Science.gov

Sample records for enteric viruses coliphages

  1. Surveillance of enteric viruses and coliphages in a tropical urban catchment.

    PubMed

    Rezaeinejad, S; Vergara, G G R V; Woo, C H; Lim, T T; Sobsey, M D; Gin, K Y H

    2014-07-01

    An assessment of the occurrence and concentration of enteric viruses and coliphages was carried out in highly urbanized catchment waters in the tropical city-state of Singapore. Target enteric viruses in this study were noroviruses, adenoviruses, astroviruses and rotaviruses. In total, 65 water samples were collected from canals and the reservoir of the Marina catchment on a monthly basis over a period of a year. Quantitative PCR (qPCR) and single agar layer plaque assay (SAL) were used to enumerate target enteric viruses and coliphages in water samples, respectively. The most prevalent pathogen were noroviruses, detected in 37 samples (57%), particularly norovirus genogroup II (48%), with a mean concentration of 3.7 × 10(2) gene copies per liter. Rotavirus was the second most prevalent virus (40%) with a mean concentration of 2.5 × 10(2) GC/L. The mean concentrations of somatic and male-specific coliphages were 2.2 × 10(2) and 1.1 × 10(2) PFU/100 ml, respectively. The occurrence and concentration of each target virus and the ratio of somatic to male-specific coliphages varied at different sampling sites in the catchment. For sampling sites with higher frequency of occurrence and concentration of viruses, the ratio of somatic to male-specific coliphages was generally much lower than other sampling sites with lower incidences of enteric viruses. Overall, higher statistical correlation was observed between target enteric viruses than between enteric viruses and coliphages. However, male-specific coliphages were positively correlated with norovirus concentrations. A multi-level integrated surveillance system, which comprises the monitoring of bacterial indicators, coliphages and selected enteric viruses, could help to meet recreational and surface water quality criteria in a complex urbanized catchment. PMID:24747143

  2. Evaluation of FRNA coliphages as indicators of human enteric viruses in a tropical urban freshwater catchment.

    PubMed

    Vergara, G G R V; Goh, S G; Rezaeinejad, S; Chang, S Y; Sobsey, M D; Gin, K Y H

    2015-08-01

    This study aimed to evaluate the relationship between FRNA coliphages (FRNA GI to GIV) and human enteric viruses (human adenoviruses, HAdV, astroviruses, AstV, noroviruses, NoV, and rotaviruses, RoV) in a tropical urban freshwater catchment. Positive associations between human-specific coliphages and human viral pathogens substantiate their use as viral indicators and in microbial source tracking. Reverse transcription qPCR was used to measure the concentrations of viruses and FRNA coliphages in concentrated water samples. Environmental water samples were also analyzed for male-specific (F+) and somatic (Som) coliphages using plaque assay. The most abundant enteric virus was NoV (55%) followed by HAdV (33%), RoV (33%), and AstV (23%), while the most abundant FRNA genogroup was GI (85%) followed by GII (48%), GIV (8%) and GIII (7%). Concentrations of human-specific coliphages FRNA GII were positively correlated with NoV, HAdV, RoV, AstV, F+ and Som (τ = 0.5 to 0.3, P < 0.05) while concentrations of animal-specific coliphages FRNA GI were negatively correlated with HAdV and RoV (τ = -0.2, P < 0.05). This study demonstrates statistical relationships between human-specific coliphages and a suite of human enteric viruses in the environment. PMID:25965886

  3. Comparative study of enteric viruses, coliphages and indicator bacteria for evaluating water quality in a tropical high-altitude system

    PubMed Central

    2009-01-01

    Background Bacteria used as indicators for pathogenic microorganisms in water are not considered adequate as enteric virus indicators. Surface water from a tropical high-altitude system located in Mexico City that receives rainwater, treated and non-treated wastewater used for irrigation, and groundwater used for drinking, was studied. Methods The presence of enterovirus, rotavirus, astrovirus, coliphage, coliform bacteria, and enterococci was determined during annual cycles in 2001 and 2002. Enteric viruses in concentrated water samples were detected by reverse transcriptase-polymerase chain reaction (RT-PCR). Coliphages were detected using the double agar layer method. Bacteria analyses of the water samples were carried out by membrane filtration. Results The presence of viruses and bacteria in the water used for irrigation showed no relationship between current bacterial indicator detection and viral presence. Coliphages showed strong association with indicator bacteria and enterovirus, but weak association with other enteric viruses. Enterovirus and rotavirus showed significant seasonal differences in water used for irrigation, although this was not clear for astrovirus. Conclusion Coliphages proved to be adequate faecal pollution indicators for the irrigation water studied. Viral presence in this tropical high-altitude system showed a similar trend to data previously reported for temperate zones. PMID:19860917

  4. Removal of indigenous coliphages and enteric viruses during riverbank filtration from highly polluted river water in Delhi (India).

    PubMed

    Sprenger, C; Lorenzen, G; Grunert, A; Ronghang, M; Dizer, H; Selinka, H-C; Girones, R; Lopez-Pila, J M; Mittal, A K; Szewzyk, R

    2014-06-01

    Emerging countries frequently afflicted by waterborne diseases require safe and cost-efficient production of drinking water, a task that is becoming more challenging as many rivers carry a high degree of pollution. A study was conducted on the banks of the Yamuna River, Delhi, India, to ascertain if riverbank filtration (RBF) can significantly improve the quality of the highly polluted surface water in terms of virus removal (coliphages, enteric viruses). Human adenoviruses and noroviruses, both present in the Yamuna River in the range of 10(5) genomes/100 mL, were undetectable after 50 m infiltration and approximately 119 days of underground passage. Indigenous somatic coliphages, used as surrogates of human pathogenic viruses, underwent approximately 5 log10 removal after only 3.8 m of RBF. The initial removal after 1 m was 3.3 log10, and the removal between 1 and 2.4 m and between 2.4 and 3.8 m was 0.7 log10 each. RBF is therefore an excellent candidate to improve the water situation in emerging countries with respect to virus removal. PMID:24937227

  5. COLIPHAGES AS INDICATORS OF ENTEROVIRUSES

    EPA Science Inventory

    Coliphages were monitored in conjunction with indicator bacteria and enteric viruses in a drinking water plant modified to reduce trihalomethane (THM) production. Coliphages could be detected in the source water by direct innoculation and sufficient coliphages were detected in en...

  6. Application of F⁺RNA Coliphages as Source Tracking Enteric Viruses on Parsley and Leek Using RT-PCR.

    PubMed

    Shahrampour, Dina; Yavarmanesh, Masoud; Najafi, Mohammad Bagher Habibi; Mohebbi, Mohebbat

    2015-12-01

    The objective of this study was to identify sources of fecal contamination in leek and parsley, by using four different F(+)RNA coliphage genogroups (IV, I indicate animal fecal contamination and II, III indicate human fecal contamination). Three different concentrations (10(2), 10(4), 10(6) pfu/ml) of MS2 coliphage were inoculated on the surface of parsley and leek samples for detection of phage recovery efficiency among two methods of elution concentration (PEG-precipitation and Ultracentrifugation) by performing double agar layer (DAL) assay in three replications. Highest recovery of MS2 was observed in PEG method and in 10(6) inoculation concentration. Accordingly, the PEG method was used for washing and isolation of potentially contaminated phages of 30 collected samples (15 samples from the market and 15 samples from the farm). The final solutions of PEG method were tested for the enumeration of plaques by DAL assay. Total RNA was then extracted from recovered phages, and RT-PCR was performed by using four primer sets I, II, III, and IV. Incidence of F(+)RNA coliphages was observed in 12/15 (80 %) and 10/15 (66/6 %) of samples were obtained from farm and market, respectively, using both DAL and RT-PCR test methods. Different genotypes (I, II, and IV) of F(+)RNA coliphages were found in farm samples, while only genotype I was detected in market samples by using the primer sets. Due to the higher frequency of genotype I and IV, the absence of genotype III, and also the low frequency of genotype II, it is concluded that the contamination of vegetable (parsley and leek) in Neyshabour, Iran is most likely originated from animal sources. PMID:26264153

  7. Inactivation of a model coliphage virus in water by iodine

    NASA Technical Reports Server (NTRS)

    Brion, Gail M.; Silverstein, Joann

    1992-01-01

    Until now, NASA's space water reuse research program has not considered the transport of water-borne infectious enteric viruses; however, viral diseases probably are a signifficant concern in long-duration space missions. To simplify monitoring and prediction of pathogen distribution, model indicator strains historically have been used. In this research, the male specific RNA coliphage MS-2 is used as a model of enteric viruses due to their similar size and biochemical composition. Inactivation of some water-borne enteric viruses by iodine has previously been characterized. In this paper, iodine inactivation of the model coliphage MS-2 in buffered water is compared with earlier bench-scale disinfection survival data and with survival in iodinated simulated shower water used in a test water recycling system.

  8. Enteric viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Characteristic clinical signs associated with viral enteritis in young poultry include diarrhea, anorexia, litter eating, ruffled feathers, and poor growth. Intestines may have lesions; intestines are typically dilated and are filled with fluid and gaseous contents. The sequela to clinical disease...

  9. Hepatitis E virus and coliphages in waters proximal to swine concentrated animal feeding operations.

    PubMed

    Gentry-Shields, Jennifer; Myers, Kevin; Pisanic, Nora; Heaney, Christopher; Stewart, Jill

    2015-02-01

    North Carolina is the second leading state in pork production in the United States, with over 10 million swine. Swine manure in NC is typically collected and stored in open-pit lagoons before the liquid waste is sprayed onto agricultural fields for disposal. Components of this waste may be able to impact surface water quality with the potential for human exposure. This study examined viruses of public health concern in creeks adjacent to swine concentrated animal feeding operation (CAFO) spray fields. Surface water samples (n=154) were collected from public access waters in proximity to swine CAFO spray fields for six months and were tested for hepatitis E virus (HEV) and coliphages. HEV was detected in one sample. Somatic coliphages were detected in 98% of samples (geometric mean 24 ± 4.1 PFU per 100 ml), and F+ coliphages were detected in 85% of samples (geometric mean 6.8 ± 5.0 PFU per 100 ml). Only 3% (21) of the F+ coliphage isolates were RNA phage, and all of the F+ RNA coliphages belonged to genogroup I. Although the pervasiveness of swine CAFOs in this area prevented a comparison with samples from un-impacted sites, the near ubiquity of coliphages, as well as the presence of HEV, suggests that current waste management practices may be associated with the dissemination of viruses of public health concern in waters proximal to CAFO spray fields. PMID:25461050

  10. Incidence of Somatic and F+ Coliphage at Three Great Lake Beaches

    EPA Science Inventory

    There is a growing interest for the potential use of coliphage as an alternative indicator to assess fecal pollution in recreational waters. Coliphage are a group of viruses that infect E. coli and are commonly used as models to infer the likely presence of human enteric viral pa...

  11. Distinct behaviors of infectious F-specific RNA coliphage genogroups at a wastewater treatment plant.

    PubMed

    Haramoto, Eiji; Fujino, Saki; Otagiri, Mikie

    2015-07-01

    The present study aimed to determine the differences in the behaviors of four F-specific RNA (F-RNA) coliphage genogroups (GI-GIV) during wastewater treatment. Raw sewage, aeration tank effluent, secondary-treated sewage, and return activated sludge were collected from a wastewater treatment plant in Japan at monthly intervals between March and December 2011 (n=10 each). F-specific coliphages were detected by plaque assay in all tested samples, with a concentration ranging from -0.10 to 3.66 log10 plaque-forming units/ml. Subsequently, eight plaques were isolated from each sample, followed by genogroup-specific reverse-transcription quantitative PCR (qPCR) for F-RNA coliphages and qPCR for F-specific DNA (F-DNA) coliphages. GI F-RNA coliphages were the most abundant in the secondary-treated sewage samples (73% of the plaque isolates), while GII F-RNA coliphages were the most abundant in the other three sample types (41-81%, depending on sample type). Based on the results of the quantification and genotyping, the annual mean concentrations of each F-specific coliphage type were calculated, and their reduction ratios during wastewater treatment were compared with those of indicator bacteria (total coliforms and Escherichia coli) and enteric viruses (human adenoviruses and GI and GII noroviruses). The mean reduction ratio of GI F-RNA coliphages was the lowest (0.93 log10), followed by those of the indicator bacteria and enteric viruses (1.59-2.43 log10), GII-GIV F-RNA coliphages (>2.60-3.21 log10), and F-DNA coliphages (>3.41 log10). These results suggest that GI F-RNA coliphages may be used as an appropriate indicator of virus reduction during wastewater treatment. PMID:25791054

  12. Characterization of Coliphage PR772 and Evaluation of Its Use for Virus Filter Performance Testing

    PubMed Central

    Lute, Scott; Aranha, Hazel; Tremblay, Denise; Liang, Dehai; Ackermann, Hans-W.; Chu, Benjamin; Moineau, Sylvain; Brorson, Kurt

    2004-01-01

    Virus filtration is a key clearance unit operation in the manufacture of recombinant protein, monoclonal antibody, and plasma-derived biopharmaceuticals. Recently, a consensus has developed among filter manufacturers and end users about the desirability of a common nomenclature and a standardized test for classifying and identifying virus-retentive filters. The Parenteral Drug Association virus filter task force has chosen PR772 as the model bacteriophage to standardize nomenclature for large-pore-size virus-retentive filters (filters designed to retain viruses larger than 50 to 60 nm in size). Previously, the coliphage PR772 (Tectiviridae family) has been used in some filtration studies as a surrogate for mammalian viruses of around 50 to 60 nm. In this report, we describe specific properties of PR772 critical to the support of its use for the standardization of virus filters. The complete genomic sequence of virulent phage PR772 was determined. Its genome contains 14,946 bp with an overall G+C content of 48.3 mol%, and 32 open reading frames of at least 40 codons. Comparison of the PR772 nucleotide sequence with the genome of Tectiviridae family prototype phage PRD1 revealed 97.2% identity at the DNA level. By dynamic light-scattering analysis, its hydrodynamic diameter was measured as 82 ± 6 nm, consistent with use in testing large-virus-retentive filters. Finally, dynamic light-scattering analysis of PR772 preparations purified on CsCl gradients showed that the phage preparations are largely monodispersed. In summary, PR772 appears to be an appropriate model bacteriophage for standardization of nomenclature for larger-pore-size virus-retentive filters. PMID:15294825

  13. Enteric viruses of poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite the economic importance of the poultry gut, very little is known about the complex gut microbial community. Enteric disease syndromes such as Runting-Stunting Syndrome (RSS) in broiler chickens and Poult Enteritis Complex (PEC) in young turkeys are difficult to characterize and reproduce in ...

  14. NATIONAL RESPIRATORY AND ENTERIC VIRUS SURVEILLANCE SYSTEM

    EPA Science Inventory

    The National Respiratory and Enteric Virus Surveillance System is a lab based system which monitors temporal and geographic patterns associated with the detection of respiratory syncytial virus (RSV), human parainfluenza viruses (HPIV), respiratory and enteric adenoviruses, and r...

  15. Pathogenic Enteric Viruses and Microbial Indicators during Secondary Treatment of Municipal Wastewater

    PubMed Central

    Montazeri, Naim; Goettert, Dorothee; Achberger, Eric C.; Johnson, Crystal N.; Prinyawiwatkul, Witoon

    2015-01-01

    Pathogenic enteric viruses are responsible for a wide range of infections in humans, with diverse symptoms. Raw and partially treated wastewaters are major sources of environmental contamination with enteric viruses. We monitored a municipal secondary wastewater treatment plant (New Orleans, LA) on a monthly basis for norovirus (NoV) GI and GII and enterovirus serotypes using multiplex reverse transcription-quantitative PCR (RT-qPCR) and microbial indicators of fecal contamination using standard plating methods. Densities of indicator bacteria (enterococci, fecal coliforms, and Escherichia coli) did not show monthly or seasonal patterns. Norovirus GII was more abundant than GI and, along with enterovirus serotypes, increased in influent during fall and spring. The highest NoV GI density in influent was in the fall, reaching an average of 4.0 log10 genomic copies/100 ml. Norovirus GI removal (0.95 log10) was lower than that for GII, enterovirus serotypes, and male-specific coliphages (1.48 log10) or for indicator bacteria (4.36 log10), suggesting higher resistance of viruses to treatment. Male-specific coliphages correlated with NoV GII densities in influent and effluent (r = 0.48 and 0.76, respectively) and monthly removal, indicating that male-specific coliphages can be more reliable than indicator bacteria to monitor norovirus GII load and microbial removal. Dominant norovirus genotypes were classified into three GI genotypes (GI.1, GI.3, and GI.4) and four GII genotypes (GII.3, GII.4, GII.13, and GII.21), dominated by GI.1 and GII.4 strains. Some of the seasonal and temporal patterns we observed in the pathogenic enteric viruses were different from those of epidemiological observations. PMID:26162869

  16. Assessment of coliphage surrogates for testing drinking water treatment devices.

    PubMed

    Gerba, Charles P; Abd-Elmaksoud, Sherif; Newick, Huikheng; El-Esnawy, Nagwa A; Barakat, Ahmed; Ghanem, Hossam

    2015-03-01

    Test protocols have been developed by the United States Environmental Protection Agency (USEPA) and the World Health Organization (WHO) to test water treatment devices/systems that are used at the individual and home levels to ensure the removal of waterborne viruses. The goal of this study was to assess if coliphage surrogates could be used in this testing in place of the currently required use of animal or human enteric viruses. Five different coliphages (MS-2, PRD1, ΦX-174, Qβ, and fr) were compared to the removal of poliovirus type 1 (LSc-2ab) by eight different water treatment devices/systems using a general case and a challenge case (high organic load, dissolved solids, and turbidity) test water as defined by the USEPA. The performance of the units was rated as a pass/fail based on a 4 log removal/inactivation of the viruses. In all cases, a failure or a pass of the units/system for poliovirus also corresponded to a pass/fail by all of the coliphages. In summary, in using pass/fail criteria as recommended under USEPA guidelines for testing water treatment device/systems, the use of coliphages should be considered as an alternative to reduce cost and time of testing such devices/systems. PMID:25399400

  17. Removal of bacterial fecal indicators, coliphages and enteric adenoviruses from waters with high fecal pollution by slow sand filtration.

    PubMed

    Bauer, Rosalie; Dizer, Halim; Graeber, Ingeborg; Rosenwinkel, Karl-Heinz; López-Pila, Juan M

    2011-01-01

    The aim of the present study was to estimate the performance of slow sand filtration (SSF) facilities, including the time needed for reaching stabilization (maturation), operated with surface water bearing high fecal contamination, representing realistic conditions of rivers in many emerging countries. Surface water spiked with wastewater was infiltrated at different pore water velocities (PWV) and samples were collected at different migration distances. The samples were analyzed for phages and to a lesser extent for fecal bacteria and enteric adenoviruses. At the PWV of 50 cm/d, at which somatic phages showed highest removal, their mean log(10) removal after 90 cm migration was 3.2. No substantial differences of removal rates were observed at PWVs between 100 and 900 cm/d (2.3 log(10) mean removal). The log(10) mean removal of somatic phages was less than the observed for fecal bacteria and tended more towards that of enteric adenoviruses This makes somatic phages a potentially better process indicator than Escherichia coli for the removal of viruses in SSF. We conclude that SSF, and by inference in larger scale river bank filtration (RBF), is an excellent option as a component in multi-barrier systems for drinking water treatment also in areas where the sources of raw water are considerably fecally polluted, as often found in many emerging countries. PMID:20851449

  18. Human enteric viruses--potential indicators for enhanced monitoring of recreational water quality.

    PubMed

    Updyke, Erin Allmann; Wang, Zi; Sun, Si; Connell, Christina; Kirs, Marek; Wong, Mayee; Lu, Yuanan

    2015-10-01

    Recreational waters contaminated with human fecal pollution are a public health concern, and ensuring the safety of recreational waters for public use is a priority of both the Environmental Protection Agency (EPA) and the Centers for Disease Control and Prevention (CDC). Current recreational water standards rely on fecal indicator bacteria (FIB) levels as indicators of human disease risk. However present evidence indicates that levels of FIB do not always correspond to the presence of other potentially harmful organisms, such as viruses. Thus, enteric viruses are currently tested as water quality indicators, but have yet to be successfully implemented in routine monitoring of water quality. This study utilized enteric viruses as possible alternative indicators of water quality to examine 18 different fresh and offshore recreational waters on O'ahu, Hawai'i, by using newly established laboratory techniques including highly optimized PCR, real time PCR, and viral infectivity assays. All sample sites were detected positive for human enteric viruses by PCR including enterovirus, norovirus genogroups I and II, and male specific FRNA coliphage. A six time-point seasonal study of enteric virus presence indicated significant variation in virus detection between the rainy and dry seasons. Quantitative PCR detected the presence of norovirus genogroup II at levels at which disease risk may occur, and there was no correlation found between enteric virus presence and FIB counts. Under the present laboratory conditions, no infectious viruses were detected from the samples PCR-positive for enteric viruses. These data emphasize both the need for additional indicators for improved monitoring of water quality, and the feasibility of using enteric viruses as these indicators. PMID:26494480

  19. OCCURRENCE OF ENTERIC VIRUSES IN WATERS

    EPA Science Inventory

    A number of different types of human enteric viruses cause waterborne outbreaks when individuals are exposed to contaminated drinking and recreational waters. Vaccination against poliovirus has virtually eliminated poliomyelitis from the planet, but other members of the enterovi...

  20. OCCURRENCE OF ENTERIC VIRUSES IN SURFACE WATERS

    EPA Science Inventory

    Human enteric viruses cause a number of diseases when individuals are exposed to contaminated drinking & recreational waters. Vaccination against poliovirus has virtually eliminated poliomyelitis from the planet. Other members of enterovirus group cause numerous diseases. Hepatit...

  1. Immunoaffinity concentration and purification of waterborne enteric viruses for detection by reverse transcriptase PCR.

    PubMed Central

    Schwab, K J; De Leon, R; Sobsey, M D

    1996-01-01

    To assess the risks from viral contamination of drinking-water supplies, there is a clear need for methods to directly detect viral pathogens. In this study, we developed a broad-spectrum immunocapture method for concentration and purification of enteric viruses. The method involved indirect antibody capture (AbCap) of intact viruses followed by release of virion genomic RNA and reverse transcriptase PCR for amplification and oligoprobe hybridization for detection. The procedure involved concentrating enteric viruses from large volumes of water by standard filtration-elution techniques with IMDS filters and 1 liter of 1% beef extract-0.05 M glycine (BE/G) as an eluate. The BE/G eluate was concentrated and purified by polyethylene glycol (PEG) precipitation, Pro-Cipitate (a commercially available protein precipitating reagent) precipitation, and a second PEG precipitation to a volume of approximately 500 mu l. Aliquots of the second PEG precipitate were further processed by RNA extraction, AbCap, or cell culture analysis for infectious viruses. The AbCap method was applied to 11 field samples of fecally contaminated surface water. Of the 11 samples, 9 were positive for enteric viruses by AbCap method 4 of 11 samples were positive for enteric viruses by direct RNA extraction of a small aliquot of the second PEG concentrate; and 4 of 11 samples were positive for enteric viruses by measurement of cell culture infectivity. The results of enteric viruses were compared with those for standard bacterial and coliphage indicators of fecal contamination. PMID:8787407

  2. Thermal inactivation of enteric viruses and bioaccumulation of enteric foodborne viruses in live oysters (Crassostrea virginica)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human enteric viruses are one of the main causative agents of shellfish associated outbreaks. In this study, the kinetics of viral bioaccumulation in live oysters and the heat stability of the most predominant enteric viruses were determined in both tissue culture and in oyster tissues. A human nor...

  3. Somatic Coliphage Profiles of Produce and Environmental Samples from Farms in Northern México.

    PubMed

    Bartz, Faith E; Hodge, Domonique Watson; Heredia, Norma; de Aceituno, Anna Fabiszewski; Solís, Luisa; Jaykus, Lee-Ann; Garcia, Santos; Leon, Juan S

    2016-09-01

    Somatic coliphages were quantified in 459 produce and environmental samples from 11 farms in Northern Mexico to compare amounts of somatic coliphages among different types of fresh produce and environmental samples across the production steps on farms. Rinsates from cantaloupe melons, jalapeño peppers, tomatoes, and the hands of workers, soil, and water were collected during 2011-2012 at four successive steps on each farm, from the field before harvest through the packing facility, and assayed by FastPhage MPN Quanti-tray method. Cantaloupe farm samples contained more coliphages than jalapeño or tomato (p range <0.01-0.03). Across production steps, jalapeños had higher coliphage percentages before harvest than during packing (p = 0.03), while tomatoes had higher coliphage concentrations at packing than all preceding production steps (p range <0.01-0.02). These findings support the use of targeted produce-specific interventions at multiple points in the process of growing and packing produce to reduce the risk of enteric virus contamination and improve food safety during fruit and vegetable production. PMID:27153836

  4. 9 CFR 113.204 - Mink Enteritis Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Mink Enteritis Vaccine, Killed Virus..., DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.204 Mink Enteritis Vaccine, Killed Virus. Mink Enteritis...

  5. 9 CFR 113.204 - Mink Enteritis Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Mink Enteritis Vaccine, Killed Virus..., DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.204 Mink Enteritis Vaccine, Killed Virus. Mink Enteritis...

  6. 9 CFR 113.204 - Mink Enteritis Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Mink Enteritis Vaccine, Killed Virus..., DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.204 Mink Enteritis Vaccine, Killed Virus. Mink Enteritis...

  7. 9 CFR 113.204 - Mink Enteritis Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Mink Enteritis Vaccine, Killed Virus..., DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.204 Mink Enteritis Vaccine, Killed Virus. Mink Enteritis...

  8. 9 CFR 113.204 - Mink Enteritis Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Mink Enteritis Vaccine, Killed Virus..., DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.204 Mink Enteritis Vaccine, Killed Virus. Mink Enteritis...

  9. MS2 Coliphage as a Surrogate for 2009 Pandemic Influenza A (H1N1) Virus (pH1N1) in Surface Survival Studies on N95 Filtering Facepiece Respirators

    PubMed Central

    Coulliette, A.D.; Perry, K.A.; Fisher, E.M.; Edwards, J.R.; Shaffer, R.E.; Noble-Wang, J.

    2015-01-01

    Research on influenza viruses regarding transmission and survival has surged in the recent years due to infectious emerging strains and outbreaks such as the 2009 Influenza A (H1N1) pandemic. MS2 coliphage has been applied as a surrogate for pathogenic respiratory viruses, such as influenza, as it’s safe for personnel to handle and requires less time and labor to measure virus infectivity. However, direct comparisons to determine the effectiveness of coliphage as a surrogate for influenza virus regarding droplet persistence on personal protective equipment such as N95 filtering facepiece respirators (FFRs) are lacking. Persistence of viral droplets deposited on FFRs in healthcare settings is important to discern due to the potential risk of infection via indirect fomite transmission. The objective of this study was to determine if MS2 coliphage could be applied as a surrogate for influenza A viruses for studying persistence when applied to the FFRs as a droplet. The persistence of MS2 coliphage and 2009 Pandemic Influenza A (H1N1) Virus on FFR coupons in different matrices (viral media, 2% fetal bovine serum, and 5 mg ml−1 mucin) were compared over time (4, 12, 24, 48, 72, and 144 hours) in typical absolute humidity conditions (4.1 × 105 mPa [18°C/20% relative humidity (RH)]). Data revealed significant differences in viral infectivity over the 6-day period (H1N1- P <0.0001; MS2 - P <0.005), although a significant correlation of viral log10 reduction in 2% FBS (P <0.01) was illustrated. Overall, MS2 coliphage was not determined to be a sufficient surrogate for influenza A virus with respect to droplet persistence when applied to the N95 FFR as a droplet. PMID:26500392

  10. Vulnerability of Drinking-Water Wells in La Crosse, Wisconsin, to Enteric-Virus Contamination from Surface Water Contributions

    PubMed Central

    Borchardt, Mark A.; Haas, Nathaniel L.; Hunt, Randall J.

    2004-01-01

    Human enteric viruses can contaminate municipal drinking-water wells, but few studies have examined the routes by which viruses enter these wells. In the present study, the objective was to monitor the municipal wells of La Crosse, Wisconsin, for enteric viruses and determine whether the amount of Mississippi River water infiltrating the wells was related to the frequency of virus detection. From March 2001 to February 2002, one river water site and four wells predicted by hydrogeological modeling to have variable degrees of surface water contributions were sampled monthly for enteric viruses, microbial indicators of sanitary quality, and oxygen and hydrogen isotopes. 18O/16O and 2H/1H ratios were used to determine the level of surface water contributions. All samples were collected prior to chlorination at the wellhead. By reverse transcription-PCR (RT-PCR), 24 of 48 municipal well water samples (50%) were positive for enteric viruses, including enteroviruses, rotavirus, hepatitis A virus (HAV), and noroviruses. Of 12 river water samples, 10 (83%) were virus positive by RT-PCR. Viable enteroviruses were not detected by cell culture in the well samples, although three well samples were positive for culturable HAV. Enteroviruses detected in the wells by RT-PCR were identified as several serotypes of echoviruses and group A and group B coxsackieviruses. None of the well water samples was positive for indicators of sanitary quality, namely male-specific and somatic coliphages, total coliform bacteria, Escherichia coli, and fecal enterococci. Contrary to expectations, viruses were found in all wells regardless of the level of surface water contributions. This result suggests that there were other unidentified sources, in addition to surface water, responsible for the contamination. PMID:15466536

  11. Development of reference antisera to enteric-origin avian viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent molecular surveys have revealed geographically distinct lineages of avian reovirus, rotavirus and astrovirus circulating in commercial poultry. To improve our understanding of enteric virus pathogenesis, specific immunological reagents are needed to detect viruses in histological samples. To ...

  12. Enteric virus and vibrio contamination of shellfish: intervention strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    INTRODUCTION. Molluscan shellfish include oysters, clams, mussels, and cockles, which can cause illnesses from a variety of human pathogens. Enteric viruses, like norovirus and hepatitis A virus, are generally transmitted to shellfish through fecal contamination of shellfish harvesting areas, alth...

  13. Enteric viruses of chickens and turkeys

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although enteric disease in commercial poultry operations is common, and often unofficially reported and discussed by field veterinarians as “non-specific enteric disease”, three recognized enteric syndromes do exist in poultry: poult enteritis complex (PEC) and poult enteritis mortality syndrome (P...

  14. Research update on the poultry enteric viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poultry enteric disease is an ongoing economic problem for the poultry industry in the United States and abroad. The etiologies of the recognized enteric disease syndromes—Poult Enteritis Complex (PEC) and Poult Enteritis Mortality Syndrome (PEMS) in young turkeys, and Runting-Stunting Syndrome (RSS...

  15. Processing Strategies to Inactivate Enteric Viruses in Shellfish: Limitations of Surrogate Viruses and Molecular Methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Noroviruses, hepatitis A and E viruses, sapovirus, astrovirus, rotavirus, Aichi virus, enteric adenoviruses, poliovirus, and other enteroviruses enter shellfish through contaminated seawater or by contamination during handling and processing, resulting in outbreaks ranging from isolated to epidemic....

  16. Persistence of enteric viruses within oysters (Crassostrea virginica)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is well known that water-borne enteric viruses are concentrated by bivalves. Why these viruses are selectively retained and remain infectious within shellfish tissues for extended periods is unknown. Our current hypothesis is that phagocytic hemocytes (blood cells) are a site of virus persiste...

  17. AN OVERVIEW OF ENTERIC VIRUS EXTRACTION AND ASSAY METHODS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enteric viruses, particularly norovirus and hepatitis A virus, are major contaminants of molluscan shellfish, leading to outbreaks of viral illness. A host of procedures have been developed for the extraction and assay of viruses from shellfish. Early extraction and assay methods focused on the de...

  18. Field survey of enteric viruses in solid waste landfill leachates.

    PubMed Central

    Sobsey, M D

    1978-01-01

    Because municipal solid waste may contain fecal material from a variety of sources, there is concern that the leachate discharged from some solid waste landfills may contain enteric pathogens, including enteric viruses. In this study, 22 leachate samples from 21 different landfills in the United States and Canada were examined for enteric viruses. The sites represented a broad range of conditions for solid waste landfills and the leachate samples ranged from 10.3 to 18 liters in volume. Enteric viruses were found in only one of the 22 leachate samples examined. Two viruses, identified as poliovirus types 1 and 3, were found in an 11.8 liter sample obtained from a site where solid waste landfill practice was deficient. The low levels of enteric viruses detected in field samples of raw leachate and the opportunities for further reductions in the virus concentration of leachates by such processes as thermal inactivation, removal by soil and dilution in ground and surface waters, suggest that leachates from properly operated solid waste landfills do not constitute an environmental or public health hazard due to enteric viruses. PMID:28677

  19. IMPROVED METHOD FOR RECOVERY OF ENTERIC VIRUSES FROM WASTEWATER SLUDGES

    EPA Science Inventory

    Various parameters involved in recovering indigenous enteric viruses from wastewater sludges aided by buffered beef extract elution and subsequent organic flocculation concentration were examined. Conditions were optimized to yield an overall effective method for use in environme...

  20. Detection of enteric viruses in shellfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Norovirus and hepatitis A virus contamination are significant threats to the safety of shellfish and other foods. Methods for the extraction and assay of these viruses from shellfish are complex, time consuming, and technically challenging. Here, we itemize some of the salient points in extracting...

  1. MECHANISM OF INACTIVATION OF ENTERIC VIRUSES IN FRESH WATER

    EPA Science Inventory

    Methods developed in the laboratory were used to measure inactivation rates of enteric viruses seeded into freshwaters from a variety of sources. All freshwater samples caused a decrease in poliovirus-1 infectivity of less than 98% within 4 days at 27 deg C. Virus inactivation wa...

  2. Identification of Enteric Viruses in Foods from Mexico City.

    PubMed

    Parada-Fabián, José Carlos; Juárez-García, Patricia; Natividad-Bonifacio, Iván; Vázquez-Salinas, Carlos; Quiñones-Ramírez, Elsa Irma

    2016-09-01

    Foodborne viruses are a common and, probably, the most under-recognized cause of outbreaks of gastroenteritis. Among the main foods involved in the transmission of human enteric viruses are mollusks, and fruits and vegetables irrigated with wastewater and/or washed with non-potable water or contaminated by contact with surfaces or hands of the infected personnel during its preparation. In this study, 134 food samples were analyzed for the detection of Norovirus, Rotavirus, and Hepatitis A virus (HAV) by amplification of conserved regions of these viruses. From the 134 analyzed samples, 14 were positive for HAV, 6 for Norovirus, and 11 for Rotavirus. This is the first report in Mexico where emphasis is given to the presence of HAV and Norovirus on perishable foods and food from fisheries, as well as Rotavirus on frozen vegetables, confirming the role of vegetables and bivalve mollusks as transmitting vehicles of enteric viruses. PMID:27221088

  3. IMPROVING DETECTION METHODS FOR ENTERIC WATERBORNE VIRUSES

    EPA Science Inventory

    Waterborne viruses are a significant cause of illness, both within the US and worldwide. These illnesses can occur as the result of outbreaks, potentially affecting hundreds or thousands of people, or as a part of a background level of endemic infection. While many of these out...

