Science.gov

Sample records for enterocin l50 peptides

  1. Use of the Yeast Pichia pastoris as an Expression Host for Secretion of Enterocin L50, a Leaderless Two-Peptide (L50A and L50B) Bacteriocin from Enterococcus faecium L50

    PubMed Central

    Basanta, Antonio; Gómez-Sala, Beatriz; Sánchez, Jorge; Diep, Dzung B.; Herranz, Carmen; Hernández, Pablo E.; Cintas, Luis M.

    2010-01-01

    In this work, we report the expression and secretion of the leaderless two-peptide (EntL50A and EntL50B) bacteriocin enterocin L50 from Enterococcus faecium L50 by the methylotrophic yeast Pichia pastoris X-33. The bacteriocin structural genes entL50A and entL50B were fused to the Saccharomyces cerevisiae gene region encoding the mating pheromone α-factor 1 secretion signal (MFα1s) and cloned, separately and together (entL50AB), into the P. pastoris expression and secretion vector pPICZαA, which contains the methanol-inducible alcohol oxidase promoter (PAOX1) to express the fusion genes. After transfer into the yeast, the recombinant plasmids were integrated into the genome, resulting in three bacteriocinogenic yeast strains able to produce and secrete the individual bacteriocin peptides EntL50A and EntL50B separately and together. The secretion was efficiently directed by MFα1s through the Sec system, and the precursor peptides were found to be correctly processed to form mature and active bacteriocin peptides. The present work describes for the first time the heterologous expression and secretion of a two-peptide non-pediocin-like bacteriocin by a yeast. PMID:20348300

  2. Enterocins L50A and L50B, Two Novel Bacteriocins from Enterococcus faecium L50, Are Related to Staphylococcal Hemolysins

    PubMed Central

    Cintas, Luis M.; Casaus, Pilar; Holo, Helge; Hernandez, Pablo E.; Nes, Ingolf F.; Håvarstein, Leiv Sigve

    1998-01-01

    Enterocin L50 (EntL50), initially referred to as pediocin L50 (L. M. Cintas, J. M. Rodríguez, M. F. Fernández, K. Sletten, I. F. Nes, P. E. Hernández, and H. Holo, Appl. Environ. Microbiol. 61:2643–2648, 1995), is a plasmid-encoded broad-spectrum bacteriocin produced by Enterococcus faecium L50. It has previously been purified from the culture supernatant and partly sequenced by Edman degradation. In the present work, the nucleotide sequence of the EntL50 locus was determined, and several putative open reading frames (ORFs) were identified. Unexpectedly, two ORFs were found to encode EntL50-like peptides. These peptides, termed enterocin L50A (EntL50A) and enterocin L50B (EntL50B), have 72% sequence identity and consist of 44 and 43 amino acids, respectively. Interestingly, a comparison of the deduced sequences of EntL50A and EntL50B with the corresponding sequences obtained by Edman degradation shows that these bacteriocins, in contrast to other peptide bacteriocins, are secreted without an N-terminal leader sequence or signal peptide. Expression in vivo and in vitro transcription/translation experiments demonstrated that entL50A and entL50B are the only genes required to obtain antimicrobial activity, strongly indicating that their bacteriocin products are not posttranslationally modified. Both bacteriocins possess antimicrobial activity on their own, with EntL50A being the most active. In addition, when the two bacteriocins were combined, a considerable synergism was observed, especially with some indicator strains. Even though the enterocins in some respects are similar to class II bacteriocins, several conserved features common to class II bacteriocins are absent from the EntL50 system. The enterocins have more in common with members of a small group of cytolytic peptides secreted by certain staphylococci. We therefore propose that the enterocins L50A and L50B and the staphylococcal cytolysins together constitute a new family of peptide toxins, unrelated

  3. Antimicrobial activity of Enterococcus faecium L50, a strain producing enterocins L50 (L50A and L50B), P and Q, against beer-spoilage lactic acid bacteria in broth, wort (hopped and unhopped), and alcoholic and non-alcoholic lager beers.

    PubMed

    Basanta, Antonio; Sánchez, Jorge; Gómez-Sala, Beatriz; Herranz, Carmen; Hernández, Pablo E; Cintas, Luis M

    2008-07-31

    Enterococcus faecium L50 produces enterocin L50 (L50A and L50B) (EntL50, EntL50A and EntL50B), enterocin P (EntP) and enterocin Q (EntQ) and displays a broad antimicrobial spectrum against the most relevant beer-spoilage lactic acid bacteria (LAB) (i.e., Lactobacillus brevis and Pediococcus damnosus), which is mainly due to the production of EntL50 (EntL50A and EntL50B). Bacteriocin assays using in vitro-synthesized EntL50 (EntL50A and EntL50B) showed that both individual peptides possess antimicrobial activity on their own, EntL50A being the most active, but when the two peptides were combined a synergistic effect was observed. The only virulence genes detected in E. faecium L50 were efaAfm (cell wall adhesin) and ccf (sex pheromone), and this strain was susceptible to most clinically relevant antibiotics. E. faecium L50 survived but did not grow nor showed antimicrobial activity in hopped and unhopped wort, and alcoholic (1 and 5% ethanol, v/v) and non-alcoholic (0% ethanol, v/v) commercial lager beers. However, when unhopped wort was supplemented with 50% (v/v) MRS broth, E. faecium L50 grew and exerted antimicrobial activity similarly as in MRS broth. The enterocins produced by this strain were bactericidal (5 log decrease) against P. damnosus and Lb. brevis in a dose- and substrate-dependent manner when challenged in MRS broth, wort (hopped and unhopped), and alcoholic (1 and 5% ethanol, v/v) and non-alcoholic (0% ethanol, v/v) lager beers at 32 degrees C, and no bacterial resistances were detected even after incubation for 6-15 days. The enterocins in wort and lager beer (5% ethanol, v/v) withstood the heat treatments commonly employed in the brewing industry during mashing, wort boiling, fermentation, and pasteurization, and retained most of their antimicrobial activity in lager beer (5% ethanol, v/v) after long-term storage at 8 and 25 degrees C. PMID:18544465

  4. Simultaneous Production of Formylated and Nonformylated Enterocins L50A and L50B as well as 61A, a New Glycosylated Durancin, by Enterococcus durans 61A, a Strain Isolated from Artisanal Fermented Milk in Tunisia.

    PubMed

    Hanchi, Hasna; Hammami, Riadh; Fernandez, Benoit; Kourda, Rim; Ben Hamida, Jeannette; Fliss, Ismail

    2016-05-11

    Enterococcus durans 61A, a broad-spectrum strain, was isolated from artisanal fermented dairy products. The strain is a multibacteriocin producer, free from virulence genes, and could be considered a good candidate for application in food preservation. In the present study, E. durans 61A was shown to produce simultaneously formylated and nonformylated forms of leaderless enterocins L50A and L50B as well as 61A, a new glycosylated durancin. Bacteriocins were characterized using mass spectrometry. Formylation was found to increase enterocin antimicrobial activity of enterocin L50A (8×) and, to a lesser extent, the activity of L50B (2×). Durancin 61A was found glycosylated by two hexoses (glucose and arabinose) and exhibited broad-spectrum inhibition against Gram-positive and Gram-negative bacteria and fungal spores. Durancin 61A was highly bactericidal at 15.6 μg/mL (10× the MIC) on Listeria innocua HPB13 and seems to target bacterial membrane as shown by ion efflux and transmission electron microscopy. PMID:27111259

  5. Complete Sequence of the Enterocin Q-Encoding Plasmid pCIZ2 from the Multiple Bacteriocin Producer Enterococcus faecium L50 and Genetic Characterization of Enterocin Q Production and Immunity

    PubMed Central

    Criado, Raquel; Diep, Dzung B.; Aakra, Ågot; Gutiérrez, Jorge; Nes, Ingolf F.; Hernández, Pablo E.; Cintas, Luis M.

