginine. Exogenous nitric oxide protected the cells from glucose deprivation-induced cytotoxicity in a concentration-dependent manner. Cytoprotection by nitric oxide donors was abolished by the use of nitric oxide scavenger, 2-phenyl-4,4,5,5,-tetramethylimidazole, but not by the soluble guanosine cyclase inhibitor, 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one. In addition, cytoprotective effects comparable to endogenous or exogenous nitric oxide were not observed when the cells were incubated with dibutyl guanosine 3',5'-cyclic monophosphate. Based upon these results, we suggest that nitric oxide may enhance the cell survival of BNL CL.2 cells after glucose deprivation via a guanosine 3',5'-cyclic monophosphate-independent pathway.

  6. Dobesilate enhances endothelial nitric oxide synthase-activity in macro- and microvascular endothelial cells

    PubMed Central

    Suschek, Christoph; Kolb, Hubert; Kolb-Bachofen, Victoria

    1997-01-01

    Dobesilate is used for normalizing vascular dysfunction in a number of diseases. In search for an effect on endothelial NO production, macrovascular endothelial cells from rat aorta, microvascular endothelial cells from rat exocrine pancreatic tissue, and capillary endothelial cells from rat islets, were cultured in the presence or absence of Mg-Dobesilate. The activity of constitutive nitric oxide synthase (ecNOS) in resident cells as well as of inducible nitric oxide synthase (iNOS) in cytokine-activated cells was measured indirectly by recording the citrulline concentrations in culture supernatants.In each of the different endothelial cells Mg-Dobesilate incubation (0.25–1 mM) for 24 h led to a significant and concentration-dependent increase in ecNOS-activities. With cytokine-activated endothelial cell cultures only moderate effects were seen with little or no concentration-dependency. Addition of the NOS-inhibitor NG-monomethyl-L-arginine led to a significant suppression of citrulline formation in all cultures as an evidence for the enzyme specificity of these effects.iNOS- and ecNOS-specific reverse transcription and semi-quantitative polymerase chain reaction (RT–PCR) with RNA from resident or cytokine-activated endothelial cells gave no evidence for an increase in NOS-specific mRNA after Mg-Dobesilate-treatment. Furthermore, Dobesilate-mediated enhancement of NO synthesis in resting endothelial cells was not due to iNOS induction in these cells, as no iNOS-specific signal was found by RT–PCR. PMID:9421302

  7. Nitric Oxide as a Mediator of Oxidant Lung Injury Due to Paraquat

    NASA Astrophysics Data System (ADS)

    Berisha, Hasan I.; Pakbaz, Hedayatollah; Absood, Afaf; Said, Sami I.

    1994-08-01

    At low concentrations, nitric oxide is a physiological transmitter, but in excessive concentrations it may cause cell and tissue injury. We report that in acute oxidant injury induced by the herbicide paraquat in isolated guinea pig lungs, nitric oxide synthesis was markedly stimulated, as evidenced by increased levels of cyclic GMP in lung perfusate and of nitrite and L-citrulline production in lung tissue. All signs of injury, including increased airway and perfusion pressures, pulmonary edema, and protein leakage into the airspaces, were dose-dependently attenuated or totally prevented by either N^G-nitro-L-arginine methyl ester or N^ω-nitro-L-arginine, selective and competitive inhibitors of nitric oxide synthase. Protection was reversed by excess L-arginine but not by its enantiomer D-arginine. When blood was added to the lung perfusate, the paraquat injury was moderated or delayed as it was when paraquat was given to anesthetized guinea pigs. The rapid onset of injury and its failure to occur in the absence of Ca2+ suggest that constitutive rather than inducible nitric oxide synthase was responsible for the stimulated nitric oxide synthesis. The findings indicate that nitric oxide plays a critical role in the production of lung tissue injury due to paraquat, and it may be a pathogenetic factor in other forms of oxidant tissue injury.

  8. Separate Nitrite, Nitric Oxide, and Nitrous Oxide Reducing Fractions from Pseudomonas perfectomarinus

    PubMed Central

    Payne, W. J.; Riley, P. S.; Cox, C. D.

    1971-01-01

    Pseudomonas perfectomarinus was found to grow anaerobically at the expense of nitrate, nitrite, or nitrous oxide but not chlorate or nitric oxide. In several repetitive experiments, anaerobic incubation in culture media containing nitrate revealed that an average of 82% of the cells in aerobically grown populations were converted to the capacity for respiration of nitrate. Although they did not form colonies under these conditions, the bacteria synthesized the denitrifying enzymes within 3 hr in the absence of oxygen or another acceptable inorganic oxidant. This was demonstrated by the ability, after anaerobic incubation, of cells and of extracts to reduce nitrite, nitric oxide, and nitrous oxide to nitrogen. From crude extracts of cells grown on nitrate, nitrite, or nitrous oxide, separate complex fractions were obtained that utilized reduced nicotinamide adenine dinucleotide as the source of electrons for the reduction of (i) nitrite to nitric oxide, (ii) nitric oxide to nitrous oxide, and (iii) nitrous oxide to nitrogen. Gas chromatographic analyses revealed that each of these fractions reduced only one of the nitrogenous oxides. PMID:4324803

  9. Effect of fluoroquinolone on the enhanced nitric oxide-induced peripheral vasodilation seen in cirrhosis.

    PubMed

    Chin-Dusting, J P; Rasaratnam, B; Jennings, G L; Dudley, F J

    1997-12-01

    In patients with cirrhosis, portosystemic shunts allow intestinal bacteria and endotoxin to enter the systemic circulation. Endotoxemia may induce increased synthesis of nitric oxide, thereby contributing to arterial vasodilation. To test the hypothesis that the antibiotic norfloxacin blocks the effects of nitric oxide. Placebo-controlled, double-blind, crossover study. Alfred Hospital, Melbourne, Australia. 9 patients with alcohol-related cirrhosis and 10 healthy controls. Norfloxacin, 400 mg twice daily, for 4 weeks. Peripheral blood flow was measured by using forearm venous occlusion plethysmography. Basal forearm blood flow was higher in patients with cirrhosis than in controls (3.69 +/- 0.27 mL/100 mL per minute and 2.47 +/- 0.40 mL/100 mL per minute; P = 0.014) but returned toward normal after norfloxacin was given (2.64 +/- 0.31 mL/100 mL of tissue per minute in patients with cirrhosis). Responses to NG-monomethyl-L-arginine were greater in patients with cirrhosis but returned to normal after norfloxacin was given. Bacterial endotoxemia in patients with cirrhosis induces increased synthesis of nitric oxide that can be corrected with norfloxacin.

  10. Nitric oxide fumigation for postharvest pest control

    USDA-ARS?s Scientific Manuscript database

    Nitric oxide fumigation is effective against all arthropod pests at various life stages tested. Nine insect pests at various life stages and bulb mites were subjected to nitric oxide fumigation treatments under ultralow oxygen conditions of =50 ppm O2 in 1.9L glass jars as fumigation chambers. The ...

  11. Nitric oxide synthesis in patients with advanced HIV infection.

    PubMed Central

    Evans, T G; Rasmussen, K; Wiebke, G; Hibbs, J B

    1994-01-01

    The discovery that humans produce nitric oxide and that this molecule plays an important role in cell communication, host resistance to infection, and perhaps in host defence to neoplastic disease, has created much interest in further research on its function in the body. A cytokine-inducible high output L-arginine/nitric oxide pathway was recently detected in patients with advanced malignancy treated with IL-2. The production of nitric oxide was thus examined in patients with advanced HIV infection and in intensive care unit control patients. Extrinsic nitrate and nitrite consumption were carefully controlled in the diet or through the use of total parenteral nutrition. Seven of eight HIV+ patients were placed into positive nitrogen balance. Nitric oxide synthesis was found to be within the normal human range. In contrast, nitric oxide synthesis in extremely ill intensive care unit patients was low normal to depressed. PMID:8033424

  12. Effects of endogenous nitric oxide and of DETA NONOate in arteriogenesis.

    PubMed

    Troidl, Kerstin; Tribulova, Silvia; Cai, Wei-Jun; Rüding, Inka; Apfelbeck, Hanna; Schierling, Wilma; Troidl, Christian; Schmitz-Rixen, Thomas; Schaper, Wolfgang

    2010-02-01

    Previous studies showed that targeted endothelial nitric oxide synthase (eNOS) disruption in mice with femoral artery occlusion does not impede and transgenic eNOS overexpression does not stimulate collateral artery growth after femoral artery occlusion, suggesting that nitric oxide from eNOS does not play a role in arteriogenesis. However, pharmacologic nitric oxide synthase inhibition with L-NAME markedly blocks arteriogenesis, suggestive of an important role of nitric oxide. To solve the paradox, we studied targeted deletion of eNOS and of inducible nitric oxide synthase (iNOS) in mice and found that only iNOS knockout could partially inhibit arteriogenesis. However, the combination of eNOS knockout and treatment with the iNOS inhibitor L-NIL completely abolished arteriogenesis. mRNA transcription studies (reverse transcriptase-polymerase chain reaction) performed on collateral arteries of rats showed that eNOS and especially iNOS (but not neural nitric oxide synthase) become upregulated in shear stress-stimulated collateral vessels, which supports the hypothesis that nitric oxide is necessary for arteriogenesis but that iNOS plays an important part. This was strengthened by the observation that the nitric oxide donor DETA NONOate strongly stimulated collateral artery growth, activated perivascular monocytes, and increased proliferation markers. Shear stress-induced nitric oxide may activate the innate immune system and activate iNOS. In conclusion, arteriogenesis is completely dependent on the presence of nitric oxide, a large part of it coming from mononuclear cells.

  13. Nitric oxide ameliorates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120.

    PubMed

    Kaushik, Manish Singh; Srivastava, Meenakshi; Srivastava, Alka; Singh, Anumeha; Mishra, Arun Kumar

    2016-11-01

    In cyanobacterium Anabaena 7120, iron deficiency leads to oxidative stress with unavoidable consequences. Nitric oxide reduces pigment damage and supported the growth of Anabaena 7120 in iron-deficient conditions. Elevation in nitric oxide accumulation and reduced superoxide radical production justified the role of nitric oxide in alleviating oxidative stress in iron deficiency. Increased activities of antioxidative enzymes and higher levels of ROS scavengers (ascorbate, glutathione and thiol) in iron deficiency were also observed in the presence of nitric oxide. Nitric oxide also supported the membrane integrity of Anabaena cells and reduces protein and DNA damage caused by oxidative stress induced by iron deficiency. Results suggested that nitric oxide alleviates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120.

  14. Enhanced nitric oxide generation from nitric oxide synthases as the cause of increased peroxynitrite formation during acute restraint stress: Effects on carotid responsiveness to angiotensinergic stimuli in type-1 diabetic rats.

    PubMed

    Moreira, Josimar D; Pernomian, Larissa; Gomes, Mayara S; Moreira, Rafael P; do Prado, Alejandro F; da Silva, Carlos H T P; de Oliveira, Ana M

    2016-07-15

    Diabetes mellitus is associated with reactive oxygen and nitrogen species accumulation. Behavioral stress increases nitric oxide production, which may trigger a massive impact on vascular cells and accelerate cardiovascular complications under oxidative stress conditions such as Diabetes. For this study, type-1 Diabetes mellitus was induced in Wistar rats by intraperitoneal injection of streptozotocin. After 28 days, cumulative concentration-response curves for angiotensin II were obtained in endothelium-intact carotid rings from diabetic rats that underwent to acute restraint stress for 3h. The contractile response evoked by angiotensin II was increased in carotid arteries from diabetic rats. Acute restraint stress did not alter angiotensin II-induced contraction in carotid arteries from normoglycaemic rats. However acute stress combined with Diabetes increased angiotensin II-induced contraction in carotid rings. Western blot experiments and the inhibition of nitric oxide synthases in functional assays showed that neuronal, endothelial and inducible nitric oxide synthase isoforms contribute to the increased formation of peroxynitrite and contractile hyperreactivity to angiotensin II in carotid rings from stressed diabetic rats. In summary, these findings suggest that the increased superoxide anion generation in carotid arteries from diabetic rats associated to the increased local nitric oxide synthases expression and activity induced by acute restrain stress were responsible for exacerbating the local formation of peroxynitrite and the contraction induced by angiotensin II. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Enhancement of tolerance of Ganoderma lucidum to cadmium by nitric oxide.

    PubMed

    Guo, Shanshan; Yao, Yuan; Zuo, Lei; Shi, Wenjin; Gao, Ni; Xu, Heng

    2016-01-01

    Nitric oxide (NO) is considered as a signaling molecule involved in regulation of diverse physiological processes and stress responses in animals and plants. However, whether NO regulates fungal, particularly edible fungi, response to heavy metal stresses, is unknown. This study investigated the effect of nitric oxide on biological responses of mycelia of Ganoderma lucidum to cadmium (Cd) toxicity. Exposure of Ganoderma lucidum to Cd (400 µM) triggered production of H2O2 and O2(-) in the mycelia and further induced lipid peroxidation as well as sharply decrease of fresh biomass. However, such an effect can be reversed by exogenous supply of NO. Mycelia treated with 100 µM SNP accumulated less H2O2, O2(-), thiobarbituric acid reactive substances (TBARS), and fresh biomass of this treatment was improved. Treatment with SNP significantly increased activities of antioxidant enzyme (peroxidase and catalase) to resist Cd stress. Meanwhile, NO-mediated alleviation of Cd toxicity was closely related to the accumulated proline as well as reduced Cd accumulation. These results suggested that NO plays a crucial role in preventing the mycelia of Ganoderma lucidum from Cd toxicity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Mitochondrial dysfunction associated with nitric oxide pathways in glutamate neurotoxicity.

    PubMed

    Manucha, Walter

    Multiple mechanisms underlying glutamate-induced neurotoxicity have recently been discussed. Likewise, a clear deregulation of the mitochondrial respiratory mechanism has been described in patients with neurodegeneration, oxidative stress, and inflammation. This article highlights nitric oxide, an atypical neurotransmitter synthesized and released on demand by the post-synaptic neurons, and has many important implications for nerve cell survival and differentiation. Consequently, synaptogenesis, synapse elimination, and neurotransmitter release, are nitric oxide-modulated. Interesting, an emergent role of nitric oxide pathways has been discussed as regards neurotoxicity from glutamate-induced apoptosis. These findings suggest that nitric oxide pathways modulation could prevent oxidative damage to neurons through apoptosis inhibition. This review aims to highlight the emergent aspects of nitric oxide-mediated signaling in the brain, and how they can be related to neurotoxicity, as well as the development of neurodegenerative diseases development. Copyright © 2016 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Study of the nitric oxide system in the rat cerebellum during aging.

    PubMed

    Blanco, Santos; Molina, Francisco J; Castro, Lourdes; Del Moral, Maria L; Hernandez, Raquel; Jimenez, Ana; Rus, Alma; Martinez-Lara, Esther; Siles, Eva; Peinado, Maria A

    2010-06-24

    The cerebellum is the neural structure with the highest levels of nitric oxide, a neurotransmitter that has been proposed to play a key role in the brain aging, although knowledge concerning its contribution to cerebellar senescence is still unclear, due mainly to absence of integrative studies that jointly evaluate the main factors involved in its cell production and function. Consequently, in the present study, we investigate the expression, location, and activity of nitric oxide synthase isoenzymes; the protein nitration; and the production of nitric oxide in the cerebellum of adult and old rats. Our results show no variation in the expression of nitric oxide synthase isoforms with aging, although, we have detected some changes in the cellular distribution pattern of the inducible isoform particularly in the cerebellar nuclei. There is also an increase in nitric oxide synthase activity, as well as greater protein-nitration levels, and maintenance of nitrogen oxides (NOx) levels in the senescent cerebellum. The nitric oxide/nitric oxide synthases system suffers from a number of changes, mainly in the inducible nitric oxide synthase distribution and in overall nitric oxide synthases activity in the senescent cerebellum, which result in an increase of the protein nitration. These changes might be related to the oxidative damage detected with aging in the cerebellum.

  18. Role of Nitric Oxide in the Regulation of Renin and Vasopressin Secretion

    NASA Technical Reports Server (NTRS)

    Reid, Ian A.

    1994-01-01

    Research during recent years has established nitric oxide as a unique signaling molecule that plays important roles in the regulation of the cardiovascular, nervous, immune, and other systems. Nitric oxide has also been implicated in the control of the secretion of hormones by the pancreas, hypothalamus, and anterior pituitary gland, and evidence is accumulating that it contributes to the regulation of the secretion of renin and vasopressin, hormones that play key roles in the control of sodium and water balance. Several lines of evidence have implicated nitric oxide in the control of renin secretion. The enzyme nitric oxide synthase is present in vascular and tubular elements of the kidney, particularly in cells of the macula densa, a structure that plays an important role in the control of renin secretion. Guanylyl cyclase, a major target for nitric oxide, is also present in the kidney. Drugs that inhibit nitric oxide synthesis generally suppress renin release in vivo and in vitro, suggesting a stimulatory role for the L-arginine/nitric oxide pathway in the control of renin secretion. Under some conditions, however, blockade of nitric oxide synthesis increases renin secretion. Recent studies indicate that nitric oxide not only contributes to the regulation of basal renin secretion, but also participates in the renin secretory responses to activation of the renal baroreceptor, macula densa, and beta adrenoceptor mechanisms that regulate renin secretion. Histochemical and immunocytochemical studies have revealed the presence of nitric oxide synthase in the supraoptic and paraventricular nuclei of the hypothalamus and in the posterior pituitary gland. Colocalization of nitric oxide synthase and vasopressin has been demonstrated in some hypothalamic neurons. Nitric oxide synthase activity in the hypothalamus and pituitary is increased by maneuvers known to stimulate vasopressin secretion, including salt loading and dehydration, Administration of L-arginine and nitric

  19. Effects of nitric oxide on neuromuscular properties of developing zebrafish embryos.

    PubMed

    Jay, Michael; Bradley, Sophie; McDearmid, Jonathan Robert

    2014-01-01

    Nitric oxide is a bioactive signalling molecule that is known to affect a wide range of neurodevelopmental processes. However, its functional relevance to neuromuscular development is not fully understood. Here we have examined developmental roles of nitric oxide during formation and maturation of neuromuscular contacts in zebrafish. Using histochemical approaches we show that elevating nitric oxide levels reduces the number of neuromuscular synapses within the axial swimming muscles whilst inhibition of nitric oxide biosynthesis has the opposite effect. We further show that nitric oxide signalling does not change synapse density, suggesting that the observed effects are a consequence of previously reported changes in motor axon branch formation. Moreover, we have used in vivo patch clamp electrophysiology to examine the effects of nitric oxide on physiological maturation of zebrafish neuromuscular junctions. We show that developmental exposure to nitric oxide affects the kinetics of spontaneous miniature end plate currents and impacts the neuromuscular drive for locomotion. Taken together, our findings implicate nitrergic signalling in the regulation of zebrafish neuromuscular development and locomotor maturation.

  20. Cytosolic NADP(+)-dependent isocitrate dehydrogenase protects macrophages from LPS-induced nitric oxide and reactive oxygen species.

    PubMed

    Maeng, Oky; Kim, Yong Chan; Shin, Han-Jae; Lee, Jie-Oh; Huh, Tae-Lin; Kang, Kwang-il; Kim, Young Sang; Paik, Sang-Gi; Lee, Hayyoung

    2004-04-30

    Macrophages activated by microbial lipopolysaccharides (LPS) produce bursts of nitric oxide and reactive oxygen species (ROS). Redox protection systems are essential for the survival of the macrophages since the nitric oxide and ROS can be toxic to them as well as to pathogens. Using suppression subtractive hybridization (SSH) we found that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) is strongly upregulated by nitric oxide in macrophages. The levels of IDPc mRNA and of the corresponding enzymatic activity were markedly increased by treatment of RAW264.7 cells or peritoneal macrophages with LPS or SNAP (a nitric oxide donor). Over-expression of IDPc reduced intracellular peroxide levels and enhanced the survival of H2O2- and SNAP-treated RAW264.7 macrophages. IDPc is known to generate NADPH, a cellular reducing agent, via oxidative decarboxylation of isocitrate. The expression of enzymes implicated in redox protection, superoxide dismutase (SOD) and catalase, was relatively unaffected by LPS and SNAP. We propose that the induction of IDPc is one of the main self-protection mechanisms of macrophages against LPS-induced oxidative stress.

  1. The Polar Night Nitric Oxide Experiment

    NASA Image and Video Library

    2017-12-08

    The Polar Night Nitric Oxide or PolarNOx experiment from Virginia Tech is launched aboard a NASA Black Brant IX sounding rocket at 8:45 a.m. EST, Jan. 27, from the Poker Flat Research Range in Alaska. PolarNOx is measuring nitric oxide in the polar night sky. Nitric oxide in the polar night sky is created by auroras. Under appropriate conditions it can be transported to the stratosphere where it may destroy ozone resulting in possible changes in stratospheric temperature and wind and may even impact the circulation at Earth’s surface. Credit: NASA/Wallops/Jamie Adkins NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. 21 CFR 868.5165 - Nitric oxide administration apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nitric oxide administration apparatus. 868.5165 Section 868.5165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5165 Nitric oxide administration...

  3. 21 CFR 868.5165 - Nitric oxide administration apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nitric oxide administration apparatus. 868.5165 Section 868.5165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5165 Nitric oxide administration...

  4. Impaired pulmonary artery contractile responses in a rat model of microgravity: role of nitric oxide

    NASA Technical Reports Server (NTRS)

    Nyhan, Daniel; Kim, Soonyul; Dunbar, Stacey; Li, Dechun; Shoukas, Artin; Berkowitz, Dan E.

    2002-01-01

    Vascular contractile hyporesponsiveness is an important mechanism underlying orthostatic intolerance after microgravity. Baroreceptor reflexes can modulate both pulmonary resistance and capacitance function and thus cardiac output. We hypothesized, therefore, that pulmonary vasoreactivity is impaired in the hindlimb-unweighted (HLU) rat model of microgravity. Pulmonary artery (PA) contractile responses to phenylephrine (PE) and U-46619 (U4) were significantly decreased in the PAs from HLU vs. control (C) animals. N(G)-nitro-L-arginine methyl ester (10(-5) M) enhanced the contractile responses in the PA rings from both C and HLU animals and completely abolished the differential responses to PE and U4 in HLU vs. C animals. Vasorelaxant responses to ACh were significantly enhanced in PA rings from HLU rats compared with C. Moreover, vasorelaxant responses to sodium nitroprusside were also significantly enhanced. Endothelial nitric oxide synthase (eNOS) and soluble guanlyl cyclase expression were significantly enhanced in PA and lung tissue from HLU rats. In marked contrast, the expression of inducible nitric oxide synthase was unchanged in lung tissue. These data support the hypothesis that vascular contractile responsiveness is attenuated in PAs from HLU rats and that this hyporesponsiveness is due at least in part to increased nitric oxide synthase activity resulting from enhanced eNOS expression. These findings may have important implications for blood volume distribution and attenuated stroke volume responses to orthostatic stress after microgravity exposure.

  5. Sensor materials for an intravascular fiber optic nitric oxide sensor

    NASA Astrophysics Data System (ADS)

    Soller, Babs R.; Parikh, Bhairavi R.; Stahl, Russell F.

    1996-04-01

    Nitric oxide (NO) is an important regulatory molecule in physiological processes including neurotransmission and the control of blood pressure. It is produced in excess during septic shock, the profound hypotensive state which accompanies severe infections. In-vivo measurement of NO would enhance the understanding of its varied biological roles. Our goal is the development of an intravascular fiber-optic sensor for the continuous measurement of NO. This study evaluated nitric oxide sensitive compounds as potential sensing materials in the presence and absence of oxygen. Using absorption spectroscopy we studied both the Fe II and Fe III forms of three biologically active hemes known to rapidly react with NO: hemoglobin, myoglobin, and cytochrome-c. The Fe II forms of hemoglobin and myoglobin and the Fe III form of cytochrome-c were found to have the highest sensitivity to NO. Cytochrome c (Fe III) is selective for NO even at high oxygen levels, while myoglobin is selective only under normal oxygen levels. NO concentrations as low as 1 (mu) M can be detected with our fiber-optic spectrometer using cytochrome c, and as low as 300 nM using myoglobin. Either of these materials would be adequate to monitor the increase in nitric oxide production during the onset of septic shock.

  6. Electron transfer of Pseudomonas aeruginosa CP1 in electrochemical reduction of nitric oxide.

    PubMed

    Zhou, Shaofeng; Huang, Shaobin; He, Jiaxin; Li, Han; Zhang, Yongqing

    2016-10-01

    This study reports catalytic electro-chemical reduction of nitric oxide (NO) enhanced by Pseudomonas aeruginosa strain CP1. The current generated in the presence of bacteria was 4.36times that in the absence of the bacteria. The strain was able to catalyze electro-chemical reduction of NO via indirect electron transfer with an electrode, revealed by a series of cyclic voltammetry experiments. Soluble electron shuttles secreted into solution by live bacteria were responsible for the catalytic effects. The enhancement of NO reduction was also confirmed by detection of nitrous oxide; the level of this intermediate was 46.4% higher in the presence of bacteria than in controls, illustrated that the electron transfer pathway did not directly reduce nitric oxide to N2. The findings of this study may offer a new model for bioelectrochemical research in the field of NO removal by biocatalysts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Applications of plasma sources for nitric oxide medicine

    NASA Astrophysics Data System (ADS)

    Vasilets, Victor; Shekhter, Anatoly; Pekshev, Alexander

    2013-09-01

    Nitric oxide (NO) has important roles in the function of many tissues and organs. Wound healing processes are always accompanying by the increase of nitric oxide concentration in wound tissue. These facts suggest a possible therapeutic use of various NO donors for the acceleration of the wound healing and treatment of other diseases. Our previous studies indicated that gaseous NO flow produced by air-plasma generators acts beneficially on the wound healing. This beneficial effect could be caused by the mechanism involving peroxynitrite as an intermediate. As a result of mobilization of various antioxidant reactions more endogenous NO molecules become available as signaling molecules. to regulate the metabolic processes in wound tissue. In this paper different air plasma sources generated therapeutic concentrations of NO are discussed. The concentration of NO and other therapeutically important gas products are estimated by thermodynamic simulation. Synergy effects of NO with other plasma components are discussed as a factor enhancing therapeutic results. Some new medical application of plasma devices are presented. Advanced Plasma Therapies Inc.

  8. Nitric oxide-induced interstrand cross-links in DNA.

    PubMed

    Caulfield, Jennifer L; Wishnok, John S; Tannenbaum, Steven R

    2003-05-01

    The DNA damaging effects of nitrous acid have been extensively studied, and the formation of interstrand cross-links have been observed. The potential for this cross-linking to occur through a common nitrosating intermediate derived from nitric oxide is investigated here. Using a HPLC laser-induced fluorescence (LIF) system, the amount of interstrand cross-link formed on nitric oxide treatment of the 5'-fluorescein-labeled oligomer ATATCGATCGATAT was determined. This self-complimentary sequence contains two 5'-CG sequences, which is the preferred site for nitrous acid-induced cross-linking. Nitric oxide was delivered to an 0.5 mM oligomer solution at 15 nmol/mL/min to give a final nitrite concentration of 652 microM. The resulting concentration of the deamination product, xanthine, in this sample was found to be 211 +/- 39 nM, using GC/MS, and the amount of interstrand cross-link was determined to be 13 +/- 2.5 nM. Therefore, upon nitric oxide treatment, the cross-link is found at approximately 6% of the amount of the deamination product. Using this system, detection of the cross-link is also possible for significantly lower doses of nitric oxide, as demonstrated by treatment of the same oligomer with NO at a rate of 18 nmol/mL/min resulting in a final nitrite concentration of 126 microM. The concentration of interstrand cross-link was determined to be 3.6 +/- 0.1 nM in this sample. Therefore, using the same dose rate, when the total nitric oxide concentration delivered drops by a factor of approximately 5, the concentration of cross-link drops by a factor of about 4-indicating a qausi-linear response. It may now be possible to predict the number of cross-links in a small genome based on the number of CpG sequences and the yield of xanthine derived from nitrosative deamination.

  9. Nitric oxide contributes to substance P-induced increases in lung rapidly adapting receptor activity in guinea-pigs.

    PubMed Central

    Joad, J P; Kott, K S; Bonham, A C

    1997-01-01

    1. Substance P induces fluid flux via nitric oxide, and fluid flux stimulates lung rapidly adapting receptors (RARs). We therefore proposed that nitric oxide contributes to substance P-evoked increases in RAR activity. Since substance P decreases dynamic compliance (Cdyn), which can stimulate RARs, we also determined whether nitric oxide contributed to substance P-induced effects on pulmonary function. 2. In anaesthetized guinea-pigs, the effects of substance P on RAR activity, Cdyn, pulmonary resistance (RL), and arterial blood pressure were measured before and after i.v. infusion of NG-methyl-L-arginine (L-NMMA; a nitric oxide synthase inhibitor), or L-NMMA followed by L-arginine (a nitric oxide precursor which reverses the effects of L-NMMA). 3. Substance P-evoked increases in RAR activity were blunted by L-NMMA (P = 0.006) but not by L-NMMA-L-arginine (P = 0.42). 4. Substance P-evoked decreases in Cdyn were slightly inhibited by L-NMMA (P = 0.02) and slightly enhanced by L-NMMA-L-arginine (P = 0.004). However, at the time at which L-NMMA maximally reduced substance P-induced RAR stimulation (the first 30 s), it did not change substance P-induced decreases in Cdyn. 5. Substance P-evoked increases in RL were not changed by L-NMMA (P = 0.10) and were enhanced by L-NMMA-L-arginine (P = 0.03). 6. L-NMMA-evoked increases in mean arterial blood pressure were reversed by L-arginine. Substance P-evoked decreases in mean arterial blood pressure were not changed by L-NMMA or by L-NMMA-L-arginine. 7. We conclude that nitric oxide contributes to substance P-evoked increases in RAR activity and that the increases are most probably independent of decreases in Cdyn. PMID:9379417

  10. Expression and Activity of Nitric Oxide Synthase Isoforms in Methamphetamine-Induced Striatal Dopamine Toxicity

    PubMed Central

    Friend, Danielle M.; Son, Jong H.; Keefe, Kristen A.

    2013-01-01

    Nitric oxide is implicated in methamphetamine (METH)-induced neurotoxicity; however, the source of the nitric oxide has not been identified. Previous work has also revealed that animals with partial dopamine loss induced by a neurotoxic regimen of methamphetamine fail to exhibit further decreases in striatal dopamine when re-exposed to methamphetamine 7–30 days later. The current study examined nitric oxide synthase expression and activity and protein nitration in striata of animals administered saline or neurotoxic regimens of methamphetamine at postnatal days 60 and/or 90, resulting in four treatment groups: Saline:Saline, METH:Saline, Saline:METH, and METH:METH. Acute administration of methamphetamine on postnatal day 90 (Saline:METH and METH:METH) increased nitric oxide production, as evidenced by increased protein nitration. Methamphetamine did not, however, change the expression of endothelial or inducible isoforms of nitric oxide synthase, nor did it change the number of cells positive for neuronal nitric oxide synthase mRNA expression or the amount of neuronal nitric oxide synthase mRNA per cell. However, nitric oxide synthase activity in striatal interneurons was increased in the Saline:METH and METH:METH animals. These data suggest that increased nitric oxide production after a neurotoxic regimen of methamphetamine results from increased nitric oxide synthase activity, rather than an induction of mRNA, and that constitutively expressed neuronal nitric oxide synthase is the most likely source of nitric oxide after methamphetamine administration. Of interest, animals rendered resistant to further methamphetamine-induced dopamine depletions still show equivalent degrees of methamphetamine-induced nitric oxide production, suggesting that nitric oxide production alone in response to methamphetamine is not sufficient to induce acute neurotoxic injury. PMID:23230214

  11. Elevated nitric oxide in recurrent vulvovaginal candidiasis - association with clinical findings.

    PubMed

    Alvendal, Cathrin; Ehrström, Sophia; Brauner, Annelie; Lundberg, Jon O; Bohm-Starke, Nina

    2017-03-01

    Recurrent vulvovaginal candidiasis is defined as having three to four episodes per year and causes substantial suffering. Little is known about the mechanisms leading to relapses in otherwise healthy women. Nitric oxide is part of the nonspecific host defense and is increased during inflammation. Nitric oxide levels were measured and the expression of inducible nitric oxide synthase was analyzed in the vagina during an acute episode of recurrent vulvovaginal candidiasis and after treatment with fluconazole. Twenty-eight women with symptoms of recurrent vulvovaginal candidiasis were enrolled together with 31 healthy controls. Nitric oxide was measured with an air-filled 25-mL silicon catheter balloon incubated in the vagina for five minutes and then analyzed by chemiluminescence technique. Vaginal biopsies were analyzed for the expression of inducible nitric oxide synthase. Symptoms and clinical findings were surveyed using a scoring system. The measurements and biopsies were repeated in patients after six weeks of fluconazole treatment. Nitric oxide levels were increased during acute infection (median 352 ppb) compared with controls (median 6 ppb), p < 0.0001. The levels decreased after treatment (median 18 ppb) but were still higher than in controls. Increased expression of inducible nitric oxide synthase was observed in the epithelial basal layer in patients before and after treatment compared with controls. Before treatment, there were positive correlations between nitric oxide and symptom (r s  = 0.644) and examination scores (r s  = 0.677), p < 0.001. Nitric oxide is significantly elevated in patients with recurrent vulvovaginal candidiasis during acute episodes of infection and decreases after antifungal treatment. The results illustrate the pronounced inflammatory response in recurrent vulvovaginal candidiasis correlating to symptoms of pain and discomfort. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.

  12. Nitric oxide (NO.) stabilizes whereas nitrosonium (NO+) enhances filopodial outgrowth by rat retinal ganglion cells in vitro.

    PubMed

    Cheung, W S; Bhan, I; Lipton, S A

    2000-06-16

    Recent observations suggest that nitric oxide (NO(.)) can increase or decrease growth cone motility. Here, these apparently paradoxical results are explained by distinct actions of different NO-related species. Filopodial morphology of 223 rat retinal ganglion cells was monitored under computer-enhanced video microscopy in the presence of NO synthase (NOS) substrates or inhibitors, donors of specific NO-related species, and membrane-permeant cyclic nucleotide analogs. Physiological NOS activity induced filopodial outgrowth, whereas inhibition of NOS stabilized filopodia. Similar to NOS, nitrosonium (NO(+) transfer) and peroxynitrite (ONOO(-)), which can regulate the activity of growth-associated proteins by S-nitrosylation and oxidation, respectively, induced filopodial outgrowth. In contrast, NO(.), which stimulates guanylate cyclase to increase cGMP, stabilized filopodial activity. Thus disparate NO-related species may offer a dynamic process of filopodial growth regulation.

  13. Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling

    PubMed Central

    Förstermann, Ulrich; Li, Huige

    2011-01-01

    Nitric oxide (NO) produced by the endothelium is an important protective molecule in the vasculature. It is generated by the enzyme endothelial NO synthase (eNOS). Similar to all NOS isoforms, functional eNOS transfers electrons from nicotinamide adenine dinucleotide phosphate (NADPH), via the flavins flavin adenine dinucleotide and flavin mononucleotide in the carboxy-terminal reductase domain, to the heme in the amino-terminal oxygenase domain. Here, the substrate L-arginine is oxidized to L-citrulline and NO. Cardiovascular risk factors such as diabetes mellitus, hypertension, hypercholesterolaemia or cigarette smoking reduce bioactive NO. These risk factors lead to an enhanced production of reactive oxygen species (ROS) in the vessel wall. NADPH oxidases represent major sources of this ROS and have been found upregulated in the presence of cardiovascular risk factors. NADPH-oxidase-derived superoxide avidly reacts with eNOS-derived NO to form peroxynitrite (ONOO-). The essential NOS cofactor (6R-)5,6,7,8-tetrahydrobiopterin (BH4) is highly sensitive to oxidation by this ONOO-. In BH4 deficiency, oxygen reduction uncouples from NO synthesis, thereby converting NOS to a superoxide-producing enzyme. Among conventional drugs, compounds interfering with the renin-angiotensin-aldosterone system and statins can reduce vascular oxidative stress and increase bioactive NO. In recent years, we have identified a number of small molecules that have the potential to prevent eNOS uncoupling and, at the same time, enhance eNOS expression. These include the protein kinase C inhibitor midostaurin, the pentacyclic triterpenoids ursolic acid and betulinic acid, the eNOS enhancing compounds AVE9488 and AVE3085, and the polyphenolic phytoalexin trans-resveratrol. Such compounds enhance NO production from eNOS also under pathophysiological conditions and may thus have therapeutic potential. PMID:21198553

  14. Pharmacology and potential therapeutic applications of nitric oxide-releasing non-steroidal anti-inflammatory and related nitric oxide-donating drugs

    PubMed Central

    Keeble, J E; Moore, P K

    2002-01-01

    This review examines the biological significance, therapeutic potential and mechanism(s) of action of a range of nitric oxide-releasing non-steroidal anti-inflammatory drugs (NO-NSAID) and related nitric oxide-releasing donating drugs (NODD). The slow release of nitric oxide (NO) from these compounds leads to subtle changes in the profile of pharmacological activity of the parent, non-steroidal anti-inflammatory drugs (NSAID). For example, compared with NSAID, NO-NSAID cause markedly diminished gastrointestinal toxicity and improved anti-inflammatory and anti-nociceptive efficacy. In addition, nitroparacetamol exhibits hepatoprotection as opposed to the hepatotoxic activity of paracetamol. The possibility that NO-NSAID or NODD may be of therapeutic benefit in a wide variety of disease states including pain and inflammation, thrombosis and restenosis, neurodegenerative diseases of the central nervous system, colitis, cancer, urinary incontinence, liver disease, impotence, bronchial asthma and osteoporosis is discussed. PMID:12237248

  15. Ethanol exposure induces oxidative stress and impairs nitric oxide availability in the human placental villi: a possible mechanism of toxicity.

    PubMed

    Kay, H H; Grindle, K M; Magness, R R

    2000-03-01

    We undertook this investigation to explore the effects of ethanol exposure on nitric oxide synthase levels and nitric oxide release. Our hypothesis was that ethanol exposure modifies nitric oxide activity within the placenta as a result of oxidative stress. Four 10-g samples of term normal human placental villous tissue were perifused with nonrecirculating Dulbecco's modified Eagle's medium and 25-mmol/L N-[2-hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid] with 0-, 50-, 100-, or 200-mmol/L ethanol. After 2 hours of exposure, tissue was removed, fixed, and frozen for analysis. Immunohistochemical analysis was performed for subtype I or neuronal nitric oxide synthase (nNOS), subtype II or inducible nitric oxide synthase (iNOS), and subtype III or endothelial nitric oxide synthase (eNOS) localization. Western blot analysis was performed for eNOS quantitation. Cyclic guanosine monophosphate and copper-zinc superoxide dismutase levels were measured by electroimmunoassay and kinetic assay, respectively. Nitric oxide release was analyzed by a Sievers nitric oxide analyzer. Immunohistochemical examination confirmed that only eNOS was localized to the syncytiotrophoblasts. After ethanol exposure, eNOS protein expression increased 2.5- to 3.0-fold over that of the control. Tissue cyclic guanosine monophosphate content and nitric oxide release into the effluent were decreased, whereas superoxide dismutase levels were increased at higher ethanol levels (P <.05). Ethanol exposure appears to induce oxidative stress, which may account for the decreased nitric oxide release, because nitric oxide may be shunted toward scavenging free radicals. Increased eNOS protein expression may be a response to the increased demand for nitric oxide. Decreased nitric oxide availability could adversely affect placental blood flow regulation, which could, in turn, account for the growth restriction seen in ethanol-exposed fetuses.

  16. Diclofenac enhances proinflammatory cytokine-induced nitric oxide production through NF-{kappa}B signaling in cultured astrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kakita, Hiroki; Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601; Department of Neonatology, Aichi Human Service Center Central Hospital, 713-8 Kamiya-Cho, Kasugai 480-0392

    2009-07-01

    Recently, the number of reports of encephalitis/encephalopathy associated with influenza virus has increased. In addition, the use of a non-steroidal anti-inflammatory drug, diclofenac sodium (DCF), is associated with a significant increase in the mortality rate of influenza-associated encephalopathy. Activated astrocytes are a source of nitric oxide (NO), which is largely produced by inducible NO synthase (iNOS) in response to proinflammatory cytokines. Therefore, we investigated whether DCF enhances nitric oxide production in astrocytes stimulated with proinflammatory cytokines. We stimulated cultured rat astrocytes with three cytokines, interleukin-1{beta}, tumor necrosis factor-{alpha} and interferon-{gamma}, and then treated the astrocytes with DCF or acetaminophen (N-acetyl-p-aminophenol:more » APAP). iNOS and NO production in astrocyte cultures were induced by proinflammatory cytokines. The addition of DCF augmented NO production, but the addition of APAP did not. NF-{kappa}B inhibitors SN50 and MG132 inhibited iNOS gene expression in cytokine-stimulated astrocytes with or without DCF. Similarly, NF-{kappa}B p65 Stealth small interfering RNA suppressed iNOS gene expression in cytokine-stimulated astrocytes with or without DCF. LDH activity and DAPI staining showed that DCF induces cell damage in cytokine-stimulated astrocytes. An iNOS inhibitor, L-NMMA, inhibited the cytokine- and DCF-induced cell damage. In conclusion, this study demonstrates that iNOS and NO are induced in astrocyte cultures by proinflammatory cytokines. Addition of DCF further augments NO production. This effect is mediated via NF-{kappa}B signaling and leads to cell damage. The enhancement of DCF on NO production may explain the significant increase in the mortality rate of influenza-associated encephalopathy in patients treated with DCF.« less

  17. Involvement of nitric oxide in anticompulsive-like effect of agmatine on marble-burying behaviour in mice.

    PubMed

    Gawali, Nitin B; Chowdhury, Amrita A; Kothavade, Pankaj S; Bulani, Vipin D; Nagmoti, Dnyaneshwar M; Juvekar, Archana R

    2016-01-05

    In view of the reports that nitric oxide modulates the neurotransmitters implicated in obsessive-compulsive disorder (OCD), patients with OCD exhibit higher plasma nitrate levels, and drugs useful in OCD influence nitric oxide. Agmatine is a polyamine and widely distributed in mammalian brain which interacts with nitrergic systems. Hence, the present study was carried out to understand the involvement of nitrergic systems in the anticompulsive-like effect of agmatine. We used marble-burying behaviour (MBB) of mice as the animal model of OCD, and nitric oxide levels in hippocampus (HC) and cortex homogenate were measured. Results revealed that, agmatine (20 and 40mg/kg, i.p) significantly inhibited the MBB. Intraperitoneal administration of nitric oxide enhancers viz. nitric oxide precursor - l-arginine (l-ARG) (400mg/kg and 800mg/kg) increased MBB as well as brain nitrites levels, whereas treatment with N(G)-nitro-l-arginine methyl ester (l-NAME) neuronal nitric oxide synthase inhibitor (30mg/kg and 50mg/kg, i.p.) and 7-nitroindazole (7-NI) (20mg/kg and 40mg/kg) attenuated MBB and nitrites levels in brain. Further, in combination studies, the anticompulsive-like effect of agmatine (20mg/kg, ip) was exacerbated by prior administration of l-ARG (400mg/kg) and conversely l-NAME (15mg/kg) or 7-NI (10.0mg/kg) attenuated OCD-like behaviour with HC and cortex changes in the levels of NO. None of the above treatment had any significant influence on locomotor activity. In conclusion, Agmatine is effective in ameliorating the compulsive-like behaviour in mice which appears to be related to nitric oxide in brain. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Laser absorption of nitric oxide for thermometry in high-enthalpy air

    NASA Astrophysics Data System (ADS)

    Spearrin, R. M.; Schultz, I. A.; Jeffries, J. B.; Hanson, R. K.

    2014-12-01

    The design and demonstration of a laser absorption sensor for thermometry in high-enthalpy air is presented. The sensor exploits the highly temperature-sensitive and largely pressure-independent concentration of nitric oxide in air at chemical equilibrium. Temperature is thus inferred from an in situ measurement of nascent nitric oxide. The strategy is developed by utilizing a quantum cascade laser source for access to the strong fundamental absorption band in the mid-infrared spectrum of nitric oxide. Room temperature measurements in a high-pressure static cell validate the suitability of the Voigt lineshape model to the nitric oxide spectra at high gas densities. Shock-tube experiments enable calibration of a collision-broadening model for temperatures between 1200-3000 K. Finally, sensor performance is demonstrated in a high-pressure shock tube by measuring temperature behind reflected shock waves for both fixed-chemistry experiments where nitric oxide is seeded, and for experiments involving nitric oxide formation in shock-heated mixtures of N2 and O2. Results show excellent performance of the sensor across a wide range of operating conditions from 1100-2950 K and at pressures up to 140 atm.

  19. Measurements of nitric oxide after a nuclear burst

    NASA Technical Reports Server (NTRS)

    Mcghan, M.; Shaw, A.; Megill, L. R.; Sedlacek, W.; Guthals, P. R.; Fowler, M. M.

    1981-01-01

    Measurements of ozone and nitric oxide in a nuclear cloud 7 days after the explosion are reported. No measurable increase above ambient density of either ozone or nitric oxide was found. Results from a chemistry model of the cloud do not agree with the measurement unless 'nonstandard' assumptions are made with regard to the operating chemical processes. A number of possible explanations of the results are discussed.

  20. Nitric oxide-induced calcium release: activation of type 1 ryanodine receptor by endogenous nitric oxide.

    PubMed

    Kakizawa, Sho; Yamazawa, Toshiko; Iino, Masamitsu

    2013-01-01

    Ryanodine receptors (RyRs), located in the sarcoplasmic/endoplasmic reticulum (SR/ER) membrane, are required for intracellular Ca2+ release that is involved in a wide range of cellular functions. In addition to Ca2+-induced Ca2+ release in cardiac cells and voltage-induced Ca2+ release in skeletal muscle cells, we recently identified another mode of intracellular Ca2+ mobilization mediated by RyR, i.e., nitric oxide-induced Ca2+ release (NICR), in cerebellar Purkinje cells. NICR is evoked by neuronal activity, is dependent on S-nitrosylation of type 1 RyR (RyR1) and is involved in the induction of long-term potentiation (LTP) of cerebellar synapses. In this addendum, we examined whether peroxynitrite, which is produced by the reaction of nitric oxide with superoxide, may also have an effect on the Ca2+ release via RyR1 and the cerebellar LTP. We found that scavengers of peroxynitrite have no significant effect either on the Ca2+ release via RyR1 or on the cerebellar LTP. We also found that an application of a high concentration of peroxynitrite does not reproduce neuronal activity-dependent Ca2+ release in Purkinje cells. These results support that NICR is induced by endogenous nitric oxide produced by neuronal activity through S-nitrosylation of RyR1.

  1. Estimation of the nitric oxide formed from hydroxylamine by Nitrosomonas

    PubMed Central

    Anderson, J. H.

    1965-01-01

    1. Nitric oxide that was produced by reducing nitrite with an excess of acidified potassium iodide under nitrogen in Warburg respirometer flasks was rapidly absorbed by a solution of permanganate in sodium hydroxide held in the side arm. A small amount of nitrous oxide (or nitrogen) that was also produced was not absorbed. 2. By using a quantitative method for the recovery of nitrite from samples of the alkaline permanganate, it was found that the sum of the nitrite N formed and the residual nitrous oxide N was equivalent to the nitrite N used to generate the gases. These results showed that alkaline permanganate completely oxidized nitric oxide to nitrite. The method was suitable for determining 0·4–20 μmoles of nitric oxide. 3. The technique was used to determine the nitric oxide content of the nitrogenous gas that was produced anaerobically from hydroxylamine by an extract of the autotrophic nitrifying micro-organism Nitrosomonas in the presence of methylene blue as electron acceptor. PMID:14342235

  2. Nitric oxide-releasing indomethacin enhances susceptibility to Trypanosoma cruzi infection acting in the cell invasion and oxidative stress associated with anemia.

    PubMed

    Tatakihara, Vera Lucia Hideko; Malvezi, Aparecida Donizette; Panis, Carolina; Cecchini, Rubens; Zanluqui, Nagela Ghabdan; Yamauchi, Lucy Megumi; Martins, Maria Isabel Lovo; da Silva, Rosiane Valeriano; Yamada-Ogatta, Sueli Fumie; Rizzo, Luiz Vicente; Martins-Pinge, Marli Cardoso; Pinge-Filho, Phileno

    2015-02-05

    Trypanosoma cruzi is the causative agent of Chagas disease. Approximately 8 million people are thought to be affected with this disease worldwide. T. cruzi infection causes an intense inflammatory response, which is critical for the control of parasite proliferation and disease development. Nitric oxide-donating nonsteroidal anti-inflammatory drugs (NO-NSAIDs) are an emergent class of pharmaceutical derivatives with promising utility as chemopreventive agents. In this study, we investigated the effect of NO-indomethacin on parasite burden, cell invasion, and oxidative stress in erythrocytes during the acute phase of infection. NO-indomethacin was dissolved in dimethyl formamide followed by i.p. administration of 50 ppm into mice 30 min after infection with 5×10(3) blood trypomastigote forms (Y strain). The drug was administered every day until the animals died. Control animals received 100 μL of drug vehicle via the same route. Within the NO-indomethacin-treatment group, parasitemia and mortality (100%) were higher and oxidative stress in erythrocytes, anemia, and entry of parasites into macrophages were significantly greater than that seen in controls. Increase in the entry and survival of intracellular T. cruzi was associated with inhibition of nitric oxide production by macrophages treated with NO-indomethacin (2.5 μM). The results of this study provide strong evidence that NO-NSAIDs potently inhibit nitric oxide production, suggesting that NO-NSAID-based therapies against infections would be difficult to design and would require caution. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Nitric oxide, human diseases and the herbal products that affect the nitric oxide signalling pathway.

    PubMed

    Achike, Francis I; Kwan, Chiu-Yin

    2003-09-01

    1. Nitric oxide (NO) is formed enzymatically from l-arginine in the presence of nitric oxide synthase (NOS). Nitric oxide is generated constitutively in endothelial cells via sheer stress and blood-borne substances. Nitric oxide is also generated constitutively in neuronal cells and serves as a neurotransmitter and neuromodulator in non-adrenergic, non-cholinergic nerve endings. Furthermore, NO can also be formed via enzyme induction in many tissues in the presence of cytokines. 2. The ubiquitous presence of NO in the living body suggests that NO plays an important role in the maintenance of health. Being a free radical with vasodilatory properties, NO exerts dual effects on tissues and cells in various biological systems. At low concentrations, NO can dilate the blood vessels and improve the circulation, but at high concentrations it can cause circulatory shock and induce cell death. Thus, diseases can arise in the presence of the extreme ends of the physiological concentrations of NO. 3. The NO signalling pathway has, in recent years, become a target for new drug development. The high level of flavonoids, catechins, tannins and other polyphenolic compounds present in vegetables, fruits, soy, tea and even red wine (from grapes) is believed to contribute to their beneficial health effects. Some of these compounds induce NO formation from the endothelial cells to improve circulation and some suppress the induction of inducible NOS in inflammation and infection. 4. Many botanical medicinal herbs and drugs derived from these herbs have been shown to have effects on the NO signalling pathway. For example, the saponins from ginseng, ginsenosides, have been shown to relax blood vessels (probably contributing to the antifatigue and blood pressure-lowering effects of ginseng) and corpus cavernosum (thus, for the treatment of men suffering from erectile dysfunction; however, the legendary aphrodisiac effect of ginseng may be an overstatement). Many plant extracts or

  4. Arginine supplementation induces myoblast fusion via augmentation of nitric oxide production.

    PubMed

    Long, Jodi H D; Lira, Vitor A; Soltow, Quinlyn A; Betters, Jenna L; Sellman, Jeff E; Criswell, David S

    2006-01-01

    The semi-essential amino acid, L-arginine (L-Arg), is the substrate for endogenous synthesis of nitric oxide, a molecule that is involved in myoblast proliferation and fusion. Since L-Arg supply may limit nitric oxide synthase (NOS) activity in endothelial cells, we examined L-Arg supplementation in differentiating mouse myoblasts and tested the hypothesis that L-Arg exerts direct effects on myoblast fusion via augmentation of endogenous nitric oxide production. C(2)C(12) myoblasts in differentiation media received one of the following treatments for 120 h: 1 mM L-Arg, 0.1 mM N-nitro-L-arginine methyl ester (L-NAME), L-Arg + L-NAME, 10 mM L-Lysine, or no supplement (Control). Cultures were fixed and stained with hematoxylin and eosin for microphotometric image analysis of myotube density, nuclear density, and fusion index (% of total nuclei in myotubes). Endogenous production of nitric oxide during the treatment period peaked between 24 and 48 h. L-Arg amplified nitric oxide production between 0 and 24 h and increased myotube density, total nuclei number, and nuclear fusion index. These L-Arg effects were prevented by the NOS inhibitor, L-NAME. Further, L-Lysine, a competitive inhibitor of L-Arg uptake, repressed nitric oxide production and reduced myotube density and fusion index. In summary, L-Arg augments myotube formation and increases nitric oxide production in a process limited by cellular L-Arg uptake.

  5. A pentapeptide monocyte locomotion inhibitory factor protects brain ischemia injury by targeting the eEF1A1/endothelial nitric oxide synthase pathway.

    PubMed

    Zhang, Yuefan; Chen, Jun; Li, Fan; Li, Dong; Xiong, Qinhui; Lin, Yang; Zhang, Dazhi; Wang, Xiao-Fan; Yang, Pengyuan; Rui, Yao-Cheng

    2012-10-01

    Ischemic stroke is a major cause of death worldwide but lacks viable treatment or treatment targets. Monocyte locomotion inhibitory factor (MLIF) is a small heat-stable pentapeptide produced by Entamoeba histolytica in axenic culture, which is supposed to protect the brain from ischemic injury; the mechanism, however, remains unknown. In this study, we further investigated the mechanism underlying the protective role of MLIF in brain ischemia. A middle cerebral artery occlusion model in rats was used for detecting the effect of MLIF in the brain ischemia in vivo. To identify targets of MLIF in brain endothelial cells, we performed immunoprecipitation of biotin-conjugated MLIF and mass spectrometry. MLIF can protect the brain from ischemic injury in vivo, yielding decreased ischemic volume, prolonged survival, and improved neurological outcome. In vitro studies showed that MLIF displayed protective effects through inhibition of expression of pathological inflammatory adhesion molecules and enhancing endothelial nitric oxide synthase expression and nitric oxide release in the cerebrovascular endothelium. The target screening experiments demonstrated binding of MLIF to the ribosomal protein translation elongation factor eEF1A1. MLIF enhanced endothelial nitric oxide synthase expression through stabilization of endothelial nitric oxide synthase mRNA, and eEF1A1 was shown to be necessary for this enhanced expression. Knockdown of eEF1A1 or inhibition of endothelial nitric oxide synthase attenuated MLIF-mediated inhibition of adhesion molecule expression. In this study, we identified a new potential pharmacologically targetable mechanism underlying MLIF's protective effects in brain ischemia through the eEF1A1/endothelial nitric oxide synthase pathway.

  6. Calycosin and formononetin from astragalus root enhance dimethylarginine dimethylaminohydrolase 2 and nitric oxide synthase expressions in Madin Darby Canine Kidney II cells.

    PubMed

    Bai, Fan; Makino, Toshiaki; Kono, Keiko; Nagatsu, Akito; Ono, Takahiko; Mizukami, Hajime

    2013-10-01

    Nitric oxide (NO) is a crucial vasodilator produced by nitric oxide synthase (NOS). Asymmetric dimethylarginine (ADMA) is an endogenous NOS inhibitor and mainly catabolized by dimethylarginine dimethylaminohydrolase (DDAH). As we reported, the antihypertensive effect of shichimotsukokato (SKT), a formula of Japanese traditional kampo medicine consisting of 7 crude drugs, in 5/6 nephrectomized rats, is mediated by the DDAH-ADMA-NO pathway. Our present study aimed to explore the effective compounds of SKT using Madin Darby Canine Kidney (MDCK) II cells. We isolated two isoflavones, calycosin and formononetin from astragalus root, one of the components of SKT, which can promote DDAH2 protein and mRNA expressions in MDCK II cells. The neuronal NOS levels were also upregulated by the treatment of calycosin and formononetin. These results suggest that calycosin and formononetin could be the active ingredients of astragalus root and SKT that cause antihypertensive effects. The increased levels of DDAH2 and NOS may enhance NO production, decrease ADMA level and improve endothelial and cardiovascular dysfunction.

  7. Vascular proliferation and enhanced expression of endothelial nitric oxide synthase in human peritoneum exposed to long-term peritoneal dialysis.

    PubMed

    Combet, S; Miyata, T; Moulin, P; Pouthier, D; Goffin, E; Devuyst, O

    2000-04-01

    Long-term peritoneal dialysis (PD) is associated with alterations in peritoneal permeability and loss of ultrafiltration. These changes originate from increased peritoneal surface area, but the morphologic and molecular mechanisms involved remain unknown. The hypothesis that modifications of activity and/or expression of nitric oxide synthase (NOS) isozymes might play a role in these modifications, via enhanced local production of nitric oxide, was tested in this study. NOS activities were measured by the L-citrulline assay in peritoneal biopsies from seven control subjects, eight uremic patients immediately before the onset of PD, and 13 uremic patients on short-term (<18 mo, n = 6) or long-term(>18 mo, n = 7) PD. Peritoneal NOS activity is increased fivefold in long-term PD patients compared with control subjects. In uremic patients, NOS activity is positively correlated with the duration of PD. Increased NOS activity is mediated solely by Ca(2+)-dependent NOS and, as shown by immunoblotting, an upregulation of endothelial NOS. The biologic relevance of increased NOS in long-term PD was demonstrated by enhanced nitrotyrosine immunoreactivity and a significant increase in vascular density and endothelial area in the peritoneum. Immunoblotting and immunostaining studies demonstrated an upregulation of vascular endothelial growth factor (VEGF) mostly along the endothelium lining peritoneal blood vessels in long-term PD patients. In the latter, VEGF colocalized with the advanced glycation end product pentosidine deposits. These data provide a morphologic (angiogenesis and increased endothelial area) and molecular (enhanced NOS activity and endothelial NOS upregulation) basis for explaining the permeability changes observed in long-term PD. They also support the implication of local advanced glycation end product deposits and liberation of VEGF in that process.

  8. Pu-erh Tea Reduces Nitric Oxide Levels in Rats by Inhibiting Inducible Nitric Oxide Synthase Expression through Toll-Like Receptor 4

    PubMed Central

    Xu, Yang; Wang, Guan; Li, Chunjie; Zhang, Min; Zhao, Hang; Sheng, Jun; Shi, Wei

    2012-01-01

    Pu-erh tea undergoes a unique fermentation process and contains theabrownins, polysaccharides and caffeine; although it is unclear about which component is associated with the down regulation of nitric oxide levels or how this process is mediated. To address this question we examined the effects of pu-erh tea on nitric oxide synthase (NOS) genes. Cohorts of rats were separately given four-week treatments of water as control, pu-erh tea, or the tea components: theabrownins, caffeine or polysaccharides. Five experimental groups were injected with lipopolysaccharides (LPS) to induce nitric oxide (NO) production, while the corresponding five control groups were injected with saline as a negative control. The serum and liver NO concentrations were examined and the NOS expression of both mRNA and protein was measured in liver. The results showed that the rats which were fed pu-erh tea or polysaccharides had lower levels of NO which corresponded with the down-regulation of inducible nitric oxide synthase (iNOS) expression. We further demonstrate that this effect is mediated through reduction of Toll-like receptor 4 (TLR4) signaling. Thus we find that the polysaccharide components in pu-erh tea reduce NO levels in an animal model by inhibiting the iNOS expression via signaling through TLR4. PMID:22837686

  9. Modulation of taurine release by glutamate receptors and nitric oxide.

    PubMed

    Oja, S S; Saransaari, P

    2000-11-01

    Taurine is held to function as a modulator and osmoregulator in the central nervous system, being of particular importance in the immature brain. In view of the possible involvement of excitatory pathways in the regulation of taurine function in the brain, the interference of glutamate receptors with taurine release from different tissue preparations in vitro and from the brain in vivo is of special interest. The release of taurine from the brain is enhanced by glutamate receptor agonists. This enhancement is inhibited by the respective receptor antagonists both in vitro and in vivo. The ionotropic N-methyl-D-aspartate (NMDA) and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor agonists appear to be the most effective in enhancing taurine release, their effects being receptor-mediated. Kainate is less effective, particularly in adults. Of the glutamate receptors, the NMDA class seems to be the most susceptible to modulation by nitric oxide. Nitric oxide also modulates taurine release, enhancing the basal release in both immature and mature hippocampus, whereas the K(+)-stimulated release is generally inhibited. Metabotropic glutamate receptors also participate in the regulation of taurine release, group I metabotropic glutamate receptors potentiating the release in the developing hippocampus, while group III receptors may be involved in the adult. Under various cell-damaging conditions, including ischemia, hypoxia and hypoglycemia, taurine release is enhanced, together with an enhanced release of excitatory amino acids. The increase in extracellular taurine upon excessive stimulation of glutamate receptors and under cell-damaging conditions may serve as an important protective mechanism against excitotoxicity, being particularly effective in the immature brain.

  10. Arginase activity and nitric oxide levels in patients with obstructive sleep apnea syndrome

    PubMed Central

    Yüksel, Meral; Okur, Hacer Kuzu; Pelin, Zerrin; Öğünç, Ayliz Velioğlu; Öztürk, Levent

    2014-01-01

    OBJECTIVE: Obstructive sleep apnea syndrome is characterized by repetitive obstruction of the upper airways, and it is a risk factor for cardiovascular diseases. There have been several studies demonstrating low levels of nitric oxide in patients with obstructive sleep apnea syndrome compared with healthy controls. In this study, we hypothesized that reduced nitric oxide levels would result in high arginase activity. Arginase reacts with L-arginine and produces urea and L-ornithine, whereas L-arginine is a substrate for nitric oxide synthase, which produces nitric oxide. METHODS: The study group consisted of 51 obstructive sleep apnea syndrome patients (M/F: 43/8; mean age 49±10 years of age) and 15 healthy control subjects (M/F: 13/3; mean age 46±14 years of age). Obstructive sleep apnea syndrome patients were divided into two subgroups based on the presence or absence of cardiovascular disease. Nitric oxide levels and arginase activity were measured via an enzyme-linked immunosorbent assay of serum samples. RESULTS: Serum nitric oxide levels in the control subjects were higher than in the obstructive sleep apnea patients with and without cardiovascular diseases (p<0.05). Arginase activity was significantly higher (p<0.01) in obstructive sleep apnea syndrome patients without cardiovascular diseases compared with the control group. Obstructive sleep apnea syndrome patients with cardiovascular diseases had higher arginase activity than the controls (p<0.001) and the obstructive sleep apnea syndrome patients without cardiovascular diseases (p<0.05). CONCLUSION: Low nitric oxide levels are associated with high arginase activity. The mechanism of nitric oxide depletion in sleep apnea patients suggests that increased arginase activity might reduce the substrate availability of nitric oxide synthase and thus could reduce nitric oxide levels. PMID:24714832

  11. Nitric oxide signaling: systems integration of oxygen balance in defense of cell integrity.

    PubMed

    Gong, Li; Pitari, Giovanni M; Schulz, Stephanie; Waldman, Scott A

    2004-01-01

    Nitric oxide has emerged as a ubiquitous signaling molecule subserving diverse pathophysiologic processes, including cardiovascular homeostasis and its decompensation in atherogenesis. Recent insights into molecular mechanisms regulating nitric oxide generation and the rich diversity of mechanisms by which it propagates signals reveal the role of this simple gas as a principle mediator of systems integration of oxygen balance. The molecular lexicon by which nitric oxide propagates signals encompasses the elements of posttranslational modification of proteins by redox-based nitrosylation of transition metal centers and free thiols. Spatial and temporal precision and specificity of signal initiation, amplification, and propagation are orchestrated by dynamic assembly of supramolecular complexes coupling nitric oxide production to upstream and downstream components in specific subcellular compartments. The concept of local paracrine signaling by nitric oxide over subcellular distances for short durations has expanded to include endocrine-like effects over anatomic spatial and temporal scales. From these insights emerges a role for nitric oxide in integrating system responses controlling oxygen supply and demand to defend cell integrity in the face of ischemic challenge. In this context, nitric oxide coordinates the respiratory cycle to acquire and deliver oxygen to target tissues by regulating hemoglobin function and vascular smooth muscle contractility and matches energy supply and demand by down-regulating energy-requiring functions while shifting metabolism to optimize energy production. Insights into mechanisms regulating nitric oxide production and signaling and their integration into responses mediating homeostasis place into specific relief the role of those processes in pathophysiology. Indeed, endothelial dysfunction associated with altered production of nitric oxide regulating tissue integrity contributes to the pathogenesis underlying atherogenesis

  12. Remote sensing of nitric oxide emissions from planes, trains and automobiles

    NASA Astrophysics Data System (ADS)

    Popp, Peter John

    Remote sensing has been proven as an effective method for measuring in-use mobile source emissions. This document describes the development of a remote sensor for mobile source nitric oxide, based on an instrument previously developed at the University of Denver for measuring carbon monoxide and hydrocarbon emissions. The new remote sensor makes use of a high-speed ultraviolet spectrometer to quantify nitric oxide by absorption spectroscopy at 226 nm in the ultraviolet region. The high-speed spectrometer is coupled to an existing FEAT remote sensor, for the simultaneous measurement of CO, CO2 and hydrocarbons by non-dispersive infrared absorption spectroscopy. The utility of the instrument was demonstrated in the measurement of nitric oxide emissions from automobiles, commercial aircraft, and railroad locomotives. The remote sensor was used to measure nitric oxide emissions from motor vehicles in Chicago in 1997 and 1998, as part of a five-year study to characterize motor vehicle emissions and deterioration in that city. Emissions data were collected for over 19,000 vehicles in 1997 and almost 23,000 vehicles in 1998. All of these records contained valid measurements for carbon monoxide and hydrocarbons, in addition to nitric oxide. In September of 1997, a study was conducted with the cooperation of British Airways and the British Airports Authority to demonstrate the capability of the remote sensor in measuring nitric oxide emissions from in-use commercial aircraft. In two days of sampling at London Heathrow Airport, a total of 122 measurements were made of 90 different aircraft, ranging in size from Gulfstream executive jets to Boeing 747-400s. The measured nitric oxide emission indices were not inconsistent with commercial aircraft emission indices published by the International Civil Aviation Organization. The utility of the remote sensor in measuring nitric oxide emissions from railroad locomotives was demonstrated in January of 1999, in a study conducted with

  13. Antimicrobial Activity of Nitric Oxide-Releasing Ti-6Al-4V Metal Oxide

    PubMed Central

    Reger, Nina A.; Meng, Wilson S.; Gawalt, Ellen S.

    2017-01-01

    Titanium and titanium alloy materials are commonly used in joint replacements, due to the high strength of the materials. Pathogenic microorganisms can easily adhere to the surface of the metal implant, leading to an increased potential for implant failure. The surface of a titanium-aluminum-vanadium (Ti-6Al-4V) metal oxide implant material was functionalized to deliver an small antibacterial molecule, nitric oxide. S-nitroso-penicillamine, a S-nitrosothiol nitric oxide donor, was covalently immobilized on the metal oxide surface using self-assembled monolayers. Infrared spectroscopy was used to confirm the attachment of the S-nitrosothiol donor to the Ti-Al-4V surface. Attachment of S-nitroso-penicillamine resulted in a nitric oxide (NO) release of 89.6 ± 4.8 nmol/cm2 under physiological conditions. This low concentration of nitric oxide reduced Escherichia coli and Staphylococcus epidermidis growth by 41.5 ± 1.2% and 25.3 ± 0.6%, respectively. Combining the S-nitrosothiol releasing Ti-6Al-4V with tetracycline, a commonly-prescribed antibiotic, increased the effectiveness of the antibiotic by 35.4 ± 1.3%, which allows for lower doses of antibiotics to be used. A synergistic effect of ampicillin with S-nitroso-penicillamine-modified Ti-6Al-4V against S. epidermidis was not observed. The functionalized Ti-6Al-4V surface was not cytotoxic to mouse fibroblasts. PMID:28635681

  14. Medicinal chemistry and anti-inflammatory activity of nitric oxide-releasing NSAI drugs.

    PubMed

    Koç And, Esra; Küçükgüzel, S Güniz

    2009-05-01

    Nitric Oxide, which acts as a non-specific cytotoxic mediator and a biological messenger on immunological competence, has been gaining significantly increasing importance. As an alternative to conventional NSAIDs having significant side effects, pharmacologically improved and therapeutically enhanced NO releasing non-steroidal anti-inflammatory drugs with less side effects are being planned to produce.

  15. SOIL NITROUS OXIDE, NITRIC OXIDE, AND AMMONIA EMISSIONS FROM A RECOVERING RIPARIAN ECOSYSTEM IN SOUTHERN APPALACHIA

    EPA Science Inventory

    The paper presents two years of seasonal nitric oxide, ammonia, and nitrous oxide trace gas fluxes measured in a recovering riparian zone with cattle excluded and in an adjacent riparian zone grazed by cattle. In the recovering riparian zone, average nitric oxide, ammonia, and ni...

  16. Functional Nitric Oxide Nutrition to Combat Cardiovascular Disease.

    PubMed

    Bryan, Nathan S

    2018-03-17

    To reveal the mechanisms of nitric oxide (NO) production in humans and how lifestyle, drug therapy, and hygienic practices can decrease NO production. Furthermore, to show how functional nitric oxide nutrition can overcome these limitations to restore endogenous NO production and combat cardiovascular disease. Research over the past decade has revealed that inorganic nitrate and nitrite found naturally in green leafy vegetables and other vegetables such as beets can provide the human body with a source of bioactive nitric oxide. NO is one of the most important molecules produced within the cardiovascular system that maintains normal blood pressure and prevents inflammation, immune dysfunction, and oxidative stress, hallmarks of cardiovascular disease. This pathway is dependent upon the amount of inorganic nitrate and nitrite in the foods we eat, the presence of oral nitrate-reducing bacteria, and sufficient stomach acid production. The concept of food being medicine and medicine being food has lost its place in the practice and implementation of modern medicine over the past century. Certain dietary patterns and specific foods are known to confer very significant protective effects for many human diseases, including cardiovascular disease, the number one killer of men and women in the developed world. However, identification of single or multiple bioactive molecules that are responsible for these effects has escaped scientists and nutritionists for many years. This review will highlight the biochemical, physiological, and epidemiological basis for functional nitric oxide nutrition that can be safely and effectively utilized in patients.

  17. Caffeinated nitric oxide-releasing lozenge improves cycling time trial performance.

    PubMed

    Lee, J; Kim, H T; Solares, G J; Kim, K; Ding, Z; Ivy, J L

    2015-02-01

    Boosting nitric oxide production during exercise by various means has been found to improve exercise performance. We investigated the effects of a nitric oxide releasing lozenge with added caffeine (70 mg) on oxygen consumption during steady-state exercise and cycling time trial performance using a double-blinded randomized, crossover experimental design. 15 moderately trained cyclists (7 females and 8 males) were randomly assigned to ingest the caffeinated nitric oxide lozenge or placebo 5 min before exercise. Oxygen consumption and blood lactate were assessed at rest and at 50%, 65% and 75% maximal oxygen consumption. Exercise performance was assessed by time to complete a simulated 20.15 km cycling time-trial course. No significant treatment effects for oxygen consumption or blood lactate at rest or during steady-state exercise were observed. However, time-trial performance was improved by 2.1% (p<0.01) when participants consumed the nitric oxide lozenge (2,424±69 s) compared to placebo (2,476±78 s) and without a significant difference in rating of perceived exertion. These results suggest that acute supplementation with a caffeinated nitric oxide releasing lozenge may be a practical and effective means of improving aerobic exercise performance. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Nitric oxide regulation of calcitonin gene-related peptide gene expression in rat trigeminal ganglia neurons

    PubMed Central

    Bellamy, Jamie; Bowen, Elizabeth J.; Russo, Andrew F.; Durham, Paul L.

    2006-01-01

    Calcitonin gene-related peptide (CGRP) and nitric oxide are involved in the underlying pathophysiology of migraine and other diseases involving neurogenic inflammation. We have tested the hypothesis that nitric oxide might trigger signaling mechanisms within the trigeminal ganglia neurons that would coordinately stimulate CGRP synthesis and release. Treatment of primary trigeminal ganglia cultures with nitric oxide donors caused a greater than four-fold increase in CGRP release compared with unstimulated cultures. Similarly, CGRP promoter activity was also stimulated by nitric oxide donors and overexpression of inducible nitric oxide synthase (iNOS). Cotreatment with the antimigraine drug sumatriptan greatly repressed nitric oxide stimulation of CGRP promoter activity and secretion. Somewhat surprisingly, the mechanisms of nitric oxide stimulation of CGRP secretion did not require cGMP or PI3-kinase signaling pathways, but rather, nitric oxide action required extracellular calcium and likely involves T-type calcium channels. Furthermore, nitric oxide was shown to increase expression of the active forms of the mitogen-activated protein kinases Jun amino-terminal kinase and p38 but not extracellular signal-related kinase in trigeminal neurons. In summary, our results provide new insight into the cellular mechanisms by which nitric oxide induces CGRP synthesis and secretion from trigeminal neurons. PMID:16630053

  19. Flavone inhibits nitric oxide synthase (NOS) activity, nitric oxide production and protein S-nitrosylation in breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Wenzhen; Yang, Bingwu; Fu, Huiling

    As the core structure of flavonoids, flavone has been proved to possess anticancer effects. Flavone's growth inhibitory functions are related to NO. NO is synthesized by nitric oxide synthase (NOS), and generally increased in a variety of cancer cells. NO regulates multiple cellular responses by S-nitrosylation. In this study, we explored flavone-induced regulations on nitric oxide (NO)-related cellular processes in breast cancer cells. Our results showed that, flavone suppresses breast cancer cell proliferation and induces apoptosis. Flavone restrains NO synthesis by does-dependent inhibiting NOS enzymatic activity. The decrease of NO generation was detected by fluorescence microscopy and flow cytometry. Flavone-inducedmore » inhibitory effect on NOS activity is dependent on intact cell structure. For the NO-induced protein modification, flavone treatment significantly down-regulated protein S-nitrosylation, which was detected by “Biotin-switch” method. The present study provides a novel, NO-related mechanism for the anticancer function of flavone. - Highlights: • Flavone inhibits proliferation and induces apoptosis in MCF-7 cells. • Flavone decreases nitric oxide production by inhibiting NOS enzymatic activity in breast cancer cells. • Flavone down-regulates protein S-nitrosylation.« less

  20. Two-color vibrational, femtosecond, fully resonant electronically enhanced CARS (FREE-CARS) of gas-phase nitric oxide.

    PubMed

    Stauffer, Hans U; Roy, Sukesh; Schmidt, Jacob B; Wrzesinski, Paul J; Gord, James R

    2016-09-28

    A resonantly enhanced, two-color, femtosecond time-resolved coherent anti-Stokes Raman scattering (CARS) approach is demonstrated and used to explore the nature of the frequency- and time-dependent signals produced by gas-phase nitric oxide (NO). Through careful selection of the input pulse wavelengths, this fully resonant electronically enhanced CARS (FREE-CARS) scheme allows rovibronic-state-resolved observation of time-dependent rovibrational wavepackets propagating on the vibrationally excited ground-state potential energy surface of this diatomic species. Despite the use of broadband, ultrafast time-resolved input pulses, high spectral resolution of gas-phase rovibronic transitions is observed in the FREE-CARS signal, dictated by the electronic dephasing timescales of these states. Analysis and computational simulation of the time-dependent spectra observed as a function of pump-Stokes and Stokes-probe delays provide insight into the rotationally resolved wavepacket motion observed on the excited-state and vibrationally excited ground-state potential energy surfaces of NO, respectively.

  1. UV Induced Oxidation of Nitric Oxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde, F. (Inventor); Luecke, Dale E. (Inventor)

    2007-01-01

    Nitric oxide in a gaseous stream is converted to nitrogen dioxide using oxidizing species generated at least in part using in situ UV radiation sources. The sources of the oxidizing species include oxygen and/or hydrogen peroxide. The oxygen may be a component of the gaseous stream or added to the gaseous stream, preferably near a UV radiation source, and is converted to ozone by the UV irradiation. The hydrogen peroxide is decomposed through a combination of vaporization and UV irradiation. The hydrogen peroxide is preferably stored at stable concentration levels, i.e., approximately 50% by volume and increased in concentration in a continuous process preceding vaporization within the flow channel of the gaseous stream and in the presence of the UV radiation sources.

  2. Effects of exercise training on cellular mechanisms of endothelial nitric oxide synthase regulation in coronary arteries after chronic occlusion

    PubMed Central

    Zhou, Minglong; Widmer, R. Jay; Xie, Wei; Jimmy Widmer, A.; Miller, Matthew W.; Schroeder, Friedhelm; Parker, Janet L.

