Viscoelastic properties of entangled polymers - Ternary blends of monodisperse homopolymers
NASA Technical Reports Server (NTRS)
Soong, D.; Shen, M.; Hong, S. D.; Moacanin, J.; Shyu, S. S.
1979-01-01
In a previous publication from this laboratory, the Rouse-Bueche-Zimm molecular theory of viscoelasticity has been extended by using a transient network model to apply to binary blends of monodisperse polymers with chain entanglements. The dynamics of the entanglements were modeled both by the enhanced frictional coefficients and by the additional elastic couplings. It was recognized that entanglements not only may form between chains of the same lengths (intracomponent entanglements) but also between those of different lengths (intercomponent entanglements). At a given intercomponent entanglement, the longer chain was assumed to have the frictional coefficient of the shorter chain. Similarly, for blends consisting of several monodisperse components with different molecular weights, such modifications are also required to predict their linear viscoelastic behavior. The frequency of these interactions is assumed to be proportional to the weight ratio of the respective component chains in the blend. Equations of motion are formulated for each component and solved numerically for the relaxation time spectra. Linear viscoelastic properties such as the dynamic mechanical moduli, stress relaxation moduli, and zero-shear viscosity can then be computed for these systems by linear summation of those of the components.
Chitanvis, S.M.
1998-09-01
We have developed a theory of polymer entanglement using an extended Cahn-Hilliard functional with two extra terms. One is a nonlocal attractive term, operating over mesoscales, which is interpreted as giving rise to entanglement, and the other is a local repulsive term indicative of excluded volume interactions. This functional can be derived using notions from gauge theory. We go beyond the Gaussian approximation, to the one-loop level, to show that the system exhibits a crossover to a state of entanglement as the average chain length between points of entanglement decreases. This crossover is marked by {ital critical} slowing down, as the effective diffusion constant goes to zero. We have also computed the tensile modulus of the system, and we find a corresponding crossover to a regime of high modulus. The single parameter in our theory is obtained by fitting to available experimental data on polystyrene melts of various chain lengths. Extrapolation of this fit yields a model for the crossover to entanglement. The need for additional experiments detailing the crossover to the entangled state is pointed out. {copyright} {ital 1998} {ital The American Physical Society}
Entanglement swelling in polymer glasses
NASA Astrophysics Data System (ADS)
McGraw, Joshua D.; Dalnoki-Veress, Kari
2009-03-01
A polymer system in which the chains are much longer than the entanglement molecular weight, M+Me, is well entangled. When a thin, glassy polymer film is uniaxially strained, deformations which are almost visible to the naked eye called crazes may be formed. Measuring volume fractions of deformed to undeformed regions provides a method by which entanglement densities of similar systems can be comparedootnotetextACM Yang, EJ Kramer, CC Kuo, SL Phoenix, Macromolecules 19 2020 (1986). We present results of deformation experiments, probed using atomic force microscopy, in which well entangled polystyrene networks have been diluted with various weight fractions of polystyrene with molecular weight in the vicinity of Me. Upon dilution the system assumes an effective reduction in the entanglement density. The effective entanglement density is predicted by a conceptually simple model with Me as the only free parameter.
Entanglement swelling in polymer glasses
NASA Astrophysics Data System (ADS)
McGraw, Joshua; Dalnoki-Veress, Kari
2010-03-01
A polymer system in which the chains are much longer than the entanglement molecular weight is well entangled. When a glassy polymer film composed of such chains is uniaxially strained, deformations called crazes may be formed. It is well established that the study of crazes can reveal much about the nature of entanglements. Here, we present results of crazing experiments in which well entangled polystyrene networks have been diluted with various weight fractions of polystyrene with molecular weights in the vicinity of the entanglement molecular weight. Upon dilution, the systems assume an effective reduction in the entanglement density which is a function of both the weight fraction and molecular weight of the small chains. A model which combines simple ``chain packing'' with ``binary contact'' ideas is proposed. The model is found to quantitatively describe measurements in systems with two and three molecular weight components, and can easily be extended to polydisperse systems.
Swelling molecular entanglement networks in polymer glasses.
McGraw, Joshua D; Dalnoki-Veress, Kari
2010-08-01
Entanglements in a polymer network are like knots between the polymer chains, and they are at the root of many phenomena observed in polymer systems. When a polymer glass is strained, cracklike deformations called crazes may be formed and the study of these regions can reveal much about the nature of entanglements. We have studied crazes in systems that are blends of long polymer chains diluted with chains of various small molecular weights. The range of diluting chain lengths is such that a fraction of them have conformations leading to entanglements. It has been found that a system with more short chains added acts like one in which the entanglement density is smaller than that in an undiluted system. We propose a model that quantitatively predicts the density of effective entanglements of a polydisperse system of polymer chains which is consistent with our experimental data. PMID:20866829
Entanglements in quiescent and sheared polymer melts
NASA Astrophysics Data System (ADS)
Yamamoto, Ryoichi; Onuki, Akira
2004-10-01
We visualize entanglements in polymer melts using molecular dynamics simulation. A bead at an entanglement interacts persistently for long times with the nonbonded beads (those excluding the adjacent ones in the same chain). The interaction energy of each bead with the nonbonded beads is averaged over a time interval τ much longer than microscopic times but shorter than the onset time of tube constraints τe . Entanglements can then be detected as hot spots consisting of several beads with relatively large values of the time-averaged interaction energy. We next apply a shear flow with rate much faster than the disengagement motion of entangled chains. With increasing strain the chains take zigzag shapes and one-half of the hot spots become bent. The chains are first stretched as a network but, as the bends approach the chain ends, disentanglements subsequently occur, leading to stress overshoot observed experimentally.
Simplified tube models for entangled supramolecular polymers
NASA Astrophysics Data System (ADS)
Boudara, Victor; Read, Daniel
2015-03-01
This presentation describes current efforts investigating non-linear rheology of entangled, supramolecular polymeric materials. We describe two recently developed models: 1) We have developed a simplified model for the rheology of entangled telechelic star polymers. This is based on a pre-averaged orientation tensor, a stretch equation, and stretch-dependant probability of detachment of the sticker. In both linear and non-linear regimes, we produce maps of the whole parameter space, indicating the parameter values for which qualitative changes in response to flow are predicted. Results in the linear rheology regime are consistent with previous more detailed models and are in qualitative agreement with experimental data. 2) Using the same modelling framework, we investigate entangled linear polymers with stickers along the backbone. We use a set of coupled equations to describe the stretch between each stickers, and use equations similar to our star model for attachment/detachment of the sticky groups. This model is applicable to industrial polymers such as entangled thermoplastic elasomers, or functionalised model linear polymers. The work leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant Agreement No. 607937 (SUPOLEN).
Packing and Entanglements in Polymer Melts
NASA Astrophysics Data System (ADS)
Ozisik, Rahmi; Sternstein, Sandy S.
2004-03-01
The idea of obtaining the properties of polymers simply from the chemical structure is a very attractive one. Recent work on entanglements and packing indicates that the entanglement molecular weight is related to packing length (= M/(ρ
Friction, Fracture and Entanglement Density of Polymers
NASA Astrophysics Data System (ADS)
Whitten, Philip; Brown, Hugh
2004-03-01
We have studied the fracture of a polymer surface due to friction, as observed by an afm. Friction experiments were made by sliding a smooth glass indenter over a polystyrene surface. The effective entanglement density of the material was changed by cross-linking it in an electron beam. The range of crosslink densities is known to change the deformation of thin films from crazing to shear deformation zones under tensile load. Without crosslinking ripples were formed by the accumulation of debris caused by cohesive failure. As the effective entanglement density was increased by crosslinking, the ripples ceased to form at a crosslink density equal to that required to suppress crazing. These observations demonstrate that the friction process causes extensive deformation at the polymer surface.
Entangled polymer complexes as Higgs phenomena.
Kim, Ki-Seok; Dutta, Sandipan; Jho, YongSeok
2015-10-28
We derive an effective Maxwell-London equation for entangled polymer complexes under topological constraints, borrowing the theoretical framework from topological field theory. We find that the transverse current flux of a test polymer chain, surrounded by entangled chains, decays exponentially from its centerline position with a finite penetration depth, which is analogous to the magnetic-field decay in a superconductor (SC), referred to as the Meissner effect. Just as the mass acquirement of photons in a SC is the origin of the magnetic-field decay, the polymer obtains uncrossable intersections along the chain due to the preservation of the linking number, which restricts the deviation of the transverse polymer current in the normal direction. The underlying physics is as follows: less flexible polymers have stronger current-current correlations, giving rise to a heavier effective mass of the gauge fields and resulting in a shorter decay length. Interestingly, this picture is well incorporated within the most successful phenomenological theory of the, so called, tube model, the microscopic origins of which researchers have long pursued. The correspondence of our equation of motion to the tube model claims that the confining tube potential is a consequence of the topological constraint (linking number). The tube radius is attributed to the decay length. On increasing the effective mass (by strengthening the interaction at an uncrossable intersection or a number of intersections), the tube becomes narrower. Using this argument, the exponential decay of the chain leakage out of the tube is well understood. PMID:26324955
Frozen Topology: Entanglements Control Nucleation and Crystallization in Polymers
NASA Astrophysics Data System (ADS)
Luo, Chuanfu; Sommer, Jens-Uwe
2014-05-01
Polymer chains form lamellar structures during crystallization which display a memory of thermal history. Using molecular dynamics simulations and primitive path analysis, we show a direct dependence of both density and crystalline stem length on the local entanglement length. The slow relaxation of the entanglement state after a change of external conditions can directly explain the role of thermal history for polymer crystallization, in particular memory effects. The analysis of the local entanglement state can be used to predict the occurrence of nucleation events. Our results present a fresh insight of the nonequilibrium properties of polymer crystals which might be identified as "frozen topology" of polymer melts.
Feasibility study: Monodisperse polymer particles containing laser-excitable dyes
NASA Technical Reports Server (NTRS)
Vanderhoff, John W.; Chen, Jing-Hong
1993-01-01
The objective was to determine the feasibility of the preparation of monodisperse spherical poly(methyl methacrylate) and polystyrene particles that contain laser-excitable dyes in the size range 0.1 microns to 1 cm. Poly(methyl methacrylate) and polystyrene were chosen because of their excellent optical properties. The sphericity was required for uniformity of spectral output of re-irradiated light from the dye-containing particles. The monodispersity was required to give each particle the same optical properties when exposed to laser light.
Phase stability and dynamics of entangled polymer-nanoparticle composites
Mangal, Rahul; Srivastava, Samanvaya; Archer, Lynden A.
2015-06-10
Nanoparticle–polymer composites, or polymer–nanoparticle composites (PNCs), exhibit unusual mechanical and dynamical features when the particle size approaches the random coil dimensions of the host polymer. Here, we harness favourable enthalpic interactions between particle-tethered and free, host polymer chains to create model PNCs, in which spherical nanoparticles are uniformly dispersed in high molecular weight entangled polymers. Investigation of the mechanical properties of these model PNCs reveals that the nanoparticles have profound effects on the host polymer motions on all timescales. On short timescales, nanoparticles slow-down local dynamics of the host polymer segments and lower the glass transition temperature. On intermediate timescales, where polymer chain motion is typically constrained by entanglements with surrounding molecules, nanoparticles provide additional constraints, which lead to an early onset of entangled polymer dynamics. Finally, on long timescales, nanoparticles produce an apparent speeding up of relaxation of their polymer host.
Size-Dependent Particle Dynamics in Entangled Polymer Nanocomposites.
Mangal, Rahul; Srivastava, Samanvaya; Narayanan, Suresh; Archer, Lynden A
2016-01-19
Polymer-grafted nanoparticles with diameter d homogeneously dispersed in entangled polymer melts with varying random coil radius R0, but fixed entanglement mesh size a(e), are used to study particle motions in entangled polymers. We focus on materials in the transition region between the continuum regime (d > R0), where the classical Stokes-Einstein (S-E) equation is known to describe polymer drag on particles, and the noncontinuum regime (d < a(e)), in which several recent studies report faster diffusion of particles than expected from continuum S-E analysis, based on the bulk polymer viscosity. Specifically, we consider dynamics of particles with sizes d ≥ a(e) in entangled polymers with varying molecular weight M(w) in order to investigate how the transition from noncontinuum to continuum dynamics occur. We take advantage of favorable enthalpic interactions between SiO2 nanoparticles tethered with PEO molecules and entangled PMMA host polymers to create model nanoparticle-polymer composites, in which spherical nanoparticles are uniformly dispersed in entangled polymers. Investigation of the particle dynamics via X-ray photon correlation spectroscopy measurements reveals a transition from fast to slow particle motion as the PMMA molecular weight is increased beyond the entanglement threshold, with a much weaker M(w) dependence for M(w) > M(e) than expected from S-E analysis based on bulk viscosity of entangled PMMA melts. We rationalize these observations using a simple force balance analysis around particles and find that nanoparticle motion in entangled melts can be described using a variant of the S-E analysis in which motion of particles is assumed to only disturb subchain entangled host segments with sizes comparable to the particle diameter. PMID:26694953
Evolution of entanglements in crazing of glassy polymers
NASA Astrophysics Data System (ADS)
Hoy, Robert S.
2005-03-01
Highly entangled polymer glasses often fail via crazing [1]. The polymer expands by a large factor λ from an initial dense state to a craze network of fibrils and voids. The value of λ is found to correlate with the chemical distance between entanglements in both experiments [1] and simulations [2], indicating that the entanglements act like chemical bonds in limiting the expansion. We have applied the primitive path analysis method developed by Everaers et. al. [3] to follow the real space structure of entanglements in model polymer glasses during crazing. A wide range of initial states corresponding to melts with different Kuhn lengths and entanglement lengths was studied. In each case the primitive paths deform affinely and the number of entanglements remains constant during craze formation. Straining the craze past λ leads to a gradual reduction in the number of entanglements, and ultimately to craze fracture.1. E. Kramer and L. L. Berger, Adv. Polym. Sci. 91/92, 1 (1990).2. J. Rottler and M. O. Robbins, Phys. Rev. E 68, 011801 (2003).3. R. Everaers, et al., Science 203, 823 (2004).
Healing of polymer interfaces: Interfacial dynamics, entanglements, and strength
Ge, Ting; Robbins, Mark O.; Perahia, Dvora; Grest, Gary S.
2014-07-25
Self-healing of polymer films often takes place as the molecules diffuse across a damaged region, above their melting temperature. Using molecular dynamics simulations we probe the healing of polymer films and compare the results with those obtained for thermal welding of homopolymer slabs. These two processes differ from each other in their interfacial structure since damage leads to increased polydispersity and more short chains. A polymer sample was cut into two separate films that were then held together in the melt state. The recovery of the damaged film was followed as time elapsed and polymer molecules diffused across the interface. The mass uptake and formation of entanglements, as obtained from primitive path analysis, are extracted and correlated with the interfacial strength obtained from shear simulations. We find that the diffusion across the interface is signifcantly faster in the damaged film compared to welding because of the presence of short chains. Though interfacial entanglements increase more rapidly for the damaged films, a large fraction of these entanglements are near chain ends. As a result, the interfacial strength of the healing film increases more slowly than for welding. For both healing and welding, the interfacial strength saturates as the bulk entanglement density is recovered across the interface. However, the saturation strength of the damaged film is below the bulk strength for the polymer sample. At saturation, cut chains remain near the healing interface. They are less entangled and as a result they mechanically weaken the interface. When the strength of the interface saturates, the number of interfacial entanglements scales with the corresponding bulk entanglement density. Chain stiffness increases the density of entanglements, which increases the strength of the interface. Our results show that a few entanglements across the interface are sufficient to resist interfacial chain pullout and enhance the mechanical strength.
Healing of polymer interfaces: Interfacial dynamics, entanglements, and strength
Ge, Ting; Robbins, Mark O.; Perahia, Dvora; Grest, Gary S.
2014-07-25
Self-healing of polymer films often takes place as the molecules diffuse across a damaged region, above their melting temperature. Using molecular dynamics simulations we probe the healing of polymer films and compare the results with those obtained for thermal welding of homopolymer slabs. These two processes differ from each other in their interfacial structure since damage leads to increased polydispersity and more short chains. A polymer sample was cut into two separate films that were then held together in the melt state. The recovery of the damaged film was followed as time elapsed and polymer molecules diffused across the interface.more » The mass uptake and formation of entanglements, as obtained from primitive path analysis, are extracted and correlated with the interfacial strength obtained from shear simulations. We find that the diffusion across the interface is signifcantly faster in the damaged film compared to welding because of the presence of short chains. Though interfacial entanglements increase more rapidly for the damaged films, a large fraction of these entanglements are near chain ends. As a result, the interfacial strength of the healing film increases more slowly than for welding. For both healing and welding, the interfacial strength saturates as the bulk entanglement density is recovered across the interface. However, the saturation strength of the damaged film is below the bulk strength for the polymer sample. At saturation, cut chains remain near the healing interface. They are less entangled and as a result they mechanically weaken the interface. When the strength of the interface saturates, the number of interfacial entanglements scales with the corresponding bulk entanglement density. Chain stiffness increases the density of entanglements, which increases the strength of the interface. Our results show that a few entanglements across the interface are sufficient to resist interfacial chain pullout and enhance the mechanical
Stress Relaxation in Entangled Melts of Unlinked Ring Polymers
NASA Astrophysics Data System (ADS)
Milner, Scott T.; Newhall, Jillian D.
2010-11-01
Stress relaxation in unlinked ring polymer melts poses an important challenge to our theoretical understanding of entangled polymer dynamics. Recent experiments on entangled unlinked ring melts show power-law stress relaxation with no hint of a rubbery plateau, usually the hallmark of entangled polymers. Here we present a theory for stress relaxation in rings analogous to the successful approach for star polymers. We augment our theory with mesoscale Monte Carlo dynamics simulations of equivalent “lattice animal” configurations. We find a stress relaxation function G(t)˜t-α with α≈1/2 consistent with experiment, emerging ultimately from the disparate relaxation times of more- and less-central portions of ring conformations.
Almería, Begoña; Gomez, Alessandro
2014-03-01
This study reports on a methodology to control the size of polymer particles generated by the electrospray (ES) drying route, with emphasis on the generation of biodegradable polymer nanoparticles that are well suited for biomedical applications. The ability to produce spherical poly(lactic-co-glycolic) acid (PLGA) particles with and without encapsulated active agent, with relative standard deviation not exceeding 15%, was demonstrated over a remarkably broad (60 nm-2 μm) diameter range. By judiciously choosing ES parameters and solution properties, we can control the monodispersity and the size of the obtained particles, tailoring it to a specific application. The main parameters affecting particle size include solution electrical conductivity, flow rate and initial polymer volume fraction. Quasi-monodispersity at both the micro- and the more challenging nano-scale was achieved by avoiding Coulomb fission in the spray droplets, via entanglement of the polymer chains within the droplets rather than by charge neutralization. Guiding principles in the formulation of the solutions to satisfy a multiplicity of constraints are provided along with an extensive database of "recipes". PMID:24407667
Evolution of stress and entanglements during deformation of glassy polymers
NASA Astrophysics Data System (ADS)
Robbins, Mark
2007-03-01
Simulations of the mechanical properties of model polymer glasses have been performed over a wide range of entanglement densities, temperatures, strain rates and chain lengths. Primitive Path Analysis (PPA) is used to examine the corresponding changes in entanglement structure during deformation. Results for the initial yield stress, strain hardening and crazing will be presented. The initial yield stress is a function of strain rate and the thermal history of the sample. Strain hardening can be fit to entropic network models for the stress-strain curve. The stress shows a neo- Hookean response at low entanglement density ρe and Langevin strain-hardening at high ρe. As expected from network models, entangled polymers deform affinely at scales larger than the entanglement length. However simulations and experiments show strain hardening decreases with increasing temperature while entropic models predict a linear increase. Our results show that strain hardening scales with the flow stress rather than temperature and that substantial strain hardening occurs for unentangled chains. Studies of craze formation show that it does not lead to entanglement loss in our systems. Instead, small scale motions concentrate entanglements at the nodes between fibrils.
Entanglements and the Mechanical Properties of Glassy Polymers
NASA Astrophysics Data System (ADS)
Robbins, Mark
2011-03-01
The response of glassy polymers to shear or tensile strain is strongly influenced by the entanglement network that is inherited from the melt. Molecular dynamics simulations are used to probe the microscopic origins of stress-strain curves and their connection to entanglements. The latter are identified in real space by examining topological constraints along the primitive path. The first part of the talk will consider the process of craze formation, where the entanglement density is correlated to the volume increase during crazing. Simulations show that entanglements are preserved during crazing, but the craze density does not correspond to pulling chains taut between entanglements. The second part of the talk will examine the effect of entanglements on strain hardening under uniaxial strain. The stress is directly associated with the degree of orientational order along the strain axis, and nearly independent of order along perpendicular directions. Studies with mixtures of short and long chains show that the degree of order is independent of the surrounding chains. The final part of the talk will examine the strength of welds formed by diffusion across polymer interfaces. The shear stress follows the bulk response until chains are pulled taut on the scale of the length of segments that have diffused across the interface. When this length is several times the entanglement length, the maximum shear stress saturates at the bulk value and chains fail through scission. Similar trends are found for the fracture energy in tensile loading. This material is based upon work supported by NSF Grant DMR 108474.
Tang, Zonggui; Liu, Changbin; Wang, Jing; Li, Hongmin; Ji, Yong; Wang, Guohong; Lu, Chunxia
2016-04-01
Monodisperse molecularly imprinted polymers for oleanolic acid were successfully prepared by a precipitation polymerization method using oleanolic acid as a template, methacrylic acid as a functional monomer, and divinylbenzene/ethylene glycol dimethacrylate as a crosslinker in a mixture of acetonitrile and ethanol (3:1, v/v). The imprinted polymers and nonimprinted polymers were characterized by using scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The resulting imprinted polymers had average diameters of 3.15 μm and monodispersity values of 1.024. The results clearly demonstrate that use of ethanol as a cosolvent is indeed exceedingly effective in promoting the dissolution of oleanolic acid and in obtaining uniform microspheres. Molecular recognition properties and binding capability to oleanolic acid were evaluated by adsorption testing, which indicated that the imprinted polymers displayed optimal binding performance with a maximum adsorption capacity of 17.3 mg/g and a binding saturation time of 80 min. Meanwhile, the produced imprinted polymers exhibited higher selectivity to oleanolic acid than that for ursolic acid and rhein. Herein, the studies can provide theoretical and experimental references for the oleanolic acid molecular imprinted system. PMID:27106769
Entanglements of End Grafted Polymer Brushes in a Polymeric Matrix
NASA Astrophysics Data System (ADS)
Grest, Gary S.; Hoy, Robert S.
2007-03-01
The entanglement of a polymer brush immersed in a melt of mobile polymer chains is studied by molecular dynamics simulations. A primitive path analysis (PPA) is carried out to identify the brush/brush, brush/melt and melt/melt entanglements as a function of distance from the substrate. The PPA characterizes the microscopic state of conformations of the polymer chain and is ideally suited to identify chain/chain entanglements. We use a new thin-chain PPA technique to eliminate spurious non-entangled inter chain contacts arising from excluded volume. As the grafting density of the brush increases we find that the entanglements of the brush with the melt decrease as the system crosses over from the wet to dry brush regime. Results are compared to brush/brush entanglements in an implicit solvent of varying solvent quality. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Polymer Chain Reinforcement across Narrow Interfaces: Entanglements Versus Chain Friction
NASA Astrophysics Data System (ADS)
Benkoski, Jason J.; Fredrickson, Glenn H.; Kramer, Edward J.
2002-03-01
It is widely believed that entangled chains that bridge a glassy polymer/polymer interface solely determine its fracture energy (G_c). However, experiments show that while Gc increases with interfacial width (w), Gc vs. w/d_t, where dt is the tube diameter of the melt, is not universal. For some polymer pairs Gc increases dramatically even when w << d_t, while for others Gc does not increase until w >= d_t. We demonstrate that the friction stress for polymer loop pull-out from the interface is given by f_monoρ_merw/2 where f_mono is the static friction coefficient per mer and ρ_mer is the mer number density. Unlike interfaces with short block copolymers, where the friction stress for block pull-out is limited by a maximum areal density of block copolymer, the polymer/polymer friction stress grows linearly with w. For interfaces as narrow as 3 nm, it can be large enough to induce crazing. A model that includes both loop pull-out and chain entanglement shows that modest changes in f_mono can account for the fact that Gc versus w/dt is non-universal. A high areal density of bridging, entangled chains is therefore sufficient, but not necessary, to reinforce polymer interfaces.
Entanglements in polymer networks: two-state invariant
NASA Astrophysics Data System (ADS)
Müller-Nedebock, Kristian
2001-03-01
At the time of crosslinking of polymer chains, entanglements of these chains become permanent features of the resulting network. In a statistical physics formulation these constraints on the polymers can be dealt with by inclusion of invariants for the entangled states of chains. Analytical results are presented based upon an extension of a variational formalism for mechanical properties of entangled gels with a two-state invariant by Edwards and Müller-Nedebock (J. Phys. A: Math. Gen.32 3301 (1999)). Apart from showing Mooney-Rivlin-like behaviour of the reduced stress the theory is applied to olympic gels and discussed in the context of the limitations due to the approximations in this approach.
Percolation effects on entangled polymer rheology and the glass transition
NASA Astrophysics Data System (ADS)
Wool, Richard P.
2012-07-01
Current thinking on the fundamentals of entangled polymer melt rheology suggests that stress relaxation in the terminal zone occurs via Reptation, chain-end fluctuation and (convective) constraint release. This scenario is not correct. It is shown through a series of experiments with selectively deuterated model polymers that relaxation occurs through a percolation process which permits large clusters of entangled polymers to stress relax before their conformations are fully relaxed. The percolation model of entanglements (R.P. Wool, Macromolecules 26, 1564, 1993) makes unique predictions regarding the dynamics of polymer chains in the terminal relaxation zone. These include: (a) Reptating homopolymer chains with molecular weight M >> Mc appear to be non-Reptating as their ends and centers relax at the same rate in a Rouse-like manner during percolation. (b) The mechanical relaxation time τ(M) is related to the Reptation time Tr˜ M3 by τ(M) = Tr[(1-Mc/M)Me/Mc]2, which is the origin of the zero shear viscosity behaving as ηo˜M3.4 (c) The biggest surprise is that during stress relaxation, the random coil dimensions Rg(//) and Rg(⊥) are not fully relaxed when the stress and birefringence relax to zero. (d) Matrix molecular weight P effects on relaxation time τ(M) of the probe chain M are as follows: When the probe chain M>>P, the matrix P-chains percolate and Rouse-like dynamics is observed for the M-Reptating chains with τ(M) ˜ P1M2. (e) When the matrix P>>M, percolation does not occur for the M-chain and the relaxation time of the probe chain τ(M) ˜ PoM3 is in accord with DeGennes Reptation theory. These unusual results predicted by entanglement percolation are supported by extensive experimental data (NR, SANS, DSIMS, FTIR, BR) from selectively deuterated polystyrene chains HDH, DHD, HPS and DPS. These results clearly suggest that current notions of polymer rheology need to be reconsidered. Near Tg, a new perspective on the Glass Transition of amorphous
Evolution of Entanglements During Crazing of Glassy Polymers
NASA Astrophysics Data System (ADS)
Ge, Ting; Robbins, Mark O.; Hoy, Robert; Anogiannakis, Stefanos; Tzoumanekas, Christos; Theodorou, Doros
2011-03-01
Craze formation increases the fracture energy of glassy polymers by orders of magnitude. The polymer volume expands by an extension ratio which is assumed to be determined by the entanglement network. We test this assumption with molecular simulations that use the Contour Reduction Topological Analysis (CReTA) algorithm to follow topological constraints (TCs) associated with the entanglement network. The TCs are identified with contacts between chains after applying CReTA. Within systematic errors, crazing does not change the number of TCs or the distribution of chemical distances between them. Moreover, about 75% of the contacts remain between the same chains at nearly the same location. The 25% of contacts that change do not reflect a comparable loss of entanglements. Instead, small displacements within the tube change which chains contact after CReTA. This interpretation is tested by adding fixed crosslinks to a sparse entanglement network and crazing preoriented samples. This material is based upon work supported by NSF Grant DMR 108474.
Nonlinear rheology of entangled polymers at turning point.
Wang, Shi-Qing
2015-02-28
Thanks to extensive observations of strain localization upon startup or after stepwise shear, a conceptual framework for nonlinear rheology of entangled polymers appears to have emerged that has led to discovery of many new phenomena, which were not previously predicted by the standard tube model. On the other hand, the published theoretical and experimental attempts to test the limits of the tube model have largely demonstrated that the most experimental data appear consistent with the tube-model based theoretical calculations. Therefore, the field of nonlinear rheology of entangled polymers is at a turning point and is thus a rather crucial area in which further examinations are needed. In particular, more molecular dynamics simulations are needed to delineate the detailed molecular mechanisms for the various nonlinear rheological phenomena. PMID:25606850
Dynamics of nanoparticles in an entangled polymer matrix
NASA Astrophysics Data System (ADS)
Dhakal, Subas; Sureshkumar, Radhakrishna
2014-03-01
Quantitative description of the dynamics and rheology of the extracellular polymeric substance (EPS) of bacterial biofilms is still a major challenge due to their structural complexity. Recent experiments suggest that the viscoelasticity of EPS is not governed by entanglements in the polymer matrix. Here, we investigate the microstructure, dynamics and rheology of a Dextran EPS by probing the motion of nanoparticles embedded in the matrix using coarse-grained molecular dynamics simulations. Specifically, these simulations show that for particle diameter D >entanglement length le, the probe particles exhibit normal diffusion, while for D
Entanglement-Controlled Subdiffusion of Nanoparticles within Concentrated Polymer Solutions
Guo, Hongyu; Bourret, Gilles; Lennox, R. Bruce; Sutton, Mark; Harden, James L.; Leheny, Robert L.
2012-10-23
We describe x-ray photon correlation spectroscopy (XPCS) experiments tracking the motion of gold nanoparticles within solutions of high-molecular-weight polystyrene. Over displacements from nanometers to tens of nanometers, the particles undergo subdiffusive motion that is dictated by the temporal evolution of the entangled polymer mesh in the immediate vicinity of the particles. The results thus provide a novel microscopic dynamical characterization of this key structural property of polymers and more broadly demonstrate the capability of XPCS-based microrheology to interrogate heterogeneous mechanical environments in nanostructured soft materials.
Formation mechanism of monodispersed spherical core-shell ceria/polymer hybrid nanoparticles
Izu, Noriya; Uchida, Toshio; Matsubara, Ichiro; Itoh, Toshio; Shin, Woosuck; Nishibori, Maiko
2011-08-15
Graphical abstract: The formation mechanism for core-shell nanoparticles is considered to be as follows: nucleation and particle growth occur simultaneously (left square); very slow particle growth occurs (middle square). Highlights: {yields} The size of the resultant nanoparticles was strongly and complicatedly dependent on the set temperature used during reflux heating and the PVP molecular weight. {yields} The size of the nanoparticles increased by a 2-step process as the reflux heating time increased. {yields} The IR spectral changes with increasing reflux time indicated the increase in the number of cross-linked polymers in the shell. -- Abstract: Very unique core-shell ceria (cerium oxide)/polymer hybrid nanoparticles that have monodispersed spherical structures and are easily dispersed in water or alcohol without the need for a dispersant were reported recently. The formation mechanism of the unique nanoparticles, however, was not clear. In order to clarify the formation mechanism, these nanoparticles were prepared using a polyol method (reflux heating) under varied conditions of temperature, time, and concentration and molecular weight of added polymer (poly(vinylpyrrolidone)). The size of the resultant nanoparticles was strongly and complicatedly dependent on the set temperature used during reflux heating and the poly(vinylpyrrolidone) molecular weight. Furthermore, the size of the nanoparticles increased by a 2-step process as the reflux heating time increased. The IR spectral changes with increasing reflux time indicated the increase in the number of cross-linked polymers in the shell. From these results, the formation mechanism was discussed and proposed.
Molecular confinement accelerates deformation of entangled polymers during squeeze flow.
Rowland, Harry D; King, William P; Pethica, John B; Cross, Graham L W
2008-10-31
The squeezing of polymers in narrow gaps is important for the dynamics of nanostructure fabrication by nanoimprint embossing and the operation of polymer boundary lubricants. We measured stress versus strain behavior while squeezing entangled polystyrene films to large strains. In confined conditions where films were prepared to a thickness less than the size of the bulk macromolecule, resistance to deformation was markedly reduced for both solid-glass forging and liquid-melt molding. For melt flow, we further observed a complete inversion of conventional polymer viscosity scaling with molecular weight. Our results show that squeeze flow is accelerated at small scales by an unexpected influence of film thickness in polymer materials. PMID:18832609
Localization of chain dynamics in entangled polymer melts
NASA Astrophysics Data System (ADS)
Guenza, M. G.
2014-05-01
The dynamics of polymer melts in both the unentangled and entangled regimes is described by a Langevin equation for the correlated motion of a group of chains, interacting through both intra- and inter-molecular potentials. Entanglements are represented by an intermolecular monomer-monomer confining potential that has no effect on short chains, while interpolymer interactions, responsible for correlated motion and subdiffusive center-of-mass dynamics, are represented by an intermolecular center-of-mass potential derived from the Ornstein-Zernike equation. This potential ensures that the liquid of phantom chains reproduces the compressibility and free energy of the real samples. For polyethylene melts the calculated dynamic structure factor is found to be in quantitative agreement with neutron spin echo experiments of polyethylene melts with chain lengths that span both the unentangled and the entangled regimes. The theory shows a progressive localization of the cooperative chain dynamics at the crossover from the unentangled to the entangled regime, in the spirit of the reptation model.
Entangled polymer dynamics in equilibrium and flow modeled through slip links.
Schieber, Jay D; Andreev, Marat
2014-01-01
The idea that the dynamics of concentrated, high-molecular weight polymers are largely governed by entanglements is now widely accepted and typically understood through the tube model. Here we review alternative approaches, slip-link models, that share some similarities to and offer some advantages over tube models. Although slip links were proposed at the same time as tubes, only recently have detailed, quantitative mathematical models arisen based on this picture. In this review, we focus on these models, with most discussion limited to mathematically well-defined objects that conform to state-of-the-art beyond-equilibrium thermodynamics. These models are connected to each other through successive coarse graining, using nonequilibrium thermodynamics along the way, and with a minimal parameter set. In particular, the most detailed level of description has four parameters, three of which can be determined directly from atomistic simulations. Once the remaining parameter is determined for any system, all parameters for all members of the hierarchy are determined. We show how, using this hierarchy of slip-link models combined with atomistic simulations, we can make predictions about the nonlinear rheology of monodisperse homopolymer melts, polydisperse melts, or blends of different architectures. Mathematical details are given elsewhere, so these are limited here, and physical ideas are emphasized. We conclude with an outlook on remaining challenges that might be tackled successfully using this approach, including complex flow fields and polymer blends. PMID:24655135
Finite cohesion due to chain entanglement in polymer melts.
Cheng, Shiwang; Lu, Yuyuan; Liu, Gengxin; Wang, Shi-Qing
2016-04-14
Three different types of experiments, quiescent stress relaxation, delayed rate-switching during stress relaxation, and elastic recovery after step strain, are carried out in this work to elucidate the existence of a finite cohesion barrier against free chain retraction in entangled polymers. Our experiments show that there is little hastened stress relaxation from step-wise shear up to γ = 0.7 and step-wise extension up to the stretching ratio λ = 1.5 at any time before or after the Rouse time. In contrast, a noticeable stress drop stemming from the built-in barrier-free chain retraction is predicted using the GLaMM model. In other words, the experiment reveals a threshold magnitude of step-wise deformation below which the stress relaxation follows identical dynamics whereas the GLaMM or Doi-Edwards model indicates a monotonic acceleration of the stress relaxation dynamics as a function of the magnitude of the step-wise deformation. Furthermore, a sudden application of startup extension during different stages of stress relaxation after a step-wise extension, i.e. the delayed rate-switching experiment, shows that the geometric condensation of entanglement strands in the cross-sectional area survives beyond the reptation time τd that is over 100 times the Rouse time τR. Our results point to the existence of a cohesion barrier that can prevent free chain retraction upon moderate deformation in well-entangled polymer melts. PMID:26931322
Entanglement Density Changes in Free-Standing Thin Polymer Films
NASA Astrophysics Data System (ADS)
Stanzione, Joseph; Wool, Richard
2013-03-01
The entanglement molecular weight Me is obtained when a random walk chain crosses a plane three times to form a loop (R.P. Wool '83) such that for polymers with structure -CH2-CHX- where X is the side group, it is found that Me = 31 C∞ Mo/j, where C∞ is the characteristic ratio, Mo is the monomer mol weight and j =2 is the number of bonds per monomer. In thin films of thickness d < 2Rg, Me behaves as Me ~ d and this behavior is confirmed by computer simulation of random walks in thin films with reflecting boundary conditions. Thus, the entanglement density v ~ 1/Me increases as d decreases and rheological properties such as plateau modulus change as GNo ~ 1/d and plateau creep compliance Jo ~ d. The mechanical stiffening of thin films is in accord with recent experiments of McKenna et al (2012). The results are also in accord with the Packing model (Lin, Kavassil, Fetters 1983) where Me = 354 p3 in which p = Mo j/[C∞ bo2].The packing model is exactly derived from the Wool entanglement model for these polymers since C∞ = 1.36 [Mo/j]1/2. The empirical packing model with its excellent data correlation Me ~ p3 has been misinterpreted by many and such suggestions that v decreases due to nanoconfinement and GNo ~ d are incorrect.
Multiscale entanglement in ring polymers under spherical confinement.
Tubiana, Luca; Orlandini, Enzo; Micheletti, Cristian
2011-10-28
The interplay of geometrical and topological entanglement in semiflexible knotted polymer rings confined inside a spherical cavity is investigated by using advanced numerical methods. By using stringent and robust algorithms for locating knots, we characterize how the knot length l(k) depends on the ring contour length L(c) and the radius of the confining sphere R(c). In the no- and strong-confinement cases, we observe weak knot localization and complete knot delocalization, respectively. We show that the complex interplay of l(k), L(c), and R(c) that seamlessly bridges these two limits can be encompassed by a simple scaling argument based on deflection theory. The same argument is used to rationalize the multiscale character of the entanglement that emerges with increasing confinement. PMID:22107680
Sussman, Daniel; Schweizer, Kenneth
2013-01-01
The phenomenological reptation-tube model is based on a single chain perspective and was originally proposed to explain the remarkable viscoelastic properties of dense entangled polymer liquids. However, simulations over the last two decades have revealed a fundamental tension in the model: it assumes that bonded, single-chain backbone stresses are the sole polymer contribution to the slowly relaxing component of stress storage and elasticity, but mounting evidence suggests that at the local level of forces it is interchain contributions that dominate, as in simple liquids. Here we show that based on a chain model constructed at the level of self-consistently determined primitive paths, an explicit force-level treatment of the correlated intermolecular contributions to stress that arise from chain uncrossability can essentially quantitatively predict the entanglement plateau modulus associated with the soft rubbery response of polymer liquids. Analogies to transient localization and elasticity in glass-forming liquids are identified. Predictions for the effect of macroscopic deformation and anisotropic orientational order on the tube diameter are also made. Based on the interchain stress perspective the theory reproduces some aspects of the rheological response to shear and extensional deformations associated with the single chain tube model.
Microscopic theory for dynamics in entangled polymer nanocomposites
NASA Astrophysics Data System (ADS)
Yamamoto, Umi
New microscopic theories for describing dynamics in polymer nanocomposites are developed and applied. The problem is addressed from two distinct perspectives and using two different theoretical approaches. The first half of this dissertation studies the long-time and intermediate-time dynamics of nanoparticles in entangled and unentangled polymer melts for dilute particle concentrations. Using a combination of mode-coupling, Brownian motion, and polymer physics ideas, the nanoparticle long-time diffusion coefficients is formulated in terms of multiple length-scales, packing microstructures, and spatially-resolved polymer density fluctuation dynamics. The key motional mechanism is described via the parallel relaxation of the force exerted on the particle controlled by collective polymer constraint-release and the particle self-motion. A sharp but smooth crossover from the hydrodynamic to the non-hydrodynamic regime is predicted based on the Stokes-Einstein violation ratio as a function of all the system variables. Quantitative predictions are made for the recovery of the Stokes-Einstein law, and the diffusivity in the crossover regime agrees surprisingly well with large-scale molecular dynamics simulations for all particle sizes and chain lengths studied. The approach is also extended to address intermediate-time anomalous transport of a single nanoparticle and two-particle relative diffusion. The second half of this dissertation focuses on developing a novel dynamical theory for a liquid of infinitely-thin rods in the presence of hard spherical obstacles, aiming at a technical and conceptual extension of the existing paradigm for entangled polymer dynamics. As a fundamental theoretical development, the two-component generalization of a first-principles dynamic meanfield approach is presented. The theory enforces inter-needle topological uncrossability and needlesphere impenetrability in a unified manner, leading to a generalized theory of entanglements that
Chain entanglements and fracture energy in interfaces between immiscible polymers
NASA Astrophysics Data System (ADS)
Silvestri, Leonardo; Brown, Hugh R.; Carrà, Stefano; Carrà, Sergio
2003-10-01
It is a very well-known experimental fact that the toughness of interfaces obtained by joining pairs of immiscible glassy polymers is strongly correlated to the interfacial width. Several models have been proposed in the literature to estimate the fracture energy of these interfaces, but the agreement displayed with the experimental data cannot be considered satisfactory. In this paper a new model is proposed for polymers with molecular weight higher than the critical value for the onset of entanglements. The model is based on a precise and realistic calculation of the areal density of entangled strands across the interface, that is the crucial parameter determining the toughness of the glassy joints. In this paper a new fracture regime is also introduced, called "partial crazing," corresponding to a situation where, due to the fact that some of the load-bearing strands are broken during plastic deformation, the craze can start, but not fully develop. Model predictions are then compared with a series of literature fracture energy experimental data, showing excellent agreement.
Synthetic Polymers at Interfaces: Monodisperse Emulsions Multiple Emulsions and Liquid Marbles
NASA Astrophysics Data System (ADS)
Sun, Guanqing
The adsorption of polymeric materials at interfaces is an energetically favorable process which is investigated in much diversified fields, such as emulsions, bubbles, foams, liquid marbles. Pickering emulsion, which is emulsion stabilized by solid particles has been investigated for over one century and preparation of Pickering emulsion with narrow size distribution is crucial for both the theoretical study of the stabilization mechanism and practical application, such as templated fabrication of colloidosomes. The precise control over the size and functionality of polymer latices allows the preparation of monodisperse Pickering emulsions with desired sizes through SPG membrane emulsification at rather rapid rate compared to microfludic production. Double or multiple emulsions have long been investigated but its rapid destabilization has always been a major obstacle in applying them into practical applications. The modern living polymerization techniques allow us to prepare polymers with designed structure of block copolymers which makes it possible to prepare ultra-stable multiple emulsions. The precise tuning of the ratio of hydrophobic part over the hydrophilic can unveil the stabilization mechanism. Liquid marble is a new type of materials of which liquid droplets are coated by dry particles. The coating of an outer layer of dry particles renders the liquid droplets non-sticky at solid surface which is useful in transportation of small amount of liquid without leakage at extreme low friction force. The property of liquid marbles relies largely on the stabilizers and the drying condition of polymeric latices is shown to have great influence on the property of liquid marbles. Firstly, an introduction to the interfacial and colloidal science with special attention to topics on emulsions, multiple emulsion and liquid marbles is given in Chapter 1. The unique features of an interface and a discussion on the definition of colloids are introduced prior to the
Analysis of Entanglement Length and Segmental Order Parameter in Polymer Networks
NASA Astrophysics Data System (ADS)
Lang, M.; Sommer, J.-U.
2010-04-01
The tube model of entangled chains is applied to compute segment fluctuations and segmental orientational order in polymer networks. The entanglement length Ne is extracted directly from monomer fluctuations without constructing a primitive path. Sliding motion of monomers along the tube axis leads to reduction of segmental order along the chain. For network strands of length N≫Ne, the average segmental order decreases ˜(NeN)-1/2 in marked contrast to the 1/Ne contribution of entanglements to network elasticity. As a consequence, network modulus is not proportional to segmental order in entangled polymer networks. Monte Carlo simulations over a wide range of molecular weights are in quantitative agreement with our theoretical predictions. The impact of entanglements on these properties is directly tested by comparing with simulations where entanglement constraints are switched off.
Multiscale simulation of history-dependent flow in entangled polymer melts
NASA Astrophysics Data System (ADS)
Murashima, T.; Taniguchi, T.
2011-10-01
Predicting the flow of an entangled polymer melt is still difficult because of its multiscale characteristics. We have developed a novel multiscale simulation technique to investigate the history-dependent flow behavior of entangled polymer melts. The technique involves using a smoothed particle hydrodynamics simulation that is coupled at each fluid element to microscopic simulators that can accurately account for the dynamics of entangled polymers. The multiscale simulation is used to investigate the flow of an entangled polymer melt around a cylindrical obstacle subject to periodic boundary conditions. It is found that the macroscopic flow behavior is dependent on the history of the microscopic states of the polymers and that this memory causes nonlinear behavior even in the regions where the local Weissenberg number defined using the local strain-rate is less than unity. The spatial distribution of the entanglements langZrang suggests that, in a region around the obstacle, a slight depletion of the entanglements is observed and that this region broadens along the downstream direction. The totality of the presented results suggests that we have succeeded in describing the entangled polymer melt flow without using any constitutive equation.
Reduced Viscosity of Free Surface in Entangled Polymer Melt Films
NASA Astrophysics Data System (ADS)
Koga, Tad; Li, C.; Endoh, M.; Koo, J.; Rafailovich, M.; Narayanan, S.; Lee, D.; Lurio, L.; Sinha, S.
2010-03-01
The dynamics of polymer chains near the surface of a melt and within thin films remains a subject of inquiry along with the nature of the glass transition in these systems. By embedding ``dilute'' gold nanoparticles in single polystyrene thin films as ``markers'', we could probe the local viscosity of the free surface at temperatures far above the glass transition temperature (Tg). The technique used was X-ray photon correlation spectroscopy with resonance-enhanced X-ray scattering. The results clearly showed the viscosity was about 30 % lower than the rest of the film. We found that this reduction is strongly associated with chain entanglements at the free surface rather than the reduction in Tg.
Simulations on the number of entanglements of a polymer network using knot theory.
Michalke, W; Lang, M; Kreitmeier, S; Göritz, D
2001-07-01
Polymer networks, created on the computer using the Bond-Fluctuation-Algorithm, offer the possibility to count the number of entanglements. We generated networks consisting of 5000 chains that were cross linked at their end groups via tetra-functional cross linkers. The analysis of the topology was performed by computing the Homfly polynomial of the entanglements offering a much more precise determination of the knot and entanglement type than the Gaussian linking number. It also allows us to determine the influence of Brunnian links. Results concerning the connection between the chain length and the number of entanglements are shown. PMID:11461310
Evolution of non-equilibrium entanglement networks in spincast thin polymer films
NASA Astrophysics Data System (ADS)
Dalnoki-Veress, Kari; McGraw, Joshua; Fowler, Paul
2012-02-01
Measuring the rheology of non-equilibrium thin polymer films has received significant attention recently. Experiments are typically performed on thin polymer films that inherit their structure from spin coating. While the results of several rheological experiments paint a clear picture, details of molecular configurations in spincast polymer films are still unknown. Here we present the results of crazing measurements which demonstrate that the effective entanglement density of thin polymer films changes as a function of annealing toward a stable equilibrium value. The effective entanglement density plateaus with a time scale on the same order as the bulk reptation time.
NASA Astrophysics Data System (ADS)
Zartman, Gregory; Wang, Yangyang; Wang, Shi-Qing
2009-03-01
Large amplitude oscillatory shear (LAOS) experiments were carried out on a series of entangled monodisperse styrene-butadiene random copolymers (SBR). The deformation field during the measurements was monitored with a particle-tracking velocimetric technique. It was found that when the applied frequency was higher than the overall relaxation rate of the sample, the entangled melt would undergo uniform deformation at small strains, but exhibit shear banding at large strains. The inhomogeneity of the deformation field suggests that yielding through chain disentanglement cannot take place uniformly. This is the first report of shear banding in LAOS for melts and consequently rules out any speculation that shear banding could originate from concentration variation (due to shear induced phase separation) in entangled solutions.
Solid-like rheological response of non-entangled polymers in the molten state.
Mendil, H; Baroni, P; Noirez, L
2006-01-01
We show that non-entangled polymers display an elastic-like behaviour at a macroscopic scale (probed at some 0.100 mm thickness) up to at least hundred degrees above the glass transition temperature. This observation, found under non-slippage conditions, both for side-chain liquid crystalline polymers and ordinary polymers, is in contradiction with the typically found flow behaviour of polymer melt. Our measurements were carried out with a conventional rheometer at thicknesses of several tenths millimetres. Thus, we were probing bulk properties. The observed elasticity supposedly implies that even in the melt the chains experience a cohesive effect of macroscopic distances, involving collective motions over time scales longer than the individual relaxation time of an individual polymer chain. The detection of such a solid-like property of molten non-entangled polymers is of considerable importance for a better understanding of the polymer dynamics. PMID:16432635
Solid-like rheological response of non-entangled polymers in the molten state
NASA Astrophysics Data System (ADS)
Mendil, H.; Baroni, P.; Noirez, L.
2006-01-01
We show that non-entangled polymers display an elastic-like behaviour at a macroscopic scale (probed at some 0.100;mm thickness) up to at least hundred degrees above the glass transition temperature. This observation, found under non-slippage conditions, both for side-chain liquid crystalline polymers and ordinary polymers, is in contradiction with the typically found flow behaviour of polymer melt. Our measurements were carried out with a conventional rheometer at thicknesses of several tenths millimetres. Thus, we were probing bulk properties. The observed elasticity supposedly implies that even in the melt the chains experience a cohesive effect of macroscopic distances, involving collective motions over time scales longer than the individual relaxation time of an individual polymer chain. The detection of such a solid-like property of molten non-entangled polymers is of considerable importance for a better understanding of the polymer dynamics.
Failure behavior after stepwise uniaxial extension of entangled polymer melts
Sun, Hao; Lin, Panpan; Liu, Gengxin; Ntetsikas, Konstantinos; Misichronis, Konstantinos; Kang, Nam-Goo; Liu, Jianning; Avgeropoulos, Apostolos; Mays, Jimmy; Wang, Shi-Qing
2015-01-01
This work studies how stepwise extension of various well-entangled polymer melts produce mechanical/structural breakdowns during stress relaxation. Depending on how stepwise extension is imposed on five different styrene-butadiene random copolymers, two different forms of specimen failure are observed. When a step extension is produced with a low Hencky rate or to a low strain below some thresholds, the sample breaks up rather sharply after an appreciable period of induction during which the stress relaxes quiescently. After step extension, the sample draws and undergoes unsustainable necking due to shear yielding, if the step extension is produced with a Hencky rate highermore » than the Rouse relaxation rate and the magnitude is beyond a Hencky strain of 1.5. Moreover, introduction of long-chain branching suppresses the elastic breakup, postponing it to Hencky strains beyond 2.5. The clearly identifiable characteristics of the elastic yielding may be understood in terms of some speculative interpretations. More convincing explanations have yet to come from future computer experiments that hopefully the present work is able to motivate.« less
Failure behavior after stepwise uniaxial extension of entangled polymer melts
Sun, Hao; Lin, Panpan; Liu, Gengxin; Ntetsikas, Konstantinos; Misichronis, Konstantinos; Kang, Nam-Goo; Liu, Jianning; Avgeropoulos, Apostolos; Mays, Jimmy; Wang, Shi-Qing
2015-01-01
This work studies how stepwise extension of various well-entangled polymer melts produce mechanical/structural breakdowns during stress relaxation. Depending on how stepwise extension is imposed on five different styrene-butadiene random copolymers, two different forms of specimen failure are observed. When a step extension is produced with a low Hencky rate or to a low strain below some thresholds, the sample breaks up rather sharply after an appreciable period of induction during which the stress relaxes quiescently. After step extension, the sample draws and undergoes unsustainable necking due to shear yielding, if the step extension is produced with a Hencky rate higher than the Rouse relaxation rate and the magnitude is beyond a Hencky strain of 1.5. Moreover, introduction of long-chain branching suppresses the elastic breakup, postponing it to Hencky strains beyond 2.5. The clearly identifiable characteristics of the elastic yielding may be understood in terms of some speculative interpretations. More convincing explanations have yet to come from future computer experiments that hopefully the present work is able to motivate.
NASA Astrophysics Data System (ADS)
Grest, Gary S.
2008-03-01
Twenty years ago at the APS March Meeting, Kurt Kremer and I presented the first numerical evidence from computer simulations that the reptation model of Edwards and de Gennes correctly describes the dynamics of entangled linear polymer melts. For chains longer than the entanglement length Ne, the monomers of a chain move predominantly along their own contour. The distinctive signature of reptation dynamics, which we observed, was that on intermediate time scales, the mean squared displacement of a monomer increases with time as t^ 1/4. Though these early simulations were limited to chains of a few Ne, they demonstrated the potential of computer simulations to contribute to our understanding of polymer dynamics. Here I will review the progress over the past twenty years and present an outlook for the future in modeling entangled polymer melts and networks. With present day computers coupled with efficient parallel molecular dynamics codes, it is now possible to follow the equilibrium dynamics of chains of length 10-20Ne from the early Rouse regime to the long time diffusive regime. Result of these simulations support the earlier results obtained on chains of only a few Ne. Further evidence for the tube models of polymer dynamics has been obtained by identifying the primitive path mesh that characterizes the microscopic topological state of the computer- generated conformations of the chains. In particular, the plateau moduli derived on the basis of this analysis quantitatively reproduce experimental data for a wide spectrum of entangled polymer liquids including semi-dilute theta solutions of synthetic polymers, the corresponding dense melts, and solutions of semi-flexible (bio)polymers such as f-actin or suspensions of rodlike viruses. We also find that in agreement with the reptation model, the stress, end-to-end distance and entanglement length of an entangled melt subjected to uniaxial elongation, all relax on the same time scale.
NASA Astrophysics Data System (ADS)
Uneyama, Takashi; Akimoto, Takuma; Miyaguchi, Tomoshige
2012-09-01
In entangled polymer systems, there are several characteristic time scales, such as the entanglement time and the disengagement time. In molecular simulations, the longest relaxation time (the disengagement time) can be determined by the mean square displacement (MSD) of a segment or by the shear relaxation modulus. Here, we propose the relative fluctuation analysis method, which is originally developed for characterizing large fluctuations, to determine the longest relaxation time from the center of mass trajectories of polymer chains (the time-averaged MSDs). Applying the method to simulation data of entangled polymers (by the slip-spring model and the simple reptation model), we provide a clear evidence that the longest relaxation time is estimated as the crossover time in the relative fluctuations.