  4. The effect of carvacrol on enteric viruses.

    PubMed

    Sánchez, C; Aznar, R; Sánchez, G

    2015-01-01

    Carvacrol, a monoterpenic phenol, is said to have extensive antimicrobial activity in a wide range of food spoilage or pathogenic fungi, yeast and bacteria. The aim of this study was to assess its antiviral activity on norovirus surrogates, feline calicivirus (FCV), murine norovirus (MNV), and hepatitis A virus (HAV), as well as its potential in food applications. Initially, different concentrations of carvacrol (0.25, 0.5, 1%) were individually mixed with each virus at titers of ca. 6-7 log TCID50/ml and incubated 2h at 37°C. Carvacrol at 0.5% completely inactivated the two norovirus surrogates, whereas 1% concentration was required to achieve ca. 1 log reduction of HAV. In lettuce wash water, carvacrol efficacy on MNV was dependent on the chemical oxygen demand (COD), with no effect over 300 ppm. A 4 log reduction in FCV infectivity was observed when 0.5% carvacrol was used to sanitize lettuce wash water, regardless of COD. Carvacrol was also evaluated as a natural disinfectant of produce, showing 1% carvacrol reduced inoculated NoV surrogates titers in lettuce by 1 log after 30 min contact. These results represent a step forward in improving food safety by using carvacrol as an alternative natural additive to reduce viral contamination in the fresh vegetable industry. PMID:25310265

  5. Enteric and indicator virus removal by surface flow wetlands.

    PubMed

    Rachmadi, Andri T; Kitajima, Masaaki; Pepper, Ian L; Gerba, Charles P

    2016-01-15

    We investigated the occurrence and attenuation of several human enteric viruses (i.e., norovirus, adenovirus, Aichi virus 1, polyomaviruses, and enterovirus) as well as a plant virus, pepper mild mottle virus (PMMoV), at two surface flow wetlands in Arizona. The retention time in one of the wetlands was seven days, whereas in the other wetland it could not be defined. Water samples were collected at the inlet and outlet from the wetlands over nine months, and concentration of viral genomes was determined by quantitative polymerase chain reaction (qPCR). Of the human enteric viruses tested, adenovirus and Aichi virus 1 were found in the greatest prevalence in treated wastewater (i.e., inlet of the wetlands). Reduction efficiencies of enteric viruses by the wetlands ranged from 1 to 3 log10. Polyomaviruses were generally removed to below detection limit, indicating at least 2 to 4 log10 removal. PMMoV was detected in a greater concentration in the inlet of both wetlands for all the viruses tested (10(4) to 10(7) genome copies/L), but exhibited little or no removal (1 log10 or less). To determine the factors associated with virus genome attenuation (as determined by qPCR), the persistence of PMMoV and poliovirus type 1 (an enterovirus) was studied in autoclaved and natural wetland water, and deionized water incubated under three different temperatures for 21 days. A combination of elevated water temperature and biological activities reduced poliovirus by 1 to 4 log10, while PMMoV was not significantly reduced during this time period. Overall, PMMoV showed much greater persistence than human viruses in the wetland treatment. PMID:26562344

  6. Expression and serological reactivity of hemorrhagic enteritis virus hexon protein.

    PubMed

    Lobová, Dana; Celer, Vladimír

    2016-05-01

    The aim of this work was to express the recombinant hexon protein of the hemorrhagic enteritis virus, to establish the diagnostic value of this protein for serological detection of antibodies in turkey serum samples and to assess seroprevalence of the infection in the Czech Republic. The N' terminal part of the hexon protein was expressed in a bacterial expression system and used as an antigen in an ELISA test for the detection of hemorrhagic enteritis virus specific antibodies in turkey sera. Validation of the test was performed by comparison with a commercially available ELISA test. Serological reactivity was assessed on a panel of 126 turkey sera by a newly developed ELISA test. Serum samples were taken from turkey farms with the history of hemorrhagic enteritis virus infection, from farms with animals free of infection, and from turkey farms following vaccination. Both ELISA kits gave identical results (100 %) with the tested sera. ELISA based on the recombinant hexon protein thus proved useful and cheaper for detection of antibodies in turkey flocks infected with the hemorrhagic enteritis virus. PMID:26471497

  7. Development of diagnostic assays to monitor novel poultry enteric viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gut plays a key role in poultry performance, but much remains to be discovered regarding the complex viral constituency present in the poultry intestinal tract. It is likely that certain enteric viruses may affect the overall health and performance of commercial poultry, and it is possible that...

  8. Hemocytes Are Sites of Enteric Virus Persistence within Oysters ▿

    PubMed Central

    Provost, Keleigh; Dancho, Brooke A.; Ozbay, Gulnihal; Anderson, Robert S.; Richards, Gary P.; Kingsley, David H.

    2011-01-01

    The goal of this study was to determine how enteric viruses persist within shellfish tissues. Several lines of novel evidence show that phagocytic blood cells (hemocytes) of Eastern oysters (Crassostrea virginica) play an important role in the retention of virus particles. Our results demonstrated an association of virus contamination with hemocytes but not with hemolymph. Live oysters contaminated overnight with hepatitis A virus (HAV) and murine norovirus (MNV) had 56% and 80% of extractable virus associated with hemocytes, respectively. Transfer of HAV-contaminated hemocytes to naïve (virus-free) oysters resulted in naïve oyster meat testing HAV positive for up to 3 weeks. Acid tolerance of HAV, MNV, poliovirus (PV), and feline calicivirus (FCV) correlated with the ability of each virus to persist within oysters. Using reverse transcription-PCR (RT-PCR) to evaluate persistence of these viruses in oysters, we showed that HAV persisted the longest (>21 days) and was most acid resistant, MNV and PV were less tolerant of acidic pH, persisting for up to 12 days and 1 day, respectively, and FCV did not persist (<1 day) within oysters and was not acid tolerant. This suggests that the ability of a virus to tolerate the acidic conditions typical of phagolysosomal vesicles within hemocytes plays a role in determining virus persistence in shellfish. Evaluating oyster and hemocyte homogenates and live contaminated oysters as a prelude to developing improved viral RNA extraction methods, we found that viruses were extracted more expediently from hemocytes than from whole shellfish tissues and gave similar RT-PCR detection sensitivities. PMID:21948840

  9. Enteric viruses in a mangrove lagoon, survival and shellfish incidence

    SciTech Connect

    Lopez de Cardona, I.; Bermudez, M.; Billmire, E.; Hazen, T.C.

    1988-12-31

    Mangrove oysters (Crassostrea rhizophorae) were screened for enteric viruses. For 18 months oysters were collected from Cano Boqueron, a tropical mangrove lagoon on the southwest coast of Puerto Rico. This popular tourist resort has two primary sewage treatment plants which service 158 single family cabanas. In spite of the heavy seasonal input of sewage to Cano Boqueron and high densities of fecal coliform bacteria, enteric viruses were not detected in shellfish meat. Because no viruses were detected in the oysters, a virus survival study was performed. Poliovirus type 1 was placed in diffusion chambers in situ at two sites in Cano Boqueron. More than 95% of the poliovirus inactivation occurred within 24 h. Virus inactivation was significantly different by site, indicating different inactivation rates within the lagoon. Chamber studies done simultaneously with Escherichia coli did not reveal differences between sites. It is suggested that the sewage effluent had an antiviral effect in the absence of an antibacterial effect. This study demonstrates the importance for establishing microbial contamination standards for shellfish growing waters in the tropics based upon in situ studies with tropical species, e.g. mangrove oyster.

  10. Comparative uptake of enteric viruses into spinach and green onions.

    PubMed

    Hirneisen, Kirsten A; Kniel, Kalmia E

    2013-03-01

    Root uptake of enteric pathogens and subsequent internalization has been a produce safety concern and is being investigated as a potential route of pre-harvest contamination. The objective of this study was to determine the ability of hepatitis A virus (HAV) and the human norovirus surrogate, murine norovirus (MNV), to internalize in spinach and green onions through root uptake in both soil and hydroponic systems. HAV or MNV was inoculated into soil matrices or into two hydroponic systems, floating and nutrient film technique systems. Viruses present within spinach and green onions were detected by RT-qPCR or infectivity assays after inactivating externally present viruses with Virkon(®). HAV and MNV were not detected in green onion plants grown up to 20 days and HAV was detected in only 1 of 64 spinach plants grown in contaminated soil substrate systems up to 20 days. Compared to soil systems, a drastic difference in virus internalization was observed in hydroponic systems; HAV or pressure-treated HAV and MNV were internalized up to 4 log RT-qPCR units and internalized MNV was shown to remain infectious. Understanding the interactions of human enteric viruses on produce can aid in the elucidation of the mechanisms of attachment and internalization, and aid in understanding risks associated with contamination events. PMID:23412715

  11. Phytocompounds for the control of human enteric viruses.

    PubMed

    D'Souza, Doris H

    2014-02-01

    Plant extracts and associated polyphenols are known for their varied health benefits that include antioxidant effects and antimicrobial properties. The increasing consumer demand for cost-effective and natural alternatives to chemically-synthesized antimicrobials and therapeutics that are also sustainable makes the field of phytochemical research rather intriguing and challenging. Human enteric viruses are increasingly recognized worldwide as significant causes of human disease in adults and children, alike. In the absence of available vaccines for the human noroviruses, plant extracts are gaining popularity for the prevention and treatment of viral diseases. Research on plant extracts (particularly polyphenols derived from fruits) for human enteric virus control will be briefly summarized in this article. PMID:24434686

  12. Detection of Human Enteric Viruses in Freshwater from European Countries.

    PubMed

    D'Ugo, Emilio; Marcheggiani, Stefania; Fioramonti, Ilaria; Giuseppetti, Roberto; Spurio, Roberto; Helmi, Karim; Guillebault, Delphine; Medlin, Linda K; Simeonovski, Ivan; Boots, Bas; Breitenbach, Ulrich; Koker, Latife; Albay, Meric; Mancini, Laura

    2016-09-01

    The transmission of water-borne pathogens typically occurs by a faecal-oral route, through inhalation of aerosols, or by direct or indirect contact with contaminated water. Previous molecular-based studies have identified viral particles of zoonotic and human nature in surface waters. Contaminated water can lead to human health issues, and the development of rapid methods for the detection of pathogenic microorganisms is a valuable tool for the prevention of their spread. The aims of this work were to determine the presence and identity of representative human pathogenic enteric viruses in water samples from six European countries by quantitative polymerase chain reaction (q-PCR) and to develop two quantitative PCR methods for Adenovirus 41 and Mammalian Orthoreoviruses. A 2-year survey showed that Norovirus, Mammalian Orthoreovirus and Adenoviruses were the most frequently identified enteric viruses in the sampled surface waters. Although it was not possible to establish viability and infectivity of the viruses considered, the detectable presence of pathogenic viruses may represent a potential risk for human health. The methodology developed may aid in rapid detection of these pathogens for monitoring quality of surface waters. PMID:27117764

  13. Feline fecal virome reveals novel and prevalent enteric viruses

    PubMed Central

    Ng, Terry Fei Fan; Mesquita, João Rodrigo; Nascimento, Maria São José; Kondov, Nikola O.; Wong, Walt; Reuter, Gábor; Knowles, Nick J.; Vega, Everardo; Esona, Mathew D.; Deng, Xutao; Vinjé, Jan; Delwart, Eric

    2014-01-01

    Humans keep more than 80 million cats worldwide, ensuring frequent contacts with their viruses. Despite such interactions the enteric virome of cats remains poorly understood. We analyzed a fecal sample from a single healthy cat from Portugal using viral metagenomics and detected five eukaryotic viral genomes. These viruses included a novel picornavirus (proposed genus “Sakobuvirus”) and bocavirus (feline bocavirus 2), a variant of feline astrovirus 2 and sequence fragments of a highly divergent feline rotavirus and picobirnavirus. Feline sakobuvirus A represents the prototype species of a proposed new genus in the Picornaviridae family, distantly related to human salivirus and kobuvirus. Feline astroviruses (mamastrovirus 2) are the closest relatives of the classic human astroviruses (mamastrovirus 1), suggestive of past cross-species transmission. Presence of these viruses by PCR among Portuguese cats was detected in 13% (rotavirus), 7% (astrovirus), 6% (bocavirus), 4% (sakobuvirus), and 4% (picobirnavirus) of 55 feline fecal samples. Co-infections were frequent with 40% (4/10) of cats shedding more than one of these viruses. Our study provides an initial unbiased description of the feline fecal virome indicating a high level of asymptomatic infections. Availability of the genome sequences of these viruses will facilitate future tropism and disease association studies. PMID:24793097

  14. Norovirus and other human enteric viruses in moroccan shellfish.

    PubMed

    Benabbes, Laila; Ollivier, Joanna; Schaeffer, Julien; Parnaudeau, Sylvain; Rhaissi, Houria; Nourlil, Jalal; Le Guyader, Françoise S

    2013-03-01

    The aim of this study was to evaluate the presence of human enteric viruses in shellfish collected along the Mediterranean Sea and Atlantic Coast of Morocco. A total of 77 samples were collected from areas potentially contaminated by human sewage. Noroviruses were detected in 30 % of samples, with an equal representation of GI and GII strains, but were much more frequently found in cockles or clams than in oysters. The method used, including extraction efficiency controls, allowed the quantification of virus concentration. As in previous reports, results showed levels of contamination between 100 and 1,000 copies/g of digestive tissues. Sapoviruses were detected in 13 % of samples mainly in oyster and clam samples. Hepatitis A virus was detected in two samples, with concentrations around 100 RNA copies/g of digestive tissues. Only two samples were contaminated with enterovirus and none with norovirus GIV or Aichi virus. This study highlights the interest of studying shellfish samples from different countries and different production areas. A better knowledge of shellfish contamination helps us to understand virus levels in shellfish and to improve shellfish safety, thus protecting consumers. PMID:23412717

  15. Enteric viruses in New Zealand drinking-water sources.

    PubMed

    Williamson, W M; Ball, A; Wolf, S; Hewitt, J; Lin, S; Scholes, P; Ambrose, V; Robson, B; Greening, G E

    2011-01-01

    This study determined whether human pathogenic viruses are present in two New Zealand surface waters that are used as drinking-water sources. Enteric viruses were concentrated using hollow-fibre ultrafiltration and detected using PCR for adenovirus (AdV), and reverse transcription PCR for norovirus (NOV) genogroups I-III, enterovirus, rotavirus (RoV) and hepatitis E virus (HEV). Target viruses were detected in 106/109 (97%) samples, with 67/109 (61%) samples positive for three or more viral types at any one time. AdV, NoV and ROV were detected the most frequently, and HEV the least frequently. Human NoV was not usually associated with animal NOV. Our results suggest that New Zealand would be well served by assessing the ability of drinking-water treatment plants to remove viruses from the source waters, and that this assessment could be based on the viral concentration of AdV-NoV-RoV. The long-term aim of our work is to use this information to estimate the risk of waterborne viral infection. PMID:21866776

  16. African Swine Fever Virus Uses Macropinocytosis to Enter Host Cells

    PubMed Central

    Sánchez, Elena G.; Quintas, Ana; Pérez-Núñez, Daniel; Nogal, Marisa; Barroso, Susana; Carrascosa, Ángel L.; Revilla, Yolanda

    2012-01-01

    African swine fever (ASF) is caused by a large and highly pathogenic DNA virus, African swine fever virus (ASFV), which provokes severe economic losses and expansion threats. Presently, no specific protection or vaccine against ASF is available, despite the high hazard that the continued occurrence of the disease in sub-Saharan Africa, the recent outbreak in the Caucasus in 2007, and the potential dissemination to neighboring countries, represents. Although virus entry is a remarkable target for the development of protection tools, knowledge of the ASFV entry mechanism is still very limited. Whereas early studies have proposed that the virus enters cells through receptor-mediated endocytosis, the specific mechanism used by ASFV remains uncertain. Here we used the ASFV virulent isolate Ba71, adapted to grow in Vero cells (Ba71V), and the virulent strain E70 to demonstrate that entry and internalization of ASFV includes most of the features of macropinocytosis. By a combination of optical and electron microscopy, we show that the virus causes cytoplasm membrane perturbation, blebbing and ruffles. We have also found that internalization of the virions depends on actin reorganization, activity of Na+/H+ exchangers, and signaling events typical of the macropinocytic mechanism of endocytosis. The entry of virus into cells appears to directly stimulate dextran uptake, actin polarization and EGFR, PI3K-Akt, Pak1 and Rac1 activation. Inhibition of these key regulators of macropinocytosis, as well as treatment with the drug EIPA, results in a considerable decrease in ASFV entry and infection. In conclusion, this study identifies for the first time the whole pathway for ASFV entry, including the key cellular factors required for the uptake of the virus and the cell signaling involved. PMID:22719252

  17. Comparison of canine parvovirus with mink enteritis virus by restriction site mapping.

    PubMed Central

    McMaster, G K; Tratschin, J D; Siegl, G

    1981-01-01

    The genomes of canine parvovirus and mink enteritis virus were compared by restriction enzyme analysis of their replicative-form DNAs. Of 79 mapped sites, 68, or 86%, were found to be common for both types of DNA, indicating that canine parvovirus and mink enteritis virus are closely related viruses. Whether they evolved from a common precursor or whether canine parvovirus is derived from mink enteritis virus, however, cannot be deduced from our present data. Images PMID:6264109

  18. A mass balance approach to the fate of viruses in a municipal wastewater treatment plant during summer and winter seasons.

    PubMed

    Ulbricht, Katharina; Selinka, Hans-Christoph; Wolter, Stefanie; Rosenwinkel, Karl-Heinz; Nogueira, Regina

    2014-01-01

    In contrast to previous discussion on general virus removal efficiency and identifying surrogates for human pathogenic viruses, this study focuses on virus retention within each step of a wastewater treatment plant (WWTP). Additionally, the influence of weather conditions on virus removal was addressed. To account for the virus retention, this study describes a mass balance of somatic coliphages (bacterial viruses) in a municipal WWTP, performed in the winter and summer seasons of 2011. In the winter season, the concentration of coliphages entering the WWTP was about 1 log lower than in summer. The mass balance in winter revealed a virus inactivation of 85.12 ± 13.97%. During the summer season, virus inactivation was significantly higher (95.25 ± 3.69%, p-value <0.05), most likely due to additional virus removal in the secondary clarifier by insolation. Thus, a total removal of coliphages of about 2.78 log units was obtained in summer compared to 1.95 log units in winter. Rainfall events did not statistically correlate with the concentrations of coliphages entering the WWTP in summer. PMID:24473307

  19. Shellfish-associated enteric virus illness: virus localization, disease outbreaks and prevention

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous outbreaks of shellfish-borne enteric virus illness have been reported worldwide. Most notable among the outbreaks are those involving norovirus illness and hepatitis A. Lessons learned from outbreak investigations indicate that most outbreaks are preventable. Anthropogenic sources of con...

  20. The influence of commensal bacteria on infection with enteric viruses.

    PubMed

    Karst, Stephanie M

    2016-04-01

    The intestinal microbiota exerts a marked influence in the mammalian host, both during homeostasis and disease. However, until very recently, there has been relatively little focus on the potential effect of commensal microorganisms on viral infection of the intestinal tract. In this Progress article, I review the recent advances that elucidate the mechanisms by which enteric viruses use commensal bacteria to enhance viral infectivity. These mechanisms segregate into two general categories: the direct facilitation of viral infection, including bacterial stabilization of viral particles and the facilitation of viral attachment to host target cells; and the indirect skewing of the antiviral immune response in a manner that promotes viral infection. Finally, I discuss the implications of these interactions for the development of vaccines and novel therapeutic approaches. PMID:26853118

  1. Heat inactivation of enteric viruses in dewatered wastewater sludge.

    PubMed

    Ward, R L; Ashley, C S

    1978-12-01

    The effect of moisture content on the rates of heat inactivation of enteric viruses in wastewater sludge was determined. The protective effect of raw sludge on poliovirus previously observed (R. L. Ward, C. S. Ashley, and R. H. Moseley, Appl. Environ. Microbiol. 32:339--346, 1976) was found to be greatly enhanced in sludge dewatered by evaporation. Other enteroviruses responded in a similar fashion. This effect did not appear to be due merely to the state of dryness of the sludge samples because in humus-deficient soil, a relatively inert material, the rate of poliovirus inactivation by heat was not significantly altered through dewatering. Instead, this effect appeared to have been caused by protective substances in the sludge, such as detergents, which are concentrated through dewatering. As reported previously (R. L. Ward and C. S. Ashley, Appl. Environ. Microbiol. 34:681-688, 1977; R. L. Ward and C. S. Ashley, Appl. Environ. Microbiol 36:889--897, 1978) raw sludge is not protective of reovirus, but, instead, the ionic detergents in sludge cause the rate of heat inactivation of this virus to be accelerated. Dewatering of sludge, however, was found to partially reverse this virucidal effect. Evidence is presented indicating that this reversal is caused by an unidentified protective substance in sludge also concentrated through dewatering. Finally, it was shown that the effects of raw sludge on heat inactivation of poliovirus and reovirus are greatly reduced by composting, a result that correlated with the degradation of detergents. PMID:216309

  2. Differential depuration of poliovirus, Escherichia coli, and a coliphage by the common mussel, Mytilus edulis

    SciTech Connect

    Power, U.F.; Collins, J.K. )

    1989-06-01

    The elimination of sewage effluent-associated poliovirus, Escherichia coli, and a 22-nm icosahedral coliphage by the common mussel, Mytilus edulis, was studied. Both laboratory-and commercial-scale recirculating, UV depuration systems were used in this study. In the laboratory system, the logarithms of the poliovirus, E. coli, and coliphage levels were reduced by 1.86, 2.9, and 2.16, respectively, within 52 h of depuration. The relative patterns and rates of elimination of the three organisms suggest that they are eliminated from mussels by different mechanisms during depuration under suitable conditions. Poliovirus was not included in experiments undertaken in the commercial-scale depuration system. The differences in the relative rates and patterns of elimination were maintained for E. coli and coliphage in this system, with the logarithm of the E. coli levels being reduced by 3.18 and the logarithm of the coliphage levels being reduced by 0.87. The results from both depuration systems suggest that E. coli is an inappropriate indicator of the efficiency of virus elimination during depuration. The coliphage used appears to be a more representative indicator. Depuration under stressful conditions appeared to have a negligible affect on poliovirus and coliphage elimination rates from mussels. However, the rate and pattern of E. coli elimination were dramatically affected by these conditions. Therefore, monitoring E. coli counts might prove useful in ensuring that mussels are functioning well during depuration.

  3. Retention of Enteric Viruses by the Hemocytes of the Eastern Oyster (Crassostrea virginica)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shellfish are an important vector for transmission of enteric pathogens. Interventions, such as depuration, do not adequately clear enteric viruses, while fecal bacteria levels are significantly reduced. Why viruses are retained in the bivalve flesh is not well understood. We hypothesize that phagoc...

  4. Enteritis

    MedlinePlus

    ... with suspected enteric infection. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 24th ed. Philadelphia, PA: ... with diarrhea and malabsorption. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 24th ed. Philadelphia, PA: ...

  5. Comparative examination of cats with feline leukemia virus-associated enteritis and other relevant forms of feline enteritis.

    PubMed

    Kipar, A; Kremendahl, J; Jackson, M L; Reinacher, M

    2001-07-01

    Cats with feline leukemia virus (FeLV)-associated enteritis (FAE), enteritis of other known viral etiology (parvovirus [PV], enteric coronavirus [CoV]), and enteritis of unknown etiology with histologic features similar to those of FAE and PV enteritis (EUE) and FeLV-negative and FeLV-positive cats without enterocyte alterations were examined. Amount and types of infiltrating leukocytes in the jejunum and activity and cellular constituents of mesenteric lymph nodes, spleen, and bone marrow were determined. PV and CoV infections were confirmed by immunohistologic demonstration of PV and CoV antigen, ultrastructural demonstration of viral particles in the intestinal content, and in situ hybridization for PV genome. FeLV infection was detected by immunohistology for gp70, p27, and p15E. Latent FeLV infection was excluded by polymerase chain reaction methods for exogenous FeLV DNA. Enterocyte lesions involved the crypts in cats with PV enteritis, FAE, and EUE and the villous tips in cats with CoV enteritis. Inflammatory infiltration was generally dominated by mononuclear cells and was moderate in the unaltered intestine and in cats with PV enteritis and marked in cats with FAE, CoV enteritis, and EUE. In cats with EUE, myeloid/histiocyte antigen-positive macrophages were relatively numerous, suggesting recruitment of peripheral blood monocytes. Lymphoid tissues were depleted in cats with PV enteritis and with EUE but were normal or hyperplastic in cats with FAE. Bone marrow activity was decreased in cats with PV enteritis; in cats with FAE or EUE and in FeLV-positive cats without enterocyte alterations, activity was slightly increased. In cats with FAE and PV enteritis, a T-cell-dominated response prevailed. EUE showed some parallels to human inflammatory bowel disease, indicating a potential harmful effect of infiltrating macrophages on the intestinal epithelium. PMID:11467470

  6. Coliphage and indigenous phage in Mamala Bay, Oahu, Hawaii.

    PubMed

    Paul, J H; Rose, J B; Jiang, S C; London, P; Xhou, X; Kellogg, C

    1997-01-01

    Public concern over the discharge of primarily treated sewage by two offshore outfalls in Mamala Bay, Oahu, prompted a multidisciplinary study to determine the impact of such activities on the water quality in the bay and at adjacent recreational beaches. As part of this study, we determined the abundance of coliphage as an indicator of fecal pollution along with total viral direct counts and phages infective for Vibrio parahaemoltyicus 16 at stations in Mamala Bay in four quarterly samplings over 13 months. Coliphage (< 1 to 1.2 x 10(3)/liter) were found during each quarterly sampling along an offshore transect to the Sand Island waste treatment facility outfall. The nonpoint coastal stations (Pearl Harbor, Ala Wai Canal, and Ke'ehi Lagoon) had high levels of coliphage during the storm event sampling in February 1994 but much lower levels or none when sampled during dry weather. Coliphage were absent at all samplings at Waikiki Beach and at the control station off Diamond Head. Viral direct counts in eutrophic coastal stations (Pearl Harbor, Ke'ehi Lagoon, Ala Moana Beach, and Ala Wai canal) averaged 10(9)/liter, while counts at offshore stations ranged from 9 x 10(7) to 1 x 10(9) viruses/liter, values similar to those for other marine environments. Vibriophage were found mainly in eutrophic coastal environments (Ala Wai Canal, Pearl Harbor, and Ke'ehi Lagoon) and at the Sand Island Transect stations D1 and D2. The greatest abundance was found during the storm event (February 1994) sampling. These results suggest that the Sand Island outfall influenced the water quality of the immediate surrounding waters but had little effect on the quality of the recreational beaches. Nonpoint discharge sources appeared to be more important in the distribution of fecal indicators in the coastal zone. PMID:9065272

  7. The effect of chlorine and combined chlorine/UV treatment on coliphages in drinking water disinfection.

    PubMed

    Zyara, Alyaa M; Torvinen, Eila; Veijalainen, Anna-Maria; Heinonen-Tanski, Helvi

    2016-08-01

    Chlorine disinfection is a globally used method to ensure the safety of drinking water. However, it has not always been successful against viruses and, therefore, it is important to find new methods to disinfect water. Seventeen different coliphages were isolated from the treated municipal wastewater. These coliphages and MS2 were treated with different dosages of chlorine in drinking water, and a combined chlorine/ultraviolet irradiation treatment for the chlorine-resistant coliphages. Chlorine disinfection with 0.3-0.5 mg/L total chlorine (free Cl-dosage 0.12-0.21 mg/L) for 10 min achieved 2.5-5.7 Log10-reductions for 11 sensitive coliphages. The six most resistant coliphages showed no reduction with these chlorine concentrations. MS2 was intermediate in chlorine resistance, and thus it is not a good indicator for viruses in chlorine disinfection. In the combined treatment total chlorine of 0.05-0.25 mg/L (free Cl-dosage 0.02-0.08 mg/L) and ultraviolet irradiation (14-22 mWs/cm(2)) were more effective than chlorine alone, and 3-5 Log10-reductions were achieved for the chlorine-resistant strains. The chlorination efficiency could be increased by higher dosages and longer contact times, but this could increase the formation of disinfection by-products. Therefore, the combination treatment is a recommended disinfection method. PMID:27441859

  8. Source and transport of human enteric viruses in deep municipal water supply wells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Until recently, few water utilities or researchers were aware of possible virus presence in deep aquifers and wells. Over the past several years, repeated detection of enteric viruses in water from deep wells in south-central Wisconsin, shows that viruses can be significant groundwater contaminants ...

  9. IMPROVED DETECTION OF HUMAN ENTERIC VIRUSES IN FOODS BY RT-PCR. (R826139)

    EPA Science Inventory

    Human enteric viruses (including hepatitis A virus (HAV) and Norwalk-like viruses (NLVs)) are now recognized as common causes of foodborne disease. While methods to detect these agents in clinical specimens have improved significantly over the last 10 years, applications to fo...

  10. DEVELOPMENT OF HOMOLOGOUS VIRAL INTERNAL CONTROLS FOR USE IN RT-PCR ASSAYS OF WATERBORNE ENTERIC VIRUSES

    EPA Science Inventory

    Enteric viruses often contaminate water sources causing frequent outbreaks of gastroenteritis. Reverse transcription-polymerase chain reaction (RT-PCR) assays are commonly used for detection of human enteric viruses in environmental and drinking water samples. RT-PCR provides ...

  11. DETECTION AND INACTIVATION OF ENTERIC VIRUSES IN WASTEWATER

    EPA Science Inventory

    This report covers studies on the development and evaluation of methods for concentrating and assaying low levels of viruses in large volumes of water as well as studies on the use of ozone in inactivating viruses in water and wastewater. Of the eight virus concentration methods ...

  12. Pathogenic simian immunodeficiency virus infection is associated with expansion of the enteric virome

    PubMed Central

    Handley, Scott; Thackray, Larissa B.; Zhao, Guoyan; Presti, Rachel; Miller, Andrew; Droit, Lindsay; Abbink, Peter; Maxfield, Lori F.; Kambal, Amal; Duan, Erning; Stanley, Kelly; Kramer, Joshua; Macri, Sheila C.; Permar, Sallie R.; Schmitz, Joern E.; Mansfield, Keith; Brenchley, Jason M.; Veazey, Ronald S.; Stappenbeck, Thaddeus S.; Wang, David; Barouch, Dan H.; Virgin, Herbert W.

    2012-01-01

    SUMMARY Pathogenic simian immunodeficiency virus (SIV) infection is associated with enteropathy which likely contributes to AIDS progression. To identify candidate etiologies for AIDS enteropathy, we used next generation sequencing to define the enteric virome during SIV infection in nonhuman primates. Pathogenic, but not non-pathogenic, SIV infection was associated with significant expansion of the enteric virome. We identified at least 32 previously undescribed enteric viruses during pathogenic SIV infection and confirmed their presence using viral culture and PCR testing. We detected unsuspected mucosal adenovirus infection associated with enteritis as well as parvovirus viremia in animals with advanced AIDS, indicating the pathogenic potential of SIV-associated expansion of the enteric virome. No association between pathogenic SIV infection and the family-level taxonomy of enteric bacteria was detected. Thus, enteric viral infections may contribute to AIDS enteropathy and disease progression. These findings underline the importance of metagenomic analysis of the virome for understanding AIDS pathogenesis. PMID:23063120

  13. Use of a portable air disinfecting system to remove seeded coliphage in hospital rooms.

    PubMed

    Verhougstraete, Marc; Reynolds, Kelly

    2016-06-01

    Health care-associated infections are a major problem worldwide, and the airborne route is believed to be a contributory source of secondary health care-associated infections. This study examined the efficacy of a portable air disinfecting system to remove seeded coliphage virus from the air in hospitals rooms. Aerosolized coliphage concentrations were not statistically different between treatment and no treatment measurements. However, future research should focus on additional investigations in the patient rooms that incorporate fomite and air testing alongside portable air filtration devices. PMID:26905789

  14. Recent progress in the characterization of avian enteric viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite the importance of the poultry gut, remarkably little is known about the complex gut microbial community. Enteric disease syndromes such as Runting-Stunting Syndrome in broiler chickens and Poult Enteritis Complex in young turkeys are difficult to characterize and reproduce in the laboratory....

  15. HUMAN ENTERIC VIRUS SURVIVAL IN SOIL FOLLOWING IRRIGATION WITH SEWAGE PLANT EFFLUENTS

    EPA Science Inventory

    The wastewater treatment processes at Kerrville and Uvalde, Texas, were evaluated in terms of their efficacy in reducing human enteric viruses. (Data on the reduction of TOC, BOD5, suspended solids, orthophosphate, nitrogenous compounds, total coliform, fecal coliform, and bacter...

  16. Application of enteric viruses for fecal pollution source tracking in environmental waters

    EPA Science Inventory

    Microbial source tracking (MST) tools are used to identify sources of fecal pollution for accurately assessing public health risk and implementing best management practices (BMPs). This review focuses on the potential of enteric viruses for MST applications. Following host infect...

  17. Frequent site-specific deletion of coliphage lambda murine sarcoma virus recombinants and its use in the identification of a retrovirus integration site.

    PubMed Central

    McClements, W L; Enquist, L W; Oskarsson, M; Sullivan, M; Vande Woude, G F

    1980-01-01

    Stocks of hybrid lambda phages carrying the complete integrated provirus of either m1 or HT1 Moloney murine sarcoma virus, as well as flanking host sequences, frequently contain significant numbers of phages carrying a specific deletion. This deletion arises from a recombination event between the terminally repeated sequences in the provirus that deletes the unique Moloney murine sarcoma virus sequences bracketed by the terminally repeated sequences. Physical mapping has shown that the deletion phage retains one complete copy of the terminally repeated sequence and the flanking mink host sequences. One such deletion, lambdaHT1r+, was used to characterize a mink genomic DNA sequence that contains an HT1 Moloney murine sarcoma virus integration site. This integration site sequence from normal mink cells was also cloned into phage lambda. An analysis of the heteroduplexes between the integration site and the lambdaHT1r+ deletion indicated that no major rearrangement of host sequences occurred upon integration of the Moloney murine sarcoma provirus. Images PMID:6255187

  18. Human enteric viruses in groundwater from a confined bedrock aquifer

    USGS Publications Warehouse

    Borchardt, M. A.; Bradbury, K.R.; Gotkowitz, M.B.; Cherry, J.A.; Parker, B.L.

    2007-01-01

    Confined aquifers are overlain by low-permeability aquitards that are commonly assumed to protect underlying aquifers from microbial contaminants. However, empirical data on microbial contamination beneath aquitards is limited. This study determined the occurrence of human pathogenic viruses in well water from a deep sandstone aquifer confined by a regionally extensive shale aquitard. Three public water-supply wells were each sampled 10 times over 15 months. Samples were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) for several virus groups and by cell culture for infectious enteroviruses. Seven of 30 samples were positive by RT-PCR for enteroviruses; one of these was positive for infectious echovirus 18. The virus-positive samples were collected from two wells cased through the aquitard, indicating the viruses were present in the confined aquifer. Samples from the same wells showed atmospheric tritium, indicating water recharged within the past few decades. Hydrogeologic conditions support rapid porous media transport of viruses through the upper sandstone aquifer to the top of the aquitard 61 m below ground surface. Natural fractures in the shale aquitard are one possible virus transport pathway through the aquitard; however, windows, cross-connecting well bores, or imperfect grout seals along well casings also may be involved. Deep confined aquifers can be more vulnerable to contamination by human viruses than commonly believed. ?? 2007 American Chemical Society.

  19. Groundwater sampling methods using glass wool filtration to trace human enteric viruses in Madison, Wisconsin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human enteric viruses have been detected in the Madison, Wisconsin deep municipal well system. Earlier projects by the Wisconsin Geological and Natural History Survey (WGNHS) have used glass wool filters to sample groundwater for these viruses directly from the deep municipal wells. Polymerase chain...