    2010-01-01

    Exercise training enhances agonist-mediated relaxation in both control and collateral-dependent coronary arteries of hearts subjected to chronic occlusion, an enhancement that is mediated in part by nitric oxide. The purpose of the present study was to elucidate exercise training-induced adaptations in specific cellular mechanisms involved in the regulation of endothelial nitric oxide synthase (eNOS) in coronary arteries of ischemic hearts. Ameroid constrictors were surgically placed around the proximal left circumflex coronary artery (LCX) of adult female Yucatan miniature swine. Eight weeks postoperatively, animals were randomized into sedentary (pen-confined) or exercise training (treadmill run; 5 days/wk; 14 wk) protocols. Coronary artery segments (∼1.0 mm luminal diameter) were isolated from collateral-dependent (LCX) and control (nonoccluded left anterior descending) arteries 22 wk after ameroid placement. Endothelial cells were enzymatically dissociated, and intracellular Ca2+ responses (fura 2) to bradykinin stimulation were studied. Immunofluorescence and laser scanning confocal microscopy were used to quantify endothelial cell eNOS and caveolin-1 cellular distribution under basal and bradykinin-stimulated conditions. Immunoblot analysis was used to determine eNOS, phosphorylated (p)-eNOS, protein kinase B (Akt), pAkt, and caveolin-1 protein levels. Bradykinin-stimulated nitrite plus nitrate (NOx; nitric oxide metabolites) levels were assessed via HPLC. Exercise training resulted in significantly enhanced bradykinin-mediated increases in endothelial Ca2+ levels, NOx levels, and the distribution of eNOS-to-caveolin-1 ratio at the plasma membrane in endothelial cells of control and collateral-dependent arteries. Exercise training also significantly increased total eNOS and phosphorylated levels of eNOS (pSer1179) in collateral-dependent arteries. Total eNOS protein levels were also significantly increased in collateral-dependent arteries of sedentary

  3. Thiopental inhibits nitric oxide production in rat aorta.

    PubMed

    Castillo, C; Asbun, J; Escalante, B; Villalón, C M; López, P; Castillo, E F

    1999-12-01

    We studied whether thiopental affects endothelial nitric oxide dependent vasodilator responses and nitrite production (an indicator of nitric oxide production) elicited by acetylcholine, histamine, and A23187 in rat aorta (artery in which nitric oxide is the main endothelial relaxant factor). In addition, we evaluated the barbiturate effect on nitric oxide synthase (NOS) activity in both rat aorta and kidney homogenates. Thiopental (10-100 microg/mL) reversibly inhibited the endothelium-dependent relaxation elicited by acetylcholine, histamine, and A23187. On the contrary, this anesthetic did not modify the endothelium-independent but cGMP-dependent relaxation elicited by sodium nitroprusside (1 nM - 1 microM) and nitroglycerin (1 nM - 1 microM), thus excluding an effect of thiopental on guanylate cyclase of vascular smooth muscle. Thiopental (100 microg/mL) inhibited both basal (87.8+/-14.3%) and acetylcholine- or A23187-stimulated (78.6+/-3.9 and 39.7+/-5.6%, respectively) production of nitrites in aortic rings. In addition the barbiturate inhibited (100 microg/mL) the NOS (45+/-4 and 42.8+/-9%) in aortic and kidney homogenates, respectively (measured as 14C-labeled citrulline production). In conclusion, thiopental inhibition of endothelium-dependent relaxation and nitrite production in aortic rings strongly suggests an inhibitory effect on NOS. Thiopental inhibition of the NOS provides further support to this contention.

  4. Nitric oxide-sensing actuators for modulating structure in lipid-based liquid crystalline drug delivery systems.

    PubMed

    Liu, Qingtao; Hu, Jinming; Whittaker, Michael R; Davis, Thomas P; Boyd, Ben J

    2017-12-15

    Herein we report on the development of a nitric oxide-sensing lipid-based liquid crystalline (LLC) system specifically designed to release encapsulated drugs on exposure to NO through a stimulated phase change. A series of nitric oxide (NO)-sensing lipids compatible with phytantriol and GMO cubic phases were designed and synthesized, and utilized in enabling nitric oxide-sensing LLC systems. The nitric oxide (NO)-sensing lipids react with nitric oxide, resulting in hydrolysis of these lipids and phase transition of the LLC system. Specifically, the N-3-aminopyridinyl myristylamine (NAPyM)+phytantriol mixture formed a lamellar phase in excess aqueous environment. The NAPyM+phytantriol LLC responded to the nitric oxide gas as a chemical stimulus which triggers a phase transition from lamellar phase to inverse cubic and hexagonal phase. The nitric oxide-triggered phase transition of the LLC accelerated the release of encapsulated model drug from the LLC bulk phase, resulting in a 15-fold increase in the diffusion coefficient compared to the starting lamellar structure. The nitric oxide-sensing LLC system has potential application in the development of smart medicines to treat nitric oxide implicated diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Part per trillion nitric oxide measurement by optical feedback cavity-enhanced absorption spectroscopy in the mid-infrared

    NASA Astrophysics Data System (ADS)

    Ventrillard, Irène; Gorrotxategi-Carbajo, Paula; Romanini, Daniele

    2017-06-01

    While nitric oxide (NO) is being monitored in various fields of application, there is still a lack of available instruments at a sub-ppb level of sensitivity. We report on the first application of Optical Feedback Cavity-Enhanced Absorption Spectroscopy (OF-CEAS) to NO trace gas analysis, with a room-temperature quantum-cascade laser at 5.26 µm (1900.5 cm^{-1}). A detection limit of 60 ppt is reached in a single measurement performed in 140 ms. The stability of the instrument allows to average for 10 s down to 8.3 ppt, limited by drift of etalon fringes in the spectra. This work opens the path towards new applications notably in breath analysis and environment sciences.

  6. Monoclonal L-citrulline immunostaining reveals nitric oxide-producing vestibular neurons

    NASA Technical Reports Server (NTRS)

    Holstein, G. R.; Friedrich, V. L. Jr; Martinelli, G. P.

    2001-01-01

    Nitric oxide is an unstable free radical that serves as a novel messenger molecule in the central nervous system (CNS). In order to understand the interplay between classic and novel chemical communication systems in vestibular pathways, the staining obtained using a monoclonal antibody directed against L-citrulline was compared with the labeling observed using more traditional markers for the presence of nitric oxide. Brainstem tissue from adult rats was processed for immunocytochemistry employing a monoclonal antibody directed against L-citrulline, a polyclonal antiserum against neuronal nitric oxide synthase, and/or NADPH-diaphorase histochemistry. Our findings demonstrate that L-citrulline can be fixed in situ by vascular perfusion, and can be visualized in fixed CNS tissue sections by immunocytochemistry. Further, the same vestibular regions and cell types are labeled by NADPH-diaphorase histochemistry, by the neuronal nitric oxide synthase antiserum, and by our anti-L-citrulline antibody. Clusters of L-citrulline-immunoreactive neurons are present in subregions of the vestibular nuclei, including the caudal portion of the inferior vestibular nucleus, the magnocellular portion of the medial vestibular nucleus, and the large cells in the ventral tier of the lateral vestibular nucleus. NADPH-diaphorase histochemical staining of these neurons clearly demonstrated their multipolar, fusiform and globular somata and long varicose dendritic processes. These results provide support for the suggestion that nitric oxide serves key roles in both vestibulo-autonomic and vestibulo-spinal pathways.

  7. [Fractional exhaled nitric oxide in monitoring and therapeutic management of asthma].

    PubMed

    Melo, Bruno; Costa, Patrício; Afonso, Ariana; Machado, Vânia; Moreira, Carla; Gonçalves, Augusta; Gonçalves, Jean-Pierre

    2014-01-01

    Asthma is a chronic respiratory disease characterized by hyper-responsiveness and bronchial inflammation. The bronchial inflammation in these patients can be monitored by measuring the fractional exhaled nitric oxide. This study aims to determine fractional exhaled nitric oxide association with peak expiratory flow and with asthma control inferred by the Global Initiative for Asthma. Observational, analytical and cross-sectional study of children with asthma, 6-12 years-old, followed in the Outpatient Respiratory Pathology of Braga Hospital. Sociodemographic and clinical information were collected through a questionnaire. fractional exhaled nitric oxide and peak expiratory flow were determined by portable analyzer Niox Mino® and flow meter, respectively. The sample is constituted by 101 asthmatic children, 63 (62.4%) of males and 38 (37.6%) females. The mean age of participants in the sample is 9.18 (1.99) years. The logistic regression performed with the cutoff value obtained by ROC curve, revealed that fractional exhaled nitric oxide (b(FENO classes) = 0.85; χ(2)Wald (1) = 8.71; OR = 2.33; p = 0.003) has a statistical significant effect on the probability of changing level of asthma control. The odds ratio of going from "controlled" to "partly controlled/uncontrolled" is 2.33 per each level of fractional exhaled nitric oxide. The probability of an asthmatic children change their level of asthma control, from 'controlled' to 'partly controlled/uncontrolled', taking into account a change in their fractional exhaled nitric oxide level, increases 133%.

  8. Nitric oxide-mediated blood flow regulation as affected by smoking and nicotine.

    PubMed

    Toda, Noboru; Toda, Hiroshi

    2010-12-15

    Cigarette smoking is a major risk factor for atherosclerosis, cerebral and coronary vascular diseases, hypertension, and diabetes mellitus. Chronic smoking impairs endothelial function by decreasing the formation of nitric oxide and increasing the degradation of nitric oxide via generation of oxygen free radicals. Nitric oxide liberated from efferent nitrergic nerves is also involved in vasodilatation, increased regional blood flow, and hypotension that are impaired through nitric oxide sequestering by smoking-induced factors. Influence of smoking on nitric oxide-induced blood flow regulation is not necessarily the same in all organs and tissues. However, human studies are limited mainly to the forearm blood flow measurement that assesses endothelial function under basal and stimulated conditions and also determination of penile tumescence and erection in response to endothelial and neuronal nitric oxide. Therefore, information about blood flow regulation in other organs, such as the brain and placenta, has been provided mainly from studies on experimental animals. Nicotine, a major constituent of cigarette smoke, acutely dilates cerebral arteries and arterioles through nitric oxide liberated from nitrergic neurons, but chronically interferes with endothelial function in various vasculatures, both being noted in studies on experimental animals. Cigarette smoke constituents other than nicotine also have some vascular actions. Not only active but also passive smoking is undoubtedly harmful for both the smokers themselves and their neighbors, who should bear in mind that they can face serious diseases in the future, which may result in lengthy hospitalization, and a shortened lifespan. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Production of nitric oxide using a microwave plasma torch and its application to fungal cell differentiation

    NASA Astrophysics Data System (ADS)

    Na, Young Ho; Kumar, Naresh; Kang, Min-Ho; Cho, Guang Sup; Choi, Eun Ha; Park, Gyungsoon; Uhm, Han Sup

    2015-03-01

    The generation of nitric oxide by a microwave plasma torch is proposed for its application to cell differentiation. A microwave plasma torch was developed based on basic kinetic theory. The analytical theory indicates that nitric oxide density is nearly proportional to oxygen molecular density and that the high-temperature flame is an effective means of generating nitric oxide. Experimental data pertaining to nitric oxide production are presented in terms of the oxygen input in units of cubic centimeters per minute. The apparent length of the torch flame increases as the oxygen input increases. The various levels of nitric oxide are observed depending on the flow rate of nitrogen gas, the mole fraction of oxygen gas, and the microwave power. In order to evaluate the potential of nitric oxide as an activator of cell differentiation, we applied nitric oxide generated from the microwave plasma torch to a model microbial cell (Neurospora crassa: non-pathogenic fungus). Germination and hyphal differentiation of fungal cells were not dramatically changed but there was a significant increase in spore formation after treatment with nitric oxide. In addition, the expression level of a sporulation related gene acon-3 was significantly elevated after 24 h upon nitric oxide treatment. Increase in the level of nitric oxide, nitrite and nitrate in water after nitric oxide treatment seems to be responsible for activation of fungal sporulation. Our results suggest that nitric oxide generated by plasma can be used as a possible activator of cell differentiation and development.

  10. Nitric oxide mitigates arsenic-induced oxidative stress and genotoxicity in Vicia faba L.

    PubMed

    Shukla, Pratiksha; Singh, A K

    2015-09-01

    The protective effects of nitric oxide (NO) against arsenic (As)-induced structural disturbances in Vicia faba have been investigated. As treatment (0.25, 0.50, and 1 mM) resulted in a declined growth of V. faba seedlings. Arsenic treatment stimulates the activity of SOD and CAT while the activities of APX and GST content were decreased. The oxidative stress markers such as superoxide radical, hydrogen peroxide and malondialdehyde (lipid peroxidation) contents were enhanced by As. Overall results revealed that significant accumulation of As suppressed growth, photosynthesis, antioxidant enzymes (SOD, CAT, APX, and GST activity), mitotic index, and induction of different chromosomal abnormalities, hence led to oxidative stress. The concentration of SNP (0.02 mM) was very effective in counteracting the adverse effect of As toxicity. These abnormalities use partially or fully reversed by a simultaneous application of As and NO donor and sodium nitroprusside and has an ameliorating effect against As-induced oxidative stress and genotoxicity in V. faba roots.

  11. Detection of Nitric Oxide by Electron Paramagnetic Resonance Spectroscopy

    PubMed Central

    Hogg, Neil

    2010-01-01

    Electron paramagnetic resonance (EPR) spectroscopy has been used in a number of ways to study nitric oxide chemistry and biology. As an intrinsically stable and relatively unreactive diatomic free radical, the challenges for detecting this species by EPR are somewhat different than those for transient radical species. This review gives a basic introduction to EPR spectroscopy and discusses its uses to assess and quantify nitric oxide formation in biological systems. PMID:20304044

  12. Improvement of Tissue Survival of Skin Flaps by 5α-Reductase Inhibitors: Possible Involvement of Nitric Oxide and Inducible Nitric Oxide Synthase

    PubMed Central

    Karimi, Ali Asghar; Ajami, Marjan; Asadi, Yasin; Aboutaleb, Nahid; Gorjipour, Fazel; Malekloo, Roya; Pazoki-Toroudi, Hamidreza

    2015-01-01

    Background: Skin flap grafting is a popular approach for reconstruction of critical skin and underlying soft tissue injuries. In a previous study, we demonstrated the beneficial effects of two 5α-reductase inhibitors, azelaic acid and finasteride, on tissue survival in a rat model of skin flap grafting. In the current study, we investigated the involvement of nitric oxide and inducible nitric oxide synthase (iNOS) in graft survival mediated by these agents. Methods: A number of 42 male rats were randomly allocated into six groups: 1, normal saline topical application; 2, azelaic acid (100 mg/flap); 3, finasteride (1 mg/flap); 4, injection of L-NG-nitroarginine methyl ester (L-NAME) (i.p., 20 mg/kg); 5, L-NAME (20 mg/kg, i.p.) + azelaic acid (100 mg/flap, topical); 6, L-NAME (20 mg/kg, i.p.) + finasteride (1 mg/flap, topical). Tissue survival, level of nitric oxide, and iNOS expression in groups were measured. Results: Our data revealed that azelaic acid and finasteride significantly increased the expression of iNOS protein and nitric oxide (NO) levels in graft tissue (P < 0.05). These increases in iNOS expression and NO level were associated with higher survival of the graft tissue. Conclusion: It appears that alterations of the NO metabolism are implicated in the azelaic acid- and finasteride-mediated survival of the skin flaps. PMID:25864816

  13. A Finite Rate Chemical Analysis of Nitric Oxide Flow Contamination Effects on Scramjet Performance

    NASA Technical Reports Server (NTRS)

    Cabell, Karen F.; Rock, Kenneth E.

    2003-01-01

    The level of nitric oxide contamination in the test gas of the Langley Research Center Arc-Heated Scramjet Test Facility and the effect of the contamination on scramjet test engine performance were investigated analytically. A finite rate chemical analysis was performed to determine the levels of nitric oxide produced in the facility at conditions corresponding to Mach 6 to 8 flight simulations. Results indicate that nitric oxide levels range from one to three mole percent, corroborating previously obtained measurements. A three-stream combustor code with finite rate chemistry was used to investigate the effects of nitric oxide on scramjet performance. Results indicate that nitric oxide in the test gas causes a small increase in heat release and thrust performance for the test conditions investigated. However, a rate constant uncertainty analysis suggests that the effect of nitric oxide ranges from no net effect, to an increase of about 10 percent in thrust performance.

  14. Real-time electrical detection of nitric oxide in biological systems with sub-nanomolar sensitivity

    NASA Astrophysics Data System (ADS)

    Jiang, Shan; Cheng, Rui; Wang, Xiang; Xue, Teng; Liu, Yuan; Nel, Andre; Huang, Yu; Duan, Xiangfeng

    2013-07-01

    Real-time monitoring of nitric oxide concentrations is of central importance for probing the diverse roles of nitric oxide in neurotransmission, cardiovascular systems and immune responses. Here we report a new design of nitric oxide sensors based on hemin-functionalized graphene field-effect transistors. With its single atom thickness and the highest carrier mobility among all materials, graphene holds the promise for unprecedented sensitivity for molecular sensing. The non-covalent functionalization through π-π stacking interaction allows reliable immobilization of hemin molecules on graphene without damaging the graphene lattice to ensure the highly sensitive and specific detection of nitric oxide. Our studies demonstrate that the graphene-hemin sensors can respond rapidly to nitric oxide in physiological environments with a sub-nanomolar sensitivity. Furthermore, in vitro studies show that the graphene-hemin sensors can be used for the detection of nitric oxide released from macrophage cells and endothelial cells, demonstrating their practical functionality in complex biological systems.

  15. Inhibition of neuronal nitric oxide synthase in ovine model of acute lung injury*

    PubMed Central

    Enkhbaatar, Perenlei; Connelly, Rhykka; Wang, Jianpu; Nakano, Yoshimitsu; Lange, Matthias; Hamahata, Atsumori; Horvath, Eszter; Szabo, Csaba; Jaroch, Stefan; Hölscher, Peter; Hillmann, Margrit; Traber, Lillian D.; Schmalstieg, Frank C.; Herndon, David N.; Traber, Daniel L.

    2013-01-01

    Objective Acute respiratory distress syndrome/acute lung injury is a serious complication of burn patients with concomitant smoke inhalation injury. Nitric oxide has been shown to play a major role in pulmonary dysfunction from thermal damage. In this study, we have tested the hypothesis that inhibition of neuronal nitric oxide synthase could ameliorate the severity of acute lung injury using our well-established ovine model of cutaneous burn and smoke inhalation. Design Prospective, randomized, controlled, experimental animals study. Setting Investigational intensive care unit at university hospital. Subjects Adult female sheep Interventions Female sheep (n = 16) were surgically prepared for the study. Seven days after surgery, all sheep were randomly allocated into three study groups: sham (noninjured, nontreated, n = 6); control (injured, treated with saline, n = 6); and neuronal nitric oxide synthase (injured, treated with specific neuronal nitric oxide synthase inhibitor, ZK 234238 (n = 4). Control and neuronal nitric oxide synthase groups were given a cutaneous burn (40% of total body surface, third degree) and insufflated with cotton smoke (48 breaths, <40°C) under halothane anesthesia. Animals in sham group received fake injury also under halothane anesthesia. After injury or fake injury procedure, all sheep were placed on ventilators and resuscitated with lactated Ringer's solution. Neuronal nitric oxide synthase group was administered with continuous infusion of ZK 234238 started 1 hr postinjury with a dose of 100 μg/kg/hr. Sham and control groups received same amount of saline. Measurements and Main Results Cardiopulmonary hemodynamics monitored during the 24-hr experimental time period was stable in the sham group. Control sheep developed multiple signs of acute lung injury. This pathophysiology included decreased pulmonary gas exchange and lung compliance, increased pulmonary edema, and inflammatory indices, such as interleukin-8. Treatment of

  16. Analytical study of mechanisms for nitric oxide formation during combustion of methane in a jet-stirred combustor

    NASA Technical Reports Server (NTRS)

    Jachimowski, C. J.

    1975-01-01

    The role of chemical kinetics in the formation of nitric oxide during the combustion of methane was examined analytically by means of a detailed chemical mechanism for the oxidation of methane, for the reaction between hydrocarbon fragments, and for the formation of nitric oxide. By comparing predicted nitric oxide levels with values reported in the literature from jet-stirred combuster experiments, it was determined that the nitric oxide levels observed in fuel-rich flames cannot be described by a mechanism in which the rate of nitric oxide formation is controlled solely by the kinetics of oxygen atom formation. A proposed mechanism for the formation of nitric oxide in methane-rich flames reproduces the observed levels. The oxidation of hydrogen cyanide appears to be an important factor in nitric oxide formation.

  17. Copper Complex in Poly(vinyl chloride) as a Nitric Oxide-Generating Catalyst for the Control of Nitrifying Bacterial Biofilms.

    PubMed

    Wonoputri, Vita; Gunawan, Cindy; Liu, Sanly; Barraud, Nicolas; Yee, Lachlan H; Lim, May; Amal, Rose

    2015-10-14

    In this study, catalytic generation of nitric oxide by a copper(II) complex embedded within a poly(vinyl chloride) matrix in the presence of nitrite (source of nitric oxide) and ascorbic acid (reducing agent) was shown to effectively control the formation and dispersion of nitrifying bacteria biofilms. Amperometric measurements indicated increased and prolonged generation of nitric oxide with the addition of the copper complex when compared to that with nitrite and ascorbic acid alone. The effectiveness of the copper complex-nitrite-ascorbic acid system for biofilm control was quantified using protein analysis, which showed enhanced biofilm suppression when the copper complex was used in comparison to that with nitrite and ascorbic acid treatment alone. Confocal laser scanning microscopy (CLSM) and LIVE/DEAD staining revealed a reduction in cell surface coverage without a loss of viability with the copper complex and up to 5 mM of nitrite and ascorbic acid, suggesting that the nitric oxide generated from the system inhibits proliferation of the cells on surfaces. Induction of nitric oxide production by the copper complex system also triggered the dispersal of pre-established biofilms. However, the addition of a high concentration of nitrite and ascorbic acid to a pre-established biofilm induced bacterial membrane damage and strongly decreased the metabolic activity of planktonic and biofilm cells, as revealed by CLSM with LIVE/DEAD staining and intracellular adenosine triphosphate measurements, respectively. This study highlights the utility of the catalytic generation of nitric oxide for the long-term suppression and removal of nitrifying bacterial biofilms.

  18. Nitric oxide synthase immunoreactivity in the nematode Trichinella britovi. Evidence for nitric oxide production by the parasite.

    PubMed

    Masetti, Massimo; Locci, Teresa; Cecchettini, Antonella; Lucchesi, Paolo; Magi, Marta; Malvaldi, Gino; Bruschi, Fabrizio

    2004-05-01

    Nitric oxide has been extensively studied as an effector molecule of the host immune response against both protozoa and helminths, but parasites can also produce this molecule, through the action of nitric oxide (NO) synthases or NO synthases-like enzymes. The aim of this study was to verify the possible production of NO by Trichinella britovi L(1) larvae and the enzymes involved in this process. The NO synthase immunoreactivity and putative nitric oxide synthase-activity was analysed using antibodies to mammalian NO synthase III and to nitrotyrosine with immunohistochemistry, gold immunocytochemistry and immunoblot analysis and NADPH-diaphorase histochemistry. Our results show that T. britovi L(1) larvae possess an enzymatic activity capable of producing NO. The localisation of this activity, according to the NADPH-diaphorase histochemistry, is both at the cuticular and the internal level. This localisation is confirmed by nitrotyrosine immunohistochemistry both under optical and electron microscopy. Using the NO synthase III antibody, a similar pattern of labelling was found: in particular, electron microscopy showed a localisation of this immunoreactivity in the cuticle and in the stichocytes, where only the alpha2 granules contained gold particles, mainly concentrated at their periphery. Four polypeptides reacting to the NO synthase III antibody are revealed by Western blotting. Their molecular weight ranged from 38 to 50 kDa. A significant reaction of the anti-nitrotyrosine antibody to polypeptides 95, 60, 48 and 39 kDa from the same sample suggested the presence of different nitrosylated proteins.

  19. Nitric oxide inhibits calpain-mediated proteolysis of talin in skeletal muscle cells

    NASA Technical Reports Server (NTRS)

    Koh, T. J.; Tidball, J. G.

    2000-01-01

    We tested the hypothesis that nitric oxide can inhibit cytoskeletal breakdown in skeletal muscle cells by inhibiting calpain cleavage of talin. The nitric oxide donor sodium nitroprusside prevented many of the effects of calcium ionophore on C(2)C(12) muscle cells, including preventing talin proteolysis and release into the cytosol and reducing loss of vinculin, cell detachment, and loss of cellular protein. These results indicate that nitric oxide inhibition of calpain protected the cells from ionophore-induced proteolysis. Calpain inhibitor I and a cell-permeable calpastatin peptide also protected the cells from proteolysis, confirming that ionophore-induced proteolysis was primarily calpain mediated. The activity of m-calpain in a casein zymogram was inhibited by sodium nitroprusside, and this inhibition was reversed by dithiothreitol. Previous incubation with the active site-targeted calpain inhibitor I prevented most of the sodium nitroprusside-induced inhibition of m-calpain activity. These data suggest that nitric oxide inhibited m-calpain activity via S-nitrosylation of the active site cysteine. The results of this study indicate that nitric oxide produced endogenously by skeletal muscle and other cell types has the potential to inhibit m-calpain activity and cytoskeletal proteolysis.

  20. Coupling Between the Thermosphere and the Stratosphere: the Role of Nitric Oxide

    NASA Technical Reports Server (NTRS)

    Brasseur, G.

    1984-01-01

    In order to understand the lower ionosphere and its probable control by dynamical processes, the behavior of nitric oxide below 100 km was investigated. A two dimensional model with coupled chemical and dynamical processes was constructed. Calculations based on the model reveal that the chemical conditions at the stratopause are related to the state of the thermosphere. This coupling mechanism can be partly explained by the downward transport of nitric oxide during the winter season, and consequently depends on the dynamical conditions in the mesosphere and in the lower thermosphere (mean circulation and waves). In summer, the photodissociation of nitric oxide plays an important role and the thermospheric NO abundance modulates the radiation field reaching the upper stratosphere. Perturbations in the nitric oxide concentration above the mesopause could therefore have an impact in the vicinity of the stratopause.

  1. Recent developments in the effects of nitric oxide-donating statins on cardiovascular disease through regulation of tetrahydrobiopterin and nitric oxide.

    PubMed

    Ma, Sze; Ma, Christopher Cheng-Hwa

    2014-11-01

    Since the discovery of the importance of nitric oxide (NO) to the human body three decades ago, numerous laboratory and clinical studies have been done to explore its potential therapeutic actions on many organs. In the cardiovascular system, NO works as a volatile signaling molecule regulating the vascular permeability and vascular tone, preventing thrombosis and inflammation, as well as inhibiting the smooth muscle hyperplasia. Thus, NO is important in the prevention and treatment of cardiovascular disease. NO is synthesized by NO synthase (NOS) with tetrahydrobiopterin (BH4) as the crucial cofactor. Many studies have been done to form nitric oxide donors so as to deliver NO directly to the vessel walls. In addition, NO moieties have been incorporated into existing therapeutic agents to enhance the NO bioavailability, including statins. Statins are inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme (HMG-CoA), the rate-limiting enzyme of the mevalonate pathway. By inhibiting this pathway, statins lower blood cholesterol and exert their pleiotropic effects through activity in reaction cascades, such as Rho/ROCK and Rac 1/NADPH oxidase pathways. Statins have also been observed to implement their non-lipid effects by promoting BH4 synthesis with increase of NO bioavailability. Furthermore, NO-donating statins in laboratory studies have demonstrated to produce better therapeutic effects than their parent's drugs. They offer better anti-inflammatory, anti-proliferative and antithrombotic actions on cardiovascular system. They also cause better revascularization in peripheral ischemia and produce greater enhancement in limb reperfusion and salvage. In addition, it has been shown that NO-donating statin caused less myotoxicity, the most common side effect related to treatment with statins. The initial studies have demonstrated the superior therapeutic effects of NO-donating statins while producing fewer side effects. Crown Copyright © 2014. Published by Elsevier Inc. All

  2. Ginsenoside Rg3 increases nitric oxide production via increases in phosphorylation and expression of endothelial nitric oxide synthase: Essential roles of estrogen receptor-dependent PI3-kinase and AMP-activated protein kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hien, Tran Thi; Kim, Nak Doo; Pokharel, Yuba Raj

    2010-08-01

    We previously showed that ginsenosides increase nitric oxide (NO) production in vascular endothelium and that ginsenoside Rg3 (Rg3) is the most active one among ginseng saponins. However, the mechanism for Rg3-mediated nitric oxide production is still uncertain. In this study, we determined whether Rg3 affects phosphorylation and expression of endothelial nitric oxide synthase (eNOS) in ECV 304 human endothelial cells. Rg3 increased both the phosphorylation and the expression of eNOS in a concentration-dependent manner and a maximal effect was found at 10 {mu}g/ml of Rg3. The enzyme activities of phosphatidylinositol 3-kinase (PI3-kinase), c-Jun N-terminal kinase (JNK), and p38 kinase weremore » enhanced as were estrogen receptor (ER)- and glucocorticoid receptor (GR)-dependent reporter gene transcriptions in Rg3-treated endothelial cells. Rg3-induced eNOS phosphorylation required the ER-mediated PI3-kinase/Akt pathway. Moreover, Rg3 activates AMP-activated protein kinase (AMPK) through up-regulation of CaM kinase II and Rg3-stimulated eNOS phosphorylation was reversed by AMPK inhibition. The present results provide a mechanism for Rg3-stimulated endothelial NO production.« less

  3. Tetrahydrobiopterin improves hippocampal nitric oxide-linked long-term memory.

    PubMed

    Latini, Alexandra; de Bortoli da Silva, Lucila; da Luz Scheffer, Débora; Pires, Ananda Christina Staats; de Matos, Filipe José; Nesi, Renata T; Ghisoni, Karina; de Paula Martins, Roberta; de Oliveira, Paulo Alexandre; Prediger, Rui D; Ghersi, Marisa; Gabach, Laura; Pérez, Mariela Fernanda; Rubiales-Barioglio, Susana; Raisman-Vozari, Rita; Mongeau, Raymond; Lanfumey, Laurence; Aguiar, Aderbal Silva

    2018-06-11

    Tetrahydrobiopterin (BH4) is synthesized by the combined action of three metabolic pathways, namely de novo synthesis, recycling, and salvage pathways. The best-known function of BH4 is its mandatory action as a natural cofactor of the aromatic amino acid hydroxylases and nitric oxide synthases. Thus, BH4 is essential for the synthesis of nitric oxide, a retrograde neurotransmitter involved in learning and memory. We investigated the effect of BH4 (4-4000 pmol) intracerebroventricular administration on aversive memory, and on BH4 metabolism in the hippocampus of rodents. Memory-related behaviors were assessed in Swiss and C57BL/6 J mice, and in Wistar rats. It was consistently observed across all rodent species that BH4 facilitates aversive memory acquisition and consolidation by increasing the latency to step-down in the inhibitory avoidance task. This effect was associated with a reduced threshold to generate hippocampal long-term potentiation process. In addition, two inhibitors of memory formation (N(ω)-nitro-L-arginine methyl ester - L-Name - and dizocilpine - MK-801 -) blocked the enhanced effect of BH4 on memory, while the amnesic effect was not rescue by the co-administration of BH4 or a cGMP analog (8-Br-cGMP). The data strongly suggest that BH4 enhances aversive memory by activating the glutamatergic neurotransmission and the retrograde activity of NO. It was also demonstrated that BH2 can be converted into BH4 by activating the BH4 salvage pathway under physiological conditions in the hippocampus. This is the first evidence showing that BH4 enhances aversive memory and that the BH4 salvage pathway is active in the hippocampus. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. The peripheral administration of a nitric oxide donor potentiates the local antinociceptive effects of a DOR agonist during chronic inflammatory pain in mice.

    PubMed

    Hervera, Arnau; Leánez, Sergi; Negrete, Roger; Pol, Olga

    2009-10-01

    Several works reveal that nitric oxide could enhance the peripheral antinociception induced by opioids during acute inflammation. Nonetheless, the role of nitric oxide in the local antinociceptive effects of delta-opioid receptor (DOR) agonists during chronic peripheral inflammation is not known. The aim of this study is to evaluate whether nitric oxide would enhance the local antinociceptive effects of a DOR agonist during chronic inflammatory pain in mice. Chronic inflammatory pain was induced by the subplantar administration of complete Freund's adjuvant (CFA; 30 microl) and thermal hyperalgesia assessed by plantar test. In C57BL/6J mice, we evaluated the local antinociceptive effects of a DOR agonist, [D-Pen2,5]-enkephalin (DPDPE) and a nitric oxide donor, DETA NONOate DETA/NO 2,2'-(hydroxynitrosohydrazino) Bis-Ethanamine (NOC-18) alone or combined (DPDPE plus NOC-18) at 1, 4, 7, and 10 days after CFA injection. The reversibility of the peripheral antinociceptive effects of DPDPE, alone or combined with NOC-18, was assessed with the local administration of selective (naltrindole) and non-selective (naloxone methiodide) DOR antagonists. The local administration of DPDPE or NOC-18 alone dose-dependently inhibited the thermal hyperalgesia induced by peripheral inflammation. Moreover, the co-administration of NOC-18 with DPDPE significantly increased the antinociceptive effects produced by DPDPE from 1 to 10 days of CFA-induced inflammatory pain (P < 0.05). These effects were completely blocked by naltrindole and naloxone methiodide. Our results demonstrate that nitric oxide might enhance the local antinociceptive effects of a DOR agonist during chronic inflammatory pain by interaction with peripheral DOR, representing a useful strategy for an efficient antinociceptive treatment of peripheral inflammatory pain.

  5. Nitric oxide-releasing chitosan film for enhanced antibacterial and in vivo wound-healing efficacy.

    PubMed

    Kim, Jong Oh; Noh, Jin-Ki; Thapa, Raj Kumar; Hasan, Nurhasni; Choi, Moonjeong; Kim, Jeong Hwan; Lee, Joon-Hee; Ku, Sae Kwang; Yoo, Jin-Wook

    2015-08-01

    Nitric oxide (NO) is a promising therapeutic agent with antibacterial and wound-healing properties. However, the gaseous state and short half-life of NO necessitate a formulation that can control its storage and release. In this study, we developed NO-releasing films (CS/NO film) composed of chitosan (CS) and S-nitrosoglutathione (GSNO) as a NO donor. Thermal analysis demonstrated molecular dispersion of GSNO in the films. In vitro release study revealed that NO release from CS/NO films followed Korsmeyer-Peppas model with Fickian diffusion kinetics. Moreover, the CS/NO film showed a stronger antibacterial activity against Pseudomonas aeruginosa (Gram-negative) and Staphylococcus aureus (Gram-positive) than the CS film. Further, the CS/NO film accelerated wound healing and epithelialization in a rat model of full-thickness wounds as compared to the CS film. Histopathological studies revealed that CS/NO films favorably enhanced the re-epithelialization and reconstruction of wounded skin. Therefore, our results suggest that CS/NO films could be a suitable formulation for treating full-thickness wounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Nitric oxide functions as a signal in plant disease resistance.

    PubMed

    Delledonne, M; Xia, Y; Dixon, R A; Lamb, C

    1998-08-06

    Recognition of an avirulent pathogen triggers the rapid production of the reactive oxygen intermediates superoxide (O2-) and hydrogen peroxide (H2O2). This oxidative burst drives crosslinking of the cell wall, induces several plant genes involved in cellular protection and defence, and is necessary for the initiation of host cell death in the hypersensitive disease-resistance response. However, this burst is not enough to support a strong disease-resistance response. Here we show that nitric oxide, which acts as a signal in the immune, nervous and vascular systems, potentiates the induction of hypersensitive cell death in soybean cells by reactive oxygen intermediates and functions independently of such intermediates to induce genes for the synthesis of protective natural products. Moreover, inhibitors of nitric oxide synthesis compromise the hypersensitive disease-resistance response of Arabidopsis leaves to Pseudomonas syringae, promoting disease and bacterial growth. We conclude that nitric oxide plays a key role in disease resistance in plants.

  7. Arginine affects appetite via nitric oxide in ducks.

    PubMed

    Wang, C; Hou, S S; Huang, W; Xu, T S; Rong, G H; Xie, M

    2014-08-01

    The objective of the study was to investigate the mechanism by which arginine regulates feed intake in Pekin ducks. In experiment 1, one hundred forty-four 1-d-old male Pekin ducks were randomly allotted to 3 dietary treatments with 6 replicate pens of 8 birds per pen. Birds in each group were fed a corn-corn gluten meal diet containing 0.65, 0.95, and 1.45% arginine. Ducks fed the diet containing 0.65% arginine had lower feed intake and plasma nitric oxide level (P < 0.05) than the other 2 groups. In experiment 2, twenty 11-d-old ducks were allotted to 1 of 2 treatments. After 2 h fasting, birds in the 2 groups were intraperitoneally administrated saline and l-NG-nitro-arginine methyl ester HCl (L-NAME) for 3 d, respectively. Feed intake (P < 0.07) and plasma nitric oxide concentration (P < 0.05) 2 h postinjection in the L-NAME administered group were lower than those of the control group. In conclusion, the study implied that arginine modifies feeding behavior possibly through controlling endogenous synthesis of nitric oxide in Pekin ducks. © Poultry Science Association Inc.

  8. Nitric oxide alleviates aluminum-induced oxidative damage through regulating the ascorbate-glutathione cycle in roots of wheat.

    PubMed

    Sun, Chengliang; Liu, Lijuan; Yu, Yan; Liu, Wenjing; Lu, Lingli; Jin, Chongwei; Lin, Xianyong

    2015-06-01

    The possible association with nitric oxide (NO) and ascorbate-glutathione (AsA-GSH) cycle in regulating aluminum (Al) tolerance of wheat (Triticum aestivum L.) was investigated using two genotypes with different Al resistance. Exposure to Al inhibited root elongation, and triggered lipid peroxidation and oxidation of AsA to dehydroascorbate and GSH to glutathione disulfide in wheat roots. Exogenous NO significantly increased endogenous NO levels, and subsequently alleviated Al-induced inhibition of root elongation and oxidation of AsA and GSH to maintain the redox molecules in the reduced form in both wheat genotypes. Under Al stress, significantly increased activities and gene transcriptional levels of ascorbate peroxidase, glutathione reductase, and dehydroascorbate reductase, were observed in the root tips of the Al-tolerant genotype Jian-864. Nitric oxide application enhanced the activity and gene transcriptional level of these enzymes in both wheat genotypes. γ-Glutamylcysteine synthetase was not significantly affected by Al or NO, but NO treatments increased the activity of glutathione peroxidase and glutathione S-transferase to a greater extent than the Al-treated wheat seedlings. Proline was significantly decreased by Al, while it was not affected by NO. These results clearly suggest that NO protects wheat root against Al-induced oxidative stress, possibly through its regulation of the AsA-GSH cycle. © 2014 Institute of Botany, Chinese Academy of Sciences.

  9. Consequences of MnSOD interactions with nitric oxide: nitric oxide dismutation and the generation of peroxynitrite and hydrogen peroxide.

    PubMed

    Filipović, Milos R; Stanić, Dragana; Raicević, Smiljana; Spasić, Mihajlo; Niketić, Vesna

    2007-01-01

    The present study demonstrates that manganese superoxide dismutase (MnSOD) (Escherichia coli), binds nitric oxide (*NO) and stimulates its decay under both anaerobic and aerobic conditions. The results indicate that previously observed MnSOD-catalyzed *NO disproportionation (dismutation) into nitrosonium (NO+) and nitroxyl (NO-) species under anaerobic conditions is also operative in the presence of molecular oxygen. Upon sustained aerobic exposure to *NO, MnSOD-derived NO- species initiate the formation of peroxynitrite (ONOO-) leading to enzyme tyrosine nitration, oxidation and (partial) inactivation. The results suggest that both ONOO- decomposition and ONOO(-)-dependent tyrosine residue nitration and oxidation are enhanced by metal centre-mediated catalysis. We show that the generation of ONOO- is accompanied by the formation of substantial amounts of H2O2. MnSOD is a critical mitochondrial antioxidant enzyme, which has been found to undergo tyrosine nitration and inactivation in various pathologies associated with the overproduction of *NO. The results of the present study can account for the molecular specificity of MnSOD nitration in vivo. The interaction of *NO with MnSOD may represent a novel mechanism by which MnSOD protects the cell from deleterious effects associated with overproduction of *NO.

  10. Nitric-oxide supplementation for treatment of long-term complications in argininosuccinic aciduria

    USDA-ARS?s Scientific Manuscript database

    Argininosuccinate lyase (ASL) is required for the synthesis and channeling of L-arginine to nitric oxide synthase (NOS) for nitric oxide (NO) production. Congenital ASL deficiency causes argininosuccinic aciduria (ASA), the second most common urea cycle disorder, and leads to deficiency of both urea...

  11. Effect of endogenous nitric oxide on mitochondrial respiration of rat hepatocytes in vitro and in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stadler, J.; Curran, R.D.; Ochoa, J.B.

    1991-02-01

    Nitric oxide, a highly reactive radical, was recently identified as an intermediate of L-arginine metabolism in mammalian cells. We have shown that nitric oxide synthesis is induced in vitro in cultured hepatocytes by supernatants from activated Kupffer cells or in vivo by injecting rats with nonviable Corynebacterium parvum. In both cases, nitric oxide biosynthesis in hepatocytes was associated with suppression of total protein synthesis. This study attempts to determine the effect of nitric oxide biosynthesis on the activity of specific hepatocytic mitochondrial enzymes and to determine whether inhibition of protein synthesis is caused by suppression of energy metabolism. Exposure ofmore » hepatocytes to supernatants from activated Kupffer cells led to a 30% decrease of aconitase (Krebs cycle) and complex I (mitochondrial electron transport chain) activity. Using NG-monomethyl-L-arginine, an inhibitor of nitric oxide synthesis, we demonstrated that the inhibition of mitochondrial aconitase activity was due, in part, to the action of nitric oxide. In contrast, in vivo nitric oxide synthesis of hepatocytes from Corynebacterium parvum-treated animals had no effect on mitochondrial respiration. This suggests that inhibition of protein synthesis by nitric oxide is not likely to be mediated by inhibition of energy metabolism.« less

  12. Interactions between cytokines and nitric oxide.

    PubMed

    Liew, F Y

    1995-01-01

    There is now an impressive range of evidence supporting the important role of cytokines in sleep regulation (see Krueger et al., 1995; De Simoni et al., 1995). It has also been reported that inhibition of nitric oxide (NO) synthesis suppresses sleep in rabbits (Kapás et al., 1994). This is not surprising, since NO is closely involved in neurotransmission (Garthwaite, 1991; Schuman and Madison, 1994) and cytokines are the major inducers of NO synthesis (Hibbs et al., 1990). Further, it is now clear that NO plays an important role in modulating immune responses, possibly through the differential regulation of cytokine synthesis (Taylor-Robinson et al., 1994). In this article, I will provide evidence for the interactions between cytokines and nitric oxide, and discuss their implications in the regulation of immune responses. I shall illustrate these mainly with results from my coworkers and I, from our laboratory rather than attempting an exhaustive review of the subject.

  13. Application of Cavity Enhanced Absorption Spectroscopy to the Detection of Nitric Oxide, Carbonyl Sulphide, and Ethane--Breath Biomarkers of Serious Diseases.

    PubMed

    Wojtas, Jacek

    2015-06-17

    The paper presents one of the laser absorption spectroscopy techniques as an effective tool for sensitive analysis of trace gas species in human breath. Characterization of nitric oxide, carbonyl sulphide and ethane, and the selection of their absorption lines are described. Experiments with some biomarkers showed that detection of pathogenic changes at the molecular level is possible using this technique. Thanks to cavity enhanced spectroscopy application, detection limits at the ppb-level and short measurements time (<3 s) were achieved. Absorption lines of reference samples of the selected volatile biomarkers were probed using a distributed feedback quantum cascade laser and a tunable laser system consisting of an optical parametric oscillator and difference frequency generator. Setup using the first source provided a detection limit of 30 ppb for nitric oxide and 250 ppb for carbonyl sulphide. During experiments employing a second laser, detection limits of 0.9 ppb and 0.3 ppb were obtained for carbonyl sulphide and ethane, respectively. The conducted experiments show that this type of diagnosis would significantly increase chances for effective therapy of some diseases. Additionally, it offers non-invasive and real time measurements, high sensitivity and selectivity as well as minimizing discomfort for patients. For that reason, such sensors can be used in screening for early detection of serious diseases.

  14. Role of nitric oxide in progression and regression of atherosclerosis.

    PubMed Central

    Cooke, J P

    1996-01-01

    Endothelium-derived nitric oxide is a potent endogenous vasodilator that is derived from the metabolism of L-arginine. This endothelial factor inhibits circulating blood elements from interacting with the vessel wall. Platelet adherence and aggregation as well as monocyte adherence and infiltration are opposed by this paracrine substance. By virtue of these characteristics, endothelium-derived nitric oxide inhibits atherogenesis in animal models and may even induce regression. Images Figure 1. PMID:8686299

  15. Chemical kinetic models for combustion of hydrocarbons and formation of nitric oxide

    NASA Technical Reports Server (NTRS)

    Jachimowski, C. J.; Wilson, C. H.

    1980-01-01

    The formation of nitrogen oxides NOx during combustion of methane, propane, and a jet fuel, JP-4, was investigated in a jet stirred combustor. The results of the experiments were interpreted using reaction models in which the nitric oxide (NO) forming reactions were coupled to the appropriate hydrocarbon combustion reaction mechanisms. Comparison between the experimental data and the model predictions reveals that the CH + N2 reaction process has a significant effect on NO formation especially in stoichiometric and fuel rich mixtures. Reaction models were assembled that predicted nitric oxide levels that were in reasonable agreement with the jet stirred combustor data and with data obtained from a high pressure (5.9 atm (0.6 MPa)), prevaporized, premixed, flame tube type combustor. The results also suggested that the behavior of hydrocarbon mixtures, like JP-4, may not be significantly different from that of pure hydrocarbons. Application of the propane combustion and nitric oxide formation model to the analysis of NOx emission data reported for various aircraft gas turbines showed the contribution of the various nitric oxide forming processes to the total NOx formed.

  16. Oxidized LDL at low concentration promotes in-vitro angiogenesis and activates nitric oxide synthase through PI3K/Akt/eNOS pathway in human coronary artery endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Shan; Division of Cardiology, Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong; Wong, Siu Ling

    Research highlights: {yields} Low-concentration oxidized LDL enhances angiogenesis through nitric oxide (NO). {yields} Oxidized LDL increases intracellular NO levels via eNOS phosphorylation. {yields} Akt/PI3K signaling mediates oxidized LDL-induced eNOS phosphorylation. -- Abstract: It has long been considered that oxidized low-density lipoprotein (oxLDL) causes endothelial dysfunction and is remarkably related to the development of atherosclerosis. However, the effect of oxLDL at very low concentration (<10 {mu}g/ml) on the endothelial cells remains speculative. Nitric oxide (NO) has a crucial role in the endothelial cell function. In this study, we investigated the effect of oxLDL at low concentration on NO production and proliferation,more » migration, tube formation of the human coronary artery endothelial cells (HCAEC). Results showed that oxLDL at 5 {mu}g/ml enhanced HCAEC proliferation, migration and tube formation. These phenomena were accompanied by an increased intracellular NO production. L-NAME (a NOS inhibitor), LY294002 and wortmannin (PI3K inhibitors) could abolish oxLDL-induced angiogenic effects and prevent NO production in the HCAEC. The phosphorylation of Akt, PI3K and eNOS were up-regulated by oxLDL, which was attenuated by LY294002. Our results suggested that oxLDL at low concentration could promote in-vitro angiogenesis and activate nitric oxide synthesis through PI3K/Akt/eNOS pathway in HCAEC.« less

  17. Demystified … Nitric oxide

    PubMed Central

    Stuart-Smith, K

    2002-01-01

    The discovery of nitric oxide (NO) demonstrated that cells could communicate via the manufacture and local diffusion of an unstable lipid soluble molecule. Since the original demonstration of the vascular relaxant properties of endothelium derived NO, this fascinating molecule has been shown to have multiple, complex roles within many biological systems. This review cannot hope to cover all of the recent advances in NO biology, but seeks to place the discovery of NO in its historical context, and show how far our understanding has come in the past 20 years. The role of NO in mitochondrial respiration, and consequently in oxidative stress, is described in detail because these processes probably underline the importance of NO in the development of disease. PMID:12456772

  18. Salt and nitric oxide synthase inhibition-induced hypertension: kidney dysfunction and brain anti-oxidant capacity.

    PubMed

    Oktar, Süleyman; Ilhan, Selçuk; Meydan, Sedat; Aydin, Mehmet; Yönden, Zafer; Gökçe, Ahmet

    2010-01-01

    The specific aim of this study was to examine the effects of salt-loading on kidney function and brain antioxidant capacity. Wistar rats were divided into four groups: Control rats were given normal drinking water and no drug treatment for 2 weeks. LNNA group: rats were given normal drinking water and the nitric oxide (NO) inhibitor NG-nitro-L-arginine (L-NNA), 3 mg/kg/day. LNNA + Salt group: rats were given drinking water containing salt 2% and 3 mg/kg L-NNA. Salt group: rats were given drinking water containing salt 2% and no drug treatment. Basal blood pressure and the levels of serum BUN, creatinine, uric acid, cortisol, electrolyte, serum antioxidant capacity, and oxidative stress were measured. NO, superoxide dismutase (SOD), and catalase (CAT) levels were measured in the hypothalamus, brainstem, and cerebellum. Salt overload increased the blood pressure of the LNNA + Salt group. Salt-loading enhanced BUN, creatinine, sodium retention. High salt produced an increase in uric acid levels and a decrease in cortisol levels in serum. Additionally, the oxidative stress index in serum increased in the LNNA + Salt group. Salt-loading enhanced brain NO levels, but not SOD and CAT activity. L-NNA increased brain SOD activity, but not CAT and NO levels. In conclusion, salt-loading causes hypertension, kidney dysfunction, and enhances oxidative stress in salt-sensitive rats.

  19. The transport of nitric oxide in the upper atmosphere by planetary waves and the zonal mean circulation

    NASA Technical Reports Server (NTRS)

    Jones, G. A.; Avery, S. K.

    1982-01-01

    A time-dependent numerical model was developed and used to study the interaction between planetary waves, the zonal mean circulation, and the trace constituent nitric oxide in the region between 55 km and 120 km. The factors which contribute to the structure of the nitric oxide distribution were examined, and the sensitivity of the distribution to changes in planetary wave amplitude was investigated. Wave-induced changes in the mean nitric oxide concentration were examined as a possible mechanism for the observed winter anomaly. Results indicate that vertically-propagating planetary waves induce a wave-like structure in the nitric oxide distribution and that at certain levels, transports of nitric oxide by planetary waves could significantly affect the mean nitric oxide distribution. The magnitude and direction of these transports at a given level was found to depend not only on the amplitude of the planetary wave, but also on the loss rate of nitric oxide at that level.

  20. Olfactory ensheathing cells: nitric oxide production and innate immunity.

    PubMed

    Harris, Julie A; West, Adrian K; Chuah, Meng Inn

    2009-12-01

    Olfactory nerves extend from the nasal cavity to the central nervous system and provide therefore, a direct route for pathogenic infection of the brain. Since actual infection by this route remains relatively uncommon, powerful endogenous mechanisms for preventing microbial infection must exist, but these remain poorly understood. Our previous studies unexpectedly revealed that the unique glial cells that ensheath olfactory nerves, olfactory ensheathing cells (OECs), expressed components of the innate immune response. In this study, we show that OECs are able to detect and respond to bacterial challenge via the synthesis of nitric oxide. In vitro studies revealed that inducible nitric oxide synthase (iNOS) mRNA and protein were present in Escherichia coli- and Staphylococcus aureus-incubated OECs, but were barely detectable in untreated OECs. Neuronal NOS and endothelial NOS were not expressed by OECs pre- and post-bacterial incubation. Nuclear translocation of nuclear factor kappa B (NFkappaB), detectable in the majority of OECs 1 h following bacterial incubation, preceded iNOS induction which resulted in the production of nitric oxide. N(G)-methyl-L-arginine significantly attenuated nitric oxide (P < 0.001) and nitrite production (P < 0.001) by OECs. In rat olfactory mucosa which was compromised by irrigation with 0.17M zinc sulfate or 0.7% Triton X-100 to facilitate bacterial infiltration, OECs contributed to a robust synthesis of iNOS. These data strongly support the hypothesis that OECs are an essential component of the innate immune response against bacterial invasion of the central nervous system via olfactory nerves.

  1. Dietary Supplementation of Honey Bee Larvae with Arginine and Abscisic Acid Enhances Nitric Oxide and Granulocyte Immune Responses after Trauma.

    PubMed

    Negri, Pedro; Ramirez, Leonor; Quintana, Silvina; Szawarski, Nicolás; Maggi, Matías; Le Conte, Yves; Lamattina, Lorenzo; Eguaras, Martin

    2017-08-15

    Many biotic and abiotic stressors impact bees' health, acting as immunosupressors and contribute to colony losses. Thus, the importance of studying the immune response of honey bees is central to develop new strategies aiming to enhance bees' fitness to confront the threats affecting them. If a pathogen breaches the physical and chemical barriers, honey bees can protect themselves from infection with cellular and humoral immune responses which represent a second line of defense. Through a series of correlative studies we have previously reported that abscisic acid (ABA) and nitric oxide (NO) share roles in the same immune defenses of Apis mellifera ( A. mellifera ). Here we show results supporting that the supplementation of bee larvae's diet reared in vitro with l-Arginine (precursor of NO) or ABA enhanced the immune activation of the granulocytes in response to wounding and lipopolysaccharide (LPS) injection.

  2. A nitric oxide concentration clamp.

    PubMed

    Zhelyaskov, V R; Godwin, D W

    1999-10-01

    We report a new method of generating nitric oxide (NO) that possesses several advantages for experimental use. This method consists of a photolysis chamber where NO is released by illuminating photolabile NO donors with light from a xenon lamp, in conjunction with feedback control. Control of the photolysis light was achieved by selectively gating light projected through a shutter before the light was launched into a light guide that conveyed the light to the photolysis chamber. By gating the light in proportion to a sensor that reported nearly instantaneous concentration from the photolysis chamber, a criterion NO concentration could be achieved, which could be easily adjusted to higher or lower criterion levels. To denote the similarity of this process with the electrophysiological process of voltage clamp, we term this process a concentration "clamp." This development enhances the use of the fiber-optic-based system for NO delivery and should enable the execution of experiments where the in situ concentration of NO is particularly critical, such as in biological preparations. Copyright 1999 Academic Press.

  3. Exhaled nitric oxide levels in exacerbations of asthma, chronic obstructive pulmonary disease and pneumonia.

    PubMed

    Al-Ali, M K; Howarth, P H

    2001-03-01

    Nitric oxide is known to be present in the exhaled air of normal subjects and at higher concentrations in asthmatics. The aim of this study was to measure exhaled nitric oxide levels in patients admitted to hospital with acute exacerbations of asthma, or chronic obstructive pulmonary disease, or with pneumonia. Within 24 hours of admission exhaled nitric oxide levels were measured by a chemiluminescent analyzer in 11 patients with acute sever asthma, 19 patients with acute exacerbation of chronic obstructive pulmonary disease, and in 12 patients with pneumonia. In asthmatics measurements were made on 3 occasions, at day 1, 4, and 28 and were related to changes in peak expiratory flow rate. On admission median exhaled nitric oxide levels (range) were significantly higher in asthmatics 22 (9.3-74) parts per billion in comparison to patients with chronic obstructive pulmonary disease 10.3 (2.7-34) parts per billion; p < 0.01, pneumonia 7 (4-17) parts per billion; p<0.001, and normal subjects 8.7 (5-13.3) parts per billion; p < 0.001. Following treatment the asthmatics had a significant reduction in their exhaled nitric oxide levels from 22 (9.3-74) parts per billion on day 1 to 9.7 (5.7-18.3) parts per billion on day 28; p = 0.005. Peak expiratory flow rate measurements increased from 200 (120-280) l/min on day 1 to 280 (150-475) l/min on day 4; p < 0.05 and to 390 (150-530) l/min on day 28; p < 0.01. A strong negative correlation existed between peak expiratory flow rate measurements and exhaled nitric oxide levels in asthmatics on day 28 (r = -0.70; p = 0.017). Acute exacerbations of asthma are associated with increased levels of exhaled nitric oxide in contrast to exacerbations of chronic obstructive pulmonary disease and acute pneumonia. Exhaled nitric oxide may be a useful indirect marker of asthmatic airway inflammation. The differing time course of response of nitric oxide to peak flow measures suggests that these two measures are reflecting differing airway

  4. Phosphine polymerization by nitric oxide: experimental characterization and theoretical predictions of mechanism.

    PubMed

    Zhao, Yi-Lei; Flora, Jason W; Thweatt, William David; Garrison, Stephen L; Gonzalez, Carlos; Houk, K N; Marquez, Manuel

    2009-02-02

    A yellow solid material [P(x)H(y)] has been obtained in the reaction of phosphine (PH(3)) and nitric oxide (NO) at room temperature and characterized by thermogravimetric analysis mass spectrometry (TGA-MS) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. In this work using complete basis set (CBS-QB3) methods a plausible mechanism has been investigated for phosphine polymerization in the presence of nitric oxide (NO). Theoretical explorations with the ab initio method suggest (a) instead of the monomer the nitric oxide dimer acts as an initial oxidant, (b) the resulting phosphine oxides (H(3)P=O <--> H(3)P(+)O(-)) in the gas phase draw each other via strong dipolar interactions between the P-O groups, and (c) consequently an autocatalyzed polymerization occurs among the phosphine oxides, forming P-P chemical bonds and losing water. The possible structures of polyhydride phosphorus polymer were discussed. In the calculations a series of cluster models was computed to simulate polymerization.

  5. Inhaled Nitric Oxide Therapy for Pulmonary Disorders of the Term and Preterm Infant

    PubMed Central

    Sokol, Gregory M.; Konduri, G. Ganesh; Van Meurs, Krisa P.

    2016-01-01

    The 21st century began with the FDA approval of inhaled nitric oxide therapy for the treatment of neonatal hypoxic respiratory failure associated with pulmonary hypertension in recognition of the two randomized clinical trials demostrating a significant reduction in the need for extracorporeal support in the term and near-term infant. Inhaled nitric oxide is one of only a few therapeutic agents approved for use through clinical investigations primarily in the neonate. This article provides an overview of the pertinent biology and chemistry of nitric oxide, discusses potential toxicities, and reviews the results of pertinent clinical investigations and large randomized clinical trials including neurodevelopmental follow-up in term and preterm neonates. The clinical investigations conducted by the Eunice Kennedy Shriver NICHD Neonatal Research Network will be discussed and placed in context with other pertinent clinical investigations exploring the efficacy of inhaled nitric oxide therapy in neonatal hypoxic respiratory failure. PMID:27480246

  6. Interactions between nitric oxide and plant hormones in aluminum tolerance.

    PubMed

    He, Huyi; He, Longfei; Gu, Minghua

    2012-04-01

    Nitric oxide (NO) is involved, together with plant hormones, in the adaptation to Al stress in plants. However, the mechanism by which NO and plant hormones interplay to improve Al tolerance are still unclear. We have recently shown that patterns of plant hormones alteration differ between rye and wheat under Al stress. NO may enhance Al tolerance by regulating hormonal equilibrium in plants, as a regulator of plant hormones signaling. In this paper, some unsolved issues are discussed based on recent studies and the complex network of NO and plant hormones in inducing Al tolerance of plants are proposed.

  7. Prospect of nitric oxide as a new fumigant for postharvest pest control

    USDA-ARS?s Scientific Manuscript database

    Nitric oxide (NO) is a newly discovered fumigant for postharvest pest control. In laboratory tests, complete control was achieved against all insect and mite species tested to date with 0.2% to 5% NO fumigations in 2 h to 48 h at 2 to 25°C depending on species and life stages. Nitric oxide reacts ...

  8. The role of nitric oxide in the reversal of hemorrhagic shock by oxotremorine.

    PubMed

    Gören, M Z; Akici, A; Karaalp, A; Aker, R; Oktay, S

    2001-10-05

    In the present study, the effect of the nitric oxide synthase inhibitor, N(G)-nitro-L-arginine methylester (L-NAME), on the antishock actions of oxotremorine was investigated in rats subjected to hemorrhagic shock under urethane anesthesia. L-citrulline production in the AV3V region, as an indicator of nitric oxide (NO) synthesis, was assayed by high-performance liquid chromatography (HPLC) with fluorescent detection throughout the experiment. The rats were pretreated with either intravenous (i.v.) physiological saline or L-NAME (2.5 mg/kg) before bleeding. L-NAME potentiated the reversal of hypotension by oxotremorine (25 microg/kg, i.v.). However, oxotremorine either alone or in combination with L-NAME did not produce any significant change in 60-min survival rate at this low dose. Analysis of microdialysis samples collected from the AV3V region showed that L-citrulline concentration increased during bleeding and that this increase was abolished by L-NAME pretreatment. These results may suggest that nitric oxide production contributes to hypotension in rats bled to shock since nitric oxide levels in the AV3V region increased in response to bleeding and nitric oxide synthase (NOS) inhibition abolished this increase and potentiated the oxotremorine-induced reversal of hypotension.

  9. BIOGENIC NITRIC OXIDE EMISSIONS FROM CROPLAND SOILS

    EPA Science Inventory

    Emissions of nitric oxide (NO) were determined during late spring and summer 1995 and the spring of 1996 from four agricultural soils on which four different crops were grown. These agricultural soils were located at four different sites throughout North Carolina. Emission rates ...

  10. Carboxyhemoglobin formation secondary to nitric oxide therapy in the setting of interstitial lung disease and pulmonary hypertension.

    PubMed

    Ruisi, Phillip; Ruisi, Michael

    2011-01-01

    Carbon monoxide (CO) has been widely recognized as an exogenous poison, although endogenous mechanisms for its formation involve heme-oxygenase (HO) isoforms, more specifically HO-1, in the setting of oxidative stress such as acute respiratory distress syndrome, sepsis, trauma, and nitric oxide use have been studied. In patients with refractory hypoxemia, inhaled nitric oxide (iNO) therapy is used to selectively vasodilate the pulmonary vasculature and improve ventilation-perfusion match. Inhaled nitric oxide is rapidly inactivated on binding to hemoglobin in the formation of nitrosyl- and methemoglobin in the pulmonary vasculature. Hence, inhaled nitric oxide has minimal systemic dissemination. Several experimental design studies involving lab rats have demonstrated increased levels of carboxyhemoglobin and exhaled CO as a result of nitric oxide HO-1 induction.

  11. Application of Cavity Enhanced Absorption Spectroscopy to the Detection of Nitric Oxide, Carbonyl Sulphide, and Ethane—Breath Biomarkers of Serious Diseases

    PubMed Central

    Wojtas, Jacek

    2015-01-01

    The paper presents one of the laser absorption spectroscopy techniques as an effective tool for sensitive analysis of trace gas species in human breath. Characterization of nitric oxide, carbonyl sulphide and ethane, and the selection of their absorption lines are described. Experiments with some biomarkers showed that detection of pathogenic changes at the molecular level is possible using this technique. Thanks to cavity enhanced spectroscopy application, detection limits at the ppb-level and short measurements time (<3 s) were achieved. Absorption lines of reference samples of the selected volatile biomarkers were probed using a distributed feedback quantum cascade laser and a tunable laser system consisting of an optical parametric oscillator and difference frequency generator. Setup using the first source provided a detection limit of 30 ppb for nitric oxide and 250 ppb for carbonyl sulphide. During experiments employing a second laser, detection limits of 0.9 ppb and 0.3 ppb were obtained for carbonyl sulphide and ethane, respectively. The conducted experiments show that this type of diagnosis would significantly increase chances for effective therapy of some diseases. Additionally, it offers non-invasive and real time measurements, high sensitivity and selectivity as well as minimizing discomfort for patients. For that reason, such sensors can be used in screening for early detection of serious diseases. PMID:26091398

  12. [Effect of inducible nitric oxide on intracellular homeostasis of hepatocytes].

    PubMed

    Tang, Xi-Feng; Zhou, Dong-Yao; Kang, Ge-Fei

    2002-02-01

    To investigate the effects of inducible nitric oxide (NO) and exogenous NO on the intracellular homeostasis of the hepatocytes. Endogenous NO was induced by combined action of lipopolysaccharide (LPS) and cytokines in cultured rat hepatocytes, and exogenous NO was supplied by sodium nitroprusside (SNP) to stimulate the hepatocytes. The changes in intracellular malondialdehyde (MDA), reduced glutathione(GSH) and free calcium ([Ca2+]i) were observed. substantial increase by 7.97 times in intracellular MDA level and a decrease by 57.9% in GSH occurred in the hepatocytes after the cells had been incubated with LPS and cytokines for 24 h, which were reversed by 43.5% and 98.4% respectively by treatment with N(G)-monomethyl-L-arginine (NMMA), a competitive nitric oxide synthase (NOS) inhibitor. Verapamil significantly reduced both endogenous NO production and oxidative stress, while the effect of A23187 was not conspicuous. Incubation with chlorpromazine and Vitamine E (VitE), however, did not result in decreased release of NO by LPS- and cytokines-induced hepatocytes. After SNP exposure of the hepatocytes, the oxidative status was reversibly enhanced in a time-dependent manner. Short exposure to SNP led to a concentration-dependent inhibition of the rapid and transient increase in free calcium induced by K(+) depolarization and hepatopoietin-coupled calcium mobilization. Inducible NO may initiate and play a key role in the latter stages of metabolic and functional stress responses of hepatocytes against endotoxin and cytokines, when the reduction occurs in the capacity of NO to independently mediate lipid peroxidation and counteract oxidation. The inhibitory effect of NO on [Ca2+]i mobilization may be an important autoregulatory mechanism by means of negative feedback on protein kinase C-associated NOS induction.

  13. [Ultrasound induced the formation of nitric oxide and nitrosonium ions in water and aqueous solutions].

    PubMed

    Stepuro, I I; Adamchuk, R I; Stepuro, V I

    2004-01-01

    Nitric oxide, nitrosonium ions, nitrites, and nitrates are formed in water saturated with air under the action of ultrasound. Nitrosonium ions react with water and hydrogen peroxide to form nitrites and nitrates in sonicated solution, correspondingly. Nitric oxide is practically completely released from sonicated water into the atmosphere and reacts with air oxygen, forming NOx compounds. The oxidation of nitric oxide in aqueous medium by hydroxyl radicals and dissolved oxygen is a minor route of the formation of nitrites and nitrates in ultrasonic field.

  14. Nitric oxide fumigation for control of bulb mites on flower bulbs and tubers

    USDA-ARS?s Scientific Manuscript database

    Nitric oxide fumigation was studied for efficacy to control bulb mites in the genus Rhizoglyphus and effects on germination and growth of flower bulbs and tubers. Bulb mites on infested peanuts were fumigated with nitric oxide at different concentrations under ultralow oxygen conditions in 1.9L jar...

  15. Dietary Supplementation of Honey Bee Larvae with Arginine and Abscisic Acid Enhances Nitric Oxide and Granulocyte Immune Responses after Trauma

    PubMed Central

    Ramirez, Leonor; Quintana, Silvina; Szawarski, Nicolás; Maggi, Matías; Le Conte, Yves; Lamattina, Lorenzo; Eguaras, Martin

    2017-01-01

    Many biotic and abiotic stressors impact bees’ health, acting as immunosupressors and contribute to colony losses. Thus, the importance of studying the immune response of honey bees is central to develop new strategies aiming to enhance bees’ fitness to confront the threats affecting them. If a pathogen breaches the physical and chemical barriers, honey bees can protect themselves from infection with cellular and humoral immune responses which represent a second line of defense. Through a series of correlative studies we have previously reported that abscisic acid (ABA) and nitric oxide (NO) share roles in the same immune defenses of Apis mellifera (A. mellifera). Here we show results supporting that the supplementation of bee larvae’s diet reared in vitro with l-Arginine (precursor of NO) or ABA enhanced the immune activation of the granulocytes in response to wounding and lipopolysaccharide (LPS) injection. PMID:28809782

  16. Expression of nitric oxide synthase-2 in the lungs decreases airway resistance and responsiveness.

    PubMed

    Hjoberg, Josephine; Shore, Stephanie; Kobzik, Lester; Okinaga, Shoji; Hallock, Arlene; Vallone, Joseph; Subramaniam, Venkat; De Sanctis, George T; Elias, Jack A; Drazen, Jeffrey M; Silverman, Eric S

    2004-07-01

    Individuals with asthma have increased levels of nitric oxide in their exhaled air. To explore its role, we have developed a regulatable transgenic mouse capable of overexpressing inducible nitric oxide synthase in a lung-specific fashion. The CC10-rtTA-NOS-2 mouse contains two transgenes, a reverse tetracycline transactivator under the control of the Clara cell protein promoter and the mouse nitric oxide synthase-2 (NOS-2) coding region under control of a tetracycline operator. Addition of doxycycline to the drinking water of CC10-rtTA-NOS-2 mice causes an increase in nitric oxide synthase-2 that is largely confined to the airway epithelium. The fraction of expired nitric oxide increases over the first 24 h from approximately 10 parts per billion to a plateau of approximately 20 parts per billion. There were no obvious differences between CC10-rtTA-NOS-2 mice, with or without doxycycline, and wild-type mice in lung histology, bronchoalveolar protein, total cell count, or count differentials. However, airway resistance was lower in CC10-rtTA-NOS-2 mice with doxycycline than in CC10-rtTA-NOS-2 mice without doxycycline or wild-type mice with doxycycline. Moreover, doxycycline-treated CC10-rtTA-NOS-2 mice were hyporesponsive to methacholine compared with other groups. These data suggest that increased nitric oxide in the airways has no proinflammatory effects per se and may have beneficial effects on pulmonary function.

  17. NOpiates: Novel Dual Action Neuronal Nitric Oxide Synthase Inhibitors with μ-Opioid Agonist Activity.

    PubMed

    Renton, Paul; Green, Brenda; Maddaford, Shawn; Rakhit, Suman; Andrews, John S

    2012-03-08

    A novel series of benzimidazole designed multiple ligands (DMLs) with activity at the neuronal nitric oxide synthase (nNOS) enzyme and the μ-opioid receptor was developed. Targeting of the structurally dissimilar heme-containing enzyme and the μ-opioid GPCR was predicated on the modulatory role of nitric oxide on μ-opioid receptor function. Structure-activity relationship studies yielded lead compound 24 with excellent nNOS inhibitory activity (IC50 = 0.44 μM), selectivity over both endothelial nitric oxide synthase (10-fold) and inducible nitric oxide synthase (125-fold), and potent μ-opioid binding affinity, K i = 5.4 nM. The functional activity as measured in the cyclic adenosine monosphospate secondary messenger assay resulted in full agonist activity (EC50 = 0.34 μM). This work represents a novel approach in the development of new analgesics for the treatment of pain.

  18. Endothelium-derived relaxing factor (nitric oxide) has protective actions in the stomach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacNaughton, W.K.; Wallace, J.L.; Cirino, G.

    1989-01-01

    The role that nitric oxide, an endothelium-derived relaxing factor, may play in the regulation of gastric mucosal defense was investigated by assessing the potential protective actions of this factor against the damage caused by ethanol in an ex vivo chamber preparation of the rat stomach. Topical application of glyceryl trinitrate and sodium nitroprusside, which have been shown to release nitric oxide, markedly reduced the area of 70% ethanol-induced hemorrhagic damage. Topical application of a 0.01% solution of authentic nitric oxide also significantly reduced the severity of mucosal damage. Pretreatment with indomethacin precluded the involvement of endogenous prostaglandins in the protectivemore » effects of these agents. The protective effects of NO were transient, since a delay of 5 minutes between NO administration and ethanal administration resulted in a complete loss of the protective activity. The protection against ethanol afforded by 10 ug/ml nitroprusside could be completely reversed by intravenous infusion of either 1% methylene blue or 1 mM hemoglobin, both of which inhibit vasodilation induced by nitric oxide. Intravenous infusion of 1% methylene blue significantly increased the susceptibility of the mucosa to damage induced by topical 20% ethanol.« less

  19. BIOCHEMISTRY OF MOBILE ZINC AND NITRIC OXIDE REVEALED BY FLUORESCENT SENSORS

    PubMed Central

    Pluth, Michael D.; Tomat, Elisa; Lippard, Stephen J.

    2010-01-01

    Biologically mobile zinc and nitric oxide (NO) are two prominent examples of inorganic compounds involved in numerous signaling pathways in living systems. In the past decade, a synergy of regulation, signaling, and translocation of these two species has emerged in several areas of human physiology, providing additional incentive for developing adequate detection systems for Zn(II) ions and NO in biological specimens. Fluorescent probes for both of these bioinorganic analytes provide excellent tools for their detection, with high spatial and temporal resolution. We review the most widely used fluorescent sensors for biological zinc and nitric oxide, together with promising new developments and unmet needs of contemporary Zn(II) and NO biological imaging. The interplay between zinc and nitric oxide in the nervous, cardiovascular, and immune systems is highlighted to illustrate the contributions of selective fluorescent probes to the study of these two important bioinorganic analytes. PMID:21675918

  20. The Nitric Acid Oxidation of Selected Alcohols and Ketones.

    ERIC Educational Resources Information Center

    Field, Kurt W.; And Others

    1985-01-01

    Shows that nitric acid can be used as a rapid, versatile, and economical oxidant for selected organic substances. The experiments (with background information, procedures, and results provided) require one three-hour laboratory period but could serve as open-ended projects since substrates not described could be oxidized. (JN)

  1. Single molecule detection of nitric oxide enabled by d(AT)15 DNA adsorbed to near infrared fluorescent single-walled carbon nanotubes.

    PubMed

    Zhang, Jingqing; Boghossian, Ardemis A; Barone, Paul W; Rwei, Alina; Kim, Jong-Ho; Lin, Dahua; Heller, Daniel A; Hilmer, Andrew J; Nair, Nitish; Reuel, Nigel F; Strano, Michael S

    2011-01-26

    We report the selective detection of single nitric oxide (NO) molecules using a specific DNA sequence of d(AT)(15) oligonucleotides, adsorbed to an array of near-infrared fluorescent semiconducting single-walled carbon nanotubes (AT(15)-SWNT). While SWNT suspended with eight other variant DNA sequences show fluorescence quenching or enhancement from analytes such as dopamine, NADH, L-ascorbic acid, and riboflavin, d(AT)(15) imparts SWNT with a distinct selectivity toward NO. In contrast, the electrostatically neutral polyvinyl alcohol enables no response to nitric oxide, but exhibits fluorescent enhancement to other molecules in the tested library. For AT(15)-SWNT, a stepwise fluorescence decrease is observed when the nanotubes are exposed to NO, reporting the dynamics of single-molecule NO adsorption via SWNT exciton quenching. We describe these quenching traces using a birth-and-death Markov model, and the maximum likelihood estimator of adsorption and desorption rates of NO is derived. Applying the method to simulated traces indicates that the resulting error in the estimated rate constants is less than 5% under our experimental conditions, allowing for calibration using a series of NO concentrations. As expected, the adsorption rate is found to be linearly proportional to NO concentration, and the intrinsic single-site NO adsorption rate constant is 0.001 s(-1) μM NO(-1). The ability to detect nitric oxide quantitatively at the single-molecule level may find applications in new cellular assays for the study of nitric oxide carcinogenesis and chemical signaling, as well as medical diagnostics for inflammation.

  2. Regulation of type 17 helper T-cell function by nitric oxide during inflammation

    PubMed Central

    Niedbala, Wanda; Alves-Filho, Jose C.; Fukada, Sandra Y.; Vieira, Silvio Manfredo; Mitani, Akio; Sonego, Fabiane; Mirchandani, Ananda; Nascimento, Daniele C.; Cunha, Fernando Q.; Liew, Foo Y.

    2011-01-01

    Type 17 helper T (Th17) cells are implicated in the pathogenesis many of human autoimmune diseases. Development of Th17 can be enhanced by the activation of aryl hydrocarbon receptor (AHR) whose ligands include the environmental pollutant dioxin, potentially linking environmental factors to the increased prevalence of autoimmune disease. We report here that nitric oxide (NO) can suppress the proliferation and function of polarized murine and human Th17 cells. NO also inhibits AHR expression in Th17 cells and the downstream events of AHR activation, including IL-22, IL-23 receptor, and Cyp1a1. Conversely, NO did not affect the polarization of Th17 cells from mice deficient in AHR. Furthermore, mice lacking inducible nitric oxide synthase (Nos2−/−) developed more severe experimental autoimmune encephalomyelitis than WT mice, with elevated AHR expression, increased IL-17A, and IL-22 synthesis. NO may therefore represent an important endogenous regulator to prevent overexpansion of Th17 cells and control of autoimmune diseases caused by environmental pollutants. PMID:21576463

  3. Caveolin versus calmodulin. Counterbalancing allosteric modulators of endothelial nitric oxide synthase.

    PubMed

    Michel, J B; Feron, O; Sase, K; Prabhakar, P; Michel, T

    1997-10-10

    Nitric oxide is synthesized in diverse mammalian tissues by a family of calmodulin-dependent nitric oxide synthases. The endothelial isoform of nitric oxide synthase (eNOS) is targeted to the specialized signal-transducing membrane domains termed plasmalemmal caveolae. Caveolin, the principal structural protein in caveolae, interacts with eNOS and leads to enzyme inhibition in a reversible process modulated by Ca2+-calmodulin (Michel, J. B., Feron, O., Sacks, D., and Michel, T. (1997) J. Biol. Chem. 272, 15583-15586). Caveolin also interacts with other structurally distinct signaling proteins via a specific region identified within the caveolin sequence (amino acids 82-101) that appears to subserve the role of a "scaffolding domain." We now report that the co-immunoprecipitation of eNOS with caveolin is completely and specifically blocked by an oligopeptide corresponding to the caveolin scaffolding domain. Peptides corresponding to this domain markedly inhibit nitric oxide synthase activity in endothelial membranes and interact directly with the enzyme to inhibit activity of purified recombinant eNOS expressed in Escherichia coli. The inhibition of purified eNOS by the caveolin scaffolding domain peptide is competitive and completely reversed by Ca2+-calmodulin. These studies establish that caveolin, via its scaffolding domain, directly forms an inhibitory complex with eNOS and suggest that caveolin inhibits eNOS by abrogating the enzyme's activation by calmodulin.

  4. Possible involvement of nitric oxide in pilocarpine induced seminal emission in rats.

    PubMed

    Tomé, A R; da Silva, J C; Souza, A A; Mattos, J P; Vale, M R; Rao, V S

    1999-12-01

    Intraperitoneal injection of pilocarpine (0.75-3.0 mg/kg) caused a dose-related seminal emission in adult male rats. The seminal emission response to 3 mg/kg of pilocarpine was greatly reduced in atropinized (5 and 10 mg/kg, SC) animals, suggesting a cholinomimetic effect. Nw-nitro-L-arginine methyl ester (5, 10, and 20 mg/kg, SC), a nitric oxide synthesis inhibitor, also inhibited the pilocarpine-induced seminal emission, which was reversed by L-arginine (600 mg/kg, SC) or by coinjection of sodium nitroprusside (0.5 mg/kg, SC). Urine analysis for levels of nitric oxide metabolites, nitrate/nitrite (NO3-/NO2-), showed marked alterations in accordance with the drug treatments. The results suggest that nitric oxide mediates the inhibitory neurotransmission responsible for seminal emission in pilocarpine stimulated rats.

