Science.gov

Sample records for enhancing tsetse fly

  1. Remote sensing for control of tsetse flies

    NASA Technical Reports Server (NTRS)

    Giddings, L. E.

    1976-01-01

    Remotely sensed information is discussed which has potential for aiding in the control or eradication of tsetse flies. Data are available from earth resources meteorological, and manned satellites, from airborne sensors, and possibly from data collection platforms. A new zone discrimination technique, based on data from meteorological satellites may also allow the identification of zones hospitable to one or another species of tsetse. For background, a review is presented of the vegetation of Tanzania and Zanzibar, and illustrations presented of automatic processing of data from these areas. In addition, a review is presented of the applicability of temperature data to tsetse areas.

  2. Tsetse fly (G. f. fuscipes) distribution in the Lake Victoria basin of Uganda.

    PubMed

    Albert, Mugenyi; Wardrop, Nicola A; Atkinson, Peter M; Torr, Steve J; Welburn, Susan C

    2015-04-01

    Tsetse flies transmit trypanosomes, the causative agent of human and animal African trypanosomiasis. The tsetse vector is extensively distributed across sub-Saharan Africa. Trypanosomiasis maintenance is determined by the interrelationship of three elements: vertebrate host, parasite and the vector responsible for transmission. Mapping the distribution and abundance of tsetse flies assists in predicting trypanosomiasis distributions and developing rational strategies for disease and vector control. Given scarce resources to carry out regular full scale field tsetse surveys to up-date existing tsetse maps, there is a need to devise inexpensive means for regularly obtaining dependable area-wide tsetse data to guide control activities. In this study we used spatial epidemiological modelling techniques (logistic regression) involving 5000 field-based tsetse-data (G. f. fuscipes) points over an area of 40,000 km2, with satellite-derived environmental surrogates composed of precipitation, temperature, land cover, normalised difference vegetation index (NDVI) and elevation at the sub-national level. We used these extensive tsetse data to analyse the relationships between presence of tsetse (G. f. fuscipes) and environmental variables. The strength of the results was enhanced through the application of a spatial autologistic regression model (SARM). Using the SARM we showed that the probability of tsetse presence increased with proportion of forest cover and riverine vegetation. The key outputs are a predictive tsetse distribution map for the Lake Victoria basin of Uganda and an improved understanding of the association between tsetse presence and environmental variables. The predicted spatial distribution of tsetse in the Lake Victoria basin of Uganda will provide significant new information to assist with the spatial targeting of tsetse and trypanosomiasis control. PMID:25875201

  3. Tsetse Fly (G.f. fuscipes) Distribution in the Lake Victoria Basin of Uganda

    PubMed Central

    Albert, Mugenyi; Wardrop, Nicola A; Atkinson, Peter M; Torr, Steve J; Welburn, Susan C

    2015-01-01

    Tsetse flies transmit trypanosomes, the causative agent of human and animal African trypanosomiasis. The tsetse vector is extensively distributed across sub-Saharan Africa. Trypanosomiasis maintenance is determined by the interrelationship of three elements: vertebrate host, parasite and the vector responsible for transmission. Mapping the distribution and abundance of tsetse flies assists in predicting trypanosomiasis distributions and developing rational strategies for disease and vector control. Given scarce resources to carry out regular full scale field tsetse surveys to up-date existing tsetse maps, there is a need to devise inexpensive means for regularly obtaining dependable area-wide tsetse data to guide control activities. In this study we used spatial epidemiological modelling techniques (logistic regression) involving 5000 field-based tsetse-data (G. f. fuscipes) points over an area of 40,000 km2, with satellite-derived environmental surrogates composed of precipitation, temperature, land cover, normalised difference vegetation index (NDVI) and elevation at the sub-national level. We used these extensive tsetse data to analyse the relationships between presence of tsetse (G. f. fuscipes) and environmental variables. The strength of the results was enhanced through the application of a spatial autologistic regression model (SARM). Using the SARM we showed that the probability of tsetse presence increased with proportion of forest cover and riverine vegetation. The key outputs are a predictive tsetse distribution map for the Lake Victoria basin of Uganda and an improved understanding of the association between tsetse presence and environmental variables. The predicted spatial distribution of tsetse in the Lake Victoria basin of Uganda will provide significant new information to assist with the spatial targeting of tsetse and trypanosomiasis control. PMID:25875201

  4. Tsetse genetics: contributions to biology, systematics, and control of tsetse flies.

    PubMed

    Gooding, R H; Krafsur, E S

    2005-01-01

    Tsetse flies (Diptera: Glossinidae) constitute a small, ancient taxon of exclusively hematophagous insects that reproduce slowly and viviparously. Because tsetse flies are the only vectors of pathogenic African trypanosomes, they are a potent and constant threat to humans and livestock over much of sub-Saharan Africa. Despite their low fecundity, tsetse flies demonstrate great resilience, which makes population suppression expensive, transient, and beyond the capacities of private and public sectors to accomplish, except over small areas. Nevertheless, control measures that include genetic methods are under consideration at national and supranational levels. There is a pressing need for sufficient laboratory cultures of tsetse flies and financial support to carry out genetic research. Here we review tsetse genetics from organismal and population points of view and identify some research needs. PMID:15355235

  5. Tsetse EP Protein Protects the Fly Midgut from Trypanosome Establishment

    PubMed Central

    Haines, Lee R.; Lehane, Stella M.; Pearson, Terry W.; Lehane, Michael J.

    2010-01-01

    African trypanosomes undergo a complex developmental process in their tsetse fly vector before transmission back to a vertebrate host. Typically, 90% of fly infections fail, most during initial establishment of the parasite in the fly midgut. The specific mechanism(s) underpinning this failure are unknown. We have previously shown that a Glossina-specific, immunoresponsive molecule, tsetse EP protein, is up regulated by the fly in response to gram-negative microbial challenge. Here we show by knockdown using RNA interference that this tsetse EP protein acts as a powerful antagonist of establishment in the fly midgut for both Trypanosoma brucei brucei and T. congolense. We demonstrate that this phenomenon exists in two species of tsetse, Glossina morsitans morsitans and G. palpalis palpalis, suggesting tsetse EP protein may be a major determinant of vector competence in all Glossina species. Tsetse EP protein levels also decline in response to starvation of the fly, providing a possible explanation for increased susceptibility of starved flies to trypanosome infection. As starvation is a common field event, this fact may be of considerable importance in the epidemiology of African trypanosomiasis. PMID:20221444

  6. Obligate symbionts activate immune system development in the tsetse fly

    PubMed Central

    Weiss, Brian L.; Maltz, Michele; Aksoy, Serap

    2012-01-01

    Many insects rely on the presence of symbiotic bacteria for proper immune system function. However, the molecular mechanisms that underlie this phenomenon are poorly understood. Adult tsetse flies (Glossina spp.) house 3 symbiotic bacteria that are vertically transmitted from mother to offspring during this insect's unique viviparous mode of reproduction. Larval tsetse that undergo intrauterine development in the absence of their obligate mutualist, Wigglesworthia, exhibit a compromised immune system during adulthood. In this study we characterize the immune phenotype of tsetse that develop in the absence of all of their endogenous symbiotic microbes. Aposymbiotic tsetse (GmmApo) present a severely compromised immune system that is characterized by the absence of phagocytic hemocytes and atypical expression of immunity-related genes. Correspondingly, these flies quickly succumb to infection with normally non-pathogenic E. coli. The susceptible phenotype exhibited by GmmApo adults can be reversed when they receive hemocytes transplanted from wild-type donor flies prior to infection. Furthermore, the process of immune system development can be restored in intrauterine GmmApo larvae when their moms are fed a diet supplemented with Wigglesworthia cell extracts. Our finding that molecular components of Wigglesworthia exhibit immunostimulatory activity within tsetse is representative of a novel evolutionary adaptation that steadfastly links an obligate symbiont with it's host. PMID:22368278

  7. Genetic variation in tsetse flies and implications for trypanosomiasis.

    PubMed

    Gooding, R H

    1992-03-01

    The role of tsetse flies in the transmission of trypanosomes has been known for nearly 100 years, their economic and public health impact justifying much of the research. About 20 years ago, no genetic variants of tsetses were known but the discovery of six visible mutants and the application o f protein electrophoretic techniques have changed the situation. During the intervening years many techniques have been developed to study the biology of the approximately 30 known species and subspecies of Glossina. Here, Ron Gooding summarizes recent developments in the estimation o f genetic variation in tsetse populations and speculates on the implications of this variation to population structure, vectorial capacity and disease control strategies. PMID:15463582

  8. Interspecific Transfer of Bacterial Endosymbionts between Tsetse Fly Species: Infection Establishment and Effect on Host Fitness▿

    PubMed Central

    Weiss, Brian L. ; Mouchotte, Rosa; Rio, Rita V. M.; Wu, Yi-neng; Wu, Zheyang; Heddi, Abdelaziz; Aksoy, Serap

    2006-01-01

    Tsetse flies (Glossina spp.) can harbor up to three distinct species of endosymbiotic bacteria that exhibit unique modes of transmission and evolutionary histories with their host. Two mutualist enterics, Wigglesworthia and Sodalis, are transmitted maternally to tsetse flies' intrauterine larvae. The third symbiont, from the genus Wolbachia, parasitizes developing oocytes. In this study, we determined that Sodalis isolates from several tsetse fly species are virtually identical based on a phylogenetic analysis of their ftsZ gene sequences. Furthermore, restriction fragment-length polymorphism analysis revealed little variation in the genomes of Sodalis isolates from tsetse fly species within different subgenera (Glossina fuscipes fuscipes and Glossina morsitans morsitans). We also examined the impact on host fitness of transinfecting G. fuscipes fuscipes and G. morsitans morsitans flies with reciprocal Sodalis strains. Tsetse flies cleared of their native Sodalis symbionts were successfully repopulated with the Sodalis species isolated from a different tsetse fly species. These transinfected flies effectively transmitted the novel symbionts to their offspring and experienced no detrimental fitness effects compared to their wild-type counterparts, as measured by longevity and fecundity. Quantitative PCR analysis revealed that transinfected flies maintained their Sodalis populations at densities comparable to those in flies harboring native symbionts. Our ability to transinfect tsetse flies is indicative of Sodalis ' recent evolutionary history with its tsetse fly host and demonstrates that this procedure may be used as a means of streamlining future paratransgenesis experiments. PMID:16950907

  9. Tsetse flies: Genetics, evolution, and role as vectors

    PubMed Central

    Krafsur, E. S.

    2009-01-01

    Tsetse flies (Diptera: Glossinidae) are an ancient taxon of one genus, Glossina, and limited species diversity. All are exclusively haematophagous and confined to sub-Saharan Africa. The Glossina are the principal vectors of African trypanosomes Trypanosoma sp (Kinetoplastida: Trypanosomatidae) and as such, are of great medical and economic importance. Clearly tsetse flies and trypanosomes are coadapted and evolutionary interactions between them are manifest. Numerous clonally reproducing strains of Trypanosoma sp exist and their genetic diversities and spatial distributions are inadequately known. Here I review the breeding structures of the principle trypanosome vectors, G. morsitans s.l., G. pallidipes, G. palpalis s.l. and G. fuscipes fuscipes. All show highly structured populations among which there is surprisingly little detectable gene flow. Rather less is known of the breeding structure of T. brucei sensu lato vis à vis their vector tsetse flies but many genetically differentiated strains exist in nature. Genetic recombination in Trypanosoma via meiosis has recently been demonstrated in the laboratory thereby furnishing a mechanism of strain differentiation in addition to that of simple mutation. Spatially and genetically representative sampling of both trypanosome species and strains and their Glossina vectors is a major barrier to a comprehensive understanding of their mutual relationships. PMID:18992846

  10. Isolation and characterization of hypervariable sequences from tsetse fly genome.

    PubMed

    Blanchetot, A; Gooding, R H

    1994-10-01

    A Glossina brevipalpis Newstead genomic library, constructed using a Charomid 9-36 vector, was used to isolate putative clones that hybridize to polymorphic regions of the tsetse genome. Five types of probes, that reveal individual DNA polymorphic in humans and higher animal species, were used to screen 300 tsetse Charomid clones; 15% of the clones hybridized with at least one probe. Twenty four recombinants were further characterized by Southern blotting hybridization using DNA isolated from individual tsetse fly from Glossina morsitans centralis Machado. Two classes of DNA profiles were obtained upon hybridization with the recombinant inserts. The first, termed the "multilocus profile" displayed a complex DNA pattern of multiple components whilst the second, referred to as the "single locus profile" revealed one or two bands in each individual. Of the 24 recombinant inserts tested, 13 were multilocus probes and the remainder were single locus probes, each of which hybridized to a single location when G. m. centralis DNA had been cleaved with EcoRI. These single locus probes revealed a low level of genetic variability among individual flies from an inbred colony. The hybridization profiles using multilocus and single locus probes were also obtained on DNA from individual Glossina palpalis palpalis Robineau-Desvoidy and Glossina palpalis gambienis Vanderplank and some of the G. brevipalpis recombinant clones also detected multilocus profiles in honey bees and man. PMID:7951269

  11. Repellent Properties of δ-Octalactone Against the Tsetse Fly, Glossina morsitans Morsitans

    PubMed Central

    Mwangi, Martin T.; Gikonyo, Nicholas K.; Ndiege, Isaiah O.

    2008-01-01

    δ-octalactone, produced by several Bovidae, has been suggested as a potential repellant of tsetse fly attack. Racemic δ-octalactone was synthesized via an abbreviated route. The product was assayed against 3-day old starved teneral female tsetse flies, Glossina morsitans morsitans Wiedemann (Diptera: Glossinidae), in a choice wind tunnel and found to be a potent tsetse repellent at doses ≥0.05 mg in 200 µl of paraffin oil (0.05 >p >0.01). PMID:20298116

  12. Molecular screening for Anaplasmataceae in ticks and tsetse flies from Ethiopia.

    PubMed

    Hornok, Sándor; Abichu, Getachew; Takács, Nóra; Gyuranecz, Miklós; Farkas, Róbert; Fernández De Mera, Isabel G; De La Fuente, José

    2016-03-01

    Hard ticks and tsetse flies are regarded as the most important vectors of disease agents in Sub-Saharan Africa. With the aim of screening these blood-sucking arthropods for vector-borne pathogens belonging to the family Anaplasmataceae in South-Western Ethiopia, four species of tsetse flies (collected by traps) and seven species of ixodid ticks (removed from cattle) were molecularly analysed. DNA was extracted from 296 individual ticks and from 162 individuals or pools of tsetse flies. Besides known vector-pathogen associations, in Amblyomma cohaerens ticks sequences of Anaplasma marginale and A. phagocytophilum were detected, the latter for the first time in any ticks from cattle in Africa. In addition, part of the gltA gene of Ehrlichia ruminantium was successfully amplified from tsetse flies (Glossina pallidipes). First-time identification of sequences of the above pathogens in certain tick or tsetse fly species may serve as the basis of further epidemiological and transmission studies. PMID:26919143

  13. Improving Sterile Insect Technique (SIT) for tsetse flies through research on their symbionts and pathogens

    PubMed Central

    Abd-Alla, Adly M.M.; Bergoin, Max; Parker, Andrew G.; Maniania, Nguya K.; Vlak, Just M.; Bourtzis, Kostas; Boucias, Drion G.; Aksoy, Serap

    2013-01-01

    Tsetse flies (Diptera: Glossinidae) are the cyclical vectors of the trypanosomes, which cause human African trypanosomosis (HAT) or sleeping sickness in humans and African animal trypanosomosis (AAT) or nagana in animals. Due to the lack of effective vaccines and inexpensive drugs for HAT, and the development of resistance of the trypanosomes against the available trypanocidal drugs, vector control remains the most efficient strategy for sustainable management of these diseases. Among the control methods used for tsetse flies, Sterile Insect Technique (SIT), in the frame of area-wide integrated pest management (AW-IPM), represents an effective tactic to suppress and/or eradicate tsetse flies. One constraint in implementing SIT is the mass production of target species. Tsetse flies harbor obligate bacterial symbionts and salivary gland hypertrophy virus which modulate the fecundity of the infected flies. In support of the future expansion of the SIT for tsetse fly control, the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture implemented a six year Coordinated Research Project (CRP) entitled “Improving SIT for Tsetse Flies through Research on their Symbionts and Pathogens”. The consortium focused on the prevalence and the interaction between the bacterial symbionts and the virus, the development of strategies to manage virus infections in tsetse colonies, the use of entomopathogenic fungi to control tsetse flies in combination with SIT, and the development of symbiont-based strategies to control tsetse flies and trypanosomosis. The results of the CRP and the solutions envisaged to alleviate the constraints of the mass rearing of tsetse flies for SIT are presented in this special issue. PMID:22841636

  14. Intrinsic and synthetic stable isotope marking of tsetse flies.

    PubMed

    Hood-Nowotny, Rebecca; Watzka, Margarete; Mayr, Leo; Mekonnen, Solomon; Kapitano, Berisha; Parker, Andrew

    2011-01-01

    The sterile insect technique has been successfully used to eliminate tsetse populations in a number of programs. Program monitoring in the field relies on the ability to accurately differentiate released sterile insects from wild insects so that estimates can be made of the ratio of sterile males to wild males. Typically, released flies are marked with a dye, which is not always reliable. The difference in isotopic signatures between wild and factory-reared populations could be a reliable and intrinsic secondary marker to complement existing marking methods. Isotopic signatures are natural differences in stable isotope composition of organisms due to discrimination against the heavier isotopes during some biological processes. As the isotopic signature of an organism is mainly dependent on what it eats; by feeding factory-reared flies isotopically different diets to those of the wild population it is possible to intrinsically mark the flies. To test this approach unlabeled samples of Glossina pallidipes (Austen) (Diptera: Glossinidae) from a mass rearing facility and wild populations were analyzed to determine whether there were any natural differences in signatures that could be used as markers. In addition experiments were conducted in which the blood diet was supplemented with isotopically enriched compounds and the persistence of the marker in the offspring determined. There were distinct natural isotopic differences between factory reared and wild tsetse populations that could be reliably used as population markers. It was also possible to rear artificially isotopically labeled flies using simple technology and these flies were clearly distinguishable from wild populations with greater than 95% certainty after 85 days of "release". These techniques could be readily adopted for use in SIT programs as complimentary marking techniques. PMID:21870965

  15. Intrinsic and Synthetic Stable Isotope Marking of Tsetse Flies

    PubMed Central

    Hood-Nowotny, Rebecca; Watzka, Margarete; Mayr, Leo; Mekonnen, Solomon; Kapitano, Berisha; Parker, Andrew

    2011-01-01

    The sterile insect technique has been successfully used to eliminate tsetse populations in a number of programs. Program monitoring in the field relies on the ability to accurately differentiate released sterile insects from wild insects so that estimates can be made of the ratio of sterile males to wild males. Typically, released flies are marked with a dye, which is not always reliable. The difference in isotopic signatures between wild and factory-reared populations could be a reliable and intrinsic secondary marker to complement existing marking methods. Isotopic signatures are natural differences in stable isotope composition of organisms due to discrimination against the heavier isotopes during some biological processes. As the isotopic signature of an organism is mainly dependent on what it eats; by feeding factory-reared flies isotopically different diets to those of the wild population it is possible to intrinsically mark the flies. To test this approach unlabeled samples of Glossina pallidipes (Austen) (Diptera: Glossinidae) from a mass rearing facility and wild populations were analyzed to determine whether there were any natural differences in signatures that could be used as markers. In addition experiments were conducted in which the blood diet was supplemented with isotopically enriched compounds and the persistence of the marker in the offspring determined. There were distinct natural isotopic differences between factory reared and wild tsetse populations that could be reliably used as population markers. It was also possible to rear artificially isotopically labeled flies using simple technology and these flies were clearly distinguishable from wild populations with greater than 95% certainty after 85 days of “release”. These techniques could be readily adopted for use in SIT programs as complimentary marking techniques. PMID:21870965

  16. Genome-Wide Comparative Analysis of Chemosensory Gene Families in Five Tsetse Fly Species

    PubMed Central

    Macharia, Rosaline; Mireji, Paul; Murungi, Edwin; Murilla, Grace; Christoffels, Alan; Aksoy, Serap; Masiga, Daniel

    2016-01-01

    For decades, odour-baited traps have been used for control of tsetse flies (Diptera; Glossinidae), vectors of African trypanosomes. However, differential responses to known attractants have been reported in different Glossina species, hindering establishment of a universal vector control tool. Availability of full genome sequences of five Glossina species offers an opportunity to compare their chemosensory repertoire and enhance our understanding of their biology in relation to chemosensation. Here, we identified and annotated the major chemosensory gene families in Glossina. We identified a total of 118, 115, 124, and 123 chemosensory genes in Glossina austeni, G. brevipalpis, G. f. fuscipes, G. pallidipes, respectively, relative to 127 reported in G. m. morsitans. Our results show that tsetse fly genomes have fewer chemosensory genes when compared to other dipterans such as Musca domestica (n>393), Drosophila melanogaster (n = 246) and Anopheles gambiae (n>247). We also found that Glossina chemosensory genes are dispersed across distantly located scaffolds in their respective genomes, in contrast to other insects like D. melanogaster whose genes occur in clusters. Further, Glossina appears to be devoid of sugar receptors and to have expanded CO2 associated receptors, potentially reflecting Glossina's obligate hematophagy and the need to detect hosts that may be out of sight. We also identified, in all species, homologs of Ir84a; a Drosophila-specific ionotropic receptor that promotes male courtship suggesting that this is a conserved trait in tsetse flies. Notably, our selection analysis revealed that a total of four gene loci (Gr21a, GluRIIA, Gr28b, and Obp83a) were under positive selection, which confers fitness advantage to species. These findings provide a platform for studies to further define the language of communication of tsetse with their environment, and influence development of novel approaches for control. PMID:26886411

  17. Genetic analysis by DNA fingerprinting in tsetse fly genomes.

    PubMed

    Blanchetot, A; Gooding, R H

    1993-12-01

    Genomic DNA from tsetse flies (Diptera: Glossinidae: Glossina Wiedemann) was analyzed by hybridization using the whole M13 phage as a probe to reveal DNA fingerprinting (DNAfp) profiles. Intrapopulation variability, measured by comparison of DNAfp profiles of tsetse flies from a large colony of G. brevipalpis, showed a high degree of polymorphism similar to that found in other animal species. Different lines of G. m. morsitans, G. m. centralis, G. m. submorsitans, G. p. palpalis and G. p. gambiensis established from small colonies displayed less genetic variability than the G. brevipalpis population. The analysis of pedigree relationships within an inbred line of G. m. centralis conformed to a Mendelian inheritance pattern. In the pedigree presented no mutations were observed, one fragment was linked to the X chromosome, and three fragment sets were linked, but most fragments showed independent segregation. M13 revealed no characteristic DNAfp profile differences between the subgenus Glossina and the subgenus Nemorhina, but a conserved distribution pattern was found in the laboratory colonies within each subspecies. M13 also revealed line specific DNA fragments that may be useful as genetic markers to expand the present linkage map of G. m. morsitans. PMID:8220390

  18. Wolbachia symbiont infections induce strong cytoplasmic incompatibility in the tsetse fly Glossina morsitans.

    PubMed

    Alam, Uzma; Medlock, Jan; Brelsfoard, Corey; Pais, Roshan; Lohs, Claudia; Balmand, Séverine; Carnogursky, Jozef; Heddi, Abdelaziz; Takac, Peter; Galvani, Alison; Aksoy, Serap

    2011-12-01

    Tsetse flies are vectors of the protozoan parasite African trypanosomes, which cause sleeping sickness disease in humans and nagana in livestock. Although there are no effective vaccines and efficacious drugs against this parasite, vector reduction methods have been successful in curbing the disease, especially for nagana. Potential vector control methods that do not involve use of chemicals is a genetic modification approach where flies engineered to be parasite resistant are allowed to replace their susceptible natural counterparts, and Sterile Insect technique (SIT) where males sterilized by chemical means are released to suppress female fecundity. The success of genetic modification approaches requires identification of strong drive systems to spread the desirable traits and the efficacy of SIT can be enhanced by identification of natural mating incompatibility. One such drive mechanism results from the cytoplasmic incompatibility (CI) phenomenon induced by the symbiont Wolbachia. CI can also be used to induce natural mating incompatibility between release males and natural populations. Although Wolbachia infections have been reported in tsetse, it has been a challenge to understand their functional biology as attempts to cure tsetse of Wolbachia infections by antibiotic treatment damages the obligate mutualistic symbiont (Wigglesworthia), without which the flies are sterile. Here, we developed aposymbiotic (symbiont-free) and fertile tsetse lines by dietary provisioning of tetracycline supplemented blood meals with yeast extract, which rescues Wigglesworthia-induced sterility. Our results reveal that Wolbachia infections confer strong CI during embryogenesis in Wolbachia-free (Gmm(Apo)) females when mated with Wolbachia-infected (Gmm(Wt)) males. These results are the first demonstration of the biological significance of Wolbachia infections in tsetse. Furthermore, when incorporated into a mathematical model, our results confirm that Wolbachia can be used

  19. Tsetse Fly Control in Kenya's Spatially and Temporally Dynamic Control Reservoirs: A Cost Analysis

    PubMed Central

    McCord, Paul F.; Messina, Joseph P.; Campbell, David J.; Grady, Sue C.

    2011-01-01

    Human African trypanosomiasis (HAT) and animal African trypanosomiasis (AAT) are significant health concerns throughout much of sub-Saharan Africa. Funding for tsetse fly control operations has decreased since the 1970s, which has in turn limited the success of campaigns to control the disease vector. To maximize the effectiveness of the limited financial resources available for tsetse control, this study develops and analyzes spatially and temporally dynamic tsetse distribution maps of Glossina subgenus Morsitans populations in Kenya from January 2002 to December 2010, produced using the Tsetse Ecological Distribution Model. These species distribution maps reveal seasonal variations in fly distributions. Such variations allow for the identification of “control reservoirs” where fly distributions are spatially constrained by fluctuations in suitable habitat and tsetse population characteristics. Following identification of the control reservoirs, a tsetse management operation is simulated in the control reservoirs using capital and labor control inputs from previous studies. Finally, a cost analysis, following specific economic guidelines from existing tsetse control analyses, is conducted to calculate the total cost of a nationwide control campaign of the reservoirs compared to the cost of a nationwide campaign conducted at the maximum spatial extent of the fly distributions from January 2002 to December 2010. The total cost of tsetse management within the reservoirs sums to $14,212,647, while the nationwide campaign at the maximum spatial extent amounts to $33,721,516. This savings of $19,508,869 represents the importance of identifying seasonally dynamic control reservoirs when conducting a tsetse management campaign, and, in the process, offers an economical means of fly control and disease management for future program planning. PMID:22581989

  20. ABDOMINAL PERICARDIAL SINUS: A NEUROHEMAL SITE IN THE TSETSE AND OTHER CYCLORRAPHAN FLIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An ultrastructural study of the heart of the tsetse fly, Glossina morsitans, and of several other species of cyclorraphan flies revealed that the ventral region of the heart of adult flies is encircled by a muscular septum not present in the larval stage. The pericardial septum of the adult heart ...

  1. Fragmentation analysis for prediction of suitable habitat for vectors: example of riverine tsetse flies in Burkina Faso.

    PubMed

    Guerrini, L; Bord, J P; Ducheyne, E; Bouyer, J

    2008-11-01

    Tsetse flies are the cyclic vectors of sleeping sickness and African animal trypanosomosis. The possibility to classify the natural habitat of riverine tsetse species is explored in the Mouhoun River basin, Burkina Faso: the objectives were to discriminate the riverine forests community types and their fragmentation levels by using Landsat 7 enhanced thematic mapper images, to map tsetse densities. Glossina palpalis gambiensis Vanderplank 1949 (Diptera: Glossinidae) and G. tachinoides Westwood, 1850 are the vectors of trypanosomoses in this area. After a supervised classification, the community types were discriminated using the water area in 400-m-wide polygons around the river. A fragmentation analysis of the swamp forest unit, cross-tabulated with the community types, lead to identification of the final landscapes where tsetse apparent densities (ADT) were implemented using a training data set of 608 trap locations. The predicted ADT were then compared with an independent validation data set of 78 trap locations. The correlation between the model predictions and the validation data set was high, validating this approach (P < 0.001). The riverine forest community type and fragmentation level are critical factors for riverine tsetse species, which should be taken into consideration to map their suitable habitat. PMID:19058646

  2. Efficacy of Electrocuting Devices to Catch Tsetse Flies (Glossinidae) and Other Diptera

    PubMed Central

    Vale, Glyn A.; Hargrove, John W.; Cullis, N. Alan; Chamisa, Andrew; Torr, Stephen J.

    2015-01-01

    Background The behaviour of insect vectors has an important bearing on the epidemiology of the diseases they transmit, and on the opportunities for vector control. Two sorts of electrocuting device have been particularly useful for studying the behaviour of tsetse flies (Glossina spp), the vectors of the trypanosomes that cause sleeping sickness in humans and nagana in livestock. Such devices consist of grids on netting (E-net) to catch tsetse in flight, or on cloth (E-cloth) to catch alighting flies. Catches are most meaningful when the devices catch as many as possible of the flies potentially available to them, and when the proportion caught is known. There have been conflicting indications for the catching efficiency, depending on whether the assessments were made by the naked eye or assisted by video recordings. Methodology/Principal Findings Using grids of 0.5m2 in Zimbabwe, we developed catch methods of studying the efficiency of E-nets and E-cloth for tsetse, using improved transformers to supply the grids with electrical pulses of ~40kV. At energies per pulse of 35–215mJ, the efficiency was enhanced by reducing the pulse interval from 3200 to 1ms. Efficiency was low at 35mJ per pulse, but there seemed no benefit of increasing the energy beyond 70mJ. Catches at E-nets declined when the fine netting normally used became either coarser or much finer, and increased when the grid frame was moved from 2.5cm to 27.5cm from the grid. Data for muscoids and tabanids were roughly comparable to those for tsetse. Conclusion/Significance The catch method of studying efficiency is useful for supplementing and extending video methods. Specifications are suggested for E-nets and E-cloth that are ~95% efficient and suitable for estimating the absolute numbers of available flies. Grids that are less efficient, but more economical, are recommended for studies of relative numbers available to various baits. PMID:26505202

  3. Transcript Abundance of Putative Lipid Phosphate Phosphatases During Development of Trypanosoma brucei in the Tsetse Fly.

    PubMed

    Alves e Silva, Thiago Luiz; Savage, Amy F; Aksoy, Serap

    2016-04-01

    African trypanosomes (Trypanosoma brucei spp.) cause devastating diseases in sub-Saharan Africa. Trypanosomes differentiate repeatedly during development in tsetse flies before gaining mammalian infectivity in fly salivary glands. Lipid phosphate phosphatases (LPPs) are involved in diverse biological processes, such as cell differentiation and cell migration. Gene sequences encoding two putative T. brucei LPP proteins were used to search the T. brucei genome, revealing two additional putative family members. Putative structural features and transcript abundance during parasite development in tsetse fly were characterized. Three of the four LPP proteins are predicted to have six transmembrane domains, while the fourth shows only one. Semiquantitative gene expression revealed differential regulation of LPPs during parasite development. Transcript abundance for three of the four putative LPP genes was elevated in parasites infecting salivary glands, but not mammalian-infective metacyclic cells in fly saliva, indicating a potential role of this family in parasite establishment in tsetse salivary glands. PMID:26856918

  4. Community-based tsetse fly control significantly reduces fly density and trypanosomosis prevalence in Metekel Zone, Northwest, Ethiopia.

    PubMed

    Girmay, Gebrerufael; Arega, Bezna; Tesfaye, Dawit; Berkvens, Dirk; Muleta, Gadisa; Asefa, Getnet

    2016-03-01

    African animal trypanosomosis is a great obstacle to livestock production where tsetse flies play a major role. Metekel zone is among the tsetse-infested areas. Community-based tsetse fly and trypanosomosis control using targets was conducted from June 2011 to May 2012 in Metekel zone, Ethiopia, to decrease trypanosomosis and tsetse fly. Cloth screen targets were developed, impregnated with 0.1 % deltamethrin, and deployed alongside rivers by the research team together with the community animal health workers. Monthly parasitological and entomological data were collected, processed, and compared with similar data collected before control. Overall average tsetse fly (Glossina tachinoides) density decreased from 1.13 to 0.18 fly/trap/day after control. The density was decreased in all sites with no significant difference among the sites. However, higher decrements were observed in the dry and late dry seasons by more than 12 and 6 times, respectively. The reduction in overall apparent prevalence of trypanosomosis caused by Trypanosoma congolense, Trypanosoma brucei, and Trypanosoma vivax from 12.14 % before to 3.61 % after control coincides with the tsetse fly reduction. In all the study sites, significant reduction was observed before and after control. The highest decrement was observed in the late dry season when the apparent prevalence was reduced from 7.89 to 1.17 % before and after control, respectively. As this approach is simple, cost-effective, and appropriate for riverine tsetse species, we recommend to be scaled up to other similar places. PMID:26885985

  5. Description of a Nanobody-based Competitive Immunoassay to Detect Tsetse Fly Exposure

    PubMed Central

    Caljon, Guy; Hussain, Shahid; Vermeiren, Lieve; Van Den Abbeele, Jan

    2015-01-01

    Background Tsetse flies are the main vectors of human and animal African trypanosomes. The Tsal proteins in tsetse fly saliva were previously identified as suitable biomarkers of bite exposure. A new competitive assay was conceived based on nanobody (Nb) technology to ameliorate the detection of anti-Tsal antibodies in mammalian hosts. Methodology/Principal Findings A camelid-derived Nb library was generated against the Glossina morsitans morsitans sialome and exploited to select Tsal specific Nbs. One of the three identified Nb families (family III, TsalNb-05 and TsalNb-11) was found suitable for anti-Tsal antibody detection in a competitive ELISA format. The competitive ELISA was able to detect exposure to a broad range of tsetse species (G. morsitans morsitans, G. pallidipes, G. palpalis gambiensis and G. fuscipes) and did not cross-react with the other hematophagous insects (Stomoxys calcitrans and Tabanus yao). Using a collection of plasmas from tsetse-exposed pigs, the new test characteristics were compared with those of the previously described G. m. moristans and rTsal1 indirect ELISAs, revealing equally good specificities (> 95%) and positive predictive values (> 98%) but higher negative predictive values and hence increased sensitivity (> 95%) and accuracy (> 95%). Conclusion/Significance We have developed a highly accurate Nb-based competitive immunoassay to detect specific anti-Tsal antibodies induced by various tsetse fly species in a range of hosts. We propose that this competitive assay provides a simple serological indicator of tsetse fly presence without the requirement of test adaptation to the vertebrate host species. In addition, the use of monoclonal Nbs for antibody detection is innovative and could be applied to other tsetse fly salivary biomarkers in order to achieve a multi-target immunoprofiling of hosts. In addition, this approach could be broadened to other pathogenic organisms for which accurate serological diagnosis remains a

  6. Genome Sequence of the Tsetse Fly (Glossina morsitans): Vector of African Trypanosomiasis

    PubMed Central

    2014-01-01

    Tsetse flies are the sole vectors of human African trypanosomiasis throughout sub-Saharan Africa. Both sexes of adult tsetse feed exclusively on blood and contribute to disease transmission. Notable differences between tsetse and other disease vectors include obligate microbial symbioses, viviparous reproduction, and lactation. Here, we describe the sequence and annotation of the 366-megabase Glossina morsitans morsitans genome. Analysis of the genome and the 12,308 predicted protein–encoding genes led to multiple discoveries, including chromosomal integrations of bacterial (Wolbachia) genome sequences, a family of lactation-specific proteins, reduced complement of host pathogen recognition proteins, and reduced olfaction/chemosensory associated genes. These genome data provide a foundation for research into trypanosomiasis prevention and yield important insights with broad implications for multiple aspects of tsetse biology. PMID:24763584

  7. Mammalian African trypanosome VSG coat enhances tsetse's vector competence.

    PubMed

    Aksoy, Emre; Vigneron, Aurélien; Bing, XiaoLi; Zhao, Xin; O'Neill, Michelle; Wu, Yi-Neng; Bangs, James D; Weiss, Brian L; Aksoy, Serap

    2016-06-21

    Tsetse flies are biological vectors of African trypanosomes, the protozoan parasites responsible for causing human and animal trypanosomiases across sub-Saharan Africa. Currently, no vaccines are available for disease prevention due to antigenic variation of the Variant Surface Glycoproteins (VSG) that coat parasites while they reside within mammalian hosts. As a result, interference with parasite development in the tsetse vector is being explored to reduce disease transmission. A major bottleneck to infection occurs as parasites attempt to colonize tsetse's midgut. One critical factor influencing this bottleneck is the fly's peritrophic matrix (PM), a semipermeable, chitinous barrier that lines the midgut. The mechanisms that enable trypanosomes to cross this barrier are currently unknown. Here, we determined that as parasites enter the tsetse's gut, VSG molecules released from trypanosomes are internalized by cells of the cardia-the tissue responsible for producing the PM. VSG internalization results in decreased expression of a tsetse microRNA (mir-275) and interferes with the Wnt-signaling pathway and the Iroquois/IRX transcription factor family. This interference reduces the function of the PM barrier and promotes parasite colonization of the gut early in the infection process. Manipulation of the insect midgut homeostasis by the mammalian parasite coat proteins is a novel function and indicates that VSG serves a dual role in trypanosome biology-that of facilitating transmission through its mammalian host and insect vector. We detail critical steps in the course of trypanosome infection establishment that can serve as novel targets to reduce the tsetse's vector competence and disease transmission. PMID:27185908

  8. Optimal Strategies for Controlling Riverine Tsetse Flies Using Targets: A Modelling Study

    PubMed Central

    Vale, Glyn A.; Hargrove, John W.; Lehane, Michael J.; Solano, Philippe; Torr, Stephen J.

    2015-01-01

    Background Tsetse flies occur in much of sub-Saharan Africa where they transmit the trypanosomes that cause the diseases of sleeping sickness in humans and nagana in livestock. One of the most economical and effective methods of tsetse control is the use of insecticide-treated screens, called targets, that simulate hosts. Targets have been ~1m2, but recently it was shown that those tsetse that occupy riverine situations, and which are the main vectors of sleeping sickness, respond well to targets only ~0.06m2. The cheapness of these tiny targets suggests the need to reconsider what intensity and duration of target deployments comprise the most cost-effective strategy in various riverine habitats. Methodology/Principal Findings A deterministic model, written in Excel spreadsheets and managed by Visual Basic for Applications, simulated the births, deaths and movement of tsetse confined to a strip of riverine vegetation composed of segments of habitat in which the tsetse population was either self-sustaining, or not sustainable unless supplemented by immigrants. Results suggested that in many situations the use of tiny targets at high density for just a few months per year would be the most cost-effective strategy for rapidly reducing tsetse densities by the ~90% expected to have a great impact on the incidence of sleeping sickness. Local elimination of tsetse becomes feasible when targets are deployed in isolated situations, or where the only invasion occurs from populations that are not self-sustaining. Conclusion/Significance Seasonal use of tiny targets deserves field trials. The ability to recognise habitat that contains tsetse populations which are not self-sustaining could improve the planning of all methods of tsetse control, against any species, in riverine, savannah or forest situations. Criteria to assist such recognition are suggested. PMID:25803871

  9. The importance of ecological studies in the control of tsetse flies*

    PubMed Central

    Glover, P. E.

    1967-01-01

    The author reviews recent ecological research on tsetse flies in East Africa and Northern Nigeria, particularly in connexion with the flies' sensory reactions, and stresses the importance of an accurate knowledge of their daytime and night-time resting-sites and of identifying the sources of their blood meals in order to elucidate the reservoirs of trypanosomiasis. The epidemiology of the disease is considered in the light of studies of trypanosome infections in host and fly. The control of tsetse flies must be based on the practical application of ecological knowledge by methods involving either a direct attack upon the fly (such as trapping or the use of insecticides) or an indirect attack (such as bush clearing or game destruction to eliminate the fly's habitat or food supply); these methods are dealt with in some detail. The author concludes with a discussion of modern trends in research, and a number of lines of research are suggested. PMID:4874781

  10. Near Infrared Imaging As a Method of Studying Tsetse Fly (Diptera: Glossinidae) Pupal Development.

    PubMed

    Moran, Zelda R; Parker, Andrew G

    2016-01-01

    Near infrared (NIR) photography and video was investigated as a method for observing and recording intrapuparial development in the tsetse fly Glossina palpalis gambiensis and other Muscomorpha (Cyclorrhapha) Diptera. We showed that NIR light passes through the puparium, permitting images of the true pupae and pharate adult to be captured. Various wavelengths of NIR light from 880 to 1060 nm were compared to study the development of tsetse fly pupae from larviposition to emergence, using time-lapse videos and photographs. This study was carried out to advance our understanding of tsetse pupal development, specifically with the goal of improving a sorting technique which could separate male from female tsetse flies several days before emergence. Separation of the sexes at this stage is highly desirable for operational tsetse sterile insect technique control programmes, as it would permit the easy retention of females for the colony while allowing the males to be handled, irradiated and shipped in the pupal stage when they are less sensitive to vibration. In addition, it presents a new methodology for studying the pupal stage of many coarctate insects for many applications. NIR imaging permits observation of living pupae, allowing the entire development process to be observed without disruption. PMID:27402791

  11. Near Infrared Imaging As a Method of Studying Tsetse Fly (Diptera: Glossinidae) Pupal Development

    PubMed Central

    Moran, Zelda R.; Parker, Andrew G.

    2016-01-01

    Near infrared (NIR) photography and video was investigated as a method for observing and recording intrapuparial development in the tsetse fly Glossina palpalis gambiensis and other Muscomorpha (Cyclorrhapha) Diptera. We showed that NIR light passes through the puparium, permitting images of the true pupae and pharate adult to be captured. Various wavelengths of NIR light from 880 to 1060 nm were compared to study the development of tsetse fly pupae from larviposition to emergence, using time-lapse videos and photographs. This study was carried out to advance our understanding of tsetse pupal development, specifically with the goal of improving a sorting technique which could separate male from female tsetse flies several days before emergence. Separation of the sexes at this stage is highly desirable for operational tsetse sterile insect technique control programmes, as it would permit the easy retention of females for the colony while allowing the males to be handled, irradiated and shipped in the pupal stage when they are less sensitive to vibration. In addition, it presents a new methodology for studying the pupal stage of many coarctate insects for many applications. NIR imaging permits observation of living pupae, allowing the entire development process to be observed without disruption. PMID:27402791

  12. Tsetse fly saliva: Could it be useful in fly infection when feeding in chronically aparasitemic mammalian hosts

    PubMed Central

    Awuoche, E.O.