  20. Retention of Enteric Viruses by the Hemocytes of the Eastern Oyster (Crassostrea virginica)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virus accumulation and persistence in bivalve mollusks has long been documented in the United States and also throughout the world. Shellfish are an important vector for transmission of enteric pathogens. Interventions, such as depuration, do not adequately clear oysters of virus, while fecal bacter...

  1. SURVIVAL OF INDIGENOUS ENTERIC VIRUSES DURING STORAGE OF WASTE WATER SLUDGE SAMPLES

    EPA Science Inventory

    The stability of indigenous enteric viruses in samples of settled primary and mixed-liquor activated sludges was studied at 2, 23 and -70 deg C. Changes of virus titer which occurred in these samples were followed during an 84-day observation period, with rates of change then cal...

  2. Understanding How Zika Virus Enters and Infects Neural Target Cells.

    PubMed

    Miner, Jonathan J; Diamond, Michael S

    2016-05-01

    Zika virus is a mosquito-transmitted flavivirus that has become a public health concern because of its ability to cause microcephaly. In this issue of Cell Stem Cell, Tang et al. (2016) and Nowakowski et al. (2016) use human neural stem cell models and single-cell RNA sequencing to investigate Zika virus tropism and potential entry receptors. PMID:27152436

  3. Efficient strategy for constructing duck enteritis virus-based live attenuated vaccine against homologous and heterologous H5N1 avian influenza virus and duck enteritis virus infection.

    PubMed

    Zou, Zhong; Hu, Yong; Liu, Zhigang; Zhong, Wei; Cao, Hangzhou; Chen, Huanchun; Jin, Meilin

    2015-01-01

    Duck is susceptible to many pathogens, such as duck hepatitis virus, duck enteritis virus (DEV), duck tembusu virus, H5N1 highly pathogenic avian influenza virus (HPAIV) in particular. With the significant role of duck in the evolution of H5N1 HPAIV, control and eradication of H5N1 HPAIV in duck through vaccine immunization is considered an effective method in minimizing the threat of a pandemic outbreak. Consequently, a practical strategy to construct a vaccine against these pathogens should be determined. In this study, the DEV was examined as a candidate vaccine vector to deliver the hemagglutinin (HA) gene of H5N1, and its potential as a polyvalent vaccine was evaluated. A modified mini-F vector was inserted into the gB and UL26 gene junction of the attenuated DEV vaccine strain C-KCE genome to generate an infectious bacterial artificial chromosome (BAC) of C-KCE (vBAC-C-KCE). The HA gene of A/duck/Hubei/xn/2007 (H5N1) was inserted into the C-KCE genome via the mating-assisted genetically integrated cloning (MAGIC) to generate the recombinant vector pBAC-C-KCE-HA. A bivalent vaccine C-KCE-HA was developed by eliminating the BAC backbone. Ducks immunized with C-KCE-HA induced both the cross-reactive antibodies and T cell response against H5. Moreover, C-KCE-HA-immunized ducks provided rapid and long-lasting protection against homologous and heterologous HPAIV H5N1 and DEV clinical signs, death, and primary viral replication. In conclusion, our BAC-C-KCE is a promising platform for developing a polyvalent live attenuated vaccine. PMID:25889564

  4. Nearly Constant Shedding of Diverse Enteric Viruses by Two Healthy Infants

    PubMed Central

    Kapusinszky, Beatrix; Minor, Philip

    2012-01-01

    Stool samples from two healthy infant siblings collected at about weekly intervals during their first year of life were analyzed by PCR for 15 different enteric viral genera. Adenovirus, Aichi virus, Anellovirus, Astrovirus, Bocavirus, Enterovirus, Parechovirus, Picobirnavirus, and Rotavirus were detected. Not detected were Coronavirus, Cardiovirus, Cosavirus, Salivirus, Sapovirus, and Norovirus. Long-term virus shedding, lasting from one to 12 months, was observed for adenoviruses, anelloviruses, bocaviruses, enteroviruses, parechoviruses, and picobirnaviruses. Repeated administration of oral poliovirus vaccine resulted in progressively shorter periods of poliovirus detection. Four nonpolio enterovirus genotypes were also detected. An average of 1.8 distinct human viruses were found per time point. Ninety-two percent (66/72) of the fecal samples tested contained one to five different human viruses. Two British siblings in the mid-1980s showed nearly constant fecal viral shedding. Our results demonstrate that frequent enteric infections with diverse viruses occur during early childhood in the absence of severe clinical symptoms. PMID:22875894

  5. SEQUENTIAL INOCULATION AS AN ADJUNCT IN ENTERIC VIRUS PLAQUE ENUMERATION

    EPA Science Inventory

    The potential utility of sequentially inoculating a virus sample onto two different cultures of similar dissimilar cell lines was evaluated in conjunction with IDU (5-iodo-2'-deoxyuridine) treatment of the cells as a potential adjunct in viral plaque formation assays. his evaluat...

  6. DETECTION OF ENTERIC VIRUSES IN TREATED DRINKING WATER

    EPA Science Inventory

    The occurrence of viruses in conventionally treated drinking water derived from a heavily polluted source was evaluated by collecting and analyzing 38 large volume (65 to 756 liter) samples of water from a 9m3/sec (205 mgd) water treatment plant. Samples of raw, clarified, filter...

  7. Relationships Between Environmental Factors, Bacterial Indicators, and the Occurrence of Enteric Viruses in Estuarine Sediments

    PubMed Central

    LaBelle, Raymond L.; Gerba, Charles P.; Goyal, Sagar M.; Melnick, Joseph L.; Cech, Irina; Bogdan, Gregory F.

    1980-01-01

    Current standards for evaluation of the public health safety of recreational and shellfish-harvesting waters are based upon bacteriological analysis, but do not include an evaluation of the number of viruses. The objective of this study was to determine the occurrence of enteric viruses in estuarine sediments and to find a relationship, if any, between the presence of viruses in seawater or sediment or both and various biological and physicochemical characteristics of the environment. Viruses were found in greater numbers in sediment than in overlying seawater on a volume basis. Several types of enteroviruses were isolated: coxsackievirus types A16, B1, and B5, echovirus type 1, and poliovirus type 2. On several occasions, viruses were isolated from sediments when overlying seawaters met bacteriological water quality standards for recreational use. Statistical analysis of the relationship between viruses in seawater or in sediment and other variables measured yielded only one significant association: the number of viruses in sediment was found to be positively correlated with the number of fecal coliforms in sediment. No other physical, chemical, or biological characteristic of seawater or sediment that was measured showed statistically significant association with viral numbers. No correlation was found between bacterial indicators and virus in the overlying waters. The data indicated that evaluation of the presence of bacteria and viruses in sediment may provide additional insight into long-term water quality conditions and that indicator bacteria in water are not reflective of the concentration of enteric viruses in marine waters. PMID:6247974

  8. Surveillance of Enteric Viruses and Microbial Indicators in the Eastern Oysters (Crassostrea virginica) and Harvest Waters along Louisiana Gulf Coast.

    PubMed

    Montazeri, Naim; Maite, Morgan; Liu, Da; Cormier, Jiemin; Landry, Matthew; Shackleford, John; Lampila, Lucina E; Achberger, Eric C; Janes, Marlene E

    2015-05-01

    Noroviruses are the most common causative agent of viral gastroenteritis in humans, and are responsible for major foodborne illnesses in the United States. Filter-feeding molluscan shellfish exposed to sewage-contaminated waters bioaccumulate viruses, and if consumed raw, transmit the viruses to humans and cause illness. We investigated the occurrence of norovirus GI and GII and microbial indicators of fecal contamination in the eastern oysters (Crassostrea virginica) and water from commercial harvesting areas along the Louisiana Gulf Coast (January to November of 2013). Microbial indicators (aerobic plate count, enterococci, fecal coliforms, Escherichia coli, male-specific coliphages, and somatic coliphages) were detected at the densities lower than public health concerns. Only one oyster sample was positive for norovirus GII at 3.5 ± 0.2 log10 genomic equivalent copies/g digestive tissues. A stool specimen obtained from an infected individual associated with a norovirus outbreak and the suspected oysters (Cameron Parish, La., area 30, January 2013) were also analyzed. The norovirus strain in the stool belonged to GII.4 Sydney; however, the oysters were negative and could not be linked. In general, no temporal trend was observed in the microbial indicators. Low correlation among bacterial indicators was observed in oysters. Strongest correlations among microbial indicators were observed between enterococci and fecal coliforms (r = 0.63) and between enterococci and E. coli (r = 0.64) in water (P < 0.05); however, weak correlations were found in oysters (r < 0.45) and between oysters and harvest water (r ≤ 0.36, P > 0.05). Our results emphasize the need for regular monitoring of pathogenic viruses in commercial oyster harvesting areas to reduce the risks of viral gastroenteritis incidences. PMID:25899121

  9. Efficient Strategy to Generate a Vectored Duck Enteritis Virus Delivering Envelope of Duck Tembusu Virus

    PubMed Central

    Zou, Zhong; Liu, Zhigang; Jin, Meilin

    2014-01-01

    Duck Tembusu virus (DTMUV) is a recently emerging pathogenic flavivirus that has resulted in a huge economic loss in the duck industry. However, no vaccine is currently available to control this pathogen. Consequently, a practical strategy to construct a vaccine against this pathogen should be determined. In this study, duck enteritis virus (DEV) was examined as a candidate vaccine vector to deliver the envelope (E) of DTMUV. A modified mini-F vector was inserted into the SORF3 and US2 gene junctions of the attenuated DEV vaccine strain C-KCE genome to generate an infectious bacterial artificial chromosome (BAC) of C-KCE (vBAC-C-KCE). The envelope (E) gene of DTMUV was inserted into the C-KCE genome through the mating-assisted genetically integrated cloning (MAGIC) strategy, resulting in the recombinant vector, pBAC-C-KCE-E. A bivalent vaccine C-KCE-E was generated by eliminating the BAC backbone. Immunofluorescence and western blot analysis results indicated that the E proteins were vigorously expressed in C-KCE-E-infected chicken embryo fibroblasts (CEFs). Duck experiments demonstrated that the insertion of the E gene did not alter the protective efficacy of C-KCE. Moreover, C-KCE-E-immunized ducks induced neutralization antibodies against DTMUV. These results demonstrated, for the first time, that recombinant C-KCE-E can serve as a potential bivalent vaccine against DEV and DTMUV. PMID:24956180

  10. Detection of enteric viruses in activated sludge by feasible concentration methods

    PubMed Central

    Prado, Tatiana; Gaspar, Ana Maria Coimbra; Miagostovich, Marize Pereira

    2014-01-01

    Human enteric viruses are responsible to cause several diseases, including gastroenteritis and hepatitis, and can be present in high amounts in sewage sludge. This study compared virus recovery efficiency of two feasible concentration methods used for detecting human adenovirus (HAdV), rotavirus species A (RV-A), norovirus genogroup II (NoV GII) and hepatitis A virus (HAV) in sewage sludge from an activated sludge process. Twelve sewage sludge samples were collected bi-monthly from January to July, 2011. Ultracentrifugation was compared with a simplified protocol based on beef extract elution for recovering enteric viruses. Viruses were quantified by quantitative real-time PCR assays and virus recovery efficiency and limits of detection were determined. Methods showed mean recovery rates lower than 7.5%, presenting critical limits of detection (higher than 102 – 103 genome copies - GC L−1 for all viruses analyzed). Nevertheless, HAdV were detected in 90% of the analyzed sewage sludge samples (range: 1.8 × 104 to 1.1 × 105 GC L−1), followed by RV-A and NoV (both in 50%) and HAV (8%). Results suggesting that activated sludge is contaminated with high viral loads and HAdV are widely disseminated in these samples. The low virus recovery rates achieved, especially for HAV, indicate that other feasible concentration methods could be developed to improve virus recovery efficiency in these environmental matrices. PMID:24948954

  11. Emergence of Enteric Viruses in Production Chickens Is a Concern for Avian Health

    PubMed Central

    Mettifogo, Elena; Nuñez, Luis F. N.; Astolfi-Ferreira, Claudete S.; Jerez, José A.; Jones, Richard C.

    2014-01-01

    Several viruses have been identified in recent years in the intestinal contents of chickens and turkeys with enteric problems, which have been observed in commercial farms worldwide, including Brazil. Molecular detection of these viruses in Brazil can transform to a big threat for poultry production due to risk for intestinal integrity. This disease is characterized by severely delayed growth, low uniformity, lethargy, watery diarrhea, delayed feed consumption, and a decreased conversion rate. Chicken astrovirus (CAstV), rotavirus, reovirus, chicken parvovirus (ChPV), fowl adenovirus of subgroup I (FAdV-1), and avian nephritis virus (ANV) were investigated using the conventional polymerase chain reaction (PCR) and the reverse transcription polymerase chain reaction (RT-PCR). In addition, the infectious bronchitis virus (IBV), which may play a role in enteric disease, was included. The viruses most frequently detected, either alone or in concomitance with other viruses, were IBV, ANV, rotavirus, and CAstV followed by parvovirus, reovirus, and adenovirus. This study demonstrates the diversity of viruses in Brazilian chicken flocks presenting enteric problems characterized by diarrhea, growth retard, loss weight, and mortality, which reflects the multicausal etiology of this disease. PMID:24578633

  12. Evaluation of Human Enteric Viruses in Surface Water and Drinking Water Resources in Southern Ghana

    PubMed Central

    Gibson, Kristen E.; Opryszko, Melissa C.; Schissler, James T.; Guo, Yayi; Schwab, Kellogg J.

    2011-01-01

    An estimated 884 million people worldwide do not have access to an improved drinking water source, and the microbial quality of these sources is often unknown. In this study, a combined tangential flow, hollow fiber ultrafiltration (UF), and real-time PCR method was applied to large volume (100 L) groundwater (N = 4), surface water (N = 9), and finished (i.e., receiving treatment) drinking water (N = 6) samples for the evaluation of human enteric viruses and bacterial indicators. Human enteric viruses including norovirus GI and GII, adenovirus, and polyomavirus were detected in five different samples including one groundwater, three surface water, and one drinking water sample. Total coliforms and Escherichia coli assessed for each sample before and after UF revealed a lack of correlation between bacterial indicators and the presence of human enteric viruses. PMID:21212196

  13. A 1-Year Study on the Detection of Human Enteric Viruses in New Caledonia.

    PubMed

    Kaas, Laetitia; Gourinat, Ann-Claire; Urbès, Florence; Langlet, Jérémie

    2016-03-01

    Human enteric viruses occur in high concentrations in wastewater and can contaminate receiving environmental waters. Due to the lack of data on the prevalence of enteric viruses in New Caledonia, the presence and the concentrations of enteric viruses in wastewater and seawater were determined. Untreated wastewater and seawater samples were collected monthly for 1 year from a wastewater treatment plant (WWTP) and from the WWTP's outlet, located directly on a popular recreational beach. Samples were tested for norovirus genogroups I and II (NoV GI and GII), astroviruses (AsV), sapoviruses (SaV), enteroviruses (EV), hepatitis A viruses (HAV), rotaviruses (RoV), human adenoviruses (HAdV) and human polyomaviruses (HPyV). To support these data, faecal samples from cases of gastroenteritis were tested for the first time for NoV and detected in the population. NoV GI, NoV GII, EV, SaV, HAdV and HPyV were detected in all wastewaters, RoV in 75% and AsV in 67%. HAV were not detected in wastewater. Overall, 92% of seawater samples were positive for at least one virus. HPyV were detected most frequently in 92% of samples and at concentrations up to 7.7 × 10(3) genome copies/L. NoV GI, NoV GII, EV, SaV, RoV and HAdV were found in 33, 66, 41, 33, 16 and 66% of seawater samples, respectively. AsV were not detected in seawater. This study reports for the first time the presence of NoV and other enteric viruses in New Caledonia and highlights the year-round presence of enteric viruses in the seawater of a popular beach. PMID:26670603

  14. Case report: epithelial intracytoplasmic herpes viral inclusions associated with an outbreak of duck virus enteritis

    USGS Publications Warehouse

    Barr, B.C.; Jessup, David A.; Docherty, Douglas E.; Lownestine, L.J.

    1992-01-01

    Several muscovy ducks from a free-roaming flock of 65 muscovy and mallard ducks died over a 3-week period. Three muscovy ducks were necropsied. Gross and microscopic changes were compatible with duck virus enteritis, and the virus was isolated. In addition to intranuclear viral inclusion bodies in several tissues, intracytoplasmic inclusion bodies were present in esophageal and cloacal epithelium, By electron microscopy, the membrane-bound intracytoplasmic inclusions were found to contain enveloped herpesvirus, and nuclei contained herpes viral nucleocapsids.

  15. Comparison of PCR and Plaque Assay for Detection and Enumeration of Coliphage in Polluted Marine Waters

    PubMed Central

    Rose, J. B.; Zhou, X.; Griffin, D. W.; Paul, J. H.

    1997-01-01

    A total of 68 marine samples from various sites impacted by sewage and storm waters were analyzed by both the plaque assay and a reverse transcriptase (RT) PCR technique for F(sup+)-specific coliphage. The coliphage levels detected by the plaque assay averaged 1.90 x 10(sup4) PFU/100.0 ml. Using a most probable number (MPN) PCR approach, the levels averaged 2.40 x 10(sup6) MPN-PCR units/100.0 ml. Two samples were positive by RT-PCR but negative by plaque assay, and 12 samples were positive by plaque assay but negative by RT-PCR (levels lower than 11.00 PFU/100.0 ml). The host system used for the plaque assay may detect somatic coliphage in addition to the F(sup+)-specific coliphage. When it is used as an indicator of pollution, contamination may be missed with more restrictive systems. The difference in results may be due to the sensitivity, specificity, or inhibition of RT-PCR in marine samples. This study provides information on quantifying PCR results by an MPN method and insights into interpretation of PCR data for detection of viruses in marine environments. PMID:16535737

  16. Concentration of enteric virus indicator from seawater using granular activated carbon.

    PubMed

    Cormier, Jiemin; Gutierrez, Miguel; Goodridge, Lawrence; Janes, Marlene

    2014-02-01

    Fecal contamination of shellfish growing seawater with enteric viruses is often associated with human outbreaks of gastroenteritis. Male specific bacteriophage MS2 is correlated with those of enteric viruses in a wide range of water environments and has been used widely as a surrogate for pathogenic waterborne viruses. Since viruses in contaminated water are usually at low levels, the development of methods to concentrate viruses from water is crucial for detection purposes. In the present study, granular activated carbon was evaluated for concentration of MS2 from artificial seawater, and different parameters of the seawater were also compared. Recovery of MS2 from warm seawater (37°C) was found to be significantly greater than from cold seawater (4 and 20°C), and even greater than from fresh water (4, 20 and 37°C); the difference between seawater and fresh water became less profound when the temperatures of both were below 37°C. Although not of statistical significance, recovery of MS2 from low salinity seawater (10 and 20 parts per thousand, ppt) was greater than from high salinity seawater (30 and 40ppt). One gram of granular activated carbon was able to extract 6-log plaque forming units (PFU) of MS2 from 500ml seawater at 37°C. This study demonstrated that granular activated carbon can concentrate an enteric virus indicator from shellfish growing seawater effectively. PMID:24269798

  17. Diversity in the enteric viruses detected in outbreaks of gastroenteritis from Mumbai, Western India.

    PubMed

    Chitambar, Shobha; Gopalkrishna, Varanasi; Chhabra, Preeti; Patil, Pooja; Verma, Harsha; Lahon, Anismrita; Arora, Ritu; Tatte, Vaishali; Ranshing, Sujata; Dhale, Ganesh; Kolhapure, Rajendra; Tikute, Sanjay; Kulkarni, Jagannath; Bhardwaj, Renu; Akarte, Sulbha; Pawar, Sashikant

    2012-03-01

    Faecal specimens collected from two outbreaks of acute gastroenteritis that occurred in southern Mumbai, India in March and October, 2006 were tested for seven different enteric viruses. Among the 218 specimens tested, 95 (43.6%) were positive, 73 (76.8%) for a single virus and 22 (23.2%) for multiple viruses. Single viral infections in both, March and October showed predominance of enterovirus (EV, 33.3% and 40%) and rotavirus A (RVA, 33.3% and 25%). The other viruses detected in these months were norovirus (NoV, 12.1% and 10%), rotavirus B (RVB, 12.1% and 10%), enteric adenovirus (AdV, 6.1% and 7.5%), Aichivirus (AiV, 3% and 7.5%) and human astrovirus (HAstV, 3% and 0%). Mixed viral infections were largely represented by two viruses (84.6% and 88.9%), a small proportion showed presence of three (7.7% and 11%) and four (7.7% and 0%) viruses in the two outbreaks. Genotyping of the viruses revealed predominance of RVA G2P[4], RVB G2 (Indian Bangladeshi lineage), NoV GII.4, AdV-40, HAstV-8 and AiV B types. VP1/2A junction region based genotyping showed presence of 11 different serotypes of EVs. Although no virus was detected in the tested water samples, examination of both water and sewage pipelines in gastroenteritis affected localities indicated leakages and possibility of contamination of drinking water with sewage water. Coexistence of multiple enteric viruses during the two outbreaks of gastroenteritis emphasizes the need to expand such investigations to other parts of India. PMID:22690171

  18. Diversity in the Enteric Viruses Detected in Outbreaks of Gastroenteritis from Mumbai, Western India

    PubMed Central

    Chitambar, Shobha; Gopalkrishna, Varanasi; Chhabra, Preeti; Patil, Pooja; Verma, Harsha; Lahon, Anismrita; Arora, Ritu; Tatte, Vaishali; Ranshing, Sujata; Dhale, Ganesh; Kolhapure, Rajendra; Tikute, Sanjay; Kulkarni, Jagannath; Bhardwaj, Renu; Akarte, Sulbha; Pawar, Sashikant

    2012-01-01

    Faecal specimens collected from two outbreaks of acute gastroenteritis that occurred in southern Mumbai, India in March and October, 2006 were tested for seven different enteric viruses. Among the 218 specimens tested, 95 (43.6%) were positive, 73 (76.8%) for a single virus and 22 (23.2%) for multiple viruses. Single viral infections in both, March and October showed predominance of enterovirus (EV, 33.3% and 40%) and rotavirus A (RVA, 33.3% and 25%). The other viruses detected in these months were norovirus (NoV, 12.1% and 10%), rotavirus B (RVB, 12.1% and 10%), enteric adenovirus (AdV, 6.1% and 7.5%), Aichivirus (AiV, 3% and 7.5%) and human astrovirus (HAstV, 3% and 0%). Mixed viral infections were largely represented by two viruses (84.6% and 88.9%), a small proportion showed presence of three (7.7% and 11%) and four (7.7% and 0%) viruses in the two outbreaks. Genotyping of the viruses revealed predominance of RVA G2P[4], RVB G2 (Indian Bangladeshi lineage), NoV GII.4, AdV-40, HAstV-8 and AiV B types. VP1/2A junction region based genotyping showed presence of 11 different serotypes of EVs. Although no virus was detected in the tested water samples, examination of both water and sewage pipelines in gastroenteritis affected localities indicated leakages and possibility of contamination of drinking water with sewage water. Coexistence of multiple enteric viruses during the two outbreaks of gastroenteritis emphasizes the need to expand such investigations to other parts of India. PMID:22690171

  19. EFFECT OF ENVIRONMENTAL VARIABLES ON ENTERIC VIRUS SURVIVAL IN SURFACE FRESHWATERS

    EPA Science Inventory

    In a review of published studies which have concerned stability of enteric viruses in surface freshwaters, those environmental variables which have been determined to have a statistically significant effect are pH, chloride, TOC, hardness, turbidity, and exposure to sunlight when...

  20. A MULTIPLEX REVERSE TRANSCIPTION-PCR METHOD FOR DETECTION OF HUMAN ENTERIC VIRUSES IN GROUNDWATER

    EPA Science Inventory

    Untreated groundwater is responsible for about half of the waterborne disease outbreaks in the United States. Human enteric viruses are thought to be leading etiological agents of many of these outbreaks, but there is relatively little information on the types and levels of viru...

  1. PRESENCE OF ENTERIC VIRUSES IN FRESHWATER AND THEIR REMOVAL BY THE CONVENTIONAL DRINKING WATER TREATMENT PROCESS

    EPA Science Inventory

    A review of results published in English or French between 1980 and 1990 was carried out to determine the levels of indigenous human enteric viruses in untreated surface and subsurface freshwaters, as well as in drinking water that had undergone the complete conventional treatmen...

  2. INFLUENCE OF WATER QUALITY ON ENTERIC VIRUS CONCENTRATION BY MICROPOROUS FILTER METHODS

    EPA Science Inventory

    Four enteric viruses, poliovirus type 1, echovirus type 1, reovirus type 3 and simian adenovirus SV-11, were concentrated from seeded 1.3L-volumes of raw, finished and granular activated carbon (GAC)-treated waters by adsorption to 47 mm diameter (17 sq cm), electropositive (Viro...

  3. AN UNEXPECTED TEMPORAL PATTERN OF COLIPHAGE ISOLATION IN GROUNDWATERS SAMPLED FROM WELLS AT VARIED DISTANCES FROM RECLAIMED WATER RECHARGE SITES

    EPA Science Inventory

    Potable and monitoring wells located in close proximity to a large groundwater recharge project which utilizes a blend of surface water and reclaimed wastewater for recharge were tested for coliphage over a period of 6 months to assess the potential for virus migration. During th...

  4. Assessment of sewer source contamination of drinking water wells using tracers and human enteric viruses

    USGS Publications Warehouse

    Hunt, R.J.; Borchardt, M. A.; Richards, K.D.; Spencer, S. K.

    2010-01-01

    This study investigated the source, transport, and occurrence of human enteric viruses in municipal well water, focusing on sanitary sewer sources. A total of 33 wells from 14 communities were sampled once for wastewater tracers and viruses. Wastewater tracers were detected in four of these wells, and five wells were virus- positive by qRT-PCR. These results, along with exclusion of wells with surface water sources, were used to select three wells for additional investigation. Viruses and wastewater tracers were found in the groundwater at all sites. Some wastewater tracers, such as ionic detergents, flame retardants, and cholesterol, were considered unambiguous evidence of wastewater. Sampling at any given time may not show concurrent virus and tracer presence; however, given sufficient sampling over time, a relation between wastewater tracers and virus occurrence was identified. Presence of infectious viruses at the wellhead demonstrates that high-capacity pumping induced sufficiently short travel times for the transport of infectious viruses. Therefore, drinking-water wells are vulnerable to contaminants that travel along fast groundwater flowpaths even if they contribute a small amount of virus-laden water to the well. These results suggest that vulnerability assessments require characterization of "low yield-fast transport" in addition to traditional "high yield-slow transport", pathways. ?? 2010 American Chemical Society.

  5. Survival of enteric viruses under natural conditions in a subarctic river.

    PubMed Central

    Dahling, D R; Safferman, R S

    1979-01-01

    The survival of enteric viruses was studied in the vicinity of Fairbanks, Alaska at selected stations along a 317-km section of the Tanana River. This section was located downstream from all known domestic wastewater sources and was effectively sealed by a total ice cover. The mean flow time through the region was 7.1 days, during which initial viral population showed a relative survival rate of 34%. The tracing of native viruses at such great distances in the complete absence of other point and nonpoint viral sources has not been previously reported. Of the two methods of virus concentration used, viral recoveries from the disk adsorption virus elution procedure were far greater than those achieved with the Aquella system employed at that time. The fact the ratio of enteric viruses to fecal indicator bacteria was not constant clearly inferred that these bacteria were not an effectual measure of virus concentration. The persistence of fecal coliforms and fecal streptococci, however, attested to the microbiological health risk involved. PMID:230786

  6. Bacterial lipopolysaccharide binding enhances virion stability and promotes environmental fitness of an enteric virus

    PubMed Central

    Robinson, Christopher M.; Jesudhasan, Palmy R.; Pfeiffer, Julie K.

    2014-01-01

    Summary Enteric viruses, including poliovirus and reovirus, encounter a vast microbial community in the mammalian gastrointestinal tract, which has been shown to promote virus replication and pathogenesis. Investigating the underlying mechanisms, we find that poliovirus binds bacterial surface polysaccharides, which enhances virion stability and cell attachment by increasing binding to the viral receptor. Additionally, we identified a poliovirus mutant, VP1-T99K, with reduced lipopolysaccharide (LPS) binding. Although T99K and WT poliovirus cell attachment, replication and pathogenesis in mice are equivalent, following peroral inoculation of mice, VP1-T99K poliovirus was unstable in feces. Consequently, the ratio of mutant virus in feces is reduced following additional cycles of infection in mice. Thus, the mutant virus incurs a fitness cost when environmental stability is a factor. These data suggest that poliovirus binds bacterial surface polysaccharides, enhancing cell attachment and environmental stability, potentially promoting transmission to a new host. PMID:24439896

  7. An outbreak of duck virus enteritis (duck plague) in a captive flock of mixed waterfowl

    USGS Publications Warehouse

    Montgomery, R.D.; Stein, G., Jr.; Novilla, M.N.; Hurley, Sarah S.; Fink, R.J.

    1981-01-01

    An outbreak of duck virus enteritis occurred in a flock of captive waterfowl composed of mallards (Anas platyrhynchos), black ducks (Anas rubripes), and Canada geese (Branta canadensis). Although all three species were housed together, morbidity and mortality were confined to the 227 black ducks and Canada geese, of which 180 died and the rest were left in a weakened condition. Lesions are given for 20 black ducks and 4 Canada geese dying from DVE. In addition, both horizontal and vertical transmission are discussed as possible sources of the virus that caused this outbreak.

  8. Comparative reductions of bacterial indicators, bacteriophage-infecting enteric bacteria and enteroviruses in wastewater tertiary treatments by lagooning and UV-radiation.

    PubMed

    Gomila, Margarita; Solis, Javier J; David, Zoyla; Ramon, Cristina; Lalucat, Jorge

    2008-01-01

    A two-year monitoring program of microbiological and physical-chemical parameters at 2 waste water treatment plants (WWTPs) in Mallorca (Spain) was performed in order to (1) evaluate the efficiency of lagooning and UV radiation as tertiary treatment processes; (2) determine the characteristics of wastewater effluent for its potential agricultural reuse; and (3) establish correlations between bacteriological and virological parameters. The presence of currently established bacterial indicators (total coliforms, faecal coliforms, Escherichia coli, enterococci, and spores of sulphite-reducing clostridia), virological (enteroviruses, somatic coliphages, F-specific coliphages, and phages infecting Bacteroides fragilis and Bacteroides thetaiotaomicron), and helminth eggs were tested during this study. Bacterial and viral indicators were removed at least with one log reduction in the lagooning system, and to a lesser extent with UV-radiation treatment. The lagooning system was less efficient in removing phages and viruses than were bacterial indicators, with the exception of F-specific phages. Phages of B. fragilis and B. thetaiotaomicron were less removed than all of the other microbiological parameters. In the UV-radiation treatment, however, the faecal coliforms proved the most sensitive, while clostridial spores, somatic coliphages, Bacteroides phages, and enteric viruses were the more resistant. Helminth eggs were not detected in any samples from effluents of either the secondary or tertiary treatments.Indicator levels in both treatments met the established regulations of both local and national authorities for the disposal or reuse of wastewater in irrigation for non-human crop. We demonstrate that somatic coliphages are effective indicators of enteric viruses in both of the WWTPs studied. PMID:19092200

  9. Molecular virus screening to detect novel viruses from turkey flocks affected by Poult Enteritis Mortality Syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poult Enteritis Mortality Syndrome (PEMS) is an economically important, infectious enteric disease of young turkeys. The disease is characterized by decreased weight gain, increased morbidity and mortality, and increased production costs due to poor feed conversions. PEMS is considered to be a multi...