  5. NOpiates: Novel Dual Action Neuronal Nitric Oxide Synthase Inhibitors with μ-Opioid Agonist Activity

    PubMed Central

    2012-01-01

    A novel series of benzimidazole designed multiple ligands (DMLs) with activity at the neuronal nitric oxide synthase (nNOS) enzyme and the μ-opioid receptor was developed. Targeting of the structurally dissimilar heme-containing enzyme and the μ-opioid GPCR was predicated on the modulatory role of nitric oxide on μ-opioid receptor function. Structure–activity relationship studies yielded lead compound 24 with excellent nNOS inhibitory activity (IC50 = 0.44 μM), selectivity over both endothelial nitric oxide synthase (10-fold) and inducible nitric oxide synthase (125-fold), and potent μ-opioid binding affinity, Ki = 5.4 nM. The functional activity as measured in the cyclic adenosine monosphospate secondary messenger assay resulted in full agonist activity (EC50 = 0.34 μM). This work represents a novel approach in the development of new analgesics for the treatment of pain. PMID:24900459

  6. Molecular biological effects of selective neuronal nitric oxide synthase inhibition in ovine lung injury

    PubMed Central

    Westphal, Martin; Enkhbaatar, Perenlei; Wang, Jianpu; Pazdrak, Konrad; Nakano, Yoshimitsu; Hamahata, Atsumori; Jonkam, Collette C.; Lange, Matthias; Connelly, Rhykka L.; Kulp, Gabriela A.; Cox, Robert A.; Hawkins, Hal K.; Schmalstieg, Frank C.; Horvath, Eszter; Szabo, Csaba; Traber, Lillian D.; Whorton, Elbert; Herndon, David N.; Traber, Daniel L.

    2010-01-01

    Neuronal nitric oxide synthase is critically involved in the pathogenesis of acute lung injury resulting from combined burn and smoke inhalation injury. We hypothesized that 7-nitroindazole, a selective neuronal nitric oxide synthase inhibitor, blocks central molecular mechanisms involved in the pathophysiology of this double-hit insult. Twenty-five adult ewes were surgically prepared and randomly allocated to 1) an uninjured, untreated sham group (n = 7), 2) an injured control group with no treatment (n = 7), 3) an injury group treated with 7-nitroindazole from 1-h postinjury to the remainder of the 24-h study period (n = 7), or 4) a sham-operated group subjected only to 7-nitroindazole to judge the effects in health. The combination injury was associated with twofold increased activity of neuronal nitric oxide synthase and oxidative/nitrosative stress, as indicated by significant increases in plasma nitrate/nitrite concentrations, 3-nitrotyrosine (an indicator of peroxynitrite formation), and malondialdehyde lung tissue content. The presence of systemic inflammation was evidenced by twofold, sixfold, and threefold increases in poly(ADP-ribose) polymerase, IL-8, and myeloperoxidase lung tissue concentrations, respectively (each P < 0.05 vs. sham). These molecular changes were linked to tissue damage, airway obstruction, and pulmonary shunting with deteriorated gas exchange. 7-Nitroindazole blocked, or at least attenuated, all these pathological changes. Our findings suggest 1) that nitric oxide formation derived from increased neuronal nitric oxide synthase activity represents a pivotal reactive agent in the patho-physiology of combined burn and smoke inhalation injury and 2) that selective neuronal nitric oxide synthase inhibition represents a goal-directed approach to attenuate the degree of injury. PMID:19965980

  7. Nitric oxide enhances Th9 cell differentiation and airway inflammation

    PubMed Central

    Niedbala, Wanda; Besnard, Anne-Gaelle; Nascimento, Daniele Carvalho; Donate, Paula Barbim; Sonego, Fabiane; Yip, Edwin; Guabiraba, Rodrigo; Chang, Hyun-Dong; Fukada, Sandra Y.; Salmond, Robert J.; Schmitt, Edgar; Bopp, Tobias; Ryffel, Bernhard; Liew, Foo Y.

    2014-01-01

    Th9 cells protect hosts against helminthic infection but also mediate allergic disease. Here we show that nitric oxide (NO) promotes Th9 cell polarization of murine and human CD4+ T cells. NO de-represses the tumor suppressor gene p53 via nitrosylation of Mdm2. NO also increases p53-mediated IL-2 production, STAT5 phosphorylation and IRF4 expression, all essential for Th9 polarization. NO also increases the expression of TGFβR and IL-4R, pivotal to Th9 polarization. OVA-sensitized mice treated with an NO donor developed more severe airway inflammation. Transferred Th9 cells induced airway inflammation, which was exacerbated by NO and blocked by anti-IL-9 antibody. Nos2−/− mice had less Th9 cells and developed attenuated eosinophilia during OVA-induced airway inflammation compared to wild-type mice. Our data demonstrate that NO is an important endogenous inducer of Th9 cells and provide a hitherto unrecognized mechanism for NO-mediated airway inflammation via the expansion of Th9 cells. PMID:25099390

  8. Nitric oxide enhances Th9 cell differentiation and airway inflammation.

    PubMed

    Niedbala, Wanda; Besnard, Anne-Gaelle; Nascimento, Daniele Carvalho; Donate, Paula Barbim; Sonego, Fabiane; Yip, Edwin; Guabiraba, Rodrigo; Chang, Hyun-Dong; Fukada, Sandra Y; Salmond, Robert J; Schmitt, Edgar; Bopp, Tobias; Ryffel, Bernhard; Liew, Foo Y

    2014-08-07

    Th9 cells protect hosts against helminthic infection but also mediate allergic disease. Here we show that nitric oxide (NO) promotes Th9 cell polarization of murine and human CD4(+) T cells. NO de-represses the tumour suppressor gene p53 via nitrosylation of Mdm2. NO also increases p53-mediated IL-2 production, STAT5 phosphorylation and IRF4 expression, all essential for Th9 polarization. NO also increases the expression of TGFβR and IL-4R, pivotal to Th9 polarization. OVA-sensitized mice treated with an NO donor developed more severe airway inflammation. Transferred Th9 cells induced airway inflammation, which was exacerbated by NO and blocked by anti-IL-9 antibody. Nos2(-/-) mice had less Th9 cells and developed attenuated eosinophilia during OVA-induced airway inflammation compared with wild-type mice. Our data demonstrate that NO is an important endogenous inducer of Th9 cells and provide a hitherto unrecognized mechanism for NO-mediated airway inflammation via the expansion of Th9 cells.

  9. Iron(II) porphyrins induced conversion of nitrite into nitric oxide: A computational study.

    PubMed

    Zhang, Ting Ting; Liu, Yong Dong; Zhong, Ru Gang

    2015-09-01

    Nitrite reduction to nitric oxide by heme proteins was reported as a protective mechanism to hypoxic injury in mammalian physiology. In this study, the pathways of nitrite reduction to nitric oxide mediated by iron(II) porphyrin (P) complexes, which were generally recognized as models for heme proteins, were investigated by using density functional theory (DFT). In view of two type isomers of combination of nitrite and Fe(II)(P), N-nitro- and O-nitrito-Fe(II)-porphyrin complexes, and two binding sites of proton to the different O atoms of nitrite moiety, four main pathways for the conversion of nitrite into nitric oxide mediated by iron(II) porphyrins were proposed. The results indicate that the pathway of N-bound Fe(II)(P)(NO2) isomer into Fe(III)(P)(NO) and water is similar to that of O-bound isomer into nitric oxide and Fe(III)(P)(OH) in both thermodynamical and dynamical aspects. Based on the initial computational studies of five-coordinate nitrite complexes, the conversion of nitrite into NO mediated by Fe(II)(P)(L) complexes with 14 kinds of proximal ligands was also investigated. Generally, the same conclusion that the pathways of N-bound isomers are similar to those of O-bound isomer was obtained for iron(II) porphyrin with ligands. Different effects of ligands on the reduction reactions were also found. It is notable that the negative proximal ligands can improve reactive abilities of N-nitro-iron(II) porphyrins in the conversion of nitrite into nitric oxide compared to neutral ligands. The findings will be helpful to expand our understanding of the mechanism of nitrite reduction to nitric oxide by iron(II) porphyrins. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Nitrate reductase-mediated early nitric oxide burst alleviates oxidative damage induced by aluminum through enhancement of antioxidant defenses in roots of wheat (Triticum aestivum).

    PubMed

    Sun, Chengliang; Lu, Lingli; Liu, Lijuan; Liu, Wenjing; Yu, Yan; Liu, Xiaoxia; Hu, Yan; Jin, Chongwei; Lin, Xianyong

    2014-03-01

    Nitric oxide (NO) is an important signaling molecule involved in the physiological processes of plants. The role of NO release in the tolerance strategies of roots of wheat (Triticum aestivum) under aluminum (Al) stress was investigated using two genotypes with different Al resistances. • An early NO burst at 3 h was observed in the root tips of the Al-tolerant genotype Jian-864, whereas the Al-sensitive genotype Yang-5 showed no NO accumulation at 3 h but an extremely high NO concentration after 12 h. Stimulating NO production at 3 h in the root tips of Yang-5 with the NO donor relieved Al-induced root inhibition and callose production, as well as oxidative damage and ROS accumulation, while elimination of the early NO burst by NO scavenger aggravated root inhibition in Jian-864. • Synthesis of early NO in roots of Jian-864 was mediated through nitrate reductase (NR) but not through NO synthase. Elevated antioxidant enzyme activities were induced by Al stress in both wheat genotypes and significantly enhanced by NO donor, but suppressed by NO scavenger or NR inhibitor. • These results suggest that an NR-mediated early NO burst plays an important role in Al resistance of wheat through modulating enhanced antioxidant defense to adapt to Al stress. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  11. Hypothyroidism: age-related influence on cardiovascular nitric oxide system in rats.

    PubMed

    Sarati, Lorena I; Martinez, Carla R; Artés, Nicolás; Arreche, Noelia; López-Costa, Juan J; Balaszczuk, Ana M; Fellet, Andrea L

    2012-09-01

    This study investigates whether changes in nitric oxide (NO) production participate in the cardiovascular manifestations of hypothyroidism and whether these changes are age-related. Sprague-Dawley rats aged 2 and 18 months old were treated with 0.02% methimazole (wt/vol) during 28 days. Left ventricular function was evaluated by echocardiography. Measurements of arterial blood pressure, heart rate, nitric oxide synthase (NOS) activity and NOS/caveolin-1 and -3 protein levels were performed. Hypothyroidism enhanced the age-related changes in heart function. Hypothyroid state decreased atrial NOS activity in both young and adult rats, associated with a reduction in protein levels of the three NOS isoforms in young animals and increased caveolin (cav) 1 expression in adult rats. Ventricle and aorta NOS activity increased in young and adult hypothyroid animals. In ventricle, changes in NOS activity were accompanied by an increase in inducible NOS isoform in young rats and by an increase in caveolins expression in adult rats. Greater aorta NOS activity level in young and in adult Hypo rats would derive from the inducible and the endothelial NOS isoform, respectively. Thyroid hormones would be one of the factors involved in the modulation of cardiovascular NO production and caveolin-1 and -3 tissue-specific abundance, regardless of age. Hypothyroidism appears to contribute in a differential way to aging-induced changes in the myocardium and aorta tissues. Low thyroid hormones levels would enhance the aging effect on the heart. Age-related changes in NO production participate in the cardiovascular manifestations of hypothyroidism. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Investigation on Quantitative Structure Activity Relationships of a Series of Inducible Nitric Oxide.

    PubMed

    Sharma, Mukesh C; Sharma, S

    2016-12-01

    A series of 2-dihydro-4-quinazolin with potent highly selective inhibitors of inducible nitric oxide synthase activities was subjected to quantitative structure activity relationships (QSAR) analysis. Statistically significant equations with high correlation coefficient (r 2  = 0.8219) were developed. The k-nearest neighbor model has showed good cross-validated correlation coefficient and external validation values of 0.7866 and 0.7133, respectively. The selected electrostatic field descriptors the presence of blue ball around R1 and R4 in the quinazolinamine moiety showed electronegative groups favorable for nitric oxide synthase activity. The QSAR models may lead to the structural requirements of inducible nitric oxide compounds and help in the design of new compounds.

  13. Solubilization and Resolution of the Membrane-Bound Nitrite Reductase from Paracoccus Halodenitrificans into Nitrite and Nitric Oxide Reductases

    NASA Technical Reports Server (NTRS)

    Grant, Michael A.; Cronin, Sonja E.; Hochstein, Lawrence I.

    1984-01-01

    Membranes prepared from Paracoccus halodenitrificans reduced nitrite or nitric oxide to nitrous oxide. Extraction of these membranes with the detergent CHAPSO [3-(3-Chlolamidoporopyldimethylammonio)-1-(2- hydroxy-1-propanesulfonate)], followed by ammonium sulfate fractionation of the solubilized proteins, resulted in the separation of nitrite and nitric oxide reductase activities. The fraction containing nitrite reductase activity spectrally resembled a cd-type cytochrome. Several cytochromes were detected in the nitric oxide reductase fraction. Which, if any, of these cytochromes is associated with the reduction of nitric oxide is not clear at this time.

  14. Connection between the striatal neurokinin-1 receptor and nitric oxide formation during methamphetamine exposure.

    PubMed

    Wang, Jing; Xu, Wenjing; Ali, Syed F; Angulo, Jesus A

    2008-10-01

    Methamphetamine (METH) is a widely used "club drug" that produces neural damage in the brain, including the loss of some neurons. METH-induced striatal neuronal loss has been attenuated by pretreatment with the neurokinin-1 receptor antagonist WIN-51,708 in mice. Using a histologic method, we have observed the internalization of the neurokinin-1 receptor into endosomes in the striatal somatostatin/NPY/nitric oxide synthase interneurons. To investigate the role of this interneuron in the striatal cell death induced by METH, we assessed by immunohistochemistry the number of striatal nitric oxide synthase-positive neurons in the presence of METH at 8 and 16 hours after systemic injection of a bolus of METH (30 mg/kg, i.p.). We found the number of striatal nitric oxide synthase-positive neurons unchanged at these time points after METH. In a separate experiment we measured the levels of striatal 3-nitrotyrosine (3-NT) by HPLC (high-pressure liquid chromatography) as an indirect index of nitric oxide synthesis. METH increased the levels of 3-nitrotyrosine in the striatum and this increase was significantly attenuated by pretreatment with a selective neurokinin-1 receptor antagonist. These observations suggest a causal relationship between the neurokinin-1 receptor and the activation of neuronal nitric oxide synthase that warrants further investigation.

  15. Experimental and analytical study of nitric oxide formation during combustion of propane in a jet-stirred combustor

    NASA Technical Reports Server (NTRS)

    Wakelyn, N. T.; Jachimowski, C. J.; Wilson, C. H.

    1978-01-01

    A jet-stirred combustor, constructed of castable zirconia and with an Inconel injector, was used to study nitric oxide formation in propane-air combustion with residence times in the range from 3.2 to 3.3 msec and equivalence ratios varying from 0.7 to 1.4. Measurements were made of combustor operating temperature and of nitric oxide concentration. Maximum nitric oxide concentrations of the order of 55 ppm were found in the range of equivalence ratio from 1.0 to 1.1. A finite-rate chemical kinetic mechanism for propane combustion and nitric oxide formation was assembled by coupling an existing propane oxidation mechanism with the Zeldovich reactions and reactions of molecular nitrogen with hydrocarbon fragments. Analytical studies using this mechanism in a computer simulation of the experimental conditions revealed that the hydrocarbon-fragment-nitrogen reactions play a significant role in nitric oxide formation during fuel-rich combustion.

  16. Flavonoid-rich apples and nitrate-rich spinach augment nitric oxide status and improve endothelial function in healthy men and women: a randomized controlled trial.

    PubMed

    Bondonno, Catherine P; Yang, Xingbin; Croft, Kevin D; Considine, Michael J; Ward, Natalie C; Rich, Lisa; Puddey, Ian B; Swinny, Ewald; Mubarak, Aidilla; Hodgson, Jonathan M

    2012-01-01

    Flavonoids and nitrates in fruits and vegetables may protect against cardiovascular disease. Dietary flavonoids and nitrates can augment nitric oxide status via distinct pathways, which may improve endothelial function and lower blood pressure. Recent studies suggest that the combination of flavonoids and nitrates can enhance nitric oxide production in the stomach. Their combined effect in the circulation is unclear. Here, our objective was to investigate the independent and additive effects of flavonoid-rich apples and nitrate-rich spinach on nitric oxide status, endothelial function, and blood pressure. A randomized, controlled, crossover trial with healthy men and women (n=30) was conducted. The acute effects of four energy-matched treatments (control, apple, spinach, and apple+spinach), administered in random order, were compared. Measurements included plasma nitric oxide status, assessed by measuring S-nitrosothiols+other nitrosylated species (RXNO) and nitrite, blood pressure, and endothelial function, measured as flow-mediated dilatation of the brachial artery. Results are means and 95% CI. Relative to control, all treatments resulted in higher RXNO (control, 33 nmol/L, 26, 42; apple, 51 nmol/L, 40, 65; spinach, 86 nmol/L, 68, 110; apple+spinach, 69 nmol/L, 54, 88; P<0.01) and higher nitrite (control, 35 nmol/L, 27, 46; apple, 69 nmol/L, 53, 90; spinach, 99 nmol/L, 76, 129; apple+spinach, 80 nmol/L, 61, 104; P<0.01). Compared to control, all treatments resulted in higher flow-mediated dilatation (P<0.05) and lower pulse pressure (P<0.05), and apple and spinach resulted in lower systolic blood pressure (P<0.05). No significant effect was observed on diastolic blood pressure. The combination of apple and spinach did not result in additive effects on nitric oxide status, endothelial function, or blood pressure. In conclusion, flavonoid-rich apples and nitrate-rich spinach can independently augment nitric oxide status, enhance endothelial function, and lower

  17. The effects of fire on biogenic soil emissions of nitric oxide and nitrous oxide

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Cofer, Wesley R., III; Sebacher, Daniel I.; Boston, Penelope J.; Winstead, Edward L.; Sebacher, Shirley

    1988-01-01

    Measurements of biogenic soil emissions of nitric oxide (NO) and nitrous oxide (N2O) before and after a controlled burn conducted in a chaparral ecosystem on June 22, 1987, showed significantly enhanced emissions of both gases after the burn. Mean NO emissions from heavily burned and wetted (to simulate rainfall) sites exceeded 40 ng N/sq m s, and increase of 2 to 3 compared to preburn wetted site measurements. N2O emissions from burned and wetted sites ranged from 9 to 22 ng N/sq m s. Preburn N2O emissions from these wetted sites were all below the detection level of the instrumentation, indicating a flux below 2 ng N/sq m s. The flux of NO exceeded the N2O flux from burned wetted sites by factors ranging from 2.7 to 3.4. These measurements, coupled with preburn and postburn measurements of ammonium and nitrate in the soil of this chaparral ecosystem and measurements of NO and N2O emissions obtained under controlled laboratory conditions, suggest that the postfire enhancement of NO and N2O emissions is due to production of these gases by nitrifying bacteria.

  18. 21 CFR 862.3080 - Breath nitric oxide test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... fractional nitric oxide concentration in expired breath aids in evaluating an asthma patient's response to anti-inflammatory therapy, as an adjunct to established clinical and laboratory assessments of asthma...

  19. Enhancement of nitric oxide release and hemocompatibility by surface chirality of D-tartaric acid grafting

    NASA Astrophysics Data System (ADS)

    Han, Honghong; Wang, Ke; Fan, Yonghong; Pan, Xiaxin; Huang, Nan; Weng, Yajun

    2017-12-01

    Nitric Oxide (NO) generation from endogenous NO-donors catalyzed by diselenide modified biomaterials has been reported. Here we reported surface chirality by L-tartaric acid and D-tartaric acid grafting on the outermost showed a significant impact on diselenide modified biomaterials, which modulated protein adsorption, NO release and anti-platelet adhesion properties. D-tartaric acid grafted surface showed more blood protein adsorption than that of L-surfaces by QCM analysis, however, ELISA analysis disclosed less fibrinogen denatured on the D surfaces. Due to the surface ratio of selenium decreasing, NO release catalyzed by L-tartaric acid grafting on the outermost significantly decreased in comparison to that of only selenocystamine immobilized surfaces. While NO release catalyzed by D-tartaric acid grafting on the outermost didn't decrease and was similar with that of selenocystamine immobilized surfaces. Surface chirality combined with NO release had synergetic effects on platelet adhesion, and it showed the lowest number of platelets adhered on the D-tartaric acid grafted surfaces. Thus surface chirality from D-tartaric acid grafting enhanced hemocompatibility of the surface in this study. Our work provides new insights into engineering novel blood contacting biomaterials by taking into account surface chirality.

  20. Nitric oxide alleviates wheat yield reduction by protecting photosynthetic system from oxidation of ozone pollution.

    PubMed

    Li, Caihong; Song, Yanjie; Guo, Liyue; Gu, Xian; Muminov, Mahmud A; Wang, Tianzuo

    2018-05-01

    Accelerated industrialization has been increasing releases of chemical precursors of ozone. Ozone concentration has risen nowadays, and it's predicted that this trend will continue in the next few decades. The yield of many ozone-sensitive crops suffers seriously from ozone pollution, and there are abundant reports exploring the damage mechanisms of ozone to these crops, such as winter wheat. However, little is known on how to alleviate these negative impacts to increase grain production under elevated ozone. Nitric oxide, as a bioactive gaseous, mediates a variety of physiological processes and plays a central role in response to biotic and abiotic stresses. In the present study, the accumulation of endogenous nitric oxide in wheat leaves was found to increase in response to ozone. To study the functions of nitric oxide, its precursor sodium nitroprusside was spayed to wheat leaves under ozone pollution. Wheat leaves spayed with sodium nitroprusside accumulated less hydrogen peroxide, malondialdehyde and electrolyte leakage under ozone pollution, which can be accounted for by the higher activities of superoxide dismutase and peroxidase than in leaves treated without sodium nitroprusside. Consequently, net photosynthetic rate of wheat treated using sodium nitroprusside was much higher, and yield reduction was alleviated under ozone fumigation. These findings are important for our understanding of the potential roles of nitric oxide in responses of crops in general and wheat in particular to ozone pollution, and provide a viable method to mitigate the detrimental effects on crop production induced by ozone pollution, which is valuable for keeping food security worldwide. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Yomogin, an inhibitor of nitric oxide production in LPS-activated macrophages.

    PubMed

    Ryu, J H; Lee, H J; Jeong, Y S; Ryu, S Y; Han, Y N

    1998-08-01

    In activated macrophages the inducible form of nitric oxide synthase (i-NOS) generates high amounts of toxic mediator, nitric oxide (NO) which contributes to the circulatory failure associated with septic shock. A sesquiterpene lactone compound (yomogin) isolated from medicinal plant Artemisia princeps Pampan inhibited the production of NO in LPS-activated RAW 264.7 cells by suppressing i-NOS enzyme expression. Thus, yomogin may be a useful candidate for the development of new drugs to treat endotoxemia and inflammation accompanied by the overproduction of NO.

  2. Acute electroacupuncture inhibits nitric oxide synthase expression in the spinal cord of neuropathic rats.

    PubMed

    Cha, Myeoung Hoon; Bai, Sun Joon; Lee, Kyung Hee; Cho, Zang Hee; Kim, Young-Bo; Lee, Hye-Jung; Lee, Bae Hwan

    2010-02-01

    To examine the effects of electroacupuncture stimulation on behavioral changes and neuronal nitric oxide synthase expression in the rat spinal cord after nerve injury. Under pentobarbital anesthesia, male Sprague-Dawley rats were subjected to neuropathic surgery by tightly ligating and cutting the left tibial and sural nerves. Behavioral responses to mechanical stimulation were tested for 2 weeks post-operatively. At the end of behavioral testing, electroacupuncture stimulation was applied to ST36 (Choksamni) and SP9 (Eumleungcheon) acupoints. Immunocytochemical staining was performed to investigate changes in the expression of neuronal nitric oxide synthase-immunoreactive neurons in the L4-5 spinal cord. Mechanical allodynia was observed by nerve injury. The mechanical allodynia was decreased after electroacupuncture stimulation. Neuronal nitric oxide synthase expression was also decreased in L4-5 spinal cord by electroacupuncture treatment. These results suggest that electroacupuncture relieves mechanical allodynia in the neuropathic rats possibly by the inhibition of neuronal nitric oxide synthase expression in the spinal cord.

  3. (-)-Epicatechin-induced recovery of mitochondria from simulated diabetes: Potential role of endothelial nitric oxide synthase.

    PubMed

    Ramírez-Sánchez, Israel; Rodríguez, Alonso; Moreno-Ulloa, Aldo; Ceballos, Guillermo; Villarreal, Francisco

    2016-05-01

    (-)-Epicatechin increases indicators associated with mitochondrial biogenesis in endothelial cells and myocardium. We investigated endothelial nitric oxide synthase involvement on (-)-epicatechin-induced increases in indicators associated with mitochondrial biogenesis in human coronary artery endothelial cells cultured in normal-glucose and high-glucose media, as well as to restore indicators of cardiac mitochondria from the effects of simulated diabetes. Here, we demonstrate the role of endothelial nitric oxide synthase on (-)-epicatechin-induced increases in mitochondrial proteins, transcription factors and sirtuin 1 under normal-glucose conditions. In simulated diabetes endothelial nitric oxide synthase function, mitochondrial function-associated and biogenesis-associated indicators were adversely impacted by high glucose, effects that were reverted by (-)-epicatechin. As an animal model of type 2 diabetes, 2-month old C57BL/6 mice were fed a high-fat diet for 16 weeks. Fasting and fed blood glucose levels were increased and NO plasma levels decreased. High-fat-diet-fed mice myocardium revealed endothelial nitric oxide synthase dysfunction, reduced mitochondrial activity and markers of mitochondrial biogenesis. The administration of 1 mg/kg (-)-epicatechin for 15 days by oral gavage shifted these endpoints towards control mice values. Results suggest that endothelial nitric oxide synthase mediates (-)-epicatechin-induced increases of indicators associated with mitochondrial biogenesis in endothelial cells. (-)-Epicatechin also counteracts the negative effects that high glucose or simulated type 2 diabetes has on endothelial nitric oxide synthase function. © The Author(s) 2016.

  4. The effect of nitric oxide releasing cream on healing pressure ulcers

    PubMed Central

    Saidkhani, Vahid; Asadizaker, Marziyeh; Khodayar, Mohammad Javad; Latifi, Sayed Mahmoud

    2016-01-01

    Background: Pressure ulcer is one of the main concerns of nurses in medical centers around the world, which, if untreated, causes irreparable problems for patients. In recent years, nitric oxide (NO) has been proposed as an effective method for wound healing. This study was conducted to determine the effect of nitric oxide on pressure ulcer healing. Materials and Methods: In this clinical trial, 58 patients with pressure ulcer at hospitals affiliated to Ahvaz Jundishapur University of Medical Sciences were homogenized and later divided randomly into two groups of treatment (nitric oxide cream; n = 29) and control (placebo cream; n = 29). In this research, the data collection tool was the Pressure Ulcer Scale for Healing (PUSH). At the outset of the study (before using the cream), the patients' ulcers were examined weekly in terms of size, amount of exudates, and tissue type using the PUSH tool for 3 weeks. By integrating these three factors, wound healing was determined. Data were analyzed using SPSS. Results: Although no significant difference was found in terms of the mean of score size, the amount of exudates, and the tissue type between the two groups, the mean of total score (healing) between the two groups was statistically significant (P = 0.04). Conclusions: Nitric oxide cream seems to accelerate wound healing. Therefore, considering its easy availability and cost-effectiveness, it can be used for treating pressure ulcers in the future. PMID:27186212

  5. Pulmonary Hypertension in Lambs Transfused with Stored Blood is Prevented by Breathing Nitric Oxide

    PubMed Central

    Baron, David M.; Yu, Binglan; Lei, Chong; Bagchi, Aranya; Beloiartsev, Arkadi; Stowell, Christopher P.; Steinbicker, Andrea U.; Malhotra, Rajeev; Bloch, Kenneth D.; Zapol, Warren M.

    2012-01-01

    Background During extended storage, erythrocytes undergo functional changes. These changes reduce the viability of erythrocytes leading to release of oxyhemoglobin, a potent scavenger of nitric oxide. We hypothesized that transfusion of ovine packed erythrocytes (PRBC) stored for prolonged periods would induce pulmonary vasoconstriction in lambs, and that reduced vascular nitric oxide concentrations would increase this vasoconstrictor effect. Methods We developed a model of autologous stored blood transfusion in lambs (n=36). Leukoreduced blood was stored for either 2 days (fresh PRBC) or 40 days (stored PRBC). Fresh or stored PRBC were transfused into donors instrumented for awake hemodynamic measurements. Hemodynamic effects of PRBC transfusion were also studied after infusion of NG-nitro-L-arginine methyl-ester (25 mg/kg) or during inhalation of nitric oxide (80 ppm). Results Cell-free hemoglobin levels were higher in the supernatant of stored PRBC than in supernatant of fresh PRBC (Mean±SD, 148±20 versus 41±13 mg/dl, respectively, P<0.001). Pulmonary artery pressure during transfusion of stored PRBC transiently increased from 13±1 to 18±1 mmHg (P<0.001) and was associated with increased plasma hemoglobin concentrations. NG-nitro-L-arginine methyl-ester potentiated the increase in pulmonary arterial pressure induced by transfusing stored PRBC, whereas inhalation of nitric oxide prevented the vasoconstrictor response. Conclusions Our results suggest that patients with reduced vascular nitric oxide levels due to endothelial dysfunction may be more susceptible to adverse effects of transfusing blood stored for prolonged periods. These patients might benefit from transfusion of fresh PRBC, when available, or inhaled nitric oxide supplementation to prevent the pulmonary hypertension associated with transfusion of stored PRBC. PMID:22293717

  6. Cholecystokinin-8-induced hypoplasia of the rat pancreas: influence of nitric oxide on cell proliferation and programmed cell death.

    PubMed

    Trulsson, Lena M; Gasslander, Thomas; Svanvik, Joar

    2004-10-01

    The background of cholecystokinin-8 (CCK-8)-induced hypoplasia in the pancreas is not known. In order to increase our understanding we studied the roles of nitric oxide and NF-kappaB in rats. CCK-8 was injected for 4 days, in a mode known to cause hypoplasia, and the nitric oxide formation was either decreased by means of N(omega)-nitro-L-arginine (L-NNA) or increased by S-nitroso-N-acetylpencillamine (SNAP). The activation of NF-kappaB was quantified by ELISA detection, apoptosis with caspase-3 and histone-associated DNA-fragmentation and mitotic activity in the acinar, centroacinar and ductal cells were visualized by the incorporation of [(3)H]-thymidine. Pancreatic histology and weight as well as protein- and DNA contents were also studied. Intermittent CCK injections reduced pancreatic weight, protein and DNA contents and increased apoptosis, acinar cell proliferation and nuclear factor kappaB (NF-kappaB) activation. It also caused vacuolisation of acinar cells. The inhibition of endogenous nitric oxide formation by L-NNA further increased apoptosis and NF-kappaB activation but blocked the increased proliferation and vacuolisation of acinar cells. The DNA content was not further reduced. SNAP given together with CCK-8 increased apoptosis and other pathways of cell death, raised proliferation of acinar cells and strongly reduced the DNA content in the pancreas. Histological examination showed no inflammation in any group. We conclude that during CCK-8-induced pancreatic hypoplasia, endogenously formed nitric oxide suppresses apoptosis but increases cell death along non-apoptotic pathways and stimulates regeneration of acinar cells. Exogenous nitric oxide enhances the acinar cell turnover by increasing both apoptotic and non-apoptotic cell death and cell renewal. In this situation NF-kappaB activation seems not to inhibit apoptosis nor promote cell proliferation.

  7. Nitric oxide selective electrodes.

    PubMed

    Davies, Ian R; Zhang, Xueji

    2008-01-01

    Since nitric oxide (NO) was identified as the endothelial-derived relaxing factor in the late 1980s, many approaches have attempted to provide an adequate means for measuring physiological levels of NO. Although several techniques have been successful in achieving this aim, the electrochemical method has proved the only technique that can reliably measure physiological levels of NO in vitro, in vivo, and in real time. We describe here the development of electrochemical sensors for NO, including the fabrication of sensors, the detection principle, calibration, detection limits, selectivity, and response time. Furthermore, we look at the many experimental applications where NO selective electrodes have been successfully used.

  8. Oleic acid-dependent modulation of Nitric oxide associated 1 protein levels regulates nitric oxide-mediated defense signaling in Arabidopsis

    USDA-ARS?s Scientific Manuscript database

    The conserved cellular metabolites nitric oxide (NO) and oleic acid (18:1) are well-known regulators of disease physiologies in diverse organism. We show that NO production in plants is regulated via 18:1. Reduction in 18:1 levels, via a genetic mutation in the 18:1-synthesizing gene SUPPRESSOR OF S...

  9. An Abnormal Nitric Oxide Metabolism Contributes to Brain Oxidative Stress in the Mouse Model for the Fragile X Syndrome, a Possible Role in Intellectual Disability

    PubMed Central

    Lima-Cabello, Elena; Garcia-Guirado, Francisco; Calvo-Medina, Rocio; el Bekay, Rajaa; Perez-Costillas, Lucia; Quintero-Navarro, Carolina; Sanchez-Salido, Lourdes

    2016-01-01

    Background. Fragile X syndrome is the most common genetic cause of mental disability. Although many research has been performed, the mechanism underlying the pathogenesis is unclear and needs further investigation. Oxidative stress played major roles in the syndrome. The aim was to investigate the nitric oxide metabolism, protein nitration level, the expression of NOS isoforms, and furthermore the activation of the nuclear factor NF-κB-p65 subunit in different brain areas on the fragile X mouse model. Methods. This study involved adult male Fmr1-knockout and wild-type mice as controls. We detected nitric oxide metabolism and the activation of the nuclear factor NF-κBp65 subunit, comparing the mRNA expression and protein content of the three NOS isoforms in different brain areas. Results. Fmr1-KO mice showed an abnormal nitric oxide metabolism and increased levels of protein tyrosine nitrosylation. Besides that, nuclear factor NF-κB-p65 and inducible nitric oxide synthase appeared significantly increased in the Fmr1-knockout mice. mRNA and protein levels of the neuronal nitric oxide synthase appeared significantly decreased in the knockout mice. However, the epithelial nitric oxide synthase isoform displayed no significant changes. Conclusions. These data suggest the potential involvement of an abnormal nitric oxide metabolism in the pathogenesis of the fragile X syndrome. PMID:26788253

  10. Bench-to-bedside review: Inhaled nitric oxide therapy in adults

    PubMed Central

    Creagh-Brown, Benedict C; Griffiths, Mark JD; Evans, Timothy W

    2009-01-01

    Nitric oxide (NO) is an endogenous mediator of vascular tone and host defence. Inhaled nitric oxide (iNO) results in preferential pulmonary vasodilatation and lowers pulmonary vascular resistance. The route of administration delivers NO selectively to ventilated lung units so that its effect augments that of hypoxic pulmonary vasoconstriction and improves oxygenation. This 'Bench-to-bedside' review focuses on the mechanisms of action of iNO and its clinical applications, with emphasis on acute lung injury and the acute respiratory distress syndrome. Developments in our understanding of the cellular and molecular actions of NO may help to explain the hitherto disappointing results of randomised controlled trials of iNO. PMID:19519946

  11. Arginine, citrulline and nitric oxide metabolism in sepsis

    USDA-ARS?s Scientific Manuscript database

    Arginine has vasodilatory effects, via its conversion by nitric oxide (NO) synthase into NO, and immunomodulatory actions that play important roles in sepsis. Protein breakdown affects arginine availability, and the release of asymmetric dimethylarginine, an inhibitor of NO synthase, may therefore a...

  12. Auroral nitric oxide concentration and infrared emission

    NASA Astrophysics Data System (ADS)

    Reidy, W. P.; Degges, T. C.; Hurd, A. G.; Stair, A. T., Jr.; Ulwick, J. C.

    1982-05-01

    Rocket-borne measurements of infrared auroral emission by nitric oxide are analyzed. Four rocket flights provided opportunities to measure 5.3- and 2.7-micron NO emission by means of infrared fixed band radiometers and CVF spectrometers, narrow band photometers, and incident energy spectra on various occasions. Analysis of infrared emission profiles and electron flux data indicates the NO density to be significantly enhanced with respect to midlatitude values. NO emission in the fundamental 5.3-micron band is attributed to resonance excitation by warm earth radiation, collisional excitation primarily by O atoms and chemiluminescence from the reaction of N with O2; with an energy efficiency of 0.015. The overtone band emission at 2.7 microns is accounted for by chemiluminescence produced with an energy efficiency of 0.0054. Total photon yield for the chemiluminescence reaction is estimated to range from 1.2 to 2.4 vibrational quanta per NO molecule.

  13. Protective immunity against Trypanosoma cruzi provided by oral immunization with Phytomonas serpens: role of nitric oxide.

    PubMed

    Pinge-Filho, P; Peron, J P S; de Moura, T R; Menolli, R A; Graça, V K; Estevão, D; Tadokoro, C E; Jankevicius, J V; Rizzo, L V

    2005-01-31

    We have previously demonstrated that Phytomonas serpens, a tomato parasite, shares antigens with Trypanosoma cruzi, the protozoa that causes Chagas' disease. These antigens are recognized by human sera and induce protective immunity in Balb/c mice. In the present study, inducible nitric oxide synthase (iNOS) knockout (KO) mice and C57BL/6 mice treated with the nitric oxide inhibitor, aminoguanidine (AG, 50 mg kg(-1)) infected with T. cruzi, were used to demonstrate the role of nitric oxide (NO) to host protection against T. cruzi infection achieved by oral immunization with live P. serpens. A reduction in parasitaemia and an increase in survival were observed in C57BL/6 infected mice and previously immunized with P. serpens, when compared to non-immunized mice. iNOS (KO) mice immunized and C57BL/6 immunized and treated with AG presented parasitaemia and mortality rates comparable to those of infected and non-immunized mice. By itself, immunization with P. serpens did not induce inflammation in the myocardium, but C57BL/6 mice so immunized showed fewer amastigotes nests in the heart following an acute T. cruzi infection than those in non-immunized mice. These results suggest that protective immunity against T. cruzi infection induced by immunization with P. serpens is dependent upon enhanced NO production during the acute phase of T. cruzi infection.

  14. Inorganic Nitrate Promotes the Browning of White Adipose Tissue through the Nitrate-Nitrite-Nitric Oxide Pathway

    PubMed Central

    Roberts, Lee D; Ashmore, Tom; Kotwica, Aleksandra O; Murfitt, Steven A; Fernandez, Bernadette O; Feelisch, Martin; Griffin, Julian L

    2015-01-01

    Inorganic nitrate was once considered an oxidation end-product of nitric oxide metabolism with little biological activity. However, recent studies have demonstrated that dietary nitrate can modulate mitochondrial function in man and is effective in reversing features of the metabolic syndrome in mice. Using a combined histological, metabolomics, and transcriptional and protein analysis approach we mechanistically define that nitrate not only increases the expression of thermogenic genes in brown-adipose tissue but also induces the expression of brown adipocyte-specific genes and proteins in white adipose tissue, substantially increasing oxygen consumption and fatty acid β-oxidation in adipocytes. Nitrate induces these phenotypic changes through a mechanism distinct from known physiological small molecule activators of browning, the recently identified nitrate-nitrite-nitric oxide pathway. The nitrate-induced browning effect was enhanced in hypoxia, a serious co-morbidity affecting white adipose tissue in obese individuals, and corrected impaired brown adipocyte-specific gene expression in white adipose tissue in a murine model of obesity. Since resulting beige/brite cells exhibit anti-obesity and anti-diabetic effects, nitrate may be an effective means of inducing the browning response in adipose tissue to treat the metabolic syndrome. PMID:25249574

  15. Nitrate, nitrite and nitric oxide reductases: from the last universal common ancestor to modern bacterial pathogens

    PubMed Central

    Vázquez-Torres, Andrés; Bäumler, Andreas

    2016-01-01

    The electrochemical gradient that ensues from the enzymatic activity of cytochromes such as nitrate reductase, nitric oxide reductase, and quinol oxidase contributes to the bioenergetics of the bacterial cell. Reduction of nitrogen oxides by bacterial pathogens can, however, be uncoupled from proton translocation and biosynthesis of ATP or NH4+, but still linked to quinol and NADH oxidation. Ancestral nitric oxide reductases, as well as cytochrome coxidases and quinol bo oxidases evolved from the former, are capable of binding and detoxifying nitric oxide to nitrous oxide. The NO-metabolizing activity associated with these cytochromes can be a sizable source of antinitrosative defense in bacteria during their associations with host cells. Nitrosylation of terminal cytochromes arrests respiration, reprograms bacterial metabolism, stimulates antioxidant defenses and alters antibiotic cytotoxicity. Collectively, the bioenergetics and regulation of redox homeostasis that accompanies the utilization of nitrogen oxides and detoxification of nitric oxide by cytochromes of the electron transport chain increases fitness of many Gram-positive and –negative pathogens during their associations with invertebrate and vertebrate hosts. PMID:26426528

  16. Contribution of polyamines metabolism and GABA shunt to chilling tolerance induced by nitric oxide in cold-stored banana fruit.

    PubMed

    Wang, Yansheng; Luo, Zisheng; Mao, Linchun; Ying, Tiejin

    2016-04-15

    Effect of exogenous nitric oxide (NO) on polyamines (PAs) catabolism, γ-aminobutyric acid (GABA) shunt, proline accumulation and chilling injury of banana fruit under cold storage was investigated. Banana fruit treated with NO sustained lower chilling injury index than the control. Notably elevated nitric oxide synthetase activity and endogenous NO level were observed in NO-treated banana fruit. PAs contents in treated fruit were significantly higher than control fruit, due to the elevated activities of arginine decarboxylase and ornithine decarboxylase. NO treatment increased the activities of diamine oxidase, polyamine oxidase and glutamate decarboxylase, while reduced GABA transaminase activity to lower levels compared with control fruit, which resulted the accumulation of GABA. Besides, NO treatment upregulated proline content and significantly enhanced the ornithine aminotransferase activity. These results indicated that the chilling tolerance induced by NO treatment might be ascribed to the enhanced catabolism of PAs, GABA and proline. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. TNF-α dependent production of inducible nitric oxide is involved in PGE1 protection against acute liver injury

    PubMed Central

    Muntane, J; Rodriguez, F; Segado, O; Quintero, A; Lozano, J; Siendones, E; Pedraza, C; Delgado, M; O'Valle, F; Garcia, R; Montero, J; De la Mata, M; Mino, G

    2000-01-01

    BACKGROUND—Tumour necrosis factor α (TNF-α) and nitric oxide modulate damage in several experimental models of liver injury. We have previously shown that protection against D-galactosamine (D-GalN) induced liver injury by prostaglandin E1 (PGE1) was accompanied by an increase in TNF-α and nitrite/nitrate in serum.
AIMS—The aim of the present study was to evaluate the role of TNF-α and nitric oxide during protection by PGE1 of liver damage induced by D-GalN.
METHODS—Liver injury was induced in male Wistar rats by intraperitoneal injection of 1 g/kg of D-GalN. PGE1 was administered 30 minutes before D-GalN. Inducible nitric oxide synthase (iNOS) was inhibited by methylisothiourea (MT), and TNF-α concentration in serum was lowered by administration of anti-TNF-α antibodies. Liver injury was evaluated by alanine aminotransferase activity in serum, and histological examination and DNA fragmentation in liver. TNF-α and nitrite/nitrate concentrations were determined in serum. Expression of TNF-α and iNOS was also assessed in liver sections.
RESULTS—PGE1 decreased liver injury and increased TNF-α and nitrite/nitrate concentrations in serum of rats treated with D-GalN. PGE1 protection was related to enhanced expression of TNF-α and iNOS in hepatocytes. Administration of anti-TNF-α antibodies or MT blocked the protection by PGE1 of liver injury induced by D-GalN.
CONCLUSIONS—This study suggests that prior administration of PGE1 to D-GalN treated animals enhanced expression of TNF-α and iNOS in hepatocytes, and that this was causally related to protection by PGE1 against D-GalN induced liver injury.


Keywords: tumour necrosis factor α; nitric oxide; prostaglandin E1; methylisothiourea; D-galactosamine; liver injury PMID:10986217

  18. iNOS-derived nitric oxide promotes glycolysis by inducing pyruvate kinase M2 nuclear translocation in ovarian cancer.

    PubMed

    Li, Linlin; Zhu, Lingqun; Hao, Bingtao; Gao, Wenwen; Wang, Qianli; Li, Keyi; Wang, Meng; Huang, Mengqiu; Liu, Zhengjun; Yang, Qiaohong; Li, Xiqing; Zhong, Zhuo; Huang, Wenhua; Xiao, Guanghui; Xu, Yang; Yao, Kaitai; Liu, Qiuzhen

    2017-05-16

    Aerobic glycolysis is essential for tumor growth and survival. Activation of multiple carcinogenic signals contributes to metabolism reprogramming during malignant transformation of cancer. Recently nitric oxide has been noted to promote glycolysis but the mechanism remains elusive. We report here the dual role of nitric oxide in glycolysis: low/physiological nitric oxide (≤ 100 nM) promotes glycolysis for ATP production, oxidative defense and cell proliferation of ovary cancer cells, whereas excess nitric oxide (≥ 500 nM) inhibits it. Nitric oxide has a positive effect on glycolysis by inducing PKM2 nuclear translocation in an EGFR/ERK2 signaling-dependent manner. Moreover, iNOS induced by mild inflammatory stimulation increased glycolysis and cell proliferation by producing low doses of nitric oxide, while hyper inflammation induced iNOS inhibited it by producing excess nitric oxide. Finally, iNOS expression is abnormally increased in ovarian cancer tissues and is correlated with PKM2 expression. Overexpression of iNOS is associated with aggressive phenotype and poor survival outcome in ovarian cancer patients. Our study indicated that iNOS/NO play a dual role of in tumor glycolysis and progression, and established a bridge between iNOS/NO signaling pathway and EGFR/ERK2/PKM2 signaling pathway, suggesting that interfering glycolysis by targeting the iNOS/NO/PKM2 axis may be a valuable new therapeutic approach of treating ovarian cancer.

  19. iNOS-derived nitric oxide promotes glycolysis by inducing pyruvate kinase M2 nuclear translocation in ovarian cancer

    PubMed Central

    Hao, Bingtao; Gao, Wenwen; Wang, Qianli; Li, Keyi; Wang, Meng; Huang, Mengqiu; Liu, Zhengjun; Yang, Qiaohong; Li, Xiqing; Zhong, Zhuo; Huang, Wenhua; Xiao, Guanghui; Xu, Yang; Yao, Kaitai; Liu, Qiuzhen

    2017-01-01

    Aerobic glycolysis is essential for tumor growth and survival. Activation of multiple carcinogenic signals contributes to metabolism reprogramming during malignant transformation of cancer. Recently nitric oxide has been noted to promote glycolysis but the mechanism remains elusive. We report here the dual role of nitric oxide in glycolysis: low/physiological nitric oxide (≤ 100 nM) promotes glycolysis for ATP production, oxidative defense and cell proliferation of ovary cancer cells, whereas excess nitric oxide (≥ 500 nM) inhibits it. Nitric oxide has a positive effect on glycolysis by inducing PKM2 nuclear translocation in an EGFR/ERK2 signaling-dependent manner. Moreover, iNOS induced by mild inflammatory stimulation increased glycolysis and cell proliferation by producing low doses of nitric oxide, while hyper inflammation induced iNOS inhibited it by producing excess nitric oxide. Finally, iNOS expression is abnormally increased in ovarian cancer tissues and is correlated with PKM2 expression. Overexpression of iNOS is associated with aggressive phenotype and poor survival outcome in ovarian cancer patients. Our study indicated that iNOS/NO play a dual role of in tumor glycolysis and progression, and established a bridge between iNOS/NO signaling pathway and EGFR/ERK2/PKM2 signaling pathway, suggesting that interfering glycolysis by targeting the iNOS/NO/PKM2 axis may be a valuable new therapeutic approach of treating ovarian cancer. PMID:28380434

  20. Transcriptional activation of the human inducible nitric-oxide synthase promoter by Kruppel-like factor 6.

    PubMed

    Warke, Vishal G; Nambiar, Madhusoodana P; Krishnan, Sandeep; Tenbrock, Klaus; Geller, David A; Koritschoner, Nicolas P; Atkins, James L; Farber, Donna L; Tsokos, George C

    2003-04-25

    Nitric oxide is a ubiquitous free radical that plays a key role in a broad spectrum of signaling pathways in physiological and pathophysiological processes. We have explored the transcriptional regulation of inducible nitric-oxide synthase (iNOS) by Krüppel-like factor 6 (KLF6), an Sp1-like zinc finger transcription factor. Study of serial deletion constructs of the iNOS promoter revealed that the proximal 0.63-kb region can support a 3-6-fold reporter activity similar to that of the full-length 16-kb promoter. Within the 0.63-kb region, we identified two CACCC sites (-164 to -168 and -261 to -265) that bound KLF6 in both electrophoretic mobility shift and chromatin immunoprecipitation assays. Mutation of both these sites abrogated the KLF6-induced enhancement of the 0.63-kb iNOS promoter activity. The binding of KLF6 to the iNOS promoter was significantly increased in Jurkat cells, primary T lymphocytes, and COS-7 cells subjected to NaCN-induced hypoxia, heat shock, serum starvation, and phorbol 12-myristate 13-acetate/ ionophore stimulation. Furthermore, in KLF6-transfected and NaCN-treated COS-7 cells, there was a 3-4-fold increase in the expression of the endogenous iNOS mRNA and protein that correlated with increased production of nitric oxide. These findings indicate that KLF6 is a potential transactivator of the human iNOS promoter in diverse pathophysiological conditions.

  1. Nitric Oxide Synthase and Cyclooxygenase Pathways: A Complex Interplay in Cellular Signaling.

    PubMed

    Sorokin, Andrey

    2016-01-01

    The cellular reaction to external challenges is a tightly regulated process consisting of integrated processes mediated by a variety of signaling molecules, generated as a result of modulation of corresponding biosynthetic systems. Both, nitric oxide synthase (NOS) and cyclooxygenase (COX) systems, consist of constitutive forms (NOS1, NOS3 and COX-1), which are mostly involved in housekeeping tasks, and inducible forms (NOS2 and COX-2), which shape the cellular response to stress and variety of bioactive agents. The complex interplay between NOS and COX pathways can be observed at least at three levels. Firstly, products of NOS and Cox systems can mediate the regulation and the expression of inducible forms (NOS2 and COX-2) in response of similar and dissimilar stimulus. Secondly, the reciprocal modulation of cyclooxygenase activity by nitric oxide and NOS activity by prostaglandins at the posttranslational level has been shown to occur. Mechanisms by which nitric oxide can modulate prostaglandin synthesis include direct S-nitrosylation of COX and inactivation of prostaglandin I synthase by peroxynitrite, product of superoxide reaction with nitric oxide. Prostaglandins, conversely, can promote an increased association of dynein light chain (DLC) (also known as protein inhibitor of neuronal nitric oxide synthase) with NOS1, thereby reducing its activity. The third level of interplay is provided by intracellular crosstalk of signaling pathways stimulated by products of NOS and COX which contributes significantly to the complexity of cellular signaling. Since modulation of COX and NOS pathways was shown to be principally involved in a variety of pathological conditions, the dissection of their complex relationship is needed for better understanding of possible therapeutic strategies. This review focuses on implications of interplay between NOS and COX for cellular function and signal integration.

  2. Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin.

    PubMed Central

    Stamler, J S; Jaraki, O; Osborne, J; Simon, D I; Keaney, J; Vita, J; Singel, D; Valeri, C R; Loscalzo, J

    1992-01-01

    We have recently shown that nitric oxide or authentic endothelium-derived relaxing factor generated in a biologic system reacts in the presence of specific protein thiols to form S-nitrosoprotein derivatives that have endothelium-derived relaxing factor-like properties. The single free cysteine of serum albumin, Cys-34, is particularly reactive toward nitrogen oxides (most likely nitrosonium ion) under physiologic conditions, primarily because of its anomalously low pK; given its abundance in plasma, where it accounts for approximately 0.5 mM thiol, we hypothesized that this plasma protein serves as a reservoir for nitric oxide produced by the endothelial cell. To test this hypothesis, we developed a methodology, which involves UV photolytic cleavage of the S--NO bond before reaction with ozone for chemiluminescence detection, with which to measure free nitric oxide, S-nitrosothiols, and S-nitrosoproteins in biologic systems. We found that human plasma contains approximately 7 microM S-nitrosothiols, of which 96% are S-nitrosoproteins, 82% of which is accounted for by S-nitroso-serum albumin. By contrast, plasma levels of free nitric oxide are only in the 3-nM range. In rabbits, plasma S-nitrosothiols are present at approximately 1 microM; 60 min after administration of NG-monomethyl-L-arginine at 50 mg/ml, a selective and potent inhibitor of nitric oxide synthetases, S-nitrosothiols decreased by approximately 40% (greater than 95% of which were accounted for by S-nitrosoproteins, and approximately 80% of which was S-nitroso-serum albumin); this decrease was accompanied by a concomitant increase in mean arterial blood pressure of 22%. These data suggest that naturally produced nitric oxide circulates in plasma primarily complexed in S-nitrosothiol species, principal among which is S-nitroso-serum albumin. This abundant, relatively long-lived adduct likely serves as a reservoir with which plasma levels of highly reactive, short-lived free nitric oxide can be

  3. Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin.

    PubMed

    Stamler, J S; Jaraki, O; Osborne, J; Simon, D I; Keaney, J; Vita, J; Singel, D; Valeri, C R; Loscalzo, J

    1992-08-15

    We have recently shown that nitric oxide or authentic endothelium-derived relaxing factor generated in a biologic system reacts in the presence of specific protein thiols to form S-nitrosoprotein derivatives that have endothelium-derived relaxing factor-like properties. The single free cysteine of serum albumin, Cys-34, is particularly reactive toward nitrogen oxides (most likely nitrosonium ion) under physiologic conditions, primarily because of its anomalously low pK; given its abundance in plasma, where it accounts for approximately 0.5 mM thiol, we hypothesized that this plasma protein serves as a reservoir for nitric oxide produced by the endothelial cell. To test this hypothesis, we developed a methodology, which involves UV photolytic cleavage of the S--NO bond before reaction with ozone for chemiluminescence detection, with which to measure free nitric oxide, S-nitrosothiols, and S-nitrosoproteins in biologic systems. We found that human plasma contains approximately 7 microM S-nitrosothiols, of which 96% are S-nitrosoproteins, 82% of which is accounted for by S-nitroso-serum albumin. By contrast, plasma levels of free nitric oxide are only in the 3-nM range. In rabbits, plasma S-nitrosothiols are present at approximately 1 microM; 60 min after administration of NG-monomethyl-L-arginine at 50 mg/ml, a selective and potent inhibitor of nitric oxide synthetases, S-nitrosothiols decreased by approximately 40% (greater than 95% of which were accounted for by S-nitrosoproteins, and approximately 80% of which was S-nitroso-serum albumin); this decrease was accompanied by a concomitant increase in mean arterial blood pressure of 22%. These data suggest that naturally produced nitric oxide circulates in plasma primarily complexed in S-nitrosothiol species, principal among which is S-nitroso-serum albumin. This abundant, relatively long-lived adduct likely serves as a reservoir with which plasma levels of highly reactive, short-lived free nitric oxide can be

  4. Effect of soy isoflavone supplementation on nitric oxide metabolism and blood pressure in menopausal women

    USDA-ARS?s Scientific Manuscript database

    Isoflavones, having chemical structures similar to estrogens, are believed to stimulate nitric oxide production and thus lower blood pressure. The efficacy of soy isoflavone supplementation to stimulate nitric oxide production and lower blood pressure in menopausal women with high normal blood press...

  5. Intracellular redox state determines whether nitric oxide is toxic or protective to rat oligodendrocytes in culture.

    PubMed

    Rosenberg, P A; Li, Y; Ali, S; Altiok, N; Back, S A; Volpe, J J

    1999-08-01

    We found that several nitric oxide donors had similar potency in killing mature and immature forms of oligodendrocytes (OLs). Because of the possibility of interaction of nitric oxide with intracellular thiols, we tested the effect of the nitrosonium ion donor S-nitrosylglutathione (SNOG) in OL cultures in the setting of cystine deprivation, which has been shown to cause intracellular glutathione depletion. Surprisingly, the presence of 200 microM SNOG completely protected OLs against the toxicity of cystine depletion. This protection appeared to be due to nitric oxide, because it could be blocked by hemoglobin and potentiated by inclusion of superoxide dismutase. We tested the effect of three additional NO* donors and found that protection was not seen with diethylamine NONOate, a donor with a half-life measured in minutes, but was seen with dipropylenetriamine NONOate and diethylaminetriamine NONOate, donors with half-lives measured in hours. This need for donors with longer half-lives for the protective effect suggested that NO* was required when intracellular thiol concentrations were falling, a process evolving over hours in medium depleted of cystine. These studies suggest a novel protective role for nitric oxide in oxidative stress injury and raise the possibility that intracerebral nitric oxide production might be a mechanism of defense against oxidative stress injury in OLs.

  6. Inducible nitric oxide synthase evoked nitric oxide counteracts capsaicin-induced airway smooth muscle contraction, but exacerbates plasma extravasation.

    PubMed

    Li, Ping-Chia; Shaw, Chen-Fu; Kuo, Tin-Fan; Chien, Chiang-Ting

    2005-04-18

    The contribution of nitric oxide (NO) to capsaicin-evoked airway responses was investigated in rats. The measurement of plasma NO level, airway dynamics, airway smooth muscle electromyogram, and plasma extravasation by India ink and Evans blue leakage technique was adapted. Capsaicin-evoked hypotension, bronchoconstriction, trachea plasma extravasation as well as increases in plasma NO level in a dose-dependent manner. L-732138 (NK1 receptor antagonist) or SR-48968 (NK2 receptor antagonist) pretreatment reduced capsaicin-enhanced hypotension, bronchoconstriction, plasma extravasation, and plasma NO level. N(G)-nitro-L-Arginine methyl ester (L-NAME, 10 mg/kg, i.v.), a non-selective NO synthase (NOS) inhibitor, or aminoguanidine (10 mg/kg, i.v.), a selective inducible NOS (iNOS) inhibitor, reduced capsaicin-induced increases in plasma NO level and protected against capsaicin-induced plasma extravasation, whereas L-arginine (150 mg/kg, i.v.), a NO precursor, enhanced capsaicin-evoked plasma NO level and plasma extravasation. L-Arginine pretreatment ameliorated capsaicin-induced bronchoconstriction, whereas L-NAME and aminoguanidine exaggerated capsaicin-induced bronchoconstriction. In summary, NK1 and NK2 receptors and iNOS play a role in NO formation and on capsaicin-induced bronchoconstriction and plasma extravasation. NO generated by iNOS counteracts tachykinin-mediated bronchoconstriction, but exacerbates tachykinin-mediated plasma extravasation.

  7. Investigation on oxidative stress of nitric oxide synthase interacting protein from Clonorchis sinensis.

    PubMed

    Bian, Meng; Xu, Qingxia; Xu, Yanquan; Li, Shan; Wang, Xiaoyun; Sheng, Jiahe; Wu, Zhongdao; Huang, Yan; Yu, Xinbing

    2016-01-01

    Numerous evidences indicate that excretory-secretory products (ESPs) from liver flukes trigger the generation of free radicals that are associated with the initial pathophysiological responses in host cells. In this study, we first constructed a Clonorchis sinensis (C. sinensis, Cs)-infected BALB/c mouse model and examined relative results respectively at 3, 5, 7, and 9 weeks postinfection (p.i.). Quantitative reverse transcription (RT)-PCR indicated that the transcriptional level of both endothelial nitric oxide synthase (eNOS) and superoxide dismutase (SOD) gradually decreased with lastingness of infection, while the transcriptional level of inducible NOS (iNOS) significantly increased. The level of malondialdehyde (MDA) in sera of infected mouse significantly increased versus the healthy control group. These results showed that the liver of C. sinensis-infected mouse was in a state with elevated levels of oxidation stress. Previously, C. sinensis NOS interacting protein coding gene (named CsNOSIP) has been isolated and recombinant CsNOSIP (rCsNOSIP) has been expressed in Escherichia coli, which has been confirmed to be a component present in CsESPs and confirmed to play important roles in immune regulation of the host. In the present paper, we investigated the effects of rCsNOSIP on the lipopolysaccharide (LPS)-induced activated RAW264.7, a murine macrophage cell line. We found that endotoxin-free rCsNOSIP significantly promoted the levels of nitric oxide (NO) and reactive oxygen species (ROS) after pretreated with rCsNOSIP, while the level of SOD decreased. Furthermore, rCsNOSIP could also increase the level of lipid peroxidation MDA. Taken together, these results suggested that CsNOSIP was a key molecule which was involved in the production of nitric oxide (NO) and its reactive intermediates, and played an important role in oxidative stress during C. sinensis infection.

  8. HBOC vasoactivity: interplay between nitric oxide scavenging and capacity to generate bioactive nitric oxide species.

    PubMed

    Cabrales, Pedro; Friedman, Joel M

    2013-06-10

    Despite many advances in blood substitute research, the development of materials that are effective in maintaining blood volume and oxygen delivery remains a priority for emergency care and trauma. Clinical trials on hemoglobin (Hb)-based oxygen carriers (HBOCs) have not provided information on the mechanism of toxicity, although all commercial formulations have safety concerns. Specifically, it is important to reconcile the different hypotheses of Hb toxicity, such as nitric oxide (NO) depletion and oxidative reactions, to provide a coherent molecular basis for designing a safe HBOC. HBOCs with different sizes often exhibit differences in the degree of HBOC-induced vasoactivity. This has been attributed to differences in the degree of NO scavenging and in the extent of Hb extravasation. Additionally, it is appears that Hb can undergo reactions that compensate for NO scavenging by generating bioactive forms of NO. Engineering modifications to enhance bioactive NO production can result in diminished oxygen delivery by virtue of increased oxygen affinity. This strategy can prevent the HBOC from fulfilling the intended goal on preserving oxygenation; however, the NO production effects will increase perfusion and oxygen transport. Hb modifications influence NO scavenging and the capacity of certain HBOCs to compensate for NO scavenging through nitrite-mediated reactions that generate bioactive NO. Based on the current understanding of these NO-related factors, possible synthetic strategies are presented that address how HBOC formulations can be prepared that: (i) effectively deliver oxygen, (ii) maintain tissue perfusion, and (iii) limit/reverse underlying inflammation within the vasculature.

  9. Photoinduced fluorescence activation and nitric oxide release with biocompatible polymer nanoparticles.

    PubMed

    Deniz, Erhan; Kandoth, Noufal; Fraix, Aurore; Cardile, Venera; Graziano, Adriana C E; Lo Furno, Debora; Gref, Ruxandra; Raymo, Françisco M; Sortino, Salvatore

    2012-12-03

    A viable strategy to encapsulate a fluorophore/photochrome dyad and a nitric oxide photodonor within supramolecular assemblies of a cyclodextrin-based polymer in water was developed. The two photoresponsive guests do not interact with each other within their supramolecular container and can be operated in parallel under optical control. Specifically, the dyad permits the reversible switching of fluorescence on a microsecond timescale for hundreds of cycles, and the photodonor enables the irreversible release of nitric oxide. Furthermore, these supramolecular assemblies cross the membrane of human melanoma cancer cells and transport their cargo in the cytosol. The fluorescence of one component allows the visualization of the labeled cells, and its switchable character could, in principle, be used to acquire super-resolution images, while the release of nitric oxide from the other induces significant cell mortality. Thus, our design logic for the construction of biocompatible nanoparticles with dual functionality might evolve into the realization of valuable photoresponsive probes for imaging and therapeutic applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Role of inducible nitric oxide synthase in transplant arteriosclerosis.

    PubMed

    Lee, P C; Shears, L L; Billiar, T R

    1999-12-01

    1. Transplant arteriosclerosis is a major obstacle to long-term allograft survival. Nitric oxide (NO) has been implicated as a mediator in the development of this disease. 2. We and others have shown that inducible nitric oxide synthase (iNOS) is up-regulated in allografts with transplant arteriosclerosis. Despite the acute cytotoxic effects produced by high levels of NO, a chronic increase in NO availability is protective against neointimal hyperplasia, mainly by suppressing the inflammatory cell recruitment and neointimal smooth muscle cell accumulation. 3. Currently, we have the technology to directly transfer the iNOS gene to allografts. We have demonstrated that this exciting strategy is feasible and therapeutic and may improve the long-term survival and function of allografts. Future challenges include optimizing the methods and the vectors of gene delivery.

  11. Mycobacterial glycolipids di-O-acylated trehalose and tri-O-acylated trehalose downregulate inducible nitric oxide synthase and nitric oxide production in macrophages.

    PubMed

    Espinosa-Cueto, Patricia; Escalera-Zamudio, Marina; Magallanes-Puebla, Alejandro; López-Marín, Luz María; Segura-Salinas, Erika; Mancilla, Raúl

    2015-06-23

    Tuberculosis (TB) remains a serious human health problem that affects millions of people in the world. Understanding the biology of Mycobacterium tuberculosis (Mtb) is essential for tackling this devastating disease. Mtb possesses a very complex cell envelope containing a variety of lipid components that participate in the establishment of the infection. We have previously demonstrated that di-O-acylated trehalose (DAT), a non-covalently linked cell wall glycolipid, inhibits the proliferation of T lymphocytes and the production of cytokines. In this work we show that DAT and the closely related tri-O-acylated trehalose (TAT) inhibits nitric oxide (NO) production and the inducible nitric oxide synthase (iNOS) expression in macrophages (MØ). These findings show that DAT and TAT are cell-wall located virulence factors that downregulate an important effector of the immune response against mycobacteria.

  12. Role of nitric oxide in pheromone-mediated intraspecific communication in mice.

    PubMed

    Agustín-Pavón, Carmen; Martínez-Ricós, Joana; Martínez-García, Fernando; Lanuza, Enrique

    2009-12-07

    Nitric oxide is known to take part in the control of sexual and agonistic behaviours. This is usually attributed to its role in neural transmission in the hypothalamus and other structures of the limbic system. However, socio-sexual behaviours in rodents are mainly directed by chemical signals detected by the vomeronasal system, and nitric oxide is abundant in key structures along the vomeronasal pathway. Thus, here we check whether pharmacological treatments interfering with nitrergic transmission could affect socio-sexual behaviour by impairing the processing of chemical signals. Treatment with an inhibitor of nitric oxide synthesis (Nomega-Nitro-l-arginine methyl ester hydrochloride, L-NAME, 100mg/kg) blocks the innate preference displayed by female mice for sexual pheromones contained in male-soiled bedding, with a lower dose of the drug (50mg/kg) having no effect. Animals treated with the high dose of L-NAME show no reduction of olfactory discrimination of male urine in a habituation-dishabituation test, thus suggesting that the effect of the drug on the preference for male pheromones is not due to an inability to detect male urine. Alternatively, it may result from an alteration in processing the reinforcing value of pheromones as sexual signals. These results add a new piece of evidence to our understanding of the neurochemistry of intraspecific chemical communication in rodents, and suggest that the role of nitric oxide in socio-sexual behaviours should be re-evaluated taking into account the involvement of this neuromodulator in the processing of chemical signals.

  13. Apple fruit responses following exposure to nitric oxide

    USDA-ARS?s Scientific Manuscript database

    Exogenous nitric oxide (.NO) applied as gas or generated from .NO releasing compounds has physiological activity in cut apple fruit tissues. Studies were conducted to characterize .NO production by whole fruit as well as to assess responses of whole fruit to exogenous .NO. .NO and ethylene product...

  14. Activation by nitric oxide of an oxidative-stress response that defends Escherichia coli against activated macrophages.

    PubMed Central

    Nunoshiba, T; deRojas-Walker, T; Wishnok, J S; Tannenbaum, S R; Demple, B

    1993-01-01

    Nitric oxide is a free radical (NO) formed biologically through the oxidation of L-arginine by nitric oxide synthases. NO is produced transiently in mammalian cells for intercellular signaling and in copious quantities to cause cytostasis and cytotoxicity. In the latter situation, NO is a deliberate cytotoxic product of activated macrophages, along with other reactive oxygen species such as hydrogen peroxide (H2O2) and superoxide (O2-). Escherichia coli has a complex set of responses to H2O2 and O2- that involves approximately 80 inducible proteins; we wondered whether these bacteria might induce analogous defenses against nitric oxide. We show here that a multigene system controlled by the redox-sensitive transcriptional regulator SoxR is activated by NO in vivo. This induction confers bacterial resistance to activated murine macrophages with kinetics that parallel the production of NO by these cells. Elimination of specific SoxR-regulated genes diminishes the resistance of these bacteria to the cytotoxic macrophages. The required functions include manganese-containing superoxide dismutase, endonuclease IV (a DNA-repair enzyme for oxidative damage), and micF, an antisense regulator of the outer membrane porin OmpF. These results demonstrate that SoxR is a sensor for cellular exposure to NO, and that the soxRS response system may contribute to bacterial virulence. PMID:8234347

  15. Nitric oxide induced by Indian ginseng root extract inhibits Infectious Bursal Disease virus in chicken embryo fibroblasts in vitro.

    PubMed

    Ganguly, Bhaskar; Umapathi, Vijaypillai; Rastogi, Sunil Kumar

    2018-01-01

    Infectious Bursal Disease is a severe viral disease of chicken responsible for serious economic losses to poultry farmers. The causative agent, Infectious Bursal Disease virus, is inhibited by nitric oxide. Root extract of the Indian ginseng, Withania somnifera , inhibits Infectious Bursal Disease virus in vitro. Also, Withania somnifera root extract is known to induce nitric oxide production in vitro. Therefore, the present study was undertaken to determine if the inhibitory activity of Withania somnifera against Infectious Bursal Disease virus was based on the production of nitric oxide. We show that besides other mechanisms, the inhibition of Infectious Bursal Disease virus by Withania somnifera involves the production of nitric oxide. Our results also highlight the paradoxical role of nitric oxide in the pathogenesis of Infectious Bursal Disease.

  16. Storm Time Variation of Radiative Cooling by Nitric Oxide as Observed by TIMED-SABER and GUVI

    NASA Astrophysics Data System (ADS)

    Bharti, Gaurav; Sunil Krishna, M. V.; Bag, T.; Jain, Puneet

    2018-02-01

    The variation of O/N2 (reference to N2 column density 1017 cm-2) and nitric oxide radiative emission flux exiting the thermosphere have been studied over the Northern Hemisphere during the superstorm event of 7-12 November 2004. The data have been obtained from Global Ultraviolet Imager (GUVI) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) on board the National Aeronautics and Space Administration (NASA)'s Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (TIMED) satellite. The NO radiative flux is observed to show an anti-correlation with O/N2 on a global scale. Both NO radiative flux and O/N2 ratio show equatorward motion with maximum penetration in western longitude sectors. A local variation of O, O2, and N2 densities have been calculated using NRLMSISE-00 model over a midlatitude location (55°N,180°E). On a local scale, model calculated O/O2 and O/N2 ratios are found to follow the observations made by GUVI. The collisional excitation of NO with atomic oxygen is the most dominant process for the total cooling rate. The SABER-retrieved NO cooling rate (CR) at a local site suggests an enhancement during the storm period with the peak emission rate closely correlated to the progression of the storm. The peak emission altitude of NO CR moves upward during the main phase of the storm. The NO abundance has been calculated by using cooling rate and Nitric Oxide Empirical Model (NOEM) model. Both these suggest a vary large (3-15 times) increase in NO density during the storm, which is required to account the changes in NO radiative flux. A similar kind of enhancement in NO abundance is also noticed in Student Nitric Oxide Explorer observations during intense geomagnetic storms.

  17. Nitric oxide rescues thalidomide mediated teratogenicity

    PubMed Central

    Siamwala, Jamila H.; Veeriah, Vimal; Priya, M. Krishna; Rajendran, Saranya; Saran, Uttara; Sinha, Swaraj; Nagarajan, Shunmugam; T, Pradeep; Chatterjee, Suvro

    2012-01-01

    Thalidomide, a sedative drug given to pregnant women, unfortunately caused limb deformities in thousands of babies. Recently the drug was revived because of its therapeutic potential; however the search is still ongoing for an antidote against thalidomide induced limb deformities. In the current study we found that nitric oxide (NO) rescues thalidomide affected chick (Gallus gallus) and zebrafish (Danio rerio) embryos. This study confirms that NO reduced the number of thalidomide mediated limb deformities by 94% and 80% in chick and zebrafish embryos respectively. NO prevents limb deformities by promoting angiogenesis, reducing oxidative stress and inactivating caspase-3 dependent apoptosis. We conclude that NO secures angiogenesis in the thalidomide treated embryos to protect them from deformities. PMID:22997553

  18. Prevention of the pulmonary vasoconstrictor effects of HBOC-201 in awake lambs by continuously breathing nitric oxide.

    PubMed

    Yu, Binglan; Volpato, Gian Paolo; Chang, Keqin; Bloch, Kenneth D; Zapol, Warren M

    2009-01-01

    Hemoglobin-based oxygen-carrying solutions (HBOC) provide emergency alternatives to blood transfusion to carry oxygen to tissues without the risks of disease transmission or transfusion reaction. Two primary concerns hampering the clinical acceptance of acellular HBOC are the occurrence of systemic and pulmonary vasoconstriction and the maintenance of the heme-iron in the reduced state (Fe2+). We recently demonstrated that pretreatment with inhaled nitric oxide prevents the systemic hypertension induced by HBOC-201 (polymerized bovine hemoglobin) infusion in awake mice and sheep without causing methemoglobinemia. However, the impact of HBOC-201 infusion with or without inhaled nitric oxide on pulmonary vascular tone has not yet been examined. The pulmonary and systemic hemodynamic effects of breathing nitric oxide both before and after the administration of HBOC-201 were determined in healthy, awake lambs. Intravenous administration of HBOC-201 (12 ml/kg) induced prolonged systemic and pulmonary vasoconstriction. Pretreatment with inhaled nitric oxide (80 parts per million [ppm] for 1 h) prevented the HBOC-201--induced increase in mean arterial pressure but not the increase of pulmonary arterial pressure, systemic vascular resistance, or pulmonary vascular resistance. Pretreatment with inhaled nitric oxide (80 ppm for 1 h) followed by breathing a lower concentration of nitric oxide (5 ppm) during and after HBOC-201 infusion prevented systemic and pulmonary vasoconstriction without increasing methemoglobin levels. These findings demonstrate that pretreatment with inhaled nitric oxide followed by breathing a lower concentration of the gas during and after administration of HBOC-201 may enable administration of an acellular hemoglobin substitute without vasoconstriction while preserving its oxygen-carrying capacity.

  19. [Studies on the oxidation reaction of octanol-2 with nitric acid by infrared spectroscopy].

    PubMed

    Zhang, G; Zhao, G; Wang, Y; Zhang, Q; Zhang, S; Lu, F

    1998-04-01

    In this paper, the reaction process of oxidation of octanol-2 with nitric acid has been studied by IR spectroscopy. It is found that the main components of non-sapoifiable matter are different in different oxidation degrees. The relation between oxidation products and the amount of nitric acid are investigated,the reaction mechanism has also been studied. Experimental results show that the oxidation process of octanol-2 is as follows: first, octanol-2 is oxidated to octanone-2, or to nitrate, nitrite and nitrile copmpounds, then these compounds are reoxidated to caproic acid in the meantime some by-products, such as valeric, enanthic acids are also found in oxidated products.

  20. Apigenin attenuates diabetes-associated cognitive decline in rats via suppressing oxidative stress and nitric oxide synthase pathway

    PubMed Central

    Mao, Xiao-Yuan; Yu, Jing; Liu, Zhao-Qian; Zhou, Hong-Hao

    2015-01-01

    Our present investigation aimed to determine the neuroprotection of apigenin (API) against diabetes-associated cognitive decline (DACD) a diabetic rat model and exploring its potential mechanism. Diabetic rat model was induced by intraperitoneal injection of streptozotocin. All experiment animals treated with vehicle or API by doses of 10, 20 and 40 mg/kg for seven weeks. Firstly, the body weight and blood glucose levels were detected. We used Morris water maze test to evaluate learning and memory function. The oxidative indicators (malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH)), cNOS, iNOS, caspase-3 and caspase-9 were measured in cerebral cortex and hippocampus using corresponding commercial kits. API can increase body weight, reduce the blood glucose levels, and improve the cognitive function in rats induced by diabetes. API decrease the MDA content, and increase SOD activity and GSH level of diabetic animals in the cerebral cortex and hippocampus of diabetic rats. Meanwhile, constitutive nitric oxide synthase (cNOS), inducible nitric oxide synthase (iNOS), caspase-3/9 were markedly exhibited in the cerebral cortex and hippocampus of diabetic rats. In summary, our current work discloses that API attenuates DACD in rats via suppressing oxidative stress, nitric oxide and apoptotic cascades synthase pathway. PMID:26629041

  1. Ferulic acid and its water-soluble derivatives inhibit nitric oxide production and inducible nitric oxide synthase expression in rat primary astrocytes.

    PubMed

    Kikugawa, Masaki; Ida, Tomoaki; Ihara, Hideshi; Sakamoto, Tatsuji

    2017-08-01

    We recently reported that two water-soluble derivatives of ferulic acid (1-feruloyl glycerol, 1-feruloyl diglycerol) previously developed by our group exhibited protective effects against amyloid-β-induced neurodegeneration in vitro and in vivo. In the current study, we aimed to further understand this process by examining the derivatives' ability to suppress abnormal activation of astrocytes, the key event of neurodegeneration. We investigated the effects of ferulic acid (FA) derivatives on nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in rat primary astrocytes. The results showed that these compounds inhibited NO production and iNOS expression in a concentration-dependent manner and that the mechanism underlying these effects was the suppression of the nuclear factor-κB pathway. This evidence suggests that FA and its derivatives may be effective neuroprotective agents and could be useful in the treatment of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease.