    2012-01-01

    Sleeping sickness and nagana are two important diseases cuased by African trypanosomes in humans and animals respectively, in tropical african countries. A number of trypanosome species are implicated in these diseases, but it is the Trypanosoma brucei group that is responsible for the chronic form of sleeping sickness. During the course of this chronic infection the parasite shows a clear tropism for organs and tissues and only sporadically appears in the blood stream. Notwithstanding this feature, tsetse flies normally get infected from chronically infected apparasitemic hosts. For some pathogens like the microfilaria, it has already shown that the saliva of the vector, black fly saliva contribute to orient the pathogen to the site of the vector bite. Chemotaxis of tsetse saliva may perhaps stimulate movement of Trypanosoma brucei parasites from tissues to the bloodstream and via the vascular to the tsetse feeding site, and could explain the relatively high infection rate of tsetse flies feeding on chronically infected animals. This review paper looks into the possible role of trypanosome-vector saliva in ensuring parasite acquisition and its application in the tsetse – trypanosome interaction at the host skin interphase. PMID:26623300

  13. Bloodstream form pre-adaptation to the tsetse fly in Trypanosoma brucei

    PubMed Central

    Rico, Eva; Rojas, Federico; Mony, Binny M.; Szoor, Balazs; MacGregor, Paula; Matthews, Keith R.

    2013-01-01

    African trypanosomes are sustained in the bloodstream of their mammalian hosts by their extreme capacity for antigenic variation. However, for life cycle progression, trypanosomes also must generate transmission stages called stumpy forms that are pre-adapted to survive when taken up during the bloodmeal of the disease vector, tsetse flies. These stumpy forms are rather different to the proliferative slender forms that maintain the bloodstream parasitaemia. Firstly, they are non proliferative and morphologically distinct, secondly, they show particular sensitivity to environmental cues that signal entry to the tsetse fly and, thirdly, they are relatively robust such that they survive the changes in temperature, pH and proteolytic environment encountered within the tsetse midgut. These characteristics require regulated changes in gene expression to pre-adapt the parasite and the use of environmental sensing mechanisms, both of which allow the rapid initiation of differentiation to tsetse midgut procyclic forms upon transmission. Interestingly, the generation of stumpy forms is also regulated and periodic in the mammalian blood, this being governed by a density-sensing mechanism whereby a parasite-derived signal drives cell cycle arrest and cellular development both to optimize transmission and to prevent uncontrolled parasite multiplication overwhelming the host. In this review we detail recent developments in our understanding of the molecular mechanisms that underpin the production of stumpy forms in the mammalian bloodstream and their signal perception pathways both in the mammalian bloodstream and upon entry into the tsetse fly. These discoveries are discussed in the context of conserved eukaryotic signaling and differentiation mechanisms. Further, their potential to act as targets for therapeutic strategies that disrupt parasite development either in the mammalian bloodstream or upon their transmission to tsetse flies is also discussed. PMID:24294594

  14. Feeding Patterns and Xenomonitoring of Trypanosomes among Tsetse Flies around the Gashaka-Gumti National Park in Nigeria

    PubMed Central

    Karshima, Solomon Ngutor; Lawal, Idris A.; Okubanjo, Oluseyi Oluyinka

    2016-01-01

    In order to understand the epidemiology of trypanosomoses in Gashaka-Gumti National Park, Nigeria, we determined the density, infection rates, and feeding patterns of tsetse flies using biconical traps, ITS, and mitochondrial cytochrome b PCRs. A total of 631 tsetse flies were captured, of which 531 (84.2%) and 100 (15.8%) were analyzed for trypanosomes and blood meals, respectively. Tsetse distribution varied significantly (p < 0.05) across study sites with average trap and daily catches of 4.39 and 26.34, respectively. Overall tsetse infection rate was 5.08% and ranged between 3.03% and 6.84% across study sites. We identified 10 T. brucei, 3 T. congolense savannah, 2 T. congolense forest, and 2 mixed infections among the 13 pools made from the 27 flies positive for trypanosomes with light microscopy. The distribution of vertebrate blood meals in tsetse flies varied significantly (p < 0.05) and ranged between 6.0% and 45% across hosts. We also observed dual feeding patterns involving at least 2 hosts in 24% and multiple feeding involving at least 3 hosts in 17% of the flies. We observed predominance of G. palpalis which also recorded higher infection rate. T. brucei was more prevalent among tsetse flies. Tsetse flies fed predominantly on cattle and less frequently on humans and also showed mixed feeding habits. PMID:26981275

  15. Susceptibility to trypanosomosis of three Bos indicus cattle breeds in areas of differing tsetse fly challenge.

    PubMed

    Mwangi, E K; Stevenson, P; Gettinby, G; Reid, S W; Murray, M

    1998-09-01

    Studies to assess the differences in susceptibility to trypanosomosis among Bos indicus cattle breeds (Maasai Zebu, Orma Boran and Galana Boran) were conducted under conditions of varying tsetse fly challenge at the Nguruman escarpment in south-western Kenya, for a period of 1 year. It was found that under tsetse challenge quantified as high, Maasai Zebu and Orma Boran were less susceptible than Galana Boran to trypanosome infections, as judged by the significantly lower incidence of infection, development of less severe anaemia, fewer requirements for trypanocidal drug treatments, higher growth rates and fewer mortalities. In the area where tsetse challenge was considered low as a result of a tsetse fly control operation using odour-baited traps, only the Maasai Zebu and Orma Boran were compared. No significant differences in the incidence of infection, degree of anaemia or growth rates were observed between the two breeds, but all were significantly different from their counterparts in the high tsetse challenge area. These results suggest that there is variation in resistance to trypanosomosis among Bos indicus cattle breeds that could be exploited as part of the integrated trypanosomosis control programmes in East Africa. PMID:9777722

  16. Tsetse flies: their biology and control using area-wide integrated pest management approaches.

    PubMed

    Vreysen, Marc J B; Seck, Momar Talla; Sall, Baba; Bouyer, Jérémy

    2013-03-01

    Tsetse flies are the cyclical vectors of trypanosomes, the causative agents of 'sleeping sickness' or human African trypanosomosis (HAT) in humans and 'nagana' or African animal trypanosomosis (AAT) in livestock in Sub-saharan Africa. Many consider HAT as one of the major neglected tropical diseases and AAT as the single greatest health constraint to increased livestock production. This review provides some background information on the taxonomy of tsetse flies, their unique way of reproduction (adenotrophic viviparity) making the adult stage the only one easily accessible for control, and how their ecological affinities, their distribution and population dynamics influence and dictate control efforts. The paper likewise reviews four control tactics (sequential aerosol technique, stationary attractive devices, live bait technique and the sterile insect technique) that are currently accepted as friendly to the environment, and describes their limitations and advantages and how they can best be put to practise in an IPM context. The paper discusses the different strategies for tsetse control i.e. localised versus area-wide and focusses thereafter on the principles of area-wide integrated pest management (AW-IPM) and the phased-conditional approach with the tsetse project in Senegal as a recent example. We argue that sustainable tsetse-free zones can be created on Africa mainland provided certain managerial and technical prerequisites are in place. PMID:22878217

  17. Predicting the distribution of tsetse flies in West Africa using temporal Fourier processed meteorological satellite data.

    PubMed

    Rogers, D J; Hay, S I; Packer, M J

    1996-06-01

    An example is given of the application of remotely-sensed, satellite data to the problems of predicting the distribution and abundance of tsetse flies in West Africa. The distributions of eight species of tsetse, Glossina morsitans, G. longipalpis, G. palpalis, G. tachinoides, G. pallicera, G. fusca, G. nigrofusca and G. medicorum in Côte d'Ivoire and Burkina Faso, were analysed using discriminant analysis applied to temporal Fourier-processed surrogates for vegetation, temperature and rainfall derived from meteorological satellites. The vegetation and temperature surrogates were the normalized difference vegetation index and channel-4-brightness temperature, respectively, from the advanced, very-high-resolution radiometers on board the National Oceanic and Atmospheric Administration's polar-orbiting, meteorological satellites. For rainfall the surrogate was the Cold-Cloud-Duration (CCD) index derived from the geostationary, Meteosat satellite series. The presence or absence of tsetse was predicted with accuracies ranging from 67%-100% (mean = 82.3%). A further data-set, for the abundance of five tsetse species across the northern part of Côte d'Ivoire (an area of about 140,000 km2), was analysed in the same way, and fly-abundance categories predicted with accuracies of 30%-100% (mean = 73.0%). The thermal data appeared to be the most useful of the predictor variables, followed by vegetation and rainfall indices. Refinements of the analytical technique and the problems of extending the predictions through space and time are discussed. PMID:8758138

  18. Molecular characterization of a short neuropeptide F signaling system in the tsetse fly, Glossina morsitans morsitans.

    PubMed

    Caers, Jelle; Peymen, Katleen; Van Hiel, Matthias B; Van Rompay, Liesbeth; Van Den Abbeele, Jan; Schoofs, Liliane; Beets, Isabel

    2016-09-01

    Neuropeptides of the short neuropeptide F (sNPF) family are widespread among arthropods and found in every sequenced insect genome so far. Functional studies have mainly focused on the regulatory role of sNPF in feeding behavior, although this neuropeptide family has pleiotropic effects including in the control of locomotion, osmotic homeostasis, sleep, learning and memory. Here, we set out to characterize and determine possible roles of sNPF signaling in the haematophagous tsetse fly Glossina morsitans morsitans, a vector of African Trypanosoma parasites causing human and animal African trypanosomiasis. We cloned the G. m. morsitans cDNA sequences of an sNPF-like receptor (Glomo-sNPFR) and precursor protein encoding four Glomo-sNPF neuropeptides. All four Glomo-sNPF peptides concentration-dependently activated Glomo-sNPFR in a cell-based calcium mobilization assay, with EC50 values in the nanomolar range. Gene expression profiles in adult female tsetse flies indicate that the Glomo-sNPF system is mainly restricted to the nervous system. Glomo-snpfr transcripts were also detected in the hindgut of adult females. In contrast to the Drosophila sNPF system, tsetse larvae lack expression of Glomo-snpf and Glomo-snpfr genes. While Glomo-snpf transcript levels are upregulated in pupae, the onset of Glomo-snpfr expression is delayed to adulthood. Expression profiles in adult tissues are similar to those in other insects suggesting that the tsetse sNPF system may have similar functions such as a regulatory role in feeding behavior, together with a possible involvement of sNPFR signaling in osmotic homeostasis. Our molecular data will enable further investigations into the functions of sNPF signaling in tsetse flies. PMID:27288635

  19. Aerial applications of insecticides for tsetse fly control in East Africa

    PubMed Central

    Lee, C. W.

    1969-01-01

    Since 1948, research has progressed in East Africa on the control of tsetse flies by aeria, applications of insecticides. Initial experiments proved that residual spray treatments were ineffective while repeated applications of coarse aerosols gave promising fly mortalities. In recent years, with the development of more toxic insecticides used in conjunction with improved thermal exhaust equipment and modified rotary atomizers, sprays with fine aerosol characteristics have been produced at considerably reduced cost. Aerial applications of aerosols are confined to early morning and late afternoon when weather conditions are stable, but large areas can be treated during these short intervals, and the technique is efficient and economical. Control of tsetse flies has been good; where complete isolation of an area has been possible, eradication has been achieved. It would be economically worth while to assess the possibility of increasing spray swath widths, and also to continue with research into the biological effectiveness of pyrethrum, primarily because of its absolute safety in use. There is a need for a simple method for the determination of tsetse fly populations in woodland and savanna habitats. Finally, it is recommended that the results of research to date should be brought more forcefully to the attention of government bodies and commercial airspray operators so that the techniques be more fully exploited. PMID:5308701

  20. Responses of Glossina pallidipes and Glossina morsitans morsitans tsetse flies to analogues of δ-octalactone and selected blends.

    PubMed

    Wachira, Benson M; Mireji, Paul O; Okoth, Sylvance; Ng'ang'a, Margaret M; William, Julius M; Murilla, Grace A; Hassanali, Ahmed

    2016-08-01

    Previous studies have shown that δ-octalactone is an important component of the tsetse-refractory waterbuck (Kobus defassa) repellent odour blend. In the present study, structure-activity comparison was undertaken to determine the effects of the length of the side chain and ring size of the lactone on adult Glossina pallidipes and Glossina morsitans morsitans. The responses of the flies to each compound were studied in a two-choice wind tunnel. Increasing the chain length from C3 (δ-octalactone) to C4 (δ-nonalactone) enhanced repellency to both species (G. pallidipes from 60.0 to 72.0%, and G. m. morsitans from 61.3 to 72.6%), while increasing the ring size from six (δ-octalactone) to seven members (ε-nonalactone) changed the activity from repellency to attraction that was comparable to that of the phenolic blend associated with fermented cow urine (p>0.05). Blending δ-nonalactone with 4-methylguaiacol (known tsetse repellent) significantly (p<0.05) raised repellency to 86.7 and 91.7% against G. pallidipes and G. m. morsitans respectively. Follow-up Latin Square Designed field studies (Shimba hills in coastal areas in Kenya) with G. pallidipes populations confirmed the higher repellence of δ-nonalactone (with/without 4-methylguaiacol) compared to δ-octalactone (also, with/without 4-methylguaiacol). The results show that subtle structural changes of olfactory signals can significantly change their interactions with olfactory receptor neurons, and either shift their potency, or change their activity from repellence to attraction. Our results also lay down useful groundwork in the development of more effective control of tsetse by 'push', 'pull' and 'push-pull' tsetse control tactics. PMID:27143219

  1. Trypanosome infection establishment in the tsetse fly gut is influenced by microbiome-regulated host immune barriers.

    PubMed

    Weiss, Brian L; Wang, Jingwen; Maltz, Michele A; Wu, Yineng; Aksoy, Serap

    2013-01-01

    Tsetse flies (Glossina spp.) vector pathogenic African trypanosomes, which cause sleeping sickness in humans and nagana in domesticated animals. Additionally, tsetse harbors 3 maternally transmitted endosymbiotic bacteria that modulate their host's physiology. Tsetse is highly resistant to infection with trypanosomes, and this phenotype depends on multiple physiological factors at the time of challenge. These factors include host age, density of maternally-derived trypanolytic effector molecules present in the gut, and symbiont status during development. In this study, we investigated the molecular mechanisms that result in tsetse's resistance to trypanosomes. We found that following parasite challenge, young susceptible tsetse present a highly attenuated immune response. In contrast, mature refractory flies express higher levels of genes associated with humoral (attacin and pgrp-lb) and epithelial (inducible nitric oxide synthase and dual oxidase) immunity. Additionally, we discovered that tsetse must harbor its endogenous microbiome during intrauterine larval development in order to present a parasite refractory phenotype during adulthood. Interestingly, mature aposymbiotic flies (Gmm(Apo)) present a strong immune response earlier in the infection process than do WT flies that harbor symbiotic bacteria throughout their entire lifecycle. However, this early response fails to confer significant resistance to trypanosomes. Gmm(Apo) adults present a structurally compromised peritrophic matrix (PM), which lines the fly midgut and serves as a physical barrier that separates luminal contents from immune responsive epithelial cells. We propose that the early immune response we observe in Gmm(Apo) flies following parasite challenge results from the premature exposure of gut epithelia to parasite-derived immunogens in the absence of a robust PM. Thus, tsetse's PM appears to regulate the timing of host immune induction following parasite challenge. Our results document a

  2. Chemosensory receptors in tsetse flies provide link between chemical and behavioural ecology

    PubMed Central

    Masiga, Daniel; Obiero, George; Macharia, Rosaline; Mireji, Paul; Christoffels, Alan

    2015-01-01

    Tsetse flies survive in a variety of environments across tropical Africa, often rising to large numbers, despite their low birth rate of one offspring every seven to nine days. They use olfactory receptors to process chemical signals in their environments to find food, escape from predators, and locate suitable larviposition sites. We discuss the identification of odorant and gustatory receptors in Glossina morsitans morsitans and the role genomics could play in management of nuisance insects. PMID:25017128

  3. Tsetse Flies (Glossina) as Vectors of Human African Trypanosomiasis: A Review

    PubMed Central

    Changasi, Robert Emojong

    2016-01-01

    Human African Trypanosomiasis (HAT) transmitted by the tsetse fly continues to be a public health issue, despite more than a century of research. There are two types of the disease, the chronic gambiense and the acute rhodesiense-HAT. Fly abundance and distribution have been affected by changes in land-use patterns and climate. However, disease transmission still continues. Here, we review some aspects of HAT ecoepidemiology in the context of altered infestation patterns and maintenance of the transmission cycle as well as emerging options in disease and vector control. PMID:27034944

  4. A Receptor-Based Explanation for Tsetse Fly Catch Distribution between Coloured Cloth Panels and Flanking Nets.

    PubMed

    Santer, Roger D

    2015-01-01

    Tsetse flies transmit trypanosomes that cause nagana in cattle, and sleeping sickness in humans. Therefore, optimising visual baits to control tsetse is an important priority. Tsetse are intercepted at visual baits due to their initial attraction to the bait, and their subsequent contact with it due to landing or accidental collision. Attraction is proposed to be driven in part by a chromatic mechanism to which a UV-blue photoreceptor contributes positively, and a UV and a green photoreceptor contribute negatively. Landing responses are elicited by stimuli with low luminance, but many studies also find apparently strong landing responses when stimuli have high UV reflectivity, which would imply that UV wavelengths contribute negatively to attraction at a distance, but positively to landing responses at close range. The strength of landing responses is often judged using the number of tsetse sampled at a cloth panel expressed as a proportion of the combined catch of the cloth panel and a flanking net that samples circling flies. I modelled these data from two previously published field studies, using calculated fly photoreceptor excitations as predictors. I found that the proportion of tsetse caught on the cloth panel increased with an index representing the chromatic mechanism driving attraction, as would be expected if the same mechanism underlay both long- and close-range attraction. However, the proportion of tsetse caught on the cloth panel also increased with excitation of the UV-sensitive R7p photoreceptor, in an apparently separate but interacting behavioural mechanism. This R7p-driven effect resembles the fly open-space response which is believed to underlie their dispersal towards areas of open sky. As such, the proportion of tsetse that contact a cloth panel likely reflects a combination of deliberate landings by potentially host-seeking tsetse, and accidental collisions by those seeking to disperse, with a separate visual mechanism underlying each

  5. A Receptor-Based Explanation for Tsetse Fly Catch Distribution between Coloured Cloth Panels and Flanking Nets

    PubMed Central

    Santer, Roger D.

    2015-01-01

    Tsetse flies transmit trypanosomes that cause nagana in cattle, and sleeping sickness in humans. Therefore, optimising visual baits to control tsetse is an important priority. Tsetse are intercepted at visual baits due to their initial attraction to the bait, and their subsequent contact with it due to landing or accidental collision. Attraction is proposed to be driven in part by a chromatic mechanism to which a UV-blue photoreceptor contributes positively, and a UV and a green photoreceptor contribute negatively. Landing responses are elicited by stimuli with low luminance, but many studies also find apparently strong landing responses when stimuli have high UV reflectivity, which would imply that UV wavelengths contribute negatively to attraction at a distance, but positively to landing responses at close range. The strength of landing responses is often judged using the number of tsetse sampled at a cloth panel expressed as a proportion of the combined catch of the cloth panel and a flanking net that samples circling flies. I modelled these data from two previously published field studies, using calculated fly photoreceptor excitations as predictors. I found that the proportion of tsetse caught on the cloth panel increased with an index representing the chromatic mechanism driving attraction, as would be expected if the same mechanism underlay both long- and close-range attraction. However, the proportion of tsetse caught on the cloth panel also increased with excitation of the UV-sensitive R7p photoreceptor, in an apparently separate but interacting behavioural mechanism. This R7p-driven effect resembles the fly open-space response which is believed to underlie their dispersal towards areas of open sky. As such, the proportion of tsetse that contact a cloth panel likely reflects a combination of deliberate landings by potentially host-seeking tsetse, and accidental collisions by those seeking to disperse, with a separate visual mechanism underlying each

  6. Adenotrophic Viviparity in Tsetse Flies: Potential for Population Control and as an Insect Model for Lactation

    PubMed Central

    Attardo, Geoffrey M.; Baumann, Aaron A.; Michalkova, Veronika; Aksoy, Serap

    2015-01-01

    Tsetse flies (Glossina spp.), vectors of African trypanosomes, are distinguished by their specialized reproductive biology, defined by adenotrophic viviparity (maternal nourishment of progeny by glandular secretions followed by live birth). This trait has evolved infrequently among insects and requires unique reproductive mechanisms. A key event in Glossina reproduction involves the transition between periods of lactation and nonlactation (dry periods). Increased lipolysis, nutrient transfer to the milk gland, and milk-specific protein production characterize lactation, which terminates at the birth of the progeny and is followed by a period of involution. The dry stage coincides with embryogenesis of the progeny, during which lipid reserves accumulate in preparation for the next round of lactation. The obligate bacterial symbiont Wigglesworthia glossinidia is critical to tsetse reproduction and likely provides B vitamins required for metabolic processes underlying lactation and/or progeny development. Here we describe findings that utilized transcriptomics, physiological assays, and RNA interference–based functional analysis to understand different components of adenotrophic viviparity in tsetse flies. PMID:25341093

  7. Prospects for the Development of Odour Baits to Control the Tsetse Flies Glossina tachinoides and G. palpalis s.l.

    PubMed Central

    Rayaisse, J. B.; Tirados, I.; Kaba, D.; Dewhirst, S. Y.; Logan, J. G.; Diarrassouba, A.; Salou, E.; Omolo, M. O.; Solano, P.; Lehane, M. J.; Pickett, J. A.; Vale, G. A.; Torr, S. J.; Esterhuizen, J.

    2010-01-01

    Field studies were done of the responses of Glossina palpalis palpalis in Côte d'Ivoire, and G. p. gambiensis and G. tachinoides in Burkina Faso, to odours from humans, cattle and pigs. Responses were measured either by baiting (1.) biconical traps or (2.) electrocuting black targets with natural host odours. The catch of G. tachinoides from traps was significantly enhanced (∼5×) by odour from cattle but not humans. In contrast, catches from electric targets showed inconsistent results. For G. p. gambiensis both human and cattle odour increased (>2×) the trap catch significantly but not the catch from electric targets. For G. p. palpalis, odours from pigs and humans increased (∼5×) the numbers of tsetse attracted to the vicinity of the odour source but had little effect on landing or trap-entry. For G. tachinoides a blend of POCA (P = 3-n-propylphenol; O = 1-octen-3-ol; C = 4-methylphenol; A = acetone) alone or synthetic cattle odour (acetone, 1-octen-3-ol, 4-methylphenol and 3-n-propylphenol with carbon dioxide) consistently caught more tsetse than natural cattle odour. For G. p. gambiensis, POCA consistently increased catches from both traps and targets. For G. p. palpalis, doses of carbon dioxide similar to those produced by a host resulted in similar increases in attraction. Baiting traps with super-normal (∼500 mg/h) doses of acetone also consistently produced significant but slight (∼1.6×) increases in catches of male flies. The results suggest that odour-baited traps and insecticide-treated targets could assist the AU-Pan African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC) in its current efforts to monitor and control Palpalis group tsetse in West Africa. For all three species, only ∼50% of the flies attracted to the vicinity of the trap were actually caught by it, suggesting that better traps might be developed by an analysis of the visual responses and identification of any semiochemicals involved in short

  8. The changing distribution of two riverine tsetse flies over 15 years in an increasingly cultivated area of Burkina Faso.

    PubMed

    de La Rocque, S; Augusseau, X; Guillobez, S; Michel, V; De Wispelaere, G; Bauer, B; Cuisance, D

    2001-06-01

    Changes in the distribution of two riverine tsetse flies, Glossina tachinoides Westwood and Glossina palpalis gambiensis Vanderplank are described in an agro-pastoral area of Burkina Faso subject to increasing human population pressure and land use change. Two similar entomological surveys (one trap every 100 m, 120 km of river) were conducted in 1981 and 1996. Changes in tsetse distribution were compared to land use changes through high resolution remote sensing imagery (LANDSAT, SPOT). There was a close relationship between proximity of crops relative to riverine forest and the density of Glossina. Where fields encroached on riverine vegetation, tsetse populations declined. Where the geomorphological structure was not well suited to agricultural activity, riverine vegetation and tsetse fly populations were relatively unaffected, even with intense agricultural activity nearby. In contrast, increased human activity and higher cattle densities in the surrounding savannah areas were associated with increased tsetse numbers. The results demonstrated a wide diversity of tsetse distribution and habitat within a few kilometres in an agro-pastoral landscape in West Africa. PMID:11415469

  9. Odorant and Gustatory Receptors in the Tsetse Fly Glossina morsitans morsitans

    PubMed Central

    Obiero, George F. O.; Mireji, Paul O.; Nyanjom, Steven R. G.; Christoffels, Alan; Robertson, Hugh M.; Masiga, Daniel K.

    2014-01-01

    Tsetse flies use olfactory and gustatory responses, through odorant and gustatory receptors (ORs and GRs), to interact with their environment. Glossina morsitans morsitans genome ORs and GRs were annotated using homologs of these genes in Drosophila melanogaster and an ab initio approach based on OR and GR specific motifs in G. m. morsitans gene models coupled to gene ontology (GO). Phylogenetic relationships among the ORs or GRs and the homologs were determined using Maximum Likelihood estimates. Relative expression levels among the G. m. morsitans ORs or GRs were established using RNA-seq data derived from adult female fly. Overall, 46 and 14 putative G. m. morsitans ORs and GRs respectively were recovered. These were reduced by 12 and 59 ORs and GRs respectively compared to D. melanogaster. Six of the ORs were homologous to a single D. melanogaster OR (DmOr67d) associated with mating deterrence in females. Sweet taste GRs, present in all the other Diptera, were not recovered in G. m. morsitans. The GRs associated with detection of CO2 were conserved in G. m. morsitans relative to D. melanogaster. RNA-sequence data analysis revealed expression of GmmOR15 locus represented over 90% of expression profiles for the ORs. The G. m. morsitans ORs or GRs were phylogenetically closer to those in D. melanogaster than to other insects assessed. We found the chemoreceptor repertoire in G. m. morsitans smaller than other Diptera, and we postulate that this may be related to the restricted diet of blood-meal for both sexes of tsetse flies. However, the clade of some specific receptors has been expanded, indicative of their potential importance in chemoreception in the tsetse. PMID:24763191

  10. Molecular characterization of two novel milk proteins in the tsetse fly (Glossina morsitans morsitans)

    PubMed Central

    Yang, Guangxiao; Attardo, Geoffrey M.; Lohs, Claudia; Aksoy, Serap

    2009-01-01

    Tsetse reproduction is unique among insects due to the small numbers of offspring the flies produce and because the female fly carries and nourishes her offspring for their entire immature development. Larval nourishment is supplied by the female as a “milk” substance synthesized by a specialized accessory gland. The milk consists of ~50% fat and ~50% protein. Two milk proteins were identified as the Major Milk gland Protein (GmmMGP) and Transferrin (GmmTsf). Here we describe the identification of two novel gene transcripts (gmmmgp2 and gmmmgp3) produced by the milk gland tissue. These putative secretory products bear no homology to known proteins in the NCBI nr database. Transcripts for these genes can only be detected in the milk gland and their temporal expression correlates with larval development. Functional analysis of these products by RNA interference (RNAi) knockdown analysis shows that GmmMGP2 is critical to reproductive function. The protein appears to affect ovulation, suggesting that it may play a regulatory role in the tsetse reproductive cycle. GmmMGP3 knockdown lacks a phenotype, suggesting its function as a milk protein is possibly redundant. PMID:20136662

  11. The Homeodomain Protein Ladybird Late Regulates Synthesis of Milk Proteins during Pregnancy in the Tsetse Fly (Glossina morsitans)

    PubMed Central

    Attardo, Geoffrey M.; Benoit, Joshua B.; Michalkova, Veronika; Patrick, Kevin R.; Krause, Tyler B.; Aksoy, Serap

    2014-01-01

    Regulation of tissue and development specific gene expression patterns underlies the functional specialization of organs in multi-cellular organisms. In the viviparous tsetse fly (Glossina), the female accessory gland is specialized to generate nutrients in the form of a milk-like secretion to support growth of intrauterine larva. Multiple milk protein genes are expressed specifically in the female accessory gland and are tightly linked with larval development. Disruption of milk protein synthesis deprives developing larvae of nutrients and results in extended larval development and/or in abortion. The ability to cause such a disruption could be utilized as a tsetse control strategy. Here we identify and delineate the regulatory sequence of a major milk protein gene (milk gland protein 1:mgp1) by utilizing a combination of molecular techniques in tsetse, Drosophila transgenics, transcriptomics and in silico sequence analyses. The function of this promoter is conserved between tsetse and Drosophila. In transgenic Drosophila the mgp1 promoter directs reporter gene expression in a tissue and stage specific manner orthologous to that of Glossina. Analysis of the minimal required regulatory region of mgp1, and the regulatory regions of other Glossina milk proteins identified putative homeodomain protein binding sites as the sole common feature. Annotation and expression analysis of Glossina homeodomain proteins identified ladybird late (lbl) as being accessory gland/fat body specific and differentially expressed between lactating/non-lactating flies. Knockdown of lbl in tsetse resulted in a significant reduction in transcript abundance of multiple milk protein genes and in a significant loss of fecundity. The role of Lbl in adult reproductive physiology is previously unknown. These results suggest that Lbl is part of a conserved reproductive regulatory system that could have implications beyond tsetse to other vector insects such as mosquitoes. This system is critical

  12. Comprehensive annotation of the Glossina pallidipes salivary gland hypertrophy virus from Ethiopian tsetse flies: a proteogenomics approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Glossina pallidipes salivary gland hypertrophy virus (GpSGHV; family Hytrosaviridae) can establish a chronic covert asymptomatic infection and an acute overt symptomatic infection in its tsetse fly host (Diptera: Glossinidae). Expression of the disease symptoms, the salivary gland hypertrophy sy...

  13. Tracking the Feeding Patterns of Tsetse Flies (Glossina Genus) by Analysis of Bloodmeals Using Mitochondrial Cytochromes Genes

    PubMed Central

    Muturi, Catherine N.; Ouma, Johnson O.; Malele, Imna I.; Ngure, Raphael M.; Rutto, Jane J.; Mithöfer, Klaus M.; Enyaru, John; Masiga, Daniel K.

    2011-01-01

    Tsetse flies are notoriously difficult to observe in nature, particularly when populations densities are low. It is therefore difficult to observe them on their hosts in nature; hence their vertebrate species can very often only be determined indirectly by analysis of their gut contents. This knowledge is a critical component of the information on which control tactics can be developed. The objective of this study was to determine the sources of tsetse bloodmeals, hence investigate their feeding preferences. We used mitochondrial cytochrome c oxidase 1 (COI) and cytochrome b (cytb) gene sequences for identification of tsetse fly blood meals, in order to provide a foundation for rational decisions to guide control of trypanosomiasis, and their vectors. Glossina swynnertoni were sampled from Serengeti (Tanzania) and G. pallidipes from Kenya (Nguruman and Busia), and Uganda. Sequences were used to query public databases, and the percentage identities obtained used to identify hosts. An initial assay showed that the feeds were from single sources. Hosts identified from blood fed flies collected in Serengeti ecosystem, included buffaloes (25/40), giraffes (8/40), warthogs (3/40), elephants (3/40) and one spotted hyena. In Nguruman, where G. pallidipes flies were analyzed, the feeds were from elephants (6/13) and warthogs (5/13), while buffaloes and baboons accounted for one bloodmeal each. Only cattle blood was detected in flies caught in Busia and Uganda. Out of four flies tested in Mbita Point, Suba District in western Kenya, one had fed on cattle, the other three on the Nile monitor lizard. These results demonstrate that cattle will form an integral part of a control strategy for trypanosomiasis in Busia and Uganda, while different approaches are required for Serengeti and Nguruman ecosystems, where wildlife abound and are the major component of the tsetse fly food source. PMID:21386971

  14. Adult midgut expressed sequence tags from the tsetse fly Glossina morsitans morsitans and expression analysis of putative immune response genes

    PubMed Central

    Lehane, M J; Aksoy, S; Gibson, W; Kerhornou, A; Berriman, M; Hamilton, J; Soares, M B; Bonaldo, M F; Lehane, S; Hall, N

    2003-01-01

    Background Tsetse flies transmit African trypanosomiasis leading to half a million cases annually. Trypanosomiasis in animals (nagana) remains a massive brake on African agricultural development. While trypanosome biology is widely studied, knowledge of tsetse flies is very limited, particularly at the molecular level. This is a serious impediment to investigations of tsetse-trypanosome interactions. We have undertaken an expressed sequence tag (EST) project on the adult tsetse midgut, the major organ system for establishment and early development of trypanosomes. Results A total of 21,427 ESTs were produced from the midgut of adult Glossina morsitans morsitans and grouped into 8,876 clusters or singletons potentially representing unique genes. Putative functions were ascribed to 4,035 of these by homology. Of these, a remarkable 3,884 had their most significant matches in the Drosophila protein database. We selected 68 genes with putative immune-related functions, macroarrayed them and determined their expression profiles following bacterial or trypanosome challenge. In both infections many genes are downregulated, suggesting a malaise response in the midgut. Trypanosome and bacterial challenge result in upregulation of different genes, suggesting that different recognition pathways are involved in the two responses. The most notable block of genes upregulated in response to trypanosome challenge are a series of Toll and Imd genes and a series of genes involved in oxidative stress responses. Conclusions The project increases the number of known Glossina genes by two orders of magnitude. Identification of putative immunity genes and their preliminary characterization provides a resource for the experimental dissection of tsetse-trypanosome interactions. PMID:14519198

  15. A tsetse and tabanid fly survey of African great apes habitats reveals the presence of a novel trypanosome lineage but the absence of Trypanosoma brucei.

    PubMed

    Votýpka, Jan; Rádrová, Jana; Skalický, Tomáš; Jirků, Milan; Jirsová, Dagmar; Mihalca, Andrei D; D'Amico, Gianluca; Petrželková, Klára J; Modrý, David; Lukeš, Julius

    2015-10-01

    Tsetse and tabanid flies transmit several Trypanosoma species, some of which are human and livestock pathogens of major medical and socioeconomic impact in Africa. Recent advances in molecular techniques and phylogenetic analyses have revealed a growing diversity of previously unidentified tsetse-transmitted trypanosomes potentially pathogenic to livestock and/or other domestic animals as well as wildlife, including African great apes. To map the distribution, prevalence and co-occurrence of known and novel trypanosome species, we analyzed tsetse and tabanid flies collected in the primary forested part of the Dzanga-Sangha Protected Areas, Central African Republic, which hosts a broad spectrum of wildlife including primates and is virtually devoid of domestic animals. Altogether, 564 tsetse flies and 81 tabanid flies were individually screened for the presence of trypanosomes using 18S rRNA-specific nested PCR. Herein, we demonstrate that wildlife animals are parasitized by a surprisingly wide range of trypanosome species that in some cases may circulate via these insect vectors. While one-third of the examined tsetse flies harbored trypanosomes either from the Trypanosoma theileri, Trypanosoma congolense or Trypanosoma simiae complex, or one of the three new members of the genus Trypanosoma (strains 'Bai', 'Ngbanda' and 'Didon'), more than half of the tabanid flies exclusively carried T. theileri. To establish the putative vertebrate hosts of the novel trypanosome species, we further analyzed the provenance of blood meals of tsetse flies. DNA individually isolated from 1033 specimens of Glossina spp. and subjected to high-throughput library-based screening proved that most of the examined tsetse flies engorged on wild ruminants (buffalo, sitatunga, bongo), humans and suids. Moreover, they also fed (albeit more rarely) on other vertebrates, thus providing indirect but convincing evidence that trypanosomes can be transmitted via these vectors among a wide range of

  16. PCR-RFLP analysis: a promising technique for host species identification of blood meals from tsetse flies (Diptera: Glossinidae).

    PubMed

    Steuber, Stephan; Abdel-Rady, Ahmed; Clausen, Peter-Henning

    2005-10-01

    A polymerase chain reaction with the restriction fragment length polymorphism (PCR-RFLP) method using universal primers complementary to the conserved region of the cytochrome b gene (cyt b) of the mitochondrion DNA (mtDNA) of vertebrates was applied to the identification of the origin of blood meals in tsetse flies. Blood samples from ten potential tsetse hosts of the family bovidae (cattle, water buffalo, red buffalo, waterbuck, springbok, goat, sheep, sable antelope, oryx and dik-dik) were included in this study. Sites for appropriate restriction endonucleases cuts were chosen by pairwise alignment of the amplified 359 bp fragments. A flow chart of endonucleases digestion using three restriction enzymes (e.g. TaqI, AluI and HindII) for the unequivocal identification of the respective bovid species was developed. A number of additional non-specific DNA fragments attributed to the co-amplification of cytochrome b pseudogenes were observed in some species (e.g. in red buffalo and dik-dik after digestion with AluI) but did not hamper assignment of bovid species. The detection rate of host DNA in tsetse by PCR-RFLP was 100, 80, 60 and 40% at 24, 48, 72 and 96 h after in vitro feeding, respectively. Identification of the last blood meal was possible even when tsetse had previously fed on different hosts. PMID:15999278

  17. Seasonal distribution and abundance of tsetse flies (Glossina spp.) in the Faro and Deo Division of the Adamaoua Plateau in Cameroon.

    PubMed

    Mamoudou, A; Zoli, A; Hamadama, H; Abah, S; Geerts, S; Clausen, P-H; Zessin, K-H; Kyule, M; van den Bossche, P

    2008-03-01

    Ten years after the large-scale tsetse control campaigns in the important cattle rearing areas of the Faro and Deo Division of the Adamaoua Plateau in Cameroon, the seasonal distribution and abundance of tsetse flies (Glossina spp.) were determined. During a period of 12 consecutive months (January-December 2005), the tsetse population was monitored along four trap transects consisting of a total of 32 traps and two flyround transects traversing the study area, which comprised the tsetse-infested valley, a buffer zone and the supposedly tsetse-free plateau. Throughout the study period, a total of 2195 Glossina morsitans submorsitans and 23 Glossina tachinoides were captured in the traps and 1007 G. m. submorsitans (78.8% male flies) were captured along the flyround transects. All G. tachinoides and almost all G. m. submorsitans were captured in the valley. Five G. m. submorsitans were captured in traps located in the buffer zone, whereas no flies were captured in traps located on the plateau. The index of apparent abundance (IAA) of G. m. submorsitans was substantially higher in the areas close to game reserves. In the remaining part of the valley, where wildlife is scarce and cattle are present during transhumance (dry season), the IAA of tsetse was substantially lower. In this part of the valley, the abundance of tsetse seemed to be associated with the presence of cattle, with the highest IAA during transhumance when cattle are present and the lowest apparent abundance during the rainy season when cattle have moved to the plateau. It is concluded that the distribution of tsetse in a large part of the valley undergoes substantial seasonal changes depending on the presence or absence of cattle. The repercussions of those findings for the control of tsetse in the valley and the probability of reinvasion of the plateau are discussed. PMID:18380651

  18. The Dermis as a Delivery Site of Trypanosoma brucei for Tsetse Flies.

    PubMed

    Caljon, Guy; Van Reet, Nick; De Trez, Carl; Vermeersch, Marjorie; Pérez-Morga, David; Van Den Abbeele, Jan

    2016-07-01

    Tsetse flies are the sole vectors of Trypanosoma brucei parasites that cause sleeping sickness. Our knowledge on the early interface between the infective metacyclic forms and the mammalian host skin is currently highly limited. Glossina morsitans flies infected with fluorescently tagged T. brucei parasites were used in this study to initiate natural infections in mice. Metacyclic trypanosomes were found to be highly infectious through the intradermal route in sharp contrast with blood stream form trypanosomes. Parasite emigration from the dermal inoculation site resulted in detectable parasite levels in the draining lymph nodes within 18 hours and in the peripheral blood within 42 h. A subset of parasites remained and actively proliferated in the dermis. By initiating mixed infections with differentially labeled parasites, dermal parasites were unequivocally shown to arise from the initial inoculum and not from a re-invasion from the blood circulation. Scanning electron microscopy demonstrated intricate interactions of these skin-residing parasites with adipocytes in the connective tissue, entanglement by reticular fibers of the periadipocytic baskets and embedment between collagen bundles. Experimental transmission experiments combined with molecular parasite detection in blood fed flies provided evidence that dermal trypanosomes can be acquired from the inoculation site immediately after the initial transmission. High resolution thermographic imaging also revealed that intradermal parasite expansion induces elevated skin surface temperatures. Collectively, the dermis represents a delivery site of the highly infective metacyclic trypanosomes from which the host is systemically colonized and where a proliferative subpopulation remains that is physically constrained by intricate interactions with adipocytes and collagen fibrous structures. PMID:27441553

  19. Patterns of Genome-Wide Variation in Glossina fuscipes fuscipes Tsetse Flies from Uganda

    PubMed Central

    Gloria-Soria, Andrea; Dunn, W. Augustine; Telleria, Erich L.; Evans, Benjamin R.; Okedi, Loyce; Echodu, Richard; Warren, Wesley C.; Montague, Michael J.; Aksoy, Serap; Caccone, Adalgisa

    2016-01-01

    The tsetse fly Glossina fuscipes fuscipes (Gff) is the insect vector of the two forms of Human African Trypanosomiasis (HAT) that exist in Uganda. Understanding Gff population dynamics, and the underlying genetics of epidemiologically relevant phenotypes is key to reducing disease transmission. Using ddRAD sequence technology, complemented with whole-genome sequencing, we developed a panel of ∼73,000 single-nucleotide polymorphisms (SNPs) distributed across the Gff genome that can be used for population genomics and to perform genome-wide-association studies. We used these markers to estimate genomic patterns of linkage disequilibrium (LD) in Gff, and used the information, in combination with outlier-locus detection tests, to identify candidate regions of the genome under selection. LD in individual populations decays to half of its maximum value (r2max/2) between 1359 and 2429 bp. The overall LD estimated for the species reaches r2max/2 at 708 bp, an order of magnitude slower than in Drosophila. Using 53 infected (Trypanosoma spp.) and uninfected flies from four genetically distinct Ugandan populations adapted to different environmental conditions, we were able to identify SNPs associated with the infection status of the fly and local environmental adaptation. The extent of LD in Gff likely facilitated the detection of loci under selection, despite the small sample size. Furthermore, it is probable that LD in the regions identified is much higher than the average genomic LD due to strong selection. Our results show that even modest sample sizes can reveal significant genetic associations in this species, which has implications for future studies given the difficulties of collecting field specimens with contrasting phenotypes for association analysis. PMID:27172181

  20. The Dermis as a Delivery Site of Trypanosoma brucei for Tsetse Flies

    PubMed Central

    Caljon, Guy; Van Reet, Nick; De Trez, Carl; Vermeersch, Marjorie; Pérez-Morga, David; Van Den Abbeele, Jan

    2016-01-01

    Tsetse flies are the sole vectors of Trypanosoma brucei parasites that cause sleeping sickness. Our knowledge on the early interface between the infective metacyclic forms and the mammalian host skin is currently highly limited. Glossina morsitans flies infected with fluorescently tagged T. brucei parasites were used in this study to initiate natural infections in mice. Metacyclic trypanosomes were found to be highly infectious through the intradermal route in sharp contrast with blood stream form trypanosomes. Parasite emigration from the dermal inoculation site resulted in detectable parasite levels in the draining lymph nodes within 18 hours and in the peripheral blood within 42 h. A subset of parasites remained and actively proliferated in the dermis. By initiating mixed infections with differentially labeled parasites, dermal parasites were unequivocally shown to arise from the initial inoculum and not from a re-invasion from the blood circulation. Scanning electron microscopy demonstrated intricate interactions of these skin-residing parasites with adipocytes in the connective tissue, entanglement by reticular fibers of the periadipocytic baskets and embedment between collagen bundles. Experimental transmission experiments combined with molecular parasite detection in blood fed flies provided evidence that dermal trypanosomes can be acquired from the inoculation site immediately after the initial transmission. High resolution thermographic imaging also revealed that intradermal parasite expansion induces elevated skin surface temperatures. Collectively, the dermis represents a delivery site of the highly infective metacyclic trypanosomes from which the host is systemically colonized and where a proliferative subpopulation remains that is physically constrained by intricate interactions with adipocytes and collagen fibrous structures. PMID:27441553

  1. Patterns of Genome-Wide Variation in Glossina fuscipes fuscipes Tsetse Flies from Uganda.

    PubMed

    Gloria-Soria, Andrea; Dunn, W Augustine; Telleria, Erich L; Evans, Benjamin R; Okedi, Loyce; Echodu, Richard; Warren, Wesley C; Montague, Michael J; Aksoy, Serap; Caccone, Adalgisa

    2016-01-01

    The tsetse fly Glossina fuscipes fuscipes (Gff) is the insect vector of the two forms of Human African Trypanosomiasis (HAT) that exist in Uganda. Understanding Gff population dynamics, and the underlying genetics of epidemiologically relevant phenotypes is key to reducing disease transmission. Using ddRAD sequence technology, complemented with whole-genome sequencing, we developed a panel of ∼73,000 single-nucleotide polymorphisms (SNPs) distributed across the Gff genome that can be used for population genomics and to perform genome-wide-association studies. We used these markers to estimate genomic patterns of linkage disequilibrium (LD) in Gff, and used the information, in combination with outlier-locus detection tests, to identify candidate regions of the genome under selection. LD in individual populations decays to half of its maximum value (r(2) max/2) between 1359 and 2429 bp. The overall LD estimated for the species reaches r(2) max/2 at 708 bp, an order of magnitude slower than in Drosophila Using 53 infected (Trypanosoma spp.) and uninfected flies from four genetically distinct Ugandan populations adapted to different environmental conditions, we were able to identify SNPs associated with the infection status of the fly and local environmental adaptation. The extent of LD in Gff likely facilitated the detection of loci under selection, despite the small sample size. Furthermore, it is probable that LD in the regions identified is much higher than the average genomic LD due to strong selection. Our results show that even modest sample sizes can reveal significant genetic associations in this species, which has implications for future studies given the difficulties of collecting field specimens with contrasting phenotypes for association analysis. PMID:27172181

  2. Standardizing Visual Control Devices for Tsetse Flies: East African Species Glossina fuscipes fuscipes and Glossina tachinoides

    PubMed Central

    Oloo, Francis; Sciarretta, Andrea; Kröber, Thomas; McMullin, Andrew; Mihok, Steve; Guerin, Patrick M.