  10. Prevalence and Genetic Diversity of Enteric Viruses in Children with Diarrhea in Ouagadougou, Burkina Faso

    PubMed Central

    Ouédraogo, Nafissatou; Kaplon, Jérôme; Bonkoungou, Isidore Juste O.; Traoré, Alfred Sababénédjo; Pothier, Pierre; Barro, Nicolas; Ambert- Balay, Katia

    2016-01-01

    Enteric viruses are a major cause of diarrhea in children, especially those under five years old. Identifying the viral agents is critical to the development of effective preventive measures. This study aimed to determine the prevalence and genetic diversity of common enteric viruses in children under five years old in Burkina Faso. Stool samples from children with (n = 263) and without (n = 50) diarrhea disorders were collected in Ouagadougou, Burkina Faso from November 2011 to September 2012. Rotavirus, norovirus, sapovirus, astrovirus, adenovirus and Aichivirus A were detected using real-time or end-point (RT-)PCR. Rotavirus strains were G and P genotyped by multiplex RT-PCR and other viral strains were characterized by sequencing of viral subgenomic segements. At least one viral agent was detected in 85.6% and 72% of the symptomatic and asymptomatic patients, respectively. Rotavirus (63.5%), adenovirus (31.2%) and genogroup II norovirus (18.2%) were the most prevalent viruses in symptomatic patients, but only rotavirus and genogroup II norovirus were significantly associated with diarrhea (OR: 7.9, 95%CI: 3.7–17; OR: 3.5, 95%CI: 1–11.7, respectively). Sapovirus (10.3%), astrovirus (4.9%), genogroup I norovirus (2.7%) and Aichivirus A (0.8%) were less prevalent. The predominant genotype of rotavirus was G9P[8] (36.5%), and the predominant norovirus strain was GII.4 variant 2012 (71.4%). Among sapovirus, the genogroup II (87.5%) predominated. Astrovirus type 1 (41.7%) was the most frequent astrovirus identified. Aichivirus A belonged to the three genotypes (A, B and C). Enteric adenoviruses type 40 and 41 were identified in 10.2% and 5.1% respectively. Several cases of co-infections were detected. The results highlight the high prevalence and the high diversity of enteric viruses in Burkinabe children. PMID:27092779

  11. Prevalence and Genetic Diversity of Enteric Viruses in Children with Diarrhea in Ouagadougou, Burkina Faso.

    PubMed

    Ouédraogo, Nafissatou; Kaplon, Jérôme; Bonkoungou, Isidore Juste O; Traoré, Alfred Sababénédjo; Pothier, Pierre; Barro, Nicolas; Ambert-Balay, Katia

    2016-01-01

    Enteric viruses are a major cause of diarrhea in children, especially those under five years old. Identifying the viral agents is critical to the development of effective preventive measures. This study aimed to determine the prevalence and genetic diversity of common enteric viruses in children under five years old in Burkina Faso. Stool samples from children with (n = 263) and without (n = 50) diarrhea disorders were collected in Ouagadougou, Burkina Faso from November 2011 to September 2012. Rotavirus, norovirus, sapovirus, astrovirus, adenovirus and Aichivirus A were detected using real-time or end-point (RT-)PCR. Rotavirus strains were G and P genotyped by multiplex RT-PCR and other viral strains were characterized by sequencing of viral subgenomic segements. At least one viral agent was detected in 85.6% and 72% of the symptomatic and asymptomatic patients, respectively. Rotavirus (63.5%), adenovirus (31.2%) and genogroup II norovirus (18.2%) were the most prevalent viruses in symptomatic patients, but only rotavirus and genogroup II norovirus were significantly associated with diarrhea (OR: 7.9, 95%CI: 3.7-17; OR: 3.5, 95%CI: 1-11.7, respectively). Sapovirus (10.3%), astrovirus (4.9%), genogroup I norovirus (2.7%) and Aichivirus A (0.8%) were less prevalent. The predominant genotype of rotavirus was G9P[8] (36.5%), and the predominant norovirus strain was GII.4 variant 2012 (71.4%). Among sapovirus, the genogroup II (87.5%) predominated. Astrovirus type 1 (41.7%) was the most frequent astrovirus identified. Aichivirus A belonged to the three genotypes (A, B and C). Enteric adenoviruses type 40 and 41 were identified in 10.2% and 5.1% respectively. Several cases of co-infections were detected. The results highlight the high prevalence and the high diversity of enteric viruses in Burkinabe children. PMID:27092779

  12. Removal of enteric viruses and Escherichia coli from municipal treated effluent by zebra mussels.

    PubMed

    Mezzanotte, Valeria; Marazzi, Francesca; Bissa, Massimiliano; Pacchioni, Sole; Binelli, Andrea; Parolini, Marco; Magni, Stefano; Ruggeri, Franco M; De Giuli Morghen, Carlo; Zanotto, Carlo; Radaelli, Antonia

    2016-01-01

    Dreissena polymorpha is a widespread filter-feeder species, resistant to a broad range of environmental conditions and different types of pollutants,which has recently colonized Italian freshwaters. Although widely used to monitor pollution in freshwater environments, this species is also an important food source for some fish and water birds. It can also be used to concentrate or remove particulate organic matter to interrupt avian-to-human transmission of pollutants and control health risks for animals and humans. In this study, the accumulation/inactivation in D. polymorpha of human health-related spiked enteric viruses was described. The removal of endogenous Escherichia coli, the classical indicator of fecal contamination,was tested as well.Our preliminary lab-scale results demonstrate that zebra mussels can reduce significantly poliovirus titer after 24 h and rotavirus titer after 8 h. E. coli counts were also reduced in the presence of zebra mussels by about 1.5 log after 4 h and nearly completely after 24 h. The fate of the two enteric viruses after concentration by zebra mussels was also investigated after mechanical disruption of the tissues. To our knowledge, the accumulation from water and inactivation of human health-related enteric viruses by zebra mussels has never been reported. PMID:26372942

  13. New strain of mouse hepatitis virus as the cause of lethal enteritis in infant mice.

    PubMed Central

    Hierholzer, J C; Broderson, J R; Murphy, F A

    1979-01-01

    A new strain of mouse hepatitis virus (MHV) was isolated from pooled gut suspensions from an epizootic of lethal enteritis in newborn mice. Negative-contrast electron microscopy showed an abundance of coronavirus particles in the intestinal contents and intestinal epithelium of moribund mice. We found no other virus in the epizootic. Dams seroconverted to MHV polyvalent antigen and to the agent isolated, but did not develop antibodies to other known mouse pathogens. Virus propagated in NCTC-1469 tissue culture produced enteric disease in suckling mice but not fatal diarrhea; the dams of these mice also developed antibodies to MHV and to the isolates. By complement fixation, single radial hemolysis, and quantal neutralization tests, we found the isolates antigenically most closely related to MHV-S, unilaterally related to MHV-JHM, and more distantly related to MHV-1, MHV-3, MHV-A59, and human coronavirus OC-43. We also studied cross-reactions among the murine and human coronaviruses in detail. Tissues of infected newborn mice were examined by light microscopy, thin-section electron microscopy, and frozen-section indirect immunofluorescence, revealing that viral antigen, virus particles, and pathological changes were limited to the intestinal tract. We have designated our isolates as MHV-S/CDC. Images PMID:222687

  14. Enteric virus infection risk from intrusion of sewage into a drinking water distribution network.

    PubMed

    Teunis, P F M; Xu, M; Fleming, K K; Yang, J; Moe, C L; Lechevallier, M W

    2010-11-15

    Contaminants from the soil surrounding drinking water distribution systems are thought to not enter the drinking water when sufficient internal pressure is maintained. Pressure transients may cause short intervals of negative pressure, and the soil near drinking water pipes often contains fecal material due to the proximity of sewage lines, so that a pressure event may cause intrusion of pathogens. This paper presents a risk model for predicting intrusion and dilution of viruses and their transport to consumers. Random entry and dilution of virus was simulated by embedding the hydraulic model into a Monte Carlo simulation. Special attention was given to adjusting for the coincidence of virus presence and use of tap water, as independently occurring short-term events within the longer interval that the virus is predicted to travel in any branch of the distribution system. The probability that a consumer drinks water contaminated with virus is small, but when this happens the virus concentration tends to be high and the risk of infection may be considerable. The spatial distribution of infection risk is highly heterogeneous. The presence of a chlorine residual reduces the infection risk. PMID:20968297

  15. Monitoring of human enteric viruses and coliform bacteria in waters after urban flood in Jakarta, Indonesia.

    PubMed

    Phanuwan, C; Takizawa, S; Oguma, K; Katayama, H; Yunika, A; Ohgaki, S

    2006-01-01

    Floodwaters in Kampung Melayu village, Jakarta, Indonesia, as well as river water and consumable water (including groundwater and tap water) samples in flooded and non-flooded areas, were quantitatively analysed to assess occurrence of viruses and total coliforms and E. coli as bacterial indicators after flooding event. High numbers of enterovirus, hepatitis A virus, norovirus (G1, G2) and adenovirus were detected at high concentration in floodwaters and waters sampled from Ciliwung River which runs across metropolitan Jakarta and is used widely for agriculture and domestic purposes by poor residents. One out of three groundwater wells in the flooded area was contaminated with all viruses tested while no viruses were found in groundwater samples in non-flooded areas and tap water samples. The results revealed that human enteric viruses, especially hepatitis A virus and adenovirus, were prevalent in Jakarta, Indonesia. This study suggested that flooding posed a higher risk of viral infection to the people through contamination of drinking water sources or direct contact with floodwaters. PMID:17037154

  16. Uptake and survival of enteric viruses in the blue crab, Callinectes sapidus.

    PubMed

    Hejkal, T W; Gerba, C P

    1981-01-01

    Uptake of poliovirus 1 by the blue crab, Callinectes sapidus, was measured to assess the likelihood of contamination by human enteric viruses. Virus was found in all parts of the crab within 2 h after the crab was placed in contaminated artificial seawater. The highest concentrations of virus were found in the hemolymph and digestive tract, but the meat also contained virus. The concentration of virus in the crabs was generally less than in the surrounding water. Changes in salinity did not substantially affect the rate of accumulation. An increase in temperature from 15 to 25 degrees C increased the rates of both uptake and removal. Poliovirus survived up to 6 days in crabs at a temperature of 15 degrees C and a salinity of 10 g/kg. When contaminated crabs were boiled, 99.9% of poliovirus 1, simian rotavirus SA11, and a natural isolate of echovirus 1 were inactivated within 8 min. These data demonstrate that viruses in crabs should not pose a serious health hazard if recommended cooking procedures are used. PMID:6261683

  17. Current laboratory diagnosis of opportunistic enteric parasites in human immunodeficiency virus-infected patients

    PubMed Central

    De, Anuradha

    2013-01-01

    Diarrhea is a major cause of morbidity and mortality in human immunodeficiency virus (HIV)-infected individuals. Opportunistic enteric parasitic infections are encountered in 30-60% of HIV seropositive patients in developed countries and in 90% of patients in developing countries. Once the CD4+ cell count drops below 200 cells/μl, patients are considered to have developed acquired immunodeficiency syndrome (AIDS), with the risk of an AIDS-defining illness or opportunistic infection significantly increasing. Opportunistic enteric parasites encountered in these patients are Cryptosporidium, Isospora, Cyclospora, and microsporidia; as well as those more commonly associated with gastrointestinal disease, for example, Giardia intestinalis, Entamoeba histolytica, Strongyloides stercoralis, and also rarely Balantidium coli. In view of AIDS explosion in India, opportunistic enteric parasites are becoming increasingly important and it has to be identified properly. Apart from wet mounts, concentration methods for stool samples and special staining techniques for identification of these parasites, commercially available fecal immunoassays are widely available for the majority of enteric protozoa. Molecular methods such as polymerase chain reaction (PCR), PCR-restriction fragment length polymorphism, flow cytometry, and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), have also come in the pipeline for early diagnosis of these infections. Proper disposal of the feces to prevent contamination of the soil and water, boiling/filtering drinking water along with improved personal hygiene might go a long way in preventing these enteric parasitic infections. PMID:23961436

  18. Integration Site of Noninducible Coliphage 186

    PubMed Central

    Woods, Walter H.; Egan, J. Barry

    1972-01-01

    From conjugational data, the attachment site for noninducible coliphage 186 (att186) was located between the origins of Hfr strains KL16 and KL98, and close to the pheA gene in Escherichia coli K-12. P1 transductions indicated that att186 lies at 51 min on the standard genetic map of E. coli, with the order cysC-nalB-att186-pheA. The presence of prophage 186 in the donor destroyed linkage between nalB and pheA, which is taken as evidence for the integration of the 186 prophage between these genes. PMID:4559723

  19. Predominance and Circulation of Enteric Viruses in the Region of Greater Cairo, Egypt▿

    PubMed Central

    Kamel, Aziza H.; Ali, Mohamed A.; El-Nady, Hala G.; de Rougemont, Alexis; Pothier, Pierre; Belliot, Gaël

    2009-01-01

    The circulation of enteric viruses among the population of Cairo, Egypt, between March 2006 and February 2007 was studied. At least one virus was detected in 50% of fecal samples, 57.4% of which were positive for rotavirus, 26% for norovirus, 10.4% for adenovirus, and 1.7% for astrovirus. Over 10% of infections were mixed infections. Rotavirus typing showed that G1P[8] and G2P[4] were predominant but that the unusual G12P[4] and G12P[6] reassortants were also present. Among the noroviruses, half belonged to the predominant GGII.4 cluster. The phylogenetic analysis of the capsid gene suggested that GGII.4 strains from Cairo were similar to those circulating elsewhere. It also showed the emergence of new GGII.4 variants that were not associated with any previously known GGII.4 isolate. Further studies are required to assess the disease burden of enteric viruses in Egypt and the impact of atypical strains. PMID:19193841

  20. Inactivation of internalized and surface contaminated enteric viruses in green onions.

    PubMed

    Hirneisen, Kirsten A; Kniel, Kalmia E

    2013-09-01

    With increasing outbreaks of gastroenteritis associated with produce, it is important to assess interventions to reduce the risk of illness. UV, ozone and high pressure are non-thermal processing technologies that have potential to inactivate human pathogens on produce and allow the retention of fresh-like organoleptic properties. The objective of this study was to determine if UV, ozone, and high pressure are effective technologies compared to traditional chlorine spray on green onions to reduce enteric viral pathogens and to determine the effect of location of the virus (surface or internalized) on the efficacy of these processes. Mature green onion plants were inoculated with murine norovirus (MNV), hepatitis A virus (HAV) and human adenovirus type 41 (Ad41) either on the surface through spot inoculation or through inoculating contaminated hydroponic solution allowing for uptake of the virus into the internal tissues. Inoculated green onions were treated with UV (240 mJ s/cm(2)), ozone (6.25 ppm for 10 min), pressure (500 MPa, for 5 min at 20°C), or sprayed with calcium hypochlorite (150 ppm, 4°C). Viral inactivation was determined by comparing treated and untreated inoculated plants using cell culture infectivity assays. Processing treatments were observed to greatly affect viral inactivation. Viral inactivation for all three viruses was greatest after pressure treatment and the lowest inactivation was observed after chlorine and UV treatment. Both surface inoculated viruses and viruses internalized in green onions were inactivated to some extent by these post-harvest processing treatments. These results suggest that ozone and high pressure processes aimed to reduce the level of microbial contamination of produce have the ability to inactivate viruses if they become localized in the interior portions of produce. PMID:23973828

  1. Human adenoviruses and coliphages in urban runoff-impacted coastal waters of Southern California.

    PubMed

    Jiang, S; Noble, R; Chu, W

    2001-01-01

    A nested-PCR method was used to detect the occurrence of human adenovirus in coastal waters of Southern California. Twenty- to forty-liter water samples were collected from 12 beach locations from Malibu to the border of Mexico between February and March 1999. All sampling sites were located at mouths of major rivers and creeks. Two ultrafiltration concentration methods, tangential flow filtration (TFF) and vortex flow filtration (VFF), were compared using six environmental samples. Human adenoviruses were detected in 4 of the 12 samples tested after nucleic acid extraction of VFF concentrates. The most probable number of adenoviral genomes ranged from 880 to 7,500 per liter of water. Coliphages were detected at all sites, with the concentration varying from 5.3 to 3332 PFU/liter of water. F-specific coliphages were found at 5 of the 12 sites, with the concentration ranging from 5.5 to 300 PFU/liter. The presence of human adenovirus was not significantly correlated with the concentration of coliphage (r = 0.32) but was significantly correlated (r = 0.99) with F-specific coliphage. The bacterial indicators (total coliforms, fecal coliforms, and enterococci) were found to exceed California recreational water quality daily limits at 5 of the 12 sites. However, this excess of bacterial indicators did not correlate with the presence of human adenoviruses in coastal waters. The results of this study call for both a reevaluation of our current recreational water quality standards to reflect the viral quality of recreational waters and monitoring of recreational waters for human viruses on a regular basis. PMID:11133443

  2. Myxoma and vaccinia viruses exploit different mechanisms to enter and infect human cancer cells

    SciTech Connect

    Villa, Nancy Y.; Bartee, Eric; Mohamed, Mohamed R.; Rahman, Masmudur M.; Barrett, John W.; McFadden, Grant

    2010-06-05

    Myxoma (MYXV) and vaccinia (VACV) viruses have recently emerged as potential oncolytic agents that can infect and kill different human cancer cells. Although both are structurally similar, it is unknown whether the pathway(s) used by these poxviruses to enter and cause oncolysis in cancer cells are mechanistically similar. Here, we compared the entry of MYXV and VACV-WR into various human cancer cells and observed significant differences: 1 - low-pH treatment accelerates fusion-mediated entry of VACV but not MYXV, 2 - the tyrosine kinase inhibitor genistein inhibits entry of VACV, but not MYXV, 3 - knockdown of PAK1 revealed that it is required for a late stage event downstream of MYXV entry into cancer cells, whereas PAK1 is required for VACV entry into the same target cells. These results suggest that VACV and MYXV exploit different mechanisms to enter into human cancer cells, thus providing some rationale for their divergent cancer cell tropisms.

  3. HN gene c-terminal extension of Newcastle disease virus is not the determinant of the enteric tropism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) plays an important role in virus pathogenicity and tissue tropism. Sequence analysis revealed that the HN gene of many asymptomatic enteric NDV strains encodes a larger open reading frame (616 amino acids, aa) with additio...

  4. THE USE OF RT-PCR FOR THE DETECTION OF ENTERIC VIRUSES IN PRAIRIE SURFACE DRINKING WATER SUPPLIES

    EPA Science Inventory

    Concerns over the microbial safety of drinking water supplies have focused on bacteria and parasites while the occurrence of pathogenic waterborne viruses have been largely ignored. In fact, water supplies are not routinely monitored for human enteric viruses. This is despite t...

  5. Use of propidium monoazide in reverse transcriptase PCR to distinguish between infectious and noninfectious enteric viruses in water samples

    EPA Science Inventory

    Human enteric viruses can be present in untreated and inadequately treated drinking water. Molecular methods, such as the reverse transcriptase PCR (RT-PCR), can detect viral genomes in a few hours, but they cannot distinguish between infectious and noninfectious viruses. Since o...

  6. Characterization of nucleocytoplasmic shuttling and intracellular localization signals in Duck Enteritis Virus UL54.

    PubMed

    Liu, Chaoyue; Cheng, Anchun; Wang, Mingshu; Chen, Shun; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Sun, Kunfeng; Yang, Qiao; Chen, Xiaoyue

    2016-08-01

    Duck Enteritis virus (DEV) UL54 is a homolog of herpes simplex virus-1 (HSV-1) trafficking protein ICP27, which plays an essential role in infection. In this study, DEV UL54 shuttling between the nucleus and cytoplasm was verified with a heterokaryon assay. One predicted nuclear export sequence (NES) (339-348 aa) was shown to be functional and chromosomal region maintenance 1 (CRM1)-dependent; however, the insensitivity of UL54 to Leptomycin B (LMB) and NES mutation suggests that other mechanisms are responsible for the observed nuclear export. Next, three non-classical nuclear localization sequences (NLSs), referred to as NLS1 (105-122 aa), NLS2 (169-192 aa) and NLS3 (257-274 aa), were identified. Furthermore, a recombinant DEV with the UL54 NLSs deleted (DEV- UL54 mNLSs) was constructed and showed that UL54 NLSs moderately affected DEV growth. PMID:27157269

  7. Detection of enteric viruses in oysters by using the polymerase chain reaction.

    PubMed Central

    Atmar, R L; Metcalf, T G; Neill, F H; Estes, M K

    1993-01-01

    A procedure for the detection of enteric viral nucleic acid in oysters by the polymerase chain reaction was developed. Known quantities of poliovirus type 1 were seeded into oysters. Virus was extracted and concentrated by using organic flocculation and polyethylene glycol precipitation. Inhibitors of reverse transcription-polymerase chain reaction were present in the oyster extracts, preventing amplification of target viral nucleic acid. The use of cetyltrimethylammonium bromide precipitation sufficiently removed inhibitors to allow detection of as few as 10 PFU of poliovirus. Norwalk virus also could be detected after being seeded into oysters. This methodology may be useful for the detection of these and other shellfish-borne viral pathogens. Images PMID:8382024

  8. Membrane-associated GRP78 helps subgroup J avian leucosis virus enter cells.

    PubMed

    Wang, Lin; Mei, Mei; Qin, Aijian; Ye, Jianqiang; Qian, Kun; Shao, Hongxia

    2016-01-01

    We previously identified chicken Annexin A2 (chANXA2) as a novel receptor for retrovirus avian leucosis virus subgroup J (ALV-J), using a DF1 cell line expressing the viral envelope (env) protein. To further probe whether other proteins participate in virus infection, we investigated several host proteins from co-immunoprecipitation with the DF1 cell line expressing viral env. Mass spectrometry analysis indicates that the chicken glucose-regulation protein 78 (chGRP78) of the DF1 membrane interacted with the ALV-J env protein. The results revealed that antibodies or siRNA to chGRP78 significantly inhibited ALV-J infection and replication, and over-expression of chGRP78 enabled the entry of ALV-J into non-susceptible cells. Taken together, these results are the first to report that chGRP78 functions to help ALV-J enter cells. PMID:27599847

  9. Release of infectious human enteric viruses by full-scale wastewater utilities.

    PubMed

    Simmons, Fredrick James; Xagoraraki, Irene

    2011-06-01

    In the United States, infectious human enteric viruses are introduced daily into the environment through the discharge of treated water and the digested sludge (biosolids). In this study, a total of 30 wastewater and 6 biosolids samples were analyzed over five months (May-September 2008-2009) from five full-scale wastewater treatment plants (WWTPs) in Michigan using real-time PCR and cell culture assays. Samples were collected from four different locations at each WWTP (influent, pre-disinfection, post-disinfection and biosolids) using the 1MDS electropositive cartridge filter. Adenovirus (HAdV), enterovirus (EV) and norovirus genogroup II (NoV GGII) were detected in 100%, 67% and 10%, respectively of the wastewater samples using real-time PCR. Cytopathic effect (CPE) was present in 100% of the cell culture samples for influent, pre- and post-disinfection and biosolids with an average log concentration of 4.1 (2.9-4.7, range) 1.1 (0.0-2.3, range) and 0.5 (0.0-1.6, range) MPN/100 L and 2.1 (0.5-4.1) viruses/g, respectively. A significant log reduction in infectious viruses throughout the wastewater treatment process was observed at an average 4.2 (1.9-5.0, range) log units. A significant difference (p-value <0.05) was observed using real-time PCR data for HAdV but not for EV (p-value >0.05) removal in MBR as compared to conventional treatment. MBR treatment was able to achieve an additional 2 and 0.5 log reduction of HAdV and EV, respectively. This study has demonstrated the release of infectious enteric viruses in the final effluent and biosolids of wastewater treatment into the environment. PMID:21570703

  10. Management of hospital outbreaks of gastro-enteritis due to small roundstructured viruses.

    PubMed

    Chadwick, P R; Beards, G; Brown, D; Caul, E O; Cheesbrough, J; Clarke, I; Curry, A; O'Brien, S; Quigley, K; Sellwood, J; Westmoreland, D

    2000-05-01

    Small round structured viruses (SRSVs, Norwalk-like viruses, NLVs) are the most common cause of outbreaks of gastro-enteritis in hospitals and also cause outbreaks in other settings such as schools, hotels, nursing homes and cruise ships. Hospital outbreaks often lead to ward closure and major disruption in hospital activity. Outbreaks usually affect both patients and staff, sometimes with attack rates in excess of 50%. For this reason, staff shortages can be severe, particularly if several wards are involved at the same time. SRSVs may be spread by several routes: faecal-oral; vomiting/aerosols; food and water. Viruses may be introduced into the ward environment by any of these routes and then propagated by person-to-person spread. In an outbreak setting, the diagnosis can usually be made rapidly and confidently on clinical and epidemiological grounds, particularly if vomiting is a prominent symptom. By the time an SRSV outbreak has been recognized at ward level, most susceptible individuals will have been exposed to the virus and infection control efforts must prioritize the prevention of spread of infection to other clinical areas bycontainment of infected/exposed individuals (especially the prevention of patient and staff movements to other areas), hand-hygiene and effective environmental decontamination. This report of the Public Health Laboratory Service Viral Gastro-enteritis Working Group reviews the epidemiology of outbreaks of infection due to SRSVs and makes recommendations for their management in the hospital setting. The basic principles which underpin these recommendations will also be applicable to the management of some community-based institutional outbreaks. PMID:10833336

  11. Acute gastroenteritis and enteric viruses in hospitalised children in southern Brazil: aetiology, seasonality and clinical outcomes

    PubMed Central

    Raboni, Sonia Maria; Damasio, Guilherme Augusto Costa; Ferreira, Carla EO; Pereira, Luciane A; Nogueira, Meri B; Vidal, Luine R; Cruz, Cristina R; Almeida, Sergio M

    2014-01-01

    Viral acute gastroenteritis (AG) is a significant cause of hospitalisation in children younger than five years. Group A rotavirus (RVA) is responsible for 30% of these cases. Following the introduction of RVA immunisation in Brazil in 2006, a decreased circulation of this virus has been observed. However, AG remains an important cause of hospitalisation of paediatric patients and only limited data are available regarding the role of other enteric viruses in these cases. We conducted a prospective study of paediatric patients hospitalised for AG. Stool samples were collected to investigate human adenovirus (HAdV), RVA, norovirus (NoV) and astrovirus (AstV). NoV typing was performed by nucleotide sequencing and phylogenetic analysis. From the 225 samples tested, 60 (26%) were positive for at least one viral agent. HAdV, NoV, RVA and AstV were detected in 16%, 8%, 6% and 0% of the samples, respectively. Mixed infections were found in nine patients: HAdV/RVA (5), HAdV/NoV (3) and HAdV/NoV/RVA (1). The frequency of fever and lymphocytosis was significantly higher in virus-infected patients. Phylogenetic analysis of NoV indicated that all of these viruses belonged to genotype GII.4. The significant frequency of these pathogens in patients with AG highlights the need to routinely implement laboratory investigations. PMID:25075782

  12. Egg drop syndrome virus enters duck embryonic fibroblast cells via clathrin-mediated endocytosis.

    PubMed

    Huang, Jingjing; Tan, Dan; Wang, Yang; Liu, Caihong; Xu, Jiamin; Wang, Jingyu

    2015-12-01

    Previous studies of egg drop syndrome virus (EDSV) is restricted to serological surveys, disease diagnostics, and complete viral genome analysis. Consequently, the infection characteristics and entry routes of EDSV are poorly understood. Therefore, we aimed to explore the entry pathway of EDSV into duck embryonic fibroblast (DEF) cells as well as the infection characteristics and proliferation of EDSV in primary DEF and primary chicken embryo liver (CEL) cells. Transmission electron microscopy revealed that the virus triggered DEF cell membrane invagination as early as 10 min post-infection and that integrated endocytic vesicles formed at 20 min post-infection. The virus yield in EDSV-infected DEF cells treated with chlorpromazine (CPZ), sucrose, methyl-β-cyclodextrin (MβCD), or NH4Cl was measured by quantitative real-time PCR. Compared with the mock treatment, CPZ and sucrose greatly inhibited the production of viral progeny in a dose-dependent manner, while MβCD treatment did not result in a significant difference. Furthermore, NH4Cl had a strong inhibitory effect on the production of EDSV progeny. In addition, indirect immunofluorescence demonstrated that virus particles clustered on the surface of DEF cells treated with CPZ or sucrose. These results indicate that EDSV enters DEF cells through clathrin-mediated endocytosis followed by a pH-dependent step, which is similar to the mechanism of entry of human adenovirus types 2 and 5. PMID:26200954

  13. Temperature and humidity influences on inactivation kinetics of enteric viruses on surfaces.

    PubMed

    Kim, Su Jung; Si, Jiyeon; Lee, Jung Eun; Ko, GwangPyo

    2012-12-18

    Norovirus (NoV) and hepatitis A virus (HAV) are pathogenic enteric viruses responsible for public health concerns worldwide. The viral transmission occurs through fecally contaminated food, water, fomites, or direct contact. However, the difficulty in cultivating these viruses makes it a challenge to characterize the resistance to various environmental stresses. In this study, we characterized the inactivation rates of murine norovirus (MNV), MS2, and HAV on either lacquer coating rubber tree wood or stainless steel under different temperature and relative humidity (RH) conditions. The viruses were analyzed at temperatures of 15 °C, 25 °C, 32 °C, and 40 °C and at RHs of 30%, 50%, and 70% for 30 days. Overall, they survived significantly longer on wood than on steel at lower temperature (P < 0.05). The inactivation rate of MS2 and MNV increased at higher RH levels, whereas HAV survived the best at a medium RH level (50%). The effect of RH was significant only for MS2 (P < 0.05). MS2 persisted longest under all of the environmental conditions examined. Both a linear and a nonlinear Weibull model were used to describe the viral inactivation data in this study. The data produced a better fit to the survival curves that were predicted by the Weibull model. PMID:23152976

  14. Prevalence of human pathogenic enteric viruses in bivalve molluscan shellfish and cultured shrimp in south west coast of India.

    PubMed

    Umesha, Kanasinakatte R; Bhavani, Naniah C; Venugopal, Moleyur N; Karunasagar, Indrani; Krohne, Georg; Karunasagar, Iddya

    2008-03-20

    The prevalence of human enteric viruses in bivalve molluscan shellfish and shrimp collected off the south west coast of India was studied to assess the extent of fecal pollution of coastal environment. Out of 194 samples analyzed, 37% of oyster, 46% of clam and 15% of shrimp samples were positive for enteroviruses (EV). Adenoviruses (ADV) were detected in 17% of oyster and 27% of clam samples. However, other enteric viruses such as noroviruses (NoV) and hepatitis A virus (HAV) were not detected in any of the samples. High prevalence of EV and ADV was noticed between May to December. Thirty four percent of oyster and 49% of clam samples showed fecal coliform values higher than the limit. MS-2 phage was detected in 57% of oyster and 73% of clam samples. The presence of MS-2 phage and human enteric viruses showed association while fecal coliforms and enteric viruses showed no association. However, 17 samples, which were positive for enteric viruses (EV and ADV), were negative for MS-2 phage. PMID:18279989

  15. A survey of North American migratory waterfowl for duck plague (duck virus enteritis) virus

    USGS Publications Warehouse

    Brand, Christopher J.; Docherty, Douglas E.

    1984-01-01

    A survey of migratory waterfowl for duck plague (DP) virus was conducted in the Mississippi and Central flyways during 1982 and in the Atlantic and Pacific flyways during 1983. Cloacal and pharyngeal swabs were collected from 3,169 migratory waterfowl in these four flyways, principally mallards (Anas platyrhynchos L.), black ducks (Anas rubripes Brewster), and pintails (Anas acuta L). In addition 1,033 birds were sampled from areas of recurrent DP outbreaks among nonmigratory and captive waterfowl, and 590 from Lake Andes National Wildlife Refuge, the site of the only known major DP outbreak in migratory waterfowl. Duck plague virus was not found in any of the samples. Results support the hypothesis that DP is not established in North American migratory waterfowl as an enzootic disease.

  16. Diversity of Somatic Coliphages in Coastal Regions with Different Levels of Anthropogenic Activity in São Paulo State, Brazil ▿

    PubMed Central

    Burbano-Rosero, E. M.; Ueda-Ito, M.; Kisielius, J. J.; Nagasse-Sugahara, T. K.; Almeida, B. C.; Souza, C. P.; Markman, C.; Martins, G. G.; Albertini, L.; Rivera, I. N. G.

    2011-01-01

    Bacteriophages are the most abundant and genetically diverse viruses on Earth, with complex ecology in both quantitative and qualitative terms. Somatic coliphages (SC) have been reported to be good indicators of fecal pollution in seawater. This study focused on determining the concentration of SC and their diversity by electron microscopy of seawater, plankton, and bivalve samples collected at three coastal regions in São Paulo, Brazil. The SC counts varied from <1 to 3.4 × 103 PFU/100 ml in seawater (73 samples tested), from <1 to 4.7 × 102 PFU/g in plankton (46 samples tested), and from <1 to 2.2 × 101 PFU/g in bivalves (11 samples tested). In seawater samples, a relationship between the thermotolerant coliforms and Escherichia coli and SC was observed at the three regions (P = 0.0001) according to the anthropogenic activities present at each region. However, SC were found in plankton samples from three regions: Baixada Santista (17/20), Canal de São Sebastião (6/14), and Ubatuba (3/12). In seawater samples collected from Baixada Santista, four morphotypes were observed: A1 (4.5%), B1 (50%), C1 (36.4%), and D1 (9.1%). One coliphage, Siphoviridae type T1, had the longest tail: between 939 and 995 nm. In plankton samples, Siphoviridae (65.8%), Podoviridae (15.8%), Microviridae (15.8%), and Myoviridae (2.6%) were found. In bivalves, only the morphotype B1 was observed. These SC were associated with enteric hosts: enterobacteria, E. coli, Proteus, Salmonella, and Yersinia. Baixada Santista is an area containing a high level of fecal pollution compared to those in the Canal de São Sebastião and Ubatuba. This is the first report of coliphage diversity in seawater, plankton, and bivalve samples collected from São Paulo coastal regions. A better characterization of SC diversity in coastal environments will help with the management and evaluation of the microbiological risks for recreation, seafood cultivation, and consumption. PMID:21531842

  17. Large scale survey of enteric viruses in river and waste water underlines the health status of the local population.

    PubMed

    Prevost, B; Lucas, F S; Goncalves, A; Richard, F; Moulin, L; Wurtzer, S

    2015-06-01

    Although enteric viruses constitute a major cause of acute waterborne diseases worldwide, environmental data about occurrence and viral load of enteric viruses in water are not often available. In this study, enteric viruses (i.e., adenovirus, aichivirus, astrovirus, cosavirus, enterovirus, hepatitis A and E viruses, norovirus of genogroups I and II, rotavirus A and salivirus) were monitored in the Seine River and the origin of contamination was untangled. A total of 275 water samples were collected, twice a month for one year, from the river Seine, its tributaries and the major WWTP effluents in the Paris agglomeration. All water samples were negative for hepatitis A and E viruses. AdV, NVGI, NVGII and RV-A were the most prevalent and abundant populations in all water samples. The viral load and the detection frequency increased significantly between the samples collected the most upstream and the most downstream of the Paris urban area. The calculated viral fluxes demonstrated clearly the measurable impact of WWTP effluents on the viral contamination of the Seine River. The viral load was seasonal for almost all enteric viruses, in accordance with the gastroenteritis recordings provided by the French medical authorities. These results implied the existence of a close relationship between the health status of inhabitants and the viral contamination of WWTP effluents and consequently surface water contamination. Subsequently, the regular analysis of wastewater could serve as a proxy for the monitoring of the human viruses circulating in both a population and surface water. PMID:25795193

  18. Prevalence and correlates of hepatitis C virus infection among inmates entering the California correctional system.

    PubMed Central

    Ruiz, J D; Molitor, F; Sun, R K; Mikanda, J; Facer, M; Colford, J M; Rutherford, G W; Ascher, M S

    1999-01-01

    To estimate the prevalence and predictors of hepatitis C virus (HCV) infection among inmates, a cross-sectional survey was conducted in 1994 among inmates entering six reception centers of the California Department of Corrections. Discarded serum samples were tested for antibodies to human immunodeficiency virus (HIV), HCV, hepatitis B core, and hepatitis B surface antigen (HBsAg). Of 4,513 inmates in this study, 87.0% were men and 13.0% were women. Among male inmates, 39.4% were anti-HCV-positive; by race/ethnicity, prevalences were highest among whites (49.1%). Among female inmates, 53.5% were anti-HCV-positive; the prevalence was highest among Latinas (69.7%). In addition, rates for HIV were 2.5% for men and 3.1% for women; and for HBsAg, 2.2% (men) and 1.2% (women). These data indicate that HCV infection is common among both men and women entering prison. The high seroprevalence of anti-HCV-positive inmates may reflect an increased prevalence of high-risk behaviors and should be of concern to the communities to which these inmates will be released. PMID:10214102

  19. Virus elimination in activated sludge systems: from batch tests to mathematical modeling.

    PubMed

    Haun, Emma; Ulbricht, Katharina; Nogueira, Regina; Rosenwinkel, Karl-Heinz

    2014-01-01

    A virus tool based on Activated Sludge Model No. 3 for modeling virus elimination in activated sludge systems was developed and calibrated with the results from laboratory-scale batch tests and from measurements in a municipal wastewater treatment plant (WWTP). The somatic coliphages were used as an indicator for human pathogenic enteric viruses. The extended model was used to simulate the virus concentration in batch tests and in a municipal full-scale WWTP under steady-state and dynamic conditions. The experimental and modeling results suggest that both adsorption and inactivation processes, modeled as reversible first-order reactions, contribute to virus elimination in activated sludge systems. The model should be a useful tool to estimate the number of viruses entering water bodies from the discharge of treated effluents. PMID:25259502

  20. Antiviral effect of resveratrol in ducklings infected with virulent duck enteritis virus.

    PubMed

    Zhao, Xinghong; Xu, Jiao; Song, Xu; Jia, Ruilin; Yin, Zhongqiong; Cheng, Anchun; Jia, Renyong; Zou, Yuanfeng; Li, Lixia; Yin, Lizi; Yue, Guizhou; Lv, Cheng; Jing, Bo

    2016-06-01

    Duck enteritis virus (DEV) is a double-stranded DNA virus belonging to the alphaherpesvirinae subfamily of the herpesviridae. Although vaccines were wildly used in controlling this disease, some infection could still not be prevented and led to significant economic losses as a result of mortality and decreased egg production. However, there is no antiviral drug against DEV. Resveratrol was identified to exert its antiviral activity by inhibiting the DEV replication in preliminary investigations. In the present study, we confirmed that resveratrol significantly reduced the mortality of ducklings which infected with a virulent strain of DEV. With resveratrol treatment, the survival rate increased by almost 80% at 8 days post infection (dpi). Pathological symptoms of ducklings caused by DEV were also relieved by resveratrol. The virus load in blood and tissues were effectively depressed when compared with the untreated group. In the assay of immune cytokines, the resveratrol exerted a dual-regulation effect. These results suggest that resveratrol is expected to be a new alternative control measure for DEV infection. PMID:27040314

  1. Varicella zoster virus (VZV) infects and establishes latency in enteric neurons

    PubMed Central

    Chen, Jason J.; Gershon, Anne A.; Li, Zhishan; Cowles, Robert A.; Gershon, Michael D.