    2006-01-01

    The locations of the genetic determinants for enterocin L50 (EntL50A and EntL50B), enterocin Q (EntQ), and enterocin P (EntP) in the multiple bacteriocin producer Enterococcus faecium strain L50 were determined. These bacteriocin genes occur at different locations; entL50AB (encoding EntL50A and EntL50B) are on the 50-kb plasmid pCIZ1, entqA (encoding EntQ) is on the 7.4-kb plasmid pCIZ2, and entP (encoding EntP) is on the chromosome. The complete nucleotide sequence of pCIZ2 was determined to be 7,383 bp long and contains 10 putative open reading frames (ORFs) organized in three distinct regions. The first region contains three ORFs: entqA preceded by two divergently oriented genes, entqB and entqC. EntqB shows high levels of similarity to bacterial ATP-binding cassette (ABC) transporters, while EntqC displays no significant similarity to any known protein. The second region encompasses four ORFs (orf4 to orf7), and ORF4 and ORF5 display high levels of similarity to mobilization proteins from E. faecium and Enterococcus faecalis. In addition, features resembling a transfer origin region (oriT) were found in the promoter area of orf4. The third region contains three ORFs (orf8 to orf10), and ORF8 and ORF9 exhibit similarity to the replication initiator protein RepE from E. faecalis and to RepB proteins, respectively. To clarify the minimum requirement for EntQ synthesis, we subcloned and heterologously expressed a 2,371-bp fragment from pCIZ2 that encompasses only the entqA, entqB, and entqC genes in Lactobacillus sakei, and we demonstrated that this fragment is sufficient for EntQ production. Moreover, we also obtained experimental results indicating that EntqB is involved in ABC transporter-mediated EntQ secretion, while EntqC confers immunity to this bacteriocin. PMID:17021217

  6. The Cyclic Antibacterial Peptide Enterocin AS-48: Isolation, Mode of Action, and Possible Food Applications.

    PubMed

    Grande Burgos, María José; Pulido, Rubén Pérez; Del Carmen López Aguayo, María; Gálvez, Antonio; Lucas, Rosario

    2014-01-01

    Enterocin AS-48 is a circular bacteriocin produced by Enterococcus. It contains a 70 amino acid-residue chain circularized by a head-to-tail peptide bond. The conformation of enterocin AS-48 is arranged into five alpha-helices with a compact globular structure. Enterocin AS-48 has a wide inhibitory spectrum on Gram-positive bacteria. Sensitivity of Gram-negative bacteria increases in combination with outer-membrane permeabilizing treatments. Eukaryotic cells are bacteriocin-resistant. This cationic peptide inserts into bacterial membranes and causes membrane permeabilization, leading ultimately to cell death. Microarray analysis revealed sets of up-regulated and down-regulated genes in Bacillus cereus cells treated with sublethal bacteriocin concentration. Enterocin AS-48 can be purified in two steps or prepared as lyophilized powder from cultures in whey-based substrates. The potential applications of enterocin AS-48 as a food biopreservative have been corroborated against foodborne pathogens and/or toxigenic bacteria (Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Salmonella enterica) and spoilage bacteria (Alicyclobacillus acidoterrestris, Bacillus spp., Paenibacillus spp., Geobacillus stearothermophilus, Brochothrix thermosphacta, Staphylococcus carnosus, Lactobacillus sakei and other spoilage lactic acid bacteria). The efficacy of enterocin AS-48 in food systems increases greatly in combination with chemical preservatives, essential oils, phenolic compounds, and physico-chemical treatments such as sublethal heat, high-intensity pulsed-electric fields or high hydrostatic pressure. PMID:25493478

  7. The Cyclic Antibacterial Peptide Enterocin AS-48: Isolation, Mode of Action, and Possible Food Applications

    PubMed Central

    Grande Burgos, María José; Pérez Pulido, Rubén; López Aguayo, María del Carmen; Gálvez, Antonio; Lucas, Rosario

    2014-01-01

    Enterocin AS-48 is a circular bacteriocin produced by Enterococcus. It contains a 70 amino acid-residue chain circularized by a head-to-tail peptide bond. The conformation of enterocin AS-48 is arranged into five alpha-helices with a compact globular structure. Enterocin AS-48 has a wide inhibitory spectrum on Gram-positive bacteria. Sensitivity of Gram-negative bacteria increases in combination with outer-membrane permeabilizing treatments. Eukaryotic cells are bacteriocin-resistant. This cationic peptide inserts into bacterial membranes and causes membrane permeabilization, leading ultimately to cell death. Microarray analysis revealed sets of up-regulated and down-regulated genes in Bacillus cereus cells treated with sublethal bacteriocin concentration. Enterocin AS-48 can be purified in two steps or prepared as lyophilized powder from cultures in whey-based substrates. The potential applications of enterocin AS-48 as a food biopreservative have been corroborated against foodborne pathogens and/or toxigenic bacteria (Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Salmonella enterica) and spoilage bacteria (Alicyclobacillus acidoterrestris, Bacillus spp., Paenibacillus spp., Geobacillus stearothermophilus, Brochothrix thermosphacta, Staphylococcus carnosus, Lactobacillus sakei and other spoilage lactic acid bacteria). The efficacy of enterocin AS-48 in food systems increases greatly in combination with chemical preservatives, essential oils, phenolic compounds, and physico-chemical treatments such as sublethal heat, high-intensity pulsed-electric fields or high hydrostatic pressure. PMID:25493478

  8. The fsr Quorum-Sensing System and Cognate Gelatinase Orchestrate the Expression and Processing of Proprotein EF_1097 into the Mature Antimicrobial Peptide Enterocin O16

    PubMed Central

    Dundar, Halil; Brede, Dag A.; La Rosa, Sabina Leanti; El-Gendy, Ahmed Osama; Diep, Dzung B.

    2015-01-01

    ABSTRACT A novel antimicrobial peptide designated enterocin O16 was purified from Enterococcus faecalis. Mass spectrometry showed a monoisotopic mass of 7,231 Da, and N-terminal Edman degradation identified a 29-amino-acid sequence corresponding to residues 90 to 119 of the EF_1097 protein. Bioinformatic analysis showed that enterocin O16 is composed of the 68 most C-terminal residues of the EF_1097 protein. Introduction of an in-frame isogenic deletion in the ef1097 gene abolished the production of enterocin O16. Enterocin O16 has a narrow inhibitory spectrum, as it inhibits mostly lactobacilli. Apparently, E. faecalis is intrinsically resistant to the antimicrobial peptide, as no immunity connected to the production of enterocin O16 could be identified. ef1097 has previously been identified as one of three loci regulated by the fsr quorum-sensing system. The introduction of a nonsense mutation into fsrB consistently impaired enterocin O16 production, but externally added gelatinase biosynthesis-activating pheromone restored the antimicrobial activity. Functional genetic analysis showed that the EF_1097 proprotein is processed extracellularly into enterocin O16 by the metalloprotease GelE. Thus, it is evident that the fsr quorum-sensing system constitutes the regulatory unit that controls the expression of the EF_1097 precursor protein and the protease GelE and that the latter is required for the formation of enterocin O16. On the basis of these results, this study identified antibacterial antagonism as a novel aspect related to the function of fsr and provides a rationale for why ef1097 is part of the fsr regulon. IMPORTANCE The fsr quorum-sensing system modulates important physiological functions in E. faecalis via the activity of GelE. The present study presents a new facet of fsr signaling. The system controls the expression of three primary target operons (fsrABCD, gelE-sprE, and ef1097-ef1097b). We demonstrate that the concerted expression of these operons