    2014-01-01

    Background Riverine species of tsetse are responsible for most human African trypanosomiasis (HAT) transmission and are also important vectors of animal trypanosomiasis. This study concerns the development of visual control devices for two such species, Glossina fuscipes fuscipes and Glossina tachinoides, at the eastern limits of their continental range. The goal was to determine the most long-lasting, practical and cost-effective visually attractive device that induces the strongest landing responses in these species for use as insecticide-impregnated tools in vector population suppression. Methods and Findings Field trials were conducted in different seasons on G. f. fuscipes in Kenya, Ethiopia and the Sudan and on G. tachinoides in Ethiopia to measure the performance of traps and 2D targets of different sizes and colours, with and without chemical baits, at different population densities and under different environmental conditions. Adhesive film was used to enumerate flies at these remote locations to compare trapping efficiencies. The findings show that targets made from black and blue fabrics (either phthalogen or turquoise) covered with adhesive film render them equal to or more efficient than traps at capturing G. f. fuscipes and G. tachinoides. Biconical trap efficiency varied between 25% and 33% for the two species. Smaller 0.25 m×0.25 m phthalogen blue-black targets proved more efficient than the regular 1 m2 target for both species, by over six times for Glossina f. fuscipes and two times for G. tachinoides based on catches per m2. Overall, targets with a higher edge/surface area ratio were more efficient at capturing flies. Conclusions/Significance Taking into account practical considerations and fly preferences for edges and colours, we propose a 0.5×0.75 m blue-black target as a simple cost-effective device for management of G. f. fuscipes and G. tachinoides, impregnated with insecticide for control and covered with adhesive film for population

  3. PCR analysis and spatial repartition of trypanosomes infecting tsetse flies in Sidéradougou area of Burkina Faso.

    PubMed

    De La Rocque, S; Lefrancois, T; Reifenberg, J M; Solano, P; Kabore, I; Bengaly, Z; Augusseau, X; Cuisance, D

    1998-06-29

    A parasitological and entomological survey was conducted in the Sideradougou area (south of Bobo Dioulasso, Burkina Faso) in order to identify transmission factors of African trypanosomosis. A total of 3600 tsetse flies (Glossina tachinoides, Glossina palpalis gambiensis) were captured along 120 km of linear gallery forest and half of them were dissected. PCR analysis was undertaken on parasitologically positive flies (161 G. tachinoides, 92 G. palpalis gambiensis) to characterize the different trypanosomes. All the results were integrated in a GIS (Geographical Information System). Spatial repartition of the characterized trypanosomes enabled to recognize different areas with specific patterns of infection. Relations with environmental factors are discussed. PMID:9668447

  4. Global Wolbachia prevalence, titer fluctuations and their potential of causing cytoplasmic incompatibilities in tsetse flies and hybrids of Glossina morsitans subgroup species

    PubMed Central

    Schneider, Daniela I.; Garschall, Kathrin I.; Parker, Andrew G.; Abd-Alla, Adly M.M.; Miller, Wolfgang J.

    2013-01-01

    We demonstrate the high applicability of a novel VNTR-based (Variable-Number-Tandem-Repeat) molecular screening tool for fingerprinting Wolbachia-infections in tsetse flies. The VNTR-141 locus provides reliable and concise differentiation between Wolbachia strains deriving from Glossina morsitans morsitans, Glossina morsitans centralis, and Glossina brevipalpis. Moreover, we show that certain Wolbachia-infections in Glossina spp. are capable of escaping standard PCR screening methods by ‘hiding’ as low-titer infections below the detection threshold. By applying a highly sensitive PCR-blot technique to our Glossina specimen, we were able to enhance the symbiont detection limit substantially and, consequently, trace unequivocally Wolbachia-infections at high prevalence in laboratory-reared G. swynnertoni individuals. To our knowledge, Wolbachia-persistence was reported exclusively for field-collected samples, and at low prevalence only. Finally, we highlight the substantially higher Wolbachia titer levels found in hybrid Glossina compared to non-hybrid hosts and the possible impact of these titers on hybrid host fitness that potentially trigger incipient speciation in tsetse flies. PMID:22516306

  5. Microgeographic breeding structure of the tsetse fly, Glossina pallidipes in southwestern Kenya

    PubMed Central

    OUMA, J. O.; MARQUEZ, J. G.; KRAFSUR, E. S.

    2006-01-01

    The origins of extant G. pallidipes Austen (Diptera: Glossinidae) populations in the ecologically well studied Lambwe and Nguruman valleys in Kenya are controversial because populations have recovered after seemingly effective attempts to achieve high levels of control. We investigated microgeographic breeding structure of the tsetse fly, Glossina pallidipes (Diptera: Glossinidae) by analyzing spatial and temporal variation at eight microsatellite loci to test hypotheses about endemism and immigration. Samples were obtained at seasonal intervals from trap sites separated by 200 m to 14 km and arranged into blocks. G. pallidipes populations nearest to Lambwe and Nguruman also were sampled. Spatial analysis indicated genetic differentiation by genetic drift was much less among trapping sites within Lambwe and Nguruman (FST ≤ 0.049) than between them (FST = 0.232). FST between Serengeti and Nguruman was 0.16 and FST between Kodera Forest and Lambwe was 0.15. The genetic variance in G. pallidipes explained by dry and wet seasons (0.33%) was about one-fifth the variance among collection dates (1.6%) thereby indicating reasonable temporal stability of genetic variation. Gene frequencies in Kodera and Serengeti differed greatly from Lambwe and Nguruman thereby falsifying the hypothesis that Lambwe and Nguruman were repopulated by immigrants. Harmonic mean effective (= breeding) population sizes were 180 in Lambwe and 551 in Nguruman. The genetic data suggest G. pallidipes in Lambwe and Nguruman have been endemic for long intervals. PMID:16608498

  6. Explaining the Host-Finding Behavior of Blood-Sucking Insects: Computerized Simulation of the Effects of Habitat Geometry on Tsetse Fly Movement

    PubMed Central

    Vale, Glyn A.; Hargrove, John W.; Solano, Philippe; Courtin, Fabrice; Rayaisse, Jean-Baptiste; Lehane, Michael J.; Esterhuizen, Johan; Tirados, Inaki; Torr, Stephen J.

    2014-01-01

    Background Male and female tsetse flies feed exclusively on vertebrate blood. While doing so they can transmit the diseases of sleeping sickness in humans and nagana in domestic stock. Knowledge of the host-orientated behavior of tsetse is important in designing bait methods of sampling and controlling the flies, and in understanding the epidemiology of the diseases. For this we must explain several puzzling distinctions in the behavior of the different sexes and species of tsetse. For example, why is it that the species occupying savannahs, unlike those of riverine habitats, appear strongly responsive to odor, rely mainly on large hosts, are repelled by humans, and are often shy of alighting on baits? Methodology/Principal Findings A deterministic model that simulated fly mobility and host-finding success suggested that the behavioral distinctions between riverine, savannah and forest tsetse are due largely to habitat size and shape, and the extent to which dense bushes limit occupiable space within the habitats. These factors seemed effective primarily because they affect the daily displacement of tsetse, reducing it by up to ∼70%. Sex differences in behavior are explicable by females being larger and more mobile than males. Conclusion/Significance Habitat geometry and fly size provide a framework that can unify much of the behavior of all sexes and species of tsetse everywhere. The general expectation is that relatively immobile insects in restricted habitats tend to be less responsive to host odors and more catholic in their diet. This has profound implications for the optimization of bait technology for tsetse, mosquitoes, black flies and tabanids, and for the epidemiology of the diseases they transmit. PMID:24921243

  7. More than one rabbit out of the hat: Radiation, transgenic and symbiont-based approaches for sustainable management of mosquito and tsetse fly populations.

    PubMed

    Bourtzis, Kostas; Lees, Rosemary Susan; Hendrichs, Jorge; Vreysen, Marc J B

    2016-05-01

    Mosquitoes (Diptera: Culicidae) and tsetse flies (Diptera: Glossinidae) are bloodsucking vectors of human and animal pathogens. Mosquito-borne diseases (malaria, filariasis, dengue, zika, and chikungunya) cause severe mortality and morbidity annually, and tsetse fly-borne diseases (African trypanosomes causing sleeping sickness in humans and nagana in livestock) cost Sub-Saharan Africa an estimated US$ 4750 million annually. Current reliance on insecticides for vector control is unsustainable: due to increasing insecticide resistance and growing concerns about health and environmental impacts of chemical control there is a growing need for novel, effective and safe biologically-based methods that are more sustainable. The integration of the sterile insect technique has proven successful to manage crop pests and disease vectors, particularly tsetse flies, and is likely to prove effective against mosquito vectors, particularly once sex-separation methods are improved. Transgenic and symbiont-based approaches are in development, and more advanced in (particularly Aedes) mosquitoes than in tsetse flies; however, issues around stability, sustainability and biosecurity have to be addressed, especially when considering population replacement approaches. Regulatory issues and those relating to intellectual property and economic cost of application must also be overcome. Standardised methods to assess insect quality are required to compare and predict efficacy of the different approaches. Different combinations of these three approaches could be integrated to maximise their benefits, and all have the potential to be used in tsetse and mosquito area-wide integrated pest management programmes. PMID:26774684

  8. Characterization and pharmacological analysis of two adipokinetic hormone receptor variants of the tsetse fly, Glossina morsitans morsitans.

    PubMed

    Caers, Jelle; Janssen, Tom; Van Rompay, Liesbeth; Broeckx, Valérie; Van Den Abbeele, Jan; Gäde, Gerd; Schoofs, Liliane; Beets, Isabel

    2016-03-01

    Adipokinetic hormones (AKH) are well known regulators of energy metabolism in insects. These neuropeptides are produced in the corpora cardiaca and perform their hormonal function by interacting with specific G protein-coupled receptors (GPCRs) at the cell membranes of target tissues, mainly the fat body. Here, we investigated the sequences, spatial and temporal distributions, and pharmacology of AKH neuropeptides and receptors in the tsetse fly, Glossina morsitans morsitans. The open reading frames of two splice variants of the Glomo-akh receptor (Glomo-akhr) gene and of the AKH neuropeptide encoding genes, gmmhrth and gmmakh, were cloned. Both tsetse AKHR isoforms show strong sequence conservation when compared to other insect AKHRs. Glomo-AKH prepropeptides also have the typical architecture of AKH precursors. In an in vitro Ca(2+) mobilization assay, Glomo-AKH neuropeptides activated each receptor isoform up to nanomolar concentrations. We identified structural features of tsetse AKH neuropeptides essential for receptor activation in vitro. Gene expression profiles suggest a function for AKH signaling in regulating Glossina energy metabolism, where AKH peptides are released from the corpora cardiaca and activate receptors mainly expressed in the fat body. This analysis of the ligand-receptor coupling, expression, and pharmacology of the two Glomo-AKHR variants facilitates further elucidation of the function of AKH in G. m. morsitans. PMID:26690928

  9. A colour opponent model that explains tsetse fly attraction to visual baits and can be used to investigate more efficacious bait materials.

    PubMed

    Santer, Roger D

    2014-12-01

    Palpalis group tsetse flies are the major vectors of human African trypanosomiasis, and visually-attractive targets and traps are important tools for their control. Considerable efforts are underway to optimise these visual baits, and one factor that has been investigated is coloration. Analyses of the link between visual bait coloration and tsetse fly catches have used methods which poorly replicate sensory processing in the fly visual system, but doing so would allow the visual information driving tsetse attraction to these baits to be more fully understood, and the reflectance spectra of candidate visual baits to be more completely analysed. Following methods well established for other species, I reanalyse the numbers of tsetse flies caught at visual baits based upon the calculated photoreceptor excitations elicited by those baits. I do this for large sets of previously published data for Glossina fuscipes fuscipes (Lindh et al. (2012). PLoS Negl Trop Dis 6: e1661), G. palpalis palpalis (Green (1988). Bull Ent Res 78: 591), and G. pallidipes (Green and Flint (1986). Bull Ent Res 76: 409). Tsetse attraction to visual baits in these studies can be explained by a colour opponent mechanism to which the UV-blue photoreceptor R7y contributes positively, and both the green-yellow photoreceptor R8y, and the low-wavelength UV photoreceptor R7p, contribute negatively. A tool for calculating fly photoreceptor excitations is made available with this paper, and this will facilitate a complete and biologically authentic description of visual bait reflectance spectra that can be employed in the search for more efficacious visual baits, or the analysis of future studies of tsetse fly attraction. PMID:25473844

  10. Aquaporins Are Critical for Provision of Water during Lactation and Intrauterine Progeny Hydration to Maintain Tsetse Fly Reproductive Success

    PubMed Central

    Benoit, Joshua B.; Hansen, Immo A.; Attardo, Geoffrey M.; Michalková, Veronika; Mireji, Paul O.; Bargul, Joel L.; Drake, Lisa L.; Masiga, Daniel K.; Aksoy, Serap

    2014-01-01

    Tsetse flies undergo drastic fluctuations in their water content throughout their adult life history due to events such as blood feeding, dehydration and lactation, an essential feature of the viviparous reproductive biology of tsetse. Aquaporins (AQPs) are transmembrane proteins that allow water and other solutes to permeate through cellular membranes. Here we identify tsetse aquaporin (AQP) genes, examine their expression patterns under different physiological conditions (blood feeding, lactation and stress response) and perform functional analysis of three specific genes utilizing RNA interference (RNAi) gene silencing. Ten putative aquaporins were identified in the Glossina morsitans morsitans (Gmm) genome, two more than has been previously documented in any other insect. All organs, tissues, and body parts examined had distinct AQP expression patterns. Two AQP genes, gmmdripa and gmmdripb ( = gmmaqp1a and gmmaqp1b) are highly expressed in the milk gland/fat body tissues. The whole-body transcript levels of these two genes vary over the course of pregnancy. A set of three AQPs (gmmaqp5, gmmaqp2a, and gmmaqp4b) are expressed highly in the Malpighian tubules. Knockdown of gmmdripa and gmmdripb reduced the efficiency of water loss following a blood meal, increased dehydration tolerance and reduced heat tolerance of adult females. Knockdown of gmmdripa extended pregnancy length, and gmmdripb knockdown resulted in extended pregnancy duration and reduced progeny production. We found that knockdown of AQPs increased tsetse milk osmolality and reduced the water content in developing larva. Combined knockdown of gmmdripa, gmmdripb and gmmaqp5 extended pregnancy by 4–6 d, reduced pupal production by nearly 50%, increased milk osmolality by 20–25% and led to dehydration of feeding larvae. Based on these results, we conclude that gmmDripA and gmmDripB are critical for diuresis, stress tolerance and intrauterine lactation through the regulation of water and/or other

  11. Peptidomics of Neuropeptidergic Tissues of the Tsetse Fly Glossina morsitans morsitans

    NASA Astrophysics Data System (ADS)

    Caers, Jelle; Boonen, Kurt; Van Den Abbeele, Jan; Van Rompay, Liesbeth; Schoofs, Liliane; Van Hiel, Matthias B.

    2015-12-01

    Neuropeptides and peptide hormones are essential signaling molecules that regulate nearly all physiological processes. The recent release of the tsetse fly genome allowed the construction of a detailed in silico neuropeptide database (International Glossina Genome Consortium, Science 344, 380-386 (2014)), as well as an in-depth mass spectrometric analysis of the most important neuropeptidergic tissues of this medically and economically important insect species. Mass spectrometric confirmation of predicted peptides is a vital step in the functional characterization of neuropeptides, as in vivo peptides can be modified, cleaved, or even mispredicted. Using a nanoscale reversed phase liquid chromatography coupled to a Q Exactive Orbitrap mass spectrometer, we detected 51 putative bioactive neuropeptides encoded by 19 precursors: adipokinetic hormone (AKH) I and II, allatostatin A and B, capability/pyrokinin (capa/PK), corazonin, calcitonin-like diuretic hormone (CT/DH), FMRFamide, hugin, leucokinin, myosuppressin, natalisin, neuropeptide-like precursor (NPLP) 1, orcokinin, pigment dispersing factor (PDF), RYamide, SIFamide, short neuropeptide F (sNPF) and tachykinin. In addition, propeptides, truncated and spacer peptides derived from seven additional precursors were found, and include the precursors of allatostatin C, crustacean cardioactive peptide, corticotropin releasing factor-like diuretic hormone (CRF/DH), ecdysis triggering hormone (ETH), ion transport peptide (ITP), neuropeptide F, and proctolin, respectively. The majority of the identified neuropeptides are present in the central nervous system, with only a limited number of peptides in the corpora cardiaca-corpora allata and midgut. Owing to the large number of identified peptides, this study can be used as a reference for comparative studies in other insects.

  12. Laboratory Colonisation and Genetic Bottlenecks in the Tsetse Fly Glossina pallidipes

    PubMed Central

    Ciosi, Marc

    2014-01-01

    Background The IAEA colony is the only one available for mass rearing of Glossina pallidipes, a vector of human and animal African trypanosomiasis in eastern Africa. This colony is the source for Sterile Insect Technique (SIT) programs in East Africa. The source population of this colony is unclear and its genetic diversity has not previously been evaluated and compared to field populations. Methodology/Principal Findings We examined the genetic variation within and between the IAEA colony and its potential source populations in north Zimbabwe and the Kenya/Uganda border at 9 microsatellites loci to retrace the demographic history of the IAEA colony. We performed classical population genetics analyses and also combined historical and genetic data in a quantitative analysis using Approximate Bayesian Computation (ABC). There is no evidence of introgression from the north Zimbabwean population into the IAEA colony. Moreover, the ABC analyses revealed that the foundation and establishment of the colony was associated with a genetic bottleneck that has resulted in a loss of 35.7% of alleles and 54% of expected heterozygosity compared to its source population. Also, we show that tsetse control carried out in the 1990's is likely reduced the effective population size of the Kenya/Uganda border population. Conclusions/Significance All the analyses indicate that the area of origin of the IAEA colony is the Kenya/Uganda border and that a genetic bottleneck was associated with the foundation and establishment of the colony. Genetic diversity associated with traits that are important for SIT may potentially have been lost during this genetic bottleneck which could lead to a suboptimal competitiveness of the colony males in the field. The genetic diversity of the colony is lower than that of field populations and so, studies using colony flies should be interpreted with caution when drawing general conclusions about G. pallidipes biology. PMID:24551260

  13. Peptidomics of Neuropeptidergic Tissues of the Tsetse Fly Glossina morsitans morsitans.

    PubMed

    Caers, Jelle; Boonen, Kurt; Van Den Abbeele, Jan; Van Rompay, Liesbeth; Schoofs, Liliane; Van Hiel, Matthias B

    2015-12-01

    Neuropeptides and peptide hormones are essential signaling molecules that regulate nearly all physiological processes. The recent release of the tsetse fly genome allowed the construction of a detailed in silico neuropeptide database (International Glossina Genome Consortium, Science 344, 380-386 (2014)), as well as an in-depth mass spectrometric analysis of the most important neuropeptidergic tissues of this medically and economically important insect species. Mass spectrometric confirmation of predicted peptides is a vital step in the functional characterization of neuropeptides, as in vivo peptides can be modified, cleaved, or even mispredicted. Using a nanoscale reversed phase liquid chromatography coupled to a Q Exactive Orbitrap mass spectrometer, we detected 51 putative bioactive neuropeptides encoded by 19 precursors: adipokinetic hormone (AKH) I and II, allatostatin A and B, capability/pyrokinin (capa/PK), corazonin, calcitonin-like diuretic hormone (CT/DH), FMRFamide, hugin, leucokinin, myosuppressin, natalisin, neuropeptide-like precursor (NPLP) 1, orcokinin, pigment dispersing factor (PDF), RYamide, SIFamide, short neuropeptide F (sNPF) and tachykinin. In addition, propeptides, truncated and spacer peptides derived from seven additional precursors were found, and include the precursors of allatostatin C, crustacean cardioactive peptide, corticotropin releasing factor-like diuretic hormone (CRF/DH), ecdysis triggering hormone (ETH), ion transport peptide (ITP), neuropeptide F, and proctolin, respectively. The majority of the identified neuropeptides are present in the central nervous system, with only a limited number of peptides in the corpora cardiaca-corpora allata and midgut. Owing to the large number of identified peptides, this study can be used as a reference for comparative studies in other insects. Graphical Abstract ᅟ. PMID:26463237

  14. Applying GIS and population genetics for managing livestock insect pests: case studies of tsetse and screwworm flies.

    PubMed

    Feldmann, U; Ready, P D

    2014-10-01

    The Food and Agriculture Organization of the United Nations (FAO) and the International Atomic Energy Agency (IAEA) have supported a Co-ordinated Research Project (CRP) on 'Applying GIS and population genetics for managing livestock insect pests'. This six-year CRP (2008-2013) focused on research aimed at under-pinning the Area-Wide Integrated Pest Management (AW-IPM) of populations of tsetse and screwworm flies, and this introductory paper to the Special Issue integrates the findings of the CRP participants and discusses them in a broader context. The tools and techniques for mapping and modelling the distributions of genetically-characterised populations of tsetse and screwworm flies are increasingly used by researchers and managers for more effective decision-making in AW-IPM programmes, as illustrated by the reports in this Special Issue. Currently, the insect pests are often characterized only by neutral genetic markers suitable for recognizing spatially isolated populations that are sometimes associated with specific environments. Two challenges for those involved in AW-IPM are the standardization of best practice to permit the efficient application of GIS and genetic tools by regional teams, and the need to develop further the mapping and modelling of parasite and pest phenotypes that are epidemiologically important. PMID:24713196

  15. Adult blood-feeding tsetse flies, trypanosomes, microbiota and the fluctuating environment in sub-Saharan Africa

    PubMed Central

    Geiger, Anne; Ponton, Fleur; Simo, Gustave

    2015-01-01

    The tsetse fly vector transmits the protozoan Trypanosoma brucei, responsible for Human African Trypanosomiasis, one of the most neglected tropical diseases. Despite a recent decline in new cases, it is still crucial to develop alternative strategies to combat this disease. Here, we review the literature on the factors that influence trypanosome transmission from the fly vector to its vertebrate host (particularly humans). These factors include climate change effects to pathogen and vector development (in particular climate warming), as well as the distribution of host reservoirs. Finally, we present reports on the relationships between insect vector nutrition, immune function, microbiota and infection, to demonstrate how continuing research on the evolving ecology of these complex systems will help improve control strategies. In the future, such studies will be of increasing importance to understand how vector-borne diseases are spread in a changing world. PMID:25500509

  16. A Glycosylation Mutant of Trypanosoma brucei Links Social Motility Defects In Vitro to Impaired Colonization of Tsetse Flies In Vivo.

    PubMed

    Imhof, Simon; Vu, Xuan Lan; Bütikofer, Peter; Roditi, Isabel

    2015-06-01

    Transmission of African trypanosomes by tsetse flies requires that the parasites migrate out of the midgut lumen and colonize the ectoperitrophic space. Early procyclic culture forms correspond to trypanosomes in the lumen; on agarose plates they exhibit social motility, migrating en masse as radial projections from an inoculation site. We show that an Rft1(-/-) mutant needs to reach a greater threshold number before migration begins, and that it forms fewer projections than its wild-type parent. The mutant is also up to 4 times less efficient at establishing midgut infections. Ectopic expression of Rft1 rescues social motility defects and restores the ability to colonize the fly. These results are consistent with social motility reflecting movement to the ectoperitrophic space, implicate N-glycans in the signaling cascades for migration in vivo and in vitro, and provide the first evidence that parasite-parasite interactions determine the success of transmission by the insect host. PMID:25862152

  17. Adult blood-feeding tsetse flies, trypanosomes, microbiota and the fluctuating environment in sub-Saharan Africa.

    PubMed

    Geiger, Anne; Ponton, Fleur; Simo, Gustave

    2015-07-01

    The tsetse fly vector transmits the protozoan Trypanosoma brucei, responsible for Human African Trypanosomiasis, one of the most neglected tropical diseases. Despite a recent decline in new cases, it is still crucial to develop alternative strategies to combat this disease. Here, we review the literature on the factors that influence trypanosome transmission from the fly vector to its vertebrate host (particularly humans). These factors include climate change effects to pathogen and vector development (in particular climate warming), as well as the distribution of host reservoirs. Finally, we present reports on the relationships between insect vector nutrition, immune function, microbiota and infection, to demonstrate how continuing research on the evolving ecology of these complex systems will help improve control strategies. In the future, such studies will be of increasing importance to understand how vector-borne diseases are spread in a changing world. PMID:25500509

  18. Comprehensive annotation of Glossina pallidipes salivary gland hypertrophy virus from Ethiopian tsetse flies: a proteogenomics approach.

    PubMed

    Abd-Alla, Adly M M; Kariithi, Henry M; Cousserans, François; Parker, Nicolas J; İnce, İkbal Agah; Scully, Erin D; Boeren, Sjef; Geib, Scott M; Mekonnen, Solomon; Vlak, Just M; Parker, Andrew G; Vreysen, Marc J B; Bergoin, Max

    2016-04-01

    Glossina pallidipes salivary gland hypertrophy virus (GpSGHV; family Hytrosaviridae) can establish asymptomatic and symptomatic infection in its tsetse fly host. Here, we present a comprehensive annotation of the genome of an Ethiopian GpSGHV isolate (GpSGHV-Eth) compared with the reference Ugandan GpSGHV isolate (GpSGHV-Uga; GenBank accession number EF568108). GpSGHV-Eth has higher salivary gland hypertrophy syndrome prevalence than GpSGHV-Uga. We show that the GpSGHV-Eth genome has 190 291 nt, a low G+C content (27.9 %) and encodes 174 putative ORFs. Using proteogenomic and transcriptome mapping, 141 and 86 ORFs were mapped by transcripts and peptides, respectively. Furthermore, of the 174 ORFs, 132 had putative transcriptional signals [TATA-like box and poly(A) signals]. Sixty ORFs had both TATA-like box promoter and poly(A) signals, and mapped by both transcripts and peptides, implying that these ORFs encode functional proteins. Of the 60 ORFs, 10 ORFs are homologues to baculovirus and nudivirus core genes, including three per os infectivity factors and four RNA polymerase subunits (LEF4, 5, 8 and 9). Whereas GpSGHV-Eth and GpSGHV-Uga are 98.1 % similar at the nucleotide level, 37 ORFs in the GpSGHV-Eth genome had nucleotide insertions (n = 17) and deletions (n = 20) compared with their homologues in GpSGHV-Uga. Furthermore, compared with the GpSGHV-Uga genome, 11 and 24 GpSGHV ORFs were deleted and novel, respectively. Further, 13 GpSGHV-Eth ORFs were non-canonical; they had either CTG or TTG start codons instead of ATG. Taken together, these data suggest that GpSGHV-Eth and GpSGHV-Uga represent two different lineages of the same virus. Genetic differences combined with host and environmental factors possibly explain the differential GpSGHV pathogenesis observed in different G. pallidipes colonies. PMID:26801744

  19. In Silico Identification of a Candidate Synthetic Peptide (Tsgf118–43) to Monitor Human Exposure to Tsetse Flies in West Africa

    PubMed Central

    Dama, Emilie; Cornelie, Sylvie; Camara, Mamadou; Somda, Martin Bienvenu; Poinsignon, Anne; Ilboudo, Hamidou; Elanga Ndille, Emmanuel; Jamonneau, Vincent; Solano, Philippe; Remoue, Franck; Bengaly, Zakaria; Belem, Adrien Marie Gaston; Bucheton, Bruno

    2013-01-01

    Background The analysis of humoral responses directed against the saliva of blood-sucking arthropods was shown to provide epidemiological biomarkers of human exposure to vector-borne diseases. However, the use of whole saliva as antigen presents several limitations such as problems of mass production, reproducibility and specificity. The aim of this study was to design a specific biomarker of exposure to tsetse flies based on the in silico analysis of three Glossina salivary proteins (Ada, Ag5 and Tsgf1) previously shown to be specifically recognized by plasma from exposed individuals. Methodology/Principal Findings Synthetic peptides were designed by combining several linear epitope prediction methods and Blast analysis. The most specific peptides were then tested by indirect ELISA on a bank of 160 plasma samples from tsetse infested areas and tsetse free areas. Anti-Tsgf118–43 specific IgG levels were low in all three control populations (from rural Africa, urban Africa and Europe) and were significantly higher (p<0.0001) in the two populations exposed to tsetse flies (Guinean HAT foci, and South West Burkina Faso). A positive correlation was also found between Anti-Tsgf118–43 IgG levels and the risk of being infected by Trypanosoma brucei gambiense in the sleeping sickness foci of Guinea. Conclusion/Significance The Tsgf118–43 peptide is a suitable and promising candidate to develop a standardize immunoassay allowing large scale monitoring of human exposure to tsetse flies in West Africa. This could provide a new surveillance indicator for tsetse control interventions by HAT control programs. PMID:24086785

  20. A phyto-sociological analysis of the distribution of riverine tsetse flies in Burkina Faso.

    PubMed

    Bouyer, J; Guerrini, L; Cesar, J; de la Rocque, S; Cuisance, D

    2005-12-01

    In Burkina Faso, Glossina palpalis gambiensis Vanderplank and G. tachinoides Westwood (Diptera: Glossinidae) are the main cyclic vectors of trypanosomiasis. The vegetation type along river banks is an important factor determining the distribution and abundance of these tsetse. The following work investigated the relation between the plant species present (including the disturbance level) and tsetse distribution and abundance, using three ecotypes, described by P.C. Morel in 1978. These were the Guinean, Sudano-Guinean and Sudanese gallery forests. In the Mouhoun River basin, these three ecotypes are found successively from upstream to downstream. Berlinia grandiflora, Syzygium guineense and Cola laurifolia and finally Acacia seyal and Mitragyna inermis were the best indicators for the Guinean, Sudano-Guinean and Sudanese gallery forest ecotypes, respectively, as suggested by Morel. However, other species such as Pterocarpus santalinoides and Mimosa pigra were not ecotype specific. Trap catches confirmed that G. palpalis and G. tachinoides are predominant in Guinean and Sudanese gallery forests, respectively, and that both species are well represented in the Sudano-Guinean ecotype. Tsetse densities dropped significantly in disturbed Sudano-Guinean and Sudanese gallery forest sites. However, this was not the case for both species in Guinean or for G. tachinoides in half-disturbed Sudanese gallery forest sites, confirming their high resilience to human-made changes. The importance of a detailed consideration of riverine ecotypes when predicting tsetse densities is discussed. PMID:16336302

  1. The use of specific and generic primers to identify trypanosome infections of wild tsetse flies in Tanzania by PCR.

    PubMed

    Malele, Imna; Craske, Lisa; Knight, Claire; Ferris, Vanessa; Njiru, Zablon; Hamilton, Patrick; Lehane, Stella; Lehane, Mike; Gibson, Wendy

    2003-11-01

    The accurate identification of trypanosome species and subspecies remains a challenging task in the epidemiology of human and animal trypanosomiasis in tropical Africa. Currently, there are specific PCR tests to identify about 10 different species, subspecies or subgroups of African tsetse-transmitted trypanosomes. These PCR tests have been used here to identify trypanosomes in four species of tsetse (Glossina brevipalpis, G. pallidipes, G. swynnertoni, G. morsitans morsitans) from two areas of Tanzania. PCR using species-specific primers was performed on 1041 dissection-positive proboscides, giving an overall positive identification in 254 (24%). Of these, 61 proboscides (24%) contained two or more trypanosomes. The trypanosome with the greatest overall prevalence at both field sites was Trypanosoma simiae Tsavo, which was identified in a total of 118 infected tsetse proboscides (46%). At Pangani, T. godfreyi was found in G. pallidipes but not in G. brevipalpis, suggesting that these flies might have different susceptibility to this trypanosome or might have fed on a different range of hosts. A high proportion (about 75%) of trypanosome infections remained unidentified. To investigate the identity of these unidentified samples, we used primers complementary to the conserved regions of trypanosomal small subunit ribosomal RNA (ssu rRNA) genes to amplify variable segments of the gene. Amplified DNA fragments were cloned, sequenced and compared with ssu rRNA genes on database of known trypanosome species. In this way, we have tentatively identified two new trypanosomes: a trypanosome related to Trypanosoma vivax and a trypanosome related to T. godfreyi. The T. godfreyi-related trypanosome occurred frequently in the Tanzanian field samples and appears to be widespread. Molecular identification of these two new trypanosomes should now facilitate their isolation and full biological characterisation. PMID:14636688

  2. Detection and characterization of Wolbachia infections in laboratory and natural populations of different species of tsetse flies (genus Glossina)

    PubMed Central

    2012-01-01

    Background Wolbachia is a genus of endosymbiotic α-Proteobacteria infecting a wide range of arthropods and filarial nematodes. Wolbachia is able to induce reproductive abnormalities such as cytoplasmic incompatibility (CI), thelytokous parthenogenesis, feminization and male killing, thus affecting biology, ecology and evolution of its hosts. The bacterial group has prompted research regarding its potential for the control of agricultural and medical disease vectors, including Glossina spp., which transmits African trypanosomes, the causative agents of sleeping sickness in humans and nagana in animals. Results In the present study, we employed a Wolbachia specific 16S rRNA PCR assay to investigate the presence of Wolbachia in six different laboratory stocks as well as in natural populations of nine different Glossina species originating from 10 African countries. Wolbachia was prevalent in Glossina morsitans morsitans, G. morsitans centralis and G. austeni populations. It was also detected in G. brevipalpis, and, for the first time, in G. pallidipes and G. palpalis gambiensis. On the other hand, Wolbachia was not found in G. p. palpalis, G. fuscipes fuscipes and G. tachinoides. Wolbachia infections of different laboratory and natural populations of Glossina species were characterized using 16S rRNA, the wsp (Wolbachia Surface Protein) gene and MLST (Multi Locus Sequence Typing) gene markers. This analysis led to the detection of horizontal gene transfer events, in which Wobachia genes were inserted into the tsetse flies fly nuclear genome. Conclusions Wolbachia infections were detected in both laboratory and natural populations of several different Glossina species. The characterization of these Wolbachia strains promises to lead to a deeper insight in tsetse flies-Wolbachia interactions, which is essential for the development and use of Wolbachia-based biological control methods. PMID:22376025

  3. Virology, Epidemiology and Pathology of Glossina Hytrosavirus, and Its Control Prospects in Laboratory Colonies of the Tsetse Fly, Glossina pallidipes (Diptera; Glossinidae)

    PubMed Central

    Kariithi, Henry M.; van Oers, Monique M.; Vlak, Just M.; Vreysen, Marc J. B.; Parker, Andrew G.; Abd-Alla, Adly M. M.

    2013-01-01

    The Glossina hytrosavirus (family Hytrosaviridae) is a double-stranded DNA virus with rod-shaped, enveloped virions. Its 190 kbp genome encodes 160 putative open reading frames. The virus replicates in the nucleus, and acquires a fragile envelope in the cell cytoplasm. Glossina hytrosavirus was first isolated from hypertrophied salivary glands of the tsetse fly, Glossina pallidipes Austen (Diptera; Glossinidae) collected in Kenya in 1986. A certain proportion of laboratory G. pallidipes flies infected by Glossina hytrosavirus develop hypertrophied salivary glands and midgut epithelial cells, gonadal anomalies and distorted sex-ratios associated with reduced insemination rates, fecundity and lifespan. These symptoms are rare in wild tsetse populations. In East Africa, G. pallidipes is one of the most important vectors of African trypanosomosis, a debilitating zoonotic disease that afflicts 37 sub-Saharan African countries. There is a large arsenal of control tactics available to manage tsetse flies and the disease they transmit. The sterile insect technique (SIT) is a robust control tactic that has shown to be effective in eradicating tsetse populations when integrated with other control tactics in an area-wide integrated approach. The SIT requires production of sterile male flies in large production facilities. To supply sufficient numbers of sterile males for the SIT component against G. pallidipes, strategies have to be developed that enable the management of the Glossina hytrosavirus in the colonies. This review provides a historic chronology of the emergence and biogeography of Glossina hytrosavirus, and includes researches on the infectomics (defined here as the functional and structural genomics and proteomics) and pathobiology of the virus. Standard operation procedures for viral management in tsetse mass-rearing facilities are proposed and a future outlook is sketched. PMID:26462422

  4. The transcriptional signatures of Sodalis glossinidius in the Glossina palpalis gambiensis flies negative for Trypanosoma brucei gambiense contrast with those of this symbiont in tsetse flies positive for the parasite: possible involvement of a Sodalis-hosted prophage in fly Trypanosoma refractoriness?

    PubMed

    Hamidou Soumana, Illiassou; Loriod, Béatrice; Ravel, Sophie; Tchicaya, Bernadette; Simo, Gustave; Rihet, Pascal; Geiger, Anne

    2014-06-01

    Tsetse flies, such as Glossina palpalis gambiensis, are blood-feeding insects that could be subverted as hosts of the parasite Trypanosoma brucei gambiense: initiated in the tsetse fly mid gut, the developmental program of this parasite further proceeds in the salivary glands. The flies act as vectors of this human-invasive parasite when their salivary glands sustain the generation of metacyclic trypomastigotes, the exclusive morphotypes pre-programmed to further develop in the human individuals. Briefly, once the metacyclic trypomastigotes have been deposited in the skin of humans from whom the parasite-hosting tsetse flies are taking their blood meals, the complex developmental program of this Trypanosoma brucei subspecies can result in a severe disease named sleeping sickness. Unveiling the processes that could prevent, in tsetse flies, the developmental program of T. b. gambiense could contribute reducing the prevalence of the disease. Using a global approach, we were curious to extract transcriptional signatures of Sodalis glossinidius, a symbiont hosted by three distinct groups of tsetse flies. To meet this objective, the transcriptome of S. glossinidius from susceptible and refractory tsetse flies was analyzed at 3, 10 and 20 days after flies blood feed on T. b. gambiense-hosting mice. Within this temporal window, 176 trypanosome responsive genes were shown to interact in well-defined patterns making it possible to distinguish flies susceptible to the parasite infection from refractory flies. Among the modulated transcripts in the symbiont population of flies refractory to trypanosome infection many were shown to cluster within the following networks: "lysozyme activity, bacteriolytic enzyme, bacterial cytolysis, cell wall macromolecule catabolic process". These novel data are further delineated in the following questions: could the activation of prophage hosted by S. glossinidius lead to the release of bacterial agonists that trigger the tsetse fly immune

  5. [A community battle against a tropical endemic disease: supernatural beliefs and tsetse fly traps in the Congo].