    2012-01-01

    Case reports have linked varicella-zoster virus (VZV) to gastrointestinal disorders, including severe abdominal pain preceding fatal varicella and acute colonic pseudoobstruction (Ogilvie’s syndrome). Because we had previously detected DNA and transcripts encoding latency–associated VZV gene products in the human gut, we sought to determine whether latent VZV is present in the human enteric nervous system (ENS) and, if so, to identify the cells in which it is located and its route to the bowel. Neither DNA, nor transcripts encoding VZV gene products, could be detected in resected gut from any of 7 control children (< 1 year old) who had not received the varicella vaccine or experienced varicella; however, VZV DNA and transcripts were each found to be present in resected bowel from 6/6 of children with a past history of varicella and in that of 6/7 of children who received the varicella vaccine. Both wild-type (WT) and vaccine-type (vOka) VZV thus establish latent infection in human gut. To determine routes by which VZV might gain access to the bowel, we injected guinea pigs with human or guinea pig lymphocytes expressing green fluorescent protein (GFP) under the control of the VZV ORF66 gene (VZVOKA66.GFP). GFP-expressing enteric neurons were found throughout the bowel within 2 days and continued to be present for greater than 6 weeks. DNA encoding VZV gene products also appeared in enteric and dorsal root ganglion (DRG) neurons following intradermal administration of WT-VZV and in enteric neurons after intradermal injection of VZVOKA66.GFP; moreover, a small number of guinea pig DRG neurons were found to project both to the skin and the intraperitoneal viscera. Viremia, in which lymphocytes carry VZV, or axonal transport from DRG neurons infected through their epidermal projections are thus each potential routes that enable VZV to gain access to the ENS. PMID:22190254

  2. Sequence Variation among Group III F-Specific RNA Coliphages from Water Samples and Swine Lagoons

    PubMed Central

    Stewart, Jill R.; Vinjé, Jan; Oudejans, Sjon J. G.; Scott, Geoff I.; Sobsey, Mark D.

    2006-01-01

    Typing of F-specific RNA (FRNA) coliphages has been proposed as a useful method for distinguishing human from animal fecal contamination in environmental samples. Group II and III FRNA coliphages are generally associated with human wastes, but several exceptions have been noted. In the present study, we have genotyped and partially sequenced group III FRNA coliphage field isolates from swine lagoons in North Carolina (NC) and South Carolina (SC), along with isolates from surface waters and municipal wastewaters. Phylogenetic analysis of a region of the 5′ end of the maturation protein gene revealed two genetically different group III FRNA subclusters with 36.6% sequence variation. The SC swine lagoon isolates were more closely related to group III prototype virus M11, whereas the isolates from a swine lagoon in NC, surface waters, and wastewaters grouped with prototype virus Q-beta. These results suggest that refining phage genotyping systems to discriminate M11-like phages from Q-beta-like phages would not necessarily provide greater discriminatory power in distinguishing human from animal sources of pollution. Within the group III subclusters, nucleotide sequence diversity ranged from 0% to 6.9% for M11-like strains and from 0% to 8.7% for Q-beta-like strains. It is demonstrated here that nucleotide sequencing of closely related FRNA strains can be used to help track sources of contamination in surface waters. A similar use of phage genomic sequence information to track fecal pollution promises more reliable results than phage typing by nucleic acid hybridization and may hold more potential for field applications. PMID:16461670

  3. White spot syndrome virus enters crayfish hematopoietic tissue cells via clathrin-mediated endocytosis.

    PubMed

    Huang, Jiajun; Li, Fang; Wu, Junjun; Yang, Feng

    2015-12-01

    White spot syndrome virus (WSSV) is a major pathogen of aquacultured shrimp. However, the mechanism of its entry remains poorly understood. In this study, by analyzing the internalization of WSSV using crayfish hematopoietic tissue (HPT) cells, we showed that WSSV virions were engulfed by cell membrane invaginations sharing the features of clathrin-coated pits and then internalized into coated cytoplasmic vesicles. Further investigation indicated that WSSV internalization was significantly inhibited by chlorpromazine (CPZ) but not genistein. The internalized virions were colocalized with endogenous clathrin as well as transferrin which undergoes clathrin-dependent uptake. Preventing endosome acidification by ammonium chloride (NH4Cl) or chloroquine (CQ) dramatically reduced WSSV entry as well. Moreover, disturbance of dynamin activity or depletion of membrane cholesterol also blocked WSSV uptake. These data indicate that WSSV enters crayfish HPT cells via clathrin-mediated endocytosis in a pH-dependent manner, and membrane cholesterol as well as dynamin is critical for efficient viral entry. PMID:26397221

  4. A METHOD TO REMOVE ENVIRONMENTAL INHIBITORS PRIOR TO THE DETECTION OF WATERBORNE ENTERIC VIRUSES BY REVERSE TRANSCRIPTION-POLYMERASE CHAIN REACTION

    EPA Science Inventory

    A method was developed to remove environmental inhibitors from sample concentrates prior to detection of human enteric viruses using the reverse transcription-polymerase chain reaction (RT-PCR).Environmental inhibitors, concentrated along with viruses during water sample processi...

  5. Removal properties of human enteric viruses in a pilot-scale membrane bioreactor (MBR) process.

    PubMed

    Miura, Takayuki; Okabe, Satoshi; Nakahara, Yoshihito; Sano, Daisuke

    2015-05-15

    In order to evaluate removal properties of human enteric viruses from wastewater by a membrane bioreactor (MBR), influent, anoxic and oxic mixed liquor, and membrane effluent samples were collected in a pilot-scale anoxic-oxic MBR process for 16 months, and concentrations of enteroviruses, norovirus GII, and sapoviruses were determined by real-time PCR using murine norovirus as a process control. Mixed liquor samples were separated into liquid and solid phases by centrifugation, and viruses in the bulk solution and those associated with mixed liquor suspended solids (MLSS) were quantified. Enteroviruses, norovirus GII, and sapoviruses were detected in the influent throughout the sampling period (geometrical mean, 4.0, 3.1, and 4.4 log copies/mL, respectively). Enterovirus concentrations in the solid phase of mixed liquor were generally lower than those in the liquid phase, and the mean log reduction value between influent and anoxic mixed liquor was 0.40 log units. In contrast, norovirus GII and sapovirus concentrations in the solid phase were equal to or higher than those in the liquid phase, and higher log reduction values (1.3 and 1.1 log units, respectively) were observed between influent and anoxic mixed liquor. This suggested that enteroviruses were less associated with MLSS than norovirus GII and sapoviruses, resulting in lower enterovirus removal in the activated sludge process. Enteroviruses and norovirus GII were detected in the MBR effluent but sapoviruses were not in any effluent samples. When MLSS concentration was reduced to 50-60% of a normal operation level, passages of enteroviruses and norovirus GII through a PVDF microfiltration membrane were observed. Since rejection of viruses by the membrane was not related to trans-membrane pressure which was monitored as a parameter of membrane fouling, the results indicated that adsorption to MLSS plays an important role in virus removal by an MBR, and removal properties vary by viruses reflecting different

  6. Characterization of duck enteritis virus UL53 gene and glycoprotein K

    PubMed Central

    2011-01-01

    Background Most of the previous research work had focused on the epidemiology and prevention of duck enteritis virus (DEV). Whilst with the development of protocols in molecular biology, nowadays more and more information about the genes of DEV was reported. But little information about DEV UL53 gene and glycoprotein K(gK) was known except our reported data. Results In our paper, the fluorescent quantitative real-time PCR(FQ-RT-PCR) assay and nucleic acid inhibition test were used to study the transcription characteristic of the DEV UL53 gene. Except detecting the mRNA of DEV UL53 gene, the product gK encoded by UL53 gene was detected through the expression kinetics of UL53 gene by the purified rabbit anti-UL53 protein polyclonal antibodies. Western-blotting and indirect immunofluorescence assays were used to detect gK. From the results of these experiments, the UL53 gene and gK were respectively identified as a late gene and a really late protein. On the other hand, the indirect immunofluorescence assay provided another information that the intracellular localization of DEV gK was mainly distributed in cytoplasm. Conclusions By way of conclusions, we conceded that DEV UL53 gene is a really late gene, which is coincident with properties of UL53 homologs from other herpesvirus, such as ILTV(Infectious Laryngotracheitis virus) and HSV-1(Herpes simplex virus type 1). The properties of intracellular localization about gK protein provided a foundation for further functional analysis and further studies will be focused on constructing of the UL53 gene DEV mutant. PMID:21586146

  7. Three-Dimensional Structure of a Protozoal Double-Stranded RNA Virus That Infects the Enteric Pathogen Giardia lamblia

    PubMed Central

    Janssen, Mandy E. W.; Takagi, Yuko; Parent, Kristin N.; Cardone, Giovanni

    2014-01-01

    ABSTRACT Giardia lamblia virus (GLV) is a small, nonenveloped, nonsegmented double-stranded RNA (dsRNA) virus infecting Giardia lamblia, the most common protozoan pathogen of the human intestine and a major agent of waterborne diarrheal disease worldwide. GLV (genus Giardiavirus) is a member of family Totiviridae, along with several other groups of protozoal or fungal viruses, including Leishmania RNA viruses and Trichomonas vaginalis viruses. Interestingly, GLV is more closely related than other Totiviridae members to a group of recently discovered metazoan viruses that includes penaeid shrimp infectious myonecrosis virus (IMNV). Moreover, GLV is the only known protozoal dsRNA virus that can transmit efficiently by extracellular means, also like IMNV. In this study, we used transmission electron cryomicroscopy and icosahedral image reconstruction to examine the GLV virion at an estimated resolution of 6.0 Å. Its outermost diameter is 485 Å, making it the largest totivirus capsid analyzed to date. Structural comparisons of GLV and other totiviruses highlighted a related “T=2” capsid organization and a conserved helix-rich fold in the capsid subunits. In agreement with its unique capacity as a protozoal dsRNA virus to survive and transmit through extracellular environments, GLV was found to be more thermoresistant than Trichomonas vaginalis virus 1, but no specific protein machinery to mediate cell entry, such as the fiber complexes in IMNV, could be localized. These and other structural and biochemical findings provide a basis for future work to dissect the cell entry mechanism of GLV into a “primitive” (early-branching) eukaryotic host and an important enteric pathogen of humans. IMPORTANCE Numerous pathogenic bacteria, including Corynebacterium diphtheriae, Salmonella enterica, and Vibrio cholerae, are infected with lysogenic bacteriophages that contribute significantly to bacterial virulence. In line with this phenomenon, several pathogenic protozoa

  8. Distribution of ribonucleic acid coliphages in animals.

    PubMed Central

    Osawa, S; Furuse, K; Watanabe, I

    1981-01-01

    To determine the distribution pattern of ribonucleic acid (RNA) coliphages (classified by serological groups I through IV) in animal sources, we isolated RNA phages from (i) feces samples from domestic animals (cows, pigs, horses, and fowls), some other animals in a zoological garden, and humans, (ii) the gastrointestinal contents of cows and pigs, and (iii) sewage samples from treatment plants in slaughter houses. These samples were then analyzed serologically. The concentration of RNA phages in the first and second kinds of material was fairly low (10 to 10(3) plaque-forming units per original phage sample), whereas that in the third kind of material was fairly high (10(3) to 10(5) plaque-forming units per original phage sample). Concerning the group types of the RNA phages in the first and second kinds of material, human feces contained RNA phages of groups II and III almost equally, the gastrointestinal contents of pigs included those of groups I and II equally, and the feces or gastrointestinal contents of other mammals other than humans and pigs had those of group I exclusively. In the third type of material we found mostly group I phages with a minor fraction of group II phages. Thus, the prominent features of the distribution pattern of RNA phages are the predominance of groups III and II in humans and the predominance of group I in animals. PMID:7224619

  9. Periodic monitoring of commercial turkeys for enteric viruses indicates continuous presence of astrovirus and rotavirus on the farms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A longitudinal survey to detect enteric viruses in intestinal contents collected from turkeys in eight commercial operations and one research facility was performed using molecular detection methods. Intestinal contents were collected from turkeys prior to placement with each flock being re-sampled...

  10. NDV HN gene C-terminal extension is not the determinant of the enteric tropism but influences the virus virulence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many asymptomatic enteric Newcastle disease virus (NDV) strains contain a larger hemagglutinin-neuraminidase (HN) protein (616 amino acids, aa) than that (571 aa) of virulent respirotropic NDV strains. Therefore, it has been suspected that the 45 aa extension at the C-terminus of HN influences the v...

  11. Characterization of preferential flow pathways in a siliciclastic aquifer system using human enteric viruses and groundwater geochemistry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human enteric viruses have been recognized as an emerging groundwater contaminant and are found only in human waste. In urban environments the most likely source of human waste is from sanitary sewers. Determining the travel time for near-surface contaminants to reach deep public supply wells is i...

  12. Protective effects of recombinant glycoprotein D based prime boost approach against duck enteritis virus in mice model.

    PubMed

    Aravind, S; Kamble, Nitin Machindra; Gaikwad, Satish S; Shukla, Sanjeev Kumar; Saravanan, R; Dey, Sohini; Madhan Mohan, C

    2015-11-01

    Duck virus enteritis, also known as duck plague, is an acute herpes viral infection of ducks caused by duck enteritis virus (DEV). The method of repeated immunization with a live attenuated vaccine has been used for the prevention and control of duck enteritis virus (DEV). However, the incidence of the disease in vaccinated flocks and latency reactivation are the major constraints in the present vaccination programme. The immunogenicity and protective efficacy afforded by intramuscular inoculation of plasmid DNA encoding DEV glycoprotein D (pCDNA-gD) followed by DEV gD expressed in Saccharomyces cerevisia (rgD) was assessed in a murine model. Compared with mice inoculated with DNA (pCDNA-gD) or protein (rgD) only, mice inoculated with the combination of gD DNA and protein had enhanced ELISA antibody titers to DEV and had accelerated clearance of virus following challenge infection. Furthermore, the highest levels of lymphocyte proliferation response, IL-4, IL-12 and IFN-γ production were induced following priming with the DNA vaccine and boosting with the rgD protein. For instance, the specially designed recombinant DEV vector vaccine would be the best choice to use in ducks. It offers an excellent solution to the low vaccination coverage rate in ducks. We expect that the application of this novel vaccine in the near future will greatly decrease the virus load in the environment and reduce outbreaks of DEV in ducks. PMID:26188265

  13. Use of Propidium Monoazide in Reverse Transcriptase PCR To Distinguish between Infectious and Noninfectious Enteric Viruses in Water Samples▿

    PubMed Central

    Parshionikar, Sandhya; Laseke, Ian; Fout, G. Shay

    2010-01-01

    Human enteric viruses can be present in untreated and inadequately treated drinking water. Molecular methods, such as the reverse transcriptase PCR (RT-PCR), can detect viral genomes in a few hours, but they cannot distinguish between infectious and noninfectious viruses. Since only infectious viruses are a public health concern, methods that not only are rapid but also provide information on the infectivity of viruses are of interest. The intercalating dye propidium monoazide (PMA) has been used for distinguishing between viable and nonviable bacteria with DNA genomes, but it has not been used to distinguish between infectious and noninfectious enteric viruses with RNA genomes. In this study, PMA in conjunction with RT-PCR (PMA-RT-PCR) was used to determine the infectivity of enteric RNA viruses in water. Coxsackievirus, poliovirus, echovirus, and Norwalk virus were rendered noninfectious or inactivated by treatment with heat (72°C, 37°C, and 19°C) or hypochlorite. Infectious or native and noninfectious or inactivated viruses were treated with PMA. This was followed by RNA extraction and RT-PCR or quantitative RT-PCR (qRT-PCR) analysis. The PMA-RT-PCR results indicated that PMA treatment did not interfere with detection of infectious or native viruses but prevented detection of noninfectious or inactivated viruses that were rendered noninfectious or inactivated by treatment at 72°C and 37°C and by hypochlorite treatment. However, PMA-RT-PCR was unable to prevent detection of enteroviruses that were rendered noninfectious by treatment at 19°C. After PMA treatment poliovirus that was rendered noninfectious by treatment at 37°C was undetectable by qRT-PCR, but PMA treatment did not affect detection of Norwalk virus. PMA-RT-PCR was also shown to be effective for detecting infectious poliovirus in the presence of noninfectious virus and in an environmental matrix. We concluded that PMA can be used to differentiate between potentially infectious and noninfectious

  14. Use of propidium monoazide in reverse transcriptase PCR to distinguish between infectious and noninfectious enteric viruses in water samples.

    PubMed

    Parshionikar, Sandhya; Laseke, Ian; Fout, G Shay

    2010-07-01

    Human enteric viruses can be present in untreated and inadequately treated drinking water. Molecular methods, such as the reverse transcriptase PCR (RT-PCR), can detect viral genomes in a few hours, but they cannot distinguish between infectious and noninfectious viruses. Since only infectious viruses are a public health concern, methods that not only are rapid but also provide information on the infectivity of viruses are of interest. The intercalating dye propidium monoazide (PMA) has been used for distinguishing between viable and nonviable bacteria with DNA genomes, but it has not been used to distinguish between infectious and noninfectious enteric viruses with RNA genomes. In this study, PMA in conjunction with RT-PCR (PMA-RT-PCR) was used to determine the infectivity of enteric RNA viruses in water. Coxsackievirus, poliovirus, echovirus, and Norwalk virus were rendered noninfectious or inactivated by treatment with heat (72 degrees C, 37 degrees C, and 19 degrees C) or hypochlorite. Infectious or native and noninfectious or inactivated viruses were treated with PMA. This was followed by RNA extraction and RT-PCR or quantitative RT-PCR (qRT-PCR) analysis. The PMA-RT-PCR results indicated that PMA treatment did not interfere with detection of infectious or native viruses but prevented detection of noninfectious or inactivated viruses that were rendered noninfectious or inactivated by treatment at 72 degrees C and 37 degrees C and by hypochlorite treatment. However, PMA-RT-PCR was unable to prevent detection of enteroviruses that were rendered noninfectious by treatment at 19 degrees C. After PMA treatment poliovirus that was rendered noninfectious by treatment at 37 degrees C was undetectable by qRT-PCR, but PMA treatment did not affect detection of Norwalk virus. PMA-RT-PCR was also shown to be effective for detecting infectious poliovirus in the presence of noninfectious virus and in an environmental matrix. We concluded that PMA can be used to differentiate

  15. Recombinant duck enteritis viruses expressing major structural proteins of the infectious bronchitis virus provide protection against infectious bronchitis in chickens.

    PubMed

    Li, Huixin; Wang, Yulong; Han, Zongxi; Wang, Yu; Liang, Shulin; Jiang, Lu; Hu, Yonghao; Kong, Xiangang; Liu, Shengwang

    2016-06-01

    To design an alternative vaccine for control of infectious bronchitis in chickens, three recombinant duck enteritis viruses (rDEVs) expressing the N, S, or S1 protein of infectious bronchitis virus (IBV) were constructed using conventional homologous recombination methods, and were designated as rDEV-N, rDEV-S, and rDEV-S1, respectively. Chickens were divided into five vaccinated groups, which were each immunized with one of the rDEVs, covalent vaccination with rDEV-N & rDEV-S, or covalent vaccination with rDEV-N & rDEV-S1, and a control group. An antibody response against IBV was detectable and the ratio of CD4(+)/CD8(+) T-lymphocytes decreased at 7 days post-vaccination in each vaccinated group, suggesting that humoral and cellular responses were elicited in each group as early as 7 days post-immunization. After challenge with a homologous virulent IBV strain at 21 days post-immunization, vaccinated groups showed significant differences in the percentage of birds with clinical signs, as compared to the control group (p < 0.01), as the two covalent-vaccination groups and the rDEV-S group provided better protection than the rDEV-N- or rDEV-S1-vaccinated group. There was less viral shedding in the rDEV-N & rDEV-S- (2/10) and rDEV-N & rDEV-S1- (2/10) vaccinated groups than the other three vaccinated groups. Based on the clinical signs, viral shedding, and mortality rates, rDEV-N & rDEV-S1 covalent vaccination conferred better protection than use of any of the single rDEVs. PMID:26946113

  16. Detection of Bacterial Indicators and Human and Bovine Enteric Viruses in Surface Water and Groundwater Sources Potentially Impacted by Animal and Human Wastes in Lower Yakima Valley, Washington▿

    PubMed Central

    Gibson, Kristen E.; Schwab, Kellogg J.

    2011-01-01

    Tangential flow ultrafiltration (UF) was used to concentrate and recover bacterial indicators and enteric viruses from 100 liters of groundwater (GW; n = 10) and surface water (SW; n = 11) samples collected in Lower Yakima Valley, WA. Human and bovine enteric viruses were analyzed in SW and GW concentrates by real-time PCR by using integrated inhibition detection. PMID:21075875

  17. DETECTION BY PCR OF HUMAN ENTERIC VIRUSES CONCENTRATED FROM LARGE VOLUMES OF WATER

    EPA Science Inventory

    Viruses are recovered and concentrated from water by passage through a positively charged cartridge filter. Following virus elution from the cartridge filter with beef extract and concentration of the beef extract solution, viruses are usually assayed by cell culture. However...

  18. Sunlight inactivation of somatic coliphage in the presence of natural organic matter.

    PubMed

    Sun, Chen-Xi; Kitajima, Masaaki; Gin, Karina Yew-Hoong

    2016-01-15

    Long wavelengths of sunlight spectrum (UVA and visible light), as well as natural organic matter (NOM) are important environmental factors affecting survival of viruses in aquatic environment through direct and indirect inactivation. In order to understand the virus inactivation kinetics under such conditions, this study investigated the effects of Suwannee River natural organic matter (NOM) on the inactivation of a somatic coliphage, phiX174, by UVA and visible light. Experiments were carried out to examine the virucidal effects of UVA/visible light, assess the influence of SRNOM at different concentrations, and identify the effective ROS in virus inactivation. The results from this study showed that the presence of NOM could either enhance virus inactivation or reduce virus inactivation depending on the concentration, where the inactivation rate followed a parabolic relationship against NOM concentration. The results indicated that moderate levels of NOM (11 ppm) had the strongest antiviral activity, while very low or very high NOM concentrations prolonged virus survival. The results also showed that OH▪ was the primary ROS in causing phiX174 (ssDNA virus) inactivation, unlike previous findings where (1)O2 was the primary ROS causing MS2 (ssRNA virus) inactivation. The phiX174 inactivation by OH∙ could be described as k=3.7 ✕ 10(13)[OH∙]+1.404 (R(2)=0.8527). PMID:26386910

  19. Method for recovery of enteric viruses from estuarine sediments with chaotropic agents.

    PubMed Central

    Wait, D A; Sobsey, M D

    1983-01-01

    An evaluation was made of the ability of chaotropes, low-molecular-weight ionic compounds which enhance the solubilization of hydrophobic compounds in water, to improve the recovery of enteric viruses from highly organic estuarine sediments. Chaotropic agents alone were poor eluents of polioviruses from sediment but were effective when combined with 3% beef extract. Chaotropes of lower potency, NaNO3, NaCl, and KCl, were more efficient eluents than the stronger chaotropes, guanidium hydrochloride or sodium trichloroacetate. The most effective eluent was 2 M NaNO3 in 3% beef extract at pH 5.5, which eluted 71% of sediment-associated polioviruses. Efficient concentration of the sodium nitrate-beef extract eluate by organic flocculation required the addition of the antichaotrope (NH4)2SO4 to a 2 M concentration and Cat-Floc T (Calgon, Pittsburgh, Pa.) a cationic polyelectrolyte, to a 0.01% concentration. Dialysis of the final concentrate was necessary to reduce salts to nontoxic levels before assay in cell cultures. Trials with highly organic estuarine sediment seeded with high or low numbers of poliovirus 1, echovirus 1, or rotavirus SA-11 demonstrated the superiority of this method over two other methods currently in use. PMID:6312884

  20. Effect of distance from the polluting focus on relative concentrations of Bacteroides fragilis phages and coliphages in mussels.

    PubMed Central

    Lucena, F; Lasobras, J; McIntosh, D; Forcadell, M; Jofre, J

    1994-01-01

    Concentrations of fecal bacteria, somatic and F-specific coliphages, and phages infecting Bacteroides fragilis in naturally occurring black mussels (Mytilus edulis) were determined. Mussels were collected over a 7-month period at four sampling sites with different levels of fecal pollution. Concentrations of both fecal bacteria and bacteriophages in mussel meat paralleled the concentration of fecal bacteria in the overlying waters. Mussels bioaccumulated efficiently, although with different efficiencies, all of the microorganisms studied. Ratios comparing the levels of microorganisms in mussels were determined. These ratios changed in mussels collected at the different sites. They suggest that bacteriophages infecting B. fragilis and somatic coliphages have the lowest decay rates among the microorganisms studied, with the exception of Clostridium perfringens. On the contrary, concentrations of F-specific coliphages showed a greater rate of decay than the other bacteriophages at sites more distant from the focus of contamination. Additionally, levels of enteroviruses were studied in a number of samples, and in these samples, the B. fragilis bacteriophages clearly outnumbered the enteroviruses. The results of this study indicate that, under the environmental conditions studied, the fate of phages infecting B. fragilis released into the marine environment resembles that of human viruses more than any other microorganism examined. Images PMID:8074509

  1. Detection of human enteric viruses in oysters by in vivo and in vitro amplification of nucleic acids.

    PubMed Central

    Chung, H; Jaykus, L A; Sobsey, M D

    1996-01-01

    This study describes the detection of enteroviruses and hepatitis A virus in 31 naturally contaminated oyster specimens by nucleic acid amplification and oligonucleotide probing. Viruses were extracted by adsorption-elution-precipitation from 50-g oyster samples harvested from an area receiving sewage effluent discharge. Ninety percent of each extract was inoculated into primate kidney cell cultures for virus isolation and infectivity assay. Viruses in the remaining 10% of oyster extract that was not inoculated into cell cultures were further purified and concentrated by a procedure involving Freon extraction, polyethylene glycol precipitation, and Pro-Cipitate precipitation. After 3 to 4 weeks of incubation, RNA was extracted from inoculated cultures that were negative for cytopathic effects (CPE). These RNA extracts and the RNA from virions purified and concentrated directly from oyster extracts were subjected to reverse transcriptase PCR (RT-PCR) with primer pairs for human enteroviruses and hepatitis A virus. The resulting amplicons were confirmed by internal oligonucleotide probe hybridization. For the portions of oyster sample extracts inoculated into cell cultures, 12 (39%) were positive for human enteroviruses by CPE and 6 (19%) were positive by RT-PCR and oligoprobing of RNA extracts from CPE-negative cell cultures. For the remaining sample portions tested by direct RT-PCR and oligoprobing after further concentration, five (about 16%) were confirmed to be positive for human enteroviruses. Hepatitis A virus was also detected in RNA extracts of two CPE-positive samples by RT-PCR and oligoprobing. Combining the data from all three methods, enteric viruses were detected in 18 of 31 (58%) samples. Detection by nucleic acid methods increased the number of positive samples by 50% over detection by CPE in cell culture. Hence, nucleic acid amplification methods increase the detection of noncytopathic human enteric viruses in oysters. PMID:8837433

  2. Quantifying viruses and bacteria in wastewater—Results, interpretation methods, and quality control

    USGS Publications Warehouse

    Francy, Donna S.; Stelzer, Erin A.; Bushon, Rebecca N.; Brady, Amie M.G.; Mailot, Brian E.; Spencer, Susan K.; Borchardt, Mark A.; Elber, Ashley G.; Riddell, Kimberly R.; Gellner, Terry M.

    2011-01-01

    Membrane bioreactors (MBR), used for wastewater treatment in Ohio and elsewhere in the United States, have pore sizes small enough to theoretically reduce concentrations of protozoa and bacteria, but not viruses. Sampling for viruses in wastewater is seldom done and not required. Instead, the bacterial indicators Escherichia coli (E. coli) and fecal coliforms are the required microbial measures of effluents for wastewater-discharge permits. Information is needed on the effectiveness of MBRs in removing human enteric viruses from wastewaters, particularly as compared to conventional wastewater treatment before and after disinfection. A total of 73 regular and 28 quality-control (QC) samples were collected at three MBR and two conventional wastewater plants in Ohio during 23 regular and 3 QC sampling trips in 2008-10. Samples were collected at various stages in the treatment processes and analyzed for bacterial indicators E. coli, fecal coliforms, and enterococci by membrane filtration; somatic and F-specific coliphage by the single agar layer (SAL) method; adenovirus, enterovirus, norovirus GI and GII, rotavirus, and hepatitis A virus by molecular methods; and viruses by cell culture. While addressing the main objective of the study-comparing removal of viruses and bacterial indicators in MBR and conventional plants-it was realized that work was needed to identify data analysis and quantification methods for interpreting enteric virus and QC data. Therefore, methods for quantifying viruses, qualifying results, and applying QC data to interpretations are described in this report. During each regular sampling trip, samples were collected (1) before conventional or MBR treatment (post-preliminary), (2) after secondary or MBR treatment (post-secondary or post-MBR), (3) after tertiary treatment (one conventional plant only), and (4) after disinfection (post-disinfection). Glass-wool fiber filtration was used to concentrate enteric viruses from large volumes, and small

  3. Presence of pathogenic enteric viruses in illegally imported meat and meat products to EU by international air travelers.

    PubMed

    Rodríguez-Lázaro, David; Diez-Valcarce, Marta; Montes-Briones, Rebeca; Gallego, David; Hernández, Marta; Rovira, Jordi

    2015-09-16

    One hundred twenty two meat samples confiscated from passengers on flights from non-European countries at the International Airport of Bilbao (Spain) were tested for the presence of the main foodborne viral pathogens (human noroviruses genogroups I and II, hepatitis A and E viruses) during 2012 and 2013. A sample process control virus, murine norovirus, was used to evaluate the correct performance of the method. Overall, 67 samples were positive for at least one enteric viruses, 65 being positive for hepatitis E virus (53.3%), 3 for human norovirus genogroup I (2.5%) and 1 for human norovirus genogroup II (0.8%), whereas hepatitis A virus was not detected in any sample. The type of positive meat samples was diverse, but mainly was pork meat products (64.2%). The geographical origin of the positive samples was wide and diverse; samples from 15 out 19 countries tested were positive for at least one virus. However, the estimated virus load was low, ranging from 55 to 9.0 × 10(4) PDU per gram of product. The results obtained showed the potential introduction of viral agents in travelers' luggage, which constitute a neglected route of introduction and transmission. PMID:25951793

  4. COLIPHAGES AS POTENTIAL VIRAL INDICATORS OF FECAL POLLUTION

    EPA Science Inventory

    Friedman, Stephanie D. In press. Coliphages as Potential Viral Indicators of Fecal Pollution (Abstract). To be presented at the SWS/GERS Fall Joint Society Meeting: Communication and Collaboration: Coastal Systems of the Gulf of Mexico and Southeastern United States, 6-9 October ...

  5. QUALITY ASSURANCE FOR METHODS TO DETECT HUMAN ENTERIC VIRUSES IN DRINKING WATER

    EPA Science Inventory

    Surface or groundwaters impacted by untreated or inadequately treated domestic wastes may contain human pathogenic viruses that cause hepatitis, gastroenteritis, meningitis, encephalitis, myocarditis, diabetes, conjunctivitis and temporary or permanent paralysis. These viruses c...

  6. EVALUATION OF THE TENTATIVE STANDARD METHOD FOR ENTERIC VIRUS CONCENTRATION AND DETECTION

    EPA Science Inventory

    The Tentative Standard Method (TSM) for concentrating viruses from drinking water was evaluated for nine viruses using 100-gal tap water volumes experimentally contaminated with about 100 plaque-forming units of virus. The mean recoveries of poliovirus 1, coxsackievirus A9 and B3...

  7. Human enteric viruses in groundwater indicate offshore transport of human sewage to coral reefs of the Upper Florida Keys

    USGS Publications Warehouse

    Futch, J. Carrie; Griffin, Dale W.; Lipp, Erin K.

    2010-01-01

    To address the issue of human sewage reaching corals along the main reef of the Florida Keys, samples were collected from surface water, groundwater and coral [surface mucopolysaccharide layers (SML)] along a 10 km transect near Key Largo, FL. Samples were collected semi-annually between July 2003 and September 2005 and processed for faecal indicator bacteria (faecal coliform bacteria, enterococci and Clostridium perfringens) and human-specific enteric viruses (enterovirus RNA and adenovirus DNA) by (RT)-nested polymerase chain reaction. Faecal indicator bacteria concentrations were generally higher nearshore and in the coral SML. Enteric viruses were evenly distributed across the transect stations. Adenoviruses were detected in 37 of 75 samples collected (49.3%) whereas enteroviruses were only found in 8 of 75 samples (10.7%). Both viruses were detected twice as frequently in coral compared with surface water or groundwater. Offshore, viruses were most likely to be found in groundwater, especially during the wet summer season. These data suggest that polluted groundwater may be moving to the outer reef environment in the Florida Keys.

  8. Source and transport of human enteric viruses in deep municipal water supply wells

    USGS Publications Warehouse

    Bradbury, Kenneth R.; Borchardt, Mark A.; Gotkowitz, Madeline; Spencer, Susan K.; Zhu, Jun; Hunt, Randall J.

    2013-01-01

    Until recently, few water utilities or researchers were aware of possible virus presence in deep aquifers and wells. During 2008 and 2009 we collected a time series of virus samples from six deep municipal water-supply wells. The wells range in depth from approximately 220 to 300 m and draw water from a sandstone aquifer. Three of these wells draw water from beneath a regional aquitard, and three draw water from both above and below the aquitard. We also sampled a local lake and untreated sewage as potential virus sources. Viruses were detected up to 61% of the time in each well sampled, and many groundwater samples were positive for virus infectivity. Lake samples contained viruses over 75% of the time. Virus concentrations and serotypes observed varied markedly with time in all samples. Sewage samples were all extremely high in virus concentration. Virus serotypes detected in sewage and groundwater were temporally correlated, suggesting very rapid virus transport, on the order of weeks, from the source(s) to wells. Adenovirus and enterovirus levels in the wells were associated with precipitation events. The most likely source of the viruses in the wells was leakage of untreated sewage from sanitary sewer pipes.

  9. Infectivity-destroying Effect of Humidity for Dried Coliphage T1

    PubMed Central

    Lorenz, P. R.