  9. Enterocins in food preservation.

    PubMed

    Khan, Haider; Flint, Steve; Yu, Pak-Lam

    2010-06-30

    The Enterococcus genus, a member of the Lactic Acid Bacteria (LAB) is found in various environments, but more particularly in the intestines of humans and other animals. Although sometimes associated with pathogenicity these bacteria have many benefits. They have been found in traditional artisanal fermented products, are used as probiotic cultures and nowadays extensively studied for the production of bacteriocins--the enterocins. Many of these enterocins have been found to be active against Listeria monocytogenes, and a few have also been reported to be active even against Gram negative bacteria, an unusual property for the bacteriocins produced by LAB. These properties have resulted in many studies describing the use of enterocins as preservatives in foods of animal and vegetable origin. This review covers the most recent information on the use of enterocins as food preservatives, either produced in-situ by the addition of enterocin producing strains or as external preservatives in the form of purified or semi-purified extracts, to prevent the growth of spoilage and pathogenic microorganisms. PMID:20399522

  10. Enterocin F4-9, a Novel O-Linked Glycosylated Bacteriocin.

    PubMed

    Maky, Mohamed Abdelfattah; Ishibashi, Naoki; Zendo, Takeshi; Perez, Rodney Honrada; Doud, Jehan Ragab; Karmi, Mohamed; Sonomoto, Kenji

    2015-07-01

    Enterococcus faecalis F4-9 isolated from Egyptian salted-fermented fish produces a novel bacteriocin, termed enterocin F4-9. Enterocin F4-9 was purified from the culture supernatant by three steps, and its molecular mass was determined to be 5,516.6 Da by mass spectrometry. Amino acid and DNA sequencing showed that the propeptide consists of 67 amino acid residues, with a leader peptide containing a double glycine cleavage site to produce a 47-amino-acid mature peptide. Enterocin F4-9 is modified by two molecules of N-acetylglucosamine β-O-linked to Ser37 and Thr46. The O-linked N-acetylglucosamine moieties are essential for the antimicrobial activity of enterocin F4-9. Further analysis of the enterocin F4-9 gene cluster identified enfC, which has high sequence similarity to a glycosyltransferase. The antimicrobial activity of enterocin F4-9 covered a limited range of bacteria, including, interestingly, a Gram-negative strain, Escherichia coli JM109. Enterocin F4-9 is sensitive to protease, active at a wide pH range, and moderately resistant to heat. PMID:25956765

  11. Analysis of the Promoters Involved in Enterocin AS-48 Expression

    PubMed Central

    Cebrián, Rubén; Rodríguez-Ruano, Sonia; Martínez-Bueno, Manuel; Valdivia, Eva; Maqueda, Mercedes; Montalbán-López, Manuel

    2014-01-01

    The enterocin AS-48 is the best characterized antibacterial circular protein in prokaryotes. It is a hydrophobic and cationic bacteriocin, which is ribosomally synthesized by enterococcal cells and post-translationally cyclized by a head-to-tail peptide bond. The production of and immunity towards AS-48 depend upon the coordinated expression of ten genes organized in two operons, as-48ABC (where genes encoding enzymes with processing, secretion, and immunity functions are adjacent to the structural as-48A gene) and as-48C1DD1EFGH. The current study describes the identification of the promoters involved in AS-48 expression. Seven putative promoters have been here amplified, and separately inserted into the promoter-probe vector pTLR1, to create transcriptional fusions with the mCherry gene used as a reporter. The activity of these promoter regions was assessed measuring the expression of the fluorescent mCherry protein using the constitutive pneumococcal promoter PX as a reference. Our results revealed that only three promoters PA, P2(2) and PD1 were recognized in Enterococcus faecalis, Lactococcus lactis and Escherichia coli, in the conditions tested. The maximal fluorescence was obtained with PX in all the strains, followed by the P2(2) promoter, which level of fluorescence was 2-fold compared to PA and 4-fold compared to PD1. Analysis of putative factors influencing the promoter activity in single and double transformants in E. faecalis JH2-2 demonstrated that, in general, a better expression was achieved in presence of pAM401-81. In addition, the P2(2) promoter could be regulated in a negative fashion by genes existing in the native pMB-2 plasmid other than those of the as-48 cluster, while the pH seems to affect differently the as-48 promoter expression. PMID:24594763

  12. Enterocin AS-48RJ: a variant of enterocin AS-48 chromosomally encoded by Enterococcus faecium RJ16 isolated from food.

    PubMed

    Abriouel, Hikmate; Lucas, Rosario; Ben Omar, Nabil; Valdivia, Eva; Maqueda, Mercedes; Martínez-Cañamero, Magdalena; Gálvez, Antonio

    2005-07-01

    The bacteriocinogenic strain RJ16 isolated from goat cheese has been identified as Enterococcusfaecium by species-specific PCR, DNA-rRNA hybridization and rDNA sequencing. Purified bacteriocin from strain RJ16 is a carboxypeptidase A-resistant peptide with a molecular mass (7125 Da) very close to the cyclic peptide enterocin AS-48. Bacteriocin from strain RJ16 and AS-48 show identical antibacterial spectra, although the former is slightly less active on strains of Listeria monocytogenes and Bacillus cereus. Producer strains show cross-immunity. PCR amplification of total DNA from strain RJ16 with primers for the AS-48 structural gene and sequencing of the amplified fragment revealed an almost identical sequence (99.5%), except for a single mutation that predicts the change of Glu residue at position 20 of AS-48 to Val. Therefore, bacteriocin produced by E. faecium RJ16 should be considered a variant of AS-48, which we call AS-48RJ. PCR amplification revealed that strain RJ16 contains the complete as-48. gene cluster. Hybridization with probes for as-48 gene cluster revealed a chromosomal location of as-48 genes in strain RJ16, being the first example of a chromosomal location of this bacteriocin trait. Strain RJ16 produced enzymes of interest in food processing (esterase, esterase lipase and phytase activities), and did not decarboxylate amino acids precursors for biogenic amines. Strain RJ16 did not exhibit haemolytic or gelatinase activities, and PCR amplification revealed the lack of genes encoding for known virulence determinants (aggregation substance, collagen adhesin, enterococcal surface protein, endocarditis antigens, as well as haemolysin and gelatinase production). Strain RJ16 was resistant to ciprofloxacin (MIC > 2 mgl(-1)) and levofloxacin (MIC > 4 mgl(-1)) and showed intermediate resistance to nitrofurantoin and erythromycin, but was sensitive to ampicillin, penicillin, streptomycin, gentamicin, rifampicin, chloramphenicol, tetracycline, quinupristin

  13. Enterococci isolated from farm ostriches and their relation to enterocins.

    PubMed

    Lauková, Andrea; Kandričáková, Anna; Ščerbová, Jana; Strompfová, Viola

    2016-07-01

    The present study focuses on the detection of enterococci in ostrich faeces. Forty-six bacterial colonies from 140 ostriches were identified at the species level using the MALDI-TOF MS identification system. According to the score value evaluation, they were allotted to the species Enterococcus hirae, Enterococcus faecium and Enterococcus mundtii confirmed also by phenotypic testing. Dominated species E. hirae (34 strains) were submitted to more detailed testing. Those strains E. hirae produced either no or only slight amount of the enzymes related to disorders (N-acetyl-β-glucosaminidase, β-glucuronidase, α-chymotrypsin, trypsin). Most of the strains were not hemolytic. They did not harbour the hiracin-producing gene. Five E. hirae strains harboured virulence factor gene gelE; however, they were phenotypically gelatinase negative. They also harboured other virulence factor genes such as esp, efaAfm and ccf. E. hirae strains were mostly sensitive to antibiotics and those resistant at least to one antibiotic were sensitive to enterocins (200-25,600 AU/mL). This study represents original and novel results concerning the enterococcal microflora in ostriches; enterococci in ostriches have not been described in detail up to now; sensitivity to enterocins of E. hirae strains harbouring virulence factor genes to enterocins is also new. PMID:26603748

