Science.gov

Sample records for enrico fermi reactor

  1. Enrico Fermi

    NASA Astrophysics Data System (ADS)

    Yang, Chen Ning

    2013-05-01

    Enrico Fermi was, of all the great physicists of the 20th century, among the most respected and admired. He was respected and admired because of his contributions to both theoretical and experimental physics, because of his leadership in discovering for mankind a powerful new source of energy, and above all, because of his personal character. He was always reliable and trustworthy. He had both of his feet on the ground all the time. He had great strength, but never threw his weight around. He did not play to the gallery. He did not practise one-up-manship. He exemplified, I always believe, the perfect Confucian gentleman...

  2. Enrico Fermi: The First Chain Reactor (with Film) and Pion-Proton Scattering

    SciTech Connect

    Martin, Ron

    2003-01-08

    A twenty minute film will be shown depicting the first nuclear chain reactor at the University of Chicago on December 2, 1942. The film was made of a re-enactment in 1952 and is narrated by Arthur Compton and Enrico Fermi. After the film, Ronald Martin will talk about his experiences on pion-proton scattering with Enrico Fermi at the Chicago synchrocyclotron in the fifties.

  3. Enrico Fermi Fast Reactor Spent Nuclear Fuel Criticality Calculations: Degraded Mode

    SciTech Connect

    D.R. Moscalu; L. Angers; J. Monroe-Rammsey; H.R. Radulesca

    2000-07-21

    The objective of this calculation is to characterize the nuclear criticality safety concerns associated with the codisposal of the Department of Energy's (DOE) Enrico Fermi (EF) Spent Nuclear Fuel (SNF) in a 5-Defense High-Level Waste (5-DHLW) Waste Package (WP) and placed in a Monitored Geologic Repository (MGR). The scope of this calculation is limited to the determination of the effective neutron multiplication factor (k{sub eff}) for the degraded mode internal configurations of the codisposal WP. The results of this calculation and those of Ref. 8 will be used to evaluate criticality issues and support the analysis that will be performed to demonstrate the viability of the codisposal concept for the Monitored Geologic Repository.

  4. Enrico Fermi and the Dolomites

    NASA Astrophysics Data System (ADS)

    Battimelli, Giovanni; de Angelis, Alessandro

    2014-11-01

    Summer vacations in the Dolomites were a tradition among the professors of the Faculty of Mathematical and Physical Sciences at the University of Roma since the end of the XIX century. Beyond the academic walls, people like Tullio Levi-Civita, Federigo Enriques and Ugo Amaldi sr., together with their families, were meeting friends and colleagues in Cortina, San Vito, Dobbiaco, Vigo di Fassa and Selva, enjoying trekking together with scientific discussions. The tradition was transmitted to the next generations, in particular in the first half of the XX century, and the group of via Panisperna was directly connected: Edoardo Amaldi, the son of the mathematician Ugo sr., rented at least during two summers, in 1925 and in 1949, and in the winter of 1960, a house in San Vito di Cadore, and almost every year in the Dolomites; Enrico Fermi was a frequent guest. Many important steps in modern physics, in particular the development of the Fermi-Dirac statistics and the Fermi theory of beta decay, are related to scientific discussions held in the region of the Dolomites.

  5. Fermi, Enrico (1901-54)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Italian physicist, created the first controlled chain reaction, founded Argonne National Laboratory. His work on the properties of electrons (spin-half particles like electrons are called fermions after him, and the study of their properties is called Fermi-Dirac statistics) enabled the pressure source in white dwarf stars to be identified, and white dwarf star properties to be calculated by CHAN...

  6. Enrico: Python package to simplify Fermi-LAT analysis

    NASA Astrophysics Data System (ADS)

    Sanchez, David; Deil, Christoph

    2015-01-01

    Enrico analyzes Fermi data. It produces spectra (model fit and flux points), maps and lightcurves for a target by editing a config file and running a python script which executes the Fermi science tool chain.

  7. LETTERS AND COMMENTS: Enrico Fermi: a great teacher

    NASA Astrophysics Data System (ADS)

    Lan, Boon Leong

    2002-09-01

    Enrico Fermi was not only a great theoretical and experimental physicist but a great teacher as well. This article highlights Fermi's approaches in both his formal and informal teaching, and as a thesis advisor. The great teacher inspires - William Arthur Ward

  8. Enrico Fermi - And the Revolutions of Modern Physics

    NASA Astrophysics Data System (ADS)

    Cooper, Dan

    1999-02-01

    In 1938, at the age of 37, Enrico Fermi was awarded the Nobel Prize in Physics. That same year he emigrated from Italy to the United States and, in the course of his experiments, discovered nuclear fission--a process which forms the basis of nuclear power and atomic bombs. Soon the brilliant physicist was involved in the top secret race to produce the deadliest weapon on Earth. He created the first self-sustaining chain reaction, devised new methods for purifying plutonium, and eventually participated in the first atomic test. This compelling biography traces Fermis education in Italy, his meteoric career in the scientific world, his escape from fascism to America, and the ingenious experiments he devised and conducted at the University of Rome, Columbia University, and the Los Alamos laboratory. The book also presents a mini-course in quantum and nuclear physics in an accessible, fast-paced narrative that invokes all the dizzying passion of Fermis brilliant discoveries.

  9. Ugo Fano, Enrico Fermi, and spectral line shapes

    NASA Astrophysics Data System (ADS)

    Clark, Charles W.

    2005-03-01

    Ugo Fano's 1961 paper on spectral line shapes^1 was recently ranked as the third highest in citation impact of all papers published in the entire Physical Review series.^2 In the course of preparing an article for a NIST Centennial volume,^3 I became interested in the history of the results presented in Fano’s seminal paper, and will present my findings in this talk. An amusing sidelight concerns the role played by Enrico Fermi in the development of the famous ``Fano profile'' formula. I had been told this story by Fano when I was his graduate student, but uncertain of my recollection of the details, I did not publish it in his obituary.^4 I later learned that the archives of the Royal Society of London contain Fano's own written version of the tale, which will be presented in this talk. The story sheds light on the nature of Enrico Fermi's interactions with his students, and confirms accounts concerning the way in which he did his theoretical work.^5 ^1 U. Fano,``Effects of Configuration Interaction on Intensities and Phase Shifts,'' Phys. Rev. 124, 1866-1878 (1961)^2 S. Redner, physics/0407137 (2004)^3 http://nvl.nist.gov/pub/nistpubs/sp958-lide/116-119.pdf^4 C. W. Clark, Nature 410, 164 (2001)^5 F. Rasetti, in Collected Papers, vol. I, E. Fermi (University of Chicago Press, 1962), p. 178

  10. 75 FR 20867 - DTE Energy; Enrico Fermi Atomic Power Plant, Unit 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION DTE Energy; Enrico Fermi Atomic Power Plant, Unit 1 Environmental Assessment and Finding of No... Operating License No. DPR-9 issued to DTE Energy (DTE or the licensee), for the Enrico Fermi Atomic...

  11. Atom optics and space physics: A summary of an 'Enrico Fermi' summer school

    NASA Astrophysics Data System (ADS)

    Arimondo, Ennio; Ertmer, Wolfgang; Rasel, Ernst M.; Schleich, Wolfgang P.

    2008-03-01

    We describe the scientific content of the International School of Physics 'Enrico Fermi' on atom optics and space physics, organized by the Italian Physical Society in Varenna at Lake Como, Italy, 2-13 July 2007.

  12. 75 FR 24755 - DTE ENERGY; Enrico Fermi Atomic Power Plant Unit 1; Exemption From Certain Low-Level Waste...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... quality of the human environment as documented in Federal Register (FR) notice 75 FR 20867, April 21, 2010... COMMISSION DTE ENERGY; Enrico Fermi Atomic Power Plant Unit 1; Exemption From Certain Low-Level Waste... and holder of Facility Operating License No. DPR-9 issued for Enrico Fermi Atomic Power Plant, Unit...

  13. Teaching theoretical physics: The cases of Enrico Fermi and Ettore Majorana

    NASA Astrophysics Data System (ADS)

    De Gregorio, Alberto; Esposito, Salvatore

    2007-09-01

    We report on theoretical courses by Enrico Fermi and Ettore Majorana, which give evidence of the first appearance and further development of quantum mechanics teaching in Italy. On the basis of original documents, we compare Fermi and Majorana's approaches. A detailed analysis is made of Fermi's course on theoretical physics attended by Majorana in 1927-28. Three (previously unknown) programs on advanced physics courses submitted by Majorana to the University of Rome between 1933 and 1936 and the course he taught in Naples in 1938 complete our analysis. Fermi's phenomenological approach resounded in Majorana, who combined it with a deeper theoretical approach, closer to the contemporary way of presenting quantum mechanics.

  14. FINAL–REPORT NO. 2: INDEPENDENT CONFIRMATORY SURVEY SUMMARY AND RESULTS FOR THE ENRICO FERMI ATOMIC POWER PLANT, UNIT 1, NEWPORT, MICHIGAN (DOCKET NO. 50 16; RFTA 10-004)

    SciTech Connect

    Erika Bailey

    2011-07-07

    The Enrico Fermi Atomic Power Plant, Unit 1 (Fermi 1) was a fast breeder reactor design that was cooled by sodium and operated at essentially atmospheric pressure. On May 10, 1963, the Atomic Energy Commission (AEC) granted an operating license, DPR-9, to the Power Reactor Development Company (PRDC), a consortium specifically formed to own and operate a nuclear reactor at the Fermi 1 site. The reactor was designed for a maximum capability of 430 megawatts (MW); however, the maximum reactor power with the first core loading (Core A) was 200 MW. The primary system was filled with sodium in December 1960 and criticality was achieved in August 1963.

  15. Enrico Fermi's Discovery of Neutron-Induced Artificial Radioactivity:The Recovery of His First Laboratory Notebook

    NASA Astrophysics Data System (ADS)

    Acocella, Giovanni; Guerra, Francesco; Robotti, Nadia

    . We give a short description of the discovery of the first experimental notebook of Enrico Fermi (1901-1954) on his researches during March and April of 1934 on neutron-induced artificial radioactivity, and we point out its relevance for a proper historical and conceptual understanding of those researches.

  16. Current Research at the University of Chicago Enrico Fermi Institute and James Franck Institute

    SciTech Connect

    Simon Swordy

    2009-03-04

    These talks will give an overview of physics research at the University of Chicago centered in two research institutes. The Enrico Fermi Institute pursues research in some core areas of the physical sciences. These include cosmology, particle physics, theoretical physics, particle astrophysics, and cosmochemistry. The EFI talk will focus on some examples of these activities which together will provide a broad overview of EFI science. Research at the James Franck Institute centers on the intersection between physics, chemistry and materials science, with the aim to unravel the complex connections between structure and dynamics in condensed matter systems. The JFI is also home to the Chicago Materials Research Science and Engineering Center. The JFI talk will provide highlights of current projects by JFI members.

  17. Current Research at the University of Chicago Enrico Fermi Institute and James Franck Institute

    ScienceCinema

    Simon Swordy

    2010-01-08

    These talks will give an overview of physics research at the University of Chicago centered in two research institutes. The Enrico Fermi Institute pursues research in some core areas of the physical sciences. These include cosmology, particle physics, theoretical physics, particle astrophysics, and cosmochemistry. The EFI talk will focus on some examples of these activities which together will provide a broad overview of EFI science. Research at the James Franck Institute centers on the intersection between physics, chemistry and materials science, with the aim to unravel the complex connections between structure and dynamics in condensed matter systems. The JFI is also home to the Chicago Materials Research Science and Engineering Center. The JFI talk will provide highlights of current projects by JFI members.

  18. Enrico Fermi's Discovery of Neutron-Induced Artificial Radioactivity: Neutrons and Neutron Sources

    NASA Astrophysics Data System (ADS)

    Guerra, Francesco; Leone, Matteo; Robotti, Nadia

    2006-09-01

    We reconstruct and analyze the path leading from James Chadwick’s discovery of the neutron in February 1932 through Frédéric Joliot and Irène Curie’s discovery of artificial radioactivity in January 1934 to Enrico Fermi’s discovery of neutron-induced artificial radioactivity in March 1934. We show, in particular, that Fermi’s innovative construction and use of radon-beryllium neutron sources permitted him to make his discovery.

  19. Radioactivity induced by neutrons: Enrico Fermi and a thermodynamic approach to radiative capture

    NASA Astrophysics Data System (ADS)

    De Gregorio, Alberto

    2006-07-01

    When Fermi learned that slow neutrons are much more effective than fast ones in inducing radioactivity, he explained this phenomenon by mentioning the well-known scattering cross section between neutrons and protons. At this early stage, he did not refer to the capture cross section by target nuclei. At the same time a thermodynamic approach to neutron-proton capture was being discussed by physicists: neutron capture was interpretated as the reverse of deuteron photodissociation and detailed balance among neutrons, protons, deuterons, and radiation was invoked. This thermodynamic approach might underlie Fermi's early explanation of the great efficiency of slow neutrons. Fermi repeatedly used a thermodynamic approach that had been used in describing some of the physical properties of conductors by Richardson and had been influential in Fermi's youth.

  20. Establishing Site X: Letter, Arthur H. Compton to Enrico Fermi, September 14, 1942

    DOE R&D Accomplishments Database

    Compton, A. H.

    1942-09-01

    This letter from Compton to Fermi describes developments bearing on the establishment of site X (which, as of the letter date, is definitely determined as at the Tennessee Valley) for the construction of a pile and associated pilot plant buildings, describes the situation as of the letter date, and offers counsel as to how to proceed.

  1. Revised FINAL–REPORT NO. 2: INDEPENDENT CONFIRMATORY SURVEY SUMMARY AND RESULTS FOR THE ENRICO FERMI ATOMIC POWER PLANT, UNIT 1, NEWPORT, MICHIGAN (DOCKET NO. 50 16; RFTA 10-004) 2018-SR-02-1

    SciTech Connect

    Erika Bailey

    2011-10-27

    The Enrico Fermi Atomic Power Plant, Unit 1 (Fermi 1) was a fast breeder reactor design that was cooled by sodium and operated at essentially atmospheric pressure. On May 10, 1963, the Atomic Energy Commission (AEC) granted an operating license, DPR-9, to the Power Reactor Development Company (PRDC), a consortium specifically formed to own and operate a nuclear reactor at the Fermi 1 site. The reactor was designed for a maximum capability of 430 megawatts (MW); however, the maximum reactor power with the first core loading (Core A) was 200 MW. The primary system was filled with sodium in December 1960 and criticality was achieved in August 1963. The reactor was tested at low power during the first couple years of operation. Power ascension testing above 1 MW commenced in December 1965 immediately following the receipt of a high-power operating license. In October 1966 during power ascension, zirconium plates at the bottom of the reactor vessel became loose and blocked sodium coolant flow to some fuel subassemblies. Two subassemblies started to melt and the reactor was manually shut down. No abnormal releases to the environment occurred. Forty-two months later after the cause had been determined, cleanup completed, and the fuel replaced, Fermi 1 was restarted. However, in November 1972, PRDC made the decision to decommission Fermi 1 as the core was approaching its burn-up limit. The fuel and blanket subassemblies were shipped off-site in 1973. Following that, the secondary sodium system was drained and sent off-site. The radioactive primary sodium was stored on-site in storage tanks and 55 gallon (gal) drums until it was shipped off-site in 1984. The initial decommissioning of Fermi 1 was completed in 1975. Effective January 23, 1976, DPR-9 was transferred to the Detroit Edison Company (DTE) as a 'possession only' license (DTE 2010a). This report details the confirmatory activities performed during the second Oak Ridge Institute for Science and Education (ORISE

  2. The first reactor [40th anniversary commemorative edition

    SciTech Connect

    1982-12-01

    This updated and revised story of the first reactor, or 'pile,' commemorates the 40th anniversary of the first controlled, self-sustaining nuclear chain reaction created by mankind. Enrico Fermi and his team of scientists initiated the reaction on December 2, 1941, underneath the West Stands of Stagg Field at the University of Chicago. Firsthand accounts of the participants as well as postwar recollections by Enrico and Laura Fermi are included.

  3. The First Reactor [40th Anniversary Commemorative Edition].

    DOE R&D Accomplishments Database

    1982-12-01

    This updated and revised story of the first reactor, or 'pile,' commemorates the 40th anniversary of the first controlled, self-sustaining nuclear chain reaction created by mankind. Enrico Fermi and his team of scientists initiated the reaction on December 2, 1941, underneath the West Stands of Stagg Field at the University of Chicago. Firsthand accounts of the participants as well as postwar recollections by Enrico and Laura Fermi are included.

  4. The First Reactor.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC.

    On December 2, 1942, in a racquet court underneath the West Stands of Stagg Field at the University of Chicago, a team of scientists led by Enrico Fermi created the first controlled, self-sustaining nuclear chain reaction. This updated and revised story of the first reactor (or "pile") is based on postwar interviews (as told to Corbin Allardice…

  5. The First Reactor, 40th Anniversary (rev.)

    SciTech Connect

    Allardice, Corbin; Trapnell, Edward R; Fermi, Enrico; Fermi, Laura; Williams, Robert C

    1982-12-01

    This booklet, an updated version of the original booklet describing the first nuclear reactor, was written in honor of the 40th anniversary of the first reactor or "pile". It is based on firsthand accounts told to Corbin Allardice and Edward R. Trapnell, and includes recollections of Enrico and Laura Fermi.

  6. Human-factors control-room-design review draft audit report: Detroit Edison Company, Enrico Fermi Atomic Power Plant--Unit 2

    SciTech Connect

    Savage, J.W.

    1981-08-12

    A human factors audit of the Fermi-2 control room was conducted April 27 through May 1, 1981. This report contains the audit team findings, organized according to the draft NUREG-0700 guidelines sections. The discrepancies identified during the audit are categorized according to their severity and the required schedule for their resolution.

  7. Fermi, Szilard and Trinity

    ERIC Educational Resources Information Center

    Anderson, Herbert L.

    1974-01-01

    The final installment of the author's recollections of his work with physicists Enrico Fermi, Leo Szilard and others in developing the first controlled nuclear chain reaction and in preparing the test explosion of the first atomic bomb. (GS)

  8. Detroit Edison's Fermi 1 - Preparation for Reactor Removal

    SciTech Connect

    Swindle, Danny

    2008-01-15

    This paper is intended to provide information about the ongoing decommissioning tasks at Detroit Edison's Fermi 1 plant, and in particular, the work being performed to prepare the reactor for removal and disposal. In 1972 Fermi 1 was shutdown and the fuel returned to the Atomic Energy Commission. By the end of 1975, a retirement plan was prepared, the bulk sodium removed, and the plant placed in a safe store condition. The plant systems were left isolated with the sodium containing systems inert with carbon dioxide in an attempt to form a carbonate layer, thus passivating the underlying reactive sodium. In 1996, Detroit Edison determined to evaluate the condition of the plant and to make recommendations in relation to the Fermi 1 future plans. At the end of 1997 approval was obtained to remove the bulk asbestos and residual alkali-metals (i.e., sodium and sodium potassium (NaK)). In 2000, full nuclear decommissioning of the plant was approved. To date, the bulk asbestos insulation has been removed, and the only NaK remaining is located in six capillary instrument tubes. The remaining sodium is contained within the reactor, two of the three primary loops, and miscellaneous removed pipes and equipment to be processed. The preferred method for removing or reacting sodium at Fermi 1 is by injecting superheated steam into a heated, nitrogen inert system. The byproducts of this reaction are caustic sodium hydroxide, hydrogen gas, and heat. The decision was made to separate the three primary loops from the reactor for better control prior to processing each loop and the reactor separately. The first loop has already been processed. The main focus is now to process the reactor to allow removal and disposal of the Class C waste prior to the anticipated June 2008 closure of the Barnwell radioactive waste disposal facility located in South Carolina. Lessons learnt are summarized and concern: the realistic schedule and adherence to the schedule, time estimates, personnel

  9. Enrico Fermi Awards Ceremony for Dr. Allen J. Bard and Dr. Andrew Sessler, February 2014 (Presentations, including remarks by Energy Secretary, Dr. Ernest Moniz)

    SciTech Connect

    Moniz, Ernest

    2014-02-03

    The Fermi Award is a Presidential award and is one of the oldest and most prestigious science and technology honors bestowed by the U.S. Government. On February 3, 2014 it was conferred upon two exceptional scientists. The first to be recognized is Dr. Allen J. Bard, 'for international leadership in electrochemical science and technology, for advances in photoelectrochemistry and photocatalytic materials, processes, and devices, and for discovery and development of electrochemical methods including electrogenerated chemiluminescence and scanning electrochemical microscopy.' The other honoree is Dr. Andrew Sessler, 'for advancing accelerators as powerful tools of scientific discovery, for visionary direction of the research enterprise focused on challenges in energy and the environment, and for championing outreach and freedom of scientific inquiry worldwide.' Dr. Patricia Dehmer opened the ceremony, and Dr. Ernest Moniz presented the awards.

  10. Enrico Fermi Awards Ceremony for Dr. Mildred S. Dresselhaus and Dr. Burton Richter, May 2012 (Presentations, including remarks by Energy Secretary, Dr. Steven Chu)

    SciTech Connect

    Chu, Steven

    2012-05-07

    The Fermi Award is a Presidential award and is one of the oldest and most prestigious science and technology honors bestowed by the U.S. Government. On May 7, 2012 it was conferred upon two exceptional scientists: Dr. Mildred Dresselhaus, 'for her scientific leadership, her major contributions to science and energy policy, her selfless work in science education and the advancement of diversity in the scientific workplace, and her highly original and impactful research,' and Dr. Burton Richter, 'for the breadth of his influence in the multiple disciplines of accelerator physics and particle physics, his profound scientific discoveries, his visionary leadership as SLAC Director, his leadership of science, and his notable contributions in energy and public policy.' Dr. John Holder, Director of the White House Office of Science and Technology Policy, opened the ceremony, and Dr. Bill Brinkman, Director of DOE's Office of Science introduced the main speaker, Dr. Steven Chu, U.S. Energy Secretary.

  11. Enrico Fermi Awards Ceremony for Dr. Allen J. Bard and Dr. Andrew Sessler, February 2014 (Presentations, including remarks by Energy Secretary, Dr. Ernest Moniz)

    ScienceCinema

    Moniz, Ernest [U.S. Energy Secretary

    2014-08-22

    The Fermi Award is a Presidential award and is one of the oldest and most prestigious science and technology honors bestowed by the U.S. Government. On February 3, 2014 it was conferred upon two exceptional scientists. The first to be recognized is Dr. Allen J. Bard, 'for international leadership in electrochemical science and technology, for advances in photoelectrochemistry and photocatalytic materials, processes, and devices, and for discovery and development of electrochemical methods including electrogenerated chemiluminescence and scanning electrochemical microscopy.' The other honoree is Dr. Andrew Sessler, 'for advancing accelerators as powerful tools of scientific discovery, for visionary direction of the research enterprise focused on challenges in energy and the environment, and for championing outreach and freedom of scientific inquiry worldwide.' Dr. Patricia Dehmer opened the ceremony, and Dr. Ernest Moniz presented the awards.

  12. Enrico Fermi Awards Ceremony for Dr. Mildred S. Dresselhaus and Dr. Burton Richter, May 2012 (Presentations, including remarks by Energy Secretary, Dr. Steven Chu)

    ScienceCinema

    Chu, Steven (U.S. Energy Secretary)

    2012-06-28

    The Fermi Award is a Presidential award and is one of the oldest and most prestigious science and technology honors bestowed by the U.S. Government. On May 7, 2012 it was conferred upon two exceptional scientists: Dr. Mildred Dresselhaus, 'for her scientific leadership, her major contributions to science and energy policy, her selfless work in science education and the advancement of diversity in the scientific workplace, and her highly original and impactful research,' and Dr. Burton Richter, 'for the breadth of his influence in the multiple disciplines of accelerator physics and particle physics, his profound scientific discoveries, his visionary leadership as SLAC Director, his leadership of science, and his notable contributions in energy and public policy.' Dr. John Holder, Director of the White House Office of Science and Technology Policy, opened the ceremony, and Dr. Bill Brinkman, Director of DOE's Office of Science introduced the main speaker, Dr. Steven Chu, U.S. Energy Secretary.

  13. An interview with Enrico Coen.

    PubMed

    Vicente, Catarina

    2016-07-15

    Enrico Coen CBE FRS is a Project Leader at the John Innes Centre in Norwich, UK, who uses a variety of approaches to study patterning and morphogenesis in plants. We met with Enrico at the Spring Meeting of the British Society for Developmental Biology, where he was awarded the Waddington Medal, to ask him more about his career and his passion for art and book-writing. PMID:27436037

  14. Remembering Fermi

    SciTech Connect

    Cronin, James

    2005-03-30

    A combination of the discovery of nuclear fission and the circumstances of the 2nd World War brought Enrico Fermi to Chicago, where he led the team that produced the first controlled, self-sustained nuclear chain reaction. Following the war in 1945 Chancellor Hutchins, William Zachariasen, and Walter Bartky convinced Fermi to accept a professorship at the University of Chicago, where the Institute for Nuclear Studies was established. Fermi served as the leading figure in surely the greatest collection of scientists the world has ever seen. Fermi's tenure at Chicago was cut short by his death in 1954. My talk will concentrate on the years 1945-54. Examples of his research notebooks, his speeches, his teaching, and his correspondence will be discussed.

  15. Fermi's β-DECAY Theory

    NASA Astrophysics Data System (ADS)

    Yang, Chen Ning

    2013-05-01

    Throughout his lifetime Enrico Fermi (1901-1954) had considered his 1934 β-decay theory as his most important contribution to theoretical physics. E. Segrè (1905-1989) had vividly written about an episode at the inception of that paper:1...

  16. "Where is Everybody?" An Account of Fermi's Question

    DOE R&D Accomplishments Database

    Jones, E. M.