  2. Nitric Oxide Decreases Acute Kidney Injury and Stage 3 Chronic Kidney Disease after Cardiac Surgery.

    PubMed

    Lei, Chong; Berra, Lorenzo; Rezoagli, Emanuele; Yu, Binglan; Dong, Hailong; Yu, Shiqiang; Hou, Lihong; Chen, Min; Chen, Wensheng; Wang, Hongbing; Zheng, Qijun; Shen, Jie; Jin, Zhenxiao; Chen, Tao; Zhao, Rong; Christie, Emily; Sabbisetti, Venkata S; Nordio, Francesco; Bonventre, Joseph V; Xiong, Lize; Zapol, Warren M

    2018-06-22

    No medical intervention has been identified that decreases acute kidney injury and improves renal outcome at 1-year after cardiac surgery. To determine whether administration of nitric oxide reduces the incidence of post-operative acute kidney injury and improves long-term kidney outcomes after multiple cardiac valve replacement requiring prolonged cardiopulmonary bypass. 244 Patients undergoing elective, multiple valve replacement surgery mostly due to rheumatic fever were randomized to receive either nitric oxide (treatment) or nitrogen (control). Nitric oxide and nitrogen were administered via the gas exchanger during cardiopulmonary bypass and by inhalation for 24h post-operatively. Primary outcome: Oxidation of ferrous plasma oxyhemoglobin to ferric methemoglobin was associated to a reduced post-operative acute kidney injury from 64% (control group) to 50% (nitric oxide) (RR, 95% CI; 0.78, 0.62-0.97;P=0.014). At 90-days, transition to stage 3 chronic kidney disease was reduced from 33% in the controls to 21% in the treatment group (RR, 95%CI; 0.64, 0.41 - 0.99;P=0.024); and at 1-year, from 31% to 18% (RR, 95% CI; 0.59, 0.36 - 0.96;P=0.017). Nitric oxide treatment reduced the overall major adverse kidney events at 30-days (RR, 95% CI; 0.40, 0.18 - 0.92;P=0.016, 90-days (RR, 95% CI; 0.40, 0.17 - 0.92;P=0.015 and 1-year (RR, 95% CI; 0.47, 0.20-1.10;P=0.041). In patients undergoing multiple valve replacement and prolonged cardiopulmonary bypass, administration of nitric oxide decreased the incidence of acute kidney injury, transition to stage 3 chronic kidney disease and major adverse kidney events at 30-days, 90-days, and 1-year. Clinical trial registered with ClinicalTrials.gov (NCT01802619).

  3. Demonstration of nitric oxide synthase activity in crustacean hemocytes and anti-microbial activity of hemocyte-derived nitric oxide.

    PubMed

    Yeh, Feng-Ching; Wu, Su-Hua; Lai, Chi-Yung; Lee, Chi-Ying

    2006-05-01

    We determined the biochemical characteristics of nitric oxide synthase (NOS) in hemocytes of the crayfish Procambarus clarkii and investigated the roles of hemocyte-derived NO in host defense. Biochemical analysis indicated the presence of a Ca2+ -independent NOS activity, which was elevated by lipopolysaccharide (LPS) treatment. When bacteria (Staphylococcus aureus) and hemocytes were co-incubated, adhesion of bacteria to hemocytes was observed. NO donor sodium nitroprusside (SNP) significantly increased the numbers of hemocytes to which bacteria adhered. Similarly, LPS elicited bacterial adhesion and the LPS-induced adhesion was prevented by NOS inhibitor NG-monomethyl-L-arginine (L-NMMA). Finally, plate count assay demonstrated that addition of LPS to the hemocytes/bacteria co-incubation resulted in a significant decrease in bacterial colony forming unit (CFU), and that L-NMMA reversed the decreasing effect of LPS on CFU. The combined results demonstrate the presence of a Ca2+ -independent LPS-inducible NOS activity in crayfish hemocytes and suggest that hemocyte-derived NO is involved in promoting bacterial adhesion to hemocytes and enhancing bactericidal activity of hemocytes.

  4. Contemporary approaches to modulating the nitric oxide-cGMP pathway in cardiovascular disease

    PubMed Central

    Kraehling, Jan R.; Sessa, William C.

    2017-01-01

    Endothelial cells lining the vessel wall control important aspects of vascular homeostasis. In particular, the production of endothelium-derived nitric oxide and activation of soluble guanylate cyclase promotes endothelial quiescence and governs vasomotor function and proportional remodeling of blood vessels. Here, we discuss novel approaches to improve endothelial nitric oxide generation and preserve its bioavailability. We also discuss therapeutic opportunities aimed at activation of soluble guanylate cyclase for multiple cardiovascular indications. PMID:28360348

  5. Biogenic nitric oxide from wastewater land application

    NASA Astrophysics Data System (ADS)

    Rammon, Desirée A.; Peirce, J. Jeffrey

    The importance of municipal wastewater land application to nitric oxide production and transport in soil was studied through the formulation and conduct of a comprehensive laboratory testing protocol. Nitric oxide (NO) is a precursor in the formation of tropospheric ozone which can directly impact public health and the environment. It is the uncertainty in the NO budget, and its relation to O 3, that motivates the need for measurements and modeling of NO flux from soils. Wastewater-amended soil is potentially one important component of that budget. NO emissions reported here were measured from: a well-characterized unamended soil, water-amended soil, and wastewater-amended soil in the laboratory in a dynamic test chamber. Laboratory results indicate that NO emissions from the selected sandy loam soil ranged from 0.3 to 0.4 ng N m -2 s -1 per cm 2 of unamended soil, while water-amended soil emissions ranged from 0.4 to 0.7 ng N m -2 s -1 per cm 2. NO flux from wastewater-amended soil ranged from 1.0 to 1.2 ng N m -2 s -1 per cm 2 of applied soil.

  6. Modulation of endothelial nitric oxide by plant-derived products.

    PubMed

    Schmitt, Christoph A; Dirsch, Verena M

    2009-09-01

    Nitric oxide (NO), produced by endothelial nitric oxide synthase (eNOS), is recognised as a central anti-inflammatory and anti-atherogenic principle in the vasculature. Decreased availability of NO in the vasculature promotes the progression of cardiovascular diseases. Epidemiological and clinical studies have demonstrated that a growing list of natural products, as components of the daily diet or phytomedical preparations, may improve vascular function by enhancing NO bioavailability. In this article we first outline common pathways modulating endothelial NO production or bioavailability to provide a basis for subsequent mechanistic discussions. Then we comprehensively review natural products and plant extracts known to positively influence eNOS activity and/or endothelial function in vitro or in vivo. We will discuss red wine, highlighting polyphenols, oligomeric procyanidins (OPC) and resveratrol as modulators of endothelial NO production. Other dietary products and their active components known to activate eNOS include cocoa (OPC and its monomer (-)-epicatechin), pomegranates (polyphenols), black and green tea (flavanoids, especially epigallocatechin gallate), olive oil (oleic acid and polyphenols), soy (genistein), and quercetin, one of the most abundant flavonoids in plants. In addition, phytomedical preparations made from ginkgo, hawthorn and ginseng, as well as formulations used in traditional Chinese Medicine, have been shown to affect endothelial NO production. Recurring phytochemical patterns among active fractions and purified compounds are discussed. In summary, there is increasing evidence that several single natural products and plant extracts influence endothelial NO production. Identification of such compounds and characterisation of their cellular actions may increase our knowledge of the regulation of endothelial NO production and could provide valuable clues for the prevention or treatment of cardiovascular diseases.

  7. The reduction of nitric oxide by ammonia over polycrystalline platinum model catalysts in the presence of oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katona, T.; Guczi, L.; Somorjai, G.A.

    1992-06-01

    The reaction system of nitric oxide, ammonia, and oxygen was studied using batch-mode measurements in partial pressure ranges of 65-1000 Pa (0.5-7.6 Torr) on polycrystalline Pt foils over the temperature range 423-598 K. Under these conditions the oxidation of nitric oxide was not detectable. The ammonia oxidation reaction, using dioxygen, occurred in the temperature range 423-493 K, producing nitrogen and water as the only products. The activation energy of the nitrogen formation was found to be 86 kJ/mol. Above this temperature range, flow-mode measurements showed the formation of both nitrous oxide and nitric oxide. The reaction rate between ammonia andmore » oxygen was greatly decreased (about a factor of 10) by nitric oxide, while the reaction rate between nitric oxide and ammonia was accelerated (about 10-fold) due to the presence of oxygen. Nitric oxide reduction by ammonia in the presence of oxygen occurred in the temperature range 423-598 K. The products of the reaction were nitrogen, oxygen nitrous oxide, and water. The Arrhenius plot of the reaction showed a break near 523 K. Below this temperature the activation energy of the reaction was 13 kJ/mol, and in the higher-temperature range it was 62 kJ/mol. At 473 K, the N[sub 2]/N[sub 2]O ratio was about 0.6 and O[sub 2] formation was also monitored. At 573 K, the N[sub 2]N[sub 2]O ratio was approximately 2 and oxygen was consumed in the course of the reaction as well.« less

  8. Biological nitric oxide signalling: chemistry and terminology

    PubMed Central

    Heinrich, Tassiele A; da Silva, Roberto S; Miranda, Katrina M; Switzer, Christopher H; Wink, David A; Fukuto, Jon M

    2013-01-01

    Biological nitrogen oxide signalling and stress is an area of extreme clinical, pharmacological, toxicological, biochemical and chemical research interest. The utility of nitric oxide and derived species as signalling agents is due to their novel and vast chemical interactions with a variety of biological targets. Herein, the chemistry associated with the interaction of the biologically relevant nitrogen oxide species with fundamental biochemical targets is discussed. Specifically, the chemical interactions of nitrogen oxides with nucleophiles (e.g. thiols), metals (e.g. hemeproteins) and paramagnetic species (e.g. dioxygen and superoxide) are addressed. Importantly, the terms associated with the mechanisms by which NO (and derived species) react with their respective biological targets have been defined by numerous past chemical studies. Thus, in order to assist researchers in referring to chemical processes associated with nitrogen oxide biology, the vernacular associated with these chemical interactions is addressed. PMID:23617570

  9. The light-induced reduction of horizontal cell receptive field size in the goldfish retina involves nitric oxide.

    PubMed

    Daniels, Bryan A; Baldridge, William H

    2011-03-01

    Horizontal cells of the vertebrate retina have large receptive fields as a result of extensive gap junction coupling. Increased ambient illumination reduces horizontal cell receptive field size. Using the isolated goldfish retina, we have assessed the contribution of nitric oxide to the light-dependent reduction of horizontal cell receptive field size. Horizontal cell receptive field size was assessed by comparing the responses to centered spot and annulus stimuli and from the responses to translated slit stimuli. A period of steady illumination decreased the receptive field size of horizontal cells, as did treatment with the nitric oxide donor (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (100 μM). Blocking the endogenous production of nitric oxide with the nitric oxide synthase inhibitor, N(G)-nitro-L-arginine methyl ester (1 mM), decreased the light-induced reduction of horizontal cell receptive field size. These findings suggest that nitric oxide is involved in light-induced reduction of horizontal cell receptive field size. Copyright © Cambridge University Press, 2011

  10. Exploring the Role of CYP3A4 Mediated Drug Metabolism in the Pharmacological Modulation of Nitric Oxide Production

    PubMed Central

    Pérez-del Palacio, José; Díaz, Caridad; Vergara, Noemí; Algieri, Francesca; Rodríguez-Nogales, Alba; de Pedro, Nuria; Rodríguez-Cabezas, M. Elena; Genilloud, Olga; Gálvez, Julio; Vicente, Francisca

    2017-01-01

    Nitric-oxide synthase, the enzyme responsible for mammalian nitric oxide generation, and cytochrome P450, the major enzymes involved in drug metabolism, share striking similarities. Therefore, it makes sense that cytochrome P450 drug mediated biotransformations might play an important role in the pharmacological modulation of nitric oxide synthase. In this work, we have undertaken an integrated in vitro assessment of the hepatic metabolism and nitric oxide modulation of previously described dual inhibitors (imidazoles and macrolides) of these enzymes in order assess the implication of CYP450 activities over production of nitric oxide. In vitro systems based in human liver microsomes and activated mouse macrophages were developed for these purposes. Additionally in vitro production the hepatic metabolites of dual inhibitor, roxithromycin, was investigated achieving the identification and isolation of main hepatic biotransformation products. Our results suggested that for some macrolide compounds, the cytochrome P450 3A4 derived drug metabolites have an important effect on nitric oxide production and might critically contribute to the pharmacological immunomodulatory activity observed. PMID:28446877

  11. Nitric oxide synthase-I containing cortical interneurons co-express antioxidative enzymes and anti-apoptotic Bcl-2 following focal ischemia: evidence for direct and indirect mechanisms towards their resistance to neuropathology.

    PubMed

    Bidmon, H J; Emde, B; Kowalski, T; Schmitt, M; Mayer, B; Kato, K; Asayama, K; Witte, O W; Zilles, K

    2001-09-01

    Neuronal nitric oxide-I is constitutively expressed in approximately 2% of cortical interneurons and is co-localized with gamma-amino butric acid, somatostatin or neuropeptide Y. These interneurons additionally express high amounts of glutamate receptors which mediate the glutamate-induced hyperexcitation following cerebral injury, under these conditions nitric oxide production increases contributing to a potentiation of oxidative stress. However, perilesional nitric oxide synthase-I containing neurons are known to be resistant to ischemic and excitotoxic injury. In vitro studies show that nitrosonium and nitroxyl ions inactivate N-methyl-D-aspartate receptors, resulting in neuroprotection. The question remains of how these cells are protected against their own high intracellular nitric oxide production after activation. In this study, we investigated immunocytochemically nitric oxide synthase-I containing cortical neurons in rats after unilateral, cortical photothrombosis. In this model of focal ischemia, perilesional, constitutively nitric oxide synthase-I containing neurons survived and co-expressed antioxidative enzymes, such as manganese- and copper-zinc-dependent superoxide dismutases, heme oxygenase-2 and cytosolic glutathione peroxidase. This enhanced antioxidant expression was accompanied by a strong perinuclear presence of the antiapoptotic Bcl-2 protein. No colocalization was detectable with upregulated heme oxygenase-1 in glia and the superoxide and prostaglandin G(2)-producing cyclooxygenase-2 in neurons. These results suggest that nitric oxide synthase-I containing interneurons are protected against intracellular oxidative damage and apoptosis by Bcl-2 and several potent antioxidative enzymes. Since nitric oxide synthase-I positive neurons do not express superoxide-producing enzymes such as cyclooxygenase-1, xanthine oxidase and cyclooxygenase-2 in response to injury, this may additionally contribute to their resistance by reducing their internal

  12. Nitric oxide in plants: an assessment of the current state of knowledge

    PubMed Central

    Mur, Luis A. J.; Mandon, Julien; Persijn, Stefan; Cristescu, Simona M.; Moshkov, Igor E.; Novikova, Galina V.; Hall, Michael A.; Harren, Frans J. M.; Hebelstrup, Kim H.; Gupta, Kapuganti J.

    2012-01-01

    Background and aims After a series of seminal works during the last decade of the 20th century, nitric oxide (NO) is now firmly placed in the pantheon of plant signals. Nitric oxide acts in plant–microbe interactions, responses to abiotic stress, stomatal regulation and a range of developmental processes. By considering the recent advances in plant NO biology, this review will highlight certain key aspects that require further attention. Scope and conclusions The following questions will be considered. While cytosolic nitrate reductase is an important source of NO, the contributions of other mechanisms, including a poorly defined arginine oxidizing activity, need to be characterized at the molecular level. Other oxidative pathways utilizing polyamine and hydroxylamine also need further attention. Nitric oxide action is dependent on its concentration and spatial generation patterns. However, no single technology currently available is able to provide accurate in planta measurements of spatio-temporal patterns of NO production. It is also the case that pharmaceutical NO donors are used in studies, sometimes with little consideration of the kinetics of NO production. We here include in planta assessments of NO production from diethylamine nitric oxide, S-nitrosoglutathione and sodium nitroprusside following infiltration of tobacco leaves, which could aid workers in their experiments. Further, based on current data it is difficult to define a bespoke plant NO signalling pathway, but rather NO appears to act as a modifier of other signalling pathways. Thus, early reports that NO signalling involves cGMP—as in animal systems—require revisiting. Finally, as plants are exposed to NO from a number of external sources, investigations into the control of NO scavenging by such as non-symbiotic haemoglobins and other sinks for NO should feature more highly. By crystallizing these questions the authors encourage their resolution through the concerted efforts of the plant

  13. The nitric oxide pathway and possible therapeutic options in pre-eclampsia.

    PubMed

    Johal, Tamanrit; Lees, Christoph C; Everett, Thomas R; Wilkinson, Ian B

    2014-08-01

    Pre-eclampsia is a serious multisystem disorder with diverse clinical manifestations. Although not causal, endothelial dysfunction and reduced nitric oxide bioavailability are likely to play an important role in the maternal and fetal pathophysiology of this condition. Lack of treatment modalities that can target the underlying pathophysiological changes and reverse the endothelial dysfunction frequently leads to iatrogenic preterm delivery of the fetus, causing neonatal morbidity and mortality, and the condition itself is associated with short- and longer term maternal morbidity and mortality. Drugs that target various components of the nitric oxide-soluble guanylyl cyclase pathway can help to increase NO bioavailability. The purpose of this review is to outline the current status of clinical research involving these therapeutic modalities in the context of pre-eclampsia, with the focus being on the following: nitric oxide donors, including organic nitrates and S-nitrosothiols; l-arginine, the endogenous precursor of NO; inhibitors of cyclic guanosine 3',5'-monophosphate breakdown, including sildenafil; and other novel inhibitors of NO donor metabolism. The advantages and limitations of each modality are outlined, and scope for development into established therapeutic options for pre-eclampsia is explored. © 2013 The British Pharmacological Society.

  14. In vitro inducible nitric oxide synthesis inhibitory active constituents from Fraxinus rhynchophylla.

    PubMed

    Kim, N Y; Pae, H O; Ko, Y S; Yoo, J C; Choi, B M; Jun, C D; Chung, H T; Inagaki, M; Higuchi, R; Kim, Y C

    1999-10-01

    Bioassay-guided fractionation of an H2O extract of the barks of Fraxinus rhynchophylla has furnished two inducible nitric oxide synthase (iNOS) inhibitory compounds, ferulaldehyde (1) and scopoletin (3) together with a coumarin, fraxidin (2). Compounds 1 and 3 showed inhibition of nitric oxide (NO) synthesis in a dose-dependent manner by murine macrophage-like RAW 264.7 cells stimulated with interferon-gamma (IFN-gamma) plus lipopolysaccharide (LPS). The inhibition of NO synthesis of 1 was reflected in the decreased amount of iNOS protein, as determined by Western blotting.

  15. Enhancing Endogenous Nitric Oxide by Whole Body Periodic Acceleration Elicits Neuroprotective Effects in Dystrophic Neurons.

    PubMed

    Lopez, Jose R; Uryash, A; Kolster, J; Estève, E; Zhang, R; Adams, J A

    2018-03-26

    We have previously shown that inadequate dystrophin in cortical neurons in mdx mice is associated with age-dependent dyshomeostasis of resting intracellular Ca 2+ ([Ca 2+ ] i ) and Na + ([Na + ] i ), elevated reactive oxygen species (ROS) production, increase in neuronal damage and cognitive deficit. In this study, we assessed the potential therapeutic properties of the whole body periodic acceleration (pGz) to ameliorate the pathology observed in cortical neurons from the mdx mouse. pGz adds small pulses to the circulation, thereby increasing pulsatile shear stress to the vascular endothelium, which in turn increases production of nitric oxide (NO). We found [Ca 2+ ] i and [Na + ] i overload along with reactive oxygen species (ROS) overproduction in mdx neurons and cognitive dysfunction. mdx neurons showed increased activity of superoxide dismutase, glutathione peroxidase, malondialdehyde, and calpain as well as decreased cell viability. mdx neurons were more susceptible to hypoxia-reoxygenation injury than WT. pGz ameliorated the [Ca 2+ ] i , and [Na + ] i elevation and ROS overproduction and further increased the activities of superoxide dismutase, glutathione peroxidase and reduced the malondialdehyde and calpains. pGz diminished cell damage and elevated [Ca 2+ ] i during hypoxia-reoxygenation and improved cognitive function in mdx mice. Moreover, pGz upregulated the expression of utrophin, dystroglycan-β and CAPON, constitutive nitric oxide synthases, prosaposin, brain-derived neurotrophic, and glial cell line-derived neurotrophic factors. The present study demonstrated that pGz is an effective therapeutic approach to improve mdx neurons function, including cognitive functions.

  16. A novel CARD containing splice-isoform of CIITA regulates nitric oxide synthesis in dendritic cells.

    PubMed

    Huang, Dachuan; Lim, Sylvia; Chua, Rong Yuan Ray; Shi, Hong; Ng, Mah Lee; Wong, Siew Heng

    2010-03-01

    MHC class II expression is controlled mainly at transcriptional level by class II transactivator (CIITA), which is a non-DNA binding coactivator and serves as a master control factor for MHC class II genes expression. Here, we describe the function of a novel splice-isoform of CIITA, DC-expressed caspase inhibitory isoform of CIITA (or DC-CASPIC), and we show that the expression of DCCASPIC in DC is upregulated upon lipopolysaccharides (LPS) induction. DC-CASPIC localizes to mitochondria, and protein-protein interaction study demonstrates that DC-CASPIC interacts with caspases and inhibits its activity in DC. Consistently, DC-CASPIC suppresses caspases-induced degradation of nitric oxide synthase-2 (NOS2) and subsequently promotes the synthesis of nitric oxide (NO). NO is an essential regulatory molecule that modulates the capability of DC in stimulating T cell proliferation/activation in vitro; hence, overexpression of DC-CASPIC in DC enhances this stimulation. Collectively, our findings reveal that DC-CASPIC is a key molecule that regulates caspases activity and NO synthesis in DC.

  17. Investigating the sensitivity of nitric oxide infrared emissions to electron impact

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Brunger, M. J.; Allan, M.

    2008-05-01

    Integral cross sections for low energy electron excitation of the 0→1, 0→2 and 0→3 vibrational modes in nitric oxide have quite recently become available [Trevisan et al. PRA 71, 052714 (2005)]. In this study we adapt our recent work [Campbell and Brunger GRL, in press (2007)], to look at the effect of these new cross sections on the production of nitric oxide infrared radiation. Predictions from our model are compared with measurements from Espy et al. [Planet. Space Sci. 36, 543 (1988)], with the inclusion of the new cross sections improving the agreement of the shape of the spectrum with the measurements.

  18. HBOC Vasoactivity: Interplay Between Nitric Oxide Scavenging and Capacity to Generate Bioactive Nitric Oxide Species

    PubMed Central

    Friedman, Joel M.

    2013-01-01

    Abstract Significance: Despite many advances in blood substitute research, the development of materials that are effective in maintaining blood volume and oxygen delivery remains a priority for emergency care and trauma. Clinical trials on hemoglobin (Hb)-based oxygen carriers (HBOCs) have not provided information on the mechanism of toxicity, although all commercial formulations have safety concerns. Specifically, it is important to reconcile the different hypotheses of Hb toxicity, such as nitric oxide (NO) depletion and oxidative reactions, to provide a coherent molecular basis for designing a safe HBOC. Recent Advances: HBOCs with different sizes often exhibit differences in the degree of HBOC-induced vasoactivity. This has been attributed to differences in the degree of NO scavenging and in the extent of Hb extravasation. Additionally, it is appears that Hb can undergo reactions that compensate for NO scavenging by generating bioactive forms of NO. Critical Issues: Engineering modifications to enhance bioactive NO production can result in diminished oxygen delivery by virtue of increased oxygen affinity. This strategy can prevent the HBOC from fulfilling the intended goal on preserving oxygenation; however, the NO production effects will increase perfusion and oxygen transport. Future Directions: Hb modifications influence NO scavenging and the capacity of certain HBOCs to compensate for NO scavenging through nitrite-mediated reactions that generate bioactive NO. Based on the current understanding of these NO-related factors, possible synthetic strategies are presented that address how HBOC formulations can be prepared that: (i) effectively deliver oxygen, (ii) maintain tissue perfusion, and (iii) limit/reverse underlying inflammation within the vasculature. Antioxid. Redox Signal. 18, 2284–2297. PMID:23249305

  19. Contemporary Approaches to Modulating the Nitric Oxide-cGMP Pathway in Cardiovascular Disease.

    PubMed

    Kraehling, Jan R; Sessa, William C

    2017-03-31

    Endothelial cells lining the vessel wall control important aspects of vascular homeostasis. In particular, the production of endothelium-derived nitric oxide and activation of soluble guanylate cyclase promotes endothelial quiescence and governs vasomotor function and proportional remodeling of blood vessels. Here, we discuss novel approaches to improve endothelial nitric oxide generation and preserve its bioavailability. We also discuss therapeutic opportunities aimed at activation of soluble guanylate cyclase for multiple cardiovascular indications. © 2017 American Heart Association, Inc.

  20. Involvement of Nitric Oxide in a Rat Model of Carrageenin-Induced Pleurisy

    PubMed Central

    Iwata, Masahiro; Suzuki, Shigeyuki; Asai, Yuji; Inoue, Takayuki; Takagi, Kenji

    2010-01-01

    Some evidence indicates that nitric oxide (NO) contributes to inflammation, while other evidence supports the opposite conclusion. To clarify the role of NO in inflammation, we studied carrageenin-induced pleurisy in rats treated with an NO donor (NOC-18), a substrate for NO formation (L-arginine), and/or an NO synthase inhibitor (S-(2-aminoethyl) isothiourea or NG-nitro-L-arginine). We assessed inflammatory cell migration, nitrite/nitrate values, lipid peroxidation and pro-inflammatory mediators. NOC-18 and L-arginine reduced the migration of inflammatory cells and edema, lowered oxidative stress, and normalized antioxidant enzyme activities. NO synthase inhibitors increased the exudate formation and inflammatory cell number, contributed to oxidative stress, induced an oxidant/antioxidant imbalance by maintaining high O2 −, and enhanced the production of pro-inflammatory mediators. L-arginine and NOC-18 reversed the proinflammatory effects of NO synthase inhibitors, perhaps by reducing the expression of adhesion molecules on endothelial cells. Thus, our results indicate that NO is involved in blunting—not enhancing—the inflammatory response. PMID:20592757

  1. Understanding the Latitude Structure of Nitric Oxide in the Mesosphere and Lower Thermosphere

    NASA Technical Reports Server (NTRS)

    Fuller-Rowell, T.J.

    1997-01-01

    The goal of the proposed work was to understand the latitude structure of nitric oxide in the mesosphere and lower thermosphere. The problem was portrayed by a clear difference between predictions of the nitric oxide distribution from chemical/dynamical models and data from observations made by the Solar Mesosphere Explorer (SMEE) in the early to mid eighties. The data exhibits a flat latitude structure of NO, the models tend to produce at equatorial maximum. The first task was to use the UARS-HALOE data to confirm the SME observations. The purpose of this first phase was to verify the UARS-NO structure is consistent with the SME data. The next task was to determine the cause of the discrepancy between modeled and observed nitric oxide latitude structure. The result from the final phase indicated that the latitude structure in the Photo-Electron (PE) production rate was the most important.

  2. Role of nitric oxide in methamphetamine neurotoxicity: protection by 7-nitroindazole, an inhibitor of neuronal nitric oxide synthase.

    PubMed

    Di Monte, D A; Royland, J E; Jakowec, M W; Langston, J W

    1996-12-01

    The role of nitric oxide (NO.) in the neurotoxic effects of methamphetamine (METH) was evaluated using 7-nitroindazole (7-NI), a potent inhibitor of neuronal nitric oxide synthase. Treatment of mice with 7-NI (50 mg/kg) almost completely counteracted the loss of dopamine, 3,4-dihydroxyphenylacetic acid, and tyrosine hydroxylase immunoreactivity observed 5 days after four injections of 10 or 7.5 mg/kg METH. With the higher dose of METH, this protection at 5 days occurred despite the fact that combined administration of METH and 7-NI significantly increased lethality and exacerbated METH-induced dopamine release (as indicated by a greater dopamine depletion at 90 min and 1 day). Combined treatment with 4 x 10 mg/kg METH and 7-NI also slightly increased the body temperature of mice as compared with METH alone. Thus, the neuroprotective effects of 7-NI are independent from lethality, are not likely to be related to a reduction of METH-induced dopamine release, and are not due to a decrease in body temperature. These results indicate that NO. formation is an important step leading to METH neurotoxicity, and suggest that the cytotoxic properties of NO. may be directly involved in dopaminergic terminal damage.

  3. Nitric oxide synthase expression in foetal placentas of cows with retained fetal membranes.

    PubMed

    Shixin, Fu; Li, Zhang; Chunhai, Luo; Chuang, Xu; Cheng, Xia; Zhe, Wang; Xiaobing, Li

    2011-10-01

    The objectives of this study were to investigate relationship of retained fetal membranes (RFM) to expression of NOS and NOS mRNA and to analyze pathohistological changes and the distribution of nitric oxide synthase (NOS) in foetal placentas of cows with RFM. Twenty cows were assigned to two groups, a control group (no retained fetal membranes, NRFM, n = 10) and a diseased group (RFM, n = 10). The endpoint method was used to detect the nitric oxide (NO) content and nitric oxide synthase (NOS) activity in foetal placental tissue fluid and the fluorescent quantitation PCR was used to measure the expression of NOS mRNA. Immunohistochemistry and hematoxylin-eosin staining were used to observe pathohistological changes. Tissue from RFM cows showed fibronecrosis of the chorionic villi, and a decreased number of trophoblastic cells. The majority of trophoblastic cells displayed vacuolar degeneration. Interstitium vessels were distended and congested. Expression of induced nitric oxide synthase (iNOS) protein and iNOS mRNA was significantly higher (P < 0.05) in the cytoplasm of placental villus trophoblastic cells in the RFM group. But expression of endothelial nitric oxide synthase (eNOS) protein and eNOS mRNA was significantly lower (P<0.05) in the RFM group. The NO content and NOS activity of cows with RFM were significantly higher (P < 0.05). A high expression of iNOS protein and iNOS mRNA in the cow foetal placenta could produce high content of NO, which might inhibit uterine contraction. So over expression of iNOS protein and iNOS mRNA might be an important agent of retained fetal membranes in cows, and it may be a potential diagnosis biomarker. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. The production of nitric oxide in EL4 lymphoma cells overexpressing growth hormone.

    PubMed

    Arnold, Robyn E; Weigent, Douglas A

    2003-01-01

    Growth hormone (GH) is produced by immunocompetent cells and has been implicated in the regulation of a multiplicity of functions in the immune system involved in growth and activation. However, the actions of endogenous or lymphocyte GH and its contribution to immune reactivity when compared with those of serum or exogenous GH are still unclear. In the present study, we overexpressed lymphocyte GH in EL4 lymphoma cells, which lack the GH receptor (GHR), to determine the role of endogenous GH in nitric oxide (NO) production and response to genotoxic stress. Western blot analysis demonstrated that the levels of GH increased approximately 40% in cells overexpressing GH (GHo) when compared with cells with vector alone. The results also show a substantial increase in NO production in cells overexpressing GH that could be blocked by N(G)-monomethyl-L-arginine (L-NMMA), an L-arginine analogue that competitively inhibits all three isoforms of nitric oxide synthase (NOS). No evidence was obtained to support an increase in peroxynitrite in cells overexpressing GH. Overexpression of GH increased NOS activity, inducible nitric oxide synthase (iNOS) promoter activity, and iNOS protein expression, whereas endothelial nitric oxide synthase and neuronal nitric oxide synthase protein levels were essentially unchanged. In addition, cells overexpressing GH showed increased arginine transport ability and intracellular arginase activity when compared with control cells. GH overexpression appeared to protect cells from the toxic effects of the DNA alkylating agent methyl methanesulfonate. This possibility was suggested by maintenance of the mitochondrial transmembrane potential in cells overexpressing GH when compared with control cells that could be blocked by L-NMMA. Taken together, the data support the notion that lymphocyte GH, independently of the GH receptor, may play a key role in the survival of lymphocytes exposed to stressful stimuli via the production of NO.

  5. Nitric oxide facilitates active avoidance learning via enhancement of glutamate levels in the hippocampal dentate gyrus.

    PubMed

    Wang, Shi; Pan, De-Xi; Wang, Dan; Wan, Peng; Qiu, De-Lai; Jin, Qing-Hua

    2014-09-01

    The hippocampus is a key structure for learning and memory in mammals, and long-term potentiation (LTP) is an important cellular mechanism responsible for learning and memory. Despite a number of studies indicating that nitric oxide (NO) is involved in the formation and maintenance of LTP as a retrograde messenger, few studies have used neurotransmitter release as a visual indicator in awake animals to explore the role of NO in learning-dependent long-term enhancement of synaptic efficiency. Therefore, in the present study, the effects of l-NMMA (a NO synthase inhibitor) and SNP (a NO donor) on extracellular glutamate (Glu) concentrations and amplitudes of field excitatory postsynaptic potential (fEPSP) were measured in the hippocampal dentate gyrus (DG) region during the acquisition and extinction of active-avoidance behavior in freely-moving conscious rats. In the control group, the extracellular concentration of Glu in the DG was significantly increased during the acquisition of active-avoidance behavior and gradually returned to baseline levels following extinction training. In the experimental group, the change in Glu concentration was significantly reduced by local microinjection of l-NMMA, as was the acquisition of the active-avoidance behavior. In contrast, the change in Glu concentration was significantly enhanced by SNP, and the acquisition of the active-avoidance behavior was significantly accelerated. Furthermore, in all groups, the changes in extracellular Glu were accompanied by corresponding changes in fEPSP amplitude and active-avoidance behavior. Our results suggest that NO in the hippocampal DG facilitates active avoidance learning via enhancements of glutamate levels and synaptic efficiency in rats. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Effect of caffeine coadministration and of nitric oxide synthesis inhibition on the antinociceptive action of ketorolac.

    PubMed

    López-Muñoz, F J; Castañeda-Hernández, G; Flores-Murrieta, F J; Granados-Soto, V

    1996-07-25

    The effects of caffeine and nitric oxide synthesis inhibition on the antinociceptive action of ketorolac were assessed using the pain-induced functional impairment model in the rat. Nociception was induced by the intra-articular injection of uric acid. Ketorolac, but not caffeine, produced an antinociceptive effect which was reduced by NG nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide synthesis. Caffeine coadministration potentiated the ketorolac effect. L-NAME induced a dose-dependent reduction of this potentiation. The results suggest the participation of the L-arginine-nitric oxide-cyclic GMP pathway in the caffeine potentiation of ketorolac-induced antinociception.

  7. Mild zinc deficiency in male and female rats: early postnatal alterations in renal nitric oxide system and morphology.

    PubMed

    Tomat, Analia Lorena; Veiras, Luciana Cecilia; Aguirre, Sofía; Fasoli, Héctor; Elesgaray, Rosana; Caniffi, Carolina; Costa, María Ángeles; Arranz, Cristina Teresa

    2013-03-01

    Fetal and postnatal zinc deficiencies induce an increase in arterial blood pressure and impair renal function in male adult rats. We therefore hypothesized that these renal alterations are present in early stages of life and that there are sexual differences in the adaptations to this nutritional injury. The aim was to study the effects of moderate zinc deficiency during fetal life and lactation on renal morphology, oxidative stress, apoptosis, and the nitric oxide system in male and female rats at 21 d of life. Female Wistar rats received low (8 ppm) or control (30 ppm) zinc diets from the beginning of pregnancy to weaning. Glomerulus number, morphology, oxidative stress, apoptotic cells, nitric oxide synthase activity, and protein expression were evaluated in the kidneys of offspring at 21 d. Zinc deficiency decreased the nephron number, induced glomerular hypertrophy, increased oxidative damage, and decreased nitric oxide synthase activity in the male and female rat kidneys. Nitric oxide synthase activity was not affected by inhibitors of the neuronal or inducible isoforms, so nitric oxide was mainly generated by the endothelial isoenzyme. Gender differences were observed in glomerular areas and antioxidant enzyme activities. Zinc deficiency during fetal life and lactation induces an early decrease in renal functional units, associated with a decrease in nitric oxide activity and an increase in oxidative stress, which would contribute to increased arterial blood pressure and renal dysfunction in adulthood. The sexual differences observed in this model may explain the dissimilar development of hypertension and renal diseases in adult life. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Impaired Endothelial Repair Capacity of Early Endothelial Progenitor Cells in Hypertensive Patients With Primary Hyperaldosteronemia: Role of 5,6,7,8-Tetrahydrobiopterin Oxidation and Endothelial Nitric Oxide Synthase Uncoupling.

    PubMed

    Chen, Long; Ding, Mei-Lin; Wu, Fang; He, Wen; Li, Jin; Zhang, Xiao-Yu; Xie, Wen-Li; Duan, Sheng-Zhong; Xia, Wen-Hao; Tao, Jun

    2016-02-01

    Although hyperaldosteronemia exerts detrimental impacts on vascular endothelium in addition to elevating blood pressure, the effects and molecular mechanisms of hyperaldosteronemia on early endothelial progenitor cell (EPC)-mediated endothelial repair after arterial damage are yet to be determined. The aim of this study was to investigate the endothelial repair capacity of early EPCs from hypertensive patients with primary hyperaldosteronemia (PHA). In vivo endothelial repair capacity of early EPCs from PHAs (n=20), age- and blood pressure-matched essential hypertension patients (n=20), and age-matched healthy subjects (n=20) was evaluated by transplantation into a nude mouse carotid endothelial denudation model. Endothelial function was evaluated by flow-mediated dilation of brachial artery in human subjects. In vivo endothelial repair capacity of early EPCs and flow-mediated dilation were impaired both in PHAs and in essential hypertension patients when compared with age-matched healthy subjects; however, the early EPC in vivo endothelial repair capacity and flow-mediated dilation of PHAs were impaired more severely than essential hypertension patients. Oral spironolactone improved early EPC in vivo endothelial repair capacity and flow-mediated dilation of PHAs. Increased oxidative stress, oxidative 5,6,7,8-tetrahydrobiopterin degradation, endothelial nitric oxide synthase uncoupling and decreased nitric oxide production were found in early EPCs from PHAs. Nicotinamide adenine dinucleotide phosphate oxidase subunit p47(phox) knockdown or 5,6,7,8-tetrahydrobiopterin supplementation attenuated endothelial nitric oxide synthase uncoupling and enhanced in vivo endothelial repair capacity of early EPCs from PHAs. In conclusion, PHAs exhibited more impaired endothelial repair capacity of early EPCs than did essential hypertension patients independent of blood pressure, which was associated with mineralocorticoid receptor-dependent oxidative stress and subsequently 5

  9. Effect of fuel/air nonuniformity on nitric oxide emissions

    NASA Technical Reports Server (NTRS)

    Lyons, V. J.

    1979-01-01

    A flame tube combustor holding jet A fuel was used in experiments performed at a pressure of .3 Mpa and a reference velocity of 25 meters/second for three inlet air temperatures of 600, 700, and 800 K. The gas sample measurements were taken at locations 18 cm and 48 cm downstream of the perforated plate flameholder. Nonuniform fuel/air profiles were produced using a fuel injector by separately fueling the inner five fuel tubes and the outer ring of twelve fuel tubes. Six fuel/air profiles were produced for nominal overall equivalence ratios of .5 and .6. An example of three of three of these profiles and their resultant nitric oxide NOx emissions are presented. The uniform fuel/air profile cases produced uniform and relatively low profile levels. When the profiles were either center-peaked or edge-peaked, the overall mass-weighted nitric oxide levels increased.

  10. Nitric oxide negatively regulates mammalian adult neurogenesis

    NASA Astrophysics Data System (ADS)

    Packer, Michael A.; Stasiv, Yuri; Benraiss, Abdellatif; Chmielnicki, Eva; Grinberg, Alexander; Westphal, Heiner; Goldman, Steven A.; Enikolopov, Grigori

    2003-08-01

    Neural progenitor cells are widespread throughout the adult central nervous system but only give rise to neurons in specific loci. Negative regulators of neurogenesis have therefore been postulated, but none have yet been identified as subserving a significant role in the adult brain. Here we report that nitric oxide (NO) acts as an important negative regulator of cell proliferation in the adult mammalian brain. We used two independent approaches to examine the function of NO in adult neurogenesis. In a pharmacological approach, we suppressed NO production in the rat brain by intraventricular infusion of an NO synthase inhibitor. In a genetic approach, we generated a null mutant neuronal NO synthase knockout mouse line by targeting the exon encoding active center of the enzyme. In both models, the number of new cells generated in neurogenic areas of the adult brain, the olfactory subependyma and the dentate gyrus, was strongly augmented, which indicates that division of neural stem cells in the adult brain is controlled by NO and suggests a strategy for enhancing neurogenesis in the adult central nervous system.

  11. Distinct role of nitric oxide and peroxynitrite in mediating oligodendrocyte toxicity in culture and in experimental autoimmune encephalomyelitis.

    PubMed

    Li, S; Vana, A C; Ribeiro, R; Zhang, Y

    2011-06-16

    Nitric oxide has been implicated in the pathogenesis of multiple sclerosis. However, it is still unclear whether nitric oxide plays a protective role or is deleterious. We have previously shown that peroxynitrite, a reaction product of nitric oxide and superoxide, is toxic to mature oligodendrocytes (OLs). The toxicity is mediated by intracellular zinc release, phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), activation of 12-lipoxygenase (12-LOX) and the formation of reactive oxygen species (ROS). In this study, we found that the donors of nitric oxide, dipropylenetriamine NONOate (DPT NONOate) and diethylenetriamine NONOate (DETA NONOate), protected OLs from peroxynitrite or zinc-induced toxicity. The protective mechanisms appear to be attributable to their inhibition of peroxynitrite- or zinc-induced ERK1/2 phosphorylation and 12-LOX activation. In cultures of mature OLs exposed to lipopolysaccharide (LPS), induction of inducible nitric oxide synthase (iNOS) generated nitric oxide and rendered OLs resistant to peroxynitrite-induced toxicity. The protection was eliminated when 1400W, a specific inhibitor of iNOS, was co-applied with LPS. Using MOG35-55-induced experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, we found that nitrotyrosine immunoreactivity, an indicator of peroxynitrite formation, was increased in the spinal cord white matter, which correlated with the loss of mature OLs. Targeted gene deletion of the NADPH oxidase component gp91phox reduced clinical scores, the formation of nitrotyrosine and the loss of mature OLs. These results suggest that blocking the formation specifically of peroxynitrite, rather than nitric oxide, may be a protective strategy against oxidative stress induced toxicity to OLs. Published by Elsevier Ltd.

  12. Nitric Oxide Signaling in Hypergravity-Induced Neuronal Plasticity

    NASA Technical Reports Server (NTRS)

    Holstein, Gay R.

    2003-01-01

    The goal of this research project was to identify the neurons and circuits in the vestibular nuclei and nucleus prepositus hypoglossi that utilize nitric oxide (NO) for intercellular signaling during gravity-induced plasticity. This objective was pursued using histochemical and immunocytochemical approaches to localize NO-producing neurons and characterize the fine morphology of the cells in ground-based studies of normal rats, rats adapted to hypergravity, and rats adapted to hypergravity and then re-adapted to the 1G environment. NO-producing neurons were identified and studied using four methodologies: i) immunocytochemistry employing polyclonal antibodies directed against neuronal nitric oxide synthase (nNOS), to provide an indication of the capacity of a cell for NO production; ii) immunocytochemistry employing a monoclonal antibody directed against L-citrulline, to provide an indirect index of the enzyme's activity; iii) histochemistry based on the NADPH-diaphorase reaction, for fuI1 cytological visualization of neurons; and iv) double immunofluorescence to co-localize nNOS and L-citrulline in individual vestibular nuclei (VN) and neurons.

  13. Targeting Nitric Oxide with Natural Derived Compounds as a Therapeutic Strategy in Vascular Diseases

    PubMed Central

    Forte, Maurizio; Damato, Antonio; Ambrosio, Mariateresa; Puca, Annibale A.; Sciarretta, Sebastiano; Frati, Giacomo; Vecchione, Carmine

    2016-01-01

    Within the family of endogenous gasotransmitters, nitric oxide (NO) is the smallest gaseous intercellular messenger involved in the modulation of several processes, such as blood flow and platelet aggregation control, essential to maintain vascular homeostasis. NO is produced by nitric oxide synthases (NOS) and its effects are mediated by cGMP-dependent or cGMP-independent mechanisms. Growing evidence suggests a crosstalk between the NO signaling and the occurrence of oxidative stress in the onset and progression of vascular diseases, such as hypertension, heart failure, ischemia, and stroke. For these reasons, NO is considered as an emerging molecular target for developing therapeutic strategies for cardio- and cerebrovascular pathologies. Several natural derived compounds, such as polyphenols, are now proposed as modulators of NO-mediated pathways. The aim of this review is to highlight the experimental evidence on the involvement of nitric oxide in vascular homeostasis focusing on the therapeutic potential of targeting NO with some natural compounds in patients with vascular diseases. PMID:27651855

  14. Quantitative RT-PCR Comparison of the Urea and Nitric Oxide Cycle Gene Transcripts in Adult Human Tissues

    PubMed Central

    Neill, Meaghan Anne; Aschner, Judy; Barr, Frederick; Summar, Marshall L.

    2009-01-01

    The urea cycle and nitric oxide cycle play significant roles in complex biochemical and physiologic reactions. These cycles have distinct biochemical goals including the clearance of waste nitrogen; the production of the intermediates ornithine, citrulline, and arginine for the urea cycle; and the production of nitric oxide for the nitric oxide pathway. Despite their disparate functions, the two pathways share two enzymes, argininosuccinic acid synthase and argininosuccinic acid lyase, and a transporter, citrin. Studying the gene expression of these enzymes is paramount in understanding these complex biochemical pathways. Here, we examine the expression of genes involved in the urea cycle and the nitric oxide cycle in a panel of eleven different tissue samples obtained from individual adults without known inborn errors of metabolism. In this study, the pattern of co-expressed enzymes provides a global view of the metabolic activity of the urea and nitric oxide cycles in human tissues. Our results show that these transcripts are differentially expressed in different tissues. The pattern of co-expressed enzymes provides a global view of the metabolic activity of the urea and nitric oxide cycles in human tissues. Using the co-expression profiles, we discovered that the combination of expression of enzyme transcripts as detected in our study, might serve to fulfill specific physiologic function(s) in tissue including urea production/nitrogen removal, arginine/citrulline production, nitric oxide production, and ornithine production. Our study reveals the importance of studying not only the expression profile of an enzyme of interest, but also studying the expression profiles of the other enzymes involved in a particular pathway so as to better understand the context of expression. The tissue patterns we observed highlight the variety of important functions they conduct and provide insight into many of the clinical observations from their disruption. PMID:19345634

  15. Role of Heat Shock Protein 90 and Endothelial Nitric Oxide Synthase during Early Anesthetic and Ischemic Preconditioning

    PubMed Central

    Amour, Julien; Brzezinska, Anna K.; Weihrauch, Dorothee; Billstrom, Amie R.; Zielonka, Jacek; Krolikowski, John G.; Bienengraeber, Martin W.; Warltier, David C.; Pratt, Philip F.; Kersten, Judy R.

    2009-01-01

    Background Nitric oxide is known to be essential for early anesthetic (APC) and ischemic (IPC) preconditioning of myocardium. Heat shock protein 90 (Hsp90) regulates endothelial nitric oxide synthase (eNOS) activity. In this study, we tested the hypothesis that Hsp90-eNOS interactions modulate APC and IPC. Methods Myocardial infarct size was measured in rabbits after coronary occlusion and reperfusion in the absence or presence of preconditioning with 30 min of isoflurane (APC) or 5 min of coronary artery occlusion (IPC), and with or without pre-treatment with geldanamycin or radicicol, two chemically distinct Hsp90 inhibitors, or NG-nitro-L-arginine methylester, a non-specific NOS inhibitor. Isoflurane-dependent nitric oxide production was measured (ozone chemiluminescence) in human coronary artery endothelial cells or mouse cardiomyocytes, in the absence or presence of Hsp90 inhibitors or NG-nitro-L-arginine methylester. Interactions between Hsp90 and eNOS, and eNOS activation were assessed with immunoprecipitation, immunoblotting, and confocal microscopy. Results APC and IPC decreased infarct size (50% and 59%, respectively) and this action was abolished by Hsp90 inhibitors. NG-nitro-L-arginine methylester blocked APC but not IPC. Isoflurane increased nitric oxide production in human coronary artery endothelial cells, concomitantly with an increase in Hsp90-eNOS interaction (immunoprecipitation, immunoblotting, and immunohistochemistry). Pretreatment with Hsp90 inhibitors abolished isoflurane-dependent nitric oxide production and decreased Hsp90-eNOS interactions. Isoflurane did not increase nitric oxide production in mouse cardiomyocytes and eNOS was below the level of detection. Conclusion The results indicate that Hsp90 plays a critical role in mediating APC and IPC through protein-protein interactions, and suggest that endothelial cells are important contributors to nitric oxide-mediated signalling during APC. PMID:19194158

  16. Changes in cytokine and nitric oxide secretion by rat alveolar macrophages after oral administration of bacterial extracts.

    PubMed Central

    Broug-Holub, E; Persoons, J H; Schornagel, K; Kraal, G

    1995-01-01

    Oral administration of the bacterial immunomodulator Broncho-Vaxom (OM-85), a lysate of eight bacteria strains commonly causing respiratory disease, has been shown to enhance the host defence of the respiratory tract. In this study we examined the effect of orally administered (in vivo) OM-85 on stimulus-induced cytokine and nitric oxide secretion by rat alveolar macrophages in vitro. The results show that alveolar macrophages isolated from OM-85-treated rats secreted significantly more nitric oxide, tumour necrosis factor-alpha (TNF-alpha) and IL-1 beta upon in vitro stimulation with lipopolysaccharide (LPS), whereas, in contrast, LPS-induced IL-6 secretion was significantly lower. The observed effects of in vivo OM-85 treatment on stimulus-induced cytokine secretion in vitro are not due to a direct effect of OM-85 on the cells, because in vitro incubation of alveolar macrophages with OM-85 did not result in altered activity, nor did direct intratracheal instillation of OM-85 in the lungs of rats result in altered alveolar macrophage activity in vitro. It is hypothesized that oral administration of OM-85 leads to priming of alveolar macrophages in such a way that immune responses are non-specifically enhanced upon stimulation. The therapeutic action of OM-85 may therefore result from an enhanced clearance of infectious bacteria from the respiratory tract due to increased alveolar macrophage activity. PMID:7648713

  17. Inducible nitric oxide synthase gene methylation and parkinsonism in manganese-exposed welders

    PubMed Central

    Nielsen, Susan Searles; Checkoway, Harvey; Criswell, Susan R.; Farin, Federico M.; Stapleton, Patricia L.; Sheppard, Lianne; Racette, Brad A.

    2015-01-01

    Introduction Neurologist-assessed parkinsonism signs are prevalent among workers exposed to manganese (Mn)-containing welding fume. Neuroinflammation may possibly play a role. Inducible nitric oxide synthase, coded by NOS2, is involved in inflammation, and particulate exposure increases the gene’s expression through methylation of CpG sites in the 5′ region. Methods We assessed DNA methylation at three CpG sites in the NOS2 exon 1 from blood from 201 welders. All were non-Hispanic Caucasian men 25–65 years old who were examined by a neurologist specializing in movement disorders. We categorized the workers according to their Unified Parkinson Disease Rating Scale motor subsection 3 (UPDRS3) scores as parkinsonism cases (UPDRS3 ≥ 15; n = 49), controls (UPDRS3 < 6; n = 103), or intermediate (UPDRS3 ≥6 to <15; n = 49). Results While accounting for age, examiner and experimental plate, parkinsonism cases had lower mean NOS2 methylation than controls (p-value for trend = 0.04), specifically at CpG site 8329 located in an exonic splicing enhancer of NOS2 (p-value for trend = 0.07). These associations were not observed for the intermediate UPDRS3 group (both p-value for trend ≥ 0.59). Conclusions Inflammation mediated by inducible nitric oxide synthase may possibly contribute to the association between welding fume and parkinsonism, but requires verification in a longitudinal study. PMID:25634431

  18. Nitric oxide nanoparticles

    PubMed Central

    Schairer, David O.; Martinez, Luis R.; Blecher, Karin; Chouake, Jason S.; Nacharaju, Parimala; Gialanella, Philip; Friedman, Joel M.; Nosanchuk, Joshua D.; Friedman, Adam J.

    2012-01-01

    Nitric oxide (NO) is a critical component of host defense against invading pathogens; however, its therapeutic utility is limited due to a lack of practical delivery systems. Recently, a NO-releasing nanoparticulate platform (NO-np) was shown to have in vitro broad-spectrum antimicrobial activity and in vivo pre-clinical efficacy in a dermal abscess model. To extend these findings, both topical (TP) and intralesional (IL) NO-np administration was evaluated in a MRSA intramuscular murine abscess model and compared with vancomycin. All treatment arms accelerated abscess clearance clinically, histologically, and by microbiological assays on both days 4 and 7 following infection. However, abscesses treated with NO-np via either route demonstrated a more substantial, statistically significant decrease in bacterial survival based on colony forming unit assays and histologically revealed less inflammatory cell infiltration and preserved muscular architecture. These data suggest that the NO-np may be an effective addition to our armament for deep soft tissue infections. PMID:22286699

  19. Nitric oxide gamma and delta band emission at twilight

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.; Takacs, P. Z.

    1974-01-01

    Nitric oxide twilight emission above 140 km in the gamma- and delta-bands was observed with a rocket-borne spectrophotometer. The relative intensity of the two band systems indicates that the emission is produced predominantly by the chemiluminescent preassociation of oxygen and nitrogen atoms.

  20. Dual Role of Endothelial Nitric Oxide Synthase in Oxidized LDL-Induced, p66Shc-Mediated Oxidative Stress in Cultured Human Endothelial Cells

    PubMed Central

    Shi, Yi; Lüscher, Thomas F.; Camici, Giovanni G.

    2014-01-01

    Background The aging gene p66Shc, is an important mediator of oxidative stress-induced vascular dysfunction and disease. In cultured human aortic endothelial cells (HAEC), p66Shc deletion increases endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) bioavailability via protein kinase B. However, the putative role of the NO pathway on p66Shc activation remains unclear. This study was designed to elucidate the regulatory role of the eNOS/NO pathway on p66Shc activation. Methods and Results Incubation of HAEC with oxidized low density lipoprotein (oxLDL) led to phosphorylation of p66Shc at Ser-36, resulting in an enhanced production of superoxide anion (O2 -). In the absence of oxLDL, inhibition of eNOS by small interfering RNA or L-NAME, induced p66Shc phosphorylation, suggesting that basal NO production inhibits O2 - production. oxLDL-induced, p66Shc-mediated O2- was prevented by eNOS inhibition, suggesting that when cells are stimulated with oxLDL eNOS is a source of reactive oxygen species. Endogenous or exogenous NO donors, prevented p66Shc activation and reduced O2- production. Treatment with tetrahydrobiopterin, an eNOS cofactor, restored eNOS uncoupling, prevented p66Shc activation, and reduced O2- generation. However, late treatment with tetrahydropterin did not yield the same result suggesting that eNOS uncoupling is the primary source of reactive oxygen species. Conclusions The present study reports that in primary cultured HAEC treated with oxLDL, p66Shc-mediated oxidative stress is derived from eNOS uncoupling. This finding contributes novel information on the mechanisms of p66Shc activation and its dual interaction with eNOS underscoring the importance eNOS uncoupling as a putative antioxidant therapeutical target in endothelial dysfunction as observed in cardiovascular disease. PMID:25247687

  1. Dual role of endothelial nitric oxide synthase in oxidized LDL-induced, p66Shc-mediated oxidative stress in cultured human endothelial cells.

    PubMed

    Shi, Yi; Lüscher, Thomas F; Camici, Giovanni G

    2014-01-01

    The aging gene p66Shc, is an important mediator of oxidative stress-induced vascular dysfunction and disease. In cultured human aortic endothelial cells (HAEC), p66Shc deletion increases endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) bioavailability via protein kinase B. However, the putative role of the NO pathway on p66Shc activation remains unclear. This study was designed to elucidate the regulatory role of the eNOS/NO pathway on p66Shc activation. Incubation of HAEC with oxidized low density lipoprotein (oxLDL) led to phosphorylation of p66Shc at Ser-36, resulting in an enhanced production of superoxide anion (O2-). In the absence of oxLDL, inhibition of eNOS by small interfering RNA or L-NAME, induced p66Shc phosphorylation, suggesting that basal NO production inhibits O2- production. oxLDL-induced, p66Shc-mediated O2- was prevented by eNOS inhibition, suggesting that when cells are stimulated with oxLDL eNOS is a source of reactive oxygen species. Endogenous or exogenous NO donors, prevented p66Shc activation and reduced O2- production. Treatment with tetrahydrobiopterin, an eNOS cofactor, restored eNOS uncoupling, prevented p66Shc activation, and reduced O2- generation. However, late treatment with tetrahydropterin did not yield the same result suggesting that eNOS uncoupling is the primary source of reactive oxygen species. The present study reports that in primary cultured HAEC treated with oxLDL, p66Shc-mediated oxidative stress is derived from eNOS uncoupling. This finding contributes novel information on the mechanisms of p66Shc activation and its dual interaction with eNOS underscoring the importance eNOS uncoupling as a putative antioxidant therapeutical target in endothelial dysfunction as observed in cardiovascular disease.

  2. Cross sections for electron collisions with nitric oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itikawa, Yukikazu, E-mail: yukitikawa@nifty.com

    Cross section data are reviewed for electron collisions with nitric oxide. Collision processes considered are total scattering, elastic scattering, momentum transfer, excitations of rotational, vibrational, and electronic states, ionization, and dissociative electron attachment. After a survey of the literature (up to the end of 2015), recommended values of the cross section are determined, as far as possible.

  3. Effect of selective inhibition of renal inducible nitric oxide synthase on renal blood flow and function in experimental hyperdynamic sepsis.

    PubMed

    Ishikawa, Ken; Calzavacca, Paolo; Bellomo, Rinaldo; Bailey, Michael; May, Clive N

    2012-08-01

    Nitric oxide plays an important role in the control of renal blood flow and renal function. In sepsis, increased levels of inducible nitric oxide synthase produce excessive nitric oxide, which may contribute to the development of acute kidney injury. We, therefore, examined the effects of intrarenal infusion of selective inducible nitric oxide synthase inhibitors in a large animal model of hyperdynamic sepsis in which acute kidney injury occurs in the presence of increased renal blood flow. Prospective crossover randomized controlled interventional studies. University-affiliated research institute. Twelve unilaterally nephrectomized Merino ewes. Infusion of a selective (1400W) and a partially selective inducible nitric oxide synthase inhibitor (aminoguanidine) into the renal artery for 2 hrs after the induction of sepsis, and comparison with a nonselective inhibitor (Nω-nitro-L-arginine methyl ester). In sheep with nonhypotensive hyperdynamic sepsis, creatinine clearance halved (32 to 16 mL/min, ratio [95% confidence interval] 0.51 [0.28-0.92]) despite increased renal blood flow (241 to 343 mL/min, difference [95% confidence interval] 102 [78-126]). Infusion of 1400W did not change renal blood flow, urine output, or creatinine clearance, whereas infusion of Nω-nitro-L-arginine methyl ester and a high dose of aminoguanidine normalized renal blood flow, but did not alter creatinine clearance. In hyperdynamic sepsis, intrarenal infusion of a highly selective inducible nitric oxide synthase inhibitor did not reduce the elevated renal blood flow or improve renal function. In contrast, renal blood flow was reduced by infusion of a nonselective NOS inhibitor or a high dose of a partially selective inducible nitric oxide synthase inhibitor. The renal vasodilatation in septic acute kidney injury may be due to nitric oxide derived from the endothelial and neural isoforms of nitric oxide synthase, but their blockade did not restore renal function.

  4. Impact of trans-resveratrol-sulfates and -glucuronides on endothelial nitric oxide synthase activity, nitric oxide release and intracellular reactive oxygen species.

    PubMed

    Ladurner, Angela; Schachner, Daniel; Schueller, Katharina; Pignitter, Marc; Heiss, Elke H; Somoza, Veronika; Dirsch, Verena M

    2014-10-17

    Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a polyphenolic natural product mainly present in grape skin, berries and peanuts. In the vasculature resveratrol is thought to boost endothelial function by increasing endothelial nitric oxide synthase (eNOS) expression, by enhancing eNOS activity, and by reduction of reactive oxygen species (ROS) levels. Recent studies show that dietary resveratrol is metabolized in the liver and intestine into resveratrol-sulfate and -glucuronide derivatives questioning the relevance of multiple reported mechanistic in vitro data on resveratrol. In this study, we compare side by side different physiologically relevant resveratrol metabolites (resveratrol sulfates- and -glucuronides) and their parent compound in their influence on eNOS enzyme activity, endothelial NO release, and intracellular ROS levels. In contrast to resveratrol, none of the tested resveratrol metabolites elevated eNOS enzyme activity and endothelial NO release or affected intracellular ROS levels, leaving the possibility that not tested metabolites are active and able to explain in vivo findings.

  5. Impact of Trans-Resveratrol-Sulfates and -Glucuronides on Endothelial Nitric Oxide Synthase Activity, Nitric Oxide Release and Intracellular Reactive Oxygen Species

    PubMed Central

    Ladurner, Angela; Schachner, Daniel; Schueller, Katharina; Pignitter, Marc; Heiss, Elke H.; Somoza, Veronika; Dirsch, Verena M.

    2015-01-01

    Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a polyphenolic natural product mainly present in grape skin, berries and peanuts. In the vasculature resveratrol is thought to boost endothelial function by increasing endothelial nitric oxide synthase (eNOS) expression, by enhancing eNOS activity, and by reduction of reactive oxygen species (ROS) levels. Recent studies show that dietary resveratrol is metabolized in the liver and intestine into resveratrol-sulfate and -glucuronide derivatives questioning the relevance of multiple reported mechanistic in vitro data on resveratrol. In this study, we compare side by side different physiologically relevant resveratrol metabolites (resveratrol sulfates- and -glucuronides) and their parent compound in their influence on eNOS enzyme activity, endothelial NO release, and intracellular ROS levels. In contrast to resveratrol, none of the tested resveratrol metabolites elevated eNOS enzyme activity and endothelial NO release or affected intracellular ROS levels, leaving the possibility that not tested metabolites are active and able to explain in vivo findings. PMID:25329867

  6. Use-dependent loss of active sympathetic neurogenic vasodilation after nitric oxide synthase inhibition in conscious rats. Evidence for the presence of preformed stores of nitric oxide-containing factors

    NASA Technical Reports Server (NTRS)

    Davisson, R. L.; Shaffer, R. A.; Johnson, A. K.; Lewis, S. J.

    1996-01-01

    In this study, we examined whether air-jet stress-induced active sympathetic hindlimb vasodilation in conscious rats involves the release of preformed stores of nitric oxide-containing factors. We determined the effects of repeated episodes of air-jet stress (six episodes given 5 minutes apart) on mean arterial pressure and vascular resistances in the mesenteric bed and intact and sympathetically denervated hindlimb beds of conscious rats treated with saline or the nitric oxide synthesis inhibitor N omega-nitro-L-arginine methyl ester (L-NAME, 25 mumol/kg IV). In saline-treated rats, air-jet stress produced alerting behavior, minor changes in blood pressure, pronounced mesenteric vaso-constriction, and immediate and marked vasodilation in the sympathetically intact hindlimb but a minor vasodilation in the sympathetically denervated hindlimb. Each air-jet stress produced virtually identical responses. In L-NAME-treated rats, the first air-jet stress produced vasodilator responses in the sympathetically intact and sympathetically denervated hindlimbs that were similar to those in the saline-treated rats. However, each subsequent air-jet stress produced progressively smaller vasodilator responses in the sympathetically intact but not the sympathetically denervated hindlimb. There was no loss of air-jet stress-induced alerting behavior or mesenteric vasoconstriction, suggesting that L-NAME did not interfere with the central processing of the air-jet or the resultant changes in autonomic nerve activity. The progressive diminution of air-jet stress-induced vasodilation in the intact hindlimb of L-NAME-treated rats may be due to the use-dependent depletion of preformed stores of nitric oxide-containing factors that cannot be replenished in the absence of nitric oxide synthesis.

  7. An investigation into the surface heterogeneity of nitric acid oxidized carbon fiber

    NASA Astrophysics Data System (ADS)

    Woodhead, Andrea L.; de Souza, Mandy L.; Church, Jeffrey S.

    2017-04-01

    The carbon fiber surface plays a critical role in the performance of carbon fiber composite materials and, thus it is important to have a thorough understanding of the fiber surface. A series of nitric acid treated intermediate modulus carbon fibers with increasing treatment level was prepared and characterized using a range of surface sensitive techniques including Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), X-ray Photoelectron Spectroscopy (XPS) and Raman spectroscopy. The results, which were found to be consistent with increasing treatment levels, were compared to the literature. Raman spectral mapping has been used to investigate the heterogeneity of the carbon fiber surface after nitric acid oxidation. The mapping enabled the effects of surface treatment on carbon fiber to be investigated at a spatial resolution unattainable by XPS and provided chemical structure information not provided by SEM or AFM. The highest level of treatment resulted in the most heterogeneous surface. Raman mapping, while time consuming, can provide valuable information which can lead to an enhanced understanding of the heterogeneity of the carbon fiber surface.

  8. Progesterone modulates the LPS-induced nitric oxide production by a progesterone-receptor independent mechanism.

    PubMed

    Wolfson, Manuel Luis; Schander, Julieta Aylen; Bariani, María Victoria; Correa, Fernando; Franchi, Ana María

    2015-12-15

    Genital tract infections caused by Gram-negative bacteria induce miscarriage and are one of the most common complications of human pregnancy. LPS administration to 7-day pregnant mice induces embryo resorption after 24h, with nitric oxide playing a fundamental role in this process. We have previously shown that progesterone exerts protective effects on the embryo by modulating the inflammatory reaction triggered by LPS. Here we sought to investigate whether the in vivo administration of progesterone modulated the LPS-induced nitric oxide production from peripheral blood mononuclear cells from pregnant and non-pregnant mice. We found that progesterone downregulated LPS-induced nitric oxide production by a progesterone receptor-independent mechanism. Moreover, our results suggest a possible participation of glucocorticoid receptors in at least some of the anti-inflammatory effects of progesterone. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Placebo neural systems: nitric oxide, morphine and the dopamine brain reward and motivation circuitries.

    PubMed

    Fricchione, Gregory; Stefano, George B

    2005-05-01

    Evidence suggests that the placebo response is related to the tonic effects of constitutive nitric oxide in neural, vascular and immune tissues. Constitutive nitric oxide levels play a role in the modulation of dopamine outflow in the nigrostriatal movement and the mesolimbic and mesocortical reward and motivation circuitries. Endogenous morphine, which stimulates constitutive nitric oxide, may be an important signal molecule working at mu receptors on gamma aminobutyric acid B interneurons to disinhibit nigral and tegmental dopamine output. We surmise that placebo induced belief will activate the prefrontal cortex with downstream stimulatory effects on these dopamine systems as well as on periaqueductal grey opioid output neurons. Placebo responses in Parkinson's disease, depression and pain disorder may result. In addition, mesolimbic/mesocortical control of the stress response systems may provide a way for the placebo response to benefit other medical conditions.

  10. Nitric oxide in the stress axis.

    PubMed

    López-Figueroa, M O; Day, H E; Akil, H; Watson, S J

    1998-10-01

    In recent years nitric oxide (NO) has emerged as a unique biological messenger. NO is a highly diffusible gas, synthesized from L-arginine by the enzyme nitric oxide synthase (NOS). Three unique subtypes of NOS have been described, each with a specific distribution profile in the brain and periphery. NOS subtype I is present, among other areas, in the hippocampus, hypothalamus, pituitary and adrenal gland. Together these structures form the limbic-hypothalamic-pituitary-adrenal (LHPA) or stress axis, activation of which is one of the defining features of a stress response. Evidence suggests that NO may modulate the release of the stress hormones ACTH and corticosterone, and NOS activity and transcription is increased in the LHPA axis following various stressful stimuli. Furthermore, following activation of the stress axis, glucocorticoids are thought to down-regulate the transcription and activity of NOS via a feedback mechanism. Taken together, current data indicate a role for NO in the regulation of the LHPA axis, although at present this role is not well defined. It has been suggested that NO may act as a cellular communicator in plasticity and development, to facilitate the activation or the release of other neurotransmitters, to mediate immune responses, and/or as a vasodilator in the regulation of blood flow. In the following review we summarize some of the latest insights into the function of NO, with special attention to its relationship with the LHPA axis.

  11. Elucidating nitric oxide synthase domain interactions by molecular dynamics.

    PubMed

    Hollingsworth, Scott A; Holden, Jeffrey K; Li, Huiying; Poulos, Thomas L

    2016-02-01

    Nitric oxide synthase (NOS) is a multidomain enzyme that catalyzes the production of nitric oxide (NO) by oxidizing L-Arg to NO and L-citrulline. NO production requires multiple interdomain electron transfer steps between the flavin mononucleotide (FMN) and heme domain. Specifically, NADPH-derived electrons are transferred to the heme-containing oxygenase domain via the flavin adenine dinucleotide (FAD) and FMN containing reductase domains. While crystal structures are available for both the reductase and oxygenase domains of NOS, to date there is no atomic level structural information on domain interactions required for the final FMN-to-heme electron transfer step. Here, we evaluate a model of this final electron transfer step for the heme-FMN-calmodulin NOS complex based on the recent biophysical studies using a 105-ns molecular dynamics trajectory. The resulting equilibrated complex structure is very stable and provides a detailed prediction of interdomain contacts required for stabilizing the NOS output state. The resulting equilibrated complex model agrees well with previous experimental work and provides a detailed working model of the final NOS electron transfer step required for NO biosynthesis. © 2015 The Protein Society.

  12. 21 CFR 862.3080 - Breath nitric oxide test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breath nitric oxide test system. 862.3080 Section 862.3080 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test...

  13. 21 CFR 862.3080 - Breath nitric oxide test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Breath nitric oxide test system. 862.3080 Section 862.3080 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test...

  14. 21 CFR 862.3080 - Breath nitric oxide test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Breath nitric oxide test system. 862.3080 Section 862.3080 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test...

  15. 21 CFR 862.3080 - Breath nitric oxide test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Breath nitric oxide test system. 862.3080 Section 862.3080 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test...

  16. Procedures of laboratory nitric oxide fumigation for pest control

    USDA-ARS?s Scientific Manuscript database

    Nitric oxide (NO) is a newly discovered fumigant and has the potential to be a safe and effective alternative for postharvest pest control. As NO reacts with oxygen spontaneously to produce nitrogen dioxide, NO fumigation must be conducted under ultralow oxygen (ULO) atmosphere and therefore has com...

  17. Nitric Oxide Metabolism in Neisseria meningitidis

    PubMed Central

    Anjum, Muna F.; Stevanin, Tânia M.; Read, Robert C.; Moir, James W. B.

    2002-01-01

    Neisseria meningitidis, the causative agent of meningococcal disease in humans, is likely to be exposed to nitrosative stress during natural colonization and disease. The genome of N. meningitidis includes the genes aniA and norB, predicted to encode nitrite reductase and nitric oxide (NO) reductase, respectively. These gene products should allow the bacterium to denitrify nitrite to nitrous oxide. We show that N. meningitidis can support growth microaerobically by the denitrification of nitrite via NO and that norB is required for anaerobic growth with nitrite. NorB and, to a lesser extent, the cycP gene product cytochrome c′ are able to counteract toxicity due to exogenously added NO. Expression of these genes by N. meningitidis during colonization and disease may confer protection against exogenous or endogenous nitrosative stress. PMID:12003939

  18. Multifaceted role of nitric oxide in an in vitro mouse neuronal injury model: transcriptomic profiling defines the temporal recruitment of death signalling cascades

    PubMed Central

    Peng, Zhao Feng; Chen, Minghui Jessica; Manikandan, Jayapal; Melendez, Alirio J; Shui, Guanghou; Russo-Marie, Françoise; Whiteman, Matthew; Beart, Philip M; Moore, Philip K; Cheung, Nam Sang

    2012-01-01

    Abstract Nitric oxide is implicated in the pathogenesis of various neuropathologies characterized by oxidative stress. Although nitric oxide has been reported to be involved in the exacerbation of oxidative stress observed in several neuropathologies, existent data fail to provide a holistic description of how nitrergic pathobiology elicits neuronal injury. Here we provide a comprehensive description of mechanisms contributing to nitric oxide induced neuronal injury by global transcriptomic profiling. Microarray analyses were undertaken on RNA from murine primary cortical neurons treated with the nitric oxide generator DETA-NONOate (NOC-18, 0.5 mM) for 8–24 hrs. Biological pathway analysis focused upon 3672 gene probes which demonstrated at least a ±1.5-fold expression in a minimum of one out of three time-points and passed statistical analysis (one-way anova, P < 0.05). Numerous enriched processes potentially determining nitric oxide mediated neuronal injury were identified from the transcriptomic profile: cell death, developmental growth and survival, cell cycle, calcium ion homeostasis, endoplasmic reticulum stress, oxidative stress, mitochondrial homeostasis, ubiquitin-mediated proteolysis, and GSH and nitric oxide metabolism. Our detailed time-course study of nitric oxide induced neuronal injury allowed us to provide the first time a holistic description of the temporal sequence of cellular events contributing to nitrergic injury. These data form a foundation for the development of screening platforms and define targets for intervention in nitric oxide neuropathologies where nitric oxide mediated injury is causative. PMID:21352476

  19. Nitric Oxide-GAPDH Transcriptional Signaling Mediates Behavioral Actions of Cocaine.

    PubMed

    Harraz, Maged M; Snyder, Solomon H

    2015-01-01

    Psychotropic actions of cocaine are generally thought to involve its blockade of monoamine transporters leading to increased synaptic levels of monoamines, especially dopamine. Subsequent intracellular events have been less well characterized. We describe a signaling system wherein lower behavioral stimulant doses of cocaine, as well as higher neurotoxic doses, activate a cascade wherein nitric oxide nitrosylates glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to generate a complex with the ubiquitin-E3-ligase Siah1 which translocates to the nucleus. With lower cocaine doses, nuclear GAPDH augments CREB signaling, while at higher doses p53 signaling is enhanced. The drug CGP3466B very potently blocks GAPDH nitrosylation, hindering both signaling cascades and inhibits both behavioral activating and neurotoxic effects of cocaine. This system affords potentially novel approaches to the therapy of cocaine abuse.

  20. Induction of Inducible Nitric Oxide Synthase by Lipopolysaccharide and the Influences of Cell Volume Changes, Stress Hormones and Oxidative Stress on Nitric Oxide Efflux from the Perfused Liver of Air-Breathing Catfish, Heteropneustes fossilis

    PubMed Central

    Choudhury, Mahua G.; Saha, Nirmalendu

    2016-01-01

    The air-breathing singhi catfish (Heteropneustes fossilis) is frequently being challenged by bacterial contaminants, and different environmental insults like osmotic, hyper-ammonia, dehydration and oxidative stresses in its natural habitats throughout the year. The main objectives of the present investigation were to determine (a) the possible induction of inducible nitric oxide synthase (iNOS) gene with enhanced production of nitric oxide (NO) by intra-peritoneal injection of lipopolysaccharide (LPS) (a bacterial endotoxin), and (b) to determine the effects of hepatic cell volume changes due to anisotonicity or by infusion of certain metabolites, stress hormones and by induction of oxidative stress on production of NO from the iNOS-induced perfused liver of singhi catfish. Intra-peritoneal injection of LPS led to induction of iNOS gene and localized tissue specific expression of iNOS enzyme with more production and accumulation of NO in different tissues of singhi catfish. Further, changes of hydration status/cell volume, caused either by anisotonicity or by infusion of certain metabolites such as glutamine plus glycine and adenosine, affected the NO production from the perfused liver of iNOS-induced singhi catfish. In general, increase of hydration status/cell swelling due to hypotonicity caused decrease, and decrease of hydration status/cell shrinkage due to hypertonicity caused increase of NO efflux from the perfused liver, thus suggesting that changes in hydration status/cell volume of hepatic cells serve as a potent modulator for regulating the NO production. Significant increase of NO efflux from the perfused liver was also observed while infusing the liver with stress hormones like epinephrine and norepinephrine, accompanied with decrease of hydration status/cell volume of hepatic cells. Further, oxidative stress, caused due to infusion of t-butyl hydroperoxide and hydrogen peroxide separately, in the perfused liver of singhi catfish, resulted in

  1. Induction of Inducible Nitric Oxide Synthase by Lipopolysaccharide and the Influences of Cell Volume Changes, Stress Hormones and Oxidative Stress on Nitric Oxide Efflux from the Perfused Liver of Air-Breathing Catfish, Heteropneustes fossilis.