    PubMed

    Leygues, M; Gouteux, J P

    1989-01-01

    Community participation in the control of tropical diseases is of major importance nowadays, particularly for sleeping sickness (Gambian trypanosomiasis). Indeed, the authoritarian measures used with success to control this disease during the colonial period are difficult to apply now. Moreover, in the Congo, cultural and financial restrictions are such that patients sometimes refuse treatment. Thus, it has become highly desirable for vector control to be carried out at the same time as the treatment of patients. Trapping tsetse flies (or Glossina) is an ingenious and effective anti-vectorial method which has been tested in 55 villages of the Congo. The blue-black pyramid trap used does not require insecticide impregnation, and is hung in the branches by means of a capture-bag containing diesel oil. These trials, conducted in the sleeping sickness focus of the Niari river, have demonstrated the feasibility of local communities taking over the responsibility for the traps, while at the same time revealing certain obstacles. Indeed, the efficacy of this method depends on the optimization of trapping. This involves the determination of strategic capture sites by periodically harvesting the flies and moving the traps in order to catch the maximum number of flies. It also involves regular maintenance of the traps (i.e. repairs, checking the capture bag, clearing vegetation...). However, although these activities would appear to be feasible at community level, they are not always carried out satisfactorily. This results in the insufficient viability of the traps and finally to the reinvasion of the treated area by the tsetse. This study presents aspects of the present-day Congolese socio-cultural environment characterized by the revitalization of traditional Bantou mysticism and religious worship. The possessors of the 'Vital Force' or Kundu (sorcerers and healers) are confronted at night in an 'over-reality' consisting of the visible reality together with innumberable

  6. Detection and identification of pathogenic trypanosome species in tsetse flies along the Comoé River in Côte d’Ivoire

    PubMed Central

    Djohan, Vincent; Kaba, Dramane; Rayaissé, Jean-Baptiste; Dayo, Guiguigbaza-Kossigan; Coulibaly, Bamoro; Salou, Ernest; Dofini, Fabien; Kouadio, Alain De Marie Koffi; Menan, Hervé; Solano, Philippe

    2015-01-01

    In order to identify pathogenic trypanosomes responsible for African trypanosomiasis, and to better understand tsetse-trypanosome relationships, surveys were undertaken in three sites located in different eco-climatic areas in Côte d’Ivoire during the dry and rainy seasons. Tsetse flies were caught during five consecutive days using biconical traps, dissected and microscopically examined looking for trypanosome infection. Samples from infected flies were tested by PCR using specific primers for Trypanosoma brucei s.l., T. congolense savannah type, T. congolense forest type and T. vivax. Of 1941 tsetse flies caught including four species, i.e. Glossina palpalis palpalis, G. p. gambiensis, G. tachinoides and G. medicorum, 513 (26%) were dissected and 60 (12%) were found positive by microscopy. Up to 41% of the infections were due to T. congolense savannah type, 30% to T. vivax, 20% to T. congolense forest type and 9% due to T. brucei s.l. All four trypanosome species and subgroups were identified from G. tachinoides and G. p. palpalis, while only two were isolated from G. p. gambiensis (T. brucei s.l., T. congolense savannah type) and G. medicorum (T. congolense forest, savannah types). Mixed infections were found in 25% of cases and all involved T. congolense savannah type with another trypanosome species. The simultaneous occurrence of T. brucei s.l., and tsetse from the palpalis group may suggest that human trypanosomiasis can still be a constraint in these localities, while high rates of T. congolense and T. vivax in the area suggest a potential risk of animal trypanosomiasis in livestock along the Comoé River. PMID:26035296

  7. Detection and identification of pathogenic trypanosome species in tsetse flies along the Comoé River in Côte d'Ivoire.

    PubMed

    Djohan, Vincent; Kaba, Dramane; Rayaissé, Jean-Baptiste; Dayo, Guiguigbaza-Kossigan; Coulibaly, Bamoro; Salou, Ernest; Dofini, Fabien; Kouadio, Alain De Marie Koffi; Menan, Hervé; Solano, Philippe

    2015-01-01

    In order to identify pathogenic trypanosomes responsible for African trypanosomiasis, and to better understand tsetse-trypanosome relationships, surveys were undertaken in three sites located in different eco-climatic areas in Côte d'Ivoire during the dry and rainy seasons. Tsetse flies were caught during five consecutive days using biconical traps, dissected and microscopically examined looking for trypanosome infection. Samples from infected flies were tested by PCR using specific primers for Trypanosoma brucei s.l., T. congolense savannah type, T. congolense forest type and T. vivax. Of 1941 tsetse flies caught including four species, i.e. Glossina palpalis palpalis, G. p. gambiensis, G. tachinoides and G. medicorum, 513 (26%) were dissected and 60 (12%) were found positive by microscopy. Up to 41% of the infections were due to T. congolense savannah type, 30% to T. vivax, 20% to T. congolense forest type and 9% due to T. brucei s.l. All four trypanosome species and subgroups were identified from G. tachinoides and G. p. palpalis, while only two were isolated from G. p. gambiensis (T. brucei s.l., T. congolense savannah type) and G. medicorum (T. congolense forest, savannah types). Mixed infections were found in 25% of cases and all involved T. congolense savannah type with another trypanosome species. The simultaneous occurrence of T. brucei s.l., and tsetse from the palpalis group may suggest that human trypanosomiasis can still be a constraint in these localities, while high rates of T. congolense and T. vivax in the area suggest a potential risk of animal trypanosomiasis in livestock along the Comoé River. PMID:26035296

  8. Artificial larviposition sites for field collections of the puparia of tsetse flies Glossina pallidipes and G. m. morsitans (Diptera: Glossinidae).

    PubMed

    Muzari, M O; Hargrove, J W

    2005-06-01

    Tsetse flies Glossina pallidipes Austen and G. morsitans morsitans Westwood deposit their larvae in warthog burrows, in August-November, at Rekomitjie Research Station, Zambezi Valley, Zimbabwe. Artificial burrows, made from 200-l steel drums, were used to sample these flies and to collect their puparia. Sand-filled plastic trays in the burrows served as a substrate for larval deposition. The sand was covered with c. 2 cm of leaf litter after it was shown that only 3% of larvae were deposited on bare sand if both substrates were available. Other burrow modifications - artificially shading the burrow entrance, increasing the relative humidity inside the burrow, or reducing the size of the burrow entrance - significantly decreased deposition rates. The use of burrows in the hot season results in a reduction in the temperature experienced by the puparium towards an assumed optimum level of 26 degrees C. Artificial burrows maintained a mean temperature of 28.5 degrees C during October-November 1998, c. 2.5 degrees C cooler than ambient; earlier work has shown that natural burrows can be c. 5 degrees C cooler than ambient at these times. This may explain why natural burrows in full sunlight were used for larviposition, whereas artificial burrows were used only when they were in deep shade, and why significantly higher proportions of G. pallidipes were found in natural (66%) than in artificial burrows (34%). Better-insulated artificial burrows might produce more puparia with higher proportions of G. pallidipes. Burrows become waterlogged during the rains and may be too cool for optimum puparial development during the rest of the year. The percentages of G. m. morsitans in catches of females from artificial burrows, refuges and odour-baited traps were 34, 26 and < 10% respectively. Traps are biased in favour of G. pallidipes; artificial burrows may show a bias in favour of G. m. morsitans that is a function of temperature. Artificial warthog burrows provide a convenient

  9. Improving the Cost-Effectiveness of Visual Devices for the Control of Riverine Tsetse Flies, the Major Vectors of Human African Trypanosomiasis

    PubMed Central

    Esterhuizen, Johan; Rayaisse, Jean Baptiste; Tirados, Inaki; Mpiana, Serge; Solano, Philippe; Vale, Glyn A.; Lehane, Michael J.; Torr, Stephen J.

    2011-01-01

    Control of the Riverine (Palpalis) group of tsetse flies is normally achieved with stationary artificial devices such as traps or insecticide-treated targets. The efficiency of biconical traps (the standard control device), 1×1 m black targets and small 25×25 cm targets with flanking nets was compared using electrocuting sampling methods. The work was done on Glossina tachinoides and G. palpalis gambiensis (Burkina Faso), G. fuscipes quanzensis (Democratic Republic of Congo), G. f. martinii (Tanzania) and G. f. fuscipes (Kenya). The killing effectiveness (measured as the catch per m2 of cloth) for small targets plus flanking nets is 5.5–15X greater than for 1 m2 targets and 8.6–37.5X greater than for biconical traps. This has important implications for the costs of control of the Riverine group of tsetse vectors of sleeping sickness. PMID:21829743

  10. Screening of Trypanosoma brucei gambiense in Domestic Livestock and Tsetse Flies from an Insular Endemic Focus (Luba, Equatorial Guinea)

    PubMed Central

    Cordon-Obras, Carlos; García-Estébanez, Carmen; Ndong-Mabale, Nicolás; Abaga, Simón; Ndongo-Asumu, Pedro; Benito, Agustín; Cano, Jorge

    2010-01-01

    Background Sleeping sickness is spread over 36 Sub-Saharan African countries. In West and Central Africa, the disease is caused by Trypanosoma brucei gambiense, which produces a chronic clinical manifestation. The Luba focus (Bioko Island, Equatorial Guinea) has not reported autochthonous sleeping sickness cases since 1995, but given the complexity of the epidemiological cycle, the elimination of the parasite in the environment is difficult to categorically ensure. Methodology/Principal Findings The aim of this work is to assess, by a molecular approach (Polymerase Chain Reaction, PCR), the possible permanence of T. b. gambiense in the vector (Glossina spp.) and domestic fauna in order to improve our understanding of the epidemiological situation of the disease in an isolated focus considered to be under control. The results obtained show the absence of the parasite in peridomestic livestock but its presence, although at very low rate, in the vector. On the other hand, interesting entomological data highlight that an elevated concentration of tsetse flies was observed in two out of the ten villages considered to be in the focus. Conclusions These findings demonstrate that even in conditions of apparent control, a complete parasite clearance is difficult to achieve. Further investigations must be focused on animal reservoirs which could allow the parasites to persist without leading to human cases. In Luba, where domestic livestock are scarcer than other foci in mainland Equatorial Guinea, the epidemiological significance of wild fauna should be assessed to establish their role in the maintenance of the infection. PMID:20544031

  11. Interwoven Biology of the Tsetse Holobiont

    PubMed Central

    Snyder, Anna K.

    2013-01-01

    Microbial symbionts can be instrumental to the evolutionary success of their hosts. Here, we discuss medically significant tsetse flies (Diptera: Glossinidae), a group comprised of over 30 species, and their use as a valuable model system to study the evolution of the holobiont (i.e., the host and associated microbes). We first describe the tsetse microbiota, which, despite its simplicity, harbors a diverse range of associations. The maternally transmitted microbes consistently include two Gammaproteobacteria, the obligate mutualists Wigglesworthia spp. and the commensal Sodalis glossinidius, along with the parasitic Alphaproteobacteria Wolbachia. These associations differ in their establishment times, making them unique and distinct from previously characterized symbioses, where multiple microbial partners have associated with their host for a significant portion of its evolution. We then expand into discussing the functional roles and intracommunity dynamics within this holobiont, which enhances our understanding of tsetse biology to encompass the vital functions and interactions of the microbial community. Potential disturbances influencing the tsetse microbiome, including salivary gland hypertrophy virus and trypanosome infections, are highlighted. While previous studies have described evolutionary consequences of host association for symbionts, the initial steps facilitating their incorporation into a holobiont and integration of partner biology have only begun to be explored. Research on the tsetse holobiont will contribute to the understanding of how microbial metabolic integration and interdependency initially may develop within hosts, elucidating mechanisms driving adaptations leading to cooperation and coresidence within the microbial community. Lastly, increased knowledge of the tsetse holobiont may also contribute to generating novel African trypanosomiasis disease control strategies. PMID:23836873

  12. Effects of flow rate and temperature on cyclic gas exchange in tsetse flies (Diptera, Glossinidae).

    PubMed

    Terblanche, John S; Chown, Steven L

    2010-05-01

    Air flow rates may confound the investigation and classification of insect gas exchange patterns. Here we report the effects of flow rates (50, 100, 200, 400 ml min(-1)) on gas exchange patterns in wild-caught Glossina morsitans morsitans from Zambia. At rest, G. m. morsitans generally showed continuous or cyclic gas exchange (CGE) but no evidence of discontinuous gas exchange (DGE). Flow rates had little influence on the ability to detect CGE in tsetse, at least in the present experimental setup and under these laboratory conditions. Importantly, faster flow rates resulted in similar gas exchange patterns to those identified at lower flower rates suggesting that G. m. morsitans did not show DGE which had been incorrectly identified as CGE at lower flow rates. While CGE cycle frequency was significantly different among the four flow rates (p<0.05), the direction of effects was inconsistent. Indeed, inter-individual variation in CGE cycle frequency exceeded flow rate treatment variation. Using a laboratory colony of closely related, similar-sized G. morsitans centralis we subsequently investigated the effects of temperature, gender and feeding status on CGE pattern variation since these factors can influence insect metabolic rates. At 100 ml min(-1) CGE was typical of G. m. centralis at rest, although it was significantly more common in females than in males (57% vs. 43% of 14 individuals tested per gender). In either sex, temperature (20, 24, 28 and 32 degrees C) had little influence on the number of individuals showing CGE. However, increases in metabolic rate with temperature were modulated largely by increases in burst volume and cycle frequency. This is unusual among insects showing CGE or DGE patterns because increases in metabolic rate are usually modulated by increases in frequency, but either no change or a decline in burst volume. PMID:20399350

  13. Identification of different trypanosome species in the mid-guts of tsetse flies of the Malanga (Kimpese) sleeping sickness focus of the Democratic Republic of Congo

    PubMed Central

    2012-01-01

    Background The Malanga sleeping sickness focus of the Democratic Republic of Congo has shown an epidemic evolution of disease during the last century. However, following case detection and treatment, the prevalence of the disease decreased considerably. No active survey has been undertaken in this focus for a couple of years. To understand the current epidemiological status of sleeping sickness as well as the animal African trypanosomiasis in the Malanga focus, we undertook the identification of tsetse blood meals as well as different trypanosome species in flies trapped in this focus. Methods Pyramidal traps were use to trap tsetse flies. All flies caught were identified and live flies were dissected and their mid-guts collected. Fly mid-gut was used for the molecular identification of the blood meal source, as well as for the presence of different trypanosome species. Results About 949 Glossina palpalis palpalis were trapped; 296 (31.2%) of which were dissected, 60 (20.3%) blood meals collected and 57 (19.3%) trypanosome infections identified. The infection rates were 13.4%, 5.1%, 3.5% and 0.4% for Trypanosoma congolense savannah type, Trypanosoma brucei s.l., Trypanosoma congolense forest type and Trypanosoma vivax, respectively. Three mixed infections including Trypanosoma brucei s.l. and Trypanosoma congolense savannah type, and one mixed infection of Trypanosoma vivax and Trypanosoma congolense savannah type were identified. Eleven Trypanosoma brucei gambiense infections were identified; indicating an active circulation of this trypanosome subspecies. Of all the identified blood meals, about 58.3% were identified as being taken on pigs, while 33.3% and 8.3% were from man and other mammals, respectively. Conclusion The presence of Trypanosoma brucei in tsetse mid-guts associated with human blood meals is indicative of an active transmission of this parasite between tsetse and man. The considerable number of pig blood meals combined with the circulation of

  14. A Molecular Method to Discriminate between Mass-Reared Sterile and Wild Tsetse Flies during Eradication Programmes That Have a Sterile Insect Technique Component

    PubMed Central

    Pagabeleguem, Soumaïla; Gimonneau, Geoffrey; Seck, Momar Talla; Vreysen, Marc J. B.; Sall, Baba; Rayaissé, Jean-Baptiste; Sidibé, Issa; Bouyer, Jérémy; Ravel, Sophie

    2016-01-01

    Background The Government of Senegal has embarked several years ago on a project that aims to eradicate Glossina palpalis gambiensis from the Niayes area. The removal of the animal trypanosomosis would allow the development more efficient livestock production systems. The project was implemented using an area-wide integrated pest management strategy including a sterile insect technique (SIT) component. The released sterile male flies originated from a colony from Burkina Faso. Methodology/Principal Findings Monitoring the efficacy of the sterile male releases requires the discrimination between wild and sterile male G. p. gambiensis that are sampled in monitoring traps. Before being released, sterile male flies were marked with a fluorescent dye powder. The marking was however not infallible with some sterile flies only slightly marked or some wild flies contaminated with a few dye particles in the monitoring traps. Trapped flies can also be damaged due to predation by ants, making it difficult to discriminate between wild and sterile males using a fluorescence camera and / or a fluorescence microscope. We developed a molecular technique based on the determination of cytochrome oxidase haplotypes of G. p. gambiensis to discriminate between wild and sterile males. DNA was isolated from the head of flies and a portion of the 5’ end of the mitochondrial gene cytochrome oxidase I was amplified to be finally sequenced. Our results indicated that all the sterile males from the Burkina Faso colony displayed the same haplotype and systematically differed from wild male flies trapped in Senegal and Burkina Faso. This allowed 100% discrimination between sterile and wild male G. p. gambiensis. Conclusions/Significance This tool might be useful for other tsetse control campaigns with a SIT component in the framework of the Pan-African Tsetse and Trypanosomosis Eradication Campaign (PATTEC) and, more generally, for other vector or insect pest control programs. PMID:26901049

  15. Mortality estimates from ovarian age distributions of the tsetse fly Glossina pallidipes Austen sampled in Zimbabwe suggest the need for new analytical approaches.

    PubMed

    Hargrove, J W; Ackley, S F

    2015-06-01

    Mortality estimates are central to understanding tsetse fly population dynamics, but are difficult to acquire from wild populations. They can be obtained from age distribution data but, with limited data, it is unclear whether the assumptions required to make the estimates are satisfied and, if not, how violations affect the estimates. We evaluate the assumptions required for existing mortality estimation techniques using long-term longitudinal ovarian dissection data from 144,106 female tsetse, Glossina pallidipes Austen, captured in Zimbabwe between 1988 and 1999. At the end of the hot-dry season each year, mean ovarian ages peaked, and maximum-likelihood mortality estimates declined to low levels, contrary to mark-recapture estimates, suggesting violations of the assumptions underlying the estimation technique. We demonstrate that age distributions are seldom stable for G. pallidipes at our study site, and hypothesize that this is a consequence of a disproportionate increase in the mortality of pupae and young adults at the hottest times of the year. Assumptions of age-independent mortality and capture probability are also violated, the latter bias varying with capture method and with pregnancy and nutritional status. As a consequence, mortality estimates obtained from ovarian dissection data are unreliable. To overcome these problems we suggest simulating female tsetse populations, using dynamical modelling techniques that make no assumptions about the stability of the age distribution. PMID:25804211

  16. Molecular aspects of viviparous reproductive biology of the tsetse fly (Glossina morsitans morsitans): Regulation of yolk and milk gland protein synthesis

    PubMed Central

    Attardo, Geoffrey M.; Guz, Nurper; Strickler-Dinglasan, Patricia; Aksoy, Serap

    2006-01-01

    Tsetse fly (Diptera: Glossinidae) viviparous reproductive physiology remains to be explored at the molecular level. Adult females carry their young in utero for the duration of embryonic and larval development, all the while supplying their offspring with nutrients in the form of a “milk” substance secreted from a modified accessory gland. Flies give birth to fully developed third instar larvae that pupariate shortly after birth. Here, we describe the spatial and temporal expression dynamics of two reproduction-associated genes and their products synthesized during the first and second gonotrophic cycles. The proteins studied include a putative yolk protein, Glossina morsitans morsitans yolk protein 1 (GmmYP1) and the major protein found in tsetse “milk” secretions (Glossina morsitans morsitans milk gland protein, GmmMGP). Developmental stage and tissue-specific expression of GmmYP1 show its presence exclusively in the reproductive tract of the fly during oogenesis, suggesting that GmmYP1 acts as a vitellogenic protein. Transcripts for GmmMGP are present only in the milk gland tissue and increase in coordination with the process of larvigenesis. Similarly, GmmMGP can be detected at the onset of larvigenesis in the milk gland, and is present during the full duration of pregnancy. Expression of GmmMGP is restricted to the adult stage and is not detected in the immature developmental stages. These phenomena indicate that the protein is transferred from mother to larvae as nourishment during its development. These results demonstrate that both GmmYP1 and GmmMGP are involved in tsetse reproductive biology, the former associated with the process of oogenesis and the latter with larvigenesis. PMID:17046784

  17. Trypanosome Transmission Dynamics in Tsetse

    PubMed Central

    Aksoy, Serap; Weiss, Brian L.; Attardo, Geoff M.

    2014-01-01

    Tsetse flies (Diptera:Glossinidae) are vectors of African trypanosomes. Tsetse undergo viviparous reproductive biology, and depend on their obligate endosymbiont (genus Wigglesworthia) for the maintenance of fecundity and immune system development. Trypanosomes establish infections in the midgut and salivary glands of the fly. Tsetse’s resistance to trypanosome infection increases as a function of age. Among the factors that mediate resistance to parasites are antimicrobial peptides (AMPs) produced by the Immune deficiency (Imd) signaling pathway, peptidoglycan recognition protein (PGRP) LB, tsetse-EP protein and the integrity of the midgut peritrophic matrix (PM) barrier. The presence of obligate Wigglesworthia during larval development is essential for adult immune system maturation and PM development. Thus, Wigglesworthia prominently influences the vector competency of it’s tsetse host. PMID:25580379

  18. Evaluation of the Cost-Effectiveness of Pyramidal, Modified Pyramidal and Monoscreen Traps for the Control of the Tsetse Fly, Glossina fuscipes fuscipes, in Uganda

    PubMed Central

    Abila, P.P.; Okello-Onen, J.; Okoth, J.O.; Matete, G.O.; Wamwiri, F.; Politzar, H.

    2007-01-01

    Several trap designs have been used for sampling and control of the tsetse fly, Glossina fuscipes fuscipes, Newstead (Diptera: Glossinidae) based on preferences of individual researchers and program managers with little understanding of the comparative efficiency and cost-effectiveness of trap designs. This study was carried out to evaluate the cost-effectiveness of four commonly used trap designs: monoscreen, modified pyramidal and pyramidal, relative to the standard biconical trap. The study was performed under high tsetse challenge on Buvuma Island, Lake Victoria, Uganda, using a 4 × 4 Latin square design replicated 3 times, so as to separate the trap positions and day effects from the treatment effect. A total of 12 trap positions were tested over 4 days. The monoscreen trap caught significantly higher numbers of G. f. fuscipes (P<0.05) followed by biconical, modified pyramidal and pyramidal traps. Analysis of variance showed that treatment factor was a highly significant source of variation in the data. The index of increase in trap catches relative biconical were O.60 (pyramidal), 0.68 (modified pyramidal) and 1.25 (monoscreen). The monoscreen trap was cheaper (US$ 2.61) and required less material to construct than pyramidal trap (US$ 3.48), biconical and the modified pyramidal traps (US$ 4.06 each). Based on the number of flies caught per meter of material, the monoscreen trap proved to be the most cost-effective (232 flies/m) followed by the biconical trap (185 flies/m). The modified pyramidal and the pyramidal traps caught 112 and 125 flies/m, respectively. PMID:20345292

  19. Standardizing Visual Control Devices for Tsetse Flies: East African Species Glossina swynnertoni

    PubMed Central

    Mramba, Furaha; Oloo, Francis; Byamungu, Mechtilda; Kröber, Thomas; McMullin, Andrew; Mihok, Steve; Guerin, Patrick M.

    2013-01-01

    Background Here we set out to standardize long-lasting, visually-attractive devices for Glossina swynnertoni, a vector of both human and animal trypanosomiasis in open savannah in Tanzania and Kenya, and in neighbouring conservation areas used by pastoralists. The goal was to determine the most practical device/material that would induce the strongest landing response in G. swynnertoni for use in area-wide population suppression of this fly with insecticide-impregnated devices. Methods and Findings Trials were conducted in wet and dry seasons in the Serengeti and Maasai Mara to measure the performance of traps and targets of different sizes and colours, with and without chemical baits, at different population densities and under different environmental conditions. Adhesive film was used as a simple enumerator at these remote locations to compare trapping efficiencies of devices. Independent of season or presence of chemical baits, targets in phthalogen blue or turquoise blue cloth with adhesive film were the best devices for capturing G. swynnertoni in all situations, catching up to 19 times more flies than pyramidal traps. Baiting with chemicals did not affect the relative performance of devices. Fly landings were two times higher on 1 m2 blue-black targets as on pyramidal traps when equivalent areas of both were covered with adhesive film. Landings on 1 m2 blue-black targets were compared to those on smaller phthalogen blue 0.5 m2 all-blue or blue-black-blue cloth targets, and to landings on all-blue plastic 0.32–0.47 m2 leg panels painted in phthalogen blue. These smaller targets and leg panels captured equivalent numbers of G. swynnertoni per unit area as bigger targets. Conclusions Leg panels and 0.5 m2 cloth targets show promise as cost effective devices for management of G. swynnertoni as they can be used for both control (insecticide-impregnated cloth) and for sampling (rigid plastic with insect glue or adhesive film) of populations. PMID:23469299

  20. A Novel Highly Divergent Protein Family Identified from a Viviparous Insect by RNA-seq Analysis: A Potential Target for Tsetse Fly-Specific Abortifacients

    PubMed Central

    Benoit, Joshua B.; Attardo, Geoffrey M.; Michalkova, Veronika; Krause, Tyler B.; Bohova, Jana; Zhang, Qirui; Baumann, Aaron A.; Mireji, Paul O.; Takáč, Peter; Denlinger, David L.; Ribeiro, Jose M.; Aksoy, Serap

    2014-01-01

    In tsetse flies, nutrients for intrauterine larval development are synthesized by the modified accessory gland (milk gland) and provided in mother's milk during lactation. Interference with at least two milk proteins has been shown to extend larval development and reduce fecundity. The goal of this study was to perform a comprehensive characterization of tsetse milk proteins using lactation-specific transcriptome/milk proteome analyses and to define functional role(s) for the milk proteins during lactation. Differential analysis of RNA-seq data from lactating and dry (non-lactating) females revealed enrichment of transcripts coding for protein synthesis machinery, lipid metabolism and secretory proteins during lactation. Among the genes induced during lactation were those encoding the previously identified milk proteins (milk gland proteins 1–3, transferrin and acid sphingomyelinase 1) and seven new genes (mgp4–10). The genes encoding mgp2–10 are organized on a 40 kb syntenic block in the tsetse genome, have similar exon-intron arrangements, and share regions of amino acid sequence similarity. Expression of mgp2–10 is female-specific and high during milk secretion. While knockdown of a single mgp failed to reduce fecundity, simultaneous knockdown of multiple variants reduced milk protein levels and lowered fecundity. The genomic localization, gene structure similarities, and functional redundancy of MGP2–10 suggest that they constitute a novel highly divergent protein family. Our data indicates that MGP2–10 function both as the primary amino acid resource for the developing larva and in the maintenance of milk homeostasis, similar to the function of the mammalian casein family of milk proteins. This study underscores the dynamic nature of the lactation cycle and identifies a novel family of lactation-specific proteins, unique to Glossina sp., that are essential to larval development. The specificity of MGP2–10 to tsetse and their critical role during

  1. Tsetse flies, biodiversity and the control of sleeping sickness. Structure of a Glossina guild in southwest Côte d'Ivoire

    NASA Astrophysics Data System (ADS)

    Gouteux, Jean-Paul; Jarry, Marc

    1998-10-01

    Tsetse fly guilds usually comprise two or three species. However, the presence of only one species often indicates that anthropic modifications have occurred in the habitat. On the other hand, more than three species are seldom observed in the same zone and the presence of five is extremely rare. Previous detailed studies have always focused on a single species, without taking into account interactions between species. The authors present the results of observations carried out in Côte d'Ivoire on a guild consisting of Glossina palpalis, G. pallicera, G. nigrofusca, G. longipalpis and G. fusca. Glossina have unusual physiological characteristics: both sexes feed exclusively on blood, they have a highly developed larviparity associated with a slow rhythm of reproduction (one larva about every ten days) and a long life expectancy (up to nine months). The authors report on the size of the flies, the hosts, feeding habits, ecodistribution, resting-places, flying heights, circadian activity and seasonal dynamics of tsetse fly populations in order to understand the organization of this guild. Each species feeds indiscriminately on a wide spectrum of hosts without a particular preference. Different species shared habitat (ecodistribution) and time (circadian and annual cycles). Thus, during an annual cycle, there is always a slight time-lag between the density peaks of G. palpalis and G. pallicera, the peak of the dominant species immediately preceding that of the dominated species. In a village area, 77% of the variations in density of G. pallicera were accounted for by the previous variations in density of the dominant species ( G. palpalis). Experiments show that G. pallicera and G. nigrofusca immediately invade anthropic areas from which G. palpalis has been partially removed by trapping. These species thus appear to confront each other in a global dynamic equilibrium. This suggests that there is a 'conflicting coexistence' between the cohabiting species. Whereas the

  2. Standardising Visual Control Devices for Tsetse Flies: Central and West African Species Glossina palpalis palpalis

    PubMed Central

    Kaba, Dramane; Zacarie, Tusevo; M'Pondi, Alexis Makumyaviri; Njiokou, Flobert; Bosson-Vanga, Henriette; Kröber, Thomas; McMullin, Andrew; Mihok, Steve; Guerin, Patrick M.

    2014-01-01

    Background Glossina palpalis palpalis (G. p. palpalis) is one of the principal vectors of sleeping sickness and nagana in Africa with a geographical range stretching from Liberia in West Africa to Angola in Central Africa. It inhabits tropical rain forest but has also adapted to urban settlements. We set out to standardize a long-lasting, practical and cost-effective visually attractive device that would induce the strongest landing response by G. p. palpalis for future use as an insecticide-impregnated tool in area-wide population suppression of this fly across its range. Methodology/Principal Findings Trials were conducted in wet and dry seasons in the Ivory Coast, Cameroon, the Democratic Republic of Congo and Angola to measure the performance of traps (biconical, monoconical and pyramidal) and targets of different sizes and colours, with and without chemical baits, at different population densities and under different environmental conditions. Adhesive film was used as a practical enumerator at these remote locations to compare landing efficiencies of devices. Independent of season and country, both phthalogen blue-black and blue-black-blue 1 m2 targets covered with adhesive film proved to be as good as traps in phthalogen blue or turquoise blue for capturing G. p. palpalis. Trap efficiency varied (8–51%). There was no difference between the performance of blue-black and blue-black-blue 1 m2 targets. Baiting with chemicals augmented the overall performance of targets relative to traps. Landings on smaller phthalogen blue-black 0.25 m2 square targets were not significantly different from either 1 m2 blue-black-blue or blue-black square targets. Three times more flies were captured per unit area on the smaller device. Conclusions/Significance Blue-black 0.25 m2 cloth targets show promise as simple cost effective devices for management of G. p. palpalis as they can be used for both control when impregnated with insecticide and for population sampling when

  3. Lift enhancement in flying snakes

    NASA Astrophysics Data System (ADS)

    Krishnan, Anush; Socha, John; Vlachos, Pavlos; Barba, Lorena

    2013-11-01

    Flying snakes use a unique method of aerial locomotion: they jump from tree branches, flatten their bodies and undulate through the air to produce a glide. The shape of their body cross-section during the glide plays an important role in generating lift. We present a computational investigation of the aerodynamics of the cross-sectional shape. We performed two-dimensional simulations of incompressible flow past the anatomically correct cross-section of the species Chrysopelea paradisi, which show that a significant enhancement in lift appears at an angle of attack of 35 degrees, for Reynolds numbers 2000 and above. Previous experiments on physical models also demonstrated an increased lift and at the same angle of attack. The simulations point to the lift enhancement arising from the early separation of the boundary layer on the dorsal surface of the snake profile, without stall. The separated shear layer rolls up and interacts with secondary vorticity in the near-wake, inducing the primary vortex to remain closer to the body and thus cause enhanced suction, resulting in higher lift. In physical experiments, the flow is inherently 3-D due to fluid instabilities, and it is intriguing that the enhanced lift also appears in the two-dimensional simulations.

  4. Disappearance of some human African trypanosomiasis transmission foci in Zambia in the absence of a tsetse fly and trypanosomiasis control program over a period of forty years.

    PubMed

    Mwanakasale, Victor; Songolo, Peter

    2011-03-01

    We conducted a situation analysis of human African trypanosomiasis (HAT) in Zambia from January 2000 to April 2007. The aim of this survey was to identify districts in Zambia that were still recording cases of HAT. Three districts namely, Mpika, Chama, and Chipata were found to be still reporting cases of HAT and thus lay in HAT transmission foci in North Eastern Zambia. During the period under review, 24 cases of HAT were reported from these three districts. We thereafter reviewed literature on the occurrence of HAT in Zambia from the early 1960s to mid 1990s. This revealed that HAT transmission foci were widespread in Western, North Western, Lusaka, Eastern, Luapula, and Northern Provinces of Zambia during this period. In this article we have tried to give possible reasons as to why the distribution of HAT transmission foci is so different between before and after 2000 when there has been no active national tsetse fly and trypanosomiasis control program in Zambia. PMID:21276598

  5. A novel application of gene arrays: Escherichia coli array provides insight into the biology of the obligate endosymbiont of tsetse flies

    PubMed Central

    Akman, Leyla; Aksoy, Serap

    2001-01-01

    Symbiotic associations with microorganisms are pivotal in many insects. Yet, the functional roles of obligate symbionts have been difficult to study because it has not been possible to cultivate these organisms in vitro. The medically important tsetse fly (Diptera: Glossinidae) relies on its obligate endosymbiont, Wigglesworthia glossinidia, a member of the Enterobacteriaceae, closely related to Escherichia coli, for fertility and possibly nutrition. We show here that the intracellular Wigglesworthia has a reduced genome size smaller than 770 kb. In an attempt to understand the composition of its genome, we used the gene arrays developed for E. coli. We were able to identify 650 orthologous genes in Wigglesworthia corresponding to ≈85% of its genome. The arrays were also applied for expression analysis using Wigglesworthia cDNA and 61 gene products were detected, presumably coding for some of its most abundant products. Overall, genes involved in cell processes, DNA replication, transcription, and translation were found largely retained in the small genome of Wigglesworthia. In addition, genes coding for transport proteins, chaperones, biosynthesis of cofactors, and some amino acids were found to comprise a significant portion, suggesting an important role for these proteins in its symbiotic life. Based on its expression profile, we predict that Wigglesworthia may be a facultative anaerobic organism that utilizes ammonia as its major source of nitrogen. We present an application of E. coli gene arrays to obtain broad genome information for a closely related organism in the absence of complete genome sequence data. PMID:11404467

  6. Standardizing Visual Control Devices for Tsetse Flies: West African Species Glossina tachinoides, G. palpalis gambiensis and G. morsitans submorsitans

    PubMed Central

    Rayaisse, Jean-Baptiste; Kröber, Thomas; McMullin, Andrew; Solano, Philippe; Mihok, Steve; Guerin, Patrick M.

    2012-01-01

    Here we describe field trials designed to standardize tools for the control of Glossina tachinoides, G. palpalis gambiensis and G.morsitans submorsitans in West Africa based on existing trap/target/bait technology. Blue and black biconical and monoconical traps and 1 m2 targets were made in either phthalogen blue cotton, phthalogen blue cotton/polyester or turquoise blue polyester/viscose (all with a peak reflectance between 450–480 nm) and a black polyester. Because targets were covered in adhesive film, they proved to be significantly better trapping devices than either of the two trap types for all three species (up to 14 times more for G. tachinoides, 10 times more for G. palpalis gambiensis, and 6.5 times for G. morsitans submorsitans). The relative performance of the devices in the three blue cloths tested was the same when unbaited or baited with a mixture of phenols, 1-octen-3-ol and acetone. Since insecticide-impregnated devices act via contact with flies, we enumerated which device (traps or targets) served as the best object for flies to land on by also covering the cloth parts of traps with adhesive film. Despite the fact that the biconical trap proved to be the best landing device for the three species, the difference over the target (20–30%) was not significant. This experiment also allowed an estimation of trap efficiency, i.e. the proportion of flies landing on a trap that are caught in its cage. A low overall efficiency of the biconical or monoconical traps of between 11–24% was recorded for all three species. These results show that targets can be used as practical devices for population suppression of the three species studied. Biconical traps can be used for population monitoring, but a correction factor of 5–10 fold needs to be applied to captures to compensate for the poor trapping efficiency of this device for the three species. PMID:22348159

  7. Standardizing visual control devices for tsetse flies: West African species Glossina tachinoides, G. palpalis gambiensis and G. morsitans submorsitans.

    PubMed

    Rayaisse, Jean-Baptiste; Kröber, Thomas; McMullin, Andrew; Solano, Philippe; Mihok, Steve; Guerin, Patrick M

    2012-01-01

    Here we describe field trials designed to standardize tools for the control of Glossina tachinoides, G. palpalis gambiensis and G.morsitans submorsitans in West Africa based on existing trap/target/bait technology. Blue and black biconical and monoconical traps and 1 m(2) targets were made in either phthalogen blue cotton, phthalogen blue cotton/polyester or turquoise blue polyester/viscose (all with a peak reflectance between 450-480 nm) and a black polyester. Because targets were covered in adhesive film, they proved to be significantly better trapping devices than either of the two trap types for all three species (up to 14 times more for G. tachinoides, 10 times more for G. palpalis gambiensis, and 6.5 times for G. morsitans submorsitans). The relative performance of the devices in the three blue cloths tested was the same when unbaited or baited with a mixture of phenols, 1-octen-3-ol and acetone. Since insecticide-impregnated devices act via contact with flies, we enumerated which device (traps or targets) served as the best object for flies to land on by also covering the cloth parts of traps with adhesive film. Despite the fact that the biconical trap proved to be the best landing device for the three species, the difference over the target (20-30%) was not significant. This experiment also allowed an estimation of trap efficiency, i.e. the proportion of flies landing on a trap that are caught in its cage. A low overall efficiency of the biconical or monoconical traps of between 11-24% was recorded for all three species. These results show that targets can be used as practical devices for population suppression of the three species studied. Biconical traps can be used for population monitoring, but a correction factor of 5-10 fold needs to be applied to captures to compensate for the poor trapping efficiency of this device for the three species. PMID:22348159

  8. Microbial symbiosis and the control of vector-borne pathogens in tsetse flies, human lice, and triatomine bugs

    PubMed Central

    Sassera, Davide; Epis, Sara; Pajoro, Massimo; Bandi, Claudio

    2013-01-01

    Symbiosis is a widespread biological phenomenon, and is particularly common in arthropods. Bloodsucking insects are among the organisms that rely on beneficial bacterial symbionts to complement their unbalanced diet. This review is focused on describing symbiosis, and possible strategies for the symbiont-based control of insects and insect-borne diseases, in three bloodsucking insects of medical importance: the flies of the genus Glossina, the lice of the genus Pediculus, and triatomine bugs of the subfamily Triatominae. Glossina flies are vector of Trypanosoma brucei, the causative agent of sleeping sickness and other pathologies. They are also associated with two distinct bacterial symbionts, the primary symbiont Wigglesworthia spp., and the secondary, culturable symbiont Sodalis glossinidius. The primary symbiont of human lice, Riesia pediculicola, has been shown to be fundamental for the host, due to its capacity to synthesize B-group vitamins. An antisymbiotic approach, with antibiotic treatment targeted on the lice symbionts, could represent an alternative strategy to control these ectoparasites. In the case of triatominae bugs, the genetic modification of their symbiotic Rhodococcus bacteria, for production of anti-Trypanosoma molecules, is an example of paratransgenesis, i.e. the use of symbiotic microorganism engineered in order to reduce the vector competence of the insect host. PMID:24188239

  9. Tsetse GmmSRPN10 Has Anti-complement Activity and Is Important for Successful Establishment of Trypanosome Infections in the Fly Midgut

    PubMed Central

    Ooi, Cher-Pheng; Haines, Lee R.; Southern, Daniel M.; Lehane, Michael J.; Acosta-Serrano, Alvaro

    2015-01-01

    The complement cascade in mammalian blood can damage the alimentary tract of haematophagous arthropods. As such, these animals have evolved their own repertoire of complement-inactivating factors, which are inadvertently exploited by blood-borne pathogens to escape complement lysis. Unlike the bloodstream stages, the procyclic (insect) stage of Trypanosoma brucei is highly susceptible to complement killing, which is puzzling considering that a tsetse takes a bloodmeal every 2–4 days. In this study, we identified four tsetse (Glossina morsitans morsitans) serine protease inhibitors (serpins) from a midgut expressed sequence tag (EST) library (GmmSRPN3, GmmSRPN5, GmmSRPN9 and GmmSRPN10) and investigated their role in modulating the establishment of a T. brucei infection in the midgut. Although not having evolved in a common blood-feeding ancestor, all four serpins have an active site sharing remarkable homology with the human complement C1-inhibitor serpin, SerpinG1. RNAi knockdown of individual GmmSRPN9 and GmmSRPN10 genes resulted in a significant decreased rate of infection by procyclic form T. brucei. Furthermore, recombinant GmmSRPN10 was both able to inhibit the activity of human complement-cascade serine proteases, C1s and Factor D, and to protect the in vitro killing of procyclic trypanosomes when incubated with complement-activated human serum. Thus, the secretion of serpins, which may be part of a bloodmeal complement inactivation system in tsetse, is used by procyclic trypanosomes to evade an influx of fresh trypanolytic complement with each bloodmeal. This highlights another facet of the complicated relationship between T. brucei and its tsetse vector, where the parasite takes advantage of tsetse physiology to further its chances of propagation and transmission. PMID:25569180

  10. Tsetse GmmSRPN10 has anti-complement activity and is important for successful establishment of trypanosome infections in the fly midgut.

    PubMed

    Ooi, Cher-Pheng; Haines, Lee R; Southern, Daniel M; Lehane, Michael J; Acosta-Serrano, Alvaro

    2015-01-01

    The complement cascade in mammalian blood can damage the alimentary tract of haematophagous arthropods. As such, these animals have evolved their own repertoire of complement-inactivating factors, which are inadvertently exploited by blood-borne pathogens to escape complement lysis. Unlike the bloodstream stages, the procyclic (insect) stage of Trypanosoma brucei is highly susceptible to complement killing, which is puzzling considering that a tsetse takes a bloodmeal every 2-4 days. In this study, we identified four tsetse (Glossina morsitans morsitans) serine protease inhibitors (serpins) from a midgut expressed sequence tag (EST) library (GmmSRPN3, GmmSRPN5, GmmSRPN9 and GmmSRPN10) and investigated their role in modulating the establishment of a T. brucei infection in the midgut. Although not having evolved in a common blood-feeding ancestor, all four serpins have an active site sharing remarkable homology with the human complement C1-inhibitor serpin, SerpinG1. RNAi knockdown of individual GmmSRPN9 and GmmSRPN10 genes resulted in a significant decreased rate of infection by procyclic form T. brucei. Furthermore, recombinant GmmSRPN10 was both able to inhibit the activity of human complement-cascade serine proteases, C1s and Factor D, and to protect the in vitro killing of procyclic trypanosomes when incubated with complement-activated human serum. Thus, the secretion of serpins, which may be part of a bloodmeal complement inactivation system in tsetse, is used by procyclic trypanosomes to evade an influx of fresh trypanolytic complement with each bloodmeal. This highlights another facet of the complicated relationship between T. brucei and its tsetse vector, where the parasite takes advantage of tsetse physiology to further its chances of propagation and transmission. PMID:25569180

  11. Updating the Northern Tsetse Limit in Burkina Faso (1949–2009): Impact of Global Change

    PubMed Central

    Courtin, Fabrice; Rayaissé, Jean-Baptiste; Tamboura, Issa; Serdébéogo, Oumar; Koudougou, Zowindé; Solano, Philippe; Sidibé, Issa

    2010-01-01

    The northern distribution limit of tsetse flies was updated in Burkina Faso and compared to previous limits to revise the existing map of these vectors of African trypanosomiases dating from several decades ago. From 1949 to 2009, a 25- to 150-km shift has appeared toward the south. Tsetse are now discontinuously distributed in Burkina Faso with a western and an eastern tsetse belt. This range shift can be explained by a combination of decreased rainfall and increased human density. Within a context of international control, this study provides a better understanding of the factors influencing the distribution of tsetse flies. PMID:20617055

  12. “Wigglesworthia morsitans” Folate (Vitamin B9) Biosynthesis Contributes to Tsetse Host Fitness

    PubMed Central

    Snyder, Anna K.