  14. Biochemical Properties and Mechanism of Action of Enterocin LD3 Purified from Enterococcus hirae LD3.

    PubMed

    Gupta, Aabha; Tiwari, Santosh Kumar; Netrebov, Victoria; Chikindas, Michael L

    2016-09-01

    Enterocin LD3 was purified using activity-guided multistep chromatography techniques such as cation-exchange and gel-filtration chromatography. The preparation's purity was tested using reverse-phase ultra-performance liquid chromatography. The specific activity was tested to be 187.5 AU µg(-1) with 13-fold purification. Purified enterocin LD3 was heat stable up to 121 °C (at 15 psi pressure) and pH 2-6. The activity was lost in the presence of papain, reduced by proteinase K, pepsin and trypsin, but was unaffected by amylase and lipase, suggesting proteinaceous nature of the compound and no role of carbohydrate and lipid moieties in the activity. MALDI-TOF/MS analysis of purified enterocin LD3 resolved m/z 4114.6, and N-terminal amino acid sequence was found to be H2NQGGQANQ-COOH suggesting a new bacteriocin. Dissipation of membrane potential, loss of internal ATP and bactericidal effect were recorded when indicator strain Micrococcus luteus was treated with enterocin LD3. It inhibited Gram-positive and Gram-negative bacteria including human pathogens such as Staphylococcus aureus, Pseudomonas fluorescens, Pseudomonas aeruginosa, Salmonella typhi, Shigella flexneri, Listeria monocytogenes, Escherichia coli O157:H7, E. coli (urogenic, a clinical isolate) and Vibrio sp. These properties of purified enterocin LD3 suggest its applications as a food biopreservative and as an alternative to clinical antibiotics. PMID:27145777

  15. A novel enterocin T1 with anti-Pseudomonas activity produced by Enterococcus faecium T1 from Chinese Tibet cheese.

    PubMed

    Liu, Hui; Zhang, Lanwei; Yi, Huaxi; Han, Xue; Gao, Wei; Chi, Chunliang; Song, Wei; Li, Haiying; Liu, Chunguang

    2016-02-01

    An enterocin-producing Enterococcus faecium T1 was isolated from Chinese Tibet cheese. The enterocin was purified by SP-Sepharose and reversed phase HPLC. It was identified as unique from other reported bacteriocins based on molecular weight (4629 Da) and amino acid compositions; therefore it was subsequently named enterocin T1. Enterocin T1 was stable at 80-100 °C and over a wide pH range, pH 3.0-10.0. Protease sensitivity was observed to trypsin, pepsin, papain, proteinase K, and pronase E. Importantly, enterocin T1 was observed to inhibit the growth of numerous Gram-negative and Gram-positive bacteria including Pseudomonas putida, Pseudomonas aeruginosa, Pseudomonas fluorescens, Escherichia coli, Salmonella typhimurium, Shigella flexneri, Shigella sonnei, Staphylococcus aureus, Listeria monocytogenes. Take together, these results suggest that enterocin T1 is a novel bacteriocin with the potential to be used as a bio-preservative to control Pseudomonas spp. in food. PMID:26745981

  16. Enhanced bactericidal effect of enterocin A in combination with thyme essential oils against L. monocytogenes and E. coli O157:H7.

    PubMed

    Ghrairi, Taoufik; Hani, Khaled

    2015-04-01

    The combined effects of enterocin A with Thymus vulgaris essential oils (EOs) against Listeria monocytogenes and Escherichia coli O157:H7 were investigated in vitro by enumeration of surviving populations of testing pathogens and minimal inhibitory concentration (MIC) determination. Enterocin A was purified to homogeneity by RP-HPLC from the culture fluid of Enterococcus strain and thyme EOs were extracted from local Thymus vulgaris plants. The major constituent of thyme EOs oils determined by GC-MS was thymol (78.4 %). Combination of enterocin A with thyme EOs showed an enhanced bactericidal effect against Listeria monocytogenes. Checkerboard assay and isobologram construction displayed a synergistic interaction between these compounds against Listeria (FIC index <0.5). Moreover, the MIC value of enterocin A has fallen fivefold (from 4.57 to 0.9 μg/ml), while the MIC of thyme EOs decreased threefold (from 3.6 to 1.2 μg/ml). Treatments with enterocin A alone did not affect the growth of the enteric pathogen E. coli O157:H7. However, the addition of thyme EOs and enterocin A yielded a synergistic antimicrobial effect against E. coli (MIC thyme EOs decrease from 2.2 to 0.71 μg/ml). This is the first report on the combined effect of enterocin A and thyme EOs against food pathogen bacteria. This combination could be useful in food bio-preservation. PMID:25829595

  17. Combined effect of enterocin and lipase from Enterococcus faecium NCIM5363 against food borne pathogens: mode of action studies.

    PubMed

    Ramakrishnan, Vrinda; Narayan, Bhaskar; Halami, Prakash M

    2012-08-01

    Food borne diseases have a major impact on public health whose epidemiology is rapidly changing. The whole cells of pathogens involved or their toxins/metabolites affect the human health apart from spoiling sensory properties of the food products finally affecting the food industry as well as consumer health. With pathogens developing mechanisms of antibiotic resistance, there has been an increased need to replace antibiotics as well as chemical additives with naturally occurring bacteriocins. Bacteriocins are known to act mainly against Gram-positive pathogens and with little or no effect towards Gram-negative enteric bacteria. In the present study, combination effect of lipase and bacteriocin produced by Enterococcus faecium NCIM5363, a highly lipolytic lactic acid bacterium against various food pathogens was assessed. The lipase in combination with enterocin exhibited a lethal effect against Gram-negative pathogens. Scanning electron microscopy studies carried out to ascertain the constitutive mode of action of lipase and enterocin revealed that the lipase degrades the cell wall of Gram-negative bacteria and creates a pore through which enterocin enters thereby resulting in cell death. The novelty of this work is the fact that this is the first report revealing the synergistic effect of lipase with enterocin against Gram-negative bacteria. PMID:22580888

  18. Inactivation of Staphylococcus aureus in Oat and Soya Drinks by Enterocin AS-48 in Combination with Other Antimicrobials.

    PubMed

    Burgos, María José Grande; Aguayo, M Carmen López; Pulido, Rubén Pérez; Gálvez, Antonio; López, Rosario Lucas

    2015-09-01

    The presence of toxicogenic Staphylococcus aureus in foods and the dissemination of methicillin-resistant S. aureus (MRSA) in the food chain are matters of concern. In the present study, the circular bacteriocin enterocin AS-48, applied singly or in combination with phenolic compounds (carvacrol, eugenol, geraniol, and citral) or with 2-nitro-1-propanol (2NPOH), was investigated in the control of a cocktail made from 1 methicillin-sensitive and 1 MRSA strains inoculated on commercial oat and soya drinks. Enterocin AS-48 exhibited low bactericidal activity against staphylococci in the drinks investigated when applied singly. The combinations of sub-inhibitory concentrations of enterocin AS-48 (25 μg/mL) and phenolic compounds or 2NPOH caused complete inactivation of staphylococci in the drinks within 24 h of incubation at 22 °C. When tested in oat and soya drinks stored for 7 d at 10 °C, enterocin AS-48 (25 μg/mL) in combination with 2NPOH (5.5 mM) reduced viable counts rapidly in the case of oat drink (4.2 log cycles after 12 h) or slowly in soya drink (3.8 log cycles after 3 d). The same combined treatment applied on drinks stored at 22 °C achieved a fast inactivation of staphylococci within 12 to 24 h in both drinks, and no viable staphylococci were detected for up to 7 d of storage. Results from the study highlight the potential of enterocin AS-48 in combination with 2NPOH for inactivation of staphylococci. PMID:26256434

  19. Antibacterial efficacy of Nisin, Pediocin 34 and Enterocin FH99 against Listeria monocytogenes and cross resistance of its bacteriocin resistant variants to common food preservatives

    PubMed Central

    Kaur, G.; Singh, T.P.; Malik, R.K.