    PubMed

    Choudhury, Mahua G; Saha, Nirmalendu

    2016-01-01

    The air-breathing singhi catfish (Heteropneustes fossilis) is frequently being challenged by bacterial contaminants, and different environmental insults like osmotic, hyper-ammonia, dehydration and oxidative stresses in its natural habitats throughout the year. The main objectives of the present investigation were to determine (a) the possible induction of inducible nitric oxide synthase (iNOS) gene with enhanced production of nitric oxide (NO) by intra-peritoneal injection of lipopolysaccharide (LPS) (a bacterial endotoxin), and (b) to determine the effects of hepatic cell volume changes due to anisotonicity or by infusion of certain metabolites, stress hormones and by induction of oxidative stress on production of NO from the iNOS-induced perfused liver of singhi catfish. Intra-peritoneal injection of LPS led to induction of iNOS gene and localized tissue specific expression of iNOS enzyme with more production and accumulation of NO in different tissues of singhi catfish. Further, changes of hydration status/cell volume, caused either by anisotonicity or by infusion of certain metabolites such as glutamine plus glycine and adenosine, affected the NO production from the perfused liver of iNOS-induced singhi catfish. In general, increase of hydration status/cell swelling due to hypotonicity caused decrease, and decrease of hydration status/cell shrinkage due to hypertonicity caused increase of NO efflux from the perfused liver, thus suggesting that changes in hydration status/cell volume of hepatic cells serve as a potent modulator for regulating the NO production. Significant increase of NO efflux from the perfused liver was also observed while infusing the liver with stress hormones like epinephrine and norepinephrine, accompanied with decrease of hydration status/cell volume of hepatic cells. Further, oxidative stress, caused due to infusion of t-butyl hydroperoxide and hydrogen peroxide separately, in the perfused liver of singhi catfish, resulted in

  2. Nitric Oxide-Induced Apoptosis of Human Dental Pulp Cells Is Mediated by the Mitochondria-Dependent Pathway

    PubMed Central

    Park, Min Young; Jeong, Yeon Jin; Kang, Gi Chang; Kim, Mi-Hwa; Kim, Sun Hun; Chung, Hyun-Ju

    2014-01-01

    Nitric oxide (NO) is recognized as a mediator and regulator of inflammatory responses. NO is produced by nitric oxide synthase (NOS), and NOS is abundantly expressed in the human dental pulp cells (HDPCs). NO produced by NOS can be cytotoxic at higher concentrations to HDPCs. However, the mechanism by which this cytotoxic pathway is activated in cells exposed to NO is not known. The purpose of this study was to elucidate the NO-induced cytotoxic mechanism in HDPCs. Sodium nitroprusside (SNP), a NO donor, reduced the viability of HDPCs in a dose- and time-dependent manner. We investigated the in vitro effects of nitric oxide on apoptosis of cultured HDPCs. Cells showed typical apoptotic morphology after exposure to SNP. Besides, the number of Annexin V positive cells was increased among the SNP-treated HDPCs. SNP enhanced the production of reactive oxygen species (ROS), and N-acetylcysteine (NAC) ameliorated the decrement of cell viability induced by SNP. However, a soluble guanylate cyclase inhibitor (ODQ) did not inhibited the decrement of cell viability induced by SNP. SNP increased cytochrome c release from the mitochondria to the cytosol and the ratio of Bax/Bcl-2 expression levels. Moreover, SNP-treated HDPCs elevated activities of caspase-3 and caspase-9. While pretreatment with inhibitors of caspase (z-VAD-fmk, z-DEVD-fmk) reversed the NO-induced apoptosis of HDPCs. From these results, it can be suggested that NO induces apoptosis of HDPCs through the mitochondria-dependent pathway mediated by ROS and Bcl-2 family, but not by the cyclic GMP pathway. PMID:24634593

  3. Estimates of nitric oxide production for lifting spacecraft reentry

    NASA Technical Reports Server (NTRS)

    Park, C.

    1971-01-01

    The amount of nitric oxide which may be produced by heating of air during an atmospheric reentry of a lifting spacecraft is estimated by three different methods. Two assume nitrogen fixation by the process of sudden freezing, and the third is a computer calculation using chemical rate equations.

  4. Salmonella enterica biofilm-mediated dispersal by nitric oxide donors in association with cellulose nanocrystal hydrogels.

    PubMed

    Marvasi, Massimiliano; Durie, Ian A; McLamore, Eric S; Vanegas, Diana C; Chaturvedi, Prachee

    2015-01-01

    Protected by extracellular polymers, microbes within biofilms are significantly more resistant to disinfectants. Current research has been instrumental in identifying nitric oxide donors and hydrogels as potential disinfectant additives. Nitric oxide (NO) donors are considered a very promising molecule as biofilm dispersal agents and hydrogels have recently attracted a lot of interest due to their biocompatible properties and ability to form stable thin films. When the NO donor MAHMA NONOate was dissolved in phosphate saline buffer, it was able to reduce the biomass of well-established biofilms up to 15% for at least 24 h of contact time. Encapsulation of MAHMA NONOate and molsidomine within a hydrogel composed of cellulose nanocrystals (CNC) has shown a synergistic effect in dispersing well-established biofilms: after 2 h of exposure, moderate but significant dispersion was measured. After 6 h of exposure, the number of cells transitioning from the biofilm to the planktonic state was up to 0.6 log higher when compared with non-treated biofilms. To further explore the transport processes of NO donors within hydrogels, we measured the nitric oxide flux from gels, at 25°C for a composite of 0.1 µM MAHMA NONOate-CNC. Nitric oxide diffuses up to 500 µm from the hydrogel surface, with flux decreasing according to Fick's law. 60% of NO was released from the hydrogel composite during the first 23 min. These data suggest that the combined treatments with nitric oxide donor and hydrogels may allow for new sustainable cleaning strategies.

  5. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis.

    PubMed

    Hyde, Embriette R; Andrade, Fernando; Vaksman, Zalman; Parthasarathy, Kavitha; Jiang, Hong; Parthasarathy, Deepa K; Torregrossa, Ashley C; Tribble, Gena; Kaplan, Heidi B; Petrosino, Joseph F; Bryan, Nathan S

    2014-01-01

    The microbiota of the human lower intestinal tract helps maintain healthy host physiology, for example through nutrient acquisition and bile acid recycling, but specific positive contributions of the oral microbiota to host health are not well established. Nitric oxide (NO) homeostasis is crucial to mammalian physiology. The recently described entero-salivary nitrate-nitrite-nitric oxide pathway has been shown to provide bioactive NO from dietary nitrate sources. Interestingly, this pathway is dependent upon oral nitrate-reducing bacteria, since humans lack this enzyme activity. This pathway appears to represent a newly recognized symbiosis between oral nitrate-reducing bacteria and their human hosts in which the bacteria provide nitrite and nitric oxide from nitrate reduction. Here we measure the nitrate-reducing capacity of tongue-scraping samples from six healthy human volunteers, and analyze metagenomes of the bacterial communities to identify bacteria contributing to nitrate reduction. We identified 14 candidate species, seven of which were not previously believed to contribute to nitrate reduction. We cultivated isolates of four candidate species in single- and mixed-species biofilms, revealing that they have substantial nitrate- and nitrite-reduction capabilities. Colonization by specific oral bacteria may thus contribute to host NO homeostasis by providing nitrite and nitric oxide. Conversely, the lack of specific nitrate-reducing communities may disrupt the nitrate-nitrite-nitric oxide pathway and lead to a state of NO insufficiency. These findings may also provide mechanistic evidence for the oral systemic link. Our results provide a possible new therapeutic target and paradigm for NO restoration in humans by specific oral bacteria.

  6. Metagenomic Analysis of Nitrate-Reducing Bacteria in the Oral Cavity: Implications for Nitric Oxide Homeostasis

    PubMed Central

    Hyde, Embriette R.; Andrade, Fernando; Vaksman, Zalman; Parthasarathy, Kavitha; Jiang, Hong; Parthasarathy, Deepa K.; Torregrossa, Ashley C.; Tribble, Gena; Kaplan, Heidi B.; Petrosino, Joseph F.; Bryan, Nathan S.

    2014-01-01

    The microbiota of the human lower intestinal tract helps maintain healthy host physiology, for example through nutrient acquisition and bile acid recycling, but specific positive contributions of the oral microbiota to host health are not well established. Nitric oxide (NO) homeostasis is crucial to mammalian physiology. The recently described entero-salivary nitrate-nitrite-nitric oxide pathway has been shown to provide bioactive NO from dietary nitrate sources. Interestingly, this pathway is dependent upon oral nitrate-reducing bacteria, since humans lack this enzyme activity. This pathway appears to represent a newly recognized symbiosis between oral nitrate-reducing bacteria and their human hosts in which the bacteria provide nitrite and nitric oxide from nitrate reduction. Here we measure the nitrate-reducing capacity of tongue-scraping samples from six healthy human volunteers, and analyze metagenomes of the bacterial communities to identify bacteria contributing to nitrate reduction. We identified 14 candidate species, seven of which were not previously believed to contribute to nitrate reduction. We cultivated isolates of four candidate species in single- and mixed-species biofilms, revealing that they have substantial nitrate- and nitrite-reduction capabilities. Colonization by specific oral bacteria may thus contribute to host NO homeostasis by providing nitrite and nitric oxide. Conversely, the lack of specific nitrate-reducing communities may disrupt the nitrate-nitrite-nitric oxide pathway and lead to a state of NO insufficiency. These findings may also provide mechanistic evidence for the oral systemic link. Our results provide a possible new therapeutic target and paradigm for NO restoration in humans by specific oral bacteria. PMID:24670812

  7. Combination of nitric oxide therapy, anti-oxidative therapy, low level laser therapy, plasma rich platelet therapy and stem cell therapy as a novel therapeutic application to manage the pain and treat many clinical conditions

    NASA Astrophysics Data System (ADS)

    Halasa, Salaheldin; Dickinson, Eva

    2014-02-01

    From hypertension to diabetes, cancer to HIV, stroke to memory loss and learning disorders to septic shock, male impotence to tuberculosis, there is probably no pathological condition where nitric oxide does not play an important role. Nitric oxide is an analgesic, immune-modulator, vasodilator, anti-apoptotic, growth modulator, angiogenetic, anti-thrombotic, anti-inflammatory and neuro-modulator. Because of the above actions of nitric oxide, many clinical conditions associated with abnormal Nitric oxide (NO) production and bioavailability. Our novel therapeutic approach is to restore the homeostasis of nitric oxide and replace the lost cells by combining nitric oxide therapy, anti-oxidative therapy, low level laser therapy, plasma rich platelet therapy and stem cell therapy.

  8. Effects of plasma nitric oxide levels on platelet activation in single donor apheresis and random donor concentrates.

    PubMed

    Büyükkağnici, Demet Iren; Ilhan, Osman; Kavas, Güzin Ozelçi; Arslan, Onder; Arat, Mutlu; Dalva, Klara; Ayyildiz, Erol

    2007-02-01

    P-selectin is an useful marker to determine platelet activation and nitric oxide inhibits platelet activation, secretion, adhesion and aggregation. The aim of this study was to investigate the relationship between nitric oxide and P-selectin values in both single donor apheresis and random donor platelet concentrates. According to the results of this study, we found that the best platelet concentrate is freshly prepared single donor apheresis concentrate and it is important to prevent activation at the beginning of the donation. Nitric oxide, which is synthesized from platelets during the storage period, is not sufficient to prevent platelet activation.

  9. A protective role for nitric oxide and salicylic acid for arsenite phytotoxicity in rice (Oryza sativa L.).

    PubMed

    Singh, Amit Pal; Dixit, Garima; Kumar, Amit; Mishra, Seema; Kumar, Navin; Dixit, Sameer; Singh, Pradyumna Kumar; Dwivedi, Sanjay; Trivedi, Prabodh Kumar; Pandey, Vivek; Dhankher, Om Prakash; Norton, Gareth J; Chakrabarty, Debasis; Tripathi, Rudra Deo

    2017-06-01

    Nitric oxide (NO) and salicylic acid (SA) are important signaling molecules in plant system. In the present study both NO and SA showed a protective role against arsenite (As III ) stress in rice plants when supplied exogenously. The application of NO and SA alleviated the negative impact of As III on plant growth. Nitric oxide supplementation to As III treated plants greatly decreased arsenic (As) accumulation in the roots as well as shoots/roots translocation factor. Arsenite exposure in plants decreased the endogenous levels of NO and SA. Exogenous supplementation of SA not only enhanced endogenous level of SA but also the level of NO through enhanced nitrate reductase (NR) activity, whether As III was present or not. Exogenously supplied NO decreased the NR activity and level of endogenous NO. Arsenic accumulation was positively correlated with the expression level of OsLsi1, a transporter responsible for As III uptake. The endogenous level of NO and SA were positively correlated to each other either when As III was present or not. This close relationship indicates that NO and SA work in harmony to modulate the signaling response in As III stressed plants. Copyright © 2017. Published by Elsevier Masson SAS.

  10. Nitric oxide induced by polyamines involves antioxidant systems against chilling stress in tomato (Lycopersicon esculentum Mill.) seedling.

    PubMed

    Diao, Qian-Nan; Song, Yong-Jun; Shi, Dong-Mei; Qi, Hong-Yan

    Polyamines (PAs) and nitric oxide (NO) are vital signals in modulating plant response to abiotic stress. However, to our knowledge, studies on the relationship between NO and PAs in response to cold stress in tomato are limited. Accordingly, in this study, we investigated the effects of putrescine (Put) and spermidine (Spd) on NO generation and the function of Spd-induced NO in the tolerance of tomato seedling under chilling stress. Spd increased NO release via the nitric oxide synthase (NOS)-like and nitrate reductase (NR) enzymatic pathways in the seedlings, whereas Put had no such effect. Moreover, H 2 O 2 might act as an upstream signal to stimulate NO production. Both exogenous NO donor (sodium nitroprusside (SNP)) and Spd enhanced chilling tolerance in tomato, thereby protecting the photosynthetic system from damage. Compared to chilling treatment alone, Spd enhanced the gene expressions of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), and their enzyme activities in tomato leaves. However, a scavenger or inhibitor of NO abolished Spd-induced chilling tolerance and blocked the increased expression and activity due to Spd of these antioxidant enzymes in tomato leaves under chilling stress. The results showed that NO induced by Spd plays a crucial role in tomato's response to chilling stress.

  11. Nitric oxide induced by polyamines involves antioxidant systems against chilling stress in tomato (Lycopersicon esculentum Mill.) seedling*#

    PubMed Central

    Diao, Qian-Nan; Song, Yong-Jun; Shi, Dong-Mei; Qi, Hong-Yan

    2016-01-01

    Polyamines (PAs) and nitric oxide (NO) are vital signals in modulating plant response to abiotic stress. However, to our knowledge, studies on the relationship between NO and PAs in response to cold stress in tomato are limited. Accordingly, in this study, we investigated the effects of putrescine (Put) and spermidine (Spd) on NO generation and the function of Spd-induced NO in the tolerance of tomato seedling under chilling stress. Spd increased NO release via the nitric oxide synthase (NOS)-like and nitrate reductase (NR) enzymatic pathways in the seedlings, whereas Put had no such effect. Moreover, H2O2 might act as an upstream signal to stimulate NO production. Both exogenous NO donor (sodium nitroprusside (SNP)) and Spd enhanced chilling tolerance in tomato, thereby protecting the photosynthetic system from damage. Compared to chilling treatment alone, Spd enhanced the gene expressions of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), and their enzyme activities in tomato leaves. However, a scavenger or inhibitor of NO abolished Spd-induced chilling tolerance and blocked the increased expression and activity due to Spd of these antioxidant enzymes in tomato leaves under chilling stress. The results showed that NO induced by Spd plays a crucial role in tomato’s response to chilling stress. PMID:27921397

  12. Nitric oxide in the upper stratosphere - Measurements and geophysical interpretation

    NASA Technical Reports Server (NTRS)

    Harvath, J. J.; Frederick, J. E.; Orsini, N.; Douglass, A. R.

    1983-01-01

    A rocket-borne parachute-deployed chemiluminescence instrument has obtained seven new measurements of atmospheric nitric oxide for altitudes between 30 and 50 km at mid-latitudes. These results, when combined with profiles measured by an earlier version of the instrument, cover all four seasons and provide a more comprehensive picture of upper stratospheric nitric oxide than has been available previously. At the highest altitudes studied, the vertical gradient in mixing ratio displays positive and negative values during different observations, with the largest values tending to appear at the greatest heights in summer. Examination of the differences among the profiles, which exceed a factor of 3 near the stratopause, suggests that they arise from the action of transport processes which carry air into the mid-latitude upper stratosphere from regions of the atmosphere that contain widely different odd-nitrogen abundances.

  13. Tolerance and withdrawal to anticonvulsant action of clonazepam: role of nitric oxide.

    PubMed

    Gupta, N; Bhargava, V K; Pandhi, P

    2000-05-01

    The use of clonazepam in the long-term treatment of epilepsy is greatly inhibited by its capacity to induce tolerance and dependence. A means of preventing or minimizing the tolerance and dependence inducing properties is required. Here the role of nitric oxide in preventing the development of tolerance and withdrawal hyperexcitability was studied. In Wistar rats, clonazepam at a dose of 0.25 mg/kg i.p. twice daily produced tolerance to its anticonvulsant action in 28 days. After sudden cessation of therapy it produced hyperexcitability. Tolerance was shown by a decrease in seizure threshold to near control value while withdrawal hyperexcitability was evidenced by a significant decrease in seizure threshold below the control value. L-Arginine (a donor of nitric oxide) and N omega-nitro-L-arginine (an inhibitor of nitric oxide synthase) were given in doses of 150 mg/kg and 8 mg/kg, respectively on day 1, 3, 7, 14, 21 and 28 with clonazepam. Withdrawal hyperexcitability was seen on day 1, 2 and 4 after cessation of drug therapy. Electroshock was used as a model of epilepsy and seizure thresholds were determined by an up and down method of Kimball et al. L-Arginine was found to inhibit the development tolerance as well as withdrawal hyperexcitability when administered with clonazepam while N omega-L-arginine did not prevent either the development of tolerance or withdrawal hyperexcitability in the electroshock model. In the PTZ model, however, L-arginine had no effect on the anticonvulsant action and withdrawal hyperexcitability while inhibition of nitric oxide synthesis prevented withdrawal hyperexcitability in PTZ-induced seizures.

  14. Nitric oxide-mediated pathogenesis during nicotine and alcohol consumption.

    PubMed

    Cooper, R G; Magwere, T

    2008-01-01

    Nitric oxide (NO) is formed by different cell types in response to a variety of physiological and patho-physiological stimuli. The intake of nicotine and/or alcohol has patho-physiological effects on organ function, and the progression of alcohol-/tobacco-related diseases seem to be directly influenced by NO-mediated mechanisms. Nicotine has an adverse influence on blood vessel functionality, repair and maintenance. Chronic nicotine exposure augments atherosclerosis by enhancing the production of proinflammatory cytokines by macrophages which then activate atherogenic NF-kB target genes in aortic lesions. Alcohol produces NO which speeds up the apoptosis of neutrophils. Alcohol sensitizes the liver to endotoxemic shock. Nitrosative stress and increased basal levels of NO contribute to tumour growth. The progression of disease seems to be directed via a definite NO-mediated mechanism. This review gives an insight into how intake of tobacco and alcohol may affect quality of life.

  15. Nitric Oxide Donor-Based Cancer Therapy: Advances and Prospects.

    PubMed

    Huang, Zhangjian; Fu, Junjie; Zhang, Yihua

    2017-09-28

    The increasing understanding of the role of nitric oxide (NO) in cancer biology has generated significant progress in the use of NO donor-based therapy to fight cancer. These advances strongly suggest the potential adoption of NO donor-based therapy in clinical practice, and this has been supported by several clinical studies in the past decade. In this review, we first highlight several types of important NO donors, including recently developed NO donors bearing a dinitroazetidine skeleton, represented by RRx-001, with potential utility in cancer therapy. Special emphasis is then given to the combination of NO donor(s) with other therapies to achieve synergy and to the hybridization of NO donor(s) with an anticancer drug/agent/fragment to enhance the activity or specificity or to reduce toxicity. In addition, we briefly describe inducible NO synthase gene therapy and nanotechnology, which have recently entered the field of NO donor therapy.

  16. [Nitric oxide pathway and female lower urinary tract. Physiological and pathophysiological role].

    PubMed

    Gamé, X; Rischmann, P; Arnal, J-F; Malavaud, B

    2013-09-01

    The aim was to review the literature on nitric oxide and female lower urinary tract. A literature review through the PubMed library until December, 31 2012 was carried out using the following keywords: lower urinary tract, bladder, urethra, nervous central system, innervation, female, women, nitric oxide, phosphodiesterase, bladder outlet obstruction, urinary incontinence, overactive bladder, urinary tract infection. Two nitric oxide synthase isoforms, the neuronal (nNOS) and the endothelial (eNOS), are constitutively expressed in the lower urinary tract. Nevertheless, nNOS is mainly expressed in the bladder neck and the urethra. In the bladder, NO modulates the afferent neurons activity. In pathological condition, inducible NOS expression induces an increase in detrusor contractility and bladder wall thickness and eNOS facilitates Escherichia coli bladder wall invasion inducing recurrent urinary tract infections. In the urethra, NO play a major role in smooth muscle cells relaxation. The NO pathway plays a major role in the female lower urinary tract physiology and physiopathology. While it acts mainly on bladder outlet, in pathological condition, it is involved in bladder dysfunction occurrence. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. NITRIC OXIDE INHIBITORY ACTIVITY OF STRYCHNOS SPINOSA (LOGANIACEAE) LEAF EXTRACTS AND FRACTIONS

    PubMed Central

    AI, Isa; JP, Dzoyem; SA, Adebayo; MM, Suleiman; JN, Eloff

    2016-01-01

    Background: The study was aimed at determining the anti-inflammatory activity of fractions and extracts obtained from Strychnos spinosa leaves on a mediator of inflammation nitric oxide (NO). Materials and Methods: Leaves were extracted with acetone and separated into fractions with different polarities by solvent-solvent fractionation. The Griess assay was used to determine the nitric oxide (NO) inhibitory activity. Cellular toxicity was determined by “using the MTT reduction assay”. Results: With the exception of the ethyl acetate fraction which had an IC50 >750 μg/mL, all extracts and fractions had significant nitric oxide-inhibitory activity. The most active being the water fraction, chloroform fraction and the dichloromethane/methanol extracts with IC50 values of 88.43 μg/mL, 96.72 μg/mL and 115.62 μg/mL, respectively. The extracts and fractions had low cytotoxicity on macrophage U937 cell lines. Conclusion: Extracts and fractions of Strychnos spinosa leaves may be promising sources of natural anti-inflammatory agents. Findings obtained from this study showed that Strychnos spinosa leaves possess promising anti-inflammatory action and could be used in the treatment of inflammation-related conditions. PMID:28480356

  18. NITRIC OXIDE INHIBITORY ACTIVITY OF STRYCHNOS SPINOSA (LOGANIACEAE) LEAF EXTRACTS AND FRACTIONS.

    PubMed

    Ai, Isa; Jp, Dzoyem; Sa, Adebayo; Mm, Suleiman; Jn, Eloff

    2016-01-01

    The study was aimed at determining the anti-inflammatory activity of fractions and extracts obtained from Strychnos spinosa leaves on a mediator of inflammation nitric oxide (NO). Leaves were extracted with acetone and separated into fractions with different polarities by solvent-solvent fractionation. The Griess assay was used to determine the nitric oxide (NO) inhibitory activity. Cellular toxicity was determined by "using the MTT reduction assay". With the exception of the ethyl acetate fraction which had an IC 50 >750 μg/mL, all extracts and fractions had significant nitric oxide-inhibitory activity. The most active being the water fraction, chloroform fraction and the dichloromethane/methanol extracts with IC 50 values of 88.43 μg/mL, 96.72 μg/mL and 115.62 μg/mL, respectively. The extracts and fractions had low cytotoxicity on macrophage U937 cell lines. Extracts and fractions of Strychnos spinosa leaves may be promising sources of natural anti-inflammatory agents. Findings obtained from this study showed that Strychnos spinosa leaves possess promising anti-inflammatory action and could be used in the treatment of inflammation-related conditions.

  19. Energetic particle-induced enhancements of stratospheric nitric acid

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.

    1994-01-01

    Inclusion of complete ion chemistry in the calculation of minor species production during energetic particle deposition events leads to significant enhancement in the calculated nitric acid concentration during precipitation. An ionization rate of 1.2 x 10(exp 3)/cu cm/s imposed for 1 day increases HNO3 from 3 x 10(exp 5) to 6 x 10(exp 7)/cu cm at 50 km. With an ionization rate of 600 cu cm/s, the maximum HNO3 is 3 x 10(exp 7)/cu cm. Calculations which neglect negative ions predict the nitric acid will fall during precipitation events. The decay time for converting HNO3 into odd nitrogen and hydrogen is more than 1 day for equinoctial periods at 70 deg latitude. Examination of nitric acid data should yield important information on the magnitude and frequency of charged particle events.

  20. Cancer cell metabolism and the modulating effects of nitric oxide.

    PubMed

    Chang, Ching-Fang; Diers, Anne R; Hogg, Neil

    2015-02-01

    Altered metabolic phenotype has been recognized as a hallmark of tumor cells for many years, but this aspect of the cancer phenotype has come into greater focus in recent years. NOS2 (inducible nitric oxide synthase of iNOS) has been implicated as a component in many aggressive tumor phenotypes, including melanoma, glioblastoma, and breast cancer. Nitric oxide has been well established as a modulator of cellular bioenergetics pathways, in many ways similar to the alteration of cellular metabolism observed in aggressive tumors. In this review we attempt to bring these concepts together with the general hypothesis that one function of NOS2 and NO in cancer is to modulate metabolic processes to facilitate increased tumor aggression. There are many mechanisms by which NO can modulate tumor metabolism, including direct inhibition of respiration, alterations in mitochondrial mass, oxidative inhibition of bioenergetic enzymes, and the stimulation of secondary signaling pathways. Here we review metabolic alterations in the context of cancer cells and discuss the role of NO as a potential mediator of these changes. Copyright © 2015. Published by Elsevier Inc.

  1. Cancer Cell Metabolism and the Modulating Effects of Nitric Oxide

    PubMed Central

    Chang, Ching-Fang; Diers, Anne R.; Hogg, Neil

    2016-01-01

    Altered metabolic phenotype has been recognized as a hallmark of tumor cells for many years, but this aspect of the cancer phenotype has come into greater focus in recent years. NOS2 (inducible nitric oxide synthase of iNOS) has been implicated as a component in many aggressive tumor phenotypes, including melanoma, glioblastoma and breast cancer. Nitric oxide has been well established as a modulator of cellular bioenergetics pathways, in many ways similar to the alteration of cellular metabolism observed in aggressive tumors. In this review we attempt to bring these concepts together with the general hypothesis that one function of NOS2 and NO in cancer is to modulate metabolic processes to facilitate increased tumor aggression. There are many mechanisms by which NO can modulate tumor metabolism, including direct inhibition of respiration, alterations in mitochondrial mass, oxidative inhibition of bioenergetic enzymes, and the stimulation of secondary signaling pathways. Here we review metabolic alterations in the context of cancer cells and discuss the role of NO as a potential mediator of these changes. PMID:25464273

  2. Inhibitory effects of indole α-lipoic acid derivatives on nitric oxide production in LPS/IFNγ activated RAW 264.7 macrophages.

    PubMed

    Karabay, Arzu Zeynep; Koc, Aslı; Gurkan-Alp, A Selen; Buyukbingol, Zeliha; Buyukbingol, Erdem

    2015-04-01

    Alpha-lipoic acid (α-lipoic acid) is a potent antioxidant compound that has been shown to possess anti-inflammatory effects. RAW 264.7 macrophages produce various inflammatory mediators such as nitric oxide, IL-1β, IL-6 and TNF-alpha upon activation with LPS (Lipopolysaccharide) and IFNγ (interferon gamma). In this study, the effect of 12 synthetic indole α-lipoic acid derivatives on nitric oxide production and iNOS (inducible nitric oxide synthase) protein expression in LPS/IFNγ activated RAW 264.7 macrophages was determined. Cell proliferation, nitric oxide levels and iNOS protein expression were examined with thiazolyl blue tetrazolium blue test, griess assay and western blot, respectively. Our results showed that all of the indole α-lipoic acid derivatives showed significant inhibitory effects on nitric oxide production and iNOS protein levels (p < 0.05). The most active compounds were identified as compound I-4b, I-4e and II-3b. In conclusion, these indole α-lipoic acid derivatives may have the potential for treatment of inflammatory conditions related with high nitric oxide production. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Constitutive Expression of Mammalian Nitric Oxide Synthase in Tobacco Plants Triggers Disease Resistance to Pathogens

    PubMed Central

    Chun, Hyun Jin; Park, Hyeong Cheol; Koo, Sung Cheol; Lee, Ju Huck; Park, Chan Young; Choi, Man Soo; Kang, Chang Ho; Baek, Dongwon; Cheong, Yong Hwa; Yun, Dae-Jin; Chung, Woo Sik; Cho, Moo Je; Kim, Min Chul

    2012-01-01

    Nitric oxide (NO) is known for its role in the activation of plant defense responses. To examine the involvement and mode of action of NO in plant defense responses, we introduced calmodulin-dependent mammalian neuronal nitric oxide synthase (nNOS), which controls the CaMV35S promoter, into wild-type and NahG tobacco plants. Constitutive expression of nNOS led to NO production and triggered spontaneous induction of leaf lesions. Transgenic plants accumulated high amounts of H2O2, with catalase activity lower than that in the wild type. nNOS transgenic plants contained high levels of salicylic acid (SA), and they induced an array of SA-, jasmonic acid (JA)-, and/or ethylene (ET)-related genes. Consequently, NahG co-expression blocked the induction of systemic acquired resistance (SAR)-associated genes in transgenic plants, implying SA is involved in NO-mediated induction of SAR genes. The transgenic plants exhibited enhanced resistance to a spectrum of pathogens, including bacteria, fungi, and viruses. Our results suggest a highly ranked regulatory role for NO in SA-, JA-, and/or ET-dependent pathways that lead to disease resistance. PMID:23124383

  4. Clomiphene citrate increases nitric oxide, interleukin-10 and reduces matrix metalloproteinase-9 in women with polycystic ovary syndrome.

    PubMed

    Sylus, Angel Mercy; Nandeesha, Hanumanthappa; Sridhar, Magadi Gopalakrishna; Chitra, Thyagaraju; Sreenivasulu, Karli

    2018-06-08

    Matrix metalloproteinase-9, Nitric oxide and inflammation plays a role in the pathogenesis of poly cystic ovary syndrome (PCOS). Even though these parameters are altered in PCOS, the effect of clomiphene citrate on them has not been studied till date. The present study was done to assess the effect of clomiphene citrate on matrix metalloproteinase-9, nitric oxide and interleukin-10 levels in women with PCOS. 72 women diagnosed with PCOS were enrolled in the study. Matrix metalloproteinase-9, nitric oxide and interleukin-10 levels were compared at baseline and after three weeks following Clomiphene citrate treatment. Clomiphene citrate increases both nitric oxide (p = 0.03) and interleukin-10 (p < 0.001) levels and reduces matrix metalloproteinase-9 levels (p < 0.001) in women with PCOS. It also improves the ovulation rate (52.8%) and clinical pregnancy rate (19.4%) in PCOS. Also there was a significant reduction in matrix metalloproteinase-9 levels in both the ovulatory (p < 0.001) and conceived groups (p = 0.024) compared to non ovulatory and non conceived group. There was no difference in nitric oxide and interleukin-10 levels in ovulatory and conceived groups compared to non ovulatory and non conceived group. We conclude that clomiphene citrate increases the levels of nitric oxide and interleukin-10 and decreases the matrix metalloproteinase - 9 levels and improves the ovulation rate and clinical pregnancy rate in PCOS. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Phosphate binding reduces aortic angiotensin-converting enzyme and enhances nitric oxide bioactivity in experimental renal insufficiency.

    PubMed

    Eräranta, Arttu; Törmänen, Suvi; Kööbi, Peeter; Vehmas, Tuija I; Lakkisto, Päivi; Tikkanen, Ilkka; Moilanen, Eeva; Niemelä, Onni; Mustonen, Jukka; Pörsti, Ilkka

    2014-01-01

    Disturbed calcium-phosphorus metabolism is associated with increased kidney angiotensin-converting enzyme (ACE) in experimental chronic renal insufficiency (CRI). However, information about the effects of phosphate binding and loading on vascular ACE is lacking. Fifteen weeks after 5/6 nephrectomy (NX), rats were placed on a phosphate-binding (NX+Ca, 3.0% Ca), phosphate-loading (NX+Pi, 1.5% Pi), or control diet for 12 weeks (NX and sham). Aortic ACE, blood pressure, plasma phosphate, and parathyroid hormone were increased in the NX and NX+Pi groups, but were reduced with phosphate binding. Endothelium-mediated relaxations of isolated mesenteric conduit artery rings to acetylcholine were impaired in the NX and NX+Pi groups, but did not differ from sham in NX+Ca rats. Experiments with nitric oxide (NO) synthase inhibition in vitro suggested that the NO-mediated component of acetylcholine response was lower in the NX and NX+Pi groups, but did not differ from sham in NX+Ca rats. In all NX groups, aortic endothelial NO synthase (eNOS) was reduced, while plasma and urine concentrations of NO metabolites were increased. Aortic nitrated proteins and calcification were increased in the NX and NX+Pi groups when compared with the NX+Ca and sham groups. Hypertension in the NX model of CRI was associated with reduced vasorelaxation, decreased eNOS, and increased ACE and nitrated proteins in the aorta. Phosphate binding with calcium carbonate enhanced vasorelaxation via endogenous NO and suppressed elevation of ACE and nitrated proteins, suggesting reduced vascular oxidative stress. Our findings support the view that correction of the calcium-phosphorus balance prevents CRI-induced vascular pathophysiology.

  6. The Expression of Type-1 and Type-2 Nitric Oxide Synthase in Selected Tissues of the Gastrointestinal Tract during Mixed Mycotoxicosis

    PubMed Central

    Gajęcka, Magdalena; Stopa, Ewa; Tarasiuk, Michał; Zielonka, Łukasz; Gajęcki, Maciej

    2013-01-01

    The aim of the study was to verify the hypothesis that intoxication with low doses of mycotoxins leads to changes in the mRNA expression levels of nitric oxide synthase-1 and nitric oxide synthase-2 genes in tissues of the gastrointestinal tract and the liver. The experiment involved four groups of immature gilts (with body weight of up to 25 kg) which were orally administered zearalenone in a daily dose of 40 μg/kg BW (group Z, n = 18), deoxynivalenol at 12 μg/kg BW (group D, n = 18), zearalenone and deoxynivalenol (group M, n = 18) or placebo (group C, n = 21) over a period of 42 days. The lowest mRNA expression levels of nitric oxide synthase-1 and nitric oxide synthase-2 genes were noted in the sixth week of the study, in particular in group M. Our results suggest that the presence of low mycotoxin doses in feed slows down the mRNA expression of both nitric oxide synthase isomers, which probably lowers the concentrations of nitric oxide, a common precursor of inflammation. PMID:24284830

  7. Study on relationship of nitric oxide, oxidation, peroxidation, lipoperoxidation with chronic chole-cystitis

    PubMed Central

    Zhou, Jun-Fu; Cai, Dong; Zhu, You-Gen; Yang, Jin-Lu; Peng, Cheng-Hong; Yu, Yang-Hai

    2000-01-01

    AIM: To study relationship of injury induced by nitric oxide, oxidation, peroxidation, lipoperoxidation with chronic cholecystitis. METHODS: The values of plasma nitric oxide (P-NO), plasma vitamin C (P-VC), plasma vitamin E (P-VE), plasma β-carotene (P-β-CAR), plasma lipoperoxides (P-LPO), erythrocyte superoxide dismutase (E-SOD), erythrocyte catalase (E-CAT), erythrocyte glutathione peroxidase (E-GSH-Px) activities and erythrocyte lipoperoxides (E-LPO) level in 77 patients with chro nic cholecystitis and 80 healthy control subjects were determined, differences of the above average values between t he patient group and the control group and differences of the average values bet ween preoperative and postoperative patients were analyzed and compared, linear regression and correlation of the disease course with the above determination values as well as the stepwise regression and correlation of the course with th e values were analyzed. RESULTS: Compared with the control group, the average values of P-NO, P-LPO, E-LPO were significantly increased (P < 0.01), and of P-VC, P-VE, P-β-CAR, E-SOD, E-CAT and E-GSH-Px decreased (P < 0.01) in the patient group. The analysis of the lin ear regression and correlation s howed that with prolonging of the course, the values of P-NO, P-LPO and E-LPO in the patients were gradually ascended and the values of P-VC, P-VE, P-β-CAR, E-SOD, E-CAT and E-GSH-Px descended (P < 0.01). The analysis of the stepwise regression and correlation indicated that the correlation of the course with P-NO, P-VE and P-β-CAR values was the closest. Compared with the preoperative patients, the average values of P-NO, P-LPO and E-LPO were significantly decre ased (P < 0.01) and the average values of P-VC, E-SOD, E-CAT and E-GSH-Px in postoperative pa tients increased (P < 0.01) in postoperative patients. But there was no signif icant difference in the average values of P-VE, P-β-CAR preope rative and postoperative patients. CONCLUSION: Chronic

  8. Fumagillin Prodrug Nanotherapy Suppresses Macrophage Inflammatory Response via Endothelial Nitric Oxide

    PubMed Central

    2015-01-01

    Antiangiogenesis has been extensively explored for the treatment of a variety of cancers and certain inflammatory processes. Fumagillin, a mycotoxin produced by Aspergillus fumigatus that binds methionine aminopeptidase 2 (MetAP-2), is a potent antiangiogenic agent. Native fumagillin, however, is poorly soluble and extremely unstable. We have developed a lipase-labile fumagillin prodrug (Fum-PD) that eliminated the photoinstability of the compound. Using αvβ3-integrin-targeted perfluorocarbon nanocarriers to deliver Fum-PD specifically to angiogenic vessels, we effectively suppressed clinical disease in an experimental model of rheumatoid arthritis (RA). The exact mechanism by which Fum-PD-loaded targeted nanoparticles suppressed inflammation in experimental RA, however, remained unexplained. We herein present evidence that Fum-PD nanotherapy indirectly suppresses inflammation in experimental RA through the local production of endothelial nitric oxide (NO). Fum-PD-induced NO activates AMP-activated protein kinase (AMPK), which subsequently modulates macrophage inflammatory response. In vivo, NO-induced AMPK activation inhibits mammalian target of rapamycin (mTOR) activity and enhances autophagic flux, as evidenced by p62 depletion and increased autolysosome formation. Autophagy in turn mediates the degradation of IkappaB kinase (IKK), suppressing the NF-κB p65 signaling pathway and inflammatory cytokine release. Inhibition of NO production by NG-nitro-l-arginine methyl ester (l-NAME), a nitric oxide synthase inhibitor, reverses the suppression of NF-κB-mediated inflammatory response induced by Fum-PD nanotherapy. These unexpected results uncover an activity of Fum-PD nanotherapy that may be further explored in the treatment of angiogenesis-dependent diseases. PMID:24941020

  9. Estriol-induced fibrinolysis due to the activation of plasminogen to plasmin by nitric oxide synthesis in platelets.

    PubMed

    Jana, Pradipta; Maiti, Smarajit; Kahn, Nighat N; Sinha, Asru K

    2015-04-01

    Estriol, an oestrogen, at 0.6 nmol/l was reported to inhibit ADP-induced platelet aggregation through nitric oxide synthesis. As nitric oxide has been reported to cause fibrinolysis due to the activation of plasminogen to plasmin, the role of estriol as a fibrinolytic agent was investigated. Also, the mechanism of estriol-induced nitric oxide synthesis in anucleated platelets was investigated. The estriol-induced lysis of platelet-rich plasma (PRP) clot was determined by photography of the clot lysis and by the assay of fibrin degradation products in the lysate and was obtained by SDS-PAGE. Nitric oxide was determined by methemoglobin method. The platelet membrane protein was isolated from the platelets by using Triton X-100 (0.05% v/v). The binding of estriol to the protein was determined by Scatchard plot by using an ELISA for estriol. Estriol at 0.6 nmol/l was found to lyse the clotted PRP due to fibrinolysis that produced fibrin degradation products in the lysate. The amino acid analysis of the platelet membrane protein, which resembles with nitric oxide synthase (NOS) activity, was activated nearly 10-fold over the control in the presence of estriol and was identified to be a human serum albumin precursor (Mr. 69 kDa) that binds to estriol with Kd1 of 6.0 × 10 mol/l and 39 ± 2 molecules of estriol bound the NOS molecule. The estriol-induced nitric oxide is capable of inducing fibrinolysis of the clotted PRP. The binding of estriol to platelet membrane NOS activated the enzyme in the absence of DNA in the platelet.

  10. Bletilla striata polysaccharide stimulates inducible nitric oxide synthase and proinflammatory cytokine expression in macrophages.

    PubMed

    Diao, Huajia; Li, Xin; Chen, Jiangning; Luo, Yi; Chen, Xi; Dong, Lei; Wang, Chunming; Zhang, Chenyu; Zhang, Junfeng

    2008-02-01

    Bletilla striata, a traditional Chinese medicine, has been used for the treatment of alimentary canal mucosal damage, ulcers, bleeding, bruises and burns. B. striata polysaccharide (BSP) isolated from B. striata was found to enhance vascular endothelial cell (EC) proliferation and vascular endothelial growth factor (VEGF) expression. However, the wound healing mechanism of BSP is not well understood. In this study, the results show that treatment with BSP induces coordinate changes in inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-alpha) and interleukin 1 beta (IL-1beta) mRNA levels and enhances the expression of these cytokines, but has no effect on interferon gamma (IFN-gamma) level. In this study, we partially elucidate the wound healing mechanism of BSP.

  11. Nitric oxide-releasing polyacrylonitrile disperses biofilms formed by wound-relevant pathogenic bacteria.

    PubMed

    Craven, M; Kasper, S H; Canfield, M J; Diaz-Morales, R R; Hrabie, J A; Cady, N C; Strickland, A D

    2016-04-01

    To test the antimicrobial and antibiofilm properties of a nitric oxide (NO)-releasing polymer against wound-relevant bacterial pathogens. Using a variety of 96-well plate assay systems that include standard well plates and the minimum biofilm eradication concentration biofilm assay well plate, a NO-releasing polymer based on (poly)acrylonitrile (PAN/NO) was studied for antimicrobial and antibiofilm activity against the common wound pathogens Pseudomonas aeruginosa (PAO1), Staphylococcus aureus (Mu50) and Enterococcus faecalis (V583). The polymer was capable of dispersing single-species biofilms of Ps. aeruginosa as well as a more clinically relevant multispecies biofilm that incorporates Ps. aeruginosa along with Staph. aureus and Ent. faecalis. PAN/NO also synergistically enhanced the susceptibility of the multispecies biofilms to the common broad-spectrum antibiotic, ciprofloxacin. Multiple in vitro biocompatibility assays show that PAN/NO has limited potential for mammalian cytotoxicity. This study demonstrates the feasibility of utilizing the NO-releasing polymer, PAN/NO, to manage biofilms formed by wound-relevant pathogens, and provides proof-of-concept for use of this NO-releasing polymer platform across multiple disciplines where bacterial biofilms pose significant problems. In the clinical sector, bacterial biofilms represent a substantial treatment challenge for health care professionals and are widely recognized as a key factor in prolonging patient morbidity. This study highlights the potential role for the ubiquitous signalling molecule nitric oxide (NO) as an antibiofilm therapy. © 2016 The Society for Applied Microbiology.

  12. The nitric oxide prodrug JS-K and its structural analogues as cancer therapeutic agents.

    PubMed

    Maciag, Anna E; Saavedra, Joseph E; Chakrapani, Harinath

    2009-09-01

    Nitric oxide (NO) prodrugs of the diazeniumdiolate class are routinely used as reliable sources of nitric oxide in chemical and biological laboratory settings. O(2)-(2,4-dinitrophenyl) diazeniumdiolates, which are derivatized forms of ionic diazeniumdiolates, have been found to show potent anti-proliferative activity in a variety of cancer cells, presumably through the effects of NO. One important member of this class of diazeniumdiolates, O(2)-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K), has shown promise as a novel cancer therapeutic agent in a number of animal models. This review describes the developments in chemical and biochemical characterization and structure-activity relationship of JS-K and its analogues. In addition, some molecular mechanistic insights into the observed anti-proliferative activity of JS-K are discussed. Finally, a structural motif is presented for O(2)-(aryl) diazeniumdiolate nitric oxide prodrugs that show potency comparable with that of JS-K.

  13. Calcium mobilization in HeLa cells induced by nitric oxide.

    PubMed

    Huang, Yimei; Zheng, Liqin; Yang, Hongqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen

    2014-01-01

    Nitric oxide (NO) has been proposed to be involved in tumor growth and metastasis. However, the mechanism by which nitric oxide modulates cancer cell growth and metastasis on cellular and molecular level is still not fully understood. This work utilized confocal microscopy and fluorescence microplate reader to investigate the effects of exogenous NO on the mobilization of calcium, which is one of the regulators of cell migration, in HeLa cells. The results show that NO elevates calcium in concentration-dependent manner in HeLa cells. And the elevation of calcium induced by NO is due to calcium influx and calcium release from intracellular calcium stores. Moreover, calcium release from intracellular stores is dominant. Furthermore, calcium release from mitochondria is one of the modulation pathways of NO. These findings would contribute to recognizing the significance of NO in cancer cell proliferation and metastasis. © Wiley Periodicals, Inc.

  14. Low concentrations of salicylic acid delay methyl jasmonate-induced leaf senescence by up-regulating nitric oxide synthase activity.

    PubMed

    Ji, Yingbin; Liu, Jian; Xing, Da

    2016-09-01

    In plants, extensive efforts have been devoted to understanding the crosstalk between salicylic acid (SA) and jasmonic acid (JA) signaling in pathogen defenses, but this crosstalk has scarcely been addressed during senescence. In this study, the effect of SA application on methyl jasmonate (MeJA)-induced leaf senescence was assessed. We found that low concentrations of SA (1-50 μM) played a delayed role against the senescence promoted by MeJA. Furthermore, low concentrations of SA enhanced plant antioxidant defenses and restricted reactive oxygen species (ROS) accumulation in MeJA-treated leaves. When applied simultaneously with MeJA, low concentrations of SA triggered a nitric oxide (NO) burst, and the elevated NO levels were linked to the nitric oxide associated 1 (NOA1)-dependent pathway via nitric oxide synthase (NOS) activity. The ability of SA to up-regulate plant antioxidant defenses, reduce ROS accumulation, and suppress leaf senescence was lost in NO-deficient Atnoa1 plants. In a converse manner, exogenous addition of NO donors increased the plant antioxidant capacity and lowered the ROS levels in MeJA-treated leaves. Taken together, the results indicate that SA at low concentrations counteracts MeJA-induced leaf senescence through NOA1-dependent NO signaling and strengthening of the antioxidant defense. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Umbilical mesenchymal stromal cells provide intestinal protection through nitric oxide dependent pathways.

    PubMed

    Jensen, Amanda R; Drucker, Natalie A; Ferkowicz, Michael J; Markel, Troy A

    2018-04-01

    Umbilical-derived mesenchymal stromal cells (USCs) have shown promise in the protection of ischemic organs. We hypothesized that USCs would improve mesenteric perfusion, preserve intestinal histological architecture, and limit inflammation by nitric oxide-dependent mechanisms following intestinal ischemia/reperfusion (IR) injury. Adult wild-type C57BL/6J (WT) and endothelial nitric oxide synthase knock out (eNOS KO) mice were used: (1) WT IR + vehicle, (2) WT IR + USC, (3) eNOS KO IR + vehicle, and (4) eNOS KO IR + USC. Mice were anesthetized, and a midline laparotomy was performed. The superior mesenteric artery was clamped with a nonoccluding clamp for 60-min. Following IR, mice were treated with an injection of 250 μL phosphate buffered saline or 2 × 10 6 USCs suspended in 250-μL phosphate buffered saline solution. Mesenteric perfusion images were acquired using laser Doppler imaging. Perfusion was analyzed as a percentage of baseline. At 24 h, mice were euthanized, and intestines were harvested. Intestines were evaluated for injury, and data were analyzed using the Mann-Whitney or Kruskal-Wallis tests. Intestinal mesenteric perfusion was significantly improved in WT mice treated with USC therapy compared with eNOS KOs. Intestinal histological architecture was preserved with USC therapy in WT mice. However, in eNOS KO mice, this benefit was abolished. Finally, the presence of several cytokines and growth factors were significantly improved in WT mice compared with eNOS KO mice treated with USCs. The benefits of USC-mediated therapy following intestinal IR injury likely occur via nitric oxide-dependent pathways. Further studies are required to define the molecular mechanisms by which USCs activate endothelial nitric oxide synthase to bring about their protective effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The role of nitric oxide in low level light therapy

    NASA Astrophysics Data System (ADS)

    Hamblin, Michael R.

    2008-02-01

    The use of low levels of visible or near infrared light for reducing pain, inflammation and edema, promoting healing of wounds, deeper tissues and nerves, and preventing tissue damage by reducing cellular apoptosis has been known for almost forty years since the invention of lasers. Despite many reports of positive findings from experiments conducted in vitro, in animal models and in randomized controlled clinical trials, LLLT remains controversial. Firstly the biochemical mechanisms underlying the positive effects are incompletely understood, and secondly the complexity of choosing amongst a large number of illumination parameters has led to the publication of a number of negative studies as well as many positive ones. This review will focus on the role of nitric oxide in the cellular and tissue effects of LLLT. Red and near-IR light is primarily absorbed by cytochrome c oxidase (unit four in the mitochondrial respiratory chain). Nitric oxide produced in the mitochondria can inhibit respiration by binding to cytochrome c oxidase and competitively displacing oxygen, especially in stressed or hypoxic cells. If light absorption displaced the nitric oxide and thus allowed the cytochrome c oxidase to recover and cellular respiration to resume, this would explain many of the observations made in LLLT. Why the effect is only seen in hypoxic, stressed or damaged cells or tissues? How the effects can keep working for some time (hours or days) postillumination? Why increased NO concentrations are sometimes measured in cell culture or in animals? How blood flow can be increased? Why angiogenesis is sometimes increased after LLLT in vivo?

  17. Role of nitric oxide in adenosine-induced vasodilation in humans

    NASA Technical Reports Server (NTRS)

    Costa, F.; Biaggioni, I.; Robertson, D. (Principal Investigator)

    1998-01-01

    Vasodilation is one of the most prominent effects of adenosine and one of the first to be recognized, but its mechanism of action is not completely understood. In particular, there is conflicting information about the potential contribution of endothelial factors. The purpose of this study was to explore the role of nitric oxide in the vasodilatory effect of adenosine. Forearm blood flow responses to intrabrachial adenosine infusion (125 microg/min) were assessed with venous occlusion plethysmography during intrabrachial infusion of saline or the nitric oxide synthase inhibitor NG-monomethyl-L-arginine (L-NMMA) (12.5 mg/min). Intrabrachial infusions of acetylcholine (50 microg/min) and nitroprusside (3 microg/min) were used as a positive and negative control, respectively. These doses were chosen to produce comparable levels of vasodilation. In a separate study, a second saline infusion was administered instead of L-NMMA to rule out time-related effects. As expected, pretreatment with L-NMMA reduced acetylcholine-induced vasodilation; 50 microg/min acetylcholine increased forearm blood flow by 150+/-43% and 51+/-12% during saline and L-NMMA infusion, respectively (P<.01, n=6). In contrast, L-NMMA did not affect the increase in forearm blood flow produced by 3 microg/min nitroprusside (165+/-30% and 248+/-41% during saline and L-NMMA, respectively) or adenosine (173+/-48% and 270+/-75% during saline and L-NMMA, respectively). On the basis of our observations, we conclude that adenosine-induced vasodilation is not mediated by nitric oxide in the human forearm.

  18. Nitric oxide-dependent activation of CaMKII increases diastolic sarcoplasmic reticulum calcium release in cardiac myocytes in response to adrenergic stimulation.

    PubMed

    Curran, Jerry; Tang, Lifei; Roof, Steve R; Velmurugan, Sathya; Millard, Ashley; Shonts, Stephen; Wang, Honglan; Santiago, Demetrio; Ahmad, Usama; Perryman, Matthew; Bers, Donald M; Mohler, Peter J; Ziolo, Mark T; Shannon, Thomas R

    2014-01-01

    Spontaneous calcium waves in cardiac myocytes are caused by diastolic sarcoplasmic reticulum release (SR Ca(2+) leak) through ryanodine receptors. Beta-adrenergic (β-AR) tone is known to increase this leak through the activation of Ca-calmodulin-dependent protein kinase (CaMKII) and the subsequent phosphorylation of the ryanodine receptor. When β-AR drive is chronic, as observed in heart failure, this CaMKII-dependent effect is exaggerated and becomes potentially arrhythmogenic. Recent evidence has indicated that CaMKII activation can be regulated by cellular oxidizing agents, such as reactive oxygen species. Here, we investigate how the cellular second messenger, nitric oxide, mediates CaMKII activity downstream of the adrenergic signaling cascade and promotes the generation of arrhythmogenic spontaneous Ca(2+) waves in intact cardiomyocytes. Both SCaWs and SR Ca(2+) leak were measured in intact rabbit and mouse ventricular myocytes loaded with the Ca-dependent fluorescent dye, fluo-4. CaMKII activity in vitro and immunoblotting for phosphorylated residues on CaMKII, nitric oxide synthase, and Akt were measured to confirm activity of these enzymes as part of the adrenergic cascade. We demonstrate that stimulation of the β-AR pathway by isoproterenol increased the CaMKII-dependent SR Ca(2+) leak. This increased leak was prevented by inhibition of nitric oxide synthase 1 but not nitric oxide synthase 3. In ventricular myocytes isolated from wild-type mice, isoproterenol stimulation also increased the CaMKII-dependent leak. Critically, in myocytes isolated from nitric oxide synthase 1 knock-out mice this effect is ablated. We show that isoproterenol stimulation leads to an increase in nitric oxide production, and nitric oxide alone is sufficient to activate CaMKII and increase SR Ca(2+) leak. Mechanistically, our data links Akt to nitric oxide synthase 1 activation downstream of β-AR stimulation. Collectively, this evidence supports the hypothesis that CaMKII is

  19. Modulation of Lung Function by Increased Nitric Oxide Production

    PubMed Central

    Yadav, Ram Lochan; Yadav, Prakash Kumar

    2017-01-01

    Introduction Cigarette smoking reduces endogenous Nitric Oxide (NO) production by reducing Nitric Oxide Synthase (NOS) activity, which is one of the probable reason for increased rate of pulmonary diseases in smokers. Nitric oxide/oxygen blends are used in critical care to promote capillary and pulmonary dilation to treat several pulmonary vascular diseases. Among several supplements, the highest NOS activation has been proved for garlic with its unique mechanism of action. Aim To investigate the effect of dietary supplementation of NO producing garlic on pulmonary function of smokers. Materials and Methods The study was conducted on 40 healthy non-smoker (Group A) and 40 chronic smoker (Group B) males with matched age, height and weight. The pulmonary function tests- Forced Vital Capacity (FVC), Forced Expiratory Volume in one second (FEV1), FEV1/FVC ratio and Peak Expiratory Flow Rate (PEFR) were performed in non-smokers (Group A), smokers (Group B) and smokers after supplementation of approximately 4 gm of raw garlic (2 garlic cloves) per day for three months (Group C). Endogenous NO production was studied in smokers before and after garlic supplementation and in non-smokers without supplementation. The data obtained were compared between the groups using unpaired student’s t-test. The p-value considered significant at <0.05. Results Our results showed that FVC, FEV1, FEV1/FVC ratio and PEFR were reduced significantly along with a significant decreased NOS activity among smokers (Group B) when compared with non-smokers (Group A). Garlic supplementation significantly improved the pulmonary function tests in Group C in comparison to Group B by increasing NOS activity. Conclusion Dietary supplementation of garlic, which might be by increasing NOS activity, has significantly improved pulmonary functions in smokers. PMID:28764150

  20. Dysfunctional nitric oxide signalling increases risk of myocardial infarction.

    PubMed

    Erdmann, Jeanette; Stark, Klaus; Esslinger, Ulrike B; Rumpf, Philipp Moritz; Koesling, Doris; de Wit, Cor; Kaiser, Frank J; Braunholz, Diana; Medack, Anja; Fischer, Marcus; Zimmermann, Martina E; Tennstedt, Stephanie; Graf, Elisabeth; Eck, Sebastian; Aherrahrou, Zouhair; Nahrstaedt, Janja; Willenborg, Christina; Bruse, Petra; Brænne, Ingrid; Nöthen, Markus M; Hofmann, Per; Braund, Peter S; Mergia, Evanthia; Reinhard, Wibke; Burgdorf, Christof; Schreiber, Stefan; Balmforth, Anthony J; Hall, Alistair S; Bertram, Lars; Steinhagen-Thiessen, Elisabeth; Li, Shu-Chen; März, Winfried; Reilly, Muredach; Kathiresan, Sekar; McPherson, Ruth; Walter, Ulrich; Ott, Jurg; Samani, Nilesh J; Strom, Tim M; Meitinger, Thomas; Hengstenberg, Christian; Schunkert, Heribert

    2013-12-19

    Myocardial infarction, a leading cause of death in the Western world, usually occurs when the fibrous cap overlying an atherosclerotic plaque in a coronary artery ruptures. The resulting exposure of blood to the atherosclerotic material then triggers thrombus formation, which occludes the artery. The importance of genetic predisposition to coronary artery disease and myocardial infarction is best documented by the predictive value of a positive family history. Next-generation sequencing in families with several affected individuals has revolutionized mutation identification. Here we report the segregation of two private, heterozygous mutations in two functionally related genes, GUCY1A3 (p.Leu163Phefs*24) and CCT7 (p.Ser525Leu), in an extended myocardial infarction family. GUCY1A3 encodes the α1 subunit of soluble guanylyl cyclase (α1-sGC), and CCT7 encodes CCTη, a member of the tailless complex polypeptide 1 ring complex, which, among other functions, stabilizes soluble guanylyl cyclase. After stimulation with nitric oxide, soluble guanylyl cyclase generates cGMP, which induces vasodilation and inhibits platelet activation. We demonstrate in vitro that mutations in both GUCY1A3 and CCT7 severely reduce α1-sGC as well as β1-sGC protein content, and impair soluble guanylyl cyclase activity. Moreover, platelets from digenic mutation carriers contained less soluble guanylyl cyclase protein and consequently displayed reduced nitric-oxide-induced cGMP formation. Mice deficient in α1-sGC protein displayed accelerated thrombus formation in the microcirculation after local trauma. Starting with a severely affected family, we have identified a link between impaired soluble-guanylyl-cyclase-dependent nitric oxide signalling and myocardial infarction risk, possibly through accelerated thrombus formation. Reversing this defect may provide a new therapeutic target for reducing the risk of myocardial infarction.

  1. THE ESTROGENS / CHROMIUM INTERACTION IN THE NITRIC OXIDE GENERATION.

    PubMed

    Sawicka, Ewa; Piwowar, Agnieszka; Musiala, Tomasz; Dlugosz, Anna

    2017-05-01

    The interaction of estrogens with environmental toxins in free radicals generation: reactive oxygen species (ROS) or reactive nitrogen species (RNS) which participates in cancerogenesis is not yet recognized. Chromium(VI) is widely present in environment. One of its toxicity pathway is free radicals generation. Estrogens have the ability to scavenge free radicals, but may also act as prooxidants. Both chromium(VI) and estrogens are classified by International Agency for Research on Cancer (IARC) as carcinogens, so synergistic effect seems very dangerous. The interaction of chromium and estrogens in ROS generation are partly described but there are no reports on estrogen/chromium interaction on nitric oxide (NO) generation. The aim of the study was to examine the interaction of chromium(VI) and 17-p-estradiol (E2) on NO level in human blood as well as the role of E2 metabolites: 4-hydroxyestradiol (4-OHE2) and 16a-hydroxyestrone (16α-OHE1) in these processes. The NO level was estimated with the diagnostic kit (Nitric Oxide Colorimetric Detection Kit from Arbor Assays) in human blood in vitm. The results showed that Cr(VI) in used concentration (0.5; 1.0 and 5.0 gg/mL) decreases significantly NO level in blood, acting antagonistically to E2 and 4-OHE2. Estrogens (E2, 4-OHE2 and 16α-OHEI) do not protect against inhibiting effect of Cr(VI) on nitric oxide generation in blood because after combined exposure the decreased production of NO in blood was noted. In conclusion, presented results provide the information about the character of estrogen/Cr(VI) interaction in NO level in human blood. It is important knowledge for cardio protected effect e.g., hormone replacement therapy in environmental or occupational exposure to Cr(VI), chromium supplementation, also important for cancer risk evaluation.

  2. Detection of nitric oxide in the dark cloud L134N

    NASA Technical Reports Server (NTRS)

    Mcgonagle, D.; Irvine, W. M.; Minh, Y. C.; Ziurys, L. M.

    1990-01-01

    The first detection of interstellar nitric oxide (NO) in a cold dark cloud, L134N is reported. Nitric oxide was observed by means of its two 2 Pi 1/2, J = 3/2 - 1/2, rotational transitions at 150.2 and 150.5 GHz, which occur because of Lambda-doubling. The inferred column density for L134N is about 5 x 10 to the 14th/sq cm toward the SO peak in that cloud. This value corresponds to a fractional abundance relative to molecular hydrogen of about 6 x 10 to the -8th and is in good agreement with predictions of quiescent cloud ion-molecule chemistry. NO was not detected toward the dark cloud TMC-1 at an upper limit of 3 x 10 to the -8th or less.

  3. Ribavirin in Cancer Immunotherapies: Controlling Nitric Oxide Augments Cytotoxic Lymphocyte Function

    PubMed Central

    Kast, Richard E

    2003-01-01

    Abstract Either ribavirin (RBV) or cyclophosphamide (CY) can shift an immune response from Th2 toward a Th1 cytokine profile. CY is used in this role in various current cancer immunotherapy attempts but with mixed success. More potent and reliable immunoadjuvants and Th1 response biasing methods are needed. RBV is used today mainly to augment interferon-alpha treatment of hepatitis C. RBV shifts an immune response from Th2 toward Th1 more effectively than CY and may be a safe and useful adjuvant for current cancer immunotherapeutic efforts. RBV is thought to act by inhibition of tetrahydrobiopterin synthesis. Tetrahydrobiopterin is an essential cofactor for all known isoforms of nitric oxide synthase. Lowered nitric oxide favors Th1 development as high levels favor Th2 weighting. PMID:12659664

  4. Circadian variation in the effects of nitric oxide synthase inhibitors on body temperature, feeding and activity in rats.

    PubMed

    Kamerman, Peter; Mitchell, Duncan; Laburn, Helen

    2002-02-01

    We have investigated whether there is circadian variation in the effects of nitric oxide synthase inhibitors on body temperature, physical activity and feeding. We used nocturnally active Sprague-Dawley rats, housed at approximately 24 degrees C with a 12:12 h light:dark cycle (lights on 07:00 hours) and provided with food and water ad libitum. Nitric oxide synthesis was inhibited by intraperitoneal injection of the unspecific nitric oxide synthase inhibitor N-nitro- L-arginine methyl ester ( L-NAME, 100, 50, 25, 10 mg/kg), or the relatively selective inducible nitric oxide synthase inhibitor aminoguanidine (100, 50 mg/kg), during the day ( approximately 09:00 hours) or night ( approximately 21:00 hours). Body temperature and physical activity were measured using radiotelemetry, while food intake was calculated by weighing each animal's food before as well as 12 and 24 h after each injection. We found that daytime injection of L-NAME and aminoguanidine had no effect on daytime body temperature. However, daytime injection of both drugs did decrease nocturnal food intake ( P<0.05) and activity ( P<0.05). When injected at night, L-NAME reduced night-time body temperature ( P<0.01), activity ( P<0.05) and food intake ( P<0.05) in a dose-dependent manner, but night-time injection of aminoguanidine inhibited only night-time activity ( P<0.05). The effects of nitric oxide synthase inhibition on body temperature, feeding and activity therefore are primarily a consequence of inhibiting constitutively expressed nitric oxide synthase, and are subject to circadian variation.

  5. Diurnal variation of nitric oxide in the upper stratosphere

    NASA Technical Reports Server (NTRS)

    Kondo, Y.; Aimedieu, P.; Pirre, M.; Ramaroson, R.; Matthews, W. A.

    1990-01-01

    Two recent measurements of the temporal variation of nitric oxide at constant altitude near 40 km are reported. The observations were made at float altitude with a balloon-borne chemiluminescence detector together with in situ ozone measurements. The first measurement was made at 44 N on September 17, 1987, at an altitude of 40 km from before sunrise until 1000 LT. The second observation was made at the same latitude on June 18, 1988, at 39 km from 0800 to 1230 LT. At an altitude of 40 km, nitric oxide was observed to start increasing very rapidly at sunrise when the solar zenith angle reached about 95 deg. After the rapid initial buildup, the rate of NO increase stabilized for 3 hours at about 1.2 ppbv/hour. Near 1100 LT at 39 km in summer, the NO mixing ratio was observed to become nearly constant. These features of the diurnal variation of NO are in accord with the temporal variation expected from a time-dependent zero-dimensional photochemical model.

  6. Requirement of argininosuccinate lyase for systemic nitric oxide production.

    PubMed

    Erez, Ayelet; Nagamani, Sandesh C S; Shchelochkov, Oleg A; Premkumar, Muralidhar H; Campeau, Philippe M; Chen, Yuqing; Garg, Harsha K; Li, Li; Mian, Asad; Bertin, Terry K; Black, Jennifer O; Zeng, Heng; Tang, Yaoping; Reddy, Anilkumar K; Summar, Marshall; O'Brien, William E; Harrison, David G; Mitch, William E; Marini, Juan C; Aschner, Judy L; Bryan, Nathan S; Lee, Brendan

    2011-11-13

    Nitric oxide (NO) is crucial in diverse physiological and pathological processes. We show that a hypomorphic mouse model of argininosuccinate lyase (encoded by Asl) deficiency has a distinct phenotype of multiorgan dysfunction and NO deficiency. Loss of Asl in both humans and mice leads to reduced NO synthesis, owing to both decreased endogenous arginine synthesis and an impaired ability to use extracellular arginine for NO production. Administration of nitrite, which can be converted into NO in vivo, rescued the manifestations of NO deficiency in hypomorphic Asl mice, and a nitric oxide synthase (NOS)-independent NO donor restored NO-dependent vascular reactivity in humans with ASL deficiency. Mechanistic studies showed that ASL has a structural function in addition to its catalytic activity, by which it contributes to the formation of a multiprotein complex required for NO production. Our data demonstrate a previously unappreciated role for ASL in NOS function and NO homeostasis. Hence, ASL may serve as a target for manipulating NO production in experimental models, as well as for the treatment of NO-related diseases.

  7. Role of nitric oxide in regulating stomatal apertures

    PubMed Central

    Ribeiro, Dimas M; Bright, Jo; Confraria, Ana; Harrison, Judith; Barros, Raimundo S; Desikan, Radhika; Neill, Steven J; Hancock, John T

    2009-01-01

    During stomatal closure, nitric oxide (NO) operates as one of the key intermediates in the complex, abscisic acid (ABA)-mediated, guard cell signaling network that regulates this process. However, data concerning the role of NO in stomatal closure that occurs in turgid vs. dehydrated plants is limited. The data presented demonstrate that, while there is a requirement for NO during the ABA-induced stomatal closure of turgid leaves, such a requirement does not exist for ABA-enhanced stomatal closure observed to occur during conditions of rapid dehydration. The data also indicate that the ABA signaling pathway must be both functional and to some degree activated for guard cell NO signaling to occur. These observations are in line with the idea that the effects of NO in guard cells are mediated via a Ca2+-dependent rather than a Ca2+-independent ABA signaling pathway. It appears that there is a role for NO in the fine tuning of the stomatal apertures of turgid leaves that occurs in response to fluctuations in the prevailing environment. PMID:19816112

  8. The nitric oxide pathway and possible therapeutic options in pre-eclampsia

    PubMed Central

    Johal, Tamanrit; Lees, Christoph C; Everett, Thomas R; Wilkinson, Ian B

    2014-01-01

    Pre-eclampsia is a serious multisystem disorder with diverse clinical manifestations. Although not causal, endothelial dysfunction and reduced nitric oxide bioavailability are likely to play an important role in the maternal and fetal pathophysiology of this condition. Lack of treatment modalities that can target the underlying pathophysiological changes and reverse the endothelial dysfunction frequently leads to iatrogenic preterm delivery of the fetus, causing neonatal morbidity and mortality, and the condition itself is associated with short- and longer term maternal morbidity and mortality. Drugs that target various components of the nitric oxide–soluble guanylyl cyclase pathway can help to increase NO bioavailability. The purpose of this review is to outline the current status of clinical research involving these therapeutic modalities in the context of pre-eclampsia, with the focus being on the following: nitric oxide donors, including organic nitrates and S-nitrosothiols; l-arginine, the endogenous precursor of NO; inhibitors of cyclic guanosine 3′,5′-monophosphate breakdown, including sildenafil; and other novel inhibitors of NO donor metabolism. The advantages and limitations of each modality are outlined, and scope for development into established therapeutic options for pre-eclampsia is explored. PMID:24313856

  9. Caloric restriction improves endothelial dysfunction during vascular aging: Effects on nitric oxide synthase isoforms and oxidative stress in rat aorta.

    PubMed

    Zanetti, Michela; Gortan Cappellari, Gianluca; Burekovic, Ismet; Barazzoni, Rocco; Stebel, Marco; Guarnieri, Gianfranco

    2010-11-01

    Aging is characterized by activation of inducible over endothelial nitric oxide synthase (iNOS and eNOS), impaired antioxidant activity and increased oxidative stress, which reduces nitric oxide bioavailability and causes endothelial dysfunction. Caloric restriction (CR) blunts oxidative stress. We investigated whether CR impacts endothelial dysfunction in aging and the underlying mechanisms. Aortas from young (YC, 6 months of age) and old (OC, 24 months of age) rats ad-libitum fed and from old rats caloric-restricted for 3-weeks (OR, 26%) were investigated. Endothelium-dependent vasorelaxation was impaired in OC, associated with reduced eNOS and increased iNOS expression (P<0.05). Aortic nitrite was similar in OC and YC, but the contribution of calcium-independent NOS to total NOS activity was increased whereas that of calcium-dependent NOS was reduced (p≤0.0003). Plasma thiobarbituric acid-reactive substances (TBARS) were elevated in OC as well as aortic nitrotyrosine (P<0.05). Expression of manganese superoxide dismutase (MnSOD) and total SOD activity were impaired in OC (P<0.05 vs. YC), whereas copper-zinc (CuZn) SOD expression was similar in OC and YC. CR restored endothelial dysfunction in old rats, reduced iNOS expression, total nitrite and calcium-independent NOS activity in aorta (P<0.05) without changes in eNOS expression and calcium-dependent NOS activity. Sirtuin-1 expression did not differ among groups. Plasma TBARS and aortic nitrotyrosine were reduced (P<0.05) in OR compared with OC. In OR CuZnSOD protein and SOD activity increased (P<0.05) without changes in MnSOD expression. Short-term CR improves age-related endothelial dysfunction. Reversal of altered iNOS/eNOS ratio, reduced oxidative stress and increased SOD enzyme activity rather than enhanced NO production appear to be involved in this effect. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Review of Federal Reference Method for Ozone: Nitric Oxide-Chemiluminescence

    EPA Science Inventory

    •The proposed new FRM measurement principle for ozone is based on quantitative measurement of the chemiluminescence emission from the gas-phase reaction of ozone in an air sample with nitric oxide (NO).•The chemiluminescence from the NO-O3 reaction (with excess NO) is p...

  11. Lower urinary tract symptoms/benign prostatic hypertrophy and vascular function: Role of the nitric oxide-phosphodiesterase type 5-cyclic guanosine 3',5'-monophosphate pathway.

    PubMed

    Higashi, Yukihito

    2017-06-01

    It is well known that there is an association of lower urinary tract symptoms/benign prostatic hypertrophy with cardiovascular disease, suggesting that lower urinary tract symptoms/benign prostatic hypertrophy is a risk factor for cardiovascular events. Vascular function, including endothelial function and vascular smooth muscle function, is involved in the pathogenesis, maintenance and development of atherosclerosis, leading to cardiovascular events. Vascular dysfunction per se should also contribute to lower urinary tract symptoms/benign prostatic hypertrophy. Both lower urinary tract symptoms/benign prostatic hypertrophy and vascular dysfunction have cardiovascular risk factors, such as hypertension, dyslipidemia, diabetes mellitus, aging, obesity and smoking. Inactivation of the phosphodiesterase type 5-cyclic guanosine 3',5'-monophosphate-nitric oxide pathway causes lower urinary tract symptoms/benign prostatic hypertrophy through an enhancement of sympathetic nervous activity, endothelial dysfunction, increase in Rho-associated kinase activity and vasoconstriction, and decrease in blood flow of pelvic viscera. Both endogenous nitric oxide and exogenous nitric oxide act as vasodilators on vascular smooth muscle cells through an increase in the content of cyclic guanosine 3',5'-monophosphate, which is inactivated by phosphodiesterase type 5. In a clinical setting, phosphodiesterase type 5 inhibitors are widely used in patients with lower urinary tract symptoms/benign prostatic hypertrophy. Phosphodiesterase type 5 inhibitors might have beneficial effects on vascular function through not only inhibition of cyclic guanosine 3',5'-monophosphate degradation, but also increases in testosterone levels and nitric oxide bioavailability, increase in the number and improvement of the function of endothelial progenitor cells, and decrease in insulin resistance. In the present review, the relationships between lower urinary tract symptoms/benign prostatic hypertrophy, the

  12. Nitric Oxide Enhances Desiccation Tolerance of Recalcitrant Antiaris toxicaria Seeds via Protein S-Nitrosylation and Carbonylation

    PubMed Central

    Bai, Xuegui; Yang, Liming; Tian, Meihua; Chen, Jinhui; Shi, Jisen; Yang, Yongping; Hu, Xiangyang

    2011-01-01

    The viability of recalcitrant seeds is lost following stress from either drying or freezing. Reactive oxygen species (ROS) resulting from uncontrolled metabolic activity are likely responsible for seed sensitivity to drying. Nitric oxide (NO) and the ascorbate-glutathione cycle can be used for the detoxification of ROS, but their roles in the seed response to desiccation remain poorly understood. Here, we report that desiccation induces rapid accumulation of H2O2, which blocks recalcitrant Antiaris toxicaria seed germination; however, pretreatment with NO increases the activity of antioxidant ascorbate-glutathione pathway enzymes and metabolites, diminishes H2O2 production and assuages the inhibitory effects of desiccation on seed germination. Desiccation increases the protein carbonylation levels and reduces protein S-nitrosylation of these antioxidant enzymes; these effects can be reversed with NO treatment. Antioxidant protein S-nitrosylation levels can be further increased by the application of S-nitrosoglutathione reductase inhibitors, which further enhances NO-induced seed germination rates after desiccation and reduces desiccation-induced H2O2 accumulation. These findings suggest that NO reinforces recalcitrant seed desiccation tolerance by regulating antioxidant enzyme activities to stabilize H2O2 accumulation at an appropriate concentration. During this process, protein carbonylation and S-nitrosylation patterns are used as a specific molecular switch to control antioxidant enzyme activities. PMID:21674063

  13. Inducible nitric oxide synthase expression is reduced in cystic fibrosis murine and human airway epithelial cells.

    PubMed Central

    Kelley, T J; Drumm, M L

    1998-01-01

    It has been reported that exhaled nitric oxide levels are reduced in cystic fibrosis (CF) patients. We have examined the inducible isoform of nitric oxide synthase (iNOS) in the airways by immunostaining and found that iNOS is constitutively expressed in the airway epithelia of non-CF mouse and human tissues but essentially absent in the epithelium of CF airways. We explored potential consequences of lost iNOS expression and found that iNOS inhibition significantly increases mouse nasal trans-epithelial potential difference, and hindered the ability of excised mouse lungs to prevent growth of Pseudomonas aeruginosa. The absence of continuous nitric oxide production in epithelial cells of CF airways may play a role in two CF-associated characteristics: hyperabsorption of sodium and susceptibility to bacterial infections. PMID:9739054

  14. Nitric oxide prevents a pathogen-permissive granulocytic inflammation during tuberculosis.

    PubMed

    Mishra, Bibhuti B; Lovewell, Rustin R; Olive, Andrew J; Zhang, Guoliang; Wang, Wenfei; Eugenin, Eliseo; Smith, Clare M; Phuah, Jia Yao; Long, Jarukit E; Dubuke, Michelle L; Palace, Samantha G; Goguen, Jon D; Baker, Richard E; Nambi, Subhalaxmi; Mishra, Rabinarayan; Booty, Matthew G; Baer, Christina E; Shaffer, Scott A; Dartois, Veronique; McCormick, Beth A; Chen, Xinchun; Sassetti, Christopher M

    2017-05-15

    Nitric oxide contributes to protection from tuberculosis. It is generally assumed that this protection is due to direct inhibition of Mycobacterium tuberculosis growth, which prevents subsequent pathological inflammation. In contrast, we report that nitric oxide primarily protects mice by repressing an interleukin-1- and 12/15-lipoxygenase-dependent neutrophil recruitment cascade that promotes bacterial replication. Using M. tuberculosis mutants as indicators of the pathogen's environment, we inferred that granulocytic inflammation generates a nutrient-replete niche that supports M. tuberculosis growth. Parallel clinical studies indicate that a similar inflammatory pathway promotes tuberculosis in patients. The human 12/15-lipoxygenase orthologue, ALOX12, is expressed in cavitary tuberculosis lesions; the abundance of its products correlates with the number of airway neutrophils and bacterial burden and a genetic polymorphism that increases ALOX12 expression is associated with tuberculosis risk. These data suggest that M. tuberculosis exploits neutrophilic inflammation to preferentially replicate at sites of tissue damage that promote contagion.

  15. Mediated electrochemical oxidation of organic wastes using a Co (III) mediator in a nitric acid based system

    DOEpatents

    Balazs, G.B.; Chiba, Z.; Lewis, P.R.; Nelson, N.; Steward, G.A.

    1999-06-15

    An electrochemical cell with a Co(III) mediator and nitric acid electrolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the mediator oxidizes the organics and insoluble transuranic compounds and is regenerated at the anode until the organics are converted to CO[sub 2]. The nitric acid is an excellent oxidant that facilitates the destruction of the organic components. The anode is not readily attacked by the nitric acid solution, thus the cell can be used for extended continual operation without electrode replacement. 2 figs.