    2015-01-01

    Closely related ancient endosymbionts may retain minor genomic distinctions through evolutionary time, yet the biological relevance of these small pockets of unique loci remains unknown. The tsetse fly (Diptera: Glossinidae), the sole vector of lethal African trypanosomes (Trypanosoma spp.), maintains an ancient and obligate mutualism with species belonging to the gammaproteobacterium Wigglesworthia. Extensive concordant evolution with associated Wigglesworthia species has occurred through tsetse species radiation. Accordingly, the retention of unique symbiont loci between Wigglesworthia genomes may prove instrumental toward host species-specific biological traits. Genome distinctions between “Wigglesworthia morsitans” (harbored within Glossina morsitans bacteriomes) and the basal species Wigglesworthia glossinidia (harbored within Glossina brevipalpis bacteriomes) include the retention of chorismate and downstream folate (vitamin B9) biosynthesis capabilities, contributing to distinct symbiont metabolomes. Here, we demonstrate that these W. morsitans pathways remain functionally intact, with folate likely being systemically disseminated through a synchronously expressed tsetse folate transporter within bacteriomes. The folate produced by W. morsitans is demonstrated to be pivotal for G. morsitans sexual maturation and reproduction. Modest differences between ancient symbiont genomes may still play key roles in the evolution of their host species, particularly if loci are involved in shaping host physiology and ecology. Enhanced knowledge of the Wigglesworthia-tsetse mutualism may also provide novel and specific avenues for vector control. PMID:26025907

  13. Tsetse immune responses and trypanosome transmission: Implications for the development of tsetse-based strategies to reduce trypanosomiasis

    PubMed Central

    Hao, Zhengrong; Kasumba, Irene; Lehane, Michael J.; Gibson, Wendy C.; Kwon, Johnny; Aksoy, Serap

    2001-01-01

    Tsetse flies are the medically and agriculturally important vectors of African trypanosomes. Information on the molecular and biochemical nature of the tsetse/trypanosome interaction is lacking. Here we describe three antimicrobial peptide genes, attacin, defensin, and diptericin, from tsetse fat body tissue obtained by subtractive cloning after immune stimulation with Escherichia coli and trypanosomes. Differential regulation of these genes shows the tsetse immune system can discriminate not only between molecular signals specific for bacteria and trypanosome infections but also between different life stages of trypanosomes. The presence of trypanosomes either in the hemolymph or in the gut early in the infection process does not induce transcription of attacin and defensin significantly. After parasite establishment in the gut, however, both antimicrobial genes are expressed at high levels in the fat body, apparently not affecting the viability of parasites in the midgut. Unlike other insect immune systems, the antimicrobial peptide gene diptericin is constitutively expressed in both fat body and gut tissue of normal and immune stimulated flies, possibly reflecting tsetse immune responses to the multiple Gram-negative symbionts it naturally harbors. When flies were immune stimulated with bacteria before receiving a trypanosome containing bloodmeal, their ability to establish infections was severely blocked, indicating that up-regulation of some immune responsive genes early in infection can act to block parasite transmission. The results are discussed in relation to transgenic approaches proposed for modulating vector competence in tsetse. PMID:11592981

  14. In vivo experimental drug resistance study in Trypanosoma vivax isolates from tsetse infested and non-tsetse infested areas of Northwest Ethiopia.

    PubMed

    Dagnachew, Shimelis; Terefe, Getachew; Abebe, Getachew; Barry, Dave; McCulloch, Richard; Goddeeris, Bruno

    2015-06-01

    Ethiopia, particularly in the Northwest region, is affected by both tsetse fly and non-tsetse fly transmitted trypanosomosis with a significant impact on livestock productivity. The control of trypanosomosis in Ethiopia relies on either curative or prophylactic treatment of animals with diminazene aceturate (DA) or isometamidium chloride (ISM), respectively. However, since these two trypanocides have been on the market for more than 40 years, this may have resulted in drug-resistance. Therefore, in vivo drug resistance tests on two Ethiopian isolates of Trypanosoma vivax were completed, one from an area where tsetse flies are present and one from an area where tsetse flies are not present. Twenty four cattle (Bos indicus) aged between 6 and 12 months, purchased from a trypanosome-free area (Debre Brehan: Northcentral Ethiopia) and confirmed to be trypanosome-negative, were randomly assigned into four groups of six animals, which were infected with T. vivax isolated from a tsetse-infested or non-tsetse infested area, and in each case treated with curative doses of DA or ISM. Each animal were inoculated intravenously 3×10(6) trypanosomes from donor animals. Parasitaemia became patent earlier in infections with non-tsetse T. vivax (∼7 days post-infection) than tsetse (∼14 days post-infection). Both groups were treated at the highest peak parasitaemia with DA or ISM and nine cattle, four with non-tsetse T. vivax (two ISM- and two DA-treated) and five with tsetse T. vivax (three ISM- and two DA-treated) showed relapses of parasitaemia. Moreover, treatment did not improve diagnostic host markers of trypanosome infections in these animals. In conclusion, in vivo drug tests indicated the presence of resistant parasites (>20% of treated animals in each group relapsed) against recommended doses of both available trypanocidal drugs. PMID:25792418

  15. Visual and olfactory enhancement of stable fly trapping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report the development of a less expensive and more efficacious trap based upon a white panel with the option for adding visual and olfactory stimuli for enhanced stable fly trapping. White panel traps caught more stable flies than Alsynite traps. Baiting the traps with synthetic manure volatiles...

  16. Enhanced trapping of stable flies via olfactory and visual cues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adult stable flies are highly attracted to the so-called Alsynite cylinder trap; however this trap is expensive. Here we report the development of a cheaper and better white panel trap with options of adding visual and olfactory stimuli for enhanced stable fly trapping. The white panel trap attracte...

  17. Tsetse salivary gland hypertrophy virus: hope or hindrance for tsetse control?

    PubMed

    Abd-Alla, Adly M M; Parker, Andrew G; Vreysen, Marc J B; Bergoin, Max

    2011-08-01

    MANY SPECIES OF TSETSE FLIES (DIPTERA: Glossinidae) are infected with a virus that causes salivary gland hypertrophy (SGH), and flies with SGH symptoms have a reduced fecundity and fertility. The prevalence of SGH in wild tsetse populations is usually very low (0.2%-5%), but higher prevalence rates (15.2%) have been observed occasionally. The successful eradication of a Glossina austeni population from Unguja Island (Zanzibar) using an area-wide integrated pest management approach with a sterile insect technique (SIT) component (1994-1997) encouraged several African countries, including Ethiopia, to incorporate the SIT in their national tsetse control programs. A large facility to produce tsetse flies for SIT application in Ethiopia was inaugurated in 2007. To support this project, a Glossina pallidipes colony originating from Ethiopia was successfully established in 1996, but later up to 85% of adult flies displayed symptoms of SGH. As a result, the colony declined and became extinct by 2002. The difficulties experienced with the rearing of G. pallidipes, epitomized by the collapse of the G. pallidipes colony originating from Ethiopia, prompted the urgent need to develop management strategies for the salivary gland hypertrophy virus (SGHV) for this species. As a first step to identify suitable management strategies, the virus isolated from G. pallidipes (GpSGHV) was recently sequenced and research was initiated on virus transmission and pathology. Different approaches to prevent virus replication and its horizontal transmission during blood feeding have been proposed. These include the use of antiviral drugs such as acyclovir and valacyclovir added to the blood for feeding or the use of antibodies against SGHV virion proteins. In addition, preliminary attempts to silence the expression of an essential viral protein using RNA interference will be discussed. PMID:21912708

  18. Mapping landscape friction to locate isolated tsetse populations that are candidates for elimination.

    PubMed

    Bouyer, Jérémy; Dicko, Ahmadou H; Cecchi, Giuliano; Ravel, Sophie; Guerrini, Laure; Solano, Philippe; Vreysen, Marc J B; De Meeûs, Thierry; Lancelot, Renaud

    2015-11-24

    Tsetse flies are the cyclical vectors of deadly human and animal trypanosomes in sub-Saharan Africa. Tsetse control is a key component for the integrated management of both plagues, but local eradication successes have been limited to less than 2% of the infested area. This is attributed to either resurgence of residual populations that were omitted from the eradication campaign or reinvasion from neighboring infested areas. Here we focused on Glossina palpalis gambiensis, a riverine tsetse species representing the main vector of trypanosomoses in West Africa. We mapped landscape resistance to tsetse genetic flow, hereafter referred to as friction, to identify natural barriers that isolate tsetse populations. For this purpose, we fitted a statistical model of the genetic distance between 37 tsetse populations sampled in the region, using a set of remotely sensed environmental data as predictors. The least-cost path between these populations was then estimated using the predicted friction map. The method enabled us to avoid the subjectivity inherent in the expert-based weighting of environmental parameters. Finally, we identified potentially isolated clusters of G. p. gambiensis habitat based on a species distribution model and ranked them according to their predicted genetic distance to the main tsetse population. The methodology presented here will inform the choice on the most appropriate intervention strategies to be implemented against tsetse flies in different parts of Africa. It can also be used to control other pests and to support conservation of endangered species. PMID:26553973

  19. Mapping landscape friction to locate isolated tsetse populations that are candidates for elimination

    PubMed Central

    Dicko, Ahmadou H.; Cecchi, Giuliano; Ravel, Sophie; Guerrini, Laure; Solano, Philippe; Vreysen, Marc J. B.; De Meeûs, Thierry; Lancelot, Renaud

    2015-01-01

    Tsetse flies are the cyclical vectors of deadly human and animal trypanosomes in sub-Saharan Africa. Tsetse control is a key component for the integrated management of both plagues, but local eradication successes have been limited to less than 2% of the infested area. This is attributed to either resurgence of residual populations that were omitted from the eradication campaign or reinvasion from neighboring infested areas. Here we focused on Glossina palpalis gambiensis, a riverine tsetse species representing the main vector of trypanosomoses in West Africa. We mapped landscape resistance to tsetse genetic flow, hereafter referred to as friction, to identify natural barriers that isolate tsetse populations. For this purpose, we fitted a statistical model of the genetic distance between 37 tsetse populations sampled in the region, using a set of remotely sensed environmental data as predictors. The least-cost path between these populations was then estimated using the predicted friction map. The method enabled us to avoid the subjectivity inherent in the expert-based weighting of environmental parameters. Finally, we identified potentially isolated clusters of G. p. gambiensis habitat based on a species distribution model and ranked them according to their predicted genetic distance to the main tsetse population. The methodology presented here will inform the choice on the most appropriate intervention strategies to be implemented against tsetse flies in different parts of Africa. It can also be used to control other pests and to support conservation of endangered species. PMID:26553973

  20. The tsetse fly Glossina palpalis palpalis is composed of several genetically differentiated small populations in the sleeping sickness focus of Bonon, Côte d'Ivoire.

    PubMed

    Ravel, S; de Meeus, T; Dujardin, J P; Zézé, D G; Gooding, R H; Dusfour, I; Sané, B; Cuny, G; Solano, P

    2007-01-01

    Glossina palpalis is the main vector of human African trypanosomosis (HAT, or sleeping sickness) that dramatically affects human health in sub-Saharan Africa. Because of the implications of genetic structuring of vector populations for the design and efficacy of control campaigns, G. palpalis palpalis in the most active focus of sleeping sickness in Côte d'Ivoire was studied to determine whether this taxon is genetically structured. High and statistically significant levels of within population heterozygote deficiencies were found at each of the five microsatellite loci in two temporally separated samples. Neither null alleles, short allele dominance, nor trap locations could fully explain these deviations from random mating, but a clustering within each of the two samples into different genetic sub-populations (Wahlund effect) was strongly suggested. These different genetic groups, which could display differences in infection rates and trypanosome identity, were composed of small numbers of individuals that were captured together, leading to the observed Wahlund effect. Implications of this population structure on tsetse control are discussed. PMID:16890499

  1. Hybridization asymmetries in tsetse (Diptera: Glossinidae): role of maternally inherited factors and the tsetse genome.

    PubMed

    Gooding, R H

    2000-11-01

    Among the morsitans-group of tsetse there are several pairs of taxa in which there is a marked hybridization asymmetry (HA), i.e., one cross produces significantly more offspring than does the reciprocal cross. To investigate the relative contribution of maternally inherited factors (MIF) and chromosomal factors to HA, three hybrid lines were established in which flies have MIF from one taxon and chromosome from another. HA was then compared among crosses of the parental taxa and crosses of each parental taxon with the appropriate hybrid line. The results indicate that HA in reciprocal crosses of Glossina morsitans morsitans Westwood and Glossina swynnertoni Austin and in reciprocal crosses of G. m. morsitans and Glossina morsitans centralis Machado are caused by chromosomal factors, not MIF. Reciprocal crosses of G. m. centralis and G. swynnertoni do not display HA, and none developed as a result of a novel combination of MIF and tsetse chromosomes. PMID:11126547

  2. Tsetse Salivary Gland Proteins 1 and 2 Are High Affinity Nucleic Acid Binding Proteins with Residual Nuclease Activity

    PubMed Central

    Caljon, Guy; Ridder, Karin De; Stijlemans, Benoît; Coosemans, Marc; Magez, Stefan; De Baetselier, Patrick; Van Den Abbeele, Jan

    2012-01-01

    Analysis of the tsetse fly salivary gland EST database revealed the presence of a highly enriched cluster of putative endonuclease genes, including tsal1 and tsal2. Tsal proteins are the major components of tsetse fly (G. morsitans morsitans) saliva where they are present as monomers as well as high molecular weight complexes with other saliva proteins. We demonstrate that the recombinant tsetse salivary gland proteins 1&2 (Tsal1&2) display DNA/RNA non-specific, high affinity nucleic acid binding with KD values in the low nanomolar range and a non-exclusive preference for duplex. These Tsal proteins exert only a residual nuclease activity with a preference for dsDNA in a broad pH range. Knockdown of Tsal expression by in vivo RNA interference in the tsetse fly revealed a partially impaired blood digestion phenotype as evidenced by higher gut nucleic acid, hematin and protein contents. PMID:23110062

  3. Estimation of tsetse challenge and its relationship with trypanosomosis incidence in cattle kept under pastoral production systems in Kenya.

    PubMed

    Bett, B; Irungu, P; Nyamwaro, S O; Murilla, G; Kitala, P; Gathuma, J; Randolph, T F; McDermott, J

    2008-08-17

    In an on-farm trial conducted amongst the Maasai pastoralists in Nkuruman and Nkineji areas of Kenya between April 2004 and August 2005 designed to evaluate the effectiveness of a synthetic tsetse repellent technology, we assessed the relationship between tsetse challenge and trypanosomosis incidence in cattle. Six villages were used in each area. Each of these villages had a sentinel cattle herd that was screened for trypanosomosis on monthly basis using buffy coat technique. Animals found infected at each sampling were treated with diminazene aceturate at 7 mg kg(-1) body weight. Treatments administered by the owners over the sampling intervals were recorded as well. Tsetse flies were trapped at the time of sampling using baited stationary traps and apparent tsetse density estimated as flies per trap per day (FTD). A fixed proportion (10%) of the flies was dissected and their infection status determined through microscopy. Blood meals were also collected from some of the flies and their sources identified using enzyme-linked immunosorbent assay (ELISA). Tsetse challenge was obtained as a product of tsetse density, trypanosome prevalence and the proportion of blood meals obtained from cattle. This variable was transformed using logarithmic function and fitted as an independent factor in a Poisson model that had trypanosomosis incidence in the sentinel cattle as the outcome of interest. The mean trypanosomosis incidence in the sentinel group of cattle was 7.2 and 10.2% in Nkuruman and Nkineji, respectively. Glossina pallidipes was the most prevalent tsetse species in Nkuruman while G. swynnertoni was prevalent in Nkineji. The proportions of tsetse that had mature infections in the respective areas were 0.6 and 4.2%. Most tsetse (28%) sampled in Nkuruman had blood meals from warthogs while most of those sampled in Nkineji (30%) had blood meals from cattle. A statistically significant association between tsetse challenge and trypanosomosis incidence was obtained only

  4. The prevalence of African animal trypanosomoses and tsetse presence in Western Senegal.

    PubMed

    Seck, M T; Bouyer, J; Sall, B; Bengaly, Z; Vreysen, M J B

    2010-09-01

    In 2005, the Government of Senegal initiated a tsetse eradication campaign in the Niayes and La Petite Côte aiming at the removal of African Animal Trypanosomosis (AAT), which is one of the main constraints to the development of more effective cattle production systems. The target area has particular meteorological and ecological characteristics that provide great potential for animal production, but it is unfortunately still infested by the riverine tsetse species Glossina palpalis gambiensis Vanderplank (Diptera: Glossinidae). The tsetse project in Senegal has adopted an area-wide integrated pest management (AW-IPM) approach that targets the entire tsetse population within a delimited area. During the first phase of the programme, a feasibility study was conducted that included the collection of entomological, veterinary, population genetics, environmental and socioeconomic baseline data. This paper presents the parasitological and serological prevalence data of AAT in cattle residing inside and outside the tsetse-infested areas of the target zone prior to the control effort. At the herd level, a mean parasitological prevalence of 2.4% was observed, whereas a serological prevalence of 28.7%, 4.4%, and 0.3% was obtained for Trypanosoma vivax, T. congolense and T. brucei brucei, respectively. The observed infection risk was 3 times higher for T. congolense and T. vivax in the tsetse-infested than in the assumed tsetse-free areas. Moreover, AAT prevalence decreased significantly with distance from the nearest tsetse captured which indicated that cyclical transmission of the parasites by tsetse was predominant over mechanical transmission by numerous other biting flies present. The importance of these results for the development of a control strategy for the planned AW-IPM campaign is discussed. PMID:21073148

  5. Immunogenicity and Serological Cross-Reactivity of Saliva Proteins among Different Tsetse Species

    PubMed Central

    Zhao, Xin; Silva, Thiago Luiz Alves e; Cronin, Laura; Savage, Amy F.; O’Neill, Michelle; Nerima, Barbara; Okedi, Loyce M.; Aksoy, Serap

    2015-01-01

    Tsetse are vectors of pathogenic trypanosomes, agents of human and animal trypanosomiasis in Africa. Components of tsetse saliva (sialome) are introduced into the mammalian host bite site during the blood feeding process and are important for tsetse’s ability to feed efficiently, but can also influence disease transmission and serve as biomarkers for host exposure. We compared the sialome components from four tsetse species in two subgenera: subgenus Morsitans: Glossina morsitans morsitans (Gmm) and Glossina pallidipes (Gpd), and subgenus Palpalis: Glossina palpalis gambiensis (Gpg) and Glossina fuscipes fuscipes (Gff), and evaluated their immunogenicity and serological cross reactivity by an immunoblot approach utilizing antibodies from experimental mice challenged with uninfected flies. The protein and immune profiles of sialome components varied with fly species in the same subgenus displaying greater similarity and cross reactivity. Sera obtained from cattle from disease endemic areas of Africa displayed an immunogenicity profile reflective of tsetse species distribution. We analyzed the sialome fractions of Gmm by LC-MS/MS, and identified TAg5, Tsal1/Tsal2, and Sgp3 as major immunogenic proteins, and the 5'-nucleotidase family as well as four members of the Adenosine Deaminase Growth Factor (ADGF) family as the major non-immunogenic proteins. Within the ADGF family, we identified four closely related proteins (TSGF-1, TSGF-2, ADGF-3 and ADGF-4), all of which are expressed in tsetse salivary glands. We describe the tsetse species-specific expression profiles and genomic localization of these proteins. Using a passive-immunity approach, we evaluated the effects of rec-TSGF (TSGF-1 and TSGF-2) polyclonal antibodies on tsetse fitness parameters. Limited exposure of tsetse to mice with circulating anti-TSGF antibodies resulted in a slight detriment to their blood feeding ability as reflected by compromised digestion, lower weight gain and less total lipid

  6. A contribution towards simplifying area-wide tsetse surveys using medium resolution meteorological satellite data.

    PubMed

    Hendrickx, G; Napala, A; Slingenbergh, J H; De Deken, R; Rogers, D J

    2001-10-01

    A raster or grid-based Geographic Information System with data on tsetse, trypanosomiasis, animal production, agriculture and land use has recently been developed in Togo. The area-wide sampling of tsetse fly, aided by satellite imagery, is the subject of two separate papers. This paper follows on a first paper, published in this journal, describing the generation of digital tsetse distribution and abundance maps and how these accord with the local climatic and agro-ecological setting. Such maps when combined with data on the disease, the hosts and their owners, should contribute to the knowledge of the spatial epidemiology of trypanosomiasis and assist planning of integrated control operations. Here we address the problem of generating tsetse distribution and abundance maps from remotely sensed data, using a restricted amount of field data. Different discriminant analysis models have been applied using contemporary tsetse data and remotely sensed, low resolution data acquired from the National Oceanographic and Atmospheric Administration (NOAA) and Meteosat platforms. The results confirm the potential of satellite data application and multivariate analysis for the prediction of the tsetse distribution and abundance. This opens up new avenues because satellite predictions and field data may be combined to strengthen and/or substitute one another. The analysis shows how the strategic incorporation of satellite imagery may minimize field collection of data. Field surveys may be modified and conducted in two stages, first concentrating on the expected fly distribution limits and thereafter on fly abundance. The study also shows that when applying satellite data, care should be taken in selecting the optimal number of predictor variables because this number varies with the amount of training data for predicting abundance and on the homogeneity of the distribution limits for predicting fly presence. Finally, it is suggested that in addition to the use of contemporary

  7. Tsetse diversity and abundance in Southern Burkina Faso in relation with the vegetation.

    PubMed

    Rayaisse, J-B; Salou, E; Kiema, S; Akoudjin, M; Kaba, D; Kagbadouno, M; Djohan, V; Camara, M; Dayo, G-K; Courtin, F; Solano, P; Bouyer, J

    2015-09-01

    The increase of human population, combined with climatic changes, contributed to the modification of spatial distribution of tsetse flies, main vector of trypanosomiasis. In order to establish and compare tsetse presence and their relationship with vegetation, entomological survey was performed using biconical traps deployed in transects, simultaneously with phyto-sociological study, on the Comoe river at its source in the village of Moussodougou, and in the semi-protected area of Folonzo, both localities in Southern Burkina Faso. In Folonzo, the survey revealed a diversity of tsetse with 4 species occurring with apparent densities as follows: Glossina tachinoides (8.9 tsetse/trap/day); G. morsitans submorsitans (1.8 tsetse/trap/day); G. palpalis gambiensis (0.6/trap/day) and G. medicorum (0.15 tsetse/trap/day). In Moussodougou, a highly anthropized area, mainly G. p. gambiensis was caught (2.06 tsetse/trap/day), and rarely G. tachinoides. The phyto-sociological study allowed discrimination of 6 types of vegetation in both localities, with 3 concordances that are riparian forest, shrubby and woody savannah. In Moussodougou, all tsetse were caught in the riparian forest. That was also the case in Folonzo where a great proportion (95 to 99 % following the season) of G. p. gambiensis and G. tachinoides were caught in the gallery, while G. m. submorsitans was occurring as well in the gallery as in the savannah, and G. medicorum in the forest gallery. This study showed that although G. tachinoides and G.p. gambiensis are both riparian, they do not have the same preference in terms of biotope. PMID:26040845

  8. FLIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flies constitute a major group of nuisance species world wide in rural and urban situations. The public and health care officials can become more aware of the potential risks from flies and other urban pests by compiling the available information into an easily readable book form. Scientists from ...

  9. Ribosomal DNA analysis of tsetse and non-tsetse transmitted Ethiopian Trypanosoma vivax strains in view of improved molecular diagnosis.

    PubMed

    Fikru, Regassa; Matetovici, Irina; Rogé, Stijn; Merga, Bekana; Goddeeris, Bruno Maria; Büscher, Philippe; Van Reet, Nick

    2016-04-15

    Animal trypanosomosis caused by Trypanosoma vivax (T. vivax) is a devastating disease causing serious economic losses. Most molecular diagnostics for T. vivax infection target the ribosomal DNA locus (rDNA) but are challenged by the heterogeneity among T. vivax strains. In this study, we investigated the rDNA heterogeneity of Ethiopian T. vivax strains in relation to their presence in tsetse-infested and tsetse-free areas and its effect on molecular diagnosis. We sequenced the rDNA loci of six Ethiopian (three from tsetse-infested and three from tsetse-free areas) and one Nigerian T. vivax strain. We analysed the obtained sequences in silico for primer-mismatches of some commonly used diagnostic PCR assays and for GC content. With these data, we selected some rDNA diagnostic PCR assays for evaluation of their diagnostic accuracy. Furthermore we constructed two phylogenetic networks based on sequences within the smaller subunit (SSU) of 18S and within the 5.8S and internal transcribed spacer 2 (ITS2) to assess the relatedness of Ethiopian T. vivax strains to strains from other African countries and from South America. In silico analysis of the rDNA sequence showed important mismatches of some published diagnostic PCR primers and high GC content of T. vivax rDNA. The evaluation of selected diagnostic PCR assays with specimens from cattle under natural T. vivax challenge showed that this high GC content interferes with the diagnostic accuracy of PCR, especially in cases of mixed infections with T. congolense. Adding betain to the PCR reaction mixture can enhance the amplification of T. vivax rDNA but decreases the sensitivity for T. congolense and Trypanozoon. The networks illustrated that Ethiopian T. vivax strains are considerably heterogeneous and two strains (one from tsetse-infested and one from tsetse-free area) are more related to the West African and South American strains than to the East African strains. The rDNA locus sequence of six Ethiopian T. vivax

  10. Tsetse Control and Gambian Sleeping Sickness; Implications for Control Strategy

    PubMed Central

    Kovacic, Vanja; Mangwiro, T. N. Clement; Vale, Glyn A.; Hastings, Ian; Solano, Philippe; Lehane, Michael J.; Torr, Steve J.

    2015-01-01

    Background Gambian sleeping sickness (human African trypanosomiasis, HAT) outbreaks are brought under control by case detection and treatment although it is recognised that this typically only reaches about 75% of the population. Vector control is capable of completely interrupting HAT transmission but is not used because it is considered too expensive and difficult to organise in resource-poor settings. We conducted a full scale field trial of a refined vector control technology to determine its utility in control of Gambian HAT. Methods and Findings The major vector of Gambian HAT is the tsetse fly Glossina fuscipes which lives in the humid zone immediately adjacent to water bodies. From a series of preliminary trials we determined the number of tiny targets required to reduce G. fuscipes populations by more than 90%. Using these data for model calibration we predicted we needed a target density of 20 per linear km of river in riverine savannah to achieve >90% tsetse control. We then carried out a full scale, 500 km2 field trial covering two HAT foci in Northern Uganda to determine the efficacy of tiny targets (overall target density 5.7/km2). In 12 months, tsetse populations declined by more than 90%. As a guide we used a published HAT transmission model and calculated that a 72% reduction in tsetse population is required to stop transmission in those settings. Interpretation The Ugandan census suggests population density in the HAT foci is approximately 500 per km2. The estimated cost for a single round of active case detection (excluding treatment), covering 80% of the population, is US$433,333 (WHO figures). One year of vector control organised within the country, which can completely stop HAT transmission, would cost US$42,700. The case for adding this method of vector control to case detection and treatment is strong. We outline how such a component could be organised. PMID:26267814

  11. Reducing Human-Tsetse Contact Significantly Enhances the Efficacy of Sleeping Sickness Active Screening Campaigns: A Promising Result in the Context of Elimination

    PubMed Central

    Courtin, Fabrice; Camara, Mamadou; Rayaisse, Jean-Baptiste; Kagbadouno, Moise; Dama, Emilie; Camara, Oumou; Traoré, Ibrahima S.; Rouamba, Jérémi; Peylhard, Moana; Somda, Martin B.; Leno, Mamadou; Lehane, Mike J.; Torr, Steve J.; Solano, Philippe; Jamonneau, Vincent; Bucheton, Bruno

    2015-01-01

    Background Control of gambiense sleeping sickness, a neglected tropical disease targeted for elimination by 2020, relies mainly on mass screening of populations at risk and treatment of cases. This strategy is however challenged by the existence of undetected reservoirs of parasites that contribute to the maintenance of transmission. In this study, performed in the Boffa disease focus of Guinea, we evaluated the value of adding vector control to medical surveys and measured its impact on disease burden. Methods The focus was divided into two parts (screen and treat in the western part; screen and treat plus vector control in the eastern part) separated by the Rio Pongo river. Population census and baseline entomological data were collected from the entire focus at the beginning of the study and insecticide impregnated targets were deployed on the eastern bank only. Medical surveys were performed in both areas in 2012 and 2013. Findings In the vector control area, there was an 80% decrease in tsetse density, resulting in a significant decrease of human tsetse contacts, and a decrease of disease prevalence (from 0.3% to 0.1%; p=0.01), and an almost nil incidence of new infections (<0.1%). In contrast, incidence was 10 times higher in the area without vector control (>1%, p<0.0001) with a disease prevalence increasing slightly (from 0.5 to 0.7%, p=0.34). Interpretation Combining medical and vector control was decisive in reducing T. b. gambiense transmission and in speeding up progress towards elimination. Similar strategies could be applied in other foci. PMID:26267667

  12. Spatial and temporal variations relevant to tsetse control in the Bipindi focus of southern Cameroon

    PubMed Central

    2013-01-01

    Background Human African Trypanosomiasis (HAT) remains a public health problem in many poor countries. Due to lack of financial resources in these countries, cost-effective strategies are needed for efficient control of this scourge, especially the tsetse vector. It was shown that perennial water sources maintain a favourable biotope for tsetse flies and thus the transmission dynamics of sleeping sickness. The present paper aimed at assessing the transmission dynamics of HAT in a forest environment where the hydrographic network is important. Methods Two entomological surveys were carried out in July 2009 and March 2010 in the Bipindi sleeping sickness focus of the South Region of Cameroon. Entomological and parasitological data were collected during both trapping periods (including the climate variations throughout a year) and compared to each other. The level of risk for transmission of the disease during each trapping period was also evaluated at the trap level and materialised on the map of the Bipindi focus. Results Glossina palpalis palpalis was the most prevalent tsetse fly species captured in this focus. The overall densities of tsetse flies as well as the risk for transmission of HAT in the Bipindi focus were significantly higher in July than in March. At the trap level, we observed that these parameters were almost constant, whatever the trapping period, when the biotope included perennial water sources. Conclusions This study shows that the spatial distribution of traps, as well as the temporal climatic variations might influence entomological and parasitological parameters of HAT and that the presence of perennial water sources in biotopes would favour the development of tsetse flies and thus the transmission of sleeping sickness. These factors should, therefore, be taken into account in order to provide more efficient vector control. PMID:23815985

  13. Visual and olfactory enhancement of stable fly trapping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Stable flies are considered to be one of themajor blood-feeding pests in theUS livestock industry, causing losses running into billions of dollars annually. Adult stable flies are highly attracted to Alsynite traps; however, Alsynite is becoming increasingly difficult to obtain and is ex...

  14. Vestergaard zerofly fabric for stable fly management outside of Africa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vestergaard ZeroFly pesticide-impregnated fabric has been evaluated in zero-graze swine and cattle facilities in Sub-Saharan Africa for management of biting flies, particularly those capable of transmitting Nagana, i.e. tsetse. Other major blood-feeding flies encountered around these units are vario...

  15. Vestergaard zerofly fabric for fly control in the US

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vestergaard ZeroFly pesticide-impregnated fabric has been evaluated in zero-graze swine and cattle farms in Sub-Saharan Africa for management of biting flies, particularly those capable of transmitting Nangana, i.e. tsetse. Other major blood-feeding flies encountered around these units are various s...

  16. Leishmania chitinase facilitates colonization of sand fly vectors and enhances transmission to mice

    PubMed Central

    Rogers, Matthew E; Hajmová, Martina; Joshi, Manju B; Sadlova, Jovana; Dwyer, Dennis M; Volf, Petr; Bates, Paul A

    2008-01-01

    Chitinases of trypanosomatid parasites have been proposed to fulfil various roles in their blood-feeding arthropod vectors but so far none have been directly tested using a molecular approach. We characterized the ability of Leishmania mexicana episomally transfected with LmexCht1 (the L. mexicana chitinase gene) to survive and grow within the permissive sand fly vector, Lutzomyia longipalpis. Compared with control plasmid transfectants, the overexpression of chitinase was found to increase the average number of parasites per sand fly and accelerate the escape of parasites from the peritrophic matrix-enclosed blood meal as revealed by earlier arrival at the stomodeal valve. Such flies also exhibited increased damage to the structure of the stomodeal valve, which may facilitate transmission by regurgitation. When exposed individually to BALB/c mice, those flies with chitinase-overexpressing parasites spent on average 2.4–2.5 times longer in contact with their host during feeding, compared with flies with control infections. Furthermore, the lesions that resulted from these single fly bite infections were both significantly larger and with higher final parasite burdens than controls. These data show that chitinase is a multifunctional virulence factor for L. mexicana which assists its survival in Lu. longipalpis. Specifically, this enzyme enables the parasites to colonize the anterior midgut of the sand fly more quickly, modify the sand fly stomodeal valve and affect its blood feeding, all of which combine to enhance transmission. PMID:18284631

  17. Pyrethroid Treatment of Cattle for Tsetse Control: Reducing Its Impact on Dung Fauna

    PubMed Central

    Vale, Glyn A.; Hargrove, John W.; Chamisa, Andrew; Grant, Ian F.; Torr, Stephen J.

    2015-01-01

    Background African trypansomiases of humans and animals can be controlled by attacking the vectors, various species of tsetse fly. Treatment of cattle with pyrethroids to kill tsetse as they feed is the most cost-effective method. However, such treatments can contaminate cattle dung, thereby killing the fauna which disperse the dung and so play an important role in soil fertility. Hence there is a need to identify cost-effective methods of treating cattle with minimal impact on dung fauna. Methodology/Principal Findings We used dung beetles to field bioassay the levels of dung contamination following the use of spray and pour-on formulations of deltamethrin, applied to various parts of the body of cattle in Zimbabwe. Results suggested that dung was contaminated by contact with insecticide on the body surface as the cattle defecated, and by ingestion of insecticide as the cattle licked themselves. Death of dung beetles was reduced to negligible levels by using only the spray and applying it to the legs and belly or legs alone, i.e., places where most tsetse feed. Conclusion/Significance The restricted applications suitable for minimising the impact on dung fauna have the collateral benefits of improving the economy and convenience of cattle treatments for tsetse control. The demonstration of collateral benefits is one of the surest ways of promoting environmentally friendly procedures. PMID:25738836

  18. Dynamics of tsetse natural infection rates in the Mouhoun river, Burkina Faso, in relation with environmental factors

    PubMed Central

    Bouyer, Jérémy; Koné, Naférima; Bengaly, Zakaria

    2013-01-01

    In Burkina Faso, the cyclical vectors of African animal trypanosomoses (AAT) are riverine tsetse species, namely Glossina palpalis gambiensis Vanderplank (G.p.g.) and Glossina tachinoides Westwood (G.t.) (Diptera: Glossinidae). Experimental work demonstrated that environmental stress can increase the sensitivity of tsetse to trypanosome infection. Seasonal variations of the tsetse infection rates were monitored monthly over 17 months (May 2006–September 2007) in two sites (Douroula and Kadomba). In total, 1423 flies were dissected and the infection of the proboscis, middle intestine and salivary glands was noted. All the positive organs were analyzed using monospecific polymerase chain reaction (PCR) primers. To investigate the role of different environmental factors, fly infection rates were analyzed using generalized linear mixed binomial models using the species, sex, and monthly averages of the maximum, minimum and mean daily temperatures, rainfalls, Land Surface Temperature day (LSTd) and night (LSTn) as fixed effects and the trap position as a random effect. The overall infection rate was 10% from which the predominant species was T. congolense (7.6% of the flies), followed by T. vivax (2.2% of the flies). The best model (lowest AICc) for the global infection rates was the one with the maximum daily temperature only as fixed effect (p < 0.001). For T. congolense, the best model was the one with the tsetse species, sex, maximum daily temperature and rainfalls as fixed effect, where the maximum daily temperature was the main effect (p < 0.001). The number of T. vivax infections was too low to allow the models to converge. The maturation rate of T. congolense was very high (94%), and G. t. harbored a higher maturation rate (p = 0.03). The results are discussed in view of former laboratory studies showing that temperature stress can increase the susceptibility of tsetse to trypanosomes, as well as the possibility to improve AAT risk mapping using satellite

  19. Water vapour and heat combine to elicit biting and biting persistence in tsetse

    PubMed Central

    2013-01-01

    Background Tsetse flies are obligatory blood feeders, accessing capillaries by piercing the skin of their hosts with the haustellum to suck blood. However, this behaviour presents a considerable risk as landing flies are exposed to predators as well as the host’s own defense reactions such as tail flicking. Achieving a successful blood meal within the shortest time span is therefore at a premium in tsetse, so feeding until replete normally lasts less than a minute. Biting in blood sucking insects is a multi-sensory response involving a range of physical and chemical stimuli. Here we investigated the role of heat and humidity emitted from host skin on the biting responses of Glossina pallidipes, which to our knowledge has not been fully studied in tsetse before. Methods The onset and duration of the biting response of G. pallidipes was recorded by filming movements of its haustellum in response to rapid increases in temperature and/or relative humidity (RH) following exposure of the fly to two airflows. The electrophysiological responses of hygroreceptor cells in wall-pore sensilla on the palps of G. pallidipes to drops in RH were recorded using tungsten electrodes and the ultra-structure of these sensory cells was studied by scanning and transmission electron microscopy. Results Both latency and proportion of tsetse biting are closely correlated to RH when accompanied by an increase of 13.1°C above ambient temperature but not for an increase of just 0.2°C. Biting persistence, as measured by the number of bites and the time spent biting, also increases with increasing RH accompanied by a 13.1°C increase in air temperature. Neurones in wall-pore sensilla on the palps respond to shifts in RH. Conclusions Our results show that temperature acts synergistically with humidity to increase the rapidity and frequency of the biting response in tsetse above the levels induced by increasing temperature or humidity separately. Palp sensilla housing hygroreceptor cells

  20. Exposure to tea tree oil enhances the mating success of male Mediterranean fruit flies (Diptera: Tephritidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aroma of various plant essential oils has been shown to enhance the mating competitiveness of males of the Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann). Laboratory observations revealed that male medflies show strong short-range attraction to tea tree oil (TTO hereafter) deri...

  1. Quality of Sterile Male Tsetse after Long Distance Transport as Chilled, Irradiated Pupae

    PubMed Central

    Bassene, Mireille D.; Fall, Assane Gueye; Diouf, Thérèse A. R.; Sall, Baba; Vreysen, Marc J. B.; Rayaissé, Jean-Baptiste; Takac, Peter; Sidibé, Issa; Parker, Andrew G.; Mutika, Gratian N.; Bouyer, Jérémy; Gimonneau, Geoffrey

    2015-01-01

    Background Tsetse flies transmit trypanosomes that cause human and African animal trypanosomosis, a debilitating disease of humans (sleeping sickness) and livestock (nagana). An area-wide integrated pest management campaign against Glossina palpalis gambiensis has been implemented in Senegal since 2010 that includes a sterile insect technique (SIT) component. The SIT can only be successful when the sterile males that are destined for release have a flight ability, survival and competitiveness that are as close as possible to that of their wild male counterparts. Methodology/Principal Findings Tests were developed to assess the quality of G. p. gambiensis males that emerged from pupae that were produced and irradiated in Burkina Faso and Slovakia (irradiation done in Seibersdorf, Austria) and transported weekly under chilled conditions to Dakar, Senegal. For each consignment a sample of 50 pupae was used for a quality control test (QC group). To assess flight ability, the pupae were put in a cylinder filtering emerged flies that were able to escape the cylinder. The survival of these flyers was thereafter monitored under stress conditions (without feeding). Remaining pupae were emerged and released in the target area of the eradication programme (RF group). The following parameter values were obtained for the QC flies: average emergence rate more than 69%, median survival of 6 days, and average flight ability of more than 35%. The quality protocol was a good proxy of fly quality, explaining a large part of the variances of the examined parameters. Conclusions/Significance The quality protocol described here will allow the accurate monitoring of the quality of shipped sterile male tsetse used in operational eradication programmes in the framework of the Pan-African Tsetse and Trypanosomosis Eradication Campaign. PMID:26562521

  2. Complex Interactions between Temperature and Relative Humidity on Water Balance of Adult Tsetse (Glossinidae, Diptera): Implications for Climate Change.

    PubMed

    Kleynhans, Elsje; Terblanche, John S

    2011-01-01

    Insect water balance plays an important role in determining energy budgets, activity patterns, survival, and population dynamics and, hence, geographic distribution. Tsetse (Glossina spp.) are important vectors of human and animal disease occupying a wide range of habitats in Africa and are notable for their desiccation resistance in xeric environments. Here, we measure water balance and related traits [water loss rate (WLR), body water content (BWC), body lipid content (BLC) and body mass] in adult flies across a range of temperature (20-30°C) and relative humidity (0-99%) combinations in four tsetse species from both xeric and mesic habitats. WLRs were significantly affected by measurement under different temperature and relative humidity combinations, while BWC, BLC, and body mass were less affected. These results provide support for mass-independent inter- and intra-specific variation in WLRs and survival times. Furthermore, water balance responses to variation in temperature and relative humidity are complex in Glossina, and this response varies within and among species, subgroups, and ecotypes in terms of both magnitude of effects and the direction of change. Different effects of temperature and relative humidity within and among experimental conditions and species suggests cuticular permeability and saturation deficit are likely to be key factors in forecasting tsetse water balance responses to climate variability. This complicates potential forecasting of tsetse distribution in the face of climate change. PMID:22046163

  3. Using species distribution models to optimize vector control in the framework of the tsetse eradication campaign in Senegal

    PubMed Central

    Dicko, Ahmadou H.; Lancelot, Renaud; Seck, Momar T.; Guerrini, Laure; Sall, Baba; Lo, Mbargou; Vreysen, Marc J. B.; Lefrançois, Thierry; Fonta, William M.; Peck, Steven L.; Bouyer, Jérémy

    2014-01-01

    Tsetse flies are vectors of human and animal trypanosomoses in sub-Saharan Africa and are the target of the Pan African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC). Glossina palpalis gambiensis (Diptera: Glossinidae) is a riverine species that is still present as an isolated metapopulation in the Niayes area of Senegal. It is targeted by a national eradication campaign combining a population reduction phase based on insecticide-treated targets (ITTs) and cattle and an eradication phase based on the sterile insect technique. In this study, we used species distribution models to optimize control operations. We compared the probability of the presence of G. p. gambiensis and habitat suitability using a regularized logistic regression and Maxent, respectively. Both models performed well, with an area under the curve of 0.89 and 0.92, respectively. Only the Maxent model predicted an expert-based classification of landscapes correctly. Maxent predictions were therefore used throughout the eradication campaign in the Niayes to make control operations more efficient in terms of deployment of ITTs, release density of sterile males, and location of monitoring traps used to assess program progress. We discuss how the models’ results informed about the particular ecology of tsetse in the target area. Maxent predictions allowed optimizing efficiency and cost within our project, and might be useful for other tsetse control campaigns in the framework of the PATTEC and, more generally, other vector or insect pest control programs. PMID:24982143

  4. [Ecology of Glossina palpalis VANDERPLANK, 1949 (Diptera: Glossinidae) in mangrove area of Guinea: influence of tides on tsetse densities].