Huang, Xiaoxi; Zhou, Li-Jing; Voiry, Damien; Chhowalla, Manish; Zou, Xiaoxin; Asefa, Tewodros
2016-07-27
In our quest to make various chemical processes sustainable, the development of facile synthetic routes and inexpensive catalysts can play a central role. Herein we report the synthesis of monodisperse, polyaniline (PANI)-derived mesoporous carbon nanoparticles (PAMCs) that can serve as efficient metal-free electrocatalysts for the hydrogen peroxide reduction reaction (HPRR) as well as the oxygen reduction reaction (ORR) in fuel cells. The materials are synthesized by polymerization of aniline with the aid of (NH4)2S2O8 as oxidant and colloidal silica nanoparticles as templates, then carbonization of the resulting PANI/silica composite material at different high temperatures, and finally removal of the silica templates from the carbonized products. The PAMC materials that are synthesized under optimized synthetic conditions possess monodisperse mesoporous carbon nanoparticles with an average size of 128 ± 12 nm and an average pore size of ca. 12 nm. Compared with Co3O4, a commonly used electrocatalyst for HPRR, these materials show much better catalytic activity for this reaction. In addition, unlike Co3O4, the PAMCs remain relatively stable during the reaction, under both basic and acidic conditions. The nanoparticles also show good electrocatalytic activity toward ORR. Based on the experimental results, PAMCs' excellent electrocatalytic activity is attributed partly to their heteroatom dopants and/or intrinsic defect sites created by vacancies in their structures and partly to their high porosity and surface area. The reported synthetic method is equally applicable to other polymeric precursors (e.g., polypyrrole (PPY)), which also produces monodisperse, mesoporous carbon nanoparticles in the same way. The resulting materials are potentially useful not only for electrocatalysis of HPRR and ORR in fuel cells but also for other applications where high surface area, small sized, nanostructured carbon materials are generally useful for (e.g., adsorption
Goujon, Florent; Malfreyt, Patrice; Tildesley, Dominic J
2008-07-21
We use a simple spring-spring repulsion to model entanglements between polymers in dissipative particle dynamics (DPD) simulations. The model is applied to a polymer brushes system to study lubrication. We demonstrate that this method leads to mechanical equilibrium in polymer brushes using the normal DPD time step. The number of bond crossings is calculated to provide a quantitative description of the entanglement. We demonstrate that it is possible to avoid 99% of the bond crossings with the values of spring-spring repulsion that can be used without significantly decreasing the time step. A shear force is applied to the system to study the effect of the decrease in the bond crossings on the structure and rheological properties of the brushes. In particular, we show how the friction coefficient increases with the decrease in the bond crossings of the polymers. PMID:18647043
Horák, Daniel; Kučerová, Jana; Korecká, Lucie; Jankovičová, Barbora; Palarčík, Jiří; Mikulášek, Petr; Bílková, Zuzana
2012-05-01
Magnetic macroporous PGMA and PHEMA microspheres containing carboxyl groups are synthesized by multi-step swelling and polymerization followed by precipitation of iron oxide inside the pores. The microspheres are characterized by SEM, IR spectroscopy, AAS, and zeta-potential measurements. Their functional groups enable bioactive ligands of various sizes and chemical structures to couple covalently. The applicability of these monodisperse magnetic microspheres in biospecific catalysis and bioaffinity separation is confirmed by coupling with the enzyme trypsin and huIgG. Trypsin-modified magnetic PGMA-COOH and PHEMA-COOH microspheres are investigated in terms of their enzyme activity, operational and storage stability. The presence of IgG molecules on microspheres is confirmed. PMID:22411761
Visco-elasticity of bottlebrush polymer melts: Pushing the lower limit of the entanglement modulus
NASA Astrophysics Data System (ADS)
Daniel, William; Burdynska, Joanna; Dobrynin, Andrey; Matyjaszewski, Krzysztof; Rubinstein, Michael; Sheiko, Sergei; Materials Interdisciplinary Research Team @ UNC Chapel Hill Team
2015-03-01
Without swelling in a solvent, it is challenging to obtain materials with a modulus below ca.105 Pa, which is dictated by chain entanglements. Here we analyze the densely grafted molecular brush architecture to create solvent-free neat polymer melts and elastomers with plateau moduli down to hundred Pa. Such materials are theorized to behave as linear chains with rescaled dimensions of the entanglement strand due to the increase in both width and persistence length of polymer bottlebrushes. This simple rescaling leads to a prediction that entanglement modulus decreases with the degree of polymerization (DP) of the sidechains to the -1.5 power. Experimental evidence gives a remarkably close power of -1.38 +/- 0.05 with moduli in the hundreds of Pascals for long sidechains with DP ≅100. The experimental data have been fit using a combination of the Rouse relaxation and double reputation models lending further evidence that bottlebrush polymer behave as linear polymers with large entanglement weights and longer persistence lengths. With the addition of crystallizable block it will be possible to control the crosslinking density and design ultrasoft shapememory materials for use in mechanically sensitive applications. NSF DMR-1407645, DMR-1122483.
Apparatus for and method of producing monodisperse submicron polymer powders from solution
Noid, Donald W.; Otaigbe, Joshua U.; Barnes, Michael D.; Sumpter, Bobby G.; Kung, Chung-Yi
2002-01-01
This invention describes a method of producing polymer powders from solution in a compatible solvent using a new device referred to as a microdroplets on demand generator (MODG). The embodiment of this invention is the MODG apparatus and its relevance as a method to extensive application in materials science and technology. Proof of concept is demonstrated using poly(ethylene) glycol polymer microparticles generated with the MODG and captured in a microparticle levitation device.
Self-Similar Conformations and Dynamics of Non-Concatenated Entangled Ring Polymers
NASA Astrophysics Data System (ADS)
Ge, Ting
A scaling model of self-similar conformations and dynamics of non-concatenated entangled ring polymers is developed. Topological constraints force these ring polymers into compact conformations with fractal dimension D =3 that we call fractal loopy globules (FLGs). This result is based on the conjecture that the overlap parameter of loops on all length scales is equal to the Kavassalis-Noolandi number 10-20. The dynamics of entangled rings is self-similar, and proceeds as loops of increasing sizes are rearranged progressively at their respective diffusion times. The topological constraints associated with smaller rearranged loops affect the dynamics of larger loops by increasing the effective friction coefficient, but have no influence on the tubes confining larger loops. Therefore, the tube diameter defined as the average spacing between relevant topological constraints increases with time, leading to ``tube dilation''. Analysis of the primitive paths in molecular dynamics (MD) simulations suggests complete tube dilation with the tube diameter on the order of the time-dependent characteristic loop size. A characteristic loop at time t is defined as a ring section that has diffused a distance of its size during time t. We derive dynamic scaling exponents in terms of fractal dimensions of an entangled ring and the underlying primitive path and a parameter characterizing the extent of tube dilation. The results reproduce the predictions of different dynamic models of a single non-concatenated entangled ring. We demonstrate that traditional generalization of single-ring models to multi-ring dynamics is not self-consistent and develop a FLG model with self-consistent multi-ring dynamics and complete tube dilation. Various dynamic scaling exponents predicted by the self-consistent FLG model are consistent with recent computer simulations and experiments. We also perform MD simulations of nanoparticle (NP) diffusion in melts of non-concatenated entangled ring polymers
Distortion of chain conformation and reduced entanglement in polymer-graphene oxide nanocomposites
NASA Astrophysics Data System (ADS)
Weir, Michael; Boothroyd, Stephen; Johnson, David; Thompson, Richard; Coleman, Karl; Clarke, Nigel
Graphene and related two-dimensional materials are excellent candidates as filler materials in polymer nanocomposites due to their extraordinary physical properties and high aspect ratio. To explore the mechanism by which the filler affects the bulk properties of these unique systems, and to build understanding from the macromolecular level upwards, we use a combination of small-angle neutron scattering (SANS) and oscillatory rheology. Where a good dispersion is achieved in poly(methyl methacrylate)-graphene oxide (PMMA-GO) nanocomposites, we observe a reduction in the polymer radius of gyration with increasing GO concentration that is consistent with the predicted behavior of polymer melt chains at a solid interface. We use concepts from thin-film polymer physics to formulate a scaling relation for the reduction in entanglements caused by the GO interfaces. Using these scaling arguments, we utilize SANS results to directly estimate the changes to the elastic plateau modulus of the network of entangled polymer chains, and find a correlation with the measured bulk rheology. We present a direct link between interfacial confinement effects and the bulk polymer nanocomposite properties, whilst demonstrating a model system for measuring thin film polymer physics in the bulk.
Leng, Yuxiao; Bai, Feifei; Ye, Gang; Wei, Jichao; Wang, Jianchen; Chen, Jing
2013-07-01
Strontium{sup 90} is one of the typical fission products that may be found in high level liquid waste (HLLW). Separation of Sr{sup 90} prior to the vitrification is beneficial to the final treatment of solid radioactive waste. In this study, a new class of sorbent for Sr(II) was developed by loading the macrocyclic ether DtBuCH18C6 into the monodisperse porous polymer particles (MPPPs). The MPPPs are well-known as a promising chromatographic material due to the uniform particle size, porous morphology, good compatibility with organic extractants, and rigid matrix. The structure and micro-morphology of the sorbent particles were characterized. The adsorption behavior towards Sr(II) in HNO{sub 3} media was investigated by both batch and column experiments. High adsorption efficiency and selective separation of Sr(II) was obtained. The sorbent particles can be recycled for at least several times before obvious lose of the adsorption ability. This kind of sorbent possesses the potential to be used for strontium separation in radioactive liquid waste.
Song, Yang; Du, Yi; Lv, Dachao; Ye, Gang; Wang, Jianchen
2014-06-15
Separation of strontium is of great significance for radioactive waste treatment and environmental remediation after nuclear accidents. In this work, a novel class of adsorbent (Crown-g-MPPPs) was synthesized by chemical grafting a macrocyclic ether receptor to monodisperse porous polymer particles (MPPPs) for strontium adsorption. Meanwhile, a counterpart material (Crown@MPPPs) with the receptor molecules immobilized to the MPPPs substrate by physical impregnation was prepared. To investigate how the immobilization manner and distribution of the receptors influence the adsorption ability, a comparative study on the adsorption behaviour of the two materials towards Sr(II) in HNO3 media was accomplished. Due to the shorter diffusion path and covalently-bonded structure, Crown-g-MPPPs showed faster adsorption kinetics and better stability for cycle use. While Crown@MPPPs had the advantages of facile synthesis and higher adsorption capacity, owing to the absence of conformational constraint to form complexation with Sr(II). Kinetic functions (Lagergren pseudo-first-order/pseudo-second-order functions) and adsorption isotherm models (Langmuir/Freundlich models) were used to fit the experimental data and examine the adsorption mechanism. On this basis, a chromatographic process was proposed by using Crown@MPPPs for an effective separation of Sr(II) (91%) in simulated high level liquid waste (HLLW). PMID:24794813
Diffusion in Entangled and Surface Modified Polymer Systems
NASA Astrophysics Data System (ADS)
Tead, Stanley Fromm
Ion beam analysis techniques were used to measure the concentration vs. depth profiles of deuterium labelled polymer molecules in unlabeled and/or chemically dissimilar polymer melts, for several polymer systems. In the first polymer system, the tracer diffusion coefficient of deuterated polystyrene (d-PS) molecules was measured in polystyrene (PS) matrices which were blends of high molecular weight (volume fraction phi) and low molecular weight PS. The dependence of the d-PS diffusion coefficient on phi was quantitatively predicted by the models of reptation and constraint release. In the second polymer system, diffusion of polystyrenes was studied with ring shaped chains substituted (instead of linear ones) in the tracer and/or matrix roles. The diffusion of linear tracers into ring matrices was nearly identical to linear tracer diffusion in linear matrices, a result not predicted by any current theories. Dry etching of polystyrene by four different ion and plasma methods crosslinked the exposed surface monolayer, immobilizing it and reducing its permeability to diffusion by unetched tracer molecules. The integrated thickness of the immobile layer is decreased for an increased ratio of chain scission to crosslinking. The ratio is smallest for reactive ion beam etching, intermediate for reactive ion etching, and largest for the pure plasma techniques. Diffusion was investigated in systems of the polymer polyimide (PI), produced by the imidization of polyamic acid at a temperature T_{rm i }. The effects of thermal processing (imidization) of the polymer and exposure to solvents were studied. The diffusion of deuterated polyamic acid in PI was reduced to negligible levels for T_{rm i}'s at or above 200^circ C; purely thermally activated diffusion (in the absence of solvents) was not seen for any combination of annealing temperatures up to 400^circ C. Ion beam analysis methods were developed to measure the kinetics and depth dependence of the imidization reaction in
NASA Astrophysics Data System (ADS)
Larson, Ron
2007-03-01
Using concepts developed over the years by de Gennes, Doi, Edwards, Marrucci, Rubinstein, McLeish, Milner, and others, a kind of ``standard model'' for entangled polymer relaxation and rheology has been developed, which, like the ``standard model'' of high-energy physics, has a number of ad hoc assumptions and fitting parameters. The ``standard model'' of polymer relaxation is based on a phenomenological ``tube'' surrounding each polymer chain that represents the effect on that chain of non-crossability constraints imposed by surrounding chains. As a result of its confinement to the tube, the chain relaxes by reptation -- or sliding along the tube, accordion-like fluctuations of the chain within the tube, and movement of, or dilation of, the tube due to motion of the surrounding chains creating the tube-like region. Increasing computer speed and advanced simulation methods are now making possible the direct molecular dynamics simulations of entangled polymers resolved at the monomer scale, over time scales sufficient to test the underlying assumptions of the tube model and allow direct calculation of some of the phenomenological parameters. Here we illustrate how these simulations allow us to estimate the distribution of tube lengths, the average diameter of the tube, and the mobility of the branch point in a simple ``star'' branched polymer. These findings confirm the validity of the tube ansatz, but suggest that some corrections to the ``standard model'' may be needed.
Dynamic scaling in entangled mean-field gelation polymers.
Das, Chinmay; Read, Daniel J; Kelmanson, Mark A; McLeish, Tom C B
2006-07-01
We present a simple reaction kinetics model to describe the polymer synthesis used by Lusignan et al. [Phys. Rev. E 60, 5657 (1999)] to produce randomly branched polymers in the vulcanization class. Numerical solution of the rate equations gives probabilities for different connections in the final product, which we use to generate a numerical ensemble of representative molecules. All structural quantities probed in the experiments are in quantitative agreement with our results for the entire range of molecular weights considered. However, with detailed topological information available in our calculations, our estimate of the "rheologically relevant" linear segment length is smaller than that estimated from the experimental results. We use a numerical method based on a tube model of polymer melts to calculate the rheological properties of such molecules. Results are in good agreement with experiment, except that in the case of the largest molecular weight samples our estimate of the zero-shear viscosity is significantly lower than the experimental findings. Using acid concentration as an indicator for closeness to the gelation transition, we show that the high-molecular-weight polymers considered are at the limit of mean-field behavior--which possibly is the reason for this disagreement. For a truly mean-field gelation class of model polymers, we numerically calculate the rheological properties for a range of segment lengths. Our calculations show that the tube theory with dynamical dilation predicts that, very close to the gelation limit, the contribution to viscosity for this class of polymers is dominated by the contribution from constraint-release Rouse motion and the final viscosity exponent approaches a Rouse-like value. PMID:16907093
Structure and Entanglement Factors on Dynamics of Polymer Grafted Magnetic Nanoparticles
NASA Astrophysics Data System (ADS)
Liu, Siqi; Senses, Erkan; Jiao, Yang; Narayanan, Suresh; Akcora, Pinar
Magnetic nanoparticles functionalized with long polymer chains at low graft density are interesting systems to study structure-dynamic relationships in polymer nanocomposites since they are shown to aggregate into strings in both solution and melts, and also into spheres and branched aggregates in the presence of free polymer chains. This work investigates the structure, free volume and entanglement effects in composites of polystyrene grafted iron oxide nanoparticles by measuring particle dynamics with x-ray photon correlation spectroscopy technique. Particles of highly ordered strings and aggregated systems follow heterogeneous dynamics commonly observed in jammed soft glassy systems and other nanocomposites. On the other hand, particle dynamics becomes diffusive in branched structures which could be caused by the less penetration of long matrix chains into the brushes. These results show that particle dynamics is dictated through the strong interactions of low graft density chains with the host polymer.
Localization and elasticity in entangled polymer liquids as a mesoscopic glass transition
NASA Astrophysics Data System (ADS)
Schweizer, Kenneth
2010-03-01
The reptation-tube model is widely viewed as the correct zeroth order model for entangled linear polymer dynamics under quiescent conditions. Its key ansatz is the existence of a mesoscopic dynamical length scale that prohibits transverse chain motion beyond a tube diameter of order 3-10 nm. However, the theory is phenomenological and lacks a microscopic foundation, and many fundamental questions remain unanswered. These include: (i) where does the confining tube field come from and can it be derived from statistical mechanics? (ii) what is the microscopic origin of the magnitude, and power law scaling with concentration and packing length, of the plateau shear modulus? (iii) is the tube diameter time-dependent? (iv) does the confinement field contribute to elasticity ? (v) do entanglement constraints have a finite strength? Building on our new force-level theories for the dynamical crossover and activated barrier hopping in glassy colloidal suspensions and polymer melts, a first principles self-consistent theory has been developed for entangled polymers. Its basic physical elements, and initial results that address the questions posed above, will be presented. The key idea is that beyond a critical degree of polymerization, the chain connectivity and excluded volume induced intermolecular correlation hole drives temporary localization on an intermediate length scale resulting in a mesoscopic ``ideal kinetic glass transition.'' Large scale isotropic motion is effectively quenched due to the emergence of chain length dependent entropic barriers. However, the barrier height is not infinite, resulting in softening of harmonic localization at large displacements, temporal increase of the confining length scale, and a finite strength of entanglement constraints which can be destroyed by applied stress.
Protein encapsulation in and release from monodisperse double-wall polymer microspheres
Xia, Yujie; Xu, Qingxing; Wang, Chi-Hwa; Pack, Daniel W.
2014-01-01
Biodegradable polymer double-wall microspheres (DWMS) are promising vehicles for macromolecular therapeutics such as proteins and peptides. Using precision particle fabrication (PPF) technology, uniform DWMS with outer diameter ~55 μm were fabricated comprising poly(lactide-co-glycolide) cores encapsulating bovine serum albumin (BSA) and ~10 μm thick, drug-free, poly(lactic acid) shells of varying PLA molecular weight. Also, monolithic single-wall microspheres (SWMS) were fabricated to mimic the BSA-loaded core. The use of relatively fast extracting ethyl acetate and slowly extracting dichloromethane as shell- and core-phase solvents, respectively, was found to produce DWMS with well-defined core-shell structure, high BSA encapsulation efficiency, and the desired localization of protein in the particle core. Initial protein distribution, particle erosion, and in vitro protein release from DWMS and SWMS were examined. The presence of a BSA-free shell in DWMS decreased the protein release rate and extended the duration of release from ~50 days to 70-80 days, demonstrating the capacity of such DWMS to provide enhanced control of protein delivery rates. PMID:23529836
Liang, Guodong; Ni, Huan; Bao, Suping; Zhu, Fangming; Gao, Haiyang; Wu, Qing; Tang, Ben Zhong
2014-06-01
A class of new amphiphilic nanocapsules entangled with organometallic coordination polymers has been developed for the first time. Poly(2-(N,N-dimethyl amino)ethyl methacrylate)-b-polystyrene capped with β-cyclodextrin (β-CD) (CD-PDMAEMA-b-PS) is first synthesized using sequent RAFT polymerization of styrene and 2-(N,N-dimethyl amino)ethyl methacrylate with xanthate modified β-CD as chain transfer agent. The end group of β-CD is allowed to include 4,4'-bipyridine through host-guest inclusion to yield PDMAEMA-b-PS terminated with an inclusion complex of β-CD and bipyridine (bpy-PDMAEMA-b-PS), which is then used as surfactant to prepare emulsion droplets in toluene/water mixture. Upon addition of Ni(II), bipyridine coordinates with Ni(II) to form coordination polymers in the periphery of emulsion droplets, affording amphiphilic capsules entangled with organometallic coordination polymers, as confirmed by GPC, (1)H NMR, SEM, TEM, DLS, and so on. The organometallic coordination polymer capsules are capable of encapsulating organic cargoes. Interestingly, encapsulated cargoes can be extracted from the capsules without damaging the capsules. Such capsules are potential candidates for encapsulating and controlled release of organic cargoes. PMID:24828951
Relaxation of non-equilibrium entanglement networks in thin polymer films.
McGraw, Joshua D; Fowler, Paul D; Ferrari, Melissa L; Dalnoki-Veress, Kari
2013-01-01
It is known that polymer films, prepared by spin coating, inherit non-equilibrium configurations which can affect macroscopic film properties. Here we present the results of crazing experiments that support this claim; our measurements indicate that the as-cast chain configurations are strongly stretched as compared to equilibrium Gaussian configurations. The results of our experiments also demonstrate that the entanglement network equilibrates on a time scale comparable to one reptation time. Having established that films can be prepared with an equilibrium entanglement network, we proceed by confining polymers to films in which the thickness is comparable to the molecular size. By stacking two such films, a bilayer is created with a buried entropic interface. Such an interface has no enthalpic cost, only an entropic penalty associated with the restricted configurations of molecules that cannot cross the mid-plane of the bilayer. In the melt, the entropic interface heals as chains from the two layers mix and entangle with one another; crazing measurements allow us to probe the dynamics of two films becoming one. Healing of the entropic interface is found to take less than one bulk reptation time. PMID:23355094
NASA Astrophysics Data System (ADS)
Karim, Mir; Indei, Tsutomu; Schieber, Jay D.; Khare, Rajesh
2016-01-01
Particle rheology is used to extract the linear viscoelastic properties of an entangled polymer melt from molecular dynamics simulations. The motion of a stiff, approximately spherical particle is tracked in both passive and active modes. We demonstrate that the dynamic modulus of the melt can be extracted under certain limitations using this technique. As shown before for unentangled chains [Karim et al., Phys. Rev. E 86, 051501 (2012), 10.1103/PhysRevE.86.051501], the frequency range of applicability is substantially expanded when both particle and medium inertia are properly accounted for by using our inertial version of the generalized Stokes-Einstein relation (IGSER). The system used here introduces an entanglement length dT, in addition to those length scales already relevant: monomer bead size d , probe size R , polymer radius of gyration Rg, simulation box size L , shear wave penetration length Δ , and wave period Λ . Previously, we demonstrated a number of restrictions necessary to obtain the relevant fluid properties: continuum approximation breaks down when d ≳Λ ; medium inertia is important and IGSER is required when R ≳Λ ; and the probe should not experience hydrodynamic interaction with its periodic images, L ≳Δ . These restrictions are also observed here. A simple scaling argument for entangled polymers shows that the simulation box size must scale with polymer molecular weight as Mw3. Continuum analysis requires the existence of an added mass to the probe particle from the entrained medium but was not observed in the earlier work for unentangled chains. We confirm here that this added mass is necessary only when the thickness LS of the shell around the particle that contains the added mass, LS>d . We also demonstrate that the IGSER can be used to predict particle displacement over a given timescale from knowledge of medium viscoelasticity; such ability will be of interest for designing nanoparticle-based drug delivery.
Large-scale diffusion of entangled polymers along nanochannels
NASA Astrophysics Data System (ADS)
Saalwachter, Kay; Lange, Frank; Steinhart, Martin; Judeinstein, Patrick
2015-03-01
Confinement-induced changes in polymer mobility are still under active discussion. For weakly interacting poly(butadiene) chains in 100 μm long, 20 and 60 nm wide channels in anodic Al2O3, we here report on the study of the large-scale pore-averaged self diffusion on a μm scale by 1H pulsed-gradient NMR. We find weak indications of an acceleration due to surface-induced disentanglement. Unlike previous reports on polymer diffusion into particle nanocomposites of similar confinement scale, or start-up diffusivities out of even thinner films, we find an MW and temperature independent reduction of diffusivity that is solely determined by the confinement size. We rationalize this trend by a simple volume-average model, which suggests a 20-fold surface-enhanced monomeric friction on the scale of the packing length, which can be compared to a factor of 300 that our model predicts for comparable thin-film data of poly(styrene) on silica.
First-Passage Time in Entangled Star Polymers Melts
NASA Astrophysics Data System (ADS)
Cao, Jing; Zhu, Jian; Wang, Zuowei; Likhtman, Alexei
2015-03-01
For a single star polymer in a melt of extremely long linear chains, the stress of star polymer relaxes by arm-retraction in which the star arms explore new configurations by withdrawing along their tubes and stretching out towards a new direction. Pearson and Helfand proposed that the arm in the tube can be represented as a harmonic spring with an applied thermal tension such that the arm-end feels an entropic force if it fluctuates away from its equilibrium position. We have investigated the first-passage(FP) time of the destruction of tube segments by representing the arm as a one-dimensional Rouse chain. In contrast, we found that the disengagement of a tube segment is getting faster with more Rouse modes added in, which means the FP problem has to be modelled by a multi-dimensional Kramer's problem. We found a new way of solving the multi-dimensional FP problem by projecting the problem along the most probable trajectory termed ``minimal action trajectory'' and correcting it by entropy term. In addition, we performed direct and forward-flux simulations of Rouse chains of different lengths. A good agreement between the analytical calculations and simulations was achieved for both discrete and continuous Rouse chains.
Stress-Strain Relation of Tire Rubber Consist of Entangled Polymers, Fillers and Crosslink
NASA Astrophysics Data System (ADS)
Hagita, Katsumi; Bito, Y.; Minagawa, Y.; Omiya, M.; Morita, H.; Doi, M.; Takano, H.
2009-03-01
We presented a preliminary result of large scale coarse-grained Molecular Dynamics simulation of filled polymer melts with Sulfur-crosslink under an uni-axial deformation by using the Kremer-Grest Model. The size of simulation box under periodic boundary conditions (PBC) is set to about 66nm to consider length of entangled polymer chains, size and structure of fillers, and non-uniform distribution of crosslink. We put 640 polymer chains of 1024 particles and 32 fillers into the PBC box. Each filler consists of 1280 particles of the C1280 fullerene structure. A repulsive force from the center of the filler is applied to the particles. Here, the particles of the fillers are chosen to be the same as the particles of the polymers and the diameter of the filler is about 15nm. The distribution of the fillers used in this simulation is provided by the result of 2d pattern RMC analysis for 2D-USAXS experiments at SPring-8. Sulfur crosslink are randomly distributed in the system. It is found that stress-strain curves estimated by applying a certain uni-axial deformation to the system in simulations are in good agreement with those in experiments. It is successful to show difference on the S-S curve between existence / absence of fillers and qualitative dependence of attractive force between polymer and filler.
Relaxation of non-equilibrium entanglement networks in thin polymer films
NASA Astrophysics Data System (ADS)
Fowler, Paul; McGraw, Joshua; Ferrari, Melissa; Dalnoki-Veress, Kari
2013-03-01
It is well established that polymer films, prepared by spincoating, inherit non-equilibrium chain conformations which can affect macroscopic film properties. Here we present the results of crazing measurements that elucidate the non-equilibirum chain configurations in spin-cast films. Furthermore, we find that the entanglement network equilibrates on a time scale comparable to one reptation time. In a second set of experiments, we confine polymers to films with thickness comparable to the molecular size. By stacking two such films at room temperature, a glassy bilayer film with a buried entropic interface is created. According to Silberberg's reflection principle, such an interface has an entropic cost associated with the restricted configurations of molecules that cannot cross the mid-plane of the bilayer. In the melt, the interface heals as chains from the two layers mix and entangle with one another. Crazing measurements reveal that it takes less than one bulk reptation time for a bilayer to become indistinguishable from a single film.
A Microscopic Model for Diffusion of a Polymer Chain in the Entangled Regime
NASA Astrophysics Data System (ADS)
Canpolat, Murat; Erzan, Ayþe; Pekcan, Önder
1997-01-01
In the entangled regime the reptation concept [1,2] is the most successful in describing the dynamical behavior of a single chain. Using scaling concepts some quantities such as translational diffussion coefficient for the polymer center of mass Dtr, and renewal time {t} [3] have been calculated in the reptation model. This model is used for representing the low-frequency motions of a polymer molecule in a fluid of entangled chains, neglecting rapid relaxation processes that are attributed to local conformal transitions of backbone. Helfand and collabrators have studied the kinetics of conformational transitions in chain molecules, and they find that single-bond rotations followed by the compensating rearrangement of neigboring units are predominantly responsible for local motions [4]. Such models have also been considered by Erman and co-workers [5]. The purpose of this study to understand reptation at a microscopic level. We consedir rapid relaxation processes, that are singlet- or double -bond rotations; motion along the contour of the chain is due to displacments caused by rearangements of the neighboring units. We recover the usual scaling behavior of the diffusion coefficients and relaxation times with the chain mass. Moreover, the effective activation energy that is found from the local jump model for translational motion of the chain center of mass compares favorably with experiment and is independent of the molecular weight for large enough chains [6]. We are also able to account for the apparent temperature of this "activation energy".
Engineered monodisperse mesoporous materials
Saunders, R.S.; Small, J.H.; Lagasse, R.R.; Schroeder, J.L.; Jamison, G.M.
1997-08-01
Porous materials technology has developed products with a wide variety of pore sizes ranging from 1 angstrom to 100`s of microns and beyond. Beyond 15{angstrom} it becomes difficult to obtain well ordered, monodisperse pores. In this report the authors describe efforts in making novel porous material having monodisperse, controllable pore sizes spanning the mesoporous range (20--500 {angstrom}). They set forth to achieve this by using unique properties associated with block copolymers--two linear homopolymers attached at their ends. Block copolymers phase separate into monodisperse mesophases. They desired to selectively remove one of the phases and leave the other behind, giving the uniform monodisperse pores. To try to achieve this the authors used ring-opening metathesis polymerization to make the block copolymers. They synthesized a wide variety of monomers and surveyed their polymers by TGA, with the idea that one phase could be made thermally labile while the other phase would be thermally stable. In the precipitated and sol-gel processed materials, they determined by porosimetry measurements that micropores, mesopores, and macropores were created. In the film processed sample there was not much porosity present. They moved to a new system that required much lower thermal treatments to thermally remove over 90% of the labile phase. Film casting followed by thermal treatment and solvent extraction produced the desired monodisperse materials (based solely on SEM results). Modeling using Density Functional Theory was also incorporated into this project. The modeling was able to predict accurately the domain size and spacing vs. molecular weight for a model system, as well as accurate interfacial thicknesses.
NASA Astrophysics Data System (ADS)
Ma, Cheng; Zhang, Jinfang; Xu, Mingquan; Xia, Qingbing; Liu, Jiatu; Zhao, Shuai; Chen, Libao; Pan, Anqiang; Ivey, Douglas G.; Wei, Weifeng
2016-06-01
Nanohybrid polymer electrolytes (NHPE) with ceramic particles have attracted significant attention owing to their improvement in electrochemical performance. However, particle aggregation and weak nanoparticle/polymer matrix interaction restrict their further application in lithium-ion batteries (LIBs). We demonstrate a facile in-situ polymerization/crystallization method to synthesize a homogeneous TiO2-grafted NHPE with a cross-linked branching structure, comprised of ion-conducting poly(ethylene glycol) methyl ether methacrylate (PEGMEM) and non-polar stearyl methacrylate (SMA). This technique is different from existing methods of blending functionalized ceramic particles into the polymer matrix. Highly monodispersed TiO2 nanocrystals enhance the effective interfacial interactions between particles and polymer matrix, which suppress the crystallization of ethylene oxide (EO) groups and facilitate forming continuously interconnected ion-conducting channels. Moreover, an increased dissociation degree of Li salt can also be achieved. The TiO2-grafted NHPE exhibits superior electrochemical properties with an ionic conductivity of 1.1 × 10-4 S cm-1 at 30 °C, a high lithium ion transference number and excellent interfacial compatibility with the lithium electrode. In particular, a lithium-ion battery based on TiO2-grafted NHPE demonstrates good C-rate performance, as well as excellent cycling stability with an initial discharge capacity of 153.5 mAh g-1 and a capacity retention of 96% after 300 cycles at 1 C (80 °C).
Liu, Dongfei; Zhang, Hongbo; Herranz-Blanco, Bárbara; Mäkilä, Ermei; Lehto, Vesa-Pekka; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A
2014-05-28
We report an advanced drug delivery platform for combination chemotherapy by concurrently incorporating two different drugs into microcompoistes with ratiometric control over the loading degree. Atorvastatin and celecoxib were selected as model drugs due to their different physicochemical properties and synergetic effect on colorectal cancer prevention and inhibition. To be effective in colorectal cancer prevention and inhibition, the produced microcomposite contained hypromellose acetate succinate, which is insoluble in acidic conditions but highly dissolving at neutral or alkaline pH conditions. Taking advantage of the large pore volume of porous silicon (PSi), atorvastatin was firstly loaded into the PSi matrix, and then encapsulated into the pH-responsive polymer microparticles containing celecoxib by microfluidics in order to obtain multi-drug loaded polymer/PSi microcomposites. The prepared microcomposites showed monodisperse size distribution, multistage pH-response, precise ratiometric controlled loading degree towards the simultaneously loaded drug molecules, and tailored release kinetics of the loaded cargos. This attractive microcomposite platform protects the payloads from being released at low pH-values, and enhances their release at higher pH-values, which can be further used for colon cancer prevention and treatment. Overall, the pH-responsive polymer/PSi-based microcomposite can be used as a universal platform for the delivery of different drug molecules for combination therapy. PMID:24616278
Microscopic Theory for Entangled Polymer Dynamics in Rod-Sphere Nanocomposites
NASA Astrophysics Data System (ADS)
Yamamoto, Umi; Schweizer, Kenneth
2014-03-01
We have developed a self-consistent microscopic theory for the long-time dynamics of needles in an array of static spherical fillers. The approach exactly enforces the dynamical two-body rod topological uncrossability and sphere impenetrability constraints, leading to a generalized concept of entanglements that includes the filler excluded volume effect. How the diffusion anisotropy (transverse versus longitudinal motion) depends on the filler-needle aspect ratio, polymer concentration, and filler volume fraction is established. Due to the steric blocking of the longitudinal reptative motion by obstacles, a literal localization transition is predicted that is generically controlled by the ratio of filler diameter to the pure polymer tube diameter or needle length. For a window of filler sizes and loadings, the needle is predicted to diffuse via a ``renormalized'' reptation dynamics where the tube is compressed and the longitudinal motion is retarded in a manner that depends on all system variables. At high filler volume fractions the needle diffusivity is strongly suppressed, and localization ultimately occurs in the unentangled needle regime. Generalization of the approach to treat mobile fillers, flexible chains, and nonrandom microstructure is also possible.
Understanding entangled polymers: What we can learn from athermal chain packings
NASA Astrophysics Data System (ADS)
Karayiannis, Nikos
2012-02-01
The study of random and ordered packings (from atoms and colloidal particles to sand grains) has been the focus of extensive research. This is not surprising since an understanding of the mechanisms that control morphology and packing is the key to the design and synthesis of novel ``smart'' materials and functionalities. In particular, the study of packings of chain molecules presents challenges but also insights which are absent in monatomic systems and further allows for a direction comparison with them. In this contribution we give an overview of our work on very dense and nearly jammed packings of athermal polymers. We show that chain molecules can be as efficiently and as densely packed as monatomic analogs up to the same maximally random jammed state. We also show that an exact correspondence can be established between the statistical-mechanical ensembles of packings of monatomic, and chain systems, which yields insights on the universality of jamming. By studying the effect of concentration on polymer size and on the underlying network of topological hindrances we precisely identify the distinct universal scaling regimes and the corresponding exponents. An unsuspected connection, valid from dilute up to very dense assemblies, is established between knots (of intermolecular origin) and entanglements (intermolecular constraints). We finally show that, against expectations, entropy-driven crystallization can occur in dense systems of athermal polymers once a critical volume fraction is reached. Such phase transition is driven by the increase in translational entropy: ordered sites exhibit enhanced mobility as their local free volume becomes more spherical and symmetric. Incipient nuclei develop well defined, stack-faulted layered crystal morphologies with a single stacking direction. The ordering transition and the resulting complex morphologies are analyzed, highlighting similarities and differences with respect to monatomic crystallization.
NASA Astrophysics Data System (ADS)
Ramírez-Hernández, Abelardo; Peters, Brandon L.; Andreev, Marat; Schieber, Jay D.; de Pablo, Juan J.
2015-12-01
A theoretically informed entangled polymer simulation approach is presented for description of the linear and non-linear rheology of entangled polymer melts. The approach relies on a many-chain representation and introduces the topological effects that arise from the non-crossability of molecules through effective fluctuating interactions, mediated by slip-springs, between neighboring pairs of macromolecules. The total number of slip-springs is not preserved but, instead, it is controlled through a chemical potential that determines the average molecular weight between entanglements. The behavior of the model is discussed in the context of a recent theory for description of homogeneous materials, and its relevance is established by comparing its predictions to experimental linear and non-linear rheology data for a series of well-characterized linear polyisoprene melts. The results are shown to be in quantitative agreement with experiment and suggest that the proposed formalism may also be used to describe the dynamics of inhomogeneous systems, such as composites and copolymers. Importantly, the fundamental connection made here between our many-chain model and the well-established, thermodynamically consistent single-chain mean-field models provides a path to systematic coarse-graining for prediction of polymer rheology in structurally homogeneous and heterogeneous materials.
Ramírez-Hernández, Abelardo; Peters, Brandon L; Andreev, Marat; Schieber, Jay D; de Pablo, Juan J
2015-12-28
A theoretically informed entangled polymer simulation approach is presented for description of the linear and non-linear rheology of entangled polymer melts. The approach relies on a many-chain representation and introduces the topological effects that arise from the non-crossability of molecules through effective fluctuating interactions, mediated by slip-springs, between neighboring pairs of macromolecules. The total number of slip-springs is not preserved but, instead, it is controlled through a chemical potential that determines the average molecular weight between entanglements. The behavior of the model is discussed in the context of a recent theory for description of homogeneous materials, and its relevance is established by comparing its predictions to experimental linear and non-linear rheology data for a series of well-characterized linear polyisoprene melts. The results are shown to be in quantitative agreement with experiment and suggest that the proposed formalism may also be used to describe the dynamics of inhomogeneous systems, such as composites and copolymers. Importantly, the fundamental connection made here between our many-chain model and the well-established, thermodynamically consistent single-chain mean-field models provides a path to systematic coarse-graining for prediction of polymer rheology in structurally homogeneous and heterogeneous materials. PMID:26723632
Ramírez-Hernández, Abelardo Pablo, Juan J. de; Peters, Brandon L.; Andreev, Marat; Schieber, Jay D.
2015-12-28
A theoretically informed entangled polymer simulation approach is presented for description of the linear and non-linear rheology of entangled polymer melts. The approach relies on a many-chain representation and introduces the topological effects that arise from the non-crossability of molecules through effective fluctuating interactions, mediated by slip-springs, between neighboring pairs of macromolecules. The total number of slip-springs is not preserved but, instead, it is controlled through a chemical potential that determines the average molecular weight between entanglements. The behavior of the model is discussed in the context of a recent theory for description of homogeneous materials, and its relevance is established by comparing its predictions to experimental linear and non-linear rheology data for a series of well-characterized linear polyisoprene melts. The results are shown to be in quantitative agreement with experiment and suggest that the proposed formalism may also be used to describe the dynamics of inhomogeneous systems, such as composites and copolymers. Importantly, the fundamental connection made here between our many-chain model and the well-established, thermodynamically consistent single-chain mean-field models provides a path to systematic coarse-graining for prediction of polymer rheology in structurally homogeneous and heterogeneous materials.
Hu, Yougen; Zhao, Tao; Zhu, Pengli; Zhu, Yu; Liang, Xianwen; Sun, Rong; Wong, Ching-Ping
2016-09-01
Silver nanoparticles (AgNPs) were deposited onto the monodispersed carboxylic polystyrene (CPS) spheres by an improved in situ reduction method. The size and coverage density of the AgNPs on the surface of CPS spheres could be easily tailored by tuning the concentrations of carboxylic functional groups and silver precursor. The morphologies and structures of the resulting CPS/Ag hybrid particles were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-Vis-NIR spectrometer and X-ray photoelectron spectroscopy (XPS), etc. The surface enhanced Raman scattering (SERS) performances of the resulting uniform CPS/Ag hybrid particles were investigated using 4-aminobenzenethiol (4-ABT) as the probe molecule. The optimized CPS/Ag hybrid particles show high enhancement factor (EF) of 2.71×10(7) , low limit of detection (LOD) of 10(-10) m and good reproducibility with relative standard deviation (RSD) of 9.64 %. The good SERS improvement properties demonstrate these hybrid particles could be employed as simple and effective substrates in the SERS spectroscopy. PMID:27511618
NASA Astrophysics Data System (ADS)
Wang, Chenxi; Kilfoil, Maria L.
2013-03-01
The high fidelity segregation of chromatin is the central problem in cell mitosis. The role of mechanics underlying this, however, is undetermined. Work in this area has largely focused on cytoskeletal elements of the process. Preliminary work in our lab suggests the mechanical properties of chromatin are fundamental in this process. Nevertheless, the mechanical properties of chromatin in the cellular context are not well-characterized. For better understanding of the role of mechanics in this cellular process, and of the chromatin mechanics in vivo generally, a systematic dynamical description of chromatin in vivo is required. Accordingly, we label specific sites on chromatin with fluorescent proteins of different wave lengths, enabling us to detect multiple spots separately in 3D and track their displacements in time inside living yeast cells. We analyze the pairwise cross-correlated motion between spots as a function of relative distance along the DNA contour. Comparison between the reptation model and our data serves to test our conjecture that chromatin in the cell is basically an entangled polymer network under constraints to thermal motion, and removal of constraints by non-thermal cellular processes is expected to affect its dynamic behavior.
Isolation and Characterization of Monodisperse Core-Shell Nanoparticle Fractions.
Sánchez-Ferrer, Antoni; Carney, Randy P; Stellacci, Francesco; Mezzenga, Raffaele; Isa, Lucio
2015-10-20
Monodispersity is a key property to control the self-assembly of colloidal particles, and is typically reached after fine-tuning of the synthesis conditions. Monodisperse particle fractions can also be separated from polydisperse suspensions via ultracentrifugation. This paper demonstrates the capability of isolating and characterizing suspensions of core-shell iron oxide-polymer nanoparticles with extremely low polydispersity (p < 0.01) and, thus, of complementing nanoparticle synthetic approaches in the pursuit of highly monodisperse materials. PMID:26406563
NASA Astrophysics Data System (ADS)
Steenbakkers, Rudi J. A.; Tzoumanekas, Christos; Li, Ying; Liu, Wing Kam; Kröger, Martin; Schieber, Jay D.
2014-01-01
We present a method to map the full equilibrium distribution of the primitive-path (PP) length, obtained from multi-chain simulations of polymer melts, onto a single-chain mean-field ‘target’ model. Most previous works used the Doi-Edwards tube model as a target. However, the average number of monomers per PP segment, obtained from multi-chain PP networks, has consistently shown a discrepancy of a factor of two with respect to tube-model estimates. Part of the problem is that the tube model neglects fluctuations in the lengths of PP segments, the number of entanglements per chain and the distribution of monomers among PP segments, while all these fluctuations are observed in multi-chain simulations. Here we use a recently proposed slip-link model, which includes fluctuations in all these variables as well as in the spatial positions of the entanglements. This turns out to be essential to obtain qualitative and quantitative agreement with the equilibrium PP-length distribution obtained from multi-chain simulations. By fitting this distribution, we are able to determine two of the three parameters of the model, which govern its equilibrium properties. This mapping is executed for four different linear polymers and for different molecular weights. The two parameters are found to depend on chemistry, but not on molecular weight. The model predicts a constant plateau modulus minus a correction inversely proportional to molecular weight. The value for well-entangled chains, with the parameters determined ab initio, lies in the range of experimental data for the materials investigated.
NASA Astrophysics Data System (ADS)
Lin, Y.-H.; Huang, C.-F.
2008-06-01
The dynamic structure factor (DSF) for single (labeled) chains well entangled in polymer melts has been developed based on the Rouse-Mooney picture; the DSF functions derived from the Langevin equations of the model in both discrete and continuous forms are given. It is shown that for all practical purposes, it is sufficient to use the continuous form to analyze experimental results in the ``safe'' q region (q being the magnitude of the scattering wave vector q) where the Rouse-segment-based theories are applicable. The DSF form reduces to the same limiting form as that of the free Rouse chain as q2a2 or q2R2-->∞ (a and R being the entanglement distance and the root mean square end-to-end distance, respectively), confirming what has been expected physically. The natural reduction to the limiting form allows the full range of DSF curves to be displayed in terms of the reduced Rouse variable q2(Zdt)0.5 in a unified way. The displayed full range represents a framework or ``map,'' with respect to which effects occurring in different regions of the DSF may be located and studied in a consistent manner. One effect is the significant or noticeable deviations of the theoretical DSF curves from the limiting curve in the region ~4>q2(Zdt)0.5>~0.1 (a time region where t<τ1e) to the faster side as qa is in the range 1-5. This is supported by the comparison of the experimental results of an entangled poly(vinylethylene) sample with the theoretical curves. The DSF functional forms predict plateaus with heights depending on the value of q-q-split plateaus-as can be experimentally observed in the time region greater than the relaxation time τ1e of the lowest Rouse-Mooney mode, when qa falls between ~1 and ~7. High sensitivity of the distribution of the q-split plateaus to a enables its value to be extracted from matching the calculated with the experimental results. The thus obtained a value for a well-entangled poly(ethylene-co-butene) polymer is in close agreement with the
Reduced Viscosity of the Free Surface in Entangled Polymer Melt Films
NASA Astrophysics Data System (ADS)
Koga, Tadanori; Li, C.; Endoh, M. K.; Koo, J.; Rafailovich, M.; Narayanan, S.; Lee, D. R.; Lurio, L. B.; Sinha, S. K.
2010-02-01
By embedding “dilute” gold nanoparticles in single polystyrene thin films as “markers”, we probe the local viscosity of the free surface at temperatures far above the glass transition temperature (Tg). The technique used was x-ray photon correlation spectroscopy with resonance-enhanced x-ray scattering. The results clearly showed the surface viscosity is about 30% lower than the rest of the film. We found that this reduction is strongly associated with chain entanglements at the free surface rather than the reduction in Tg.
Nematic effects and strain coupling in entangled polymer melts under strong flow.
Kirkensgaard, Jacob J K; Hengeller, Ludovica; Dorokhin, Andriy; Huang, Qian; Garvey, Christopher J; Almdal, Kristoffer; Hassager, Ole; Mortensen, Kell
2016-08-01
We use small-angle neutron scattering (SANS) to study labeled short chains with and without the influence of an entangled and highly stretched surrounding environment of longer chains. We find unequivocal evidence of nematic effects as the blend chains in steady state flow are stretched a factor ∼1.5 more from the presence of the long chain nematic field. In the pure melt we confirm that the nonaffine mean-field result ν=0.5 for the strain coupling is still valid for very fast flows, while in the nematic system our analysis predicts an increased coupling constant. We provide a structural explanation for the two first regimes of the nonlinear relaxation, particularly a transition regime where the long chains are relaxing in a sea of reptating short chains. PMID:27627228
The conformations of cyclic polymers in bidisperse blends of cyclic polymers
NASA Astrophysics Data System (ADS)
Lang, Michael
2013-03-01
The size of cyclic polymers in bidisperse blends of chemically identical molecules is analyzed by computer simulations. The compression of entangled rings can be explained by the changes in the penetrable fraction of the surface bounded by the ring. Corrections for small rings can be approximated by a concatenation probability 1 -POO that a cyclic polymer entraps at least one other cyclic polymer. Both results are in line with a previous work on the compression of entangled cyclic polymers in monodisperse melts. For entangled cyclic polymers, bond-bond correlations show a constant anti-correlation peak at a curvilinear distance of about ten segments that coincides with a horizontal tangent in the normalized mean square internal distances along the ring for sufficiently large degrees of polymerization. In consequence, the length scale of topological interactions must be considered as constant in contrast to a recent proposal by Sakaue. Our data is not in accord with an extension of the model of Cates and Deutsch to bidiperse blends of ring polymers.
NASA Astrophysics Data System (ADS)
Komlosh, M. E.; Callaghan, P. T.
1998-12-01
Pulsed gradient spin echo nuclear magnetic resonance (NMR) is used to investigate polymer mean-squared segmental displacements in semidilute solutions of high molar mass polystyrene in deuterio-toluene. Nine molar masses from 1 to 20 million daltons are studied at a fixed concentration of 5% w/v, and a range of concentrations from 5% to 20% at fixed molar mass of 3 million daltons. The distance and time scales accessed are 20 to 1000 nm and 10 to 3000 ms, respectively. Evidence for intrachain spin diffusion is found and its effect corrected for. The time dependence of mean-squared segmental displacements is fitted to the predictions of the Doi-Edwards model and tube disengagement times and tube diameters obtained.
Effects of Attractive Interactions on Nanoparticle Diffusion in Entangled Polymer Melts
NASA Astrophysics Data System (ADS)
Griffin, Philip; Clarke, Nigel; Composto, Russell; Winey, Karen
Developing a complete picture for the mechanism of nanoparticle diffusion in model polymer nanocomposites remains a great challenge, especially experimentally. Using Rutherford backscattering spectroscopy, we have measured the translational diffusion coefficient of spherical nanoparticles (diameter = 20 nm) infiltrated into poly(2-vinylpyridine) melts across a range of molecular weights (35-300 kg/mol). Our results reveal that the diffusion coefficient of nanoparticles in attractive nanocomposites is several times slower than what is predicted from the melt viscosity according to the Stokes-Einstein (SE) relation. This runs contrary to recent theoretical studies of non-attractive systems, where it is predicted that nanoparticle diffusion can be many orders of magnitude faster than SE predictions. Potential explanations for this unusual slowing of nanoparticle diffusion are discussed.
Monodisperse aerosol generator
Ortiz, Lawrence W.; Soderholm, Sidney C.
1990-01-01
An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.
Aoki, Hiroshi; Kubo, Takuya; Ikegami, Tohru; Tanaka, Nobuo; Hosoya, Ken; Tokuda, Daisuke; Ishizuka, Norio
2006-06-30
The preparation of polymer-based monolith capillary was examined by the use of glycerol dimethacrylate (GDMA) as monomer and monodisperse standard polystyrene (PS) solution in chlorobenzene as porogen. Poly-GDMA monoliths were prepared in situ in test tubes with standard PS having the variety of molecular weight (defined as Mw hereafter) from 50,000 to 3,840,000, and their morphology was compared to that of poly-GDMA monolith prepared in situ with a poor porogenic solvent of GDMA. According to scanning electron micrograph (SEM) observation, the structure of poly-GDMA monolith prepared in situ with toluene as a poor porogenic solvent showed a typical agglomerated globular structure, whereas the morphology of poly-GDMA monolith prepared in situ with the polymer (PS) porogenic solution was transformed from the aggregated globule form to three dimensionally (3D) continuous skeletal structure with the increase of Mw of standard PS utilized. Along with this morphological transformation or change, in the case of poly-GDMA monolith prepared in situ with ultra high Mw standard PS porogenic solution, the pore size distribution showed a sharp bimodal distribution, with one peak being located around 4 nm in the mesopore range (2-50 nm) and the other peak located around 1-2 microm in the macropore range (>50 nm), respectively. The poly-GDMA capillaries were prepared in situ with toluene, low Mw (50,000, 600,000) PS solution in chlorobenzene and the above mentioned ultra high Mw PS solution in chlorobenzene as a porogen, respectively, and measured by mu-HPLC with benzene and n-alkyl phenyl ketone as solutes for the evaluation in aqueous methanol (MeOH/H(2)O = 50/50-80/20, v/v). The permeability of capillaries prepared in situ with ultra high Mw standard PS polymer porogenic solution was much larger, compared to those of the capillaries prepared in situ with low Mw standard PS polymer porogenic solution or with toluene as porogen. On the other hand, the column efficiency was
NASA Astrophysics Data System (ADS)
Thapliyal, Ashish Vachaspati
Entanglement is an essential element of quantum mechanics. The aim of this work is to explore various properties of entanglement from the viewpoints of both physics and information science, thus providing a unique picture of entanglement from an interdisciplinary point of view. The focus of this work is on quantifying entanglement as a resource. We start with bipartite states, proposing a new measure of bipartite entanglement called entanglement of assistance, showing that bound entangled states of rank two cannot exist, exploring the number of members required in the ensemble achieving the entanglement of formation and the possibility of bound entangled states that are negative under partial transposition (NPT bound entangled states). For multipartite states we introduce the notions of reducibilities and equivalences under entanglement non-increasing operations and we study the relations between various reducibilities and equivalences such as exact and asymptotic LOCC, asymptotic LOCCq, cLOCC, LOc, etc. We use this new language to attempt to quantify entanglement for multiple parties. We introduce the idea of entanglement span and minimal entanglement generating set and entanglement coefficients associated with it which are the entanglement measures, thus proposing a multicomponent measure of entanglement for three or more parties. We show that the class of Schmidt decomposable states have only GHZM or Cat-like entanglement. Further we introduce the class of multiseparable states for quantification of their entanglement and prove that they are equivalent to the Schmidt decomposable states, and thus have only Cat-like entanglement. We further explore the conditions under which LOCO equivalences are possible for multipartite isentropic states. We define Cat-distillability, EPRB-distillability and distillability for multipartite mixed states and show that distillability implies EPRB-distillability. Further we show that all non-factorizable pure states are Cat
NASA Astrophysics Data System (ADS)
Rezayan, Ali Hossein; Mosavi, Majid; Kheirjou, Somayyeh; Amoabediny, Ghasem; Ardestani, Mehdi Shafiee; Mohammadnejad, Javad
2016-12-01
In this study, magnetic nanoparticles (MNPs) were synthesized via co-precipitation method. To enhance the biocompatibility and colloidal stability of the synthesized nanoparticles, they were modified with carboxyl functionalized PEG via dopamine (DPA) linker. Both modified and unmodified Fe3O4 nanoparticles exhibited super paramagnetic behavior (particle size below 20 nm). The saturation magnetization (Ms) of PEGdiacid-modified Fe3O4 was 45 emu/g, which was less than the unmodified Fe3O4 nanoparticles (70 emu/g). This difference indicated that PEGdiacid polymer was immobilized on the surface of Fe3O4 nanoparticles successfully. To evaluate the efficiency of the resulting nanoparticles as contrast agents for magnetic resonance imaging (MRI), different concentration of MNPs and different value of echo time TE were investigated. The results showed that by increasing the concentration of the nanoparticles, transverse relaxation time (T2) decreased, which subsequently resulted in MR signal enhancement. T2-weighted MR images of the different concentration of MNPs in different value of echo time TE indicated that MR signal intensity increased with increase in TE value up to 66 and then remained constant. The cytotoxicity effect of the modified and unmodified nanoparticles was evaluated in three different concentrations (12, 60 and 312 mg l-1) on MDA-MB-231 cancer cells for 24 and 48 h. In both tested time (24 and 48 h) for all three samples, the modified nanoparticles had long life time than unmodified nanoparticles. Cellular uptake of modified MNPs was 80% and reduced to 9% by the unmodified MNPs.
NASA Astrophysics Data System (ADS)
Fitzpatrick, Robert; Robertson-Anderson, Rae; Anderson Research Team
Actin is a ubiquitous structural protein in the cytoskeleton that gives cells shape and rigidity, and plays important roles in mechanical processes such as cell motility and division. Actin's diverse roles stem from its ability to polymerize into semiflexible filaments that are less than one persistence length (17 µm) in length, and form entangled networks that display unique viscoelastic properties. We previously found that entangled actin networks propagate microscale forces over several persistence lengths (>60 m) and takes minutes to relax. DNA, oppositely, has thousands of persistence lengths (50 nm) per chain, exhibits minimal force propagation, and takes only seconds to re-equilibrate. To directly determine the role of flexibility in mechanical response and force propagation of entangled networks, we use optical tweezers and fluorescence microscopy to investigate blends of actin and DNA. We use optically driven microspheres to perturb the network far from equilibrium and measure the force the network creates in response to the induced force. We simultaneously track partially labeled actin filaments during the perturbation and subsequent relaxation period. We characterize filament deformation and show explicitly how induced microscale forces propagate through the network.
Gualdi, Giulia; Giampaolo, Salvatore M; Illuminati, Fabrizio
2011-02-01
We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and noninteracting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing. PMID:21405382
Multipartite entanglement for entanglement teleportation
Lee, Jinhyoung; Min, Hyegeun; Oh, Sung Dahm
2002-11-01
A scheme for entanglement teleportation is proposed to incorporate multipartite entanglement of four qubits as a quantum channel. Based on the invariance of entanglement teleportation under an arbitrary two-qubit unitary transformation, we derive relations for the separabilities of joint measurements at a sending station and of unitary operations at a receiving station. From the relations of the separabilities it is found that an inseparable quantum channel always leads to total teleportation of entanglement with an inseparable joint measurement and/or a nonlocal unitary operation.
NASA Astrophysics Data System (ADS)
Schliemann, John
2014-09-01
We investigate further the relationship between the entanglement spectrum of a composite many-body system and the energy spectrum of a subsystem making use of concepts of canonical thermodynamics. In many important cases the entanglement Hamiltonian is, in the limit of strong coupling between subsystems, proportional to the energy Hamiltonian of the subsystem. The proportionality factor is an appropriately defined coupling parameter, suggesting to interpret the latter as a inverse temperature. We identify a condition on the entanglement Hamiltonian which rigorously guarantees this interpretation to hold and removes any ambiguity in the definition of the entanglement Hamiltonian regarding contributions proportional to the unit operator. Illustrations of our findings are provided by spin ladders of arbitrary spin length, and by bilayer quantum Hall systems at total filling factor ν = 2. Within mean-field description, the latter system realizes an entanglement spectrum of free fermions with just two levels of equal modulus where the analogies to canonical thermodynamics are particularly close.