    1968-01-01

    Infectivity of dried coliphage T1 has been measured as a function of humidity, temperature, and atmospheric pressure. Loss of infectivity by a factor of 104 was caused by water vapor of approximately 40 to 85% saturation when the microorganisms were kept for 3 days at 34 C in evacuated containers. At humidities below 40% and above 90% saturation, no loss of infectivity occurred. At a temperature of 24 C, the infectivity loss was 20-fold. When the virus preparation was kept at 34 C and atmospheric pressure, some loss of infectivity was also found at humidities below 40% and above 90% saturation. Damage to tail proteins or to the phage chromosome is considered as a possible explanation for the inactivation. PMID:5684204

  10. Expression and characterization of duck enteritis virus gI gene

    PubMed Central

    2011-01-01

    Background At present, alphaherpesviruses gI gene and its encoding protein have been extensively studied. It is likely that gI protein and its homolog play similar roles in virions direct cell-to-cell spread of alphaherpesviruses. But, little is known about the characteristics of DEV gI gene. In this study, we expressed and presented the basic properties of the DEV gI protein. Results The special 1221-bp fragment containing complete open reading frame(ORF) of duck enteritis virus(DEV) gI gene was extracted from plasmid pMD18-T-gI, and then cloned into prokaryotic expression vector pET-32a(+), resulting in pET-32a(+)-gI. After being confirmed by PCR, restriction endonuclease digestion and sequencing, pET-32a(+)-gI was transformed into E.coli BL21(DE3) competent cells for overexpression. DEV gI gene was successfully expressed by the addition of isopropyl-β-D-thiogalactopyranoside(IPTG). SDS-PAGE showed that the recombinant protein His6-tagged gI molecular weight was about 61 kDa. Subsequently, the expressed product was applied to generate specific antibody against gI protein. The specificity of the rabbit immuneserum was confirmed by its ability to react with the recombinant protein His6-tagged gI. In addition, real time-PCR was used to determine the the levels of the mRNA transcripts of gI gene, the results showed that the DEV gI gene was transcribed most abundantly during the late phase of infection. Furthermore, indirect immunofluorescence(IIF) was established to study the gI protein expression and localization in DEV-infected duck embryo fibroblasts (DEFs), the results confirmed that the protein was expressed and located in the cytoplasm of the infected cells, intensively. Conclusions The recombinant prokaryotic expression vector of DEV gI gene was constructed successfully. The gI protein was successfully expressed by E.coli BL21(DE3) and maintained its antigenicity very well. The basic information of the transcription and intracellular localization of gI gene

  11. Metagenomic identification of novel enteric viruses in urban wild rats and genome characterization of a group A rotavirus

    PubMed Central

    Sachsenröder, Jana; Braun, Anne; Machnowska, Patrycja; Ng, Terry Fei Fan; Deng, Xutao; Guenther, Sebastian; Bernstein, Samuel; Ulrich, Rainer G.; Delwart, Eric

    2014-01-01

    Rats are known as reservoirs and vectors for several zoonotic pathogens. However, information on the viruses shed by urban wild rats that could pose a zoonotic risk to human health is scare. Here, intestinal contents from 20 wild Norway rats (Rattus norvegicus) collected in the city of Berlin, Germany, were subjected to metagenomic analysis of viral nucleic acids. The determined faecal viromes of rats consisted of a variety of known and unknown viruses, and were highly variable among the individuals. Members of the families Parvoviridae and Picobirnaviridae represented the most abundant species. Novel picornaviruses, bocaviruses, sapoviruses and stool-associated circular ssDNA viruses were identified, which showed only low sequence identity to known representatives of the corresponding taxa. In addition, noroviruses and rotaviruses were detected as potential zoonotic gastroenteritis viruses. However, partial-genome sequence analyses indicated that the norovirus was closely related to the recently identified rat norovirus and the rotavirus B was closely related to the rat rotavirus strain IDIR; both viruses clustered separately from respective human virus strains in phylogenetic trees. In contrast, the rotavirus A sequences showed high identity to human and animal strains. Analysis of the nearly complete genome of this virus revealed the known genotypes G3, P[3] and N2 for three of the genome segments, whereas the remaining eight genome segments represented the novel genotypes I20–R11–C11–M10–A22–T14–E18–H13. Our results indicated a high heterogeneity of enteric viruses present in urban wild rats; their ability to be transmitted to humans remains to be assessed in the future. PMID:25121550

  12. Oral Phage Therapy of Acute Bacterial Diarrhea With Two Coliphage Preparations: A Randomized Trial in Children From Bangladesh

    PubMed Central

    Sarker, Shafiqul Alam; Sultana, Shamima; Reuteler, Gloria; Moine, Deborah; Descombes, Patrick; Charton, Florence; Bourdin, Gilles; McCallin, Shawna; Ngom-Bru, Catherine; Neville, Tara; Akter, Mahmuda; Huq, Sayeeda; Qadri, Firdausi; Talukdar, Kaisar; Kassam, Mohamed; Delley, Michèle; Loiseau, Chloe; Deng, Ying; El Aidy, Sahar; Berger, Bernard; Brüssow, Harald

    2016-01-01

    Background Antibiotic resistance is rising in important bacterial pathogens. Phage therapy (PT), the use of bacterial viruses infecting the pathogen in a species-specific way, is a potential alternative. Method T4-like coliphages or a commercial Russian coliphage product or placebo was orally given over 4 days to Bangladeshi children hospitalized with acute bacterial diarrhea. Safety of oral phage was assessed clinically and by functional tests; coliphage and Escherichia coli titers and enteropathogens were determined in stool and quantitative diarrhea parameters (stool output, stool frequency) were measured. Stool microbiota was studied by 16S rRNA gene sequencing; the genomes of four fecal Streptococcus isolates were sequenced. Findings No adverse events attributable to oral phage application were observed (primary safety outcome). Fecal coliphage was increased in treated over control children, but the titers did not show substantial intestinal phage replication (secondary microbiology outcome). 60% of the children suffered from a microbiologically proven E. coli diarrhea; the most frequent diagnosis was ETEC infections. Bacterial co-pathogens were also detected. Half of the patients contained phage-susceptible E. coli colonies in the stool. E. coli represented less than 5% of fecal bacteria. Stool ETEC titers showed only a short-lived peak and were otherwise close to the replication threshold determined for T4 phage in vitro. An interim analysis after the enrollment of 120 patients showed no amelioration in quantitative diarrhea parameter by PT over standard care (tertiary clinical outcome). Stool microbiota was characterized by an overgrowth with Streptococcus belonging to the Streptococcus gallolyticus and Streptococcus salivarius species groups, their abundance correlated with quantitative diarrhea outcome, but genome sequencing did not identify virulence genes. Interpretation Oral coliphages showed a safe gut transit in children, but failed to achieve

  13. AUTOGRAPHA CALIFORNICA NUCLEAR POLYHEDROSIS VIRUS EFFICIENTLY ENTERS BUT DOES NOT REPLICATE IN POIKILOTHERMIC VERTEBRATE CELLS

    EPA Science Inventory

    The host range of the insect virus Autographa californica nuclear polyhedrosis virus (AcMNPV) was examined. AcMNPV could not initiate a productive infection in frog, turtle, trout, or moth cell lines. After exposure to AcMNPV, neither viral DNA nor RNA synthesis could be detected...

  14. Molecular epidemiology of enteric viruses in patients with acute gastroenteritis in Aichi prefecture, Japan, 2008/09-2013/14.

    PubMed

    Nakamura, Noriko; Kobayashi, Shinichi; Minagawa, Hiroko; Matsushita, Tadashi; Sugiura, Wataru; Iwatani, Yasumasa

    2016-07-01

    Acute gastroenteritis is a critical infectious disease that affects infants and young children throughout the world, including Japan. This retrospective study was conducted from September 2008 to August 2014 (six seasons: 2008/09-2013/14) to investigate the incidence of enteric viruses responsible for 1,871 cases of acute gastroenteritis in Aichi prefecture, Japan. Of the 1,871 cases, 1,100 enteric viruses were detected in 978 samples, of which strains from norovirus (NoV) genogroup II (60.9%) were the most commonly detected, followed by strains of rotavirus A (RVA) (23.2%), adenovirus (AdV) type 41 (8.2%), sapovirus (SaV) (3.6%), human astrovirus (HAstV) (2.8%), and NoV genogroup I (1.3%). Sequencing of the NoV genogroup II (GII) strains revealed that GII.4 was the most common genotype, although four different GII.4 variants were also identified. The most common G-genotype of RVA was G1 (63.9%), followed by G3 (27.1%), G2 (4.7%) and G9 (4.3%). Three genogroups of SaV strains were found: GI (80.0%), GII (15.0%), and GV (5.0%). HAstV strains were genotyped as HAstV-1 (80.6%), HAstV-8 (16.1%), and HAstV-3 (3.2%). These results show that NoV GII was the leading cause of sporadic acute viral gastroenteritis, although a variety of enteric viruses were detected during the six-season surveillance period. PMID:26647761

  15. Data report. The fate of human enteric viruses in a natural sewage recycling system

    SciTech Connect

    Vaughn, J.M.; Landry, E.F.

    1980-09-01

    A two-year study was conducted to determine the virus-removing capacity of two man-made ecosystems designed for the treatment of raw domestic wastewater. The first treatment system consisted of two meadows followed by a marsh-pond unit (M/M/P). The second system contained individual marsh and pond units (M/P). All systems demonstrated moderate virus removal, with the marsh/pond system yielding the most consistent removal rates. Within this system, the greater potential for virus removal appeared to occur in the marsh unit. In addition to the production of system-oriented data, improved techniques for the concentration and enumeration of human viruses from sewage-polluted aquatic systems were developed.

  16. REDUCTION OF INTERFERING CYTOTOXICITY ASSOCIATED WITH WASTEWATER SLUDGE CONCENTRATES ASSAYED FOR INDIGENOUS ENTERIC VIRUSES

    EPA Science Inventory

    Washing, freon extraction, and cationic polyelectrolyte precipitation were compared for their ability to reduce cytotoxicity associated with virus concentrates derived from beef extract eluates of wastewater sludges. Eluates concentrated by hydroextraction were usually much more ...

  17. Post-epizootic surveys of waterfowl for duck plague (duck virus enteritis)

    USGS Publications Warehouse

    Brand, C.J.; Docherty, D.E.

    1988-01-01

    Surviving birds from nine duck plague outbreaks in urban and confined waterfowl were sampled for duck plague (DP) virus and DP antibody during 1979-86. Duck plague virus was found in combined oral and cloacal swabs of birds from three outbreaks, and DP-neutralizing antibody was demonstrated in some birds from all nine outbreaks. Greater prevalence of DP antibody and higher titers were found in survivors from confined populations than from free-flying urban populations. Free-flying waterfowl from within 52 km of four DP outbreak sites were also sampled; virus was not found in any birds, but DP antibody was found in urban waterfowl in the vicinity of an outbreak in Potterville, Michigan. No evidence of exposure to or shedding of DP virus in migratory waterfowl was found in two regions where DP appears enzootic in urban and confined waterfowl (Eastern Shore of Maryland and the vicinity of Sacramento, California).

  18. Detection of human enteric viruses in stream water with RT-PCR and cell culture.

    USGS Publications Warehouse

    Denis-Mize, K.; Fout, G.S.; Dahling, D.R.; Francy, D.S.

    2004-01-01

    A multiplex RT-PCR method was used to measure virus occurrence at five stream water sites that span a range of hydroclimatic, water-quality, and land-use characteristics. The performance of the molecular method was evaluated in comparison with traditional cell culture and Escherichia coli membrane filtration assays. The study incorporated multiple quality controls and included a control for virus recovery during the sampling procedure as well as controls to detect potentially false-negative and false-positive data. Poliovirus recovery ranged from 16 to 65% and was variable, even in samples collected within the same stream. All five sites were positive for viruses by both molecular and cell culture-based virus assays. Enteroviruses, reoviruses, rotaviruses, and hepatitis A viruses were detected, but the use of the quality controls proved critical for interpretation of the molecular data. All sites showed evidence of faecal contamination, and culturable viruses were detected in four samples that would have met the US Environmental Protection Agency's recommended E. coli guideline for safe recreational water.

  19. Human viruses and viral indicators in marine water at two recreational beaches in Southern California, USA.

    PubMed

    Love, David C; Rodriguez, Roberto A; Gibbons, Christopher D; Griffith, John F; Yu, Qilu; Stewart, Jill R; Sobsey, Mark D

    2014-03-01

    Waterborne enteric viruses may pose disease risks to bather health but occurrence of these viruses has been difficult to characterize at recreational beaches. The aim of this study was to evaluate water for human virus occurrence at two Southern California recreational beaches with a history of beach closures. Human enteric viruses (adenovirus and norovirus) and viral indicators (F+ and somatic coliphages) were measured in water samples over a 4-month period from Avalon Beach, Catalina Island (n = 324) and Doheny Beach, Orange County (n = 112). Human viruses were concentrated from 40 L samples and detected by nested reverse transcriptase polymerase chain reaction (PCR). Detection frequencies at Doheny Beach were 25.5% (adenovirus) and 22.3% (norovirus), and at Avalon Beach were 9.3% (adenovirus) and 0.7% (norovirus). Positive associations between adenoviruses and fecal coliforms were observed at Doheny (p = 0.02) and Avalon (p = 0.01) Beaches. Human viruses were present at both beaches at higher frequencies than previously detected in the region, suggesting that the virus detection methods presented here may better measure potential health risks to bathers. These virus recovery, concentration, and molecular detection methods are advancing practices so that analysis of enteric viruses can become more effective and routine for recreational water quality monitoring. PMID:24642440

  20. A single method for recovery and concentration of enteric viruses and bacteria from fresh-cut vegetables.

    PubMed

    Sánchez, G; Elizaquível, P; Aznar, R

    2012-01-01

    Fresh-cut vegetables are prone to be contaminated with foodborne pathogens during growth, harvest, transport and further processing and handling. As most of these products are generally eaten raw or mildly treated, there is an increase in the number of outbreaks caused by viruses and bacteria associated with fresh vegetables. Foodborne pathogens are usually present at very low levels and have to be concentrated (i.e. viruses) or enriched (i.e. bacteria) to enhance their detection. With this aim, a rapid concentration method has been developed for the simultaneous recovery of hepatitis A virus (HAV), norovirus (NV), murine norovirus (MNV) as a surrogate for NV, Escherichia coli O157:H7, Listeria monocytogenes and Salmonella enterica. Initial experiments focused on evaluating the elution conditions suitable for virus release from vegetables. Finally, elution with buffered peptone water (BPW), using a Pulsifier, and concentration by polyethylene glycol (PEG) precipitation were the methods selected for the elution and concentration of both, enteric viruses and bacteria, from three different types of fresh-cut vegetables by quantitative PCR (qPCR) using specific primers. The average recoveries from inoculated parsley, spinach and salad, were ca. 9.2%, 43.5%, and 20.7% for NV, MNV, and HAV, respectively. Detection limits were 132 RT-PCR units (PCRU), 1.5 50% tissue culture infectious dose (TCID₅₀), and 6.6 TCID₅₀ for NV, MNV, and HAV, respectively. This protocol resulted in average recoveries of 57.4%, 64.5% and 64.6% in three vegetables for E. coli O157:H7, L. monocytogenes and Salmonella with corresponding detection limits of 10³, 10² and 10³ CFU/g, respectively. Based on these results, it can be concluded that the procedure herein is suitable to recover, detect and quantify enteric viruses and foodborne pathogenic bacteria within 5 h and can be applied for the simultaneous detection of both types of foodborne pathogens in fresh-cut vegetables. PMID:22036077

  1. Feeding of the probiotic bacterium Enterococcus faecium NCIMB 10415 differentially affects shedding of enteric viruses in pigs

    PubMed Central

    2012-01-01

    Effects of probiotic bacteria on viral infections have been described previously. Here, two groups of sows and their piglets were fed with or without feed supplementation of the probiotic bacterium Enterococcus faecium NCIMB 10415. Shedding of enteric viruses naturally occurring in these pigs was analyzed by quantitative real-time RT-PCR. No differences between the groups were recorded for hepatitis E virus, encephalomyocarditis virus and norovirus. In contrast, astrovirus was exclusively detected in the non-supplemented control group. Rotavirus was shedded later and with lower amounts in the probiotic piglet group (p < 0.05); rotavirus-shedding piglets gained less weight than non-infected animals (p < 0.05). Serum titres of anti-rotavirus IgA and IgG antibodies were higher in piglets from the control group, whereas no difference was detected between sow groups. Phenotype analysis of immune cell antigens revealed significant differences of the CD4 and CD8β (p < 0.05) as well as CD8α and CD25 (p < 0.1) T cell populations of the probiotic supplemented group compared to the non-supplemented control group. In addition, differences were evident for CD21/MHCII-positive (p < 0.05) and IgM-positive (p < 0.1) B cell populations. The results indicate that probiotic bacteria could have effects on virus shedding in naturally infected pigs, which depend on the virus type. These effects seem to be caused by immunological changes; however, the distinct mechanism of action remains to be elucidated. PMID:22838386

  2. ENTERIC VIRUS AND INDICATOR BACTERIA LEVELS IN A WATER TREATMENT SYSTEM MODIFIED TO REDUCE TRIHALOMETHANE PRODUCTION

    EPA Science Inventory

    A drinking water treatment plant with high concentrations of trihalomethanes (THMs) in its finished water and large numbers of viruses in its source water was located. This plant was used to study the effect of an alteration in the point of chlorination from the first to last ste...

  3. IMMUNE RESPONSE AND PREVALENCE OF ANTIBODY TO NORWALK ENTERITIS VIRUS AS DETERMINED BY RADIOIMMUNOASSAY

    EPA Science Inventory

    A solid-phase microtiter radioimmunoassay was established for the detection of Norwalk virus and its antibody, with clinical materials from human volunteers previously studied in Massachusetts as reagents. A study of 308 Massachusetts residents showed that serum antibody to Norwa...

  4. A MULTI-LABORATORY EVALUATION OF METHODS FOR DETECTING ENTERIC VIRUSES IN SOILS

    EPA Science Inventory

    Two candidate methods for the recovery and detection of viruses in soil were subjected to round robin comparative testing by members of the American Society for Testing and Materials D19:24:04:04 Subcommittee Task Group. Selection of the methods, designated “Berg” and “Goyal,” wa...

  5. DETECTION OF HUMAN ENTERIC VIRUSES IN STREAM WATER WITH RT-PCR AND CELL CULTURE

    EPA Science Inventory

    A multiplex RT-PCR method was used to measure virus occurrence at five stream water sites that span a range of hydroclimatic, water-quality, and land-use characteristics. The performance of the molecular method was evaluated in comparison to traditional cell culture and Escherich...

  6. MULTI-LABORATORY EVALUATION OF METHODS FOR DETECTING ENTERIC VIRUSES IN SOILS

    EPA Science Inventory

    Two candidate methods for the recovery and detection of viruses in soil were subjected to round robin comparative testing by members of the American Society for Testing and Materials Dl9:24:04:04 subcommittee Task Group. election of the methods, designated "Berg" and "Goyal", was...

  7. A Duck Enteritis Virus-Vectored Bivalent Live Vaccine Provides Fast and Complete Protection against H5N1 Avian Influenza Virus Infection in Ducks ▿ † §

    PubMed Central

    Liu, Jinxiong; Chen, Pucheng; Jiang, Yongping; Wu, Li; Zeng, Xianying; Tian, Guobin; Ge, Jinying; Kawaoka, Yoshihiro; Bu, Zhigao; Chen, Hualan

    2011-01-01

    Ducks play an important role in the maintenance of highly pathogenic H5N1 avian influenza viruses (AIVs) in nature, and the successful control of AIVs in ducks has important implications for the eradication of the disease in poultry and its prevention in humans. The inactivated influenza vaccine is expensive, labor-intensive, and usually needs 2 to 3 weeks to induce protective immunity in ducks. Live attenuated duck enteritis virus (DEV; a herpesvirus) vaccine is used routinely to control lethal DEV infections in many duck-producing areas. Here, we first established a system to generate the DEV vaccine strain by using the transfection of overlapping fosmid DNAs. Using this system, we constructed two recombinant viruses, rDEV-ul41HA and rDEV-us78HA, in which the hemagglutinin (HA) gene of the H5N1 virus A/duck/Anhui/1/06 was inserted and stably maintained within the ul41 gene or between the us7 and us8 genes of the DEV genome. Duck studies indicated that rDEV-us78HA had protective efficacy similar to that of the live DEV vaccine against lethal DEV challenge; importantly, a single dose of 106 PFU of rDEV-us78HA induced complete protection against a lethal H5N1 virus challenge in as little as 3 days postvaccination. The protective efficacy against both lethal DEV and H5N1 challenge provided by rDEV-ul41HA inoculation in ducks was slightly weaker than that provided by rDEV-us78HA. These results demonstrate, for the first time, that recombinant DEV is suitable for use as a bivalent live attenuated vaccine, providing rapid protection against both DEV and H5N1 virus infection in ducks. PMID:21865383

  8. Round robin investigation of methods for recovering human enteric viruses from sludge.

    PubMed Central

    Goyal, S M; Schaub, S A; Wellings, F M; Berman, D; Glass, J S; Hurst, C J; Brashear, D A; Sorber, C A; Moore, B E; Bitton, G

    1984-01-01

    To select a tentative standard method for detection of viruses in sludge the American Society for Testing and Materials D19:24:04:04 Subcommittee Task Group initiated round robin comparative testing of two procedures that, after initial screening of several methodologies, were found to meet the basic criteria considered essential by the task group. Eight task group member laboratories agreed to perform round robin testing of the two candidate methods, namely, The Environmental Protection Agency or low pH-AlCl3 method and the Glass or sonication-extraction method. Five different types of sludge were tested. For each particular type of sludge, a single laboratory was designated to collect the sludge in a single sampling, make samples, and ship it to the participating laboratories. In most cases, participating laboratories completed all the tests within 48 h of sample arrival. To establish the reproducibility of the methods, each laboratory tested each sludge sample in triplicate for the two candidate virus methods. Each processed sludge sample was quantitatively assayed for viruses by the procedures of each individual round robin laboratory. To attain a more uniform standard of comparison, a sample of each processed sample from all laboratories was reassayed with one cell line and passage number by a single laboratory (Environmental Protection Agency Environmental Monitoring and Support Laboratory, Cincinnati, Ohio). When the data were statistically analyzed, the Environmental Protection Agency method was found to yield slightly higher virus recoveries for all sludge types, except the dewatered sludge. The precisions of both methods were not significantly different.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6093689

  9. Improved inactivation of nonenveloped enteric viruses and their surrogates by a novel alcohol-based hand sanitizer.

    PubMed

    Macinga, David R; Sattar, Syed A; Jaykus, Lee-Ann; Arbogast, James W

    2008-08-01

    Norovirus is the leading cause of food-related illness in the United States, and contamination of ready-to-eat items by food handlers poses a high risk for disease. This study reports the in vitro (suspension test) and in vivo (fingerpad protocol) assessments of a new ethanol-based hand sanitizer containing a synergistic blend of polyquaternium polymer and organic acid, which is active against viruses of public health importance, including norovirus. When tested in suspension, the test product reduced the infectivity of the nonenveloped viruses human rotavirus (HRV), poliovirus type 1 (PV-1), and the human norovirus (HNV) surrogates feline calicivirus (FCV) F-9 and murine norovirus type 1 (MNV-1) by greater than 3 log(10) after a 30-s exposure. In contrast, a benchmark alcohol-based hand sanitizer reduced only HRV by greater than 3 log(10) and none of the additional viruses by greater than 1.2 log(10) after the same exposure. In fingerpad experiments, the test product produced a 2.48 log(10) reduction of MNV-1 after a 30-s exposure, whereas a 75% ethanol control produced a 0.91 log(10) reduction. Additionally, the test product reduced the infectivity titers of adenovirus type 5 (ADV-5) and HRV by > or =3.16 log(10) and > or =4.32 log(10), respectively, by the fingerpad assay within 15 s; and PV-1 was reduced by 2.98 log(10) in 30 s by the same method. Based on these results, we conclude that this new ethanol-based hand sanitizer is a promising option for reducing the transmission of enteric viruses, including norovirus, by food handlers and care providers. PMID:18586970

  10. Improved Inactivation of Nonenveloped Enteric Viruses and Their Surrogates by a Novel Alcohol-Based Hand Sanitizer ▿

    PubMed Central

    Macinga, David R.; Sattar, Syed A.; Jaykus, Lee-Ann; Arbogast, James W.

    2008-01-01

    Norovirus is the leading cause of food-related illness in the United States, and contamination of ready-to-eat items by food handlers poses a high risk for disease. This study reports the in vitro (suspension test) and in vivo (fingerpad protocol) assessments of a new ethanol-based hand sanitizer containing a synergistic blend of polyquaternium polymer and organic acid, which is active against viruses of public health importance, including norovirus. When tested in suspension, the test product reduced the infectivity of the nonenveloped viruses human rotavirus (HRV), poliovirus type 1 (PV-1), and the human norovirus (HNV) surrogates feline calicivirus (FCV) F-9 and murine norovirus type 1 (MNV-1) by greater than 3 log10 after a 30-s exposure. In contrast, a benchmark alcohol-based hand sanitizer reduced only HRV by greater than 3 log10 and none of the additional viruses by greater than 1.2 log10 after the same exposure. In fingerpad experiments, the test product produced a 2.48 log10 reduction of MNV-1 after a 30-s exposure, whereas a 75% ethanol control produced a 0.91 log10 reduction. Additionally, the test product reduced the infectivity titers of adenovirus type 5 (ADV-5) and HRV by ≥3.16 log10 and ≥4.32 log10, respectively, by the fingerpad assay within 15 s; and PV-1 was reduced by 2.98 log10 in 30 s by the same method. Based on these results, we conclude that this new ethanol-based hand sanitizer is a promising option for reducing the transmission of enteric viruses, including norovirus, by food handlers and care providers. PMID:18586970

  11. Molecular investigations on the prevalence and viral load of enteric viruses in pigs from five European countries.

    PubMed

    Zhou, Weiguang; Ullman, Karin; Chowdry, Vinay; Reining, Márta; Benyeda, Zsófia; Baule, Claudia; Juremalm, Mikael; Wallgren, Per; Schwarz, Lukas; Zhou, Enmin; Pedrero, Sonia Pina; Hennig-Pauka, Isabel; Segales, Joaquim; Liu, Lihong

    2016-01-15

    Enteric viral infections in pigs may cause diarrhea resulting in ill-thrift and substantial economic losses. This study reports the enteric infections with porcine astrovirus type 4 (PAstV4), porcine group A rotavirus (GARV), porcine group C rotavirus (GCRV), porcine circovirus type 2 (PCV2) and porcine kobuvirus (PKoV) in 419 pigs, comprising both healthy and diarrheic animals, from 49 farms in five European countries (Austria, Germany, Hungary, Spain and Sweden). Real-time RT-PCR assays were developed to test fecal samples and to compare the prevalence and viral load in relation to health status, farms of origin and age groups. The results showed that PAstV4 (70.4%) was the dominant virus species, followed by PKoV (56.7%), PCV2 (42.2%), GCRV (3%) and GARV (0.9%). Diarrheic pigs had a higher viral load of PAstV4 in the nursery and growing-finishing groups. Rotaviruses were mainly detected in diarrheic pigs, whereas PCV2 was more often detected in clinically healthy than in diarrheic pigs, suggesting that most PCV2 infections were subclinical. PAstV4, PCV2 and PKoV were considered ubiquitous in the European pig livestock and co-infections among them were frequent, independently of the disease status, in contrast to a low prevalence of classical rotavirus infections. PMID:26711031

  12. Effects of epidermal growth factor on atrophic enteritis in piglets induced by experimental porcine epidemic diarrhoea virus.

    PubMed

    Jung, Kwonil; Kang, Bo-Kyu; Kim, Jeom-Yong; Shin, Kyoung-Sun; Lee, Chul-Seung; Song, Dae-Sub

    2008-08-01

    Epidermal growth factor (EGF) promotes gastrointestinal mucosal recovery by stimulating the mitogenic activity of intestinal crypt epithelial cells. The aim of this study was to determine the effects of EGF on atrophic enteritis induced in piglets by experimental infection with porcine epidemic diarrhoea virus (PEDV) strain Dr13. Two groups of 12 conventional, colostrum-deprived, 1-day-old, large White-Duroc cross breed piglets were inoculated orally with PEDV (3 x 10(5) 50% tissue culture infective doses), with or without EGF (10 microg/kg/day, intraperitoneally once daily for 4 days after infection) and compared to 12 uninfected, untreated control piglets. PEDV+EGF piglets had less severe clinical signs than PEDV only piglets at 48 and 60 h post-infection (hpi). Histologically, the ratio of villous height:crypt depth of PEDV+EGF piglets was significantly higher than PEDV only piglets at 36 and 48 hpi. Immunohistochemistry for Ki67 demonstrated increased proliferation in intestinal crypt epithelial cells of PEDV+EGF piglets compared to PEDV only piglets at 36, 48 and 60 hpi. EGF stimulates proliferation of intestinal crypt epithelial cells and promotes recovery from atrophic enteritis in PEDV-infected piglets. PMID:17574457

  13. First survey of the occurrence of duck enteritis virus (DEV) in free-ranging Polish water birds.

    PubMed

    Woźniakowski, Grzegorz; Samorek-Salamonowicz, Elzbieta

    2014-06-01

    Duck plague (DP) caused by anatid herpesvirus 1, also called duck enteritis virus (DEV), presents one of the most important concerns in mass waterfowl production. Apart from geese and ducks, free-ranging water birds are the most notorious infection carriers. The epidemiology of DEV in Western Europe remains unknown. Therefore, it was reasonable to conduct a study on its occurrence using modern but simple real-time loop-mediated isothermal amplification (LAMP). Analysis of 132 field isolates showed the presence of DEV in 96 birds (72.7 %), and it was found predominantly in wild ducks (Anas platyrhynchos) and mute swans (Cygnus olor). This virus was also found in graylag geese (Anser anser), tundra bean geese (Anser fabalis), and grey herons (Ardea cinerea). The results were recorded as green colour of positive samples, fluorescence under ultraviolet light, and florescent curves in a real-time PCR system. This study indicates the high prevalence of DEV among free-ranging water birds in Poland and the possible transmission to other birds settling in the water environment. This is the first report of DEV detection among free-ranging water birds in Poland. PMID:24327092

  14. Acute Diarrhea in West African Children: Diverse Enteric Viruses and a Novel Parvovirus Genus

    PubMed Central

    Phan, Tung G.; Vo, Nguyen P.; Bonkoungou, Isidore J. O.; Kapoor, Amit; Barro, Nicolas; O'Ryan, Miguel; Kapusinszky, Beatrix; Wang, Chunling

    2012-01-01

    Parvoviruses cause a variety of mild to severe symptoms or asymptomatic infections in humans and animals. During a viral metagenomic analysis of feces from children with acute diarrhea in Burkina Faso, we identified in decreasing prevalence nucleic acids from anelloviruses, dependoviruses, sapoviruses, enteroviruses, bocaviruses, noroviruses, adenoviruses, parechoviruses, rotaviruses, cosavirus, astroviruses, and hepatitis B virus. Sequences from a highly divergent parvovirus, provisionally called bufavirus, were also detected whose NS1 and VP1 proteins showed <39% and <31% identities to those of previously known parvoviruses. Four percent of the fecal samples were PCR positive for this new parvovirus, including a related bufavirus species showing only 72% identity in VP1. The high degree of genetic divergence of these related genomes from those of other parvoviruses indicates the presence of a proposed new Parvoviridae genus containing at least two species. Studies of the tropism and pathogenicity of these novel parvoviruses will be facilitated by the availability of their genome sequences. PMID:22855485

  15. Human and animal enteric virus in groundwater from deep wells, and recreational and network water.

    PubMed

    Fongaro, Gislaine; Padilha, J; Schissi, C D; Nascimento, M A; Bampi, G B; Viancelli, A; Barardi, C R M

    2015-12-01

    This study was designed to assess the presence of human adenovirus (HAdV), rotavirus-A (RVA), hepatitis A virus (HAV), and porcine circovirus-2 (PCV2) in groundwater from deep wells, and recreational and network waters. The water samples were collected and concentrated and the virus genomes were assessed and quantified by quantitative PCR (qPCR). Infectious HAdV was evaluated in groundwater and network water samples by integrated cell culture using transcribed messenger RNA (mRNA) (ICC-RT-qPCR). In recreational water samples, HAdV was detected in 100 % (6/6), HAV in 66.6 % (4/6), and RVA in 66.6 % (4/6). In network water, HAdV was detected in 100 % (6/6) of the samples (these 83 % contained infectious HAdV), although HAV and RVA were not detected and PCV2 was not evaluated. In groundwater from deep wells, during rainy period, HAdV and RVA were detected in 80 % (4/5) of the samples, and HAV and PCV2 were not detected; however, during dry period, HAdV and RVA were detected in 60 % (3/5), HAV in only one sample, and PCV2 in 60 % (4/5). In groundwater, all samples contained infectious HAdV. PCV2 presence in groundwater is indicative of contamination caused by swine manure in Concórdia, Santa Catarina, Brazil. The disinfection of human and animal wastes is urgent, since they can contaminate surface and groundwater, being a potential threat for public and animal health. PMID:26300358

  16. Rift Valley Fever Virus Strain MP-12 Enters Mammalian Host Cells via Caveola-Mediated Endocytosis

    PubMed Central

    Harmon, Brooke; Schudel, Benjamin R.; Maar, Dianna; Kozina, Carol; Ikegami, Tetsuro; Tseng, Chien-Te Kent

    2012-01-01

    Rift Valley fever virus (RVFV) is a zoonotic pathogen capable of causing serious morbidity and mortality in both humans and livestock. The lack of efficient countermeasure strategies, the potential for dispersion into new regions, and the pathogenesis in humans and livestock make RVFV a serious public health concern. The receptors, cellular factors, and entry pathways used by RVFV and other members of the family Bunyaviridae remain largely uncharacterized. Here we provide evidence that RVFV strain MP-12 uses dynamin-dependent caveola-mediated endocytosis for cell entry. Caveolae are lipid raft domains composed of caveolin (the main structural component), cholesterol, and sphingolipids. Caveola-mediated endocytosis is responsible for the uptake of a wide variety of host ligands, as well as bacteria, bacterial toxins, and a number of viruses. To determine the cellular entry mechanism of RVFV, we used small-molecule inhibitors, RNA interference (RNAi), and dominant negative (DN) protein expression to inhibit the major mammalian cell endocytic pathways. Inhibitors and RNAi specific for macropinocytosis and clathrin-mediated endocytosis had no effect on RVFV infection. In contrast, inhibitors of caveola-mediated endocytosis, and RNAi targeted to caveolin-1 and dynamin, drastically reduced RVFV infection in multiple cell lines. Expression of DN caveolin-1 also reduced RVFV infection significantly, while expression of DN EPS15, a protein required for the assembly of clathrin-coated pits, and DN PAK-1, an obligate mediator of macropinocytosis, had no significant impact on RVFV infection. These results together suggest that the primary mechanism of RVFV MP-12 uptake is dynamin-dependent, caveolin-1-mediated endocytosis. PMID:22993156

  17. A case study of enteric virus removal and insights into the associated risk of water reuse for two wastewater treatment pond systems in Bolivia.