    PubMed

    Kagbadouno, S M; Salou, E; Rayaisse, J B; Courtin, F; Sanon, A; Solano, P; Camara, M

    2016-05-01

    The mangrove area on the Guinea littoral constitutes a favourable habitat for transmission of Trypanosoma brucei gambiens, the parasite causing sleeping sickness also called Human African Trypanosmosis (HAT), due the simultaneous presence of the vector (tsetse flies) and the human hosts. In order to assess the influence of the sea tides on the densities of Glossina palpalis gambiensis (Gpg), major vector of HAT in the mangrove, entomological surveys were performed using two transects, according to tides coefficient (great and small) and tide daily fluctuations (high and low). On each transect, 12 biconical traps were deployed through the mangrove to the continent. In total, up to 612 Gpg were caught, giving a density of 2.13 flies/trap/day (f/t/d). Highest captures were recorded during small tides and more tsetse were caught during the dry season than in the wet season. There were significant differences between captures when considering the different biotopes, and highest tsetse densities were recorded at the junction of the river and the channel of the mangrove (6.17±5.24); and in the channels of mangrove (3.50±3.76), during high tides of small coefficients. The results of this study may be used to improve vector control methods. PMID:26875082

  5. Microstructure and Mechanical Properties of Fly Ash Particulate Reinforced in LM6 for Energy Enhancement in Automotive Applications

    NASA Astrophysics Data System (ADS)

    Ervina Efzan, M. N.; Siti Syazwani, N.; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Fly ash has gathered widespread attention as a potential reinforcement for aluminium matrix composites (AMCs) to enhance the properties and reduce the cost of production. Aluminium alloy LM6 reinforced with three different amounts (0, 4, 5 and 6 wt. %) of fly ash particle that were prepared by compo-casting method. The fly ash particles were incorporated into semi-solid state of LM6 melt. In this study, the microstructure of prepared AMCs with the homogenous distribution of fly ash was analysed using optical microscope. The microstructure having refinement of structure with the decreasing of Si-needle structure and increasing the area of eutectic a-Al matrix as shown in figure. Besides, as the increasing amount of fly ash incorporated, there are more petal-like dark structure existed in the microstructure. The density of the AMCs decreased as the incorporation of fly ash increased. While the hardness and ultimate tensile strength of the AMCs increased with the incorporation of fly ash. The addition of fly ash particles improved the physical and mechanical properties of the AMCs. Thus lead to improve the energy consumption in automotive parts.

  6. Contest experience enhances aggressive behaviour in a fly: when losers learn to win.

    PubMed

    Benelli, Giovanni; Desneux, Nicolas; Romano, Donato; Conte, Giuseppe; Messing, Russell H; Canale, Angelo

    2015-01-01

    In several animal species, aggressive experience influences the characteristics and outcomes of subsequent conflicts, such that winners are more likely to win again (the winner effect) and losers more likely to lose again (the loser effect). We tested the olive fruit fly, Bactrocera oleae (Diptera: Tephritidae), as a model system to evaluate the role of the winner and loser effects in male-male territorial contests. Further, we conducted experiments to test if winning and losing probabilities are affected only by the outcome of the previous contests, or whether the fighting experience itself is sufficient to induce an effect. Both winners and losers of two consecutive encounters displayed higher intensity of aggression and fought longer in subsequent contests. In both cases, they achieved higher fighting success than naïve males. The enhanced fighting performance of both winners and losers was stimulated by merely experiencing a contest, not necessarily by the relative outcome of previous fights. Overall, this study highlights the fact that previous victories and defeats both enhance aggressive behaviour in olive fruit flies, allowing them to achieve higher fighting success in subsequent contests against inexperienced males. PMID:25792294

  7. Artificial Warthog Burrows Used to Sample Adult and Immature Tsetse (Glossina spp) in the Zambezi Valley of Zimbabwe

    PubMed Central

    Hargrove, John W.; Muzari, M. Odwell

    2015-01-01

    Background The biology of adult tsetse (Glossina spp), vectors of trypanosomiasis in Africa, has been extensively studied – but little is known about larviposition in the field. Methodology/Principal Findings In September-November 1998, in the hot-dry season in Zimbabwe’s Zambezi Valley, we used artificial warthog burrows to capture adult females as they deposited larvae. Females were subjected to ovarian dissection and were defined as perinatal flies, assumed to have entered burrows to larviposit, if oocyte sizes indicated >95% pregnancy completion. Perinatal flies were defined as full-term pregnant if there was a late third instar larva in utero, or postpartum if the uterus was empty. All other females were defined as pre-full-term pregnant (pre-FT). Of 845 G. m. morsitans captured, 91% (765) were female and 295/724 (41%) of females dissected were perinatal flies. By contrast, of 2805 G. pallidipes captured only 71% (2003) were female and only 33% (596/1825) of females were perinatal. Among all perinatal females 67% (596/891) were G. pallidipes. Conversely, in burrows not fitted with traps – such that flies were free to come and go – 1834 (59%) of pupae deposited were G. m. morsitans and only 1297 (41%) were G. pallidipes. Thus, while more full-term pregnant G. pallidipes enter burrows, greater proportions of G. m. morsitans larviposit in them, reflecting a greater discrimination among G. pallidipes in choosing larviposition sites. Catches of males and pre-FT females increased strongly with temperatures above 32°C, indicating that these flies used burrows as refuges from high ambient temperatures. Conversely, catches of perinatal females changed little with maximum temperature but declined from late September through November: females may anticipate that burrows will be inundated during the forthcoming wet season. Ovarian age distributions of perinatal and pre-FT females were similar, consistent with all ages of females larvipositing in burrows with

  8. The Sequential Aerosol Technique: A Major Component in an Integrated Strategy of Intervention against Riverine Tsetse in Ghana

    PubMed Central

    Adam, Yahaya; Cecchi, Giuliano; Kgori, Patrick M.; Marcotty, Tanguy; Mahama, Charles I.; Abavana, Martin; Anderson, Benita; Paone, Massimo; Mattioli, Raffaele; Bouyer, Jérémy

    2013-01-01

    Background An integrated strategy of intervention against tsetse flies was implemented in the Upper West Region of Ghana (9.62°–11.00° N, 1.40°–2.76° W), covering an area of ≈18,000 km2 within the framework of the Pan-African Tsetse and Trypanosomosis Eradication Campaign. Two species were targeted: Glossina tachinoides and Glossina palpalis gambiensis. Methodology/Principal Findings The objectives were to test the potentiality of the sequential aerosol technique (SAT) to eliminate riverine tsetse species in a challenging subsection (dense tree canopy and high tsetse densities) of the total sprayed area (6,745 km2) and the subsequent efficacy of an integrated strategy including ground spraying (≈100 km2), insecticide treated targets (20,000) and insecticide treated cattle (45,000) in sustaining the results of tsetse suppression in the whole intervention area. The aerial application of low-dosage deltamethrin aerosols (0.33–0.35 g a.i/ha) was conducted along the three main rivers using five custom designed fixed-wings Turbo thrush aircraft. The impact of SAT on tsetse densities was monitored using 30 biconical traps deployed from two weeks before until two weeks after the operations. Results of the SAT monitoring indicated an overall reduction rate of 98% (from a pre-intervention mean apparent density per trap per day (ADT) of 16.7 to 0.3 at the end of the fourth and last cycle). One year after the SAT operations, a second survey using 200 biconical traps set in 20 sites during 3 weeks was conducted throughout the intervention area to measure the impact of the integrated control strategy. Both target species were still detected, albeit at very low densities (ADT of 0.27 inside sprayed blocks and 0.10 outside sprayed blocks). Conclusions/Significance The SAT operations failed to achieve elimination in the monitored section, but the subsequent integrated strategy maintained high levels of suppression throughout the intervention area, which will

  9. Use of deltamethrin 'pour-on' insecticide for the control of cattle trypanosomosis in the presence of high tsetse invasion.

    PubMed

    Rowlands, G J; Leak, S G; Mulatu, W; Nagda, S M; Wilson, A; d'Ieteren, G D

    2001-03-01

    A deltamethrin 'pour-on' insecticide was applied monthly to over 2000 cattle exposed to a high challenge of drug-resistant trypanosomes and high tsetse re-invasion pressure in the Ghibe valley, south-west Ethiopia. Blood samples were taken monthly from an average of 760 cattle for determination of PCV and presence of trypanosomes. The area of the valley is approximately 350 km2 and the cattle grazed in roughly four locations covering about a quarter to half of the area. Two years before the trial commenced, Glossina morsitans submorsitans Newstead (Diptera: Glossinidae) began to invade the valley. Despite the use of the pour-on the mean apparent density of G. m. submorsitans continued to rise, and, during the 4 years of tsetse control, was more than three-fold higher than that recorded during the previous 18 months. Over the same period there was little change in the apparent density of Glossina pallidipes Austen (Diptera: Glossinidae). By contrast, the mean monthly prevalence of trypanosome infections in cattle over 36 months of age decreased from 38.3 to 29.0%, the incidence of new infections decreased from 26.6 to 16.0% (a reduction of 40%), and packed cell volume in cattle increased from 21.7 to 24.1%. Evidence of a change in apparent parasite transmission rate was demonstrated by regression of infection incidence in cattle on the logarithm of apparent density of G. m. submorsitans. Before the trial started the regression coefficient was 45.8 +/- 6.3 and this reduced to 9.2 +/- 2.5% incidence per log(e) (flies/trap/day) during the period of tsetse control. It was concluded that this indicated reductions in tsetse numbers in the immediate vicinities of cattle in a way that was not reflected in overall tsetse catches. Nevertheless, the comparatively high levels of trypanosome prevalence that persisted in the cattle demonstrates that, where invasion prevalence is high, treatment of small pockets of cattle will not eradicate tsetse. To achieve more significant

  10. Hessian fly larval feeding triggers enhanced polyamine levels in susceptible but not resistant wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect herbivores depend on dietary amino acids and polyamines (PA) for their growth and development. We have analyzed polyamine metabolism during the interaction of wheat with one of its major insect pests, the Hessian fly [Mayetiola destructor (Say)]. The wheat-Hessian fly interaction operates in ...

  11. Enhancement of mercury capture by the simultaneous addition of hydrogen bromide (HBr) and fly ashes in a slipstream facility.

    PubMed

    Cao, Yan; Wang, Quan-Hai; Li, Jun; Cheng, Jen-Chieh; Chan, Chia-Chun; Cohron, Marten; Pan, Wei-Ping

    2009-04-15

    Low halogen content in tested Powder River Basin (PRB) coals and low loss of ignition content (LOI) in PRB-derived fly ash were likely responsible for higher elemental mercury content (averaging about 75%) in the flue gas and also lower mercury capture efficiency by electrostatic precipitator (ESP) and wet-FGD. To develop a cost-effective approach to mercury capture in a full-scale coal-fired utility boiler burning PRB coal, experiments were conducted adding hydrogen bromide (HBr) or simultaneously adding HBr and selected fly ashes in a slipstream reactor (0.152 x 0.152 m) under real flue gas conditions. The residence time of the flue gas inside the reactorwas about 1.4 s. The average temperature of the slipstream reactor was controlled at about 155 degrees C. Tests were organized into two phases. In Phase 1, only HBr was added to the slipstream reactor, and in Phase 2, HBr and selected fly ash were added simultaneously. HBr injection was effective (>90%) for mercury oxidation at a low temperature (155 degrees C) with an HBr addition concentration of about 4 ppm in the flue gas. Additionally, injected HBr enhanced mercury capture by PRB fly ash in the low-temperature range. The mercury capture efficiency, attesting conditions of the slipstream reactor, reached about 50% at an HBr injection concentration of 4 ppm in the flue gas. Compared to only the addition of HBr, simultaneously adding bituminous-derived fly ash in a minimum amount (30 lb/MMacf), together with HBr injection at 4 ppm, could increase mercury capture efficiency by 30%. Injection of lignite-derived fly ash at 30 lb/MMacf could achieve even higher mercury removal efficiency (an additional 35% mercury capture efficiency compared to HBr addition alone). PMID:19475955

  12. Enhancement of mercury capture by the simultaneous addition of hydrogen bromide (HBr) and fly ashes in a slipstream facility

    SciTech Connect

    Yan Cao; Quan-Hai Wang; Jun Li; Jen-Chieh Cheng; Chia-Chun Chan; Marten Cohron; Wei-Ping Pan

    2009-04-15

    Low halogen content in tested Powder River Basin (PRB) coals and low loss of ignition content (LOI) in PRB-derived fly ash were likely responsible for higher elemental mercury content (averaging about 75%) in the flue gas and also lower mercury capture efficiency by electrostatic precipitator (ESP) and wet-FGD. To develop a cost-effective approach to mercury capture in a full-scale coal-fired utility boiler burning PRB coal, experiments were conducted adding hydrogen bromide (HBr) or simultaneously adding HBr and selected fly ashes in a slipstream reactor (0.152 x 0.152 m) under real flue gas conditions. The residence time of the flue gas inside the reactor was about 1.4 s. The average temperature of the slipstream reactor was controlled at about 155{sup o}C. Tests were organized into two phases. In Phase 1, only HBr was added to the slipstream reactor, and in Phase 2, HBr and selected fly ash were added simultaneously. HBr injection was effective (>90%) for mercury oxidation at a low temperature (155{sup o}C) with an HBr addition concentration of about 4 ppm in the flue gas. Additionally, injected HBr enhanced mercury capture by PRB fly ash in the low-temperature range. The mercury capture efficiency, at testing conditions of the slipstream reactor, reached about 50% at an HBr injection concentration of 4 ppm in the flue gas. Compared to only the addition of HBr, simultaneously adding bituminous-derived fly ash in a minimum amount (30 lb/MMacf), together with HBr injection at 4 ppm, could increase mercury capture efficiency by 30%. Injection of lignite-derived fly ash at 30 lb/MMacf could achieve even higher mercury removal efficiency (an additional 35% mercury capture efficiency compared to HBR addition alone). 25 refs., 5 figs., 1 tab.

  13. Conflict of interest: use of pyrethroids and amidines against tsetse and ticks in zoonotic sleeping sickness endemic areas of Uganda

    PubMed Central

    2013-01-01

    Background Caused by trypanosomes and transmitted by tsetse flies, Human African Trypanosomiasis and bovine trypanosomiasis remain endemic across much of rural Uganda where the major reservoir of acute human infection is cattle. Following elimination of trypanosomes by mass trypanocidal treatment, it is crucial that farmers regularly apply pyrethroid-based insecticides to cattle to sustain parasite reductions, which also protect against tick-borne diseases. The private veterinary market is divided between products only effective against ticks (amidines) and those effective against both ticks and tsetse (pyrethroids). This study explored insecticide sales, demand and use in four districts of Uganda where mass cattle treatments have been undertaken by the ‘Stamp Out Sleeping Sickness’ programme. Methods A mixed-methods study was undertaken in Dokolo, Kaberamaido, Serere and Soroti districts of Uganda between September 2011 and February 2012. This included: focus groups in 40 villages, a livestock keeper survey (n = 495), a veterinary drug shop questionnaire (n = 74), participatory methods in six villages and numerous semi-structured interviews. Results Although 70.5% of livestock keepers reportedly used insecticide each month during the rainy season, due to a variety of perceptions and practices nearly half used products only effective against ticks and not tsetse. Between 640 and 740 litres of insecticide were being sold monthly, covering an average of 53.7 cattle/km2. Sales were roughly divided between seven pyrethroid-based products and five products only effective against ticks. In the high-risk HAT district of Kaberamaido, almost double the volume of non-tsetse effective insecticide was being sold. Factors influencing insecticide choice included: disease knowledge, brand recognition, product price, half-life and mode of product action, product availability, and dissemination of information. Stakeholders considered market restriction of non-tsetse

  14. [Impact of the dynamics of human settlement on tsetse and trypanosomosis distribution in the Mouhoun river basin (Burkina Faso)].

    PubMed

    Rouamba, J; Jamonneau, V; Sidibé, I; Solano, P; Courtin, F

    2009-03-01

    In Burkina Faso, the Mouhoun river basin (formerly "Black Volta") constitutes a historical focus of Human (HAT) and Animal (AAT) African Trypanosomoses, both transmitted by tsetse flies. Nowadays, HAT seems to have disappeared from this area, while AAT still causes severe economic losses. In order to explain these different epidemiological situations, we undertook a geographical study based on the analysis of aerial pictures between 1952 and 2007, and field surveys to collect medical, entomological, and veterinary data on trypanosomoses. Our results suggest that in this area, landscapes have been dramatically modified as a consequence of population growth, and in turn have had an impact on the number and distribution of tsetse flies. Combined with the historical medical action on HAT which probably led to the disappearance of T. b. gambiense, this environmental degradation and the development of hydrological structures provide explanations for the local disappearance of HAT, and for the maintenance of AAT. It appears necessary to extrapolate these studies to other areas in order to identify the factors explaining the presence/absence of trypanosomoses in the context of human population growth and climatic changes, in order to help to target priority areas for the control of these diseases. PMID:19353947

  15. Control of the olive fruit fly using genetics-enhanced sterile insect technique

    PubMed Central

    2012-01-01

    Background The olive fruit fly, Bactrocera oleae, is the major arthropod pest of commercial olive production, causing extensive damage to olive crops worldwide. Current control techniques rely on spraying of chemical insecticides. The sterile insect technique (SIT) presents an alternative, environmentally friendly and species-specific method of population control. Although SIT has been very successful against other tephritid pests, previous SIT trials on olive fly have produced disappointing results. Key problems included altered diurnal mating rhythms of the laboratory-reared insects, resulting in asynchronous mating activity between the wild and released sterile populations, and low competitiveness of the radiation-sterilised mass-reared flies. Consequently, the production of competitive, male-only release cohorts is considered an essential prerequisite for successful olive fly SIT. Results We developed a set of conditional female-lethal strains of olive fly (named Release of Insects carrying a Dominant Lethal; RIDL®), providing highly penetrant female-specific lethality, dominant fluorescent marking, and genetic sterility. We found that males of the lead strain, OX3097D-Bol, 1) are strongly sexually competitive with wild olive flies, 2) display synchronous mating activity with wild females, and 3) induce appropriate refractoriness to wild female re-mating. Furthermore, we showed, through a large proof-of-principle experiment, that weekly releases of OX3097D-Bol males into stable populations of caged wild-type olive fly could cause rapid population collapse and eventual eradication. Conclusions The observed mating characteristics strongly suggest that an approach based on the release of OX3097D-Bol males will overcome the key difficulties encountered in previous olive fly SIT attempts. Although field confirmation is required, the proof-of-principle suppression and elimination of caged wild-type olive fly populations through OX3097D-Bol male releases provides

  16. Enhanced Formation Flying for the Earth Observing-1 (EO-1) New Millennium Mission

    NASA Technical Reports Server (NTRS)

    Folta, David; Quinn, David

    1997-01-01

    With scientific objectives for Earth observation programs becoming more ambitious and spacecraft becoming more autonomous, the need for new technical approaches on the feasibility of achieving and maintaining formations of spacecraft has come to the forefront. The trend to develop small low cost spacecraft has led many scientists to recognize the advantage of flying several spacecraft in formation, an example of which is shown in the figure below, to achieve the correlated instrument measurements formerly possible only by flying many instruments on a single large platform. Yet, formation flying imposes additional complications on orbit maintenance, especially when each spacecraft has its own orbit requirements. However, advances in automation proposed by GSFC Codes 550 and 712 allow more of the burden in maneuver planning and execution to be placed onboard the spacecraft, mitigating some of the associated operational concerns. The purpose of this analysis is to develop the fundamentals of formation flying mechanics, concepts for understanding the relative motion of free flying spacecraft, and an operational control theory for formation maintenance of the Earth Observing-1 (EO-l) spacecraft that is part of the New Millennium. Results of this development can be used to determine the appropriateness of formation flying for a particular case as well as the operational impacts. Applications to the Mission to Planet Earth (MTPE) Earth Observing System (EOS) and New Millennium (NM) were highly considered in analysis and applications. This paper presents the proposed methods for the guidance and control of the EO-1 spacecraft to formation fly with the Landsat-7 spacecraft using an autonomous closed loop three axis navigation control, GPS, and Cross link navigation support. Simulation results using various fidelity levels of modeling, algorithms developed and implemented in MATLAB, and autonomous 'fuzzy logic' control using AutoCon will be presented. The results of these

  17. Enabling Spacecraft Formation Flying in Any Earth Orbit Through Spaceborne GPS and Enhanced Autonomy Technologies

    NASA Technical Reports Server (NTRS)

    Bauer, F. H.; Bristow, J. O.; Carpenter, J. R.; Garrison, J. L.; Hartman, K. R.; Lee, T.; Long, A. C.; Kelbel, D.; Lu, V.; How, J. P.; Busse, F.

    2000-01-01

    Formation flying is quickly revolutionizing the way the space community conducts autonomous science missions around the Earth and in space. This technological revolution will provide new, innovative ways for this community to gather scientific information, share this information between space vehicles and the ground, and expedite the human exploration of space. Once fully matured, this technology will result in swarms of space vehicles flying as a virtual platform and gathering significantly more and better science data than is possible today. Formation flying will be enabled through the development and deployment of spaceborne differential Global Positioning System (GPS) technology and through innovative spacecraft autonomy techniques, This paper provides an overview of the current status of NASA/DoD/Industry/University partnership to bring formation flying technology to the forefront as quickly as possible, the hurdles that need to be overcome to achieve the formation flying vision, and the team's approach to transfer this technology to space. It will also describe some of the formation flying testbeds, such as Orion, that are being developed to demonstrate and validate these innovative GPS sensing and formation control technologies.

  18. Optimization of fly ash incorporation into cow dung-waste paper mixtures for enhanced vermidegradation and nutrient release.

    PubMed

    Mupambwa, Hupenyu A; Mnkeni, Pearson N S

    2015-05-01

    This study was conducted to establish an appropriate mixture ratio of fly ash (F) to optimized cow dung-waste paper mixtures (CP) to develop a high-quality vermicompost using earthworms (). Fly ash was mixed with cow dung-waste paper mixtures at ratios of (F:CP) 1:1, 1:2, 1:3, 2:1, and 3:1 or CP alone and composted for 14 wk. Olsen P, inorganic N (NO, NO, and NH), C:N ratio, ash content, microbial biomass C, and humification parameters were measured together with scanning electron micrograph images to determine compost maturity. Based on C:N ratio, the extent of vermidegradation of the waste mixtures followed the decreasing order (F:CP) of 1:3 > 1:2 > 1:1 > CP alone > 2:1 > 3:1. Similarly, Olsen P was significantly higher ( < 0.05) where earthworms were added. The mean percentage increase in extractable P was in the order CP alone > 1:2 > 1:3 > 1:1 > 2:1 > 3:1, with earthworm addition almost doubling P release across the 1:1, 1:2, and CP alone treatments. Fly ash incorporation enhanced conversion of organic N to the plant-available inorganic forms, with the 1:3 treatment resulting in the highest conversion. Scanning electron micrograph images confirmed the extent of vermidegradation reflected by the various humification parameters determined. Fly ash incorporation at the 1:2 ratio proved to be the most appropriate because it allows processing of more fly ash while giving a vermicompost with desirable maturity and nutritional properties. PMID:26024277

  19. An algorithm for enhanced formation flying of satellites in low earth orbit

    NASA Astrophysics Data System (ADS)

    Folta, David C.; Quinn, David A.

    1998-01-01

    With scientific objectives for Earth observation programs becoming more ambitious and spacecraft becoming more autonomous, the need for innovative technical approaches on the feasibility of achieving and maintaining formations of spacecraft has come to the forefront. The trend to develop small low-cost spacecraft has led many scientists to recognize the advantage of flying several spacecraft in formation to achieve the correlated instrument measurements formerly possible only by flying many instruments on a single large platform. Yet, formation flying imposes additional complications on orbit maintenance, especially when each spacecraft has its own orbit requirements. However, advances in automation and technology proposed by the Goddard Space Flight Center (GSFC) allow more of the burden in maneuver planning and execution to be placed onboard the spacecraft, mitigating some of the associated operational concerns. The purpose of this paper is to present GSFC's Guidance, Navigation, and Control Center's (GNCC) algorithm for Formation Flying of the low earth orbiting spacecraft that is part of the New Millennium Program (NMP). This system will be implemented as a close-loop flight code onboard the NMP Earth Orbiter-1 (EO-1) spacecraft. Results of this development can be used to determine the appropriateness of formation flying for a particular case as well as operational impacts. Simulation results using this algorithm integrated in an autonomous `fuzzy logic' control system called AutoCon™ are presented.

  20. Enabling Spacecraft Formation Flying through Position Determination, Control and Enhanced Automation Technologies

    NASA Technical Reports Server (NTRS)

    Bristow, John; Bauer, Frank; Hartman, Kate; How, Jonathan

    2000-01-01

    Formation Flying is revolutionizing the way the space community conducts science missions around the Earth and in deep space. This technological revolution will provide new, innovative ways for the community to gather scientific information, share that information between space vehicles and the ground, and expedite the human exploration of space. Once fully matured, formation flying will result in numerous sciencecraft acting as virtual platforms and sensor webs, gathering significantly more and better science data than call be collected today. To achieve this goal, key technologies must be developed including those that address the following basic questions posed by the spacecraft: Where am I? Where is the rest of the fleet? Where do I need to be? What do I have to do (and what am I able to do) to get there? The answers to these questions and the means to implement those answers will depend oil the specific mission needs and formation configuration. However, certain critical technologies are common to most formations. These technologies include high-precision position and relative-position knowledge including Global Positioning System (GPS) mid celestial navigation; high degrees of spacecraft autonomy inter-spacecraft communication capabilities; targeting and control including distributed control algorithms, and high precision control thrusters and actuators. This paper provides an overview of a selection of the current activities NASA/DoD/Industry/Academia are working to develop Formation Flying technologies as quickly as possible, the hurdles that need to be overcome to achieve our formation flying vision, and the team's approach to transfer this technology to space. It will also describe several of the formation flying testbeds, such as Orion and University Nanosatellites, that are being developed to demonstrate and validate many of these innovative sensing and formation control technologies.

  1. Enhancing performance and durability of slag made from incinerator bottom ash and fly ash.

    PubMed

    Chiou, Ing-Jia; Wang, Kuen-Sheng; Tsai, Chen-Chiu

    2009-02-01

    This work presents a method capable of melting the incinerator bottom ash and fly ash in a plasma furnace. The performance of slag and the strategies for recycling of bottom ash and fly ash are improved by adjusting chemical components of bottom ash and fly ash. Ashes are separated by a magnetic process to improve the performance of slag. Analytical results indicate that the air-cooled slag (ACS) and magnetic-separated slag (MSS) have hardness levels below 590 MPa, indicating fragility. Additionally, the hardness of crystallized slag (RTS) is between 655 and 686 MPa, indicating toughness. The leached concentrations of heavy metals for these three slags are all below the regulatory limits. ACS appears to have better chemical stability than MSS, and is not significantly different from RTS. In the potential alkali-silica reactivity of slag, MSS falls on the border between the harmless zone and the potentially harmful zone. ACS and RTS fall in the harmless zone. Hence, the magnetic separation procedure of ashes does not significantly improve the quality of slag. However, RTS appears to improve its quality. PMID:18544471

  2. FliT Selectively Enhances Proteolysis of FlhC Subunit in FlhD4C2 Complex by an ATP-dependent Protease, ClpXP*

    PubMed Central

    Sato, Yoshiharu; Takaya, Akiko; Mouslim, Chakib; Hughes, Kelly T.; Yamamoto, Tomoko

    2014-01-01

    We previously reported that the ClpXP ATP-dependent protease specifically recognizes and degrades the flagellar master transcriptional activator complex, FlhD4C2, to negatively control flagellar biogenesis. The flagellum-related protein, FliT, is also a negative regulator of flagellar regulon by inhibiting the binding of FlhD4C2 to the promoter DNA. We have found a novel pathway of FliT inhibition of FlhD4C2 activity connected to ClpXP proteolysis. An in vitro degradation assay using purified proteins shows that FliT selectively increases ClpXP proteolysis of the FlhC subunit in the FlhD4C2 complex. FliT behaves specifically to ClpXP-dependent proteolysis of FlhC. An in vitro interaction assay detects the ternary complex of FliT-FlhD4C2-ClpX. FliT promotes the affinity of ClpX against FlhD4C2 complex, whereas FliT does not directly interact with ClpX. Thus, FliT interacts with the FlhC in FlhD4C2 complex and increases the presentation of the FlhC recognition region to ClpX. The DNA-bound form of FlhD4C2 complex is resistant to ClpXP proteolysis. We suggest that the role of FliT in negatively controlling the flagellar gene expression involves increasing free molecules of FlhD4C2 sensitive to ClpXP proteolysis by inhibiting the binding to the promoter DNA as well as enhancing the selective proteolysis of FlhC subunit by ClpXP. PMID:25278020

  3. Bacterial Endosymbiont of the Slender Pigeon Louse, Columbicola columbae, Allied to Endosymbionts of Grain Weevils and Tsetse Flies▿

    PubMed Central

    Fukatsu, Takema; Koga, Ryuichi; Smith, Wendy A.; Tanaka, Kohjiiro; Nikoh, Naruo; Sasaki-Fukatsu, Kayoko; Yoshizawa, Kazunori; Dale, Colin; Clayton, Dale H.

    2007-01-01

    The current study focuses on a symbiotic bacterium found in the slender pigeon louse, Columbicola columbae (Insecta: Phthiraptera). Molecular phylogenetic analyses indicated that the symbiont belongs to the gamma subdivision of the class Proteobacteria and is allied to Sodalis glossinidius, the secondary symbiont of tsetse flies (Glossina spp.) and also to the primary symbiont of grain weevils (Sitophilus spp.). Relative-rate tests revealed that the symbiont of C. columbae exhibits accelerated molecular evolution in comparison with the tsetse fly symbiont and the weevil symbiont. Whole-mount in situ hybridization was used to localize the symbiont and determine infection dynamics during host development. In first- and second-instar nymphs, the symbionts were localized in the cytoplasm of oval bacteriocytes that formed small aggregates on both sides of the body cavity. In third-instar nymphs, the bacteriocytes migrated to the central body and were finally located in the anterior region of the lateral oviducts, forming conspicuous tissue formations called ovarial ampullae. In adult females, the symbionts were transmitted from the ovarial ampullae to developing oocytes in the ovarioles. In adult males, the bacteriocytes often disappeared without migration. A diagnostic PCR survey of insects collected from Japan, the United States, Australia, and Argentina detected 96.5% (109/113) infection, with a few uninfected male insects. This study provides the first microbial characterization of a bacteriocyte-associated symbiont from a chewing louse. Possible biological roles of the symbiont are discussed in relation to the host nutritional physiology associated with the feather-feeding lifestyle. PMID:17766458

  4. Enhanced ammonia content in compost leachate processed by black soldier fly larvae.

    PubMed

    Green, Terrence R; Popa, Radu

    2012-03-01

    Black soldier fly (BSF) larvae (Hermetia illucens), feeding on leachate from decaying vegetable and food scrap waste, increase ammonia (NH (4) (+) ) concentration five- to sixfold relative to leachate unprocessed by larvae. NH (4) (+) in larva-processed leachate reached levels as high as ∼100 mM. Most of this NH (4) (+) appears to have come from organic nitrogen within the frass produced by the larvae as they fed on leachate. In nitrate-enriched solutions, BSF larvae also facilitate dissimilatory nitrate reduction to ammonia. The markedly higher concentration of NH (4) (+) recovered in leachates processed with BSF larvae and concomitant diversion of nutrients into insect biomass (itself a valuable feedstock) indicate that the use of BSF larvae in processing leachate of decaying organic waste could be advantageous in offsetting capital and environmental costs incurred in composting. PMID:22238016

  5. Stocking Density Optimization for Enhanced Bioconversion of Fly Ash Enriched Vermicompost.

    PubMed

    Mupambwa, Hupenyu A; Mnkeni, Pearson N S

    2016-05-01

    Although it is widely agreed that stocking density critically affects the rate of vermicomposting, there is no established stocking density for mixtures of fly ash and other waste materials. This study sought to optimize (Savigny, 1826) stocking density for effective biodegradation and nutrient release in a fly ash-cow dung-waste paper (FCP) mixture. Four stocking densities of 0, 12.5, 25, and 37.5 g worms kg were evaluated. Although the 12.5, 25, and 37.5 g worms kg treatments all resulted in a mature vermicompost, stocking densities of 25 and 37.5 g worms kg resulted in faster maturity, higher humification parameters, and a significantly lower final C/N ratio (range 11.1-10.4). The activity of β-glucosidase and fluorescein diacetate hydrolysis enzymes showed faster stabilization at stocking densities of 25 and 37.5 g worms kg, indicating compost stability and maturity. Similarly, a stocking density of 25 g worms kg resulted in the highest release of Olsen-extractable P and (NO + NO)-N contents. The 0-, 12.5-, 25-, and 37.5-g treatments resulted in net Olsen P increases of 16.3, 38.9, 61.0, and 53.0%, respectively, after 10 wk. Although compost maturity could be attained at stocking densities of 12.5 g worms kg, for faster production of humified and nutrient-rich FCP vermicompost, a stocking density of 25 g worms kg seems most appropriate. PMID:27136178

  6. Autogenic Feedback Training Exercise and pilot performance: enhanced functioning under search-and-rescue flying conditions

    NASA Technical Reports Server (NTRS)

    Cowings, P. S.; Kellar, M. A.; Folen, R. A.; Toscano, W. B.; Burge, J. D.

    2001-01-01

    Studies have shown that autonomous mode behavior is one cause of aircraft fatalities due to pilot error. In such cases, the pilot is in a high state of psychological and physiological arousal and tends to focus on one problem, while ignoring more critical information. This study examined the effect of training in physiological self-recognition and regulation, as a means of improving crew cockpit performance. Seventeen pilots were assigned to the treatment and control groups matched for accumulated flight hours. The treatment group contained 4 pilots from HC-130 Hercules aircraft and 4 HH-65 Dolphin helicopter pilots; the control group contained 3 pilots of HC-130s and 6 helicopter pilots. During an initial flight, physiological data were recorded on each crewmember and an instructor pilot rated individual crew performance. Eight crewmembers were then taught to regulate their own physiological response levels using Autogenic-Feedback Training Exercise (AFTE). The remaining participants received no training. During a second flight, treatment participants showed significant improvement in performance (rated by the same instructor pilot as in pretests) while controls did not improve. The results indicate that AFTE management of high states of physiological arousal may improve pilot performance during emergency flying conditions.

  7. Autogenic Feedback Training Exercise and pilot performance: enhanced functioning under search-and-rescue flying conditions.

    PubMed

    Cowings, P S; Kellar, M A; Folen, R A; Toscano, W B; Burge, J D

    2001-01-01

    Studies have shown that autonomous mode behavior is one cause of aircraft fatalities due to pilot error. In such cases, the pilot is in a high state of psychological and physiological arousal and tends to focus on one problem, while ignoring more critical information. This study examined the effect of training in physiological self-recognition and regulation, as a means of improving crew cockpit performance. Seventeen pilots were assigned to the treatment and control groups matched for accumulated flight hours. The treatment group contained 4 pilots from HC-130 Hercules aircraft and 4 HH-65 Dolphin helicopter pilots; the control group contained 3 pilots of HC-130s and 6 helicopter pilots. During an initial flight, physiological data were recorded on each crewmember and an instructor pilot rated individual crew performance. Eight crewmembers were then taught to regulate their own physiological response levels using Autogenic-Feedback Training Exercise (AFTE). The remaining participants received no training. During a second flight, treatment participants showed significant improvement in performance (rated by the same instructor pilot as in pretests) while controls did not improve. The results indicate that AFTE management of high states of physiological arousal may improve pilot performance during emergency flying conditions. PMID:12033232

  8. Flying wings / flying fuselages

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    2001-01-01

    The present paper has documented the historical relationships between various classes of all lifting vehicles, which includes the flying wing, all wing, tailless, lifting body, and lifting fuselage. The diversity in vehicle focus was to ensure that all vehicle types that map have contributed to or been influenced by the development of the classical flying wing concept was investigated. The paper has provided context and perspective for present and future aircraft design studies that may employ the all lifting vehicle concept. The paper also demonstrated the benefit of developing an understanding of the past in order to obtain the required knowledge to create future concepts with significantly improved aerodynamic performance.

  9. RNA-seq de novo Assembly Reveals Differential Gene Expression in Glossina palpalis gambiensis Infected with Trypanosoma brucei gambiense vs. Non-Infected and Self-Cured Flies

    PubMed Central

    Hamidou Soumana, Illiassou; Klopp, Christophe; Ravel, Sophie; Nabihoudine, Ibouniyamine; Tchicaya, Bernadette; Parrinello, Hugues; Abate, Luc; Rialle, Stéphanie; Geiger, Anne

    2015-01-01

    Trypanosoma brucei gambiense (Tbg), causing the sleeping sickness chronic form, completes its developmental cycle within the tsetse fly vector Glossina palpalis gambiensis (Gpg) before its transmission to humans. Within the framework of an anti-vector disease control strategy, a global gene expression profiling of trypanosome infected (susceptible), non-infected, and self-cured (refractory) tsetse flies was performed, on their midguts, to determine differential genes expression resulting from in vivo trypanosomes, tsetse flies (and their microbiome) interactions. An RNAseq de novo assembly was achieved. The assembled transcripts were mapped to reference sequences for functional annotation. Twenty-four percent of the 16,936 contigs could not be annotated, possibly representing untranslated mRNA regions, or Gpg- or Tbg-specific ORFs. The remaining contigs were classified into 65 functional groups. Only a few transposable elements were present in the Gpg midgut transcriptome, which may represent active transpositions and play regulatory roles. One thousand three hundred and seventy three genes differentially expressed (DEGs) between stimulated and non-stimulated flies were identified at day-3 post-feeding; 52 and 1025 between infected and self-cured flies at 10 and 20 days post-feeding, respectively. The possible roles of several DEGs regarding fly susceptibility and refractoriness are discussed. The results provide new means to decipher fly infection mechanisms, crucial to develop anti-vector control strategies. PMID:26617594

  10. Enhancement of Rhodamine B removal by low-cost fly ash sorption with Fenton pre-oxidation.

    PubMed

    Chang, Shih-Hsien; Wang, Kai-Sung; Li, Heng-Ching; Wey, Ming-Yen; Chou, Jing-Dong

    2009-12-30

    The removal of a basic dye, Rhodamine B (RhB), by fly ash adsorption, Fenton oxidation, and combined Fenton oxidation-fly ash adsorption were evaluated. Even though fly ash is a low cost absorbent, a high dose of fly ash was needed to remove RhB. Only 54% of RhB was removed by 80 g L(-1) fly ash. Solution pH did not significantly affect the RhB sorption by fly ash after 8h. Fenton reagents at H(2)O(2) dose of 6 x 10(-3)M and pH 3 rapidly decolorized 97% of RhB within 2 min, and 72% of COD removal was obtained at 30min reaction time. Spectrum analysis result showed that a large area of UV spectrum at 200-400 nm remained after Fenton reaction. The addition of 1gL(-1) fly ash effectively removed COD from Fenton-treated solution, and the UV absorption spectrum at 220-400 nm totally vanished within 2h. COD removal of RhB by the combined Fenton oxidation and fly ash sorption process was 98%. The COD removal capacity of fly ash for Fenton-treated RhB solution was 41.6 times higher than that for untreated RhB solution. The results indicated that the combined process is a potential technique for RhB removal. PMID:19695774

  11. Epigenome Mapping Reveals Distinct Modes of Gene Regulation and Widespread Enhancer Reprogramming by the Oncogenic Fusion Protein EWS-FLI1

    PubMed Central

    Tomazou, Eleni M.; Sheffield, Nathan C.; Schmidl, Christian; Schuster, Michael; Schönegger, Andreas; Datlinger, Paul; Kubicek, Stefan; Bock, Christoph; Kovar, Heinrich

    2015-01-01

    Summary Transcription factor fusion proteins can transform cells by inducing global changes of the transcriptome, often creating a state of oncogene addiction. Here, we investigate the role of epigenetic mechanisms in this process, focusing on Ewing sarcoma cells that are dependent on the EWS-FLI1 fusion protein. We established reference epigenome maps comprising DNA methylation, seven histone marks, open chromatin states, and RNA levels, and we analyzed the epigenome dynamics upon downregulation of the driving oncogene. Reduced EWS-FLI1 expression led to widespread epigenetic changes in promoters, enhancers, and super-enhancers, and we identified histone H3K27 acetylation as the most strongly affected mark. Clustering of epigenetic promoter signatures defined classes of EWS-FLI1-regulated genes that responded differently to low-dose treatment with histone deacetylase inhibitors. Furthermore, we observed strong and opposing enrichment patterns for E2F and AP-1 among EWS-FLI1-correlated and anticorrelated genes. Our data describe extensive genome-wide rewiring of epigenetic cell states driven by an oncogenic fusion protein. PMID:25704812

  12. Widespread occurrence of Trypanosoma vivax in bovines of tsetse- as well as non-tsetse-infested regions of Ethiopia: a reason for concern?