    1985-03-01

    Enrico Fermi's famous question, now central to debates about the prevalence of extraterrestrial civilizations, arose during a luncheon conversation with Emil Konopinski, Edward Teller, and Herbert York in the summer of 1950. Fermi's companions on that day have provided accounts of the incident.

  17. Working with Fermi at Chicago and Los Alamos

    NASA Astrophysics Data System (ADS)

    Garwin, Richard L.

    2010-02-01

    I discuss my experience with Enrico Fermi as student and fellow faculty member at Chicago and with him as consultants to the Los Alamos Scientific Laboratory in 1950-1952. The talk shares observations about this great physicist and exemplary human being. )

  18. 75 FR 76054 - Detroit Edison Company Fermi, Unit 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... described below and in the Environmental Assessment and Finding of No Significant Impact (75 FR 20867) that was published for the exemption which was granted in May 2010 for Enrico Fermi Atomic Power Plant Unit... significant effect on the quality of the human environment as documented in Federal Register (FR) notice...

  19. Ideas by Szilard, physics by Fermi

    SciTech Connect

    Lanouette, W.

    1992-12-01

    An excerpt from William Lanouette's book Genius in the shadows: A biography of Leo Szilard, the man behind the bomb (with Bela Silard). This article covers Szilard's life from early 1933, when he first began contemplating fleeing Germany, to the first self-sustaining nuclear chain reaction on December 2, 1942, and includes a description of his partnership with Enrico Fermi. Part of a series of articles in this magazine commemorating the 50th anniversary of the first controlled chain reaction.

  20. The fermi paradox is neither Fermi's nor a paradox.

    PubMed

    Gray, Robert H

    2015-03-01

    The so-called Fermi paradox claims that if technological life existed anywhere else, we would see evidence of its visits to Earth--and since we do not, such life does not exist, or some special explanation is needed. Enrico Fermi, however, never published anything on this topic. On the one occasion he is known to have mentioned it, he asked "Where is everybody?"--apparently suggesting that we do not see extraterrestrials on Earth because interstellar travel may not be feasible, but not suggesting that intelligent extraterrestrial life does not exist or suggesting its absence is paradoxical. The claim "they are not here; therefore they do not exist" was first published by Michael Hart, claiming that interstellar travel and colonization of the Galaxy would be inevitable if intelligent extraterrestrial life existed, and taking its absence here as proof that it does not exist anywhere. The Fermi paradox appears to originate in Hart's argument, not Fermi's question. Clarifying the origin of these ideas is important, because the Fermi paradox is seen by some as an authoritative objection to searching for evidence of extraterrestrial intelligence--cited in the U.S. Congress as a reason for killing NASA's SETI program on one occasion. But evidence indicates that it misrepresents Fermi's views, misappropriates his authority, deprives the actual authors of credit, and is not a valid paradox. PMID:25719510

  1. Fermi's Conundrum: Proliferation and Closed Societies

    NASA Astrophysics Data System (ADS)

    Teller, Wendy; Westfall, Catherine

    2007-04-01

    On January 1, 1946 Emily Taft Douglas, a freshman Representative at Large for Illinois, sent a letter to Enrico Fermi. She wanted to know whether, if atomic energy was used for peaceful purposes, it might be possible to clandestinely divert some material for bombs. Douglas first learned about the bomb not quite five months before when Hiroshima was bombed. Even though she was not a scientist she identified a key problem of the nuclear age. Fermi responded with requirements to allow peaceful uses of atomic energy and still outlaw nuclear weapons. First, free interchange of information between people was required, and second, people who reported possible violations had to be protected. Fermi had lived in Mussolini's Italy and worked under the war time secrecy restrictions of the Manhattan Project. He was not optimistic that these conditions could be met. This paper discusses how Douglas came to recognize the proliferation issue and what led Fermi to his solution and his pessimism about its practicality.

  2. Fermi Blobs and the Symplectic Camel: A Geometric Picture of Quantum States

    NASA Astrophysics Data System (ADS)

    Gossona, Maurice A. De

    We have explained in previous work the correspondence between the standard squeezed coherent states of quantum mechanics, and quantum blobs, which are the smallest phase space units compatible with the uncertainty principle of quantum mechanics and having the symplectic group as a group of symmetries. In this work, we discuss the relation between quantum blobs and a certain level set (which we call "Fermi blob") introduced by Enrico Fermi in 1930. Fermi blobs allows us to extend our previous results not only to the excited states of the generalized harmonic oscillator in n dimensions, but also to arbitrary quadratic Hamiltonians. As is the case for quantum blobs, we can evaluate Fermi blobs using a topological notion, related to the uncertainty principle, the symplectic capacity of a phase space set. The definition of this notion is made possible by Gromov's symplectic non-squeezing theorem, nicknamed the "principle of the symplectic camel".

  3. Fermi questions

    NASA Astrophysics Data System (ADS)

    Bouffard, Karen

    1999-05-01

    This column contains problems and solutions for the general category of questions known as "Fermi" questions. Forcing the students to use their ability to estimate, giving answers in terms of order-of-magnitude, is not only a challenge for a competition, but a teaching strategy to use in the classroom to develop self-confidence and the ability to analyze answers as to whether or not they make sense, as opposed to relying on the "precision" of a calculator value.

  4. The First Reactor, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Allardice, Corbin; And Others

    This booklet is one of the "Understanding the Atom" Series. Consisting of three sections, it is an account of the development of the first nuclear reactor by a team of scientists led by Enrico Farmi. The first section briefly reviews the early work on nuclear fission and neutron emission, the impact of Einstein's letter to President Roosevelt, the…

  5. 75 FR 63867 - DTE Energy; Enrico Fermi Atomic Power Plant Unit 1, Exemption From Certain Security Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... possess not more than 15 grams of uranium-235, uranium-233 or plutonium, or any combination thereof, with plutonium activity totaling no more than 2 curies. The licensee is permitted to possess this...

  6. Fermi Pulsar Analysis

    NASA Video Gallery

    This animation illustrates how analysis of Fermi data reveals new pulsars. Fermi's LAT records the precise arrival time and approximate direction of the gamma rays it detects, but to identify a pul...

  7. Unveiling Unidentified Fermi Sources

    NASA Astrophysics Data System (ADS)

    Zhang, Lizhong; South Pole Telescope

    2016-01-01

    The Fermi γ-ray Space Telescope (Fermi) has surveyed the entire sky at the highest-energy band of the electromagnetic spectrum. The majority of Fermi sources have counterpart identifications from multi-wavelength large-area surveys, particularly in the radio and x-ray bands. However, around 35% of Fermi sources remain unidentified, a problem exasperated by the low resolution of the telescope. Understanding the nature of unidentified Fermi sources is one of the most pressing problems in γ-ray astronomy. The South Pole Telescope (SPT) has completed a survey covering a 2500 square degrees of the southern extragalactic sky with arcminute resolution at millimeter wavelengths. The mm wavelength is the most efficient means to identify blazars and unidentified Fermi sources. Our analysis shows that the SPT point source catalog provides candidate associations for 40% of the unidentified Fermi sources, showing them to be flat-spectrum radio quasars which are extraordinarily bright at millimeter (mm) wavelengths.

  8. Determining the Appropriate Package and Transportation Methodology for the Detroit Edison, Fermi II Msrs and Associated Components

    SciTech Connect

    Weber, B.

    2007-07-01

    During the spring of 2005, Detroit Edison, Enrico Fermi II Nuclear Power Station (Fermi) decided to disposition two MSRs and associated components scheduled for replacement in the spring of 2006 during the MSR Replacement Outage. Of concern to Fermi was the proper packaging and transportation methodology when dis-positioning a component measuring approximately 110' in length and 13' in diameter and weighing over 300 tons. Upon removal from the Turbine Deck the retired MSRs and associated components were turned over to the Rad Waste Group for packaging and final disposition. Fermi requested quotations from vendors to package, transport, and disposition the MSRs and associated components. However, multiple Vendors informed Fermi that the size and weight of the MSRs were questionable in passing permitting requirements and would require segmentation and volume reduction on site or at a waste processor. Fermi contracted with MHF Logistical Solutions (MHF-LS) based on their ability to receive clearances for shipping the MSRs in one piece via two heavy haul rail conveyances acting as a bolstered load with professionally engineered blocking and bracing configured to support the retired MSRs. (authors)

  9. REACTOR

    DOEpatents

    Szilard, L.

    1963-09-10

    A breeder reactor is described, including a mass of fissionable material that is less than critical with respect to unmoderated neutrons and greater than critical with respect to neutrons of average energies substantially greater than thermal, a coolant selected from sodium or sodium--potassium alloys, a control liquid selected from lead or lead--bismuth alloys, and means for varying the quantity of control liquid in the reactor. (AEC)

  10. REACTOR

    DOEpatents

    Christy, R.F.

    1961-07-25

    A means is described for co-relating the essential physical requirements of a fission chain reaction in order that practical, compact, and easily controllable reactors can be built. These objects are obtained by employing a composition of fissionsble isotope and moderator in fluid form in which the amount of fissionsble isotcpe present governs the reaction. The size of the reactor is no longer a critical factor, the new criterion being the concentration of the fissionable isotope.

  11. REACTOR

    DOEpatents

    Roman, W.G.

    1961-06-27

    A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.

  12. REACTORS

    DOEpatents

    Spitzer, L. Jr.

    1961-10-01

    Thermonuclear reactors, methods, and apparatus are described for controlling and confining high temperature plasma. Main axial confining coils in combination with helical windings provide a rotational transform that avoids the necessity of a figure-eight shaped reactor tube. The helical windings provide a multipolar helical magnetic field transverse to the axis of the main axial confining coils so as to improve the effectiveness of the confining field by counteracting the tendency of the more central lines of force in the stellarator tube to exchange positions with the magnetic lines of force nearer the walls of the tube. (AEC)

  13. Fermi at Six Months

    NASA Technical Reports Server (NTRS)

    Hays, Elizabeth

    2009-01-01

    An overview of the Fermi Gamma-ray Space Telescope's first 6 months in operation is provided. The Fermi Gamma-ray Space Telescope, formerly called GLAST, is a mission to measure the cosmic gamma-ray flux in the energy rage 20 MeV to more than 300 GeV, with supporting measurements for gamma-ray bursts from 8 keV to 30 MeV. It contains a Large Area Telescope capable of viewing the entire sky every 3 hours and a Gamma-ray Burst Monitor for viewing the entire unocculted sky. Since its launch on June 11, 2008 Fermi has provided information on pulsars, gamma ray bursts, relativistic jets, the active galactic nucleus, and a globular star cluster. This presentation describes Fermi's development, mission, instruments and recent findings.

  14. Fermi Galactic Center Zoom

    NASA Video Gallery

    This animation zooms into an image of the Milky Way, shown in visible light, and superimposes a gamma-ray map of the galactic center from NASA's Fermi. Raw data transitions to a view with all known...

  15. REACTOR

    DOEpatents

    Spitzer, L. Jr.

    1962-01-01

    The system conteraplates ohmically heating a gas to high temperatures such as are useful in thermonuclear reactors of the stellarator class. To this end the gas is ionized and an electric current is applied to the ionized gas ohmically to heat the gas while the ionized gas is confined to a central portion of a reaction chamber. Additionally, means are provided for pumping impurities from the gas and for further heating the gas. (AEC)

  16. The Entrance of Quantum Mechanics in Italy:. from Garbasso to Fermi

    NASA Astrophysics Data System (ADS)

    Leone, Matteo; Robotti, Nadia

    2006-06-01

    The first steps of quantum mechanics in Italy will be here discussed, through the use of the available archives and printed sources. As it will be shown, this development was closely linked with a spectroscopy tradition of research, whose major protagonists were three physicists working in Tuscany during the first two decades of the century, namely Antonio Garbasso, who worked in Arcetri (Florence) on the theoretical basis of the recently discovered Stark Effect (1913-14); Rita Brunetti, in Arcetri as well, who made use of the quantum theory in order to explain the X-rays emission (1918-20); and, finally, the young Enrico Fermi, who paid attention to the quantum theory since his days at the Scuola Normale Superiore in Pisa (1918-22).

  17. The Illness and Death of Enrico Caruso (1873-1921): A Medical Chorus Out of Tune?

    PubMed

    Cascella, Marco

    2016-02-01

    The Italian opera singer Enrico Caruso is considered by many people the most famous opera singer of all time or "The Matchless Singer" for his unique and suggestive vocal timber. Although a man of humble origins, he managed to rise from poverty, thanks to his extraordinary intelligence and determination. From his debut in 1895 in Naples, until December 24, 1920, the tenor had a brilliant career with many performances and over 500 songs in his repertoire. This intense lifestyle went on until 1919, when the fortune that had always accompanied him began to fade and he entered a fast "descending parable." In this study, we analyze Caruso's medical history during his last year of life: Through the study of the newspapers from the period and the statements reported on the tenor's many biographies, we tried to offer a detailed evaluation of the complex pathogenic chain of events that led to his death, impeding him from keeping to alleviate the heart-breaking nostalgia of many emigrants that felt in his singing the warmth of a too distant land. PMID:25877665

  18. FermiGrid

    SciTech Connect

    Yocum, D.R.; Berman, E.; Canal, P.; Chadwick, K.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Sharma, N.; Timm, S.; /Fermilab

    2007-05-01

    As one of the founding members of the Open Science Grid Consortium (OSG), Fermilab enables coherent access to its production resources through the Grid infrastructure system called FermiGrid. This system successfully provides for centrally managed grid services, opportunistic resource access, development of OSG Interfaces for Fermilab, and an interface to the Fermilab dCache system. FermiGrid supports virtual organizations (VOs) including high energy physics experiments (USCMS, MINOS, D0, CDF, ILC), astrophysics experiments (SDSS, Auger, DES), biology experiments (GADU, Nanohub) and educational activities.

  19. Reactor

    DOEpatents

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  20. More Fermi questions

    NASA Astrophysics Data System (ADS)

    Bouffard, Karen

    1999-09-01

    "Fermi" questions are a popular component of most Physics Olympics meets. Asking students to make a reasonable assumption about a problem and give answers in terms of order of magnitude is not only a great challenge for a competition, but is also a valued teaching strategy in the classroom.

  1. Fermi TGF detection map

    NASA Video Gallery

    Fermi’s Gamma-ray Burst Monitor detected 130 TGFs from August 2008 to the end of 2010. Thanks to instrument tweaks, the team has been able to improve the detection rate to several TGFs per week. ...

  2. Interaction quenches of Fermi gases

    SciTech Connect

    Uhrig, Goetz S.

    2009-12-15

    It is shown that the jump in the momentum distribution of Fermi gases evolves smoothly for small and intermediate times once an interaction between the fermions is suddenly switched on. The jump does not vanish abruptly. The loci in momentum space where the jumps occur are those of the noninteracting Fermi sea. No relaxation of the Fermi surface geometry takes place.

  3. Treatment Method for Fermi Barrel Sodium Metal Residues

    SciTech Connect

    Steven R. Sherman; Collin J. Knight

    2005-06-01

    Fermi barrels are 55-gallon drums that once contained bulk sodium metal from the shutdown Fermi 1 breeder reactor facility, and now contain residual sodium metal and other sodium/air reaction products. This report provides a residual sodium treatment method and proposed quality assurance steps that will ensure that all residual sodium is deactivated and removed from the Fermi barrels before disposal. The treatment method is the application of humidified carbon dioxide to the residual sodium followed by a water wash. The experimental application of the treatment method to six Fermi barrels is discussed, and recommendations are provided for further testing and evaluation of the method. Though more testing would allow for a greater refinement of the treatment technique, enough data has been gathered from the tests already performed to prove that 100% compliance with stated waste criteria can be achieved.

  4. GRB Studies with Fermi

    NASA Technical Reports Server (NTRS)

    Meegan, Charles A.

    2008-01-01

    This slide presentation reviews the studies of Gamma Ray Bursts (GRB) with the Fermi Gamma Ray Space Telescope. Included are pictures of the observatory, with illustrations of the Large Area Telescope (LAT), and the Gamma-ray Burst Monitor (GBM) including information about both their capabilities. Graphs showing the GBM count rate over time after the GBM trigger for three GRBs, preliminary charts showing the multiple detector light curves the spectroscopy of the main LAT peak and the spectral evolution of GRB 080916C Burst Temporally-extended LAT emission.

  5. Safe and Effective Deactivation of Metallic Sodium Filled Scrap and Cold Traps From Sodium-cooled Nuclear Reactor D and D - 12176

    SciTech Connect

    Nester, Dean; Crocker, Ben; Smart, Bill

    2012-07-01

    As part of the Plateau Remediation Project at US Department of Energy's Hanford, Washington site, CH2M Hill Plateau Remediation Company (CHPRC) contracted with IMPACT Services, LLC to receive and deactivate approximately 28 cubic meters of sodium metal contaminated debris from two sodium-cooled research reactors (Enrico Fermi Unit 1 and the Fast Flux Test Facility) which had been stored at Hanford for over 25 years. CHPRC found an off-site team composed of IMPACT Services and Commodore Advanced Sciences, Inc., with the facilities and technological capabilities to safely and effectively perform deactivation of this sodium metal contaminated debris. IMPACT Services provided the licensed fixed facility and the logistical support required to receive, store, and manage the waste materials before treatment, and the characterization, manifesting, and return shipping of the cleaned material after treatment. They also provided a recycle outlet for the liquid sodium hydroxide byproduct resulting from removal of the sodium from reactor parts. Commodore Advanced Sciences, Inc. mobilized their patented AMANDA unit to the IMPACT Services site and operated the unit to perform the sodium removal process. Approximately 816 Kg of metallic sodium were removed and converted to sodium hydroxide, and the project was accomplished in 107 days, from receipt of the first shipment at the IMPACT Services facility to the last outgoing shipment of deactivated scrap metal. There were no safety incidents of any kind during the performance of this project. The AMANDA process has been demonstrated in this project to be both safe and effective for deactivation of sodium and NaK. It has also been used in other venues to treat other highly reactive alkali metals, such as lithium (Li), potassium (K), NaK and Cesium (Cs). (authors)

  6. The Statistical Fermi Paradox

    NASA Astrophysics Data System (ADS)

    Maccone, C.

    In this paper is provided the statistical generalization of the Fermi paradox. The statistics of habitable planets may be based on a set of ten (and possibly more) astrobiological requirements first pointed out by Stephen H. Dole in his book Habitable planets for man (1964). The statistical generalization of the original and by now too simplistic Dole equation is provided by replacing a product of ten positive numbers by the product of ten positive random variables. This is denoted the SEH, an acronym standing for “Statistical Equation for Habitables”. The proof in this paper is based on the Central Limit Theorem (CLT) of Statistics, stating that the sum of any number of independent random variables, each of which may be ARBITRARILY distributed, approaches a Gaussian (i.e. normal) random variable (Lyapunov form of the CLT). It is then shown that: 1. The new random variable NHab, yielding the number of habitables (i.e. habitable planets) in the Galaxy, follows the log- normal distribution. By construction, the mean value of this log-normal distribution is the total number of habitable planets as given by the statistical Dole equation. 2. The ten (or more) astrobiological factors are now positive random variables. The probability distribution of each random variable may be arbitrary. The CLT in the so-called Lyapunov or Lindeberg forms (that both do not assume the factors to be identically distributed) allows for that. In other words, the CLT "translates" into the SEH by allowing an arbitrary probability distribution for each factor. This is both astrobiologically realistic and useful for any further investigations. 3. By applying the SEH it is shown that the (average) distance between any two nearby habitable planets in the Galaxy may be shown to be inversely proportional to the cubic root of NHab. This distance is denoted by new random variable D. The relevant probability density function is derived, which was named the "Maccone distribution" by Paul Davies in

  7. Fermi's New Pulsar Detection Technique

    NASA Video Gallery

    To locate a pulsar in Fermi LAT data requires knowledge of the object’s sky position, its pulse period, and how the pulse rate slows over time. Computers check many different combinations of posi...

  8. The Fermi LAT Pulsars

    NASA Astrophysics Data System (ADS)

    Romani, Roger W.

    2011-08-01

    The Large Area Telescope on the Fermi satellite is an impressive pulsar discovery machine, with over 75 pulse detections and counting. The populations of radio-selected, γ-selected and millisecond pulsars are now large enough to display observational patterns in the light curves and luminosities. These patterns are starting to teach us about the physics of the emission zone, which seems dominated by open field lines near the speed of light cylinder. The sample also provides initial inferences about the pulsar population. Apparently a large fraction of neutron stars have a young energetic γ-ray emitting phase, making these objects a good probe of massive star evolution. The long-lived millisecond γ-ray pulsars are even more ubiquitous and may produce a significant fraction of the γ-ray background. In any event, it is clear that the present LAT pulsar sample is dominated by nearby objects, and there is every expectation that the number, and quality, of pulsar detections will increase in years to come.

  9. Enrico Morselli's Psychology and "Spiritism": psychiatry, psychology and psychical research in Italy in the decades around 1900.

    PubMed

    Brancaccio, Maria Teresa

    2014-12-01

    This paper traces Enrico Morselli's intellectual trajectory from the 1870s to the early 1900s. His interest in phenomena of physical mediumship is considered against the backdrop of the theoretical developments in Italian psychiatry and psychology. A leading positivist psychiatrist and a prolific academic, Morselli was actively involved in the making of Italian experimental psychology. Initially sceptical of psychical research and opposed to its association with the 'new psychology', Morselli subsequently conducted a study of the physical phenomena produced by the medium Eusapia Palladino. He concluded that her phenomena were genuine and represented them as the effects of an unknown bio-psychic force present in all human beings. By contextualizing Morselli's study of physical mediumship within contemporary theoretical and disciplinary discourse, this study elaborates shifts in the interpretations of 'supernormal' phenomena put forward by leading Italian psychiatrists and physiologists. It demonstrates that Morselli's interest in psychical research stems from his efforts to comprehend the determinants of complex psychological phenomena at a time when the dynamic theory of matter in physics, and the emergence of neo-vitalist theories influenced the theoretical debates in psychiatry, psychology and physiology. PMID:25218119

  10. Strongly Interacting Fermi and Bose-Fermi Gases

    NASA Astrophysics Data System (ADS)

    Lee, Ye-Ryoung; Choi, Jae; Christensen, Caleb; Jo, Gyu-Boong; Wang, Tout; Ketterle, Wolfgang; Pritchard, David

    2010-03-01

    We present our recent progress on the study ultracold gases of ^6Li and ^23Na near homonuclear and heteronuclear Feshbach resonances. We discuss new experimental and theoretical developments on itinerant ferromagnetism in a Fermi gas of ultracold atoms [1]. We also report on ultracold gases of ^6Li and ^23Na, including fermionic LiNa molecules. [4pt] [1] G.-B. Jo, Y.-R. Lee, J.-H. Choi, C.A. Christensen, T.H. Kim, J.H. Thywissen, D.E. Pritchard, and W. Ketterle, Observation of itinerant ferromagnetism in a strongly interacting Fermi gas of ultracold atoms, Science 325, 1521 (2009).

  11. Strongly Interacting Homogeneous Fermi Gases

    NASA Astrophysics Data System (ADS)

    Mukherjee, Biswaroop; Patel, Parth; Yan, Zhenjie; Struck, Julian; Zwierlein, Martin

    2016-05-01

    We present a homogeneous box potential for strongly interacting Fermi gases. The local density approximation (LDA) allows measurements on traditional inhomogeneous traps to observe a continuous distribution of Fermi gases in a single shot, but also suffer from a broadened response due to line-of-sight averaging over varying densities. We trap ultracold Fermionic (6 Li) in an optical homogeneous potential and characterize its flatness through in-situ tomography. A hybrid approach combining a cylindrical optical potential with a harmonic magnetic trap allows us to exploit the LDA and measure local RF spectra without requiring significant image reconstruction. We extract various quantities from the RF spectra such as the Tan's contact, and discuss further measurements of homogeneous Fermi systems under spin imbalance and finite temperature.

  12. Fermi Finds Youthful Pulsar Among Ancient Stars

    NASA Video Gallery

    In three years, NASA's Fermi has detected more than 100 gamma-ray pulsars, but something new has appeared. Among a type of pulsar with ages typically numbering a billion years or more, Fermi has fo...

  13. Fermi GBM Early Trigger Characteristics

    SciTech Connect

    Connaughton, Valerie; Briggs, Michael; Paciesas, Bill; Meegan, Charles

    2009-05-25

    Since the launch of the Fermi observatory on June 11 2008, the Gamma-ray Burst Monitor (GBM) has seen approximately 250 triggers of which about 150 were cosmic gamma-ray bursts (GRBs). GBM operates dozens of trigger algorithms covering various energy bands and timescales and is therefore sensitive to a wide variety of phenomena, both astrophysical and not.

  14. Fermi's Large Area Telescope (LAT)

    NASA Video Gallery

    Fermi’s Large Area Telescope (LAT) is the spacecraft’s main scientificinstrument. This animation shows a gamma ray (purple) entering the LAT,where it is converted into an electron (red) and a...

  15. CCC and the Fermi paradox

    NASA Astrophysics Data System (ADS)

    Gurzadyan, V. G.; Penrose, R.

    2016-01-01

    Within the scheme of conformal cyclic cosmology (CCC), information can be transmitted from aeon to aeon. Accordingly, the "Fermi paradox" and the SETI programme --of communication by remote civilizations-- may be examined from a novel perspective: such information could, in principle, be encoded in the cosmic microwave background. The current empirical status of CCC is also discussed.

  16. Lectures of Fermi liquid theory

    SciTech Connect

    Bedell, K.S.