Iwata, Kazuyoshi
1992-05-14
The local knot (LK) theory is tested by computer simulations in parts 1 and 2. Here, theoretical problems of the simulations are mainly discussed. The probe fluctuation found in part 1 is studied theoretically, and a method for separating the Markov motion of a LK from its probe fluctuation is proposed. A detailed discussions on the mechanism of the probe fluctuation and the uncertainty principal are given. A modified expression of the diffusion coefficient of a LK is derived that cancels the interference of the probe fluctuations, and its numerical calculation is performed. A correction for short memory effects of LK motion is also done. The theoretical value of d{sub 0} thus computed is 0.0393 bond{sup 2}/u.t. (u.t. - unit time) which is comparable to its simulation value 0.0172 bond{sup 2}/u.t. obtained in part 1. Finally, it is concluded that the LK theory is proved by the results of parts 1 and 2 and, by this, a true molecular theory of entanglement has been first established. 13 refs., 7 figs., 1 tab.
Phenomenological theory of the dynamics of polymer melts. I. Analytic treatment of self-diffusion
NASA Astrophysics Data System (ADS)
Skolnick, Jeffrey; Yaris, Robert; Kolinski, Andrzej
1988-01-01
In the context of dynamic Monte Carlo (MC) simulations on dense collections of polymer chains confined to a cubic lattice, the nature of the dynamic entanglements giving rise to the degree of polymerization n, dependence of the self-diffusion constant D˜n-2 is examined. Consistent with our previous simulation results, which failed to find evidence for reptation as the dominant mechanism of polymer melt motion [J. Chem. Phys. 86, 1567, 7164, 7174 (1987)], long-lived dynamic entanglement contacts between pairs of segments belonging to different chains are extremely rare and are mobile with respect to the laboratory fixed frame. It is suggested that dynamic entanglements involve the dragging of one chain by another through the melt for times on the order of the terminal relaxation time of the end-to-end vector. Employing the physical description provided by the MC simulation, the general expression of Hess [Macromolecules 19, 1395 (1986)] for the friction constant increment experienced by a polymer due to the other polymers forms the basis of a phenomenological derivation of D˜n-2 for monodisperse melts that does not require the existence of reptation. Rather, such behavior is dependent on the relatively benign assumptions that the long distance global motions of the chains are uncorrelated, that the dynamic contacts can be truncated at the pair level, and that the propagator describing the evolution between dynamic contacts contains a free Rouse chain component. The mean distance between dynamic entanglements is predicted to depend inversely on concentration, in agreement with experiment. Moreover, as the free Rouse component is frozen out, for chains greater than an entanglement length ne, a molecular weight independent glass transition is predicted. Extension to bidisperse melts predicts that the probe diffusion coefficient Dp depends on the matrix degree of polymerization, nm, as n-1m. Finally, comparison is made between the theoretical expressions and MC
Fast equilibration protocol for million atom systems of highly entangled linear polyethylene chains
NASA Astrophysics Data System (ADS)
Sliozberg, Yelena R.; Kröger, Martin; Chantawansri, Tanya L.
2016-04-01
Equilibrated systems of entangled polymer melts cannot be produced using direct brute force equilibration due to the slow reptation dynamics exhibited by high molecular weight chains. Instead, these dense systems are produced using computational techniques such as Monte Carlo-Molecular Dynamics hybrid algorithms, though the use of soft potentials has also shown promise mainly for coarse-grained polymeric systems. Through the use of soft-potentials, the melt can be equilibrated via molecular dynamics at intermediate and long length scales prior to switching to a Lennard-Jones potential. We will outline two different equilibration protocols, which use various degrees of information to produce the starting configurations. In one protocol, we use only the equilibrium bond angle, bond length, and target density during the construction of the simulation cell, where the information is obtained from available experimental data and extracted from the force field without performing any prior simulation. In the second protocol, we moreover utilize the equilibrium radial distribution function and dihedral angle distribution. This information can be obtained from experimental data or from a simulation of short unentangled chains. Both methods can be used to prepare equilibrated and highly entangled systems, but the second protocol is much more computationally efficient. These systems can be strictly monodisperse or optionally polydisperse depending on the starting chain distribution. Our protocols, which utilize a soft-core harmonic potential, will be applied for the first time to equilibrate a million particle system of polyethylene chains consisting of 1000 united atoms at various temperatures. Calculations of structural and entanglement properties demonstrate that this method can be used as an alternative towards the generation of entangled equilibrium structures.
Method for producing monodisperse aerosols
Ortiz, Lawrence W.; Soderholm, Sidney C.
1990-01-01
An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.
Rheology and morphology of no-slip sheared polymer nanocomposite under creep condition
NASA Astrophysics Data System (ADS)
Mortezapour, Saba; Eslami, Hossein; Nedaaee Oskoee, Ehsan
2015-07-01
Dissipative particle dynamics simulations are performed on wet polymer nanocomposite blends under the discrete imposed velocity profile and no-slip boundary conditions. To be able to study the chain length dependency of the rheological properties, a number of blends of mono-disperse polymer chains of lengths varying from 10 to 100 repeat units and nanoparticles of diameters 2.5 and 5 have been simulated. The wall velocity was imposed on a thin polymer layer (the no-slip layer). Linear velocity profiles for polymer confined in the pore were observed at the steady state. We found that the flow has a shear thinning effect on the chains with a radius of gyration less than the filler radius. Long chains (with a radius of gyration longer than the filler's radius), however, obey the Newtonian behavior over a much wider shear rate than that which causes shear thinning in short chains. The effect of particle-monomer interactions, polymer entanglements, chain morphology, and link formation on the shear rate dependency of the viscosity coefficient has been studied. Our results show that the particle-polymer interactions have no effect on shear thinning behavior of the blend. In contrast, the long range polymer-polymer interactions and the chain length have considerable effects on the rheological behavior of the blend. Finally, the phase diagram of the rheological properties of polymer nanocomposite as a function of strain rate and the chain length is extracted.
De Focatiis, Davide S. A.; Buckley, C. Paul; Embery, John
2008-07-07
This paper investigates the behaviour of a well-characterised monodisperse grade of entangled atactic polystyrene across a very wide temperature and strain rate range through linear and non-linear melt rheology and solid-state deformation. In an effort to construct a constitutive model for large deformations able to describe rheological response right across this wide timescale, two well-established rheological models are combined: the well known RoliePoly (RP) conformational melt model and the Oxford glass-rubber constitutive model for glassy polymers. Comparisons between experimental data and simulations from a numerical implementation of the model illustrate that the model can cope well with the range of deformations in which orientation is limited to length-scales longer than an entanglement length. One approach in which the model can be expanded to incorporate the effects of orientation on shorter length scales using anisotropic viscoplastic flow is briefly discussed.
Aerosol fabrication methods for monodisperse nanoparticles
Jiang, Xingmao; Brinker, C Jeffrey
2014-10-21
Exemplary embodiments provide materials and methods for forming monodisperse particles. In one embodiment, the monodisperse particles can be formed by first spraying a nanoparticle-containing dispersion into aerosol droplets and then heating the aerosol droplets in the presence of a shell precursor to form core-shell particles. By removing either the shell layer or the nanoparticle core of the core-shell particles, monodisperse nanoparticles can be formed.
Evolution of Entanglements During Craze Formation
NASA Astrophysics Data System (ADS)
Ge, Ting; Robbins, Mark; Hoy, Robert; Anogiannakis, Stefanos; Tzoumanekas, Christos; Theodorou, Doros
2009-03-01
Craze formation occurs during fracture of many polymers and leads to a substantial increase in the fracture energy. Models of craze formation usually assume that entanglements act like permanent chemical crosslinks.This model is tested by following the evolution of entanglements using the Contour Reduction Topological Analysis (CReTA) algorithm. The CReTA algorithm shortens each chain until further shortening would require chains to pass through each other. The contacts between chains that limit further shortening are identified as entanglements or topological constraints. Unlike related algorithms, the chain shortening has little effect on the craze structure, allowing the entanglements to be followed in real space, as well as along chains. CReTA is applied to molecular simulations of crazing using a coarse-grained bead-spring polymer model. The number of beads in each chain N and the entanglement length Ne are varied. Our results show that entanglements do not act like fixed chemical crosslinks. There is a systematic loss in entanglements during craze formation that does not occur when chains are deformed affinely and is nearly independent of N/Ne.The role of chain length, N, Ne, interchain friction and other parameters in determining the degree of entanglement loss is discussed.
Generation of a monodispersed aerosol
NASA Technical Reports Server (NTRS)
Schenck, H.; Mikasa, M.; Devicariis, R.
1974-01-01
The identity and laboratory test methods for the generation of a monodispersed aerosol are reported on, and are subjected to the following constraints and parameters; (1) size distribution; (2) specific gravity; (3) scattering properties; (4) costs; (5) production. The procedure called for the collection of information from the literature, commercial available products, and experts working in the field. The following topics were investigated: (1) aerosols; (2) air pollution -- analysis; (3) atomizers; (4) dispersion; (5) particles -- optics, size analysis; (6) smoke -- generators, density measurements; (7) sprays; (8) wind tunnels -- visualization.
Viscoelastic Properties of Entangled DNA Solutions: Dependence on Molecular Length and Concentration
NASA Astrophysics Data System (ADS)
Smith, Patrick; Dobrev, Veselin S.; Urbach, Jeff; Anderson, Rae
2014-03-01
We use macroscopic rheology to investigate the viscoelastic properties of solutions of monodisperse linear DNA, as a function of DNA length and concentration. We span from the unentangled to the entangled regime by using DNA lengths that vary from 11 to 115 kilobasepairs (3.7 to 39 μm) and solution concentrations that range between 0.5 and 4.0 mg/ml. We investigate the effects of oscillatory frequency on the linear elastic (G') and viscous (G'') moduli, with frequency values of 0.01 - 100 Hz. In addition, the dependence of viscosity on strain rate is studied with strain rates ranging from 0.01 to 100 Hz. Importantly, these studies are the first to examine the molecular length dependence of linear viscoelastic properties for concentrated DNA solutions. Results are compared to theoretical predictions based on the Rouse model and reptation model for unentangled and entangled polymer solutions, respectively. This research was funded by AFOSR YIP (Grant No. FA9550-12-1-0315) and NSF (Grant No. REU DMR-1004268).
Phase stability and dynamics of entangled polymer–nanoparticle composites
Mangal, Rahul; Srivastava, Samanvaya; Archer, Lynden A.
2015-01-01
Nanoparticle–polymer composites, or polymer–nanoparticle composites (PNCs), exhibit unusual mechanical and dynamical features when the particle size approaches the random coil dimensions of the host polymer. Here, we harness favourable enthalpic interactions between particle-tethered and free, host polymer chains to create model PNCs, in which spherical nanoparticles are uniformly dispersed in high molecular weight entangled polymers. Investigation of the mechanical properties of these model PNCs reveals that the nanoparticles have profound effects on the host polymer motions on all timescales. On short timescales, nanoparticles slow-down local dynamics of the host polymer segments and lower the glass transition temperature. On intermediate timescales, where polymer chain motion is typically constrained by entanglements with surrounding molecules, nanoparticles provide additional constraints, which lead to an early onset of entangled polymer dynamics. Finally, on long timescales, nanoparticles produce an apparent speeding up of relaxation of their polymer host. PMID:26044723
How do entangled polymeric liquids flow?
NASA Astrophysics Data System (ADS)
Sundar Ravindranath, Sham; Wang, Shi-Qing
2009-03-01
This work focused on investigating fundamental questions in polymer dynamics such as how entangled polymeric liquids respond to fast external deformation. By developing an effective particle tracking velocimetric (PTV) method, along with conventional rheometric measurements, new insights can be gained into the phenomenology of entangled polymers in presence of startup shear, step strain and large amplitude oscillatory shear (LAOS). During startup shear of well entangled systems, the shear field becomes inhomogeneous after the stress overshoot for a range of applied shear rates beyond the Newtonian region [1]. The emergence of shear banding after stress overshoot helped us to identify the stress overshoot as indicating yielding, whose characteristics obey some scaling laws. In step shear, contrary to the conventional perception that entangled polymers would undergo quiescent relaxation, the PTV observations reveal macroscopic motions after shear cessation [2]. The recoil-like macroscopic motions appears to reflect an elastic breakdown of the entanglement network due to sufficient build-up of retractive forces. LAOS experiments also demonstrate that entangled polymers cannot sustain a high magnitude of fast deformation without undergoing cohesive failure [3]. [1] Macromolecules 2008, 41, 2663 [2] Macromolecules 2007, 40, 8031 [3] J. Rheol. 2008, 52, 341.
Entanglement entropy of electronic excitations
NASA Astrophysics Data System (ADS)
Plasser, Felix
2016-05-01
A new perspective into correlation effects in electronically excited states is provided through quantum information theory. The entanglement between the electron and hole quasiparticles is examined, and it is shown that the related entanglement entropy can be computed from the eigenvalue spectrum of the well-known natural transition orbital (NTO) decomposition. Non-vanishing entanglement is obtained whenever more than one NTO pair is involved, i.e., in the case of a multiconfigurational or collective excitation. An important implication is that in the case of entanglement it is not possible to gain a complete description of the state character from the orbitals alone, but more specific analysis methods are required to decode the mutual information between the electron and hole. Moreover, the newly introduced number of entangled states is an important property by itself giving information about excitonic structure. The utility of the formalism is illustrated in the cases of the excited states of two interacting ethylene molecules, the conjugated polymer para-phenylene vinylene, and the naphthalene molecule.
Entanglement entropy of electronic excitations.
Plasser, Felix
2016-05-21
A new perspective into correlation effects in electronically excited states is provided through quantum information theory. The entanglement between the electron and hole quasiparticles is examined, and it is shown that the related entanglement entropy can be computed from the eigenvalue spectrum of the well-known natural transition orbital (NTO) decomposition. Non-vanishing entanglement is obtained whenever more than one NTO pair is involved, i.e., in the case of a multiconfigurational or collective excitation. An important implication is that in the case of entanglement it is not possible to gain a complete description of the state character from the orbitals alone, but more specific analysis methods are required to decode the mutual information between the electron and hole. Moreover, the newly introduced number of entangled states is an important property by itself giving information about excitonic structure. The utility of the formalism is illustrated in the cases of the excited states of two interacting ethylene molecules, the conjugated polymer para-phenylene vinylene, and the naphthalene molecule. PMID:27208936
Spatial distribution of entanglements in thin free-standing films.
Sussman, Daniel M
2016-07-01
We simulate entangled linear polymers in free-standing thin film geometries where the confining dimension is on the same scale as or smaller than the bulk chain dimensions. We compare both film-averaged and layer-resolved, spatially inhomogeneous measures of the polymer structure and entanglement network with theoretical models. We find that these properties are controlled by the ratio of both chain- and entanglement-strand length scales to the film thickness. While the film-averaged entanglement properties can be accurately predicted, we identify outstanding challenges in understanding the spatially resolved character of the heterogeneities in the entanglement network, particularly when the scale of both the entanglement strand and the chain end-to-end vector is comparable to or smaller than the film thickness. PMID:27575172
Spatial distribution of entanglements in thin free-standing films
NASA Astrophysics Data System (ADS)
Sussman, Daniel M.
2016-07-01
We simulate entangled linear polymers in free-standing thin film geometries where the confining dimension is on the same scale as or smaller than the bulk chain dimensions. We compare both film-averaged and layer-resolved, spatially inhomogeneous measures of the polymer structure and entanglement network with theoretical models. We find that these properties are controlled by the ratio of both chain- and entanglement-strand length scales to the film thickness. While the film-averaged entanglement properties can be accurately predicted, we identify outstanding challenges in understanding the spatially resolved character of the heterogeneities in the entanglement network, particularly when the scale of both the entanglement strand and the chain end-to-end vector is comparable to or smaller than the film thickness.
Polygamy of distributed entanglement
NASA Astrophysics Data System (ADS)
Buscemi, Francesco; Gour, Gilad; Kim, Jeong San
2009-07-01
While quantum entanglement is known to be monogamous (i.e., shared entanglement is restricted in multipartite settings), here we show that distributed entanglement (or the potential for entanglement) is by nature polygamous. By establishing the concept of one-way unlocalizable entanglement (UE) and investigating its properties, we provide a polygamy inequality of distributed entanglement in tripartite quantum systems of arbitrary dimension. We also provide a polygamy inequality in multiqubit systems and several trade-offs between UE and other correlation measures.
Polygamy of distributed entanglement
Buscemi, Francesco; Gour, Gilad; Kim, Jeong San
2009-07-15
While quantum entanglement is known to be monogamous (i.e., shared entanglement is restricted in multipartite settings), here we show that distributed entanglement (or the potential for entanglement) is by nature polygamous. By establishing the concept of one-way unlocalizable entanglement (UE) and investigating its properties, we provide a polygamy inequality of distributed entanglement in tripartite quantum systems of arbitrary dimension. We also provide a polygamy inequality in multiqubit systems and several trade-offs between UE and other correlation measures.
Lin, Jennifer S.; Albrecht, Jennifer Coyne; Meagher, Robert J.; Wang, Xiaoxiao; Barron, Annelise E.
2011-01-01
Protein-based polymers are increasingly being used in biomaterial applications due to their ease of customization and potential monodispersity. These advantages make protein polymers excellent candidates for bioanalytical applications. Here we describe improved methods for producing drag-tags for Free-Solution Conjugate Electrophoresis (FSCE). FSCE utilizes a pure, monodisperse recombinant protein, tethered end-on to a ssDNA molecule, to enable DNA size separation in aqueous buffer. FSCE also provides a highly sensitive method to evaluate the polydispersity of a protein drag-tag and thus its suitability for bioanalytical uses. This method is able to detect slight differences in drag-tag charge or mass. We have devised an improved cloning, expression, and purification strategy that enables us to generate, for the first time, a truly monodisperse 20 kDa protein polymer and a nearly monodisperse 38 kDa protein. These newly produced proteins can be used as drag-tags to enable longer read DNA sequencing by free-solution microchannel electrophoresis. PMID:21553840
Monodisperse atomizers for agricultural aviation applications
NASA Technical Reports Server (NTRS)
Christensen, L. S.; Steely, S. L.
1980-01-01
Conceptual designs of two monodisperse spray nozzles are described and the rationale used in each design is discussed. The nozzles were designed to eliminate present problems in agricultural aviation applications, such as ineffective plant coverage, drift due to small droplets present in the spray being dispersed, and nonuniform swath coverages. Monodisperse atomization techniques are reviewed and a synopsis of the information obtained concerning agricultural aviation spray applications is presented.
Monodisperse Uni- and Multicompartment Liposomes.
Deng, Nan-Nan; Yelleswarapu, Maaruthy; Huck, Wilhelm T S
2016-06-22
Liposomes are self-assembled phospholipid vesicles with great potential in fields ranging from targeted drug delivery to artificial cells. The formation of liposomes using microfluidic techniques has seen considerable progress, but the liposomes formation process itself has not been studied in great detail. As a result, high throughput, high-yielding routes to monodisperse liposomes with multiple compartments have not been demonstrated. Here, we report on a surfactant-assisted microfluidic route to uniform, single bilayer liposomes, ranging from 25 to 190 μm, and with or without multiple inner compartments. The key of our method is the precise control over the developing interfacial energies of complex W/O/W emulsion systems during liposome formation, which is achieved via an additional surfactant in the outer water phase. The liposomes consist of single bilayers, as demonstrated by nanopore formation experiments and confocal fluorescence microscopy, and they can act as compartments for cell-free gene expression. The microfluidic technique can be expanded to create liposomes with a multitude of coupled compartments, opening routes to networks of multistep microreactors. PMID:27243596
Synthesis of substantially monodispersed colloids
NASA Technical Reports Server (NTRS)
Klabunde, Kenneth J. (Inventor); Stoeva, Savka (Inventor); Sorensen, Christopher (Inventor)
2003-01-01
A method of forming ligated nanoparticles of the formula Y(Z).sub.x where Y is a nanoparticle selected from the group consisting of elemental metals having atomic numbers ranging from 21-34, 39-52, 57-83 and 89-102, all inclusive, the halides, oxides and sulfides of such metals, and the alkali metal and alkaline earth metal halides, and Z represents ligand moieties such as the alkyl thiols. In the method, a first colloidal dispersion is formed made up of nanoparticles solvated in a molar excess of a first solvent (preferably a ketone such as acetone), a second solvent different than the first solvent (preferably an organic aryl solvent such as toluene) and a quantity of ligand moieties; the first solvent is then removed under vacuum and the ligand moieties ligate to the nanoparticles to give a second colloidal dispersion of the ligated nanoparticles solvated in the second solvent. If substantially monodispersed nanoparticles are desired, the second dispersion is subjected to a digestive ripening process. Upon drying, the ligated nanoparticles may form a three-dimensional superlattice structure.
NASA Astrophysics Data System (ADS)
Wang, Feng; Luo, MingXing; Chen, XiuBo; Yang, YiXian; Wang, XiaoJun
2014-10-01
A universal entangler is a very powerful fault-tolerant entangling device for generating quantum entanglements from any joint states. Our paper aims to address the construction of universal entanglers. We prove that universal entanglers may be obtained from random unitary gates according to the Harr measure. The success probability is close to 1 for large system spaces. This result represents the typical density of entanglement subspaces in large state spaces. It also partially solves an open problem of universal bipartite entanglers and is explained by some experiment simulations.
ERIC Educational Resources Information Center
Tucker, David C.
1986-01-01
Presents an open-ended experiment which has students exploring polymer chemistry and reverse osmosis. This activity involves construction of a polymer membrane, use of it in a simple osmosis experiment, and application of its principles in solving a science-technology-society problem. (ML)
Allahverdyan, A.E.; Khrennikov, A.; Nieuwenhuizen, Th.M.
2005-09-15
For two classical Brownian particles an analog of continuous-variable quantum entanglement is presented: The common probability distribution of the two coordinates and the corresponding coarse-grained velocities cannot always be prepared via mixing of any factorized distributions referring to the two particles separately. This is possible for particles which have interacted in the past, but do not interact at present. Three factors are crucial for the effect: (1) separation of time scales of coordinate and momentum which motivates the definition of coarse-grained velocities; (2) the resulting uncertainty relations between the coordinate of the Brownian particle and the change of its coarse-grained velocity; (3) the fact that the coarse-grained velocity, though pertaining to a single Brownian particle, is defined on a common context of two particles. The Brownian entanglement is a consequence of a coarse-grained description and disappears for a finer resolution of the Brownian motion. Analogies with the quantum situation are discussed, as well as possibilities of experimental realization of the effect in examples of macroscopic Brownian motion.
NASA Astrophysics Data System (ADS)
Boyd, Jeffrey
2011-04-01
The double slit and Innsbruck experiments are thought to be the premier experiments establishing the need for the idea of ``non-locality'' in quantum mechanics. In the Innsbruck experiments it is said that two photons at a distance are ``entangled'' without there being any means of communication between them. But the interpretation of these experiments are based on the incorrect idea of wave particle duality. According to the Theory of Elementary Waves (TEW) waves are independent of particles. Waves are ubiquitous in nature. In the Innsbruck experiments two waves traveling at the speed of light in opposite directions impinge on the photon source from the two fiberoptic cables. The waves pass through the source. Wave interference is spread over a wide distance: from one polarizer to the other. This stimulates the emission of a photon pair such that, when detected at a polarizer at angle θ 1 and another polarizer at angle θ 2, the probability density is sin2(θ 1 - θ 2). This is true for any θ 1 and θ 2, and it doesn't matter when the polarizers are rotated. Thus local wave interference accounts for the experimental results, without any need for the exotic theory of ``entanglement.'' See http://Elwave.org
Fundamentals and applications of monodisperse carbon-based nanomaterials
NASA Astrophysics Data System (ADS)
Hersam, Mark
2011-03-01
Carbon-based nanomaterials have attracted significant attention due to their potential to enable and/or improve applications such as transistors, transparent conductors, solar cells, batteries, water purification systems, infrastructure materials, drug delivery, and biosensors. This talk will delineate chemical strategies for tuning and enhancing the properties of these promising nanomaterials. For example, we have developed and commercialized a scalable technique for sorting single-walled carbon nanotubes (SWCNTs) by their physical and electronic structure using density gradient ultracentrifugation (DGU). The resulting monodisperse SWCNTs possess unprecedented uniformity in their electronic and optical properties, which enables the fabrication of high performance thin film field-effect transistors, optoelectronic devices, and transparent conductors. The DGU technique also enables multi-walled carbon nanotubes to be sorted by the number of walls, and solution phase graphene to be sorted by thickness, thus expanding the suite of monodisperse carbon-based nanomaterials. By recently extending our DGU efforts to SWCNTs and graphene dispersed in biocompatible polymers (e.g., DNA, poloxamers, etc.), new opportunities have emerged in biomedical applications. Ultimately, the ability to control structure and surface chemistry with sub-nanometer precision enables optimized properties for a diverse range of technologies that employ carbon-based nanomaterials.
Renormalizing Entanglement Distillation
NASA Astrophysics Data System (ADS)
Waeldchen, Stephan; Gertis, Janina; Campbell, Earl T.; Eisert, Jens
2016-01-01
Entanglement distillation refers to the task of transforming a collection of weakly entangled pairs into fewer highly entangled ones. It is a core ingredient in quantum repeater protocols, which are needed to transmit entanglement over arbitrary distances in order to realize quantum key distribution schemes. Usually, it is assumed that the initial entangled pairs are identically and independently distributed and are uncorrelated with each other, an assumption that might not be reasonable at all in any entanglement generation process involving memory channels. Here, we introduce a framework that captures entanglement distillation in the presence of natural correlations arising from memory channels. Conceptually, we bring together ideas from condensed-matter physics—ideas from renormalization and matrix-product states and operators—with those of local entanglement manipulation, Markov chain mixing, and quantum error correction. We identify meaningful parameter regions for which we prove convergence to maximally entangled states, arising as the fixed points of a matrix-product operator renormalization flow.
Influence of entanglements on glass transition temperature of polystyrene
NASA Astrophysics Data System (ADS)
Ougizawa, Toshiaki; Kinugasa, Yoshinori
2013-03-01
Chain entanglement is essential behavior of polymeric molecules and it seems to affect many physical properties such as not only viscosity of melt state but also glass transition temperature (Tg). But we have not attained the quantitative estimation because the entanglement density is considered as an intrinsic value of the polymer at melt state depending on the chemical structure. Freeze-drying method is known as one of the few ways to make different entanglement density sample from dilute solution. In this study, the influence of entanglements on Tg of polystyrene obtained by the freeze-dried method was estimated quantitatively. The freeze-dried samples showed Tg depression with decreasing the concentration of precursor solution due to the lower entanglement density and their depressed Tg would be saturated when the almost no intermolecular entanglement was formed. The molecular weight dependence of the maximum value of Tg depression was discussed.
Enzyme Induced Formation of Monodisperse Hydrogel Nanoparticles Tunable in Size
Bocharova, Vera; Sharp, Danna; Jones, Aaron; Cheng, Shiwang; Griffin, Philip J.; Agapov, Alexander L.; Voylov, Dmitry; Wang, Yangyang; Kisliuk, Alexander; Melman, Artem; Sokolov, Alexei P.
2015-03-09
Here, we report a novel approach to synthesize monodisperse hydrogel nanoparticles that are tunable in size. The distinctive feature of our approach is the use of a multicopper oxidase enzyme, laccase, as both a biocatalyst and template for nanoparticle growth. We utilize the ferroxidase activity of laccase to initiate localized production of iron(III) cations from the oxidation of iron(II) cations. We demonstrate that nanoparticles are formed in a dilute polymer solution of alginate as a result of cross-linking between alginate and enzymatically produced iron(III) cations. Exerting control over the enzymatic reaction allows for nanometer-scale tuning of the hydrogel nanoparticle radii in the range of 30–100 nm. Moreover, the nanoparticles and their growth kinetics were characterized via dynamic light scattering, atomic force microscopy, and UV–vis spectroscopy. Our finding opens up a new avenue for the synthesis of tunable nanoscale hydrogel particles for biomedical applications.
Hussain, Irshad; Graham, Susan; Wang, Zhenxin; Tan, Bien; Sherrington, David C; Rannard, Steven P; Cooper, Andrew I; Brust, Mathias
2005-11-30
We report here a simple one-step protocol for the preparation of near-monodisperse gold hydrosols in the small size regime (<5 nm). The particle size can be controlled by varying the concentration of the stabilizing polymer, which can be readily displaced by thiol ligands to yield monolayer protected clusters of the usual type. PMID:16305218
Interface-mediated growth of monodispersed nanostructures.
Wang, Xun; Peng, Qing; Li, Yadong
2007-08-01
This Account focuses on the recent development of interface-mediated growth of monodispersed nanostructures in our laboratory. By rationally tuning the chemical reactions at various gas-liquid, solid-solid, liquid-liquid, and liquid-solid-solution interfaces, we could readily synthesize nanostructures such as hollow microspheres, core-shell nanoparticles, and monodispersed nanocrystals. These advances in interface-mediated synthesis could lead to progress in the development of nanocrystal crystallography and encourage some more unique and exciting research and applications to nanoscience and nanotechnology. PMID:17500508
Spatial multipartite entanglement and localization of entanglement
Daems, D.; Cerf, N. J.
2010-09-15
We present a simple model together with its physical implementation which allows one to generate multipartite entanglement between several spatial modes of the electromagnetic field. It is based on parametric down-conversion with N pairs of symmetrically tilted plane waves serving as a pump. The characteristics of this spatial entanglement are investigated in the cases of zero as well as nonzero phase mismatch. Furthermore, the phenomenon of entanglement localization in just two spatial modes is studied in detail and shown to result in an enhancement of the entanglement by a factor {radical}(N).
NASA Astrophysics Data System (ADS)
Watanabe, Hiroshi; Matsumiya, Yumi
Viscoelastic relaxation was examined for entangled miscible blends of cis-polyisoprene (PI) and poly(ptert-butylstyrene) (PtBS). The terminal relaxation times of PI and PtBS therein, τPI and τPtBS, changed with the composition wPI and the molecular weights MPI and MPtBS. This ratio became unity when the wPI, MPI, and MPtBS values were chosen adequately. For example, in a blend with wPI = 0.75, MPI = 321k, and MPtBS = 91k at T = 40ûC, τPI/τPtBS = 1 and M/Me = 55 and 8.3 for PI and PtBS. Under small strains, this blend exhibited sharp, single-step terminal relaxation as similar to monodisperse homopolymers, thereby behaving as a ``quasi-monodisperse'' material. Under large step strains, the blend exhibited moderate nonlinear damping known as the type-A damping for entangled monodisperse homopolymers. Nevertheless, PI had M/Me = 55 in that blend, and homopolymers having such a large M/Me ratio exhibit very strong type-C damping. Thus, as compared to homopolymers, the nonlinearity was suppressed in the PI/PtBS blend having the large M/Me ratio. This suppression is discussed in relation to the slow Rouse retraction of the coexisting PtBS chains (having M/Me = 8.3 in the blend).
Generalized entanglement entropy
NASA Astrophysics Data System (ADS)
Taylor, Marika
2016-07-01
We discuss two measures of entanglement in quantum field theory and their holographic realizations. For field theories admitting a global symmetry, we introduce a global symmetry entanglement entropy, associated with the partitioning of the symmetry group. This quantity is proposed to be related to the generalized holographic entanglement entropy defined via the partitioning of the internal space of the bulk geometry. Thesecond measure of quantum field theory entanglement is the field space entanglement entropy, obtained by integrating out a subset of the quantum fields. We argue that field space entanglement entropy cannot be precisely realised geometrically in a holographic dual. However, for holographic geometries with interior decoupling regions, the differential entropy provides a close analogue to the field space entanglement entropy. We derive generic descriptions of such inner throat regions in terms of gravity coupled to massive scalars and show how the differential entropy in the throat captures features of the field space entanglement entropy.
Charged topological entanglement entropy
NASA Astrophysics Data System (ADS)
Matsuura, Shunji; Wen, Xueda; Hung, Ling-Yan; Ryu, Shinsei
2016-05-01
A charged entanglement entropy is a new measure which probes quantum entanglement between different charge sectors. We study symmetry-protected topological (SPT) phases in (2+1)-dimensional space-time by using this charged entanglement entropy. SPT phases are short-range entangled states without topological order and hence cannot be detected by the topological entanglement entropy. We demonstrate that the universal part of the charged entanglement entropy is nonzero for nontrivial SPT phases and therefore it is a useful measure to detect short-range entangled topological phases. We also discuss that the classification of SPT phases based on the charged topological entanglement entropy is related to that of the braiding statistics of quasiparticles.
Nonequilibrium thermal entanglement
Quiroga, Luis; Rodriguez, Ferney J.; Ramirez, Maria E.; Paris, Roberto
2007-03-15
Results on heat current, entropy production rate, and entanglement are reported for a quantum system coupled to two different temperature heat reservoirs. By applying a temperature gradient, different quantum states can be found with exactly the same amount of entanglement but different purity degrees and heat currents. Furthermore, a nonequilibrium enhancement-suppression transition behavior of the entanglement is identified.
Extremal extensions of entanglement witnesses: Finding new bound entangled states
Sengupta, R.; Arvind
2011-09-15
In this paper, we discuss extremal extensions of entanglement witnesses based on Choi's map. The constructions are based on a generalization of the Choi map, from which we construct entanglement witnesses. These extremal extensions are powerful in terms of their capacity to detect entanglement of positive under partial transpose (PPT) entangled states and lead to unearthing of entanglement of new PPT states. We also use the Cholesky-like decomposition to construct entangled states which are revealed by these extremal entanglement witnesses.
Li, Zhen; Tan, Bien; Allix, Mathieu; Cooper, Andrew I; Rosseinsky, Matthew J
2008-02-01
Water-soluble monodisperse superparamagnetic Fe3O4 nanocrystals decorated with two distinct functional groups are prepared in a single-step procedure by injecting iron precursors into a refluxing aqueous solution of a polymer ligand, trithiol-terminated poly(methacrylic acid) (PMAA-PTTM), bearing both carboxylate and thiol functionalities. The ratio of carboxylic acid groups in the polymer-protecting ligand to the iron precursors plays a key role in determining the particle size and particle size distribution. The surface functionalities of the ligands allow post-synthesis modification of the materials to produce water-soluble fluorescent magnetic nanocrystals. PMID:18213671
Tunable stability of monodisperse secondary O/W nano-emulsions
NASA Astrophysics Data System (ADS)
Vecchione, R.; Ciotola, U.; Sagliano, A.; Bianchini, P.; Diaspro, A.; Netti, P. A.
2014-07-01
Stable and biodegradable oil in water (O/W) nano-emulsions can have a huge impact on a wide range of bio-applications, from food to cosmetics and pharmaceuticals. Emulsions, however, are immiscible systems unstable over time; polymer coatings are known to be helpful, but an effective procedure to stabilize monodisperse and biodegradable O/W nano-emulsions is yet to be designed. Here, we coat biodegradable O/W nano-emulsions with a molecular layer of biodegradable polyelectrolytes such as polysaccharides - like chitosan - and polypeptides - like polylysine - and effectively re-disperse and densify the polymer coating at high pressure, thus obtaining monodisperse and stable systems. In particular, focusing on chitosan, our tests show that it is possible to obtain unprecedented ultra-stable O/W secondary nano-emulsions (diameter sizes tunable from ~80 to 160 nm and polydispersion indices below 0.1) by combining this process with high concentrations of polymers. Depending on the polymer concentration, it is possible to control the level of coating that results in a tunable stability ranging from a few weeks to several months. The above range of concentrations has been investigated using a fluorescence-based approach with new insights into the coating evolution.Stable and biodegradable oil in water (O/W) nano-emulsions can have a huge impact on a wide range of bio-applications, from food to cosmetics and pharmaceuticals. Emulsions, however, are immiscible systems unstable over time; polymer coatings are known to be helpful, but an effective procedure to stabilize monodisperse and biodegradable O/W nano-emulsions is yet to be designed. Here, we coat biodegradable O/W nano-emulsions with a molecular layer of biodegradable polyelectrolytes such as polysaccharides - like chitosan - and polypeptides - like polylysine - and effectively re-disperse and densify the polymer coating at high pressure, thus obtaining monodisperse and stable systems. In particular, focusing on
Gaussian entanglement of formation
Wolf, M.M.; Giedke, G.; Krueger, O.; Werner, R. F.; Cirac, J.I.
2004-05-01
We introduce a Gaussian version of the entanglement of formation adapted to bipartite Gaussian states by considering decompositions into pure Gaussian states only. We show that this quantity is an entanglement monotone under Gaussian operations and provide a simplified computation for states of arbitrary many modes. For the case of one mode per site the remaining variational problem can be solved analytically. If the considered state is in addition symmetric with respect to interchanging the two modes, we prove additivity of the considered entanglement measure. Moreover, in this case and considering only a single copy, our entanglement measure coincides with the true entanglement of formation.
Entanglement monogamy and entanglement evolution in multipartite systems
Bai Yankui; Ye Mingyong; Wang, Z. D.
2009-10-15
We analyze the entanglement distribution and the two-qubit residual entanglement in multipartite systems. For a composite system consisting of two cavities interacting with independent reservoirs, it is revealed that the entanglement evolution is restricted by an entanglement monogamy relation derived here. Moreover, it is found that the initial cavity-cavity entanglement evolves completely to the genuine four-partite cavities-reservoirs entanglement in the time interval between the sudden death of cavity-cavity entanglement and the birth of reservoir-reservoir entanglement. In addition, we also address the relationship between the genuine block-block entanglement form and qubit-block form in the interval.
Threefold entanglement matching
NASA Astrophysics Data System (ADS)
Roa, Luis; Muñoz, Ariana; Hutin, Alice; Hecker, Matthias
2015-11-01
We address the problem of entanglement matching in the probabilistic teleportation scheme by considering two independent levels of entanglement in the measurement basis. The probability of a successful teleportation has an upper bound which only depends on the amount of entanglement of the quantum channel. However, we found that each entanglement of the measurement basis contributes independently to the success probability as long as it is weaker than the entanglement of the channel. Accordingly, the teleportation process reaches its optimal probability when both entanglements of the measurement basis match the entanglement of the channel. Additionally, we study the probabilistic scheme for extracting an unknown state from a partially known state. We characterize the success probability and the concurrence involved in that process.
Surfactant-assisted synthesis of mono-dispersed cubic BaTiO{sub 3} nanoparticles
Hai, Chunxi; Inukai, Koji; Takahashi, Yosuke; Izu, Noriya; Akamatsu, Takafumi; Itoh, Toshio; Shin, Woosuck
2014-09-15
Mono-dispersed BaTiO{sub 3} nanoparticles have been prepared via the assistance of capping agent poly(vinylpyrrolidone) (PVP). - Highlights: • BaTiO{sub 3} nanoparticles with single cubic crystal structure. • Poor dispersibility of nanoparticles has been overcome by in situ modification way. • Growth competition between BaTiO3 core and polymer shell. - Abstract: In this study, poly(vinylpyrrolidone)-assisted synthesis of mono-dispersed BaTiO{sub 3} nanoparticles have been reported. The various processing parameters, namely, refluxing temperature, KOH concentration, and poly(vinylpyrrolidone) concentration, have been varied, and the effects on the growth of BaTiO{sub 3} particles have been analyzed systematically. X-ray diffraction studies indicated that poly(vinylpyrrolidone) did not affect the crystal structure, but rather influenced the crystal lattice structure. In addition, the use of surfactant poly(vinylpyrrolidone) hindered the agglomeration of the nanoparticles, and facilitated the formation of mono-dispersed core–shell organic/inorganic hybrid nanocomposite. Furthermore, the mineralizer KOH promoted the dissolution of reactants and promoted the crystallization of BaTiO{sub 3} particles. Accordingly, the dissolution-precipitation scheme was believed to be the mechanism underlying the formation of BaTiO{sub 3} particles. This was further substantiated by the experimental observations, which indicated that the nucleation and crystallization of the particles was affected by the KOH concentration in the reaction system. Finally, the formation of mono-dispersed core–shell nanocomposites proceeded via reaction limited cluster aggregation. We believe that the method proposed in this study could be extended for the synthesis of mono-dispersed nanoparticles for industrial applications.
Polymer Physics Prize Talk: Our Love Story with Polymers or ``Is This Really Physics?''
NASA Astrophysics Data System (ADS)
Rubinstein, Michael
2010-03-01
Some recent results and remaining open questions in several areas of polymer physics ranging from polymer entanglements to reversible gels and polyelectrolytes will be reviewed and put into historical and sociological perspective.
Entanglement - From Particles to Consciousness
NASA Astrophysics Data System (ADS)
Teodorani, M.
2007-06-01
This book, which is entirely devoted to the description and discussion of the mechanism of quantum entanglement, is divided into three main parts: a) canonical entanglement in the realm of elementary particles; b) entanglement in the biological environment (DNA and microtubules); c) entanglement in the psychic realm. Cosmological entanglement and non-local SETI are discussed as well.
Pollutant Formation in Monodisperse Fuel Spray Combustion
NASA Technical Reports Server (NTRS)
Cernansky, N. P.; Sarv, H.
1983-01-01
The combustion of liquid sprays represents an extremely important class of combustion processes. In the transition region, encompassing droplet sizes in the range of 25-80 micron diameter, the mixing and evaporation processes are both incomplete at the flame front and burning occurs in a combined diffusive and premixed fashion. Under these conditions, the relative importance of heterogeneous and homogeneous effects in dominating the combustion process is switched and gives rise to a number of interesting phenomena. NO (sub x) formation in monodisperse spray combustion was investigated with the following specific objectives: (1) to quantitatively determine the effect of droplet size, number density, etc. on NO sub x formation in monodisperse fuel spray combustion; and (2) to isolate the important physical and chemical phenomena in NO sub x formation in these combustion systems.
Viscoelastic Properties of Polymer Blends
NASA Technical Reports Server (NTRS)
Hong, S. D.; Moacanin, J.; Soong, D.
1982-01-01
Viscosity, shear modulus and other viscoelastic properties of multicomponent polymer blends are predicted from behavior of individual components, using a mathematical model. Model is extension of two-component-blend model based on Rouse-Bueche-Zimm theory of polymer viscoelasticity. Extension assumes that probabilities of forming various possible intracomponent and intercomponent entanglements among polymer molecules are proportional to relative abundances of components.
Monodisperse functional colloidosomes with tailored nanoparticle shells.
Sander, J S; Studart, A R
2011-04-01
We report the assembly of monodisperse colloidosomes containing a wide range of functional nanoparticles in the outer shell using a double emulsion templating method in a microfluidic device. By selecting nanoparticles of specific functionalities, hollow capsules with inert, magnetic, photocatalytic, and potentially biocompatible and piezoelectric shells are easily obtained. Proper control over the surface chemistry of the nanoparticles forming the shell and of the liquid interfaces involved is key to enable the assembly of colloidosomes using this double emulsification route. PMID:21384846
Spectral conditions for entanglement witnesses versus bound entanglement
Chruscinski, Dariusz; Kossakowski, Andrzej; Sarbicki, Gniewomir
2009-10-15
It is shown that entanglement witnesses constructed via the family of spectral conditions are decomposable, i.e., cannot be used to detect bound entanglement. It supports several observations that bound entanglement reveals highly nonspectral features.
Chain entanglements. I. Theory
NASA Astrophysics Data System (ADS)
Fixman, Marshall
1988-09-01
A model of concentrated polymer solution dynamics is described. The forces in a linear generalized Langevin equation for the motion of a probe chain are derived on the assumption that all relaxation of the forces is due to motion of the surrounding matrix. Vicinal chain displacements are classified as viscoelastic deformation, reptation, and minor residual fluctuations. The latter provide a torsional relaxation of the primitive path that minimizes the significance of transverse forces on the probe chain. All displacements of vicinal segments are assumed proportional to the forces that they exert on the probe chain. In response to an external force, the displacement of the probe chain relative to a laboratory frame is increased by viscoelastic deformation of the matrix, but reptative diffusion relative to the deforming matrix is slowed down. The net effect on translational diffusion is negligible if the probe and vicinal chains have the same chain length N, but the friction constant for reptative motion is increased by a factor N1-xs. xs=1/2 if Gaussian conformational statistics applies during the disengagement process, while xs =0.6 if excluded volume statistics applies. The translational friction constant is βp ˜N2, as in reptation theory, but the viscosity is η˜N4-xs . The persistence of entanglements during the translational diffusion of the probe chain across many radii of gyration is rationalized pictorially in terms of correlated reptative motion of the probe and vicinal chains.
Falzone, Tobias T; Blair, Savanna; Robertson-Anderson, Rae M
2015-06-14
We drive optically trapped microspheres through entangled F-actin at constant speeds and distances well beyond the linear regime, and measure the microscale force response of the entangled filaments during and following strain. Our results reveal a unique crossover to appreciable nonlinearity at a strain rate of [small gamma, Greek, dot above]c ≈ 3 s(-1) which corresponds remarkably well with the theoretical rate of relaxation of entanglement length deformations 1/τent. Above [small gamma, Greek, dot above]c, we observe stress stiffening which occurs over very short time scales comparable to the predicted timescale over which mesh size deformations relax. Stress softening then takes over, yielding to an effectively viscous regime over a timescale comparable to the entanglement length relaxation time, τent. The viscous regime displays shear thinning but with a less pronounced viscosity scaling with strain rate compared to flexible polymers. The relaxation of induced force on filaments following strain shows that the relative relaxation proceeds more quickly for increasing strain rates; and for rates greater than [small gamma, Greek, dot above]c, the relaxation displays a complex power-law dependence on time. Our collective results reveal that molecular-level nonlinear viscoelasticity is driven by non-classical dynamics of individual entanglement segments that are unique to semiflexible polymers. PMID:25920523
Entangling power and operator entanglement in qudit systems
Wang Xiaoguang; Sanders, Barry C.; Berry, Dominic W.
2003-04-01
We establish the entangling power of a unitary operator on a general finite-dimensional bipartite quantum system with and without ancillas, and give relations between the entangling power based on the von Neumann entropy and the entangling power based on the linear entropy. Significantly, we demonstrate that the entangling power of a general controlled unitary operator acting on two equal-dimensional qudits is proportional to the corresponding operator entanglement if linear entropy is adopted as the quantity representing the degree of entanglement. We discuss the entangling power and operator entanglement of three representative quantum gates on qudits: the SUM, double SUM, and SWAP gates.
Theory of entanglement and entanglement-assisted communication
NASA Astrophysics Data System (ADS)
Bennett, Charles H.
2011-03-01
Protocols such as quantum teleportation and measurement-based quantum computation highlight the importance of entanglement as a resource to be quantified and husbanded. Unlike classical shared randomness, entanglement has a profound effect on the capacity of quantum channels: a channel's entanglement-assisted capacity can be much greater than its unassisted capacity, and in any case is given by much a simpler formula, paralleling Shannon's original formula for the capacity of a classical channel. We review the differences between entanglement and weaker forms of correlation, and the theory of entanglement distillation and entanglement-assisted communication, including the role of strong forms of entanglement such as entanglement-embezzling states.
Thermalization of entanglement.
Zhang, Liangsheng; Kim, Hyungwon; Huse, David A
2015-06-01
We explore the dynamics of the entanglement entropy near equilibrium in highly entangled pure states of two quantum-chaotic spin chains undergoing unitary time evolution. We examine the relaxation to equilibrium from initial states with either less or more entanglement entropy than the equilibrium value, as well as the dynamics of the spontaneous fluctuations of the entanglement that occur in equilibrium. For the spin chain with a time-independent Hamiltonian and thus an extensive conserved energy, we find slow relaxation of the entanglement entropy near equilibration. Such slow relaxation is absent in a Floquet spin chain with a Hamiltonian that is periodic in time and thus has no local conservation law. Therefore, we argue that slow diffusive energy transport is responsible for the slow relaxation of the entanglement entropy in the Hamiltonian system. PMID:26172682
Unlocking fermionic mode entanglement
NASA Astrophysics Data System (ADS)
Friis, Nicolai
2016-06-01
Aside from other puzzling features of entanglement, it has been debated whether a physically meaningful notion of entanglement requires two (or more) particles as carriers of the correlated degrees-of-freedom, or if a single particle could be considered to be entangled as well. While the usefulness of single-boson entanglement has been demonstrated some time ago, the restrictions of superselection rules have previously thwarted attempts at similar arguments for single fermions. In Dasenbrook et al (2016 New J. Phys. 18 043036) this obstacle is overcome. The authors propose a scheme for a Bell test on two copies of single-electron states whose entanglement is individually not accessible. The discussed scheme, which makes use of recent progress in electronic quantum optics, provides an experimentally viable and theoretically unambiguous way to assert that certain single-electron states can be considered to be entangled.
Multipartite entanglement measures
NASA Astrophysics Data System (ADS)
Szalay, Szilárd
2015-10-01
The main concern of this paper is how to define proper measures of multipartite entanglement for mixed quantum states. Since the structure of partial separability and multipartite entanglement is getting complicated if the number of subsystems exceeds two, one cannot expect the existence of an ultimate scalar entanglement measure, which grasps even a small part of the rich hierarchical structure of multipartite entanglement, and some higher-order structure characterizing that is needed. In this paper we make some steps in this direction. First, we reveal the lattice-theoretic structure of the partial separability classification, introduced earlier [Sz. Szalay and Z. Kökényesi, Phys. Rev. A 86, 032341 (2012), 10.1103/PhysRevA.86.032341]. It turns out that, mathematically, the structure of the entanglement classes is the up-set lattice of the structure of the different kinds of partial separability, which is the down-set lattice of the lattice of the partitions of the subsystems. It also turns out that, physically, this structure is related to the local operations and classical communication convertibility: If a state from a class can be mapped into another one, then that class can be found higher in the hierarchy. Second, we introduce the notion of multipartite monotonicity, expressing that a given set of entanglement monotones, while measuring the different kinds of entanglement, shows also the same hierarchical structure as the entanglement classes. Then we construct such hierarchies of entanglement measures and propose a physically well-motivated one, being the direct multipartite generalization of the entanglement of formation based on the entanglement entropy, motivated by the notion of statistical distinguishability. The multipartite monotonicity shown by this set of measures motivates us to consider the measures to be the different manifestations of some "unified" notion of entanglement.
Geometric measures of entanglement
Uyanik, K.; Turgut, S.
2010-03-15
The geometric measure of entanglement, which expresses the minimum distance to product states, has been generalized to distances to sets that remain invariant under the stochastic reducibility relation. For each such set, an associated entanglement monotone can be defined. The explicit analytical forms of these measures are obtained for bipartite entangled states. Moreover, the three-qubit case is discussed and it is argued that the distance to the W states is a new monotone.
Hopping Diffusion of Nanoparticles in Polymer Matrices
2016-01-01
We propose a hopping mechanism for diffusion of large nonsticky nanoparticles subjected to topological constraints in both unentangled and entangled polymer solids (networks and gels) and entangled polymer liquids (melts and solutions). Probe particles with size larger than the mesh size ax of unentangled polymer networks or tube diameter ae of entangled polymer liquids are trapped by the network or entanglement cells. At long time scales, however, these particles can diffuse by overcoming free energy barrier between neighboring confinement cells. The terminal particle diffusion coefficient dominated by this hopping diffusion is appreciable for particles with size moderately larger than the network mesh size ax or tube diameter ae. Much larger particles in polymer solids will be permanently trapped by local network cells, whereas they can still move in polymer liquids by waiting for entanglement cells to rearrange on the relaxation time scales of these liquids. Hopping diffusion in entangled polymer liquids and networks has a weaker dependence on particle size than that in unentangled networks as entanglements can slide along chains under polymer deformation. The proposed novel hopping model enables understanding the motion of large nanoparticles in polymeric nanocomposites and the transport of nano drug carriers in complex biological gels such as mucus. PMID:25691803
Multipartite entanglement of superpositions
Cavalcanti, D.; Terra Cunha, M. O.; Acin, A.
2007-10-15
The entanglement of superpositions [Linden et al., Phys. Rev. Lett. 97, 100502 (2006)]is generalized to the multipartite scenario: an upper bound to the multipartite entanglement of a superposition is given in terms of the entanglement of the superposed states and the superposition coefficients. This bound is proven to be tight for a class of states composed of an arbitrary number of qubits. We also extend the result to a large family of quantifiers, which includes the negativity, the robustness of entanglement, and the best separable approximation measure.
NASA Astrophysics Data System (ADS)
Xiao, Yunlong; Jing, Naihuan; Li-Jost, Xianqing; Fei, Shao-Ming
2016-03-01
We present several criteria for genuine multipartite entanglement from universal uncertainty relations based on majorization theory. Under non-negative Schur-concave functions, the vector-type uncertainty relation generates a family of infinitely many detectors to check genuine multipartite entanglement. We also introduce the concept of k-separable circles via geometric distance for probability vectors, which include at most (k-1)-separable states. The entanglement witness is also generalized to a universal entanglement witness which is able to detect the k-separable states more accurately.
Renormalizing Entanglement Distillation.
Waeldchen, Stephan; Gertis, Janina; Campbell, Earl T; Eisert, Jens
2016-01-15
Entanglement distillation refers to the task of transforming a collection of weakly entangled pairs into fewer highly entangled ones. It is a core ingredient in quantum repeater protocols, which are needed to transmit entanglement over arbitrary distances in order to realize quantum key distribution schemes. Usually, it is assumed that the initial entangled pairs are identically and independently distributed and are uncorrelated with each other, an assumption that might not be reasonable at all in any entanglement generation process involving memory channels. Here, we introduce a framework that captures entanglement distillation in the presence of natural correlations arising from memory channels. Conceptually, we bring together ideas from condensed-matter physics-ideas from renormalization and matrix-product states and operators-with those of local entanglement manipulation, Markov chain mixing, and quantum error correction. We identify meaningful parameter regions for which we prove convergence to maximally entangled states, arising as the fixed points of a matrix-product operator renormalization flow. PMID:26824532
Multipartite entanglement of superpositions
NASA Astrophysics Data System (ADS)
Cavalcanti, D.; Terra Cunha, M. O.; Acín, A.
2007-10-01
The entanglement of superpositions [Linden , Phys. Rev. Lett. 97, 100502 (2006)]is generalized to the multipartite scenario: an upper bound to the multipartite entanglement of a superposition is given in terms of the entanglement of the superposed states and the superposition coefficients. This bound is proven to be tight for a class of states composed of an arbitrary number of qubits. We also extend the result to a large family of quantifiers, which includes the negativity, the robustness of entanglement, and the best separable approximation measure.
NASA Astrophysics Data System (ADS)
Xiao, Yunlong; Jing, Naihuan; Li-Jost, Xianqing; Fei, Shao-Ming
2016-08-01
We present several criteria for genuine multipartite entanglement from universal uncertainty relations based on majorization theory. Under non-negative Schur-concave functions, the vector-type uncertainty relation generates a family of infinitely many detectors to check genuine multipartite entanglement. We also introduce the concept of k-separable circles via geometric distance for probability vectors, which include at most ( k-1)-separable states. The entanglement witness is also generalized to a universal entanglement witness which is able to detect the k-separable states more accurately.
Feasibility study: Monodisperse polymer particles containing laser-excitable dyes
NASA Technical Reports Server (NTRS)
Venkateswarlu, Putcha; He, K. X.; Sharma, A.
1993-01-01
The optical properties associated with small particles, which include aerosols, hydrosols and solid microspheres have an impact on several areas of science and engineering. Since the advent of high-speed computers and lasers, the interaction of light with matter in the form of small particles with a discontinuous optical boundary relative to the surroundings has been much better understood. Various nonlinear optical effects have been observed involving interaction of a laser beam with both solid microspheres and liquid microdroplets. These include observation of second and third harmonic generation, four wave mixing, optical visibility, two photon absorption, observation of stimulated emission and lasing, and Stimulated Raman Scattering. Many of these effects are observed with laser intensities which are orders of magnitude less than that required by threshold condition for interactions in macroscopic bulk medium. The primary reason for this is twofold. The front surface of the microsphere acts as a thick lens to enhance the internal intensity of the input laser radiation, and the spherical shape of the droplet acts as an optical cavity to provide feedback at specific wavelengths corresponding to the whispering gallery modes or the morphology dependent resonances (MDR's). The most interesting and significant recent finding in this field is undoubtedly the existence of resonance peaks in linear and nonlinear optical spectra. Such resonance peaks are only dependent on the particle morphology, which means the size, shape and refractive index of the particle. Because of the simultaneous presence of these resonances, they have been referred to by many names, including structural resonances, whispering modes or whispering gallery modes, creeping waves, circumferential waves, surfaces modes, and virtual modes. All of these names refer to the same phenomena, i.e. morphology dependent resonances (MDR's) which has already been described and predicted precisely by electromagnetic theory and Loentz-Mie theory since 1908. MDR's can become important when the particle size (radius a) approaches and exceeds the wavelength of the electromagnetic wave (lambda) and the refractive index of the particle is greater than that of the surrounding medium. Such resonances are easiest to observe from a single particle with high symmetry, such as a sphere, spheroid, or cylinder. MDR's correspond to solutions of the characteristic equations of the electromagnetic fields in the presence of a sphere.