    2013-01-01

    Antilisterial efficiency of three bacteriocins, viz, Nisin, Pediocin 34 and Enterocin FH99 was tested individually and in combination against Listeria mononcytogenes ATCC 53135. A greater antibacterial effect was observed when the bacteriocins were combined in pairs, indicating that the use of more than one LAB bacteriocin in combination have a higher antibacterial action than when used individually. Variants of Listeria monocytogenes ATCC 53135 resistant to Nisin, Pediocin 34 and Enterocin FH99 were developed. Bacteriocin cross-resistance of wild type and their corresponding resistant variants were assessed and results showed that resistance to a bacteriocin may extend to other bacteriocins within the same class. Resistance to Pediocin 34 conferred cross resistance to Enterocin FH 99 but not to Nisin. Similarly resistance to Enterocin FH99 conferred cross resistance to Pediocin 34 but not to Nisin. Also, the sensitivity of Nisin, Pediocin 34 and Enterocin FH99 resistant variants of Listeria monocytogenes to low pH, salt, sodium nitrite, and potassium sorbate was assayed in broth and compared to the parental wild-type strain. The Nisin, Pediocin 34 and Enterocin FH99 resistant variants did not have intrinsic resistance to low pH, sodium chloride, potassium sorbate, or sodium nitrite. In no case were the bacteriocin resistant Listeria monocytogenes variants examined were more resistant to inhibitors than the parental strains. PMID:24159285

  20. Efficacy of enterocin AS-48 against bacilli in ready-to-eat vegetable soups and purees.

    PubMed

    Grande, Maria J; Abriouel, Hikmate; Lucas López, Rosario; Valdivia, Eva; Ben Omar, Nabil; Martínez-Cañamero, Magdalena; Gálvez, Antonio

    2007-10-01

    The broad-spectrum bacteriocin enterocin AS-48 was tested for biopreservation of ready-to-eat vegetable foods (soups and purees) against aerobic mesophilic endospore-forming bacteria. By adding AS-48 (10 microg/ml), Bacillus cereus LWL1 was completely inhibited in all six vegetable products tested (natural vegetable cream, asparagus cream, traditional soup, homemade-style traditional soup, vegetable soup, and vichyssoise) for up to 30 days at 6, 15, and 22 degrees C. A collection of strains isolated from spoiled purees showed slightly higher resistance to AS-48 in the order Paenibacillus sp. > Bacillus macroides > B. cereus, although they were also completely inhibited in natural vegetable cream by AS-48 at 10 microg/ml. However, cocktails of five or eight strains composed of B. cereus (three strains), B. macroides (two strains), and Paenibacillus sp., Paenibacillus polymyxa, and Paenibacillus amylolyticus showed higher bacteriocin resistance with AS-48 of up to 50 microg/ml required for complete inactivation in natural vegetable cream stored at 22 degrees C. Repetitive extragenic palindromic sequence-based PCR (REP-PCR) analysis showed that paenibacilli (along with some B. cereus) was the predominant survivor in the cocktails after bacteriocin treatment. To increase the effectiveness of enterocin AS-48, the bacteriocin was tested (at 20 microg/ml) against the eight-strain cocktail in natural vegetable cream in combination with other antimicrobials. The combination of AS-48 and nisin had a slight but significant additive effect. Bactericidal activity was greatly enhanced by phenolic compounds (carvacrol, eugenol, geraniol, and hydrocinnamic acid), achieving a rapid and complete inactivation of bacilli in the tested puree at 22 degrees C. PMID:17969616

  1. Benefits of combinative application of probiotic, enterocin M-producing strain Enterococcus faecium AL41 and Eleutherococcus senticosus in rabbits.

    PubMed

    Lauková, Andrea; Simonová, Monika Pogány; Chrastinová, Ľubica; Plachá, Iveta; Čobanová, Klaudia; Formelová, Zuzana; Chrenková, Mária; Ondruška, Ľubomír; Strompfová, Viola

    2016-03-01

    This study presents the effects of the probiotic and enterocin M-producing strain Enterococcus faecium AL41 on microbiota, phagocytic activity (PA), oxidative stress, performance and biochemical parameters when applied individually or in combination with Eleutherococcus senticosus in rabbits. The novelty of the study lies in the use of our non-rabbit-derived strain (AL41 = CCM8558) which produces new enterocin M. Ninety-six post-weaned rabbits (Hyplus breed) aged 5 weeks were divided into three experimental groups, 24 in each: E. senticosus (ES, 30 g/100 kg) in feed, E. faecium AL41 (10(9) CFU/mL marked by rifampicin to differentiate it from other enterococci) in water, and ES + AL. AL41 colonized sufficiently in rabbits to reduce coliforms, staphylococci, pseudomonads and clostridia. Slight decrease in bacteria was also found in the caecum and appendix. Phagocytic activity was significantly increased in the experimental groups compared to the control group (CG) (p < 0.001; p < 0.05). Applications did not evoke oxidative stress. Biochemical parameters in blood and caecal organic acids were slightly influenced. Average daily weight gain was slightly higher in ES and AL + ES. Combinative application of E. faecium with E. senticosus can be beneficial in rabbits. AL41 strain alone and in combination with ES produced reduction in spoilage bacteria; the highest stimulation of PA was in the AL41 + ES group. PMID:26354790

  2. Effect of sausage ingredients and additives on the production of enterocin A and B by Enterococcus faecium CTC492. Optimization of in vitro production and anti-listerial effect in dry fermented sausages.

    PubMed

    Aymerich, T; Artigas, M G; Garriga, M; Monfort, J M; Hugas, M

    2000-04-01

    Enterocin A and B in Enterococcus faecium CTC492 were co-induced by the different factors assayed in this study (r = 0.93) and followed primary metabolic kinetics. Enterocin production was significantly inhibited by sausage ingredients and additives, with the exception of nitrate. The addition of sodium chloride and pepper decreased production 16-fold. The temperature and pH influenced enterocin production, with optima between 25 and 35 degrees C, and from 6.0 to 7.5 of initial pH. The maximum activity was achieved, under favourable growth conditions, with MRS supplemented with sucrose (2%) plus glucose (0.25%) and Tween-80 (1%). MRS concentration, NaCl plus pepper addition, absence of Tween-80 in the growth medium, incubation at 45 degrees C and an initial pH under 5.5 were detrimental to bacteriocin production. Stress conditions did not favour enterocin production. Desadsorption was Tween-dependent. Enterocin A activity in the crude extracts stored at -80 degrees C was better preserved than enterocin B (when tested against their specific indicator strain), but anti-listerial activity remained intact. Applied as anti-listerial additives in dry fermented sausages, enterocins significantly diminished Listeria counts by 1. 13 log (P < 0.001), while Enterococcus faecium CTC492 added as starter culture did not significantly reduce Listeria counts (P > 0. 1) compared with the standard starter culture (Bac-). Enterocins A and B could be considered as extra biopreservative hurdles for listeria prevention in dry fermented sausages. PMID:10792528

  3. Anti-MRSA Activities of Enterocins DD28 and DD93 and Evidences on Their Role in the Inhibition of Biofilm Formation

    PubMed Central

    Al Atya, Ahmed K.; Belguesmia, Yanath; Chataigne, Gabrielle; Ravallec, Rozenn; Vachée, Anne; Szunerits, Sabine; Boukherroub, Rabah; Drider, Djamel