    PubMed

    Symonds, E M; Verbyla, M E; Lukasik, J O; Kafle, R C; Breitbart, M; Mihelcic, J R

    2014-11-15

    Wastewater treatment ponds (WTP) are one of the most widespread treatment technologies in the world; however, the mechanisms and extent of enteric virus removal in these systems are poorly understood. Two WTP systems in Bolivia, with similar overall hydraulic retention times but different first stages of treatment, were analyzed for enteric virus removal. One system consisted of a facultative pond followed by two maturation ponds (three-pond system) and the other consisted of an upflow anaerobic sludge blanket (UASB) reactor followed by two maturation (polishing) ponds (UASB-pond system). Quantitative polymerase chain reaction with reverse transcription (RT-qPCR) was used to measure concentrations of norovirus, rotavirus, and pepper mild mottle virus, while cell culture methods were used to measure concentrations of culturable enteroviruses (EV). Limited virus removal was observed with RT-qPCR in either system; however, the three-pond system removed culturable EV with greater efficiency than the UASB-pond system. The majority of viruses were not associated with particles and only a small proportion was associated with particles larger than 180 μm; thus, it is unlikely that sedimentation is a major mechanism of virus removal. High concentrations of viruses were associated with particles between 0.45 and 180 μm in the UASB reactor effluent, but not in the facultative pond effluent. The association of viruses with this size class of particles may explain why only minimal virus removal was observed in the UASB-pond system. Quantitative microbial risk assessment of the treated effluent for reuse for restricted irrigation indicated that the three-pond system effluent requires an additional 1- to 2-log10 reduction of viruses to achieve the WHO health target of <10(-4) disability-adjusted life years (DALYs) lost per person per year; however, the UASB-pond system effluent may require an additional 2.5- to 4.5-log10 reduction of viruses. PMID:25129566

  18. Removal of enteric viruses and selected microbial indicators by UV irradiation of secondary effluent.

    PubMed

    Jacangelo, J G; Loughran, P; Petrik, B; Simpson, D; McIlroy, C

    2003-01-01

    The Watercare Mangere Wastewater Treatment Facility, which treats wastewater from the greater Auckland New Zealand region, is undergoing a major expansion/upgrading to add advanced treatment and disinfection prior to discharge into a harbor. One important goal of this project is to protect the receiving water from microbial contamination. Since sufficient information on the fate of various microorganisms through wastewater treatment plants in New Zealand was not readily available, extensive pilot- and bench-scale studies were undertaken to develop specific design criteria for the treatment and disinfection systems. The specific objective of this study was to evaluate the removal and inactivation of enteric pathogens and other microbial indicators through treatment processes that employs UV irradiation as a final disinfection process. The removal of indicator organisms through secondary treatment was typically between 2.5-log (99.7% removal) and 2.8-log (99.8% removal) for fecal coliforms and enterococci, respectively. Indigenous F-specific bacteriophage exhibited a mean removal of 1.6-log (i.e. 97.7% removal) and Clostridium perfringens spores showed a mean removal of 1.3-log (i.e. 95% removal). The UV dose required to achieve a one log reduction in the concentration of indigenous F-specific bacteriophage was found to be approximately 20 mWs/cm2 per log removal. The concentration of enterovirus and adenovirus were consistently reduced to the limit of detection (1 TCID50/100L) at UV doses of 35 to 40 mWs/cm2 and 40 to 45 mWs/cm2, respectively. Clostridium perfringens spores were the most resistant indicator organisms, being reduced to less than 200 MPN/100 mL at a UV dose of 75 mWs/cm2. PMID:12830960

  19. Somatic coliphages as surrogates for enteroviruses in sludge hygienization treatments.

    PubMed

    Martín-Díaz, Julia; Casas-Mangas, Raquel; García-Aljaro, Cristina; Blanch, Anicet R; Lucena, Francisco

    2016-01-01

    Conventional bacterial indicators present serious drawbacks giving information about viral pathogens persistence during sludge hygienization treatments. This calls for the search of alternative viral indicators. Somatic coliphages' (SOMCPH) ability for acting as surrogates for enteroviruses was assessed in 47 sludge samples subjected to novel treatment processes. SOMCPH, infectious enteroviruses and genome copies of enteroviruses were monitored. Only one of these groups, the bacteriophages, was present in the sludge at concentrations that allowed the evaluation of treatment's performance. An indicator/pathogen relationship of 4 log10 (PFU/g dw) was found between SOMCPH and infective enteroviruses and their detection accuracy was assessed. The obtained results and the existence of rapid and standardized methods encourage the inclusion of SOMCPH quantification in future sludge directives. In addition, an existing real-time quantitative polymerase chain reaction (RT-qPCR) for enteroviruses was adapted and applied. PMID:27148720

  20. Behavior of Coliphage Lambda in Shigella flexneri 2a

    PubMed Central

    Gemski, P.; Alexeichik, J. A.; Baron, L. S.

    1972-01-01

    The insensitivity of wild-type Shigella flexneri 2a to coliphage λ is a consequence of its native genetic defect in the malA gene cluster. The “smooth” S. flexneri 2a lipopolysaccharide layer affects the efficient adsorption of λ. Derivatives, capable of serving as functional hosts for λ, were obtained by repairing the malA lesion, enabling the expression of the malB-λrcp region of S. flexneri. Introduction of a mutation into S. flexneri causing a “rough” lipopolysaccharide character resulted in more efficient adsorption of λ. Such S. flexneri hosts can be stably lysogenized and upon induction yield gal+-transducing lysates. Lambda propagated on a malA+ rough S. flexneri host was restricted by Escherichia coli K-12 and E. coli B, but not by E. coli C. This S. flexneri host did not restrict λ grown on these E. coli strains. PMID:4563593

  1. Detection and genetic characterization of human enteric viruses in oyster-associated gastroenteritis outbreaks between 2001 and 2012 in Osaka City, Japan.

    PubMed

    Iritani, Nobuhiro; Kaida, Atsushi; Abe, Niichiro; Kubo, Hideyuki; Sekiguchi, Jun-Ichiro; Yamamoto, Seiji P; Goto, Kaoru; Tanaka, Tomoyuki; Noda, Mamoru

    2014-12-01

    Enteric viruses are an important cause of viral food-borne disease. Shellfish, especially oysters, are well recognized as a source of food-borne diseases, and oyster-associated gastroenteritis outbreaks have on occasion become international occurrences. In this study, 286 fecal specimens from 88 oyster-associated gastroenteritis outbreaks were examined for the presence of 10 human enteric viruses using antigenic or genetic detection methods in order to determine the prevalence of these infections. All virus-positive patients were over 18 years old. The most common enteric virus in outbreaks (96.6%) and fecal specimens (68.9%) was norovirus (NoV), indicating a high prevalence of NoV infection associated with the consumption of raw or under-cooked oysters. Five other enteric viruses, aichiviruses, astroviruses, sapoviruses, enteroviruses (EVs), and rotavirus A, were detected in 30.7% of outbreaks. EV strains were characterized into three rare genotypes, coxsackievirus (CV) A1, A19, and EV76. No reports of CVA19 or EV76 have been made since 1981 in the Infectious Agents Surveillance Report by the National Infectious Diseases Surveillance Center, Japan. Their detection suggested that rare types of EVs are circulating in human populations inconspicuously and one of their transmission modes could be the consumption of contaminated oysters. Rapid identification of pathogens is important for the development of means for control and prevention. The results of the present study will be useful to establish an efficient approach for the identification of viral pathogens in oyster-associated gastroenteritis in adults. PMID:24415518

  2. Investigation of enteric adenovirus and poliovirus removal by coagulation processes and suitability of bacteriophages MS2 and φX174 as surrogates for those viruses.

    PubMed

    Shirasaki, N; Matsushita, T; Matsui, Y; Marubayashi, T; Murai, K

    2016-09-01

    We evaluated the removal of enteric adenovirus (AdV) type 40 and poliovirus (PV) type 1 by coagulation, using water samples from 13 water sources for drinking water treatment plants in Japan. The behaviors of two widely accepted enteric virus surrogates, bacteriophages MS2 and φX174, were compared with the behaviors of AdV and PV. Coagulation with polyaluminum chloride (PACl, basicity 1.5) removed AdV and PV from virus-spiked source waters: the infectious AdV and PV removal ratios evaluated by means of a plaque-forming-unit method were 0.1-1.4-log10 and 0.5-2.4-log10, respectively. A nonsulfated high-basicity PACl (basicity 2.1) removed infectious AdV and PV more efficiently than did other commercially available PACls (basicity 1.5-2.1), alum, and ferric chloride. The MS2 removal ratios tended to be larger than those of AdV and PV, partly because of differences in the hydrophobicities of the virus particles and the sensitivity of the virus to the virucidal activity of PACl; the differences in removal ratios were not due to differences in the surface charges of the virus particles. MS2, which was more hydrophobic than the other viruses, was inactivated during coagulation with PACl. Therefore, MS2 does not appear to be an appropriate surrogate for AdV and PV during coagulation. In contrast, because φX174, like AdV and PV, was not inactivated during coagulation, and because the hydrophobicity of φX174 was similar to or somewhat lower than the hydrophobicities of AdV and PV, the φX174 removal ratios tended to be similar to or somewhat smaller than those of the enteric viruses. Therefore, φX174 is a potential conservative surrogate for AdV and PV during coagulation. In summary, the surface hydrophobicity of virus particles and the sensitivity of the virus to the virucidal activity of the coagulant are probably important determinants of the efficiency of virus removal during coagulation. PMID:27135564

  3. Organic Wastewater Compounds, Pharmaceuticals, andColiphage in Ground Water Receiving Discharge from OnsiteWastewater Treatment Systems near La Pine, Oregon:Occurrence and Implications for Transport

    USGS Publications Warehouse

    Hinkle, Stephen J.; Weick, Rodney J.; Johnson, Jill M.; Cahill, Jeffery D.; Smith, Steven G.; Rich, Barbara J.

    2005-01-01

    The occurrence of organic wastewater compounds (components of 'personal care products' and other common household chemicals), pharmaceuticals (human prescription and nonprescription medical drugs), and coliphage (viruses that infect coliform bacteria, and found in high concentrations in municipal wastewater) in onsite wastewater (septic tank effluent) and in a shallow, unconfined, sandy aquifer that serves as the primary source of drinking water for most residents near La Pine, Oregon, was documented. Samples from two types of observation networks provided basic occurrence data for onsite wastewater and downgradient ground water. One observation network was a group of 28 traditional and innovative (advanced treatment) onsite wastewater treatment systems and associated downgradient drainfield monitoring wells, referred to as the 'innovative systems network'. The drainfield monitoring wells were located adjacent to or under onsite wastewater treatment system drainfield lines. Another observation network, termed the 'transect network', consisted of 31 wells distributed among three transects of temporary, stainless-steel-screened, direct-push monitoring wells installed along three plumes of onsite wastewater. The transect network, by virtue of its design, also provided a basis for increased understanding of the transport of analytes in natural systems. Coliphage were frequently detected in onsite wastewater. Coliphage concentrations in onsite wastewater were highly variable, ranging from less than 1 to 3,000,000 plaque forming units per 100 milliliters. Coliphage were occasionally detected (eight occurrences) at low concentrations in samples from wells located downgradient from onsite wastewater treatment system drainfield lines. However, coliphage concentrations were below method detection limits in replicate or repeat samples collected from the eight sites. The consistent absence of coliphage detections in the replicate or repeat samples is interpreted to indicate

  4. Virus and Bacteria Removal from Wastewater by Rapid Infiltration Through Soil

    PubMed Central

    Schaub, Stephen A.; Sorber, Charles A.

    1977-01-01

    A rapid infiltration land wastewater application site, composed of unconsolidated silty sand and gravel, which has been in continuous operation for over 30 years was examined for the accumulation and/or migration of a tracer virus (coliphage f2), indigenous enteroviruses, and enteric indicator bacteria in the soils and underlying groundwater. Tracer f2 penetrated into groundwater together with the front of percolating primary effluent and was not observed to concentrate on the upper soil layers. The tracer virus concentration in a 60-foot (about 18.3-m)-deep observation well directly beneath the wastewater application area began to increase within 48 h after application to the soil. The tracer level in this well stabilized after 72 h at a level of approximately 47% of the average applied concentration. Indigenous enteroviruses and tracer f2 were sporadically detected in the groundwater at horizontal distances of 600 feet (about 183 m) from the application zone. Laboratory soil adsorption studies confirmed the poor virus adsorption observed at the site. This was especially true on surface soils when contained in wastewater. Enteric indicator bacteria were readily concentrated on the soil surface by filtration on the soil surface mat. However, during tracer f2 virus tests, comparison studies with fecal Streptococcus revealed that bacteria capable of penetrating the surface were able to migrate into the groundwater. They were detected at the same locations as tracer and enteric viruses. PMID:16345215

  5. Bioaerosol Dispersion in Relation with Wastewater Reuse for Crop Irrigation. (Experiments to understand emission processes with enteric virus and risks modeling).

    NASA Astrophysics Data System (ADS)

    Courault, D.; Girardin, G.; Capowiez, L.; Albert, I.; Krawczyk, C.; Ball, C.; Salemkour, A.; Bon, F.; Perelle, S.; Fraisse, A.; Renault, P.; Amato, P.

    2014-12-01

    Bio-aerosols consist of microorganisms or biological particles that become airborne depending on various environmental factors. Recycling of wastewater (WW) for irrigation can cope with the issues of water availability, and it can also threaten Human health if the pathogens present in WW are aerosolized during sprinkling irrigation or wind events. Among the variety of micro-organisms found in WW, enteric viruses can reach significant amounts, because most of the WW treatments are not completely efficient. These viruses are particularly resistant in the environment and responsibles of numerous digestive diseases (gastroenteritis, hepatitis…). Few quantities are enough to make people sick (102 pfu). Several knowledge gaps exist to better estimate the risks for Human exposure, and on the virus transfer from irrigation up to the respiratory track. A research program funded by the French government (INSU), gathering multi disciplinary teams aims at better understanding virus fate in air and health risks from WW reuse. Experiments were conducted under controlled conditions in order to prioritize the main factors impacting virus aerosolization. Irrigation with water loaded with safe surrogates of Hepatitis A virus (Murine Mengo Virus) was applied on small plots covered by channels in which the wind speed varied. Various situations have been investigated (wet/dry surfaces, strong/mild winds, clean/waste water). Air samples were collected above plots using impingers and filters after irrigation for several days. Viruses were quantified by RT-qPCR. The results showed that impingers were more efficient in airborne virus recovering than filters. Among environmental factors, Wind speed was the main factor explaining virus concentration in the air after irrigation. A Quantitative Microbial Risk Assessment approach has been chosen to assess the health effects on the population. The main modeling steps will be presented, including a simplified dispersion model coupled with a

  6. Molecular characterization of duck enteritis virus CHv strain UL49.5 protein and its colocalization with glycoprotein M

    PubMed Central

    Lin, Meng; Wang, Mingshu; Gao, Xinghong; Zhu, Dekang; Chen, Shun; Liu, Mafeng; Yin, Zhongqiong; Wang, Yin; Chen, Xiaoyue

    2014-01-01

    The UL49.5 gene of most herpesviruses is conserved and encodes glycoprotein N. However, the UL49.5 protein of duck enteritis virus (DEV) (pUL49.5) has not been reported. In the current study, the DEV pUL49.5 gene was first subjected to molecular characterization. To verify the predicted intracellular localization of gene expression, the recombinant plasmid pEGFP-C1/pUL49.5 was constructed and used to transfect duck embryo fibroblasts. Next, the recombinant plasmid pDsRed1-N1/glycoprotein M (gM) was produced and used for co-transfection with the pEGFP-C1/pUL49.5 plasmid to determine whether DEV pUL49.5 and gM (a conserved protein in herpesviruses) colocalize. DEV pUL49.5 was thought to be an envelope glycoprotein with a signal peptide and two transmembrane domains. This protein was also predicted to localize in the cytoplasm and endoplasmic reticulum with a probability of 66.7%. Images taken by a fluorescence microscope at different time points revealed that the DEV pUL49.5 and gM proteins were both expressed in the cytoplasm. Overlap of the two different fluorescence signals appeared 12 h after transfection and continued to persist until the end of the experiment. These data indicate a possible interaction between DEV pUL49.5 and gM. PMID:24690604

  7. Coliphage HK022 Nun protein inhibits RNA polymerase translocation.

    PubMed

    Vitiello, Christal L; Kireeva, Maria L; Lubkowska, Lucyna; Kashlev, Mikhail; Gottesman, Max

    2014-06-10

    The Nun protein of coliphage HK022 arrests RNA polymerase (RNAP) in vivo and in vitro at pause sites distal to phage λ N-Utilization (nut) site RNA sequences. We tested the activity of Nun on ternary elongation complexes (TECs) assembled with templates lacking the λ nut sequence. We report that Nun stabilizes both translocation states of RNAP by restricting lateral movement of TEC along the DNA register. When Nun stabilized TEC in a pretranslocated register, immediately after NMP incorporation, it prevented binding of the next NTP and stimulated pyrophosphorolysis of the nascent transcript. In contrast, stabilization of TEC by Nun in a posttranslocated register allowed NTP binding and nucleotidyl transfer but inhibited pyrophosphorolysis and the next round of forward translocation. Nun binding to and action on the TEC requires a 9-bp RNA-DNA hybrid. We observed a Nun-dependent toe print upstream to the TEC. In addition, mutations in the RNAP β' subunit near the upstream end of the transcription bubble suppress Nun binding and arrest. These results suggest that Nun interacts with RNAP near the 5' edge of the RNA-DNA hybrid. By stabilizing translocation states through restriction of TEC lateral mobility, Nun represents a novel class of transcription arrest factors. PMID:24853501

  8. Identification of a spliced gene from duck enteritis virus encoding a protein homologous to UL15 of herpes simplex virus 1

    PubMed Central

    2011-01-01

    Background In herpesviruses, UL15 homologue is a subunit of terminase complex responsible for cleavage and packaging of the viral genome into pre-assembled capsids. However, for duck enteritis virus (DEV), the causative agent of duck viral enteritis (DVE), the genomic sequence was not completely determined until most recently. There is limited information of this putative spliced gene and its encoding protein. Results DEV UL15 consists of two exons with a 3.5 kilobases (kb) inron and transcribes into two transcripts: the full-length UL15 and an N-terminally truncated UL15.5. The 2.9 kb UL15 transcript encodes a protein of 739 amino acids with an approximate molecular mass of 82 kiloDaltons (kDa), whereas the UL15.5 transcript is 1.3 kb in length, containing a putative 888 base pairs (bp) ORF that encodes a 32 kDa product. We also demonstrated that UL15 gene belonged to the late kinetic class as its expression was sensitive to cycloheximide and phosphonoacetic acid. UL15 is highly conserved within the Herpesviridae, and contains Walker A and B motifs homologous to the catalytic subunit of the bacteriophage terminase as revealed by sequence analysis. Phylogenetic tree constructed with the amino acid sequences of 23 herpesvirus UL15 homologues suggests a close relationship of DEV to the Mardivirus genus within the Alphaherpesvirinae. Further, the UL15 and UL15.5 proteins can be detected in the infected cell lysate but not in the sucrose density gradient-purified virion when reacting with the antiserum against UL15. Within the CEF cells, the UL15 and/or UL15.5 localize(s) in the cytoplasm at 6 h post infection (h p. i.) and mainly in the nucleus at 12 h p. i. and at 24 h p. i., while accumulate(s) in the cytoplasm in the absence of any other viral protein. Conclusions DEV UL15 is a spliced gene that encodes two products encoded by 2.9 and 1.3 kb transcripts respectively. The UL15 is expressed late during infection. The coding sequences of DEV UL15 are very similar to

  9. Effect of an activated sludge wastewater treatment plant on ambient air densities of aerosols containing bacteria and viruses.

    PubMed

    Fannin, K F; Vana, S C; Jakubowski, W

    1985-05-01

    Bacteria- and virus-containing aerosols were studied during the late summer and fall seasons in a midwestern suburb of the United States before and during the start-up and operation of an unenclosed activated sludge wastewater treatment plant. The study showed that the air in this suburban area contained low-level densities of indicator microorganisms. After the plant began operating, the densities of total aerobic bacteria-containing particles, standard plate count bacteria, total coliforms, fecal coliforms, fecal streptococci, and coliphages increased significantly in the air within the perimeter of the plant. Before plant operations, bacteria were detected from five genera, Klebsiella, Enterobacter, Serratia, Salmonella, and Aeromonas. During plant operations, the number of genera identified increased to 11. In addition to those genera found before plant operations, Escherichia, Providencia, Citrobacter, Acinetobacter, Pasteurella, and Proteus, were also identified. Enteric viruses were detected in low densities from the air emissions of this plant. Only standard plate count bacteria remained at significantly higher than base-line densities beyond 250 m downwind from the center of the aeration tanks. Fecal streptococci and coliphages appeared to be more stable in aerosols than the other indicator microorganisms studied. In general, the densities of microorganism-containing aerosols were higher at night than during the day. The techniques used in this study may be employed to establish microorganism-containing aerosol exposure during epidemiological investigations. PMID:2988442

  10. Simultaneous detection of somatic and F-specific coliphages in different settings by Escherichia coli strain CB390.

    PubMed

    Agulló-Barceló, Miriam; Galofré, Belén; Sala, Lluís; García-Aljaro, Cristina; Lucena, Francisco; Jofre, Juan

    2016-09-01

    Bacteriophages are increasingly being used as water quality indicators. Two groups of phages infecting Escherichia coli, somatic and F-specific coliphages, are being considered as indicators of fecal and viral contamination for several types of water around the world. However, some uncertainties remain regarding which coliphages to assess. Recently, E. coli strain CB390 has been reported to be suitable for simultaneous detection of both groups, which seems to be more informative than determining only one of the groups. Here, a significant number of samples from different settings, mostly those where F-specific phages have been reported to outnumber somatic coliphages, are analyzed for somatic coliphages, F-specific RNA phages by standardized methods and coliphages detected by host strain CB390. The results presented here confirm that the numbers of phages counted using CB390 are equivalent to the sum of the somatic and F-specific coliphages counted independently in all settings. Hence the usefulness of this strain for simultaneous detection of somatic and F-specific coliphages is confirmed. Also, sets of data on the presence of coliphages in reclaimed and groundwater are reported. PMID:27481701

  11. Different linkages in the long and short regions of the genomes of duck enteritis virus Clone-03 and VAC Strains

    PubMed Central

    2011-01-01

    Background Duck enteritis virus (DEV) is an unassigned member in the family Herpesviridae. To demonstrate further the evolutionary position of DEV in the family Herpesviridae, we have described a 42,897-bp fragment. We demonstrated novel genomic organization at one end of the long (L) region and in the entire short (S) region in the Clone-03 strain of DEV. Results A 42,897-bp fragment located downstream of the LOFR11 gene was amplified from the Clone-03 strain of DEV by using 'targeted gene walking PCR'. Twenty-two open reading frames (ORFs) were predicted and determined in the following order: 5'-LORF11-RLORF1-ORF1-ICP4-S1-S2-US1-US10-SORF3-US2-MDV091.5-like-US3-US4-US5-US6-US7-US8-ORFx-US1-S2-S1-ICP4 -3'. This was different from that of the published VAC strain, both in the linkage of the L region and S region, and in the length of the US10 and US7 proteins. The MDV091.5-like gene, ORFx gene, S1 gene and S2 gene were first observed in the DEV genome. The lengths of DEV US10 and US7 were determined to be 311 and 371 amino acids, respectively, in the Clone-03 strain of DEV, and these were different from those of other strains. The comparison of genomic organization in the fragment studied herein with those of other herpesviruses showed that DEV possesses some unique characteristics, such as the duplicated US1 at each end of the US region, and the US5, which showed no homology with those of other herpesviruses. In addition, the results of phylogenetic analysis of ORFs in the represented fragment indicated that DEV is closest to its counterparts VZV (Varicellovirus) and other avian herpesviruses. Conclusion The molecular characteristics of the 42,897-bp fragment of Clone-03 have been found to be different from those of the VAC strain. The phylogenetic analysis of genes in this region showed that DEV should be a separate member of the subfamily Alphaherpesvirinae. PMID:21535884

  12. Metagenomics and the poultry gut: using the next generation of nucleic acid sequencing to identify enteric viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enteric disease syndromes such as Poult Enteritis Complex (PEC) in young turkeys and Runting-Stunting Syndrome (RSS) in chickens are a continual economic burden for poultry producers. The only reliable method to reproduce these syndromes in experimental birds is oral inoculation with crude preparat...

  13. Epidemiological survey of enteric viruses in wild boars in the Czech Republic: First evidence of close relationship between wild boar and human rotavirus A strains.

    PubMed

    Moutelíková, Romana; Dufková, Lucie; Kamler, Jiří; Drimaj, Jakub; Plhal, Radim; Prodělalová, Jana

    2016-09-25

    Population of wild boar is increasing in the whole Europe, the animals migrate close to human habitats which greatly increases the possibility of natural transmission between domestic animals or humans and wild boars. The aim of the study was to estimate in population of free-living wild boar in the Czech Republic the prevalence of enteric viral pathogens, namely rotavirus groups A and C (RVA and RVC), porcine reproductive and respiratory syndrome virus (PRRSV), and members of family Coronaviridae (transmissible gastroenteritis virus - TGEV, porcine epidemic diarrhea virus - PEDV, porcine respiratory coronavirus - PRCV, and porcine hemagglutination encephalomyelitis virus - PHEV) and Picornaviridae,(teschovirus A - PTV, sapelovirus A - PSV, and enterovirus G - EV-G). In our study, stool samples from 203 wild boars culled during hunting season 2014-2015 (from October to January) were examined by RT-PCR. RVA was detected in 2.5% of tested samples. Nucleotide analysis of VP7, VP4, and VP6 genes revealed that four RVA strains belong to G4P[25]I1, G4P[6]I5, G11P[13]I5, and G5P[13]I5 genotypes and phylogenetic analysis suggested close relation to porcine and human RVAs. The prevalence of RVC in wild boar population reached 12.8%, PTV was detected in 20.2%, PSV in 8.9%, and EV-G in 2.5% of samples. During our study no PRRSV or coronaviruses were detected. Our study provides the first evidence of RVC prevalence in wild boars and indicates that wild boars might contribute to the genetic variability of RVA and also serve as an important reservoir of other enteric viruses. PMID:27599927

  14. Heparan Sulfate-Binding Foot-and-Mouth Disease Virus Enters Cells Via Caveolae-Mediated Endocytosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foot-and-mouth disease virus (FMDV) utilizes different cell surface macromolecules to facilitate infection of cultured cells. Virus which is virulent for susceptible animals infects cells via four members of the alpha V subclass of cellular integrins. In contrast, tissue culture adaptation of some...

  15. Human Immunodeficiency Virus Type 1 Enters Brain Microvascular Endothelia by Macropinocytosis Dependent on Lipid Rafts and the Mitogen-Activated Protein Kinase Signaling Pathway

    PubMed Central

    Liu, Nancy Q.; Lossinsky, Albert S.; Popik, Waldemar; Li, Xia; Gujuluva, Chandrasekhar; Kriederman, Benjamin; Roberts, Jaclyn; Pushkarsky, Tatania; Bukrinsky, Michael; Witte, Marlys; Weinand, Martin; Fiala, Milan

    2002-01-01

    Brain microvascular endothelial cells (BMVECs) present an incomplete barrier to human immunodeficiency virus type 1 (HIV-1) neuroinvasion. In order to clarify the mechanisms of HIV-1 invasion, we have examined HIV-1 uptake and transcellular penetration in an in vitro BMVEC model. No evidence of productive infection was observed by luciferase, PCR, and reverse transcriptase assays. Approximately 1% of viral RNA and 1% of infectious virus penetrated the BMVEC barrier without disruption of tight junctions. The virus upregulated ICAM-1 on plasma membranes and in cytoplasmic vesiculotubular structures. HIV-1 virions were entangled by microvilli and were taken into cytoplasmic vesicles through surface invaginations without fusion of the virus envelope with the plasma membrane. Subsequently, the cytoplasmic vesicles fused with lysosomes, the virions were lysed, and the vesicles diminished in size. Upon cell entry, HIV-1 colocalized with cholera toxin B, which targets lipid raft-associated GM1 ganglioside. Cholesterol-extracting agents, cyclodextrin and nystatin, and polyanion heparin significantly inhibited virus entry. Anti-CD4 had no effect and the chemokine AOP-RANTES had only a slight inhibitory effect on virus entry. HIV-1 activated the mitogen-activated protein kinase (MAPK) pathway, and inhibition of MAPK/Erk kinase inhibited virus entry. Entry was also blocked by dimethylamiloride, indicating that HIV-1 enters endothelial cells by macropinocytosis. Therefore, HIV-1 penetrates BMVECs in ICAM-1-lined macropinosomes by a mechanism involving lipid rafts, MAPK signaling, and glycosylaminoglycans, while CD4 and chemokine receptors play limited roles in this process. PMID:12050382

  16. Male-specific coliphages for source tracking fecal contamination in surface waters and prevalence of Shiga-toxigenic Escherichia coli in a major produce production region of the Central Coast of California.

    PubMed

    Ravva, Subbarao V; Sarreal, Chester Z; Cooley, Michael B

    2015-07-01

    To provide data for traditional trace-back studies from fork to farm, it is necessary to determine the environmental sources for Shiga-toxigenic Escherichia coli. We developed SYBR green based reverse-transcriptase PCR methods to determine the prevalence of F+ RNA coliphages (FRNA) as indicators of fecal contamination. Male-specific coliphages, determined using a single-agar overlay method, were prevalent in all surface waters sampled for 8 months. F+ DNA coliphages (FDNA) were predominant compared to FRNA in water samples from majority of sampling locations. Most (90%) of the FRNA were sourced to humans and originated from human-impacted sites. Members of genogroup III represented 77% of FRNA originated from human sources. Furthermore, 93% of FRNA sourced to animals were also detected in water samples from human-impacted sites. Eighty percent of all FRNA were isolated during the winter months indicating seasonality in prevalence. In contrast, FDNA were more prevalent during summer months. E. coli O157:H7 and Shiga-toxigenic E. coli were detected in water samples from locations predominantly influenced by agriculture. Owing to their scarcity, their numbers could not be correlated with the prevalence of FRNA or FDNA in water samples. Both coliform bacteria and generic E. coli from agricultural or human-impacted sites were similar in numbers and thus could not be used to determine the sources of fecal contamination. Data on the prevalence of male-specific coliphages may be invaluable for predicting the sources of fecal contamination and aid in developing methods to prevent enteric pathogen contamination from likely sources during produce production. PMID:26018296

  17. Emergence of a New Lineage of Dengue Virus Type 2 Identified in Travelers Entering Western Australia from Indonesia, 2010-2012

    PubMed Central

    Ernst, Timo; McCarthy, Suzi; Chidlow, Glenys; Luang-Suarkia, Dagwin; Holmes, Edward C.; Smith, David W.; Imrie, Allison

    2015-01-01

    Dengue virus (DENV) transmission is ubiquitous throughout the tropics. More than 70% of the current global dengue disease burden is borne by people who live in the Asia-Pacific region. We sequenced the E gene of DENV isolated from travellers entering Western Australia between 2010–2012, most of whom visited Indonesia, and identified a diverse array of DENV1-4, including multiple co-circulating viral lineages. Most viruses were closely related to lineages known to have circulated in Indonesia for some time, indicating that this geographic region serves as a major hub for dengue genetic diversity. Most notably, we identified a new lineage of DENV-2 (Cosmopolitan genotype) that emerged in Bali in 2011–2012. The spread of this lineage should clearly be monitored. Surveillance of symptomatic returned travellers provides important and timely information on circulating DENV serotypes and genotypes, and can reveal the herald wave of dengue and other emerging infectious diseases. PMID:25635775

  18. Molecular assays for targeting human and bovine enteric viruses in coastal waters and their application for library-independent source tracking

    USGS Publications Warehouse

    Fong, T.-T.; Griffin, Dale W.; Lipp, E.K.

    2005-01-01

    Rapid population growth and urban development along waterways and coastal areas have led to decreasing water quality. To examine the effects of upstream anthropogenic activities on microbiological water quality, methods for source-specific testing are required. In this study, molecular assays targeting human enteroviruses (HEV), bovine enteroviruses (BEV), and human adenoviruses (HAdV) were developed and used to identify major sources of fecal contamination in the lower Altamaha River, Georgia. Two-liter grab samples were collected monthly from five tidally influenced stations between July and December 2002. Samples were analyzed by reverse transcription- and nested-PCR. PCR results were confirmed by dot blot hybridization. Eleven and 17 of the 30 surface water samples tested positive for HAdV and HEV, respectively. Two-thirds of the samples tested positive for either HEV or HAdV, and the viruses occurred simultaneously in 26% of samples. BEV were detected in 11 of 30 surface water samples. Binary logistic regression analysis showed that the presence of both human and bovine enteric viruses was not significantly related to either fecal coliform or total coliform levels. The presence of these viruses was directly related to dissolved oxygen and streamflow but inversely related to water temperature, rainfall in the 30 days preceding sampling, and chlorophyll-?? concentrations. The stringent host specificity of enteric viruses makes them good library-independent indicators for identification of water pollution sources. Viral pathogen detection by PCR is a highly sensitive and easy-to-use tool for rapid assessment of water quality and fecal contamination when public health risk characterization is not necessary. Copyright ?? 2005, American Society for Microbiology. All Rights Reserved.

  19. Transport of enterococci and F+ coliphage through the saturated zone of the beach aquifer.

    PubMed

    de Sieyes, Nicholas R; Russell, Todd L; Brown, Kendra I; Mohanty, Sanjay K; Boehm, Alexandria B

    2016-02-01

    Coastal groundwater has been implicated as a source of microbial pollution to recreational beaches. However, there is little work investigating the transport of fecal microbes through beach aquifers where waters of variable salinity are present. In this study, the potential for fecal indicator organisms enterococci (ENT) and F+ coliphage to be transported through marine beach aquifers was investigated. Native sediment and groundwaters were collected from the fresh and saline sections of the subterranean estuary at three beaches along the California coast where coastal communities utilize septic systems for wastewater treatment. Groundwaters were seeded with sewage and removal of F+ coliphage and ENT by the sediments during saturated flow was tested in laboratory column experiments. Removal varied significantly between beach and organism. F+ coliphage was removed to a greater extent than ENT, and removal was greater in saline sediments and groundwater than fresh. At one of the three beaches, a field experiment was conducted to investigate the attenuation of F+ coliphage and ENT down gradient of a septic leach field. ENT were detected up to 24 m from the leach field. The column study and field observations together suggest ENT can be mobile within native aquifer sediments and groundwater under certain conditions. PMID:26837827

  20. Occurrence of Escherichia coli, noroviruses, and F-specific coliphages in fresh market-ready produce.

    PubMed

    Allwood, Paul B; Malik, Yashpal S; Maherchandani, Sunil; Vought, Kevin; Johnson, Lee-Ann; Braymen, Craig; Hedberg, Craig W; Goyal, Sagar M

    2004-11-01

    Forty samples of fresh produce collected from retail food establishments were examined to determine the occurrence of Escherichia coli, F-specific coliphages, and noroviruses. An additional six samples were collected from a restaurant undergoing investigation for a norovirus outbreak. Nineteen (48%) of the retail samples and all outbreak samples were preprocessed (cut, shredded, chopped, or peeled) at or before the point of purchase. Reverse transcription-PCR, with the use of primers JV 12 and JV 13, failed to detect norovirus RNA in any of the samples. All six outbreak samples and 13 (33%) retail samples were positive for F-specific coliphages (odds ratio undefined, P = 0.003). Processed retail samples appeared more likely to contain F-specific coliphages than unprocessed samples (odds ratio 3.8; 95% confidence interval 0.8 to 20.0). Only two (5.0%) retail samples were positive for E. coli; outbreak samples were not tested for E. coli. The results of this preliminary survey suggest that F-specific coliphages could be useful conservative indicators of fecal contamination of produce and its associated virological risks. Large-scale surveys should be conducted to confirm these findings. PMID:15553617

  1. Comparison of coliphage and bacterial aerosols at a wastewater spray irrigation site.

    PubMed

    Bausum, H T; Schaub, S A; Kenyon, K F; Small, M J

    1982-01-01

    Microbiological aerosols were measured on a spray irrigation site at Fort Huachuca, Ariz. Indigenous bacteria and tracer bacteriophage were sampled from sprays of chlorinated and unchlorinated secondary-treatment wastewaters during day and night periods. Aerosol dispersal and downwind migration were determined. Bacterial and coliphage f2 aerosols were sampled by using Andersen viable type stacked-sieve and high-volume electrostatic precipitator samplers. Bacterial standard plate counts averaged 2.4 x 10(5) colony-forming units per ml in unchlorinated effluents. Bacterial aerosols reached 500 bacteria per m3 at 152 m downwind and 10,500 bacteria per m3 at 46m. Seeded coliphage f2 averaged 4.0 x 10(5) plaque-forming units per ml in the effluent and were detected 563 m downwind. Downwind microbial aerosol levels were somewhat enhanced by nighttime conditions. The median aerodynamic particle size of the microbial aerosols was approximately 5.0 micrometer. Chlorination reduced wastewater bacterial levels 99.97% and reduced aerosol concentrations to near background levels; coliphage f2 was reduced only 95.4% in the chlorinated effluent and was readily measured 137 m downwind. Microbiological source strength an meteorological data were used in conjunction with a dispersion model to generate mathematical predictions of aerosol strength at various sampler locations. The mean calculated survival of aerosolized bacteria (standard plate count) in the range 46 to 76 m downwind was 5.2%, and that of coliphage f2 was 4.3 %. PMID:7055376

  2. DETECTION OF FRNA COLIPHAGES IN GROUNDWATER: INTERFERENCE WITH THE ASSAY BY SOMATIC SALMONELLA BACTERIOPHAGES

    EPA Science Inventory

    Groundwater samples from two sites in Alabama, USA were plaque assayed for F-specific RNA (FRNA) coliphages using Salmonella typhimurium WG49 as the host bacterium. While numerous plaques were detected with WG49 (a strain possessing Escherichia coli F pili), plaques were also obs...