Fluorescence enhancement of Rhodamine B by monodispersed silver nanoparticles
NASA Astrophysics Data System (ADS)
Suslov, A.; Lama, P. T.; Dorsinville, R.
2015-06-01
A strong enhancement in fluorescence of Rhodamine B dye in the vicinity of silver monodisperse nanoparticles is presented. The fluorescence of the dye increased as much as by 23 times in the presence of monodispersed silver nanoparticles. The fluorescence enhancement due to monodispersed silver nanoparticles was about 2-3 times larger than in the presence of polydispersed silver nanoparticles. The additional enhancement is explained in terms of emergence of uniform and large local electromagnetic field induced by surface plasmon resonance around an ensemble of monodispersed silver nanoparticles.
Emerging Methods for Producing Monodisperse Graphene Dispersions
Green, Alexander A.; Hersam, Mark C.
2010-01-01
With the recent burst of activity surrounding solution phase production of graphene, comparatively little progress has been made towards the generation of graphene dispersions with tailored thickness, lateral area, and shape. The polydispersity of graphene dispersions, however, can lead to unpredictable or non-ideal behavior once they are incorporated into devices, since the properties of graphene vary as a function of its structural parameters. In this brief perspective, we overview the problem of graphene polydispersity, the production of graphene dispersions, and the methods under development to produce dispersions of monodisperse graphene. PMID:20657758
Mechanism of entanglement preservation
Tong Qingjun; An Junhong; Luo Honggang; Oh, C. H.
2010-05-15
We study the entanglement preservation of two qubits locally interacting with their reservoirs. We show that the existence of a bound state of the qubit and its reservoir and the non-Markovian effect are two essential ingredients and their interplay plays a crucial role in preserving the entanglement in the steady state. When the non-Markovian effect is neglected, the entanglement sudden death (ESD) is reproduced. On the other hand, when the non-Markovian is significantly strong but the bound state is absent, the phenomenon of the ESD and its revival is recovered. Our formulation presents a unified picture about the entanglement preservation and provides a clear clue on how to preserve the entanglement in quantum information processing.
Causality & holographic entanglement entropy
NASA Astrophysics Data System (ADS)
Headrick, Matthew; Hubeny, Veronika E.; Lawrence, Albion; Rangamani, Mukund
2014-12-01
We identify conditions for the entanglement entropy as a function of spatial region to be compatible with causality in an arbitrary relativistic quantum field theory. We then prove that the covariant holographic entanglement entropy prescription (which relates entanglement entropy of a given spatial region on the boundary to the area of a certain extremal surface in the bulk) obeys these conditions, as long as the bulk obeys the null energy condition. While necessary for the validity of the prescription, this consistency requirement is quite nontrivial from the bulk standpoint, and therefore provides important additional evidence for the prescription. In the process, we introduce a codimension-zero bulk region, named the entanglement wedge, naturally associated with the given boundary spatial region. We propose that the entanglement wedge is the most natural bulk region corresponding to the boundary reduced density matrix.
Monodisperse PEGylated Spheres: An Aqueous Colloidal Model System
2014-01-01
Fluorinated core–shell spheres have been synthesized using a novel semibatch emulsion polymerization protocol employing slow feeding of the initiator. The synthesis results in aqueous dispersions of highly monodisperse spheres bearing a well-defined poly(ethylene glycol) graft (PEGylation). Measurements are consistent with the synthesis achieving a high grafting density that moreover consists of a single PEG layer with the polymer significantly elongated beyond its radius of gyration in bulk. The fluorination of the core of the particles confers a low index of refraction such that the particles can be refractive index matched in water through addition of relatively small amounts of a cosolvent, which enables the use of optical and laser-based methods for studies of concentrated systems. The systems exhibit an extreme stability in NaCl solutions, but attractions among particles can be introduced by addition of other salts, in which case aggregation is shown to be reversible. The PEGylated sphere dispersions are expected to be ideally suited as model systems for studies of the effect of PEG-mediated interactions on, for instance, structure, dynamics, phase behavior, and rheology. PMID:24533774
Enzyme Induced Formation of Monodisperse Hydrogel Nanoparticles Tunable in Size
Bocharova, Vera; Sharp, Danna; Jones, Aaron; Cheng, Shiwang; Griffin, Philip J.; Agapov, Alexander L.; Voylov, Dmitry; Wang, Yangyang; Kisliuk, Alexander; Melman, Artem; et al
2015-03-09
Here, we report a novel approach to synthesize monodisperse hydrogel nanoparticles that are tunable in size. The distinctive feature of our approach is the use of a multicopper oxidase enzyme, laccase, as both a biocatalyst and template for nanoparticle growth. We utilize the ferroxidase activity of laccase to initiate localized production of iron(III) cations from the oxidation of iron(II) cations. We demonstrate that nanoparticles are formed in a dilute polymer solution of alginate as a result of cross-linking between alginate and enzymatically produced iron(III) cations. Exerting control over the enzymatic reaction allows for nanometer-scale tuning of the hydrogel nanoparticle radiimore » in the range of 30–100 nm. Moreover, the nanoparticles and their growth kinetics were characterized via dynamic light scattering, atomic force microscopy, and UV–vis spectroscopy. Our finding opens up a new avenue for the synthesis of tunable nanoscale hydrogel particles for biomedical applications.« less
Monodisperse PEGylated spheres: an aqueous colloidal model system.
Ulama, Jeanette; Zackrisson Oskolkova, Malin; Bergenholtz, Johan
2014-03-01
Fluorinated core-shell spheres have been synthesized using a novel semibatch emulsion polymerization protocol employing slow feeding of the initiator. The synthesis results in aqueous dispersions of highly monodisperse spheres bearing a well-defined poly(ethylene glycol) graft (PEGylation). Measurements are consistent with the synthesis achieving a high grafting density that moreover consists of a single PEG layer with the polymer significantly elongated beyond its radius of gyration in bulk. The fluorination of the core of the particles confers a low index of refraction such that the particles can be refractive index matched in water through addition of relatively small amounts of a cosolvent, which enables the use of optical and laser-based methods for studies of concentrated systems. The systems exhibit an extreme stability in NaCl solutions, but attractions among particles can be introduced by addition of other salts, in which case aggregation is shown to be reversible. The PEGylated sphere dispersions are expected to be ideally suited as model systems for studies of the effect of PEG-mediated interactions on, for instance, structure, dynamics, phase behavior, and rheology. PMID:24533774
Monodisperse hard rods in external potentials
NASA Astrophysics Data System (ADS)
Bakhti, Benaoumeur; Karbach, Michael; Maass, Philipp; Müller, Gerhard
2015-10-01
We consider linear arrays of cells of volume Vc populated by monodisperse rods of size σ Vc,σ =1 ,2 ,... , subject to hardcore exclusion interaction. Each rod experiences a position-dependent external potential. In one application we also examine effects of contact forces between rods. We employ two distinct methods of exact analysis with complementary strengths and different limits of spatial resolution to calculate profiles of pressure and density on mesoscopic and microscopic length scales at thermal equilibrium. One method uses density functionals and the other statistically interacting vacancy particles. The applications worked out include gravity, power-law traps, and hard walls. We identify oscillations in the profiles on a microscopic length scale and show how they are systematically averaged out on a well-defined mesoscopic length scale to establish full consistency between the two approaches. The continuum limit, realized as Vc→0 ,σ →∞ at nonzero and finite σ Vc , connects our highest-resolution results with known exact results for monodisperse rods in a continuum. We also compare the pressure profiles obtained from density functionals with the average microscopic pressure profiles derived from the pair distribution function.
Monodisperse Magnetic Nanoparticles for Theranostic Applications
Ho, Don; Sun, Xiaolian; Sun, Shouheng
2011-01-01
Conspectus The development of highly effective medicine requires the on-time monitoring of the medical treatment process. This combination of monitoring and therapeutics allows a large degree of control on the treatment efficacy and is now commonly referred to as “theranostics”. Magnetic nanoparticles (NPs) provide a unique nano-platform for theranostic applications due to their comparable sizes with various functional biomolecules, their biocompatibility and their responses to the external magnetic field. Recent efforts in studying magnetic NPs for both imaging and therapeutic applications have led to great advances in NP fabrication with controls in dimension, surface functionalization and magnetic property. These magnetic NPs have been proven to be robust agents that can be target-specific for enhancing magnetic resonance imaging sensitivity and magnetic heating efficiency. These, plus the deep tissue penetration of magnetic field, make magnetic NPs the most promising candidates for successful theranostics in the future. In this Account, we review the recent advances in the synthesis of magnetic NPs of iron oxide, Fe, as well as FePt and FeCo NPs for imaging and therapeutic applications. We will first introduce briefly nanomagnetism, magnetic resonance imaging (MRI), and magnetic fluid hyperthermia (MFH). We will then focus on chemical synthesis of monodisperse magnetic NPs with controlled sizes, morphologies, and magnetic properties. Typical examples in using monodisperse magnetic NPs for MRI and MFH are highlighted. PMID:21661754
Reexamination of entanglement of superpositions
NASA Astrophysics Data System (ADS)
Gour, Gilad
2007-11-01
We find tight lower and upper bounds on the entanglement of a superposition of two bipartite states in terms of the entanglement of the two states constituting the superposition. Our upper bound is dramatically tighter than the one presented by Linden [Phys. Rev. Lett. 97, 100502 (2006)] and our lower bound can be used to provide lower bounds on different measures of entanglement such as the entanglement of formation and the entanglement of subspaces. We also find that in the case in which the two states are one-sided orthogonal, the entanglement of the superposition state can be expressed explicitly in terms of the entanglement of the two states in the superposition.
Entanglement negativity in the multiverse
Kanno, Sugumi; Shock, Jonathan P.; Soda, Jiro
2015-03-10
We explore quantum entanglement between two causally disconnected regions in the multiverse. We first consider a free massive scalar field, and compute the entanglement negativity between two causally separated open charts in de Sitter space. The qualitative feature of it turns out to be in agreement with that of the entanglement entropy. We then introduce two observers who determine the entanglement between two causally disconnected de Sitter spaces. When one of the observers remains constrained to a region of the open chart in a de Sitter space, we find that the scale dependence enters into the entanglement. We show that a state which is initially maximally entangled becomes more entangled or less entangled on large scales depending on the mass of the scalar field and recovers the initial entanglement in the small scale limit. We argue that quantum entanglement may provide some evidence for the existence of the multiverse.
Entanglement negativity in the multiverse
NASA Astrophysics Data System (ADS)
Kanno, Sugumi; Shock, Jonathan P.; Soda, Jiro
2015-03-01
We explore quantum entanglement between two causally disconnected regions in the multiverse. We first consider a free massive scalar field, and compute the entanglement negativity between two causally separated open charts in de Sitter space. The qualitative feature of it turns out to be in agreement with that of the entanglement entropy. We then introduce two observers who determine the entanglement between two causally disconnected de Sitter spaces. When one of the observers remains constrained to a region of the open chart in a de Sitter space, we find that the scale dependence enters into the entanglement. We show that a state which is initially maximally entangled becomes more entangled or less entangled on large scales depending on the mass of the scalar field and recovers the initial entanglement in the small scale limit. We argue that quantum entanglement may provide some evidence for the existence of the multiverse.
Facile production of monodisperse nanoparticles on a liquid surface.
Anantha, P; Cheng, T; Tay, Y Y; Wong, C C; Ramanujan, R V
2015-10-28
The emergence of monodispersity during particle growth on a liquid substrate was investigated both by experimental methods and by computer simulation. Monodispersity arises through a novel mechanism (termed "shared coarsening"), associated with the spatial distribution of the particles; smaller particles are simultaneously consumed by several larger particles. Particle monodispersity was predicted by kinetic Monte Carlo simulation for suitable substrate adsorption probability and adatom diffusion length conditions. High particle monodispersity is predicted for low adsorption probability and low/intermediate diffusion length values. Experimentally, the formation of uniformly sized copper nanoparticles by physical vapor deposition on a liquid substrate was demonstrated. These results demonstrate, by experiment and simulation, the facile production of monodisperse particles on liquid substrates. PMID:26399544
Multipartite Entanglement And Firewalls
NASA Astrophysics Data System (ADS)
Luo, Shengqiao; Stoltenberg, Henry; Albrecht, Andreas
2016-03-01
Black holes offer an exciting area to explore the nature of quantum gravity. The classic work on Hawking radiation indicates that black holes should decay via quantum effects, but our ideas about how this might work at a technical level are incomplete. Recently Almheiri-Marolf-Polchinski-Sully AMPS have noted an apparent paradox in reconciling fundamental properties of quantum mechanics with standard beliefs about black holes. One way to resolve the paradox is to postulate the existence of a ``firewall'' inside the black hole horizon which prevents objects from falling smoothly toward the singularity. A fundamental limitation on the behavior of quantum entanglement known as ``monogamy'' plays a key role in the AMPS argument. Our goal is to study and apply many-body entanglement theory to consider the entanglement among different parts of Hawking radiation and black holes. We identified an example which could change the AMPS accounting of quantum entanglement and perhaps eliminating the need for a firewall. Looking at different many body entanglement measures and their monogamy properties can tell us subtle ways in which different subsystems can share their entanglement. Specific measures we consider include negativity, concurrence, and mutual information. Taking insights from these different measures, we constructed toy models for black hole decay which have different entanglement behaviors than those assumed by AMPS. We hope to use our effective toy model to demonstrate interesting new ways of thinking about black holes.
Constructing optimal entanglement witnesses
Chruscinski, Dariusz; Pytel, Justyna; Sarbicki, Gniewomir
2009-12-15
We provide a class of indecomposable entanglement witnesses. In 4x4 case, it reproduces the well-known Breuer-Hall witness. We prove that these witnesses are optimal and atomic, i.e., they are able to detect the 'weakest' quantum entanglement encoded into states with positive partial transposition. Equivalently, we provide a construction of indecomposable atomic maps in the algebra of 2kx2k complex matrices. It is shown that their structural physical approximations give rise to entanglement breaking channels. This result supports recent conjecture by Korbicz et al. [Phys. Rev. A 78, 062105 (2008)].
Highly entangled tensor networks
NASA Astrophysics Data System (ADS)
Gu, Yingfei; Bulmash, Daniel; Qi, Xiao-Liang
Tensor network states are used to represent many-body quantum state, e.g., a ground state of local Hamiltonian. In this talk, we will provide a systematic way to produce a family of highly entangled tensor network states. These states are entangled in a special way such that the entanglement entropy of a subsystem follows the Ryu-Takayanagi formula, i.e. the entropy is proportional to the minimal area geodesic surface bounding the boundary region. Our construction also provide an intuitive understanding of the Ryu-Takayanagi formula by relating it to a wave propagation process. We will present examples in various geometries.
Multipartite Fully Entangled Fraction
NASA Astrophysics Data System (ADS)
Xu, Jianwei
2016-06-01
Fully entangled fraction is a definition for bipartite states, which is tightly related to bipartite maximally entangled states, and has clear experimental and theoretical significance. In this work, we generalize it to multipartite case, we call the generalized version multipartite fully entangled fraction (MFEF). MFEF measures the closeness of a state to GHZ states. The analytical expressions of MFEF are very difficult to obtain except for very special states, however, we show that, the MFEF of any state is determined by a system of finite-order polynomial equations. Therefore, the MFEF can be efficiently numerically computed.
Probabilistic Teleportation via Entanglement
NASA Astrophysics Data System (ADS)
Li, De-Chao; Shi, Zhong-Ke
2008-10-01
With an arbitrary bi-particle entangled mixed state which is shared by Alice (the sender) and Bob (the receiver) acted as a quantum channel, at first, a teleportation protocol that Alice successfully transmits an unknown mixed state to Bob based on a positive operator-valued measurement (POVM) is presented. The upper bound of probability to teleport successfully an unknown mixed state is then investigated, and conclude that it completely depends on the entanglement degree of the bi-particle entangled mixed state as a resource.
NASA Astrophysics Data System (ADS)
Olson Reichhardt, C. J.; Hastings, M. B.
2004-04-01
We propose an experiment for directly constructing and locally probing topologically entangled states of superconducting vortices which can be performed with present-day technology. Calculations using an elastic string vortex model indicate that as the pitch (the winding angle divided by the vertical distance) increases, the vortices approach each other. At values of the pitch higher than a maximum value the entangled state becomes unstable to collapse via a singularity of the model. We provide predicted experimental signatures for both vortex entanglement and vortex cutting. The local probe we propose can also be used to explore a wide range of other quantities.
Effect of molecular weight on polymer processability
Karg, R.F.
1983-01-01
Differences in rheological behavior due to the polymer molecular weight and molecular weight distribution have been shown with the MPT. SBR polymers having high molecular weight fractions develop higher stress relaxation time values due to the higher degree of polymer entanglements. Tests conducted at increasing temperatures show the diminishing influence of the polymer entanglements upon stress relaxation time. EPDM polymers show stress relaxation time and head pressure behavior which correlates with mill processability. As anticipated, compounded stock of EPDM have broad molecular weight distribution has higher stress relaxation time values than EPDM compounds with narrow molecular weight distribution.
Monodisperse cluster crystals: Classical and quantum dynamics.
Díaz-Méndez, Rogelio; Mezzacapo, Fabio; Cinti, Fabio; Lechner, Wolfgang; Pupillo, Guido
2015-11-01
We study the phases and dynamics of a gas of monodisperse particles interacting via soft-core potentials in two spatial dimensions, which is of interest for soft-matter colloidal systems and quantum atomic gases. Using exact theoretical methods, we demonstrate that the equilibrium low-temperature classical phase simultaneously breaks continuous translational symmetry and dynamic space-time homogeneity, whose absence is usually associated with out-of-equilibrium glassy phenomena. This results in an exotic self-assembled cluster crystal with coexisting liquidlike long-time dynamical properties, which corresponds to a classical analog of supersolid behavior. We demonstrate that the effects of quantum fluctuations and bosonic statistics on cluster-glassy crystals are separate and competing: Zero-point motion tends to destabilize crystalline order, which can be restored by bosonic statistics. PMID:26651695
Monodisperse microdroplet generation and stopping without coalescence
Beer, Neil Reginald
2015-04-21
A system for monodispersed microdroplet generation and trapping including providing a flow channel in a microchip; producing microdroplets in the flow channel, the microdroplets movable in the flow channel; providing carrier fluid in the flow channel using a pump or pressure source; controlling movement of the microdroplets in the flow channel and trapping the microdroplets in a desired location in the flow channel. The system includes a microchip; a flow channel in the microchip; a droplet maker that generates microdroplets, the droplet maker connected to the flow channel; a carrier fluid in the flow channel, the carrier fluid introduced to the flow channel by a source of carrier fluid, the source of carrier fluid including a pump or pressure source; a valve connected to the carrier fluid that controls flow of the carrier fluid and enables trapping of the microdroplets.
Monodisperse microdroplet generation and stopping without coalescence
Beer, Neil Reginald
2016-02-23
A system for monodispersed microdroplet generation and trapping including providing a flow channel in a microchip; producing microdroplets in the flow channel, the microdroplets movable in the flow channel; providing carrier fluid in the flow channel using a pump or pressure source; controlling movement of the microdroplets in the flow channel and trapping the microdroplets in a desired location in the flow channel. The system includes a microchip; a flow channel in the microchip; a droplet maker that generates microdroplets, the droplet maker connected to the flow channel; a carrier fluid in the flow channel, the carrier fluid introduced to the flow channel by a source of carrier fluid, the source of carrier fluid including a pump or pressure source; a valve connected to the carrier fluid that controls flow of the carrier fluid and enables trapping of the microdroplets.
Converting Nonclassicality into Entanglement.
Killoran, N; Steinhoff, F E S; Plenio, M B
2016-02-26
Quantum mechanics exhibits a wide range of nonclassical features, of which entanglement in multipartite systems takes a central place. In several specific settings, it is well known that nonclassicality (e.g., squeezing, spin squeezing, coherence) can be converted into entanglement. In this work, we present a general framework, based on superposition, for structurally connecting and converting nonclassicality to entanglement. In addition to capturing the previously known results, this framework also allows us to uncover new entanglement convertibility theorems in two broad scenarios, one which is discrete and one which is continuous. In the discrete setting, the classical states can be any finite linearly independent set. For the continuous setting, the pertinent classical states are "symmetric coherent states," connected with symmetric representations of the group SU(K). These results generalize and link convertibility properties from the resource theory of coherence, spin coherent states, and optical coherent states, while also revealing important connections between local and nonlocal pictures of nonclassicality. PMID:26967398
Quantifying entanglement with witness operators
Brandao, Fernando G.S.L.
2005-08-15
We present a unifying approach to the quantification of entanglement based on entanglement witnesses, which includes several already established entanglement measures such as the negativity, the concurrence, and the robustness of entanglement. We then introduce an infinite family of new entanglement quantifiers, having as its limits the best separable approximation measure and the generalized robustness. Gaussian states, states with symmetry, states constrained to super-selection rules, and states composed of indistinguishable particles are studied under the view of the witnessed entanglement. We derive new bounds to the fidelity of teleportation d{sub min}, for the distillable entanglement E{sub D} and for the entanglement of formation. A particular measure, the PPT-generalized robustness, stands out due to its easy calculability and provides sharper bounds to d{sub min} and E{sub D} than the negativity in most of the states. We illustrate our approach studying thermodynamical properties of entanglement in the Heisenberg XXX and dimerized models.
Entanglement of mesoscopic systems
NASA Astrophysics Data System (ADS)
Narnhofer, Heide; Thirring, Walter
2002-11-01
The entanglement of clouds of N=1011 atoms recently experimentally verified is expressed in terms of the fluctuation algebra introduced by [P. Goderis, A. Verbeure, and P. Vets, Commun. Phys. 128, 533 (1990)]. A mean-field Hamiltonian describing the coupling to a laser beam leads to different time evolutions if considered on microscopic or mesoscopic operators. Only the latter creates nontrivial correlations that finally after a measurement lead to entanglement between the clouds.
Anomalies and entanglement entropy
NASA Astrophysics Data System (ADS)
Nishioka, Tatsuma; Yarom, Amos
2016-03-01
We initiate a systematic study of entanglement and Rényi entropies in the presence of gauge and gravitational anomalies in even-dimensional quantum field theories. We argue that the mixed and gravitational anomalies are sensitive to boosts and obtain a closed form expression for their behavior under such transformations. Explicit constructions exhibiting the dependence of entanglement entropy on boosts is provided for theories on spacetimes with non-trivial magnetic fluxes and (or) non-vanishing Pontryagin classes.
Entanglement Renormalization and Wavelets.
Evenbly, Glen; White, Steven R
2016-04-01
We establish a precise connection between discrete wavelet transforms and entanglement renormalization, a real-space renormalization group transformation for quantum systems on the lattice, in the context of free particle systems. Specifically, we employ Daubechies wavelets to build approximations to the ground state of the critical Ising model, then demonstrate that these states correspond to instances of the multiscale entanglement renormalization ansatz (MERA), producing the first known analytic MERA for critical systems. PMID:27104687
Entanglement Renormalization and Wavelets
NASA Astrophysics Data System (ADS)
Evenbly, Glen; White, Steven R.
2016-04-01
We establish a precise connection between discrete wavelet transforms and entanglement renormalization, a real-space renormalization group transformation for quantum systems on the lattice, in the context of free particle systems. Specifically, we employ Daubechies wavelets to build approximations to the ground state of the critical Ising model, then demonstrate that these states correspond to instances of the multiscale entanglement renormalization ansatz (MERA), producing the first known analytic MERA for critical systems.
Entangling power and operator entanglement of nonunitary quantum evolutions
NASA Astrophysics Data System (ADS)
Kong, Fan-Zhen; Zhao, Jun-Long; Yang, Ming; Cao, Zhuo-Liang
2015-07-01
We propose a method to calculate the operator entanglement and entangling power of a noisy nonunitary operation in terms of linear entropy. By decomposing the Kraus operators of noisy evolution as the sum of products of Pauli matrices, we derive the analytical expression of the operator entanglement for a general nonunitary operation. The definition of entangling power is extended from the ideal unitary operation case to the nonunitary case via a Kraus operator representation and the analytical expression of the entangling power for a general nonunitary operation is derived. To demonstrate the effectiveness of the above method, we investigate the properties of operator entanglement and entangling power of nonunitary operations caused by phase damping noise. Our findings imply that the pure phase damping noise has its own operator entanglement and entangling power, which increase exponentially with time and asymptotically approach their respective upper bounds. In addition, when the phase damping noise is added to an ideal operation, such as an iswap operation or a controlled-Z operation, it can make the operation's entangling power grow exponentially with the strength of noise, but leave its operator entanglement invariant. In this sense, we can conclude that, for a general operation, operator entanglement is a more intrinsic property than entangling power.
Browne, Christine; Tabor, Rico F; Grieser, Franz; Dagastine, Raymond R
2015-08-01
Structural forces play an important role in the rheology, processing and stability of colloidal systems and complex fluids, with polyelectrolytes representing a key class of structuring colloids. Here, we explore the interactions between soft colloids, in the form of air bubbles, in solutions of monodisperse sodium poly(styrene sulfonate) as a model polyelectrolyte. It is found that by self-consistently modelling the force oscillations due to structuring of the polymer chains along with deformation of the bubbles, it is possible to precisely predict the interaction potential between approaching bubbles. In line with polyelectrolyte scaling theory, two distinct regimes of behaviour are seen, corresponding to dilute and semi-dilute polymer solutions. It is also seen that by blending monodisperse systems to give a bidisperse sample, the interaction forces between soft colloids can be controlled with a high degree of precision. At increasing bubble collision velocity, it is revealed that hydrodynamic flow overwhelms oscillatory structural interactions, showing the important disparity between equilibrium behaviour and dynamic interactions. PMID:25881266
Large-size monodisperse latexes as a commercial space product
NASA Technical Reports Server (NTRS)
Kornfeld, D. M.
1977-01-01
Proposed spacelab production of large-size (2-40 micron diameter) monodispersed latexes is discussed. Explanations are given for the present lack of monodisperse particles in this size range. The four main topics discussed are: (1) the potential uses of these large particle size latexes, (2) why it is necessary for the particles to have a very narrow size distribution, (3) why large amounts of these monodisperse latexes are needed, and (4) why it is necessary to go to microgravity to prepare these latexes.
NASA Astrophysics Data System (ADS)
Hoy, Robert S.; Foteinopoulou, Katerina; Kröger, Martin
2009-09-01
Primitive path analyses of entanglements are performed over a wide range of chain lengths for both bead spring and atomistic polyethylene polymer melts. Estimators for the entanglement length Ne which operate on results for a single chain length N are shown to produce systematic O(1/N) errors. The mathematical roots of these errors are identified as (a) treating chain ends as entanglements and (b) neglecting non-Gaussian corrections to chain and primitive path dimensions. The prefactors for the O(1/N) errors may be large; in general their magnitude depends both on the polymer model and the method used to obtain primitive paths. We propose, derive, and test new estimators which eliminate these systematic errors using information obtainable from the variation in entanglement characteristics with chain length. The new estimators produce accurate results for Ne from marginally entangled systems. Formulas based on direct enumeration of entanglements appear to converge faster and are simpler to apply.
Benito-Peña, Elena; Navarro-Villoslada, Fernando; Carrasco, Sergio; Jockusch, Steffen; Ottaviani, M Francesca; Moreno-Bondi, Maria C
2015-05-27
The effect of the cross-linker on the shape and size of molecular imprinted polymer (MIP) beads prepared by precipitation polymerization has been evaluated using a chemometric approach. Molecularly imprinted microspheres for the selective recognition of fluoroquinolone antimicrobials were prepared in a one-step precipitation polymerization procedure using enrofloxacin (ENR) as the template molecule, methacrylic acid as functional monomer, 2-hydroxyethyl methacrylate as hydrophilic comonomer, and acetonitrile as the porogen. The type and amount of cross-linker, namely ethylene glycol dimethacrylate, divinylbenzene or trimethylolpropane trimethacrylate, to obtain monodispersed MIP spherical beads in the micrometer range was optimized using a simplex lattice design. Particle size and morphology were assessed by scanning electron microscopy, dynamic light scattering, and nitrogen adsorption measurements. Electron paramagnetic resonance spectroscopy in conjunction with a nitroxide as spin probe revealed information about the microviscosity and polarity of the binding sites in imprinted and nonimprinted polymer beads. PMID:25942541
NASA Astrophysics Data System (ADS)
Han, Junwon; Semler, James J.
2005-03-01
High performance liquid chromatography techniques have been developed for characterizing complex polymers that are often heterogeneous in molecular weight, molecular architecture, and chemical composition. Recently, interaction chromatography (IC) techniques have been developed, which facilitate separation of polymers based on enthalpic ``attraction'' difference among the chemical constituents of the molecule. Here, we use IC for characterizing the composition and monomer sequence distribution in statistical copolymers of poly(styrene-co-4-bromostyrene) (PBrxS). The PBrxS copolymers were synthesized by brominating monodisperse polystyrenes; the degree of bromination (x) and the sequence distribution have been adjusted by varying the bromination time and the solvent quality, respectively. Both normal-phase (bare silica) and reversed-phase (C18-bonded silica) columns are used at different combinations of solvents and non-solvents to monitor the content of the 4-bromostyrene units in the copolymer and their average monomer sequence distribution.
Entangled graphs: a classification of four-qubit entanglement
NASA Astrophysics Data System (ADS)
Ghahi, Masoud Gharahi; Akhtarshenas, Seyed Javad
2016-03-01
We use the concept of entangled graphs with weighted edges to present a classification for four-qubit entanglement which is based neither on the LOCC nor the SLOCC. Entangled graphs, first introduced by Plesch et al. [Phys. Rev. A 67, 012322 (2003)], are structures such that each qubit of a multi-qubit system is represented as a vertex and an edge between two vertices denotes bipartite entanglement between the corresponding qubits. Our classification is based on the use of generalized Schmidt decomposition of pure states of multi-qubit systems. We show that for every possible entangled graph one can find a pure state such that the reduced entanglement of each pair, measured by concurrence, represents the weight of the corresponding edge in the graph. We also use the concept of tripartite and quadripartite concurrences as a proper measure of global entanglement of the states. In this case a circle including the graph indicates the presence of global entanglement.
Entanglement under restricted operations: Analogy to mixed-state entanglement
Bartlett, Stephen D.; Doherty, Andrew C.; Spekkens, Robert W.; Wiseman, H. M.
2006-02-15
We show that the classification of bipartite pure entangled states when local quantum operations are restricted yields a structure that is analogous in many respects to that of mixed-state entanglement. Specifically, we develop this analogy by restricting operations through local superselection rules, and show that such exotic phenomena as bound entanglement and activation arise using pure states in this setting. This analogy aids in resolving several conceptual puzzles in the study of entanglement under restricted operations. In particular, we demonstrate that several types of quantum optical states that possess confusing entanglement properties are analogous to bound entangled states. Also, the classification of pure-state entanglement under restricted operations can be much simpler than for mixed-state entanglement. For instance, in the case of local Abelian superselection rules all questions concerning distillability can be resolved.
Entanglement swapping of two arbitrarily degraded entangled states
NASA Astrophysics Data System (ADS)
Kirby, Brian T.; Santra, Siddhartha; Malinovsky, Vladimir S.; Brodsky, Michael
2016-07-01
We consider entanglement swapping, a key component of quantum network operations and entanglement distribution. Pure entangled states, which are the desired input to the swapping protocol, are typically mixed by environmental interactions, causing a reduction in their degree of entanglement. Thus an understanding of entanglement swapping with partially mixed states is of importance. Here we present a general analytical solution for entanglement swapping of arbitrary two-qubit states. Our result provides a comprehensive method for analyzing entanglement swapping in quantum networks. First, we show that the concurrence of a partially mixed state is conserved when this state is swapped with a Bell state. Then, we find upper and lower bounds on the concurrence of the state resulting from entanglement swapping for various classes of input states. Finally, we determine a general relationship between the ranks of the initial states and the rank of the final state after swapping.
Sustainable synthesis of monodispersed spinel nano-ferrites
A sustainable approach for the synthesis of various monodispersed spinel ferrite nanoparticles has been developed that occurs at water-toluene interface under both conventional and microwave hydrothermal conditions. This general synthesis procedure utilizes readily available and ...
Electromagnetically Induced Entanglement
NASA Astrophysics Data System (ADS)
Yang, Xihua; Xiao, Min
2015-08-01
Quantum entanglement provides an essential resource for quantum computation, quantum communication, and quantum network. How to conveniently and efficiently produce entanglement between bright light beams presents a challenging task to build realistic quantum information processing networks. Here, we present an efficient and convenient way to realize a novel quantum phenomenon, named electromagnetically induced entanglement, in the conventional Λ-type three-level atomic system driven by a strong pump field and a relatively weak probe field. Nearly perfect entanglement between the two fields can be achieved with a low coherence decay rate between the two lower levels, high pump-field intensity, and large optical depth of the atomic ensemble. The physical origin is quantum coherence between the lower doublet produced by the pump and probe fields, similar to the well-known electromagnetically induced transparency. This method would greatly facilitate the generation of nondegenerate narrow-band continuous-variable entanglement between bright light beams by using only coherent laser fields, and may find potential and broad applications in realistic quantum information processing.
Electromagnetically Induced Entanglement.
Yang, Xihua; Xiao, Min
2015-01-01
Quantum entanglement provides an essential resource for quantum computation, quantum communication, and quantum network. How to conveniently and efficiently produce entanglement between bright light beams presents a challenging task to build realistic quantum information processing networks. Here, we present an efficient and convenient way to realize a novel quantum phenomenon, named electromagnetically induced entanglement, in the conventional Λ-type three-level atomic system driven by a strong pump field and a relatively weak probe field. Nearly perfect entanglement between the two fields can be achieved with a low coherence decay rate between the two lower levels, high pump-field intensity, and large optical depth of the atomic ensemble. The physical origin is quantum coherence between the lower doublet produced by the pump and probe fields, similar to the well-known electromagnetically induced transparency. This method would greatly facilitate the generation of nondegenerate narrow-band continuous-variable entanglement between bright light beams by using only coherent laser fields, and may find potential and broad applications in realistic quantum information processing. PMID:26314514
Monodispersed Spray Generation from Convex Surfaces
NASA Astrophysics Data System (ADS)
Shroff, Shilpa; Liepmann, Dorian
1999-11-01
Flow of a fluid sheet over a concave surface has been found to amplify streamwise vorticity leading to a new mechanism for droplet formation. An instability leading to waves that travel in the streamwise direction is also observed. The resultant grid-like structure produces monodispersed droplets at the intersections of the two instabilities as the flow develops. The presentation will focus on the dominant physics associated with the interaction between the solid surface and the fluid sheet and discuss how these control the formation of the droplets. The cross-stream ridges result from a wave instability that depends on the curvature of the bed and the Froude Number. There has been some analytical work done on determining the stability characteristic of flow in curved beds by Eagles, which indicates a weak instability even at Reynolds numbers approaching zero. The possibility of streamwise vortices was also investigated as the source of the streamwise ridges. This vorticity may be introduced into the flow by the angle between the jet and the sheet during the initial contact. An analytic model as well as experimental work has been developed to determine the physical phenomena that influence the dynamics of this flow. In addition, work has been done to identify important scaling parameters, especially those that control the development of the surface deformation and droplet formation.
Estimating concurrence via entanglement witnesses
Jurkowski, Jacek; Chruscinski, Dariusz
2010-05-15
We show that each entanglement witness detecting a given bipartite entangled state provides an estimation of its concurrence. We illustrate our result with several well-known examples of entanglement witnesses and compare the corresponding estimation of concurrence with other estimations provided by the trace norm of partial transposition and realignment.
Lithography using quantum entangled particles
NASA Technical Reports Server (NTRS)
Williams, Colin (Inventor); Dowling, Jonathan (Inventor); della Rossa, Giovanni (Inventor)
2003-01-01
A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.
Lithography using quantum entangled particles
NASA Technical Reports Server (NTRS)
Williams, Colin (Inventor); Dowling, Jonathan (Inventor)
2001-01-01
A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.
Multipartite entanglement in quantum algorithms
Bruss, D.; Macchiavello, C.
2011-05-15
We investigate the entanglement features of the quantum states employed in quantum algorithms. In particular, we analyze the multipartite entanglement properties in the Deutsch-Jozsa, Grover, and Simon algorithms. Our results show that for these algorithms most instances involve multipartite entanglement.
NASA Astrophysics Data System (ADS)
Brand, J.; Flach, S.; Fleurov, V.; Schulman, L. S.; Tolkunov, D.
2008-08-01
We study the localization of bosonic atoms in an optical lattice, which interact in a spatially confined region. The classical theory predicts that there is no localization below a threshold value for the strength of interaction that is inversely proportional to the number of participating atoms. In a full quantum treatment, however, we find that localized states exist for arbitrarily weak attractive or repulsive interactions for any number (>1) of atoms. We further show, using an explicit solution of the two-particle bound state and an appropriate measure of entanglement, that the entanglement tends to a finite value in the limit of weak interactions. Coupled with the non-existence of localization in an optimized quantum product state, we conclude that the localization exists by virtue of entanglement.
NASA Astrophysics Data System (ADS)
Graydon, Matthew A.; Appleby, D. M.
2016-08-01
We describe a connection between entanglement and designs. It involves the conical two-designs introduced in a previous paper. These are a generalization of projective two-designs which includes full sets of arbitrary rank mutually unbiased measurements (mums) and arbitrary rank symmetric informationally complete measurements (sims), as well as the more familiar mubs and sics. We show that a povm is a conical two-design if and only if there exists what we call a regular entanglement monotone whose restriction to the pure states is a function of the norm of the probability vector. In that case the concurrence is such a monotone. We also generalize and develop previous work on designs and entanglement detection.
Topological entanglement entropy.
Kitaev, Alexei; Preskill, John
2006-03-24
We formulate a universal characterization of the many-particle quantum entanglement in the ground state of a topologically ordered two-dimensional medium with a mass gap. We consider a disk in the plane, with a smooth boundary of length L, large compared to the correlation length. In the ground state, by tracing out all degrees of freedom in the exterior of the disk, we obtain a marginal density operator rho for the degrees of freedom in the interior. The von Neumann entropy of rho, a measure of the entanglement of the interior and exterior variables, has the form S(rho) = alphaL - gamma + ..., where the ellipsis represents terms that vanish in the limit L --> infinity. We show that - gamma is a universal constant characterizing a global feature of the entanglement in the ground state. Using topological quantum field theory methods, we derive a formula for gamma in terms of properties of the superselection sectors of the medium. PMID:16605802
Entangling and assisted entangling power of bipartite unitary operations
NASA Astrophysics Data System (ADS)
Chen, Lin; Yu, Li
2016-08-01
Nonlocal unitary operations can create quantum entanglement between distributed particles, and the quantification of created entanglement is a hard problem. It corresponds to the concepts of entangling and assisted entangling power when the input states are, respectively, product and arbitrary pure states. We analytically derive them for Schmidt-rank-two bipartite unitary and some complex bipartite permutation unitaries. In particular, the entangling power of permutation unitary of Schmidt rank three can take only one of two values: log29 -16 /9 or log23 ebits. The entangling power, assisted entangling power, and disentangling power of 2 ×dB permutation unitaries of Schmidt rank four are all 2 ebits. These quantities are also derived for generalized Clifford operators. We further show that any bipartite permutation unitary of Schmidt rank greater than two has entangling power greater than 1.223 ebits. We construct the generalized controlled-not (cnot) gates whose assisted entangling power reaches the maximum. We quantitatively compare the entangling power and assisted entangling power for general bipartite unitaries and their connection to the disentangling power by proposing a probabilistic protocol for implementing bipartite unitaries.
Images in quantum entanglement
NASA Astrophysics Data System (ADS)
Bowden, G. J.
2009-08-01
A system for classifying and quantifying entanglement in spin 1/2 pure states is presented based on simple images. From the image point of view, an entangled state can be described as a linear superposition of separable object wavefunction ΨO plus a portion of its own inverse image. Bell states can be defined in this way: \\Psi = 1/\\sqrt 2 (\\Psi _O \\pm \\Psi _I ). Using the method of images, the three-spin 1/2 system is discussed in some detail. This system can exhibit exclusive three-particle ν123 entanglement, two-particle entanglements ν12, ν13, ν23 and/or mixtures of all four. All four image states are orthogonal both to each other and to the object wavefunction. In general, five entanglement parameters ν12, ν13, ν23, ν123 and phi123 are required to define the general entangled state. In addition, it is shown that there is considerable scope for encoding numbers, at least from the classical point of view but using quantum-mechanical principles. Methods are developed for their extraction. It is shown that concurrence can be used to extract even-partite, but not odd-partite information. Additional relationships are also presented which can be helpful in the decoding process. However, in general, numerical methods are mandatory. A simple roulette method for decoding is presented and discussed. But it is shown that if the encoder chooses to use transcendental numbers for the angles defining the target function (α1, β1), etc, the method rapidly turns into the Devil's roulette, requiring finer and finer angular steps.
Fabrication of monodispersed silver nanoparticles and their optical characterizations
NASA Astrophysics Data System (ADS)
Lama, Pemba
This dissertation is about the fabrication of monodispersed (same size, shape, composition, structure, etc.) silver nanoparticles in gas media and their optical characterizations such as optical absorption, nonlinear optical response and plasmon assisted fluorescence. The first part of the thesis presents the fabrication method used to prepare monodispersed silver (Ag) nanoparticles (NPs) using heterogeneous condensation in gas media. Well defined and charged Ag NPs were separated based on their sizes by applying an electric field on unipolar charged Ag NPs and were collected on quartz substrates. Thin films consisting of monodispersed Ag NPs with size ranging from 35 nm to 120 nm were prepared by varying an applied electric field during the fabrication process. Scanning electron microscope (SEM) results showed that the samples have a uniform size distribution. In the second part of the thesis, optical characterization, including linear and nonlinear optical properties, are performed on monodispersed and polydispersed Ag NPs and analyzed. A strong plasmon resonance was observed for the monodispersed Ag NPs due to the coherent oscillations of the conduction band electrons, owing to the uniform size of the Ag NPs. Narrow extinction widths (~ 41 nm to ~ 69 nm) were observed for the Ag NPs compared to the width of the polydispersed Ag sample. Nonlinear optical characterizations were also performed on monodispersed silver (Ag) nanoparticles (NPs) of various sizes using a picosecond Z-scan technique with excitation wavelengths at 532 nm and 1064 nm. The nonlinear refraction values were higher for the monodispersed Ag NPs whose surface plasmon resonance (SPR) peak is closer to the excitation wavelength. The higher nonlinear optical response is explained in terms of an electric field enhancement near the SPR. Finally, plasmon assisted fluorescence of Rhodamine B dye was also investigated. Higher fluorescence quantum yield was obtained from Rhodamine B when using
Valence bond entanglement entropy.
Alet, Fabien; Capponi, Sylvain; Laflorencie, Nicolas; Mambrini, Matthieu
2007-09-14
We introduce for SU(2) quantum spin systems the valence bond entanglement entropy as a counting of valence bond spin singlets shared by two subsystems. For a large class of antiferromagnetic systems, it can be calculated in all dimensions with quantum Monte Carlo simulations in the valence bond basis. We show numerically that this quantity displays all features of the von Neumann entanglement entropy for several one-dimensional systems. For two-dimensional Heisenberg models, we find a strict area law for a valence bond solid state and multiplicative logarithmic corrections for the Néel phase. PMID:17930468
NASA Astrophysics Data System (ADS)
Baez, John C.; Vicary, Jamie
2014-11-01
Maldacena and Susskind have proposed a correspondence between wormholes and entanglement, dubbed ER=EPR. We study this in the context of three-dimensional topological quantum field theory (TQFT), where we show that the formation of a wormhole is the same process as creating a particle-antiparticle pair. A key feature of the ER=EPR proposal is that certain apparently entangled degrees of freedom turn out to be the same. We name this phenomenon ‘fake entanglement’, and show how it arises in our TQFT model.
Entanglement monogamy relations of qubit systems
NASA Astrophysics Data System (ADS)
Zhu, Xue-Na; Fei, Shao-Ming
2014-08-01
We investigate the monogamy relations related to the concurrence and the entanglement of formation. General monogamy inequalities given by the αth power of concurrence and entanglement of formation are presented for N-qubit states. The monogamy relation for entanglement of assistance is also established. Based on these general monogamy relations, the residual entanglement of concurrence and entanglement of formation are studied. Some relations among the residual entanglement, entanglement of assistance, and three tangle are also presented.
Recovering entanglement by local operations
D’Arrigo, A.; Lo Franco, R.; Benenti, G.; Paladino, E.; Falci, G.
2014-11-15
We investigate the phenomenon of bipartite entanglement revivals under purely local operations in systems subject to local and independent classical noise sources. We explain this apparent paradox in the physical ensemble description of the system state by introducing the concept of “hidden” entanglement, which indicates the amount of entanglement that cannot be exploited due to the lack of classical information on the system. For this reason this part of entanglement can be recovered without the action of non-local operations or back-transfer process. For two noninteracting qubits under a low-frequency stochastic noise, we show that entanglement can be recovered by local pulses only. We also discuss how hidden entanglement may provide new insights about entanglement revivals in non-Markovian dynamics.
Reexamination of entanglement of superpositions
Gour, Gilad
2007-11-15
We find tight lower and upper bounds on the entanglement of a superposition of two bipartite states in terms of the entanglement of the two states constituting the superposition. Our upper bound is dramatically tighter than the one presented by Linden et al. [Phys. Rev. Lett. 97, 100502 (2006)] and our lower bound can be used to provide lower bounds on different measures of entanglement such as the entanglement of formation and the entanglement of subspaces. We also find that in the case in which the two states are one-sided orthogonal, the entanglement of the superposition state can be expressed explicitly in terms of the entanglement of the two states in the superposition.
A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals
NASA Astrophysics Data System (ADS)
Pang, Xinchang; Zhao, Lei; Han, Wei; Xin, Xukai; Lin, Zhiqun
2013-06-01
Colloidal nanocrystals exhibit a wide range of size- and shape-dependent properties and have found application in myriad fields, incuding optics, electronics, mechanics, drug delivery and catalysis, to name but a few. Synthetic protocols that enable the simple and convenient production of colloidal nanocrystals with controlled size, shape and composition are therefore of key general importance. Current strategies include organic solution-phase synthesis, thermolysis of organometallic precursors, sol-gel processes, hydrothermal reactions and biomimetic and dendrimer templating. Often, however, these procedures require stringent experimental conditions, are difficult to generalize, or necessitate tedious multistep reactions and purification. Recently, linear amphiphilic block co-polymer micelles have been used as templates to synthesize functional nanocrystals, but the thermodynamic instability of these micelles limits the scope of this approach. Here, we report a general strategy for crafting a large variety of functional nanocrystals with precisely controlled dimensions, compositions and architectures by using star-like block co-polymers as nanoreactors. This new class of co-polymers forms unimolecular micelles that are structurally stable, therefore overcoming the intrinsic instability of linear block co-polymer micelles. Our approach enables the facile synthesis of organic solvent- and water-soluble nearly monodisperse nanocrystals with desired composition and architecture, including core-shell and hollow nanostructures. We demonstrate the generality of our approach by describing, as examples, the synthesis of various sizes and architectures of metallic, ferroelectric, magnetic, semiconductor and luminescent colloidal nanocrystals.
Postcolonial Entanglements: Unruling Stories
ERIC Educational Resources Information Center
Pacini-Ketchabaw, Veronica
2012-01-01
In this article, I use Donna Haraway's philosophy to think about postcolonial encounters between different species. I follow entangled stories of the deer/settler-child figure to trouble colonialisms and untangle the histories and trajectories that we inhabit with other species through colonial histories. I shy away from generalizations and…
Entanglement Created by Dissipation
Alharbi, Abdullah F.; Ficek, Zbigniew
2011-10-27
A technique for entangling closely separated atoms by the process of dissipative spontaneous emission is presented. The system considered is composed of two non-identical two-level atoms separated at the quarter wavelength of a driven standing wave laser field. At this atomic distance, only one of the atoms can be addressed by the laser field. In addition, we arrange the atomic dipole moments to be oriented relative to the inter-atomic axis such that the dipole-dipole interaction between the atoms is zero at this specific distance. It is shown that an entanglement can be created between the atoms on demand by tuning the Rabi frequency of the driving field to the difference between the atomic transition frequencies. The amount of the entanglement created depends on the ratio between the damping rates of the atoms, but is independent of the frequency difference between the atoms. We also find that the transient buildup of an entanglement between the atoms may differ dramatically for different initial atomic conditions.
Universal nonlinear entanglement witnesses
Kotowski, Marcin; Kotowski, Michal
2010-06-15
We give a universal recipe for constructing nonlinear entanglement witnesses able to detect nonclassical correlations in arbitrary systems of distinguishable and/or identical particles for an arbitrary number of constituents. The constructed witnesses are expressed in terms of expectation values of observables. As such, they are, at least in principle, measurable in experiments.
Are all maximally entangled states pure?
NASA Astrophysics Data System (ADS)
Cavalcanti, D.; Brandão, F. G. S. L.; Terra Cunha, M. O.
2005-10-01
We study if all maximally entangled states are pure through several entanglement monotones. In the bipartite case, we find that the same conditions which lead to the uniqueness of the entropy of entanglement as a measure of entanglement exclude the existence of maximally mixed entangled states. In the multipartite scenario, our conclusions allow us to generalize the idea of the monogamy of entanglement: we establish the polygamy of entanglement, expressing that if a general state is maximally entangled with respect to some kind of multipartite entanglement, then it is necessarily factorized of any other system.
Are all maximally entangled states pure?
Cavalcanti, D.; Brandao, F.G.S.L.; Terra Cunha, M.O.
2005-10-15
We study if all maximally entangled states are pure through several entanglement monotones. In the bipartite case, we find that the same conditions which lead to the uniqueness of the entropy of entanglement as a measure of entanglement exclude the existence of maximally mixed entangled states. In the multipartite scenario, our conclusions allow us to generalize the idea of the monogamy of entanglement: we establish the polygamy of entanglement, expressing that if a general state is maximally entangled with respect to some kind of multipartite entanglement, then it is necessarily factorized of any other system.
Evolution equation for entanglement of assistance
Li Zongguo; Liu, W. M.; Zhao Mingjing; Fei Shaoming
2010-04-15
We investigate the time evolution of the entanglement of assistance when one subsystem undergoes the action of local noisy channels. A general factorization law is presented for the evolution equation of entanglement of assistance. Our results demonstrate that the dynamics of the entanglement of assistance is determined by the action of a noisy channel on the pure maximally entangled state, in which the entanglement reduction turns out to be universal for all quantum states entering the channel. This single quantity will make it easy to characterize the entanglement dynamics of entanglement of assistance under unknown channels in the experimental process of producing entangled states by assisted entanglement.
General polygamy inequality of multiparty quantum entanglement
NASA Astrophysics Data System (ADS)
Kim, Jeong San
2012-06-01
Using entanglement of assistance, we establish a general polygamy inequality of multiparty entanglement in arbitrary-dimensional quantum systems. For multiparty closed quantum systems, we relate our result with the monogamy of entanglement, and clarify that the entropy of entanglement bounds both monogamy and polygamy of multiparty quantum entanglement.
Morphological Control and Characterization of Monodispersed Ceria Particles
Minamidate, Y.; Yin, S.; Devaraju, M. K.; Sato, T.
2010-11-24
The morphological control of cerium oxide particles was carried out by a homogeneous precipitation followed by calcination in air at 400 deg. C. The effects of pre-aging temperature, aging time and precipitation reagents on the morphologies of final products were investigated. When urea was used as a precipitation reagent, monodispersed spherical and flake-like cerium carbonate hydroxide precursor was precipitated in the solution at 90 deg. C for 2 h after pre-aging at 25 deg. C - 50 deg. C for 24-72 h. On the other hand, monodispersed nanosize rod-like cerium hydroxide particles were obtained using triethanolamine as precipitation reagent. Ceria particles with the same morphologies and slightly smaller particle size than those of as-prepared cerium precursor could be obtained after calcination in air at 400 deg. C. Physical-chemical characteristics of the monodispersed cerium oxide particles were evaluated.
Bipyramid-templated synthesis of monodisperse anisotropic gold nanocrystals
NASA Astrophysics Data System (ADS)
Lee, Jung-Hoon; Gibson, Kyle J.; Chen, Gang; Weizmann, Yossi
2015-06-01
Much of the interest in noble metal nanoparticles is due to their plasmonic resonance responses and local field enhancement, both of which can be tuned through the size and shape of the particles. However, both properties suffer from the loss of monodispersity that is frequently associated with various morphologies of nanoparticles. Here we show a method to generate diverse and monodisperse anisotropic gold nanoparticle shapes with various tip geometries as well as highly tunable size augmentations through either oxidative etching or seed-mediated growth of purified, monodisperse gold bipyramids. The conditions employed in the etching and growth processes also offer valuable insights into the growth mechanism difficult to realize with other gold nanostructures. The high-index facets and more complicated structure of the bipyramid lead to a wider variety of intriguing regrowth structures than in previously studied nanoparticles. Our results introduce a class of gold bipyramid-based nanoparticles with interesting and potentially useful features to the toolbox of gold nanoparticles.
NASA Astrophysics Data System (ADS)
Teng, Chao; He, Jie; Zhu, Lili; Ren, Lianbing; Chen, Jiwei; Hong, Mei; Wang, Yong
2015-10-01
A facile and efficient hard-templating strategy is reported for the preparation of porous nickel microspheres with excellent uniformity and strong magnetism. The strategy involves impregnation of porous polymer microspheres with nickel precursors, calcination to remove the template, followed by thermal reduction. The morphology, structure, and the property of the Ni microspheres were characterized by scanning electron microscopy, X-ray powder diffraction, N2 adsorption-desorption isotherms, thermogravimetric analysis, and magnetic hysteresis measurement. The obtained porous nickel microspheres were monodispersed with a particle size of 0.91 μm and crystallite size of 52 nm. Their saturation magnetization was much higher than that of Ni nanoparticles. The unique porous nanostructured Ni microspheres possess catalytic activity and excellent recyclability, as demonstrated in the catalytic reduction of 4-nitrophenol to 4-aminophenol. The micropherical Ni catalysts could be easily separated either by an external magnetic field or by simple filtration.
Monodisperse red blood cell-like particles via consolidation of charged droplets.
Park, Chul Ho; Chung, Nae-Oh; Lee, Jonghwi
2011-09-15
Recently, researchers have tried to produce non-spherical and anisotropic particles to be used in the next generation of multi-functional materials. Of key interest is the red blood cell-like particle. The torus structure was produced under the relatively fast consolidation of monodisperse droplets, and its parameters were found to be tunable by temperature as well as solvent type and concentration. The observation of consolidation demonstrated that the polymers were accumulated and solidified in the torus structure, naturally, whereas there was the critical droplet size to induce the asymmetry diffusivities. The torus structures could be simply tuned by the flow rate and concentration. The coaxial nozzle system produced the core/shell torus particles. These results state that the consolidation mechanism can hold important clues to enhance the range of tuning capabilities. PMID:21719020
Teng, Chao; He, Jie; Zhu, Lili; Ren, Lianbing; Chen, Jiwei; Hong, Mei; Wang, Yong
2015-12-01
A facile and efficient hard-templating strategy is reported for the preparation of porous nickel microspheres with excellent uniformity and strong magnetism. The strategy involves impregnation of porous polymer microspheres with nickel precursors, calcination to remove the template, followed by thermal reduction. The morphology, structure, and the property of the Ni microspheres were characterized by scanning electron microscopy, X-ray powder diffraction, N2 adsorption-desorption isotherms, thermogravimetric analysis, and magnetic hysteresis measurement. The obtained porous nickel microspheres were monodispersed with a particle size of 0.91 μm and crystallite size of 52 nm. Their saturation magnetization was much higher than that of Ni nanoparticles. The unique porous nanostructured Ni microspheres possess catalytic activity and excellent recyclability, as demonstrated in the catalytic reduction of 4-nitrophenol to 4-aminophenol. The micropherical Ni catalysts could be easily separated either by an external magnetic field or by simple filtration. PMID:26437654
Entanglement and quantum teleportation via decohered tripartite entangled states
Metwally, N.
2014-12-15
The entanglement behavior of two classes of multi-qubit system, GHZ and GHZ like states passing through a generalized amplitude damping channel is discussed. Despite this channel causes degradation of the entangled properties and consequently their abilities to perform quantum teleportation, one can always improve the lower values of the entanglement and the fidelity of the teleported state by controlling on Bell measurements, analyzer angle and channel’s strength. Using GHZ-like state within a generalized amplitude damping channel is much better than using the normal GHZ-state, where the decay rate of entanglement and the fidelity of the teleported states are smaller than those depicted for GHZ state.
Triclosan antimicrobial polymers
Petersen, Richard C.