    1993-01-01

    The Fermi liquid theory was first introduced by Landau in 1956 to provide a theoretical basis for the properties of strongly correlated Fermi systems. This theory has proven to be crucial for our understanding of a broad range of materials. These include liquid [sup 3]He, [sup 3]He-[sup 4]He mixtures, simple metals, heavy-fermions, and nuclear matter to name a few. In the high temperature superconductors questions have been raised regarding the applicability of Fermi liquid theory to the normal state behavior of these materials. I will not address this issue in these lectures. My focus will be to summarize the foundations of this theory and to explore the consequences. These lectures are in part a summary of the excellent review article by Baym and Pethick and the books by Pines and Nozieres and Baym and Pethick. They include as well a summary of some articles that I have authored and co-authored. In the main body of the lectures I will not make any additional references to the books or articles. In the absence of reading the original materials, my lectures should provide the essentials of a mini-course in Fermi liquid theory.

  17. Lectures of Fermi liquid theory

    SciTech Connect

    Bedell, K.S.

    1993-07-01

    The Fermi liquid theory was first introduced by Landau in 1956 to provide a theoretical basis for the properties of strongly correlated Fermi systems. This theory has proven to be crucial for our understanding of a broad range of materials. These include liquid {sup 3}He, {sup 3}He-{sup 4}He mixtures, simple metals, heavy-fermions, and nuclear matter to name a few. In the high temperature superconductors questions have been raised regarding the applicability of Fermi liquid theory to the normal state behavior of these materials. I will not address this issue in these lectures. My focus will be to summarize the foundations of this theory and to explore the consequences. These lectures are in part a summary of the excellent review article by Baym and Pethick and the books by Pines and Nozieres and Baym and Pethick. They include as well a summary of some articles that I have authored and co-authored. In the main body of the lectures I will not make any additional references to the books or articles. In the absence of reading the original materials, my lectures should provide the essentials of a mini-course in Fermi liquid theory.

  18. Nonanalytic Magnetic Response of Fermi- and non-Fermi Liquids

    NASA Astrophysics Data System (ADS)

    Chubukov, Andrey; Maslov, Dmitrii; Saha, Ronojoy

    2007-03-01

    We revisit the issue of the non-analytic dependence of the static spin susceptibility of a 2D Fermi liquid on temperature and a magnetic field, χs(T, H) = χ0+ A T fχ(μB|H|/T). We show that in a generic Fermi liquid the prefactor A is expressed via complex combinations of the Landau parameters, and does not reduce to the backscattering amplitude, contrary to the case of the specific heat C(T, H). We show that this distinction with the specific heat is mostly relevant near a ferromagnetic QCP -- the non-analytic terms in χs(T,H) are less singular near QCP than those in C(T, H).

  19. Stability of Fermi surfaces and K theory.

    PubMed

    Horava, Petr

    2005-07-01

    Nonrelativistic Fermi liquids in d+1 dimensions exhibit generalized Fermi surfaces: (d-p)-dimensional submanifolds in the (k,omega)-space supporting gapless excitations. We show that the universality classes of stable Fermi surfaces are classified by K theory, with the pattern of stability determined by Bott periodicity. The Atiyah-Bott-Shapiro construction implies that the low-energy modes near a Fermi surface exhibit relativistic invariance in the transverse p+1 dimensions. This suggests an intriguing parallel between nonrelativistic Fermi liquids and D-branes of string theory. PMID:16090638

  20. Julius Edgar Lilienfeld Prize Talk: The Fermi Pasta Ulam (FPU) Problem and The Birth of Nonlinear Science

    NASA Astrophysics Data System (ADS)

    Campbell, David K.

    2010-03-01

    In 1953, Enrico Fermi, John Pasta, and Stan Ulam initiated a series of computer studies aimed at exploring how simple, multi-degree of freedom nonlinear mechanical systems obeying reversible deterministic dynamics evolve in time to an equilibrium state describable by statistical mechanics. Their expectation was that this would occur by mixing behavior among the many linear modes. Their intention was then to study more complex nonlinear systems, with the hope of modeling turbulence computationally. The results of this first study of the so-called Fermi-Pasta-Ulam (FPU) problem, which were published in 1955 and characterized by Fermi as a ``little discovery,'' showed instead of the expected mixing of linear modes a striking series of (near) recurrences of the initial state and no evidence of equipartition. This work heralded the beginning of both computational physics and (modern) nonlinear science. In particular, the work marked the first systematic study of a nonlinear system by digital computers (``experimental mathematics'') and led directly to the discovery of ``solitons,'' as well as to deep insights into deterministic chaos and statistical mechanics. In this talk, I will review the original FPU studies and show how they led to the understanding of two key paradigms of nonlinear science. Specifically, I will show how a continuum approximation to the original discrete system led to the discovery of ``solitions'' whereas a low-mode approximation led to an early example of ``deterministic chaos.'' I will close with a brief indication of how the recurrence phenomenon observed by behavior by FPU can be reconciled with mixing, equipartition, and statistical mechanics.

  1. Fermi resonance in optical microcavities

    NASA Astrophysics Data System (ADS)

    Yi, Chang-Hwan; Yu, Hyeon-Hye; Lee, Ji-Won; Kim, Chil-Min

    2015-04-01

    Fermi resonance is a phenomenon of quantum mechanical superposition, which most often occurs between normal and overtone modes in molecular systems that are nearly coincident in energy. We find that scarred resonances in deformed dielectric microcavities are the very phenomenon of Fermi resonance, that is, a pair of quasinormal modes interact with each other due to coupling and a pair of resonances are generated through an avoided resonance crossing. Then the quantum number difference of a pair of quasinormal modes, which is a consequence of quantum mechanical superposition, equals periodic orbits, whereby the resonances are localized on the periodic orbits. We derive the relation between the quantum number difference and the periodic orbits and confirm it in an elliptic, a rectangular, and a stadium-shaped dielectric microcavity.

  2. Fermi Timing and Synchronization System

    SciTech Connect

    Wilcox, R.; Staples, J.; Doolittle, L.; Byrd, J.; Ratti, A.; Kaertner, F.X.; Kim, J.; Chen, J.; Ilday, F.O.; Ludwig, F.; Winter, A.; Ferianis, M.; Danailov, M.; D'Auria, G.

    2006-07-19

    The Fermi FEL will depend critically on precise timing of its RF, laser and diagnostic subsystems. The timing subsystem to coordinate these functions will need to reliably maintain sub-100fs synchronicity between distant points up to 300m apart in the Fermi facility. The technology to do this is not commercially available, and has not been experimentally demonstrated in a working facility. Therefore, new technology must be developed to meet these needs. Two approaches have been researched by different groups working with the Fermi staff. At MIT, a pulse transmission scheme has been developed for synchronization of RF and laser devices. And at LBL, a CW transmission scheme has been developed for RF and laser synchronization. These respective schemes have advantages and disadvantages that will become better understood in coming years. This document presents the work done by both teams, and suggests a possible system design which integrates them both. The integrated system design provides an example of how choices can be made between the different approaches without significantly changing the basic infrastructure of the system. Overall system issues common to any synchronization scheme are also discussed.

  3. Bioterrorism and the Fermi Paradox

    NASA Astrophysics Data System (ADS)

    Cooper, Joshua

    2013-04-01

    We proffer a contemporary solution to the so-called Fermi Paradox, which is concerned with conflict between Copernicanism and the apparent paucity of evidence for intelligent alien civilizations. In particular, we argue that every community of organisms that reaches its space-faring age will (1) almost immediately use its rocket-building computers to reverse-engineer its genetic chemistry and (2) self-destruct when some individual uses said technology to design an omnicidal pathogen. We discuss some of the possible approaches to prevention with regard to Homo sapiens' vulnerability to bioterrorism, particularly on a short-term basis.

  4. Generalized second-order Thomas-Fermi method for superfluid Fermi systems

    NASA Astrophysics Data System (ADS)

    Pei, J. C.; Fei, Na; Zhang, Y. N.; Schuck, P.

    2015-12-01

    Using the ℏ expansion of the Green's function of the Hartree-Fock-Bogoliubov equation, we extend the second-order Thomas-Fermi approximation to generalized superfluid Fermi systems by including the density-dependent effective mass and the spin-orbit potential. We first implement and examine the full correction terms over different energy intervals of the quasiparticle spectra in calculations of finite nuclei. Final applications of this generalized Thomas-Fermi method are intended for various inhomogeneous superfluid Fermi systems.

  5. Fermi liquids near Pomeranchuk instabilities

    NASA Astrophysics Data System (ADS)

    Reidy, Kelly Elizabeth

    We explore features of a Fermi liquid near generalized Pomeranchuk instabilities (PIs) starting from both ordered and disordered phases. These PIs can be viewed as quantum critical points in parameter space, and thus provide an alternate viewpoint on quantum criticality. We employ the tractable crossing symmetric equation method, which is a non-perturbative diagrammatic many-particle method used to calculate the Fermi liquid interaction functions and scattering amplitudes. We consider both repulsive and attractive underlying interactions of arbitrary strength. Starting from a ferromagnetically ordered ground state, we find that upon approach to an s-wave instability in one critical channel, the system simultaneously approaches instabilities in non-critical channels. We study origins and implications of this "quantum multicriticality". We also find that a nematic (non-s-wave) instability precedes and is driven by Pomeranchuk instabilities in both the s-wave spin and density channels. Finally, we discuss potential applications of our results to physical systems, such as ferromagnetic superconductors.

  6. Nonanalytic magnetic response of Fermi and non-Fermi liquids

    NASA Astrophysics Data System (ADS)

    Maslov, Dmitrii L.; Chubukov, Andrey V.; Saha, Ronojoy

    2006-12-01

    We study the nonanalytic behavior of the static spin susceptibility of two-dimensional fermions as a function of temperature and magnetic field. For a generic Fermi liquid, χs(T,H)=const+c1max{T,μB∣H∣} , where c1 is shown to be expressed via complicated combinations of the Landau parameters, rather than via the backscattering amplitude, contrary to the case of the specific heat. Near a ferromagnetic quantum critical point, the field dependence acquires a universal form χs-1(H)=const-c2∣H∣3/2 , with c2>0 . This behavior implies a first-order transition into a ferromagnetic state. We establish a criterion for such a transition to win over the transition into an incommensurate phase.

  7. Optical klystron SASE at FERMI

    NASA Astrophysics Data System (ADS)

    Penco, G.; Allaria, E. M.; De Ninno, G.; Ferrari, E.; Giannessi, L.

    2015-05-01

    The optical klystron enhancement to a self-amplified spontaneous emission (SASE) free electron laser (FEL) has been deeply studied in theory and in simulations. In this FEL scheme, a relativistic electron beam passes through two undulators, separated by a dispersive section. The latter converts the electron-beam energy modulation produced in the first undulator in density modulation, thus enhancing the free-electron laser gain. We report the first experiment that has been carried out at the FERMI facility in Trieste, of enhancement to a SASE FEL by using the optical klystron scheme. XUV photons have been produced with an intensity several orders of magnitude larger than in pure SASE mode. The impact of the uncorrelated energy spread of the electron beam on the optical klystron SASE performance has been also investigated.

  8. Crow Instability in Unitary Fermi Gas

    NASA Astrophysics Data System (ADS)

    Gautam, Sandeep

    2013-06-01

    In this paper, we investigate the initiation and subsequent evolution of Crow instability in an inhomogeneous unitary Fermi gas using zero-temperature Galilei-invariant nonlinear Schrödinger equation. Considering a cigar-shaped unitary Fermi gas, we generate the vortex-antivortex pair either by phase-imprinting or by moving a Gaussian obstacle potential. We observe that the Crow instability in a unitary Fermi gas leads to the decay of the vortex-antivortex pair into multiple vortex rings and ultimately into sound waves.

  9. Quantum Mechanical Models Of The Fermi Shuttle

    SciTech Connect

    Sternberg, James

    2011-06-01

    The Fermi shuttle is a mechanism in which high energy electrons are produced in an atomic collision by multiple collisions with a target and a projectile atom. It is normally explained purely classically in terms of the electron's orbits prescribed in the collision. Common calculations to predict the Fermi shuttle use semi-classical methods, but these methods still rely on classical orbits. In reality such collisions belong to the realm of quantum mechanics, however. In this paper we discuss several purely quantum mechanical calculations which can produce the Fermi shuttle. Being quantum mechanical in nature, these calculations produce these features by wave interference, rather than by classical orbits.

  10. Fermi discovers giant bubbles in Milky Way

    NASA Video Gallery

    Using data from NASA's Fermi Gamma-ray Space Telescope, scientists have recently discovered a gigantic, mysterious structure in our galaxy. This feature looks like a pair of bubbles extending above...

  11. Fermi Sees Antimatter-Hurling Thunderstorms

    NASA Video Gallery

    NASA's Fermi Gamma-ray Space Telescope has detected beams of antimatter launched by thunderstorms. Acting like enormous particle accelerators, the storms can emit gamma-ray flashes, called TGFs, an...

  12. RF Spectroscopy on a Homogeneous Fermi Gas

    NASA Astrophysics Data System (ADS)

    Yan, Zhenjie; Mukherjee, Biswaroop; Patel, Parth; Struck, Julian; Zwierlein, Martin

    2016-05-01

    Over the last two decades RF spectroscopy has been established as an indispensable tool to probe a large variety of fundamental properties of strongly interacting Fermi gases. This ranges from measurement of the pairing gap over tan's contact to the quasi-particle weight of Fermi polarons. So far, most RF spectroscopy experiments have been performed in harmonic traps, resulting in an averaged response over different densities. We have realized an optical uniform potential for ultracold Fermi gases of 6 Li atoms, which allows us to avoid the usual problems connected to inhomogeneous systems. Here we present recent results on RF spectroscopy of these homogeneous samples with a high signal to noise ratio. In addition, we report progress on measuring the contact of a unitary Fermi gas across the normal to superfluid transition.

  13. Fermi Proves Supernova Remnants Make Cosmic Rays

    NASA Video Gallery

    The husks of exploded stars produce some of the fastest particles in the cosmos. New findings by NASA's Fermi show that two supernova remnants accelerate protons to near the speed of light. The pro...

  14. ORIGIN OF THE FERMI BUBBLE

    SciTech Connect

    Cheng, K.-S.; Chernyshov, D. O.; Dogiel, V. A.; Ko, C.-M.; Ip, W.-H.

    2011-04-10

    Fermi has discovered two giant gamma-ray-emitting bubbles that extend nearly 10 kpc in diameter north and south of the Galactic center. The existence of the bubbles was first evidenced in X-rays detected by ROSAT and later WMAP detected an excess of radio signals at the location of the gamma-ray bubbles. We propose that periodic star capture processes by the galactic supermassive black hole, Sgr A*, with a capture rate 3 x 10{sup -5} yr{sup -1} and energy release {approx}3 x 10{sup 52} erg per capture can produce very hot plasma {approx}10 keV with a wind velocity {approx}10{sup 8} cm s{sup -1} injected into the halo and heat up the halo gas to {approx}1 keV, which produces thermal X-rays. The periodic injection of hot plasma can produce shocks in the halo and accelerate electrons to {approx}TeV, which produce radio emission via synchrotron radiation and gamma rays via inverse Compton scattering with the relic and the galactic soft photons.

  15. Observation of Fermi Polarons in a Tunable Fermi Liquid of Ultracold Atoms

    SciTech Connect

    Schirotzek, Andre; Wu, C.-H.; Sommer, Ariel; Zwierlein, Martin W.

    2009-06-12

    We have observed Fermi polarons, dressed spin-down impurities in a spin-up Fermi sea of ultracold atoms. The polaron manifests itself as a narrow peak in the impurities' rf spectrum that emerges from a broad incoherent background. We determine the polaron energy and the quasiparticle residue for various interaction strengths around a Feshbach resonance. At a critical interaction, we observe the transition from polaronic to molecular binding. Here, the imbalanced Fermi liquid undergoes a phase transition into a Bose liquid, coexisting with a Fermi sea.

  16. BKGE: Fermi-LAT Background Estimator

    NASA Astrophysics Data System (ADS)

    Vasileiou, Vlasios

    2014-11-01

    The Fermi-LAT Background Estimator (BKGE) is a publicly available open-source tool that can estimate the expected background of the Fermi-LAT for any observational conguration and duration. It produces results in the form of text files, ROOT files, gtlike source-model files (for LAT maximum likelihood analyses), and PHA I/II FITS files (for RMFit/XSpec spectral fitting analyses). Its core is written in C++ and its user interface in Python.

  17. First Light on GRBs with Fermi

    SciTech Connect

    Dermer, Charles D.

    2010-10-15

    Fermi LAT (Large Area Telescope) and GBM (Gamma ray Burst Monitor) observations of GRBs are briefly reviewed, keeping in mind EGRET expectations. Using {gamma}{gamma} constraints on outflow Lorentz factors, leptonic models are pitted against hadronic models, and found to be energetically favored. Interpretation of the Fermi data on GRBs helps establish whether GRBs accelerate cosmic rays, including those reaching {approx_equal}10{sup 20} eV.

  18. Understanding and Using the Fermi Science Tools

    NASA Astrophysics Data System (ADS)

    Asercion, Joseph; Fermi Science Support Center Team

    2016-01-01

    The Fermi Science Support Center (FSSC) provides information, documentation, and tools for the analysis of Fermi science data, including both the Large-Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). Source and binary versions of the Fermi Science Tools can be downloaded from the FSSC website, and are supported on multiple platforms. An overview document, the Cicerone, provides details of the Fermi mission, the science instruments and their response functions, the science data preparation and analysis process, and interpretation of the results. Analysis Threads and a reference manual available on the FSSC website provide the user with step-by-step instructions for many different types of data analysis: point source analysis - generating maps, spectra, and light curves, pulsar timing analysis, source identification, and the use of python for scripting customized analysis chains. We present an overview of the structure of the Fermi science tools and documentation, and how to acquire them. We also provide examples of standard analyses, including tips and tricks for improving Fermi science analysis.

  19. [Enrico Modigliani and the Institution of maternal assistance: a study of the social factors of illegitimate motherhood during early Twentieth century].

    PubMed

    Fano, Valeria

    2016-01-01

    Enrico Modigliani (1877-1931) was an Italian paediatrician of the early Twentieth century whose work anticipated modern concepts of maternal and child health. Convinced of the importance of creating a network of health and social care for children born out-of-wedlock, he began by providing care to single mothers and their babies at his home on Sundays. In 1918, in Rome, he established the Institution for Maternal Assistance, which aim was to provide single mothers with basic health information as well as tools to face their socioeconomic situation. The Opera encouraged breastfeeding and maternal acknowledgement of the child and promoted the establishment of lactation rooms and nurseries within factories. Moreover, women were supported to find a job which was compatible with their situation. In the first five years of activity, over 1,000 unmarried women were assisted; 95% of them acknowledged their children and 52% found a job. The infant mortality rate fell to 11%, which was much lower than the 35% observed at the time among the social classes which Modigliani called the most miserable. This article reviews Modigliani's paper, in which the paediatrician reported the first five years of activity of the Institution of Maternal Assistance and where he largely focused on the social factors surrounding illegitimate motherhood. The paper was structured like a modern scientific report, with photographic documentation and statistical data, and proposed a point of view regarding social inequality which is surprisingly up-to-date. PMID:27436257

  20. Upgrading Fermi Without Traveling to Space

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-02-01

    The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope has received an upgrade that increased its sensitivity by a whopping 40% and nobody had to travel to space to make it happen! The difference instead stems from remarkable improvement to the software used to analyze Fermi-LATs data, and it has resulted in a new high-energy map of our sky.Animation (click to watch!) comparing the Pass 7 to the Pass 8 Fermi-LAT analysis, in a region in the constellation Carina. Pass 8 provides more accurate directions for incoming gamma rays, so more of them fall closer to their sources, creating taller spikes and a sharper image. [NASA/DOE/Fermi LAT Collaboration]Pass 8Fermi-LAT has been surveying the whole sky since August 2008. It detects gamma-ray photons by converting them into electron-positron pairs and tracking the paths of these charged particles. But differentiating this signal from the charged cosmic rays that also pass through the detector with a flux that can be 10,000 times larger! is a challenging process. Making this distinction and rebuilding the path of the original gamma ray relies on complex analysis software.Pass 8 is a complete reprocessing of all data collected by Fermi-LAT. The software has gone through many revisions before now, but this is the first revision that has taken into account all of the experience that the Fermi team has gained operating the LAT in its orbital environment.The improvements made in Pass 8 include better background rejection of misclassified charged particles, improvements to the point spread function and effective area of the detector, and an extension of the effective energy range from below 100 MeV to beyond a few hundred GeV. The changes made in Pass 8 have increased the sensitivity of Fermi-LAT by an astonishing 40%.Map of the High-Energy SkySky map of the sources in the 2FHL catalog, classified by their most likely association. Click for a better look! [Ackermann et al. 2016]The first result from the

  1. Extending the Fermi - Swift Joint AGN Sample

    NASA Astrophysics Data System (ADS)

    Shrader, Chris R.; Macomb, D. J.

    2014-01-01

    The Swift BAT and the Fermi LAT each provide excellent sky coverage and have led to impressive compilations of extragalactic source catalogs. For the most part they sample separate AGN subpopulations - Swift the lower-luminosity and relatively nearby Seyfert galaxies while the Fermi sample is dominated by blazars and does not include any radio-quiet objects. The overlap between these samples is among the radio-loud subset of the Swift sample as has been discussed elsewhere in the literature. The observable properties at these two bands - flux and spectral indices - are not expected to be well correlated as they sample different portions of the synchrotron self-Compton (SSC) spectral energy distribution. In this contribution we consider an extension of the high-latitude Swift sample by relaxing the significance cut to less than 5 standard deviations and consider the overlap of that subsample with the Fermi AGN catalog. While such a threshold is generally inadvisable as it introduces the strong possibility of spurious detections, the objects of the overlapping sample which are detected at high significance in Fermi can be considered as reasonably high-confidence Swift detections. For example, there are 190 Swift sub-5-sigma Swift sources that have significance >2-sigma with Fermi counterparts, whereas we predict only ~5 due to statistical fluctuation. We also investigate any coincident INTEGRAL/IBIS observations to further bolster or diminish candidate Swift detections. We present our correlation analyses and offer interpretation in the context of the blazar sequence.

  2. FERMI longitudinal diagnostics: results and future challenges

    NASA Astrophysics Data System (ADS)

    Veronese, Marco; Ferrari, E.; Allaria, E.; Cinquegrana, P.; Froelich, L.; Giannessi, L.; Penco, G.; Predonzani, M.; Rossi, F.; Sigalotti, P.; Ferianis, M.

    2015-05-01

    The seeded FEL FERMI has completed the commissioning of both the FEL lines, and it is now providing the user community with a coherent and tunable UV radiation (from 100 nm to 4 nm) in a number of different configurations. These also include original FEL-pump - FEL-probe schemes with twin-seeded FEL pulses. Among the key systems for the operation of FERMI, there is the femtosecond optical timing system and dedicated longitudinal diagnostics, specifically developed for FERMI. In this paper, after a short review of the FERMI optical timing system and of its routinely achieved performances, we focus on the results obtained from the suite of longitudinal diagnostics (Bunch Arrival Monitor, Electro Optical sampling station and RF deflectors) all operating in single shot and with 10s fs resolution which demonstrate the FERMI achieved performances. The longitudinal diagnostics measurements are compared between these device and other device on shot-to-shot basis, looking for correlations between machine parameters. Finally future challenges in terms of improvement of existing diagnostics, planned installations and possible upgrades are discussed.

  3. Understanding and Using the Fermi Science Tools

    NASA Astrophysics Data System (ADS)

    Asercion, Joseph; Fermi Science Support Center

    2015-01-01

    The Fermi Science Support Center (FSSC) provides information, documentation, and tools for the analysis of Fermi science data, including both the Large-Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). Source and binary versions of the Fermi Science Tools can be downloaded from the FSSC website, and are supported on multiple platforms. An overview document, the Cicerone, provides details of the Fermi mission, the science instruments and their response functions, the science data preparation and analysis process, and interpretation of the results. Analysis Threads provide the user with step-by-step instructions for many different types of data analysis: point source analysis - generating maps, spectra, and light curves, pulsar timing analysis, source identification, and the use of python for scripting customized analysis chains. The reference manual gives details of the options available for each tool. We present an overview of the structure of the Fermi science tools and documentation, and how to acquire them. We also provide information on recent updates incorporated in the Science Tools as well as upcoming changes that will be included in the upcoming release of the Science Tools in early 2015.

  4. Dark lump excitations in superfluid Fermi gases

    NASA Astrophysics Data System (ADS)

    Xu, Yan-Xia; Duan, Wen-Shan

    2012-11-01

    We study the linear and nonlinear properties of two-dimensional matter-wave pulses in disk-shaped superfluid Fermi gases. A Kadomtsev—Petviashvili I (KPI) solitary wave has been realized for superfluid Fermi gases in the limited cases of Bardeen—Cooper—Schrieffer (BCS) regime, Bose—Einstein condensate (BEC) regime, and unitarity regime. One-lump solution as well as one-line soliton solutions for the KPI equation are obtained, and two-line soliton solutions with the same amplitude are also studied in the limited cases. The dependence of the lump propagating velocity and the sound speed of two-dimensional superfluid Fermi gases on the interaction parameter are investigated for the limited cases of BEC and unitarity.

  5. Aspects of non-Fermi-liquid metals

    NASA Astrophysics Data System (ADS)

    Pivovarov, Eugene

    We consider several examples of metallic systems that exhibit non-Fermi-liquid behavior. In these examples the system is not a Fermi liquid due to the presence of a "hidden" order. The primary models are density waves with an odd-frequency-dependent order parameter and density waves with d-wave symmetry. In the first model, the same-time correlation functions vanish and there is a conventional Fermi surface. In the second model, the gap vanishes at the nodes. We derive the phase diagrams and study the thermodynamic and kinetic properties. We also consider the effects of competing orders on the phase diagram when the underlying microscopic interaction has a high symmetry.