    PubMed

    Fikru, Regassa; Goddeeris, Bruno Maria; Delespaux, Vincent; Moti, Yohannes; Tadesse, Aster; Bekana, Merga; Claes, Filip; De Deken, Reginald; Büscher, Philippe

    2012-12-21

    A cross-sectional study was undertaken to assess the prevalence of bovine trypanosomosis in some tsetse-infested and tsetse-free areas of Ethiopia. From August 2010 till April 2011, a total of 1524 animals were parasitologically examined and compared by the haematocrit centrifugation technique (Woo test) and polymerase chain reaction (ITS-1 PCR). The ITS-1 PCR was more sensitive and more accurate in species identification than the Woo test. In ITS-1 PCR, an overall trypanosome prevalence of 31.0% was observed that is significantly (P<0.001) higher than in the Woo test (5.3%). Trypanosoma vivax was the predominant taxon (24.9%), followed by T. theileri (6.0%), T. congolense (2.9%) and Trypanozoon (1.6%). Mixed infections were quite common (14% of all infections). The overall prevalence of trypanosome infections in tsetse area (32.4%) was not different from non-tsetse area (30.5%) neither were the prevalences of T. vivax in both areas (respectively 22.6% and 25.7%). With these high prevalences, bovine trypanosomosis continues to hinder animal production and productivity in Ethiopia, both in tsetse-infested and non-infested parts of the country. Attempts to control African trypanosomosis should also pay attention to mechanically transmitted pathogenic trypanosomes and should adopt the most advanced molecular tests for species identification. PMID:22858227

  13. Exposure to ginger root oil enhances mating success of irradiated, mass-reared males of Mediterranean fruit fly (Diptera: Tephritidae).

    PubMed

    Shelly, T E; McInnis, D O

    2001-12-01

    Previous research revealed that exposure to ginger root oil, Zingiber officinale Roscoe, containing the known male attractant (a-copaene) increased the mating success of male Mediterranean fruit flies, Ceratitis capitata (Wiedemann), from a newly established laboratory colony. The goal of the current study was to determine whether exposure to ginger root oil likewise enhanced the mating competitiveness of irradiated C. capitata males from a 5-yr-old mass-reared strain. Mating tests were conducted in field cages containing guava trees (Psidium guajava L.) to monitor the mating frequency of irradiated, mass-reared and wild males competing for wild females. In the absence of chemical exposure, wild males outcompeted the mass-reared males and obtained 74% of all matings. However, following exposure to ginger root oil (20 microl for 6 h), the mating frequencies were reversed. Whether exposed as mature (3-d-old) or immature (1-d-old) adults, mass-reared males achieved approximately 75% of all matings in tests conducted 2 or 4 d following exposure, respectively. Irradiated, mass-reared males prevented from contacting the oil directly (i.e., exposed to the odor only for 6 h) still exhibited a mating advantage over wild males. In an additional study, signaling levels and female arrivals were compared between males exposed to ginger root oil and nonexposed males, but no significant differences were detected. The implications of these findings for the sterile insect technique are discussed. PMID:11777043

  14. Enhanced particulate collection from power plants firing fuels giving rise to ``difficult'' fly ash

    SciTech Connect

    Gyllenspetz, J.; Parker, K.R.; Sanyal, A.; Chandran, R.

    1998-07-01

    The problem of particulate emission control from PC fired power plants is exacerbated by coal having a high ash coupled with low sulfur, plus ash having a low sodium oxide and high silica and alumna content. Although bag filters are now being considered as a means of particulate control for certain power plants, the ESP has to date been the traditional control method, in spite of the large specific collection area required for an emission compliance of < 50 mg/Nm{sup 3}. This emission is now demanded by many regulatory bodies and for funding through the World Bank. While new plants are being designed to satisfy this emission, a number of existing plants, even when in satisfactory electro-mechanical condition, face difficulty in meeting compliance. The paper examines the factors relating to high precipitator emissions and presents various scenarios for their reduction by: (a) facilities size increase, (b) flyash conditioning, (c) reduction in back end temperature to reduce gas volume and particle resistivity, and (d) alternative methods of energization, e.g., pulse charging, intermittent energization and high frequency derived DC. The method of enhancement finally selected is site specific and depends on the problem faced by the plant under consideration. The impact of improved combustion on ESP performance is also reviewed and finally the use of bag filters for some retrofit applications is considered as a potential cost effective solution. The improvement methods detailed in the paper should benefit many current ESP upgrading projects and also be of assistance to IPPs considering new plant.

  15. Correlation Spectroscopy with Two Simultaneous Soft Pulses (TSETSE)

    NASA Astrophysics Data System (ADS)

    Nuzillard, J. M.; Freeman, R.

    An analysis is presented of a new correlation experiment where two self-focusing soft pulses are applied simultaneously to two coupled spins I and S. It is shown that for a certain pulse duration, antiphase dispersion-mode doublets are observed at both sites, although the corresponding single-excitation experiment displays only in-phase absorption. At longer pulse durations appreciable amounts of multiple-quantum coherence are created. Simulations of this behavior are presented in the form of magnetization trajectories during a pair of soft E-BURP-2 pulses, and these predictions are compared with experiments on heteronuclear two-spin systems. The effect (called "TSETSE") shows promise as a one-dimensional correlation experiment and as a practical method of determining scalar coupling constants. An application to the determination of long-range C-H couplings in brucine is reported.

  16. Enhancement of Host Immune Responses by Oral Vaccination to Salmonella enterica serovar Typhimurium Harboring Both FliC and FljB Flagella

    PubMed Central

    Eom, Jeong Seon; Seok Kim, Jin; Im Jang, Jung; Kim, Bae-Hoon; Young Yoo, So; Hyeon Choi, Ji; Bang, Iel-Soo; Lee, In Soo; Keun Park, Yong

    2013-01-01

    Flagellin, the structural component of the flagellar filament in various motile bacteria, can contribute to the activation of NF-κB and proinflammatory cytokine expression during the innate immune response in host cells. Thus, flagellin proteins represent a particularly attractive target for the development of vaccine candidates. In this study, we investigated the immune response by increasing the flagella number in the iacP mutant strain and the adjuvant activity of the flagellin component FljB of Salmonella enterica serovar Typhimurium. We found that the iacP mutant strain expresses two flagellin proteins (FliC and FljB), which result in increased NF-κB-dependent gene expression in bone marrow derived macrophages. Using an oral immunization mouse model, we observed that the administration of a live attenuated S. typhimurium BRD509 strain expressing the FliC and FljB flagellins induced significantly enhanced flagellin-specific IgG responses in the systemic compartment. The mice immunized with the recombinant attenuated S. typhimurium strain that has two types of flagella were protected from lethal challenge with the Salmonella SL1344 strain. These results indicate that overexpression of flagella in the iacP mutant strain enhance the induction of an antigen-specific immune responses in macrophage cell, and both the FliC and FljB flagellar filament proteins-producing S. typhimurium can induce protective immune responses against salmonellosis. PMID:24069357

  17. Trypanosoma (Nannomonas) godfreyi sp. nov. from tsetse flies in The Gambia: biological and biochemical characterization.

    PubMed

    McNamara, J J; Mohammed, G; Gibson, W C

    1994-11-01

    We provide evidence from isoenzyme analysis, hybridization with repetitive DNA probes, behavioural studies and morphometrics that 4 trypanosome isolates from Glossina morsitans submorsitans in The Gambia constitute a new species now named Trypanosoma (Nannomonas) godfreyi. The bloodstream trypomastigotes of T. (N.) godfreyi are relatively small with a mean length of 13.7 microns (range: 9.1-21.8 microns) and a mean width of 1.65 microns (range: 0.65-2.69 microns). There is no free flagellum and the marginal kinetoplast is subterminal to a rounded posterior end; the undulating membrane is usually conspicuous. As with other Nannomonas, T. godfreyi developed in the midgut and proboscis of Glossina and infections matured in 21-28 days in laboratory G.m. morsitans. In The Gambia the normal vertebrate host appears to be the warthog, Phacochoerus aethiopicus, although elsewhere other wild and domestic suids may also be implicated in the life-cycle. T. godfreyi was identified unequivocally using a 380 bp DNA probe specific for a major genomic repeat sequence; its isoenzyme profile distinguished it clearly from T. simiae and three strain groups of T. congolense: savannah, riverine-forest and kilifi. PMID:7800418

  18. Arsenophonus and Sodalis Symbionts in Louse Flies: an Analogy to the Wigglesworthia and Sodalis System in Tsetse Flies

    PubMed Central

    Husník, Filip; Šochová, Eva; Hypša, Václav

    2015-01-01

    Symbiosis between insects and bacteria result in a variety of arrangements, genomic modifications, and metabolic interconnections. Here, we present genomic, phylogenetic, and morphological characteristics of a symbiotic system associated with Melophagus ovinus, a member of the blood-feeding family Hippoboscidae. The system comprises four unrelated bacteria representing different stages in symbiosis evolution, from typical obligate mutualists inhabiting bacteriomes to freely associated commensals and parasites. Interestingly, the whole system provides a remarkable analogy to the association between Glossina and its symbiotic bacteria. In both, the symbiotic systems are composed of an obligate symbiont and two facultative intracellular associates, Sodalis and Wolbachia. In addition, extracellular Bartonella resides in the gut of Melophagus. However, the phylogenetic origins of the two obligate mutualist symbionts differ. In Glossina, the mutualistic Wigglesworthia appears to be a relatively isolated symbiotic lineage, whereas in Melophagus, the obligate symbiont originated within the widely distributed Arsenophonus cluster. Although phylogenetically distant, the two obligate symbionts display several remarkably similar traits (e.g., transmission via the host's “milk glands” or similar pattern of genome reduction). To obtain better insight into the biology and possible role of the M. ovinus obligate symbiont, “Candidatus Arsenophonus melophagi,” we performed several comparisons of its gene content based on assignments of the Cluster of Orthologous Genes (COG). Using this criterion, we show that within a set of 44 primary and secondary symbionts, “Ca. Arsenophonus melophagi” is most similar to Wigglesworthia. On the other hand, these two bacteria also display interesting differences, such as absence of flagellar genes in Arsenophonus and their presence in Wigglesworthia. This finding implies that a flagellum is not essential for bacterial transmission via milk glands. PMID:26150448

  19. Community Acceptance of Tsetse Control Baits: A Qualitative Study in Arua District, North West Uganda

    PubMed Central

    Kovacic, Vanja; Tirados, Inaki; Esterhuizen, Johan; Mangwiro, Clement T. N.; Torr, Stephen J.; Lehane, Michael J.; Smith, Helen

    2013-01-01

    Background There is renewed vigour in efforts to eliminate neglected tropical diseases including sleeping sickness (human African trypanosomiasis or HAT), including attempts to develop more cost-effective methods of tsetse control. In the West Nile region of Uganda, newly designed insecticide-treated targets are being deployed over an area of ∼500 km2. The operational area covers villages where tsetse control has not been conducted previously. The effectiveness of the targets will depend, in part, on their acceptance by the local community. Methodology/Principal Findings We assessed knowledge, perceptions and acceptance of tsetse baits (traps, targets) in villages where they had or had not been used previously. We conducted sixteen focus group discussions with male and female participants in eight villages across Arua District. Discussions were audio recorded, translated and transcribed. We used thematic analysis to compare the views of both groups and identify salient themes. Conclusions/Significance Despite the villages being less than 10 km apart, community members perceived deployed baits very differently. Villagers who had never seen traps before expressed fear, anxiety and panic when they first encountered them. This was related to associations with witchcraft and “ghosts from the river” which are traditionally linked with physical or mental illness, death and misfortune. By contrast, villagers living in areas where traps had been used previously had positive attitudes towards them and were fully aware of their purpose and benefits. The latter group reported that they had similar negative perceptions when tsetse control interventions first started a decade ago. Our results suggest that despite their proximity, acceptance of traps varies markedly between villages and this is related to the duration of experience with tsetse control programs. The success of community-based interventions against tsetse will therefore depend on early engagements with

  20. Enhancement of the effect of coal fly ash by a polyacrylamide soil conditioner on growth of wheat

    SciTech Connect

    Wallace, A.; Wallace, G.A.

    1986-05-01

    Wheat (Triticum aestivum L. cv. INIA66R) was grown in a calcareous clay soil, a Torrifluvents from Imperial Valley, California, in containers in a glasshouse. The soil was amended with 450 kg ha/sup -1/ anionic polyacrylamide and 748 mg ha/sup -1/ of coal fly ash in factorial combination. Both amendments increased the vegetative yield of the wheat when applied singly, and when they were applied together the effect was sequentially additive. Without the polyacrylamide, soil was compacted. Large quantities of waste fly ash can be disposed of with little or no environmental hazard through high-level application to land with simultaneous use of a polymer soil conditioner to maintain acceptable physical properties of soil.

  1. Disintegration of excess sludge enhanced by a combined treatment of gamma irradiation and modified coal fly ash

    NASA Astrophysics Data System (ADS)

    Xiang, Yulin; Wang, Lipeng; Jiao, Yurong

    2016-03-01

    In order to improve the disintegration performance and accelerate the disintegration rate of excess sludge, the individual and combined influences of γ-ray irradiation and modified coal fly ash treatment on the disintegration of excess sludge were investigated based on physicochemical properties of excess sludge. The changes in constituents of excess sludge were examined by means of UV/vis spectra and SEM images. The results showed that the disintegration performance of excess sludge was effectively improved by gamma ray irradiation in the presence of modified coal fly ash. A new band from 250 nm to 290 nm appeared on all irradiated sludge samples. The SEM images illustrated the cells surfaces of the sludge by the combined treatment were disfigured. The SCOD, soluble carbohydrate and protein from sludge supernatant increased obviously with increasing modified CFA dosage from 0 to 0.2 g ml-1 and dose from 0 to 10 kGy. The sludge SRF and filter cake moisture declined significantly, and the filtration speed was faster. In conclusion, γ-ray irradiation-modified coal fly ash pretreatment is an effective method to disintegrate excess sludge.

  2. Differential expression of midgut proteins in Trypanosoma brucei gambiense-stimulated vs. non-stimulated Glossina palpalis gambiensis flies

    PubMed Central

    Geiger, Anne; Hamidou Soumana, Illiassou; Tchicaya, Bernadette; Rofidal, Valérie; Decourcelle, Mathilde; Santoni, Véronique; Hem, Sonia

    2015-01-01

    The unicellular pathogenic protozoan Trypanosoma brucei gambiense is responsible for the chronic form of sleeping sickness. This vector-borne disease is transmitted to humans by the tsetse fly of the group Glossina palpalis, including the subspecies G. p. gambiensis, in which the parasite completes its developmental cycle. Sleeping sickness control strategies can therefore target either the human host or the fly vector. Indeed, suppression of one step in the parasite developmental cycle could abolish parasite transmission to humans, with consequences on the spreading of the disease. In order to develop this type of approach, we have identified, at the proteome level, events resulting from the tripartite interaction between the tsetse fly G. p. gambiensis, its microbiome, and the trypanosome. Proteomes were analyzed from four biological replicates of midguts from flies sampled 3 days post-feeding on either a trypanosome-infected (stimulated flies) or a non-infected (non-stimulated flies) bloodmeal. Over 500 proteins were identified in the midguts of flies from both feeding groups, 13 of which were shown to be differentially expressed in trypanosome-stimulated vs. non-stimulated flies. Functional annotation revealed that several of these proteins have important functions that could be involved in modulating the fly infection process by trypanosomes (and thus fly vector competence), including anti-oxidant and anti-apoptotic, cellular detoxifying, trypanosome agglutination, and immune stimulating or depressive effects. The results show a strong potential for diminishing or even disrupting fly vector competence, and their application holds great promise for improving the control of sleeping sickness. PMID:26029185

  3. Short-term anoxic conditioning hormesis boosts antioxidant defenses, lowers oxidative damage following irradiation and enhances male sexual performance in the Caribbean fruit fly, Anastrepha suspensa.

    PubMed

    López-Martínez, Giancarlo; Hahn, Daniel A

    2012-06-15

    Most organisms are repeatedly exposed to oxidative stress from multiple sources throughout their lifetimes, potentially affecting all aspects of organismal performance. Here we test whether exposure to a conditioning bout of anoxia early in adulthood induces a hormetic response that confers resistance to oxidative stress and enhances male sexual performance later in life in the Caribbean fruit fly, Anastrepha suspensa. Anoxic conditioning of adults prior to emergence led to an increase in antioxidant capacity driven by mitochondrial superoxide dismutase and glutathione peroxidase. When exposed to gamma irradiation, a strong oxidative stressor, males that received anoxic conditioning had lower lipid and protein oxidative damage at sexual maturity. Anoxia conditioning led to greater male sexual competitiveness compared with unconditioned males when both were irradiated, although there was no effect of anoxia conditioning on mating competitiveness in unirradiated males. Anoxia also led to higher adult emergence rates and greater flight ability in irradiation-stressed flies while preserving sterility. Thus, hormetic treatments that increased antioxidant enzyme activity also improved male performance after irradiation, suggesting that antioxidant enzymes play an important role in mediating the relationship between oxidative stress and sexual selection. Furthermore, our work has important applied implications for the sterile insect technique (SIT), an environmentally friendly method of insect pest control where males are sterilized by irradiation and deployed in the field to disrupt pest populations via mating. We suggest that hormetic treatments specifically designed to enhance antioxidant activity may produce more sexually competitive sterile males, thus improving the efficacy and economy of SIT programs. PMID:22623204

  4. Flying Cars

    NASA Technical Reports Server (NTRS)

    Crow, Steven

    1996-01-01

    Flying cars have nearly mythical appeal to nonpilots, a group that includes almost the whole human race. The appeal resides in the perceived utility of flying cars, vehicles that offer portal-to-portal transportation, yet break the bonds of road and traffic and travel freely through the sky at the drivers will. Part of the appeal is an assumption that flying cars can be as easy to fly as to drive. Flying cars have been part of the dream of aviation since the dawn of powered flight. Glenn Curtiss built, displayed, and maybe even flew a flying car in 1917, the Curtiss Autoplane. Many roadable airplanes were built in the 1930's, like the Waterman Arrowbile and the Fulton Airphibian. Two flying cars came close to production in the early 1950's. Ted Hall built a series of flying cars culminating in the Convaircar, sponsored by Consolidated Vultee, General Motors, and Hertz. Molt Taylor built and certified his Aerocar, and Ford came close to producing them. Three Aerocars are still flyable, two in museums in Seattle and Oshkosh, and the third owned and flown by Ed Sweeny. Flying cars do have problems, which so far have prevented commercial success. An obvious problem is complexity of the vehicle, the infrastructure, or both. Another is the difficulty of matching low power for normal driving with high power in flight. An automobile uses only about 20 hp at traffic speeds, while a personal airplane needs about 160 hp at speeds typical of flight. Many automobile engines can deliver 160 hp, but not for very long. A more subtle issue involves the drag of automobiles and airplanes. A good personal airplane can fly 30 miles per gallon of fuel at 200 mph. A good sports car would need 660 hp at the same speed and would travel only 3 miles per gallon. The difference is drag area, about 4.5 sq ft for the automobile and 1.4 sq ft for the airplane. A flying car better have the drag area of the airplane, not the car!

  5. Enhanced Protective Efficacy of Nonpathogenic Recombinant Leishmania tarentolae Expressing Cysteine Proteinases Combined with a Sand Fly Salivary Antigen

    PubMed Central

    Taheri, Tahereh; Taslimi, Yasaman; Doustdari, Fatemeh; Seyed, Negar; Torkashvand, Fatemeh; Meneses, Claudio; Papadopoulou, Barbara; Kamhawi, Shaden; Valenzuela, Jesus G.; Rafati, Sima

    2014-01-01

    Background Novel vaccination approaches are needed to prevent leishmaniasis. Live attenuated vaccines are the gold standard for protection against intracellular pathogens such as Leishmania and there have been new developments in this field. The nonpathogenic to humans lizard protozoan parasite, Leishmania (L) tarentolae, has been used effectively as a vaccine platform against visceral leishmaniasis in experimental animal models. Correspondingly, pre-exposure to sand fly saliva or immunization with a salivary protein has been shown to protect mice against cutaneous leishmaniasis. Methodology/Principal Findings Here, we tested the efficacy of a novel combination of established protective parasite antigens expressed by L. tarentolae together with a sand fly salivary antigen as a vaccine strategy against L. major infection. The immunogenicity and protective efficacy of different DNA/Live and Live/Live prime-boost vaccination modalities with live recombinant L. tarentolae stably expressing cysteine proteinases (type I and II, CPA/CPB) and PpSP15, an immunogenic salivary protein from Phlebotomus papatasi, a natural vector of L. major, were tested both in susceptible BALB/c and resistant C57BL/6 mice. Both humoral and cellular immune responses were assessed before challenge and at 3 and 10 weeks after Leishmania infection. In both strains of mice, the strongest protective effect was observed when priming with PpSP15 DNA and boosting with PpSP15 DNA and live recombinant L. tarentolae stably expressing cysteine proteinase genes. Conclusion/Significance The present study is the first to use a combination of recombinant L. tarentolae with a sand fly salivary antigen (PpSP15) and represents a novel promising vaccination approach against leishmaniasis. PMID:24675711

  6. Can remotely sensed meteorological data significantly contribute to reduce costs of tsetse surveys?

    PubMed

    Hendrickx, G; Napala, A; Rogers, D; Bastiaensen, P; Slingenbergh, J

    1999-01-01

    A 0.125 degree raster or grid-based Geographic Information System with data on tsetse, trypanosomiasis animal production, agriculturerkina> and land use has recently been developed in Togo. This paper addresses the problem of generating tsetse distribution and abundance maps from remotely sensed data, using a restricted amount of field data. A discriminant analysis model is tested using contemporary tsetse data and remotely sensed, low resolution data acquired from the National Oceanographic and Atmospheric Administration and Meteosat platforms. A split sample technique is adopted where a randomly selected part of the field measured data (training set) serves to predict the other part (predicted set). The obtained results are then compared with field measured data per corresponding grid-square. Depending on the size of the training set the percentage of concording predictions varies from 80 to 95 for distribution figures and from 63 to 74 for abundance. These results confirm the potential of satellite data application and multivariate analysis for the prediction, not only of the tsetse distribution, but more importantly of their abundance. This opens up new avenues because satellite predictions and field data may be combined to strengthen or substitute one another and thus reduce costs of field surveys. PMID:10224542

  7. [Influence of anthropisation on local vegetation and tsetse abundance in southern Burkina Faso].

    PubMed

    Rayaissé, J B; Courtin, F; Akoundjin, M; César, J; Solano, P

    2009-03-01

    Entomological and phyto-sociological surveys were undertaken in Folonzo, southern Burkina Faso, along the Comoé river. The purpose of this survey was to compare densities and diversity of tsetse species in a protected versus a non protected area, by the mean of transects going from the river bank to the savannah. A detailed phytological description was made in all the trapping sites. The entomological data were also compared to what was obtained in 1980 in the same trapping sites. The phytogeographical study showed great vegetation homogeneity between transects, particularly in the forest gallery, while savannah showed more heterogeneity. Four tsetse species were caught in the area, with 74% G. tachinoides, 20% G. m. submorsitans, 4% G. p. gambiensis and 2% G. medicorum. There was a significant difference in tsetse densities between the protected and the non-protected area, with in average, four times more tsetse in the protected one. This difference was particularly high for G. m. submorsitans with a ratio of 1/9. This decrease was attributed to the reduction in wildlife density in the non protected area, and can be applied to the situation of the whole country where this tsetse species is of decreasing importance. It is one of the consequences of the increase in human densities, this latter causing much less visible changes in phytological species composition. From the comparison between old (1980) and new data collected on the river bank, we see a general trend of decrease in density, which affects less G. palpalis gambiensis. PMID:19353948

  8. FliO regulation of FliP in the formation of the Salmonella enterica flagellum.

    PubMed

    Barker, Clive S; Meshcheryakova, Irina V; Kostyukova, Alla S; Samatey, Fadel A

    2010-09-01

    The type III secretion system of the Salmonella flagellum consists of 6 integral membrane proteins: FlhA, FlhB, FliO, FliP, FliQ, and FliR. However, in some other type III secretion systems, a homologue of FliO is apparently absent, suggesting it has a specialized role. Deleting the fliO gene from the chromosome of a motile strain of Salmonella resulted in a drastic decrease of motility. Incubation of the ΔfliO mutant strain in motility agar, gave rise to pseudorevertants containing extragenic bypass mutations in FliP at positions R143H or F190L. Using membrane topology prediction programs, and alkaline phosphatase or GFPuv chimeric protein fusions into the FliO protein, we demonstrated that FliO is bitopic with its N-terminus in the periplasm and C-terminus in the cytoplasm. Truncation analysis of FliO demonstrated that overexpression of FliO₄₃-₁₂₅ or FliO₁-₉₅ was able to rescue motility of the ΔfliO mutant. Further, residue leucine 91 in the cytoplasmic domain was identified to be important for function. Based on secondary structure prediction, the cytoplasmic domain, FliO₄₃-₁₂₅, should contain beta-structure and alpha-helices. FliO₄₃-₁₂₅-Ala was purified and studied using circular dichroism spectroscopy; however, this domain was disordered, and its structure was a mixture of beta-sheet and random coil. Coexpression of full-length FliO with FliP increased expression levels of FliP, but coexpression with the cytoplasmic domain of FliO did not enhance FliP expression levels. Overexpression of the cytoplasmic domain of FliO further rescued motility of strains deleted for the fliO gene expressing bypass mutations in FliP. These results suggest FliO maintains FliP stability through transmembrane domain interaction. The results also demonstrate that the cytoplasmic domain of FliO has functionality, and it presumably becomes structured while interacting with its binding partners. PMID:20941389

  9. The scl +18/19 Stem Cell Enhancer Is Not Required for Hematopoiesis: Identification of a 5′ Bifunctional Hematopoietic-Endothelial Enhancer Bound by Fli-1 and Elf-1

    PubMed Central

    Göttgens, Berthold; Broccardo, Cyril; Sanchez, Maria-Jose; Deveaux, Sophie; Murphy, George; Göthert, Joachim R.; Kotsopoulou, Ekaterini; Kinston, Sarah; Delaney, Liz; Piltz, Sandie; Barton, Linda M.; Knezevic, Kathy; Erber, Wendy N.; Begley, C. Glenn; Frampton, Jonathan; Green, Anthony R.

    2004-01-01

    Analysis of cis-regulatory elements is central to understanding the genomic program for development. The scl/tal-1 transcription factor is essential for lineage commitment to blood cell formation and previous studies identified an scl enhancer (the +18/19 element) which was sufficient to target the vast majority of hematopoietic stem cells, together with hematopoietic progenitors and endothelium. Moreover, expression of scl under control of the +18/19 enhancer rescued blood progenitor formation in scl−/− embryos. However, here we demonstrate by using a knockout approach that, within the endogenous scl locus, the +18/19 enhancer is not necessary for the initiation of scl transcription or for the formation of hematopoietic cells. These results led to the identification of a bifunctional 5′ enhancer (−3.8 element), which targets expression to hematopoietic progenitors and endothelium, contains conserved critical Ets sites, and is bound by Ets family transcription factors, including Fli-1 and Elf-1. These data demonstrate that two geographically distinct but functionally related enhancers regulate scl transcription in hematopoietic progenitors and endothelial cells and suggest that enhancers with dual hematopoietic-endothelial activity may represent a general strategy for regulating blood and endothelial development. PMID:14966269

  10. Comparative biochemical changes in young Zebu cattle experimentally infected with Trypanosoma vivax from tsetse infested and non-tsetse infested areas of northwest Ethiopia.

    PubMed

    Dagnachew, Shimelis; Terefe, Getachew; Abebe, Getachew; Barry, Dave J; Goddeeris, Bruno M

    2014-10-15

    Trypanosomosis is a vector-borne protozoan disease of animals and humans in sub-Saharan Africa. In Ethiopia, particularly the northwest region is affected by both tsetse and non-tsetse transmitted trypanosomosis. The aim of the present study was to determine the effects and compare differences in virulence of Trypanosoma vivax infection between tsetse and non-tsetse infested areas of northwest Ethiopia on the basis of serum biochemical values in Zebu cattle. Eighteen cattles purchased from trypanosome free area and aged between 9 and 12 months were assigned into three groups of six animals (Group TT=infected with T. vivax from tsetse infested area, Group NT=infected with T. vivax from non-tsetse infested area and Group C=non-infected control). For each experimental animal 3 ml of blood from naturally infected cattle was inoculated intravenously at 10(6) trypanosomes/ml except the control. Blood sample was collected once a week for 8 consecutive weeks for analyzing serum biochemical values (glucose, total cholesterol, total protein, albumin, and enzymes including GOT, GPT and ALP) using a Humastar 80 clinical chemistry analyzer. Both T. vivax parasites caused an acute infection with parasites appearing in circulation on 6 and 12 days post-infection for NT and TT cattle, respectively. A significant reduction (P<0.001) in glucose levels was observed in infected groups compared with the control with mean values of 33.8 ± 3.6 mg/dl for TT, 34.3 ± 3.6 mg/dl for NT and 70.9 ± 3.0 mg/dl for control groups. A similar reduction was also seen in total cholesterol values (P=0.001) with 70.4 ± 10.6 mg/dl for TT and 78.0 ± 10.6 mg/dl for NT groups compared to 139.5 ± 8.7 mg/dl for the control group. No difference was observed for total serum protein between the three groups (P=0.260) whereas the mean albumin level was significantly (P<0.001) decreased (3.5 ± 0.1g/dl and 2.9 ± 0.1g/dl in TT and NT groups respectively) compared to that for control cattle (4.5 ± 0.1g

  11. Male sexual ornament size is positively associated with reproductive morphology and enhanced fertility in the stalk-eyed fly Teleopsis dalmanni

    PubMed Central

    2008-01-01

    Background Exaggerated male ornaments and displays often evolve in species where males only provide females with ejaculates during reproduction. Although "good genes" arguments are typically invoked to explain this phenomenon, a simpler alternative is possible if variation in male reproductive quality (e.g. sperm number, ejaculate content, mating rate) is an important determinant of female reproductive success. The "phenotype-linked fertility hypothesis" states that female preference for male ornaments or displays has been selected to ensure higher levels of fertility and has driven the evolution of exaggerated male traits. Females of the stalk-eyed fly Teleopsis dalmanni must mate frequently to maintain high levels of fertility and prefer to mate with males exhibiting large eyespan, a condition-dependent sexual ornament. If eyespan indicates male reproductive quality, females could directly increase their reproductive success by mating with males with large eyespan. Here we investigate whether male eyespan indicates accessory gland and testis length, and then ask whether mating with large eyespan males affects female fertility. Results Male eyespan was a better predictor of two key male reproductive traits – accessory gland and testis length – than was body size alone. This positive relationship held true over three levels of increasing environmental stress during the maturation of the adult accessory glands and testes. Furthermore, females housed with a large eyespan male exhibited higher levels of fertility than those with small eyespan males. Conclusion Male eyespan in stalk-eyed flies is subject to strong directional mate preference and is a reliable indicator of male reproductive quality – both because males with larger eyespan have bigger accessory glands and testes, and also as they confer higher fertility on females. Fertility enhancement may have arisen because males with larger eyespan mated more often and/or because they transferred more sperm or

  12. Beyond Tsetse--Implications for Research and Control of Human African Trypanosomiasis Epidemics.

    PubMed

    Welburn, Susan C; Molyneux, David H; Maudlin, Ian

    2016-03-01

    Epidemics of both forms of human African trypanosomiasis (HAT) are confined to spatially stable foci in Sub-Saharan Africa while tsetse distribution is widespread. Infection rates of Trypanosoma brucei gambiense in tsetse are extremely low and cannot account for the catastrophic epidemics of Gambian HAT (gHAT) seen over the past century. Here we examine the origins of gHAT epidemics and evidence implicating human genetics in HAT epidemiology. We discuss the role of stress causing breakdown of heritable tolerance in silent disease carriers generating gHAT outbreaks and see how peculiarities in the epidemiologies of gHAT and Rhodesian HAT (rHAT) impact on strategies for disease control. PMID:26826783

  13. [Population growth and global warming: impacts on tsetse and trypanosomoses in West Africa].

    PubMed

    Courtin, F; Sidibé, I; Rouamba, J; Jamonneau, V; Gouro, A; Solano, P

    2009-03-01

    Demographic evolution, climatic change and economical development that happened in West Africa during the XXth century had a lot of consequences on human settlement and landscape. These changes have in turn an impact on the pathogenic system of human and animal trypanosomoses. Since last century, the northern tsetse distribution limit has shifted towards the south, probably due to a decrease in rainfall combined to the impact of human pressure. Sleeping sickness (SS) foci have also shifted from the savannah areas (where there is no more SS) to the forest and mangrove areas of West Africa, but animal trypanosomoses are still present in savannah. We show a decrease of tsetse of the morsitans group as a result of an increase of human densities. On the opposite, tsetse species like Glossina palpalis adapt to high human densities and are found in the biggest urban centres of West Africa. There is a need to promote multidisciplinary studies on this demographic-climatic-vector borne disease topic, especially in Africa to be able to define future areas of presence/absence of these diseases in order to help continental plans of control that have recently begun. PMID:19353946

  14. Synthesis and characterization of cube-like Ag@AgCl-doped TiO2/fly ash cenospheres with enhanced visible-light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Liu, Shaomin; Zhu, Jinglin; Yang, Qing; Xu, Pengpeng; Ge, Jianhua; Guo, Xuetao

    2016-03-01

    A cube-like Ag@AgCl-doped TiO2/fly ash cenosphere composite (denoted Ag@AgCl-TiO2/fly ash cenospheres) was successfully synthesized via a two-step approach. The as-prepared catalysts were characterized by scanning electron microscopy, X-ray diffraction, diffuse reflectance ultraviolet-visible spectroscopy, Brunauer-Emmett-Teller, and X-ray photoelectron spectroscopy. The photocatalytic experiment showed that the rhodamine B degradation rate with Ag@AgCl-TiO2/fly ash cenospheres was 1.56 and 1.33 times higher than that with AgCl-TiO2/fly ash cenospheres and Ag@AgCl, respectively. The degradation ratio of rhodamine B with Ag@AgCl-TiO2/fly ash cenospheres was nearly 100% within 120 min under visible light. Analysis of active species indicated that radO2- and h+ dominated the reaction, and radOH participated in the photocatalytic reactions as an active species. A mechanism for the photocatalytic degradation by the Ag@AgCl-TiO2/fly-ash cenospheres was also proposed based on the experimental results.

  15. Potential of Effective micro-organisms and Eisenia fetida in enhancing vermi-degradation and nutrient release of fly ash incorporated into cow dung-paper waste mixture.

    PubMed

    Mupambwa, Hupenyu Allan; Ravindran, Balasubramani; Mnkeni, Pearson Nyari Stephano

    2016-02-01

    The interactions between earthworms and microorganisms activity has prompted several researchers to evaluate the potential of artificially inoculating vermicomposts with additional specific microbes, with the intention of enhancing the vermicomposting process. This study evaluated the potential of inoculating fly ash (F)-cow dung-paper waste (CP) mixture (F-CP) with a specialized microbial cocktail called Effective micro-organisms (EM) during vermicomposting using Eisenia fetida earthworms. Inoculation with EM alone did not result in significantly (P>0.05) different changes in C/N ratio and dissolved organic matter (DOC) compared to the control with no EM and E. fetida. A significant interaction between EM and E. fetida presence resulted in greater changes in C/N ratio and DOC, which were not statistically different from the E. fetida alone treatment. It was also noteworthy that the activity of ß-Glucosidase was not influenced by the presence of EM, but was significantly influenced (P=0.0014) by the presence of E. fetida. However, the EM+E. fetida treatment resulted in a rate of weekly Olsen P release of 54.32mgkg(-1) which was 12.3%, 89.2% and 228.0% more that the E. fetida alone, EM alone and control treatments, respectively. Similarly, though higher in the E. fetida plus EM treatment, the phosphate solubilizing bacteria counts were not significantly different (P>0.05) from the E. fetida alone treatment. It is concluded that inoculation of F-CP composts with EM alone may not be beneficial, while combining EM with E. fetida results in faster compost maturity and significantly greater Olsen P release. It would be interesting to evaluate higher optimized rates of EM inoculation and fortifying EM cocktails with phosphate solubilizing bacteria (PSB) on F-CP vermicompost degradation and phosphorus mineralization. PMID:26459189

  16. Flying qualities research challenges

    NASA Technical Reports Server (NTRS)

    Sliwa, Steven M.; George, Frank L.

    1987-01-01

    Traditional flying qualities requirements for airplane dynamics are based on airplane modal response characteristics derived from linear small-perturbation analysis. These requirements are supported by a large experimental data base. The challenge to the flying qualities community is to demonstrate how flying qualities, the control system and aircraft configuration are still closely linked. This is evident in the definition of flying qualities and, as far as pilots are concerned, that flying qualities are still the measure of overall design success.

  17. What can we hope to gain for trypanosomiasis control from molecular studies on tsetse biology ?

    PubMed Central

    Aksoy, Serap; Hao, Zhengrong; Strickler, Patricia M

    2002-01-01

    At times of crisis when epidemics rage and begin to take their toll on affected populations, as we have been witnessing with African trypanosomiasis in subSahara, the dichotomy of basic versus applied research deepens. While undoubtedly the treatment of thousands of infected people is the top priority, without continued research and development on the biology of disease agents and on ecological and evolutionary forces impacting these epidemics, little progress can be gained in the long run for the eventual control of these diseases. Here, we argue the need for additional research in one under-investigated area, that is the biology of the tsetse vector. Lacking are studies aimed to understand the genetic and cellular basis of tsetse interactions with trypanosomes as well as the genetic and biochemical basis of its ability to transmit these parasites. We discuss how this knowledge has the potential to contribute to the development of new vector control strategies as well as to improve the efficacy and affordability of the existing control approaches. PMID:12234385

  18. Use Of Fly Iarvae In Space Agriculture

    NASA Astrophysics Data System (ADS)

    Katayama, Naomi; Mitsuhashi, Jun; Hachiya, Natumi; Miyashita, Sachiko; Hotta, Atuko

    The concept of space agriculture is full use of biological and ecological components ot drive materials recycle loop. In an ecological system, producers, consumers and decomposers are its member. At limited resources acailable for space agriculture, full use of members' function is required to avoid food shortage and catastrophe.Fly is categrized to a decomposer at its eating excreta and rotten materials. However, is it could be edible, certainly it is eaten in several food culture of the world, it functions as a converter of inedible biomass ot edible substance. This conversion enhances the efficiency of usage of resource that will be attributed to space agriculture. In this context, we examine the value of melon fly, Dacus cucurbitae, as a candidate fly species ofr human food. Nutrients in 100g of melon fly larvae were protein 12g, lipid 4.6g Fe 4.74mg, Ca 275mg, Zn 6.37mg, Mn 4.00mg. Amino acids compositon in 100g of larvae was glutamic acid 1.43g and aspartic acid 1.12g. Because of high contents of these amino acids taste of fly larva might be good. Life time of adult melon fly is one to two month, and lays more than 1,000 eggs in total during the life. Larvae hatch after one to two days, and metamorphose after 8 to 15 days to pupae. Srxual maturity is reached after 22 days the earliest from it egg. Sixteen generations could be succeeded in a year for melon fly at maximum. The rate of proliferation of fly is quite high compared to silkworm that can have 8.7 generations per year. The wide food habit of fly, compared to mulberry leaf for silkworm, is another advantage to choose fly for entomophage. Rearing technology of melon fly is well established, since large scaled production of sterile male fly has been conducted in order ot exterminate melon fly in the field. Feeding substance for melon fly larvae in production line is a mixture of wheat, bran, raw sugar, olara, beer yeast, tissue paper, and additive chemicals. A 1 kg of feed substance can be converted to

  19. Ammonium acetate enhances the attractiveness of a variety of protein-based baits to female Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia and its derivatives are used largely by female fruit 32 flies (Diptera: Tephritidae) as volatile cues to locate protein-rich food needed to produce their eggs. This need for external protein sources has led to the development of behaviorally-based control strategies such a food-based lures a...

  20. Eco-friendly fly ash utilization: potential for land application

    SciTech Connect

    Malik, A.; Thapliyal, A.

    2009-07-01

    The increase in demand for power in domestic, agricultural, and industrial sectors has increased the pressure on coal combustion and aggravated the problem of fly ash generation/disposal. Consequently the research targeting effective utilization of fly ash has also gained momentum. Fly ash has proved to be an economical substitute for expensive adsorbents as well as a suitable raw material for brick manufacturing, zeolite synthesis, etc. Fly ash is a reservoir of essential minerals but is deficient in nitrogen and phosphorus. By amending fly ash with soil and/or various organic materials (sewage sludge, bioprocess materials) as well as microbial inoculants like mycorrhizae, enhanced plant growth can be realized. Based on the sound results of large scale studies, fly ash utilization has grown into prominent discipline supported by various internationally renowned organizations. This paper reviews attempts directed toward various utilization of fly ash, with an emphasis on land application of organic/microbial inoculants amended fly ash.

  1. Early life hormetic treatments decrease irradiation-induced oxidative damage, increase longevity, and enhance sexual performance during old age in the Caribbean fruit fly.

    PubMed

    López-Martínez, Giancarlo; Hahn, Daniel A

    2014-01-01

    Early life events can have dramatic consequences on performance later in life. Exposure to stressors at a young age affects development, the rate of aging, risk of disease, and overall lifespan. In spite of this, mild stress exposure early in life can have beneficial effects on performance later in life. These positive effects of mild stress are referred to as physiological conditioning hormesis. In our current study we used anoxia conditioning hormesis as a pretreatment to reduce oxidative stress and improve organismal performance, lifespan, and healthspan of Caribbean fruit flies. We used gamma irradiation to induce mild oxidative damage in a low-dose experiment, and massive oxidative damage in a separate high-dose experiment, in pharate adult fruit flies just prior to adult emergence. Irradiation-induced oxidative stress leads to reduced adult emergence, flight ability, mating performance, and lifespan. We used a hormetic approach, one hour of exposure to anoxia plus irradiation in anoxia, to lower post-irradiation oxidative damage. We have previously shown that this anoxic-conditioning treatment elevates total antioxidant capacity and lowers post-irradiation oxidative damage to lipids and proteins. In this study, conditioned flies had lower mortality rates and longer lifespan compared to those irradiated without hormetic conditioning. As a metric of healthspan, we tracked mating both at a young age (10 d) and old age (30 d). We found that anoxia-conditioned male flies were more competitive at young ages when compared to unconditioned irradiation stressed male flies, and that the positive effects of anoxic conditioning hormesis on mating success were even more pronounced in older males. Our data shows that physiological conditioning hormesis at a young age, not only improves immediate metrics of organismal performance (emergence, flight, mating), but the beneficial effects also carry into old age by reducing late life oxidative damage and improving lifespan and

  2. Early Life Hormetic Treatments Decrease Irradiation-Induced Oxidative Damage, Increase Longevity, and Enhance Sexual Performance during Old Age in the Caribbean Fruit Fly

    PubMed Central

    López-Martínez, Giancarlo; Hahn, Daniel A.