2016-01-01
Triclosan antimicrobial molecular fluctuating energies of nonbonding electron pairs for the oxygen atom by ether bond rotations are reviewed with conformational computational chemistry analyses. Subsequent understanding of triclosan alternating ether bond rotations is able to help explain several material properties in Polymer Science. Unique bond rotation entanglements between triclosan and the polymer chains increase both the mechanical properties of polymer toughness and strength that are enhanced even better through secondary bonding relationships. Further, polymer blend compatibilization is considered due to similar molecular relationships and polarities. With compatibilization of triclosan in polymers a more uniform stability for nonpolar triclosan in the polymer solid state is retained by the antimicrobial for extremely low release with minimum solubility into aqueous solution. As a result, triclosan is projected for long extended lifetimes as an antimicrobial polymer additive. Further, triclosan rapid alternating ether bond rotations disrupt secondary bonding between chain monomers in the resin state to reduce viscosity and enhance polymer blending. Thus, triclosan is considered for a polymer additive with multiple properties to be an antimicrobial with additional benefits as a nonpolar toughening agent and a hydrophobic wetting agent. The triclosan material relationships with alternating ether bond rotations are described through a complete different form of medium by comparisons with known antimicrobial properties that upset bacterial cell membranes through rapid fluctuating mechanomolecular energies. Also, triclosan bond entanglements with secondary bonding can produce structural defects in weak bacterial lipid membranes requiring pliability that can then interfere with cell division. Regarding applications with polymers, triclosan can be incorporated by mixing into a resin system before cure, melt mixed with thermoplastic polymers that set on cooling
Feng, Lili; Stuart, Martien Cohen; Adachi, Yasuhisa
2015-12-01
The dynamic behavior of polyelectrolytes just after their encounter with the surface of bare colloidal particles is analyzed, using the flocculation properties of mono-dispersed polystyrene latex (PSL) particles. Applying a Standardized Colloid Mixing (SCM) approach, effects of ionic strength and charge density of polymer chain on the rate of flocculation, the electrophoretic mobility of particle coated with polyelectrolyte, and the thickness of adsorbed polymer layer were analyzed, focusing on distinguishing features of two modes of flocculation, namely bridging formation and charge neutralization. In the case of excess polymer dosage, the bridging flocculation clearly highlights the transient behavior of polymer conformation from random-coil-like in bulk solution to increasingly flatten on the surface. The adsorption of polymer chains leads to a stagnant layer of solvent near the solid wall, which is confirmed by electrokinetic data. In the regime near optimum dosage two cases emerge. For high charge density polymer, charge neutralization is dominant and advantageous for the continuous progress of flocculation by heterogeneous double layer interaction. As a function of elapsed time after the onset of mixing, crossover from bridging to charge neutralization is found. In the case of low charge density polymer, bridging flocculation is the mechanism. Fluid mixing is concluded to have an essential role in the formation of bridges. PMID:26456137
Methods for producing monodispersed particles of barium titanate
Hu, Zhong-Cheng
2001-01-01
The present invention is a low-temperature controlled method for producing high-quality, ultrafine monodispersed nanocrystalline microsphere powders of barium titanate and other pure or composite oxide materials having particles ranging from nanosized to micronsized particles. The method of the subject invention comprises a two-stage process. The first stage produces high quality monodispersed hydrous titania microsphere particles prepared by homogeneous precipitation via dielectric tuning in alcohol-water mixed solutions of inorganic salts. Titanium tetrachloride is used as an inorganic salt precursor material. The second stage converts the pure hydrous titania microsphere particles into crystalline barium titanate microsphere powders via low-temperature, hydrothermal reactions.
High-dimensional entanglement certification
Huang, Zixin; Maccone, Lorenzo; Karim, Akib; Macchiavello, Chiara; Chapman, Robert J.; Peruzzo, Alberto
2016-01-01
Quantum entanglement is the ability of joint quantum systems to possess global properties (correlation among systems) even when subsystems have no definite individual property. Whilst the 2-dimensional (qubit) case is well-understood, currently, tools to characterise entanglement in high dimensions are limited. We experimentally demonstrate a new procedure for entanglement certification that is suitable for large systems, based entirely on information-theoretics. It scales more efficiently than Bell’s inequality and entanglement witness. The method we developed works for arbitrarily large system dimension d and employs only two local measurements of complementary properties. This procedure can also certify whether the system is maximally entangled. We illustrate the protocol for families of bipartite states of qudits with dimension up to 32 composed of polarisation-entangled photon pairs. PMID:27311935
High-dimensional entanglement certification.
Huang, Zixin; Maccone, Lorenzo; Karim, Akib; Macchiavello, Chiara; Chapman, Robert J; Peruzzo, Alberto
2016-01-01
Quantum entanglement is the ability of joint quantum systems to possess global properties (correlation among systems) even when subsystems have no definite individual property. Whilst the 2-dimensional (qubit) case is well-understood, currently, tools to characterise entanglement in high dimensions are limited. We experimentally demonstrate a new procedure for entanglement certification that is suitable for large systems, based entirely on information-theoretics. It scales more efficiently than Bell's inequality and entanglement witness. The method we developed works for arbitrarily large system dimension d and employs only two local measurements of complementary properties. This procedure can also certify whether the system is maximally entangled. We illustrate the protocol for families of bipartite states of qudits with dimension up to 32 composed of polarisation-entangled photon pairs. PMID:27311935
High-dimensional entanglement certification
NASA Astrophysics Data System (ADS)
Huang, Zixin; Maccone, Lorenzo; Karim, Akib; Macchiavello, Chiara; Chapman, Robert J.; Peruzzo, Alberto
2016-06-01
Quantum entanglement is the ability of joint quantum systems to possess global properties (correlation among systems) even when subsystems have no definite individual property. Whilst the 2-dimensional (qubit) case is well-understood, currently, tools to characterise entanglement in high dimensions are limited. We experimentally demonstrate a new procedure for entanglement certification that is suitable for large systems, based entirely on information-theoretics. It scales more efficiently than Bell’s inequality and entanglement witness. The method we developed works for arbitrarily large system dimension d and employs only two local measurements of complementary properties. This procedure can also certify whether the system is maximally entangled. We illustrate the protocol for families of bipartite states of qudits with dimension up to 32 composed of polarisation-entangled photon pairs.
Sudden death of effective entanglement
Roszak, K.; Horodecki, P.; Horodecki, R.
2010-04-15
Sudden death of entanglement is a well-known effect resulting from the finite volume of separable states. We study the case when the observer has a limited measurement capability and analyze the effective entanglement (i.e., entanglement minimized over the output data). We show that in the well-defined system of two quantum dots monitored by single-electron transistors, one may observe a sudden death of effective entanglement when real, physical entanglement is still alive. For certain measurement setups, this occurs even for initial states for which sudden death of physical entanglement is not possible at all. The principles of the analysis may be applied to other analogous scenarios, such as estimation of the parameters arising from quantum process tomography.
Entanglement structures in qubit systems
NASA Astrophysics Data System (ADS)
Rangamani, Mukund; Rota, Massimiliano
2015-09-01
Using measures of entanglement such as negativity and tangles we provide a detailed analysis of entanglement structures in pure states of non-interacting qubits. The motivation for this exercise primarily comes from holographic considerations, where entanglement is inextricably linked with the emergence of geometry. We use the qubit systems as toy models to probe the internal structure, and introduce some useful measures involving entanglement negativity to quantify general features of entanglement. In particular, our analysis focuses on various constraints on the pattern of entanglement which are known to be satisfied by holographic sates, such as the saturation of Araki-Lieb inequality (in certain circumstances), and the monogamy of mutual information. We argue that even systems as simple as few non-interacting qubits can be useful laboratories to explore how the emergence of the bulk geometry may be related to quantum information principles.
All maximally entangling unitary operators
Cohen, Scott M.
2011-11-15
We characterize all maximally entangling bipartite unitary operators, acting on systems A and B of arbitrary finite dimensions d{sub A}{<=}d{sub B}, when ancillary systems are available to both parties. Several useful and interesting consequences of this characterization are discussed, including an understanding of why the entangling and disentangling capacities of a given (maximally entangling) unitary can differ and a proof that these capacities must be equal when d{sub A}=d{sub B}.
Local cloning of entangled qubits
Choudhary, Sujit K.; Kunkri, Samir; Rahaman, Ramij; Roy, Anirban
2007-11-15
We discuss the exact cloning of orthogonal but entangled qubits under local operations and classical communication. The amount of entanglement necessary in a blank copy is obtained for various cases. Surprisingly, this amount is more than 1 ebit for certain sets of two nonmaximal but equally entangled states of two qubits. To clone any three Bell states, at least log{sub 2} 3 ebit is necessary.
Inter-Universal Quantum Entanglement
NASA Astrophysics Data System (ADS)
Robles-Pérez, S. J.; González-Díaz, P. F.
2015-01-01
The boundary conditions to be imposed on the quantum state of the whole multiverse could be such that the universes would be created in entangled pairs. Then, interuniversal entanglement would provide us with a vacuum energy for each single universe that might be fitted with observational data, making testable not only the multiverse proposal but also the boundary conditions of the multiverse. Furthermore, the second law of the entanglement thermodynamics would enhance the expansion of the single universes.
Relative Entropy and Squashed Entanglement
NASA Astrophysics Data System (ADS)
Li, Ke; Winter, Andreas
2014-02-01
We are interested in the properties and relations of entanglement measures. Especially, we focus on the squashed entanglement and relative entropy of entanglement, as well as their analogues and variants. Our first result is a monogamy-like inequality involving the relative entropy of entanglement and its one-way LOCC variant. The proof is accomplished by exploring the properties of relative entropy in the context of hypothesis testing via one-way LOCC operations, and by making use of an argument resembling that by Piani on the faithfulness of regularized relative entropy of entanglement. Following this, we obtain a commensurate and faithful lower bound for squashed entanglement, in the form of one-way LOCC relative entropy of entanglement. This gives a strengthening to the strong subadditivity of von Neumann entropy. Our result improves the trace-distance-type bound derived in Brandão et al. (Commun Math Phys, 306:805-830, 2011), where faithfulness of squashed entanglement was first proved. Applying Pinsker's inequality, we are able to recover the trace-distance-type bound, even with slightly better constant factor. However, the main improvement is that our new lower bound can be much larger than the old one and it is almost a genuine entanglement measure. We evaluate exactly the relative entropy of entanglement under various restricted measurement classes, for maximally entangled states. Then, by proving asymptotic continuity, we extend the exact evaluation to their regularized versions for all pure states. Finally, we consider comparisons and separations between some important entanglement measures and obtain several new results on these, too.
Partially unbiased entangled bases
NASA Astrophysics Data System (ADS)
Kalev, A.; Khanna, F. C.; Revzen, M.
2009-08-01
In this contribution we group the operator basis for d2 -dimensional Hilbert space in a way that enables us to relate bases of entangled states with single-particle mutually unbiased state bases (MUB), each in dimensionality d . We utilize these sets of operators to show that an arbitrary density matrix for this d2 -dimensional Hilbert-space system is analyzed via d2+d+1 measurements, d2-d of which involve those entangled states that we associate with MUB of the d -dimensional single-particle constituents. The number d2+d+1 lies in the middle of the number of measurements needed for bipartite state reconstruction with two-particle MUB (d2+1) and those needed by single-particle MUB [(d2+1)2] .
Entanglement in fermionic systems
Banuls, Mari-Carmen; Cirac, J. Ignacio; Wolf, Michael M.
2007-08-15
The anticommuting properties of fermionic operators, together with the presence of parity conservation, affect the concept of entanglement in a composite fermionic system. Hence different points of view can give rise to different reasonable definitions of separable and entangled states. Here we analyze these possibilities and the relationship between the different classes of separable states. The behavior of the various classes when taking multiple copies of a state is also studied, showing that some of the differences vanish in the asymptotic regime. In particular, in the case of only two fermionic modes all the classes become equivalent in this limit. We illustrate the differences and relations by providing a complete characterization of all the sets defined for systems of two fermionic modes. The results are applied to Gibbs states of infinite chains of fermions whose interaction corresponds to a XY Hamiltonian with transverse magnetic field.
Geometrical aspects of entanglement
Leinaas, Jon Magne; Myrheim, Jan; Ovrum, Eirik
2006-07-15
We study geometrical aspects of entanglement, with the Hilbert-Schmidt norm defining the metric on the set of density matrices. We focus first on the simplest case of two two-level systems and show that a 'relativistic' formulation leads to a complete analysis of the question of separability. Our approach is based on Schmidt decomposition of density matrices for a composite system and nonunitary transformations to a standard form. The positivity of the density matrices is crucial for the method to work. A similar approach works to some extent in higher dimensions, but is a less powerful tool. We further present a numerical method for examining separability and illustrate the method by a numerical study of bound entanglement in a composite system of two three-level systems.
Entanglement with Classical Spinors
NASA Astrophysics Data System (ADS)
Baylis, William E.; Johnson, Crystal
2004-05-01
The spinor formulation of classical dynamics, which arises naturally in Clifford algebra approaches, describes particle dynamics in terms of spinor amplitudes and gives quantum mechanical, spin-1/2 form to many classical expressions for particles whose dynamics can be represented by single spinor fields. Here we use tensor products of the algebra of physical space (APS)[1] to explore the quantum/classical interface and provide insight into quantum properties and, in particular, entanglement in multiparticle spin-1/2 systems. Entanglement in mixed-state systems is seen as spinor (Â"quantumÂ") correlation beyond the maximum possible with classical frequencies or probabilities. The relevance to systems of qubits in a quantum computer is elaborated. [1] W. E. Baylis, Â"Applications of Clifford Algebras in PhysicsÂ", in Lectures on Clifford (Geometric) Algebras and Applications, R. Ablamowicz and G. Sobczyk, eds., Birkhäuser Boston, 2004.
Entanglement in quantum catastrophes
Emary, Clive; Lambert, Neill; Brandes, Tobias
2005-06-15
We classify entanglement singularities for various two-mode bosonic systems in terms of catastrophe theory. Employing an abstract phase-space representation, we obtain exact results in limiting cases for the entropy in cusp, butterfly, and two-dimensional catastrophes. We furthermore use numerical results to extract the scaling of the entropy with the nonlinearity parameter, and discuss the role of mixing entropies in more complex systems.
Higher-order quantum entanglement
NASA Technical Reports Server (NTRS)
Zeilinger, Anton; Horne, Michael A.; Greenberger, Daniel M.
1992-01-01
In quantum mechanics, the general state describing two or more particles is a linear superposition of product states. Such a superposition is called entangled if it cannot be factored into just one product. When only two particles are entangled, the stage is set for Einstein-Podolsky-Rosen (EPR) discussions and Bell's proof that the EPR viewpoint contradicts quantum mechanics. If more than two particles are involved, new possibilities and phenomena arise. For example, the Greenberger, Horne, and Zeilinger (GHZ) disproof of EPR applies. Furthermore, as we point out, with three or more particles even entanglement itself can be an entangled property.
A Logical Approach to Entanglement
NASA Astrophysics Data System (ADS)
Das, Abhishek
2016-05-01
In this paper we innovate a logical approach to develop an intuition regarding the phenomenon of quantum entanglement. In the vein of the logic introduced we substantiate that particles that were entangled in the past will be entangled in perpetuity and thereby abide a rule that restricts them to act otherwise. We also introduce a game and by virtue of the concept of Nash equilibrium we have been able to show that entangled particles will mutually correspond to an experiment that is performed on any one of the particle.
More nonlocality with less entanglement
Vidick, Thomas; Wehner, Stephanie
2011-05-15
Recent numerical investigations [K. Pal and T. Vertesi, Phys. Rev. A 82, 022116 (2010)] suggest that the I3322 inequality, arguably the simplest extremal Bell inequality after the CHSH inequality, has a very rich structure in terms of the entangled states and measurements that maximally violate it. Here we show that for this inequality the maximally entangled state of any dimension achieves the same violation than just a single EPR pair. In contrast, stronger violations can be achieved using higher dimensional states which are less entangled. This shows that the maximally entangled state is not the most nonlocal resource, even when one restricts attention to the most simple extremal Bell inequalities.
NASA Astrophysics Data System (ADS)
Anninos, Dionysios; Samani, Joshua; Shaghoulian, Edgar
2014-02-01
We study the applicability of the covariant holographic entanglement entropy proposal to asymptotically warped AdS3 spacetimes with an SL(2, ℝ) × U(1) isometry. We begin by applying the proposal to locally AdS3 backgrounds which are written as an ℝ1 fibration over AdS2. We then perturb away from this geometry by considering a warping parameter a = 1 + δ to get an asymptotically warped AdS3 spacetime and compute the dual entanglement entropy perturbatively in δ. We find that for large separation in the fiber coordinate, the entanglement entropy can be computed to all orders in δ and takes the universal form appropriate for two-dimensional CFTs. The warping-dependent central charge thus identified exactly agrees with previous calculations in the literature. Performing the same perturbative calculations for the warped BTZ black hole again gives universal two-dimensional CFT answers, with the left-moving and right-moving temperatures appearing appropriately in the result.
Entanglement entropy on fractals
NASA Astrophysics Data System (ADS)
Faraji Astaneh, Amin
2016-03-01
We use the heat kernel method to calculate the entanglement entropy for a given entangling region on a fractal. The leading divergent term of the entropy is obtained as a function of the fractal dimension as well as the walk dimension. The power of the UV cutoff parameter is (generally) a fractional number, which, indeed, is a certain combination of these two indices. This exponent is known as the spectral dimension. We show that there is a novel log-periodic oscillatory behavior in the expression of entropy which has root in the complex dimension of the fractal. We finally indicate that the holographic calculation in a certain hyperscaling-violating bulk geometry yields the same leading term for the entanglement entropy, if one identifies the effective dimension of the hyperscaling-violating theory with the spectral dimension of the fractal. We provide additional support by comparing the behavior of the thermal entropy in terms of the temperature, computed for two geometries, the fractal geometry and the hyperscaling-violating background.
Fragile entanglement statistics
NASA Astrophysics Data System (ADS)
Brody, Dorje C.; Hughston, Lane P.; Meier, David M.
2015-10-01
If X and Y are independent, Y and Z are independent, and so are X and Z, one might be tempted to conclude that X, Y, and Z are independent. But it has long been known in classical probability theory that, intuitive as it may seem, this is not true in general. In quantum mechanics one can ask whether analogous statistics can emerge for configurations of particles in certain types of entangled states. The explicit construction of such states, along with the specification of suitable sets of observables that have the purported statistical properties, is not entirely straightforward. We show that an example of such a configuration arises in the case of an N-particle GHZ state, and we are able to identify a family of observables with the property that the associated measurement outcomes are independent for any choice of 2,3,\\ldots ,N-1 of the particles, even though the measurement outcomes for all N particles are not independent. Although such states are highly entangled, the entanglement turns out to be ‘fragile’, i.e. the associated density matrix has the property that if one traces out the freedom associated with even a single particle, the resulting reduced density matrix is separable.
Xia, Yujie; Pack, Daniel W.
2014-01-01
Purpose Pulsatile delivery of proteins, in which release occurs over a short time after a period of little or no release, is desirable for many applications. This paper investigates the effect of biodegradable polymer shell thickness on pulsatile protein release from biodegradable polymer microcapsules. Methods Using precision particle fabrication (PPF) technology, monodisperse microcapsules were fabricated encapsulating bovine serum albumin (BSA) in a liquid core surrounded by a drug-free poly(lactide-co-glycolide) (PLG) shell of uniform, controlled thickness from 14 to 19 μm. Results When using high molecular weight PLG (Mw 88 kDa), microparticles exhibited the desired core-shell structure with high BSA loading and encapsulation efficiency (55-65%). These particles exhibited very slow release of BSA for several weeks followed by rapid release of 80-90% of the encapsulated BSA within seven days. Importantly, with increasing shell thickness the starting time of the pulsatile release could be controlled from 25 to 35 days. Conclusions Biodegradable polymer microcapsules with precisely controlled shell thickness provide pulsatile release with enhanced control of release profiles. PMID:24831313
Wang, Zhenxin; Tan, Bien; Hussain, Irshad; Schaeffer, Nicolas; Wyatt, Mark F; Brust, Mathias; Cooper, Andrew I
2007-01-16
A new methodology is described for the one-step aqueous preparation of highly monodisperse gold nanoparticles with diameters below 5 nm using thioether- and thiol-functionalized polymer ligands. The particle size and size distribution was controlled by subtle variation of the polymer structure. It was shown that poly(acrylic acid) (PAA) and poly(methacrylic acid) (PMAA) were the most effective stabilizing polymers in the group studied and that relatively low molar mass ligands (approximately 2500 g/mol) gave rise to the narrowest particle size distributions. Particle uniformity and colloidal stability to changes in ionic strength and pH were strongly affected by the hydrophobicity of the ligand end group. "Multidentate" thiol-terminated ligands were produced by employing dithiols and tetrathiols as chain-transfer agents, and these ligands gave rise to particles with unprecedented control over particle size and enhanced colloidal stability. It was found throughout that dynamic light scattering (DLS) is a very useful corroboratory technique for characterization of these gold nanoparticles in addition to optical spectroscopy and TEM. PMID:17209648
Entanglement-breaking channels and entanglement sudden death
NASA Astrophysics Data System (ADS)
Knoll, Laura T.; Schmiegelow, Christian T.; Farías, Osvaldo Jiménez; Walborn, Stephen P.; Larotonda, Miguel A.
2016-07-01
The occurrence of entanglement sudden death in the evolution of a bipartite system depends on both the initial state and the channel responsible for the evolution. An extreme case is that of entanglement-breaking channels, which are channels that, acting on only one of the subsystems, drives them to full disentanglement, regardless of the initial state. In general, one can find certain combinations of initial states and channels acting on one or both subsystems that can result in entanglement sudden death or not. Neither the channel nor the initial state are responsible for this effect but their combination. In this paper we show that, for two entangled qubits, when entanglement sudden death occurs, the evolution can be mapped to that of an effective entanglement-breaking channel on a modified initial state. Our results allow to anticipate which states will suffer entanglement sudden death or not for a given evolution. An experiment with polarization-entangled photons demonstrates the utility of this result in a variety of cases.
Monodisperse semiconductors nano-clusters and their optoelectronic properties
Wang, Y.; Herron, N.
1993-12-31
This paper will discuss recent progress towards fabricating monodisperse CdS clusters (quantum dots) using controlled cluster fusion technique. The case of a single-size, {approximately}15-{angstrom} CdS cluster will be highlighted. Its spectroscopic, photophysical, and photoconductive properties will be discussed. The interesting effect of cluster size on the photoconductive properties will also be presented.
Method accurately measures mean particle diameters of monodisperse polystyrene latexes
NASA Technical Reports Server (NTRS)
Kubitschek, H. E.
1967-01-01
Photomicrographic method determines mean particle diameters of monodisperse polystyrene latexes. Many diameters are measured simultaneously by measuring row lengths of particles in a triangular array at a glass-oil interface. The method provides size standards for electronic particle counters and prevents distortions, softening, and flattening.
Deep image analysis of entangled ring-shaped DNA
NASA Astrophysics Data System (ADS)
Kim, Hyeongju; Jee, Ah-Young; Granick, Steve
Ring-shaped DNA entangled in aqueous actin networks and observed by super-resolution microscopy (STED; stimulated emission depletion) offers rich data for comparison with unresolved questions of polymer physics. Using home-written software, we calculated not only the center of mass (CoM) and CoM trajectories of hundreds of molecules, but also analyzed conformation dynamics with statistical analysis including wavelet transformation and a correlation matrix approach. The analysis reveals some surprising aspects unanticipated by classical theories.
Controlled Release from Recombinant Polymers
Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza
2014-01-01
Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed. PMID:24956486
Generation of entangled squeezed states: their entanglement and quantum polarization
NASA Astrophysics Data System (ADS)
Karimi, A.; Tavassoly, M. K.
2015-11-01
In this paper, based on the well-known one-mode and two-mode squeezed states, we introduce the two-mode and four-mode entangled squeezed states. Next, in order to generate the introduced entangled states, we present two theoretical schemes based on the resonant atom-field interaction. In the proposed schemes, a Λ -type three-level atom interacts with the two-mode and four-mode quantized field in the presence of two strong classical fields in which two-photon atomic transitions are allowed. In the continuation, we study entanglement dynamics of the generated entangled states (using the von Neumann entropy) as well as the quantum polarization (using the Stokes operators). It is demonstrated that entanglement and polarization can be achieved for the produced states by adjusting the evolved parameters.
Balasubramanian, Balamurugan; Kraemer, Kristin L; Valloppilly, Shah R; Ducharme, Stephen; Sellmyer, David J
2011-10-01
The embedding of oxide nanoparticles in polymer matrices produces a greatly enhanced dielectric response by combining the high dielectric strength and low loss of suitable host polymers with the high electric polarizability of nanoparticles. The fabrication of oxide-polymer nanocomposites with well-controlled distributions of nanoparticles is, however, challenging due to the thermodynamic and kinetic barriers between the polymer matrix and nanoparticle fillers. In the present study, monodisperse TiO(2) nanoparticles having an average particle size of 14.4 nm and predominant rutile phase were produced using a cluster-deposition technique without high-temperature thermal annealing and subsequently coated with uniform vinylidene fluoride oligomer (VDFO) molecules using a thermal evaporation source, prior to deposition as TiO(2)-VDFO nanocomposite films on suitable substrates. The molecular coatings on TiO(2) nanoparticles serve two purposes, namely to prevent the TiO(2) nanoparticles from contacting each other and to couple the nanoparticle polarization to the matrix. Parallel-plate capacitors made of TiO(2)-VDFO nanocomposite film as the dielectric exhibit minimum dielectric dispersion and low dielectric loss. Dielectric measurements also show an enhanced effective dielectric constant in TiO(2)-VDFO nanocomposites as compared to that of pure VDFO. This study demonstrates for the first time a unique electroactive particle coating in the form of a ferroelectric VDFO that has high-temperature stability as compared to conventionally used polymers for fabricating dielectric oxide-polymer nanocomposites. PMID:21911930
NASA Astrophysics Data System (ADS)
Balasubramanian, Balamurugan; Kraemer, Kristin L.; Valloppilly, Shah R.; Ducharme, Stephen; Sellmyer, David J.
2011-10-01
The embedding of oxide nanoparticles in polymer matrices produces a greatly enhanced dielectric response by combining the high dielectric strength and low loss of suitable host polymers with the high electric polarizability of nanoparticles. The fabrication of oxide-polymer nanocomposites with well-controlled distributions of nanoparticles is, however, challenging due to the thermodynamic and kinetic barriers between the polymer matrix and nanoparticle fillers. In the present study, monodisperse TiO2 nanoparticles having an average particle size of 14.4 nm and predominant rutile phase were produced using a cluster-deposition technique without high-temperature thermal annealing and subsequently coated with uniform vinylidene fluoride oligomer (VDFO) molecules using a thermal evaporation source, prior to deposition as TiO2-VDFO nanocomposite films on suitable substrates. The molecular coatings on TiO2 nanoparticles serve two purposes, namely to prevent the TiO2 nanoparticles from contacting each other and to couple the nanoparticle polarization to the matrix. Parallel-plate capacitors made of TiO2-VDFO nanocomposite film as the dielectric exhibit minimum dielectric dispersion and low dielectric loss. Dielectric measurements also show an enhanced effective dielectric constant in TiO2-VDFO nanocomposites as compared to that of pure VDFO. This study demonstrates for the first time a unique electroactive particle coating in the form of a ferroelectric VDFO that has high-temperature stability as compared to conventionally used polymers for fabricating dielectric oxide-polymer nanocomposites.
Balasubramanian, B; Kraemer, KL; Valloppilly, SR; Ducharme, S; Sellmyer, DJ
2011-09-13
The embedding of oxide nanoparticles in polymer matrices produces a greatly enhanced dielectric response by combining the high dielectric strength and low loss of suitable host polymers with the high electric polarizability of nanoparticles. The fabrication of oxide-polymer nanocomposites with well-controlled distributions of nanoparticles is, however, challenging due to the thermodynamic and kinetic barriers between the polymer matrix and nanoparticle fillers. In the present study, monodisperse TiO2 nanoparticles having an average particle size of 14.4 nm and predominant rutile phase were produced using a cluster-deposition technique without high-temperature thermal annealing and subsequently coated with uniform vinylidene fluoride oligomer (VDFO) molecules using a thermal evaporation source, prior to deposition as TiO2-VDFO nanocomposite films on suitable substrates. The molecular coatings on TiO2 nanoparticles serve two purposes, namely to prevent the TiO2 nanoparticles from contacting each other and to couple the nanoparticle polarization to the matrix. Parallel-plate capacitors made of TiO2-VDFO nanocomposite film as the dielectric exhibit minimum dielectric dispersion and low dielectric loss. Dielectric measurements also show an enhanced effective dielectric constant in TiO2-VDFO nanocomposites as compared to that of pure VDFO. This study demonstrates for the first time a unique electroactive particle coating in the form of a ferroelectric VDFO that has high-temperature stability as compared to conventionally used polymers for fabricating dielectric oxide-polymer nanocomposites.
Spread of entanglement and causality
NASA Astrophysics Data System (ADS)
Casini, Horacio; Liu, Hong; Mezei, Márk
2016-07-01
We investigate causality constraints on the time evolution of entanglement entropy after a global quench in relativistic theories. We first provide a general proof that the so-called tsunami velocity is bounded by the speed of light. We then generalize the free particle streaming model of [1] to general dimensions and to an arbitrary entanglement pattern of the initial state. In more than two spacetime dimensions the spread of entanglement in these models is highly sensitive to the initial entanglement pattern, but we are able to prove an upper bound on the normalized rate of growth of entanglement entropy, and hence the tsunami velocity. The bound is smaller than what one gets for quenches in holographic theories, which highlights the importance of interactions in the spread of entanglement in many-body systems. We propose an interacting model which we believe provides an upper bound on the spread of entanglement for interacting relativistic theories. In two spacetime dimensions with multiple intervals, this model and its variations are able to reproduce intricate results exhibited by holographic theories for a significant part of the parameter space. For higher dimensions, the model bounds the tsunami velocity at the speed of light. Finally, we construct a geometric model for entanglement propagation based on a tensor network construction for global quenches.
Entanglement induced by nonadiabatic chaos
Fujisaki, Hiroshi
2004-07-01
We investigate entanglement between electronic and nuclear degrees of freedom for a model nonadiabatic system. We find that entanglement (measured by the von Neumann entropy of the subsystem for the eigenstates) becomes nearly maximum when the system shows 'nonadiabatic chaos' behavior which was found in our previous work [Phys. Rev. E 63, 066221 (2001)], but the reverse is not necessarily the case.
Purified discord and multipartite entanglement
Brown, Eric G.; Webster, Eric J.; Martín-Martínez, Eduardo; Kempf, Achim
2013-10-15
We study bipartite quantum discord as a manifestation of a multipartite entanglement structure in the tripartite purified system. In particular, we find that bipartite quantum discord requires the presence of both bipartite and tripartite entanglement in the purification. This allows one to understand the asymmetry of quantum discord, D(A,B)≠D(B,A) in terms of entanglement monogamy. As instructive special cases, we study discord for qubits and Gaussian states in detail. As a result of this we shed new light on a counterintuitive property of Gaussian states: the presence of classical correlations necessarily requires the presence of quantum correlations. Finally, our results also shed new light on a protocol for remote activation of entanglement by a third party. -- Highlights: •Bipartite quantum discord as a manifestation of multipartite entanglement. •Relevance of quantum discord as a utilizable resource for quantum info. tasks. •Quantum discord manifests itself in entanglement in the purified state. •Relation between asymmetry of discord and entanglement monogamy. •Protocol for remote activation of entanglement by a third party.
Entanglement conditions and polynomial identities
Shchukin, E.
2011-11-15
We develop a rather general approach to entanglement characterization based on convexity properties and polynomial identities. This approach is applied to obtain simple and efficient entanglement conditions that work equally well in both discrete as well as continuous-variable environments. Examples of violations of our conditions are presented.
Entanglement for All Quantum States
ERIC Educational Resources Information Center
de la Torre, A. C.; Goyeneche, D.; Leitao, L.
2010-01-01
It is shown that a state that is factorizable in the Hilbert space corresponding to some choice of degrees of freedom becomes entangled for a different choice of degrees of freedom. Therefore, entanglement is not a special case but is ubiquitous in quantum systems. Simple examples are calculated and a general proof is provided. The physical…
Entanglement preservation by continuous distillation
Mundarain, D.; Orszag, M.
2009-05-15
We study the two-qubit entanglement preservation for a system in the presence of independent thermal baths. We use a combination of filtering operations and distillation protocols as a series of frequent measurements on the system. It is shown that a small fraction of the total amount of available copies of the system preserves or even improves its initial entanglement during the evolution.
Monogamy of entanglement of formation
NASA Astrophysics Data System (ADS)
de Oliveira, Thiago R.; Cornelio, Marcio F.; Fanchini, Felipe F.
2014-03-01
It is well known that a particle cannot freely share entanglement with two or more particles. This restriction is generally called monogamy. However the formal quantification of such restriction is only known for some measures of entanglement and for two-level systems. The first and broadly known monogamy relation was established by Coffman, Kundu, and Wootters for the square of the concurrence. Since then, it is usually said that the entanglement of formation is not monogamous, as it does not obey the same relation. We show here that despite that, the entanglement of formation cannot be freely shared and therefore should be said to be monogamous. Furthermore, the square of the entanglement of formation does obey the same relation of the squared concurrence, a fact recently noted for three particles and extended here for N particles. Therefore the entanglement of formation is as monogamous as the concurrence. We also numerically study how the entanglement is distributed in pure states of three qubits and the relation between the sum of the bipartite entanglement and the classical correlation.
Experimental entanglement of four particles
Sackett; Kielpinski; King; Langer; Meyer; Myatt; Rowe; Turchette; Itano; Wineland; Monroe
2000-03-16
Quantum mechanics allows for many-particle wavefunctions that cannot be factorized into a product of single-particle wavefunctions, even when the constituent particles are entirely distinct. Such 'entangled' states explicitly demonstrate the non-local character of quantum theory, having potential applications in high-precision spectroscopy, quantum communication, cryptography and computation. In general, the more particles that can be entangled, the more clearly nonclassical effects are exhibited--and the more useful the states are for quantum applications. Here we implement a recently proposed entanglement technique to generate entangled states of two and four trapped ions. Coupling between the ions is provided through their collective motional degrees of freedom, but actual motional excitation is minimized. Entanglement is achieved using a single laser pulse, and the method can in principle be applied to any number of ions. PMID:10749201
Entanglement of remote atomic qubits.
Matsukevich, D N; Chanelière, T; Jenkins, S D; Lan, S-Y; Kennedy, T A B; Kuzmich, A
2006-01-27
We report observations of entanglement of two remote atomic qubits, achieved by generating an entangled state of an atomic qubit and a single photon at site , transmitting the photon to site in an adjacent laboratory through an optical fiber, and converting the photon into an atomic qubit. Entanglement of the two remote atomic qubits is inferred by performing, locally, quantum state transfer of each of the atomic qubits onto a photonic qubit and subsequent measurement of polarization correlations in violation of the Bell inequality [EQUATION: SEE TEXT]. We experimentally determine [EQUATION: SEE TEXT]. Entanglement of two remote atomic qubits, each qubit consisting of two independent spin wave excitations, and reversible, coherent transfer of entanglement between matter and light represent important advances in quantum information science. PMID:16486672
Evaluating convex roof entanglement measures.
Tóth, Géza; Moroder, Tobias; Gühne, Otfried
2015-04-24
We show a powerful method to compute entanglement measures based on convex roof constructions. In particular, our method is applicable to measures that, for pure states, can be written as low order polynomials of operator expectation values. We show how to compute the linear entropy of entanglement, the linear entanglement of assistance, and a bound on the dimension of the entanglement for bipartite systems. We discuss how to obtain the convex roof of the three-tangle for three-qubit states. We also show how to calculate the linear entropy of entanglement and the quantum Fisher information based on partial information or device independent information. We demonstrate the usefulness of our method by concrete examples. PMID:25955038
Characterizing entanglement in quantum information
NASA Astrophysics Data System (ADS)
Spedalieri, Federico Maximiliano
Entanglement is a key resource in the emerging field of Quantum Information. The strong correlations between systems described by an entangled state allow us to perform certain tasks more efficiently than it would be possible by using only classical resources. This is why the characterization of entanglement is one of the most important problems in Quantum Information. In this thesis, we analyze several aspects of entanglement. First, we introduce a new family of criteria to determine if a bipartite mixed state is entangled or not. This family consists of a sequence of tests that can be implemented efficiently, and has the property that all entangled states can be detected by some test in the sequence. Each test in the family can be stated as a semidefinite program, which is a class of convex optimization problems. The duality structure of these programs allows us to explicitly construct an entanglement witness that proves entanglement of a state, whenever the state fails one of the tests in the sequence. The entanglement witnesses constructed in this manner have well-defined algebraic properties that can be used to give a characterization of the interior of the set of all possible entanglement witnesses, as well as the set of strictly positive bihermitian forms and the set of strictly positive maps. We also study deterministic transformations of three-qubit pure state when only local operations and classical communication (LOCC) are allowed. We derive strong constraints that the operations and states involved must satisfy, and we apply these results to characterize the set of real states that can be obtained from the GHZ state by LOCC.
NASA Astrophysics Data System (ADS)
Ramírez, Giovanni; Rodríguez-Laguna, Javier; Sierra, Germán
2015-06-01
In one dimension the area law for the entanglement entropy is violated maximally by the ground state of a strongly inhomogeneous spin chain, the so called concentric singlet phase (CSP), that looks like a rainbow connecting the two halves of the chain. In this paper we show that, in the weak inhomogeneity limit, the rainbow state is a thermo field double of a conformal field theory with a temperature proportional to the inhomogeneity parameter. This result suggests some relation of the CSP with black holes. Finally, we propose an extension of the model to higher dimensions.
Nonuniversality of entanglement convertibility
NASA Astrophysics Data System (ADS)
Bragança, Helena; Mascarenhas, Eduardo; Luiz, G. I.; Duarte, C.; Pereira, R. G.; Santos, M. F.; Aguiar, M. C. O.
2014-06-01
Recently, it has been suggested that operational properties connected to quantum computation can be alternative indicators of quantum phase transitions. In this work we systematically study these operational properties in one-dimensional systems that present phase transitions of different orders. For this purpose, we evaluate the local convertibility between bipartite ground states. Our results suggest that the operational properties, related to nonanalyticities of the entanglement spectrum, are good detectors of explicit symmetries of the model, but not necessarily of phase transitions. We also show that thermodynamically equivalent phases, such as Luttinger liquids, may display different convertibility properties depending on the underlying microscopic model.
Scattering of entangled two-photon states.
Schotland, John C; Cazé, A; Norris, Theodore B
2016-02-01
We consider the scattering of entangled two-photon states from collections of small particles. We also study the related Mie problem of scattering from a sphere. In both cases, we calculate the entropy of entanglement and investigate the influence of the entanglement of the incident field on the entanglement of the scattered field. PMID:26907393
Optimal entanglement generation from quantum operations
Leifer, M.S.; Henderson, L.; Linden, N.
2003-01-01
We consider how much entanglement can be produced by a nonlocal two-qubit unitary operation, U{sub AB}--the entangling capacity of U{sub AB}. For a single application of U{sub AB}, with no ancillas, we find the entangling capacity and show that it generally helps to act with U{sub AB} on an entangled state. Allowing ancillas, we present numerical results from which we can conclude, quite generally, that allowing initial entanglement typically increases the optimal capacity in this case as well. Next, we show that allowing collective processing does not increase the entangling capacity if initial entanglement is allowed.
Conditions for entanglement in multipartite systems
Hillery, Mark; Zheng Hongjun; Dung, Ho Trung
2010-06-15
We introduce two entanglement conditions that take the form of inequalities involving expectation values of operators. These conditions are sufficient conditions for entanglement; that is, if they are satisfied the state is entangled, but if they are not, one can say nothing about the entanglement of the state. These conditions are quite flexible, because the operators in them are not specified, and they are particularly useful in detecting multipartite entanglement. We explore the range of utility of these conditions by considering a number of examples of entangled states, and seeing under what conditions entanglement in them can be detected by the inequalities presented here.
Disentangling theorem and monogamy for entanglement negativity
NASA Astrophysics Data System (ADS)
He, Huan; Vidal, Guifre
2015-01-01
Entanglement negativity is a measure of mixed-state entanglement increasingly used to investigate and characterize emerging quantum many-body phenomena, including quantum criticality and topological order. We present two results for the entanglement negativity: a disentangling theorem, which allows the use of this entanglement measure as a means to detect whether a wave function of three subsystems A ,B , and C factorizes into a product state for parts A B1 and B2C ; and a monogamy relation conjecture based on entanglement negativity, which states that if A is very entangled with B , then A cannot be simultaneously very entangled also with C .
Entanglement distillation in circuit quantum electrodynamics
NASA Astrophysics Data System (ADS)
Oppliger, Markus; Heinsoo, Johannes; Salathe, Yves; Potocnik, Anton; Mondal, Mintu; Wallraff, Andreas; Paraoanu, Gheorghe Sorin
Entanglement is an essential resource for quantum information processing, such as quantum error correction, quantum teleportation and quantum communication. Such algorithms perform optimally with maximally entangled states. In practice entangled quantum states are very fragile due to a wide range of decoherence mechanisms. When two parties share degraded entangled states they are still able to generate an entangled state with higher fidelity using local operations and classical communication. This process is commonly referred to as entanglement distillation. Here we demonstrate distillation of highly entangled Bell states from two copies of less entangled states on a four transmon qubit device realized in the circuit-QED architecture. We characterize the output state for different degrees of entanglement at the input with quantum state tomography. A clear improvement of the entanglement measures is observed at the output.
Simple solvothermal synthesis of hydrophobic magnetic monodispersed Fe{sub 3}O{sub 4} nanoparticles
Liu, Jing; Wang, Lu; Wang, Jing; Zhang, Lantong
2013-02-15
Graphical abstract: A facile method to produce monodispersed magnetite nanoparticles is based on the solvothermal reaction of iron acetylacetonate (Fe(acac)3) decomposition. The sizes ranged from 7 to 12 nm, which could be controlled by adjusting the volume ratio of oleylamine to n-hexane. Display Omitted Highlights: ► The solvethermal reaction of Fe(acac){sub 3} decomposition was carried out at mild temperature in the presence of oleylamine and n-hexane. ► The size of nanocrystals is controlled by adjusting the volume ratio of oleylamine to n-hexane. ► The low-boiling-point solvent n-hexane offered autogenous pressure parameter after gasified in the reaction temperature. ► The as prepared hydrophobic monodisperse Fe{sub 3}O{sub 4} NPs can be used to prepare the magnetic micelles for future biomedical applications. -- Abstract: A new solvothermal method is proposed for the preparation of Fe{sub 3}O{sub 4} nanoparticles (NPs) from iron acetylacetonate in the presence of oleylamine and n-hexane. The products are characterized by X-ray powder diffraction, infrared (IR) spectroscopy, transmission electron microscopy, thermogravimetry/differential thermogravimetry (TG/DTG) analysis, and vibrating sample magnetometery. The new procedure yields superparamagnetic monodispersed Fe{sub 3}O{sub 4} particles with sizes ranging from 7 nm to 12 nm. The nanocrystal sizes are controlled by adjusting the volume ratio of oleylamine to n-hexane. IR and TG/DTG analyses indicate that the oleylamine molecules, as stabilizers, are adsorbed on the surface of Fe{sub 3}O{sub 4} NPs as bilayer adsorption models. The surface adsorption quantities of oleylamine on 7.5 and 10.4 nm-diameter Fe{sub 3}O{sub 4} NPs are 18% and 11%, respectively. The hydrophobic surface of the obtained nanocrystals is passivated by adsorbed organic solvent molecules. These molecules provide stability against agglomeration, enable solubility in nonpolar solvents, and allow the formation of magnetic polymer
Functional Supramolecular Polymers*
Aida, T.; Meijer, E.W.; Stupp, S.I.
2012-01-01
Supramolecular polymers can be random and entangled coils with the mechanical properties of plastics and elastomers, but with great capacity for processability, recycling, and self-healing due to their reversible monomer-to-polymer transitions. At the other extreme, supramolecular polymers can be formed by self-assembly among designed subunits to yield shape-persistent and highly ordered filaments. The use of strong and directional interactions among molecular subunits can achieve not only rich dynamic behavior but also high degrees of internal order that are not known in ordinary polymers. They can resemble, for example, the ordered and dynamic one-dimensional supramolecular assemblies of the cell cytoskeleton, and possess useful biological and electronic functions. PMID:22344437
Molecular entanglement and electrospinnability of biopolymers.
Kong, Lingyan; Ziegler, Gregory R
2014-01-01
Electrospinning is a fascinating technique to fabricate micro- to nano-scale fibers from a wide variety of materials. For biopolymers, molecular entanglement of the constituent polymers in the spinning dope was found to be an essential prerequisite for successful electrospinning. Rheology is a powerful tool to probe the molecular conformation and interaction of biopolymers. In this report, we demonstrate the protocol for utilizing rheology to evaluate the electrospinnability of two biopolymers, starch and pullulan, from their dimethyl sulfoxide (DMSO)/water dispersions. Well-formed starch and pullulan fibers with average diameters in the submicron to micron range were obtained. Electrospinnability was evaluated by visual and microscopic observation of the fibers formed. By correlating the rheological properties of the dispersions to their electrospinnability, we demonstrate that molecular conformation, molecular entanglement, and shear viscosity all affect electrospinning. Rheology is not only useful in solvent system selection and process optimization, but also in understanding the mechanism of fiber formation on a molecular level. PMID:25226274
Reliable and robust entanglement witness
NASA Astrophysics Data System (ADS)
Yuan, Xiao; Mei, Quanxin; Zhou, Shan; Ma, Xiongfeng
2016-04-01
Entanglement, a critical resource for quantum information processing, needs to be witnessed in many practical scenarios. Theoretically, witnessing entanglement is by measuring a special Hermitian observable, called an entanglement witness (EW), which has non-negative expected outcomes for all separable states but can have negative expectations for certain entangled states. In practice, an EW implementation may suffer from two problems. The first one is reliability. Due to unreliable realization devices, a separable state could be falsely identified as an entangled one. The second problem relates to robustness. A witness may not be optimal for a target state and fail to identify its entanglement. To overcome the reliability problem, we employ a recently proposed measurement-device-independent entanglement witness scheme, in which the correctness of the conclusion is independent of the implemented measurement devices. In order to overcome the robustness problem, we optimize the EW to draw a better conclusion given certain experimental data. With the proposed EW scheme, where only data postprocessing needs to be modified compared to the original measurement-device-independent scheme, one can efficiently take advantage of the measurement results to maximally draw reliable conclusions.
Quantum Entanglement on a Hypersphere
NASA Astrophysics Data System (ADS)
Peters, James F.; Tozzi, Arturo
2016-08-01
A quantum entanglement's composite system does not display separable states and a single constituent cannot be fully described without considering the other states. We introduce quantum entanglement on a hypersphere - which is a 4D space undetectable by observers living in a 3D world -, derived from signals originating on the surface of an ordinary 3D sphere. From the far-flung branch of algebraic topology, the Borsuk-Ulam theorem states that, when a pair of opposite (antipodal) points on a hypersphere are projected onto the surface of 3D sphere, the projections have matching description. In touch with this theorem, we show that a separable state can be achieved for each of the entangled particles, just by embedding them in a higher dimensional space. We view quantum entanglement as the simultaneous activation of signals in a 3D space mapped into a hypersphere. By showing that the particles are entangled at the 3D level and un-entangled at the 4D hypersphere level, we achieved a composite system in which each local constituent is equipped with a pure state. We anticipate this new view of quantum entanglement leading to what are known as qubit information systems.
Squashed entanglement in infinite dimensions
NASA Astrophysics Data System (ADS)
Shirokov, M. E.
2016-03-01
We analyse two possible definitions of the squashed entanglement in an infinite-dimensional bipartite system: direct translation of the finite-dimensional definition and its universal extension. It is shown that the both definitions produce the same lower semicontinuous entanglement measure possessing all basis properties of the squashed entanglement on the set of states having at least one finite marginal entropy. It is also shown that the second definition gives an adequate lower semicontinuous extension of this measure to all states of the infinite-dimensional bipartite system. A general condition relating continuity of the squashed entanglement to continuity of the quantum mutual information is proved and its corollaries are considered. Continuity bound for the squashed entanglement under the energy constraint on one subsystem is obtained by using the tight continuity bound for quantum conditional mutual information (proved in the Appendix by using Winter's technique). It is shown that the same continuity bound is valid for the entanglement of formation. As a result the asymptotic continuity of the both entanglement measures under the energy constraint on one subsystem is proved.
Quantum Entanglement on a Hypersphere
NASA Astrophysics Data System (ADS)
Peters, James F.; Tozzi, Arturo
2016-04-01
A quantum entanglement's composite system does not display separable states and a single constituent cannot be fully described without considering the other states. We introduce quantum entanglement on a hypersphere - which is a 4D space undetectable by observers living in a 3D world -, derived from signals originating on the surface of an ordinary 3D sphere. From the far-flung branch of algebraic topology, the Borsuk-Ulam theorem states that, when a pair of opposite (antipodal) points on a hypersphere are projected onto the surface of 3D sphere, the projections have matching description. In touch with this theorem, we show that a separable state can be achieved for each of the entangled particles, just by embedding them in a higher dimensional space. We view quantum entanglement as the simultaneous activation of signals in a 3D space mapped into a hypersphere. By showing that the particles are entangled at the 3D level and un-entangled at the 4D hypersphere level, we achieved a composite system in which each local constituent is equipped with a pure state. We anticipate this new view of quantum entanglement leading to what are known as qubit information systems.
Entanglement purification for quantum communication
NASA Astrophysics Data System (ADS)
Pan, Jian-Wei; Simon, Christoph; Brukner, Časlav; Zeilinger, Anton
2001-04-01
The distribution of entangled states between distant locations will be essential for the future large-scale realization of quantum communication schemes such as quantum cryptography and quantum teleportation. Because of unavoidable noise in the quantum communication channel, the entanglement between two particles is more and more degraded the further they propagate. Entanglement purification is thus essential to distil highly entangled states from less entangled ones. Existing general purification protocols are based on the quantum controlled-NOT (CNOT) or similar quantum logic operations, which are very difficult to implement experimentally. Present realizations of CNOT gates are much too imperfect to be useful for long-distance quantum communication. Here we present a scheme for the entanglement purification of general mixed entangled states, which achieves 50 per cent of the success probability of schemes based on the CNOT operation, but requires only simple linear optical elements. Because the perfection of such elements is very high, the local operations necessary for purification can be performed with the required precision. Our procedure is within the reach of current technology, and should significantly simplify the implementation of long-distance quantum communication.
Entanglement purification for quantum communication.
Pan, J W; Simon, C; Brukner, C; Zeilinger, A
2001-04-26
The distribution of entangled states between distant locations will be essential for the future large-scale realization of quantum communication schemes such as quantum cryptography and quantum teleportation. Because of unavoidable noise in the quantum communication channel, the entanglement between two particles is more and more degraded the further they propagate. Entanglement purification is thus essential to distil highly entangled states from less entangled ones. Existing general purification protocols are based on the quantum controlled-NOT (CNOT) or similar quantum logic operations, which are very difficult to implement experimentally. Present realizations of CNOT gates are much too imperfect to be useful for long-distance quantum communication. Here we present a scheme for the entanglement purification of general mixed entangled states, which achieves 50 per cent of the success probability of schemes based on the CNOT operation, but requires only simple linear optical elements. Because the perfection of such elements is very high, the local operations necessary for purification can be performed with the required precision. Our procedure is within the reach of current technology, and should significantly simplify the implementation of long-distance quantum communication. PMID:11323664
Entanglement entropy in particle decay
NASA Astrophysics Data System (ADS)
Lello, Louis; Boyanovsky, Daniel; Holman, Richard
2013-11-01
The decay of a parent particle into two or more daughter particles results in an entangled quantum state as a consequence of conservation laws in the decay process. Recent experiments at Belle and BaBar take advantage of quantum entanglement and the correlations in the time evolution of the product particles to study CP and T violations. If one (or more) of the product particles are not observed, their degrees of freedom are traced out of the pure state density matrix resulting from the decay, leading to a mixed state density matrix and an entanglement entropy. This entropy is a measure of the loss of information present in the original quantum correlations of the entangled state. We use the Wigner-Weisskopf method to construct an approximation to this state that evolves in time in a manifestly unitary way. We then obtain the entanglement entropy from the reduced density matrix of one of the daughter particles obtained by tracing out the unobserved states, and follow its time evolution. We find that it grows over a time scale determined by the lifetime of the parent particle to a maximum, which when the width of the parent particle is narrow, describes the phase space distribution of maximally entangled Bell-like states. The method is generalized to the case in which the parent particle is described by a wave packet localized in space. Possible experimental avenues to measure the entanglement entropy in the decay of mesons at rest are discussed.
Boundary effects in entanglement entropy
NASA Astrophysics Data System (ADS)
Berthiere, Clément; Solodukhin, Sergey N.
2016-09-01
We present a number of explicit calculations of Renyi and entanglement entropies in situations where the entangling surface intersects the boundary of d-dimensional Minkowski spacetime. When the boundary is a single plane we compute the contribution to the entropy due to this intersection, first in the case of the Neumann and Dirichlet boundary conditions, and then in the case of a generic Robin type boundary condition. The flow in the boundary coupling between the Neumann and Dirichlet phases is analyzed in arbitrary dimension d and is shown to be monotonic, the peculiarity of d = 3 case is noted. We argue that the translational symmetry along the entangling surface is broken due the presence of the boundary which reveals that the entanglement is not homogeneous. In order to characterize this quantitatively, we introduce a density of entanglement entropy and compute it explicitly. This quantity clearly indicates that the entanglement is maximal near the boundary. We then consider the situation where the boundary is composed of two parallel planes at a finite separation and compute the entanglement entropy as well as its density in this case. The complete contribution to entanglement entropy due to the boundaries is shown not to depend on the distance between the planes and is simply twice the entropy in the case of single plane boundary. Additionally, we find how the area law, the part in the entropy proportional to the area of entire entangling surface, depends on the size of the separation between the two boundaries. The latter is shown to appear in the UV finite part of the entropy.
Local cloning of entangled states
Gheorghiu, Vlad; Yu Li; Cohen, Scott M.
2010-08-15
We investigate the conditions under which a set S of pure bipartite quantum states on a DxD system can be locally cloned deterministically by separable operations, when at least one of the states is full Schmidt rank. We allow for the possibility of cloning using a resource state that is less than maximally entangled. Our results include that: (i) all states in S must be full Schmidt rank and equally entangled under the G-concurrence measure, and (ii) the set S can be extended to a larger clonable set generated by a finite group G of order |G|=N, the number of states in the larger set. It is then shown that any local cloning apparatus is capable of cloning a number of states that divides D exactly. We provide a complete solution for two central problems in local cloning, giving necessary and sufficient conditions for (i) when a set of maximally entangled states can be locally cloned, valid for all D; and (ii) local cloning of entangled qubit states with nonvanishing entanglement. In both of these cases, we show that a maximally entangled resource is necessary and sufficient, and the states must be related to each other by local unitary 'shift' operations. These shifts are determined by the group structure, so need not be simple cyclic permutations. Assuming this shifted form and partially entangled states, then in D=3 we show that a maximally entangled resource is again necessary and sufficient, while for higher-dimensional systems, we find that the resource state must be strictly more entangled than the states in S. All of our necessary conditions for separable operations are also necessary conditions for local operations and classical communication (LOCC), since the latter is a proper subset of the former. In fact, all our results hold for LOCC, as our sufficient conditions are demonstrated for LOCC, directly.
Process for preparation of large-particle-size monodisperse latexes
NASA Technical Reports Server (NTRS)
Vanderhoff, J. W.; Micale, F. J.; El-Aasser, M. S.; Kornfeld, D. M. (Inventor)
1981-01-01
Monodisperse latexes having a particle size in the range of 2 to 40 microns are prepared by seeded emulsion polymerization in microgravity. A reaction mixture containing smaller monodisperse latex seed particles, predetermined amounts of monomer, emulsifier, initiator, inhibitor and water is placed in a microgravity environment, and polymerization is initiated by heating. The reaction is allowed to continue until the seed particles grow to a predetermined size, and the resulting enlarged particles are then recovered. A plurality of particle-growing steps can be used to reach larger sizes within the stated range, with enlarge particles from the previous steps being used as seed particles for the succeeding steps. Microgravity enables preparation of particles in the stated size range by avoiding gravity related problems of creaming and settling, and flocculation induced by mechanical shear that have precluded their preparation in a normal gravity environment.