  6. The Fermi Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    Thompson, Dave; McEnery, Julie

    2011-01-01

    This slide presentation reviews the Gamma Ray Astronomy as enhanced by the Fermi Gamma Ray Space Telescope and Radio Astronomy as a synergistic relationship. Gamma rays often represent a significant part of the energy budget of a source; therefore, gamma-ray studies can be critical to understanding physical processes in such sources. Radio observations offer timing and spatial resolutions vastly superior to anything possible with gamma-ray telescopes; therefore radio is often the key to understanding source structure. Gamma-ray and radio observations can complement each other, making a great team. It reviews the Fermi Guest Investigator (GI) program, and calls for more cooperative work that involves Fermi and the Very Long Baseline Array (VLBA), a system of ten radio telescopes.

  7. Entanglement Entropy and the Fermi Surface

    NASA Astrophysics Data System (ADS)

    Swingle, Brian

    2010-07-01

    Free fermions with a finite Fermi surface are known to exhibit an anomalously large entanglement entropy. The leading contribution to the entanglement entropy of a region of linear size L in d spatial dimensions is S˜Ld-1log⁡L, a result that should be contrasted with the usual boundary law S˜Ld-1. This term depends only on the geometry of the Fermi surface and on the boundary of the region in question. I give an intuitive account of this anomalous scaling based on a low energy description of the Fermi surface as a collection of one-dimensional gapless modes. Using this picture, I predict a violation of the boundary law in a number of other strongly correlated systems.

  8. Fermi surface anisotropy in the cuprates

    NASA Astrophysics Data System (ADS)

    Ramshaw, Brad

    Broken rotational (C4) symmetry is a distinguishing feature for a number of experiments in the underdoped high-Tc cuprates, including electrical resistivity, neutron scattering, Nernst coefficient, and scanning tunneling microscopy. This broken symmetry has not been observed on the Fermi surface, however, with or without the presence of an applied magnetic field. We measure the angle-dependent magnetoresistance-a quantity known to be extremely sensitive to the geometry and symmetry of the Fermi surface-of YBa2Cu3O6.58, and find that the Fermi surface has a clear two-fold symmetry, breaking the C4 symmetry of the copper-oxide plane. We discuss the implications of this finding, including how it fits with recent X-ray measurements in high magnetic fields.

  9. Pairing in a dry Fermi sea.

    PubMed

    Maier, T A; Staar, P; Mishra, V; Chatterjee, U; Campuzano, J C; Scalapino, D J

    2016-01-01

    In the traditional Bardeen-Cooper-Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. Here we report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. In contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin-fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability. PMID:27312569

  10. The evolutionary sequence of Fermi blazars

    NASA Astrophysics Data System (ADS)

    Cha, Yongjuan; Zhang, Haojing; Zhang, Xiong; Xiong, Dingrong; Li, Bijun; Dong, Xia; Li, Jin

    2014-02-01

    Using γ-ray data ( α γ , F γ ) detected by Fermi Large Area Telescope (LAT) and black hole mass which has been compiled from literatures for 116 Fermi blazars, we calculated intrinsic γ-ray luminosity, intrinsic bolometric luminosity, intrinsic Eddington ratio and studied the relationships between all above parameters and redshift, between α γ and L γ . Furthermore, we obtained the histograms of key parameters. Our results are the following: (1) The main reason for the evolutionary sequence of three subclasses (HBLs, LBLs, FSRQs) may be Eddington ratio rather than black hole mass; (2) FSRQs occupy in the earlier, high-luminosity, high Eddington ratio, violent phase of the galactic evolution sequence, while BL Lac objects occur in the low luminosity, low Eddington ratio, late phase of the galactic evolution sequence; (3) These results imply that the evolutionary track of Fermi blazars is FSRQs ⟶ LBLs ⟶ HBLs.

  11. Pairing in a dry Fermi sea

    NASA Astrophysics Data System (ADS)

    Maier, T. A.; Staar, P.; Mishra, V.; Chatterjee, U.; Campuzano, J. C.; Scalapino, D. J.

    2016-06-01

    In the traditional Bardeen-Cooper-Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. Here we report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. In contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin-fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability.

  12. Information-driven societies and Fermi's paradox

    NASA Astrophysics Data System (ADS)

    Lampton, Michael

    2013-10-01

    Fermi's paradox is founded on the idea that one or more Galactic extraterrestrial civilizations (ETCs) existed long ago and sustained exploration for millions of years, but in spite of their advanced knowledge, they could not find a way to explore the Galaxy other than with fleets of starships or self replicating probes. Here, I question this second assumption: if advanced technology generally allows long-distance remote sensing, and if ETCs were motivated by gaining information rather than conquest or commerce, then such voyages would be unnecessary, thereby resolving Fermi's paradox.

  13. Switchable Fermi surface sheets in greigite

    NASA Astrophysics Data System (ADS)

    Zhang, B.; de Wijs, G. A.; de Groot, R. A.

    2012-07-01

    Greigite (Fe3S4) and magnetite (Fe3O4) are isostructural and isoelectronic ferrimagnets with quite distinct properties. Electronic structure calculations reveal greigite is a normal metal in contrast to half-metallic magnetite. Greigite shows a complex Fermi surface with a unique influence of relativistic effects: The existence of sheets of the Fermi surface depends on the direction of the magnetization. This enables spinorbitronics, spintronics on the level of a single compound rather than a device. Due to its relativistic origin, spin contamination is irrelevant in spinorbitronics and the entire periodic table is available for optimizations.

  14. Traveling dark solitons in superfluid Fermi gases

    SciTech Connect

    Liao Renyuan; Brand, Joachim

    2011-04-15

    Families of dark solitons exist in superfluid Fermi gases. The energy-velocity dispersion and number of depleted particles completely determine the dynamics of dark solitons on a slowly varying background density. For the unitary Fermi gas, we determine these relations from general scaling arguments and conservation of local particle number. We find solitons to oscillate sinusoidally at the trap frequency reduced by a factor of 1/{radical}(3). Numerical integration of the time-dependent Bogoliubov-de Gennes equation determines spatial profiles and soliton-dispersion relations across the BEC-BCS crossover, and proves consistent with the scaling relations at unitarity.

  15. FERMI LARGE AREA TELESCOPE SECOND SOURCE CATALOG

    SciTech Connect

    Nolan, P. L.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Abdo, A. A.; Ackermann, M.; Antolini, E.; Bonamente, E.; Atwood, W. B.; Belfiore, A.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Ballet, J.; Bastieri, D.; Bignami, G. F. E-mail: Gino.Tosti@pg.infn.it E-mail: tburnett@u.washington.edu; and others

    2012-04-01

    We present the second catalog of high-energy {gamma}-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely {gamma}-ray-producing source classes.

  16. Pairing, pseudogap and Fermi arcs in cuprates

    SciTech Connect

    Kaminski, Adam; Kondo, Takeshi; Takeuchi, Tsunehiro; Gu, Genda

    2014-04-29

    We use Angle Resolved Photoemission Spectroscopy (ARPES) to study the relationship between the pseudogap, pairing and Fermi arcs in cuprates. High quality data measured over a wide range of dopings reveals a consistent picture of Fermiology and pairing in these materials. The pseudogap is due to an ordered state that competes with superconductivity rather than preformed pairs. Pairing does occur below Tpair ~ 150K and significantly above Tc, but well below T* and the doping dependence of this temperature scale is distinct from that of the pseudogap. The d-wave gap is present below Tpair, and its interplay with strong scattering creates “artificial” Fermi arcs for Tc ≤ T ≤ Tpair. However, above Tpair, the pseudogap exists only at the antipodal region. This leads to presence of real, gapless Fermi arcs close to the node. The length of these arcs remains constant up to T*, where the full Fermi surface is recovered. As a result, we demonstrate that these findings resolve a number of seemingly contradictory scenarios.

  17. Pairing, pseudogap and Fermi arcs in cuprates

    DOE PAGESBeta

    Kaminski, Adam; Kondo, Takeshi; Takeuchi, Tsunehiro; Gu, Genda

    2014-04-29

    We use Angle Resolved Photoemission Spectroscopy (ARPES) to study the relationship between the pseudogap, pairing and Fermi arcs in cuprates. High quality data measured over a wide range of dopings reveals a consistent picture of Fermiology and pairing in these materials. The pseudogap is due to an ordered state that competes with superconductivity rather than preformed pairs. Pairing does occur below Tpair ~ 150K and significantly above Tc, but well below T* and the doping dependence of this temperature scale is distinct from that of the pseudogap. The d-wave gap is present below Tpair, and its interplay with strong scatteringmore » creates “artificial” Fermi arcs for Tc ≤ T ≤ Tpair. However, above Tpair, the pseudogap exists only at the antipodal region. This leads to presence of real, gapless Fermi arcs close to the node. The length of these arcs remains constant up to T*, where the full Fermi surface is recovered. As a result, we demonstrate that these findings resolve a number of seemingly contradictory scenarios.« less

  18. Fermi Large Area Telescope Second Source Catalog

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Abdo, A. A.; Ackermann, M.; Ajello, M; Allafort, A.; Antolini, E; Bonnell, J.; Cannon, A.; Celik O.; Corbet, R.; Davis, D. S.; DeCesar, M. E.; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; Johnson, T. E.; McConville, W.; McEnery, J. E; Perkins, J. S.; Racusin, J. L; Scargle, J. D.; Stephens, T. E.; Thompson, D. J.; Troja, E.

    2012-01-01

    We present the second catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24-month period. The Second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in 5 energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 11eV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely gamma-ray-producing source classes.

  19. Cooper pairing in non-Fermi liquids

    NASA Astrophysics Data System (ADS)

    Metlitski, Max A.; Mross, David F.; Sachdev, Subir; Senthil, T.

    2015-03-01

    States of matter with a sharp Fermi surface but no well-defined Landau quasiparticles arise in a number of physical systems. Examples include (i) quantum critical points associated with the onset of order in metals; (ii) spinon Fermi-surface [U(1) spin-liquid] state of a Mott insulator; (iii) Halperin-Lee-Read composite fermion charge liquid state of a half-filled Landau level. In this work, we use renormalization group techniques to investigate possible instabilities of such non-Fermi liquids in two spatial dimensions to Cooper pairing. We consider the Ising-nematic quantum critical point as an example of an ordering phase transition in a metal, and demonstrate that the attractive interaction mediated by the order-parameter fluctuations always leads to a superconducting instability. Moreover, in the regime where our calculation is controlled, superconductivity preempts the destruction of electronic quasiparticles. On the other hand, the spinon Fermi surface and the Halperin-Lee-Read states are stable against Cooper pairing for a sufficiently weak attractive short-range interaction; however, once the strength of attraction exceeds a critical value, pairing sets in. We describe the ensuing quantum phase transition between (i) U(1 ) and Z2 spin-liquid states; (ii) Halperin-Lee-Read and Moore-Read states.

  20. Radiatively induced Fermi scale and unification

    NASA Astrophysics Data System (ADS)

    Alanne, Tommi; Meroni, Aurora; Sannino, Francesco; Tuominen, Kimmo

    2016-05-01

    We consider extensions of the Standard Model in which the hierarchy between the unification and the Fermi scale emerges radiatively. Within the Pati-Salam framework, we show that it is possible to construct a viable model where the Higgs is an elementary pseudo-Goldstone boson, and the correct hierarchy is generated.

  1. Radio core dominance of Fermi blazars

    NASA Astrophysics Data System (ADS)

    Pei, Zhi-Yuan; Fan, Jun-Hui; Liu, Yi; Yuan, Yi-Hai; Cai, Wei; Xiao, Hu-Bing; Lin, Chao; Yang, Jiang-He

    2016-07-01

    During the first 4 years of mission, Fermi/LAT detected 1444 blazars (3FGL) (Ackermann et al. in Astrophys. J. 810:14, 2015). Fermi/LAT observations of blazars indicate that Fermi blazars are luminous and strongly variable with variability time scales, for some cases, as short as hours. Those observations suggest a strong beaming effect in Fermi/LAT blazars. In the present work, we will investigate the beaming effect in Fermi/LAT blazars using a core-dominance parameter, R = S_{core}/ S_{ext.}, where S_{core} is the core emission, while S_{ext.} is the extended emission. We compiled 1335 blazars with available core-dominance parameter, out of which 169 blazars have γ-ray emission (from 3FGL). We compared the core-dominance parameters, log R, between the 169 Fermi-detected blazars (FDBs) and the rest non-Fermi-detected blazars (non-FDBs), and we found that the averaged values are < log Rrangle = 0.99±0.87 for FDBs and < log Rrangle = -0.62±1.15 for the non-FDBs. A K-S test shows that the probability for the two distributions of FDBs and non-FDBs to come from the same parent distribution is near zero (P =9.12×10^{-52}). Secondly, we also investigated the variability index (V.I.) in the γ-ray band for FDBs, and we found V.I.=(0.12 ±0.07) log R+(2.25±0.10), suggesting that a source with larger log R has larger V.I. value. Thirdly, we compared the mean values of radio spectral index for FDBs and non-FDBs, and we obtained < α_{radio}rangle =0.06±0.35 for FDBs and < α_{radio}rangle =0.57±0.46 for non-FDBs. If γ-rays are composed of two components like radio emission (core and extended components), then we can expect a correlation between log R and the γ-ray spectral index. When we used the radio core-dominance parameter, log R, to investigate the relationship, we found that the spectral index for the core component is α_{γ}|_{core} = 1.11 (a photon spectral index of α_{γ}^{ph}|_{core} = 2.11) and that for the extended component is α_{γ}|_{ext.} = 0

  2. FermiGrid - experience and future plans

    SciTech Connect

    Chadwick, K.; Berman, E.; Canal, P.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Timm, S.; Yocum, D.; /Fermilab

    2007-09-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid and the WLCG. FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the Open Science Grid (OSG), EGEE and the Worldwide LHC Computing Grid Collaboration (WLCG). Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure--the successes and the problems.

  3. Bosonization of the low energy excitations of Fermi liquids

    SciTech Connect

    Castro Neto, A.H.; Fradkin, E. )

    1994-03-07

    We bosonize the low energy excitations of Fermi liquids in any number of dimensions in the limit of long wavelengths. The bosons are a coherent superposition of electron-hole pairs and are related with the displacements of the Fermi surface in some arbitrary direction. A coherent-state path integral for the bosonized theory is derived and it is shown to represent histories of the shape of the Fermi surface. The Landau theory of Fermi liquids can be obtained from the formalism in the absence of nesting of the Fermi surface and singular interactions. We show that the Landau equation for sound waves is exact in the semiclassical approximation for the bosons.

  4. Dilute spin-orbit Fermi gases

    NASA Astrophysics Data System (ADS)

    Maldonado-Mundo, Daniel; He, Lianyi; Öhberg, Patrik; Valiente, Manuel

    2014-03-01

    We study repulsive Fermi gases with Rashba spin-orbit coupling in two and three dimensions when they are dilute enough that a single branch of the spectrum is occupied in the non-interacting ground state. We develop an effective renormalizable theory for fermions in the lower branch and obtain the energy of the system in three dimensions to second order in the renormalized coupling constant. We then exploit the non-Galilean-relativistic nature of spin-orbit coupled gases. We find that at finite momentum, the two-dimensional Fermi sea is deformed in a non-trivial way. Using mean-field theory to include interactions, we show that the ground-state of the system acquires a finite momentum, and is consequently deformed, when the interaction is stronger than a critical value. Heriot-Watt University. CM-DTC. SUPA. EPSRC.

  5. Unconventional Fermi surface in an insulating state

    SciTech Connect

    Harrison, Neil; Tan, B. S.; Hsu, Y. -T.; Zeng, B.; Hatnean, M. Ciomaga; Zhu, Z.; Hartstein, M.; Kiourlappou, M.; Srivastava, A.; Johannes, M. D.; Murphy, T. P.; Park, J. -H.; Balicas, L.; Lonzarich, G. G.; Balakrishnan, G.; Sebastian, Suchitra E.

    2015-07-17

    Insulators occur in more than one guise; a recent finding was a class of topological insulators, which host a conducting surface juxtaposed with an insulating bulk. Here, we report the observation of an unusual insulating state with an electrically insulating bulk that simultaneously yields bulk quantum oscillations with characteristics of an unconventional Fermi liquid. We present quantum oscillation measurements of magnetic torque in high-purity single crystals of the Kondo insulator SmB6, which reveal quantum oscillation frequencies characteristic of a large three-dimensional conduction electron Fermi surface similar to the metallic rare earth hexaborides such as PrB6 and LaB6. As a result, the quantum oscillation amplitude strongly increases at low temperatures, appearing strikingly at variance with conventional metallic behavior.

  6. Pulsar timing and the Fermi mission

    NASA Astrophysics Data System (ADS)

    Kerr, Matthew; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Hobbs, George; Romani, Roger W.; Thompson, David J.; Weltevrede, Patrick; Shannon, Ryan; Petroff, Emily; Brook, Paul

    2014-04-01

    We request time to observe 180 pulsars on a regular basis in order to provide the accurate ephemerides necessary for the detection and characterisation of gamma-ray pulsars with the Fermi satellite. The main science goals are to increase the number of known gamma-ray pulsars (both radio loud and radio quiet), to determine accurate pulse profiles, and to characterise their high energy (phase-resolved) spectra. In the radio, the observations will also allow us to find glitches, characterise timing noise, investigate dispersion and rotation measure variability, and enhance our knowledge of single pulse phenomenology. To date, we are (co-)authors on 45 papers arising from the collaboration and P574 data. The data have contributed to the PhD theses of Lucas Guillemot and Damien Parent from the Bordeaux Fermi group and Kyle Watters from Stanford. Currently four students have active projects using the radio datasets.

  7. Young Pulsar Timing and the Fermi Mission

    NASA Astrophysics Data System (ADS)

    Kerr, Matthew; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Hobbs, George; Romani, Roger W.; Thompson, David J.; Weltevrede, Patrick; Shannon, Ryan; Petroff, Emily; Brook, Paul

    2014-10-01

    We request time to observe 230 pulsars on a regular basis in order to provide the accurate ephemerides necessary for the detection and characterisation of gamma-ray pulsars with the Fermi satellite. The main science goals are to increase the number of known gamma-ray pulsars (both radio loud and radio quiet), to determine accurate pulse profiles, and to characterise their high energy (phase-resolved) spectra. In the radio, the observations will also allow us to find glitches, characterise timing noise, investigate dispersion and rotation measure variability, and enhance our knowledge of single pulse phenomenology. To date, we are (co-)authors on 45 papers arising from the collaboration and P574 data. The data have contributed to the PhD theses of Lucas Guillemot and Damien Parent from the Bordeaux Fermi group and Kyle Watters from Stanford. Currently four students have active projects using the radio datasets.

  8. Remarks on Fermi liquid from holography

    SciTech Connect

    Kulaxizi, Manuela; Parnachev, Andrei

    2008-10-15

    We investigate the signatures of Fermi liquid formation in the N=4 super Yang-Mills theory coupled to fundamental hypermultiplet at nonvanishing chemical potential for the global U(1) vector symmetry. At strong 't Hooft coupling the system can be analyzed in terms of the D7-brane dynamics in the AdS{sub 5}xS{sup 5} background. The phases with vanishing and finite charge density are separated at zero temperature by a quantum phase transition. In the case of vanishing hypermultiplet mass, Karch, Son, and Starinets discovered a gapless excitation whose speed equals the speed of sound. We find that this zero sound mode persists to all values of the hypermultiplet mass, and its speed vanishes at the point of phase transition. The value of critical exponent and the ratio of the velocities of zero and first sounds are consistent with the predictions of Landau Fermi liquid theory at strong coupling.

  9. High Energy Neutrinos from the Fermi Bubbles

    SciTech Connect

    Lunardini, Cecilia; Razzaque, Soebur

    2012-06-01

    Recently the Fermi-LAT data have revealed two gamma-ray emitting bubble-shaped structures at the Galactic center. If the observed gamma rays have hadronic origin (collisions of accelerated protons), the bubbles must emit high energy neutrinos as well. This new, Galactic, neutrino flux should trace the gamma-ray emission in spectrum and spatial extent. Its highest energy part, above 20–50 TeV, is observable at a kilometer-scale detector in the northern hemisphere, such as the planned KM3NeT, while interesting constraints on it could be obtained by the IceCube Neutrino Observatory at the South Pole. The detection or exclusion of neutrinos from the Fermi bubbles will discriminate between hadronic and leptonic models, thus bringing unique information on the still mysterious origin of these objects and on the time scale of their formation.

  10. Magnetar Observations with Fermi/GBM

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2009-01-01

    NASA's Fermi Observatory was launched June 11, 2009; the Fermi Gamma Ray Burst Monitor (GBM) began normal operations on July 14, about a month after launch, when the trigger algorithms were enabled. In the first year of operations we recorded emission from four magnetar sources; of these, only one was an old magnetar: SGR 1806+20. The other three detections were: SGR J0501+4516, newly discovered with Swift and extensively monitored with both Swift and GBM, SGR J1550-5418, a source originally classified as an Anomalous X-ray Pulsar (AXP) and a very recently discovered new source, SGR 0418+5729. I report below on the current status of the analyses efforts of the GBM data.

  11. Magnetar Observations in the Fermi Era

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2009-01-01

    NASA s Fermi Observatory was launched June 11, 2009; the Fermi Gamma Ray Burst Monitor (GBM) began normal operations on July 14, about a month after launch, when the trigger algorithms were enabled. In the first 8 months of operations we recorded emission of three magnetar sources; of these, only one was an old magnetar: SGR 1806+20. The other two detections were: SGR J0501+4516, newly discovered with Swift and extensively monitored with both Swift and GBM, and SGR J1550-5418, a source originally classified as an Anomalous X-ray Pulsar (AXP). I report below on the current status of the analyses efforts of all these GBM data sets, combined with data from other satellites (Spitzer, RXTE, Chandra, Swift).

  12. Study of superfluid Bose-Fermi mixture

    NASA Astrophysics Data System (ADS)

    Laurent, Sebastien; Delehaye, Marion; Jin, Shuwei; Pierce, Matthieu; Yefsah, Tarik; Chevy, Frederic; Salomon, Christophe

    2016-05-01

    Using fermionic and bosonic isotopes of lithium we produce and study ultracold Bose-Fermi mixtures. First in a low temperature counterflow experiment, we measure the critical velocity of the system in the BEC-BCS crossover. Around unitarity, we observe a remarkably high superfluid critical velocity which reaches the sound velocity of the strongly interacting Fermi gas. Second, when we increase the temperature of the system slightly above the superfluid transitions we observe an unexpected phase locking of the oscillations of the clouds induced by dissipation. Finally, as suggested in, we explore the nature of the superfluid phase when we impose a spin polarization in the situation where the mean field potential created by the bosons on the fermions tends to cancel out the trapping potential of the latter.

  13. Single impurity in ultracold Fermi superfluids

    SciTech Connect

    Jiang Lei; Baksmaty, Leslie O.; Pu, Han; Hu Hui; Chen Yan

    2011-06-15

    The role of impurities as experimental probes in the detection of quantum material properties is well appreciated. Here we study the effect of a single classical magnetic impurity in trapped ultracold Fermi superfluids. Depending on its shape and strength, a magnetic impurity can induce single or multiple midgap bound states in a superfluid Fermi gas. The multiple midgap states could coincide with the development of a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase within the superfluid. As an analog of the scanning tunneling microsope, we propose a modified rf spectroscopic method to measure the local density of states which can be employed to detect these states and other quantum phases of cold atoms. A key result of our self-consistent Bogoliubov-de Gennes calculations is that a magnetic impurity can controllably induce an FFLO state at currently accessible experimental parameters.

  14. Relativistic Beaming Effect in Fermi Blazars

    NASA Astrophysics Data System (ADS)

    Fan, J. H.; Bastieri, D.; Yang, J. H.; Liu, Y.; Wu, D. X.; Li, S. H.

    2014-09-01

    The most identified sources observed by Fermi/LAT are blazars, based on which we can investigate the emission mechanisms and beaming effect in the γ-ray bands for blazars. Here, we used the compiled around 450 Fermi blazars with the available X-ray observations to estimate their Doppler factors and compared them with the integral γ-ray luminosity in the range of 1-100 GeV. It is interesting that the integral γ-ray luminosity is closely correlated with the estimated Doppler factor, for the whole sample. When the dependence of the correlation between them and the X-ray luminosity is removed, the correlation is still strong, which suggests that the γ-ray emissions are strongly beamed.

  15. Fractal generalization of Thomas-Fermi model

    NASA Astrophysics Data System (ADS)

    Rekhviashvili, S. Sh.; Sokurov, A. A.

    2016-05-01

    The Thomas-Fermi model is developed for a multielectron neutral atom at an arbitrary metric dimension of the electron cloud. It has been shown that the electron cloud with the reduced dimension should be located in the close vicinity of the nucleus. At a metric dimension of the electron cloud of 2, the differential equation of the model admits an analytical solution. In this case, the screening parameter does not depend on the charge of the nucleus.