  16. Mediated electrochemical oxidation of organic wastes using a Co (III) mediator in a nitric acid based system

    DOEpatents

    Balazs, G. Bryan; Chiba, Zoher; Lewis, Patricia R.; Nelson, Norvell; Steward, G. Anthony

    1999-01-01

    An electrochemical cell with a Co(III) mediator and nitric acid electrolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the mediator oxidizes the organics and insoluble transuranic compounds and is regenerated at the anode until the organics are converted to CO.sub.2. The nitric acid is an excellent oxidant that facilitates the destruction of the organic components. The anode is not readily attacked by the nitric acid solution, thus the cell can be used for extended continual operation without electrode replacement.

  17. Nitric oxide synthase inhibition reduces muscle inflammation and necrosis in modified muscle use

    NASA Technical Reports Server (NTRS)

    Pizza, F. X.; Hernandez, I. J.; Tidball, J. G.

    1998-01-01

    The objective of this study was to determine the role of nitric oxide in muscle inflammation, fiber necrosis, and apoptosis of inflammatory cells in vivo. The effects of nitric oxide synthase (NOS) inhibition on the concentrations of neutrophils, ED1+ and ED2+ macrophages, apoptotic inflammatory cells, and necrotic muscle fibers in rats subjected to 10 days of hindlimb unloading and 2 days of reloading were determined. Administration of NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) significantly reduced the concentrations of neutrophils, ED1+ and ED2+ macrophages, and necrotic fibers in soleus muscle relative to water-treated controls. The concentration of apoptotic inflammatory cells was also significantly lower for L-NAME-treated animals compared with water-treated controls. However, the proportion of the inflammatory cell population that was apoptotic did not differ between L-NAME-treated and control animals, suggesting that L-NAME treatment did not decrease inflammatory cell populations by increasing the frequency of apoptosis. Thus, nitric oxide or one of its intermediates promotes muscle inflammation and fiber necrosis during modified muscle use and plays no more than a minor role in the resolution of muscle inflammation by inducing apoptosis of inflammatory cells.

  18. Immune-relevant thrombocytes of common carp undergo parasite-induced nitric oxide-mediated apoptosis.

    PubMed

    Fink, Inge R; Ribeiro, Carla M S; Forlenza, Maria; Taverne-Thiele, Anja; Rombout, Jan H W M; Savelkoul, Huub F J; Wiegertjes, Geert F

    2015-06-01

    Common carp thrombocytes account for 30-40% of peripheral blood leukocytes and are abundant in the healthy animals' spleen, the thrombopoietic organ. We show that, ex vivo, thrombocytes from healthy carp express a large number of immune-relevant genes, among which several cytokines and Toll-like receptors, clearly pointing at immune functions of carp thrombocytes. Few studies have described the role of fish thrombocytes during infection. Carp are natural host to two different but related protozoan parasites, Trypanoplasma borreli and Trypanosoma carassii, which reside in the blood and tissue fluids. We used the two parasites to undertake controlled studies on the role of fish thrombocytes during these infections. In vivo, but only during infection with T. borreli, thrombocytes were massively depleted from the blood and spleen leading to severe thrombocytopenia. Ex vivo, addition of nitric oxide induced a clear and rapid apoptosis of thrombocytes from healthy carp, supporting a role for nitric oxide-mediated control of immune-relevant thrombocytes during infection with T. borreli. The potential advantage for parasites to selectively deplete the host of thrombocytes via nitric oxide-induced apoptosis is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Auxin-induced nitric oxide, cGMP and gibberellins were involved in the gravitropism

    NASA Astrophysics Data System (ADS)

    Cai, Weiming; Hu, Liwei; Hu, Xiangyang; Cui, Dayong; Cai, Weiming

    Gravitropism is the asymmetric growth or curvature of plant organs in response to gravistimulation. There is a complex signal transduction cascade which involved in the differential growth of plants in response to changes in the gravity vector. The role of auxin in gravitropism has been demonstrated by many experiments, but little is known regarding the molecular details of such effects. In our studies before, mediation of the gravitropic bending of soybean roots and rice leaf sheath bases by nitric oxide, cGMP and gibberellins, are induced by auxin. The asymmetrical distribution of nitric oxide, cGMP and gibberellins resulted from the asymmetrical synthesis of them in bending sites. In soybean roots, inhibitions of NO and cGMP synthesis reduced differential NO and cGMP accumulation respectively, which both of these effects can lead to the reduction of gravitropic bending. Gibberellin-induced OsXET, OsEXPA4 and OsRWC3 were also found involved in the gravitropic bending. These data indicated that auxin-induced nitric oxide, cGMP and gibberellins were involved in the gravitropism. More experiments need to prove the more detailed mechanism of them.

  20. Processes regulating nitric oxide emissions from soils.

    PubMed

    Pilegaard, Kim

    2013-07-05

    Nitric oxide (NO) is a reactive gas that plays an important role in atmospheric chemistry by influencing the production and destruction of ozone and thereby the oxidizing capacity of the atmosphere. NO also contributes by its oxidation products to the formation of acid rain. The major sources of NO in the atmosphere are anthropogenic emissions (from combustion of fossil fuels) and biogenic emission from soils. NO is both produced and consumed in soils as a result of biotic and abiotic processes. The main processes involved are microbial nitrification and denitrification, and chemodenitrification. Thus, the net result is complex and dependent on several factors such as nitrogen availability, organic matter content, oxygen status, soil moisture, pH and temperature. This paper reviews recent knowledge on processes forming NO in soils and the factors controlling its emission to the atmosphere. Schemes for simulating these processes are described, and the results are discussed with the purpose of scaling up to global emission.

  1. Umbelliferone prevents oxidative stress, inflammation and hematological alterations, and modulates glutamate-nitric oxide-cGMP signaling in hyperammonemic rats.

    PubMed

    Germoush, Mousa O; Othman, Sarah I; Al-Qaraawi, Maha A; Al-Harbi, Hanan M; Hussein, Omnia E; Al-Basher, Gadh; Alotaibi, Mohammed F; Elgebaly, Hassan A; Sandhu, Mansur A; Allam, Ahmed A; Mahmoud, Ayman M

    2018-06-01

    Hepatic encephalopathy (HE) is a serious neuropsychiatric complication that occurs as a result of liver failure. Umbelliferone (UMB; 7-hydroxycoumarin) is a natural product with proven hepatoprotective activity; however, nothing has yet been reported on its protective effect against hyperammonemia, the main culprit behind the symptoms of HE. Here, we evaluated the effect of UMB against ammonium chloride (NH 4 Cl)-induced hyperammonemia, oxidative stress, inflammation and hematological alterations in rats. We demonstrated the modulatory role of UMB on the glutamate-nitric oxide (NO)-cGMP pathways in the cerebrum of rats. Rats received intraperitoneal injections of NH 4 Cl (3 times/week) for 8 weeks and concomitantly received 50 mg/kg UMB. NH 4 Cl-induced rats showed significantly elevated blood ammonia and liver function markers. Lipid peroxidation and NO were increased in the liver and cerebrum of rats while the antioxidant defenses were declined. UMB significantly reduced blood ammonia, liver function markers, lipid peroxidation and NO, and enhanced the antioxidant defenses in NH 4 Cl-induced rats. UMB significantly prevented anemia, leukocytosis, thrombocytopenia and prolongation of PT and aPTT. Hyperammonemic rats showed elevated levels of cerebral TNF-α, IL-1β and glutamine as well as increased activity and expression of Na + /K + -ATPase, effects that were significantly reversed by UMB. In addition, UMB down-regulated nitric oxide synthase and soluble guanylate cyclase in the cerebrum of hyperammonemic rats. In conclusion, this study provides evidence that UMB protects against hyperammonemia via attenuation of oxidative stress and inflammation. UMB prevents hyperammonemia associated hematological alterations and therefore represents a promising protective agent against the deleterious effects of excess ammonia. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Nitric oxide system and diabetic nephropathy

    PubMed Central

    2014-01-01

    About 30% of patients with type 2 diabetes mellitus develop clinically overt nephropathy. Hyperglycemia is necessary, but not sufficient, to cause the renal damage that leads to kidney failure. Diabetic nephropathy (DN) is a multifactorial disorder that results from interaction between environmental and genetic factors. In the present article we will review the role of the nitric oxide synthase (NOS) in the pathogenesis of DN. Nitric oxide (NO) is a short-lived gaseous lipophilic molecule produced in almost all tissues, and it has three distinct genes that encode three NOS isoforms: neuronal (nNOS), inducible (iNOS) and endothelial (eNOS). The correct function of the endothelium depends on NO, participating in hemostasis control, vascular tone regulation, proliferation of vascular smooth muscle cells and blood pressure homeostasis, among other features. In the kidney, NO plays many different roles, including control of renal and glomerular hemodynamics. The net effect of NO in the kidney is to promote natriuresis and diuresis, along with renal adaptation to dietary salt intake. The eNOS gene has been considered a potential candidate gene for DN susceptibility. Three polymorphisms have been extensively researched: G894T missense mutation (rs1799983), a 27-bp repeat in intron 4, and the T786C single nucleotide polymorphism (SNP) in the promoter (rs2070744). However, the potential link between eNOS gene variants and the induction and progression of DN yielded contradictory results in the literature. In conclusion, NOS seems to be involve in the development and progression of DN. Despite the discrepant results of many studies, the eNOS gene is also a good candidate gene for DN. PMID:24520999

  3. Oxidative damage induced by heat stress could be relieved by nitric oxide in Trichoderma harzianum LTR-2.

    PubMed

    Yu, Yang; Yang, Zijun; Guo, Kai; Li, Zhe; Zhou, Hongzi; Wei, Yanli; Li, Jishun; Zhang, Xinjian; Harvey, Paul; Yang, Hetong

    2015-04-01

    Trichoderma harzianum is an important commercial biocontrol fungal agent. The temperature has been shown to be an important parameter and strain-specific to the mycelia growth of fungi, but less report makes the known of the mechanisms in T. harzianum. In our study, a 6-h treatment of heat increased the thiobarbituric acid reactive substances (TBARS) and nitric oxide (NO) concentration in mycelia to 212 and 230 % the level of the control, respectively. The exogenous NO donor sodium nitroprusside (150 μM) reduced the TBARS concentration to 53 % of that under heat stress (HS). At the same time, the NO-specific scavenger at 250 μM, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-1-oxyl-3-oxide, prevented the exogenous NO-relieved TBARS accumulation under HS. The increased NO concentration under HS was reduced 41 % by the NO synthase (NOS) inhibitor L-N(G)-nitroarginine methyl ester, but not the nitrate reductase (NR) inhibitor tungstate. Our study exhibited that NO can protect the mycelia of T. harzianum from HS and reduce the oxidative damage by enhancing the activity of NOS and NR.

  4. Real time and in vivo monitoring of nitric oxide by electrochemical sensors--from dream to reality.

    PubMed

    Zhang, Xueji

    2004-09-01

    Nitric oxide is a key intercellular messenger in the human and animal bodies. The identification of nitric oxide (NO) as the endothelium-derived relaxing factor (EDRF) has driven an enormous effort to further elucidate the chemistry, biology and therapeutic actions of this important molecule. It has found that nitric oxide is involved in many disease states such as such as chronic heart failure, stroke, impotent (erectile dysfunction). The bioactivity of nitric oxide intrinsically linked to its diffusion from its site production to the sites of action. Accurate reliable in real time detection of NO in various biological systems is therefore crucial to understanding its biological role. However, the instability of NO in aqueous solution and its high reactivity with other molecules can cause difficulties for its measurement depending on the detection method employed. Although a variety of methods have been described to measure NO in aqueous environments, it is now generally accepted that electrochemical (amperometric) detection using NO-specific electrodes is the most reliable and sensitive technique available for real-time in situ detection of NO. In 1992 the first commercial NO electrode-based amperometric detection system was developed by WPI. The system has been used successfully for a number of years in a wide range of research applications, both in vitro and in vivo. Recently, many new electrochemical nitric sensors have been invented and commercialized. Here we describe some of the background principles in NO sensors design, methodology and their applications.

  5. Daily life negative mood and exhaled nitric oxide in asthma.

    PubMed

    Ritz, Thomas; Kullowatz, Antje; Bill, Michelle N; Rosenfield, David

    2016-07-01

    Psychosocial stress and negative affect have been linked to asthma exacerbations, but longitudinal studies demonstrating a daily life association between negative affect and airway nitric oxide are missing. The longitudinal association between negative mood fluctuations, exhaled nitric oxide, and lung function in asthma was examined. Self-assessments of the fraction of exhaled nitric oxide (FeNO), spirometry (forced expiratory volume in the first second, FEV1), negative mood, and daily activities were obtained from 20 patients with asthma for 2 months, resulting in 1108 assessments for the analyses (approximately 55 per patient). Concurrent and prospective associations between FeNO, FEV1, and negative mood were analyzed using mixed effects regression models for longitudinal data. Negative mood was positively associated with changes in FeNO during the same day, and to a stronger extent when prior day negative mood was included in the prediction. FeNO and negative mood were positively associated with same-day FEV1, with the latter relation being partially mediated by changes in FeNO. Associations between FeNO and FEV1 were stronger in younger patients, with earlier onset of asthma, or with lower asthma control. Findings were not changed when controlling for physical activity, medication, cold symptoms, air pollution, and hours spent outside. Daily life changes of negative mood in asthma are positively associated with FeNO changes and FeNO increases are associated with a mild bronchodilation. These findings indicate that psychological influences need to be considered when using FeNO as indicator of airway inflammation and guide for treatment decisions. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Renal Angiotensin-Converting Enzyme Is Essential for the Hypertension Induced by Nitric Oxide Synthesis Inhibition

    PubMed Central

    Giani, Jorge F.; Janjulia, Tea; Kamat, Nikhil; Seth, Dale M.; Blackwell, Wendell-Lamar B.; Shah, Kandarp H.; Shen, Xiao Z.; Fuchs, Sebastien; Delpire, Eric; Toblli, Jorge E.; Bernstein, Kenneth E.; McDonough, Alicia A.

    2014-01-01

    The kidney is an important source of angiotensin-converting enzyme (ACE) in many species, including humans. However, the specific effects of local ACE on renal function and, by extension, BP control are not completely understood. We previously showed that mice lacking renal ACE, are resistant to the hypertension induced by angiotensin II infusion. Here, we examined the responses of these mice to the low-systemic angiotensin II hypertensive model of nitric oxide synthesis inhibition with L-NAME. In contrast to wild-type mice, mice without renal ACE did not develop hypertension, had lower renal angiotensin II levels, and enhanced natriuresis in response to L-NAME. During L-NAME treatment, the absence of renal ACE was associated with blunted GFR responses; greater reductions in abundance of proximal tubule Na+/H+ exchanger 3, Na+/Pi co-transporter 2, phosphorylated Na+/K+/Cl− cotransporter, and phosphorylated Na+/Cl− cotransporter; and greater reductions in abundance and processing of the γ isoform of the epithelial Na+ channel. In summary, the presence of ACE in renal tissue facilitates angiotensin II accumulation, GFR reductions, and changes in the expression levels and post-translational modification of sodium transporters that are obligatory for sodium retention and hypertension in response to nitric oxide synthesis inhibition. PMID:25012170

  7. Endothelial cell-derived nitric oxide enhances aerobic glycolysis in astrocytes via HIF-1α-mediated target gene activation.

    PubMed

    Brix, Britta; Mesters, Jeroen R; Pellerin, Luc; Jöhren, Olaf

    2012-07-11

    Astrocytes exhibit a prominent glycolytic activity, but whether such a metabolic profile is influenced by intercellular communication is unknown. Treatment of primary cultures of mouse cortical astrocytes with the nitric oxide (NO) donor DetaNONOate induced a time-dependent enhancement in the expression of genes encoding various glycolytic enzymes as well as transporters for glucose and lactate. Such an effect was shown to be dependent on the hypoxia-inducible factor HIF-1α, which is stabilized and translocated to the nucleus to exert its transcriptional regulation. NO action was dependent on both the PI3K/Akt/mTOR and MEK signaling pathways and required the activation of COX, but was independent of the soluble guanylate cyclase pathway. Furthermore, as a consequence of NO treatment, an enhanced lactate production and release by astrocytes was evidenced, which was prevented by downregulating HIF-1α. Several brain cell types represent possible sources of NO. It was found that endothelial cells, which express the endothelial NO synthase (eNOS) isoform, constitutively produced the largest amount of NO in culture. When astrocytes were cocultured with primary cultures of brain vascular endothelial cells, stabilization of HIF-1α and an enhancement in glucose transporter-1, hexokinase-2, and monocarboxylate transporter-4 expression as well as increased lactate production was found in astrocytes. This effect was inhibited by the NOS inhibitor l-NAME and was not seen when astrocytes were cocultured with primary cultures of cortical neurons. Our findings suggest that endothelial cell-derived NO participates to the maintenance of a high glycolytic activity in astrocytes mediated by astrocytic HIF-1α activation.

  8. Nitric oxide mediates insect cellular immunity via phospholipase A2 activation

    USDA-ARS?s Scientific Manuscript database

    After infection or invasion is recognized, biochemical mediators act in signaling insect immune functions. These include biogenic amines, insect cytokines, eicosanoids and nitric oxide (NO). Treating insects or isolated hemocyte populations with different mediators often leads to similar results. Se...

  9. Nitric Oxide--Some Old and New Perspectives

    NASA Astrophysics Data System (ADS)

    Ainscough, Eric W.; Brodie, Andrew M.

    1995-08-01

    The discovery and early use of NO is recalled followed by some of its chemical reactions to give useful products such as nitric acid and fertilizers. However NO produced from the internal combustion engine results in photochemical smog production and ozone depletion. A rebirth of interest in NO has occurred because of its unexpected roles in physiology and neurobiology. Its production can lead to biological responses such as vasodilation, cell adhesion, neurotransmission and immune regulation. Finally the ways denitrifying bacteria convert NO and other oxides of nitrogen to dinitrogen are discussed.

  10. The role of nitric oxide pathway in arginine transport and growth of IPEC-1 cells.

    PubMed

    Xiao, Hao; Zeng, Liming; Shao, Fangyuan; Huang, Bo; Wu, Miaomiao; Tan, Bie; Yin, Yulong

    2017-05-02

    L-Arginine itself and its metabolite-nitric oxide play great roles in intestinal physiology. However, the molecular mechanism underlying nitric oxide pathway regulating L-Arginine transport and cell growth is not yet fully understood. We report that inhibition of nitric oxide synthase (NOS) significantly induced cell apoptosis (p < 0.05), and promoted the rate of Arginine uptake and the expressions of protein for CAT-2 and y+LAT-1 (p < 0.05), while reduced protein expression of CAT-1. And NOS inhibition markedly decreased the activation of mammalian target of rapamycin (mTOR) and PI3K-Akt pathways by Arginine in the IPEC-1 cells (p < 0.05). Taken together, these data suggest that inhibition of NO pathway by L-NAME induces a negative feedback increasing of Arginine uptake and CAT-2 and y+LAT-1 protein expression, but promotes cell apoptosis which involved inhibiting the activation of mTOR and PI3K-Akt pathways.

  11. Effects of resveratrol-related hydroxystilbenes on the nitric oxide production in macrophage cells: structural requirements and mechanism of action.

    PubMed

    Cho, Dong-Im; Koo, Na-Youn; Chung, Woon Jae; Kim, Tae-Sung; Ryu, Shi Yong; Im, Suhn Young; Kim, Kyeong-Man

    2002-09-13

    NF-kappaB that plays an important role in iNOS expression is one of the targets of various potential anti-inflammatory agents including resveratrol. Resveratrol contains a structural similarity with estrogen, and there has been speculation about resveratrol as estrogen agonist. In this study, the mechanism and structural requirements of resveratrol and related hydroxystilbenes for the inhibition of LPS-induced nitric oxide production were studied in macrophage cells (RAW 264.7 and J774) by comparing its effect on LPS-induced NF-kappaB translocation and nitric oxide production, and by considering the possibility of involvement of an estrogen receptor. LPS-induced nitric oxide production was inhibited only when cells were treated with resveratrol prior to stimulation with LPS, suggesting that resveratrol does not affect the enzyme itself. A higher concentration of resveratrol than needed for the inhibition of nitric oxide production was required for the inhibition of NF-kappaB mobilization or iNOS expression. Estrogen and diethylstilbesterol, an estrogen agonist, caused only weak inhibition of nitric oxide production, and the effects of resveratrol were not noticeably blocked by ICI-182780, an estrogen antagonist. Structure-activity analysis of resveratrol and nine hydroxystilbenes suggests that the structural balance between oxygen functional groups on the benzene rings is important for their activity. Our results suggest that resveratrol might act on other cellular targets as well as NF-kappaB at the initial stage of gene expression. Unique structural features of hydroxystilbenes are needed for suppression of nitric oxide production and it is unlikely that estrogen receptor is involved in it.

  12. Modulation of the cyclooxygenase pathway via inhibition of nitric oxide production contributes to the anti-inflammatory activity of kaempferol.

    PubMed

    Mahat, Mahamad Yunnus A; Kulkarni, Nagaraj M; Vishwakarma, Santosh L; Khan, Farhin R; Thippeswamy, B S; Hebballi, Vijay; Adhyapak, Anjana A; Benade, Vijay S; Ashfaque, Saudagar Mohammad; Tubachi, Suraj; Patil, Basangouda M

    2010-09-10

    Kaempferol has been reported to inhibit nitric oxide synthase and cyclooxygenase enzymes in animal models. The present study was designed to investigate whether kaempferol modulates the cyclooxygenase pathway via inhibition of nitric oxide production, which in turn contributes to its anti-inflammatory activity. Investigations were performed using carrageenan induced rat air pouch model. Inflammation was assessed by measurement of nitrites (nitrite, a breakdown product of nitric oxide), prostaglandin-E(2) levels and cellular infiltration in the pouch fluid exudates. To assess the anti-inflammatory effect of the extract, rat air pouch linings were examined histologically. The levels of nitrite and prostaglandin-E(2) in pouch fluid were measured by using Griess assay and ELISA respectively. Cell counts and differential counts were performed using a Coulter counter and Wright-Giemsa stain respectively. Kaempferol when administered orally at 50 and 100mg/kg dose showed significant inhibition of carrageenan induced production of nitrite (40.12 and 59.74%, respectively) and prostaglandin-E(2) generation (64.23 and 78.55%, respectively). Infiltration of the cells into the rat granuloma air pouch was also significantly inhibited by kaempferol. Modulation of cyclooxygenase pathway via inhibition of nitric oxide synthesis significantly contributes to kaempferol's anti-inflammatory activity. The present study characterizes the effects and mechanisms of naturally occurring phenolic flavonoid kaempferol, on inducible nitric oxide synthase expression and nitric oxide production. These results partially explain the pharmacological efficacy of flavonoids in general and kaempferol in particular as anti-inflammatory compounds. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  13. Studies on the oxidation of hexamethylbenzene 1: Oxidation of hexamethylbenzene with nitric acid

    NASA Technical Reports Server (NTRS)

    Chiba, K.; Tomura, S.; Mizuno, T.

    1986-01-01

    The oxidative reaction of hexamethylbenzene (HMB) with nitric acid was studied, and the hitherto unknown polymethylbenzenepolycarboxylic acids were isolated: tetramethylphthalic anhydride, tetramethylisophthalic acid, 1,3,5-, 1,2,4- and 1,2,3-trimethylbenzenetricarboxylic acids. When HMB was warmed with 50% nitric acid at about 80 C, tetramethylphthalic anhydride and tetramethylisophthalic acid were initially produced. The continued reaction led to the production of trimethylbenzenetricarboxylic acids, but only slight amounts of dimethylbenzenetetracarboxylic acids were detected in the reaction mixture. Whereas tetramethylphthalic anydride and tetramethylisophthalic acid were obtained, pentamethylbenzoic acid, a possible precursor of them, was scarcely produced. On the other hand, a yellow material extracted with ether from the initial reaction mixture contained bis-(nitromethyl)prehnitene (CH3)4C6(CH2NO2)2, which was easily converted into the phthalic anhydride.

  14. Mycobacterium tuberculosis-Infected Hematopoietic Stem and Progenitor Cells Unable to Express Inducible Nitric Oxide Synthase Propagate Tuberculosis in Mice.

    PubMed

    Reece, Stephen T; Vogelzang, Alexis; Tornack, Julia; Bauer, Wolfgang; Zedler, Ulrike; Schommer-Leitner, Sandra; Stingl, Georg; Melchers, Fritz; Kaufmann, Stefan H E

    2018-04-23

    Persistence of Mycobacterium tuberculosis within human bone marrow stem cells has been identified as a potential bacterial niche during latent tuberculosis. Using a murine model of tuberculosis, we show here that bone marrow stem and progenitor cells containing M. tuberculosis propagated tuberculosis when transferred to naive mice, given that both transferred cells and recipient mice were unable to express inducible nitric oxide synthase, which mediates killing of intracellular bacteria via nitric oxide. Our findings suggest that bone marrow stem and progenitor cells containing M. tuberculosis propagate hallmarks of disease if nitric oxide-mediated killing of bacteria is defective.

  15. Mycobacterium tuberculosis-Infected Hematopoietic Stem and Progenitor Cells Unable to Express Inducible Nitric Oxide Synthase Propagate Tuberculosis in Mice

    PubMed Central

    Reece, Stephen T; Vogelzang, Alexis; Tornack, Julia; Bauer, Wolfgang; Zedler, Ulrike; Schommer-Leitner, Sandra; Stingl, Georg; Melchers, Fritz; Kaufmann, Stefan H E

    2018-01-01

    Abstract Persistence of Mycobacterium tuberculosis within human bone marrow stem cells has been identified as a potential bacterial niche during latent tuberculosis. Using a murine model of tuberculosis, we show here that bone marrow stem and progenitor cells containing M. tuberculosis propagated tuberculosis when transferred to naive mice, given that both transferred cells and recipient mice were unable to express inducible nitric oxide synthase, which mediates killing of intracellular bacteria via nitric oxide. Our findings suggest that bone marrow stem and progenitor cells containing M. tuberculosis propagate hallmarks of disease if nitric oxide-mediated killing of bacteria is defective. PMID:29471332

  16. QEPAS nitric oxide sensor based on a mid-infrared fiber-coupled quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Ren, Wei; Shi, Chao; Wang, Zhen; Yao, Chenyu

    2017-04-01

    We report a quartz-enhanced photoacoustic sensor (QEPAS) for nitric oxide (NO) detection using a mid-infrared fibercoupled quantum cascade laser (QCL) near 5.2 μm. The QCL radiation was coupled into an InF3 fiber (100 μm core diameter) for light delivery to the quartz tuning fork, a tiny piezoelectric element converting the acoustic wave induced mechanical vibration to the gas-absorption associated electrical signal. This mid-infrared fiber can achieve nearly single-mode light delivery for the target wavelength. The off-beam configuration was adopted for the fiber-coupled detection considering its simpler installation, optical alignment and comparative sensitivity to the traditional on-beam setup.

  17. Feedback inhibition of nitric oxide synthase activity by nitric oxide.

    PubMed Central

    Assreuy, J.; Cunha, F. Q.; Liew, F. Y.; Moncada, S.

    1993-01-01

    1. A murine macrophage cell line, J774, expressed nitric oxide (NO) synthase activity in response to interferon-gamma (IFN-gamma, 10 u ml-1) plus lipopolysaccharide (LPS, 10 ng ml-1). The enzyme activity was first detectable 6 h after incubation, peaked at 12 h and became undetectable after 48 h. 2. The decline in the NO synthase activity was not due to inhibition by stable substances secreted by the cells into the culture supernatant. 3. The decline in the NO synthase activity was significantly slowed down in cells cultured in a low L-arginine medium or with added haemoglobin, suggesting that NO may be involved in a feedback inhibitory mechanism. 4. The addition of NO generators, S-nitroso-acetyl-penicillamine (SNAP) or S-nitroso-glutathione (GSNO) markedly inhibited the NO synthase activity in a dose-dependent manner. The effect of NO on the enzyme was not due to the inhibition of de novo protein synthesis. 5. SNAP directly inhibited the inducible NO synthase extracted from activated J774 cells, as well as the constitutive NO synthase extracted from the rat brain. 6. The enzyme activity of J774 cells was not restored after the removal of SNAP by gel filtration, suggesting that NO inhibits NO synthase irreversibly. PMID:7682140

  18. Human nitric oxide biomarker as potential NO donor in conjunction with superparamagnetic iron oxide @ gold core shell nanoparticles for cancer therapeutics.

    PubMed

    Singh, Nimisha; Patel, Khushbu; Sahoo, Suban K; Kumar, Rajender

    2018-03-01

    Nitric oxide releasing superparamagnetic (Fe 3 O 4 -Au@NTHP) nanoparticles were synthesized by conjugation of human biomarker of nitric oxide, N-nitrosothioproline with iron oxide-gold (Fe 3 O 4 -Au) core shell nanoparticles. The structure and morphology of the prepared nanoparticles were confirmed by ATR-FTIR, HR-TEM, EDAX, XPS, DLS and VSM measurements. N-nitrosothioproline is a natural molecule and nontoxic to humans. Thus, the core shell nanoparticles prepared were highly biocompatible. The prepared Fe 3 O 4 -Au@NTHP nanoparticles also provided an excellent release of nitric oxide in dark and upon light irradiation for cancer treatment. The amount of NO release was controllable with the wavelength of light and time of irradiation. The developed nanoparticles provided efficient cellular uptake and good cytotoxicity in picomolar range when tested on HeLa cancerous cells. These nanoparticles on account of their controllable NO release can also be used to release small amount of NO for killing cancerous cells without any toxic effect. Furthermore, the magnetic and photochemical properties of these nanoparticles provides dual platform for magneto therapy and phototherapy for cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Inhibition of inducible nitric oxide synthesis by azathioprine in a macrophage cell line.

    PubMed

    Moeslinger, Thomas; Friedl, Roswitha; Spieckermann, Paul Gerhard

    2006-06-20

    Azathioprine is used as an anti-inflammatory agent. Although there are numerous data demonstrating cytotoxic and immunosuppressive properties of azathioprine and its metabolite 6-mercaptopurine, the mechanism of the anti-inflammatory action of azathioprine has not yet been fully clarified. During our study, we investigated the effects of azathioprine on the inducible nitric oxide synthase (iNOS) in lipopolysaccharide stimulated murine macrophages (RAW 264.7) by measurement of iNOS protein (immunoblotting), iNOS mRNA (semiquantitative competitive RT-PCR), and NO production (nitrite levels). Azathioprine (0-210 muM) induces a concentration dependent inhibition of inducible nitric oxide synthesis (IC50: 33.5 muM). iNOS protein expression showed a concentration dependent reduction as revealed by immunoblotting when cells were incubated with increasing amounts of azathioprine. Azathioprine decreases iNOS mRNA levels as shown by semiquantitative competitive RT-PCR. In contrast, 6-mercaptopurine showed no inhibition of inducible nitric oxide synthesis. Azathioprine did not reduce iNOS mRNA stability after the addition of actinomycin D. Enzymatic activity assays with increasing concentrations of azathioprine (0-210 muM) showed no statistically significant inhibition of iNOS enzyme activity compared to cell lysates without azathioprine. Nuclear translocation of NF-kappaB p65 subunit and binding of NF-kappaB p50 subunit from nuclear extracts to a biotinylated-consensus sequence was unaffected by azathioprine treatment. iNOS inhibition by azathioprine was associated with a decreased expression of IRF-1 (interferon regulatory factor 1) and IFN-beta (beta-interferon) mRNA. Azathioprine induced iNOS inhibition seems to be associated with an action of the methylnitroimidazolyl substituent. This suggests a route to the rational design of nontoxic anti-inflammatory agents by replacing the 6-mercaptopurine component of azathioprine with other substituents. The inhibition of

  20. Neuronal Nitric-Oxide Synthase Deficiency Impairs the Long-Term Memory of Olfactory Fear Learning and Increases Odor Generalization

    ERIC Educational Resources Information Center

    Pavesi, Eloisa; Heldt, Scott A.; Fletcher, Max L.

    2013-01-01

    Experience-induced changes associated with odor learning are mediated by a number of signaling molecules, including nitric oxide (NO), which is predominantly synthesized by neuronal nitric oxide synthase (nNOS) in the brain. In the current study, we investigated the role of nNOS in the acquisition and retention of conditioned olfactory fear. Mice…

  1. Nitric oxide: A new possible biomarker in heart failure? Relationship with pulmonary hypertension secondary to left heart failure.

    PubMed

    Bonafede, Roberto Jorge; Calvo, Juan Pablo; Fausti, Julia María Valeria; Puebla, Sonia; Gambarte, Adolfo Juan; Manucha, Walter

    Heart failure (HF) is a growing medical problem and it is of interest to study new biomarkers for better characterisation. In this sense, nitric oxide, reactive oxygen species (ROS), NADPH, and superoxide dismutase (SOD) were evaluated, along with their possible predictive value in patients with HF. An analysis was also performed on the potential differences between patients with and without secondary pulmonary hypertension (SPH), considered to have a worse prognosis. A significant decrease of nitric oxide and SOD was noted in HF, whereas ROS and NADPH were increased. These results agree with the pathophysiological changes characteristic of HF. It was also demonstrated that in patients with HF and SPH that nitric oxide and SOD were decreased when compared to HF without SPH, whereas ROS and NADPH were increased. Therefore, our results suggest that nitric oxide, ROS, NADPH, and SOD, could be considered as possible markers in HF, and could also characterise patients with SPH. Copyright © 2017 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Satellite observations of the nitric oxide dayglow Implications for the behavior of mesospheric and lower-thermospheric odd nitrogen

    NASA Technical Reports Server (NTRS)

    Frederick, J. E.; Serafino, G. N.

    1985-01-01

    The solar backscattered ultraviolet spectral radiometer on the Nimbus 7 satellite routinely measures fluorescence emissions from the nitric oxide (1, 4) gamma band that are imposed on the large Rayleigh-scattered signal in the wavelength range 255-256 nm. The gamma band feature, when isolated from the background radiance, provide information on the seasonal and latitudinal variations in the nitric oxide column abundance over the altitude region from 40 to 45 km upward through the thermosphere. At latitudes from 30 deg to 45 deg in the Northern Hemisphere the measurements show an annual cycle with maximum nitric oxide abundance in summer. The Southern Hemisphere pattern is qualitatively similar to this, although the amplitude of the seasonal variation is substantially smaller. The most prominent feature of the data base is a large maximum in nitric oxide emission that develops poleward of 45 deg latitude in both Hemispheres during late autumn and early winter. These maxima dissipate rapidly as spring approaches and are no longer evident in the data for Northern Hemisphere March and Southern Hemisphere September.

  3. Role of excited N2 in the production of nitric oxide

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Cartwright, D. C.; Brunger, M. J.

    2007-08-01

    Excited N2 plays a role in a number of atmospheric processes, including auroral and dayglow emissions, chemical reactions, recombination of free electrons, and the production of nitric oxide. Electron impact excitation of N2 is followed by radiative decay through a series of excited states, contributing to auroral and dayglow emissions. These processes are intertwined with various chemical reactions and collisional quenching involving the excited and ground state vibrational levels. Statistical equilibrium and time step atmospheric models are used to predict N2 excited state densities and emissions (as a test against previous models and measurements) and to investigate the role of excited nitrogen in the production of nitric oxide. These calculations predict that inclusion of the reaction N2[A3Σu +] + O, to generate NO, produces an increase by a factor of up to three in the calculated NO density at some altitudes.

  4. Relevance of Chemical Kinetics for Medicine: The Case of Nitric Oxide

    NASA Astrophysics Data System (ADS)

    Balaban, Alexandru T.; Seitz, William

    2003-06-01

    Nitric oxide, NO, is central to many physiological processes including regulation of blood pressure and nerve signal transmission. Enzymes in endothelial cells and in the brain of mammals continuously synthesize it—generally in low and carefully regulated concentrations. The well known reaction of NO with oxygen to produce toxic nitrogen dioxide, NO2, has a rate which is bimolecular in NO. High concentrations of NO, as are found often in industrial plants or cigarettes, react rapidly with oxygen to produce toxic NO2. However, the half-life of NO at low NO concentrations as found in solutions and gases occurring in blood vessels, brains, and lungs is sufficiently long for biochemical purposes. Kinetics, then, determines the harmful versus helpful aspects of nitric oxide. At concentrations below 80 ppm NO is used in hospitals for lung vasodilation of preterm newborns and patients with pulmonary distress.

  5. Nitric Oxide Stimulates Matrix Synthesis and Deposition by Adult Human Aortic Smooth Muscle Cells Within Three-Dimensional Cocultures

    PubMed Central

    Simmers, Phillip; Gishto, Arsela; Vyavahare, Narendra

    2015-01-01

    Vascular diseases are characterized by the over-proliferation and migration of aortic smooth muscle cells (SMCs), and degradation of extracellular matrix (ECM) within the vessel wall, leading to compromise in cell–cell and cell–matrix signaling pathways. Tissue engineering approaches to regulate SMC over-proliferation and enhance healthy ECM synthesis showed promise, but resulted in low crosslinking efficiency. Here, we report the benefits of exogenous nitric oxide (NO) cues, delivered from S-Nitrosoglutathione (GSNO), to cell proliferation and matrix deposition by adult human aortic SMCs (HA-SMCs) within three-dimensional (3D) biomimetic cocultures. A coculture platform with two adjacent, permeable 3D culture chambers was developed to enable paracrine signaling between vascular cells. HA-SMCs were cultured in these chambers within collagen hydrogels, either alone or in the presence of human aortic endothelial cells (HA-ECs) cocultures, and exogenously supplemented with varying GSNO dosages (0–100 nM) for 21 days. Results showed that EC cocultures stimulated SMC proliferation within GSNO-free cultures. With increasing GSNO concentration, HA-SMC proliferation decreased in the presence or absence of EC cocultures, while HA-EC proliferation increased. GSNO (100 nM) significantly enhanced the protein amounts synthesized by HA-SMCs, in the presence or absence of EC cocultures, while lower dosages (1–10 nM) offered marginal benefits. Multi-fold increases in the synthesis and deposition of elastin, glycosaminoglycans, hyaluronic acid, and lysyl oxidase crosslinking enzyme (LOX) were noted at higher GSNO dosages, and coculturing with ECs significantly furthered these trends. Similar increases in TIMP-1 and MMP-9 levels were noted within cocultures with increasing GSNO dosages. Such increases in matrix synthesis correlated with NO-stimulated increases in endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) expression within EC

  6. Manganese-induced effects on cerebral trace element and nitric oxide of Hyline cocks.

    PubMed

    Liu, Xiaofei; Zuo, Nan; Guan, Huanan; Han, Chunran; Xu, Shi Wen

    2013-08-01

    Exposure to Manganese (Mn) is a common phenomenon due to its environmental pervasiveness. To investigate the Mn-induced toxicity on cerebral trace element levels and crucial nitric oxide parameters on brain of birds, 50-day-old male Hyline cocks were fed either a commercial diet or a Mn-supplemented diet containing 600, 900, 1,800 mg kg(-1). After being treated with Mn for 30, 60, and 90 days, the following were determined: the changes in contents of copper (Cu), iron (Fe), zinc (Zn), calcium (Ca), selenium (Se) in brain; inducible nitric oxide synthase-nitric oxide (iNOS-NO) system activity in brain; and histopathology and ultrastructure changes of cerebral cortex. The results showed that Mn was accumulated in brain and the content of Cu and Fe increased. However, the levels of Zn and Se decreased and the Ca content presented no obvious regularity. Exposure to Mn significantly elevated the content of NO and the expression of iNOS mRNA. Activity of total NO synthase (T NOS) and iNOS appeared with an increased tendency. These findings suggested that Mn exposure resulted in the imbalance of cerebral trace elements and influenced iNOS in the molecular level, which are possible underlying nervous system injury mechanisms induced by Mn exposure.

  7. Nitric Oxide in the Crustacean Brain: Regulation of Neurogenesis and Morphogenesis in the Developing Olfactory Pathway

    PubMed Central

    Benton, J.L.; Sandeman, D.C.; Beltz, B.S.

    2009-01-01

    Nitric oxide (NO) plays major roles during development and in adult organisms. We examined the temporal and spatial patterns of nitric oxide synthase (NOS) appearance in the embryonic lobster brain to localize sources of NO activity; potential NO targets were identified by defining the distribution of NO-induced cGMP. Staining patterns are compared with NOS and cyclic 3,5 guanosine monophosphate (cGMP) distribution in adult lobster brains. Manipulation of NO levels influences olfactory glomerular formation and stabilization, as well as levels of neurogenesis among the olfactory projection neurons. In the first 2 days following ablation of the lateral antennular flagella in juvenile lobsters, a wave of increased NOS immunoreactivity and a reduction in neurogenesis occur. These studies implicate nitric oxide as a developmental architect and also support a role for this molecule in the neural response to injury in the olfactory pathway. PMID:17948307

  8. Dysregulated nitric oxide signaling as a candidate mechanism of fragile X syndrome and other neuropsychiatric disorders.

    PubMed

    Colvin, Steven M; Kwan, Kenneth Y

    2014-01-01

    A mechanistic understanding of the pathophysiology underpinning psychiatric disorders is essential for the development of targeted molecular therapies. For fragile X syndrome (FXS), recent mechanistic studies have been focused on the metabotropic glutamate receptor (mGluR) signaling pathway. This line of research has led to the discovery of promising candidate drugs currently undergoing various phases of clinical trial, and represents a model of how biological insights can inform therapeutic strategies in neurodevelopmental disorders. Although mGluR signaling is a key mechanism at which targeted treatments can be directed, it is likely to be one of many mechanisms contributing to FXS. A more complete understanding of the molecular and neural underpinnings of the disorder is expected to inform additional therapeutic strategies. Alterations in the assembly of neural circuits in the neocortex have been recently implicated in genetic studies of autism and schizophrenia, and may also contribute to FXS. In this review, we explore dysregulated nitric oxide signaling in the developing neocortex as a novel candidate mechanism of FXS. This possibility stems from our previous work demonstrating that neuronal nitric oxide synthase 1 (NOS1 or nNOS) is regulated by the FXS protein FMRP in the mid-fetal human neocortex. Remarkably, in the mid-late fetal and early postnatal neocortex of human FXS patients, NOS1 expression is severely diminished. Given the role of nitric oxide in diverse neural processes, including synaptic development and plasticity, the loss of NOS1 in FXS may contribute to the etiology of the disorder. Here, we outline the genetic and neurobiological data that implicate neocortical dysfunction in FXS, review the evidence supporting dysregulated nitric oxide signaling in the developing FXS neocortex and its contribution to the disorder, and discuss the implications for targeting nitric oxide signaling in the treatment of FXS and other psychiatric illnesses.

  9. Arginase expression modulates nitric oxide production in Leishmania (Leishmania) amazonensis.

    PubMed

    Acuña, Stephanie Maia; Aoki, Juliana Ide; Laranjeira-Silva, Maria Fernanda; Zampieri, Ricardo Andrade; Fernandes, Juliane Cristina Ribeiro; Muxel, Sandra Marcia; Floeter-Winter, Lucile Maria

    2017-01-01

    Arginase is an enzyme that converts L-arginine to urea and L-ornithine, an essential substrate for the polyamine pathway supporting Leishmania (Leishmania) amazonensis replication and its survival in the mammalian host. L-arginine is also the substrate of macrophage nitric oxide synthase 2 (NOS2) to produce nitric oxide (NO) that kills the parasite. This competition can define the fate of Leishmania infection. The transcriptomic profiling identified a family of oxidoreductases in L. (L.) amazonensis wild-type (La-WT) and L. (L.) amazonensis arginase knockout (La-arg-) promastigotes and axenic amastigotes. We highlighted the identification of an oxidoreductase that could act as nitric oxide synthase-like (NOS-like), due to the following evidences: conserved domain composition, the participation of NO production during the time course of promastigotes growth and during the axenic amastigotes differentiation, regulation dependence on arginase activity, as well as reduction of NO amount through the NOS activity inhibition. NO quantification was measured by DAF-FM labeling analysis in a flow cytometry. We described an arginase-dependent NOS-like activity in L. (L.) amazonensis and its role in the parasite growth. The increased detection of NO production in the mid-stationary and late-stationary growth phases of La-WT promastigotes could suggest that this production is an important factor to metacyclogenesis triggering. On the other hand, La-arg- showed an earlier increase in NO production compared to La-WT, suggesting that NO production can be arginase-dependent. Interestingly, La-WT and La-arg- axenic amastigotes produced higher levels of NO than those observed in promastigotes. As a conclusion, our work suggested that NOS-like is expressed in Leishmania in the stationary growth phase promastigotes and amastigotes, and could be correlated to metacyclogenesis and amastigotes growth in a dependent way to the internal pool of L-arginine and arginase activity.

  10. Reduction Rates for Higher Americium Oxidation States in Nitric Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimes, Travis Shane; Mincher, Bruce Jay; Schmitt, Nicholas C

    The stability of hexavalent americium was measured using multiple americium concentrations and nitric acid concentrations after contact with the strong oxidant sodium bismuthate. Contrary to our hypotheses Am(VI) was not reduced faster at higher americium concentrations, and the reduction was only zero-order at short time scales. Attempts to model the reduction kinetics using zero order kinetic models showed Am(VI) reduction in nitric acid is more complex than the autoreduction processes reported by others in perchloric acid. The classical zero-order reduction of Am(VI) was found here only for short times on the order of a few hours. We did show thatmore » the rate of Am(V) production was less than the rate of Am(VI) reduction, indicating that some Am(VI) undergoes two electron-reduction to Am(IV). We also monitored the Am(VI) reduction in contact with the organic diluent dodecane. A direct comparison of these results with those in the absence of the organic diluent showed the reduction rates for Am(VI) were not statistically different for both systems. Additional americium oxidations conducted in the presence of Ce(IV)/Ce(III) ions showed that Am(VI) is reduced without the typical growth of Am(V) observed in the systems sans Ce ion. This was an interesting result which suggests a potential new reduction/oxidation pathway for Am in the presence of Ce; however, these results were very preliminary, and will require additional experiments to understand the mechanism by which this occurs. Overall, these studies have shown that hexavalent americium is fundamentally stable enough in nitric acid to run a separations process. However, the complicated nature of the reduction pathways based on the system components is far from being rigorously understood.« less

  11. Role of nitric oxide in in vitro contractile activity of the third compartment of the stomach in llamas.

    PubMed

    Van Hoogmoed, L; Rakestraw, P C; Snyder, J R; Harmon, F A

    1998-09-01

    To determine the role of nitric oxide and an apamin-sensitive nonadrenergic-noncholinergic inhibitory transmitter in in vitro contractile activity of the third compartment in llamas. Isolated strips of third compartment of the stomach from 5 llamas. Strips were mounted in tissue baths containing oxygenated Kreb's buffer solution and connected to a polygraph chart recorder to measure contractile activity. Atropine, guanethidine, and indomethacin were added to tissue baths to inhibit muscarinic receptors, adrenoreceptors, and prostaglandin synthesis. Responses to electrical field stimulation following addition of the nitric oxide antagonist Nwo-nitro-L-arginine methyl ester (L-NAME) and apamin were evaluated. Electrical field stimulation (EFS) resulted in a reduction in the amplitude and frequency of contractile activity, followed by rebound contraction when EFS was stopped. Addition of L-NAME resulted in a significant reduction in inhibition of contractile activity. Addition of apamin also resulted in a significant reduction in inhibitory contractile activity at most stimulation frequencies. The combination of L-NAME and apamin resulted in a significant reduction in inhibition at all frequencies. Nitric oxide and a transmitter acting via an apamin-sensitive mechanism appear to be involved in inhibition of contractile activity of the third compartment in llamas. Results suggest that nitric oxide plays an important role in mediating contractile activity of the third compartment in llamas. Use of nitric oxide synthase inhibitors may have a role in the therapeutic management of llamas with lesions of the third compartment.

  12. 7-Nitroindazole, a nitric oxide synthase inhibitor, enhances the anticonvulsive action of ethosuximide and clonazepam against pentylenetetrazol-induced convulsions.

    PubMed

    Borowicz, K K; Luszczki, J; Kleinrok, Z; Czuczwar, S J

    2000-01-01

    The interaction of 7-nitroindazole (7-NI), a nitric oxide synthase (NOS) inhibitor, with the protective activity of conventional antiepileptics against pentylenetetrazol (PTZ)-induced seizures was tested in mice. Alone, 7-nitroindazole (up to 50mg/kg) was ineffective in this model of experimental epilepsy. However, it potentiated the anticonvulsive activity of ethosuximide and clonazepam, significantly reducing their ED50S against PTZ-induced convulsions (from 144 to 76 mg/kg, and from 0.05 to 0.016 mg/kg, respectively). Conversely, the protective actions of valproate and phenobarbital were not affected by the NOS inhibitor. Since the nitric oxide precursor, L-arginine, did not reverse the action of 7-NI on ethosuximide or clonazepam, an involvement of central NO does not seem probable. Neither ethosuximide nor clonazepam, administered at their ED50S (144 and 0.05 mg/kg, respectively), produced significant adverse effects as regards motor coordination (chimney test) and long-term memory (passive avoidance task). Also 7-NI (50 mg/kg) and its combinations with ethosuximide and clonazepam (providing a 50% protection against PTZ-evoked seizures) did not disturb motor and mnemonic performance in mice. The interaction at the pharmacokinetic level does not seem probable, at least in the case of ethosuximide, because the NOS inhibitor did not interfere with its plasma or brain concentrations.

  13. Nitric oxide-releasing porous silicon nanoparticles

    PubMed Central

    2014-01-01

    In this study, the ability of porous silicon nanoparticles (PSi NPs) to entrap and deliver nitric oxide (NO) as an effective antibacterial agent is tested against different Gram-positive and Gram-negative bacteria. NO was entrapped inside PSi NPs functionalized by means of the thermal hydrocarbonization (THC) process. Subsequent reduction of nitrite in the presence of d-glucose led to the production of large NO payloads without reducing the biocompatibility of the PSi NPs with mammalian cells. The resulting PSi NPs demonstrated sustained release of NO and showed remarkable antibacterial efficiency and anti-biofilm-forming properties. These results will set the stage to develop antimicrobial nanoparticle formulations for applications in chronic wound treatment. PMID:25114633

  14. Nitric oxide-releasing porous silicon nanoparticles.

    PubMed

    Kafshgari, Morteza Hasanzadeh; Cavallaro, Alex; Delalat, Bahman; Harding, Frances J; McInnes, Steven Jp; Mäkilä, Ermei; Salonen, Jarno; Vasilev, Krasimir; Voelcker, Nicolas H

    2014-01-01

    In this study, the ability of porous silicon nanoparticles (PSi NPs) to entrap and deliver nitric oxide (NO) as an effective antibacterial agent is tested against different Gram-positive and Gram-negative bacteria. NO was entrapped inside PSi NPs functionalized by means of the thermal hydrocarbonization (THC) process. Subsequent reduction of nitrite in the presence of d-glucose led to the production of large NO payloads without reducing the biocompatibility of the PSi NPs with mammalian cells. The resulting PSi NPs demonstrated sustained release of NO and showed remarkable antibacterial efficiency and anti-biofilm-forming properties. These results will set the stage to develop antimicrobial nanoparticle formulations for applications in chronic wound treatment.

  15. Nitric oxide and plant iron homeostasis.

    PubMed

    Buet, Agustina; Simontacchi, Marcela

    2015-03-01

    Like all living organisms, plants demand iron (Fe) for important biochemical and metabolic processes. Internal imbalances, as a consequence of insufficient or excess Fe in the environment, lead to growth restriction and affect crop yield. Knowledge of signals and factors affecting each step in Fe uptake from the soil and distribution (long-distance transport, remobilization from old to young leaves, and storage in seeds) is necessary to improve our understanding of plant mineral nutrition. In this context, the role of nitric oxide (NO) is discussed as a key player in maintaining Fe homeostasis through its cross talk with hormones, ferritin, and frataxin and the ability to form nitrosyl-iron complexes. © 2015 New York Academy of Sciences.

  16. Nitric oxide-releasing porous silicon nanoparticles

    NASA Astrophysics Data System (ADS)

    Kafshgari, Morteza Hasanzadeh; Cavallaro, Alex; Delalat, Bahman; Harding, Frances J.; McInnes, Steven JP; Mäkilä, Ermei; Salonen, Jarno; Vasilev, Krasimir; Voelcker, Nicolas H.

    2014-07-01

    In this study, the ability of porous silicon nanoparticles (PSi NPs) to entrap and deliver nitric oxide (NO) as an effective antibacterial agent is tested against different Gram-positive and Gram-negative bacteria. NO was entrapped inside PSi NPs functionalized by means of the thermal hydrocarbonization (THC) process. Subsequent reduction of nitrite in the presence of d-glucose led to the production of large NO payloads without reducing the biocompatibility of the PSi NPs with mammalian cells. The resulting PSi NPs demonstrated sustained release of NO and showed remarkable antibacterial efficiency and anti-biofilm-forming properties. These results will set the stage to develop antimicrobial nanoparticle formulations for applications in chronic wound treatment.

  17. Nitric oxide concentration measurements in atmospheric pressure flames using electronic-resonance-enhanced coherent anti-Stokes Raman scattering

    NASA Astrophysics Data System (ADS)

    Chai, N.; Kulatilaka, W. D.; Naik, S. V.; Laurendeau, N. M.; Lucht, R. P.; Kuehner, J. P.; Roy, S.; Katta, V. R.; Gord, J. R.

    2007-06-01

    We report the application of electronic-resonance-enhanced coherent anti-Stokes Raman scattering (ERE-CARS) for measurements of nitric oxide concentration ([NO]) in three different atmospheric pressure flames. Visible pump (532 nm) and Stokes (591 nm) beams are used to probe the Q-branch of the Raman transition. A significant resonance enhancement is obtained by tuning an ultraviolet probe beam (236 nm) into resonance with specific rotational transitions in the (v’=0, v”=1) vibrational band of the A2Σ+-X2Π electronic system of NO. ERE-CARS spectra are recorded at various heights within a hydrogen-air flame producing relatively low concentrations of NO over a Hencken burner. Good agreement is obtained between NO ERE-CARS measurements and the results of flame computations using UNICORN, a two-dimensional flame code. Excellent agreement between measured and calculated NO spectra is also obtained when using a modified version of the Sandia CARSFT code for heavily sooting acetylene-air flames (φ=0.8 to φ=1.6) on the same Hencken burner. Finally, NO concentration profiles are measured using ERE-CARS in a laminar, counter-flow, non-premixed hydrogen-air flame. Spectral scans are recorded by probing the Q1 (9.5), Q1 (13.5) and Q1 (17.5) Raman transitions. The measured shape of the [NO] profile is in good agreement with that predicted using the OPPDIF code, even without correcting for collisional effects. These comparisons between [NO] measurements and predictions establish the utility of ERE-CARS for detection of NO in flames with large temperature and concentration gradients as well as in sooting environments.

  18. The lethal effects of cytokine-induced nitric oxide on cardiac myocytes are blocked by nitric oxide synthase antagonism or transforming growth factor beta.

    PubMed Central

    Pinsky, D J; Cai, B; Yang, X; Rodriguez, C; Sciacca, R R; Cannon, P J

    1995-01-01

    Inducible nitric oxide (NO) produced by macrophages is cytotoxic to invading organisms and has an important role in host defense. Recent studies have demonstrated inducible NO production within the heart, and that cytokine-induced NO mediates alterations in cardiac contractility, but the cytotoxic potential of nitric oxide with respect to the heart has not been defined. To evaluate the role of inducible nitric oxide synthase (iNOS) on cardiac myocyte cytotoxicity, we exposed adult rat cardiac myocytes to either cytokines alone or to activated J774 macrophages in coculture. Increased expression of both iNOS message and protein was seen in J774 macrophages treated with IFN gamma and LPS and cardiac myocytes treated with TNF-alpha, IL-1 beta, and IFN gamma. Increased NO synthesis was confirmed in both the coculture and isolated myocyte preparations by increased nitrite production. Increased NO synthesis was associated with a parallel increase in myocyte death as measured by CPK release into the culture medium as well as by loss of membrane integrity, visualized by trypan blue staining. Addition of the competitive NO synthase inhibitor L-NMMA to the culture medium prevented both the increased nitrite production and the cytotoxicity observed after cytokine treatment in both the isolated myocyte and the coculture experiments. Because transforming growth-factor beta modulates iNOS expression in other cell types, we evaluated its effects on cardiac myocyte iNOS expression and NO-mediated myocyte cytotoxicity. TGF-beta reduced expression of cardiac myocyte iNOS message and protein, reduced nitrite production, and reduced NO-mediated cytotoxicity in parallel. Taken together, these experiments show the cytotoxic potential of endogenous NO production within the heart, and suggest a role for TGF-beta or NO synthase antagonists to mute these lethal effects. These findings may help explain the cardiac response to sepsis or allograft rejection, as well as the progression of

  19. Signalling pathway involved in nitric oxide synthase type II activation in chondrocytes: synergistic effect of leptin with interleukin-1

    PubMed Central

    Otero, Miguel; Lago, Rocío; Lago, Francisca; Reino, Juan Jesús Gomez; Gualillo, Oreste

    2005-01-01

    The objective of the present study was to investigate the effect of leptin, alone or in combination with IL-1, on nitric oxide synthase (NOS) type II activity in vitro in human primary chondrocytes, in the mouse chondrogenic ATDC5 cell line, and in mature and hypertrophic ATDC5 differentiated chondrocytes. For completeness, we also investigated the signalling pathway of the putative synergism between leptin and IL-1. For this purpose, nitric oxide production was evaluated using the Griess colorimetric reaction in culture medium of cells stimulated over 48 hours with leptin (800 nmol/l) and IL-1 (0.025 ng/ml), alone or combined. Specific pharmacological inhibitors of NOS type II (aminoguanidine [1 mmol/l]), janus kinase (JAK)2 (tyrphostin AG490 and Tkip), phosphatidylinositol 3-kinase (PI3K; wortmannin [1, 2.5, 5 and 10 μmol/l] and LY294002 [1, 2.5, 5 and 10 μmol/l]), mitogen-activated protein kinase kinase (MEK)1 (PD098059 [1, 5, 10, 20 and 30 μmol/l]) and p38 kinase (SB203580 [1, 5, 10, 20 and 30 μmol/l]) were added 1 hour before stimulation. Nitric oxide synthase type II mRNA expression in ATDC5 chondrocytes was investigated by real-time PCR and NOS II protein expression was analyzed by western blot. Our results indicate that stimulation of chondrocytes with IL-1 results in dose-dependent nitric oxide production. In contrast, leptin alone was unable to induce nitric oxide production or expression of NOS type II mRNA or its protein. However, co-stimulation with leptin and IL-1 resulted in a net increase in nitric oxide concentration over IL-1 challenge that was eliminated by pretreatment with the NOS II specific inhibitor aminoguanidine. Pretreatment with tyrphostin AG490 and Tkip (a SOCS-1 mimetic peptide that inhibits JAK2) blocked nitric oxide production induced by leptin/IL-1. Finally, wortmannin, LY294002, PD098059 and SB203580 significantly decreased nitric oxide production. These findings were confirmed in mature and hypertrophic ATDC5 chondrocytes, and

  20. Anticonvulsant effect of minocycline on pentylenetetrazole-induced seizure in mice: involvement of nitric oxide and N-methyl-D-aspartate receptor.

    PubMed

    Amini-Khoei, Hossein; Kordjazy, Nastaran; Haj-Mirzaian, Arya; Amiri, Shayan; Haj-Mirzaian, Arvin; Shirzadian, Armin; Hasanvand, Amin; Balali-Dehkordi, Shima; Hassanipoor, Mahsa; Dehpour, Ahmad Reza

    2018-03-20

    Anticonvulsant effects of minocycline have been explored recently. This study was designed to examine the anticonvulsant effect of acute administration of minocycline on pentylenetetrazole (PTZ)-induced seizures in mouse considering the possible role of nitric oxide (NO)/NMDA pathway. We induced seizure using intravenous administration of PTZ. Our results showed that acute administration of minocycline increased the seizure threshold. Furthermore, co-administration of sub-effective doses of the non-selective nitric oxide synthase (NOS) inhibitor, L-NAME (10 mg/kg) and the neuronal NOS inhibitor, 7-nitroindazole (40 mg/kg) enhanced the anticonvulsant effect of sub-effective dose of minocycline (40 mg/kg). We found that inducible NOS inhibitor, aminoguanidine (100 mg/kg), had no effect on the anti-seizure effect of minocycline. Moreover, L-arginine (60 mg/kg), as a NOS substrate, reduced the anticonvulsant effect of minocycline. We also demonstrated that pretreatment with NMDA receptor antagonists, ketamine (0.5 mg/kg) and MK-801 (0.05 mg/kg) increased the anticonvulsant effect of sub-effective dose of minocycline. Results showed that minocycline significantly decreased the hippocampal nitrite level. Furthermore, co-administration of nNOS inhibitor like NMDA receptor antagonists augmented the effect of minocycline on the hippocampal nitrite level. In conclusion, we revealed that anticonvulsant effect of minocycline might be, at least in part, due to decline in constitutive hippocampal nitric oxide activity as well as inhibition of NMDA receptors.

  1. The role of nitric oxide radicals in removal of hyper-radiosensitivity by priming irradiation

    PubMed Central

    Edin, Nina Jeppesen; Sandvik, Joe Alexander; Vollan, Hilde Synnøve; Reger, Katharina; Görlach, Agnes; Pettersen, Erik Olai

    2013-01-01

    In this study, a mechanism in which low-dose hyper-radiosensitivity (HRS) is permanently removed, induced by low-dose-rate (LDR) (0.2–0.3 Gy/h for 1 h) but not by high-dose-rate priming (0.3 Gy at 40 Gy/h) was investigated. One HRS-negative cell line (NHIK 3025) and two HRS-positive cell lines (T-47D, T98G) were used. The effects of different pretreatments on HRS were investigated using the colony assay. Cell-based ELISA was used to measure nitric oxide synthase (NOS) levels, and microarray analysis to compare gene expression in primed and unprimed cells. The data show how permanent removal of HRS, previously found to be induced by LDR priming irradiation, can also be induced by addition of nitric oxide (NO)-donor DEANO combined with either high-dose-rate priming or exposure to prolonged cycling hypoxia followed by reoxygenation, a treatment not involving radiation. The removal of HRS appears not to involve DNA damage induced during priming irradiation as it was also induced by LDR irradiation of cell-conditioned medium without cells present. The permanent removal of HRS in LDR-primed cells was reversed by treatment with inducible nitric oxide synthase (iNOS) inhibitor 1400W. Furthermore, 1400W could also induce HRS in an HRS-negative cell line. The data suggest that LDR irradiation for 1 h, but not 15 min, activates iNOS, and also that sustained iNOS activation is necessary for the permanent removal of HRS by LDR priming. The data indicate that nitric oxide production is involved in the regulatory processes determining cellular responses to low-dose-rate irradiation. PMID:23685670

  2. β-Adrenergic-mediated vasodilation in young men and women: cyclooxygenase restrains nitric oxide synthase

    PubMed Central

    Limberg, Jacqueline K.; Johansson, Rebecca E.; Peltonen, Garrett L.; Harrell, John W.; Kellawan, J. Mikhail; Eldridge, Marlowe W.; Sebranek, Joshua J.

    2016-01-01

    We tested the hypothesis that women exhibit greater vasodilator responses to β-adrenoceptor stimulation compared with men. We further hypothesized women exhibit a greater contribution of nitric oxide synthase and cyclooxygenase to β-adrenergic-mediated vasodilation compared with men. Forearm blood flow (Doppler ultrasound) was measured in young men (n = 29, 26 ± 1 yr) and women (n = 33, 25 ± 1 yr) during intra-arterial infusion of isoproterenol (β-adrenergic agonist). In subset of subjects, isoproterenol responses were examined before and after local inhibition of nitric oxide synthase [NG-monomethyl-l-arginine (l-NMMA); 6 male/10 female] and/or cyclooxygenase (ketorolac; 5 male/5 female). Vascular conductance (blood flow ÷ mean arterial pressure) was calculated to assess vasodilation. Vascular conductance increased with isoproterenol infusion (P < 0.01), and this effect was not different between men and women (P = 0.41). l-NMMA infusion had no effect on isoproterenol-mediated dilation in men (P > 0.99) or women (P = 0.21). In contrast, ketorolac infusion markedly increased isoproterenol-mediated responses in both men (P < 0.01) and women (P = 0.04) and this rise was lost with subsequent l-NMMA infusion (men, P < 0.01; women, P < 0.05). β-Adrenergic vasodilation is not different between men and women and sex differences in the independent contribution of nitric oxide synthase and cyclooxygenase to β-mediated vasodilation are not present. However, these data are the first to demonstrate β-adrenoceptor activation of cyclooxygenase suppresses nitric oxide synthase signaling in human forearm microcirculation and may have important implications for neurovascular control in both health and disease. PMID:26747505

  3. Intrathecal oxotremorine affects formalin-induced behavior and spinal nitric oxide synthase immunoreactivity in rats.

    PubMed

    Przewlocka, B; Mika, J; Capone, F; Machelska, H; Pavone, F

    1999-03-01

    The present research was undertaken to investigate, by behavioral and immunohistochemical methods, the effects of intrathecal (i.th.) injection of the muscarinic agonist oxotremorine on the response to the long-lasting nociceptive stimulus induced by injection of formalin into the rat hind paw. Formalin injection induced a biphasic, pain-induced behavioral response (paw jerks), as well as an increase in the number of nitric oxide (NO) synthase-labeled neurons in laminae I-III, IV, and X, but not in laminae V-VI. Oxotremorine (0.1-10 ng, i.th.) inhibited paw-jerk frequency in both phases of formalin-induced behavior. The immunohistochemical results showed that i.th.-injected oxotremorine differently affected the level of NO synthase in lumbar part of the spinal cord: no change or increase after the dose of 1 ng, and a significant reduction of nitric oxide synthase neurons after the higher dose (10 ng). These results evidenced a role of cholinergic system in the modulation of tonic pain and in nitric oxide synthase expression at the spinal cord level, which further suggests that these two systems could be involved in phenomena induced by long-lasting nociceptive stimulation.

  4. Photo-crosslinked Biodegradable Elastomers for Controlled Nitric Oxide Delivery

    PubMed Central

    Wang, Ying; Kibbe, Melina R.; Ameer, Guillermo A.

    2013-01-01

    The delivery of nitric oxide (NO) has important applications in medicine, especially for procedures that involve the vasculature. We report photo-curable biodegradable poly(diol citrate) elastomers capable of slow release of NO. A methacrylated poly(diol citrate) macromonomer was prepared by polycondensation of citric acid with 1, 8-octanediol or 1, 12-dodecanediol followed by functionalization with 2-aminoethyl methacrylate. A miscible NO donor, diazeniumdiolated N, N-diethyldiethylenetriamine, was synthesized and incorporated into the polymer matrix. An elastomeric network was obtained via photo-polymerization of macromonomers upon UV irradiation within three minutes. Films and tubes of the NO-releasing crosslinked macromonomers exhibited strong tensile strength and radial compressive strength, respectively. They also exhibited cell compatibility and biodegradability in vitro. Sustained NO release under physiological conditions was achieved for at least one week. NO release enhanced the proliferation of human umbilical vein endothelial cells but inhibited the proliferation of human aortic smooth muscle cells. Photo-polymerizable NO-releasing materials provide a new approach for the localized and sustained delivery of NO to treat thrombosis and restenosis in the vasculature. PMID:24707352

  5. Detoxification of nitric oxide by Fusarium verticillioides is linked to denitrification

    USDA-ARS?s Scientific Manuscript database

    Nitric oxide (NO) is a potent cellular signaling molecule and a byproduct of nitrogen metabolism. High concentrations of NO are a form of nitrosative stress, and to alleviate this stress, organisms utilize flavohemoglobins to convert NO into nontoxic nitrate ions. We have investigated the capacity o...

  6. Functional poly(ε-caprolactone)/chitosan dressings with nitric oxide-releasing property improve wound healing.

    PubMed

    Zhou, Xin; Wang, He; Zhang, Jimin; Li, Xuemei; Wu, Yifan; Wei, Yongzhen; Ji, Shenglu; Kong, Deling; Zhao, Qiang

    2017-05-01

    Wound healing dressings are increasingly needed clinically due to the large number of skin damage annually. Nitric oxide (NO) plays a key role in promoting wound healing, thus biomaterials with NO-releasing property receive increasing attention as ideal wound dressing. In present study, we prepared a novel functional wound dressing by combining electrospun poly(ε-caprolactone) (PCL) nonwoven mat with chitosan-based NO-releasing biomaterials (CS-NO). As-prepared PCL/CS-NO dressing released NO sustainably under the physiological conditions, which was controlled by the catalysis of β-galactosidase. In vivo wound healing characteristics were further evaluated on full-thickness cutaneous wounds in mice. Results showed that PCL/CS-NO wound dressings remarkably accelerated wound healing process through enhancing re-epithelialization and granulation formation and effectively improved the organization of regenerated tissues including epidermal-dermal junction, which could be ascribed to the pro-angiogenesis, immunomodulation, and enhanced collagen synthesis provided by the sustained release of NO. Therefore, PCL/CS-NO may be a promising candidate for wound dressings, especially for the chronic wound caused by the ischemia. Serious skin damage caused by trauma, surgery, burn or chronic disease has become one of the most serious clinical problems. Therefore, there is an increasing demand for ideal wound dressing that can improve wound healing. Due to the vital role of nitric oxide (NO), we developed a novel functional wound dressing by combining electrospun polycaprolactone (PCL) mat with NO-releasing biomaterial (CS-NO). The sustained release of NO from PCL/CS-NO demonstrated positive effects on wound healing, including pro-angiogenesis, immunomodulation, and enhanced collagen synthesis. Hence, wound healing process was remarkably accelerated and the organization of regenerated tissues was effectively improved as well. Taken together, PCL/CS-NO dressing may be a promising

  7. Involvement of the nitric oxide in melatonin-mediated protection against injury.

    PubMed

    Fan, Wenguo; He, Yifan; Guan, Xiaoyan; Gu, Wenzhen; Wu, Zhi; Zhu, Xiao; Huang, Fang; He, Hongwen

    2018-05-01

    Melatonin is a hormone mainly synthesized by the pineal gland in vertebrates and known well as an endogenous regulator of circadian and seasonal rhythms. It has been demonstrated that melatonin is involved in many physiological and pathophysiological processes showing antioxidant, anti-apoptotic and anti-inflammatory properties. Nitric oxide (NO) is a free radical gas in the biological system, which is produced by nitric oxide synthase (NOS) family. NO acts as a biological mediator and plays important roles in different systems in humans. The NO/NOS system exerts a broad spectrum of signaling functions. Accumulating evidence has clearly revealed that melatonin regulates NO/NOS system through multiple mechanisms that may influence physiological and pathophysiological processes. This article reviews the latest evidence for the effects of melatonin on NO/NOS regulation in different organs and disease conditions, the potential cellular mechanisms by which melatonin is involved in organ protection are discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Activity of nitric oxide-generating compounds against encephalomyocarditis virus.

    PubMed Central

    Guillemard, E; Geniteau-Legendre, M; Kergot, R; Lemaire, G; Petit, J F; Labarre, C; Quero, A M

    1996-01-01

    Nitric oxide (NO) generated by two NO donors (sodium nitroprusside or S-nitroso-L-glutathione) was shown to exert a dose-dependent inhibition of encephalomyocarditis virus growth in L-929 cells. This activity was not due to the cytotoxic or direct virucidal effects of NO donors. L-929 cells were shown to produce NO endogenously, but this low level of production did not counter encephalomyocarditis virus replication. PMID:8849231

  9. Hemolysis in sickle cell mice causes pulmonary hypertension due to global impairment in nitric oxide bioavailability

    PubMed Central

    Champion, Hunter C.; Campbell-Lee, Sally A.; Bivalacqua, Trinity J.; Manci, Elizabeth A.; Diwan, Bhalchandra A.; Schimel, Daniel M.; Cochard, Audrey E.; Wang, Xunde; Schechter, Alan N.; Noguchi, Constance T.; Gladwin, Mark T.

    2007-01-01

    Pulmonary hypertension is a highly prevalent complication of sickle cell disease and is a strong risk factor for early mortality. However, the pathophysiologic mechanisms leading to pulmonary vasculopathy remain unclear. Transgenic mice provide opportunities for mechanistic studies of vascular pathophysiology in an animal model. By microcardiac catheterization, all mice expressing exclusively human sickle hemoglobin had pulmonary hypertension, profound pulmonary and systemic endothelial dysfunction, and vascular instability characterized by diminished responses to authentic nitric oxide (NO), NO donors, and endothelium-dependent vasodilators and enhanced responses to vasoconstrictors. However, endothelium-independent vasodilation in sickle mice was normal. Mechanisms of vasculopathy in sickle mice involve global dysregulation of the NO axis: impaired constitutive nitric oxide synthase activity (NOS) with loss of endothelial NOS (eNOS) dimerization, increased NO scavenging by plasma hemoglobin and superoxide, increased arginase activity, and depleted intravascular nitrite reserves. Light microscopy and computed tomography revealed no plexogenic arterial remodeling or thrombi/emboli. Transplanting sickle marrow into wild-type mice conferred the same phenotype, and similar pathobiology was observed in a nonsickle mouse model of acute alloimmune hemolysis. Although the time course is shorter than typical pulmonary hypertension in human sickle cell disease, these results demonstrate that hemolytic anemia is sufficient to produce endothelial dysfunction and global dysregulation of NO. PMID:17158223

  10. Ethylene and nitric oxide interact to regulate the magnesium deficiency-induced root hair development in Arabidopsis.

    PubMed

    Liu, Miao; Liu, Xing Xing; He, Xiao Lin; Liu, Li Juan; Wu, Hao; Tang, Cai Xian; Zhang, Yong Song; Jin, Chong Wei

    2017-02-01

    Nitric oxide (NO) and ethylene respond to biotic and abiotic stresses through either similar or independent processes. This study examines the mechanism underlying the effects of NO and ethylene on promoting root hair development in Arabidopsis under magnesium (Mg) deficiency. The interaction between NO and ethylene in the regulation of Mg deficiency-induced root hair development was investigated using NO- and ethylene-related mutants and pharmacological methods. Mg deficiency triggered a burst of NO and ethylene, accompanied by a stimulated development of root hairs. Interestingly, ethylene facilitated NO generation by activation of both nitrate reductase and nitric oxide synthase-like (NOS-L) in the roots of Mg-deficient plants. In turn, NO enhanced ethylene synthesis through stimulating the activities of 1-aminocyclopropane-1-carboxylate (ACC) oxidase and ACC synthase (ACS). These two processes constituted an NO-ethylene feedback loop. Blocking either of these two processes inhibited the stimulation of root hair development under Mg deficiency. In conclusion, we suggest that Mg deficiency increases the production of NO and ethylene in roots, each influencing the accumulation and role of the other, and thus these two signals interactively regulate Mg deficiency-induced root hair morphogenesis. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  11. Aripiprazole prevents renal ischemia/reperfusion injury in rats, probably through nitric oxide involvement.

    PubMed

    Gholampour, Hanieh; Moezi, Leila; Shafaroodi, Hamed

    2017-10-15

    Renal ischemia/reperfusion (I/R) injury is strongly related to morbidity and mortality. Oxidative stress, inflammation, and apoptosis play key roles in renal dysfunction following renal I/R. Aripiprazole is an atypical antipsychotic which used for the treatment of schizophrenia and bipolar disorder. Recent studies have reported aripiprazole as displaying certain anti-inflammatory effects. Regarding the underlying mechanisms of renal ischemia-reperfusion, therefore, nephroprotective effects might be predicted to be seen with aripiprazole. I/R injury was induced by bilateral clamping of the renal pedicles (45min) followed by reperfusion (24h). The mechanism of aripiprazole-mediated nephroprotection was explored by a combined use of aripiprazole and L-NAME (non-selective nitric oxide synthase inhibitor). Animals were given aripiprazole (2.5, 5, 10 and 20mg/kg) intraperitoneally, 30min before ischemia. L-NAME was administered before the aripiprazole injection. Serum creatinine and blood urea nitrogen were assessed after 24h of reperfusion. Serum levels of malondialdehyde (MDA), TNF-α and IL-1β were measured for rats treated with aripiprazole. The extent of necrosis was measured by the stereology method. Ischemia/reperfusion caused significant renal dysfunction and marked renal injury. Aripiprazole reduced creatinine and blood urea nitrogen. Serum levels of MDA, IL-1β and TNF-α were significantly lower in the aripiprazole group. Aripiprazole treatment also decreased the volume of kidney necrosis. The administration of L-NAME reversed the renoprotective effect of aripiprazole on BUN and creatinine, but enhanced the anti-necrotic effect of aripiprazole. The results show that a single dose of aripiprazole significantly improved renal function following ischemia/reperfusion injury - probably through the involvement of nitric oxide. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate.

    PubMed

    Duncan, C; Dougall, H; Johnston, P; Green, S; Brogan, R; Leifert, C; Smith, L; Golden, M; Benjamin, N

    1995-06-01

    High concentrations of nitrite present in saliva (derived from dietary nitrate) may, upon acidification, generate nitrogen oxides in the stomach in sufficient amounts to provide protection from swallowed pathogens. We now show that, in the rat, reduction of nitrate to nitrite is confined to a specialized area on the posterior surface of the tongue, which is heavily colonized by bacteria, and that nitrate reduction is absent in germ-free rats. We also show that in humans increased salivary nitrite production resulting from nitrate intake enhances oral nitric oxide production. We propose that the salivary generation of nitrite is accomplished by a symbiotic relationship involving nitrate-reducing bacteria on the tongue surface, which is designed to provide host defence against microbial pathogens in the mouth and lower gut. These results provide further evidence for beneficial effects of dietary nitrate.

  13. Endomembrane H-Ras Controls Vascular Endothelial Growth Factor-induced Nitric-oxide Synthase-mediated Endothelial Cell Migration*

    PubMed Central

    Haeussler, Dagmar J.; Pimentel, David R.; Hou, Xiuyun; Burgoyne, Joseph R.; Cohen, Richard A.; Bachschmid, Markus M.