Synthesis and antimicrobial activity of monodisperse copper nanoparticles.
Kruk, Tomasz; Szczepanowicz, Krzysztof; Stefańska, Joanna; Socha, Robert P; Warszyński, Piotr
2015-04-01
Metallic monodisperse copper nanoparticles at a relatively high concentration (300 ppm CuNPs) have been synthesized by the reduction of copper salt with hydrazine in the aqueous SDS solution. The average particles size and the distribution size were characterized by Dynamic Light Scattering (DLS), Nanosight-Nanoparticle Tracking Analysis (NTA). The morphology and structure of nanoparticles were investigated using Scanning Electron Microscopy (SEM). The chemical composition of the copper nanoparticles was determined by X-ray Photoelectron Spectroscopy (XPS). Monodisperse copper nanoparticles with average diameter 50 nm were received. UV/vis absorption spectra confirmed the formation of the nanoparticles with the characteristic peak 550 nm. The antimicrobial studies showed that the copper nanoparticles had high activity against Gram-positive bacteria, standard and clinical strains, including methicillin-resistant Staphylococcus aureus, comparable to silver nanoparticles and some antibiotics. They also exhibited antifungal activity against Candida species. PMID:25723345
Room Temperature Solvent-free Synthesis of Monodisperse Magnetite Nanocrystals
Ye, Xiang-Rong; Daraio, C; Wang, Chong M.; Talbot, J; Jin, Sungho
2006-03-01
We have successfully demonstrated a facile, solvent-free synthesis of highly crystalline and monodisperse Fe3O4 nanocrystallites at ambient temperature avoiding any heating. Solid state reaction of inorganic Fe(II) and Fe(III) salts with NaOH was found to produce highly crystalline Fe3O4 nanoparticles. The reaction, if carried out in the presence of surfactant such as oleic acid-oleylamine adduct, generated monodisperse Fe3O4 nanocrystals extractable directly from the reaction mixture. The extracted nanoparticles were capable of forming self-assembled, two-dimensional and uniform periodic array. The new process utilizes inexpensive and nontoxic starting materials, and does not require a use of high boiling point and toxic solvents, thus is amenable to an environmentally desirable, large-scale synthesis of nanocrystals.
NASA Astrophysics Data System (ADS)
Tang, Shengchang; Olsen, Bradley
2014-05-01
Topological entanglements between polymer chains are achieved in associating protein hydrogels through the synthesis of high molecular weight proteins via chain extension using a variety of thiol coupling chemistries, including disulfide formation, thiol-maleimide, thiol-bromomaleimide and thiol-ene. Coupling of cysteines via disulfide formation results in the most pronounced entanglement effect in hydrogels, while other chemistries provide versatile means of changing the extent of entanglement, achieving faster chain extension, and providing a facile method of controlling the network hierarchy and incorporating stimuli responsivities. The addition of trifunctional coupling agents causes incomplete crosslinking and introduces branching architecture to the protein molecules. The high-frequency plateau modulus and the entanglement plateau modulus can be tuned by changing the ratio of difunctional chain extender to the trifunctional branching unit. Therefore, these chain extension reactions show promise in delicately controlling the relaxation and mechanical properties of engineered protein hydrogels in ways that complement their design through genetic engineering.
Tang, Shengchang; Olsen, Bradley D.
2014-01-01
Topological entanglements between polymer chains are achieved in associating protein hydrogels through the synthesis of high molecular weight proteins via chain extension using a variety of thiol coupling chemistries, including disulfide formation, thiol-maleimide, thiol-bromomaleimide and thiol-ene. Coupling of cysteines via disulfide formation results in the most pronounced entanglement effect in hydrogels, while other chemistries provide versatile means of changing the extent of entanglement, achieving faster chain extension, and providing a facile method of controlling the network hierarchy and incorporating stimuli responsivities. The addition of trifunctional coupling agents causes incomplete crosslinking and introduces branching architecture to the protein molecules. The high-frequency plateau modulus and the entanglement plateau modulus can be tuned by changing the ratio of difunctional chain extender to the trifunctional branching unit. Therefore, these chain extension reactions show promise in delicately controlling the relaxation and mechanical properties of engineered protein hydrogels in ways that complement their design through genetic engineering. PMID:24860800
Frequency-bin entangled photons
Olislager, L.; Emplit, P.; Nguyen, A. T.; Massar, S.; Merolla, J.-M.; Huy, K. Phan
2010-07-15
A monochromatic laser pumping a parametric down-conversion crystal generates frequency-entangled photon pairs. We study this experimentally by addressing such frequency-entangled photons at telecommunication wavelengths (around 1550 nm) with fiber-optics components such as electro-optic phase modulators and narrow-band frequency filters. The theory underlying our approach uses the notion of frequency-bin entanglement. Our results show that the phase modulators address coherently up to eleven frequency bins, leading to an interference pattern which can violate by more than five standard deviations a Bell inequality adapted to our setup.
Classical dynamics of quantum entanglement.
Casati, Giulio; Guarneri, Italo; Reslen, Jose
2012-03-01
We analyze numerically the dynamical generation of quantum entanglement in a system of two interacting particles, started in a coherent separable state, for decreasing values of ℏ. As ℏ→0 the entanglement entropy, computed at any finite time, converges to a finite nonzero value. The limit law that rules the time dependence of entropy is well reproduced by purely classical computations. Its general features can be explained by simple classical arguments, which expose the different ways entanglement is generated in systems that are classically chaotic or regular. PMID:22587162
Entanglement entropy on fuzzy spaces
Dou, Djamel; Ydri, Badis
2006-08-15
We study the entanglement entropy of a scalar field in 2+1 spacetime where space is modeled by a fuzzy sphere and a fuzzy disc. In both models we evaluate numerically the resulting entropies and find that they are proportional to the number of boundary degrees of freedom. In the Moyal plane limit of the fuzzy disc the entanglement entropy per unite area (length) diverges if the ignored region is of infinite size. The divergence is (interpreted) of IR-UV mixing origin. In general we expect the entanglement entropy per unite area to be finite on a noncommutative space if the ignored region is of finite size.
Slow Images and Entangled Photons
Swordy, Simon
2007-06-20
I will discuss some recent experiments using slow light and entangled photons. We recently showed that it was possible to map a two dimensional image onto very low light level signals, slow them down in a hot atomic vapor while preserving the amplitude and phase of the images. If time remains, I will discuss some of our recent work with time-energy entangled photons for quantum cryptography. We were able to show that we could have a measurable state space of over 1000 states for a single pair of entangled photons in fiber.
NASA Astrophysics Data System (ADS)
Bruschi, David Edward
2016-03-01
We investigate a scenario where quantum correlations affect the gravitational field. We show that quantum correlations between particles occupying different positions have an effect on the gravitational field. We find that the small perturbations induced by the entanglement depend on the amount of entanglement and vanish for vanishing quantum correlations. Our results suggest that there is a form of entanglement that has a weight, since it affects the gravitational field. This conclusion may lead towards a new understanding of the role of quantum correlations within the overlap of relativistic and quantum theories.
Entangled light in moving frames
Gingrich, Robert M.; Bergou, Attila J.; Adami, Christoph
2003-10-01
We calculate the entanglement between a pair of polarization-entangled photon beams as a function of the reference frame, in a fully relativistic framework. We find the transformation law for helicity basis states and show that, while it is frequency independent, a Lorentz transformation on a momentum-helicity eigenstate produces a momentum-dependent phase. This phase leads to changes in the reduced polarization density matrix, such that entanglement is either decreased or increased, depending on the boost direction, the rapidity, and the spread of the beam.
Slow crystallisation of a monodisperse foam stabilised against coarsening.
Meagher, Aaron J; Whyte, David; Banhart, John; Hutzler, Stefan; Weaire, Denis; García-Moreno, Francisco
2015-06-21
The evolution of a three-dimensional monodisperse foam was investigated using X-ray tomography over the course of seven days. The coarsening of the sample was inhibited through the use of perfluorohexane gas. The internal configuration of bubbles is seen to change markedly, evolving from a disordered arrangement towards a more ordered state. We chart this ordering process through the use of the coordination number, the bond orientational order parameter (BOOP) and the translational order parameter. PMID:25973572
Monodisperse light color nanoparticle ink toward chromatic electrophoretic displays.
Peng, Bo; Li, Yue; Li, Jian; Bi, Lei; Lu, Haipeng; Xie, Jianliang; Ren, Xiangling; Cao, Yonghai; Wang, Ning; Meng, Xianwei; Deng, Longjiang; Guo, Zhanhu
2016-06-01
The facile synthesis of nanoparticles for precise image control and fast response of chromatic electrophoretic displays (EPDs) is a challenge. Herein, we report a general method to prepare pink, blue, and yellow nanoparticles with low density and a tunable size of 230-310 nm. The monodispersity is down to 0.02 and surface charges are up to 666e. Importantly, our work highlights the feasibility of chromatic nanoparticles as cost-effective candidates for electrophoretic displays. PMID:27189743
Decoherence of entangled kaons and its connection to entanglement measures
Bertlmann, Reinhold A.; Durstberger, Katharina; Hiesmayr, Beatrix C.
2003-07-01
We study the time evolution of the entangled kaon system by considering the Liouville-von Neumann equation with an additional term which allows for decoherence. We choose, as generators of decoherence, the projectors to the two-particle eigenstates of the Hamiltonian. Then we compare this model with the data of the CPLEAR experiment and find in this way an upper bound on strength {lambda} of the decoherence. We also relate {lambda} to an effective decoherence parameter {zeta} considered previously in literature. Finally we discuss our model in the light of different measures of entanglement, i.e., von Neumann entropy S, entanglement of formation E, and concurrence C, and we relate decoherence parameter {zeta} to the loss of entanglement: 1-E.
Long distance cavity entanglement by entanglement swapping using atomic momenta
NASA Astrophysics Data System (ADS)
Haq, Sami Ul; Khalique, Aeysha
2015-01-01
We propose a simple technique to generate entanglement between distant cavities by using entanglement swapping involving atomic momenta. For the proposed scheme, we have two identical atoms, both initially in their ground state, each incident on far apart cavities with particular initial momenta. The two cavities are prepared initially in superposition of zero and one photon state. First, we interact each atom with a cavity in a dispersive way. The interaction results into atom-field entangled states. Then we perform EPR state measurement on both atomic momentum states which is an analog of Bell measurement. The EPR state measurement is designed by passing the atoms through cavity beam splitters which transfers the atomic momentum state into the superposition state. Finally, these atoms are detected by the detector. After the detection of the atoms, we can distinguish that cavities in one of the Bell states. This process leads to two distant cavity fields entanglement.
Ouyang, Yi; Shi, Huimin; Fu, Ruowen; Wu, Dingcai
2013-01-01
Fabrication of monodisperse porous polymeric nanospheres with diameters below 500 nm remains a great challenge, due to serious crosslinking between neighboring nanospheres during pore-making process. Here we show how a versatile hypercrosslinking strategy can be used to prepare monodisperse microporous polystyrene nanospheres (MMPNSs) with diameters as low as ca. 190 nm. In our approach, an unreactive crosslinked PS outer skin as protective layer can be in-situ formed at the very beginning of hypercrosslinking treatment to minimize the undesired inter-sphere crosslinking. The as-prepared MMPNSs with a well-developed microporous network demonstrate unusual multifunctional properties, including remarkable colloidal stability in aqueous solution, good adsorption-release property for drug, and large adsorption capacity toward organic vapors. Surprisingly, MMPNSs can be directly transformed into high-surface-area monodisperse carbon nanospheres with good colloidal stability via a facile hydrothermal-assisted carbonization procedure. These findings provide a new benchmark for fabricating well-defined porous nanospheres with great promise for various applications. PMID:23478487
Production of large-particle-size monodisperse latexes
NASA Technical Reports Server (NTRS)
Vanderhoff, J. W.; El-Aasser, M. L.; Micale, F. J.; Sudol, E. D.; Tseng, C. M.; Silwanowicz, A.
1984-01-01
The research program achieved two objectives: (1) it has refined and extended the experimental techniques for preparing monodisperse latexes in quantity on the ground up to a particle diameter of 10 microns; and (2) it has demonstrated that a microgravity environment can be used to grow monodisperse latexes to larger sizes, where the limitations in size have yet to be defined. The experimental development of the monodisperse latex reactor (MLR) and the seeded emulsion polymerizations carried out in the laboratory prototype of the flight hardware, as a function of the operational parameters is discussed. The emphasis is directed towards the measurement, interpretation, and modeling of the kinetics of seeded emulsion polymerization and successive seeded emulsion polymerization. The recipe development of seeded emulsion polymerization as a function of particle size is discussed. The equilibrium swelling of latex particles with monomers was investigated both theoretically and experimentally. Extensive studies are reported on both the type and concentration of initiators, surfactants, and inhibitors, which eventually led to the development of the flight recipes. The experimental results of the flight experiments are discussed, as well as the experimental development of inhibition of seeded emulsion polymerization in terms of time of inhibition and the effect of inhibitors on the kinetics of polymerization.
Theory of monodispersion of liquids by gravitational and electric fields
Zemskov, A.A.; Shiryaeva, S.O.; Grigor'ev, A.I. )
1993-06-01
It is shown that the drop regime of the electrostatic monodispersion of liquid from the meniscus on the tip of the capillary through which the liquid is supplied takes place under the joint action of equally directed gravitational and electric forces with the gravitational forces playing a decisive role. With the increase of electric forces, with other conditions equal, the size of torn away drops decreases, while their charges and the frequency of emission increase. When the contribution of gravitational forces to the detachment of the drop from the tip of the capillary tube becomes negligible as compared to electric forces, the transition to the harmonic regime of the monodispersion of the fluid occurs. The parameters of drops simulated in this regime, as well as the existence of different zones of harmonic monodispersion, are subject to adequate physical theoretical analysis within the framework of the thermodynamic approach on the basis of the principle of the minimum scattering of energy in the stationary nonequilibrium process.
Facile Synthesis of Monodisperse CdS Nanocrystals via Microreaction
NASA Astrophysics Data System (ADS)
Wan, Zhen; Yang, Hongwei; Luan, Weiling; Tu, Shan-Tung; Zhou, Xinggui
2010-01-01
CdS-based nanocrystals (NCs) have attracted extensive interest due to their potential application as key luminescent materials for blue and white LEDs. In this research, the continuous synthesis of monodisperse CdS NCs was demonstrated utilizing a capillary microreactor. The enhanced heat and mass transfer in the microreactor was useful to reduce the reaction temperature and residence time to synthesize monodisperse CdS NCs. The superior stability of the microreactor and its continuous operation allowed the investigation of synthesis parameters with high efficiency. Reaction temperature was found to be a key parameter for balancing the reactivity of CdS precursors, while residence time was shown to be an important factor that governs the size and size distribution of the CdS NCs. Furthermore, variation of OA concentration was demonstrated to be a facile tuning mechanism for controlling the size of the CdS NCs. The variation of the volume percentage of OA from 10.5 to 51.2% and the variation of the residence time from 17 to 136 s facilitated the synthesis of monodisperse CdS NCs in the size range of 3.0-5.4 nm, and the NCs produced photoluminescent emissions in the range of 391-463 nm.
Bipyramid-templated synthesis of monodisperse anisotropic gold nanocrystals.
Lee, Jung-Hoon; Gibson, Kyle J; Chen, Gang; Weizmann, Yossi
2015-01-01
Much of the interest in noble metal nanoparticles is due to their plasmonic resonance responses and local field enhancement, both of which can be tuned through the size and shape of the particles. However, both properties suffer from the loss of monodispersity that is frequently associated with various morphologies of nanoparticles. Here we show a method to generate diverse and monodisperse anisotropic gold nanoparticle shapes with various tip geometries as well as highly tunable size augmentations through either oxidative etching or seed-mediated growth of purified, monodisperse gold bipyramids. The conditions employed in the etching and growth processes also offer valuable insights into the growth mechanism difficult to realize with other gold nanostructures. The high-index facets and more complicated structure of the bipyramid lead to a wider variety of intriguing regrowth structures than in previously studied nanoparticles. Our results introduce a class of gold bipyramid-based nanoparticles with interesting and potentially useful features to the toolbox of gold nanoparticles. PMID:26113393
Recent Advances in Simulation of Dendritic Polymers
Cagin, Tahir; Miklis, Paul J.; Wang, Guofeng; Zamanakos, Georgios; Martin, Ryan; Li, Hao; Mainz, Daniel T.; Nagarajan, V.; Goddard, William A.
1999-05-11
Dendrimers and hyperbranched polymers represent a revolution in methodology for directed synthesis of monodisperse polymers with enormous possibility of novel architectures. They demonstrate the ability to attain micelle-like structures with distinct internal and external character. Furthermore, the polyfunctional character of dendrimers allows varied response to environment and promise as selective sensors, carrier for drugs, encapsulation of toxic chemicals and metals. One of the key problems is the characterization of the structures. Theory and simulation can be essential to provide and predict structure and properties. We present some recent advances in theory, modeling and simulation of dendritic polymers.
Entanglement entropy and entanglement spectrum of triplet topological superconductors.
Oliveira, T P; Ribeiro, P; Sacramento, P D
2014-10-22
We analyze the entanglement entropy properties of a 2D p-wave superconductor with Rashba spin-orbit coupling, which displays a rich phase-space that supports non-trivial topological phases, as the chemical potential and the Zeeman term are varied. We show that the entanglement entropy and its derivatives clearly signal the topological transitions and we find numerical evidence that for this model the derivative with respect to the magnetization provides a sensible signature of each topological phase. Following the area law for the entanglement entropy, we systematically analyze the contributions that are proportional to or independent of the perimeter of the system, as a function of the Hamiltonian coupling constants and the geometry of the finite subsystem. For this model, we show that even though the topological entanglement entropy vanishes, it signals the topological phase transitions in a finite system. We also observe a relationship between a topological contribution to the entanglement entropy in a half-cylinder geometry and the number of edge states, and that the entanglement spectrum has robust modes associated with each edge state, as in other topological systems. PMID:25274448
Bell's Theorem and Entangled Solitons
NASA Astrophysics Data System (ADS)
Rybakov, Yu. P.; Kamalov, T. F.
2016-09-01
Entangled solitons construction being introduced in the nonlinear spinor field model, the Einstein—Podolsky—Rosen (EPR) spin correlation is calculated and shown to coincide with the quantum mechanical one for the 1/2-spin particles.
Entanglement properties of quantum polaritons
NASA Astrophysics Data System (ADS)
Suárez-Forero, D. G.; Cipagauta, G.; Vinck-Posada, H.; Fonseca Romero, K. M.; Rodríguez, B. A.; Ballarini, D.
2016-05-01
Exciton polaritons are coupled states of matter and light, originated by the strong interaction between an optical mode and semiconductor excitons. This interaction can be obtained also at a single-particle level, in which case it has been shown that a quantum treatment is mandatory. In this work we study the light-matter entanglement of polaritons from a fully quantum formalism including pumping and dissipation. We find that the entanglement is completely destroyed if the exciton and photon are tuned at the resonance condition, even under very low pumping rates. Instead, the best condition for maximizing entanglement and purity of the steady state is when the exciton and photon are out of resonance and when incoherent pumping exactly compensates the dissipation rate. In the presence of multiple quantum dots coupled to the light mode, matter-light entanglement survives only at larger detuning for a higher number of quantum dots considered.
Entanglement and boundary critical phenomena
Zhou Huanqiang; Barthel, Thomas; Schollwoeck, Ulrich; Fjaerestad, John Ove
2006-11-15
We investigate boundary critical phenomena from a quantum-information perspective. Bipartite entanglement in the ground state of one-dimensional quantum systems is quantified using the Renyi entropy S{sub {alpha}}, which includes the von Neumann entropy ({alpha}{yields}1) and the single-copy entanglement ({alpha}{yields}{infinity}) as special cases. We identify the contribution of the boundaries to the Renyi entropy, and show that there is an entanglement loss along boundary renormalization group (RG) flows. This property, which is intimately related to the Affleck-Ludwig g theorem, is a consequence of majorization relations between the spectra of the reduced density matrix along the boundary RG flows. We also point out that the bulk contribution to the single-copy entanglement is half of that to the von Neumann entropy, whereas the boundary contribution is the same.
Entanglement and adiabatic quantum computation
NASA Astrophysics Data System (ADS)
Ahrensmeier, D.
2006-06-01
Adiabatic quantum computation provides an alternative approach to quantum computation using a time-dependent Hamiltonian. The time evolution of entanglement during the adiabatic quantum search algorithm is studied, and its relevance as a resource is discussed.
Gaussian entanglement distribution via satellite
NASA Astrophysics Data System (ADS)
Hosseinidehaj, Nedasadat; Malaney, Robert
2015-02-01
In this work we analyze three quantum communication schemes for the generation of Gaussian entanglement between two ground stations. Communication occurs via a satellite over two independent atmospheric fading channels dominated by turbulence-induced beam wander. In our first scheme, the engineering complexity remains largely on the ground transceivers, with the satellite acting simply as a reflector. Although the channel state information of the two atmospheric channels remains unknown in this scheme, the Gaussian entanglement generation between the ground stations can still be determined. On the ground, distillation and Gaussification procedures can be applied, leading to a refined Gaussian entanglement generation rate between the ground stations. We compare the rates produced by this first scheme with two competing schemes in which quantum complexity is added to the satellite, thereby illustrating the tradeoff between space-based engineering complexity and the rate of ground-station entanglement generation.
Bell's Theorem and Entangled Solitons
NASA Astrophysics Data System (ADS)
Rybakov, Yu. P.; Kamalov, T. F.
2016-05-01
Entangled solitons construction being introduced in the nonlinear spinor field model, the Einstein—Podolsky—Rosen (EPR) spin correlation is calculated and shown to coincide with the quantum mechanical one for the 1/2-spin particles.
Entanglement in Mutually Unbiased Bases
NASA Astrophysics Data System (ADS)
Wiesniak, Marcin; Paterek, Tomasz; Zeilinger, Anton
2011-03-01
Higher-dimensional Hilbert spaces are still not fully explored. One issue concerns mutually unbiased bases (MUBs). For primes and their powers (e.g.), full sets of MUBs are known. The question of existence of all MUBs in composite dimensions is still open. We show that for all full sets of MUBs of a given dimension a certain entanglement measure of the bases is constant. This fact could be an argument either for or against the existence of full sets of MUBs in some dimensions and tells us that almost all MUBs are maximally entangled for high-dimensional composite systems, whereas this is not the case for prime dimensions. We present a new construction of MUBs in squared prime dimensions. We use only one entangling operation, which simplifies possible experiments. The construction gives only product states and maximally entangled states. Research supported by ERC Advanced Grant QIT4QAD and FWF SFB-grant F4007 of the Austrian Science Fund.
Mixtures of maximally entangled pure states
NASA Astrophysics Data System (ADS)
Flores, M. M.; Galapon, E. A.
2016-09-01
We study the conditions when mixtures of maximally entangled pure states remain entangled. We found that the resulting mixed state remains entangled when the number of entangled pure states to be mixed is less than or equal to the dimension of the pure states. For the latter case of mixing a number of pure states equal to their dimension, we found that the mixed state is entangled provided that the entangled pure states to be mixed are not equally weighted. We also found that one can restrict the set of pure states that one can mix from in order to ensure that the resulting mixed state is genuinely entangled. Also, we demonstrate how these results could be applied as a way to detect entanglement in mixtures of the entangled pure states with noise.
Purification of Logic-Qubit Entanglement
NASA Astrophysics Data System (ADS)
Zhou, Lan; Sheng, Yu-Bo
2016-07-01
Recently, the logic-qubit entanglement shows its potential application in future quantum communication and quantum network. However, the entanglement will suffer from the noise and decoherence. In this paper, we will investigate the first entanglement purification protocol for logic-qubit entanglement. We show that both the bit-flip error and phase-flip error in logic-qubit entanglement can be well purified. Moreover, the bit-flip error in physical-qubit entanglement can be completely corrected. The phase-flip in physical-qubit entanglement error equals to the bit-flip error in logic-qubit entanglement, which can also be purified. This entanglement purification protocol may provide some potential applications in future quantum communication and quantum network.
Purification of Logic-Qubit Entanglement.
Zhou, Lan; Sheng, Yu-Bo
2016-01-01
Recently, the logic-qubit entanglement shows its potential application in future quantum communication and quantum network. However, the entanglement will suffer from the noise and decoherence. In this paper, we will investigate the first entanglement purification protocol for logic-qubit entanglement. We show that both the bit-flip error and phase-flip error in logic-qubit entanglement can be well purified. Moreover, the bit-flip error in physical-qubit entanglement can be completely corrected. The phase-flip in physical-qubit entanglement error equals to the bit-flip error in logic-qubit entanglement, which can also be purified. This entanglement purification protocol may provide some potential applications in future quantum communication and quantum network. PMID:27377165
Cloning quantum entanglement in arbitrary dimensions
Karpov, E.; Navez, P.; Cerf, N.J.
2005-10-15
We have found a quantum cloning machine that optimally duplicates the entanglement of a pair of d-dimensional quantum systems prepared in an arbitrary isotropic state. It maximizes the entanglement of formation contained in the two copies of any maximally entangled input state, while preserving the separability of unentangled input states. Moreover, it cannot increase the entanglement of formation of isotropic states. For large d, the entanglement of formation of each clone tends to one-half the entanglement of the input state, which corresponds to a classical behavior. Finally, we investigate a local entanglement cloner, which yields entangled clones with one-fourth the input entanglement in the large-d limit.
Thermodynamic law from the entanglement entropy bound
NASA Astrophysics Data System (ADS)
Park, Chanyong
2016-04-01
From black hole thermodynamics, the Bekenstein bound has been proposed as a universal thermal entropy bound. It has been further generalized to an entanglement entropy bound which is valid even in a quantum system. In a quantumly entangled system, the non-negativity of the relative entropy leads to the entanglement entropy bound. When the entanglement entropy bound is saturated, a quantum system satisfies the thermodynamicslike law with an appropriately defined entanglement temperature. We show that the saturation of the entanglement entropy bound accounts for a universal feature of the entanglement temperature proportional to the inverse of the system size. In addition, we show that the deformed modular Hamiltonian under a global quench also satisfies the generalized entanglement entropy boundary after introducing a new quantity called the entanglement chemical potential.
Highly entangled states with almost no secrecy.
Christandl, Matthias; Schuch, Norbert; Winter, Andreas
2010-06-18
In this Letter we illuminate the relation between entanglement and secrecy by providing the first example of a quantum state that is highly entangled, but from which, nevertheless, almost no secrecy can be extracted. More precisely, we provide two bounds on the bipartite entanglement of the totally antisymmetric state in dimension d×d. First, we show that the amount of secrecy that can be extracted from the state is low; to be precise it is bounded by O(1/d). Second, we show that the state is highly entangled in the sense that we need a large amount of singlets to create the state: entanglement cost is larger than a constant, independent of d. In order to obtain our results we use representation theory, linear programming, and the entanglement measure known as squashed entanglement. Our findings also clarify the relation between the squashed entanglement and the relative entropy of entanglement. PMID:20867285
Pseudo-entanglement evaluated in noninertial frames
Mehri-Dehnavi, Hossein; Mirza, Behrouz; Mohammadzadeh, Hosein; Rahimi, Robabeh
2011-05-15
Research Highlights: > We study pseudo-entanglement in noninertial frames. > We examine different measures of entanglement and nonclassical correlation for the state. > We find the threshold for entanglement is changed in noninertial frames. > We also describe the behavior of local unitary classes of states in noninertial frames. - Abstract: We study quantum discord, in addition to entanglement, of bipartite pseudo-entanglement in noninertial frames. It is shown that the entanglement degrades from its maximum value in a stationary frame to a minimum value in an infinite accelerating frame. There is a critical region found in which, for particular cases, entanglement of states vanishes for certain accelerations. The quantum discord of pseudo-entanglement decreases by increasing the acceleration. Also, for a physically inaccessible region, entanglement and nonclassical correlation are evaluated and shown to match the corresponding values of the physically accessible region for an infinite acceleration.
Purification of Logic-Qubit Entanglement
Zhou, Lan; Sheng, Yu-Bo
2016-01-01
Recently, the logic-qubit entanglement shows its potential application in future quantum communication and quantum network. However, the entanglement will suffer from the noise and decoherence. In this paper, we will investigate the first entanglement purification protocol for logic-qubit entanglement. We show that both the bit-flip error and phase-flip error in logic-qubit entanglement can be well purified. Moreover, the bit-flip error in physical-qubit entanglement can be completely corrected. The phase-flip in physical-qubit entanglement error equals to the bit-flip error in logic-qubit entanglement, which can also be purified. This entanglement purification protocol may provide some potential applications in future quantum communication and quantum network. PMID:27377165
Kitahara, Kei-Ichi; Okuya, Shuji; Yoshihama, Isao; Hanada, Takako; Nagashima, Kunio; Arai, Sadao
2009-10-30
For the separation of aromatic amines, two types of monodispersed porous polymer resins were prepared by the copolymerization of 2-vinylpyridine and 4-vinylpyridine with divinylbenzene in the presence of template silica gel particles (particle size 5 microm), followed by dissolution of the template silica gel in an alkaline solution. The transmission electron micrographs and the scanning electron micrograph revealed that these templated polymer resins have a spherical morphology with a good monodispersity and porous structure. Using these monodispersed polymer resins, the high-performance liquid chromatographic separation of aromatic amines in the mobile phases of pHs 2.0, 2.9, 4.1, 7.2 and 11.7 were carried out. The 2-vinylpyridine-divinylbenzene copolymer resins showed slightly stronger retentions for aromatic amines than the 4-vinylpyridine-divinylbenzene copolymer resins. Under acidic conditions (around pH 2.0), aniline and the toluidines showed no retention on these copolymer resins due to the repulsion between the cationic forms of these amines and pyridinium cations in the stationary phase, whereas less basic aromatic amines or non-basic acetanilide showed slight retentions. Above pH 4.1, the separation of aromatic amines with these polymer resins showed a typical reversed-phase mode separation. Therefore, the separation patterns of aromatic amines are effectively tunable by changing the pH value of the mobile phases. A good separation of eight aromatic amines was achieved at pH 2.9 using the 2-vinylpyridine-divinylbenzene copolymer resins. PMID:19442983
Purification of genuine multipartite entanglement
Huber, Marcus; Plesch, Martin
2011-06-15
In tasks where multipartite entanglement plays a central role, state purification is, due to inevitable noise, a crucial part of the procedure. We consider a scenario exploiting the multipartite entanglement in a straightforward multipartite purification algorithm and compare it to bipartite purification procedures combined with state teleportation. While complete purification requires an infinite amount of input states in both cases, we show that for an imperfect output fidelity the multipartite procedure exhibits a major advantage in terms of input states used.
Entanglement for all quantum states
NASA Astrophysics Data System (ADS)
de la Torre, A. C.; Goyeneche, D.; Leitao, L.
2010-03-01
It is shown that a state that is factorizable in the Hilbert space corresponding to some choice of degrees of freedom becomes entangled for a different choice of degrees of freedom. Therefore, entanglement is not a special case but is ubiquitous in quantum systems. Simple examples are calculated and a general proof is provided. The physical relevance of the change of tensor product structure is mentioned.
Entropic force and entanglement system
Myung, Yun Soo; Kim, Yong-Wan
2010-05-15
We introduce the isothermal cavity, static holographic screen, and accelerating surface as holographic screen to study the entropic force in the presence of the Schwarzschild black hole. These may merge to provide a consistent holographic screen to define the entropic force on the stretched horizon near the event horizon. Considering the similarity between the stretched horizon of black hole and the entanglement system, we may define the entropic force in the entanglement system without referring to the source mass.
Entanglement-assisted quantum convolutional coding
Wilde, Mark M.; Brun, Todd A.
2010-04-15
We show how to protect a stream of quantum information from decoherence induced by a noisy quantum communication channel. We exploit preshared entanglement and a convolutional coding structure to develop a theory of entanglement-assisted quantum convolutional coding. Our construction produces a Calderbank-Shor-Steane (CSS) entanglement-assisted quantum convolutional code from two arbitrary classical binary convolutional codes. The rate and error-correcting properties of the classical convolutional codes directly determine the corresponding properties of the resulting entanglement-assisted quantum convolutional code. We explain how to encode our CSS entanglement-assisted quantum convolutional codes starting from a stream of information qubits, ancilla qubits, and shared entangled bits.
A phase of liposomes with entangled tubular vesicles
Chiruvolu, S.; Naranjo, E.; Warriner, H.E.; Idziak, S.H.J.; Raedler, J.O.; Zasadzinski, J.A.; Safinya, C.R.; Plano, R.J.
1994-11-18
An equilibrium phase belonging to the family of bilayer liposomes in ternary mixtures of dimyristoylphosphatidylcholine (DMPC), water, and geraniol (a biological alcohol derived from oil-soluble vitamins that acts as a cosurfactant) has been identified. Electron and optical microscopy reveal the phase, labeled L{sub tv}, to be composed of highly entangled tubular vesicles. In situ x-ray diffraction confirms that the tubule walls are multilamellar with the lipids in the chain-melted state. Macroscopic observations show that the L{sub tv} phase coexists with the well-known L{sub 4} phase of spherical vesicles and a bulk L{sub {alpha}} phase. However, the defining characteristic of the L{sub tv} phase is the Weissenberg rod climbing effect under shear, which results from its polymer-like entangled microstructure. 26 refs., 5 figs.
A Phase of Liposomes with Entangled Tubular Vesicles
NASA Astrophysics Data System (ADS)
Chiruvolu, Shivkumar; Warriner, Heidi E.; Naranjo, Edward; Idziak, Stefan H. J.; Radler, Joachim O.; Plano, Robert J.; Zasadzinski, Joseph A.; Safinya, Cyrus R.
1994-11-01
An equilibrium phase belonging to the family of bilayer liposomes in ternary mixtures of dimyristoylphosphatidylcholine (DMPC), water, and geraniol (a biological alcohol derived from oil-soluble vitamins that acts as a cosurfactant) has been identified. Electron and optical microscopy reveal the phase, labeled Ltv, to be composed of highly entangled tubular vesicles. In situ x-ray diffraction confirms that the tubule walls are multilamellar with the lipids in the chain-melted state. Macroscopic observations show that the Ltv phase coexists with the well-known L_4 phase of spherical vesicles and a bulk L_α phase. However, the defining characteristic of the Ltv phase is the Weissenberg rod climbing effect under shear, which results from its polymer-like entangled microstructure.
Entanglement Properties in Two-Component Bose-Einstein Condensate
NASA Astrophysics Data System (ADS)
Jiang, Di-You
2016-05-01
We investigate entanglement inseparability and bipartite entanglement of in two-component Bose-Einstein condensate in the presence of the nonlinear interatomic interaction, interspecies interaction. Entanglement inseparability and bipartite entanglement have the similar properties. More entanglement can be generated by adjusting the nonlinear interatomic interaction and control the time interval of the entanglement by adjusting interspecies interaction.
Capillary levelling in thin polymer films as a nano-rheological tool to probe interface dynamics
NASA Astrophysics Data System (ADS)
McGraw, Joshua; Baeumchen, Oliver; Ferrari, Melissa; Fowler, Paul; Dalnoki-Veress, Kari
2012-02-01
Entanglement of polymer chains in confinement is modified as a result of altered chain conformations. According to Silberberg's principle, chain segments are reflected at an interface causing a reduction of the inter-chain entanglement density. If the interface is transient, local polymer conformation changes can be inferred from a temporal change in flow properties: over time polymer chains become more entangled, thus there is more resistance to flow. Here, we measure the gradual disappearance of an entropic interface between two melts of identical polymer chains during the flow of stepped bilayer polymer films. Samples are prepared in the glassy state and, when in the melt, flow to relieve the Laplace pressure gradient induced by a step in the topography (McGraw et al., Soft Matter, 2011). Our results reveal the dynamics of re-entanglement across the transient entropic interface.
Morphologically and size uniform monodisperse particles and their shape-directed self-assembly
Collins, Joshua E.; Bell, Howard Y.; Ye, Xingchen; Murray, Christopher Bruce
2015-11-17
Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape). Also disclosed is a combination of at least two types of monodisperse particles, where each type is a plurality of monodisperse particles having a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology; and where the types of monodisperse particles differ from one another by composition, by size, or by morphology. In a preferred embodiment, the types of monodisperse particles have the same composition but different morphologies. Methods of making and methods of using the monodisperse particles are disclosed.
Extremal entanglement witnesses
NASA Astrophysics Data System (ADS)
Hansen, Leif Ove; Hauge, Andreas; Myrheim, Jan; Sollid, Per Øyvind
2015-02-01
We present a study of extremal entanglement witnesses on a bipartite composite quantum system. We define the cone of witnesses as the dual of the set of separable density matrices, thus TrΩρ≥0 when Ω is a witness and ρ is a pure product state, ρ=ψψ† with ψ=ϕ⊗χ. The set of witnesses of unit trace is a compact convex set, uniquely defined by its extremal points. The expectation value f(ϕ,χ)=TrΩρ as a function of vectors ϕ and χ is a positive semidefinite biquadratic form. Every zero of f(ϕ,χ) imposes strong real-linear constraints on f and Ω. The real and symmetric Hessian matrix at the zero must be positive semidefinite. Its eigenvectors with zero eigenvalue, if such exist, we call Hessian zeros. A zero of f(ϕ,χ) is quadratic if it has no Hessian zeros, otherwise it is quartic. We call a witness quadratic if it has only quadratic zeros, and quartic if it has at least one quartic zero. A main result we prove is that a witness is extremal if and only if no other witness has the same, or a larger, set of zeros and Hessian zeros. A quadratic extremal witness has a minimum number of isolated zeros depending on dimensions. If a witness is not extremal, then the constraints defined by its zeros and Hessian zeros determine all directions in which we may search for witnesses having more zeros or Hessian zeros. A finite number of iterated searches in random directions, by numerical methods, leads to an extremal witness which is nearly always quadratic and has the minimum number of zeros. We discuss briefly some topics related to extremal witnesses, in particular the relation between the facial structures of the dual sets of witnesses and separable states. We discuss the relation between extremality and optimality of witnesses, and a conjecture of separability of the so-called structural physical approximation (SPA) of an optimal witness. Finally, we discuss how to treat the entanglement witnesses on a complex Hilbert space as a subset of the
Entangled states in quantum mechanics
NASA Astrophysics Data System (ADS)
Ruža, Jānis
2010-01-01
In some circles of quantum physicists, a view is maintained that the nonseparability of quantum systems-i.e., the entanglement-is a characteristic feature of quantum mechanics. According to this view, the entanglement plays a crucial role in the solution of quantum measurement problem, the origin of the “classicality” from the quantum physics, the explanation of the EPR paradox by a nonlocal character of the quantum world. Besides, the entanglement is regarded as a cornerstone of such modern disciplines as quantum computation, quantum cryptography, quantum information, etc. At the same time, entangled states are well known and widely used in various physics areas. In particular, this notion is widely used in nuclear, atomic, molecular, solid state physics, in scattering and decay theories as well as in other disciplines, where one has to deal with many-body quantum systems. One of the methods, how to construct the basis states of a composite many-body quantum system, is the so-called genealogical decomposition method. Genealogical decomposition allows one to construct recurrently by particle number the basis states of a composite quantum system from the basis states of its forming subsystems. These coupled states have a structure typical for entangled states. If a composite system is stable, the internal structure of its forming basis states does not manifest itself in measurements. However, if a composite system is unstable and decays onto its forming subsystems, then the measurables are the quantum numbers, associated with these subsystems. In such a case, the entangled state has a dynamical origin, determined by the Hamiltonian of the corresponding decay process. Possible correlations between the quantum numbers of resulting subsystems are determined by the symmetries-conservation laws of corresponding dynamical variables, and not by the quantum entanglement feature.
Highly Selective Synthesis of Catalytically Active Monodisperse Rhodium Nanocubes
Zhang, Y.; Grass, M.E.; Kuhn, J.N.; Tao, F.; Habas, S.E.; Huang, W.; Yang, P.; Somorjai, G.A.
2009-02-21
Synthesis of monodisperse and shape-controlled colloidal inorganic nanocrystals (NCs) is of increasing scientific interest and technological significance. Recently, shape control of Pt, Pd, Ag, Au, and Rh NCs has been obtained by tuning growth kinetics in various solution-phase approaches, including modified polyol methods, seeded growth by polyol reduction, thermolysis of organometallics, and micelle techniques. Control of reduction kinetics of the noble metal precursors and regulation of the relative growth rates of low-index planes (i.e. {l_brace}100{r_brace} and {l_brace}111{r_brace}) via selective adsorption of selected chemical species are two keys for achieving shape modification of noble metal NCs. One application for noble metal NCs of well-defined shape is in understanding how NC faceting (determines which crystallographic planes are exposed) affects catalytic performance. Rh NCs are used in many catalytic reactions, including hydrogenation, hydroformylation, hydrocarbonylation, and combustion reactions. Shape manipulation of Rh NCs may be important in understanding how faceting on the nanoscale affects catalytic properties, but such control is challenging and there are fewer reports on the shape control of Rh NCs compared to other noble metals. Xia and coworkers obtained Rh multipods exhibiting interesting surface plasmonic properties by a polyol approach. The Somorjai and Tilley groups synthesized crystalline Rh multipods, cubes, horns and cuboctahedra, via polyol seeded growth. Son and colleagues prepared catalytically active monodisperse oleylamine-capped tetrahedral Rh NCs for the hydrogenation of arenes via an organometallic route. More recently, the Somorjai group synthesized sizetunable monodisperse Rh NCs using a one-step polyol technique. In this Communication, we report the highly selective synthesis of catalytically active, monodisperse Rh nanocubes of < 10 nm by a seedless polyol method. In this approach, Br{sup -} ions from trimethyl
Structural disorder versus spin canting in monodisperse maghemite nanocrystals
NASA Astrophysics Data System (ADS)
Kubickova, S.; Niznansky, D.; Morales Herrero, M. P.; Salas, G.; Vejpravova, J.
2014-06-01
Monodisperse maghemite nanoparticles with diameter ranging from 7 to 20 nm were examined by the In-field Mössbauer Spectroscopy (IFMS) in varying external magnetic field up to 6 T. Surprisingly, the small-sized particles (7 nm) exhibit nearly no spin canting in contrast to the larger particles with lower surface-to-volume ratio. We demonstrate that the observed phenomenon is originated by lower relative crystallinity of the larger particles with different internal structure. Hence, the persistence of the 2nd and 5th absorption lines in the IFMS cannot be unambiguously assigned to the surface spins.
Structural disorder versus spin canting in monodisperse maghemite nanocrystals
Kubickova, S.; Vejpravova, J.; Niznansky, D.; Morales Herrero, M. P.
2014-06-02
Monodisperse maghemite nanoparticles with diameter ranging from 7 to 20 nm were examined by the In-field Mössbauer Spectroscopy (IFMS) in varying external magnetic field up to 6 T. Surprisingly, the small-sized particles (7 nm) exhibit nearly no spin canting in contrast to the larger particles with lower surface-to-volume ratio. We demonstrate that the observed phenomenon is originated by lower relative crystallinity of the larger particles with different internal structure. Hence, the persistence of the 2nd and 5th absorption lines in the IFMS cannot be unambiguously assigned to the surface spins.
From entanglement witness to generalized Catalan numbers
Cohen, E.; Hansen, T.; Itzhaki, N.
2016-01-01
Being extremely important resources in quantum information and computation, it is vital to efficiently detect and properly characterize entangled states. We analyze in this work the problem of entanglement detection for arbitrary spin systems. It is demonstrated how a single measurement of the squared total spin can probabilistically discern separable from entangled many-particle states. For achieving this goal, we construct a tripartite analogy between the degeneracy of entanglement witness eigenstates, tensor products of SO(3) representations and classical lattice walks with special constraints. Within this framework, degeneracies are naturally given by generalized Catalan numbers and determine the fraction of states that are decidedly entangled and also known to be somewhat protected against decoherence. In addition, we introduce the concept of a “sterile entanglement witness”, which for large enough systems detects entanglement without affecting much the system’s state. We discuss when our proposed entanglement witness can be regarded as a sterile one. PMID:27461089
From entanglement witness to generalized Catalan numbers.
Cohen, E; Hansen, T; Itzhaki, N
2016-01-01
Being extremely important resources in quantum information and computation, it is vital to efficiently detect and properly characterize entangled states. We analyze in this work the problem of entanglement detection for arbitrary spin systems. It is demonstrated how a single measurement of the squared total spin can probabilistically discern separable from entangled many-particle states. For achieving this goal, we construct a tripartite analogy between the degeneracy of entanglement witness eigenstates, tensor products of SO(3) representations and classical lattice walks with special constraints. Within this framework, degeneracies are naturally given by generalized Catalan numbers and determine the fraction of states that are decidedly entangled and also known to be somewhat protected against decoherence. In addition, we introduce the concept of a "sterile entanglement witness", which for large enough systems detects entanglement without affecting much the system's state. We discuss when our proposed entanglement witness can be regarded as a sterile one. PMID:27461089
From entanglement witness to generalized Catalan numbers
NASA Astrophysics Data System (ADS)
Cohen, E.; Hansen, T.; Itzhaki, N.
2016-07-01
Being extremely important resources in quantum information and computation, it is vital to efficiently detect and properly characterize entangled states. We analyze in this work the problem of entanglement detection for arbitrary spin systems. It is demonstrated how a single measurement of the squared total spin can probabilistically discern separable from entangled many-particle states. For achieving this goal, we construct a tripartite analogy between the degeneracy of entanglement witness eigenstates, tensor products of SO(3) representations and classical lattice walks with special constraints. Within this framework, degeneracies are naturally given by generalized Catalan numbers and determine the fraction of states that are decidedly entangled and also known to be somewhat protected against decoherence. In addition, we introduce the concept of a “sterile entanglement witness”, which for large enough systems detects entanglement without affecting much the system’s state. We discuss when our proposed entanglement witness can be regarded as a sterile one.
NASA Astrophysics Data System (ADS)
Wu, Tsai-Chin; Anderson, Rae
We use active microrheology coupled to single-molecule fluorescence imaging to elucidate the microscale dynamics of entangled DNA. DNA naturally exists in a wide range of lengths and topologies, and is often confined in cell nucleui, forming highly concentrated and entangled biopolymer networks. Thus, DNA is the model polymer for understanding entangled polymer dynamics as well as the crowded environment of cells. These networks display complex viscoelastic properties that are not well understood, especially at the molecular-level and in response to nonlinear perturbations. Specifically, how microscopic stresses and strains propagate through entangled networks, and what molecular deformations lead to the network stress responses are unknown. To answer these important questions, we optically drive a microsphere through entangled DNA, perturbing the system far from equilibrium, while measuring the resistive force the DNA exerts on the bead during and after bead motion. We simultaneously image single fluorescent-labeled DNA molecules throughout the network to directly link the microscale stress response to molecular deformations. We characterize the deformation of the network from the molecular-level to the mesoscale, and map the stress propagation throughout the network. We further study the impact of DNA length (11 - 115 kbp) and topology (linear vs ring DNA) on deformation and propagation dynamics, exploring key nonlinear features such as tube dilation and power-law relaxation.
Quantum entanglement and the Bell matrix
NASA Astrophysics Data System (ADS)
Lai, Anna Chiara; Pedicini, Marco; Rognone, Silvia
2016-07-01
We present a class of maximally entangled states generated by a high-dimensional generalisation of the cnot gate. The advantage of our constructive approach is the simple algebraic structure of both entangling operator and resulting entangled states. In order to show that the method can be applied to any dimension, we introduce new sufficient conditions for global and maximal entanglement with respect to Meyer and Wallach's measure.
Concurrence, tangle and fully entangled fraction
NASA Astrophysics Data System (ADS)
Li, Ming; Fei, Shao-Ming; Li-Jost, Xianqing
2010-09-01
We show that although we cannot distil a singlet from many pairs of bound entangled states, the concurrence and the tangle of two entangled quantum states are always strictly larger than those of one of them, even both entangled quantum states are bound entangled. We present a relation between the concurrence and the fidelity of optimal teleportation. We also give new upper and lower bounds for concurrence and tangle.
Effect of Cavity QED on Entanglement
NASA Astrophysics Data System (ADS)
Rfifi, Saad; Siyouri, Fatimazahra
2016-06-01
We use a quantum electrodynamics model, to study the evolution of maximally entangled bipartite states (Bell states), as well as a maximally entangled tripartite states as a multipartite system. Furthermore, we study the entanglement behaviour of these output states in cavity QED as function of interaction time and the coupling strength. The present study discusses the separability and the entanglement limit of such states after interaction with a cavity QED.
Entropy of random entangling surfaces
NASA Astrophysics Data System (ADS)
Solodukhin, Sergey N.
2012-09-01
We consider the situation when a globally defined four-dimensional field system is separated on two entangled sub-systems by a dynamical (random) two-dimensional surface. The reduced density matrix averaged over ensemble of random surfaces of fixed area and the corresponding average entropy are introduced. The average entanglement entropy is analyzed for a generic conformal field theory in four dimensions. Two important particular cases are considered. In the first, both the intrinsic metric on the entangling surface and the spacetime metric are fluctuating. An important example of this type is when the entangling surface is a black hole horizon, the fluctuations of which cause necessarily the fluctuations in the spacetime geometry. In the second case, the spacetime is considered to be fixed. The detailed analysis is carried out for the random entangling surfaces embedded in flat Minkowski spacetime. In all cases, the problem reduces to an effectively two-dimensional problem of random surfaces which can be treated by means of the well-known conformal methods. Focusing on the logarithmic terms in the entropy, we predict the appearance of a new ln ln(A) term. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker's 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’.
Communication cost of entanglement transformations
Hayden, Patrick; Winter, Andreas
2003-01-01
We study the amount of communication needed for two parties to transform some given joint pure state into another one, either exactly or with some fidelity. Specifically, we present a method to lower bound this communication cost even when the amount of entanglement does not increase. Moreover, the bound applies even if the initial state is supplemented with unlimited entanglement in the form of EPR (Einstein-Podolsky-Rosen) pairs and the communication is allowed to be quantum mechanical. We then apply the method to the determination of the communication cost of asymptotic entanglement concentration and dilution. While concentration is known to require no communication whatsoever, the best known protocol for dilution, discovered by H.-K. Lo and S. Popescu [Phys. Rev. Lett. 83, 1459 (1999)], requires exchange of a number of bits that is of the order of the square root of the number of EPR pairs. Here we prove a matching lower bound of the same asymptotic order, demonstrating the optimality of the Lo-Popescu protocol up to a constant factor and establishing the existence of a fundamental asymmetry between the concentration and dilution tasks. We also discuss states for which the minimal communication cost is proportional to their entanglement, such as the states recently introduced in the context of 'embezzling entanglement' (W. van Dam and P. Hayden, e-print quant-ph/0201041)
Entanglement Length in Miscible Blends of cis-Polyisoprene and Poly(ptert-butylstyrene)
NASA Astrophysics Data System (ADS)
Watanabe, Hiroshi; Matsumiya, Yumi
In miscible polymer blends, the entanglement length is common for the components, but its changes with the composition w remain unclear. For this problem, this study analyzed viscoelastic data for miscible blends of cis-polyisoprene (PI) and poly(ptert-butylstyrene) (PtBS), considering the basic feature that the local relaxation is determined only by wPI. On the basis of this feature, a series of unentangled low- M PI/PtBS blends having various M and a given wPI were utilized as references for well-entangled high- M PI/PtBS blends having the same wPI, and the modulus data of the references were subtracted from the high- M blend data. For an optimally chosen reference, the storage modulus Ge'of the high- M blends obtained after the subtraction exhibited a clear entanglement plateau GN and the corresponding Ge' ' decreased in proportion to 1/ ω at high frequencies ω. Thus, the onset of entanglement relaxation was detected. The GN values were well described by a linear mixing rule of the entanglement length with the number fraction of Kuhn segments of the components being utilized as the averaging weight. This result, not explained by a mean-field picture of entanglement, is discussed in relation to local packing of bulky PtBS chains and skinny PI chains.
Neutron scattering in polymer physics
NASA Astrophysics Data System (ADS)
Richter, D.
2000-03-01
By example this short review presents recent scientific advances which were achieved by the application of neutron scattering to polymer systems, thereby, keeping in mind also practical applications. We first focus on experiments on the structure and morphology of polymer systems covering conformational studies, investigations on polymer-microemulsions systems and the observation of aggregation states in living polymerization. Thereafter, we present recent results in the field of polymer dynamics. We begin with local motions which are behind the classical relaxation processes in polymer melts. Then we relate to universal dynamics, we address the Rouse model and its limits, present new results on the dynamic miscibility in blends and display the latest investigations on entanglement dynamics. Finally, we report first observations of ripplon excitations of phase boundaries in diblock copolymer melts.
Lithography system using quantum entangled photons
NASA Technical Reports Server (NTRS)
Williams, Colin (Inventor); Dowling, Jonathan (Inventor); della Rossa, Giovanni (Inventor)
2002-01-01
A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.
Polygamy of entanglement in multipartite quantum systems
NASA Astrophysics Data System (ADS)
Kim, Jeong San
2009-08-01
We show that bipartite entanglement distribution (or entanglement of assistance) in multipartite quantum systems is by nature polygamous. We first provide an analytical upper bound for the concurrence of assistance in bipartite quantum systems and derive a polygamy inequality of multipartite entanglement in arbitrary-dimensional quantum systems.
Universal corner contributions to entanglement negativity
NASA Astrophysics Data System (ADS)
Kim, Keun-Young; Niu, Chao; Pang, Da-Wei
2016-09-01
It has been realised that corners in entangling surfaces can induce new universal contributions to the entanglement entropy and Rényi entropy. In this paper we study universal corner contributions to entanglement negativity in three- and four-dimensional CFTs using both field theory and holographic techniques. We focus on the quantity χ defined by the ratio of the universal part of the entanglement negativity over that of the entanglement entropy, which may characterise the amount of distillable entanglement. We find that for most of the examples χ takes bigger values for singular entangling regions, which may suggest increase in distillable entanglement. However, there also exist counterexamples where distillable entanglement decreases for singular surfaces. We also explore the behaviour of χ as the coupling varies and observe that for singular entangling surfaces, the amount of distillable entanglement is mostly largest for free theories, while counterexample exists for free Dirac fermion in three dimensions. For holographic CFTs described by higher derivative gravity, χ may increase or decrease, depending on the sign of the relevant parameters. Our results may reveal a more profound connection between geometry and distillable entanglement.
Use of entanglement in quantum optics
NASA Technical Reports Server (NTRS)
Horne, Michael A.; Bernstein, Herbert J.; Greenberger, Daniel M.; Zeilinger, Anton
1992-01-01
Several recent demonstrations of two-particle interferometry are reviewed and shown to be examples of either color entanglement or beam entanglement. A device, called a number filter, is described and shown to be of value in preparing beam entanglements. Finally, we note that all three concepts (color and beam entaglement, and number filtering) may be extended to three or more particles.
Experimental purification of two-atom entanglement
NASA Astrophysics Data System (ADS)
Reichle, R.; Leibfried, D.; Knill, E.; Britton, J.; Blakestad, R. B.; Jost, J. D.; Langer, C.; Ozeri, R.; Seidelin, S.; Wineland, D. J.
2006-10-01
Entanglement is a necessary resource for quantum applications-entanglement established between quantum systems at different locations enables private communication and quantum teleportation, and facilitates quantum information processing. Distributed entanglement is established by preparing an entangled pair of quantum particles in one location, and transporting one member of the pair to another location. However, decoherence during transport reduces the quality (fidelity) of the entanglement. A protocol to achieve entanglement `purification' has been proposed to improve the fidelity after transport. This protocol uses separate quantum operations at each location and classical communication to distil high-fidelity entangled pairs from lower-fidelity pairs. Proof-of-principle experiments distilling entangled photon pairs have been carried out. However, these experiments obtained distilled pairs with a low probability of success and required destruction of the entangled pairs, rendering them unavailable for further processing. Here we report efficient and non-destructive entanglement purification with atomic quantum bits. Two noisy entangled pairs were created and distilled into one higher-fidelity pair available for further use. Success probabilities were above 35 per cent. The many applications of entanglement purification make it one of the most important techniques in quantum information processing.
Experimental purification of two-atom entanglement.