    2014-01-01

    Early life events can have dramatic consequences on performance later in life. Exposure to stressors at a young age affects development, the rate of aging, risk of disease, and overall lifespan. In spite of this, mild stress exposure early in life can have beneficial effects on performance later in life. These positive effects of mild stress are referred to as physiological conditioning hormesis. In our current study we used anoxia conditioning hormesis as a pretreatment to reduce oxidative stress and improve organismal performance, lifespan, and healthspan of Caribbean fruit flies. We used gamma irradiation to induce mild oxidative damage in a low-dose experiment, and massive oxidative damage in a separate high-dose experiment, in pharate adult fruit flies just prior to adult emergence. Irradiation-induced oxidative stress leads to reduced adult emergence, flight ability, mating performance, and lifespan. We used a hormetic approach, one hour of exposure to anoxia plus irradiation in anoxia, to lower post-irradiation oxidative damage. We have previously shown that this anoxic-conditioning treatment elevates total antioxidant capacity and lowers post-irradiation oxidative damage to lipids and proteins. In this study, conditioned flies had lower mortality rates and longer lifespan compared to those irradiated without hormetic conditioning. As a metric of healthspan, we tracked mating both at a young age (10 d) and old age (30 d). We found that anoxia-conditioned male flies were more competitive at young ages when compared to unconditioned irradiation stressed male flies, and that the positive effects of anoxic conditioning hormesis on mating success were even more pronounced in older males. Our data shows that physiological conditioning hormesis at a young age, not only improves immediate metrics of organismal performance (emergence, flight, mating), but the beneficial effects also carry into old age by reducing late life oxidative damage and improving lifespan and

  3. Stable Fly Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adult stable flies feed on the blood of humans, pets and livestock, inflicting painful bites. Stable flies need one and sometimes two bloodmeals each day to develop their eggs. Unlike mosquitoes where only the females bloodfeed, both male and female stable flies require blood to reproduce. Stable fl...

  4. Trypanosomosis: a priority disease in tsetse-challenged areas of Burkina Faso.

    PubMed

    Soudré, Albert; Ouédraogo-Koné, Salifou; Wurzinger, Maria; Müller, Simone; Hanotte, Olivier; Ouédraogo, Anicet Georges; Sölkner, Johann

    2013-02-01

    Trypanosomosis is an important disease affecting humans as well as animals. It remains a big constraint to livestock productions in tropical areas. The objective of this study was to assess the importance of trypanosomosis among cattle diseases in Burkina Faso, mainly in tsetse-challenged areas, and to capture information on how farmers apply available methods for controlling the disease. A survey has been carried out in 29 villages of Burkina Faso in three regions (north, southwest, and west regions). One hundred and thirty-four cattle breeders were interviewed individually with a questionnaire. The results indicate that among the 16 diseases mentioned by cattle breeders, trypanosomosis is the most important one in tsetse-challenged areas. Overall, 76.12 % of the breeders mentioned it as the most important disease, while 54.55 % of the farmers in the southwest region and 70.91 % of the farmers in the west region ranked it as a priority disease. Chemoprophylaxis/chemotherapy is widely used as a control method. Isometamidium chloride and diminazene aceturate were used by 53.49 and 46.52 % of the responders, respectively. Among farmers, 85.55 % ranked diminazene aceturate as the less efficient while 14.45 % ranked isometamidium chloride as the most efficient trypanocid. Trypanocidal drug quality and drug resistance were raised as a major concern by 30.77 and 50 % of the respondents, respectively. According to them, zebu cattle are more susceptible to trypanosomosis than taurine Baoule cattle and their crosses with zebu, emphasizing that crossing susceptible breeds with trypanotolerant ones, could be used as part of an integrated control strategy. PMID:23108586

  5. Fly ash carbon passivation

    DOEpatents

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  6. Control of free-flying space robot manipulator systems

    NASA Technical Reports Server (NTRS)

    Cannon, Robert H., Jr.

    1977-01-01

    To accelerate the development of multi-armed, free-flying satellite manipulators, a fixed-base cooperative manipulation facility is being developed. The work performed on multiple arm cooperation on a free-flying robot is summarized. Research is also summarized on global navigation and control of free-flying space robots. The Locomotion Enhancement via Arm Pushoff (LEAP) approach is described and progress to date is presented.

  7. Sound radiation around a flying fly

    NASA Astrophysics Data System (ADS)

    Sueur, Jérôme; Tuck, Elizabeth J.; Robert, Daniel

    2005-07-01

    Many insects produce sounds during flight. These acoustic emissions result from the oscillation of the wings in air. To date, most studies have measured the frequency characteristics of flight sounds, leaving other acoustic characteristics-and their possible biological functions-unexplored. Here, using close-range acoustic recording, we describe both the directional radiation pattern and the detailed frequency composition of the sound produced by a tethered flying (Lucilia sericata). The flapping wings produce a sound wave consisting of a series of harmonics, the first harmonic occurring around 190 Hz. In the horizontal plane of the fly, the first harmonic shows a dipolelike amplitude distribution whereas the second harmonic shows a monopolelike radiation pattern. The first frequency component is dominant in front of the fly while the second harmonic is dominant at the sides. Sound with a broad frequency content, typical of that produced by wind, is also recorded at the back of the fly. This sound qualifies as pseudo-sound and results from the vortices generated during wing kinematics. Frequency and amplitude features may be used by flies in different behavioral contexts such as sexual communication, competitive communication, or navigation within the environment.

  8. Male-specific Y-linked transgene markers to enhance biologically-based control of the Mexican fruit fly, Anastrepha ludens (Diptera: Tephritidae)

    PubMed Central

    2014-01-01

    Background Reliable marking systems are critical to the prospective field release of transgenic insect strains. This is to unambiguously distinguish released insects from wild insects in the field that are collected in field traps, and tissue-specific markers, such as those that are sperm-specific, have particular uses such as identifying wild females that have mated with released males. For tephritid fruit flies such as the Mexican fruit fly, Anastrepha ludens, polyubiquitin-regulated fluorescent protein body markers allow transgenic fly identification, and fluorescent protein genes regulated by the spermatocyte-specific β2-tubulin promoter effectively mark sperm. For sterile male release programs, both marking systems can be made male-specific by linkage to the Y chromosome. Results An A. ludens wild type strain was genetically transformed with a piggyBac vector, pBXL{PUbnlsEGFP, Asβ2tub-DsRed.T3}, having the polyubiquitin-regulated EGFP body marker, and the β2-tubulin-regulated DsRed.T3 sperm-specific marker. Autosomal insertion lines effectively expressed both markers, but a single Y-linked insertion (YEGFP strain) expressed only PUbnlsEGFP. This insertion was remobilized by transposase helper injection, which resulted in three new autosomal insertion lines that expressed both markers. This indicated that the original Y-linked Asβ2tub-DsRed.T3 marker was functional, but specifically suppressed on the Y chromosome. The PUbnlsEGFP marker remained effective however, and the YEGFP strain was used to create a sexing strain by translocating the wild type allele of the black pupae (bp+) gene onto the Y, which was then introduced into the bp- mutant strain. This allows the mechanical separation of mutant female black pupae from male brown pupae, that can be identified as adults by EGFP fluorescence. Conclusions A Y-linked insertion of the pBXL{PUbnlsEGFP, Asβ2tub-DsRed.T3} transformation vector in A. ludens resulted in male-specific expression of the EGFP

  9. Activation of fly ash

    DOEpatents

    Corbin, David R.; Velenyi, Louis J.; Pepera, Marc A.; Dolhyj, Serge R.

    1986-01-01

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  10. Ever Fly a Tetrahedron?

    ERIC Educational Resources Information Center

    King, Kenneth

    2004-01-01

    Few things capture the spirit of spring like flying a kite. Watching a kite dance and sail across a cloud spotted sky is not only a visually appealing experience it also provides a foundation for studies in science and mathematics. Put simply, a kite is an airfoil surface that flies when the forces of lift and thrust are greater than the forces of…

  11. Activation of fly ash

    DOEpatents

    Corbin, D.R.; Velenyi, L.J.; Pepera, M.A.; Dolhyj, S.R.

    1986-08-19

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  12. A Flying Summer Camp

    ERIC Educational Resources Information Center

    Mercurio, Frank X.

    1975-01-01

    Describes a five-day summer camp which provided 12 children, ages 9-14, with a complete flying experience. The training consisted of ground school and one hour actual flying time, including the basics of aircraft control and a flight prepared and executed by the students. (MLH)

  13. Investigation of Aerodynamic Capabilities of Flying Fish in Gliding Flight

    NASA Astrophysics Data System (ADS)

    Park, H.; Choi, H.

    In the present study, we experimentally investigate the aerodynamic capabilities of flying fish. We consider four different flying fish models, which are darkedged-wing flying fishes stuffed in actual gliding posture. Some morphological parameters of flying fish such as lateral dihedral angle of pectoral fins, incidence angles of pectoral and pelvic fins are considered to examine their effect on the aerodynamic performance. We directly measure the aerodynamic properties (lift, drag, and pitching moment) for different morphological parameters of flying fish models. For the present flying fish models, the maximum lift coefficient and lift-to-drag ratio are similar to those of medium-sized birds such as the vulture, nighthawk and petrel. The pectoral fins are found to enhance the lift-to-drag ratio and the longitudinal static stability of gliding flight. On the other hand, the lift coefficient and lift-to-drag ratio decrease with increasing lateral dihedral angle of pectoral fins.

  14. Prevalence of salivary gland hypertrophy syndrome in laboratory colonies and wild flies of Glossina pallidipes in Ethiopia.

    PubMed

    Yimer, Mahder M; Bula, Dereje G; Tesama, Tsegabirhan K; Tadesse, Kassaw A; Abera, Birhanu H

    2015-01-01

    Glossina pallidipes salivary gland hyperplasia (GpSGH) syndrome caused by the salivary gland hyperplasia virus reduces the reproduction potential of tsetse flies, posing a serious threat for rearing of sufficient colonies for use of tsetse and trypanosome control using the sterile insect technique. This research was conducted in the Kaliti Tsetse Mass Rearing and Irradiation Centre in Ethiopia with the objective of studying the prevalence of GpSGH syndrome in laboratory colonies of G. pallidipes (Tororo and Arbaminch) reared for release in the implementation of the sterile insect technique and a field strain of G. pallidipes Arbaminch. Presence or absence of GpSGH was determined when pathological features of the salivary gland were revealed after dissection. The overall prevalence of GpSGH syndrome in laboratory colonies was 48.3% (747/1548) with a statistically significant (z = 17.30, p = 0.001) prevalence of 70.2% (544/775) in Arbaminch colonies and 26.26% (203/773) in Tororo colonies. The prevalence of GpSGH in laboratory flies fed according to the clean blood feeding protocol was 68.9% and 22.4% in Arbaminch and Tororo strains respectively. It was 70.5% and 27.2% respectively in laboratory colonies of Arbaminch and Tororo strains fed according to the standard membrane feeding protocol. The difference in prevalence of the disease between the two feeding protocols was not statistically significant in either Arbaminch (z = 0.361, p = 0.359) or Tororo (z = 1.22, p = 0.111) strains. The prevalence of SGH in wild G. pallidipes Arbaminch strain was 3% (15/500) and was significantly (z = 23.61, p < 0.001) lower than in the laboratory strain. The effect of age and density-related stress on the development of GpSGH was not statistically significant. The prevalence of GpSGH in the newly emerging (teneral) flies in the laboratory colonies was 66.7% and 20% in the Arbaminch and Tororo strains respectively. For all considered risk factors, the prevalence was much higher in G

  15. Enhancing male sexual success in a lekking fly (Anastrepha suspensa Diptera: Tephritidae) through a juvenile hormone analog has no effect on adult mortality.

    PubMed

    Pereira, Rui; Sivinski, John; Teal, Peter; Brockmann, Jane

    2010-11-01

    While defending lek-territories, male Anastrepha suspensa (Loew) produce chemical, acoustic and visual courtship signals. In the laboratory and under semi-natural conditions, topical application of the juvenile hormone analog methoprene doubles pheromone production and subsequently doubles sexual success. However, sexual signals and interactions are likely to be physiologically expensive and so result in higher male mortality. Comparison of males kept in isolation for 35 days, but provided daily with a potential mate or a rival male, revealed that both male- and female-interactors shortened focal-male lifespan. In addition, focal males were either treated with methoprene or not, then either provided with protein in their sucrose-based diet or not. Protein proved to similarly double sexual success and also resulted in longer male life spans in all of the interactor-categories. However, there was no evidence that methoprene induced hypersexuality resulted in higher rates of mortality, i.e., the longevity of males treated with methoprene did not significantly differ from untreated males in the same interactor/diet categories. This apparent lack of costs to a putatively sexually selected signal is unexpected but presents an opportunity to increase the sexual competence of sterile flies with few consequences to their survival following mass-release. PMID:20470780

  16. Changeing of fly ash leachability after grinding

    NASA Astrophysics Data System (ADS)

    Lakatos, J.; Szabo, R.; Racz, A.; Banhidi, O.; Mucsi, G.

    2016-04-01

    Effect of grinding on the reactivity of fly ash used for geopolymer production was tested. Extraction technique using different alkaline and acidic solutions were used for detect the change of the solubility of elements due to the physical and mechano-chemical transformation of minerals in function of grinding time. Both the extraction with alkaline and acidic solution have detected improvement in solubility in function of grinding time. The enhancement in alkaline solution was approx. 100% in case of Si and Al. The acidic medium able to dissolve the fly ash higher manner than the alkaline, therefore the effect of grinding was found less pronounced.

  17. Fly Photoreceptors Encode Phase Congruency.

    PubMed

    Friederich, Uwe; Billings, Stephen A; Hardie, Roger C; Juusola, Mikko; Coca, Daniel

    2016-01-01

    More than five decades ago it was postulated that sensory neurons detect and selectively enhance behaviourally relevant features of natural signals. Although we now know that sensory neurons are tuned to efficiently encode natural stimuli, until now it was not clear what statistical features of the stimuli they encode and how. Here we reverse-engineer the neural code of Drosophila photoreceptors and show for the first time that photoreceptors exploit nonlinear dynamics to selectively enhance and encode phase-related features of temporal stimuli, such as local phase congruency, which are invariant to changes in illumination and contrast. We demonstrate that to mitigate for the inherent sensitivity to noise of the local phase congruency measure, the nonlinear coding mechanisms of the fly photoreceptors are tuned to suppress random phase signals, which explains why photoreceptor responses to naturalistic stimuli are significantly different from their responses to white noise stimuli. PMID:27336733

  18. Fly Photoreceptors Encode Phase Congruency

    PubMed Central

    Friederich, Uwe; Billings, Stephen A.; Hardie, Roger C.; Juusola, Mikko; Coca, Daniel

    2016-01-01

    More than five decades ago it was postulated that sensory neurons detect and selectively enhance behaviourally relevant features of natural signals. Although we now know that sensory neurons are tuned to efficiently encode natural stimuli, until now it was not clear what statistical features of the stimuli they encode and how. Here we reverse-engineer the neural code of Drosophila photoreceptors and show for the first time that photoreceptors exploit nonlinear dynamics to selectively enhance and encode phase-related features of temporal stimuli, such as local phase congruency, which are invariant to changes in illumination and contrast. We demonstrate that to mitigate for the inherent sensitivity to noise of the local phase congruency measure, the nonlinear coding mechanisms of the fly photoreceptors are tuned to suppress random phase signals, which explains why photoreceptor responses to naturalistic stimuli are significantly different from their responses to white noise stimuli. PMID:27336733

  19. Population Genetics as a Tool to Select Tsetse Control Strategies: Suppression or Eradication of Glossina palpalis gambiensis in the Niayes of Senegal

    PubMed Central

    Solano, Philippe; Kaba, Dramane; Ravel, Sophie; Dyer, Naomi A.; Sall, Baba; Vreysen, Marc J. B.; Seck, Momar T.; Darbyshir, Heather; Gardes, Laetitia; Donnelly, Martin J.; De Meeûs, Thierry; Bouyer, Jérémy

    2010-01-01

    Background The Government of Senegal has initiated the “Projet de lutte contre les glossines dans les Niayes” to remove the trypanosomosis problem from this area in a sustainable way. Due to past failures to sustainably eradicate Glossina palpalis gambiensis from the Niayes area, controversies remain as to the best strategy implement, i.e. “eradication” versus “suppression.” To inform this debate, we used population genetics to measure genetic differentiation between G. palpalis gambiensis from the Niayes and those from the southern tsetse belt (Missira). Methodology/Principal Findings Three different markers (microsatellite DNA, mitochondrial CO1 DNA, and geometric morphometrics of the wings) were used on 153 individuals and revealed that the G. p. gambiensis populations of the Niayes were genetically isolated from the nearest proximate known population of Missira. The genetic differentiation measured between these two areas (θ = 0.12 using microsatellites) was equivalent to a between-taxa differentiation. We also demonstrated that within the Niayes, the population from Dakar – Hann was isolated from the others and had probably experienced a bottleneck. Conclusion/Significance The information presented in this paper leads to the recommendation that an eradication strategy for the Niayes populations is advisable. This kind of study may be repeated in other habitats and for other tsetse species to (i) help decision on appropriate tsetse control strategies and (ii) find other possible discontinuities in tsetse distribution. PMID:20520795

  20. Investigation of gliding flight by flying fish

    NASA Astrophysics Data System (ADS)

    Park, Hyungmin; Jeon, Woo-Pyung; Choi, Haecheon

    2006-11-01

    The most successful flight capability of fish is observed in the flying fish. Furthermore, despite the difference between two medium (air and water), the flying fish is well evolved to have an excellent gliding performance as well as fast swimming capability. In this study, flying fish's morphological adaptation to gliding flight is experimentally investigated using dry-mounted darkedged-wing flying fish, Cypselurus Hiraii. Specifically, we examine the effects of the pectoral and pelvic fins on the aerodynamic performance considering (i) both pectoral and pelvic fins, (ii) pectoral fins only, and (iii) body only with both fins folded. Varying the attack angle, we measure the lift, drag and pitching moment at the free-stream velocity of 12m/s for each case. Case (i) has higher lift-to-drag ratio (i.e. longer gliding distance) and more enhanced longitudinal static stability than case (ii). However, the lift coefficient is smaller for case (i) than for case (ii), indicating that the pelvic fins are not so beneficial for wing loading. The gliding performance of flying fish is compared with those of other fliers and is found to be similar to those of insects such as the butterfly and fruitfly.

  1. Mutually repressing repressor functions and multi-layered cellular heterogeneity regulate the bistable Salmonella fliC census

    PubMed Central

    Stewart, Mary K.; Cookson, Brad T.

    2014-01-01

    Summary Bistable flagellar and virulence gene expression generates specialized Salmonella subpopulations with distinct functions. Repressing flagellar genes allows Salmonella to evade caspase-1 mediated host defenses and enhances systemic colonization. By definition, bistability arises when intermediate states of gene expression are rendered unstable by the underlying genetic circuitry. We demonstrate sustained bistable fliC expression in virulent Salmonella 14028 and document dynamic control of the distribution, or single-cell census, of flagellar gene expression by the mutually repressing repressors YdiV and FliZ. YdiV partitions cells into the fliC-OFF subpopulation, while FliZ partitions cells into the fliC-HIGH subpopulation at late timepoints during growth. Bistability of ΔfliZ populations and ydiV-independent FliZ control of flagellar gene expression provide evidence that the YdiV-FliZ mutually repressing repressor circuit is not required for bistability. Repression and activation by YdiV and FliZ (respectively) can shape the census of fliC expression independently, and bistability collapses into a predominantly intermediate population in the absence of both regulators. Metered expression of YdiV and FliZ reveals variable sensitivity to these regulators and defines conditions where expression of FliZ enhances fliC expression and where FliZ does not alter the fliC census. Thus, this evolved genetic circuitry coordinates multiple layers of regulatory heterogeneity into a binary response. PMID:25315056

  2. Autonomous Flying Controls Testbed

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.

    2005-01-01

    The Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis,Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights.

  3. Effect of fly ash on sorption behavior of metribuzin in agricultural soils.

    PubMed

    Singh, Neera; Raunaq; Singh, Shashi B

    2012-01-01

    This investigation was undertaken to determine the effect of two different fly ashes [Kota and Inderprastha (IP)] amendment on the sorption behavior of metribuzin in three Indian soil types. The IP fly ash was very effective in increasing the metribuzin sorption in the soils. The sorption with IP amendment was increased by 15-92%, whereas with the Kota fly ash an increase in sorption by 13-38% was noted. The adsorption isotherms fitted very well to the Freundlich adsorption equation and, in general, slope (1/n) values less then unity were observed. Although both the fly ashes significantly decreased metribuzin desorption, the IP fly ash was comparatively more effective in retaining metribuzin in the soils. Metribuzin sorption in the IP fly ash-amended soils showed strong correlation with the fly ash content and compared to K(f)/K(d) values, K(FA) values (sorption normalized to fly ash content) showed less variation. Metribuzin sorption-desorption did not correlate to the organic carbon content of the soil-fly ash mixture. The study demonstrates that all coal fly ashes may not be effective in enhancing the sorption of metribuzin in soils to the same extent. However, among the fly ashes used in this study, the IP fly ash was observed to be significantly effective in enhancing the sorption of metribuzin in soils. This may play an important role in reducing the run off and leaching losses of the herbicide by retaining it in the soil. PMID:22251208

  4. A New Flying Wire System for the Tevatron

    NASA Astrophysics Data System (ADS)

    Blokland, Willem; Dey, Joseph; Vogel, Greg

    1997-05-01

    A new Flying Wires system replaces the old system to enhance the analysis of the beam emittance, improve the reliability, and handle the upcoming upgrades of the Tevatron. New VME data acquisition modules and timing modules allow for more bunches to be sampled more precisely. The programming language LabVIEW, running on a Macintosh computer, controls the VME modules and the nuLogic motion board that flies the wires. LabVIEW also analyzes and stores the data, and handles local and remote commands. The new system flies three wires and fits profiles of 72 bunches to a gaussian function within two seconds. A new console application operates the flying wires from any control console. This paper discusses the hardware and software setup, the capabilities and measurement results of the new Flying Wires system.

  5. Complexity and Fly Swarms

    NASA Astrophysics Data System (ADS)

    Cates, Grant; Murray, Joelle

    Complexity is the study of phenomena that emerge from a collection of interacting objects and arises in many systems throughout physics, biology, finance, economics and more. Certain kinds of complex systems can be described by self-organized criticality (SOC). An SOC system is one that is internally driven towards some critical state. Recent experimental work suggests scaling behavior of fly swarms-one of the hallmarks of an SOC system. Our goal is to look for SOC behavior in computational models of fly swarms.

  6. Economic Impact of Stable Flies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A dynamic model was created to estimate the economic impact of stable flies on livestock production. Based upon a nationwide average of 10 stable flies per animal for 3 months per year, the model estimates the impact of stable flies to be $543 million to the dairy industry, $1.34 billion to pasture ...

  7. Learning to Fly.

    ERIC Educational Resources Information Center

    Weil, Patricia E.

    1983-01-01

    Presents information on where to learn to fly, which aircraft is best for this purpose, and approximate costs. Includes additional information on certificates, licenses, and ratings, and a description of the two phases of the General Aviation Manufacturers Association flight training program. (JN)

  8. Flying High with Spring.

    ERIC Educational Resources Information Center

    Harrington, Carolyn Lang

    2000-01-01

    Presents an art activity for first grade that uses multicolor scratch paper. Explains that students make scratch-drawings of bird nests, then, as a class, discuss types of birds and bird positions (such as sitting or flying), and finally each creates a bird to add to the nest. (CMK)

  9. Fly on the Wall

    ERIC Educational Resources Information Center

    Berry, Dave; Korpan, Cynthia

    2009-01-01

    This paper describes the implementation of a peer observation program at the University of Victoria called the Lecture Club. The observers are not interactive during the class--they are the proverbial flies on the wall. The paper identifies the program as self-developmental, discussing the attributes of this learning-to-teach and peer-sharing…

  10. Wisdom from the fly.

    PubMed

    Rieder, Leila E; Larschan, Erica N

    2014-11-01

    Arguably, almost all research in Drosophila can be considered basic research, yet many of the most essential and fundamental concepts of human genetics were first decoded in the fly. Although the fly genome, which is organized into only four chromosomes, is approximately one-twentieth the size of the human genome, it contains roughly the same number of genes, and up to 75% of human disease-related genes have Drosophila homologues [1]. The fly was prized for its simplicity and utility even before such compelling homology with humans was apparent. Since Thomas Hunt Morgan began his seminal experiments over a century ago (Table 1), the Drosophila system has revealed countless key mechanisms by which cells function, including the factors that maintain chromatin and the signaling pathways that control cell fate determination and organism development. More recently, the fly has emerged as a critical neurobiological tool and disease model for a range of genetic disorders. In this review, we present a brief retrospective of Drosophila as an indispensable genetic system and discuss some of the many contributions, past and present, of this facile system to human genetics. PMID:25161083

  11. Go Fly a Kite

    ERIC Educational Resources Information Center

    Klopack, Ken

    2009-01-01

    This article describes an "art kite" activity. The idea is to construct and decorate a non-flying kite that they could display for an art exhibit. Through the activity, students learn to give and take suggestions from one another, improve the quality of their work and set a wonderful atmosphere of collaboration. (Contains 1 online resource.)

  12. Fly-ash utilization

    SciTech Connect

    Lockerby, R.W.

    1984-01-01

    The over 200 references in this bibliography cover some of the uses found for fly-ash, which range from the manufacture of bricks and as a new type of concrete to the recovery of aluminum and other valuable ores from the ash. The entries are grouped under seven headings: General, Agriculture, Brickmaking, Cement/Concrete, Land Reclamation, Resource Recovery, and Other.

  13. The use of coal fly ash for soil stabilization

    SciTech Connect

    Brown, T.H.; Brown, M.A.; Sorini, S.S.; Huntington, G.

    1991-12-01

    The objective of this work was to examine the potential use of Wyoming subbituminous coal fly ash materials for cementation of soil materials. Specimens made from Laramie River (LR) fly ash had higher unconfined compression strength and more brittleness than the Specimens made with Dave Johnston (DJ) fly ash. However, soil/DJ fly ash mixtures that were cured for 28 days had relatively good strengths without the brittleness that the LR specimens developed. These characteristics of the DJ fly ash may be important attributes for road stabilization applications. The detailed mineralogical evaluation provides some insight into which minerals may enhance development of strength in these materials. In general, selective dissolution of the soil/fly ash mixtures shows that many of the potentially toxic elements (e.g., B, Cr, Fe, Mn, Ni, Pb) are associated with the sulfide phase (HNO{sub 3} extractable) and with the residual material. In this study, the dynamics of elemental release from the element pools did not result in toxic conditions. The formation of colloidal material capable of mobilizing potentially toxic elements was not found in the soil/fly ash mixtures. Apparently, the high pH of the materials enhanced immobilization of the high molecular weight material.

  14. An annotated checklist of the horse flies, deer flies, and yellow flies (Diptera: Tabanidae) of Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The family Tabanidae includes the horse flies, deer flies, and yellow flies and is considered a significant pest of livestock throughout the United States, including Florida. Tabanids can easily become a major pest of man, especially salt marsh species which are known to readily feed on humans and o...

  15. Laboratory evaluation of novaluron for controlling larval horn flies, house flies, and stable flies (Diptera: Muscidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A granular formulation of novaluron (Novaluron 0.2G, 0.2% AI), a newer benzoylphenyl urea insecticide, was evaluated for its efficacy in controlling the larval stage of horn flies, Haematobia irritans (Linnaeus), house flies, Musca domestica Linnaeus, and stable flies, Stomoxys calcitrans (Linnaeus)...

  16. Field trial of a synthetic tsetse-repellent technology developed for the control of bovine trypanosomosis in Kenya.

    PubMed

    Bett, B; Randolph, T F; Irungu, P; Nyamwaro, S O; Kitala, P; Gathuma, J; Grace, D; Vale, G; Hargrove, J; McDermott, J

    2010-12-01

    We conducted a field trial among Maasai cattle-keepers in Nkuruman and Nkineji areas of Kenya to evaluate the effectiveness of a synthetic tsetse-repellent technology developed for the control of trypanosomosis in cattle. The technology was a repellent (2-methoxy 4-methylphenol) emitted from dispensers attached to collars worn by cattle. Treatment was allocated at the herd level to ensure adequate protection of all the animals in a herd, with measurements of effectiveness conducted at the individual-animal level. The trial began in April 2005 and ran for 16 months including a baseline phase of 4 months. We recruited 12 herds in each area using a restricted random-sampling technique and distributed them equally into intervention (repellent) and control groups. Sample size was determined using a formal power calculation. Effectiveness or minimal worthwhile difference was defined as a 50% reduction in the incidence of trypanosome infection in the treated versus control group (effectiveness below which the technology was considered by experts as not viable compared to existing control techniques). All the animals in the recruited herds were screened monthly (buffy-coat technique) for trypanosome infections. The analysis followed the principle of intention-to-treat by which subjects are analysed according to their initial treatment assignment, regardless of the mechanical performance of the device. Crude and adjusted effects of the technology were 23% (p<0.001) and 18% (p=0.08) reduction in the infection incidence in the treatment compared to the control groups, respectively. The impact of the technology estimated in this study did not achieve the threshold of 50% reduction in the trypanosome infection incidence set a priori to indicate effectiveness (p<0.001). We therefore concluded that the prototype repellent technology package was not sufficiently effective in reducing trypanosome infection incidence under natural tsetse challenge to merit commercial development

  17. Aerodynamic characteristics of flying fish in gliding flight.

    PubMed

    Park, Hyungmin; Choi, Haecheon

    2010-10-01

    The flying fish (family Exocoetidae) is an exceptional marine flying vertebrate, utilizing the advantages of moving in two different media, i.e. swimming in water and flying in air. Despite some physical limitations by moving in both water and air, the flying fish has evolved to have good aerodynamic designs (such as the hypertrophied fins and cylindrical body with a ventrally flattened surface) for proficient gliding flight. Hence, the morphological and behavioral adaptations of flying fish to aerial locomotion have attracted great interest from various fields including biology and aerodynamics. Several aspects of the flight of flying fish have been determined or conjectured from previous field observations and measurements of morphometric parameters. However, the detailed measurement of wing performance associated with its morphometry for identifying the characteristics of flight in flying fish has not been performed yet. Therefore, in the present study, we directly measure the aerodynamic forces and moment on darkedged-wing flying fish (Cypselurus hiraii) models and correlated them with morphological characteristics of wing (fin). The model configurations considered are: (1) both the pectoral and pelvic fins spread out, (2) only the pectoral fins spread with the pelvic fins folded, and (3) both fins folded. The role of the pelvic fins was found to increase the lift force and lift-to-drag ratio, which is confirmed by the jet-like flow structure existing between the pectoral and pelvic fins. With both the pectoral and pelvic fins spread, the longitudinal static stability is also more enhanced than that with the pelvic fins folded. For cases 1 and 2, the lift-to-drag ratio was maximum at attack angles of around 0 deg, where the attack angle is the angle between the longitudinal body axis and the flying direction. The lift coefficient is largest at attack angles around 30∼35 deg, at which the flying fish is observed to emerge from the sea surface. From glide polar

  18. Test What You Fly?

    NASA Technical Reports Server (NTRS)

    Margolies, Don

    2002-01-01

    It was the first time on any NASA project I know of that all the instruments on an observatory came off for rework or calibration after the full range of environmental tests, and then were reintegrated at the launch center without the benefit of an observatory environmental retest. Perhaps you've heard the expression, 'Test what you fly, fly what you test'? In theory, it's hard to argue with that. In this case, I was willing to take the risk of not testing what I flew. As the project manager for the Advanced Composition Explorer (ACE) mission, I was the one who ultimately decided what risks to take, just as it was my responsibility to get buy-in from the stakeholders.

  19. Fly-scan ptychography

    DOE PAGESBeta

    Huang, Xiaojing; Lauer, Kenneth; Clark, Jesse N.; Xu, Weihe; Nazaretski, Evgeny; Harder, Ross; Robinson, Ian K.; Chu, Yong S.

    2015-03-13

    We report an experimental ptychography measurement performed in fly-scan mode. With a visible-light laser source, we demonstrate a 5-fold reduction of data acquisition time. By including multiple mutually incoherent modes into the incident illumination, high quality images were successfully reconstructed from blurry diffraction patterns. This approach significantly increases the throughput of ptychography, especially for three-dimensional applications and the visualization of dynamic systems.

  20. Fly-scan ptychography

    PubMed Central

    Huang, Xiaojing; Lauer, Kenneth; Clark, Jesse N.; Xu, Weihe; Nazaretski, Evgeny; Harder, Ross; Robinson, Ian K.; Chu, Yong S.

    2015-01-01

    We report an experimental ptychography measurement performed in fly-scan mode. With a visible-light laser source, we demonstrate a 5-fold reduction of data acquisition time. By including multiple mutually incoherent modes into the incident illumination, high quality images were successfully reconstructed from blurry diffraction patterns. This approach significantly increases the throughput of ptychography, especially for three-dimensional applications and the visualization of dynamic systems. PMID:25766519

  1. Flying Saucer? Aliens?

    NASA Technical Reports Server (NTRS)

    1961-01-01

    No, it's not a flying saucer, it is the domed top to a 70 foot long vacuum tank at the Lewis Research Center's Electric Propulsion Laboratory, Cleveland, Ohio. The three technicians shown here in protective clothing had just emerged from within the tank where they had been cleaning in the toxic mercury atmosphere, left after ion engine testing in the tank. Lewis has since been renamed the John H. Glenn Research Center.

  2. PHENOTYPIC PLASTICITY AND GEOGRAPHIC VARIATION IN THERMAL TOLERANCE AND WATER LOSS OF THE TSETSE GLOSSINA PALLIDIPES (DIPTERA: GLOSSINIDAE): IMPLICATIONS FOR DISTRIBUTION MODELLING

    PubMed Central

    TERBLANCHE, JOHN S.; KLOK, C. JACO; KRAFSUR, ELLIOT S.; CHOWN, STEVEN L.

    2006-01-01

    Using the tsetse, Glossina pallidipes, we demonstrate that physiological plasticity (resulting from temperature acclimation) accounts for among-population variation in thermal tolerance and water loss rates. Critical thermal minimum (CTMin) was highly variable among populations, seasons and acclimation treatments, and the full range of variation was 9.3 °C (maximum value = 3.1 × minimum). Water loss rate showed similar variation (max = 3.7 × min). By contrast, critical thermal maxima (CTMax) varied least among populations, seasons and acclimation treatments, and the full range of variation was only c.1 °C. Most of the variation amongst the four field populations could be accounted for by phenotypic plasticity, which in the case of CTMin develops within five days of temperature exposure, and is lost rapidly on return to the original conditions. Limited variation in CTMax supports bioclimatic models that suggest tsetse are likely to show range contraction with warming from climate change. PMID:16687681

  3. Pest Control on the "Fly"

    NASA Technical Reports Server (NTRS)

    2002-01-01

    FlyCracker(R), a non-toxic and environmentally safe pesticide, can be used to treat and control fly problems in closed environments such as milking sheds, cattle barns and hutches, equine stables, swine pens, poultry plants, food-packing plants, and even restaurants, as well as in some outdoor animal husbandry environments. The product can be applied safely in the presence of animals and humans, and was recently permitted for use on organic farms as livestock production aids. FlyCracker's carbohydrate technology kills fly larvae within 24 hours. By killing larvae before they reach the adult stages, FlyCracker eradicates another potential breeding population. Because the process is physical-not chemical-flies and other insects never develop resistance to the treatment, giving way to unlimited use of product, while still keeping the same powerful effect.

  4. Auditory system of fruit flies.

    PubMed

    Ishikawa, Yuki; Kamikouchi, Azusa

    2016-08-01

    The fruit fly, Drosophila melanogaster, is an invaluable model for auditory research. Advantages of using the fruit fly include its stereotyped behavior in response to a particular sound, and the availability of molecular-genetic tools to manipulate gene expression and cellular activity. Although the receiver type in fruit flies differs from that in mammals, the auditory systems of mammals and fruit flies are strikingly similar with regard to the level of development, transduction mechanism, mechanical amplification, and central projections. These similarities strongly support the use of the fruit fly to study the general principles of acoustic information processing. In this review, we introduce acoustic communication and discuss recent advances in our understanding on hearing in fruit flies. This article is part of a Special Issue entitled . PMID:26560238

  5. Blood feeding behavior of the stable fly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable fly is a fly that looks similar to a house fly but both sexes are blood feeders. Blood is required for successful fertilization and development of eggs. Bites are painful but there is usually no pain after the fly stops feeding. The stable fly is a persistent feeder and will continue trying t...

  6. The FlyBar: Administering Alcohol to Flies

    PubMed Central

    van der Linde, Kim; Fumagalli, Emiliano; Roman, Gregg; Lyons, Lisa C.

    2014-01-01

    Fruit flies (Drosophila melanogaster) are an established model for both alcohol research and circadian biology. Recently, we showed that the circadian clock modulates alcohol sensitivity, but not the formation of tolerance. Here, we describe our protocol in detail. Alcohol is administered to the flies using the FlyBar. In this setup, saturated alcohol vapor is mixed with humidified air in set proportions, and administered to the flies in four tubes simultaneously. Flies are reared under standardized conditions in order to minimize variation between the replicates. Three-day old flies of different genotypes or treatments are used for the experiments, preferably by matching flies of two different time points (e.g., CT 5 and CT 17) making direct comparisons possible. During the experiment, flies are exposed for 1 hr to the pre-determined percentage of alcohol vapor and the number of flies that exhibit the Loss of Righting reflex (LoRR) or sedation are counted every 5 min. The data can be analyzed using three different statistical approaches. The first is to determine the time at which 50% of the flies have lost their righting reflex and use an Analysis of the Variance (ANOVA) to determine whether significant differences exist between time points. The second is to determine the percentage flies that show LoRR after a specified number of minutes, followed by an ANOVA analysis. The last method is to analyze the whole times series using multivariate statistics. The protocol can also be used for non-circadian experiments or comparisons between genotypes. PMID:24895004

  7. Ameliorative effect of fly ashes

    SciTech Connect

    Bhumbla, D.K.

    1991-01-01

    Agronomic effectiveness and environmental impact of fly ashes used to reclaim pyritic acid mine spoils were investigated in the laboratory and field. Mine spoils at two abandoned sites were amended with three rates of fly ash, three rates of rock phosphate, and seeded with alfalfa and wheat. Application of fly ash decreased bulk density and increased moisture retention capacity of spoils. Fly ash application reduced cation exchange capacity, acidity, toxic levels of Al, Fe, and Mn in soils by buffering soil pH at 6.5, and retarded pyrite oxidation. The reduction in cation exchange capacity was compensated by release of plant nutrients through diffusion and dissolution of plerospheres in fly ash. Improvement of spoil physical, chemical and microbial properties resulted in higher yield, more nitrogen fixation, and utilization of P from rock phosphate by alfalfa. Laboratory investigations demonstrated that neutralization potential and the amounts of amorphous oxides of iron were more important for classifying fly ashes than the total elemental analysis presently used in a taxonomic classification system. Contamination of the food chain through plant removal of Mo and As in fly ash treated mine spoils was observed only for Mo and only for the first year of cropping. Plant available As and Mo decreased with time. Laboratory leaching and adsorption studies and a field experiment showed that trace metals do not leach from fly ashes at near neutral pH and more oxyanions will leach from fly ashes with low neutralization potential and low amounts of amorphous oxides of iron.

  8. Extraction of vanadium from athabasca tar sands fly ash

    NASA Astrophysics Data System (ADS)

    Gomez-Bueno, C. O.; Spink, D. R.; Rempel, G. L.

    1981-06-01

    The production of refinery grade oil from the Alberta tar sands deposits as currently practiced by Suncor (formally Great Canadian Oil Sands Ltd.—GCOS) generates a substantial amount of petroleum coke fly ash which contains appreciable amounts of valuable metals such as vanadium, nickel and titanium. Although the recovery of vanadium from petroleum ash is a well established commercial practice, it is shown in the present work that such processes are not suitable for recovery of vanadium from the GCOS fly ash. The fact that the GCOS fly ash behaves so differently when compared to other petroleum fly ash is attributed to its high silicon and aluminum contents which tie up the metal values in a silica-alumina matrix. Results of experiments carried out in this investigation indicate that such matrices can be broken down by application of a sodium chloride/water roast of the carbon-free fly ash. Based on results from a series of preliminary studies, a detailed investigation was undertaken in order to define optimum conditions for a vanadium extraction process. The process developed involves a high temperature (875 to 950 °C) roasting of the fly ash in the presence of sodium chloride and water vapor carried out in a rotary screw kiln, followed by dilute sodium hydroxide atmosphereic leaching (98 °C) to solublize about 85 pet of the vanadium originally present in the fly ash. It was found that the salt roasting operation, besides enhancing vanadium recovery, also inhibits silicon dissolution during the subsequent leaching step. The salt roasting treatment is found to improve vanadium recovery significantly when the fly ash is fully oxidized. This is easily achieved by burning off the carbon present in the “as received” fly ash under excess air. The basic leaching used in the new process selectively dissolves vanadium from the roasted ash, leaving nickel and titanium untouched.

  9. Flying by Titan

    NASA Technical Reports Server (NTRS)

    Pelletier, Frederic J.; Antreasian, Peter G.; Ardalan, Shadan M.; Criddle, Kevin E.; Ionasescu, Rodica; Jacobson, Robert A.; Jones, Jeremy B.; Parcher, Daniel W.; Roth, Duane C.; Thompson, Paul F.; Vaughan, Andrew T.

    2008-01-01

    The Cassini spacecraft encounters the massive Titan about once every month. These encounters are essential to the mission as Titan is the only satellite of Saturn that can provide enough gravity assist to shape the orbit tour and allow outstanding science for many years. From a navigation point of view, these encounters provide many challenges, in particular those that fly close enough to the surface for the atmospheric drag to perturb the orbit. This paper discusses the dynamics models developed to successfully navigate Cassini and determine its trajectory. This includes the moon's gravity pull with its second degree zonal harmonics J2, the attitude thrust control perturbations and the acceleration of drag.

  10. NAVTOLAND and flying qualities

    NASA Technical Reports Server (NTRS)

    Momiyama, T. S.

    1977-01-01

    The V/STOL operational capability is reviewed with emphasis on pilot workload and all-weather landing guidance systems. A research and development program to correlate and integrate the development of all systems and techniques involved in enabling the pilot to fly V/STOL aircraft onto ships and tactical sites is described. Aircraft design parameters that affect its control in the vertical takeoff and landing flight regimes are emphasized. Topics considered include: (1) integrated flight controls and displays; (2) low speed sensor; (3) air traffic control appraoch and landing guidance systems; (4) visual landing aids; (5) ground effect induced thrust variation problems; and (6) handling qualities.