  16. Fermi Large Area Telescope Second Source Catalog

    NASA Astrophysics Data System (ADS)

    Nolan, P. L.; Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Antolini, E.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Belfiore, A.; Bellazzini, R.; Berenji, B.; Bignami, G. F.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Bonnell, J.; Borgland, A. W.; Bottacini, E.; Bouvier, A.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Campana, R.; Cañadas, B.; Cannon, A.; Caraveo, P. A.; Casandjian, J. M.; Cavazzuti, E.; Ceccanti, M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Chipaux, R.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Corbet, R.; Cutini, S.; D'Ammando, F.; Davis, D. S.; de Angelis, A.; DeCesar, M. E.; DeKlotz, M.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Digel, S. W.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Enoto, T.; Escande, L.; Fabiani, D.; Falletti, L.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fortin, P.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giebels, B.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Gustafsson, M.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Iafrate, G.; Itoh, R.; Jóhannesson, G.; Johnson, R. P.; Johnson, T. E.; Johnson, A. S.; Johnson, T. J.; Kamae, T.; Katagiri, H.; Kataoka, J.; Katsuta, J.; Kawai, N.; Kerr, M.; Knödlseder, J.; Kocevski, D.; Kuss, M.; Lande, J.; Landriu, D.; Latronico, L.; Lemoine-Goumard, M.; Lionetto, A. M.; Llena Garde, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Marelli, M.; Massaro, E.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Minuti, M.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Mongelli, M.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Naumann-Godo, M.; Norris, J. P.; Nuss, E.; Nymark, T.; Ohno, M.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Pinchera, M.; Piron, F.; Pivato, G.; Porter, T. A.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Ritz, S.; Rochester, L. S.; Romani, R. W.; Roth, M.; Rousseau, R.; Ryde, F.; Sadrozinski, H. F.-W.; Salvetti, D.; Sanchez, D. A.; Saz Parkinson, P. M.; Sbarra, C.; Scargle, J. D.; Schalk, T. L.; Sgrò, C.; Shaw, M. S.; Shrader, C.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stephens, T. E.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tibolla, O.; Tinebra, F.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Vandenbroucke, J.; Van Etten, A.; Van Klaveren, B.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Wallace, E.; Wang, P.; Werner, M.; Winer, B. L.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.; Zimmer, S.

    2012-04-01

    We present the second catalog of high-energy γ-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely γ-ray-producing source classes. We dedicate this paper to the memory of our colleague Patrick Nolan, who died on 2011 November 6. His career spanned much of the history of high-energy astronomy from space and his work on the Large Area Telescope (LAT) began nearly 20 years ago when it was just a concept. Pat was a central member in the operation of the LAT collaboration and he is greatly missed.

  17. "Permanence" - An Adaptationist Solution to Fermi's Paradox?

    NASA Astrophysics Data System (ADS)

    Cirkovic, Milan M.

    A new solution of Fermi's paradox sketched by SF writer Karl Schroeder in his 2002. novel Permanence is investigated. It is argued that this solution is tightly connected with adaptationism - a widely discussed working hypothesis in evolutionary biology. Schroeder's hypothesis has important ramifications for astrobiology, SETI projects, and future studies. Its weaknesses should be explored without succumbing to the emotional reactions often accompanying adaptationist explanations.

  18. Cinema, Fermi problems and general education

    NASA Astrophysics Data System (ADS)

    Efthimiou, C. J.; Llewellyn, R. A.

    2007-05-01

    During the past few years the authors have developed a new approach to the teaching of physical science, a general education course typically found in the curricula of nearly every college and university. This approach, called Physics in Films (Efthimiou and Llewellyn 2006 Phys. Teach. 44 28-33), uses scenes from popular films to illustrate physical principles and has excited student interest and improved student performance. A similar approach at the senior/high-school level, nicknamed Hollywood Physics, has been developed by Chandler (2006 Phys. Teach. 44 290-2 2002 Phys. Teach. 40 420-4). The two approaches may be considered complementary as they target different student groups. The analyses of many of the scenes in Physics in Films are a direct application of Fermi calculations—estimates and approximations designed to make solutions of complex and seemingly intractable problems understandable to the student non-specialist. The intent of this paper is to provide instructors with examples they can use to develop skill in recognizing Fermi problems and making Fermi calculations in their own courses.

  19. Fermi/GBM Results of Magnetars

    NASA Technical Reports Server (NTRS)

    Kouveliotou, chryssa

    2011-01-01

    Magnetars are magnetically powered rotating neutron stars with extreme magnetic fields (over 10(exp 14) Gauss). They were discovered in the X- and gamma-rays where they predominantly emit their radiation. Very few sources (roughly 18) have been found since their discovery in 1987. NASA's Fermi Gamma-ray Space Telescope was launched June 11,2009; since then the Fermi Gamma-ray Burst Monitor (GBM) recorded emission from four magnetar sources. Two of these were brand new sources, SGR J0501 +4516, discovered with Swift and extensively monitored with Swift and GBM, SGR J0418+5729, discovered with GBM and the Interplanetary Network (IPN). A third was SGR Jl550-5418, a source originally classified as an Anomalous X-ray Pulsar (AXP IEI547.0-5408), but exhibiting a very prolific outburst with over 400 events recorded in January 2009. In my talk I will give a short history of magnetars and describe how this, once relatively esoteric field, has emerged as a link between several astrophysical areas including Gamma-Ray Bursts. Finally, I will describe the exciting new results of Fermi in this field and the current status of our knowledge of the magnetar population properties and magnetic fields.

  20. A Probabilistic Analysis of the Fermi Paradox

    NASA Astrophysics Data System (ADS)

    Solomonides, Evan; Terzian, Yervant

    2016-06-01

    The Fermi paradox uses an appeal to the mediocrity principle to make it seem counterintuitive that humanity has not been contacted by extraterrestrial intelligence. A numerical, statistical analysis was conducted to determine whether this apparent loneliness is, in fact, unexpected. An inequality was derived to relate the frequency of life arising and developing technology on a suitable planet in the galaxy; the average length of time since the first broadcast of such a civilization; and a constant term. An analysis of the sphere reached thus far by human communication was also conducted, considering our local neighborhood and planets of particular interest. These analyses both conclude that the Fermi paradox is not, in fact, unexpected. By the mediocrity principle and numerical modeling, it is actually unlikely that the Earth would have been reached by extraterrestrial communication at this point. We predict that under 1% of the galaxy has been reached at all thus far, and we do not anticipate to be reached until approximately 50% of stars/planets have been reached. We offer a prediction that we should not expect this until at least 1,500 years in the future. Thus the Fermi paradox is not a shocking observation- or lack thereof- and humanity may very well be contacted within our species’ lifespan (we can begin to expect to be contacted 1,500 years in the future).

  1. Pairing in a dry Fermi sea

    PubMed Central

    Maier, T. A; Staar, P.; Mishra, V.; Chatterjee, U.; Campuzano, J. C.; Scalapino, D. J.

    2016-01-01

    In the traditional Bardeen–Cooper–Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and −k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. Here we report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. In contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin–fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability. PMID:27312569

  2. Absence of thermalization in a Fermi liquid

    NASA Astrophysics Data System (ADS)

    Maraga, Anna; Silva, Alessandro; Fabrizio, Michele

    2014-10-01

    We study a weak interaction quench in a three-dimensional Fermi gas. We first show that, under some general assumptions on time-dependent perturbation theory, the perturbative expansion of the long-wavelength structure factor S (q ) is not compatible with the hypothesis that steady-state averages correspond to thermal ones. In particular, S (q ) does develop an analytical component ˜const +O (q2) at q →0 , as implied by thermalization, but, in contrast, it maintains a nonanalytic part ˜|q | characteristic of a Fermi liquid at zero-temperature. In real space, this nonanalyticity corresponds to persisting power-law decaying density-density correlations, whereas thermalization would predict only an exponential decay. We next consider the case of a dilute gas, where one can obtain nonperturbative results in the interaction strength but at lowest order in the density. We find that in the steady state the momentum distribution jump at the Fermi surface remains finite, though smaller than in equilibrium, up to second order in kFf0 , where f0 is the scattering length of two particles in the vacuum. Both results question the emergence of a finite length scale in the quench dynamics as expected by thermalization.

  3. Fermi edge singularity in a tunnel junction

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Sherkunov, Yury; D'Ambrumenil, Nicholas; Muzykantskii, Boris

    2010-03-01

    We present results on the non-equilibrium Fermi edge singularity (FES) problem in tunnel junctions. The FES, which is present in a Fermi gas subject to any sudden change of potential, manifests itself in the final state many body interaction between the electrons in the leads [1]. We establish a connection between the FES problem in a tunnel junction and the Full Counting Statistics (FCS) for the device [2]. We find that the exact profile of the changing potential (or the profile for the barrier opening and closing in the tunnel junction case) strongly affects the overlap between the initial and final state of the Fermi gas. We factorize the contribution to the FES into two approximately independent terms: one is connected with the short time opening process while the other is concerned with the long time asymptotic effect, namely the Anderson orthogonality catastrophe. We consider applications to a localized level coupled through a tunnel barrier to a 1D lead driven out of equilibrium [3]. References: [1] G. Mahan, Phys. Rev. 163, 1612 (1967); P. Nozieres and C. T. De Dominicis, Phys. Rev. 178, 1079 (1969); P. Anderson, Phys. Rev. Lett. 18, 1049 (1967) [2] J. Zhang, Y. Sherkunov, N. d'Ambrumenil, and B. Muzykantskii, ArXiv:0909.3427 [3] D. Abanin and L. Levitov, Phys. Rev. Lett. 94, 186803 (2005)

  4. Pairing in a dry Fermi sea

    DOE PAGESBeta

    Maier, Thomas A.; Staar, Peter; Mishra, V.; Chatterjee, Utpal; Campuzano, J. C.; Scalapino, Douglas J.

    2016-06-17

    In the traditional Bardeen–Cooper–Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. In this paper, wemore » report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. Finally, in contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin–fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability.« less

  5. The TeraFERMI terahertz source at the seeded FERMI free-electron-laser facility

    SciTech Connect

    Perucchi, A.; Di Mitri, S.; Penco, G.; Allaria, E.; Lupi, S.

    2013-02-15

    We describe the project for the construction of a terahertz (THz) beamline to be called TeraFERMI at the seeded FERMI free electron laser (FEL) facility in Trieste, Italy. We discuss topics as the underlying scientific case, the choice of the source, the expected performance, and THz beam propagation. Through electron beam dynamics simulations we show that the installation of the THz source in the beam dump section provides a new approach for compressing the electron bunch length without affecting FEL operation. Thanks to this further compression of the FEL electron bunch, the TeraFERMI facility is expected to provide THz pulses with energies up to the mJ range during normal FEL operation.

  6. The TeraFERMI terahertz source at the seeded FERMI free-electron-laser facility.

    PubMed

    Perucchi, A; Di Mitri, S; Penco, G; Allaria, E; Lupi, S

    2013-02-01

    We describe the project for the construction of a terahertz (THz) beamline to be called TeraFERMI at the seeded FERMI free electron laser (FEL) facility in Trieste, Italy. We discuss topics as the underlying scientific case, the choice of the source, the expected performance, and THz beam propagation. Through electron beam dynamics simulations we show that the installation of the THz source in the beam dump section provides a new approach for compressing the electron bunch length without affecting FEL operation. Thanks to this further compression of the FEL electron bunch, the TeraFERMI facility is expected to provide THz pulses with energies up to the mJ range during normal FEL operation. PMID:23464184

  7. Frustration and time-reversal symmetry breaking for Fermi and Bose-Fermi systems

    NASA Astrophysics Data System (ADS)

    Sacha, Krzysztof; Targońska, Katarzyna; Zakrzewski, Jakub

    2012-05-01

    The modulation of an optical lattice potential that breaks time-reversal symmetry enables the realization of complex tunneling amplitudes in the corresponding tight-binding model. For a superfluid Fermi gas in a triangular lattice potential with complex tunnelings, the pairing function acquires a complex phase, so the frustrated magnetism of fermions can be realized. Bose-Fermi mixtures of bosonic molecules and unbound fermions in the lattice also show interesting behavior. Due to boson-fermion coupling, the fermions become enslaved by the bosons and the corresponding pairing function takes the complex phase determined by the bosons. In the presence of bosons the Fermi system can reveal both gapped and gapless superfluidity.

  8. Virial expansion for a strongly correlated Fermi system and its application to ultracold atomic Fermi gases

    NASA Astrophysics Data System (ADS)

    Liu, Xia-Ji

    2013-03-01

    A strongly correlated Fermi system plays a fundamental role in very different areas of physics, from neutron stars, quark-gluon plasmas, to high temperature superconductors. Despite the broad applicability, it is notoriously difficult to be understood theoretically because of the absence of a small interaction parameter. Recent achievements of ultracold trapped Fermi atoms near a Feshbach resonance have ushered in enormous changes. The unprecedented control of interaction, geometry and purity in these novel systems has led to many exciting experimental results, which are to be urgently understood at both low and finite temperatures. Here we review the latest developments of virial expansion for a strongly correlated Fermi gas and their applications on ultracold trapped Fermi atoms. We show remarkable, quantitative agreements between virial predictions and various recent experimental measurements at about the Fermi degenerate temperature. For equations of state, we discuss a practical way of determining high-order virial coefficients and use it to calculate accurately the long-sought third-order virial coefficient, which is now verified firmly in experiments at ENS and MIT. We discuss also virial expansion of a new many-body parameter-Tan’s contact. We then turn to less widely discussed issues of dynamical properties. For dynamic structure factors, the virial prediction agrees well with the measurement at the Swinburne University of Technology. For single-particle spectral functions, we show that the expansion up to the second order accounts for the main feature of momentum-resolved rf-spectroscopy for a resonantly interacting Fermi gas, as recently reported by JILA. In the near future, more practical applications with virial expansion are possible, owing to the ever-growing power in computation.

  9. Fermi arcs vs. fermi pockets in electron-doped perovskite iridates

    DOE PAGESBeta

    He, Junfeng; Hafiz, H.; Mion, Thomas R.; Hogan, T.; Dhital, C.; Chen, X.; Lin, Qisen; Hashimoto, M.; Lu, D. H.; Zhang, Y.; et al

    2015-02-23

    We report on an angle resolved photoemission (ARPES) study of bulk electron-doped perovskite iridate, (Sr1-xLax)₃Ir₂O₇. Fermi surface pockets are observed with a total electron count in keeping with that expected from La substitution. Depending on the energy and polarization of the incident photons, these pockets show up in the form of disconnected “Fermi arcs”, reminiscent of those reported recently in surface electron-doped Sr₂IrO₄. Our observed spectral variation is consistent with the coexistence of an electronic supermodulation with structural distortion in the system.

  10. Fermi Arcs vs. Fermi Pockets in Electron-doped Perovskite Iridates

    PubMed Central

    He, Junfeng; Hafiz, H.; Mion, Thomas R.; Hogan, T.; Dhital, C.; Chen, X.; Lin, Qisen; Hashimoto, M.; Lu, D. H.; Zhang, Y.; Markiewicz, R. S.; Bansil, A.; Wilson, S. D.; He, Rui-Hua

    2015-01-01

    We report on an angle resolved photoemission (ARPES) study of bulk electron-doped perovskite iridate, (Sr1−xLax)3Ir2O7. Fermi surface pockets are observed with a total electron count in keeping with that expected from La substitution. Depending on the energy and polarization of the incident photons, these pockets show up in the form of disconnected “Fermi arcs”, reminiscent of those reported recently in surface electron-doped Sr2IrO4. Our observed spectral variation is consistent with the coexistence of an electronic supermodulation with structural distortion in the system. PMID:25704850

  11. Fermi arcs vs. fermi pockets in electron-doped perovskite iridates

    SciTech Connect

    He, Junfeng; Hafiz, H.; Mion, Thomas R.; Hogan, T.; Dhital, C.; Chen, X.; Lin, Qisen; Hashimoto, M.; Lu, D. H.; Zhang, Y.; Markiewicz, R. S.; Bansil, A.; Wilson, S. D.; He, Rui -Hua

    2015-02-23

    We report on an angle resolved photoemission (ARPES) study of bulk electron-doped perovskite iridate, (Sr1-xLax)₃Ir₂O₇. Fermi surface pockets are observed with a total electron count in keeping with that expected from La substitution. Depending on the energy and polarization of the incident photons, these pockets show up in the form of disconnected “Fermi arcs”, reminiscent of those reported recently in surface electron-doped Sr₂IrO₄. Our observed spectral variation is consistent with the coexistence of an electronic supermodulation with structural distortion in the system.

  12. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Zinn, W.H.; Anderson, H.L.

    1958-09-16

    Means are presenied for increasing the reproduction ratio of a gaphite- moderated neutronic reactor by diminishing the neutron loss due to absorption or capture by gaseous impurities within the reactor. This means comprised of a fluid-tight casing or envelope completely enclosing the reactor and provided with a valve through which the casing, and thereby the reactor, may be evacuated of atmospheric air.

  13. Mechanism of Fermi-level stabilization in semiconductors

    SciTech Connect

    Walukiewicz, W.

    1988-03-15

    A striking correlation between the Fermi-level in heavily radiation damaged semiconductors and at metal-semiconductor interfaces is presented. The correlation provides critical evidence supporting the defect model for Schottky-barrier formation. The Fermi-level energy for both situations corresponds to the average energy of the sp/sup 3/ hybrid. In the case of GaAs, a detailed description of the Fermi-level stabilization caused by amphoteric dangling-bond-like defects is given

  14. Fermi Large Area Telescope Third Source Catalog

    NASA Astrophysics Data System (ADS)

    Acero, F.; Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bogart, J. R.; Bonino, R.; Bottacini, E.; Bregeon, J.; Britto, R. J.; Bruel, P.; Buehler, R.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caputo, R.; Caragiulo, M.; Caraveo, P. A.; Casandjian, J. M.; Cavazzuti, E.; Charles, E.; Chaves, R. C. G.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D'Ammando, F.; de Angelis, A.; DeKlotz, M.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Dubois, R.; Dumora, D.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Finke, J.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giebels, B.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Harding, A. K.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Iafrate, G.; Jogler, T.; Jóhannesson, G.; Johnson, R. P.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Kamae, T.; Kataoka, J.; Katsuta, J.; Kuss, M.; La Mura, G.; Landriu, D.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; Michelson, P. F.; Mirabal, N.; Mizuno, T.; Moiseev, A. A.; Mongelli, M.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nuss, E.; Ohno, M.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Racusin, J. L.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Rochester, L. S.; Romani, R. W.; Salvetti, D.; Sánchez-Conde, M.; Saz Parkinson, P. M.; Schulz, A.; Siskind, E. J.; Smith, D. A.; Spada, F.; Spandre, G.; Spinelli, P.; Stephens, T. E.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Takahashi, T.; Tanaka, Y.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tibolla, O.; Torres, D. F.; Torresi, E.; Tosti, G.; Troja, E.; Van Klaveren, B.; Vianello, G.; Winer, B. L.; Wood, K. S.; Wood, M.; Zimmer, S.; Fermi-LAT Collaboration

    2015-06-01

    We present the third Fermi Large Area Telescope (LAT) source catalog (3FGL) of sources in the 100 MeV-300 GeV range. Based on the first 4 yr of science data from the Fermi Gamma-ray Space Telescope mission, it is the deepest yet in this energy range. Relative to the Second Fermi LAT catalog, the 3FGL catalog incorporates twice as much data, as well as a number of analysis improvements, including improved calibrations at the event reconstruction level, an updated model for Galactic diffuse γ-ray emission, a refined procedure for source detection, and improved methods for associating LAT sources with potential counterparts at other wavelengths. The 3FGL catalog includes 3033 sources above 4σ significance, with source location regions, spectral properties, and monthly light curves for each. Of these, 78 are flagged as potentially being due to imperfections in the model for Galactic diffuse emission. Twenty-five sources are modeled explicitly as spatially extended, and overall 238 sources are considered as identified based on angular extent or correlated variability (periodic or otherwise) observed at other wavelengths. For 1010 sources we have not found plausible counterparts at other wavelengths. More than 1100 of the identified or associated sources are active galaxies of the blazar class; several other classes of non-blazar active galaxies are also represented in the 3FGL. Pulsars represent the largest Galactic source class. From source counts of Galactic sources we estimate that the contribution of unresolved sources to the Galactic diffuse emission is ˜3% at 1 GeV.

  15. Nonlocal Poisson-Fermi model for ionic solvent.

    PubMed

    Xie, Dexuan; Liu, Jinn-Liang; Eisenberg, Bob

    2016-07-01

    We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-like kernel function. The Fermi distribution is shown to be a set of optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Numerical results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson solution. PMID:27575084

  16. Evolution of electron Fermi surface with doping in cobaltates.

    PubMed

    Ma, Xixiao; Lan, Yu; Qin, Ling; Kuang, Lülin; Feng, Shiping

    2016-08-24

    The notion of the electron Fermi surface is one of the characteristic concepts in the field of condensed matter physics, and it plays a crucial role in the understanding of the physical properties of doped Mott insulators. Based on the t-J model, we study the nature of the electron Fermi surface in the cobaltates, and qualitatively reproduce the essential feature of the evolution of the electron Fermi surface with doping. It is shown that the underlying hexagonal electron Fermi surface obeys Luttinger's theorem. The theory also predicts a Fermi-arc phenomenon at the low-doped regime, where the region of the hexagonal electron Fermi surface along the [Formula: see text]-K direction is suppressed by the electron self-energy, and then six disconnected Fermi arcs located at the region of the hexagonal electron Fermi surface along the [Formula: see text]-M direction emerge. However, this Fermi-arc phenomenon at the low-doped regime weakens with the increase of doping. PMID:27351111

  17. Evolution of electron Fermi surface with doping in cobaltates

    NASA Astrophysics Data System (ADS)

    Ma, Xixiao; Lan, Yu; Qin, Ling; Kuang, Lülin; Feng, Shiping

    2016-08-01

    The notion of the electron Fermi surface is one of the characteristic concepts in the field of condensed matter physics, and it plays a crucial role in the understanding of the physical properties of doped Mott insulators. Based on the t-J model, we study the nature of the electron Fermi surface in the cobaltates, and qualitatively reproduce the essential feature of the evolution of the electron Fermi surface with doping. It is shown that the underlying hexagonal electron Fermi surface obeys Luttinger’s theorem. The theory also predicts a Fermi-arc phenomenon at the low-doped regime, where the region of the hexagonal electron Fermi surface along the Γ -K direction is suppressed by the electron self-energy, and then six disconnected Fermi arcs located at the region of the hexagonal electron Fermi surface along the Γ -M direction emerge. However, this Fermi-arc phenomenon at the low-doped regime weakens with the increase of doping.

  18. Decoherence of Impurities in a Fermi Sea of Ultracold Atoms

    NASA Astrophysics Data System (ADS)

    Cetina, Marko; Jag, Michael; Lous, Rianne S.; Walraven, Jook T. M.; Grimm, Rudolf; Christensen, Rasmus S.; Bruun, Georg M.

    2015-09-01

    We investigate the decoherence of 40K impurities interacting with a three-dimensional Fermi sea of 6Li across an interspecies Feshbach resonance. The decoherence is measured as a function of the interaction strength and temperature using a spin-echo atom interferometry method. For weak to moderate interaction strengths, we interpret our measurements in terms of scattering of K quasiparticles by the Fermi sea and find very good agreement with a Fermi liquid calculation. For strong interactions, we observe significant enhancement of the decoherence rate, which is largely independent of temperature, pointing to behavior that is beyond the scattering of quasiparticles in the Fermi liquid picture.

  19. Nonlocal Poisson-Fermi model for ionic solvent

    NASA Astrophysics Data System (ADS)

    Xie, Dexuan; Liu, Jinn-Liang; Eisenberg, Bob

    2016-07-01

    We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-like kernel function. The Fermi distribution is shown to be a set of optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Numerical results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson solution.

  20. Decoherence of Impurities in a Fermi Sea of Ultracold Atoms.

    PubMed

    Cetina, Marko; Jag, Michael; Lous, Rianne S; Walraven, Jook T M; Grimm, Rudolf; Christensen, Rasmus S; Bruun, Georg M

    2015-09-25

    We investigate the decoherence of ^{40}K impurities interacting with a three-dimensional Fermi sea of ^{6}Li across an interspecies Feshbach resonance. The decoherence is measured as a function of the interaction strength and temperature using a spin-echo atom interferometry method. For weak to moderate interaction strengths, we interpret our measurements in terms of scattering of K quasiparticles by the Fermi sea and find very good agreement with a Fermi liquid calculation. For strong interactions, we observe significant enhancement of the decoherence rate, which is largely independent of temperature, pointing to behavior that is beyond the scattering of quasiparticles in the Fermi liquid picture. PMID:26451562

  1. Observation strategies with the Fermi Gamma-ray Space Telescope

    NASA Astrophysics Data System (ADS)

    McEnery, Julie E.; Fermi mission Teams

    2015-01-01

    During the first few years of the Fermi mission, the default observation mode has been an all-sky survey, optimized to provide relatively uniform coverage of the entire sky every three hours. Over 95% of the mission has been performed in this observation mode. However, Fermi is capable of flexible survey mode patterns, and inertially pointed observations both of which allow increased coverage of selected parts of the sky. In this presentation, we will describe the types of observations that Fermi can make, the relative advantages and disadvantages of various observations, and provide guidelines to help Fermi users plan and evaluate non-standard observations.

  2. Fermi GBM Observations of Terrestrial Gamma Flashes

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Briggs, M. S.; Connaughton, V.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R. D.; Kippen, R. M.; vonKienlin, A.; Dwyer, J. R.; Smith, D. M.; Holzworth, R.

    2010-01-01

    In its first two years of operation, the Fermi Gamma Ray Burst Monitor (GBM) has observed 79 Terrestrial Gamma Flashes (TGFs). The thick Bismuth Germanate (BGO) detectors are excellent for TGF spectroscopy, having a high probability of recording the full energy of an incident photon, spanning a broad energy range from 150 keV to 40 MeV, and recording a large number of photons per TGF. Correlations between GBM TGF triggers and lightning sferics detected with the World-Wide Lightning Location Network indicate that TGFs and lightning are simultaneous to within tens of microseconds.