Reichle, R; Leibfried, D; Knill, E; Britton, J; Blakestad, R B; Jost, J D; Langer, C; Ozeri, R; Seidelin, S; Wineland, D J
2006-10-19
Entanglement is a necessary resource for quantum applications--entanglement established between quantum systems at different locations enables private communication and quantum teleportation, and facilitates quantum information processing. Distributed entanglement is established by preparing an entangled pair of quantum particles in one location, and transporting one member of the pair to another location. However, decoherence during transport reduces the quality (fidelity) of the entanglement. A protocol to achieve entanglement 'purification' has been proposed to improve the fidelity after transport. This protocol uses separate quantum operations at each location and classical communication to distil high-fidelity entangled pairs from lower-fidelity pairs. Proof-of-principle experiments distilling entangled photon pairs have been carried out. However, these experiments obtained distilled pairs with a low probability of success and required destruction of the entangled pairs, rendering them unavailable for further processing. Here we report efficient and non-destructive entanglement purification with atomic quantum bits. Two noisy entangled pairs were created and distilled into one higher-fidelity pair available for further use. Success probabilities were above 35 per cent. The many applications of entanglement purification make it one of the most important techniques in quantum information processing. PMID:17051214
Remarks on entanglement assisted classical capacity
NASA Astrophysics Data System (ADS)
Fan, Heng
2003-06-01
The property of the optimal signal ensembles of entanglement assisted channel capacity is studied. A relationship between entanglement assisted channel capacity and one-shot capacity of unassisted channel is obtained. The data processing inequalities, convexity and additivity of the entanglement assisted channel capacity are reformulated by simple methods.
NASA Astrophysics Data System (ADS)
Khandhar, Amit P.; Ferguson, R. Matthew; Krishnan, Kannan M.
2011-04-01
Magnetite (Fe3O4) nanoparticles (MNPs) are suitable materials for Magnetic Fluid Hyperthermia (MFH), provided their size is carefully tailored to the applied alternating magnetic field (AMF) frequency. Since aqueous synthesis routes produce polydisperse MNPs that are not tailored for any specific AMF frequency, we have developed a comprehensive protocol for synthesizing highly monodispersed MNPs in organic solvents, specifically tailored for our field conditions (f = 376 kHz, H0 = 13.4 kA/m) and subsequently transferred them to water using a biocompatible amphiphilic polymer. These MNPs (σavg. = 0.175) show truly size-dependent heating rates, indicated by a sharp peak in the specific loss power (SLP, W/g Fe3O4) for 16 nm (diameter) particles. For broader size distributions (σavg. = 0.266), we observe a 30% drop in overall SLP. Furthermore, heating measurements in biological medium [Dulbecco's modified Eagle medium (DMEM) + 10% fetal bovine serum] show a significant drop for SLP (˜30% reduction in 16 nm MNPs). Dynamic Light Scattering (DLS) measurements show particle hydrodynamic size increases over time once dispersed in DMEM, indicating particle agglomeration. Since the effective magnetic relaxation time of MNPs is determined by fractional contribution of the Neel (independent of hydrodynamic size) and Brownian (dependent on hydrodynamic size) components, we conclude that agglomeration in biological medium modifies the Brownian contribution and thus the net heating capacity of MNPs.
Yamada, Yuri; Nakamura, Tadashi; Yano, Kazuhisa
2016-04-15
A facile one-pot synthesis for the composite materials fabricated from conjugated polymer, poly(p-phenylenevinylene) (PPV), and monodispersed mesoporous silica spheres (MMSS) is demonstrated. Composite materials having superior photoluminescence properties are easily obtained using ethylene glycol as a reaction solvent in which PPV monomers are effectively exchanged with cationic surfactants in MMSS and subsequently polymerized in the solution. The method can prevent serious reduction of photoluminescence properties which occurs inevitably during thermal treatment (200°C) to polymerize PPV. In our method, the temperature of 100°C is enough to obtain the fully polymerized PPV, which is confirmed in Fourier transform infrared (FT-IR) spectrum. Reaction mechanism is verified through direct observation of its distinguishable color changes in the reaction solution and the measurement of surface electrical potential (ζ-potential). The obtained results strongly support that PPV chains are impregnated within mesopores in isolated condition, leading to high fluorescence quantum yield (nearly 80%). Compared to the conventional route, this method reduces multistep synthesis to one-step and eliminates high temperature and high vacuum process, leading to the facile eco-friendly procedure. PMID:26852353
Koebel, Matthias Michael; Jones, Louis C.; Somorjai, Gabor A.
2008-04-02
We demonstrate a preparative method which produces highly-monodisperse Pt-nanoparticles of tunable size without the external addition of seed particles. Hexachloroplatinic acid is dosed slowly to an ethylene glycol solution at 120 C and reduced in the presence of a stabilizing polymer poly-N-vinylpyrollidone (PVP). Slow addition of the Pt-salt first will first lead to the formation of nuclei (seeds) which then grow further to produce larger particles of any desired size between 3 and 8nm. The amount of added hexachloroplatinic acid precursor controls the size of the final nanoparticle product. TEM was used to determine size and morphology and to confirm the crystalline nature of the nanoparticles. Good reproducibility of the technique was demonstrated. Above 7nm, the particle shape and morphology changes suddenly indicating a change in the deposition selectivity of the Pt-precursor from (100) towards (111) crystal faces and breaking up of larger particles into smaller entities.
Rownaghi, Ali A; Rezaei, Fateme; Labreche, Ying; Brennan, Patrick J; Johnson, Justin R; Li, Fuyue Stephanie; Koros, William J
2015-10-26
We describe a new template-free method for the in situ formation of a monodispersed spherical mesoporous nanosilica-Torlon hollow-fiber composite. A thin layer of Torlon hollow fiber that comprises silica nanoparticles was created by the in situ extrusion of a tetraethyl orthosilicate/N-methyl-2-pyrrolidone solution in a sheath layer and a Torlon polymer dope in a core support layer. This new method can be integrated easily into current hollow-fiber composite fabrication processes. The hollow-fiber composites were then functionalized with 3-aminopropyltrimethoxy silane (APS) and evaluated for their CO2 -capture performance. The resulting APS-functionalized mesoporous silica nanoparticles/Torlon hollow fibers exhibited a high CO2 equilibrium capacity of 1.5 and 1.9 mmol g(-1) at 35 and 60 °C, respectively, which is significantly higher than values for fiber sorbents without nanoparticles reported previously. PMID:26355795
The first products made in space: Monodisperse latex particles
NASA Technical Reports Server (NTRS)
Vanderhoff, J. W.; El-Aasser, M. S.; Micale, F. J.; Sudol, E. D.; Tseng, C.-M.; Sheu, H.-R.; Kornfeld, D. M.
1988-01-01
The preparation of large particle size 3 to 30 micrometer monodisperse latexes in space confirmed that original rationale unequivocally. The flight polymerizations formed negligible amounts of coagulum as compared to increasing amounts for the ground-based polymerizations. The number of offsize large particles in the flight latexes was smaller than in the ground-based latexes. The particle size distribution broadened and more larger offsize particles were formed when the polymerizations of the partially converted STS-4 latexes were completed on Earth. Polymerization in space also showed other unanticipated advantages. The flight latexes had narrower particle size distributions than the ground-based latexes. The particles of the flight latexes were more perfect spheres than those of the ground-based latexes. The superior uniformity of the flight latexes was confirmed by the National Bureau of Standards acceptance of the 10 micrometer STS-6 latex and the 30 micrometer STS-11 latexes as Standard Reference Materials, the first products made in space for sale on Earth. The polymerization rates in space were the same as those on Earth within experimental error. Further development of the ground-based polymerization recipes gave monodisperse particles as large as 100 micrometer with tolerable levels of coagulum, but their uniformity was significantly poorer than the flight latexes. Careful control of the polymerization parameters gave uniform nonspherical particles: symmetrical and asymmetrical doublets, ellipsoids, egg-shaped, ice cream cone-shaped, and popcorn-shaped particles.
Two-dimensional, high flow, precisely controlled monodisperse drop source
NASA Astrophysics Data System (ADS)
Dressler, John L.
1993-03-01
A versatile acoustically-driven fluid atomizer was designed and operated that creates precise monodisperse sprays by Rayleigh breakup or polydisperse sprays by the acoustic driving of amplitude dependent instabilities. The atomizer forms a cylindrical, conical, or flat (sheet) liquid jet by means of a photofabricated nozzle. The spray pattern and spray volume are altered by changing the nozzle. A piezoelectric driver, constructed to efficiently couple energy to the liquid, modulates the fluid velocity. When operated at low power, the drop generator can produce arrays of monodisperse drops as small as 15 microns in diameter. Operating the piezoelectric driver at high power produces perturbations with sufficient energy to break the liquid jets into drops, with a net increase in surface energy. The resulting drop sizes are influenced by the frequency and amplitude of the driving signal and nozzle size. The spatial distribution of the spray is controlled by the spacing and geometry of the holes in the nozzle plate, the amplitude of the acoustic signal, and the swirl in the fluid manifold. This device is more robust than the typical acoustic drop generator because small drops can be made from large holes, reducing the plugging problem. No air flow is used.
Optical properties of monodisperse gold nanoshells on silica cores
NASA Astrophysics Data System (ADS)
Khanadeev, Vitaly; Khlebtsov, Boris; Khlebtsov, Nikolai
2016-04-01
Gold nanoshells are promising nanoparticles for biomedical applications such as biosensing, photothermal therapy, and surface enhanced Raman scattering. However, existing synthesis protocols produce polydisperse samples with extinction plasmonic spectrum much broader than that predicted by electromagnetic Mie simulations. Here we report on improved synthesis of gold nanoshells using monodisperse silica cores with very narrow size distributions of separated samples. As a result we were able to fabricate high quality silica/gold nanoshells with very narrow plasmon resonance peak, which is in good agreement with Mie calculations based on polydisperse TEM models. TEM images revealed a presence of dimers and trimers in as-prepared nonseparated samples. We performed extensive finite difference time-domain (FDTD) simulations to show that the plasmonic response of aggregated nanoshells results in enhanced extinction across NIR spectral band and in a minor broadening of the main plasmonic peak. To summarize, the improved synthetic technology produces high quality monodisperse silica/gold nanoshells which optical properties are in excellent agreement with electromagnetic simulations based on TEM size distributions.
Monodisperse light color nanoparticle ink toward chromatic electrophoretic displays
NASA Astrophysics Data System (ADS)
Peng, Bo; Li, Yue; Li, Jian; Bi, Lei; Lu, Haipeng; Xie, Jianliang; Ren, Xiangling; Cao, Yonghai; Wang, Ning; Meng, Xianwei; Deng, Longjiang; Guo, Zhanhu
2016-05-01
The facile synthesis of nanoparticles for precise image control and fast response of chromatic electrophoretic displays (EPDs) is a challenge. Herein, we report a general method to prepare pink, blue, and yellow nanoparticles with low density and a tunable size of 230-310 nm. The monodispersity is down to 0.02 and surface charges are up to 666e. Importantly, our work highlights the feasibility of chromatic nanoparticles as cost-effective candidates for electrophoretic displays.The facile synthesis of nanoparticles for precise image control and fast response of chromatic electrophoretic displays (EPDs) is a challenge. Herein, we report a general method to prepare pink, blue, and yellow nanoparticles with low density and a tunable size of 230-310 nm. The monodispersity is down to 0.02 and surface charges are up to 666e. Importantly, our work highlights the feasibility of chromatic nanoparticles as cost-effective candidates for electrophoretic displays. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02524b
Quantum-entangled photon interferometry
NASA Astrophysics Data System (ADS)
Richards, Roger K.
2004-08-01
A two-color quantum-entangled photon source is used to produce fourth-order interference. Because the period of the interference is produced by the frequency difference of the entangled photons, problems associated with counting fringes can be avoided. This also permits measurements at a virtual wavelength, which can prevent problems associated with transmission or absorption when such a longer wavelength may be needed. The interference wavelength can be varied with a geometry change in the beam path without any change in the source wavelength. The entangled photons are produced using an argon ion laser at 351 nanometers and a type I BBO crystal. The interference is detected in coincidence using four photomultiplier tubes.
Seeded Synthesis of Monodisperse Core-Shell and Hollow Carbon Spheres.
Gil-Herrera, Luz Karime; Blanco, Álvaro; Juárez, Beatriz H; López, Cefe
2016-08-01
Monodisperse carbon spheres between 500 and 900 nm are hydrothermally synthesized from glucose on polystyrene seeds. Control over temperature, time, glucose concentration, and seed size yields hybrid spheres without aggregation and no additional spheres population. Pyrolysis transforms the hybrid into hollow carbon spheres preserving monodispersity. This approach provides a basis for functional carbon spheres applicable in photonics and energy storage. PMID:27337299
NASA Astrophysics Data System (ADS)
Assadi, Leila; Jafarpour, Mojtaba
2016-07-01
We use concurrence to study bipartite entanglement, Meyer-Wallach measure and its generalizations to study multi-partite entanglement and MABK and SASA inequalities to study the non-local properties of the 4-qubit entangled graph states, quantitatively. Then, we present 3 classifications, each one in accordance with one of the aforementioned properties. We also observe that the classification according to multipartite entanglement does exactly coincide with that according to nonlocal properties, but does not match with that according to bipartite entanglement. This observation signifies the fact that non-locality and multipartite entanglement enjoy the same basic underlying principles, while bipartite entanglement may not reveal the non-locality issue in its entirety.
Interaction of polymer with discotic clay particles.
Auvray, L.; Lal, J.
1999-08-04
Normally synthetic well defined monodisperse discotic laponite clays are known to form a gel phase at mass concentrations as low as a few percent in distilled water. Hydrosoluble polymer polyethylene oxide was added to this intriguing clay system, it was observed that it either prevents gelation or slows it down extremely depending on the polymer weight, concentration or the laponite concentration. Small Angle Neutron scattering (SANS) was used to study these systems because only by isotopic labeling can the structure of the adsorbed polymer layers be determined. The contrast variation technique is specifically used to determine separately the different partial structure factors of the clay and polymer. In this way the signal of the adsorbed chains is separated from the signal of the free chains in the dilute regime. Attempts have also been made to characterize the structure in the concentrated regime of laponite with polymer.
Entanglement entropy of scattering particles
NASA Astrophysics Data System (ADS)
Peschanski, Robi; Seki, Shigenori
2016-07-01
We study the entanglement entropy between the two outgoing particles in an elastic scattering process. It is formulated within an S-matrix formalism using the partial wave expansion of two-body states, which plays a significant role in our computation. As a result, we obtain a novel formula that expresses the entanglement entropy in a high energy scattering by the use of physical observables, namely the elastic and total cross sections and a physical bound on the impact parameter range, related to the elastic differential cross-section.
Multipartite entanglement in heterogeneous systems
NASA Astrophysics Data System (ADS)
Goyeneche, Dardo; Bielawski, Jakub; Życzkowski, Karol
2016-07-01
Heterogeneous bipartite quantum pure states, composed of two subsystems with a different number of levels, cannot have both reductions maximally mixed. In this work, we demonstrate the existence of a wide range of highly entangled states of heterogeneous multipartite systems consisting of N >2 parties such that every reduction to one and two parties is maximally mixed. Two constructions of generating genuinely multipartite maximally entangled states of heterogeneous systems for an arbitrary number of subsystems are presented. Such states are related to quantum error correction codes over mixed alphabets and mixed orthogonal arrays. Additionally, we show the advantages of considering heterogeneous systems in practical implementations of multipartite steering.
More communication with less entanglement
NASA Astrophysics Data System (ADS)
Agrawal, Pankaj; Adhikari, Satyabrata; Nandi, Sumit
2015-12-01
We exhibit the intriguing phenomena of "Less is More" using a set of multipartite entangled states. We consider the quantum communication protocols for the exact teleportation, superdense coding, and quantum key distribution. We find that sometimes less entanglement is more useful. To understand this phenomena we obtain a condition that a resource state must satisfy to communicate a n-qubit pure state which has m terms. We find that an appropriate partition of the resource state should have a von-Neumann entropy of log2 m. Furthermore, it is shown that some states may be suitable for exact superdense coding, but not for exact teleportation.
Many-body entanglement in decoherence processes
McAneney, Helen; Lee, Jinhyoung; Kim, M.S.
2003-12-01
A pure state decoheres into a mixed state as it entangles with an environment. When an entangled two-mode system is embedded in a thermal environment, however, each mode may not be entangled with its environment by their simple linear interaction. We consider an exactly solvable model to study the dynamics of a total system, which is composed of an entangled two-mode system and a thermal environment. The Markovian interaction with the environment is concerned with an array of infinite number of beam splitters. It is shown that many-body entanglement of the system and the environment may play a crucial role in the process of disentangling the system.
Purification of single-photon entanglement.
Salart, D; Landry, O; Sangouard, N; Gisin, N; Herrmann, H; Sanguinetti, B; Simon, C; Sohler, W; Thew, R T; Thomas, A; Zbinden, H
2010-05-01
Single-photon entanglement is a simple form of entanglement that exists between two spatial modes sharing a single photon. Despite its elementary form, it provides a resource as useful as polarization-entangled photons and it can be used for quantum teleportation and entanglement swapping operations. Here, we report the first experiment where single-photon entanglement is purified with a simple linear-optics based protocol. In addition to its conceptual interest, this result might find applications in long distance quantum communication based on quantum repeaters. PMID:20482160
Application of entanglement conditions to spin systems
Zheng Hongjun; Hillery, Mark; Dung, Ho Trung
2010-06-15
There have been numerous studies of entanglement in spin systems. These have usually focused on examining the entanglement between individual spins or determining whether the state of the system is completely separable. Here, we present conditions that allow us to determine whether blocks of spins are entangled. We show that sometimes these conditions can detect entanglement better than conditions involving individual spins. We apply these conditions to study entanglement in spin-wave states, both when there are only a few magnons present and also at finite temperature.
Entanglement and nonclassicality: A mutual impression
NASA Astrophysics Data System (ADS)
Gholipour, H.; Shahandeh, F.
2016-06-01
We find a sufficient condition to imprint the single-mode bosonic phase-space nonclassicality onto a bipartite state as modal entanglement and vice versa using an arbitrary beam splitter. Surprisingly, the entanglement produced or detected in this way depends only on the nonclassicality of the marginal input or output states, regardless of their purity and separability. In this way, our result provides a sufficient condition for generating entangled states of arbitrary high temperature and arbitrary large number of particles. We also study the evolution of the entanglement within a lossy Mach-Zehnder interferometer and show that unless both modes are totally lost, the entanglement does not diminish.
Restoring broken entanglement by separable correlations
NASA Astrophysics Data System (ADS)
Spedalieri, Gaetana; Pirandola, Stefano
2015-05-01
We consider two bosonic Gaussian channels whose thermal noise is strong enough to break bipartite entanglement. In this scenario, we discuss how the presence of separable correlations between the two channels is able to restore the broken entanglement. This reactivation occurs not only in a scheme of direct distribution, where a third party (Charlie) broadcasts entangled states to remote parties (Alice and Bob), but also in a configuration of indirect distribution which is based on entanglement swapping. In both schemes, the amount of entanglement remotely activated can be large enough to be distilled by one-way distillation protocols.
Evolution of Quantum Entanglement in Open Systems
Isar, A.
2010-08-04
In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable entanglement for a system consisting of two uncoupled harmonic oscillators interacting with a thermal environment. Using Peres-Simon necessary sufficient criterion for separability of two-mode Gaussian states, we show that for some values of diffusion coefficient, dissipation constant and temperature of the environment, the state keeps for all times its initial type: separable or entangled. In other cases, entanglement generation, entanglement sudden death or a periodic collapse revival of entanglement take place.
Diffusion of Particles in Polymer Solutions
NASA Astrophysics Data System (ADS)
Cai, Liheng; Rubinstein, Michael
2010-03-01
We use scaling theory to derive the time dependence of the mean-square-displacement <δr^2> of a probe particle of size d in an entangled semidilute polymer solution. Particles with size smaller than solution correlation length ξ undergo ordinary diffusion (<δr^2 (t)>˜t) with diffusion coefficient determined by the solvent viscosity. The motion of particles with intermediate sizes (ξ
Bulk entanglement spectrum in gapped spin ladders
NASA Astrophysics Data System (ADS)
Santos, Raul A.; Jian, Chao-Ming; Lundgren, Rex
2016-06-01
We study the bulk entanglement of a series of gapped ground states of spin ladders, representative of the Haldane phase. These ground states of spin S /2 ladders generalize the valence bond solid ground state. In the case of spin 1/2 ladders, we study a generalization of the Affleck-Kennedy-Lieb-Tasaki and Nersesyan-Tsvelik states and fully characterize the bulk entanglement Hamiltonian. In the case of general spin S , we argue that in the Haldane phase the bulk entanglement spectrum of a half-integer ladder is either gapless or possess a degenerate ground state. For ladders with integer valued spin particles, the generic bulk entanglement spectrum should have an entanglement gap. Finally, we give an example of a series of trivial states of higher spin S >1 in which the bulk entanglement Hamiltonian is critical, signaling that the relation between topological states and a critical bulk entanglement Hamiltonian is not unique to topological systems.
Entanglement and bifurcation in the integrable dimer
Hou Xiwen; Chen Jinghua; Hu Bambi
2005-03-01
In this Brief Report the properties of both dynamical and static entanglement in the integrable quantum dimer are studied in terms of the reduced-density linear entropy and von Neumann entropy with various coupling parameters, total boson numbers, and initial states. The mean entanglement, which is defined to be averaged over time, is used to describe the influence of the classical separatrix on the behavior of entanglement. It is shown that the mean entanglement exhibits a maximum near the position of the corresponding classical separatrix energy and that the static entanglement of the state with the largest eigenvalue of the quantum spectrum displays a maximum near the bifurcation point. For weak coupling and larger total boson number the maximum entanglement state is exactly at the position of the classical separatrix and bifurcation. In strong coupling all initial states have nearly the same mean entanglement.
Multi-photon entanglement in high dimensions
NASA Astrophysics Data System (ADS)
Malik, Mehul; Erhard, Manuel; Huber, Marcus; Krenn, Mario; Fickler, Robert; Zeilinger, Anton
2016-04-01
Forming the backbone of quantum technologies today, entanglement has been demonstrated in physical systems as diverse as photons, ions and superconducting circuits. Although steadily pushing the boundary of the number of particles entangled, these experiments have remained in a two-dimensional space for each particle. Here we show the experimental generation of the first multi-photon entangled state where both the number of particles and dimensions are greater than two. Two photons in our state reside in a three-dimensional space, whereas the third lives in two dimensions. This asymmetric entanglement structure only appears in multiparticle entangled states with d > 2. Our method relies on combining two pairs of photons, high-dimensionally entangled in their orbital angular momentum. In addition, we show how this state enables a new type of ‘layered’ quantum communication protocol. Entangled states such as these serve as a manifestation of the complex dance of correlations that can exist within quantum mechanics.
Diffraction of entangled particles by light gratings
Sancho, Pedro
2015-04-15
We analyze the diffraction regime of the Kapitza–Dirac effect for particles entangled in momentum. The detection patterns show two-particle interferences. In the single-mode case we identify a discontinuity in the set of joint detection probabilities, associated with the disconnected character of the space of non-separable states. For Gaussian multi-mode states we derive the diffraction patterns, providing an example of the dependence of the light–matter interaction on entanglement. When the particles are identical, we can explore the relation between exchange and entanglement effects. We find a complementary behavior between overlapping and Schmidt’s number. In particular, symmetric entanglement can cancel the exchange effects. - Highlights: • Kapitza–Dirac diffraction of entangled particles shows multiparticle interference. • There is a discontinuity in the set of joint detection patterns of entangled states. • We find a complementary behavior between overlapping and Schmidt’s number. • Symmetric entanglement can cancel the exchange effects.
Physically realizable entanglement by local continuous measurements
Mascarenhas, Eduardo; Santos, Marcelo Franca; Cavalcanti, Daniel; Vedral, Vlatko
2011-02-15
Quantum systems prepared in pure states evolve into mixtures under environmental action. Continuously realizable ensembles (or physically realizable) are the pure state decompositions of those mixtures that can be generated in time through continuous measurements of the environment. Here, we define continuously realizable entanglement as the average entanglement over realizable ensembles. We search for the measurement strategy to maximize and minimize this quantity through observations on the independent environments that cause two qubits to disentangle in time. We then compare it with the entanglement bounds (entanglement of formation and entanglement of assistance) for the unmonitored system. For some relevant noise sources the maximum realizable entanglement coincides with the upper bound, establishing the scheme as an alternative to protect entanglement. However, for local strategies, the lower bound of the unmonitored system is not reached.
Quantum entanglement in circuit QED
Milburn, G. J.; Meaney, Charles
2008-11-07
We show that the ground state of a very strongly coupled two level system based on a superconducting island and a microwave cavity field can undergo a morphological change as the coupling strength is increased. This looks like a quantum phase transition and is characterized by the appearance of entanglement between the cavity field and the two level system.
Optical Quantum Entanglement in Astrophysics
NASA Astrophysics Data System (ADS)
Gómez, J.; Peimbert, A.; Echevarría, J.
2009-10-01
The theories of quantum entanglement between two distant particles, which clearly confirm the non-local nature of Quantum Mechanics, are applied to naturally produced particles in astrophysical objects. We study the production and reception of the cases of optical quantum entanglement most feasible to be observed: the two-photon spontaneous transition of the hydrogen 2 ^{2}S_{1/2} metastable level, which is known to be one of the components of the continuous spectra of ionized regions. We obtain the two-photon emission rate for four astrophysical objects: the Orion Nebula, two nearby planetary nebulae IC 2149 and NGC 7293, and the solar corona. The production of entangled pairs per second is 5.80×10^48, 9.39×10^45, 9.77×10^44, and 1.46×10^16 respectively. The distribution of the propagation directions of both emitted photons does not vanish at any angle; therefore it is possible to observe the entangled pair at an angles θ ≈ 0°. Because the number of two-photon coincidences goes as the fourth power of the ratio between the detector size and the distance from the astrophysical object, coincidences are scarce; for its detection we require receivers much larger than those currently available.
Entangled ions in thermal motion
Soerensen, Anders; Moelmer, Klaus
1999-03-11
We propose a method to entangle the internal states of traped ions via virtual vibrational excitations. Transition paths involving unpopulated, vibrational states interfere destructively to eliminate the dependence of rates and revolution frequencies on vibrational quantum numbers, and our procedure is insensitive to the initial vibrational quantum state and to changes in the vibrational state occuring during operation.
Holographic entanglement beyond classical gravity
NASA Astrophysics Data System (ADS)
Barrella, Taylor; Dong, Xi; Hartnoll, Sean A.; Martin, Victoria L.
2013-09-01
The Rényi entropies and entanglement entropy of 1+1 CFTs with gravity duals can be computed by explicit construction of the bulk spacetimes dual to branched covers of the boundary geometry. At the classical level in the bulk this has recently been shown to reproduce the conjectured Ryu-Takayanagi formula for the holographic entanglement entropy. We study the one-loop bulk corrections to this formula. The functional determinants in the bulk geometries are given by a sum over certain words of generators of the Schottky group of the branched cover. For the case of two disjoint intervals on a line we obtain analytic answers for the one-loop entanglement entropy in an expansion in small cross-ratio. These reproduce and go beyond anticipated universal terms that are not visible classically in the bulk. We also consider the case of a single interval on a circle at finite temperature. At high temperatures we show that the one-loop contributions introduce expected finite size corrections to the entanglement entropy that are not present classically. At low temperatures, the one-loop corrections capture the mixed nature of the density matrix, also not visible classically below the Hawking-Page temperature.
Entanglement witnesses and geometry of entanglement of two-qutrit states
Bertlmann, Reinhold A. Krammer, Philipp
2009-07-15
We construct entanglement witnesses with regard to the geometric structure of the Hilbert-Schmidt space and investigate the geometry of entanglement. In particular, for a two-parameter family of two-qutrit states that are part of the magic simplex, we calculate the Hilbert-Schmidt measure of entanglement. We present a method to detect bound entanglement which is illustrated for a three-parameter family of states. In this way, we discover new regions of bound entangled states. Furthermore, we outline how to use our method to distinguish entangled from separable states.
NASA Astrophysics Data System (ADS)
Shi, Ronghua; Liu, Shaorong; Wang, Shuo; Guo, Ying
2015-02-01
We present two deterministic entanglement purifications protocols for χ-type entangled states, resorting to multiple degrees of freedom. One protocol is implemented with the spatial entanglement to distill the maximally entangled states from the mixed states, resorting to some linear optical elements. Another one is implemented with the frequency entanglement for the purification. All the parties can jointly distill the maximally entangled states from the mixed states affected by the environmental noise during transmission. Both of the protocols can work in a deterministic way with the success probability 100 %, in principle. The derived features may make the protocols useful in the practical long-distance quantum communication.
Computational complexity in entanglement transformations
NASA Astrophysics Data System (ADS)
Chitambar, Eric A.
In physics, systems having three parts are typically much more difficult to analyze than those having just two. Even in classical mechanics, predicting the motion of three interacting celestial bodies remains an insurmountable challenge while the analogous two-body problem has an elementary solution. It is as if just by adding a third party, a fundamental change occurs in the structure of the problem that renders it unsolvable. In this thesis, we demonstrate how such an effect is likewise present in the theory of quantum entanglement. In fact, the complexity differences between two-party and three-party entanglement become quite conspicuous when comparing the difficulty in deciding what state changes are possible for these systems when no additional entanglement is consumed in the transformation process. We examine this entanglement transformation question and its variants in the language of computational complexity theory, a powerful subject that formalizes the concept of problem difficulty. Since deciding feasibility of a specified bipartite transformation is relatively easy, this task belongs to the complexity class P. On the other hand, for tripartite systems, we find the problem to be NP-Hard, meaning that its solution is at least as hard as the solution to some of the most difficult problems humans have encountered. One can then rigorously defend the assertion that a fundamental complexity difference exists between bipartite and tripartite entanglement since unlike the former, the full range of forms realizable by the latter is incalculable (assuming P≠NP). However, similar to the three-body celestial problem, when one examines a special subclass of the problem---invertible transformations on systems having at least one qubit subsystem---we prove that the problem can be solved efficiently. As a hybrid of the two questions, we find that the question of tripartite to bipartite transformations can be solved by an efficient randomized algorithm. Our results are
Selection of quasi-monodisperse super-micron aerosol particles
NASA Astrophysics Data System (ADS)
Rösch, Michael; Pfeifer, Sascha; Wiedensohler, Alfred; Stratmann, Frank
2014-05-01
Size-segregated quasi monodisperse particles are essential for e.g. fundamental research concerning cloud microphysical processes. Commonly a DMA (Differential Mobility Analyzer) is used to produce quasi-monodisperse submicron particles. Thereto first, polydisperse aerosol particles are bipolarly charged by a neutralizer, and then selected according to their electrical mobility with the DMA [Knutson et al. 1975]. Selecting a certain electrical mobility with a DMA results in a particle size distribution, which contains singly charged particles as well as undesired multiply charged larger particles. Often these larger particles need to either be removed from the generated aerosol or their signals have to be corrected for in the data inversion and interpretation process. This problem becomes even more serious when considering super-micron particles. Here we will present two different techniques for generating quasi-monodisperse super-micron aerosol particles with no or only an insignificant number of larger sized particles being present. First, we use a combination of a cyclone with adjustable aerodynamic cut-off diameter and our custom-built Maxi-DMA [Raddatz et al. 2013]. The cyclone removes particles larger than the desired ones prior to mobility selection with the DMA. This results in a reduction of the number of multiply charged particles of up to 99.8%. Second, we utilize a new combination of cyclone and PCVI (Pumped Counterflow Virtual Impactor), which is based on purely inertial separation and avoids particle charging. The PCVI instrument was previously described by Boulter et al. (2006) and Kulkarni et al. (2011). With our two setups we are able to produce quasi-monodisperse aerosol particles in the diameter range from 0.5 to 4.4 µm without a significant number of larger undesired particles being present. Acknowledgements: This work was done within the framework of the DFG funded Ice Nucleation research UnIT (INUIT, FOR 1525) under WE 4722/1-1. References
Sodium hydroxide catalyzed monodispersed high surface area silica nanoparticles
NASA Astrophysics Data System (ADS)
Bhakta, Snehasis; Dixit, Chandra K.; Bist, Itti; Abdel Jalil, Karim; Suib, Steven L.; Rusling, James F.
2016-07-01
Understanding of the synthesis kinetics and our ability to modulate medium conditions allowed us to generate nanoparticles via an ultra-fast process. The synthesis medium is kept quite simple with tetraethyl orthosilicate (TEOS) as precursor and 50% ethanol and sodium hydroxide catalyst. Synthesis is performed under gentle conditions at 20 °C for 20 min Long synthesis time and catalyst-associated drawbacks are most crucial in silica nanoparticle synthesis. We have addressed both these bottlenecks by replacing the conventional Stober catalyst, ammonium hydroxide, with sodium hydroxide. We have reduced the overall synthesis time from 20 to 1/3 h, ∼60-fold decrease, and obtained highly monodispersed nanoparticles with 5-fold higher surface area than Stober particles. We have demonstrated that the developed NPs with ∼3-fold higher silane can be used as efficient probes for biosensor applications.
Monodisperse Block Copolymer Particles with Controllable Size, Shape, and Nanostructure
NASA Astrophysics Data System (ADS)
Shin, Jae Man; Kim, Yongjoo; Kim, Bumjoon; PNEL Team
Shape-anisotropic particles are important class of novel colloidal building block for their functionality is more strongly governed by their shape, size and nanostructure compared to conventional spherical particles. Recently, facile strategy for producing non-spherical polymeric particles by interfacial engineering received significant attention. However, achieving uniform size distribution of particles together with controlled shape and nanostructure has not been achieved. Here, we introduce versatile system for producing monodisperse BCP particles with controlled size, shape and morphology. Polystyrene-b-polybutadiene (PS-b-PB) self-assembled to either onion-like or striped ellipsoid particle, where final structure is governed by amount of adsorbed sodium dodecyl sulfate (SDS) surfactant at the particle/surrounding interface. Further control of molecular weight and particle size enabled fine-tuning of aspect ratio of ellipsoid particle. Underlying physics of free energy for morphology formation and entropic penalty associated with bending BCP chains strongly affects particle structure and specification.
Graphene wrinkling induced by monodisperse nanoparticles: facile control and quantification
Vejpravova, Jana; Pacakova, Barbara; Endres, Jan; Mantlikova, Alice; Verhagen, Tim; Vales, Vaclav; Frank, Otakar; Kalbac, Martin
2015-01-01
Controlled wrinkling of single-layer graphene (1-LG) at nanometer scale was achieved by introducing monodisperse nanoparticles (NPs), with size comparable to the strain coherence length, underneath the 1-LG. Typical fingerprint of the delaminated fraction is identified as substantial contribution to the principal Raman modes of the 1-LG (G and G’). Correlation analysis of the Raman shift of the G and G’ modes clearly resolved the 1-LG in contact and delaminated from the substrate, respectively. Intensity of Raman features of the delaminated 1-LG increases linearly with the amount of the wrinkles, as determined by advanced processing of atomic force microscopy data. Our study thus offers universal approach for both fine tuning and facile quantification of the graphene topography up to ~60% of wrinkling. PMID:26530787
Structure and Hydration of Highly Branched, Monodisperse Phytoglycogen Nanoparticles
NASA Astrophysics Data System (ADS)
Atkinson, John; Nickels, Jonathan; Stanley, Christopher; Diallo, Souleymane; Katsaras, John; Dutcher, John
Monodisperse phytoglycogen nanoparticles are a promising, new soft colloidal nanomaterial with many applications in the personal care, food, nutraceutical and pharmaceutical industries. These applications rely on exceptional properties that emerge from the highly branched structure of phytoglycogen and its interaction with water, such as extraordinarily high water retention, and low viscosity and exceptional stability in water. The structure and hydration of the nanoparticles was characterized using small angle neutron scattering (SANS) and quasielastic neutron scattering (QENS). SANS allowed us to determine the size of the nanoparticles, evaluate their radial density profile, quantify the particle-to-particle spacing, and determine their water content. The results show clearly that the nanoparticles are highly hydrated, with each nanoparticle containing 250% of its mass in water, and that aqueous dispersions approach a jamming transition at ~ 25% (w/w). QENS experiments provided an independent and consistent measure of the high level of hydration of the particles.
NASA Astrophysics Data System (ADS)
Martin, Tyler; Jayaraman, Arthi
2013-03-01
Polymer nanocomposites, consisting of nanoscale additives in a polymer matrix, are used in many applications where high thermal and wear resistance is important e.g. automotive tires. To achieve uniform mechanical and thermal properties of the nanocomposite, the nanoparticles need to be well dispersed in the polymer matrix. One way to control the nanoparticle spatial organization in the polymer matrix is by grafting the nanoparticle surface with polymers that are chemically similar to the matrix polymer and tuning the effective interactions between the particles by simply tuning the grafting density, graft length, matrix length, particle size, filler concentration, and matrix density. In this study, we demonstrate that polydisperse polymer grafts can stabilize dispersions of polymer grafted nanoparticles in a polymer matrix in cases where monodisperse grafts would cause aggregation of particles. The change in the effective inter-particle interactions with increasing polydisersity is because of increased wetting of the grafted polymers by the matrix polymers. The implication that polydispersity can stabilize particle dispersions in matrix shows that it can be used as a design tool to program inter-particle interactions in a polymer matrix.
Swank, Zoe; Deshpande, Siddharth; Pfohl, Thomas
2016-01-01
The physical properties of polymeric actin facilitate many mechanical processes within the cell, including cellular deformation and locomotion, whereby the polymers can be confined to a range of different geometries. As actin polymers often form entangled solutions in the cell, we have investigated the effect of confinement on the evolution of entangled semiflexible polymer solutions. Using a microfluidic platform, we examined the physical dynamics of actin polymers confined within narrow (2-4 μm) rectangular channels. Focusing on the entanglement process of two actin polymers, we found that their prolonged entrainment leads to synchronized horizontal undulations and decreased translational diffusion. In the absence of cross-linking molecules or proteins, the long-range entrainment interactions are predominantly controlled by the geometric boundaries. We directly measure the deflection length Λ for an individual polymer, either solitarily confined within a channel or confined in the presence of a second filament, enabling the determination of the change in free energy associated with polymer entanglement. Our results indicate that geometrical confinement can serve as a solitary variable influencing the physical dynamics of entangled semiflexible polymers. PMID:26437627
Rouse mode analysis of chain relaxation in polymer nanocomposites
Kalathi, Jagannathan T.; Kumar, Sanat K.; Rubinstein, Michael; Grest, Gary S.
2015-04-20
Large-scale molecular dynamics simulations are used to study the internal relaxations of chains in nanoparticle (NP)/polymer composites. We examine the Rouse modes of the chains, a quantity that is closest in spirit to the self-intermediate scattering function, typically determined in an (incoherent) inelastic neutron scattering experiment. Our simulations show that for weakly interacting mixtures of NPs and polymers, the effective monomeric relaxation rates are faster than in a neat melt when the NPs are smaller than the entanglement mesh size. In this case, the NPs serve to reduce both the monomeric friction and the entanglements in the polymer melt, asmore » in the case of a polymer–solvent system. However, for NPs larger than half the entanglement mesh size, the effective monomer relaxation is essentially unaffected for low NP concentrations. Even in this case, we observe a strong reduction in chain entanglements for larger NP loadings. Furthermore, the role of NPs is to always reduce the number of entanglements, with this effect only becoming pronounced for small NPs or for high concentrations of large NPs. Our studies of the relaxation of single chains resonate with recent neutron spin echo (NSE) experiments, which deduce a similar entanglement dilution effect.« less
Rouse mode analysis of chain relaxation in polymer nanocomposites
Kalathi, Jagannathan T.; Kumar, Sanat K.; Rubinstein, Michael; Grest, Gary S.
2015-04-20
Large-scale molecular dynamics simulations are used to study the internal relaxations of chains in nanoparticle (NP)/polymer composites. We examine the Rouse modes of the chains, a quantity that is closest in spirit to the self-intermediate scattering function, typically determined in an (incoherent) inelastic neutron scattering experiment. Our simulations show that for weakly interacting mixtures of NPs and polymers, the effective monomeric relaxation rates are faster than in a neat melt when the NPs are smaller than the entanglement mesh size. In this case, the NPs serve to reduce both the monomeric friction and the entanglements in the polymer melt, as in the case of a polymer–solvent system. However, for NPs larger than half the entanglement mesh size, the effective monomer relaxation is essentially unaffected for low NP concentrations. Even in this case, we observe a strong reduction in chain entanglements for larger NP loadings. Furthermore, the role of NPs is to always reduce the number of entanglements, with this effect only becoming pronounced for small NPs or for high concentrations of large NPs. Our studies of the relaxation of single chains resonate with recent neutron spin echo (NSE) experiments, which deduce a similar entanglement dilution effect.
NASA Astrophysics Data System (ADS)
Jadhav, J.; Biswas, S.
2016-03-01
Monodispersed core-shell type ZnO:Ag nanoparticles were synthesized by a wet chemical method and their salient properties were reported. The synthesis technique explores a facile route following a chemical reaction between aqueous solutions of poly-vinyl alcohol (PVA), sucrose and Zn2+ salt. The Zn2+-PVA-sucrose polymer precursor powders so obtained after the reaction was further explored for the synthesis of ZnO:Ag nanoparticles. The key part of the process lies in the use of polymer encapsulated ZnO nanoparticles as templates to obtain the ZnO core-Ag shell type nanostructures. Structural, morphological and optical properties of the derived ZnO:Ag core-shell nanoparticles were evaluated with X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), high resolution transmission electron microscope (HRTEM), Raman spectroscopy, UV-visible diffuse reflectance spectroscopy, and photoluminescence (PL) spectroscopy. Microstructural analysis revealed monodispersed platelet shaped ZnO nanoparticles with a thin layer of Ag coating on the surface. The surface modified ZnO nanoparticles show colossal enhancement in their near-UV emission characteristics, primarily due to the efficient excitation of surface plasmons and excellent semiconductor-metal interfacing in the ZnO:Ag nanoparticles.
NASA Astrophysics Data System (ADS)
Kuang, Hongyan; Guo, Ying
2015-01-01
We present two deterministic entanglement purification protocols for distilling W state in polarization entanglement in a one-step fashion. The three parties can obtain a maximally entangled W polarization state with success probability 100 % from the hyper-entangled W state in multiple degrees of freedom (DOFs), and they do not require the quantum system to be entangled in polarization DOF but in spatial DOF. The former protocol is implemented with the passive linear optics, which is feasible with current experiments. The later one is implemented with cross-Kerr-nonlinearities, which can achieve higher efficiency of the entanglement transformation among different DOFs since it does not require the sophisticated single-photon detector. The present protocols are both suitable for polarization entanglement purification of multi-photon-entangled W state in quantum computation network because they need less operations and classical communications in the practical implementation.
Deterministically Entangling Two Remote Atomic Ensembles via Light-Atom Mixed Entanglement Swapping.
Liu, Yanhong; Yan, Zhihui; Jia, Xiaojun; Xie, Changde
2016-01-01
Entanglement of two distant macroscopic objects is a key element for implementing large-scale quantum networks consisting of quantum channels and quantum nodes. Entanglement swapping can entangle two spatially separated quantum systems without direct interaction. Here we propose a scheme of deterministically entangling two remote atomic ensembles via continuous-variable entanglement swapping between two independent quantum systems involving light and atoms. Each of two stationary atomic ensembles placed at two remote nodes in a quantum network is prepared to a mixed entangled state of light and atoms respectively. Then, the entanglement swapping is unconditionally implemented between the two prepared quantum systems by means of the balanced homodyne detection of light and the feedback of the measured results. Finally, the established entanglement between two macroscopic atomic ensembles is verified by the inseparability criterion of correlation variances between two anti-Stokes optical beams respectively coming from the two atomic ensembles. PMID:27165122
Deterministically Entangling Two Remote Atomic Ensembles via Light-Atom Mixed Entanglement Swapping
Liu, Yanhong; Yan, Zhihui; Jia, Xiaojun; Xie, Changde
2016-01-01
Entanglement of two distant macroscopic objects is a key element for implementing large-scale quantum networks consisting of quantum channels and quantum nodes. Entanglement swapping can entangle two spatially separated quantum systems without direct interaction. Here we propose a scheme of deterministically entangling two remote atomic ensembles via continuous-variable entanglement swapping between two independent quantum systems involving light and atoms. Each of two stationary atomic ensembles placed at two remote nodes in a quantum network is prepared to a mixed entangled state of light and atoms respectively. Then, the entanglement swapping is unconditionally implemented between the two prepared quantum systems by means of the balanced homodyne detection of light and the feedback of the measured results. Finally, the established entanglement between two macroscopic atomic ensembles is verified by the inseparability criterion of correlation variances between two anti-Stokes optical beams respectively coming from the two atomic ensembles. PMID:27165122
Deterministically Entangling Two Remote Atomic Ensembles via Light-Atom Mixed Entanglement Swapping
NASA Astrophysics Data System (ADS)
Liu, Yanhong; Yan, Zhihui; Jia, Xiaojun; Xie, Changde
2016-05-01
Entanglement of two distant macroscopic objects is a key element for implementing large-scale quantum networks consisting of quantum channels and quantum nodes. Entanglement swapping can entangle two spatially separated quantum systems without direct interaction. Here we propose a scheme of deterministically entangling two remote atomic ensembles via continuous-variable entanglement swapping between two independent quantum systems involving light and atoms. Each of two stationary atomic ensembles placed at two remote nodes in a quantum network is prepared to a mixed entangled state of light and atoms respectively. Then, the entanglement swapping is unconditionally implemented between the two prepared quantum systems by means of the balanced homodyne detection of light and the feedback of the measured results. Finally, the established entanglement between two macroscopic atomic ensembles is verified by the inseparability criterion of correlation variances between two anti-Stokes optical beams respectively coming from the two atomic ensembles.
Delayed birth of distillable entanglement in the evolution of bound entangled states
Derkacz, Lukasz; Jakobczyk, Lech
2010-08-15
The dynamical creation of entanglement between three-level atoms coupled to the common vacuum is investigated. For the class of bound entangled initial states, we show that the dynamics of closely separated atoms generates stationary distillable entanglement of asymptotic states. We also find that the effect of delayed sudden birth of distillable entanglement occurs in the case of atoms separated by a distance comparable with the radiation wavelength.
Entanglement rules for holographic Fermi surfaces
NASA Astrophysics Data System (ADS)
Roychowdhury, Dibakar
2016-08-01
In this paper, based on the notion of Gauge/Gravity duality, we explore the laws of entanglement thermodynamics for most generic classes of Quantum Field Theories with hyperscaling violation. In our analysis, we note that for Quantum Field Theories with compressible quark like excitation, the first law of entanglement thermodynamics gets modified due to the presence of an additional term that could be identified as the entanglement chemical potential associated with hidden Fermi surfaces of the boundary theory. Most notably, we find that the so called entanglement chemical potential does not depend on the size of the entangling region and is purely determined by the quark d.o.f. encoded within the entangling region.
Mutually unbiased bases and bound entanglement
NASA Astrophysics Data System (ADS)
Hiesmayr, Beatrix C.; Löffler, Wolfgang
2014-04-01
In this contribution we relate two different key concepts: mutually unbiased bases (MUBs) and entanglement. We provide a general toolbox for analyzing and comparing entanglement of quantum states for different dimensions and numbers of particles. In particular we focus on bound entanglement, i.e. highly mixed states which cannot be distilled by local operations and classical communications. For a certain class of states—for which the state-space forms a ‘magic’ simplex—we analyze the set of bound entangled states detected by the MUB criterion for different dimensions d and number of particles n. We find that the geometry is similar for different d and n, consequently the MUB criterion opens possibilities to investigate the typicality of positivity under partial transposition (PPT)-bound and multipartite bound entanglement more deeply and provides a simple experimentally feasible tool to detect bound entanglement.
Efficient entanglement distillation without quantum memory
Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J.; Fiurášek, Jaromír; Schnabel, Roman
2016-01-01
Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution. PMID:27241946
Single-electron entanglement and nonlocality
NASA Astrophysics Data System (ADS)
Dasenbrook, David; Bowles, Joseph; Bohr Brask, Jonatan; Hofer, Patrick P.; Flindt, Christian; Brunner, Nicolas
2016-04-01
Motivated by recent progress in electron quantum optics, we revisit the question of single-electron entanglement, specifically whether the state of a single electron in a superposition of two separate spatial modes should be considered entangled. We first discuss a gedanken experiment with single-electron sources and detectors, and demonstrate deterministic (i. e. without post-selection) Bell inequality violation. This implies that the single-electron state is indeed entangled and, furthermore, nonlocal. We then present an experimental scheme where single-electron entanglement can be observed via measurements of the average currents and zero-frequency current cross-correlators in an electronic Hanbury Brown–Twiss interferometer driven by Lorentzian voltage pulses. We show that single-electron entanglement is detectable under realistic operating conditions. Our work settles the question of single-electron entanglement and opens promising perspectives for future experiments.
Efficient entanglement distillation without quantum memory.
Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J; Fiurášek, Jaromír; Schnabel, Roman
2016-01-01
Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution. PMID:27241946
Efficient entanglement distillation without quantum memory
NASA Astrophysics Data System (ADS)
Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J.; Fiurášek, Jaromír; Schnabel, Roman
2016-05-01
Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution.
Measuring multipartite entanglement through dynamic susceptibilities
NASA Astrophysics Data System (ADS)
Hauke, Philipp; Heyl, Markus; Tagliacozzo, Luca; Zoller, Peter
2016-08-01
Entanglement is considered an essential resource in quantum technologies, and central to the understanding of quantum many-body physics. Developing protocols to detect and quantify the entanglement of many-particle quantum states is thus a key challenge for present experiments. Here, we show that the quantum Fisher information, a witness for genuinely multipartite entanglement, becomes measurable for thermal ensembles by means of the dynamic susceptibility--that is, with resources readily available in present cold atomic-gas and condensed-matter experiments. This establishes a connection between multipartite entanglement and many-body correlations contained in response functions, with immediate implications close to quantum phase transitions, where the quantum Fisher information becomes universal, allowing us to identify strongly entangled phase transitions with a divergent multipartite entanglement. We illustrate our framework using paradigmatic quantum Ising models, and point out potential signatures in optical-lattice experiments and strongly correlated materials.
Rank-dependant factorization of entanglement evolution
NASA Astrophysics Data System (ADS)
Siomau, Michael
2016-05-01
The description of the entanglement evolution of a complex quantum system can be significantly simplified due to the symmetries of the initial state and the quantum channels, which simultaneously affect parts of the system. Using concurrence as the entanglement measure, we study the entanglement evolution of few qubit systems, when each of the qubits is affected by a local unital channel independently on the others. We found that for low-rank density matrices of the final quantum state, such complex entanglement dynamics can be completely described by a combination of independent factors representing the evolution of entanglement of the initial state, when just one of the qubits is affected by a local channel. We suggest necessary conditions for the rank of the density matrices to represent the entanglement evolution through the factors. Our finding is supported with analytical examples and numerical simulations.
Gaussian entanglement in the turbulent atmosphere
NASA Astrophysics Data System (ADS)
Bohmann, M.; Semenov, A. A.; Sperling, J.; Vogel, W.
2016-07-01
We provide a rigorous treatment of the entanglement properties of two-mode Gaussian states in atmospheric channels by deriving and analyzing the input-output relations for the corresponding entanglement test. A key feature of such turbulent channels is a nontrivial dependence of the transmitted continuous-variable entanglement on coherent displacements of the quantum state of the input field. Remarkably, this allows one to optimize the entanglement certification by modifying local coherent amplitudes using a finite, but optimal amount of squeezing. In addition, we propose a protocol which, in principle, renders it possible to transfer the Gaussian entanglement through any turbulent channel over arbitrary distances. Therefore, our approach provides the theoretical foundation for advanced applications of Gaussian entanglement in free-space quantum communication.
Protecting bipartite entanglement by quantum interferences
Das, Sumanta; Agarwal, G. S.
2010-05-15
We show that vacuum-induced coherence in three-level atomic systems can lead to preservation of bipartite entanglement when two such atoms are prepared as two initially entangled qubits, each independently interacting with their respective vacuum reservoirs. We explicitly calculate the time evolution of concurrence for two different Bell states and show that a large amount of entanglement can survive in the long time limit. The amount of entanglement left between the two qubits depends strongly on the ratio of the nonorthogonal transitions in each qubit and can be more than 50%. Moreover, we find that as a consequence of vacuum-induced coherence, sudden death of entanglement is prevented for an initial mixed entangled state of the qubits.
On the shape dependence of Entanglement Entropy
NASA Astrophysics Data System (ADS)
Carmi, Dean
2015-12-01
We study the shape dependence of entanglement entropy (EE) by deforming symmetric entangling surfaces. We show that entangling surfaces with a rotational or translational symmetry extremize (locally) the EE with respect to shape deformations that break some of the symmetry (i.e. the 1st order correction vanishes). This result applies to EE and Renyi entropy for any QFT in any dimension. Using Solodukhin's formula in 4 d and holography in any d, we calculate the 2nd order correction to the universal EE for CFTs and simple symmetric entangling surfaces. For several entangling surfaces we find that the 2nd order correction is positive for any perturbation, and thus the corresponding symmetric entangling surface is a local minimum. Some of the results are extended to free massive fields and to 4d Renyi entropy.
Gaussian maximally multipartite-entangled states
Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio; Lupo, Cosmo; Mancini, Stefano
2009-12-15
We study maximally multipartite-entangled states in the context of Gaussian continuous variable quantum systems. By considering multimode Gaussian states with constrained energy, we show that perfect maximally multipartite-entangled states, which exhibit the maximum amount of bipartite entanglement for all bipartitions, only exist for systems containing n=2 or 3 modes. We further numerically investigate the structure of these states and their frustration for n<=7.
On the Number of Entangled Clusters
NASA Astrophysics Data System (ADS)
Atapour, Mahshid; Madras, Neal
2010-04-01
We prove that the number of entangled clusters with N edges in the simple cubic lattice grows exponentially in N. This answers an open question posed by Grimmett and Holroyd (Proc. Lond. Math. Soc. 81:485-512, 2000). Our result has immediate implications for entanglement percolation: we obtain an improved rigorous lower bound on the critical probability, and we prove that the radius of the entangled component of the origin has exponentially decaying tail when p is small.
Frozen multipartite entanglement in photonic crystals
NASA Astrophysics Data System (ADS)
Wu, Wei; Xu, Jing-Bo
2016-06-01
We investigate the multipartite entanglement dynamics of a many-body system consisting of N identical two-level atoms locally embedded in their own band-gap photonic crystals. It is shown that the tripartite entanglement of this photonic-crystal system can be frozen in a stationary state. We also find that a double-sudden-change phenomenon of four-partite entanglement occurs in this photonic-crystal system during the decoherence process under certain suitable conditions.
Entanglement generation by electric field background
Ebadi, Zahra Mirza, Behrouz
2014-12-15
The quantum vacuum is unstable under the influence of an external electric field and decays into pairs of charged particles, a process which is known as the Schwinger pair production. We propose and demonstrate that this electric field can generate entanglement. Using the Schwinger pair production for constant and pulsed electric fields, we study entanglement for scalar particles with zero spins and Dirac fermions. One can observe the variation of the entanglement produced for bosonic and fermionic modes with respect to different parameters.
Robustness of entanglement as a resource
Chaves, Rafael; Davidovich, Luiz
2010-11-15
The robustness of multipartite entanglement of systems undergoing decoherence is of central importance to the area of quantum information. Its characterization depends, however, on the measure used to quantify entanglement and on how one partitions the system. Here we show that the unambiguous assessment of the robustness of multipartite entanglement is obtained by considering the loss of functionality in terms of two communication tasks, namely the splitting of information between many parties and the teleportation of states.
Entanglement and thermodynamics in general probabilistic theories
NASA Astrophysics Data System (ADS)
Chiribella, Giulio; Scandolo, Carlo Maria
2015-10-01
Entanglement is one of the most striking features of quantum mechanics, and yet it is not specifically quantum. More specific to quantum mechanics is the connection between entanglement and thermodynamics, which leads to an identification between entropies and measures of pure state entanglement. Here we search for the roots of this connection, investigating the relation between entanglement and thermodynamics in the framework of general probabilistic theories. We first address the question whether an entangled state can be transformed into another by means of local operations and classical communication. Under two operational requirements, we prove a general version of the Lo-Popescu theorem, which lies at the foundations of the theory of pure-state entanglement. We then consider a resource theory of purity where free operations are random reversible transformations, modelling the scenario where an agent has limited control over the dynamics of a closed system. Our key result is a duality between the resource theory of entanglement and the resource theory of purity, valid for every physical theory where all processes arise from pure states and reversible interactions at the fundamental level. As an application of the main result, we establish a one-to-one correspondence between entropies and measures of pure bipartite entanglement. The correspondence is then used to define entanglement measures in the general probabilistic framework. Finally, we show a duality between the task of information erasure and the task of entanglement generation, whereby the existence of entropy sinks (systems that can absorb arbitrary amounts of information) becomes equivalent to the existence of entanglement sources (correlated systems from which arbitrary amounts of entanglement can be extracted).