    2013-01-01

    We demonstrate for the first time that endomembrane-delimited H-Ras mediates VEGF-induced activation of endothelial nitric-oxide synthase (eNOS) and migratory response of human endothelial cells. Using thiol labeling strategies and immunofluorescent cell staining, we found that only 31% of total H-Ras is S-palmitoylated, tethering the small GTPase to the plasma membrane but leaving the function of the large majority of endomembrane-localized H-Ras unexplained. Knockdown of H-Ras blocked VEGF-induced PI3K-dependent Akt (Ser-473) and eNOS (Ser-1177) phosphorylation and nitric oxide-dependent cell migration, demonstrating the essential role of H-Ras. Activation of endogenous H-Ras led to recruitment and phosphorylation of eNOS at endomembranes. The loss of migratory response in cells lacking endogenous H-Ras was fully restored by modest overexpression of an endomembrane-delimited H-Ras palmitoylation mutant. These studies define a newly recognized role for endomembrane-localized H-Ras in mediating nitric oxide-dependent proangiogenic signaling. PMID:23548900

  14. Migraines Are Correlated with Higher Levels of Nitrate-, Nitrite-, and Nitric Oxide-Reducing Oral Microbes in the American Gut Project Cohort

    PubMed Central

    Gonzalez, Antonio; Hyde, Embriette; Sangwan, Naseer; Gilbert, Jack A.; Viirre, Erik

    2016-01-01

    ABSTRACT Nitrates, such as cardiac therapeutics and food additives, are common headache triggers, with nitric oxide playing an important role. Facultative anaerobic bacteria in the oral cavity may contribute migraine-triggering levels of nitric oxide through the salivary nitrate-nitrite-nitric oxide pathway. Using high-throughput sequencing technologies, we detected observable and significantly higher abundances of nitrate, nitrite, and nitric oxide reductase genes in migraineurs versus nonmigraineurs in samples collected from the oral cavity and a slight but significant difference in fecal samples. IMPORTANCE Recent work has demonstrated a potentially symbiotic relationship between oral commensal bacteria and humans through the salivary nitrate-nitrite-nitric oxide pathway (C. Duncan et al., Nat Med 1:546–551, 1995, http://dx.doi.org/10.1038/nm0695-546). Oral nitrate-reducing bacteria contribute physiologically relevant levels of nitrite and nitric oxide to the human host that may have positive downstream effects on cardiovascular health (V. Kapil et al., Free Radic Biol Med 55:93–100, 2013, http://dx.doi.org/10.1016/j.freeradbiomed.2012.11.013). In the work presented here, we used 16S rRNA Illumina sequencing to determine whether a connection exists between oral nitrate-reducing bacteria, nitrates for cardiovascular disease, and migraines, which are a common side effect of nitrate medications (U. Thadani and T. Rodgers, Expert Opin Drug Saf 5:667–674, 2006, http://dx.doi.org/10.1517/14740338.5.5.667). PMID:27822557

  15. The effect of piracetam on brain damage and serum nitric oxide levels in dogs submitted to hemorrhagic shock.

    PubMed

    Ozkan, Seda; Ikizceli, Ibrahim; Sözüer, Erdoğan Mütevelli; Avşaroğullari, Levent; Oztürk, Figen; Muhtaroğlu, Sebahattin; Akdur, Okhan; Küçük, Can; Durukan, Polat

    2008-10-01

    To demonstrate the effect of piracetam on changes in brain tissue and serum nitric oxide levels in dogs submitted to hemorrhagic shock. The subjects were randomized into four subgroups each consisting of 10 dogs. Hemorrhagic shock was induced in Group I for 1 hour and no treatment was given to this group. Blood and saline solutions were administered to Group II following 1 hour hemorrhagic shock. Blood and piracetam were given to Group III following 1 hour shock. No shock was induced and no treatment was applied to Group IV. Blood samples were obtained at the onset of the experiment and at 60, 120 and 180 minutes for nitric oxide analysis. For histopathological examination, brain tissue samples were obtained at the end of the experiment. The observed improvement in blood pressure and pulse rates in Group III was more than in Group II. Nitric oxide levels were increased in Group I; however, no correlation between piracetam and nitric oxide levels was determined. It was seen that recovery in brain damage in Group III was greater than in the control group. Piracetam, added to the treatment, may ecrease ischemic damage in hemorrhagic shock.

  16. Role of nitric oxide in additive anticonvulsant effects of agmatine and morphine.

    PubMed

    Payandemehr, Borna; Rahimian, Reza; Bahremand, Arash; Ebrahimi, Ali; Saadat, Seyedehpariya; Moghaddas, Peiman; Fadakar, Kaveh; Derakhshanian, Hoda; Dehpour, Ahmad Reza

    2013-06-13

    The anticonvulsant effects of agmatine, an endogenous polyamine and a metabolite of l-arginine, have been shown in various experimental seizure models. Agmatine also potentiates the anti-seizure activity of morphine. The present study aimed to investigate a possible involvement of nitric oxide (NO) pathway in the protection by agmatine and morphine co-administration against pentylenetetrazole (PTZ) -induced seizure in male mice. To this end, the thresholds for the clonic seizures induced by the intravenous administration of PTZ, a GABA antagonist, were assessed. Intraperitoneal administration of morphine at lower dose (1mg/kg) increased the seizure threshold. Also intraperitoneal administration of agmatine (5 and 10mg/kg) increased the seizure threshold significantly. Combination of subeffective doses of morphine and agmatine led to potent anticonvulsant effects. Non-effective doses of morphine (0.1 and 0.5mg/kg) were able to induce anticonvulsant effects in mice pretreated with agmatine (3mg/kg). Concomitant administration of either the non-selective nitric oxide synthase (NOS) inhibitor L-NAME (1, 5mg/kg, i.p.) or the selective NOS inhibitor 7-NI (15, 30mg/kg, i.p.), with an ineffective combination of morphine (0.1mg/kg) plus agmatine (1mg/kg) produced significant anticonvulsant impacts. Moreover, the NO precursor, l-arginine (30, 60mg/kg, i.p.), inhibited the anticonvulsant action of agmatine (3mg/kg) plus morphine (0.5mg/kg) co-administration. Our results indicate that pretreatment of animals with agmatine enhances the anticonvulsant effects of morphine via a mechanism which may involve the NO pathway. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Commiphora molmol Modulates Glutamate-Nitric Oxide-cGMP and Nrf2/ARE/HO-1 Pathways and Attenuates Oxidative Stress and Hematological Alterations in Hyperammonemic Rats

    PubMed Central

    Alqahtani, Sultan; Othman, Sarah I.; Germoush, Mousa O.; Hussein, Omnia E.; Al-Basher, Gadh; Khim, Jong Seong; Al-Qaraawi, Maha A.; Al-Harbi, Hanan M.; Fadel, Abdulmannan; Allam, Ahmed A.

    2017-01-01

    Hyperammonemia is a serious complication of liver disease and may lead to encephalopathy and death. This study investigated the effects of Commiphora molmol resin on oxidative stress, inflammation, and hematological alterations in ammonium chloride- (NH4Cl-) induced hyperammonemic rats, with an emphasis on the glutamate-NO-cGMP and Nrf2/ARE/HO-1 signaling pathways. Rats received NH4Cl and C. molmol for 8 weeks. NH4Cl-induced rats showed significant increase in blood ammonia, liver function markers, and tumor necrosis factor-alpha (TNF-α). Concurrent supplementation of C. molmol significantly decreased circulating ammonia, liver function markers, and TNF-α in hyperammonemic rats. C. molmol suppressed lipid peroxidation and nitric oxide and enhanced the antioxidant defenses in the liver, kidney, and cerebrum of hyperammonemic rats. C. molmol significantly upregulated Nrf2 and HO-1 and decreased glutamine and nitric oxide synthase, soluble guanylate cyclase, and Na+/K+-ATPase expression in the cerebrum of NH4Cl-induced hyperammonemic rats. Hyperammonemia was also associated with hematological and coagulation system alterations. These alterations were reversed by C. molmol. Our findings demonstrated that C. molmol attenuates ammonia-induced liver injury, oxidative stress, inflammation, and hematological alterations. This study points to the modulatory effect of C. molmol on glutamate-NO-cGMP and Nrf2/ARE/HO-1 pathways in hyperammonemia. Therefore, C. molmol might be a promising protective agent against hyperammonemia. PMID:28744340

  18. The role of N-methyl-D-aspartate receptors and nitric oxide in cochlear dopamine release.

    PubMed

    Halmos, G; Horváth, T; Polony, G; Fekete, A; Kittel, A; Vizi, E S; van der Laan, B F A M; Zelles, T; Lendvai, B

    2008-06-23

    Dopamine (DA) released from lateral olivocochlear (LOC) terminals may have a neuroprotective effect in the cochlea. To explore the role of N-methyl-d-aspartate (NMDA) receptors and nitric oxide (NO) in the modulation of a cochlear DA release, we measured the release of [3H]DA from isolated mouse cochlea in response to the application of NMDA. NMDA at 100 muM significantly increased the electrical-field stimulation-evoked and resting release of DA from the cochlea. The NO donor sodium nitroprusside enhanced the basal outflow of DA but failed to influence the evoked release. The administration of the nitric oxide synthase inhibitor N omega-nitro-L-arginine methyl ester (L-NAME) alone was ineffective, but it significantly inhibited the initial phase of the NMDA-induced elevation of DA outflow, which suggested the role of NO in the NMDA-induced DA release. The DA uptake inhibitor nomifensine increased the electrically evoked release of DA. Nomifensine failed to change the effect of NMDA on the resting or electrically-evoked DA release, which suggested that the uptake mechanism does not play a role in NMDA-evoked and NO-mediated DA release. In summary, we provide evidence that NO can modulate the release of DA from the cochlea following NMDA receptor activation, but does not affect the uptake of DA.

  19. Elevated nitrogen metabolism and nitric oxide production are involved in Arabidopsis resistance to acid rain.

    PubMed

    Qiao, Fang; Zhang, Xi-Min; Liu, Xiang; Chen, Juan; Hu, Wen-Jun; Liu, Ting-Wu; Liu, Ji-Yun; Zhu, Chun-Quan; Ghoto, Kabir; Zhu, Xue-Yi; Zheng, Hai-Lei

    2018-06-01

    Acid rain (AR) can induce great damages to plants and could be classified into different types according to the different SO 4 2- /NO 3 - ratio. However, the mechanism of plants' responding to different types of AR has not been elucidated clearly. Here, we found that nitric-rich simulated AR (N-SiAR) induced less leaves injury as lower necrosis percentage, better physiological parameters and reduced oxidative damage in the leaves of N-SiAR treated Arabidopsis thaliana compared with sulfate and nitrate mixed (SN-SiAR) or sulfuric-rich (S-SiAR) simulated AR treated ones. Of these three types of SiAR, N-SiAR treated Arabidopsis maintained the highest of nitrogen (N) content, nitrate reductase (NR) and nitrite reductase (NiR) activity as well as N metabolism related genes expression level. Nitric oxide (NO) content showed that N-SiAR treated seedlings had a higher NO level compared to SN-SiAR or S-SiAR treated ones. A series of NO production and elimination related reagents and three NO production-related mutants were used to further confirm the role of NO in regulating acid rain resistance in N-SiAR treated Arabidopsis seedlings. Taken together, we concluded that an elevated N metabolism and enhanced NO production are involved in the tolerance to different types of AR in Arabidopsis. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Chemiluminescence of nitric oxide

    NASA Technical Reports Server (NTRS)

    Sharp, W. E.; Rusch, D. W.

    1981-01-01

    Measurements of the intensities of the delta and gamma bands of nitric oxide in the nighttime terrestrial thermosphere are presented and used to infer the rate coefficient for the transition from the C 2 Pi to the A 2 Sigma + states. The nightglow spectrum was observed between 1900 and 2300 A at a resolution of 15 A by a rocket-borne scanning 1/4-m spectrometer pointing north at an apogee of 150 km. Progressions of the delta, gamma and epsilon bands are identified on the spectra by the construction of synthetic spectra, and the contributions of resonance fluorescence to the total band intensities are calculated. Finally, the ratio of the sum of the gamma bands for v-prime = 0 to the sum of the delta bands for v-prime = 0 is used to derive a branching ratio of 0.21 + or - 0.04 to the A 2 Sigma + state, which yields a probability for the C-A transition of 5.6 + or - 1.5 x to the 6th/sec.

  1. Nitric Oxide and Anxiety.

    PubMed

    Gulati, K; Rai, N; Ray, A

    2017-01-01

    Anxiety is a common neuropsychiatric disorder which affects both physical and mental health. Complex neurobiological mechanisms are involved in the genesis of anxiety, and the drugs used to date, though effective, are not free from shortcomings. Conventional agents like the classical benzodiazepines and the atypical nonbenzodiazepine agents like buspirone have their own limitations. There is thus need to explore newer neurochemical pathways to develop efficacious and safer drugs for the disorder. Nitric oxide (NO) is a unique neuromodulator substance, with the ability to influence and modulate several other conventional messengers which play an important role in anxiety. The currently available experimental and clinical data indicate that NO may be involved in the regulation of anxiety-like behavior induced by a variety of stimuli. These studies have explored the pharmacological and biochemical basis of nitrergic mechanisms in anxiety, and the data available are equivocal. This chapter reviews the research data available in this specific area and suggests that in view of the nature of the existing data, there is considerable scope for future research in this field. © 2017 Elsevier Inc. All rights reserved.

  2. Role of the decreased nitric oxide bioavailability in the vascular complications of diabetes mellitus.

    PubMed

    Masha, Andi; Dinatale, Stefano; Allasia, Stefano; Martina, Valentino

    2011-09-01

    This mini-review takes into consideration the physiology, synthesis and mechanisms of action of the nitric oxide (NO) and, subsequently, the causes and effects of the NO bioavailability impairment. In diabetes mellitus the reduced NO bioavailability is caused by the increased free radicals production, secondary to hyperglycemia. The reactive oxygen species oxidize the cofactors of the nitric oxide synthase, diminishing their active forms and consequently leading to a decreased NO production. Furthermore the decreased concentration of reduced glutathione results in a diminished production of nitrosoglutathione. These molecules are important intermediates of the NO pathway and physiologically activate the soluble guanylate cyclase. Their decrease in oxidative states of the cell, therefore, leads to a reduced cGMP production which represents the principal molecule that carries out NO's major effects. Finally we considered the eventual therapeutic strategies to improve NO bioavailability by acting on the causes of its decrease. Therefore the treatments proposed are based on the possibility to counteract the oxidation and, in this context, the physiopathological mechanisms strongly support the treatment with thiols.

  3. Emission control system for nitrogen oxides using enhanced oxidation, scrubbing, and biofiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, A.; Cabezas, J.

    2009-05-15

    Nitric oxide (NO) constitutes about 90% of the nitrogen oxide (NOx) species in the flue gases emitted from combustion processes, but NO is difficult to remove in existing scrubbers due to its low solubility. NO may be oxidized with hydrogen peroxide (H{sub 2}O{sub 2}) into soluble species that can be partially removed in wet scrubbers simultaneously with sulfur dioxide (SO{sub 2}) and biofilters located downstream of the scrubber can increase the removal efficiency. This article presents the results of a bench-scale evaluation of such an integrated system combining enhanced oxidation, scrubbing, and biofiltration. Main components of the bench-scale system consistedmore » of a quartz tube in a furnace to simulate the NO oxidation stage and two vertical packed bed cylinders constituting the scrubber and the biofilter. Inlet synthetic gas had a concentration of 50 mu L/L of NO. Overall removal efficiency by the integrated system was in the range of 53% to 93% with an average of 79%, absorption accounted for 43% and biofiltration for 36% of the total removal. Key parameters in the operation of the system are the H{sub 2}O{sub 2}:NO mole ratio, the reaction temperature, the liquid to gas flow ratio, and the biofilter residence time. Experimental results suggest a path for optimization of the technology focusing simultaneously in minimizing H{sub 2}O{sub 2} use in the enhanced oxidation stage, reducing water consumption in the scrubber stage and balancing the residence times in the three stages of the integrated system.« less

  4. The Role of Nitric Oxide during Sonoreperfusion of Microvascular Obstruction

    PubMed Central

    Yu, Francois T.H.; Chen, Xucai; Straub, Adam C.; Pacella, John J.

    2017-01-01

    Rationale: Microembolization during PCI for acute myocardial infarction can cause microvascular obstruction (MVO). MVO severely limits the success of reperfusion therapies, is associated with additional myonecrosis, and is linked to worse prognosis, including death. We have shown, both in in vitro and in vivo models, that ultrasound (US) and microbubble (MB) therapy (termed “sonoreperfusion” or “SRP”) is a theranostic approach that relieves MVO and restores perfusion, but the underlying mechanisms remain to be established. Objective: In this study, we investigated the role of nitric oxide (NO) during SRP. Methods and results: We first demonstrated in plated cells that US-stimulated MB oscillations induced a 6-fold increase in endothelial nitric oxide synthase (eNOS) phosphorylation in vitro. We then monitored the kinetics of intramuscular NO and perfusion flow rate responses following 2-min of SRP therapy in the rat hindlimb muscle, with and without blockade of eNOS with LNAME. Following SRP, we found that starting at 6 minutes, intramuscular NO increased significantly over 30 min and was higher than baseline after 13 min. Concomitant contrast enhanced burst reperfusion imaging confirmed that there was a marked increase in perfusion flow rate at 6 and 10 min post SRP compared to baseline (>2.5 fold). The increases in intramuscular NO and perfusion rate were blunted with LNAME. Finally, we tested the hypothesis that NO plays a role in SRP by assessing reperfusion efficacy in a previously described rat hindlimb model of MVO during blockade of eNOS. After US treatment 1, microvascular blood volume was restored to baseline in the MB+US group, but remained low in the LNAME group. Perfusion rates increased in the MB+US group after US treatment 2 but not in the MB+US+LNAME group. Conclusions: These data strongly support that MB oscillations can activate the eNOS pathway leading to increased blood perfusion and that NO plays a significant role in SRP efficacy. PMID

  5. Blockade of nitric oxide formation enhances thermal and behavioral responses in rats during turpentine abscess.

    PubMed

    Soszynski, D

    2000-01-01

    The purpose of this study was to investigate the role of nitric oxide (NO) during the development of fever and other symptoms of sickness behavior (i.e. anorexia, cachexia) in response to localized tissue inflammation caused by injection of turpentine in freely moving biotelemetered rats. To determine the role of NO in turpentine-induced fever, we injected the NO synthase (NOS) inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) intraperitoneally simultaneously or 5 h after turpentine injection. Rats responded with fever to intramuscular injection of 20 microl of turpentine that commenced 6 h after injection and reached peak values 11 h after injection. Although turpentine did not significantly alter food and water intake, it caused a drop in body weight. Rats injected with turpentine and treated with L-NAME responded with a substantial rise in fever, independently of the time of L-NAME injection. The rise in body temperature (T(b)) due to turpentine injection began slightly sooner and reached the maximal T(b) value faster in rats treated with L-NAME than in the ones treated with saline (control for L-NAME). The enhanced decrease in food and water intake in rats treated with a combination of L-NAME and turpentine was also observed. As a result, L-NAME-injected rats responded with a profound drop in body mass due to turpentine, independently of the time of L-NAME injection. L-NAME alone did not affect food and water intake, but slightly suppressed the gain of body mass. These results indirectly indicate that NO is involved in pyrogenic and behavioral responses in rats during turpentine abscess. Copyright 2001 S. Karger AG, Basel.

  6. Involvement of nitric oxide in lipopolysaccharide induced anorexia.

    PubMed

    Riediger, Thomas; Cordani, Caroline; Potes, Catarina Soares; Lutz, Thomas A

    2010-11-01

    Treatment with the bacterial endotoxin lipopolysaccharide (LPS) is a commonly used model to induce disease-related anorexia. Following LPS treatment inducible nitric oxide synthase (iNOS) is expressed in the hypothalamic arcuate nucleus (ARC), where nitric oxide (NO) inhibits orexigenic neurons. Intracellular STAT signaling is triggered by inflammatory stimuli and has been linked to the transcriptional regulation of iNOS. We evaluated whether pharmacological blockade of iNOS by the specific inhibitor 1400W attenuates LPS-induced anorexia. Furthermore, we hypothesized that the tolerance to the anorectic effect occurring after repeated LPS treatment is paralleled by a blunted STAT3 phosphorylation in the ARC. Rats treated with a subcutaneous injection of 1400W (10 mg/kg) showed an attenuated anorectic LPS response relative to control rats receiving only LPS (100 µg/kg; i.p.). Similarly, iNOS blockade attenuated LPS-induced adipsia, hyperthermia, inactivity and the concomitant drop in energy expenditure. While single LPS treatment increased STAT3 phosphorylation in the ARC, rats treated repeatedly with LPS showed no anorectic response and also no STAT3 phosphorylation in the ARC after the second and third LPS injections, respectively. Hence, pSTAT3 signaling in the ARC might be part of the intracellular cascades translating pro-inflammatory stimuli into suppression of food intake. The current findings substantiate a role of iNOS dependent NO formation in disease-related anorexia. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Role of nitric oxide in cellular iron metabolism.

    PubMed

    Kim, Sangwon; Ponka, Prem

    2003-03-01

    Iron regulatory proteins (IRP1 and IRP2) control the synthesis of transferrin receptors (TfR) and ferritin by binding to iron-responsive elements (IREs) which are located in the 3' untranslated region (UTR) and the 5' UTR of their respective mRNAs. Cellular iron levels affect binding of IRPs to IREs and consequently expression of TfR and ferritin. Moreover, NO*, a redox species of nitric oxide that interacts primarily with iron, can activate IRP1 RNA-binding activity resulting in an increase in TfR mRNA levels. We have shown that treatment of RAW 264.7 cells (a murine macrophage cell line) with NO+ (nitrosonium ion, which causes S-nitrosylation of thiol groups) resulted in a rapid decrease in RNA-binding of IRP2, followed by IRP2 degradation, and these changes were associated with a decrease in TfR mRNA levels. Moreover, we demonstrated that stimulation of RAW 264.7 cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) increased IRP1 binding activity, whereas RNA-binding of IRP2 decreased and was followed by a degradation of this protein. Furthermore, the decrease of IRP2 binding/protein levels was associated with a decrease in TfR mRNA levels in LPS/IFN-gamma-treated cells, and these changes were prevented by inhibitors of inducible nitric oxide synthase. These results suggest that NO+-mediated degradation of IRP2 plays a major role in iron metabolism during inflammation.

  8. Effect of Blockade of Nitric Oxide Synthesis on the Renin Secretory Response to Frusemide in Conscious Rabbits

    NASA Technical Reports Server (NTRS)

    Reid, Ian A.; Chou, Lance

    1995-01-01

    The enzyme nitric oxide synthase is present in the macula densa and may participate in the control of renin secretion by the adjacent juxtagiomerular cells. In the present study, we investigated the effect of inhibiting nitric oxide synthase on the renin secretory response to frusemide, which stimulates renin secretion by blocking Na(+)-K(+)-2Cl(-) co-transport in the macula densa. Injection of frusemide in 12 conscious rabbits elicited a transient increase in mean arterial pressure from 84 +/- 2 to 92 +/-3 mm Hg at 5 min (P less than 0.01) and a sustained increase in heart rate from 246 +/- 6 to 281 +/- 10 beats/min at 45 min (P less than 0.01). Plasma renin activity increased from 8.0 +/- 1.2 to 14.3 +/- 1.8, 12.4 +/- 1.6 and 11.6 +/- 1.5 pmol/2h ml at 15, 30 and 45min respectively (P less than 0.01). There were no changes in plasma sodium and potassium concentrations or osmoiality. Inhibition of nitric oxide synthase with N(sup G)-nitro-L- arginine methyl ester increased mean arterial pressure by 9 mm Hg, decreased heart rate and plasma renin activity, and markedly suppressed the renin response to frusemide (from 4.6 +/- 0.7 to 7.6 +/- 1.7, 4.7 +/- 1.0 and 4.6 +/- 0.7pmol/2h ml at 15, 30 and 45 min respectively). By contrast, infusion of an equipressor dose of phenylephrine did not suppress the renin response to frusemide. Histochemical studies with the NADPH diaphorase technique confirmed the presence of nitric oxide synthase in the macula densa, and suggested that enzyme activity is increased by treatment with frusemide. These results are consistent with a role for the L- arginine-nitric oxide pathway in the modulation of renin secretion by the macula densa.

  9. Nitric Oxide Mediates 5-Aminolevulinic Acid-Induced Antioxidant Defense in Leaves of Elymus nutans Griseb. Exposed to Chilling Stress

    PubMed Central

    Fu, Juanjuan; Chu, Xitong; Sun, Yongfang; Miao, Yanjun; Xu, Yuefei; Hu, Tianming

    2015-01-01

    Nitric oxide (NO) and 5-aminolevulinic acid (ALA) are both extremely important signalling molecules employed by plants to control many aspects of physiology. In the present study, the role of NO in ALA-induced antioxidant defense in leaves of two sources of Elymus nutans Griseb. (Damxung, DX and Zhengdao, ZD) was investigated. Chilling stress enhanced electrolyte leakage, accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide radical in two E. nutans, which were substantially alleviated by exogenous ALA and NO application. Pretreatment with NO scavenger PTIO or NOS inhibitor L-NNA alone and in combination with ALA induced enhancements in electrolyte leakage and the accumulation of MDA, H2O2 and superoxide radical in leaves of DX and ZD exposed to chilling stress, indicating that the inhibition of NO biosynthesis reduced the chilling resistance of E. nutans and the ALA-enhanced chilling resistance. Further analyses showed that ALA and NO enhanced antioxidant defense and activated plasma membrane (PM) H+-ATPase and decreased the accumulation of ROS induced by chilling stress. A pronounced increase in nitric oxide synthase (NOS) activity and NO release by exogenous ALA treatment was found in chilling-resistant DX plants exposed to chilling stress, while only a little increase was observed in chilling-sensitive ZD. Furthermore, inhibition of NO accumulation by PTIO or L-NNA blocked the protective effect of exogenous ALA, while both exogenous NO treatment and inhibition of endogenous NO accumulation did not induce ALA production. These results suggested that NO might be a downstream signal mediating ALA-induced chilling resistance in E. nutans. PMID:26151364

  10. Simulation of nitrous oxide and nitric oxide emissions from tropical primary forests in the Costa Rican Atlantic Zone

    Treesearch

    Shuguanga Liu; William A. Reiners; Michael Keller; Davis S. Schimel

    2000-01-01

    Nitrous oxide (N2O) and nitric oxide (NO) are important atmospheric trace gases participating in the regulation of global climate and environment. Predictive models on the emissions of N2O and NO emissions from soil into the atmosphere are required. We modified the CENTURY model (Soil Sci. Soc. Am. J., 51 (1987) 1173) to simulate the emissions of N2O and NO from...

  11. Mid-Ir Cavity Ring-Down Spectrometer for Biological Trace Nitric Oxide Detection

    NASA Astrophysics Data System (ADS)

    Kan, Vincent; Ragab, Ahemd; Stsiapura, Vitali; Lehmann, Kevin K.; Gaston, Benjamin M.

    2011-06-01

    S-nitrosothiols have received much attention in biochemistry and medicine as donors of nitrosonium ion (NO^+) and nitric oxide (NO) - physiologically active molecules involved in vasodilation and signal transduction. Determination of S-nitrosothiols content in cells and tissues is of great importance for fundamental research and medical applications. We will report on our ongoing development of a instrument to measure trace levels of nitric oxide gas (NO), released from S-nitrosothiols after exposure to UV light (340 nm) or reaction with L-Cysteine+CuCl mixture. The instrument uses the method of cavity ring-down spectroscopy, probing rotationally resolved lines in the vibrational fundamental transition near 5.2 μm. The laser source is a continuous-wave, room temperature external cavity quantum cascade laser. An acousto-optic modulator is used to abruptly turn off the optical power incident on the cavity when the laser and cavity pass through resonance.

  12. Evidence for involvement of nitric oxide and GABAB receptors in MK-801- stimulated release of glutamate in rat prefrontal cortex

    PubMed Central

    Roenker, Nicole L.; Gudelsky, Gary A.; Ahlbrand, Rebecca; Horn, Paul S.; Richtand, Neil M.

    2012-01-01

    Systemic administration of NMDA receptor antagonists elevates extracellular glutamate within prefrontal cortex. The cognitive and behavioral effects of NMDA receptor blockade have direct relevance to symptoms of schizophrenia, and recent studies demonstrate an important role for nitric oxide and GABAB receptors in mediating the effects of NMDA receptor blockade on these behaviors. We sought to extend those observations by directly measuring the effects of nitric oxide and GABAB receptor mechanisms on MK-801-induced glutamate release in the prefrontal cortex. Systemic MK-801 injection (0.3 mg/kg) to male Sprague-Dawley rats significantly increased extracellular glutamate levels in prefrontal cortex, as determined by microdialysis. This effect was blocked by pretreatment with the nitric oxide synthase inhibitor L-NAME (60 mg/kg). Reverse dialysis of the nitric oxide donor SNAP (0.5 – 5 mM) directly into prefrontal cortex mimicked the effect of systemic MK-801, dose-dependently elevating cortical extracellular glutamate. The effect of MK-801 was also blocked by systemic treatment with the GABAB receptor agonist baclofen (5 mg/kg). In combination, these data suggest increased nitric oxide formation is necessary for NMDA antagonist-induced elevations of extracellular glutamate in the prefrontal cortex. Additionally, the data suggest GABAB receptor activation can modulate the NMDA antagonist-induced increase in cortical glutamate release. PMID:22579658

  13. Synthesis of nitric oxide in human osteoblasts in response to physiologic stimulation of electrotherapy.

    PubMed

    Hamed, Ayman; Kim, Paul; Cho, Michael

    2006-12-01

    Electrotherapy for bone healing, remodeling and wound healing may be mediated by modulation of nitric oxide (NO). Using NO-specific fluorophore (DAF-2), we report here that application of non-invasive, physiologic electrical stimulation induces NO synthesis in human osteoblasts, and that such NO generation is comparable to that induced by estrogen treatment. For example, application of a sinusoidal 1 Hz, 2 V/cm (peak to peak) electrical stimulation (ES) increases NO-bound DAF-2 fluorescence intensity by a 2-fold within 60 min exposure by activating nitric oxide synthase (NOS). Increase in the NO level is found to depend critically on the frequency and strength of ES. While the frequency of 1 Hz ES seems optimal, the ES strength >0.5 V/cm is required to induce significant NO increase, however. Nitric oxide synthesis in response to ES is completely prevented by blocking estrogen receptors using a competitive inhibitor, suggesting that NO generation is likely initiated by activation of estrogen receptors at the cell surface. Based on these findings, physiologic stimulation of electrotherapy appears to represent a potential non-invasive, non-genomic, and novel physical technique that could be used to regulate NO-mediated bone density and facilitate bone remodeling without adverse effects associated with hormone therapy.

  14. Nitric oxide-related species inhibit evoked neurotransmission but enhance spontaneous miniature synaptic currents in central neuronal cultures.

    PubMed

    Pan, Z H; Segal, M M; Lipton, S A

    1996-12-24

    Nitric oxide (NO.) does not react significantly with thiol groups under physiological conditions, whereas a variety of endogenous NO donor molecules facilitate rapid transfer to thiol of nitrosonium ion (NO+, with one less electron than NO.). Here, nitrosonium donors are shown to decrease the efficacy of evoked neurotransmission while increasing the frequency of spontaneous miniature excitatory postsynaptic currents (mEPSCs). In contrast, pure NO donors have little effect (displaying at most only a slight increase) on the amplitude of evoked EPSCs and frequency of spontaneous mEPSCs in our preparations. These findings may help explain heretofore paradoxical observations that the NO moiety can either increase, decrease, or have no net effect on synaptic activity in various preparations.

  15. Residual analysis of nitric oxide fumigation on fresh fruit and vegetables

    USDA-ARS?s Scientific Manuscript database

    Nitric oxide (NO) is a newly discovered fumigant which is effective against a wide range of postharvest pests. To register NO with US EPA for commercial use as a pesticide and to ensure its safety to consumers, it is necessary to analyze residues of NO fumigated products. In this study, we analyzed ...

  16. Treatment of sunitinib-induced hypertension in solid tumor by nitric oxide donors☆

    PubMed Central

    León-Mateos, L.; Mosquera, J.; Antón Aparicio, L.

    2015-01-01

    Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) are overexpressed in the majority of renal cell carcinomas. This characteristic has supported the rationale of targeting VEGF-driven tumour vascularization, especially in clear cell RCC. VEGF-inhibiting strategies include the use of tyrosine kinase inhibitors (sunitinib, axitinib, pazopanib, and sorafenib) and neutralizing antibodies such as bevacizumab. Hypertension (HTN) is one of the most common adverse effects of angiogenesis inhibitors. HTN observed in clinical trials appears to correlate with the potency of VEGF kinase inhibitor against VEGFR-2: agents with higher potency are associated with a higher incidence of HTN. Although the exact mechanism by tyrosine kinase inhibitors induce HTN has not yet been completely clarified, two key hypotheses have been postulated. First, some studies have pointed to a VEGF inhibitors-induced decrease in nitric oxide synthase (NOS) and nitric oxide (NO) production, that can result in vasoconstriction and increased blood pressure. VEGF, mediated by PI3K/Akt and MAPK pathway, upregulates the endothelial nitric oxide synthase enzyme leading to up-regulation of NO production. So inhibition of signaling through the VEGF pathway would lead to a decrease in NO production, resulting in an increase in vascular resistance and blood pressure. Secondly a decrease in the number of microvascular endothelial cells and subsequent depletion of normal microvessel density (rarefaction) occurs upon VEGF signaling inhibition. NO donors could be successfully used not only for the treatment of developed angiogenesis-inhibitor-induced hypertension but also for preventive effects. PMID:26386874

  17. Nitric oxide released by Lactobacillus farciminis improves TNBS-induced colitis in rats.

    PubMed

    Lamine, F; Fioramonti, J; Bueno, L; Nepveu, F; Cauquil, E; Lobysheva, I; Eutamène, H; Théodorou, V

    2004-01-01

    Beneficial effects of lactobacilli have been reported in experimental colitis. On the other hand, despite the controversial role of nitric oxide (NO) in the inflammatory gut process, a protective action of exogenous NO in inflammation has been suggested. Consequently, this study aimed to determine the effect of (i) sodium nitroprusside (SNP), a NO donor and (ii) treatment with Lactobacillus farciminis, which produces NO in vitro, on trinitrobenzene sulphonic acid (TNBS)-induced colitis in rats and to evaluate the role of exogenous NO in this effect. Rats were divided into three groups receiving one of the following: (i) a continuous intracolonic (IC) infusion of SNP for 4 days, (ii) L. farciminis orally for 19 days, or (iii) saline. On day 1 and day 15, respectively, TNBS and saline were administrated IC, followed by a continuous IC infusion of saline or haemoglobin, a NO scavenger. At the end of treatments, the following parameters were evaluated: macroscopic damage of colonic mucosa, myeloperoxidase and nitric oxide synthase activities and colonic luminal NO production. In colitic rats, SNP and L. farciminis treatment significantly (P < 0.05) reduced macroscopic damage scores, myeloperoxidase and nitric oxide synthase activities compared to controls. Haemoglobin infusion abolished the anti-inflammatory effect of both NO donor treatments, but had no effect per se on colitis. NO released intraluminally by SNP infusion or by L. farciminis given orally improves TNBS-induced colitis in rats. These results indicate a protective role of NO donation in colonic inflammation and show for the first time a mechanism involving NO delivery by a bacterial strain reducing an experimental colitis.

  18. Melatonin and its precursors scavenge nitric oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noda, Y.; Mori, A.; Liburdy, R.

    Nitric oxide (NO) scavenging activity of melatonin, N-acetyl-5-hydroxytryptamine, serotonin, 5-hydroxytryptophan and L-tryptophan was examined by the Griess reaction using flow injection analysis. 1-Hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene(NOC-7) was used as NO generator. The Griess reagent stoichiometrically reacts with NO2-, which was converted by a cadmium-copper reduction column from the stable end products of NO oxidation. Except for tryptophan, all the compounds examined scavenged NO in a dose-dependent manner. Melatonin, which has a methoxy group in the 5-position and an acetyl side chain, exhibited the most potent scavenging activity among the compounds tested. Serotonin, N-acetyl-5-hydroxytryptamine, and 5-hydroxytryptophan, respectively, showed moderate scavenging activity compared to melatonin.more » Tryptophan, which has neither a methoxy nor a hydroxyl group in the 5-position, exhibited the least NO scavenging activity.« less

  19. AMPK and Endothelial Nitric Oxide Synthase Signaling Regulates K-Ras Plasma Membrane Interactions via Cyclic GMP-Dependent Protein Kinase 2

    PubMed Central

    Cho, Kwang-jin; Casteel, Darren E.; Prakash, Priyanka; Tan, Lingxiao; van der Hoeven, Dharini; Salim, Angela A.; Kim, Choel; Capon, Robert J.; Lacey, Ernest; Cunha, Shane R.; Gorfe, Alemayehu A.

    2016-01-01

    K-Ras must localize to the plasma membrane and be arrayed in nanoclusters for biological activity. We show here that K-Ras is a substrate for cyclic GMP-dependent protein kinases (PKGs). In intact cells, activated PKG2 selectively colocalizes with K-Ras on the plasma membrane and phosphorylates K-Ras at Ser181 in the C-terminal polybasic domain. K-Ras phosphorylation by PKG2 is triggered by activation of AMP-activated protein kinase (AMPK) and requires endothelial nitric oxide synthase and soluble guanylyl cyclase. Phosphorylated K-Ras reorganizes into distinct nanoclusters that retune the signal output. Phosphorylation acutely enhances K-Ras plasma membrane affinity, but phosphorylated K-Ras is progressively lost from the plasma membrane via endocytic recycling. Concordantly, chronic pharmacological activation of AMPK → PKG2 signaling with mitochondrial inhibitors, nitric oxide, or sildenafil inhibits proliferation of K-Ras-positive non-small cell lung cancer cells. The study shows that K-Ras is a target of a metabolic stress-signaling pathway that can be leveraged to inhibit oncogenic K-Ras function. PMID:27697864

  20. Molecular Dynamics Simulations Reveal Proton Transfer Pathways in Cytochrome C-Dependent Nitric Oxide Reductase

    PubMed Central

    Pisliakov, Andrei V.; Hino, Tomoya; Shiro, Yoshitsugu; Sugita, Yuji

    2012-01-01

    Nitric oxide reductases (NORs) are membrane proteins that catalyze the reduction of nitric oxide (NO) to nitrous oxide (N2O), which is a critical step of the nitrate respiration process in denitrifying bacteria. Using the recently determined first crystal structure of the cytochrome c-dependent NOR (cNOR) [Hino T, Matsumoto Y, Nagano S, Sugimoto H, Fukumori Y, et al. (2010) Structural basis of biological N2O generation by bacterial nitric oxide reductase. Science 330: 1666–70.], we performed extensive all-atom molecular dynamics (MD) simulations of cNOR within an explicit membrane/solvent environment to fully characterize water distribution and dynamics as well as hydrogen-bonded networks inside the protein, yielding the atomic details of functionally important proton channels. Simulations reveal two possible proton transfer pathways leading from the periplasm to the active site, while no pathways from the cytoplasmic side were found, consistently with the experimental observations that cNOR is not a proton pump. One of the pathways, which was newly identified in the MD simulation, is blocked in the crystal structure and requires small structural rearrangements to allow for water channel formation. That pathway is equivalent to the functional periplasmic cavity postulated in cbb 3 oxidase, which illustrates that the two enzymes share some elements of the proton transfer mechanisms and confirms a close evolutionary relation between NORs and C-type oxidases. Several mechanisms of the critical proton transfer steps near the catalytic center are proposed. PMID:22956904

  1. A nitric oxide burst precedes apoptosis in angiosperm and gymnosperm callus cells and foliar tissues.

    PubMed

    Pedroso, M C; Magalhaes, J R; Durzan, D

    2000-06-01

    Leaves and callus of Kalanchoë daigremontiana and Taxus brevifolia were used to investigate nitric oxide-induced apoptosis in plant cells. The effect of nitric oxide (NO) was studied by using a NO donor, sodium nitroprusside (SNP), a nitric oxide-synthase (NOS) inhibitor, N:(G)-monomethyl-L-arginine (NMMA), and centrifugation (an apoptosis-inducing treatment in these species). NO production was visualized in cells and tissues with a specific probe, diaminofluorescein diacetate (DAF-2 DA). DNA fragmentation was detected in situ by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) method. In both species, NO was detected diffused in the cytosol of epidermal cells and in chloroplasts of guard cells and leaf parenchyma cells. Centrifugation increased NO production, DNA fragmentation and subsequent cell death by apoptosis. SNP mimicked centrifugation results. NMMA significantly decreased NO production and apoptosis in both species. The inhibitory effect of NMMA on NO production suggests that a putative NOS is present in Kalanchoë and Taxus cells. The present results demonstrated the involvement of NO on DNA damage leading to cell death, and point to a potential role of NO as a signal molecule in these plants.

  2. Nitrous-acid-mediated synthesis of iron-nitrosyl-porphyrin: pH-dependent release of nitric oxide.

    PubMed

    Bhuyan, Jagannath; Sarkar, Sabyasachi

    2012-11-01

    Two iron-nitrosyl-porphyrins, nitrosyl[meso-tetrakis(3,4,5-trimethoxyphenylporphyrin]iron(II) acetic acid solvate (3) and nitrosyl[meso-tetrakis(4-methoxyphenylporphyrin]iron(II) CH(2)Cl(2) solvate (4), were synthesized in quantitative yield by using a modified procedure with nitrous acid, followed by oxygen-atom abstraction by triphenylphosphine under an argon atmosphere. These nitrosyl porphyrins are in the {FeNO}(7) class. Under an argon atmosphere, these compounds are relatively stable over a broad range of pH values (4-8) but, under aerobic conditions, they release nitric oxide faster at high pH values than that at low pH values. The generated nitric-oxide-free iron(III)-porphyrin can be re-nitrosylated by using nitrous acid and triphenylphosphine. The rapid release of NO from these Fe(II) complexes at high pH values seems to be similar to that in nitrophorin, a nitric-oxide-transport protein, which formally possesses Fe(III). However, because the release of NO occurs from ferrous-nitrosyl-porphyrin under aerobic conditions, these compounds are more closely related to nitrobindin, a recently discovered heme protein. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Integrative medical therapy: examination of meditation's therapeutic and global medicinal outcomes via nitric oxide (review).

    PubMed

    Stefano, George B; Esch, Tobias

    2005-10-01

    Relaxation techniques are part of the integrative medicine movement that is of growing importance for mainstream medicine. Complementary medical therapies have the potential to affect many physiological systems. Repeatedly studies show the benefits of the placebo response and relaxation techniques in the treatment of hypertension, cardiac arrhythmias, chronic pain, insomnia, anxiety and mild and moderate depression, premenstrual syndrome, and infertility. In itself, relaxation is characterized by a decreased metabolism, heart rate, blood pressure, and rate of breathing as well as an increase in skin temperature. Relaxation approaches, such as progressive muscle relaxation, autogenic training, meditation and biofeedback, are effective in lowering systolic and diastolic blood pressure in hypertensive patients by a significant margin. Given this association with changes in vascular tone, we have hypothesized that nitric oxide, a demonstrated vasodilator substance, contribute to physiological activity of relaxation approaches. We examined the scientific literature concerning the disorders noted earlier for their nitric oxide involvement in an attempt to provide a molecular rationale for the positive effects of relaxation approaches, which are physiological and cognitive process. We conclude that constitutive nitric oxide may crucially contribute to potentially beneficial outcomes and effects in diverse pathologies, exerting a global healing effect.

  4. Nitric Oxide Generating Polymeric Coatings for Subcutaneous Glucose Sensors

    DTIC Science & Technology

    2007-10-01

    primary polymer which was then aminated (2) for attachment of (Boc)3-cyclen-N-acetic acid (1). After the conjugation via EDC coupling chemistry, the Boc...dipping procedure is repeated 5 times. This is the needle-type NO sensor currently used (e.g., Figure 4 device but w/o the SePEI and alginic acid ...Cha, M. E. Meyerhoff, " Polymethacrylates with Covalently Linked Cu(II)-Cyclen Complex for the In-Situ Generation of Nitric Oxide from Nitrosothiols in

  5. Nitric oxide plays a role in the regulation of adrenal blood flow and adrenocorticomedullary functions in the llama fetus

    PubMed Central

    Riquelme, Raquel A; Sánchez, Gina; Liberona, Leonel; Sanhueza, Emilia M; Giussani, Dino A; Blanco, Carlos E; Hanson, Mark A; Llanos, Aníbal J

    2002-01-01

    The hypothesis that nitric oxide plays a key role in the regulation of adrenal blood flow and plasma concentrations of cortisol and catecholamines under basal and hypoxaemic conditions in the llama fetus was tested. At 0.6-0.8 of gestation, 11 llama fetuses were surgically prepared for long-term recording under anaesthesia with vascular and amniotic catheters. Following recovery all fetuses underwent an experimental protocol based on 1 h of normoxaemia, 1 h of hypoxaemia and 1 h of recovery. In nine fetuses, the protocol occurred during fetal i.v. infusion with saline and in five fetuses during fetal i.v. treatment with the nitric oxide synthase inhibitor l-NAME. Adrenal blood flow was determined by the radiolabelled microsphere method during each of the experimental periods during saline infusion and treatment with l-NAME. Treatment with l-NAME during normoxaemia led to a marked fall in adrenal blood flow and a pronounced increase in plasma catecholamine concentrations, but it did not affect plasma ACTH or cortisol levels. In saline-infused fetuses, acute hypoxaemia elicited an increase in adrenal blood flow and in plasma ACTH, cortisol, adrenaline and noradrenaline concentrations. Treatment with l-NAME did not affect the increase in fetal plasma ACTH, but prevented the increments in adrenal blood flow and in plasma cortisol and adrenaline concentrations during hypoxaemia in the llama fetus. In contrast, l-NAME further enhanced the increase in fetal plasma noradrenaline. These data support the hypothesis that nitric oxide has important roles in the regulation of adrenal blood flow and adrenal corticomedullary functions during normoxaemia and hypoxaemia functions in the late gestation llama fetus. PMID:12356897

  6. Nitric Oxide Mediates Biofilm Formation and Symbiosis in Silicibacter sp. Strain TrichCH4B.

    PubMed

    Rao, Minxi; Smith, Brian C; Marletta, Michael A

    2015-05-05

    Nitric oxide (NO) plays an important signaling role in all domains of life. Many bacteria contain a heme-nitric oxide/oxygen binding (H-NOX) protein that selectively binds NO. These H-NOX proteins often act as sensors that regulate histidine kinase (HK) activity, forming part of a bacterial two-component signaling system that also involves one or more response regulators. In several organisms, NO binding to the H-NOX protein governs bacterial biofilm formation; however, the source of NO exposure for these bacteria is unknown. In mammals, NO is generated by the enzyme nitric oxide synthase (NOS) and signals through binding the H-NOX domain of soluble guanylate cyclase. Recently, several bacterial NOS proteins have also been reported, but the corresponding bacteria do not also encode an H-NOX protein. Here, we report the first characterization of a bacterium that encodes both a NOS and H-NOX, thus resembling the mammalian system capable of both synthesizing and sensing NO. We characterized the NO signaling pathway of the marine alphaproteobacterium Silicibacter sp. strain TrichCH4B, determining that the NOS is activated by an algal symbiont, Trichodesmium erythraeum. NO signaling through a histidine kinase-response regulator two-component signaling pathway results in increased concentrations of cyclic diguanosine monophosphate, a key bacterial second messenger molecule that controls cellular adhesion and biofilm formation. Silicibacter sp. TrichCH4B biofilm formation, activated by T. erythraeum, may be an important mechanism for symbiosis between the two organisms, revealing that NO plays a previously unknown key role in bacterial communication and symbiosis. Bacterial nitric oxide (NO) signaling via heme-nitric oxide/oxygen binding (H-NOX) proteins regulates biofilm formation, playing an important role in protecting bacteria from oxidative stress and other environmental stresses. Biofilms are also an important part of symbiosis, allowing the organism to remain in a

  7. Delivery of nitric oxide to the interior of mammalian cell by carbon nanotube: MD simulation.

    PubMed

    Raczyński, Przemysław; Górny, Krzysztof; Dawid, Aleksander; Gburski, Zygmunt

    2014-07-15

    Computer simulations have been performed to study the nanoindentation of phospholipid bilayer by the single-walled armchair carbon nanotube, filled with the nitric oxide molecules. The process has been simulated by means of molecular dynamics (MD) technique at physiological temperature T = 310 K with a constant pulling velocity of the nanotube. The force acting on the nanotube during membrane penetration has been calculated. We show that the indentation by carbon nanotube does not permanently destroy the membrane structure (self-sealing of the membrane occurs). The mobility of nitric oxide molecules during the membrane nanoindentation is discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Gastroprotective Effect of Geopropolis from Melipona scutellaris Is Dependent on Production of Nitric Oxide and Prostaglandin.

    PubMed

    Ribeiro-Junior, Jerônimo Aparecido; Franchin, Marcelo; Cavallini, Miriam Elias; Denny, Carina; de Alencar, Severino Matias; Ikegaki, Masaharu; Rosalen, Pedro Luiz

    2015-01-01

    The aim of this study was to evaluate the gastroprotective activity of ethanolic extract of geopropolis (EEGP) from Melipona scutellaris and to investigate the possible mechanisms of action. The gastroprotective activity of the EEGP was evaluated using model ulcer induced by ethanol. To elucidate the possible mechanisms of action, we investigated the involvement of the nonprotein sulfhydryl (NP-SH) groups, nitric oxide and prostaglandins. In addition, the antisecretory activity of EEGP was also evaluated by pylorus ligated model. The EEGP orally administrated (300 mg/kg) reduced the ulcerative lesions induced by the ethanol (P < 0.05). Regarding the mechanism of action, the prior administration of nitric oxide and prostaglandins antagonists suppressed the activity of gastroprotective EEGP (P < 0.05). On the other hand the gastroprotective activity of EEGP was kept in the group pretreated with the antagonist of the NP-SH groups; furthermore the antisecretory activity was not significant (P > 0.05). These results support the alternative medicine use of geopropolis as gastroprotective and the activities observed show to be related to nitric oxide and prostaglandins production.

  9. Gastroprotective Effect of Geopropolis from Melipona scutellaris Is Dependent on Production of Nitric Oxide and Prostaglandin

    PubMed Central

    Ribeiro-Junior, Jerônimo Aparecido; Franchin, Marcelo; Cavallini, Miriam Elias; Denny, Carina; de Alencar, Severino Matias; Ikegaki, Masaharu; Rosalen, Pedro Luiz

    2015-01-01

    The aim of this study was to evaluate the gastroprotective activity of ethanolic extract of geopropolis (EEGP) from Melipona scutellaris and to investigate the possible mechanisms of action. The gastroprotective activity of the EEGP was evaluated using model ulcer induced by ethanol. To elucidate the possible mechanisms of action, we investigated the involvement of the nonprotein sulfhydryl (NP-SH) groups, nitric oxide and prostaglandins. In addition, the antisecretory activity of EEGP was also evaluated by pylorus ligated model. The EEGP orally administrated (300 mg/kg) reduced the ulcerative lesions induced by the ethanol (P < 0.05). Regarding the mechanism of action, the prior administration of nitric oxide and prostaglandins antagonists suppressed the activity of gastroprotective EEGP (P < 0.05). On the other hand the gastroprotective activity of EEGP was kept in the group pretreated with the antagonist of the NP-SH groups; furthermore the antisecretory activity was not significant (P > 0.05). These results support the alternative medicine use of geopropolis as gastroprotective and the activities observed show to be related to nitric oxide and prostaglandins production. PMID:25949263

  10. Purafil-filtration prevents the development of ozone-induced frost injury: A potential role for nitric oxide

    NASA Astrophysics Data System (ADS)

    Neighbour, E. A.; Pearson, M.; Mehlhorn, H.

    The relationship between exposure to ozone in the summer and the subsequent development of frost hardiness in the autumn was evaluated in recent experiments with red spruce ( Picea rubens Sarg. Syn. P. rubra). When O 3 was added to air filtered only through charcoal (contaminated with nitric oxide (NO)), frost sensitivity in late autumn was increased as measured by conductivity from electrocyte leakage. However, when O 3 was added to air filtered through charcoal and Purafil (no NO), no enhancement of frost sensitivity was found. A possible explanation of this difference, involving the chain-propagating property of NO in the O 3-initiated oxidation of unsaturated hydrocarbons (HCs), is proposed and discussed. N 2O 5, which was found to be generated at approximately 0.02 moles per mole of O 3 in the first year's experiment, only marginally modified O 3 toxicity.

  11. Nitric oxide is a mediator of methamphetamine (METH)-induced neurotoxicity. In vitro evidence from primary cultures of mesencephalic cells.

    PubMed

    Sheng, P; Cerruti, C; Ali, S; Cadet, J L

    1996-10-31

    METH is a monoaminergic toxic that destroys dopamine terminals in vivo. Oxidative mechanisms associated with DA metabolism are thought to play an important role in its toxic effects. These ideas were supported by the demonstration that CuZn-superoxide dismutase (CuZnSOD) transgenic mice were protected against the toxic effects of the drug. In the present study, we sought to determine if nitric oxide (NO) production was also involved in METH-induced neurotoxicity using primary cultures obtained from fetal rat mesencephalon. METH caused dose- and time-dependent cell death in vitro. Blockade of nitric oxide (NO) formation with several nitric oxide (NO) synthase blockers attenuated METH-mediated toxicity. Moreover, inhibition of ADP-ribosylation with nicotinamide and benzamide also provided protection against the toxicity of the drug. These results, together with our previous results in transgenic mice, support a role for free radicals in METH-induced toxic effects.

  12. Nitric Oxide-Releasing Chitosan Oligosaccharides as Antibacterial Agents

    PubMed Central

    Lu, Yuan; Slomberg, Danielle L.; Schoenfisch, Mark H.

    2014-01-01

    Secondary amine-functionalized chitosan oligosaccharides of different molecular weights (i.e., ~2500, 5000, 10000) were synthesized by grafting 2-methyl aziridine from the primary amines on chitosan oligosaccharides, followed by reaction with nitric oxide (NO) gas under basic conditions to yield N-diazeniumdiolate NO donors. The total NO storage, maximum NO flux, and half-life of the resulting NO-releasing chitosan oligosaccharides were controlled by the molar ratio of 2-methyl aziridine to primary amines (e.g., 1:1, 2:1) and the functional group surrounding the N-diazeniumdiolates (e.g., polyethylene glycol (PEG) chains), respectively. The secondary amine-modified chitosan oligosaccharides greatly increased the NO payload over existing biodegradable macromolecular NO donors. In addition, the water-solubility of the chitosan oligosaccharides enabled their penetration across the extracellular polysaccharides matrix of Pseudomonas aeruginosa biofilms and association with embedded bacteria. The effectiveness of these chitosan oligosaccharides at biofilm eradication was shown to depend on both the molecular weight and ionic characteristics. Low molecular weight and cationic chitosan oligosaccharides exhibited rapid association with bacteria throughout the entire biofilm, leading to enhanced biofilm killing. At concentrations resulting in 5-log killing of bacteria in Pseudomonas aeruginosa biofilms, the NO-releasing and control chitosan oligosaccharides elicited no significant cytotoxicity to mouse fibroblast L929 cells in vitro. PMID:24268196

  13. Anti-biofilm action of nitric oxide-releasing alkyl-modified poly(amidoamine) dendrimers against Streptococcus mutans.

    PubMed

    Backlund, Christopher J; Worley, Brittany V; Schoenfisch, Mark H

    2016-01-01

    The effect of nitric oxide (NO)-releasing dendrimer hydrophobicity on Streptococcus mutans killing and biofilm disruption was examined at pH 7.4 and 6.4, the latter relevant to dental caries. Generation 1 (G1) poly(amidoamine) (PAMAM) dendrimers were modified with alkyl epoxides to generate propyl-, butyl-, hexyl-, octyl-, and dodecyl-functionalized dendrimers. The resulting secondary amines were reacted with NO to form N-diazeniumdiolate NO donor-modified dendrimer scaffolds (total NO ∼1μmol/mg). The bactericidal action of the NO-releasing dendrimers against both planktonic and biofilm-based S. mutans proved greatest with increasing alkyl chain length and at lower pH. Improved bactericidal efficacy at pH 6.4 was attributed to increased scaffold surface charge that enhanced dendrimer-bacteria association and ensuing membrane damage. For shorter alkyl chain (i.e., propyl and butyl) dendrimer modifications, increased antibacterial action at pH 6.4 was due to faster NO-release kinetics from proton-labile N-diazeniumdiolate NO donors. Octyl- and dodecyl-modified PAMAM dendrimers proved most effective for eradicating S. mutans biofilms with NO release mitigating dendrimer scaffold cytotoxicity. We report the antibacterial and anti-biofilm efficacy of dual-action nitric oxide (NO)-releasing dendrimers against S. mutans, an etiological agent in dental caries. This work was undertaken to enhance the anti-biofilm action of these scaffolds by employing various alkyl chain modifications. Furthermore, we evaluated the ability of NO to eradicate cariogenic biofilms. We found that at the lower pH associated with dental caries (pH ∼6.4), NO has a more pronounced antibacterial effect for alkyl modifications less capable of biofilm penetration and membrane disruption. Of greatest significance, we introduce dendrimers as a new macromolecular antibacterial agent against the cariogenic bacteria S. mutans. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All

  14. N-acetylcysteine inhibits induction of nitric oxide synthase in 3T3-L1 adipocytes.

    PubMed

    Araki, Shunsuke; Dobashi, Kazushige; Kubo, Kazuyasu; Kawagoe, Rinko; Yamamoto, Yukiyo; Shirahata, Akira

    2007-12-01

    The present study was designed to determine whether N-acetylcysteine (NAC), a potent antioxidant, modulates nitric oxide (NO) production stimulated by lipopolysaccharide (LPS) and tumor necrosis factor-alpha (TNF-alpha) in adipocytes. Stimulation by the combination of 5 microg/ml of LPS and 100 ng/ml of TNF-alpha (LT) significantly enhanced NO production in 3T3-L1 adipocytes. Preincubation of the cells with NAC (5-20 mM) for 24 h suppressed the increased NO production in a dose-dependent manner. The production of NO was decreased by 49% at the concentration of 20 mM of NAC. The decrease in NO production by NAC was accompanied by a decrease in inducible nitric oxide synthase (iNOS) protein, detected by immunoblot analysis, and iNOS mRNA, determined by real-time reverse-transcriptase coupled polymerase chain reaction analysis. Nuclear factor-kappa B (NF-kappa B) was significantly activated by LT-treatment, while the pretreatment with 20 mM of NAC prevented the activity by 42%. Pyrrolidine dithiocarbamate (PDTC), a NF-kappaB inhibitor, also inhibited the LT-mediated NO production dose-dependently. One hundred microM of PDTC inhibited the NO production by 46%. We also investigated the effect of NAC and PDTC on the production of interleukein-6 (IL-6), which is regulated transcriptionally by NF-kappa B in 3T3-L1 adipocytes. IL-6 production was markedly increased by LT stimulus, and the enhanced secretion of IL-6 was suppressed in a dose-dependent manner by pretreatment with NAC or PDTC. These results suggest that NAC regulates iNOS expression and NO production in adipocytes through the modulating activation of NF-kappa B.

  15. Selenium-Rich Ricegrass Juice Improves Antioxidant Properties and Nitric Oxide Inhibition in Macrophage Cells

    PubMed Central

    Puttarak, Panupong; Brantner, Adelheid; Siripongvutikorn, Sunisa

    2018-01-01

    Ricegrass juice (Oryza sativa L.) was introduced as a functional food as the consumption of sprouts or seedlings has been claimed to provide high nutritive value. Selenium (Se) is a trace mineral that plays a key role in the human antioxidation scheme. Supplementation of Se into plants is one strategy to enhance plant bioactivities, and the consumption of Se plant foods may confer superior health benefits. In this study, ricegrass juice extract was analyzed for its major phenolic components. The effect of ricegrass juice extracts bio-fortified with 0, 10 and 40 mg Se/L named as RG0, RG10, and RG40, respectively, were investigated for a percentage of cell viability, changes of endogenous antioxidant enzymes, lipid peroxidation, and nitric oxide inhibition in RAW264.7 macrophage cells. Flavone glycosides, namely chrysoeriol arabinosyl arabinoside derivatives, were found to be the foremost bioactive components in ricegrass juice extract indicated by UHPLC-MS. The results of cell culture assessment revealed that RG40 showed an ability to promote macrophage cell proliferation at low concentration. Ricegrass juice extract in all treatments possessed the ability to reduce malondialdehyde content, which may be regarded as the bioactivity of phenolic compounds. Moreover, Se also played a role in this effect since RG40 showed the greatest ability via increasing the level of GPx enzyme. It was also discovered that phenolic compounds in the extracts played a role in inhibiting nitric oxide in LPS-induced RAW264.7 cells. Furthermore, RG40 expressed significantly higher NO inhibition properties at IC50 118.76 µg/mL compared to RG0 and RG10, at 147.02 and 147.73 µg/mL, respectively. Se bio-fortified ricegrass juice could be considered as a new potent functional food that can lower the risk of oxidative stress and chronic inflammation diseases. PMID:29652839

  16. [Participation of nitric oxide and arachidonic acid metabolites via cytochrome - P450 in the regulation of arterial blood pressure].

    PubMed

    Sánchez-Mendoza, M Alicia; Martínez-Ayala, Sonia O; Hernández-Hernández, José A; Zúñiga-Sosa, Leonor; Pastelín-Hernández, Gustavo; Escalante-Acosta, Bruno A

    2003-01-01

    Nitric oxide and cytochrome P450 arachidonic acid metabolites participate in blood pressure regulation. The synthesis of these autacoids leads to arterial hypertension. However, it is not known whether there is an interaction between them. Therefore, we studied the modulatory effect of nitric oxide and cytochrome P450-arachidonic acid metabolites, their interaction on blood pressure, and the renal content of cytochrome P450. Male Wistar rats were divided: 1) control, 2) L-NAME (100 mg/kg/d p.o.), 3) L-NAME + SnCl2 (10 mg/kg/d i.p.), and 4) L-NAME + dexamethasone (1 mg/kg/d s.c.). We measured blood pressure and collected urine and blood for nitric oxide measurement. NO2 was quantified by HPLC. Blood pressure was: control, 97 +/- 7 mmHg; L-NAME, 151 +/- 4.6 mmHg; L-NAME + SnCl2, 133 +/- 3 mmHg, and L-NAME + dexamethasone 152 +/- 4.5 mmHg. Urine nitrite concentration was: 1) 1.832 +/- 0.32, 2) 1.031 +/- 0.23, 3) 1.616 +/- 0.33, and 4) 1.244 +/- 0.33 mumol/mL, while the concentration in blood was: 1) 0.293 +/- 0.06, 2) 0.150 +/- 0.05, 3) 0.373 +/- 0.13, and 4) 0.373 +/- 0.07 mumol/mL. L-NAME + SnCl2 decreased cytochrome P450 renal content, and L-NAME + dexamethasone showed a similar response. In conclusion, both, nitric oxide and CYP-arachidonic acid metabolites play a role in the regulation of blood pressure. Nitric oxide also partially regulates renal cytochrome P450 content.

  17. Nitric oxide-related species-induced protein oxidation: reversible, irreversible, and protective effects on enzyme function of papain.

    PubMed

    Väänänen, Antti J; Kankuri, Esko; Rauhala, Pekka

    2005-04-15

    Protein oxidation, irreversible modification, and inactivation may play key roles in various neurodegenerative disorders. Therefore, we studied the effects of the potentially in vivo occurring nitric oxide-related species on two different markers of protein oxidation: protein carbonyl generation on bovine serum albumine (BSA) and loss of activity of a cysteine-dependent protease, papain, in vitro by using Angeli's salt, papanonoate, SIN-1, and S-nitrosoglutathione (GSNO) as donors of nitroxyl, nitric oxide, peroxynitrite, and nitrosonium ions, respectively. Angeli's salt, SIN-1, and papanonoate (0-1000 microM) all generated a concentration-dependent increase in carbonyl formation on BSA (107, 60, and 45%, respectively). GSNO did not affect carbonyl formation. Papain was inhibited by Angeli's salt, SIN-1, papanonoate, and GSNO with IC50 values of 0.62, 2.3, 54, and 80 microM, respectively. Angeli's salt (3.16 microM)-induced papain inactivation was only partially reversible, while the effects of GSNO (316 microM) and papanonoate (316 microM) were reversible upon addition of excess DTT. The Angeli's salt-mediated DTT-irreversible inhibition of papain was prevented by GSNO or papanonoate pretreatment, hypothetically through mixed disulfide formation or S-nitrosylation of the catalytically critical thiol group of papain. These results, for the first time, compare the generation of carbonyls in proteins by Angeli's salt, papanonoate, and SIN-1. Furthermore, these results suggest that S-nitrosothiols may have a novel function in protecting critical thiols from irreversible oxidative damage.

  18. Nitric oxide enhances the sensitivity of alpaca melanocytes to respond to {alpha}-melanocyte-stimulating hormone by up-regulating melanocortin-1 receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Yanjun; Cao, Jing; Wang, Haidong

    2010-06-11

    Nitric oxide (NO) and {alpha}-melanocyte-stimulating hormone ({alpha}-MSH) have been correlated with the synthesis of melanin. The NO-dependent signaling of cellular response to activate the hypothalamopituitary proopiomelanocortin system, thereby enhances the hypophysial secretion of {alpha}-MSH to stimulate {alpha}-MSH-receptor responsive cells. In this study we investigated whether an NO-induced pathway can enhance the ability of the melanocyte to respond to {alpha}-MSH on melanogenesis in alpaca skin melanocytes in vitro. It is important for us to know how to enhance the coat color of alpaca. We set up three groups for experiments using the third passage number of alpaca melanocytes: the control culturesmore » were allowed a total of 5 days growth; the UV group cultures like the control group but the melanocytes were then irradiated everyday (once) with 312 mJ/cm{sup 2} of UVB; the UV + L-NAME group is the same as group UV but has the addition of 300 {mu}M L-NAME (every 6 h). To determine the inhibited effect of NO produce, NO produces were measured. To determine the effect of the NO to the key protein and gene of {alpha}-MSH pathway on melanogenesis, the key gene and protein of the {alpha}-MSH pathway were measured by quantitative real-time PCR and Western immunoblotting. The results provide exciting new evidence that NO can enhance {alpha}-MSH pathway in alpaca skin melanocytes by elevated MC1R. And we suggest that the NO pathway may more rapidly cause the synthesis of melanin in alpaca skin under UV, which at that time elevates the expression of MC1R and stimulates the keratinocytes to secrete {alpha}-MSH to enhance the {alpha}-MSH pathway on melanogenesis. This process will be of considerable interest in future studies.« less

  19. Nitric oxide enhances the sensitivity of alpaca melanocytes to respond to alpha-melanocyte-stimulating hormone by up-regulating melanocortin-1 receptor.

    PubMed

    Dong, Yanjun; Cao, Jing; Wang, Haidong; Zhang, Jie; Zhu, Zhiwei; Bai, Rui; Hao, HuanQing; He, Xiaoyan; Fan, Ruiwen; Dong, Changsheng

    2010-06-11

    Nitric oxide (NO) and alpha-melanocyte-stimulating hormone (alpha-MSH) have been correlated with the synthesis of melanin. The NO-dependent signaling of cellular response to activate the hypothalamopituitary proopiomelanocortin system, thereby enhances the hypophysial secretion of alpha-MSH to stimulate alpha-MSH-receptor responsive cells. In this study we investigated whether an NO-induced pathway can enhance the ability of the melanocyte to respond to alpha-MSH on melanogenesis in alpaca skin melanocytes in vitro. It is important for us to know how to enhance the coat color of alpaca. We set up three groups for experiments using the third passage number of alpaca melanocytes: the control cultures were allowed a total of 5 days growth; the UV group cultures like the control group but the melanocytes were then irradiated everyday (once) with 312 mJ/cm(2) of UVB; the UV+L-NAME group is the same as group UV but has the addition of 300 microM L-NAME (every 6h). To determine the inhibited effect of NO produce, NO produces were measured. To determine the effect of the NO to the key protein and gene of alpha-MSH pathway on melanogenesis, the key gene and protein of the alpha-MSH pathway were measured by quantitative real-time PCR and Western immunoblotting. The results provide exciting new evidence that NO can enhance alpha-MSH pathway in alpaca skin melanocytes by elevated MC1R. And we suggest that the NO pathway may more rapidly cause the synthesis of melanin in alpaca skin under UV, which at that time elevates the expression of MC1R and stimulates the keratinocytes to secrete alpha-MSH to enhance the alpha-MSH pathway on melanogenesis. This process will be of considerable interest in future studies. (c) 2010 Elsevier Inc. All rights reserved.

  20. Glycoinositolphospholipids from Trypanosomatids Subvert Nitric Oxide Production in Rhodnius prolixus Salivary Glands

    PubMed Central

    Gazos-Lopes, Felipe; Mesquita, Rafael Dias; Silva-Cardoso, Lívia; Senna, Raquel; Silveira, Alan Barbosa; Jablonka, Willy; Cudischevitch, Cecília Oliveira; Carneiro, Alan Brito; Machado, Ednildo Alcantara; Lima, Luize G.; Monteiro, Robson Queiroz; Nussenzveig, Roberto Henrique; Folly, Evelize; Romeiro, Alexandre; Vanbeselaere, Jorick; Mendonça-Previato, Lucia; Previato, José Osvaldo; Valenzuela, Jesus G.; Ribeiro, José Marcos Chaves; Atella, Georgia Correa; Silva-Neto, Mário Alberto Cardoso

    2012-01-01

    Background Rhodnius prolixus is a blood-sucking bug vector of Trypanosoma cruzi and T. rangeli. T. cruzi is transmitted by vector feces deposited close to the wound produced by insect mouthparts, whereas T. rangeli invades salivary glands and is inoculated into the host skin. Bug saliva contains a set of nitric oxide-binding proteins, called nitrophorins, which deliver NO to host vessels and ensure vasodilation and blood feeding. NO is generated by nitric oxide synthases (NOS) present in the epithelium of bug salivary glands. Thus, T. rangeli is in close contact with NO while in the salivary glands. Methodology/Principal Findings Here we show by immunohistochemical, biochemical and molecular techniques that inositolphosphate-containing glycolipids from trypanosomatids downregulate NO synthesis in the salivary glands of R. prolixus. Injecting insects with T. rangeli-derived glycoinositolphospholipids (Tr GIPL) or T. cruzi-derived glycoinositolphospholipids (Tc GIPL) specifically decreased NO production. Salivary gland treatment with Tc GIPL blocks NO production without greatly affecting NOS mRNA levels. NOS protein is virtually absent from either Tr GIPL- or Tc GIPL-treated salivary glands. Evaluation of NO synthesis by using a fluorescent NO probe showed that T. rangeli-infected or Tc GIPL-treated glands do not show extensive labeling. The same effect is readily obtained by treatment of salivary glands with the classical protein tyrosine phosphatase (PTP) inhibitor, sodium orthovanadate (SO). This suggests that parasite GIPLs induce the inhibition of a salivary gland PTP. GIPLs specifically suppressed NO production and did not affect other anti-hemostatic properties of saliva, such as the anti-clotting and anti-platelet activities. Conclusions/Significance Taken together, these data suggest that trypanosomatids have overcome NO generation using their surface GIPLs. Therefore, these molecules ensure parasite survival and may ultimately enhance parasite transmission

  1. Evaluation of endogenous nitric oxide synthesis in congenital urea cycle enzyme defects.

    PubMed

    Nagasaka, Hironori; Tsukahara, Hirokazu; Yorifuji, Tohru; Miida, Takashi; Murayama, Kei; Tsuruoka, Tomoko; Takatani, Tomozumi; Kanazawa, Masaki; Kobayashi, Kunihiko; Okano, Yoshiyuki; Takayanagi, Masaki

    2009-03-01

    Nitric oxide (NO) is synthesized from arginine and O(2) by nitric oxide synthase (NOS). Citrulline, which is formed as a by-product of the NOS reaction, can be recycled to arginine by the 2 enzymes acting in the urea cycle: argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL). Although the complete urea cycle is expressed only in the liver, ASS and ASL are expressed in other organs including the kidney and vascular endothelium. To examine possible alterations of the NO pathway in urea cycle defects, we measured plasma concentrations of arginine and citrulline and serum concentrations of nitrite/nitrate (NOx(-), stable NO metabolites) and asymmetric dimethylarginine (ADMA, an endogenous NOS inhibitor) in patients with congenital urea cycle disorders of 3 types: ornithine transcarbamylase (OTC) deficiency, ASS deficiency, and ASL deficiency. All were receiving oral arginine replacement at the time of this study. The same parameters were also measured in healthy subjects, who participated as controls. The OTC-deficient patients had significantly high NOx(-) and nonsignificantly high ADMA concentrations. Their NOx(-) was significantly positively correlated with arginine. The ASS-deficient patients had significantly low NOx(-) and significantly high ADMA concentrations. The ASL-deficient patients had normal NOx(-) and nonsignificantly high ADMA concentrations. In ASS-deficient and ASL-deficient patients, the NOx(-) was significantly inversely correlated with citrulline. These results suggest that NO synthesis is enhanced in OTC-deficient patients while receiving arginine but that NO synthesis remains low in ASS-deficient patients despite receiving arginine. They also suggest that endogenous NO synthesis is negatively affected by citrulline and ADMA in ASS-deficient and ASL-deficient patients. Although the molecular mechanisms remain poorly understood, we infer that the NO pathway might play a role in the pathophysiology related to congenital urea cycle

  2. Nitric oxide detoxification by Fusarium verticillioides involves flavohemoglobins and the denitrification pathway

    USDA-ARS?s Scientific Manuscript database

    Nitric oxide (NO) is a highly mobile and potent signaling molecule, yet as a free radical it can also cause nitrosative stress to cells. To alleviate negative effects from excessive accumulation of endogenous NO or from potential exogenous sources, flavohemoglobin proteins can convert NO into nonto...

  3. Production of nitric oxide by peripheral blood mononuclear cells from the Florida manatee, Trichechus manatus latirostris.

    PubMed

    Walsh, Catherine J; Stuckey, Joyce E; Cox, Heather; Smith, Brett; Funke, Christina; Stott, Jeff; Colle, Clarence; Gaspard, Joseph; Manire, Charles A

    2007-08-15

    Florida manatees (Trichechus manatus latirostris) are exposed to many conditions in their habitat that may adversely impact health and impair immune function in this endangered species. In an effort to increase the current knowledge base regarding the manatee immune system, the production of an important reactive nitrogen intermediate, nitric oxide (NO), by manatee peripheral blood mononuclear cells (PBMC) was investigated. PBMC from healthy captive manatees were stimulated with LPS, IFN-gamma, or TNF-alpha, either alone or in various combinations, with NO production assessed after 24, 48, 72, and 96 h of culture. NO production in response to LPS stimulation was significantly greater after 48, 72, or 96 h of culture compared to NO production after 24h of culture. A specific inhibitor of inducible nitric oxide synthase (iNOS), L-NIL (L-N(6)-(1-iminoethyl)lysine), significantly decreased NO production by LPS-stimulated manatee PBMC. Manatee specific oligonucleotide primers for iNOS were designed to measure expression of relative amounts of mRNA in LPS-stimulated manatee PBMC from captive manatees. NO production by PBMC from manatees exposed to red tide toxins was analyzed, with significantly greater NO production by both unstimulated and LPS stimulated PBMC from red tide exposed compared with healthy captive or cold-stress manatees. Free-ranging manatees produced significantly lower amounts of nitric oxide compared to either captive or red tide rescued manatees. Results presented in this paper contribute to the current understanding of manatee immune function and represent the first report of nitric oxide production in the immune system of a marine mammal.

  4. Role of nitric oxide and antioxidant enzymes in the pathogenesis of oral cancer.

    PubMed

    Patel, Jayendrakumar B; Shah, Franky D; Shukla, Shilin N; Shah, Pankaj M; Patel, Prabhudas S

    2009-01-01

    Oral cancer is the leading malignancy in India. Nitric oxide and antioxidant enzymes play an important role in etiology of oral cancer. Therefore, the present study evaluates nitric oxide and antioxidant enzyme levels in healthy individual without tobacco habits (NHT, N=30) and healthy individuals with tobacco habits (WHT, n=90), patients with oral precancers (OPC, n=15) and oral cancer patients (n=126). Blood samples were collected from the subjects. NO2 + NO3 (nitrite+nitrate), superoxide dismutase (SOD) and catalase levels were estimated using highly specific spectrophotometeric methods. Statistical analysis was done by SPSS statistical software version 10. Mean plasma NO2 + NO3 levels were elevated in patients with OPC and oral cancer patients as compared to the controls. Mean activities of erythrocyte SOD and catalase were higher in WHT than NHT. Erythrocyte SOD and catalase levels were higher in WHT and patients with OPC as compared to NHT. The erythrocyte SOD and catalase activities were lower in oral cancer patients than patients with OPC. The erythrocyte SOD activity was higher in advanced oral cancer than the early disease. Erythrocyte catalase activity was lower in poorly differentiated tumors than well and moderately differentiated tumors. Pearson's correlation analysis revealed that alterations in plasma NO2 + NO3 levels were negatively associated with changes in erythrocyte SOD activities. The data revealed that the alterations in antioxidant activities were associated with production of nitric oxide in oral cancer, which may have significant role in oral carcinogenesis.

  5. Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases

    NASA Technical Reports Server (NTRS)

    Boo, Yong Chool; Jo, Hanjoong

    2003-01-01

    Vascular endothelial cells are directly and continuously exposed to fluid shear stress generated by blood flow. Shear stress regulates endothelial structure and function by controlling expression of mechanosensitive genes and production of vasoactive factors such as nitric oxide (NO). Though it is well known that shear stress stimulates NO production from endothelial nitric oxide synthase (eNOS), the underlying molecular mechanisms remain unclear and controversial. Shear-induced production of NO involves Ca2+/calmodulin-independent mechanisms, including phosphorylation of eNOS at several sites and its interaction with other proteins, including caveolin and heat shock protein-90. There have been conflicting results as to which protein kinases-protein kinase A, protein kinase B (Akt), other Ser/Thr protein kinases, or tyrosine kinases-are responsible for shear-dependent eNOS regulation. The functional significance of each phosphorylation site is still unclear. We have attempted to summarize the current status of understanding in shear-dependent eNOS regulation.