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) has become a worrisome superbug. This work aimed at studying the effects of two class IIb bacteriocins, enterocins DD28 and DD93 as anti-MRSA agents. Thus, these bacteriocins were purified, from the cultures supernatants of Enterococcus faecalis 28 and 93, using a simplified purification procedure consisting in a cation exchange chromatography and a reversed-phase high-performance liquid chromatography. The anti-Staphylococcal activity was shown in vitro by the assessment of the minimal inhibitory concentration (MIC), followed by a checkerboard and time-kill kinetics experiments. The data unveiled a clear synergistic effect of enterocins DD28 and DD93 in combination with erythromycin or kanamycin against the clinical MRSA-S1 strain. Besides, these combinations impeded as well the MRSA-S1 clinical strain to setup biofilms on stainless steel and glace devices. PMID:27303396

  4. Anti-MRSA Activities of Enterocins DD28 and DD93 and Evidences on Their Role in the Inhibition of Biofilm Formation.

    PubMed

    Al Atya, Ahmed K; Belguesmia, Yanath; Chataigne, Gabrielle; Ravallec, Rozenn; Vachée, Anne; Szunerits, Sabine; Boukherroub, Rabah; Drider, Djamel

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) has become a worrisome superbug. This work aimed at studying the effects of two class IIb bacteriocins, enterocins DD28 and DD93 as anti-MRSA agents. Thus, these bacteriocins were purified, from the cultures supernatants of Enterococcus faecalis 28 and 93, using a simplified purification procedure consisting in a cation exchange chromatography and a reversed-phase high-performance liquid chromatography. The anti-Staphylococcal activity was shown in vitro by the assessment of the minimal inhibitory concentration (MIC), followed by a checkerboard and time-kill kinetics experiments. The data unveiled a clear synergistic effect of enterocins DD28 and DD93 in combination with erythromycin or kanamycin against the clinical MRSA-S1 strain. Besides, these combinations impeded as well the MRSA-S1 clinical strain to setup biofilms on stainless steel and glace devices. PMID:27303396

  5. Analysis of the effect of high hydrostatic pressure treatment and enterocin AS-48 addition on the bacterial communities of cherimoya pulp.

    PubMed

    Pérez Pulido, Rubén; Toledo, Julia; Grande, M José; Gálvez, Antonio; Lucas, Rosario

    2015-03-01

    In the present study, pulp obtained from cherimoya pulp (Annona cherimola) was inoculated with epiphytic microbiota collected from cherimoya fruits, and supplemented or not with the circular bacteriocin enterocin AS-48 (50μg/g) and then packed under vacuum. Samples supplemented or not with enterocin were treated by high hydrostatic pressure (600MPa, 8min) and then stored at 5°C for 30days. The single AS-48 treatment only delayed microbial growth non-significantly (p>0.05). HHP treatment reduced microbial counts by five log cycles, but it did not prevent further growth of survivors by day 7. The combined treatment (AS-48+HHP) was the most effective, keeping bacterial cell densities at ≤1.5 log CFU/g for up to 15days. 16S rRNA gene pyrosequencing analysis was done on amplicon libraries from the growth on TSA plates seeded with ten-fold dilutions of pulp suspensions and incubated at 22°C for 24h. The results obtained are limited by the experimental conditions used in the study, and only concern the bacterial fraction that was selected by the TSA and growth conditions used. Pantoea (Pantoea agglomerans, Pantoea vagans) were the operational taxonomic units (OTUs) detected at highest relative abundance in bacterial biomass grown from control samples for the first 7days of storage, followed by Enterococcus gallinarum and Leuconostoc mesenteroides during late storage. The single HHP treatment significantly reduced the relative abundance of OTUs belonging to Pantoea and strongly increased that of endosporeformers (mainly Bacillus firmus and Bacillus stratosphericus) early after treatment, although Pantoea became again the predominant OTUs during storage. Samples singly treated with enterocin AS-48 revealed a strong inhibition of E. gallinarum as well as an early decrease in the relative abundance of Pantoea and an increased relative abundance of OTUs belonging to other Gram-negative species (mainly from genera Serratia and Pseudomonas). The strong microbial

  6. Purification and characterization of enterocin MC13 produced by a potential aquaculture probiont Enterococcus faecium MC13 isolated from the gut of Mugil cephalus.

    PubMed

    Satish Kumar, R; Kanmani, P; Yuvaraj, N; Paari, K A; Pattukumar, V; Arul, V

    2011-12-01

    A bacteriocin producer strain MC13 was isolated from the gut of Mugil cephalus (grey mullet) and identified as Enterococcus faecium. The bacteriocin of E. faecium MC13 was purified to homogeneity, as confirmed by Tricine sodium dodecyl sulphate - polyacrylamide gel electrophoresis (SDS-PAGE). Reverse-phase high-performance liquid chromatography (HPLC) analysis showed a single active fraction eluted at 26 min, and matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry analysis showed the molecular mass to be 2.148 kDa. The clear zone in native PAGE corresponding to enterocin MC13 band further substantiated its molecular mass. A dialyzed sample (semicrude preparation) of enterocin MC13 was broad spectrum in its action and inhibited important seafood-borne pathogens: Listeria monocytogenes , Vibrio parahaemolyticus, and Vibrio vulnificus. This antibacterial substance was sensitive to proteolytic enzymes: trypsin, protease, and chymotrypsin but insensitive to catalase and lipase, confirming that inhibition was due to the proteinaceous molecule, i.e., bacteriocin, and not due to hydrogen peroxide. Enterocin MC13 tolerated heat treatment (up to 90 °C for 20 min). Enterococcus faecium MC13 was effective in bile salt tolerance, acid tolerance, and adhesion to the HT-29 cell line. These properties reveal the potential of E. faecium MC13 to be a probiotic bacterium. Enterococcus faecium MC13 could be used as potential fish probiotic against pathogens such as V. parahaemolyticus, Vibrio harveyi, and Aeromonas hydrophila in fisheries. Also, this could be a valuable seafood biopreservative against L. monocytogenes. PMID:22112158

  7. Enterococcus faecium EK13--an enterocin a-producing strain with probiotic character and its effect in piglets.

    PubMed

    Strompfová, Viola; Marcináková, Miroslava; Simonová, Monika; Gancarcíková, Sona; Jonecová, Zuzana; Sciranková, Luboslava; Koscová, Jana; Buleca, Viktor; Cobanová, Klaudia; Lauková, Andrea

    2006-01-01

    The experiment was conducted to determine the effects of the inoculation of the probiotic and enterocin A-producing strain Enterococcus faecium EK13 on selected parameters of metabolic profile, gut microflora, growth, and health in newborn piglets of Slovak White Improved. Piglets for study were divided into two groups: one group (EK13 group, n=8) received strain EK13 per os once daily for 7 days (2ml per piglet, 10(9)CFU/mL of saline buffer). The control group of piglets (n=7) was given placebo-saline buffer. The experiment lasted 14 days. After 7 days, strain EK13 reached 9.8 log(10) CFU/g in faeces of E. faecium EK13 treated piglets while counts of Escherichia coli were significantly lower (P<0.01) than in piglets of the control group. The concentrations of total serum protein, calcium, haemoglobin, haematocrit, red blood cell count and index of phagocytic activity of leukocytes were significantly higher after application of strain EK13. On the other hand, cholesterol was significantly lower in the EK13 group of animals. On day 14, piglets were killed and samples of intestinal contents were taken. Total counts of bacteria in the intestinal contents (jejunum, ileum, caecum, colon) were not significantly influenced. The pH value was significantly lower (P<0.05) only in duodenum of piglets receiving E. faecium EK13. There was a significant higher concentration of lactic acid (P<0.01) and propionic acid in the colon (P<0.001) of the EK13 group. Application of E. faecium EK13 did not influence the daily body weight gain significantly. PMID:17071114