Central charge and entangled gauge fields
NASA Astrophysics Data System (ADS)
Huang, Kuo-Wei
2015-07-01
Entanglement entropy of gauge fields is calculated using the partition function in curved spacetime with a boundary. Deriving a Gibbons-Hawking-like term from a Becchi-Rouet-Stora-Tyutin (BRST) action produces a Wald-entropy-like codimension-2 surface term. It is further suggested that boundary degrees of freedom localized on the entanglement surface generated from the gauge redundancy could be used to resolve a subtle mismatch in a universal conformal anomaly-entanglement entropy relation.
Entanglement Measure and Quantum Violation of Bell-Type Inequality
NASA Astrophysics Data System (ADS)
Ding, Dong; He, Ying-Qiu; Yan, Feng-Li; Gao, Ting
2016-05-01
By calculating entanglement measures and quantum violation of Bell-type inequality, we reveal the relationship between entanglement measure and the amount of quantum violation for a family of four-qubit entangled states. It has been demonstrated that the Bell-type inequality is completely violated by these four-qubit entangled states. The plot of entanglement measure as a function of the expectation value of Bell operator shows that entanglement measure first decreases and then increases smoothly with increasing quantum violation.
Fano resonances and entanglement entropy
Eisler, Viktor; Garmon, Savannah Sterling
2010-11-01
We study the entanglement in the ground state of a chain of free spinless fermions with a single side-coupled impurity. We find a logarithmic scaling for the entanglement entropy of a segment neighboring the impurity. The prefactor of the logarithm varies continuously and contains an impurity contribution described by a one-parameter function while the contribution of the unmodified boundary enters additively. The coefficient is found explicitly by pointing out similarities with other models involving interface defects. The proposed formula gives excellent agreement with our numerical data. If the segment has an open boundary, one finds a rapidly oscillating subleading term in the entropy that persists in the limit of large block sizes. The particle-number fluctuation inside the subsystem is also reported. It is analogous with the expression for the entropy scaling, however, with a simpler functional form for the coefficient.
Classical Analog to Entanglement Reversibility
NASA Astrophysics Data System (ADS)
Chitambar, Eric; Fortescue, Ben; Hsieh, Min-Hsiu
2015-08-01
In this Letter we study the problem of secrecy reversibility. This asks when two honest parties can distill secret bits from some tripartite distribution pX Y Z and transform secret bits back into pX Y Z at equal rates using local operation and public communication. This is the classical analog to the well-studied problem of reversibly concentrating and diluting entanglement in a quantum state. We identify the structure of distributions possessing reversible secrecy when one of the honest parties holds a binary distribution, and it is possible that all reversible distributions have this form. These distributions are more general than what is obtained by simply constructing a classical analog to the family of quantum states known to have reversible entanglement. An indispensable tool used in our analysis is a conditional form of the Gács-Körner common information.
Randomness versus nonlocality and entanglement.
Acín, Antonio; Massar, Serge; Pironio, Stefano
2012-03-01
The outcomes obtained in Bell tests involving two-outcome measurements on two subsystems can, in principle, generate up to 2 bits of randomness. However, the maximal violation of the Clauser-Horne-Shimony-Holt inequality guarantees the generation of only 1.23 bits of randomness. We prove here that quantum correlations with arbitrarily little nonlocality and states with arbitrarily little entanglement can be used to certify that close to the maximum of 2 bits of randomness are produced. Our results show that nonlocality, entanglement, and randomness are inequivalent quantities. They also imply that device-independent quantum key distribution with an optimal key generation rate is possible by using almost-local correlations and that device-independent randomness generation with an optimal rate is possible with almost-local correlations and with almost-unentangled states. PMID:22463395
Quantum entanglement in the multiverse
NASA Astrophysics Data System (ADS)
Robles-Pérez, S.; González-Díaz, P. F.
2014-01-01
We show that the quantum state of a multiverse made up of classically disconnected regions of the space-time, whose dynamical evolution is dominated by a homogeneous and isotropic fluid, is given by a squeezed state. These are typical quantum states that have no classical counterpart and therefore allow analyzing the violation of classical inequalities as well as the EPR argument in the context of the quantum multiverse. The thermodynamical properties of entanglement are calculated for a composite quantum state of two universes whose states are quantum-mechanically correlated. The energy of entanglement between the positive and negative modes of a scalar field, which correspond to the expanding and contracting branches of a phantom universe, are also computed.
Entanglement purification with double selection
Fujii, Keisuke; Yamamoto, Katsuji
2009-10-15
We investigate an entanglement purification protocol with double-selection process, which works under imperfect local operations. Compared with the usual protocol with single selection, this double-selection method has higher noise thresholds for the local operations and quantum communication channels and achieves higher fidelity of purified states. It also provides a yield comparable to that of the usual protocol with single selection. We discuss on general grounds how some of the errors which are introduced by local operations are left as intrinsically undetectable. The undetectable errors place a general upper bound on the purification fidelity. The double selection is a simple method to remove all the detectable errors in the first order, so that the upper bound on the fidelity is achieved in the low-noise regime. The double selection is further applied to purification of multipartite entanglement such as two-colorable graph states.
Entanglement entropy of two black holes and entanglement entropic force
Shiba, Noburo
2011-03-15
We study the entanglement entropy S{sub C} of the massless free scalar field on the outside region C of two black holes A and B whose radii are R{sub 1} and R{sub 2} and how it depends on the distance r(>>R{sub 1},R{sub 2}) between two black holes. If we can consider the entanglement entropy as thermodynamic entropy, we can see the entropic force acting on the two black holes from the r dependence of S{sub C}. We develop the computational method based on that of Bombelli et al. to obtain the r dependence of S{sub C} of scalar fields whose Lagrangian is quadratic with respect to the scalar fields. First, we study S{sub C} in (d+1)-dimensional Minkowski spacetime. In this case the state of the massless free scalar field is the Minkowski vacuum state, and we replace two black holes by two imaginary spheres and take the trace over the degrees of freedom residing in the imaginary spheres. We obtain the leading term of S{sub C} with respect to 1/r. The result is S{sub C}=S{sub A}+S{sub B}+(1/r{sup 2d-2})G(R{sub 1},R{sub 2}), where S{sub A} and S{sub B} are the entanglement entropy on the inside region of A and B, respectively, and G(R{sub 1},R{sub 2}){<=}0. We do not calculate G(R{sub 1},R{sub 2}) in detail, but we show how to calculate it. In the black hole case we use the method used in the Minkowski spacetime case with some modifications. We show that S{sub C} can be expected to be the same form as that in the Minkowski spacetime case. But in the black hole case, S{sub A} and S{sub B} depend on r, so we do not fully obtain the r dependence of S{sub C}. Finally, we assume that the entanglement entropy can be regarded as thermodynamic entropy and consider the entropic force acting on two black holes. We argue how to separate the entanglement entropic force from other forces and how to cancel S{sub A} and S{sub B} whose r dependences are not obtained. Then we obtain the physical prediction, which can be tested experimentally in principle.
Simulations of Polymer Translocation
NASA Astrophysics Data System (ADS)
Vocks, H.
2008-07-01
simulations in which long polymers creep through tiny pores. In Chapter 3 we study pore blockage times for a translocating polymer of length N, driven by a field E across te pore. In three dimensions we find that the typical time the pore remains blocked during a translocation event scales as N^{1.37}/E We show that the scaling behavior stems from the polymer dynamics at the immediate vicinity of the pore -- in particular, the memory effects in the polymer chain tension imbalance across the pore. Chapter 4 studies the unbiased translocation of a polymer with length N, surrounded by equally long polymers, through a narrow pore in a membrane. We show that in dense polymeric systems a relaxation time exists that scales as N^{2.65}, much longer than the Rouse time N^2. If the polymers are well entangled, we find that the mean dwell times scales as N^{3.3}, while for shorter, less entangled polymers, we measure dwell times scaling as N^{2.7}. In Chapter 5 we study the translocation of an RNA molecule, pulled through a nanopore by an optical tweezer, as a method to determine its secondary structure. The resolution with which the elements of the secondary structure can be determined is limited by thermal fluctuations, ruling out single-nucleotide resolution under normal experimental conditions.
Nonaffine chain and primitive path deformation in crosslinked polymers
NASA Astrophysics Data System (ADS)
Davidson, J. D.; Goulbourne, N. C.
2016-08-01
Chains in a polymer network deform nonaffinely at small length scales due to the ability for extensive microscopic rearrangement. Classically, the conformations of an individual chain can be described solely by an end-to-end length. This picture neglects interchain interactions and therefore does not represent the behavior of a real polymer network. The primitive path concept provides the additional detail to represent interchain entanglements, and techniques have recently been developed to identify the network of primitive paths in a polymer simulation. We use coarse-grained molecular dynamics (MD) to track both chain end-to-end and primitive path deformation in crosslinked polymer networks. The range of simulated materials includes short chain unentangled networks to long, entangled chain networks. Both chain end-to-end and primitive path length are found to be linear functions of the applied deformation, and a simple relationship describes the behavior of a network in response to large stretch uniaxial, pure shear, and equi-biaxial deformations. As expected, end-to-end chain length deformation is nonaffine for short chain networks, and becomes closer to affine for networks of long, entangled chains. However, primitive path deformation is found to always be nonaffine, even for long, entangled chains. We demonstrate how the microscopic constraints of crosslinks and entanglements affect nonaffine chain deformation as well as the simulated elastic behavior of the different networks.
Network morphologies in monodisperse and polydisperse multiblock terpolymers
NASA Astrophysics Data System (ADS)
Meuler, Adam James
Multiply continuous network morphologies were previously identified in "monodisperse" (polydispersity index (PDI) < ˜1.1 in all blocks) poly(isoprene-bstyrene-b-ethylene oxide) (ISO) triblock terpolymers. This work extends the investigation of multiply continuous network structures to two other classes of multiblock terpolymers: (i) "monodisperse" OSISO pentablocks and (ii) polydisperse ISO triblocks. The OSISO pentablocks are synthesized using a protected initiation strategy that required the development of the functional organolithium 3-triisopropylsilyloxy-1-propyllithium (TIPSOPrLi). TIPSOPrLi may be used to prepare alpha-hydroxypolystyrene with narrower molecular weight distributions (PDI ˜ 1.1) than are attainable using the commercially available 3-tert-butyldimethylsilyloxy-1-propyllithium. A telechelic triblock terpolymer (HO-SIS-OH) with narrow molecular weight distributions in all blocks is prepared using TIPSOPrLi. A series of OSISO pentablocks is synthesized from this parent triblock, and a stable region of O70 (the orthorhombic Fddd network) is identified between two-domain lamellae (LAM2) and three-domain lamellae (LAM3) in OSISO materials. This sequence of morphologies was previously reported in ISO triblocks with comparable compositions. Mechanical tensile testing reveals that an OSISO sample with a lamellar mesostructure fractures in a brittle fashion at a strain of 0.06. An OSISO containing the O70 network, in contrast, has a strain at failure of 1.3, even though the crystallinity of the terminal blocks is above the brittle threshold established in other multiblock materials. This improved toughness is attributed to the combined effects of a triply continuous morphology and an intrinsically tough SIS core. The ISO triblock studies probe the stability of network morphologies with respect to polydispersity in the polystyrene and poly(ethylene oxide) chains. Three series of ISO triblocks with polydisperse (PS PDI = 1.16, 1.31, 1.44) polystyrene
Heralded entanglement between widely separated atoms.
Hofmann, Julian; Krug, Michael; Ortegel, Norbert; Gérard, Lea; Weber, Markus; Rosenfeld, Wenjamin; Weinfurter, Harald
2012-07-01
Entanglement is the essential feature of quantum mechanics. Notably, observers of two or more entangled particles will find correlations in their measurement results that cannot be explained by classical statistics. To make it a useful resource, particularly for scalable long-distance quantum communication, the heralded generation of entanglement between distant massive quantum systems is necessary. We report on the creation and analysis of heralded entanglement between spins of two single rubidium-87 atoms trapped independently 20 meters apart. Our results illustrate the viability of an integral resource for quantum information science, as well as for fundamental tests of quantum mechanics. PMID:22767924
Entangling Macroscopic Diamonds at Room Temperature
NASA Astrophysics Data System (ADS)
Lee, K. C.; Sprague, M. R.; Sussman, B. J.; Nunn, J.; Langford, N. K.; Jin, X.-M.; Champion, T.; Michelberger, P.; Reim, K. F.; England, D.; Jaksch, D.; Walmsley, I. A.
2011-12-01
Quantum entanglement in the motion of macroscopic solid bodies has implications both for quantum technologies and foundational studies of the boundary between the quantum and classical worlds. Entanglement is usually fragile in room-temperature solids, owing to strong interactions both internally and with the noisy environment. We generated motional entanglement between vibrational states of two spatially separated, millimeter-sized diamonds at room temperature. By measuring strong nonclassical correlations between Raman-scattered photons, we showed that the quantum state of the diamonds has positive concurrence with 98% probability. Our results show that entanglement can persist in the classical context of moving macroscopic solids in ambient conditions.
Diffraction of entangled particles by light gratings
NASA Astrophysics Data System (ADS)
Sancho, Pedro
2015-04-01
We analyze the diffraction regime of the Kapitza-Dirac effect for particles entangled in momentum. The detection patterns show two-particle interferences. In the single-mode case we identify a discontinuity in the set of joint detection probabilities, associated with the disconnected character of the space of non-separable states. For Gaussian multi-mode states we derive the diffraction patterns, providing an example of the dependence of the light-matter interaction on entanglement. When the particles are identical, we can explore the relation between exchange and entanglement effects. We find a complementary behavior between overlapping and Schmidt's number. In particular, symmetric entanglement can cancel the exchange effects.
Entanglement classification with matrix product states
NASA Astrophysics Data System (ADS)
Sanz, M.; Egusquiza, I. L.; di Candia, R.; Saberi, H.; Lamata, L.; Solano, E.
2016-07-01
We propose an entanglement classification for symmetric quantum states based on their diagonal matrix-product-state (MPS) representation. The proposed classification, which preserves the stochastic local operation assisted with classical communication (SLOCC) criterion, relates entanglement families to the interaction length of Hamiltonians. In this manner, we establish a connection between entanglement classification and condensed matter models from a quantum information perspective. Moreover, we introduce a scalable nesting property for the proposed entanglement classification, in which the families for N parties carry over to the N + 1 case. Finally, using techniques from algebraic geometry, we prove that the minimal nontrivial interaction length n for any symmetric state is bounded by .
Internal entanglement amplification by external interactions
Peskin, Uri; Huang Zhen; Kais, Sabre
2007-07-15
We propose a scheme to control the level of entanglement between two fixed spin-1/2 systems by interaction with a third particle. For specific designs, entanglement is shown to be 'pumped' into the system from the surroundings even when the spin-spin interaction within the system is small or nonexistent. The effect of the external particle on the system is introduced by including a dynamic spinor in the Hamiltonian. Controlled amplification of the internal entanglement to its maximum value is demonstrated. The possibility of entangling noninteracting spins in a stationary state is also demonstrated by coupling each one of them to a flying qubit in a quantum wire.
Quantum communication using a multiqubit entangled channel
NASA Astrophysics Data System (ADS)
Ghose, Shohini; Hamel, Angele
2015-12-01
We describe a protocol in which two senders each teleport a qubit to a receiver using a multiqubit entangled state. The multiqubit channel used for teleportation is genuinely 4-qubit entangled and is not equivalent to a product of maximally entangled Bell pairs under local unitary operations. We discuss a scenario in which both senders must participate for the qubits to be successfully teleported. Such an all-or-nothing scheme cannot be implemented with standard two-qubit entangled Bell pairs and can be useful for different communication and computing tasks.
Entanglement distillation using the exchange interaction
NASA Astrophysics Data System (ADS)
Auer, Adrian; Schwonnek, René; Schoder, Christian; Dammeier, Lars; Werner, Reinhard F.; Burkard, Guido
2016-03-01
A key ingredient of quantum repeaters is entanglement distillation, i.e., the generation of high-fidelity entangled qubits from a larger set of pairs with lower fidelity. Here, we present entanglement distillation protocols based on qubit couplings that originate from exchange interaction. First, we make use of asymmetric bilateral two-qubit operations generated from anisotropic exchange interaction and show how to distill entanglement using two input pairs. We furthermore consider the case of three input pairs coupled through isotropic exchange. Here, we characterize a set of protocols which are optimizing the trade-off between the fidelity increase and the probability of a successful run.
Radiative processes of uniformly accelerated entangled atoms
NASA Astrophysics Data System (ADS)
Menezes, G.; Svaiter, N. F.
2016-05-01
We study radiative processes of uniformly accelerated entangled atoms, interacting with an electromagnetic field prepared in the Minkowski vacuum state. We discuss the structure of the rate of variation of the atomic energy for two atoms traveling in different hyperbolic world lines. We identify the contributions of vacuum fluctuations and radiation reaction to the generation of entanglement as well as to the decay of entangled states. Our results resemble the situation in which two inertial atoms are coupled individually to two spatially separated cavities at different temperatures. In addition, for equal accelerations we obtain that one of the maximally entangled antisymmetric Bell state is a decoherence-free state.
Entanglement and the geometry of two qubits
Avron, J.E. Kenneth, O.
2009-02-15
Two qubits is the simplest system where the notions of separable and entangled states and entanglement witnesses first appear. We give a three-dimensional geometric description of these notions. This description, however, carries no quantitative information on the measure of entanglement. A four-dimensional description captures also the entanglement measure. We give a neat formula for the Bell states which leads to a slick proof of the fundamental teleportation identity. We describe optimal distillation of two qubits geometrically and present a simple geometric proof of the Peres-Horodecki separability criterion.
Partially entangled states bridge in quantum teleportation
NASA Astrophysics Data System (ADS)
Cai, Xiao-Fei; Yu, Xu-Tao; Shi, Li-Hui; Zhang, Zai-Chen
2014-10-01
The traditional method for information transfer in a quantum communication system using partially entangled state resource is quantum distillation or direct teleportation. In order to reduce the waiting time cost in hop-by-hop transmission and execute independently in each node, we propose a quantum bridging method with partially entangled states to teleport quantum states from source node to destination node. We also prove that the designed specific quantum bridging circuit is feasible for partially entangled states teleportation across multiple intermediate nodes. Compared to two traditional ways, our partially entanglement quantum bridging method uses simpler logic gates, has better security, and can be used in less quantum resource situation.
Bound entanglement in quantum phase transitions
Baghbanzadeh, S.; Alipour, S.; Rezakhani, A. T.
2010-04-15
We investigate quantum phase transitions in which a change in the type of entanglement from bound entanglement to either free entanglement or separability may occur. In particular, we present a theoretical method to construct a class of quantum spin-chain Hamiltonians that exhibit this type of quantum criticality. Given parameter-dependent two-site reduced density matrices (with prescribed entanglement properties), we lay out a reverse construction for a compatible pure state for the whole system, as well as a class of Hamiltonians for which this pure state is a ground state. This construction is illustrated through several examples.
Entanglement Equilibrium and the Einstein Equation
NASA Astrophysics Data System (ADS)
Jacobson, Ted
2016-05-01
A link between the semiclassical Einstein equation and a maximal vacuum entanglement hypothesis is established. The hypothesis asserts that entanglement entropy in small geodesic balls is maximized at fixed volume in a locally maximally symmetric vacuum state of geometry and quantum fields. A qualitative argument suggests that the Einstein equation implies the validity of the hypothesis. A more precise argument shows that, for first-order variations of the local vacuum state of conformal quantum fields, the vacuum entanglement is stationary if and only if the Einstein equation holds. For nonconformal fields, the same conclusion follows modulo a conjecture about the variation of entanglement entropy.
Quantum states prepared by realistic entanglement swapping
Scherer, Artur; Howard, Regina B.; Sanders, Barry C.; Tittel, Wolfgang
2009-12-15
Entanglement swapping between photon pairs is a fundamental building block in schemes using quantum relays or quantum repeaters to overcome the range limits of long-distance quantum key distribution. We develop a closed-form solution for the actual quantum states prepared by realistic entanglement swapping, which takes into account experimental deficiencies due to inefficient detectors, detector dark counts, and multiphoton-pair contributions of parametric down-conversion sources. We investigate how the entanglement present in the final state of the remaining modes is affected by the real-world imperfections. To test the predictions of our theory, comparison with previously published experimental entanglement swapping is provided.
Entanglement Equilibrium and the Einstein Equation.
Jacobson, Ted
2016-05-20
A link between the semiclassical Einstein equation and a maximal vacuum entanglement hypothesis is established. The hypothesis asserts that entanglement entropy in small geodesic balls is maximized at fixed volume in a locally maximally symmetric vacuum state of geometry and quantum fields. A qualitative argument suggests that the Einstein equation implies the validity of the hypothesis. A more precise argument shows that, for first-order variations of the local vacuum state of conformal quantum fields, the vacuum entanglement is stationary if and only if the Einstein equation holds. For nonconformal fields, the same conclusion follows modulo a conjecture about the variation of entanglement entropy. PMID:27258860
Quantum communication using a multiqubit entangled channel
Ghose, Shohini; Hamel, Angele
2015-12-31
We describe a protocol in which two senders each teleport a qubit to a receiver using a multiqubit entangled state. The multiqubit channel used for teleportation is genuinely 4-qubit entangled and is not equivalent to a product of maximally entangled Bell pairs under local unitary operations. We discuss a scenario in which both senders must participate for the qubits to be successfully teleported. Such an all-or-nothing scheme cannot be implemented with standard two-qubit entangled Bell pairs and can be useful for different communication and computing tasks.
Thermodynamical detection of entanglement by Maxwell's demons
Maruyama, Koji; Vedral, Vlatko; Morikoshi, Fumiaki
2005-01-01
Quantum correlation, or entanglement, is now believed to be an indispensable physical resource for certain tasks in quantum information processing, for which classically correlated states cannot be useful. Besides information processing, what kind of physical processes can exploit entanglement? In this paper, we show that there is indeed a more basic relationship between entanglement and its usefulness in thermodynamics. We derive an inequality showing that we can extract more work out of a heat bath via entangled systems than via classically correlated ones. We also analyze the work balance of the process as a heat engine, in connection with the second law of thermodynamics.
Stabilization of entanglement between remote transmon qubits
NASA Astrophysics Data System (ADS)
Motzoi, Felix; Sarovar, Mohan; Whaley, Birgitta
2014-03-01
Entanglement between remote qubits can be a valuable resource for scalable quantum computation and other quantum technologies. Here, we discuss non-unitary methods for generating and stabilizing such entanglement between remote superconducting qubits. While joint measurement of the qubits using a sequential probe allows for post-selected entanglement, adding feedback during the measurement conditioned on the outcome allows for deterministic entanglement. This can be supplemented or substituted for with reservoir engineering techniques, which allow for non-zero concurrence in the steady state even in the presence of dephasing. Both the dispersive and near-resonant regimes of circuit QED are analysed.
Measuring Quantum Coherence with Entanglement
NASA Astrophysics Data System (ADS)
Streltsov, Alexander; Singh, Uttam; Dhar, Himadri Shekhar; Bera, Manabendra Nath; Adesso, Gerardo
2015-07-01
Quantum coherence is an essential ingredient in quantum information processing and plays a central role in emergent fields such as nanoscale thermodynamics and quantum biology. However, our understanding and quantitative characterization of coherence as an operational resource are still very limited. Here we show that any degree of coherence with respect to some reference basis can be converted to entanglement via incoherent operations. This finding allows us to define a novel general class of measures of coherence for a quantum system of arbitrary dimension, in terms of the maximum bipartite entanglement that can be generated via incoherent operations applied to the system and an incoherent ancilla. The resulting measures are proven to be valid coherence monotones satisfying all the requirements dictated by the resource theory of quantum coherence. We demonstrate the usefulness of our approach by proving that the fidelity-based geometric measure of coherence is a full convex coherence monotone, and deriving a closed formula for it on arbitrary single-qubit states. Our work provides a clear quantitative and operational connection between coherence and entanglement, two landmark manifestations of quantum theory and both key enablers for quantum technologies.
Entanglement as a Semantic Resource
NASA Astrophysics Data System (ADS)
Dalla Chiara, Maria Luisa; Giuntini, Roberto; Ledda, Antonio; Leporini, Roberto; Sergioli, Giuseppe
2010-10-01
The characteristic holistic features of the quantum theoretic formalism and the intriguing notion of entanglement can be applied to a field that is far from microphysics: logical semantics. Quantum computational logics are new forms of quantum logic that have been suggested by the theory of quantum logical gates in quantum computation. In the standard semantics of these logics, sentences denote quantum information quantities: systems of qubits ( quregisters) or, more generally, mixtures of quregisters ( qumixes), while logical connectives are interpreted as special quantum logical gates (which have a characteristic reversible and dynamic behavior). In this framework, states of knowledge may be entangled, in such a way that our information about the whole determines our information about the parts; and the procedure cannot be, generally, inverted. In spite of its appealing properties, the standard version of the quantum computational semantics is strongly “Hilbert-space dependent”. This certainly represents a shortcoming for all applications, where real and complex numbers do not generally play any significant role (as happens, for instance, in the case of natural and of artistic languages). We propose an abstract version of quantum computational semantics, where abstract qumixes, quregisters and registers are identified with some special objects (not necessarily living in a Hilbert space), while gates are reversible functions that transform qumixes into qumixes. In this framework, one can give an abstract definition of the notions of superposition and of entangled pieces of information, quite independently of any numerical values. We investigate three different forms of abstract holistic quantum computational logic.
Entanglement temperature for black branes with hyperscaling violation
NASA Astrophysics Data System (ADS)
Xu, Xiao-Bao; Li, Gu-Qiang; Mo, Jie-Xiong
2016-04-01
Entanglement temperature is an interesting quantity which relates the increased amount of entanglement entropy to that of energy for a weakly excited state in the first-law of entanglement entropy, it is proportional to the inverse of the size of entanglement subsystem and only depends on the shape of the entanglement region. We find the explicit formula of entanglement temperature for the general hyperscaling violation backgrounds with a strip-subsystem. We then investigate the entanglement temperature for a round ball-subsystem, we check that the entanglement temperature has a universal form when the hyperscaling violation exponent is near zero.
Granick, Steve; Sukhishvili, Svetlana A.
2004-05-25
A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.
Granick, Steve; Sukhishvili, Svetlana A.
2008-12-30
A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.
Monodisperse Latex Reactor (MLR): A materials processing space shuttle mid-deck payload
NASA Technical Reports Server (NTRS)
Kornfeld, D. M.
1985-01-01
The monodisperse latex reactor experiment has flown five times on the space shuttle, with three more flights currently planned. The objectives of this project is to manufacture, in the microgravity environment of space, large particle-size monodisperse polystyrene latexes in particle sizes larger and more uniform than can be manufactured on Earth. Historically it has been extremely difficult, if not impossible to manufacture in quantity very high quality monodisperse latexes on Earth in particle sizes much above several micrometers in diameter due to buoyancy and sedimentation problems during the polymerization reaction. However the MLR project has succeeded in manufacturing in microgravity monodisperse latex particles as large as 30 micrometers in diameter with a standard deviation of 1.4 percent. It is expected that 100 micrometer particles will have been produced by the completion of the the three remaining flights. These tiny, highly uniform latex microspheres have become the first material to be commercially marketed that was manufactured in space.
NASA Astrophysics Data System (ADS)
Yu, Yong; Yao, Qiaofeng; Luo, Zhentao; Yuan, Xun; Lee, Jim Yang; Xie, Jianping
2013-05-01
In very recent years, thiolate-protected metal nanoclusters (or thiolated MNCs) with core sizes smaller than 2 nm have emerged as a new direction in nanoparticle research due to their discrete and size dependent electronic structures and molecular-like properties, such as HOMO-LUMO transitions in optical absorptions, quantized charging, and strong luminescence. Synthesis of monodisperse thiolated MNCs in sufficiently large quantities (up to several hundred micrograms) is necessary for establishing reliable size-property relationships and exploring potential applications. This Feature Article reviews recent progress in the development of synthetic strategies for the production of monodisperse thiolated MNCs. The preparation of monodisperse thiolated MNCs is viewed as an engineerable process where both the precursors (input) and their conversion chemistry (processing) may be rationally designed to achieve the desired outcome - monodisperse thiolated MNCs (output). Several strategies for tailoring the precursor and the conversion process are analyzed to arrive at a unifying understanding of the processes involved.
Synthesis and characterizations of nanoribbons and monodispersed nanocrystals of CuBr
Yang Ming; Zhu Junjie . E-mail: jjzhu@nju.edu.cn
2005-02-15
Nanoribbons and monodispersed nanocrystals of CuBr have been prepared by a simple reaction between CuO suspension, NH{sub 2}OH.HCl and KBr in the presence of deionized gelatin at 10 deg. C. The products were characterized by X-ray powder diffraction, transmission electron microscopy and UV-vis absorption spectroscopy. The sizes of the monodispersed nanocrystals of CuBr were estimated by Debye-Scherrer formula according to XRD spectrum.
Broadcasting of three-qubit entanglement via local copying and entanglement swapping
Adhikari, Satyabrata; Choudhury, B. S.
2006-09-15
In this work, we investigate the problem of a secretly broadcasting of a three-qubit entangled state between two distant partners. The interesting feature of this problem is that starting from two-particle entangle states shared between two distant partners we find that the action of a local cloner on the qubits and the measurement on the machine state vector generates three-qubit entanglement between them. The broadcasting of entanglement is made secret by sending the measurement result secretly using cryptographic scheme based on orthogonal states. Further we show that this idea can be extended to generate three-particle entangled states between three distant partners.
NASA Astrophysics Data System (ADS)
Qin, Su-Juan; Wen, Qiao-Yan; Lin, Song; Guo, Fen-Zhuo; Zhu, Fu-Chen
2009-10-01
The security of a deterministic secure quantum communication using four-particle genuine entangled state and entanglement swapping [X.M. Xiu, H.K. Dong, L. Dong, Y.J. Cao, F. Chi, Opt. Commun. 282 (2009) 2457] is analyzed. It is shown that an eavesdropper can entangle an ancilla without introducing any error in the security test utilizing a speciality of the four-particle genuine entangled state. Moreover, the eavesdropper can distill a quarter of the secret information from her entangled ancilla. Finally, a simple improvement to resist this attack is proposed.
An entangled-light-emitting diode.
Salter, C L; Stevenson, R M; Farrer, I; Nicoll, C A; Ritchie, D A; Shields, A J
2010-06-01
An optical quantum computer, powerful enough to solve problems so far intractable using conventional digital logic, requires a large number of entangled photons. At present, entangled-light sources are optically driven with lasers, which are impractical for quantum computing owing to the bulk and complexity of the optics required for large-scale applications. Parametric down-conversion is the most widely used source of entangled light, and has been used to implement non-destructive quantum logic gates. However, these sources are Poissonian and probabilistically emit zero or multiple entangled photon pairs in most cycles, fundamentally limiting the success probability of quantum computational operations. These complications can be overcome by using an electrically driven on-demand source of entangled photon pairs, but so far such a source has not been produced. Here we report the realization of an electrically driven source of entangled photon pairs, consisting of a quantum dot embedded in a semiconductor light-emitting diode (LED) structure. We show that the device emits entangled photon pairs under d.c. and a.c. injection, the latter achieving an entanglement fidelity of up to 0.82. Entangled light with such high fidelity is sufficient for application in quantum relays, in core components of quantum computing such as teleportation, and in entanglement swapping. The a.c. operation of the entangled-light-emitting diode (ELED) indicates its potential function as an on-demand source without the need for a complicated laser driving system; consequently, the ELED is at present the best source on which to base future scalable quantum information applications. PMID:20520709
Microstructure analysis of monodisperse ferrofluid monolayers: theory and simulation.
Kantorovich, Sofia; Cerdà, Juan J; Holm, Christian
2008-04-14
We try to elucidate the microstructure formation in a monodisperse ferrofluid monolayer. The system under study consists of soft sphere magnetic dipolar particles confined to a thin fluid layer. The positions of the particles are constrained to a 2D geometry, whereas the particle magnetic dipole moments are not fixed to the body systems, and are free to rotate in 3 dimensions, hence forming in what we call a quasi-2D geometry. Using a combination of analytical density functional theory and molecular dynamics (MD) simulations, we find that for the studied range of parameters the majority of aggregates might be divided into two types: chains and rings. Their sizes and area fractions are strongly influenced by the geometrical constraints. We show that for quasi-2D systems the excluded area effects play one of the most important parts in the microstructure formation. The simulation technique and the theoretical model put forward in the present paper agree qualitatively with the results of recent in situ observations of the microstructures observed in ferrofluid monolayers [M. Klokkenberg, R. P. A. Dullens, W. K. Regel, B. H. Erné, A. P. Philipse, Phys. Rev. Lett., 2006, 96, 037203]. PMID:18368181
Coupled Leidenfrost states as a monodisperse granular clock.
Liu, Rui; Yang, Mingcheng; Chen, Ke; Hou, Meiying; To, Kiwing
2016-08-01
Using an event-driven molecular dynamics simulation, we show that simple monodisperse granular beads confined in coupled columns may oscillate as a different type of granular clock. To trigger this oscillation, the system needs to be driven against gravity into a density-inverted state, with a high-density clustering phase supported from below by a gaslike low-density phase (Leidenfrost effect) in each column. Our analysis reveals that the density-inverted structure and the relaxation dynamics between the phases can amplify any small asymmetry between the columns, and lead to a giant oscillation. The oscillation occurs only for an intermediate range of the coupling strength, and the corresponding phase diagram can be universally described with a characteristic height of the density-inverted structure. A minimal two-phase model is proposed and a linear stability analysis shows that the triggering mechanism of the oscillation can be explained as a switchable two-parameter Andronov-Hopf bifurcation. Numerical solutions of the model also reproduce similar oscillatory dynamics to the simulation results. PMID:27627232
Monodisperse Platinum and Rhodium Nanoparticles as Model Heterogeneous Catalysts
Grass, Michael Edward
2008-09-01
Model heterogeneous catalysts have been synthesized and studied to better understand how the surface structure of noble metal nanoparticles affects catalytic performance. In this project, monodisperse rhodium and platinum nanoparticles of controlled size and shape have been synthesized by solution phase polyol reduction, stabilized by polyvinylpyrrolidone (PVP). Model catalysts have been developed using these nanoparticles by two methods: synthesis of mesoporous silica (SBA-15) in the presence of nanoparticles (nanoparticle encapsulation, NE) to form a composite of metal nanoparticles supported on SBA-15 and by deposition of the particles onto a silicon wafer using Langmuir-Blodgett (LB) monolayer deposition. The particle shapes were analyzed by transmission electron microscopy (TEM) and high resolution TEM (HRTEM) and the sizes were determined by TEM, X-ray diffraction (XRD), and in the case of NE samples, room temperature H_{2} and CO adsorption isotherms. Catalytic studies were carried out in homebuilt gas-phase reactors. For the nanoparticles supported on SBA-15, the catalysts are in powder form and were studied using the homebuilt systems as plug-flow reactors. In the case of nanoparticles deposited on silicon wafers, the same systems were operated as batch reactors. This dissertation has focused on the synthesis, characterization, and reaction studies of model noble metal heterogeneous catalysts. Careful control of particle size and shape has been accomplished though solution phase synthesis of Pt and Rh nanoparticles in order to elucidate further structure-reactivity relationships in noble metal catalysis.
Monodisperse magnetite nanofluids: Synthesis, aggregation, and thermal conductivity
NASA Astrophysics Data System (ADS)
Jiang, Wei; Wang, Liqiu
2010-12-01
Magnetic nanofluids possess some unique properties that can significantly affect their thermal conductivity. We synthesize monodispersed magnetite (Fe3O4) nanofluids in toluene with the particle size from 4 to 12 nm and obtain aqueous nanofluids by a simple "one-step" phase transfer. Even without the effect of external field, the magnetic-interaction-induced self-assembled aggregation can still be significant in magnetite nanofluids. Investigation of the microstructures of self-assembled aggregation is carried out by the dynamic light scattering, which unveils the variation of aggregated configurations with particle concentration and time. Based on the calculation from the existing models, the aggregates decrease the thermal conductivity of both themselves and the entire system, mainly due to the less solid contents and weaker mobility compared with the single particles as well as the increase in interfacial thermal resistance. As the manifestation of the aggregation-structure variation, the measured thermal conductivity is of a wavelike shape as a function of particle concentration. The particle coating layers are also of importance in cluster formation so that nanofluid thermal conductivity can be manipulated for some nanofluids by changing the stabilizer used and thus controlling the particle aggregated structures. Due to the effects of temperature, viscosity and coating layers, the thermal conductivity for aqueous system varies in a different way as that for the toluene system.
Formation of monodisperse mesoporous silica microparticles via spray-drying.
Waldron, Kathryn; Wu, Winston Duo; Wu, Zhangxiong; Liu, Wenjie; Selomulya, Cordelia; Zhao, Dongyuan; Chen, Xiao Dong
2014-03-15
In this work, a protocol to synthesize monodisperse mesoporous silica microparticles via a unique microfluidic jet spray-drying route is reported for the first time. The microparticles demonstrated highly ordered hexagonal mesostructures with surface areas ranging from ~900 up to 1500 m(2)/g and pore volumes from ~0.6 to 0.8 cm(3)/g. The particle size could be easily controlled from ~50 to 100 μm from the same diameter nozzle via changing the initial solute content, or changing the drying temperature. The ratio of the surfactant (CTAB) and silica (TEOS), and the amount of water in the precursor were found to affect the degree of ordering of mesopores by promoting either the self-assembly of the surfactant-silica micelles or the condensation of the silica as two competing processes in evaporation induced self-assembly. The drying rate and the curvature of particles also affected the self-assembly of the mesostructure. The particle mesostructure is not influenced by the inlet drying temperature in the range of 92-160 °C, with even a relatively low temperature of 92 °C producing highly ordered mesoporous microparticles. The spray-drying derived mesoporous silica microparticles, while of larger sizes and more rapidly synthesized, showed a comparable performance with the conventional mesoporous silica MCM-41 in controlled release of a dye, Rhodamine B, indicating that these spray dried microparticles could be used for the immobilisation and controlled release of small molecules. PMID:24461839
Equilibrium shapes of pendant monodisperse microbubbles suspension droplets
NASA Astrophysics Data System (ADS)
Fernandez, Juan Manuel; Campo-Cortes, Francisco
2014-11-01
The formation and stability of pendant droplets are a great value for both fundamental and engineering applications. In their pioneering work, Bashforth and Adams obtained the profile of a pendant pure liquid droplet by integrating the Young-Laplace equation. Since then, the stable and unstable conditions that govern the equilibrium of a pendant liquid droplet are well characterized. Here, we study the formation of droplets containing inside a suspension of monodisperse microbubbles. In this study, we present the different morphologies of these pendant multiphase droplets from the tip of a capillary tube of radius R for different average densities of the suspension droplet, defined as ρa =ρgαg +ρlαl where αg and αl are respectively the gas and liquid volume fractions. Experimental droplet profiles are compared with the theoretical predictions obtained by integrating the Young-Laplace equation. For low gas volume gas fraction (high liquid volume fraction), the suspension droplet shape (and consequently its maximum critical volume for stable equilibrium) is defined by the average Bond number, ρa gR2 / σ . However, for dense suspensions, αg > 0 . 7 , the presence of microbubbles greatly changes the mode of drop formation.
Monodispersed Fe-Pt nanoparticles for biomedical applications
NASA Astrophysics Data System (ADS)
Kim, Do Kyung; Kan, Ding; Veres, Teodor; Normadin, Francois; Liao, James K.; Kim, Hyung Hwan; Lee, Se-Hee; Zahn, Markus; Muhammed, Mamoun
2005-05-01
Monodispersed Fe-Pt nanoparticles are promising candidates for biomedical applications with an average particle diameter of 6.9nmFe48Pt52, 3.3nmFe52Pt48, and 4.2nmFe70Pt30. They are prepared by simultaneous chemical reduction of Pt(acac)2 and thermal decomposition of Fe(CO)5 in the presence of surfactant as an anti-oxidation reagent and amine as a stabilizer. The blocking temperatures, Tb, of 9 K for Fe70Pt30, 11 K for Fe52Pt48 and 14.4 K for Fe48Pt52 and the mean diameter of the spherical magnetic particles were estimated from the calculated volume to be 3.6, 3.1, and 3.8 nm. The cytotoxicity of unmodified Fe-Pt nanoparticles was performed in brain endothelial cells. Fe48Pt52 nanoparticles were not found to have any significant toxicity on bEnd3 cells during a 24 h period.
Ultrasonically Aided Electrospray source for monodisperse, charged nanoparticles
NASA Astrophysics Data System (ADS)
Song, Weidong
This dissertation presents a new method of producing nearly monodisperse electrospray using charged capillary standing waves. This method, based on the Ultrasonically Aided Electrospraying (UAE) technology concept invented by the author, includes the steps of dispensing a liquid on the top surface of a diaphragm so as to form a liquid film on the surface of the diaphragm, setting the diaphragm into vibration using piezoelectric transducers so as to induce capillary standing waves in the liquid film, applying electric charge to the capillary standing waves so that electrospray is extracted from the crests of the capillary standing waves. Theoretical analysis on the formation of charged particles from charged capillary standing waves at critically stable condition is performed. An experimental UAE system is designed, built, and tested and the performance of this new technology concept is assessed. Experimental results validate the capabilities of the UAE concept. The method has several applications including electric space propulsion, nano particulate technologies, nanoparticle spray coating and painting techniques, semiconductor fabrication and biomedical processes. Two example applications in electric space propulsion and nanoparticle spray coating are introduced.
Jamming of Monodisperse Cylindrical Grains in Featureless Vertical Channels
NASA Astrophysics Data System (ADS)
Friedl, Nicholas; Baxter, G. William
2014-03-01
We study jamming of low aspect-ratio cylindrical Delrin grains falling through a featureless vertical channel under the influence of gravity. These grains have an aspect-ratio less than two (H/D < 2) and resemble aspirin tablets, 35mm film canisters, poker chips, or coins. Monodisperse grains are allowed to fall under the influence of gravity through a uniform channel of square cross-section where the channel width is greater than the grain size and constant along the length of the channel. No combination of grain heights and diameters is equal to the channel width. Collections of grains sometimes form jams, stable structures in which the grains are supported by the channel walls and not by grains or walls beneath them. The probability of a jam occurring and the jam's strength are influenced by the grain dimensions and channel width. We will present experimental measurements of the jamming probability and jam strength and discuss the relationship of these results to other experiments and theories. Supported by an Undergraduate Research Grant from Penn State Erie, The Behrend College.
NanoCipro Encapsulation in Monodisperse Large Porous PLGA Microparticles
Arnold, Matthew M.; Gorman, Eric M.; Schieber, Loren J.; Munson, Eric J.; Berland, Cory
2007-01-01
Pulmonary drug delivery of controlled release formulations may provide an effective adjunct approach to orally delivered antibiotics for clearing persistent lung infections. Dry powder formulations for this indication should possess characteristics including; effective deposition to infected lung compartments, persistence at the infection site, and steady release of antibiotic. Large porous particles (∼10-15 μm) have demonstrated effective lung deposition and enhanced lung residence as a result of their large diameter and reduced clearance by macrophages in comparison to small microparticles (∼1-5 μm). In this report, Precision Particle Fabrication technology was used to create monodisperse large porous particles of poly(D,L-lactic-co-glycolic acid) (PLGA) utilizing oils as extractable porogens. After extraction, the resulting large porous PLGA particles exhibited a low density and a web-like or hollow interior depending on porogen concentration and type, respectively. Ciprofloxacin nanoparticles (nanoCipro) created by homogenization in dichloromethane, possessed a polymorph with a decreased melting temperature. Encapsulating nanoCipro in large porous PLGA particles resulted in a steady release of ciprofloxacin that was extended for larger particle diameters and for the solid particle morphology in comparison to large porous particles. The encapsulation efficiency of nanoCipro was quite low and factors impacting the entrapment of nanoparticles during particle formation were elucidated. A dry powder formulation with the potential to control particle deposition and sustain release to the lung was developed and insight to improve nanoparticle encapsulation is discussed. PMID:17604870
Inkjet aerosol generator as monodisperse particle number standard
NASA Astrophysics Data System (ADS)
Iida, Kenjiro; Sakurai, Hiromu; Ehara, Kensei
2013-05-01
Inkjet technology can be applied to generate highly monodisperse aerosol particles in micrometer range at a precisely controlled rate. AIST has been developing an inkjet aerosol generator (AIST-IAG), and the device will soon become the secondary measurement standard for aerosol particle number concentration in 0.35 μm to 10 μm range. The AIST-IAG can generate both solid and liquid particles consisting of water-soluble ionic compounds. We first report the characteristics of the particle sizes of the generated particles. The full width half maximum of the particle size distribution is about 2 percent, and the particle diameter of the IAG particles was calibrated as a function of the particle mass within 0.6-10 μm range using polystyrene latex sphere as reference material. Then we report the capability of the AIST-IAG as the particle number standard. The particle generation efficiency ηIAG was defined as the number of aerosol particles exiting from the AIST-IAG divided by the rate of the droplet generation, and the values of ηIAG within 0.35-10 μm is essentially 100%, and the 95% confidence interval of the values is less than 1%. The result strongly supports that the AISTIAG can be used to calibrate the counting efficiency of the optical particle counters in submicrometer to micrometer range.
Hydrophilic Monodisperse Magnetic Nanoparticles Protected by an Amphiphilic Alternating Copolymer
Shtykova, Eleonora V.; Huang, Xinlei; Gao, Xinfeng; Dyke, Jason C.; Schmucker, Abrin L.; Dragnea, Bogdan; Remmes, Nicholas; Baxter, David V.; Stein, Barry; Konarev, Peter V.; Svergun, Dmitri I.; Bronstein, Lyudmila M.
2009-01-01
Iron oxide nanoparticles (NPs) with diameters of 16.1, 20.5, and 20.8 nm prepared from iron oleate precursors were coated with poly(maleic acid-alt-1-octadecene) (PMAcOD). The coating procedure exploited hydrophobic interactions of octadecene and oleic acid tails while hydrolysis of maleic anhydride moieties allowed the NP hydrophilicity. The PMAcOD nanostructure in water and the PMAcOD-coated NPs were studied using transmission electron microscopy, ζ-potential measurements, small-angle X-ray scattering, and fluorescence measurements. The combination of several techniques suggests that independently of the iron oxide core and oleic acid shell structures, PMAcOD encapsulates NPs, forming stable hydrophilic shells which withstand absorption of hydrophobic molecules, such as pyrene, without shell disintegration. Moreover, the PMAcOD molecules are predominantly attached to a single NP instead of self-assembling into the PMAcOD disklike nanostructures or attachment to several NPs. This leads to highly monodisperse aqueous samples with only a small fraction of NPs forming large aggregates due to cross-linking by the copolymer macromolecules. PMID:19194520
Anomalous Temperature Dependence of Magnetic Moment in Monodisperse Antiferromagnetic Nanoparticles
NASA Astrophysics Data System (ADS)
Gillaspie, Dane; Gu, B.; Wang, W.; Shen, J.
2005-03-01
1 Condensed Matter Sciences Division, Oak Ridge National Laboratory*, TN 37831 2 Department of Physics and Astronomy, The University of Tennessee, TN 37996 3 Environmental Sciences Division, Oak Ridge National Laboratory*, TN 37831 Recent experiments [1] and theory [2] from AFM nanoparticles showed that they exhibit sizable net magnetization, which increases with increasing temperature. In order to further understand such peculiar temperature dependence, we have measured the magnetic properties of monodisperse hematite (α-Fe2O3) nanoparticles, grown using a microemulsion precipitation technique, which minimizes the impact of the particle moment distribution on the measured properties of the samples. Our measured results indicate that the net magnetization of these nanoparticles, when small, indeed increases linearly with increasing temperature. This is in sharp contrast to the bulk-like behavior of α-Fe2O3, which was observed in particles with size larger than 120 nm. [1] M. Seehra et al, Phys. Rev. B 61, 3513 (2000) [2] S. Mørup, C. Frandsen, Phys. Rev. Lett. 92, 217201 (2004) *Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725
Spark Ignition of Monodisperse Fuel Sprays. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Danis, Allen M.; Cernansky, Nicholas P.; Namer, Izak
1987-01-01
A study of spark ignition energy requirements was conducted with a monodisperse spray system allowing independent control of droplet size, equivalent ratio, and fuel type. Minimum ignition energies were measured for n-heptane and methanol sprays characterized at the spark gap in terms of droplet diameter, equivalence ratio (number density) and extent of prevaporization. In addition to sprays, minimum ignition energies were measured for completely prevaporized mixtures of the same fuels over a range of equivalence ratios to provide data at the lower limit of droplet size. Results showed that spray ignition was enhanced with decreasing droplet size and increasing equivalence ratio over the ranges of the parameters studied. By comparing spray and prevaporized ignition results, the existence of an optimum droplet size for ignition was indicated for both fuels. Fuel volatility was seen to be a critical factor in spray ignition. The spray ignition results were analyzed using two different empirical ignition models for quiescent mixtures. Both models accurately predicted the experimental ignition energies for the majority of the spray conditions. Spray ignition was observed to be probabilistic in nature, and ignition was quantified in terms of an ignition frequency for a given spark energy. A model was developed to predict ignition frequencies based on the variation in spark energy and equivalence ratio in the spark gap. The resulting ignition frequency simulations were nearly identical to the experimentally observed values.
Monodisperse droplet generation for microscale mass transfer studies
NASA Astrophysics Data System (ADS)
Roberts, Christine; Rao, Rekha; Grillet, Anne; Jove-Colon, Carlos; Brooks, Carlton; Nemer, Martin
2011-11-01
Understanding interfacial mass transport on a droplet scale is essential for modeling liquid-liquid extraction processes. A thin flow-focusing microfluidic channel is evaluated for generating monodisperse liquid droplets for microscale mass transport studies. Surface treatment of the microfluidic device allows creation of both oil in water and water in oil emulsions, facilitating a large parameter study of viscosity and flow rate ratios. The unusually thin channel height promotes a flow regime where no droplets form. Through confocal microscopy, this regime is shown to be highly influenced by the contact angle of the liquids with the channel. Drop sizes are found to scale with a modified capillary number. Liquid streamlines within the droplets are inferred by high speed imagery of microparticles dispersed in the droplet phase. Finally, species mass transfer to the droplet fluid is quantitatively measured using high speed imaging. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85.
NASA Astrophysics Data System (ADS)
Tang-Kun, Liu; Kang-Long, Zhang; Yu, Tao; Chuan-Jia, Shan; Ji-Bing, Liu
2016-07-01
The temporal evolution of the degree of entanglement between two atoms in a system of the binomial optical field interacting with two arbitrary entangled atoms is investigated. The influence of the strength of the dipole–dipole interaction between two atoms, probabilities of the Bernoulli trial, and particle number of the binomial optical field on the temporal evolution of the atomic entanglement are discussed. The result shows that the two atoms are always in the entanglement state. Moreover, if and only if the two atoms are initially in the maximally entangled state, the entanglement evolution is not affected by the parameters, and the degree of entanglement is always kept as 1. Project supported by the National Basic Research Program of China (Grant No. 2012CB922103) and the National Natural Science Foundation of China (Grant Nos. 11274104 and 11404108).
Doubly degenerate entanglement spectrum and entanglement plateau in the S=1 bond-alternating chain
NASA Astrophysics Data System (ADS)
Deng, Xiao-Yan; Dou, Jun-Ya; Liu, Guang-Hua
2015-12-01
Quantum entanglement, entanglement spectrum, magnetization, and ground-state energy of the S=1 bond-alternating antiferromagnetic Heisenberg chain under magnetic field are investigated by the infinite time-evolving block decimation (iTEBD) method. Bipartite entanglement and entanglement spectrum are found to be capable of describing all the quantum phase transitions (QPTs). A rich ground-state phase diagram, which comprises of five different phases, i.e., a singlet-dimer phase, a Haldane phase, a Tomonaga-Luttinger liquid (TLL) phase, a 1/2 plateau phase, and a saturated ferromagnetic phase, is determined. It is interesting that, with the appearance of magnetization plateaus, entanglement plateaus are observed simultaneously. In the Haldane phase, doubly degenerate entanglement spectra on both even and odd bonds are observed. However, in the 1/2 plateau phase, only the entanglement spectra on the even bonds are found to be doubly degenerated.
One-step deterministic polarization-entanglement purification using spatial entanglement
Sheng Yubo; Deng Fuguo
2010-10-15
We present a one-step deterministic entanglement purification protocol with linear optics and postselection. Compared with the Simon-Pan protocol [C. Simon and J. W. Pan, Phys. Rev. Lett. 89, 257901 (2002)], this one-step protocol has some advantages. First, it can obtain a maximally entangled pair from each photon pair with only one step, instead of improving the fidelity of less-entangled photon pairs by performing the entanglement purification process repeatedly in other protocols. Second, it works in a deterministic way, not a probabilistic one, which greatly reduces the number of entanglement resources needed. Third, it does not require the polarization state be entangled; only spatial entanglement is needed. Moreover, it is feasible with current techniques [J. W. Pan, S. Gasparonl, R. Ursin, G. Weihs, and A. Zellinger, Nature (London) 423, 417 (2003)]. All these advantages make this one-step protocol more convenient than others in quantum-communication applications.
Entanglement and entangling power of the dynamics in light-harvesting complexes
Caruso, Filippo; Plenio, Martin B.; Chin, Alex W.; Huelga, Susana F.; Datta, Animesh
2010-06-15
We study the evolution of quantum entanglement during exciton energy transfer (EET) in a network model of the Fenna-Matthews-Olson (FMO) complex, a biological pigment-protein complex involved in the early steps of photosynthesis in sulfur bacteria. The influence of Markovian as well as spatially and temporally correlated (non-Markovian) noise on the generation of entanglement across distinct chromophores (site entanglement) and different excitonic eigenstates (mode entanglement) is studied for different injection mechanisms, including thermal and coherent laser excitation. Additionally, we study the entangling power of the FMO complex under natural operating conditions. While quantum information processing tends to favor maximal entanglement, near unit EET is achieved as the result of an intricate interplay between coherent and noisy processes where the initial part of the evolution displays intermediate values of both forms of entanglement.
Marine Wildlife Entanglement in North America.
ERIC Educational Resources Information Center
O'Hara, Kathryn; And Others
The public has become increasingly aware that marine wildlife sometimes becomes entangled in fishing gear, such as dolphins in tuna nets. However, little is known about how widespread entanglement is and what its impacts are. If conclusions can be drawn from what few data do exist, the picture is an alarming one. Each year fishing activity causes…
Entangled States, Holography and Quantum Surfaces
Chapline, G F
2003-08-13
Starting with an elementary discussion of quantum holography, we show that entangled quantum states of qubits provide a ''local'' representation of the global geometry and topology of quantum Riemann surfaces. This representation may play an important role in both mathematics and physics. Indeed, the simplest way to represent the fundamental objects in a ''theory of everything'' may be as muti-qubit entangled states.
Teleportation of entanglement over 143 km.
Herbst, Thomas; Scheidl, Thomas; Fink, Matthias; Handsteiner, Johannes; Wittmann, Bernhard; Ursin, Rupert; Zeilinger, Anton
2015-11-17
As a direct consequence of the no-cloning theorem, the deterministic amplification as in classical communication is impossible for unknown quantum states. This calls for more advanced techniques in a future global quantum network, e.g., for cloud quantum computing. A unique solution is the teleportation of an entangled state, i.e., entanglement swapping, representing the central resource to relay entanglement between distant nodes. Together with entanglement purification and a quantum memory it constitutes a so-called quantum repeater. Since the aforementioned building blocks have been individually demonstrated in laboratory setups only, the applicability of the required technology in real-world scenarios remained to be proven. Here we present a free-space entanglement-swapping experiment between the Canary Islands of La Palma and Tenerife, verifying the presence of quantum entanglement between two previously independent photons separated by 143 km. We obtained an expectation value for the entanglement-witness operator, more than 6 SDs beyond the classical limit. By consecutive generation of the two required photon pairs and space-like separation of the relevant measurement events, we also showed the feasibility of the swapping protocol in a long-distance scenario, where the independence of the nodes is highly demanded. Because our results already allow for efficient implementation of entanglement purification, we anticipate our research to lay the ground for a fully fledged quantum repeater over a realistic high-loss and even turbulent quantum channel. PMID:26578764
Entangled Light Emission From a Diode
Stevenson, R. M.; Shields, A. J.; Salter, C. L.; Farrer, I.; Nicoll, C. A.; Ritchie, D. A.
2011-12-23
Electrically-driven entangled photon generation is demonstrated for the first time using a single semiconductor quantum dot embedded in a light emitting diode structure. The entanglement fidelity is shown to be of sufficient quality for applications such as quantum key distribution.