  6. Nitric Oxide Is an Activity-Dependent Regulator of Target Neuron Intrinsic Excitability

    PubMed Central

    Steinert, Joern R.; Robinson, Susan W.; Tong, Huaxia; Haustein, Martin D.; Kopp-Scheinpflug, Cornelia; Forsythe, Ian D.

    2011-01-01

    Summary Activity-dependent changes in synaptic strength are well established as mediating long-term plasticity underlying learning and memory, but modulation of target neuron excitability could complement changes in synaptic strength and regulate network activity. It is thought that homeostatic mechanisms match intrinsic excitability to the incoming synaptic drive, but evidence for involvement of voltage-gated conductances is sparse. Here, we show that glutamatergic synaptic activity modulates target neuron excitability and switches the basis of action potential repolarization from Kv3 to Kv2 potassium channel dominance, thereby adjusting neuronal signaling between low and high activity states, respectively. This nitric oxide-mediated signaling dramatically increases Kv2 currents in both the auditory brain stem and hippocampus (>3-fold) transforming synaptic integration and information transmission but with only modest changes in action potential waveform. We conclude that nitric oxide is a homeostatic regulator, tuning neuronal excitability to the recent history of excitatory synaptic inputs over intervals of minutes to hours. PMID:21791288

  7. Anchored plasticity opens doors for selective inhibitor design in nitric oxide synthase

    PubMed Central

    Garcin, Elsa D.; Arvai, Andrew S.; Rosenfeld, Robin J.; Kroeger, Matt D.; Crane, Brian R.; Andersson, Gunilla; Andrews, Glen; Hamley, Peter J.; Mallinder, Philip R.; Nicholls, David J.; St-Gallay, Stephen A.; Tinker, Alan C.; Gensmantel, Nigel P.; Mete, Antonio; Cheshire, David R.; Connolly, Stephen; Stuehr, Dennis J.; Åberg, Anders; Wallace, Alan V.; Tainer, John A.; Getzoff, Elizabeth D.

    2008-01-01

    Nitric oxide synthase (NOS) enzymes synthesize nitric oxide, a signal for vasodilatation and neurotransmission at low levels, and a defensive cytotoxin at higher levels. The high active-site conservation among all three NOS isozymes hinders the design of selective NOS inhibitors to treat inflammation, arthritis, stroke, septic shock, and cancer. Our structural and mutagenesis results identified an isozyme-specific induced-fit binding mode linking a cascade of conformational changes to a novel specificity pocket. Plasticity of an isozyme-specific triad of distant second- and third-shell residues modulates conformational changes of invariant first-shell residues to determine inhibitor selectivity. To design potent and selective NOS inhibitors, we developed the anchored plasticity approach: anchor an inhibitor core in a conserved binding pocket, then extend rigid bulky substituents towards remote specificity pockets, accessible upon conformational changes of flexible residues. This approach exemplifies general principles for the design of selective enzyme inhibitors that overcome strong active-site conservation. PMID:18849972

  8. Inhibition of the adrenomedullin/nitric oxide signaling pathway in early diabetic retinopathy.

    PubMed

    Blom, Jan J; Giove, Thomas J; Favazza, Tara L; Akula, James D; Eldred, William D

    2011-06-01

    The nitric oxide (NO) signaling pathway is integrally involved in visual processing and changes in the NO pathway are measurable in eyes of diabetic patients. The small peptide adrenomedullin (ADM) can activate a signaling pathway to increase the enzyme activity of neuronal nitric oxide synthase (nNOS). ADM levels are elevated in eyes of diabetic patients and therefore, ADM may play a role in the pathology of diabetic retinopathy. The goal of this research was to test the effects of inhibiting the ADM/NO signaling pathway in early diabetic retinopathy. Inhibition of this pathway decreased NO production in high-glucose retinal cultures. Treating diabetic mice with the PKC β inhibitor ruboxistaurin for 5 weeks lowered ADM mRNA levels and ADM-like immunoreactivity and preserved retinal function as assessed by electroretinography. The results of this study indicate that inhibiting the ADM/NO signaling pathway prevents neuronal pathology and functional losses in early diabetic retinopathy.

  9. Photodynamic therapy-induced nitric oxide production in neuronal and glial cells

    NASA Astrophysics Data System (ADS)

    Kovaleva, Vera D.; Uzdensky, Anatoly B.

    2016-10-01

    Nitric oxide (NO) has been recently demonstrated to enhance apoptosis of glial cells induced by photodynamic therapy (PDT), but to protect glial cells from PDT-induced necrosis in the crayfish stretch receptor, a simple neuroglial preparation that consists of a single mechanosensory neuron enveloped by satellite glial cells. We used the NO-sensitive fluorescent probe 4,5-diaminofluorescein diacetate to study the distribution and dynamics of PDT-induced NO production in the mechanosensory neuron and surrounding glial cells. The NO production in the glial envelope was higher than in the neuronal soma axon and dendrites both in control and in experimental conditions. In dark NO generator, DEA NONOate or NO synthase substrate L-arginine hydrochloride significantly increased the NO level in glial cells, whereas NO scavenger 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) or inhibitors of NO synthase L-NG-nitro arginine methyl ester and Nω-nitro-L-arginine decreased it. PDT induced the transient increase in NO production with a maximum at 4 to 7 min after the irradiation start followed by its inhibition at 10 to 40 min. We suggested that PDT stimulated neuronal rather than inducible NO synthase isoform in glial cells, and the produced NO could mediate PDT-induced apoptosis.

  10. Exhaled nitric oxide in mylar balloons: influence of storage time, humidity and temperature.

    PubMed Central

    Bodini, Alessandro; Pijnenburg, Mariëlle W H; Boner, Atillio L; de Jongste, Johan C

    2003-01-01

    BACKGROUND: Mylar balloons are used to collect exhaled air for analysis of fractional nitric oxide concentration (FENO). AIM: We studied the effect of storage conditions on the stability of nitric oxide (NO) in mylar balloons. METHODS: Exhaled air samples and calibration gases were stored in mylar balloons at 4, 21 and 37 degrees C, with or without silica gel. NO was measured after 0, 6, 9, 24 and 48 h. Scheffe F-tests were used to compare NO values. RESULTS: NO remained stable in balloons for 9 h at all temperatures, without silica gel. NO increased between 9 and 48 h, but only with low initial FENO. Silica gel increased variability. CONCLUSIONS: FENO in mylar balloons is stable for at least 9 h. The storage temperature is not critical, but silica gel increases variability. PMID:12745548

  11. The production of nitric oxide in the troposphere as a result of solid-rocket-motor afterburning

    NASA Technical Reports Server (NTRS)

    Stewart, R. B.; Gomberg, R. I.

    1976-01-01

    As part of an ongoing assessment of the environmental effects of solid-rocket-motor operations in the troposphere, estimates were made of the nitric oxide produced in the troposphere by the space shuttle and Titan 3-C boosters. Calculations were made with the low-altitude plume computer program and included the effects of coupled finite-rate chemistry and turbulent mixing. A recent measurement of nitric oxide taken in the effluent cloud of a Titan 3-C booster is compared with calculations made with this computer code. The various chemical reactions of the exhaust gases are listed in tabular form.

  12. EXAMINING THE TEMPORAL VARIABILITY OF AMMONIA AND NITRIC OXIDE EMISSIONS FROM AGRICULTURAL PROCESSES

    EPA Science Inventory

    This paper examines the temporal variability of airborne emissions of ammonia from livestock operations and fertilizer application and nitric oxide from soils. In the United States, the livestock operations and fertilizer categories comprise the majority of the ammonia emissions...

  13. Role of endothelial nitric oxide synthetase in arteriogenesis after stroke in mice.

    PubMed

    Cui, X; Chopp, M; Zacharek, A; Zhang, C; Roberts, C; Chen, J

    2009-03-17

    Arteriogenesis supports restored perfusion in the ischemic brain and improves long-term functional outcome after stroke. We investigate the role of endothelial nitric oxide synthetase (eNOS) and a nitric oxide (NO) donor, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl) amino] diazen-1-ium-1, 2-diolate (DETA-NONOate), in promoting arteriogenesis after stroke. Adult wild-type (WT, n=18) and eNOS-knockout (eNOS(-/-), n=36) mice were subjected to transient (2.5 h) right middle cerebral artery occlusion (MCAo) and were treated with or without DETA-NONOate (0.4 mg/kg) 24 h after MCAo. Functional evaluation was performed. Animals were sacrificed 3 days after MCAo for arterial cell culture studies, or 14 days for immunohistochemical analysis. Consistent with previous studies, eNOS(-/-) mice exhibited a higher mortality rate (P<0.05, n=18/group) and more severe neurological functional deficit after MCAo than WT mice (P<0.05, n=12/group). Decreased arteriogenesis, was evident in eNOS(-/-) mice compared with WT mice, as demonstrated by reduced vascular smooth muscle cell (VSMC) proliferation, arterial density and diameter in the ischemic brain. eNOS(-/-) mice treated with DETA-NONOate had a significantly decreased mortality rate and improved functional recovery, and exhibited enhanced arteriogenesis identified by increased VSMC proliferation, and upregulated arterial density and diameter compared to eNOS(-/-) mice after stroke (P<0.05, n=12/group). To elucidate the mechanisms underlying eNOS/NO mediated arteriogenesis, VSMC migration was measured in vitro. Arterial cell migration significantly decreased in the cultured common carotid artery (CCA) derived from eNOS(-/-) mice 3 days after MCAo compared to WT arterial cells. DETA-NONOate-treatment significantly attenuated eNOS(-/-)-induced decrease of arterial cell migration compared to eNOS(-/-) control artery (P<0.05; n=6/group). Using VSMC culture, DETA-NONOate significantly increased VSMC migration, while inhibition of NOS

  14. Understanding the Global Variability in Thermospheric Nitric Oxide Flux Using Empirical Orthogonal Functions (EOFs)

    NASA Astrophysics Data System (ADS)

    Flynn, Sierra; Knipp, Delores J.; Matsuo, Tomoko; Mlynczak, Martin; Hunt, Linda

    2018-05-01

    We present the first-ever global assessment of thermospheric nitric oxide infrared radiative flux (NOF) variability. NOF (W/m2) from 100- to 250-km altitude is extracted from 13.7 years of data from the TIMED satellite, Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument, and decomposed into four empirical orthogonal functions (EOFs) and their amplitudes. We determine the strongest modes of NOF variability in the data set and develop a compact model of NOF. The first four EOFs account for 83% of the variability in the data. We illustrate the NOF model and discuss the geophysical associations of the EOFs. The first EOF represents 69% of the total variance and correlates strongly with Kp and solar shortwave flux, suggesting that geomagnetic activity and solar weather account for a large portion of NOF variability. EOF 2 shows annual and seasonal variations, possibly due to annual and seasonal thermospheric composition and temperature changes and may represent the chemical breathing mode of NOF. EOF 3 shows annual variations and correlates with solar energetic particle events and X-flares. EOF 3 may represent winter time solar energetic particle event-enhanced diurnal tide effects. EOF 4 suggests a meridional transport mechanism at the predawn and postdusk equator after strong storms. The EOF uncertainty is verified using cross-validation analysis. Quantifying the spatial and temporal variabilities of NOF using eigenmodes will increase the understanding of how upper atmospheric nitric oxide cooling behaves and could increase the accuracy of future space weather and climate models.

  15. Inhaled nitric oxide augments nitric oxide transport on sickle cell hemoglobin without affecting oxygen affinity.

    PubMed

    Gladwin, M T; Schechter, A N; Shelhamer, J H; Pannell, L K; Conway, D A; Hrinczenko, B W; Nichols, J S; Pease-Fye, M E; Noguchi, C T; Rodgers, G P; Ognibene, F P

    1999-10-01

    Nitric oxide (NO) inhalation has been reported to increase the oxygen affinity of sickle cell erythrocytes. Also, proposed allosteric mechanisms for hemoglobin, based on S-nitrosation of beta-chain cysteine 93, raise the possibility of altering the pathophysiology of sickle cell disease by inhibiting polymerization or by increasing NO delivery to the tissue. We studied the effects of a 2-hour treatment, using varying concentrations of inhaled NO. Oxygen affinity, as measured by P(50), did not respond to inhaled NO, either in controls or in individuals with sickle cell disease. At baseline, the arterial and venous levels of nitrosylated hemoglobin were not significantly different, but NO inhalation led to a dose-dependent increase in mean nitrosylated hemoglobin, and at the highest dosage, a significant arterial-venous difference emerged. The levels of nitrosylated hemoglobin are too low to affect overall hemoglobin oxygen affinity, but augmented NO transport to the microvasculature seems a promising strategy for improving microvascular perfusion.

  16. Nitric Oxide Ameliorates Zinc Oxide Nanoparticles Phytotoxicity in Wheat Seedlings: Implication of the Ascorbate–Glutathione Cycle

    PubMed Central

    Tripathi, Durgesh K.; Mishra, Rohit K.; Singh, Swati; Singh, Samiksha; Vishwakarma, Kanchan; Sharma, Shivesh; Singh, Vijay P.; Singh, Prashant K.; Prasad, Sheo M.; Dubey, Nawal K.; Pandey, Avinash C.; Sahi, Shivendra; Chauhan, Devendra K.

    2017-01-01

    The present study investigates ameliorative effects of nitric oxide (NO) against zinc oxide nanoparticles (ZnONPs) phytotoxicity in wheat seedlings. ZnONPs exposure hampered growth of wheat seedlings, which coincided with reduced photosynthetic efficiency (Fv/Fm and qP), due to increased accumulation of zinc (Zn) in xylem and phloem saps. However, SNP supplementation partially mitigated the ZnONPs-mediated toxicity through the modulation of photosynthetic activity and Zn accumulation in xylem and phloem saps. Further, the results reveal that ZnONPs treatments enhanced levels of hydrogen peroxide and lipid peroxidation (as malondialdehyde; MDA) due to severely inhibited activities of the following ascorbate–glutatione cycle (AsA–GSH) enzymes: ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase and dehydroascorbate reductase, and its associated metabolites ascorbate and glutathione. In contrast to this, the addition of SNP together with ZnONPs maintained the cellular functioning of the AsA–GSH cycle properly, hence lesser damage was noticed in comparison to ZnONPs treatments alone. The protective effect of SNP against ZnONPs toxicity on fresh weight (growth) can be reversed by 2-(4carboxy-2-phenyl)-4,4,5,5-tetramethyl- imidazoline-1-oxyl-3-oxide, a NO scavenger, and thus suggesting that NO released from SNP ameliorates ZnONPs toxicity. Overall, the results of the present study have shown the role of NO in the reducing of ZnONPs toxicity through the regulation of accumulation of Zn as well as the functioning of the AsA–GSH cycle. PMID:28220127

  17. Maternal serum nitric oxide levels associated with biochemical and clinical parameters in hypertension in pregnancy.

    PubMed

    Bartha, J L; Comino-Delgado, R; Bedoya, F J; Barahona, M; Lubian, D; Garcia-Benasach, F

    1999-02-01

    To measure maternal serum concentrations of total nitrites, as an index of nitric oxide synthesis, in normal and hypertensive pregnant women, and to examine the correlation between these concentrations and several variables of clinical interest. A total of 60 women in four different groups were studied: 10 normotensive pregnant women, 17 pregnant women with preeclampsia, 18 pregnant women with gestational hypertension and 15 pregnant women with chronic hypertension. Serum nitrite levels were determined using the Griess reaction after reduction with nitrate reductase. Serum nitrite levels were higher in preeclamptic women (34.11+/-14 micromol/l, P=0.04), lower in chronic hypertensive women (19.56+/-6.46 micromol/l, P=0.04) and similar in women with gestational hypertension (26.97+/-9.44 micromol/l) in comparison to the control group (25.37+/-7.24 micromol/l). Serum nitrite levels in preeclamptic women had significant positive correlations with hematocrit, fasting insulinemia, and apolipoprotein B and negative correlations with platelet count, serum phosphorus and glucose:insulin ratio. In pregnant women with chronic hypertension a negative correlation was found between serum nitrite levels and active partial thromboplastin time. In pregnant women with gestational hypertension, serum nitrite levels had negative correlations with birthweight and 24-h urine calcium, and positive correlations with mean corspuscular hemoglobin, 24-h urine sodium and maternal age. We suggest that in women with preeclampsia, a higher maternal nitric oxide level may act as a compensatory mechanism against hemoconcentration and platelet aggregation and that nitric oxide production may be related to some metabolic events. In women with gestational hypertension, higher serum nitrite levels may be related to clinical and biochemical findings common in preeclampsia. In chronic hypertension, a lower maternal nitric oxide level is related to the status of coagulation.

  18. Placental Vesicles Carry Active Endothelial Nitric Oxide Synthase and Their Activity is Reduced in Preeclampsia.

    PubMed

    Motta-Mejia, Carolina; Kandzija, Neva; Zhang, Wei; Mhlomi, Vuyane; Cerdeira, Ana Sofia; Burdujan, Alexandra; Tannetta, Dionne; Dragovic, Rebecca; Sargent, Ian L; Redman, Christopher W; Kishore, Uday; Vatish, Manu

    2017-08-01

    Preeclampsia, a multisystem hypertensive disorder of pregnancy, is associated with increased systemic vascular resistance. Placentae from patients with preeclampsia have reduced levels of endothelial nitric oxide synthase (eNOS) and, thus, less nitric oxide (NO). Syncytiotrophoblast extracellular vesicles (STBEV), comprising microvesicles (STBMV) and exosomes, carry signals from the syncytiotrophoblast to the mother. We hypothesized that STBEV-bound eNOS (STBEV-eNOS), capable of producing NO, are released into the maternal circulation. Dual-lobe ex vivo placental perfusion and differential centrifugation was used to isolate STBEV from preeclampsia (n=8) and normal pregnancies (NP; n=11). Plasma samples of gestational age-matched preeclampsia and NP (n=6) were used to isolate circulating STBMV. STBEV expressed placental alkaline phosphatase, confirming placental origin. STBEV coexpressed eNOS, but not inducible nitric oxide synthase, confirmed using Western blot, flow cytometry, and immunodepletion. STBEV-eNOS produced NO, which was significantly inhibited by N   G -nitro-l-arginine methyl ester (eNOS inhibitor; P <0.05) but not by N -(3-(aminomethyl) bezyl) acetamidine) (inducible nitric oxide synthase inhibitor). STBEV-eNOS catalytic activity was confirmed by visualizing eNOS dimerization. STBEV-eNOS was more abundant in uterine vein compared with peripheral blood, indicating placental origin. STBEV isolated from preeclampsia-perfused placentae had lower levels of STBEV-eNOS (STBMV; P <0.05) and overall lower NO activity (STBMV, not significant; syncytiotrophoblast extracellular exosomes, P <0.05) compared with those from NP. Circulating plasma STBMV from preeclampsia women had lower STBEV-eNOS expression compared with that from NP women ( P <0.01). This is the first observation of functional eNOS expressed on STBEV from NP and preeclampsia placentae, as well as in plasma. The lower STBEV-eNOS NO production seen in preeclampsia may contribute to the decreased NO

  19. Identification and functional analysis of endogenous nitric oxide in a filamentous fungus.

    PubMed

    Pengkit, Anchalee; Jeon, Seong Sil; Son, Soo Ji; Shin, Jae Ho; Baik, Ku Yeon; Choi, Eun Ha; Park, Gyungsoon

    2016-07-18

    In spite of its prevalence in animals and plants, endogenous nitric oxide (NO) has been rarely reported in fungi. We present here our observations on production of intracellular NO and its possible roles during development of Neurospora crassa, a model filamentous fungus. Intracellular NO was detected in hypha 8-16 hours after incubation in Vogel's minimal liquid media and conidiophores during conidiation using a fluorescent indicator (DAF-FM diacetate). Treatment with cPTIO, an NO scavenger, significantly reduced fluorescence levels and hindered hyphal growth in liquid media and conidiation, whereas exogenous NO enhanced hyphal extension on VM agar media and conidia formation. NO scavenging also dramatically diminished transcription of con-10 and con-13, genes preferentially expressed during conidiation. Our results suggest that intracellular NO is generated in young hypha growing in submerged culture and during conidia development and regulate mycelial development and conidia formation.

  20. Identification and functional analysis of endogenous nitric oxide in a filamentous fungus

    PubMed Central

    Pengkit, Anchalee; Jeon, Seong Sil; Son, Soo Ji; Shin, Jae Ho; Baik, Ku Yeon; Choi, Eun Ha; Park, Gyungsoon

    2016-01-01

    In spite of its prevalence in animals and plants, endogenous nitric oxide (NO) has been rarely reported in fungi. We present here our observations on production of intracellular NO and its possible roles during development of Neurospora crassa, a model filamentous fungus. Intracellular NO was detected in hypha 8–16 hours after incubation in Vogel’s minimal liquid media and conidiophores during conidiation using a fluorescent indicator (DAF-FM diacetate). Treatment with cPTIO, an NO scavenger, significantly reduced fluorescence levels and hindered hyphal growth in liquid media and conidiation, whereas exogenous NO enhanced hyphal extension on VM agar media and conidia formation. NO scavenging also dramatically diminished transcription of con-10 and con-13, genes preferentially expressed during conidiation. Our results suggest that intracellular NO is generated in young hypha growing in submerged culture and during conidia development and regulate mycelial development and conidia formation. PMID:27425220

  1. Increased Contextual Fear Conditioning in iNOS Knockout Mice: Additional Evidence for the Involvement of Nitric Oxide in Stress-Related Disorders and Contribution of the Endocannabinoid System

    PubMed Central

    Gomes, Felipe V.; Silva, Andréia L.; Uliana, Daniela L.; Camargo, Laura H. A.; Guimarães, Francisco S.; Cunha, Fernando Q.; Joca, Sâmia R. L.; Resstel, Leonardo B. M.

    2015-01-01

    Background: Inducible or neuronal nitric oxide synthase gene deletion increases or decreases anxiety-like behavior in mice, respectively. Since nitric oxide and endocannabinoids interact to modulate defensive behavior, the former effect could involve a compensatory increase in basal brain nitric oxide synthase activity and/or changes in the endocannabinoid system. Thus, we investigated the expression and extinction of contextual fear conditioning of inducible nitric oxide knockout mice and possible involvement of endocannabinoids in these responses. Methods: We evaluated the effects of a preferential neuronal nitric oxide synthase inhibitor, 7-nitroindazol, nitric oxide synthase activity, and mRNA changes of nitrergic and endocannabinoid systems components in the medial prefrontal cortex and hippocampus of wild-type and knockout mice. The effects of URB597, an inhibitor of the fatty acid amide hydrolase enzyme, which metabolizes the endocannabinoid anandamide, WIN55,212-2, a nonselective cannabinoid agonist, and AM281, a selective CB1 antagonist, on contextual fear conditioning were also evaluated. Results: Contextual fear conditioning expression was similar in wild-type and knockout mice, but the latter presented extinction deficits and increased basal nitric oxide synthase activity in the medial prefrontal cortex. 7-Nitroindazol decreased fear expression and facilitated extinction in wild-type and knockout mice. URB597 decreased fear expression in wild-type and facilitated extinction in knockout mice, whereas WIN55,212-2 and AM281 increased it in wild-type mice. Nonconditioned knockout mice showed changes in the mRNA expression of nitrergic and endocannabinoid system components in the medial prefrontal cortex and hippocampus that were modified by fear conditioning. Conclusion: These data reinforce the involvement of the nitric oxide and endocannabinoids (anandamide) in stress-related disorders and point to a deregulation of the endocannabinoid system in

  2. Increased Contextual Fear Conditioning in iNOS Knockout Mice: Additional Evidence for the Involvement of Nitric Oxide in Stress-Related Disorders and Contribution of the Endocannabinoid System.

    PubMed

    Lisboa, Sabrina F; Gomes, Felipe V; Silva, Andréia L; Uliana, Daniela L; Camargo, Laura H A; Guimarães, Francisco S; Cunha, Fernando Q; Joca, Sâmia R L; Resstel, Leonardo B M

    2015-01-24

    Inducible or neuronal nitric oxide synthase gene deletion increases or decreases anxiety-like behavior in mice, respectively. Since nitric oxide and endocannabinoids interact to modulate defensive behavior, the former effect could involve a compensatory increase in basal brain nitric oxide synthase activity and/or changes in the endocannabinoid system. Thus, we investigated the expression and extinction of contextual fear conditioning of inducible nitric oxide knockout mice and possible involvement of endocannabinoids in these responses. We evaluated the effects of a preferential neuronal nitric oxide synthase inhibitor, 7-nitroindazol, nitric oxide synthase activity, and mRNA changes of nitrergic and endocannabinoid systems components in the medial prefrontal cortex and hippocampus of wild-type and knockout mice. The effects of URB597, an inhibitor of the fatty acid amide hydrolase enzyme, which metabolizes the endocannabinoid anandamide, WIN55,212-2, a nonselective cannabinoid agonist, and AM281, a selective CB1 antagonist, on contextual fear conditioning were also evaluated. Contextual fear conditioning expression was similar in wild-type and knockout mice, but the latter presented extinction deficits and increased basal nitric oxide synthase activity in the medial prefrontal cortex. 7-Nitroindazol decreased fear expression and facilitated extinction in wild-type and knockout mice. URB597 decreased fear expression in wild-type and facilitated extinction in knockout mice, whereas WIN55,212-2 and AM281 increased it in wild-type mice. Nonconditioned knockout mice showed changes in the mRNA expression of nitrergic and endocannabinoid system components in the medial prefrontal cortex and hippocampus that were modified by fear conditioning. These data reinforce the involvement of the nitric oxide and endocannabinoids (anandamide) in stress-related disorders and point to a deregulation of the endocannabinoid system in situations where nitric oxide signaling is

  3. Changes in Adenosine Triphosphate and Nitric Oxide in the Urothelium of Patients with Benign Prostatic Hyperplasia and Detrusor Underactivity.

    PubMed

    Cho, Kang Jun; Koh, Jun Sung; Choi, Jinbong; Kim, Joon Chul

    2017-12-01

    We investigated changes in the levels of adenosine triphosphate and nitric oxide in the urothelium of men with detrusor underactivity and benign prostatic hyperplasia. We prospectively enrolled in study 30 men who planned to undergo surgical treatment for benign prostatic hyperplasia. The 15 patients with a bladder contractility index less than 100 were assigned to the detrusor underactivity group while the 15 with a bladder contractility index more than 100 were assigned to the no detrusor underactivity group. Bladder mucosal specimens were collected at surgical prostate resection, and adenosine triphosphate and endothelial nitric oxide synthase were analyzed in these specimens. The levels of adenosine triphosphate and endothelial nitric oxide synthase were compared between the 2 groups. The correlation of urodynamic parameters with adenosine triphosphate and endothelial nitric oxide synthase was assessed in all patients. Mean ± SEM endothelial nitric oxide synthase did not significantly differ between the detrusor underactivity and no underactivity groups (3.393 ± 0.969 vs 1.941 ± 0.377 IU/ml, p = 0.247). However, the mean level of adenosine triphosphate in the detrusor underactivity group was significantly lower than in the no detrusor underactivity group (1.289 ± 0.320 vs 9.262 ± 3.285 pmol, p = 0.011). In addition, in all patients adenosine triphosphate positively correlated with the bladder contractility index (r = 0.478, p = 0.018) and with detrusor pressure on maximal flow (r = 0.411, p = 0.046). Adenosine triphosphate was significantly decreased in the urothelium in men with detrusor underactivity and benign prostatic hyperplasia, reflecting the change in detrusor function. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  4. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast

    PubMed Central

    2012-01-01

    Background During the bread-making process, industrial baker's yeast, mostly Saccharomyces cerevisiae, is exposed to baking-associated stresses, such as air-drying and freeze-thaw stress. These baking-associated stresses exert severe injury to yeast cells, mainly due to the generation of reactive oxygen species (ROS), leading to cell death and reduced fermentation ability. Thus, there is a great need for a baker's yeast strain with higher tolerance to baking-associated stresses. Recently, we revealed a novel antioxidative mechanism in a laboratory yeast strain that is involved in stress-induced nitric oxide (NO) synthesis from proline via proline oxidase Put1 and N-acetyltransferase Mpr1. We also found that expression of the proline-feedback inhibition-less sensitive mutant γ-glutamyl kinase (Pro1-I150T) and the thermostable mutant Mpr1-F65L resulted in an enhanced fermentation ability of baker's yeast in bread dough after freeze-thaw stress and air-drying stress, respectively. However, baker's yeast strains with high fermentation ability under multiple baking-associated stresses have not yet been developed. Results We constructed a self-cloned diploid baker's yeast strain with enhanced proline and NO synthesis by expressing Pro1-I150T and Mpr1-F65L in the presence of functional Put1. The engineered strain increased the intracellular NO level in response to air-drying stress, and the strain was tolerant not only to oxidative stress but also to both air-drying and freeze-thaw stresses probably due to the reduced intracellular ROS level. We also showed that the resultant strain retained higher leavening activity in bread dough after air-drying and freeze-thaw stress than that of the wild-type strain. On the other hand, enhanced stress tolerance and fermentation ability did not occur in the put1-deficient strain. This result suggests that NO is synthesized in baker's yeast from proline in response to oxidative stresses that induce ROS generation and that increased NO

  5. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast.

    PubMed

    Sasano, Yu; Haitani, Yutaka; Hashida, Keisuke; Ohtsu, Iwao; Shima, Jun; Takagi, Hiroshi

    2012-04-01

    During the bread-making process, industrial baker's yeast, mostly Saccharomyces cerevisiae, is exposed to baking-associated stresses, such as air-drying and freeze-thaw stress. These baking-associated stresses exert severe injury to yeast cells, mainly due to the generation of reactive oxygen species (ROS), leading to cell death and reduced fermentation ability. Thus, there is a great need for a baker's yeast strain with higher tolerance to baking-associated stresses. Recently, we revealed a novel antioxidative mechanism in a laboratory yeast strain that is involved in stress-induced nitric oxide (NO) synthesis from proline via proline oxidase Put1 and N-acetyltransferase Mpr1. We also found that expression of the proline-feedback inhibition-less sensitive mutant γ-glutamyl kinase (Pro1-I150T) and the thermostable mutant Mpr1-F65L resulted in an enhanced fermentation ability of baker's yeast in bread dough after freeze-thaw stress and air-drying stress, respectively. However, baker's yeast strains with high fermentation ability under multiple baking-associated stresses have not yet been developed. We constructed a self-cloned diploid baker's yeast strain with enhanced proline and NO synthesis by expressing Pro1-I150T and Mpr1-F65L in the presence of functional Put1. The engineered strain increased the intracellular NO level in response to air-drying stress, and the strain was tolerant not only to oxidative stress but also to both air-drying and freeze-thaw stresses probably due to the reduced intracellular ROS level. We also showed that the resultant strain retained higher leavening activity in bread dough after air-drying and freeze-thaw stress than that of the wild-type strain. On the other hand, enhanced stress tolerance and fermentation ability did not occur in the put1-deficient strain. This result suggests that NO is synthesized in baker's yeast from proline in response to oxidative stresses that induce ROS generation and that increased NO plays an important

  6. Thalidomide ameliorates portal hypertension via nitric oxide synthase independent reduced systolic blood pressure

    PubMed Central

    Theodorakis, Nicholas G; Wang, Yining N; Korshunov, Vyacheslav A; Maluccio, Mary A; Skill, Nicholas J

    2015-01-01

    AIM: Portal hypertension is a common complication of liver cirrhosis and significantly increases mortality and morbidity. Previous reports have suggested that the compound thalidomide attenuates portal hypertension (PHT). However, the mechanism for this action is not fully elucidated. One hypothesis is that thalidomide destabilizes tumor necrosis factor α (TNFα) mRNA and therefore diminishes TNFα induction of nitric oxide synthase (NOS) and the production of nitric oxide (NO). To examine this hypothesis, we utilized the murine partial portal vein ligation (PVL) PHT model in combination with endothelial or inducible NOS isoform gene knockout mice. METHODS: Wild type, inducible nitric oxide synthase (iNOS)-/- and endothelial nitric oxide synthase (eNOS)-/- mice received either PVL or sham surgery and were given either thalidomide or vehicle. Serum nitrate (total nitrate, NOx) was measured daily for 7 d as a surrogate of NO synthesis. Serum TNFα level was quantified by enzyme-linked immunosorbent assay. TNFα mRNA was quantified in liver and aorta tissue by reverse transcription-polymerase chain reaction. PHT was determined by recording splenic pulp pressure (SPP) and abdominal aortic flow after 0-7 d. Response to thalidomide was determined by measurement of SPP and mean arterial pressure (MAP). RESULTS: SPP, abdominal aortic flow (Qao) and plasma NOx were increased in wild type and iNOS-/- PVL mice when compared to sham operated control mice. In contrast, SPP, Qao and plasma NOx were not increased in eNOS-/- PVL mice when compared to sham controls. Serum TNFα level in both sham and PVL mice was below the detection limit of the commercial ELISA used. Therefore, the effect of thalidomide on serum TNFα levels was undetermined in wild type, eNOS-/- or iNOS-/- mice. Thalidomide acutely increased plasma NOx in wild type and eNOS-/- mice but not iNOS-/- mice. Moreover, thalidomide temporarily (0-90 min) decreased mean arterial pressure, SPP and Qao in wild type, e

  7. Thalidomide ameliorates portal hypertension via nitric oxide synthase independent reduced systolic blood pressure.

    PubMed

    Theodorakis, Nicholas G; Wang, Yining N; Korshunov, Vyacheslav A; Maluccio, Mary A; Skill, Nicholas J

    2015-04-14

    Portal hypertension is a common complication of liver cirrhosis and significantly increases mortality and morbidity. Previous reports have suggested that the compound thalidomide attenuates portal hypertension (PHT). However, the mechanism for this action is not fully elucidated. One hypothesis is that thalidomide destabilizes tumor necrosis factor α (TNFα) mRNA and therefore diminishes TNFα induction of nitric oxide synthase (NOS) and the production of nitric oxide (NO). To examine this hypothesis, we utilized the murine partial portal vein ligation (PVL) PHT model in combination with endothelial or inducible NOS isoform gene knockout mice. Wild type, inducible nitric oxide synthase (iNOS)(-/-) and endothelial nitric oxide synthase (eNOS)(-/-) mice received either PVL or sham surgery and were given either thalidomide or vehicle. Serum nitrate (total nitrate, NOx) was measured daily for 7 d as a surrogate of NO synthesis. Serum TNFα level was quantified by enzyme-linked immunosorbent assay. TNFα mRNA was quantified in liver and aorta tissue by reverse transcription-polymerase chain reaction. PHT was determined by recording splenic pulp pressure (SPP) and abdominal aortic flow after 0-7 d. Response to thalidomide was determined by measurement of SPP and mean arterial pressure (MAP). SPP, abdominal aortic flow (Qao) and plasma NOx were increased in wild type and iNOS(-/-) PVL mice when compared to sham operated control mice. In contrast, SPP, Qao and plasma NOx were not increased in eNOS(-/-) PVL mice when compared to sham controls. Serum TNFα level in both sham and PVL mice was below the detection limit of the commercial ELISA used. Therefore, the effect of thalidomide on serum TNFα levels was undetermined in wild type, eNOS(-/-) or iNOS(-/-) mice. Thalidomide acutely increased plasma NOx in wild type and eNOS(-/-) mice but not iNOS(-/-) mice. Moreover, thalidomide temporarily (0-90 min) decreased mean arterial pressure, SPP and Qao in wild type, e

  8. Effect of Thalidomide on Nitric Oxide Production in Lipopolysaccharide-Activated RAW 264.7 Cells

    PubMed Central

    Park, Eunkyue; Levis, WR; Greig, NH; Euisun, Jung; Schuller-Levis, G

    2016-01-01

    Thalidomide is anti-inflammatory under some conditions, yet has been reported to up regulate TH1 immunity measured by increased IL-2 and gamma interferon. We have assessed the effect of thalidomide and analogues, di- and tri-thiothalidomide, on a lipopolysaccharide (LPS) activated macrophage cell line (RAW 246.7 cells). Our findings showed that nitric oxide (NO) was significantly inhibited by thalidomide (15%) and its analogues (di-thiothalidomide; 15%, tri-thiothalidomide; 32%). The proinflammatory molecules TNF-α and IL-6 were not significantly inhibited. Pretreatment with thalidomide and analogues before activation was not different from simultaneous treatment. Inhibition of inducible nitric oxide synthase (iNOS) may prove to be an important target for the anti-inflammatory and anti-cancer effects of thalidomide and related immunomodulatory drugs (IMIDs). PMID:20514789

  9. Nitric oxide and heat shock protein 90 co-regulate temperature-induced bleaching in the soft coral Eunicea fusca

    NASA Astrophysics Data System (ADS)

    Ross, Cliff

    2014-06-01

    Coral bleaching represents a complex physiological process that is affected not only by environmental conditions but by the dynamic internal cellular biology of symbiotic dinoflagellates ( Symbiodinium spp.) and their cnidarian hosts. Recently, nitric oxide (NO) has emerged as a key molecule involved with the expulsion of Symbiodinium from host cnidarian cells. However, the site of production remains under debate, and the corresponding signaling pathways within and between host and endosymbiont remain elusive. In this study, using freshly isolated Symbiodinium from the soft coral Eunicea fusca, I demonstrate that thermally induced stress causes an upregulation in Symbiodinium heat shock protein 90 (Hsp90). In turn, Hsp90 shows a concomitant ability to enhance the activity of a constitutively expressed isoform of NO synthase. The resulting production of NO constitutes a signaling molecule capable of inducing Symbiodinium expulsion. Using nitric oxide synthase (NOS) and Hsp90 polyclonal antibodies, thermal stress-induced Hsp90 was shown to co-immunoprecipitate with a constitutive isoform of NOS. The specific blocking of Hsp90 activity, with the Hsp90 inhibitor geldanamycin, was capable of inhibiting NO production implicating the involvement of a coordinated regulatory system. These results have strong evolutionary implications for Hsp90-NOS chaperone complexes among biological kingdoms and provide evidence for a new functional role in symbiotic associations.

  10. Combined atmospheric oxidant capacity and increased levels of exhaled nitric oxide

    NASA Astrophysics Data System (ADS)

    Yang, Changyuan; Li, Huichu; Chen, Renjie; Xu, Wenxi; Wang, Cuicui; Tse, Lap Ah; Zhao, Zhuohui; Kan, Haidong

    2016-07-01

    Nitrogen dioxide and ozone are two interrelated oxidative pollutants in the atmosphere. Few studies have evaluated the health effects of combined oxidant capacity (O x ). We investigated the short-term effects of O x on fractional exhaled nitric oxide (FeNO), a well-established biomarker for airway inflammation, in a group of chronic obstructive pulmonary disease patients. Real-time concentrations of O x were obtained by calculating directly the sum of nitrogen dioxide and ozone. Linear mixed-effect models were applied to explore the acute effects of O x on FeNO levels. Short-term exposure to Ox was significantly associated with elevated FeNO. This effect was strongest in the first 24 h after exposure, and was robust to the adjustment of PM2.5. A 10 μg m-3 increase in 24 h average concentrations of O x was associated with 4.28% (95% confidence interval: 1.19%, 7.37%) increase in FeNO. The effect estimates were statistically significant only among males, elders, and those with body mass index ≥24 kg m-2, a comorbidity, higher educational attainment, or moderate airflow limitation. This analysis demonstrated an independent effect of O x on respiratory inflammation, and suggested that a single metric O x might serve as a preferable indicator of atmospheric oxidative capacity in further air pollution epidemiological studies.

  11. Levels of selected minerals, nitric oxide, and vitamins in aborted Sakis sheep raised under semitropical conditions

    PubMed Central

    Aypak, Serap Unubol

    2010-01-01

    The serum levels of calcium, phosphorus, magnesium, copper, zinc and iron and of nitric oxide, retinol, and β-carotene were determined in Sakiz ewes that had experienced an abortion and in healthy controls. Ten healthy and 25 aborted Sakiz sheep were selected from Afyon zone in western Turkey. Their ages ranged between 2 and 4 years weighing between 40 and 60 kg at the time of experiment. All of the abortions occurred in October. The concentrations of retinol, β-carotene, phosphorus, and zinc were significantly lower and those of calcium and nitric oxide were increased in aborted ewes relative to healthy controls. The serum levels of iron, copper, and magnesium were not significantly different among the two groups. In conclusion, abortion is an important problem in commercially important species of ruminants in many regions in the tropics including of western Turkey. Deficiencies of retinol, β-carotene, phosphorus and zinc, and the increase of calcium and nitric oxide concentration may play an important role in the etiology of abortion in ewes. Prophylactic measures such as vitamin and mineral supplementation may be of help to prevent or reduce the incidence of abortion in sheep. PMID:21076941

  12. Numerical simulations of the seasonal/latitudinal variations of atomic oxygen and nitric oxide in the lower thermosphere and mesosphere

    NASA Technical Reports Server (NTRS)

    Rees, D.; Fuller-Rowell, T. J.

    1989-01-01

    A 2-Dimensional zonally-averaged thermospheric model and the global University College London (UCL) thermospheric model have been used to investigate the seasonal, solar activity and geomagnetic variation of atomic oxygen and nitric oxide. The 2-dimensional model includes detailed oxygen and nitrogen chemistry, with appropriate completion of the energy equation, by adding the thermal infrared cooling by O and NO. This solution includes solar and auroral production of odd nitrogen compounds and metastable species. This model has been used for three investigations; firstly, to study the interactions between atmospheric dynamics and minor species transport and density; secondly, to examine the seasonal variations of atomic oxygen and nitric oxide within the upper mesosphere and thermosphere and their response to solar and geomagnetic activity variations; thirdly, to study the factor of 7 to 8 peak nitric oxide density increase as solar F sub 10.7 cm flux increases from 70 to 240 reported from the Solar Mesospheric Explorer. Auroral production of NO is shown to be the dominant source at high latitudes, generating peak NO densities a factor of 10 greater than typical number densities at low latitudes. At low latitudes, the predicted variation of the peak NO density, near 110 km, with the solar F sub 10.7 cm flux is rather smaller than is observed. This is most likely due to an overestimate of the soft X-ray flux at low solar activity, for times of extremely low support number, as occurred in June 1986. As observed on pressure levels, the variation of O density is small. The global circulation during solstice and periods of elevated geomagnetic activity causes depletion of O in regions of upwelling, and enhancements in regions of downwelling.

  13. PROCESS OF SECURING PLUTONIUM IN NITRIC ACID SOLUTIONS IN ITS TRIVALENT OXIDATION STATE

    DOEpatents

    Thomas, J.R.

    1958-08-26

    >Various processes for the recovery of plutonium require that the plutonium be obtalned and maintained in the reduced or trivalent state in solution. Ferrous ions are commonly used as the reducing agent for this purpose, but it is difficult to maintain the plutonium in a reduced state in nitric acid solutions due to the oxidizing effects of the acid. It has been found that the addition of a stabilizing or holding reductant to such solution prevents reoxidation of the plutonium. Sulfamate ions have been found to be ideally suitable as such a stabilizer even in the presence of nitric acid.

  14. Nitric oxide signalling and neuronal nitric oxide synthase in the heart under stress.

    PubMed

    Zhang, Yin Hua

    2017-01-01

    Nitric oxide (NO) is an imperative regulator of the cardiovascular system and is a critical mechanism in preventing the pathogenesis and progression of the diseased heart. The scenario of bioavailable NO in the myocardium is complex: 1) NO is derived from both endogenous NO synthases (endothelial, neuronal, and/or inducible NOSs [eNOS, nNOS, and/or iNOS]) and exogenous sources (entero-salivary NO pathway) and the amount of NO from exogenous sources varies significantly; 2) NOSs are located at discrete compartments of cardiac myocytes and are regulated by distinctive mechanisms under stress; 3) NO regulates diverse target proteins through different modes of post-transcriptional modification (soluble guanylate cyclase [sGC]/cyclic guanosine monophosphate [cGMP]/protein kinase G [PKG]-dependent phosphorylation, S -nitrosylation, and transnitrosylation); 4) the downstream effectors of NO are multidimensional and vary from ion channels in the plasma membrane to signalling proteins and enzymes in the mitochondria, cytosol, nucleus, and myofilament; 5) NOS produces several radicals in addition to NO (e.g. superoxide, hydrogen peroxide, peroxynitrite, and different NO-related derivatives) and triggers redox-dependent responses. However, nNOS inhibits cardiac oxidases to reduce the sources of oxidative stress in diseased hearts. Recent consensus indicates the importance of nNOS protein in cardiac protection under pathological stress. In addition, a dietary regime with high nitrate intake from fruit and vegetables together with unsaturated fatty acids is strongly associated with reduced cardiovascular events. Collectively, NO-dependent mechanisms in healthy and diseased hearts are better understood and shed light on the therapeutic prospects for NO and NOSs in clinical applications for fatal human heart diseases.

  15. The role of nitric oxide in regulation of the cardiovascular system in reptiles.

    PubMed

    Skovgaard, Nini; Galli, Gina; Abe, Augusto; Taylor, Edwin W; Wang, Tobias

    2005-10-01

    The roles that nitric oxide (NO) plays in the cardiovascular system of reptiles are reviewed, with particular emphasis on its effects on central vascular blood flows in the systemic and pulmonary circulations. New data is presented that describes the effects on hemodynamic variables in varanid lizards of exogenously administered NO via the nitric oxide donor sodium nitroprusside (SNP) and inhibition of nitric oxide synthase (NOS) by l-nitroarginine methyl ester (l-NAME). Furthermore, preliminary data on the effects of SNP on hemodynamic variables in the tegu lizard are presented. The findings are compared with previously published data from our laboratory on three other species of reptiles: pythons (), rattlesnakes () and turtles (). These five species of reptiles possess different combinations of division of the heart and structural complexity of the lungs. Comparison of their responses to NO donors and NOS inhibitors may reveal whether the potential contribution of NO to vascular tone correlates with pulmonary complexity and/or with blood pressure. All existing studies on reptiles have clearly established a potential role for NO in regulating vascular tone in the systemic circulation and NO may be important for maintaining basal systemic vascular tone in varanid lizards, pythons and turtles, through a continuous release of NO. In contrast, the pulmonary circulation is less responsive to NO donors or NOS inhibitors, and it was only in pythons and varanid lizards that the lungs responded to SNP. Both species have a functionally separated heart, so it is possible that NO may exert a larger role in species with low pulmonary blood pressures, irrespective of lung complexity.

  16. The effects of nitric oxide synthase inhibitors on the sedative effect of clonidine.

    PubMed

    Soares de Moura, R; Rios, A A; de Oliveira, L F; Resende, A C; de Lemos Neto, M; Santos, E J; Correia, M L; Tano, T

    2001-11-01

    The mechanism underlying the Niteroi, Rio de Janeiro sedative effect of clonidine, an alpha2-adrenoceptor agonist, remains uncertain. Because activation of alpha2-adrenoceptors induces release of nitric oxide (NO), we tested the hypothesis that the sedative effect of clonidine depends on NO-related mechanisms. The effect of 7-nitro indazole on the sleeping time induced by clonidine was studied in Wistar rats. In addition, we examined the effect of clonidine, alpha-methyldopa, and midazolam on the thiopental-induced sleeping time in rats pretreated with N(G)-nitro-L-arginine-methyl-ester (L-NAME). The sleeping time induced by clonidine was significantly decreased by 7-nitro indazole. Thiopental sleeping time was increased by clonidine, alpha-methyldopa, and midazolam. L-NAME reduced the prolongation effect of clonidine and alpha-methyldopa, but did not alter the effect of midazolam on the thiopental-induced sleeping time. The inhibitory effect of L-NAME on clonidine-dependent prolongation of thiopental-induced sleeping time was reversed by L-arginine. These results suggest that NO-dependent mechanisms are involved in the sedative effect of clonidine. In addition, this effect seems to be specific for the sedative action of alpha2-adrenoceptors agonists. Clonidine, an antihypertensive drug, is also a sedative. This sedative effect, although an adverse event in the treatment of hypertensive patients, can be helpful for sedation of surgical patients. The mechanism of this effect, however, is unknown. In this study, we show that the sedative effect of clonidine is mediated by nitric oxide, because it could be prevented by pretreatment with nitric oxide synthase inhibitors.

  17. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase.

    PubMed

    Caranto, Jonathan D; Lancaster, Kyle M

    2017-08-01

    Ammonia (NH 3 )-oxidizing bacteria (AOB) emit substantial amounts of nitric oxide (NO) and nitrous oxide (N 2 O), both of which contribute to the harmful environmental side effects of large-scale agriculture. The currently accepted model for AOB metabolism involves NH 3 oxidation to nitrite (NO 2 - ) via a single obligate intermediate, hydroxylamine (NH 2 OH). Within this model, the multiheme enzyme hydroxylamine oxidoreductase (HAO) catalyzes the four-electron oxidation of NH 2 OH to NO 2 - We provide evidence that HAO oxidizes NH 2 OH by only three electrons to NO under both anaerobic and aerobic conditions. NO 2 - observed in HAO activity assays is a nonenzymatic product resulting from the oxidation of NO by O 2 under aerobic conditions. Our present study implies that aerobic NH 3 oxidation by AOB occurs via two obligate intermediates, NH 2 OH and NO, necessitating a mediator of the third enzymatic step.

  18. Lung function and exhaled nitric oxide in healthy unsedated African infants

    PubMed Central

    Gray, Diane; Willemse, Lauren; Visagie, Ane; Smith, Emilee; Czövek, Dorottya; Sly, Peter D; Hantos, Zoltán; Hall, Graham L; Zar, Heather J

    2015-01-01

    Background and objective Population-appropriate lung function reference data are essential to accurately identify respiratory disease and measure response to interventions. There are currently no reference data in African infants. The aim was to describe normal lung function in healthy African infants. Methods Lung function was performed on healthy South African infants enrolled in a birth cohort study, the Drakenstein child health study. Infants were excluded if they were born preterm or had a history of neonatal respiratory distress or prior respiratory tract infection. Measurements, made during natural sleep, included the forced oscillation technique, tidal breathing, exhaled nitric oxide and multiple breath washout measures. Results Three hundred sixty-three infants were tested. Acceptable and repeatable measurements were obtained in 356 (98%) and 352 (97%) infants for tidal breathing analysis and exhaled nitric oxide outcomes, 345 (95%) infants for multiple breath washout and 293 of the 333 (88%) infants for the forced oscillation technique. Age, sex and weight-for-age z score were significantly associated with lung function measures. Conclusions This study provides reference data for unsedated infant lung function in African infants and highlights the importance of using population-specific data. PMID:26134556

  19. Decomposition of nitric oxide in a hot nitrogen stream to synthesize air for hypersonic wind tunnel combustion testing

    NASA Technical Reports Server (NTRS)

    Zumdieck, J. F.; Zlatarich, S. A.

    1974-01-01

    A clean source of high enthalpy air was obtained from the exothermic decomposition of nitric oxide in the presence of strongly heated nitrogen. A nitric oxide jet was introduced into a confined coaxial nitrogen stream. Measurements were made of the extent of mixing and reaction. Experimental results are compared with one- and two-dimensional chemical kinetics computations. Both analyses predict much lower reactivity than was observed experimentally. Inlet nitrogen temperatures above 2400 K were sufficient to produce experimentally a completely reacted gas stream of synthetic air.

  20. L-Arginine supplementation improves antioxidant defenses through L-arginine/nitric oxide pathways in exercised rats.

    PubMed

    Shan, Lingling; Wang, Bin; Gao, Guizhen; Cao, Wengen; Zhang, Yunkun

    2013-10-15

    l-Arginine (l-Arg) supplementation has been shown to enhance physical exercise capacity and delay onset of fatigue. This work investigated the potential beneficial mechanism(s) of l-Arg supplementation by examining its effect on the cellular oxidative and nitrosative stress pathways in the exercised rats. Forty-eight rats were randomly divided into six groups: sedentary control; sedentary control with l-Arg treatment; endurance training (daily swimming training for 8 wk) control; endurance training with l-Arg treatment; an exhaustive exercise (one time swimming to fatigue) control; and an exhaustive exercise with l-Arg treatment. l-Arg (500 mg/kg body wt) or saline was given to rats by intragastric administration 1 h before the endurance training and the exhaustive swimming test. Expression levels and activities of the l-Arg/nitric oxide (NO) pathway components and parameters of the oxidative stress and antioxidant defense capacity were investigated in l-Arg-treated and control rats. The result show that the l-Arg supplementation completely reversed the exercise-induced activation of NO synthase and superoxide dismutase, increased l-Arg transport capacity, and increased NO and anti-superoxide anion levels. These data demonstrate that l-Arg supplementation effectively reduces the exercise-induced imbalance between oxidative stress and antioxidant defense capacity, and this modulation is likely mediated through the l-Arg/NO pathways. The findings of this study improved our understanding of how l-Arg supplementation prevents elevations of reactive oxygen species and favorably enhances the antioxidant defense capacity during physical exercise.

  1. Nitric oxide synthase and oxidative-nitrosative stress play a key role in placental infection by Trypanosoma cruzi.

    PubMed

    Triquell, María Fernanda; Díaz-Luján, Cintia; Romanini, María Cristina; Ramirez, Juan Carlos; Paglini-Oliva, Patricia; Schijman, Alejandro Gabriel; Fretes, Ricardo Emilio

    2018-03-25

    The innate immune response of the placenta may participate in the congenital transmission of Chagas disease through releasing reactive oxygen and nitrogen intermediates. Placental explants were cultured with 1 × 10 6 and 1 × 10 5 trypomastigotes of Tulahuen and Lucky strains and controls without parasites, and with the addition of nitric oxide synthase inhibitor Nω-Nitro-l-arginine methyl ester (l-NAME) and N-acetyl cysteine (NAC) as the reactive oxygen species (ROS) scavenger. Detachment of the syncytiotrophoblast (STB) was examined by histological analysis, and the nitric oxide synthase, endothelial (eNOS), and nitrotyrosine expressions were analyzed by immunohistochemistry, as well as the human chorionic gonadotrophin (hCG) levels in the culture supernatant through ELISA assays. Parasite load with qPCR using Taqman primers was quantified. The higher number of T. cruzi (10 6 ) increased placental infection, eNOS expression, nitrosative stress, and STB detachment, with the placental barrier being injured by oxidative stress. The higher number of parasites caused deleterious consequences to the placental barrier, and the inhibitors (l-NAME and NAC) prevented the damage caused by trypomastigotes in placental villi but not that of the infection. Moreover, trophoblast eNOS played a key role in placental infection with the highest inoculum of Lucky, demonstrating the importance of the enzyme and nitrosative-oxidative stress in Chagas congenital transmission. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Recent developments in nitric oxide donor drugs

    PubMed Central

    Miller, M R; Megson, I L

    2007-01-01

    During the 1980s, the free radical, nitric oxide (NO), was discovered to be a crucial signalling molecule, with wide-ranging functions in the cardiovascular, nervous and immune systems. Aside from providing a credible explanation for the actions of organic nitrates and sodium nitroprusside that have long been used in the treatment of angina and hypertensive crises respectively, the discovery generated great hopes for new NO-based treatments for a wide variety of ailments. Decades later, however, we are still awaiting novel licensed agents in this arena, despite an enormous research effort to this end. This review explores some of the most promising recent advances in NO donor drug development and addresses the challenges associated with NO as a therapeutic agent. PMID:17401442

  3. A small molecule deubiquitinase inhibitor increases localization of inducible nitric oxide synthase to the macrophage phagosome and enhances bacterial killing.

    PubMed

    Burkholder, Kristin M; Perry, Jeffrey W; Wobus, Christiane E; Donato, Nicholas J; Showalter, Hollis D; Kapuria, Vaibhav; O'Riordan, Mary X D

    2011-12-01

    Macrophages are key mediators of antimicrobial defense and innate immunity. Innate intracellular defense mechanisms can be rapidly regulated at the posttranslational level by the coordinated addition and removal of ubiquitin by ubiquitin ligases and deubiquitinases (DUBs). While ubiquitin ligases have been extensively studied, the contribution of DUBs to macrophage innate immune function is incompletely defined. We therefore employed a small molecule DUB inhibitor, WP1130, to probe the role of DUBs in the macrophage response to bacterial infection. Treatment of activated bone marrow-derived macrophages (BMM) with WP1130 significantly augmented killing of the intracellular bacterial pathogen Listeria monocytogenes. WP1130 also induced killing of phagosome-restricted bacteria, implicating a bactericidal mechanism associated with the phagosome, such as the inducible nitric oxide synthase (iNOS). WP1130 had a minimal antimicrobial effect in macrophages lacking iNOS, indicating that iNOS is an effector mechanism for WP1130-mediated bacterial killing. Although overall iNOS levels were not notably different, we found that WP1130 significantly increased colocalization of iNOS with the Listeria-containing phagosome during infection. Taken together, our data indicate that the deubiquitinase inhibitor WP1130 increases bacterial killing in macrophages by enhancing iNOS localization to the phagosome and suggest a potential role for ubiquitin regulation in iNOS trafficking.

  4. Nitric oxide evokes pain in humans on intracutaneous injection.

    PubMed

    Holthusen, H; Arndt, J O

    1994-01-03

    To test the hypothesis that nitric oxide (NO) acts algetically in humans, we determined pain intensity/dose relations for intracutaneously applied NO solutions. NO, dissolved in isoosmolar phosphate buffer, was injected in the forearm of six volunteers and the subjects rated NO-evoked pain continuously with the help of an electronically controlled visual analogue scale. Pain always occurred at a NO dose of 12 nmol, increased with dose and reached the tolerance maximum at 50 nmol. This shows for the first time the genuine pain evoking properties of NO.

  5. Nitric oxide synthase mRNA expression in human fetal membranes: a possible role in parturition.

    PubMed

    Dennes, W J; Slater, D M; Bennett, P R

    1997-04-07

    Nitric oxide (NO) is a potent endogenous smooth-muscle relaxant. It is synthesised from 1-arginine by isoforms of nitric oxide synthase (NOS). Whilst it is clear that the uterus responds to NO by relaxation, NOS expression has not been investigated in fetal membranes or myometrium in human pregnancy. This study has shown, using semi-quantitative RT-PCR, expression of cNOS mRNA in human amnion, chorion-decidua, and placenta. iNOS mRNA expression was demonstrated in human amnion, chorion-decidua, and placenta. It is possible that NO synthesised in fetal membranes may act either directly to inhibit myometrial contractility or indirectly to interact with other labour-associated genes, such as cyclo-oxygenase, to coordinate the onset of labour.

  6. Nitric oxide donors or nitrite counteract copper-[dithiocarbamate](2)-mediated tumor cell death and inducible nitric oxide synthase down-regulation: possible role of a nitrosyl-copper [dithiocarbamate](2) complex.

    PubMed

    Rhenals, Maricela Viola; Strasberg-Rieber, Mary; Rieber, Manuel

    2010-02-25

    In contrast to other metal-dithiocarbamate [DEDTC] complexes, the copper-DEDTC complex is highly cytotoxic, inducing oxidative stress, preferentially in tumor cells. Because nitric oxide (NO) forms adducts with Cu[DEDTC](2), we investigated whether NO donors like S-nitroso-N-acetyl penicillamine (SNAP) or sodium nitroprusside (SNP), and nitrite, a NO decomposition product, modulate Cu[DEDTC](2) cytotoxicity against human tumor cells. We show that apoptosis-associated PARP cleavage and inducible nitric oxide synthase (iNOS) down-regulation induced by nanomolar Cu[DEDTC](2), are counteracted by 50 muM SNAP, SNP, or CoCl(2), an inducer of hypoxia and NO signaling. Nitrite was stochiometrically effective in antagonizing Cu[DEDTC](2) cytotoxicity and inducing shifts in the absorption spectrum of the binary complex in the 280 and 450 nm regions. Subtoxic concentrations of Cu[DEDTC](2) became lethal when tumor cells were pretreated with c-PTIO, a membrane-impermeable scavenger for extracellular NO. Our results suggest that: (a) reactive oxygen species induced by Cu[DEDTC](2) are scavenged by nitrite released from NO, (b) the extent of lethality of Cu[DEDTC](2) is dependent on the reciprocal formation of an inactive ternary Cu[DEDTC](2)NO copper-nitrosyl complex.

  7. [Potential protective role of nitric oxide and Hsp70 linked to functional foods in the atherosclerosis].

    PubMed

    Camargo, Alejandra B; Manucha, Walter

    Atherosclerosis, one of the main pathologic entities considered epidemic and a worldwide public health problem, is currently under constant review as regards its basic determining mechanisms and therapeutic possibilities. In this regard, all patients afflicted with the disease exhibit mitochondrial dysfunction, oxidative stress and inflammation. Interestingly, nitric oxide - a known vasoactive messenger gas - has been closely related to the inflammatory, oxidative and mitochondrial dysfunctional process that characterizes atherosclerosis. In addition, it has recently been demonstrated that alterations in the bioavailability of nitric oxide would induce the expression of heat shock proteins. This agrees with the use of functional foods as a strategy to prevent both vascular aging and the development of atherosclerosis. Finally, a greater knowledge regarding the mechanisms implied in the development of atherosclerosis will enable proposing new and possible hygiene, health and therapeutic interventions. Copyright © 2016 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Nitric oxide protects anterior pituitary cells from cadmium-induced apoptosis.

    PubMed

    Poliandri, Ariel H B; Velardez, Miguel O; Cabilla, Jimena P; Bodo, Cristian C A; Machiavelli, Leticia I; Quinteros, Alnilan F; Duvilanski, Beatriz H

    2004-11-01

    Cadmium (Cd2+) is a potent toxic metal for both plants and animals. Chronic exposure to low doses of Cd2+ results in damage to several organs. We have previously reported that Cd2+ induces apoptosis in anterior pituitary cells by a caspase- and oxidative stress-dependent mechanism. Nitric oxide (NO) synthesis is affected by Cd2+ in several systems. NO has been shown to be either cytoprotective or cytotoxic in many systems. The aim of this study was to evaluate the possible participation of NO in the cytotoxic effect of Cd2+ on rat anterior pituitary cells. Cell viability was evaluated by mitochondrial dehydrogenase activity assay and confirmed by microscopy, studying nuclear morphology. Here we show that DETA NONOate ((Z)-1-[2 (2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate), a long-term NO donor, at concentrations below 0.5 mM, reduces nuclear condensation and fragmentation and reverses the decrease in cellular activity induced by Cd2+. Cd2+, by itself, induced NO synthesis, and inhibition of this synthesis enhanced Cd2+ cytotoxicity. NO also prevented caspase-3 activation and lipidic peroxidation induced by Cd2+. The NO/cGMP pathway does not seem to be involved in the cytoprotective effect of NO. These results indicate that NO has a cytoprotective role in Cd2+ -induced apoptosis, suggesting that endogenous NO could have a physiological role in protecting anterior pituitary cells.

  9. Graft reconditioning with nitric oxide gas in rat liver transplantation from cardiac death donors.

    PubMed

    Kageyama, Shoichi; Yagi, Shintaro; Tanaka, Hirokazu; Saito, Shunichi; Nagai, Kazuyuki; Hata, Koichiro; Fujimoto, Yasuhiro; Ogura, Yasuhiro; Tolba, Rene; Shinji, Uemoto

    2014-03-27

    Liver transplant outcomes using grafts donated after cardiac death (DCD) remain poor. We investigated the effects of ex vivo reconditioning of DCD grafts with venous systemic oxygen persufflation using nitric oxide gas (VSOP-NO) in rat liver transplants. Orthotopic liver transplants were performed in Lewis rats, using DCD grafts prepared using static cold storage alone (group-control) or reconditioning using VSOP-NO during cold storage (group-VSOP-NO). Experiment I: In a 30-min warm ischemia model, graft damage and hepatic expression of inflammatory cytokines, endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), and endothelin-1 (ET-1) were examined, and histologic analysis was performed 2, 6, 24, and 72 hr after transplantation. Experiment II: In a 60-min warm ischemia model, grafts were evaluated 2 hr after transplantation (6 rats/group), and survival was assessed (7 rats/group). Experiment I: Group-VSOP-NO had lower alanine aminotransferase (ALT) (P<0.001), hyaluronic acid (P<0.05), and malondialdehyde (MDA) (P<0.001), hepatic interleukin-6 expression (IL-6) (P<0.05), and hepatic tumor necrosis factor-alpha (TNF-α) expression (P<0.001). Hepatic eNOS expression (P<0.001) was upregulated, whereas hepatic iNOS (P<0.01) and ET-1 (P<0.001) expressions were downregulated. The damage of hepatocyte and sinusoidal endothelial cells (SECs) were lower in group-VSOP-NO.Experiment II: VSOP-NO decreased ET-1 and 8-hydroxy-2'deoxyguanosine (8-OHdG) expression and improved survival after transplantation by 71.4% (P<0.01). These results suggest that VSOP-NO effectively reconditions warm ischemia-damaged grafts, presumably by decreasing ET-1 upregulation and oxidative damage.

  10. Nitric oxide, stress, and depression.

    PubMed

    McLeod, T M; López-Figueroa, A L; López-Figueroa, M O

    2001-01-01

    Stress and depression have a significant impact on modern society. Even though their symptomatology is well characterized, little is known about the molecular mechanisms underlying these disturbing disorders. While the role of neurotransmitters such as serotonin, norepinephrine (NE), dopamine (DA), corticotropin-releasing hormone (CRH), and arginine vasopressin (AVP) has been extensively studied, new evidence suggests a role for the unique neurotransmitter nitric oxide (NO). This highly diffusible and reactive molecule is synthesized by at least three enzyme subtypes of NO synthase (NOS). The commonly known neuronal NOS subtype is localized in areas of the brain related to stress and depression. The limbic-hypothalamic-pituitary-adrenal (LHPA) axis is the core of this system. These interrelated pathways have in common the production, and negative feedback, of glucocorticoids. Within these areas, NO is suggested to play a role in modulating the release of other neurotransmitters, acting as a cellular communicator in plasticity and development, and/or acting as a vasodilator in regulation of blood flow. This article summarizes some of the recent advances in the understanding of the role of NO in stress and depression.

  11. Nitric oxide releasing plasma polymer coating with bacteriostatic properties and no cytotoxic side effects.

    PubMed

    Michl, Thomas D; Coad, Bryan R; Doran, Michael; Osiecki, Michael; Kafshgari, Morteza Hasanzadeh; Voelcker, Nicolas H; Hüsler, Amanda; Vasilev, Krasimir; Griesser, Hans J

    2015-04-25

    We report a stable plasma polymer coating, using isopentyl nitrite as a volatile precursor, which releases nitric oxide at bacteriostatic concentrations when contacted with water, inhibiting bacterial growth without cytotoxic side effects to human mesenchymal stem/stromal cells.

  12. 75 FR 43535 - NIH Consensus Development Conference on Inhaled Nitric Oxide Therapy for Premature Infants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ... problems with long-term lung health, brain development, and brain function. Nitric oxide is a chemical... and brain development and function. Since its approval, researchers have examined expanding the use of...

  13. Fractional exhaled nitric oxide-measuring devices: technology update

    PubMed Central

    Maniscalco, Mauro; Vitale, Carolina; Vatrella, Alessandro; Molino, Antonio; Bianco, Andrea; Mazzarella, Gennaro

    2016-01-01

    The measurement of exhaled nitric oxide (NO) has been employed in the diagnosis of specific types of airway inflammation, guiding treatment monitoring by predicting and assessing response to anti-inflammatory therapy and monitoring for compliance and detecting relapse. Various techniques are currently used to analyze exhaled NO concentrations under a range of conditions for both health and disease. These include chemiluminescence and electrochemical sensor devices. The cost effectiveness and ability to achieve adequate flexibility in sensitivity and selectivity of NO measurement for these methods are evaluated alongside the potential for use of laser-based technology. This review explores the technologies involved in the measurement of exhaled NO. PMID:27382340

  14. Efficacy and safety of nitric oxide fumigation for controlling codling moth in apples

    USDA-ARS?s Scientific Manuscript database

    Nitric oxide (NO) fumigation under ultralow oxygen (ULO) conditions was studied for its efficacy in controlling codling moth and effects on postharvest quality of apples. NO fumigation was effective against eggs and larvae of different sizes on artificial diet in 48 h treatments. Small larvae were...

  15. Nitric Oxide Plays a Key Role in Ovariectomy-Induced Apoptosis in Anterior Pituitary: Interplay between Nitric Oxide Pathway and Estrogen.

    PubMed

    Ronchetti, Sonia A; Machiavelli, Leticia I; Quinteros, Fernanda A; Duvilanski, Beatriz H; Cabilla, Jimena P

    2016-01-01

    Changes in the estrogenic status produce deep changes in pituitary physiology, mainly because estrogens (E2) are one of the main regulators of pituitary cell population. Also, E2 negatively regulate pituitary neuronal nitric oxide synthase (nNOS) activity and expression and may thereby modulate the production of nitric oxide (NO), an important regulator of cell death and survival. Little is known about how ovary ablation affects anterior pituitary cell remodelling and molecular mechanisms that regulate this process have not yet been elucidated. In this work we used freshly dispersed anterior pituitaries as well as cell cultures from ovariectomized female rats in order to study whether E2 deficiency induces apoptosis in the anterior pituitary cells, the role of NO in this process and effects of E2 on the NO pathway. Our results showed that cell activity gradually decreases after ovariectomy (OVX) as a consequence of cell death, which is completely prevented by a pan-caspase inhibitor. Furthermore, there is an increase of fragmented nuclei and DNA cleavage thereby presenting the first direct evidence of the existence of apoptosis in the anterior pituitary gland after OVX. NO production and soluble guanylyl cyclase (sGC) expression in anterior pituitary cells increased concomitantly to the apoptosis. Inhibition of both, NO synthase (NOS) and sGC activities prevented the drop of cell viability after OVX, showing for the first time that increased NO levels and sGC activity observed post-OVX play a key role in the induction of apoptosis. Conversely, E2 and prolactin treatments decreased nNOS expression and activity in pituitary cells from OVX rats in a time- and E2 receptor-dependent manner, thus suggesting interplay between NO and E2 pathways in anterior pituitary.

  16. Nitric Oxide Plays a Key Role in Ovariectomy-Induced Apoptosis in Anterior Pituitary: Interplay between Nitric Oxide Pathway and Estrogen

    PubMed Central

    Quinteros, Fernanda A.; Duvilanski, Beatriz H.; Cabilla, Jimena P.

    2016-01-01

    Changes in the estrogenic status produce deep changes in pituitary physiology, mainly because estrogens (E2) are one of the main regulators of pituitary cell population. Also, E2 negatively regulate pituitary neuronal nitric oxide synthase (nNOS) activity and expression and may thereby modulate the production of nitric oxide (NO), an important regulator of cell death and survival. Little is known about how ovary ablation affects anterior pituitary cell remodelling and molecular mechanisms that regulate this process have not yet been elucidated. In this work we used freshly dispersed anterior pituitaries as well as cell cultures from ovariectomized female rats in order to study whether E2 deficiency induces apoptosis in the anterior pituitary cells, the role of NO in this process and effects of E2 on the NO pathway. Our results showed that cell activity gradually decreases after ovariectomy (OVX) as a consequence of cell death, which is completely prevented by a pan-caspase inhibitor. Furthermore, there is an increase of fragmented nuclei and DNA cleavage thereby presenting the first direct evidence of the existence of apoptosis in the anterior pituitary gland after OVX. NO production and soluble guanylyl cyclase (sGC) expression in anterior pituitary cells increased concomitantly to the apoptosis. Inhibition of both, NO synthase (NOS) and sGC activities prevented the drop of cell viability after OVX, showing for the first time that increased NO levels and sGC activity observed post-OVX play a key role in the induction of apoptosis. Conversely, E2 and prolactin treatments decreased nNOS expression and activity in pituitary cells from OVX rats in a time- and E2 receptor-dependent manner, thus suggesting interplay between NO and E2 pathways in anterior pituitary. PMID:27611913

  17. Plasma membrane calcium ATPase 4b inhibits nitric oxide generation through calcium-induced dynamic interaction with neuronal nitric oxide synthase.

    PubMed

    Duan, Wenjuan; Zhou, Juefei; Li, Wei; Zhou, Teng; Chen, Qianqian; Yang, Fuyu; Wei, Taotao

    2013-04-01

    The activation and deactivation of Ca(2+)- and calmodulindependent neuronal nitric oxide synthase (nNOS) in the central nervous system must be tightly controlled to prevent excessive nitric oxide (NO) generation. Considering plasma membrane calcium ATPase (PMCA) is a key deactivator of nNOS, the present investigation aims to determine the key events involved in nNOS deactivation of by PMCA in living cells to maintain its cellular context. Using time-resolved Förster resonance energy transfer (FRET), we determined the occurrence of Ca(2+)-induced protein-protein interactions between plasma membrane calcium ATPase 4b (PMCA4b) and nNOS in living cells. PMCA activation significantly decreased the intracellular Ca(2+) concentrations ([Ca(2+)]i), which deactivates nNOS and slowdowns NO synthesis. Under the basal [Ca(2+)]i caused by PMCA activation, no protein-protein interactions were observed between PMCA4b and nNOS. Furthermore, both the PDZ domain of nNOS and the PDZ-binding motif of PMCA4b were essential for the protein-protein interaction. The involvement of lipid raft microdomains on the activity of PMCA4b and nNOS was also investigated. Unlike other PMCA isoforms, PMCA4 was relatively more concentrated in the raft fractions. Disruption of lipid rafts altered the intracellular localization of PMCA4b and affected the interaction between PMCA4b and nNOS, which suggest that the unique lipid raft distribution of PMCA4 may be responsible for its regulation of nNOS activity. In summary, lipid rafts may act as platforms for the PMCA4b regulation of nNOS activity and the transient tethering of nNOS to PMCA4b is responsible for rapid nNOS deactivation.

  18. Neural crest development and craniofacial morphogenesis is coordinated by nitric oxide and histone acetylation

    PubMed Central

    Kong, Yawei; Grimaldi, Michael; Curtin, Eugene; Dougherty, Max; Kaufman, Charles; White, Richard M.; Zon, Leonard I.; Liao, Eric C.

    2015-01-01

    Cranial neural crest (CNC) cells are patterned and coalesce to facial prominences that undergo convergence and extension to generate the craniofacial form. We applied a chemical genetics approach to identify pathways that regulate craniofacial development during embryogenesis. Treatment with the nitric oxide synthase inhibitor TRIM abrogated first pharyngeal arch structures and induced ectopic ceratobranchial formation. TRIM promoted a progenitor CNC fate and inhibited chondrogenic differentiation, which were mediated through impaired nitric oxide (NO) production without appreciable effect on global protein S-nitrosylation. Instead, TRIM perturbed hox gene patterning and caused histone hypoacetylation. Rescue of TRIM phenotype was achieved with over-expression of histone acetyltransferase kat6a, inhibition of histone deacetylase, and complimentary NO. These studies demonstrate that NO signaling and histone acetylation are coordinated mechanisms that regulate CNC patterning, differentiation and convergence during craniofacial morphogenesis. PMID:24684905

  19. Effect of thalidomide on nitric oxide production in lipopolysaccharide-activated RAW 264.7 cells.

    PubMed

    Park, Eunkyue; Levis, William R; Greig, Nigel; Jung, Euisun; Schuller-Levis, Georgia

    2010-04-01

    Thalidomide is anti-inflammatory under some conditions, yet has been reported to up-regulate Th1 (T helper 1) immunity measured by increased IL-2 (Interleukin-2) and gamma interferon. The authors have assessed the effect of thalidomide and analogues, di- and tri-thiothalidomide, on a lipopolysaccharide (LPS) activated macrophage cell line (RAW 246.7 cells). The authors' findings showed that nitric oxide (NO) was significantly inhibited by thalidomide (15%) and its analogues (di-thiothalidomide; 15%, tri-thiothalidomide; 32%). The proinflammatory molecules TNF-alpha (tumor necrosis factor-alpha) and IL-6 were not significantly inhibited. Pretreatment with thalidomide and analogues before activation was not different from simultaneous treatment. Inhibition of inducible nitric oxide synthase (iNOS) may prove to be an important target for the anti-inflammatory and anti-cancer effects of thalidomide and related immunomodulatory drugs (IMiDs).

  20. A Nitric Oxide Storage and Transport System That Protects Activated Macrophages from Endogenous Nitric Oxide Cytotoxicity*

    PubMed Central

    Lok, Hiu Chuen; Sahni, Sumit; Jansson, Patric J.; Kovacevic, Zaklina; Hawkins, Clare L.; Richardson, Des R.

    2016-01-01

    Nitric oxide (NO) is integral to macrophage cytotoxicity against tumors due to its ability to induce iron release from cancer cells. However, the mechanism for how activated macrophages protect themselves from endogenous NO remains unknown. We previously demonstrated by using tumor cells that glutathione S-transferase P1 (GSTP1) sequesters NO as dinitrosyl-dithiol iron complexes (DNICs) and inhibits NO-mediated iron release from cells via the transporter multidrug resistance protein 1 (MRP1/ABCC1). These prior studies also showed that MRP1 and GSTP1 protect tumor cells against NO cytotoxicity, which parallels their roles in defending cancer cells from cytotoxic drugs. Considering this, and because GSTP1 and MRP1 are up-regulated during macrophage activation, this investigation examined whether this NO storage/transport system protects macrophages against endogenous NO cytotoxicity in two well characterized macrophage cell types (J774 and RAW 264.7). MRP1 expression markedly increased upon macrophage activation, and the role of MRP1 in NO-induced 59Fe release was demonstrated by Mrp1 siRNA and the MRP1 inhibitor, MK571, which inhibited NO-mediated iron efflux. Furthermore, Mrp1 silencing increased DNIC accumulation in macrophages, indicating a role for MRP1 in transporting DNICs out of cells. In addition, macrophage 59Fe release was enhanced by silencing Gstp1, suggesting GSTP1 was responsible for DNIC binding/storage. Viability studies demonstrated that GSTP1 and MRP1 protect activated macrophages from NO cytotoxicity. This was confirmed by silencing nuclear factor-erythroid 2-related factor 2 (Nrf2), which decreased MRP1 and GSTP1 expression, concomitant with reduced 59Fe release and macrophage survival. Together, these results demonstrate a mechanism by which macrophages protect themselves against NO cytotoxicity. PMID:27866158