  3. Fermi-LAT Observations of Galactic Transients

    NASA Technical Reports Server (NTRS)

    Hays, Elizabeth

    2011-01-01

    This slide presentation reviews the observations of Galactic transients by the Large Area Telescope (LAT) on the Fermi Gamma Ray Space Telescope. The LAT is producing spectacular results for the GeV transient sky, some of which are shown and reviewed. Some of the results in the GeV range that are discussed in this presentation are: (1) New blazars and unidentified transients (2) the jet of the Cygnus X-3 microquasar (3) gamma rays from V407 Cygni nova (4) Fast high-energy gamma-ray flares from the Crab Nebula

  4. Fermi Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie E.; Michelson, Peter F.; Paclesas, William S.; Ritz, Steven

    2012-01-01

    The Fermi Gamma-ray Space Telescope, launched in June 2008, is an observatory designed to survey the high-energy gamma-ray sky. The primary instrument, the Large Area Telescope (LAT), provides observations from 20 MeV to greater than 300 GeV. A second instrument, the Gamma-ray Burst Monitor (GBM), provides observations of transients from less than 10 keV to 40 MeV. We describe the design and performance of the instruments and their subsystems, the spacecraft and the ground system.

  5. Fermi GBM: Highlights from the First Year

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2009-01-01

    The Fermi Gamma ray Burst Monitor is an all-sky instrument sensitive to photons from about 8 keV to 40 MeV. I will summarize highlights from the first year, including triggered observations of gamma ray bursts, soft gamma ray repeaters, and terrestrial gamma flashes, and observations in the continuous data of X-ray binaries and accreting X-ray pulsars. GBM provides complementary observations to Swift/BAT, observing many of the same sources, but over a wider energy range.

  6. Fermi matrix element with isospin breaking

    NASA Astrophysics Data System (ADS)

    Guichon, P. A. M.; Thomas, A. W.; Saito, K.

    2011-02-01

    Prompted by the level of accuracy now being achieved in tests of the unitarity of the CKM matrix, we consider the possible modification of the Fermi matrix element for the β-decay of a neutron, including possible in-medium and isospin violating corrections. While the nuclear modifications lead to very small corrections once the Behrends-Sirlin-Ademollo-Gatto theorem is respected, the effect of the u-d mass difference on the conclusion concerning Vud is no longer insignificant. Indeed, we suggest that the correction to the value of |+|+| is at the level of 10.

  7. Enhancing Fermi's Capability for Time Domain Astrophysics

    NASA Astrophysics Data System (ADS)

    McEnery, Julie E.; Fermi-LAT Team

    2016-01-01

    All sky monitors, such as the Fermi Gamma-Ray Space Telescope, play a crucial role in detecting transient and variable non-thermal sources for follow up observations by narrow field observatories. In this poster, we describe recent and upcoming improvements in onboard processing, ground analysis pipelines and observatory operations that will to increase the sensitivity to these objects on timescales of seconds to days and reduce the latency for the information to be disseminated to the scientific community. Finally, we will provide examples of some of the expected science returns from these improvements.

  8. Quasicondensation in Two-Dimensional Fermi Gases.

    PubMed

    Wu, Chien-Te; Anderson, Brandon M; Boyack, Rufus; Levin, K

    2015-12-11

    In this paper we follow the analysis and protocols of recent experiments, combined with simple theory, to arrive at a physical understanding of quasi-condensation in two dimensional Fermi gases. A key signature of quasi-condensation, which contains aspects of Berezinskiĭ-Kosterlitz-Thouless behavior, is a strong zero momentum peak in the pair momentum distribution. Importantly, this peak emerges at a reasonably well defined onset temperature. The resulting phase diagram, pair momentum distribution, and algebraic power law decay are compatible with recent experiments throughout the continuum from BEC to BCS. PMID:26705613

  9. Optical Observations Of Fermi LAT Monitored Blazars

    NASA Astrophysics Data System (ADS)

    Cook, Kyle; Carini, M. T.

    2009-01-01

    For the past 8 years the Bell Observatory at Western Kentucky University has been conducting R band monitoring of the variability of approximately 50 Blazars. A subset of these objects are being routinely observed with the LAT instrument on-board the Fermi Space Telescope. Adding the Robotically Controlled Telescope (RCT) at Kitt Peak National Observatory and observations with the AZT-11 telescope at the Crimean Astrophysical Observatory (CRAO), we are intensively monitoring the Blazars on the Lat monitoring list. We present the results of our long term monitoring of the LAT monitored Blazars, as well as the recent contemporaneous optical R band observations we have obtained of the LAT Blazars.

  10. Superfluidity of ultracold atomic gases of Fermi-Fermi mixtures on an optical lattice

    NASA Astrophysics Data System (ADS)

    Wang, Jibiao; Chen, Qijin

    Superfluidity of ultracold atomic gases of Fermi-Fermi mixtures has been under active investigation recently. Experimentally, mixtures of 6Li-40K, 171Yb-173Yband6Li-173Yb, for example, have been prepared and cooled down to the quantum degeneracy regime, making the superfluid phase accessible in the near future. In this talk, we will address the superfluidity of ultracold Fermi-Fermi mixtures on 1D through 3D optical lattices, with varying mass and population imbalances and different densities, as they undergo BCS-BEC crossover, within a pairing fluctuation theory which includes self-consistently the important pseudogap effects at finite temperatures. We will present various phase diagrams and show the dramatic combined effects of mass and population imbalances and lattice periodicity. Implications for future experiment will be discussed. References: [1]Q. J. Chen, I. Kosztin, B. Janko, and K. Levin, Phys. Rev. B 59, 7083 (1999). [2] C. -C. Chien, Y. He, Q. J. Chen, and K. Levin, Phys. Rev. A 77, 011601(R) (2008). [3] C. -C. Chien, Q. J. Chen, and K. Levin, Phys. Rev. A 78, 043612 (2008). [4] Q. J. Chen, Phys. Rev. A 86, 023610 (2012). Work supported by NSF of China and the National Basic Research Program of China.

  11. Atomic Fermi-Bose Mixtures in Inhomogeneous and Random Lattices: From Fermi Glass to Quantum Spin Glass and Quantum Percolation

    NASA Astrophysics Data System (ADS)

    Sanpera, A.; Kantian, A.; Sanchez-Palencia, L.; Zakrzewski, J.; Lewenstein, M.

    2004-07-01

    We investigate strongly interacting atomic Fermi-Bose mixtures in inhomogeneous and random optical lattices. We derive an effective Hamiltonian for the system and discuss its low temperature physics. We demonstrate the possibility of controlling the interactions at local level in inhomogeneous but regular lattices. Such a control leads to the achievement of Fermi glass, quantum Fermi spin-glass, and quantum percolation regimes involving bare and/or composite fermions in random lattices.

  12. Orientifolding of the ABJ Fermi gas

    NASA Astrophysics Data System (ADS)

    Okuyama, Kazumi

    2016-03-01

    The grand partition functions of ABJ theory can be factorized into even and odd parts under the reflection of fermion coordinate in the Fermi gas approach. In some cases, the even/odd part of ABJ grand partition function is equal to that of {N}=5O(n)× USp({n}^') theory, hence it is natural to think of the even/odd projection of grand partition function as an orientifolding of ABJ Fermi gas system. By a systematic WKB analysis, we determine the coefficients in the perturbative part of grand potential of such orientifold ABJ theory. We also find the exact form of the first few "half-instanton" corrections coming from the twisted sector of the reflection of fermion coordinate. For the Chern-Simons level k = 2 ,4 ,8 we find closed form expressions of the grand partition functions of orientifold ABJ theory, and for k = 2 , 4 we prove the functional relations among the grand partition functions conjectured in arXiv:1410.7658.

  13. THE SPECTRAL INDEX PROPERTIES OF FERMI BLAZARS

    SciTech Connect

    Fan, J. H.; Yang, J. H.; Yuan, Y. H.; Wang, J.; Gao, Y.

    2012-12-20

    In this paper, a sample of 451 blazars (193 flat spectrum radio quasars (FSRQs), 258 BL Lacertae objects) with corresponding X-ray and Fermi {gamma}-ray data is compiled to investigate the correlation both between the X-ray spectral index and the {gamma}-ray spectral index and between the spectral index and the luminosity, and to compare the spectral indexes {alpha}{sub X}, {alpha}{sub {gamma}}, {alpha}{sub X{gamma}}, and {alpha}{sub {gamma}X{gamma}} for different subclasses. We also investigated the correlation between the X-ray and the {gamma}-ray luminosity. The following results have been obtained. Our analysis indicates that an anti-correlation exists between the X-ray and the {gamma}-ray spectral indexes for the whole sample. However, when we considered the subclasses of blazars (FSRQs, the low-peaked BL Lacertae objects (LBLs) and the high-peaked BL Lacertae objects (HBLs)) separately, there is not a clear relationship for each subclass. Based on the Fermi-detected sources, we can say that the HBLs are different from FSRQs, while the LBLs are similar to FSRQs.

  14. Pulsar candidates towards Fermi unassociated sources

    NASA Astrophysics Data System (ADS)

    Frail, D. A.; Mooley, K. P.; Jagannathan, P.; Intema, H. T.

    2016-09-01

    We report on a search for steep spectrum radio sources within the 95 per cent confidence error ellipses of the Fermi unassociated sources from the Large Area Telescope (LAT). Using existing catalogues and the newly released Giant Metrewave Radio Telescope all-sky survey at 150 MHz, we identify compact radio sources that are bright at MHz frequencies but faint or absent at GHz frequencies. Such steep spectrum radio sources are rare and constitute a sample of pulsar candidates, selected independently of period, dispersion measure, interstellar scattering and orbital parameters. We find point-like, steep spectrum candidates towards 11 Fermi sources. Based on the gamma-ray/radio positional coincidence, the rarity of such radio sources, and the properties of the 3FGL sources themselves, we argue that many of these sources could be pulsars. They may have been missed by previous radio periodicity searches due to interstellar propagation effects or because they lie in an unusually tight binary. If this hypothesis is correct, then renewed gamma-ray and radio periodicity searches at the positions of the steep spectrum radio sources may reveal pulsations.

  15. Fermi LAT Observations of LS 5039

    SciTech Connect

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; /more authors..

    2012-03-29

    The first results from observations of the high-mass X-ray binary LS 5039 using the Fermi Gamma-ray Space Telescope data between 2008 August and 2009 June are presented. Our results indicate variability that is consistent with the binary period, with the emission being modulated with a period of 3.903 {+-} 0.005 days; the first detection of this modulation at GeV energies. The light curve is characterized by a broad peak around superior conjunction in agreement with inverse Compton scattering models. The spectrum is represented by a power law with an exponential cutoff, yielding an overall flux (100 MeV-300 GeV) of 4.9 {+-} 0.5(stat) {+-} 1.8(syst) x 10{sup -7} photon cm{sup -2} s{sup -1}, with a cutoff at 2.1 {+-} 0.3(stat) {+-} 1.1(syst) GeV and photon index {Gamma} = 1.9 {+-} 0.1(stat) {+-} 0.3(syst). The spectrum is observed to vary with orbital phase, specifically between inferior and superior conjunction. We suggest that the presence of a cutoff in the spectrum may be indicative of magnetospheric emission similar to the emission seen in many pulsars by Fermi.

  16. Fermi (nee GLAST) at Six Months

    NASA Technical Reports Server (NTRS)

    Ritz, Steve

    2009-01-01

    The Fermi Gamma-ray Space Telescope, formerly called GLAST, is a mission to measure the cosmic gamma-ray flux in the energy range 20 MeV to >300 GeV, with supporting measurements for gamma-ray bursts from 8 keV to 30 MeV. In addition to breakthrough capabilities in energy coverage and localization, the very large field of view enables observations of 20% of the sky at any instant, and the entire sky on a timescale of a few hours. With its recent launch on 11 June 2008, Fermi now opens a new and important window on a wide variety of phenomena, including pulsars, black holes and active galactic nuclei, gamma-ray bursts, the origin of cosmic rays and supernova remnants, and searches for hypothetical new phenomena such as supersymmetric dark matter annihilations. In addition to early results and the science opportunities, this talk includes a description of the instruments and the mission status and plans.

  17. Fermi (Formerly GLAST) at Six Months

    NASA Technical Reports Server (NTRS)

    Ritz, Steven M.

    2009-01-01

    The Fermi Gamma-ray Space Telescope, formerly called GLAST, is a mission to measure the cosmic gamma-ray flux in the energy range 20 MeV to more than 300 GeV, with supporting measurements for gamma-ray bursts from 8 keV to 30 MeV. In addition to breakthrough capabilities in energy coverage and localization, the very large field of view enables observations of 20% of the sky at any instant, and the entire sky on a timescale of a few hours. With its recent launch on 11 June 2008, Fermi now opens a new and important window on a wide variety of phenomena, including pulsars, black holes and active galactic nuclei, gamma-ray bursts, the origin of cosmic rays and supernova remnants, and searches for hypothetical new phenomena such as supersymmetric dark matter annihilations. In addition to early results and the science opportunities, this talk includes a description of the instruments and the mission status and plans.

  18. Parity effect in a mesoscopic Fermi gas

    NASA Astrophysics Data System (ADS)

    Hofmann, Johannes; Lobos, Alejandro M.; Galitski, Victor

    2016-06-01

    We develop a quantitative analytic theory that accurately describes the odd-even effect observed experimentally in a one-dimensional, trapped Fermi gas with a small number of particles [G. Zürn et al., Phys. Rev. Lett. 111, 175302 (2013), 10.1103/PhysRevLett.111.175302]. We find that the underlying physics is similar to the parity effect known to exist in ultrasmall mesoscopic superconducting grains and atomic nuclei. However, in contrast to superconducting nanograins, the density (Hartree) correction dominates over the superconducting pairing fluctuations and leads to a much more pronounced odd-even effect in the mesoscopic, trapped Fermi gas. We calculate the corresponding parity parameter and separation energy using both perturbation theory and a path integral framework in the mesoscopic limit, generalized to account for the effects of the trap, pairing fluctuations, and Hartree corrections. Our results are in an excellent quantitative agreement with experimental data and exact diagonalization. Finally, we discuss a few-particle to many-particle crossover between the perturbative mesoscopic regime and nonperturbative many-body physics that the system approaches in the thermodynamic limit.

  19. Lasing in Bose-Fermi mixtures

    PubMed Central

    Kochereshko, Vladimir P.; Durnev, Mikhail V.; Besombes, Lucien; Mariette, Henri; Sapega, Victor F.; Askitopoulos, Alexis; Savenko, Ivan G.; Liew, Timothy C. H.; Shelykh, Ivan A.; Platonov, Alexey V.; Tsintzos, Simeon I.; Hatzopoulos, Z.; Savvidis, Pavlos G.; Kalevich, Vladimir K.; Afanasiev, Mikhail M.; Lukoshkin, Vladimir A.; Schneider, Christian; Amthor, Matthias; Metzger, Christian; Kamp, Martin; Hoefling, Sven; Lagoudakis, Pavlos; Kavokin, Alexey

    2016-01-01

    Light amplification by stimulated emission of radiation, well-known for revolutionising photonic science, has been realised primarily in fermionic systems including widely applied diode lasers. The prerequisite for fermionic lasing is the inversion of electronic population, which governs the lasing threshold. More recently, bosonic lasers have also been developed based on Bose-Einstein condensates of exciton-polaritons in semiconductor microcavities. These electrically neutral bosons coexist with charged electrons and holes. In the presence of magnetic fields, the charged particles are bound to their cyclotron orbits, while the neutral exciton-polaritons move freely. We demonstrate how magnetic fields affect dramatically the phase diagram of mixed Bose-Fermi systems, switching between fermionic lasing, incoherent emission and bosonic lasing regimes in planar and pillar microcavities with optical and electrical pumping. We collected and analyzed the data taken on pillar and planar microcavity structures at continuous wave and pulsed optical excitation as well as injecting electrons and holes electronically. Our results evidence the transition from a Bose gas to a Fermi liquid mediated by magnetic fields and light-matter coupling. PMID:26822483

  20. Ther FERMI FEL project at TRIESTE

    SciTech Connect

    Walker, R.P.; Bulfone, D.; Cargnello, F.

    1995-12-31

    The goal of the FERMI project - Free Electron Radiation and Matching Instrumentation - is to construct a new user facility for FEL radiation beams covering a broad spectral range (2-250 {mu}m) to complement the high brightness VUV/Soft-Xray radiation available from the ELETTRA synchrotron radiation facility at Trieste. A unique feature of the project will be the possibility of carrying out {open_quote}pump-probe{close_quote} experiments using synchronized radiation beams from FERMI and ELETTRA on the same sample. The project was launched at a meeting with Italian FEL experts held in Trieste on the 18th November 1994, chaired by C. Rubbia, as a collaboration between Sincrotrone Trieste, ENEA (Frascati), INFN (Frascati) and the University of Naples (Department of Electronic Engineering). The facility will make use of an existing linac, that forms part of the ELETTRA injection system, and a hall into which the beam can be extracted. In addition, for the first phase of the project equipment will be used from the suspended INFN/ENEA {open_quote}SURF{close_quote} FEL experiment, including the undulator, beam transport magnets and optical cavity. In this first International FEL Conference report on the project, we summarize the main features of the project, concentrating in particular on the most recent activities, including: results of measurements of the linac beam in the FEL mode of operation, further studies of the electron beam transport system including possibilities for bunch length manipulations, and further numerical calculations of the FEL performance.

  1. The first Fermi LAT supernova remnant catalog

    DOE PAGESBeta

    Acero, F.

    2016-05-16

    To uniformly determine the properties of supernova remnants (SNRs) at high energies, we have developed the first systematic survey at energies from 1 to 100 GeV using data from the Fermi Large Area Telescope. Based on the spatial overlap of sources detected at GeV energies with SNRs known from radio surveys, we classify 30 sources as likely GeV SNRs. We also report 14 marginal associations and 245 flux upper limits. A mock catalog in which the positions of known remnants are scrambled in Galactic longitude, allows us to determine an upper limit of 22% on the number of GeV candidatesmore » falsely identified as SNRs. We have also developed a method to estimate spectral and spatial systematic errors arising from the diffuse interstellar emission model, a key component of all Galactic Fermi LAT analyses. By studying remnants uniformly in aggregate, we measure the GeV properties common to these objects and provide a crucial context for the detailed modeling of individual SNRs. Combining our GeV results with multiwavelength (MW) data, including radio, X-ray, and TeV, demonstrates the need for improvements to previously sufficient, simple models describing the GeV and radio emission from these objects. As a result, we model the GeV and MW emission from SNRs in aggregate to constrain their maximal contribution to observed Galactic cosmic rays.« less

  2. Spiraling Fermi arcs in Weyl materials

    NASA Astrophysics Data System (ADS)

    Li, Songci; Andreev, Anton

    In Weyl materials the valence and conduction electron bands touch at an even number of isolated points in the Brillouin zone. In the vicinity of these points the electron dispersion is linear and may be described by the massless Dirac equation. This results in nontrivial topology of Berry connection curvature. One of its consequences is the existence of peculiar surface electron states whose Fermi surfaces form arcs connecting projections of the Weyl points onto the surface plane. Band bending near the boundary of the crystal also produces surface states. We show that in Weyl materials band bending near the crystal surface gives rise to spiral structure of energy surfaces of arc states. The corresponding Fermi surface has the shape of a spiral that winds about the projection of the Weyl point onto the surface plane. The direction of the winding is determined by the helicity of the Weyl point and the sign of the band bending potential. For close valleys arc state morphology may be understood in terms of avoided crossing of oppositely winding spirals. This work is supported by the U.S. Department of Energy Office of Science, Basic Energy Sciences under Award Number DE-FG02-07ER46452.

  3. Fermi level stabilization energy in cadmium oxide

    SciTech Connect

    Speaks, D. T.; Mayer, M. A.; Yu, K. M.; Mao, S. S.; Haller, E. E.; Walukiewicz, W.

    2010-04-08

    We have studied the effects of high concentrations of native point defects on the electrical and optical properties of CdO. The defects were introduced by irradiation with high energy He+, Ne+, Ar+ and C+ ions. Increasing the irradiation damage with particles heavier than He+ increases the electron concentration until a saturation level of 5x1020 cm-3 is reached. In contrast, due to the ionic character and hence strong dynamic annealing of CdO, irradiation with much lighter He+ stabilizes the electron concentration at a much lower level of 1.7x1020 cm-3. A large shift of the optical absorption edge with increasing electron concentration in irradiated samples is explained by the Burstein-Moss shift corrected for electron-electron and electron-ion interactions. The saturation of the electron concentration and the optical absorption edge energy are consistent with a defect induced stabilization of the Fermi energy at 1 eV above the conduction band edge. The result is in a good agreement with previously determined Fermi level pinning energies on CdO surfaces. The results indicate that CdO shares many similarities with InN, as both materials exhibit extremely large electron affinities and an unprecedented propensity for n-type conductivity.

  4. THE FERMI GAMMA-RAY BURST MONITOR

    SciTech Connect

    Meegan, Charles; Lichti, Giselher; Bissaldi, Elisabetta; Diehl, Roland; Greiner, Jochen; Von Kienlin, Andreas; Steinle, Helmut; Bhat, P. N.; Briggs, Michael S.; Connaughton, Valerie; Paciesas, W. S.; Preece, Robert; Wilson, Robert B.; Fishman, Gerald; Kouveliotou, Chryssa; Van der Horst, Alexander J.; McBreen, Sheila

    2009-09-01

    The Gamma-Ray Burst Monitor (GBM) will significantly augment the science return from the Fermi Observatory in the study of gamma-ray bursts (GRBs). The primary objective of GBM is to extend the energy range over which bursts are observed downward from the energy range of the Large Area Telescope (LAT) on Fermi into the hard X-ray range where extensive previous data sets exist. A secondary objective is to compute burst locations onboard to allow re-orienting the spacecraft so that the LAT can observe delayed emission from bright bursts. GBM uses an array of 12 sodium iodide scintillators and two bismuth germanate scintillators to detect gamma rays from {approx}8 keV to {approx}40 MeV over the full unocculted sky. The onboard trigger threshold is {approx}0.7 photons cm{sup -2} s{sup -1} (50-300 keV, 1 s peak). GBM generates onboard triggers for {approx}250 GRBs per year.

  5. Fermi's Paradox - The Last Challenge For Copernicanism?

    NASA Astrophysics Data System (ADS)

    Cirkovic, M. M.

    2009-06-01

    We review Fermi's paradox (or the "Great Silence" problem), not only arguably the oldest and crucial problem for the Search for ExtraTerrestrial Intelligence (SETI), but also a conundrum of profound scientific, philosophical and cultural importance. By a simple analysis of observation selection effects, the correct resolution of Fermi's paradox is certain to tell us something about the future of humanity. Already more than three quarters of century old puzzle -- and a quarter of century since the last major review paper in the field by G. David Brin -- has generated many ingenious discussions and hypotheses. We analyze the often tacit methodological assumptions built in various answers to this puzzle and attempt a new classification of the numerous solutions proposed in an already huge literature on the subject. Finally, we consider the ramifications of various classes of hypotheses for the practical SETI projects. Somewhat paradoxically, it seems that the class of (neo)catastrophic hypotheses gives, on the balance, the strongest justification to optimism regarding our current and near-future SETI efforts.

  6. Lasing in Bose-Fermi mixtures.

    PubMed

    Kochereshko, Vladimir P; Durnev, Mikhail V; Besombes, Lucien; Mariette, Henri; Sapega, Victor F; Askitopoulos, Alexis; Savenko, Ivan G; Liew, Timothy C H; Shelykh, Ivan A; Platonov, Alexey V; Tsintzos, Simeon I; Hatzopoulos, Z; Savvidis, Pavlos G; Kalevich, Vladimir K; Afanasiev, Mikhail M; Lukoshkin, Vladimir A; Schneider, Christian; Amthor, Matthias; Metzger, Christian; Kamp, Martin; Hoefling, Sven; Lagoudakis, Pavlos; Kavokin, Alexey

    2016-01-01

    Light amplification by stimulated emission of radiation, well-known for revolutionising photonic science, has been realised primarily in fermionic systems including widely applied diode lasers. The prerequisite for fermionic lasing is the inversion of electronic population, which governs the lasing threshold. More recently, bosonic lasers have also been developed based on Bose-Einstein condensates of exciton-polaritons in semiconductor microcavities. These electrically neutral bosons coexist with charged electrons and holes. In the presence of magnetic fields, the charged particles are bound to their cyclotron orbits, while the neutral exciton-polaritons move freely. We demonstrate how magnetic fields affect dramatically the phase diagram of mixed Bose-Fermi systems, switching between fermionic lasing, incoherent emission and bosonic lasing regimes in planar and pillar microcavities with optical and electrical pumping. We collected and analyzed the data taken on pillar and planar microcavity structures at continuous wave and pulsed optical excitation as well as injecting electrons and holes electronically. Our results evidence the transition from a Bose gas to a Fermi liquid mediated by magnetic fields and light-matter coupling. PMID:26822483

  7. The First Fermi LAT Supernova Remnant Catalog

    NASA Astrophysics Data System (ADS)

    Acero, F.; Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caputo, R.; Caragiulo, M.; Caraveo, P. A.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen, J. M.; Cohen-Tanugi, J.; Cominsky, L. R.; Condon, B.; Conrad, J.; Cutini, S.; D’Ammando, F.; de Angelis, A.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Favuzzi, C.; Ferrara, E. C.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gomez-Vargas, G. A.; Grenier, I. A.; Grondin, M.-H.; Guillemot, L.; Guiriec, S.; Gustafsson, M.; Hadasch, D.; Harding, A. K.; Hayashida, M.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Hou, X.; Iafrate, G.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Kamae, T.; Katagiri, H.; Kataoka, J.; Katsuta, J.; Kerr, M.; Knödlseder, J.; Kocevski, D.; Kuss, M.; Laffon, H.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J.; Maldera, S.; Marelli, M.; Mayer, M.; Mazziotta, M. N.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nemmen, R.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Petrosian, V.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Renaud, M.; Reposeur, T.; Rousseau, R.; Saz Parkinson, P. M.; Schmid, J.; Schulz, A.; Sgrò, C.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Strong, A. W.; Suson, D. J.; Tajima, H.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tibolla, O.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Vianello, G.; Wells, B.; Wood, K. S.; Wood, M.; Yassine, M.; den Hartog, P. R.; Zimmer, S.