  3. USE OF GEOSTATISTICS TO PREDICT VIRUS DECAY RATES FOR DETERMINATION OF SEPTIC TANK SETBACK DISTANCES

    EPA Science Inventory

    Water samples were collected from 71 public drinking-water supply wells in the Tucson, Arizona, basin. Virus decay rates in the water samples were determined with MS-2 coliphage as a model virus. The correlations between the virus decay rates and the sample locations were shown b...

  4. Enteric virus status of turkey flocks over time: molecular diagnostic studies beginning on the day of placement.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poultry enteric disease is often associated with numerous viral and/or bacterial infections, including avian reoviruses, rotaviruses, astroviruses, parvoviruses, and Escherichia coli. These potential etiologic agents are often present in combination in a flock or individual birds, but in general it ...

  5. Molecular and serological surveillance of canine enteric viruses in stray dogs from Vila do Maio, Cape Verde

    PubMed Central

    2014-01-01

    Background Infections caused by canine parvovirus, canine distemper virus and canine coronavirus are an important cause of mortality and morbidity in dogs worldwide. Prior to this study, no information was available concerning the incidence and prevalence of these viruses in Cape Verde archipelago. Results To provide information regarding the health status of the canine population in Vila do Maio, Maio Island, Cape Verde, 53 rectal swabs were collected from 53 stray dogs during 2010 and 93 rectal swabs and 88 blood samples were collected from 125 stray dogs in 2011. All rectal swabs (2010 n = 53; 2011 n = 93) were analysed for the presence of canine parvovirus, canine distemper virus and canine coronavirus nucleic acids by quantitative PCR methods. Specific antibodies against canine distemper virus and canine parvovirus were also assessed (2011 n = 88). From the 2010 sampling, 43.3% (23/53) were positive for canine parvovirus DNA, 11.3% (6/53) for canine distemper virus RNA and 1.9% (1/53) for canine coronavirus RNA. In 2011, the prevalence values for canine parvovirus and canine coronavirus were quite similar to those from the previous year, respectively 44.1% (41/93), and 1.1% (1/93), but canine distemper virus was not detected in any of the samples analysed (0%, 0/93). Antibodies against canine parvovirus were detected in 71.6% (63/88) blood samples and the seroprevalence found for canine distemper virus was 51.1% (45/88). Conclusions This study discloses the data obtained in a molecular and serological epidemiological surveillance carried out in urban populations of stray and domestic animals. Virus transmission and spreading occurs easily in large dog populations leading to high mortality rates particularly in unvaccinated susceptible animals. In addition, these animals can act as disease reservoirs for wild animal populations by occasional contact. Identification of susceptible wildlife of Maio Island is of upmost importance to evaluate the risk

  6. Infection of the enteric nervous system by Borna Disease Virus (BDV) upregulates expression of Calbindin D-28k

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Borna disease virus (BDV) is a neurotropic agent infecting distinct neuronal subpopulations in the central nervous system of various mammalian species likely including humans. Horses, a major natural host for BDV, show dysfunctions of the gastrointestinal tract beside characteristic neurological sym...

  7. Comparative analysis of the genes UL1 through UL7 of the duck enteritis virus and other herpesviruses of the subfamily Alphaherpesvirinae

    PubMed Central

    2009-01-01

    The nucleotide sequences of eight open reading frames (ORFs) located at the 5' end of the unique long region of the duck enteritis virus (DEV) Clone-03 strain were determined. The genes identified were designated UL1, UL2, UL3, UL4, UL5, UL6 and UL7 homologues of the herpes simplex virus 1 (HSV-1). The DEV UL3.5 located between UL3 and UL4 had no homologue in the HSV-1. The arrangement and transcription orientation of the eight genes were collinear with their homologues in the HSV-1. Phylogenetic trees were constructed based on the alignments of the deduced amino acids of eight proteins with their homologues in 12 alpha-herpesviruses. In the UL1, UL3, UL3.5, UL5 and UL7 proteins trees, the branches were more closely related to the genus Mardivirus. However, the UL2, UL4, and UL6 proteins phylogenetic trees indicated a large distance from Mardivirus, indicating that the DEV evolved differently from other viruses in the subfamily Alphaherpesvirinae and formed a single branch within this subfamily. PMID:21637656

  8. Recovery rate of multiple enteric viruses artificially seeded in water and concentrated by adsorption-elution with negatively charged membranes: interaction and interference between different virus species.

    PubMed

    Vecchia, Andréia Dalla; Rigotto, Caroline; Soliman, Mayra Cristina; Souza, Fernanda Gil de; Giehl, Isabel Cristina; Spilki, Fernando Rosado

    2015-01-01

    Viral concentration method by adsorption-elution with negative membranes has been widely employed for concentrating viruses from environmental samples. In order to provide an adequate assessment of its recovery efficiency, this study was conducted to assess viral recovery rates for viral species commonly found in water (HAdV-5, EV, RV, BAdV and CAV-2), quantifying viral genomes at the end of the five different steps of the process. Recovery rates were analyzed for several viruses combined in a single water sample and for each virus assayed separately. Ultrapure water samples were artificially contaminated and analyzed by real-time quantitative polymerase chain reaction (qPCR). High recovery rates were found after the final stage when assessed individually (89 to 125%) and combined in the same sample (23 to > 164%). HAdV-5 exhibited >100% recovery when assayed with human viruses and other AdVs, whereas BAdV and CAV-2 were not detected. These data suggest that recovery efficiency could be related to viral structural characteristics, their electric charges and other interactions, so that they are retained with greater or lesser efficiency when coupled. This protocol could be applied to environmental samples, since high recovery rates were observed and infectious viruses were detected at the end of the concentration process. PMID:26676018

  9. Farm-level prevalence and risk factors for detection of hepatitis E virus, porcine enteric calicivirus, and rotavirus in Canadian finisher pigs.

    PubMed

    Wilhelm, Barbara; Leblanc, Danielle; Leger, David; Gow, Sheryl; Deckert, Anne; Pearl, David L; Friendship, Robert; Rajić, Andrijana; Houde, Alain; McEwen, Scott

    2016-04-01

    Hepatitis E virus (HEV), norovirus (NoV), and rotavirus (RV) are all hypothesized to infect humans zoonotically via exposure through swine and pork. Our study objectives were to estimate Canadian farm-level prevalence of HEV, NoV [specifically porcine enteric calicivirus (PEC)], and RV in finisher pigs, and to study risk factors for farm level viral detection. Farms were recruited using the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) and FoodNet Canada on-farm sampling platforms. Six pooled groups of fecal samples were collected from participating farms, and a questionnaire capturing farm management and biosecurity practices was completed. Samples were assayed using validated real-time polymerase chain reaction (RT-PCR). We modeled predictors for farm level viral RNA detection using logistic and exact logistic regression. Seventy-two herds were sampled: 51 CIPARS herds (15 sampled twice) and 21 FoodNet Canada herds (one sampled twice). Hepatitis E virus was detected in 30/88 farms [34.1% (95% CI 25.0%, 44.5%)]; PEC in 18 [20.5% (95% CI: 13.4%, 30.0%)], and RV in 6 farms [6.8% (95% CI: 3.2%, 14.1%)]. Farm-level prevalence of viruses varied with province and sampling platform. Requiring shower-in and providing boots for visitors were significant predictors (P < 0.05) in single fixed effect mixed logistic regression analysis for detection of HEV and PEC, respectively. In contrast, all RV positive farms provided boots and coveralls, and 5 of 6 farms required shower-in. We hypothesized that these biosecurity measures delayed the mean age of RV infection, resulting in an association with RV detection in finishers. Obtaining feeder pigs from multiple sources was consistently associated with greater odds of detecting each virus. PMID:27127336

  10. Infectious spleen and kidney necrosis virus (a fish iridovirus) enters Mandarin fish fry cells via caveola-dependent endocytosis.

    PubMed

    Guo, Chang-Jun; Wu, Yan-Yan; Yang, Li-Shi; Yang, Xiao-Bo; He, Jian; Mi, Shu; Jia, Kun-Tong; Weng, Shao-Ping; Yu, Xiao-Qiang; He, Jian-Guo

    2012-03-01

    Infectious spleen and kidney necrosis virus (ISKNV) is the type species of the genus Megalocytivirus from the family Iridoviridae. Megalocytiviruses have been implicated in more than 50 fish species infections and currently threaten the aquaculture industry, causing great economic losses in China, Japan, and Southeast Asia. However, the cellular entry mechanisms of megalocytiviruses remain largely uncharacterized. In this study, the main internalization mechanism of ISKNV was investigated by using mandarin fish fry (MFF-1) cells. The progression of ISKNV infection is slow, and infection is not inhibited when the cells are treated with ammonium chloride (NH(4)Cl), chloroquine, sucrose, and chlorpromazine, which are inhibitors of clathrin-dependent endocytosis. The depletion of cellular cholesterol by methyl-β-cyclodextrin results in the significant inhibition of ISKNV infection; however, the infection is resumed with cholesterol replenishment. Inhibitors of caveolin-1-involved signaling events, including phorbol 12-myristate 13-acetate (PMA), genistein, and wortmannin, impair ISKNV entry into MFF-1 cells. Moreover, ISKNV entry is dependent on dynamin and the microtubule cytoskeleton. Cofraction analysis of ISKNV and caveolin-1 showed that ISKNV colocates with caveolin-1 during virus infection. These results indicate that ISKNV entry into MFF-1 cells proceeds via classical caveola-mediated endocytosis and is dependent on the microtubules that serve as tracks along which motile cavicles may move via a caveola-caveosome-endoplasmic reticulum (ER) pathway. As a fish iridovirus, ISKNV entry into MFF-1 cells is different from the clathrin-mediated endocytosis of frog virus 3 entry into mammalian cells (BHK-21) at 28°C, which has been recognized as a model for iridoviruses. Thus, our work may help further the understanding of the initial steps of iridovirus infection. PMID:22171272

  11. Development of a Luminex assay for the simultaneous detection of human enteric viruses in sewage and river water.

    PubMed

    Hamza, Ibrahim A; Jurzik, Lars; Wilhelm, Michael

    2014-08-01

    Real time PCR (qPCR) is increasingly being used for viral detection in aquatic environments because it enables high specificity and sensitivity of detection. However, the limited number of fluorescent reporter dyes restricts its multiplex application. In this study, a multiplex Luminex assay was established for the simultaneous detection of human adenovirus (HAdV), human polyomavirus (HPyV), enterovirus (EV), rotavirus (RoV), norovirus GI (NoVGI) and norovirus GII (NoVGII). Different river water and wastewater samples were tested for the viruses using both qPCR and the multiplex Luminex xMAP assay. HAdV and HPyV were the most abundant in all environmental samples. HAdV was detected in all river water and wastewater samples, and HPyV was detected in 79% of river water and 95.8% of wastewater samples. The multiplex xMAP assay revealed high specificity and no cross-reactivity. Using the multiplex Luminex assay, the viral detection rates in river water samples were lower than the rates obtained by qPCR for all viruses. Conversely, in wastewater samples, the viral detection rates were the same for both methods. In addition, the analytical sensitivity of the monoplex Luminex assay was comparable to or lower than qPCR. Results suggest that the multiplex Luminex assay could be a reliable method for the simultaneous detection of viral pathogens in wastewater. PMID:24747587

  12. Prevalence of enteric protozoa in human immunodeficiency virus (HIV)-positive and HIV-negative men who have sex with men from Sydney, Australia.

    PubMed

    Stark, Damien; Fotedar, Rashmi; van Hal, Sebastian; Beebe, Nigel; Marriott, Deborah; Ellis, John T; Harkness, John

    2007-03-01

    A prospective, comparative study of the prevalence of enteric protozoa was determined among human immunodeficiency virus (HIV)- positive and HIV-negative men who have sex with men (MSM) in Sydney, Australia. A total of 1,868 patients submitted stool specimens; 1,246 were from MSM (628 HIV positive and 618 HIV positive) and 622 from non-MSM were examined over a 36-month period. A total of 651 (52.2%) stool specimens from MSM were positive for protozoa compared with 85 (13%) from non-MSM. There was a significant difference in the prevalence of Blastocystis hominis, Endolimax nana, Entamoeba histolytica/dispar complex, Entamoeba hartmanni, Iodamoeba butschlii, and Enteromonas hominis detected between MSM and non-MSM (P<0.001). The only notable difference between HIV-negative and HIV-positive MSM was that HIV-infected MSM were found to more likely have a Cryptosporidium parvum infection. Entamoeba histolytica was found in 3 patients, E. dispar in 25, and E. moshkovskii in 17, all of whom were MSM. When compared with a control group, MSM were significantly more likely to harbor intestinal protozoa and have multiple parasites present. The results of this study show high rates of enteric parasites persist in MSM and highlight the importance of testing for intestinal parasites in MSM. This is the first report of E. moshkovskii from MSM. PMID:17360882

  13. Alternative fecal indicators and their empirical relationships with enteric viruses, Salmonella enterica, and Pseudomonas aeruginosa in surface waters of a tropical urban catchment.

    PubMed

    Liang, L; Goh, S G; Vergara, G G R V; Fang, H M; Rezaeinejad, S; Chang, S Y; Bayen, S; Lee, W A; Sobsey, M D; Rose, J B; Gin, K Y H

    2015-02-01

    The suitability of traditional microbial indicators (i.e., Escherichia coli and enterococci) has been challenged due to the lack of correlation with pathogens and evidence of possible regrowth in the natural environment. In this study, the relationships between alternative microbial indicators of potential human fecal contamination (Bacteroides thetaiotaomicron, Methanobrevibacter smithii, human polyomaviruses [HPyVs], and F+ and somatic coliphages) and pathogens (Salmonella spp., Pseudomonas aeruginosa, rotavirus, astrovirus, norovirus GI, norovirus GII, and adenovirus) were compared with those of traditional microbial indicators, as well as environmental parameters (temperature, conductivity, salinity, pH, dissolved oxygen, total organic carbon, total suspended solids, turbidity, total nitrogen, and total phosphorus). Water samples were collected from surface waters of urban catchments in Singapore. Salmonella and P. aeruginosa had significant positive correlations with most of the microbial indicators, especially E. coli and enterococci. Norovirus GII showed moderately strong positive correlations with most of the microbial indicators, except for HPyVs and coliphages. In general, high geometric means and significant correlations between human-specific markers and pathogens suggest the possibility of sewage contamination in some areas. The simultaneous detection of human-specific markers (i.e., B. thetaiotaomicron, M. smithii, and HPyVs) with E. coli and enterococcus supports the likelihood of recent fecal contamination, since the human-specific markers are unable to regrow in natural surface waters. Multiple-linear-regression results further confirm that the inclusion of M. smithii and HPyVs, together with traditional indicators, would better predict the occurrence of pathogens. Further study is needed to determine the applicability of such models to different geographical locations and environmental conditions. PMID:25416765

  14. Entering Research

    ERIC Educational Resources Information Center

    Lawless, Ann; Sedorkin, Barbara

    2007-01-01

    This article presents a short story of the authors, who show how they have "entered research", that is, entered the earliest conception of research and the early formation of research collaboration. As the authors worked together, they realised they had common concerns and life experiences. Each proudly identifies as working class Australian, each…

  15. Adsorption of coliphages T1 and T7 to clay minerals.

    PubMed Central

    Schiffenbauer, M; Stotzky, G

    1982-01-01

    Coliphages T1 and T7 of Escherichia coli were absorbed by kaolinite (K) and montmorillonite (M). Maximum adsorption of T7 (96%) to M was greater than that of T1 (84%), but the adsorption of both coliphages to K was the same (99%). Positively charged sites (i.e., anion exchange sites) on the clays appeared to be primarily responsible for the adsorption of T1 to K but only partially responsible for the adsorption of T1 to M; equilibrium adsorption isotherms of T1 to K and M did not show a correlation between adsorption and the cation exchange capacity of the clays, and the reduction in adsorption caused by sodium metaphosphate (a polyanion that interacts with positively charged sites on clay) was more pronounced with K than with M. The equilibrium adsorption isotherms of T7 to K and M suggested a correlation between adsorption and the cation exchange capacity of the clays. However, studies with sodium metaphosphate indicated that T7 also adsorbed to positively charged sites on the clays, especially on K. Adsorption of the coliphages to positively charged sites was greater with K than with M, probably because the ratio of positively charged sites to negatively charged sites was greater on K than on M. PMID:7041821

  16. Efficacy of Cinnamaldehyde Against Enteric Viruses and Its Activity After Incorporation Into Biodegradable Multilayer Systems of Interest in Food Packaging.

    PubMed

    Fabra, M J; Castro-Mayorga, J L; Randazzo, W; Lagarón, J M; López-Rubio, A; Aznar, R; Sánchez, G

    2016-06-01

    Cinnamaldehyde (CNMA), an organic compound that gives cinnamon its flavor and odor, was investigated for its virucidal activity on norovirus surrogates, murine norovirus (MNV) and feline calicivirus (FCV), and hepatitis A virus (HAV). Initially, different concentrations of CNMA (0.1, 0.5 and 1 %) were individually mixed with each virus at titers of ca. 6-7 log10 TCID50/ml and incubated 2 h at 4 and 37 °C. CNMA was effective in reducing the titers of norovirus surrogates in a dose-dependent manner after 2 h at 37 °C, while HAV titers were reduced by 1 log10 after treatment with 1 % of CNMA. When incubation time was extended, HAV titers were reduced by 3.4 and 2.7 log10 after overnight incubation at 37 °C with 1 and 0.5 % of CNMA, respectively. Moreover, this paper analyzed, for the first time, the antiviral activity of adding an active electrospun interlayer based on zein and CNMA to a polyhydroxybutyrate packaging material (PHB) in a multilayer form. Biodegradable multilayer systems prepared with 2.60 mg/cm(2) (~9.7 %) of CNMA completely inactivated FCV according to ISO 22196:2011, while MNV titers were reduced by 2.75 log10. When the developed multilayer films were evaluated after one month of preparation or at 25 °C, the antiviral activity was reduced as compared to freshly prepared multilayer films evaluated at 37 °C. The results show the excellent potential of this system for food contact applications as well as for active packaging technologies in order to maintain or extend food quality and safety. PMID:27008344

  17. INACTIVATION KINETICS OF MONOCHLORAMINE ON MONODISPERSED HEPATITIS A VIRUS AND MS2

    EPA Science Inventory

    The purpose of this study was to further characterize the disinfecting capabilities of preformed monochloramine using hepatitis A virus and the model coliphage MS2. he EPA has identified the latter virus as a model organism in developing CT values and conducting pilot plant studi...

  18. ECHO virus

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/001340.htm ECHO virus To use the sharing features on this page, please enable JavaScript. Enteric cytopathic human orphan (ECHO) viruses are a group of viruses that lead to ...

  19. Moving beyond classical markers of water quality: detection of enteric viruses and genotoxicity in water of the Sinos River.

    PubMed

    Bergamaschi, B; Rodrigues, M T; Silva, J V S; Kluge, M; Luz, R B; Fleck, J D; Bianchi, E; Silva, L B; Spilki, F R

    2015-05-01

    It is well recognized that the classical biological and chemical markers of environmental pollution do not necessarily indicate the presence or absence of emerging threats to public health, such as waterborne viruses and genotoxicants. The purpose of this preliminary study was to evaluate the presence of material of enteroviruses (EV), rotavirus (RV) and adenovirus (AdV) and genotoxicity in water samples from points of routine monitoring of water quality in the main course of the Sinos River. The points are classified into different levels of pollution in accordance to the Brazilian federal regulations. Viral genomes from EV, AdV were detected in two of the 4 collection points regardless of the level of urbanisation of the surrounding areas. In contrast, genotoxicity was not observed in piava (Leporinus obtusidens) fingerlings cultivated on these same water samples. Results were compared with classical physical, chemical and microbiological parameters. There was no clear evidence of association between any of the classical markers and the presence of viral genomes in the water samples tested. PMID:26270215

  20. Persistent Enteric Murine Norovirus Infection Is Associated with Functionally Suboptimal Virus-Specific CD8 T Cell Responses

    PubMed Central

    Tomov, Vesselin T.; Osborne, Lisa C.; Dolfi, Douglas V.; Sonnenberg, Gregory F.; Monticelli, Laurel A.; Mansfield, Kathleen; Virgin, Herbert W.

    2013-01-01

    Norovirus (NV) gastroenteritis is a major contributor to global morbidity and mortality, yet little is known about immune mechanisms leading to NV control. Previous studies using the murine norovirus (MNV) model have established a key role for T cells in MNV clearance. Despite these advances, important questions remain regarding the magnitude, location, and dynamics of the MNV-specific T cell response. To address these questions, we identified MNV-specific major histocompatibility complex (MHC) class I immunodominant epitopes using an overlapping peptide screen. One of these epitopes (amino acids 519 to 527 of open reading frame 2 [ORF2519-527]) was highly conserved among all NV genogroups. Using MHC class I peptide tetramers, we tracked MNV-specific CD8 T cells in lymphoid and mucosal sites during infection with two MNV strains with distinct biological behaviors, the acutely cleared strain CW3 and the persistent strain CR6. Here, we show that enteric MNV infection elicited robust T cell responses primarily in the intestinal mucosa and that MNV-specific CD8 T cells dynamically regulated the expression of surface molecules associated with activation, differentiation, and homing. Furthermore, compared to MNV-CW3 infection, chronic infection with MNV-CR6 resulted in fewer and less-functional CD8 T cells, and this difference was evident as early as day 8 postinfection. Finally, MNV-specific CD8 T cells were capable of reducing the viral load in persistently infected Rag1−/− mice, suggesting that these cells are a crucial component of NV immunity. Collectively, these data provide fundamental new insights into the adaptive immune response to two closely related NV strains with distinct biological behaviors and bring us closer to understanding the correlates of protective antiviral immunity in the intestine. PMID:23596300

  1. Enteric Campylobacteria and RNA Viruses Associated with Healthy and Diarrheic Humans in the Chinook Health Region of Southwestern Alberta, Canada ▿

    PubMed Central

    Inglis, G. Douglas; Boras, Valerie F.; Houde, Alain

    2011-01-01

    The presence of Campylobacter species and enteric RNA viruses in stools from diarrheic (n = 442) and healthy (n = 58) humans living in southwestern Alberta was examined (May to October 2005). A large number of diarrheic individuals who were culture negative for C. jejuni (n = 54) or C. coli (n = 19) were PCR positive for these taxa. Overall detection rates for C. jejuni and C. coli in diarrheic stools were 29% and 5%, respectively. In contrast, 3% and 0% of stools from healthy humans were positive for these taxa, respectively. Infection with C. jejuni was endemic over the study period. However, there was no difference in infection rates between individuals living in urban or rural locations. Stools from a large number of diarrheic (74%) and healthy (88%) individuals were positive for Campylobacter DNA. The prevalence rates of C. concisus, C. curvus, C. fetus, C. gracilis, C. helveticus, C. hominis, C. hyointestinalis, C. mucosalis, C. showae, C. sputorum, and C. upsaliensis DNA were either not significantly different or were significantly lower in stools from diarrheic than from healthy individuals. No C. lanienae or C. lari DNA was detected. Stools from 4% and 0% of diarrheic and healthy humans, respectively, were positive for rotavirus, sapovirus, or norovirus (GI/GII). Our results showed a high prevalence of diarrheic individuals living in southwestern Alberta who were infected by C. jejuni and, to a lesser extent, by C. coli. However, other Campylobacter species, norovirus, rotavirus, sapovirus, and bovine enteric calicivirus were either inconsequential pathogens during the study period or are not pathogens at all. PMID:21106791

  2. Chapter A7. Section 7.2. Fecal Indicator Viruses

    USGS Publications Warehouse

    Bushon, Rebecca N.

    2003-01-01

    More than 100 types of human pathogenic viruses may be present in fecal-contaminated waters. Coliphages are used as indicators of virus-related fecal contamination and of the microbiological quality of waters. This report provides information on the equipment, sampling protocols, and laboratory methods that are in standard use by U.S. Geological Survey (USGS) personnel for the collection of data on fecal indicator viruses.

  3. Two parvoviruses that cause different diseases in mink have different transcription patterns: transcription analysis of mink enteritis virus and Aleutian mink disease parvovirus in the same cell line.

    PubMed Central

    Storgaard, T; Oleksiewicz, M; Bloom, M E; Ching, B; Alexandersen, S

    1997-01-01

    The two parvoviruses of mink cause very different diseases. Mink enteritis virus (MEV) is associated with rapid, high-level viral replication and acute disease. In contrast, infection with Aleutian mink disease parvovirus (ADV) is associated with persistent, low-level viral replication and chronic severe immune dysregulation. In the present report, we have compared viral transcription in synchronized CRFK cells infected with either MEV or ADV using a nonradioactive RNase protection assay. The overall level of viral transcription was 20-fold higher in MEV- than in ADV-infected cells. Furthermore, MEV mRNA encoding structural proteins (MEV mRNA R3) was dominant throughout the infectious cycle, comprising approximately 80% of the total viral transcription products. In marked contrast, in ADV-infected cells, transcripts encoding nonstructural proteins (ADV mRNA R1 and R2) comprised more than 84% of the total transcripts at all times after infection, whereas ADV mRNA R3 comprised less than 16%. Thus, the ADV mRNA coding for structural proteins (ADV mRNA R3) was present at a level at least 100-fold lower than the corresponding MEV mRNA R3. These findings paralleled previous biochemical studies analyzing in vitro activities of the ADV and MEV promoters (J. Christensen, T. Storgaard, B. Viuff, B. Aasted, and S. Alexandersen, J. Virol. 67:1877-1886, 1993). The overall low levels of ADV mRNA and the paucity of the mRNA coding for ADV structural proteins may reflect an adaptation of the virus for low-level restricted infection. PMID:9188563

  4. Tuberculous Enteritis

    PubMed Central

    Hill, George S.; Tabrisky, Joseph; Peter, Michael E.

    1976-01-01

    Tuberculous enteritis occurs in about 2 percent of patients with pulmonary tuberculosis. Although it is uncommon in the United States, tuberculous enteritis should be considered in any patient with active pulmonary tuberculosis and abdominal complaints. Eight cases of T. enteritis have been treated at Harbor General Hospital in the last 25 years. Associated pulmonary disease was shown radiologically to be present in seven of eight patients. Findings on contrast studies of the gastrointestinal tract showed disease in six of six patients examined. In five patients, surgical operation was required for diagnosis or complications. Resection of diseased bowel with primary anastomosis was done in five patients. Although medical therapy is the mainstay in the treatment of both pulmonary and intestinal tuberculosis, one staged resection of diseased bowel with primary anastomosis is the procedure of choice for complications such as obstruction, hemorrhage or perforation. ImagesFigure 1.Figure 2. PMID:936600

  5. Isolation, genome sequencing and functional analysis of two T7-like coliphages of avian pathogenic Escherichia coli.

    PubMed

    Chen, Mianmian; Xu, Juntian; Yao, Huochun; Lu, Chengping; Zhang, Wei

    2016-05-10

    Avian pathogenic Escherichia coli (APEC) causes colibacillosis, which results in significant economic losses to the poultry industry worldwide. Due to the drug residues and increased antibiotic resistance caused by antibiotic use, bacteriophages and other alternative therapeutic agents are expected to control APEC infection in poultry. Two APEC phages, named P483 and P694, were isolated from the feces from the farmers market in China. We then studied their biological properties, and carried out high-throughput genome sequencing and homology analyses of these phages. Assembly results of high-throughput sequencing showed that the structures of both P483 and P694 genomes consist of linear and double-stranded DNA. Results of the electron microscopy and homology analysis revealed that both P483 and P694 belong to T7-like virus which is a member of the Podoviridae family of the Caudovirales order. Comparative genomic analysis showed that most of the predicted proteins of these two phages showed strongest sequence similarity to the Enterobacteria phages BA14 and 285P, Erwinia phage FE44, and Kluyvera phage Kvp1; however, some proteins such as gp0.6a, gp1.7 and gp17 showed lower similarity (<85%) with the homologs of other phages in the T7 subgroup. We also found some unique characteristics of P483 and P694, such as the two types of the genes of P694 and no lytic activity of P694 against its host bacteria in liquid medium. Our results serve to further our understanding of phage evolution of T7-like coliphages and provide the potential application of the phages as therapeutic agents for the treatment of diseases. PMID:26828615

  6. Identification of a novel linear B-cell epitope in the UL26 and UL26.5 proteins of Duck Enteritis Virus

    PubMed Central

    2010-01-01

    Background The Unique Long 26 (UL26) and UL26.5 proteins of herpes simplex virus are known to function during the assembly of the viruses. However, for duck enteritis virus (DEV), which is an unassigned member of the family Herpesviridae, little information is available about the function of the two proteins. In this study, the C-terminus of DEV UL26 protein (designated UL26c), which contains the whole of UL26.5, was expressed, and the recombinant UL26c protein was used to immunize BALB/c mice to generate monoclonal antibodies (mAb). The mAb 1C8 was generated against DEV UL26 and UL26.5 proteins and used subsequently to map the epitope in this region. Both the mAb and its defined epitope will provide potential tools for further study of DEV. Results A mAb (designated 1C8) was generated against the DEV UL26c protein, and a series of 17 partially overlapping fragments that spanned the DEV UL26c were expressed with GST tags. These peptides were subjected to enzyme-linked immunosorbent assay (ELISA) and western blotting analysis using mAb 1C8 to identify the epitope. A linear motif, 520IYYPGE525, which was located at the C-terminus of the DEV UL26 and UL26.5 proteins, was identified by mAb 1C8. The result of the ELISA showed that this epitope could be recognized by DEV-positive serum from mice. The 520IYYPGE525 motif was the minimal requirement for reactivity, as demonstrated by analysis of the reactivity of 1C8 with several truncated peptides derived from the motif. Alignment and comparison of the 1C8-defined epitope sequence with those of other alphaherpesviruses indicated that the motif 521YYPGE525 in the epitope sequence was conserved among the alphaherpesviruses. Conclusion A mAb, 1C8, was generated against DEV UL26c and the epitope-defined minimal sequence obtained using mAb 1C8 was 520IYYPGE525. The mAb and the identified epitope may be useful for further study of the design of diagnostic reagents for DEV. PMID:20836860

  7. INACTIVATION OF HEPATITIS A VIRUS AND MODEL VIRUSES IN WATER BY FREE CHLORINE AND MONOCHLORAMINE

    EPA Science Inventory

    The kinetics and extent of inactivation of hepatitis A virus (HAV) as well as three other viruses, coxsackievirus B5 (CB5) and coliphages MS2 and X174, by 0.5 mg/l free chlorine, pH 6-10, and 10 mg/1 monochloramine, pH8, in 0.01 M phosphate buffer were determined. These results i...

  8. Radiation enteritis

    SciTech Connect

    O'Brien, P.H.; Jenrette, J.M. III; Garvin, A.J.

    1987-09-01

    As the population receiving radiation therapy grows, so does the incidence of chronic radiation enteritis. A review of the pathology of chronic radiation enteritis reveals fibrosis, endarteritis, edema, fragility, perforation, and partial obstruction. Conservative management of patients with this disease is common. Because the obstruction is only partial, decompression is easily achieved with nasogastric suction and parenteral support. The patient is then often discharged on a liquid-to-soft diet. This therapeutic strategy does nothing for the underlying pathology. The problem, sooner or later, will return with the patient further depleted by the chronic radiation enteritis. We think surgical intervention is appropriate when the diagnosis of chronic radiation enteritis is assumed. The surgery in relation to this disease is high risk with a 30% mortality and 100% expensive morbidity. Early intervention seems to decrease these figures. All anastomoses, if possible, should be outside the irradiated area. Trapped pelvic loops of intestine should be left in place and a bypass procedure with decompressing enterostomies accomplished. The surgery should be performed by a surgeon with extensive experience with all kinds of bowel obstruction as well as experience in performing surgery in radiated tissue.

  9. The dual role of Apl in prophage induction of coliphage 186.

    PubMed

    Reed, M R; Shearwin, K E; Pell, L M; Egan, J B

    1997-02-01

    In the present study we show that the Apl protein of the temperate coliphage 186 combines, in one protein, the activities of the coliphage lambda proteins Cro and Xis. We have shown previously that Apl represses both the lysogenic promoter, pL, and the major lytic promoter, pR, and is required for excision of the prophage. Apl binds at two locations on the phage chromosome, i.e. between pR and pL and at the phage-attachment site. Using an in vivo recombination assay, we now show that the role of Apl in excision is in the process itself and is not simply a consequence of repression of pR or pL. To study the repressive role of Apl at the switch promoters we isolated Apl-resistant operator mutants and used them to demonstrate a requirement for Apl in the efficient derepression of the lysogenic promoter during prophage induction. We conclude that Apl is both an excisionase and transcriptional repressor. PMID:9157239

  10. Molecular testing for viral and bacterial enteric pathogens: gold standard for viruses, but don't let culture go just yet?

    PubMed

    Bloomfield, Maxim G; Balm, Michelle N D; Blackmore, Timothy K

    2015-04-01

    Contemporary diagnostic microbiology is increasingly adopting molecular methods as front line tests for a variety of samples. This trend holds true for detection of enteric pathogens (EP), where nucleic acid amplification tests (NAAT) for viruses are well established as the gold standard, and an increasing number of commercial multi-target assays are now available for bacteria and parasites. NAAT have significant sensitivity and turnaround time advantages over traditional methods, potentially returning same-day results. Multiplex panels offer an attractive 'one-stop shop' that may provide workflow and cost advantages to laboratories processing large sample volumes. However, there are a number of issues which need consideration. Reflex culture is required for antibiotic susceptibility testing and strain typing when needed for food safety and other epidemiological investigations. Surveillance systems will need to allow for differences in disease incidence due to the enhanced sensitivity of NAAT. Laboratories should be mindful of local epidemiology when selecting which pathogens to include in multiplex panels, and be thoughtful regarding which pathogens will not be detected. Multiplex panels may not be appropriate in certain situations, such as hospital-onset diarrhoea, where Clostridium difficile testing might be all that is required, and laboratories may wish to retain the flexibility to run single tests in such situations. The clinical impact of rapid results is also likely to be relatively minor, as infective diarrhoea is a self-limiting illness in the majority of cases. Laboratories will require strategies to assist users in the interpretation of the results produced by NAAT, particularly where pathogens are detected at low levels with uncertain clinical significance. These caveats aside, faecal NAAT are increasingly being used and introduce a new era of diagnosis of gastrointestinal infection. PMID:25719855