  8. Functional Analysis of Genes Involved in the Biosynthesis of Enterocin NKR-5-3B, a Novel Circular Bacteriocin

    PubMed Central

    Perez, Rodney H.; Ishibashi, Naoki; Inoue, Tomoko; Himeno, Kohei; Masuda, Yoshimitsu; Sawa, Narukiko; Wilaipun, Pongtep; Leelawatcharamas, Vichien; Nakayama, Jiro; Sonomoto, Kenji

    2015-01-01

    ABSTRACT A putative biosynthetic gene cluster of the enterocin NKR-5-3B (Ent53B), a novel circular bacteriocin, was analyzed by sequencing the flanking regions around enkB, the Ent53B structural gene, using a fosmid library. A region approximately 9 kb in length was obtained, and the enkB1, enkB2, enkB3, and enkB4 genes, encoding putative biosynthetic proteins involved in the production, maturation, and secretion of Ent53B, were identified. We also determined the identity of proteins mediating self-immunity against the effects of Ent53B. Heterologous expression systems in various heterologous hosts, such as Enterococcus faecalis and Lactococcus lactis strains, were successfully established. The production and secretion of the mature Ent53B required the cooperative functions of five genes. Ent53B was produced only by those heterologous hosts that expressed protein products of the enkB, enkB1, enkB2, enkB3, and enkB4 genes. Moreover, self-immunity against the antimicrobial action of Ent53B was conferred by at least two independent mechanisms. Heterologous hosts harboring the intact enkB4 gene and/or a combination of intact enkB1 and enkB3 genes were immune to the inhibitory action of Ent53B. IMPORTANCE In addition to their potential application as food preservatives, circular bacteriocins are now considered possible alternatives to therapeutic antibiotics due to the exceptional stability conferred by their circular structure. The successful practical application of circular bacteriocins will become possible only if the molecular details of their biosynthesis are fully understood. The results of the present study offer a new perspective on the possible mechanism of circular bacteriocin biosynthesis. In addition, since some enterococcal strains are associated with pathogenicity, virulence, and drug resistance, the establishment of the first multigenus host heterologous production of Ent53B has very high practical significance, as it widens the scope of possible Ent53B

  9. Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide curvacin A.

    PubMed

    Haugen, Helen Sophie; Fimland, Gunnar; Nissen-Meyer, Jon; Kristiansen, Per Eugen

    2005-12-13

    The 3D structure of the membrane-permeabilizing 41-mer pediocin-like antimicrobial peptide curvacin A produced by lactic acid bacteria has been studied by NMR spectroscopy. In DPC micelles, the cationic and hydrophilic N-terminal half of the peptide forms an S-shaped beta-sheet-like domain stabilized by a disulfide bridge and a few hydrogen bonds. This domain is followed by two alpha-helices: a hydrophilic 6-mer helix between residues 19 and 24 and an amphiphilic/hydrophobic 11-mer helix between residues 29 and 39. There are two hinges in the peptide, one at residues 16-18 between the N-terminal S-shaped beta-sheet-like structure and the central 6-mer helix and one at residues 26-28 between the central helix and the 11-mer C-terminal helix. The latter helix is the only amphiphilic/hydrophobic part of the peptide and is thus presumably the part that penetrates into the hydrophobic phase of target-cell membranes. The hinge between the two helices may introduce the flexibility that allows the helix to dip into membranes. The helix-hinge-helix structure in the C-terminal half of curvacin A clearly distinguishes this peptide from the other pediocin-like peptides whose structures have been analyzed and suggests that curvacin A along with the structural homologues enterocin P and carnobacteriocin BM1 belong to a subgroup of the pediocin-like family of antimicrobial peptides. PMID:16331975

  10. A simple method for semi-preparative-scale production and recovery of enterocin AS-48 derived from Enterococcus faecalis subsp. liquefaciens A-48-32.

    PubMed

    Abriouel, Hikmate; Valdivia, Eva; Martínez-Bueno, Manuel; Maqueda, Mercedes; Gálvez, Antonio

    2003-12-01

    Production of enterocin AS-48 by Enterococcus faecalis A-48-32 was compared between standard and high-cell density batch fermentations. In high-cell density cultures, bacteriocin production was 2.47-fold higher, provided that the pH was controlled during the fermentation. A two-step procedure for recovery of milligram quantities of purified bacteriocin was developed, based on adsorption of the bacteriocin on Carboxymethyl Sephadex CM-25 followed by reversed-phase chromatography on a semi-preparative column. The purified bacteriocin was active on all the Gram-positive bacteria tested (for example, species of Bacillus, Paenibacillus, Staphylococcus, and Listeria). Strains E. coli U-9, E. coli CECT 102, E. coli CECT 104, E. coli CECT 432, E. coli CECT 543, E. coli CECT 877 and Shigella sonnei CECT 542 were sensitive, while seven other E. coli strains as well as Salmonella choleraesuis CECT 722, S. choleraesuis CECT 916, Enterobacter cloacae CECT 194 and Aeromonas hydrophila CECT 398 were resistant. PMID:14607403

  11. Enhanced bactericidal activity of enterocin AS-48 in combination with essential oils, natural bioactive compounds and chemical preservatives against Listeria monocytogenes in ready-to-eat salad.

    PubMed

    Antonio, Cobo Molinos; Abriouel, Hikmate; López, Rosario Lucas; Omar, Nabil Ben; Valdivia, Eva; Gálvez, Antonio

    2009-09-01

    Enterocin AS-48 (30-60 microg/g) significantly reduced viable counts of Listeria monocytogenes in Russian-type salad during one week storage at 10 degrees C. Antilisterial activity of AS-48 (30 microg/g) in salad was strongly enhanced by essential oils (thyme verbena, thyme red, Spanish oregano, ajowan, tea tree, clove, and sage oils tested at 1%, as well as with 2% rosemary oil). Antilisterial activity also increased in combination with bioactive components from essential oils and plant extracts, with other related antimicrobials of natural origin or derived from chemical synthesis (carvacrol, eugenol, thymol, terpineol, tyrosol, hydroxytyrosol, caffeic, ferulic and vanillic acid, luteolin, geranyl butyrate, geranyl phenylacetate, pyrocatechol, hydrocinnamic acid, tert butylhydroquinone, phenylphosphate, isopropyl methyl phenol, coumaric acid, and 2-nitropropanol), and with food preservatives (citric and lactic acid, sucrose palmitate, sucrose stearate, p-hydroxybenzoic methylester acid -- PHBME, and Nisaplin). AS-48 acted synergistically with citric, lactic acid, and PHBME. A mixed population of two L. monocytogenes strains was markedly reduced for one week in salads treated with AS-48 (30 microg/g) in combination with lactic acid, PHBME or Nisaplin. The increased bactericidal activity of these combinations is interesting to improve protection against L. monocytogenes during salad storage. PMID:19520136

  12. Antimicrobial peptides

    PubMed Central

    2014-01-01

    With increasing antibiotics resistance, there is an urgent need for novel infection therapeutics. Since antimicrobial peptides provide opportunities for this, identification and optimization of such peptides have attracted much interest during recent years. Here, a brief overview of antimicrobial peptides is provided, with focus placed on how selected hydrophobic modifications of antimicrobial peptides can be employed to combat also more demanding pathogens, including multi-resistant strains, without conferring unacceptable toxicity. PMID:24758244

  13. Peptide identification

    DOEpatents

    Jarman, Kristin H [Richland, WA; Cannon, William R [Richland, WA; Jarman, Kenneth D [Richland, WA; Heredia-Langner, Alejandro [Richland, WA

    2011-07-12

    Peptides are identified from a list of candidates using collision-induced dissociation tandem mass spectrometry data. A probabilistic model for the occurrence of spectral peaks corresponding to frequently observed partial peptide fragment ions is applied. As part of the identification procedure, a probability score is produced that indicates the likelihood of any given candidate being the correct match. The statistical significance of the score is known without necessarily having reference to the actual identity of the peptide. In one form of the invention, a genetic algorithm is applied to candidate peptides using an objective function that takes into account the number of shifted peaks appearing in the candidate spectrum relative to the test spectrum.