    2016-05-01

    To uniformly determine the properties of supernova remnants (SNRs) at high energies, we have developed the first systematic survey at energies from 1 to 100 GeV using data from the Fermi Large Area Telescope (LAT). Based on the spatial overlap of sources detected at GeV energies with SNRs known from radio surveys, we classify 30 sources as likely GeV SNRs. We also report 14 marginal associations and 245 flux upper limits. A mock catalog in which the positions of known remnants are scrambled in Galactic longitude allows us to determine an upper limit of 22% on the number of GeV candidates falsely identified as SNRs. We have also developed a method to estimate spectral and spatial systematic errors arising from the diffuse interstellar emission model, a key component of all Galactic Fermi LAT analyses. By studying remnants uniformly in aggregate, we measure the GeV properties common to these objects and provide a crucial context for the detailed modeling of individual SNRs. Combining our GeV results with multiwavelength (MW) data, including radio, X-ray, and TeV, we demonstrate the need for improvements to previously sufficient, simple models describing the GeV and radio emission from these objects. We model the GeV and MW emission from SNRs in aggregate to constrain their maximal contribution to observed Galactic cosmic rays.

  8. Lasing in Bose-Fermi mixtures

    NASA Astrophysics Data System (ADS)

    Kochereshko, Vladimir P.; Durnev, Mikhail V.; Besombes, Lucien; Mariette, Henri; Sapega, Victor F.; Askitopoulos, Alexis; Savenko, Ivan G.; Liew, Timothy C. H.; Shelykh, Ivan A.; Platonov, Alexey V.; Tsintzos, Simeon I.; Hatzopoulos, Z.; Savvidis, Pavlos G.; Kalevich, Vladimir K.; Afanasiev, Mikhail M.; Lukoshkin, Vladimir A.; Schneider, Christian; Amthor, Matthias; Metzger, Christian; Kamp, Martin; Hoefling, Sven; Lagoudakis, Pavlos; Kavokin, Alexey

    2016-01-01

    Light amplification by stimulated emission of radiation, well-known for revolutionising photonic science, has been realised primarily in fermionic systems including widely applied diode lasers. The prerequisite for fermionic lasing is the inversion of electronic population, which governs the lasing threshold. More recently, bosonic lasers have also been developed based on Bose-Einstein condensates of exciton-polaritons in semiconductor microcavities. These electrically neutral bosons coexist with charged electrons and holes. In the presence of magnetic fields, the charged particles are bound to their cyclotron orbits, while the neutral exciton-polaritons move freely. We demonstrate how magnetic fields affect dramatically the phase diagram of mixed Bose-Fermi systems, switching between fermionic lasing, incoherent emission and bosonic lasing regimes in planar and pillar microcavities with optical and electrical pumping. We collected and analyzed the data taken on pillar and planar microcavity structures at continuous wave and pulsed optical excitation as well as injecting electrons and holes electronically. Our results evidence the transition from a Bose gas to a Fermi liquid mediated by magnetic fields and light-matter coupling.

  9. Evidence of Fermi bubbles around M31

    NASA Astrophysics Data System (ADS)

    Pshirkov, M. S.; Vasiliev, V. V.; Postnov, K. A.

    2016-06-01

    Gamma-ray haloes can exist around galaxies due to the interaction of escaping galactic cosmic rays with the surrounding gas. We have searched for such a halo around the nearby giant spiral Andromeda galaxy M31 using almost 7 yr of Fermi LAT data at energies above 300 MeV. The presence of a diffuse gamma-ray halo with total photon flux 2.6 ± 0.6 × 10-9 cm-2 s-1, corresponding to a luminosity (0.3-100 GeV) of (3.2 ± 0.6) × 1038 erg s-1 (for a distance of 780 kpc) was found at a 5.3σ confidence level. The halo form does not correspond to the extended baryonic H I disc of M31, as would be expected in hadronic production of gamma photons from cosmic ray interaction, nor it is spherically symmetric, as could be in the case of dark matter annihilation. The best-fitting halo template corresponds to two 6-7.5 kpc bubbles symmetrically located perpendicular to the M31 galactic disc, similar to the `Fermi bubbles' found around the Milky Way centre, which suggests the past activity of the central supermassive black hole or a star formation burst in M31.

  10. Fermi Liquid Instabilities in the Spin Channel

    SciTech Connect

    Wu, Congjun; Sun, Kai; Fradkin, Eduardo; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-16

    We study the Fermi surface instabilities of the Pomeranchuk type in the spin triplet channel with high orbital partial waves (F{sub l}{sup a} (l > 0)). The ordered phases are classified into two classes, dubbed the {alpha} and {beta}-phases by analogy to the superfluid {sup 3}He-A and B-phases. The Fermi surfaces in the {alpha}-phases exhibit spontaneous anisotropic distortions, while those in the {beta}-phases remain circular or spherical with topologically non-trivial spin configurations in momentum space. In the {alpha}-phase, the Goldstone modes in the density channel exhibit anisotropic overdamping. The Goldstone modes in the spin channel have nearly isotropic underdamped dispersion relation at small propagating wavevectors. Due to the coupling to the Goldstone modes, the spin wave spectrum develops resonance peaks in both the {alpha} and {beta}-phases, which can be detected in inelastic neutron scattering experiments. In the p-wave channel {beta}-phase, a chiral ground state inhomogeneity is spontaneously generated due to a Lifshitz-like instability in the originally nonchiral systems. Possible experiments to detect these phases are discussed.

  11. Scaling in electron scattering from a relativistic Fermi gas

    SciTech Connect

    W. M. Alberico; A. Molinari; T. William Donnelly; E. L. Kronenberg; Wally Van Orden

    1988-10-01

    Within the context of the relativistic Fermi gas model, the concept of ''y scaling'' for inclusive electron scattering from nuclei is investigated. Specific kinematic shifts of the single-nucleon response in the nuclear medium can be incorporated with this model. Suggested generalizations beyond the strict Fermi gas model, including treatments of separated longitudinal and transverse responses, are also explored.

  12. Collisional Properties of a Polarized Fermi Gas with Resonant Interactions

    SciTech Connect

    Bruun, G. M.; Recati, A.; Stringari, S.; Pethick, C. J.; Smith, H.

    2008-06-20

    Highly polarized mixtures of atomic Fermi gases constitute a novel Fermi liquid. We demonstrate how information on thermodynamic properties may be used to calculate quasiparticle scattering amplitudes even when the interaction is resonant and apply the results to evaluate the damping of the spin dipole mode. We estimate that under current experimental conditions the mode would be intermediate between the hydrodynamic and collisionless limits.

  13. Fermi surfaces and energy gaps of high-temperature superconductors

    SciTech Connect

    Shen, Z.X.; Dessau, D.S.

    1994-12-31

    In this short paper, the authors describe their recent experimental results from high-temperature superconductors. In the normal state, the data reveals interesting features of the Fermi surfaces and low energy excitations near the Fermi level. In the superconducting state, the data shows a very strong anisotropy in the superconducting gap.

  14. Don't Just Stand There--Teach Fermi Problems!

    ERIC Educational Resources Information Center

    Robinson, A. W.

    2008-01-01

    Fermi problems, or order of magnitude estimates, are often used in introductory physics courses. In this paper I will show that first year students studying physics at university do not arrive with the skill set to solve these problems, and they have to be actively taught how to solve them. Once they have been shown how to solve Fermi problems,…

  15. Fermi-Dirac statistics and the number theory

    NASA Astrophysics Data System (ADS)

    Kubasiak, Anna; Korbicz, Jaroslaw K.; Zakrzewski, Jakub; Lewenstein, Maciej

    2005-11-01

    We relate the Fermi-Dirac statistics of an ideal Fermi gas in a harmonic trap to partitions of given integers into distinct parts, studied in number theory. Using methods of quantum statistical physics we derive analytic expressions for cumulants of the probability distribution of the number of different partitions.

  16. Orthogonal metals: The simplest non-Fermi liquids

    NASA Astrophysics Data System (ADS)

    Nandkishore, Rahul; Metlitski, Max A.; Senthil, T.

    2012-07-01

    We present a fractionalized metallic phase which is indistinguishable from the Fermi liquid in conductivity and thermodynamics, but is sharply distinct in one-electron properties, such as the electron spectral function. We dub this phase the “orthogonal metal.” The orthogonal metal and the transition to it from the Fermi liquid are naturally described using a slave-particle representation wherein the electron is expressed as a product of a fermion and a slave Ising spin. We emphasize that when the slave spins are disordered, the result is not a Mott insulator (as erroneously assumed in the prior literature), but rather the orthogonal metal. We construct prototypical ground-state wave functions for the orthogonal metal by modifying the Jastrow factor of Slater-Jastrow wave functions that describe ordinary Fermi liquids. We further demonstrate that the transition from the Fermi liquid to the orthogonal metal can, in some circumstances, provide a simple example of a continuous destruction of a Fermi surface with a critical Fermi surface appearing right at the critical point. We present exactly soluble models that realize an orthogonal metal phase, and the phase transition to the Fermi liquid. These models thus provide valuable solvable examples for phase transitions associated with the death of a Fermi surface.

  17. ''Where is everybody. '' An account of Fermi's question

    SciTech Connect

    Jones, E.M.

    1985-03-01

    Fermi's famous question, now central to debates about the prevalence of extraterrestrial civilizations, arose during a luncheon conversation with Emil Konopinski, Edward Teller, and Herbert York in the summer of 1950. Fermi's companions on that day have provided accounts of the incident.

  18. Where is everybody? an account of Fermi's question

    NASA Astrophysics Data System (ADS)

    Jones, E. M.

    1985-03-01

    Fermi's famous question, now central to debates about the prevalence of extraterrestrial civilizations, arose during a luncheon conversation with Emil Konopinski, Edward Teller, and Herbert York in the summer of 1950. Fermi's companions on that day have provided accounts of the incident.

  19. BOILING REACTORS

    DOEpatents

    Untermyer, S.

    1962-04-10

    A boiling reactor having a reactivity which is reduced by an increase in the volume of vaporized coolant therein is described. In this system unvaporized liquid coolant is extracted from the reactor, heat is extracted therefrom, and it is returned to the reactor as sub-cooled liquid coolant. This reduces a portion of the coolant which includes vaporized coolant within the core assembly thereby enhancing the power output of the assembly and rendering the reactor substantially self-regulating. (AEC)

  20. Changing Horses in Midstream: Fermi LAT Computing and SCons

    NASA Astrophysics Data System (ADS)

    Bogart, J. R.; Golpayegani, N.

    2011-07-01

    (For the Fermi LAT Collaboration) Several years into GLAST (now Fermi) offline software development it became evident we would need a replacement for our original build system, the Configuration Management Tool (CMT) developed at CERN, in order to support Mac users and to keep pace with newer compilers and operating system versions on our traditional platforms, Linux and Windows. The open source product SCons emerged as the only viable alternative and development began in earnest several months before Fermi's successful launch in June of 2008. Over two years later the conversion is nearing completion. This paper describes the conversion to and our use of SCons, concentrating on the resulting environment for users and developers and how it was achieved. Topics discussed include SCons and its interaction with Fermi code, GoGui, a cross-platform gui for Fermi developers, and issues specific to Windows developer support.

  1. NEUTRONIC REACTOR

    DOEpatents

    Daniels, F.

    1959-10-27

    A reactor in which at least a portion of the moderator is in the form of movable refractory balls is described. In addition to their moderating capacity, these balls may serve as carriers for fissionable material or fertile material, or may serve in a coolant capacity to remove heat from the reactor. A pneumatic system is used to circulate the balls through the reactor.

  2. Fermi GBM Observations of Terrestrial Gamma Flashes

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Briggs, M. S.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R.; Kippen, R. M.; von Kienlin, A.; Dwyer, J. R.; Smith, D. M.; Holzworth, R.

    2010-01-01

    In its first two years of operation, the Fermi Gamma Ray Burst Monitor (GBM) has observed more than 77 Terrestrial Gamma Flashes (TGFs). The thick Bismuth Germanate (BGO) detectors are excellent for TGF spectroscopy, having a high probability of recording the full energy of an incident photon, spanning a broad energy range from 150 keV to 40 MeV, and recording a large number of photons per TGF. Correlations between GBM TGF triggers and lightning sferics detected with the World-Wide Lightning Location Network indicate that TGFs and lightning are simultaneous to within tens of microseconds. The energy spectra of some TGFs have strong 511 keV positron annihilation lines, indicating that these TGFs contain a large fraction of positrons

  3. Fermi Observation of GRB 080916C

    SciTech Connect

    Piron, F.

    2009-05-25

    We present the observations of the long-duration Gamma-Ray Burst GRB 080916C by the Fermi Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT). This event was observed from 8 keV to a photon with an energy of 13.2 GeV. It develops over a 1400 s interval during which the highest number of photons with energy above 100 MeV are detected from a burst. The onset of the high-energy (>100 MeV) emission is delayed by {approx}4.5 s with respect to the low-energy (<1 MeV) emission, which is not detected past 200 s. The broad-band spectrum of the burst is consistent with a single spectral form.

  4. Multiwavelength Challenges in the Fermi Era

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    2010-01-01

    The gamma-ray surveys of the sky by AGILE and the Fermi Gamma-ray Space Telescope offer both opportunities and challenges for multiwavelength and multi-messenger studies. Gamma-ray bursts, pulsars, binary sources, flaring Active Galactic Nuclei, and Galactic transient sources are all phenomena that can best be studied with a wide variety of instruments simultaneously or contemporaneously. From the gamma-ray side, a principal challenge is the latency from the time of an astrophysical event to the recognition of this event in the data. Obtaining quick and complete multiwavelength coverage of gamma-ray sources of interest can be difficult both in terms of logistics and in terms of generating scientific interest.

  5. The Mirage of the Fermi Scale

    NASA Astrophysics Data System (ADS)

    Antipin, Oleg; Sannino, Francesco; Tuominen, Kimmo

    2013-09-01

    The discovery of a light Higgs boson at Large Hadron Collider may be suggesting that we need to revise our model building paradigms to understand the origin of the weak scale. We explore the possibility that the Fermi scale is not fundamental but rather a derived one, i.e. a low energy mirage. We show that this scenario emerges in a very natural way in models previously used to break the electroweak symmetry dynamically and suggest a simple dynamical framework for this idea. In our model the electroweak scale results from the interplay between two very high energy scales, one typically of the order of ΛUV 1010GeV and the other around MU 1016GeV, although other values are also possible.

  6. Detecting Dark Matter annihilation lines with Fermi

    SciTech Connect

    Ylinen, Tomi; Edmonds, Yvonne; Bloom, Elliott D.; Conrad, Jan; /Royal Inst. Tech., Stockholm /Kalmar U. /KIPAC, Menlo Park /SLAC /Stockholm U.

    2009-05-15

    Dark matter constitutes one of the most intriguing but so far unresolved issues in physics today. In many extensions of the Standard Model the existence of a stable Weakly Interacting Massive Particle (WIMP) is predicted. The WIMP is an excellent dark matter particle candidate and one of the most interesting scenarios include an annihilation of two WIMPs into two gamma-rays. If the WIMPs are assumed to be non-relativistic, the resulting photons will both have an energy equal to the mass of the WIMP and manifest themselves as a monochromatic spectral line in the energy spectrum. This type of signal would represent a 'smoking gun' for dark matter, since no other known astrophysical process should be able to produce it. In these proceedings we give an overview of the different approaches to a search for dark matter lines that the Fermi-LAT collaboration is pursuing and the various challenges involved.

  7. Entanglement rules for holographic Fermi surfaces

    NASA Astrophysics Data System (ADS)

    Roychowdhury, Dibakar

    2016-08-01

    In this paper, based on the notion of Gauge/Gravity duality, we explore the laws of entanglement thermodynamics for most generic classes of Quantum Field Theories with hyperscaling violation. In our analysis, we note that for Quantum Field Theories with compressible quark like excitation, the first law of entanglement thermodynamics gets modified due to the presence of an additional term that could be identified as the entanglement chemical potential associated with hidden Fermi surfaces of the boundary theory. Most notably, we find that the so called entanglement chemical potential does not depend on the size of the entangling region and is purely determined by the quark d.o.f. encoded within the entangling region.

  8. Universal Fermi gases in mixed dimensions.

    PubMed

    Nishida, Yusuke; Tan, Shina

    2008-10-24

    We investigate a two-species Fermi gas in which one species is confined in a two-dimensional plane (2D) or one-dimensional line (1D) while the other is free in the three-dimensional space (3D). We discuss the realization of such a system with the interspecies interaction tuned to resonance. When the mass ratio is in the range 0.0351

  9. Universal Fermi Gases in Mixed Dimensions

    SciTech Connect

    Nishida, Yusuke; Tan, Shina

    2008-10-24

    We investigate a two-species Fermi gas in which one species is confined in a two-dimensional plane (2D) or one-dimensional line (1D) while the other is free in the three-dimensional space (3D). We discuss the realization of such a system with the interspecies interaction tuned to resonance. When the mass ratio is in the range 0.0351

  10. The Gamma-ray Sky with Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David

    2012-01-01

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  11. Momentum sharing in imbalanced Fermi systems

    NASA Astrophysics Data System (ADS)

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Beck, A.; Beck, S. May-Tal; Bedlinskiy, I.; Bertozzi, W.; Biselli, A.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Crede, V.; D'Angelo, A.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Forest, T.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkanov, B. I.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Korover, I.; Kuhn, S. E.; Kubarovsky, V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lowry, M.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Movsisyan, A.; Camacho, C. Munoz; Mustapha, B.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Rossi, P.; Sabatié, F.; Schott, D.; Schumacher, R. A.; Sharabian, Y. G.; Smith, G. D.; Shneor, R.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tkachenko, S.; Ungaro, M.; Vlassov, A. V.; Voutier, E.; Walford, N. K.; Wei, X.; Wood, M. H.; Wood, S. A.; Zachariou, N.; Zana, L.; Zhao, Z. W.; Zheng, X.; Zonta, I.; aff16

    2014-10-01

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using 12C, 27Al, 56Fe, and 208Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.

  12. The Gamma-ray Universe through Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2012-01-01

    Gamma rays, the most powerful form of light, reveal extreme conditions in the Universe. The Fermi Gamma-ray Space Telescope and its smaller cousin AGILE have been exploring the gamma-ray sky for several years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge ga.nuna-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  13. Momentum sharing in imbalanced Fermi systems

    SciTech Connect

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.

    2014-10-16

    The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority fermions (usually neutrons) to have a higher average momentum. Our high-energy electron scattering measurements using 12C, 27Al, 56Fe and 208Pb targets show that, even in heavy neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few body systems to neutron stars and may also be observable experimentally in two-spin state, ultra-cold atomic gas systems.

  14. Momentum sharing in imbalanced Fermi systems

    DOE PAGESBeta

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.

    2014-10-16

    The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority fermions (usually neutrons) to have a higher average momentum. Our high-energy electron scattering measurements using 12C, 27Al, 56Fe and 208Pb targets show that, even in heavy neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few body systems to neutron starsmore » and may also be observable experimentally in two-spin state, ultra-cold atomic gas systems.« less

  15. Adaptationism Fails to Resolve Fermi's Paradox

    NASA Astrophysics Data System (ADS)

    Cirkovic, M. M.; Dragicevic, I.; Beric-Bjedov, T.

    2005-06-01

    One of the most interesting problems in the nascent discipline of astrobiology is more than half-century old Fermi's paradox: why, considering extraordinary young age of Earth and the Solar System in the Galactic context, don't we perceive much older intelligent communities or signposts of their activity? In spite of a vigorous research activity in recent years, especially bolstered by successes of astrobiology in finding extrasolar planets and extremophiles, this problem (also known as the "Great Silence" or "astrosociological" paradox) remains as open as ever. In a previous paper, we have discussed a particular evolutionary solution suggested by Karl Schroeder based on the currently dominant evolutionary doctrine of adaptationism. Here, we extend that discussion with emphasis on the problems such a solution is bound to face, and conclude that it is ultimately quite unlikely.

  16. Klein factors and Fermi-Bose equivalence

    NASA Astrophysics Data System (ADS)

    Lee, Taejin

    2016-06-01

    Generalizing the kink operator of the Heisenberg spin 1/2 model, we construct a set of Klein factors explicitly such that (1+1)-dimensional fermion theories with an arbitrary number of species are mapped onto the corresponding boson theories with the same number of species and vice versa. The actions for the resultant theories do not possess a nontrivial Klein factor. With this set of Klein factors, we are also able to map the simple boundary states, such as the Neumann and the Dirichlet boundary states, of the fermion (boson) theory onto those of the boson (fermion) theory. Applications of the Fermi-Bose equivalence with the constructed Klein factors to well-known (1+1)-dimensional theories have been discussed.

  17. Topological superradiance in a degenerate Fermi gas

    NASA Astrophysics Data System (ADS)

    Pan, Jian-Song; Liu, Xiong-Jun; Zhang, Wei; Yi, Wei; Guo, Guang-Can; Yi's Group Team; Liu's Group Team; Zhang's Group Team

    2015-05-01

    We predict the existence of a topological superradiant state in a two-component degenerate Fermi gas in a cavity. The superradiant light generation in the transversely driven cavity mode induces a cavity-assisted spin-orbit coupling in the system and opens a bulk gap at half filling. This mechanism can simultaneously drive a topological phase transition in the system, yielding a topological superradiant state. We map out the steady-state phase diagram of the system in the presence of an effective Zeeman field, and identify a critical tetracritical point beyond which the topological and the conventional superraidiant phase boundaries separate. We propose to detect the topological phase transition based on its signatures in either the momentum distribution of the atoms or in the cavity photon occupation.

  18. From ultracold Fermi Gases to Neutron Stars

    NASA Astrophysics Data System (ADS)

    Salomon, Christophe

    2012-02-01

    Ultracold dilute atomic gases can be considered as model systems to address some pending problem in Many-Body physics that occur in condensed matter systems, nuclear physics, and astrophysics. We have developed a general method to probe with high precision the thermodynamics of locally homogeneous ultracold Bose and Fermi gases [1,2,3]. This method allows stringent tests of recent many-body theories. For attractive spin 1/2 fermions with tunable interaction (^6Li), we will show that the gas thermodynamic properties can continuously change from those of weakly interacting Cooper pairs described by Bardeen-Cooper-Schrieffer theory to those of strongly bound molecules undergoing Bose-Einstein condensation. First, we focus on the finite-temperature Equation of State (EoS) of the unpolarized unitary gas. Surprisingly, the low-temperature properties of the strongly interacting normal phase are well described by Fermi liquid theory [3] and we localize the superfluid phase transition. A detailed comparison with theories including recent Monte-Carlo calculations will be presented. Moving away from the unitary gas, the Lee-Huang-Yang and Lee-Yang beyond-mean-field corrections for low density bosonic and fermionic superfluids are quantitatively measured for the first time. Despite orders of magnitude difference in density and temperature, our equation of state can be used to describe low density neutron matter such as the outer shell of neutron stars. [4pt] [1] S. Nascimbène, N. Navon, K. Jiang, F. Chevy, and C. Salomon, Nature 463, 1057 (2010) [0pt] [2] N. Navon, S. Nascimbène, F. Chevy, and C. Salomon, Science 328, 729 (2010) [0pt] [3] S. Nascimbène, N. Navon, S. Pilati, F. Chevy, S. Giorgini, A. Georges, and C. Salomon, Phys. Rev. Lett. 106, 215303 (2011)

  19. The Lorenz-Fermi-Pasta-Ulam experiment

    NASA Astrophysics Data System (ADS)

    Balmforth, N. J.; Pasquero, C.; Provenzale, A.

    2000-04-01

    We consider a chain of Lorenz ’63 systems connected through a local, nearest-neighbour coupling. We refer to the resulting system as the Lorenz-Fermi-Pasta-Ulam lattice because of its similarity to the celebrated experiment conducted by Fermi, Pasta and Ulam. At large coupling strengths, the systems synchronize to a global, chaotic orbit of the Lorenz attractor. For smaller coupling, the synchronized state loses stability. Instead, steady, spatially structured equilibrium states are observed. These steady states are related to the heteroclinic orbits of the system describing stationary solutions to the partial differential equation that emerges on taking the continuum limit of the lattice. Notably, these orbits connect saddle-foci, suggesting the existence of a multitude of such equilibria in relatively wide systems. On lowering the coupling strength yet further, the steady states lose stability in what appear to be always subcritical Hopf bifurcations. This can lead to a variety of time-dependent states with fixed time-averaged spatial structure. Such solutions can be limit cycles, tori or possibly chaotic attractors. “Cluster states” can also occur (though with less regularity), consisting of lattices in which the elements are partitioned into families of synchronized subsystems. Ultimately, for very weak coupling, the lattice loses its time-averaged spatial structure. At this stage, the properties of the lattice are probably chaotic and approximately scale with the lattice size, suggesting that the system is essentially an ensemble of elements that evolve largely independent of one another. The weak interaction, however, is sufficient to induce widespread coherent phases; these are ephemeral states in which the dynamics of one or more subsystems takes a more regular form. We present measures of the complexity of these incoherent lattices, and discuss the concept of a “dynamical horizon” (that is, the distance along the lattice that one subsystem can

  20. CONVECTION REACTOR

    DOEpatents

    Hammond, R.P.; King, L.D.P.

    1960-03-22

    An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.

  1. Research reactors

    SciTech Connect

    Tonneson, L.C.; Fox, G.J.

    1996-04-01

    There are currently 284 research reactors in operation, and 12 under construction around the world. Of the operating reactors, nearly two-thirds are used exclusively for research, and the rest for a variety of purposes, including training, testing, and critical assembly. For more than 50 years, research reactor programs have contributed greatly to the scientific and educational communities. Today, six of the world`s research reactors are being shut down, three of which are in the USA. With government budget constraints and the growing proliferation concerns surrounding the use of highly enriched uranium in some of these reactors, the future of nuclear research could be impacted.

  2. Collapse and revival of the Fermi sea in a Bose-Fermi mixture

    NASA Astrophysics Data System (ADS)

    Iyer, Deepak; Will, Sebastian; Rigol, Marcos

    2014-05-01

    The collapse and revival of quantum fields is one of the most pristine forms of coherent quantum dynamics far from equilibrium. Until now, it has only been observed in the dynamical evolution of bosonic systems. We report on the first observation of the boson mediated collapse and revival of the Fermi sea in a Bose-Fermi mixture. Specifically, we present a simple model which captures the experimental observations shown in the talk titled Observation of Collapse and Revival Dynamics in the Fermionic Component of a Lattice Bose-Fermi Mixture by Sebastian Will. Our theoretical analysis shows why the results are robust to the presence of harmonic traps during the loading or the time evolution phase. It also makes apparent that the fermionic dynamics is independent of whether the bosonic component consists of a coherent state or localized Fock states with random occupation numbers. Because of the robustness of the experimental results, we argue that this kind of collapse and revival experiment can be used to accurately characterize interactions between bosons and fermions in a lattice.

  3. Quasiparticle-phonon interaction in the theory of finite Fermi systems

    SciTech Connect

    Kamerdzhiev, S. P.; Avdeenkov, A. V.; Voitenkov, D. A.

    2011-10-15

    Within the Green's function method and on the basis of the method developed by V.A. Khodel for analyzing anharmonic effects, effects of quasiparticle-phonon interaction in the second order in the amplitude of phonon production are studied in two problems as a natural development of A.B. Migdal's theory of finite Fermi systems. Transitions between excited states and static moments of magic and nonmagic nuclei in excited states, each of which is described in the random-phase approximation, are considered. The results for this problem are found to differ considerably from those in the quasiparticle random-phase approximation. The inclusion of all second-order anharmonic effects in the extended theory of finite Fermi systems that extends the standard theory of finite Fermi systems to the case of taking into account quasiparticle-phonon interaction in order to describe excited states, but which does not take into account all such effects, is also considered. They are taken into account at a level that makes it possible to calculate static moments of odd nuclei-more precisely, the respective equation for the vertex function, which, in the theory of finite Fermi systems, is a basic ingredient that describes the interaction of a nucleus with an external field, is derived. Some numerical results obtained within the recently implemented self-consistent version of the extended theory of finite Fermi systems are also presented for 15 stable and unstable tin isotopes. These results give sufficient grounds to conclude that phenomenological systematics are inapplicable to giant dipole resonances in neutron-rich isotopes. The cross sections for radiative neutron capture that are calculated by usingmicroscopic strength functions for the neutron-rich isotopes 132Sn and 150Sn differ strongly from the cross sections calculated on the basis of a phenomenological description of giant dipole resonances. These results are of paramount importance for astrophysics and for the theory of

  4. Looking for the Northern Fermi Bubble with HAWC

    NASA Astrophysics Data System (ADS)

    Ayala, Hugo; Zhou, Hao; Huentemeyer, Petra; HAWC Collaboration

    2016-03-01

    The Fermi Bubbles were discovered in the GeV gamma-ray data from the Fermi Telescope in 2010. They extend up to 55° above and below the Galactic Center forming two large and homogeneous regions of spectrally hard gamma-ray emission. Understanding the mechanisms which produce the observed hard spectrum will help understand the origin of the Fermi Bubbles. Both hadronic and leptonic models can describe the spectrum of the bubbles, though the leptonic model can explain similar structures observed in microwave data from the WMAP and Planck satellites. Recent publications show that the spectrum of the Fermi Bubbles is well described by a power law with an exponential cutoff between 100MeV to 500GeV. Observing the Fermi Bubbles at higher gamma-ray energies will help constrain their spectrum. A steeper cutoff will favor a leptonic model. The High Altitude Water Cherenkov (HAWC) Observatory, located 4100m above sea level in Mexico, is designed to measure high-energy gamma rays between 100GeV to 100TeV. With a large field of view and good sensitivity to spatially extended sources, HAWC is the ground-based observatory best suited to detect extended regions like the Fermi Bubbles. We present a search for emission from the Fermi Bubble visible to HAWC.

  5. Towards a complete Fermi surface in underdoped high Tc superconductors

    NASA Astrophysics Data System (ADS)

    Harrison, Neil

    The discovery of magnetic quantum oscillations in underdoped high Tc superconductors raised many questions, and initiated a quest to understand the origin of the Fermi surface the like of which had not been seen since the very first discovery of quantum oscillations in elemental bismuth. While studies of the Fermi surface of materials are today mostly assisted by computer codes for calculating the electronic band structure, this was not the case in the underdoped high Tc materials. The Fermi surface was shown to reconstructed into small pockets, yet there was no hint of a viable order parameter. Crucial clues to understanding the origin of the Fermi surface were provided by the small value of the observed Fermi surface cross-section, the negative Hall coefficient and the small electronic heat capacity at high magnetic fields. We also know that the magnetic fields were likely to be too weak to destroy the pseudogap and that vortex pinning effects could be seen to persist to high magnetic fields at low temperatures. I will show that the Fermi surface that appears to fit best with the experimental observations is a small electron pocket formed by connecting the nodal `Fermi arcs' seen in photoemission experiments, corresponding to a density-wave state with two different orthogonal ordering vectors. The existence of such order has subsequently been detected by x-ray scattering experiments, thereby strengthening the case for charge ordering being responsible for reconstructing the Fermi surface. I will discuss new efforts to understand the relationship between the charge ordering and the pseudogap state, discussing the fate of the quasiparticles in the antinodal region and the dimensionality of the Fermi surface. The author acknowledges contributions from Suchitra Sebastian, Brad Ramshaw, Mun Chan, Yu-Te Hsu, Mate Hartstein, Gil Lonzarich, Beng Tan, Arkady Shekhter, Fedor Balakirev, Ross McDonald, Jon Betts, Moaz Altarawneh, Zengwei Zhu, Chuck Mielke, James Day, Doug

  6. Attractive and repulsive Fermi polarons in two dimensions.

    PubMed

    Koschorreck, Marco; Pertot, Daniel; Vogt, Enrico; Fröhlich, Bernd; Feld, Michael; Köhl, Michael

    2012-05-31

    The dynamics of a single impurity in an environment is a fundamental problem in many-body physics. In the solid state, a well known case is an impurity coupled to a bosonic bath (such as lattice vibrations); the impurity and its accompanying lattice distortion form a new entity, a polaron. This quasiparticle plays an important role in the spectral function of high-transition-temperature superconductors, as well as in colossal magnetoresistance in manganites. For impurities in a fermionic bath, studies have considered heavy or immobile impurities which exhibit Anderson's orthogonality catastrophe and the Kondo effect. More recently, mobile impurities have moved into the focus of research, and they have been found to form new quasiparticles known as Fermi polarons. The Fermi polaron problem constitutes the extreme, but conceptually simple, limit of two important quantum many-body problems: the crossover between a molecular Bose-Einstein condensate and a superfluid with BCS (Bardeen-Cooper-Schrieffer) pairing with spin-imbalance for attractive interactions, and Stoner's itinerant ferromagnetism for repulsive interactions. It has been proposed that such quantum phases (and other elusive exotic states) might become realizable in Fermi gases confined to two dimensions. Their stability and observability are intimately related to the theoretically debated properties of the Fermi polaron in a two-dimensional Fermi gas. Here we create and investigate Fermi polarons in a two-dimensional, spin-imbalanced Fermi gas, measuring their spectral function using momentum-resolved photoemission spectroscopy. For attractive interactions, we find evidence for a disputed pairing transition between polarons and tightly bound dimers, which provides insight into the elementary pairing mechanism of imbalanced, strongly coupled two-dimensional Fermi gases. Additionally, for repulsive interactions, we study novel quasiparticles--repulsive polarons--the lifetime of which determines the

  7. X.509 Authentication/Authorization in FermiCloud

    SciTech Connect

    Kim, Hyunwoo; Timm, Steven

    2014-11-11

    We present a summary of how X.509 authentication and authorization are used with OpenNebula in FermiCloud. We also describe a history of why the X.509 authentication was needed in FermiCloud, and review X.509 authorization options, both internal and external to OpenNebula. We show how these options can be and have been used to successfully run scientific workflows on federated clouds, which include OpenNebula on FermiCloud and Amazon Web Services as well as other community clouds. We also outline federation options being used by other commercial and open-source clouds and cloud research projects.

  8. The Fermi-GBM X-ray burst monitor

    NASA Astrophysics Data System (ADS)

    Linares, M.; Fermi GBM X-ray Burst Collaboration

    2010-12-01

    We discuss the first results of the Fermi-GBM all-sky search for X-ray bursts. The very large field of view and X-ray response of the Fermi-GBM make it a unique instrument to study rare, bright and short-lived X-ray bursts. We are performing a systematic search that exploits such capabilities. We present results on long/intermediate type I X-ray bursts, an unusual kind of thermonuclear bursts from accreting neutron stars, and show how Fermi-GBM is giving for the first time robust measurements of their recurrence time.

  9. Physics of ultracold Fermi gases revealed by spectroscopies

    NASA Astrophysics Data System (ADS)

    Törmä, Päivi

    2016-04-01

    This article provides a brief review of how various spectroscopies have been used to investitage many-body quantum phenomena in the context of ultracold Fermi gases. In particular, work done with RF spectroscopy, Bragg spectroscopy and lattice modulation spectroscopy is considered. The theoretical basis of these spectroscopies, namely linear response theory in the many-body quantum physics context is briefly presented. Experiments related to the BCS-BEC crossover, imbalanced Fermi gases, polarons, possible pseudogap and Fermi liquid behaviour and measuring the contact are discussed. Remaining open problems and goals in the field are sketched from the perspective how spectroscopies could contribute.

  10. Fermi Gamma-Ray Space Telescope Science Overview

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2010-01-01

    After more than 2 years of science operations, the Fermi Gamma-ray Space Telescope continues to survey the high-energy sky on a daily basis. In addition to the more than 1400 sources found in the first Fermi Large Area Telescope Catalog (I FGL), new results continue to emerge. Some of these are: (1) Large-scale diffuse emission suggests possible activity from the Galactic Center region in the past; (2) a gamma-ray nova was found, indicating particle acceleration in this binary system; and (3) the Crab Nebula, long thought to be a steady source, has varied in the energy ranges seen by both Fermi instruments.

  11. Thermodynamics of a trapped Bose-Fermi mixture

    SciTech Connect

    Hu, Hui; Liu, Xia-Ji

    2003-08-01

    By using the Hartree-Fock-Bogoliubov equations within the Popov approximation, we investigate the thermodynamic properties of a dilute binary Bose-Fermi mixture confined in an isotropic harmonic trap. For mixtures with an attractive Bose-Fermi interaction, we find a sizable enhancement of the condensate fraction and of the critical temperature of Bose-Einstein condensation with respect to the predictions for a pure interacting Bose gas. Conversely, the influence of the repulsive Bose-Fermi interaction is less pronounced. The possible relevance of our results in current experiments on trapped {sup 87}Rb-{sup 40}K mixtures is discussed.

  12. Fermi Large Area Telescope Bright Gamma-ray Source List

    SciTech Connect

    Abdo, Aous A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D.L.; Barbiellini, Guido; Bastieri, Denis; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bignami, G.F.; Bloom, Elliott D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brigida, M.; Bruel, P.; Burnett, Thompson H.; /more authors..

    2009-05-15

    Following its launch in 2008 June, the Fermi Gamma-ray Space Telescope (Fermi) began a sky survey in August. The Large Area Telescope (LAT) on Fermi in three months produced a deeper and better resolved map of the {gamma}-ray sky than any previous space mission. We present here initial results for energies above 100 MeV for the 205 most significant (statistical significance greater than {approx}10{sigma}) {gamma}-ray sources in these data. These are the best characterized and best localized point-like (i.e., spatially unresolved) {gamma}-ray sources in the early mission data.

  13. NEUTRONIC REACTOR

    DOEpatents

    Fraas, A.P.; Mills, C.B.

    1961-11-21

    A neutronic reactor in which neutron moderation is achieved primarily in its reflector is described. The reactor structure consists of a cylindrical central "island" of moderator and a spherical moderating reflector spaced therefrom, thereby providing an annular space. An essentially unmoderated liquid fuel is continuously passed through the annular space and undergoes fission while contained therein. The reactor, because of its small size, is particularly adapted for propulsion uses, including the propulsion of aircraft. (AEC)

  14. Fermi-liquid theory of ultracold trapped Fermi gases: Implications for pseudogap physics and other strongly correlated phases

    SciTech Connect

    Chien, Chih-Chun; Levin, K.

    2010-07-15

    We show how Fermi-liquid theory can be applied to ultracold Fermi gases, thereby expanding their ''simulation'' capabilities to a class of problems of interest to multiple physics subdisciplines. We introduce procedures for measuring and calculating position-dependent Landau parameters. This lays the groundwork for addressing important controversial issues: (i) the suggestion that thermodynamically, the normal state of a unitary gas is indistinguishable from a Fermi liquid and (ii) that a fermionic system with strong repulsive contact interactions is associated with either ferromagnetism or localization; this relates as well to {sup 3}He and its p-wave superfluidity.

  15. REACTOR COOLING

    DOEpatents

    Quackenbush, C.F.

    1959-09-29

    A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

  16. Redshifts and Optical Identifications of TANAMI/Fermi AGN

    NASA Astrophysics Data System (ADS)

    Pursimo, Tapio; Ojha, Roopesh

    2013-02-01

    We wish to measure redshifts for the opticalidentifications of those gamma-ray loud southern hemisphere extragalactic radio sources being monitored by the TANAMI program that lack them. We also propose imaging of those sources that currently lack optical identifications after which their redshifts will also be measured. The study of blazar physics has been revolutionized by sl Fermi which has ushered in the age of quasi-simultaneous multi-wavelength studies for which knowledge of physical quantities like blazar-jet luminosities and speeds are crucial. TANAMI is the only significant source of milliarcsecond scale radio information for the southern third of the sky. Source redshifts are essential to determine the linear sizes and physical properties of TANAMI/Fermi sources. Please Note: This proposal has been approved for Gemini observing time in Cycle 5 of the Fermi Guest Investigator program (NASA Fermi Cycle 5 - #51378 Pursimo)

  17. Renormalization group and the superconducting susceptibility of a Fermi liquid

    SciTech Connect

    Parameswaran, S. A.; Sondhi, S. L.; Shankar, R.

    2010-11-15

    A free Fermi gas has, famously, a superconducting susceptibility that diverges logarithmically at zero temperature. In this paper we ask whether this is still true for a Fermi liquid and find that the answer is that it does not. From the perspective of the renormalization group for interacting fermions, the question arises because a repulsive interaction in the Cooper channel is a marginally irrelevant operator at the Fermi liquid fixed point and thus is also expected to infect various physical quantities with logarithms. Somewhat surprisingly, at least from the renormalization group viewpoint, the result for the superconducting susceptibility is that two logarithms are not better than one. In the course of this investigation we derive a Callan-Symanzik equation for the repulsive Fermi liquid using the momentum-shell renormalization group, and use it to compute the long-wavelength behavior of the superconducting correlation function in the emergent low-energy theory. We expect this technique to be of broader interest.

  18. Manipulating superconductivity in ruthenates through Fermi surface engineering

    NASA Astrophysics Data System (ADS)

    Hsu, Yi-Ting; Cho, Weejee; Rebola, Alejandro Federico; Burganov, Bulat; Adamo, Carolina; Shen, Kyle M.; Schlom, Darrell G.; Fennie, Craig J.; Kim, Eun-Ah

    2016-07-01

    The key challenge in superconductivity research is to go beyond the historical mode of discovery-driven research. We put forth a new strategy, which is to combine theoretical developments in the weak-coupling renormalization-group approach with the experimental developments in lattice-strain-driven Fermi surface engineering. For concreteness we theoretically investigate how superconducting tendencies will be affected by strain engineering of ruthenates' Fermi surface. We first demonstrate that our approach qualitatively reproduces recent experiments under uniaxial strain. We then note that the order of a few percent strain, readily accessible to epitaxial thin films, can bring the Fermi surface close to van Hove singularity. Using the experimental observation of the change in the Fermi surface under biaxial epitaxial strain and ab initio calculations, we predict Tc for triplet pairing to be maximized by getting close to the van Hove singularities without tuning on to the singularity.

  19. Four years of Fermi LAT flare advocate activity

    NASA Astrophysics Data System (ADS)

    Ciprini, Stefano; Fermi-LAT Collaboration

    2012-12-01

    The Fermi Flare Advocate (also known as Gamma-ray Sky Watcher, FA-GSW) service provides for a daily quicklook analysis and review of the high-energy gamma-ray sky seen by the Fermi Large Area Telescope (LAT). The FA-GSW service communicates alerts for potentially new gamma-ray sources, interesting transients and flares. A weekly digest containing the highlights about the GeV gamma-ray sky is published in the web-based Fermi Sky Blog and email for special events are posted through the LAT multifrequency mailing-list. During the first 4 years of Fermi allsky survey, more than 200 Astronomical Telegrams, several alerts to the TeV Cherenkov telescopes, and target of opportunity to Swift and other observatories have been realized. This increased the rate of simultaneous multi-frequency observing campaigns and the level of international scientific cooperation.

  20. Chandra and Swift Observations of Unidentified Fermi-LAT Objects

    NASA Astrophysics Data System (ADS)

    Donato, Davide; Cheung, T.; Gehrels, N.

    2010-03-01

    In the last year we targeted some of the unidentified Fermi-LAT objects (UFOs) at high Galactic latitude with Chandra and Swift in order to determine the basic properties (positions, fluxes, hardness ratios) of all X-ray sources within the Fermi-LAT localization circles. These satellites enable us to detect the X-ray conterparts with a flux limit that is at least an order of magnitude lower than achieved in extant RASS data and to further follow-up at other wavelengths, with the ultimate goal to reveal the nature of these enigmatic gamma-ray sources. Here we present the results obtained with 5 Chandra pointings of high Galactic latitude UFOs in the Fermi-LAT 3-months bright source list. The association of detected X-ray sources within the improved 11-months Fermi-LAT localization circles with available optical and radio observations is discussed.

  1. NASA's Fermi Shows How Active Galaxies Can Be

    NASA Video Gallery

    Active galaxies called blazars make up the largest class of objects detected by Fermi's Large Area Telescope (LAT). Massive black holes in the hearts of these galaxies fire particle jets in our dir...

  2. Fermi and LIGO Hone in on Gravity Wave Source

    NASA Video Gallery

    Fermi's GBM saw a fading X-ray source at nearly the same moment LIGO detected gravitational waves from a black hole merger in 2015. This movie shows how scientists can narrow down the location of t...

  3. Controlling resonant tunneling in graphene via Fermi velocity engineering

    NASA Astrophysics Data System (ADS)

    Lima, Jonas R. F.; Pereira, Luiz Felipe C.; Bezerra, C. G.

    2016-06-01

    We investigate the resonant tunneling in a single layer graphene superlattice with modulated energy gap and Fermi velocity via an effective Dirac-like Hamiltonian. We calculate the transmission coefficient with the transfer matrix method and analyze the effect of a Fermi velocity modulation on the electronic transmission, in the case of normal and oblique incidence. We find it is possible to manipulate the electronic transmission in graphene by Fermi velocity engineering, and show that it is possible to tune the transmitivity from 0 to 1. We also analyze how a Fermi velocity modulation influences the total conductance and the Fano factor. Our results are relevant for the development of novel graphene-based electronic devices.

  4. GRBs in the Era of Swift and Fermi

    NASA Technical Reports Server (NTRS)

    Racusin, Judy

    2011-01-01

    Utilizing both Swift and Fermi to study GRBs provides us with a unique broad spectral and temporal window into both prompt emission and afterglow studies. Swift has provided key information from GRB follow-up of LAT detected bursts) that has led to ground-based redshift measurements and afterglow broadband light curves and SEDs. We study the X-ray and optical afterglows of Fermi-LAT detected bursts in the context of the hundreds of GRBs discovered by Swift over the last 7 years) in order to better understand the origin of the high-energy gamma-rays. We also briefly describe the efforts to best facilitate joint Swift-Fermi observations. These initial results demonstrate the synergy between Swift and Fermi) and hint at the many interesting discoveries to come.

  5. Quench dynamics of a superfluid Fermi gas

    SciTech Connect

    Warner, G.L.; Leggett, A.J.

    2005-04-01

    With an eye toward the interpretation of so-called 'cosmological' experiments performed on the low-temperature phases of {sup 3}He, in which regions of the superfluid are destroyed by local heating with neutron radiation, we have studied the behavior of a Fermi gas subjected to uniform variations of an attractive BCS interaction parameter {lambda}. In {sup 3}He, the quenches induced by the rapid cooling of the 'hot spots' back through the transition may lead to the formation of vortex loops via the Kibble-Zurek mechanism. A consideration of the free energy available in the quenched region for the production of such vortices reveals that the Kibble-Zurek scaling law gives at best a lower bound on the defect spacing. Further, for quenches that fall far outside the Ginzburg-Landau regime, the dynamics on the pair subspace, as initiated by quantum fluctuations, tends irreversibly to a self-driven steady state with a gap {delta}{sub {infinity}}={epsilon}{sub C}(e{sup 2/N(0){lambda}}-1){sup -1/2}. In weak coupling, this is only half the BCS gap, the extra energy being taken up by the residual collective motion of the pairs.

  6. Three years of Transients with Fermi GBM

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2012-01-01

    The Gamma-ray Burst Monitor (GBM) is an all-sky monitoring instrument, sensitive between 8 keV and 40 MeV, with a primary objective of supporting the Large Area Telescope (LAT) in observations of Gamma-Ray Bursts (GRBs). Both instruments are part of the Fermi Gamma-ray Space Telescope. Together, the GBM and LAT instruments have provided ground-breaking measurements of GRBs that have, after 10 years of focus on GRB afterglows, inspired renewed interest in the prompt emission phase of GRBs and the physical mechanisms that fuel them. In addition to GRB science, GBM has made significant contributions to the astrophysics of galactic transient sources including long-term variations in the Crab nebula, spin state transitions in accretion powered pulsars, state transitions in black hole X-ray binaries, and unprecedented time-resolved spectral studies of soft gamma-ray repeater bursts. Closer to home, GBM also contributes to solar flare and terrestrial gamma flash science.

  7. The Nuclear Thomas-Fermi Model

    DOE R&D Accomplishments Database

    Myers, W. D.; Swiatecki, W. J.

    1994-08-01

    The statistical Thomas-Fermi model is applied to a comprehensive survey of macroscopic nuclear properties. The model uses a Seyler-Blanchard effective nucleon-nucleon interaction, generalized by the addition of one momentum-dependent and one density-dependent term. The adjustable parameters of the interaction were fitted to shell-corrected masses of 1654 nuclei, to the diffuseness of the nuclear surface and to the measured depths of the optical model potential. With these parameters nuclear sizes are well reproduced, and only relatively minor deviations between measured and calculated fission barriers of 36 nuclei are found. The model determines the principal bulk and surface properties of nuclear matter and provides estimates for the more subtle, Droplet Model, properties. The predicted energy vs density relation for neutron matter is in striking correspondence with the 1981 theoretical estimate of Friedman and Pandharipande. Other extreme situations to which the model is applied are a study of Sn isotopes from {sup 82}Sn to {sup 170}Sn, and the rupture into a bubble configuration of a nucleus (constrained to spherical symmetry) which takes place when Z{sup 2}/A exceeds about 100.

  8. Fermi-Dirac distributions for quark partons

    NASA Astrophysics Data System (ADS)

    Bourrely, C.; Buccella, F.; Miele, G.; Migliore, G.; Soffer, J.; Tibullo, V.

    1994-09-01

    We propose to use Fermi-Dirac distributions for quark and antiquark partons. It allows a fair description of the x-dependence of the very recent NMC data on the proton and neutron structure functions F {2/ p } (x) and F {2/ n } (x) at Q 2=4 GeV2, as well as the CCFR antiquark distributionxbar q(x). We show that one can also use a corresponding Bose-Einstein expression to describe consistently the gluon distribution. The Pauli exclusion principle, which has been identified to explain the flavor asymmetry of the light-quark sea of the proton, is advocated to guide us for making a simple construction of the polarized parton distributions. We predict the spin dependent structure functions g {1/ p } (x) and g {1/ n } (x) in good agreement with EMC and SLAC data. The quark distributions involve some parameters whose values support well the hypothesis that the violation of the quark parton model sum rules is a consequence of the Pauli principle.

  9. Fermi resonance in dynamical tunneling in a chaotic billiard

    NASA Astrophysics Data System (ADS)

    Yi, Chang-Hwan; Kim, Ji-Hwan; Yu, Hyeon-Hye; Lee, Ji-Won; Kim, Chil-Min

    2015-08-01

    We elucidate that Fermi resonance ever plays a decisive role in dynamical tunneling in a chaotic billiard. Interacting with each other through an avoided crossing, a pair of eigenfunctions are coupled through tunneling channels for dynamical tunneling. In this case, the tunneling channels are an islands chain and its pair unstable periodic orbit, which equals the quantum number difference of the eigenfunctions. This phenomenon of dynamical tunneling is confirmed in a quadrupole billiard in relation with Fermi resonance.

  10. Spin waves in a persistent spin-current Fermi liquid

    SciTech Connect

    Feldmann, J. D.; Bedell, K. S.

    2010-06-15

    We report two theoretical results for transverse spin waves, which arise in a system with a persistent spin current. Using Fermi liquid theory, we introduce a spin current in the ground state of a polarized or unpolarized Fermi liquid, and we derive the resultant spin waves using the Landau kinetic equation. The resulting spin waves have a q{sup 1} and q{sup 1/2} dispersion to leading order for the polarized and unpolarized systems, respectively.