  14. Antimicrobial peptides.

    PubMed

    Zhang, Ling-Juan; Gallo, Richard L

    2016-01-11

    Antimicrobial peptides and proteins (AMPs) are a diverse class of naturally occurring molecules that are produced as a first line of defense by all multicellular organisms. These proteins can have broad activity to directly kill bacteria, yeasts, fungi, viruses and even cancer cells. Insects and plants primarily deploy AMPs as an antibiotic to protect against potential pathogenic microbes, but microbes also produce AMPs to defend their environmental niche. In higher eukaryotic organisms, AMPs can also be referred to as 'host defense peptides', emphasizing their additional immunomodulatory activities. These activities are diverse, specific to the type of AMP, and include a variety of cytokine and growth factor-like effects that are relevant to normal immune homeostasis. In some instances, the inappropriate expression of AMPs can also induce autoimmune diseases, thus further highlighting the importance of understanding these molecules and their complex activities. This Primer will provide an update of our current understanding of AMPs. PMID:26766224

  15. Peptide arrays for screening cancer specific peptides.

    PubMed

    Ahmed, Sahar; Mathews, Anu Stella; Byeon, Nara; Lavasanifar, Afsaneh; Kaur, Kamaljit

    2010-09-15

    In this paper, we describe a novel method to screen peptides for specific recognition by cancer cells. Seventy peptides were synthesized on a cellulose membrane in an array format, and a direct method to study the peptide-whole cell interaction was developed. The relative binding affinity of the cells for different peptides with respect to a lead 12-mer p160 peptide, identified by phage display, was evaluated using the CyQUANT fluorescence of the bound cells. Screening allowed identification of at least five new peptides that displayed higher affinity (up to 3-fold) for MDA-MB-435 and MCF-7 human cancer cells compared to the p160 peptide. These peptides showed very little binding to the control (noncancerous) human umbilical vein endothelial cells (HUVECs). Three of these peptides were synthesized separately and labeled with fluorescein isothiocyanate (FITC) to study their uptake and interaction with the cancer and control cells using confocal laser scanning microscopy and flow cytometry. The results confirmed the high and specific affinity of an 11-mer peptide 11 (RGDPAYQGRFL) and a 10-mer peptide 18 (WXEAAYQRFL) for the cancer cells versus HUVECs. Peptide 11 binds different receptors on target cancer cells as its sequence contains multiple recognition motifs, whereas peptide 18 binds mainly to the putative p160 receptor. The peptide array-whole cell binding assay reported here is a complementary method to phage display for further screening and optimization of cancer targeting peptides for cancer therapy and diagnosis. PMID:20799711

  16. C-Peptide Test

    MedlinePlus

    ... C-peptide is a useful marker of insulin production. The following are some purposes of C-peptide ... it nearly impossible to directly evaluate endogenous insulin production. In these cases, C-peptide measurement is a ...

  17. Brain natriutetic peptide test

    MedlinePlus

    ... medlineplus.gov/ency/article/007509.htm Brain natriuretic peptide test To use the sharing features on this page, please enable JavaScript. Brain natriuretic peptide (BNP) test is a blood test that measures ...

  18. Vasoactive intestinal peptide test

    MedlinePlus

    ... medlineplus.gov/ency/article/003508.htm Vasoactive intestinal peptide test To use the sharing features on this page, please enable JavaScript. Vasoactive intestinal peptide (VIP) is a test that measures the amount ...

  19. [SYNTHETIC PEPTIDE VACCINES].

    PubMed

    Sergeyev, O V; Barinsky, I F

    2016-01-01

    An update on the development and trials of synthetic peptide vaccines is reviewed. The review considers the successful examples of specific protection as a result of immunization with synthetic peptides using various protocols. The importance of conformation for the immunogenicity of the peptide is pointed out. An alternative strategy of the protection of the organism against the infection using synthetic peptides is suggested. PMID:27145593

  20. Antimicrobial Peptides in 2014

    PubMed Central

    Wang, Guangshun; Mishra, Biswajit; Lau, Kyle; Lushnikova, Tamara; Golla, Radha; Wang, Xiuqing

    2015-01-01

    This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms. PMID:25806720

  1. PH dependent adhesive peptides

    DOEpatents

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  2. Antimicrobial peptides in 2014.

    PubMed

    Wang, Guangshun; Mishra, Biswajit; Lau, Kyle; Lushnikova, Tamara; Golla, Radha; Wang, Xiuqing

    2015-01-01

    This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms. PMID:25806720

  3. [Plant signaling peptides. Cysteine-rich peptides].

    PubMed

    Ostrowski, Maciej; Kowalczyk, Stanisław

    2015-01-01

    Recent bioinformatic and genetic analyses of several model plant genomes have revealed the existence of a highly abundant group of signaling peptides that are defined as cysteine-rich peptides (CRPs). CRPs are usually in size between 50 and 90 amino acid residues, they are positively charged, and they contain 4-16 cysteine residues that are important for the correct conformational folding. Despite the structural differences among CRP classes, members from each class have striking similarities in their molecular properties and function. The present review presents the recent progress in research on signaling peptides from several families including: EPF/EPFL, SP11/SCR, PrsS, RALF, LURE, and some other peptides belonging to CRP group. There is convincing evidence indicating multiple roles for these CRPs as signaling molecules during the plant life cycle, ranging from stomata development and patterning, self-incompatibility, pollen tube growth and guidance, reproductive processes, and nodule formation. PMID:26281357

  4. Cell Penetrating Peptides and Cationic Antibacterial Peptides

    PubMed Central

    Rodriguez Plaza, Jonathan G.; Morales-Nava, Rosmarbel; Diener, Christian; Schreiber, Gabriele; Gonzalez, Zyanya D.; Lara Ortiz, Maria Teresa; Ortega Blake, Ivan; Pantoja, Omar; Volkmer, Rudolf; Klipp, Edda; Herrmann, Andreas; Del Rio, Gabriel

    2014-01-01

    Cell penetrating peptides (CPP) and cationic antibacterial peptides (CAP) have similar physicochemical properties and yet it is not understood how such similar peptides display different activities. To address this question, we used Iztli peptide 1 (IP-1) because it has both CPP and CAP activities. Combining experimental and computational modeling of the internalization of IP-1, we show it is not internalized by receptor-mediated endocytosis, yet it permeates into many different cell types, including fungi and human cells. We also show that IP-1 makes pores in the presence of high electrical potential at the membrane, such as those found in bacteria and mitochondria. These results provide the basis to understand the functional redundancy of CPPs and CAPs. PMID:24706763

  5. Plant peptide hormone signalling.

    PubMed

    Motomitsu, Ayane; Sawa, Shinichiro; Ishida, Takashi

    2015-01-01

    The ligand-receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone-receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions. PMID:26374891

  6. Antihypertensive peptides from curd

    PubMed Central

    Dabarera, Melani Chathurika; Athiththan, Lohini V.; Perera, Rasika P.

    2015-01-01

    Introduction: Curd (Dadhi) peptides reduce hypertension by inhibiting angiotensin converting enzyme (ACE) and serum cholesterol. Peptides vary with bacterial species and milk type used during fermentation. Aim: To isolate and assay the antihypertensive peptides, before and after digestion, in two commercially available curd brands in Sri Lanka. Materials and Methods: Whey (Dadhi Mastu) separated by high-speed centrifugation was isolated using reverse-phase-high- performance liquid chromatography (HPLC). Eluted fractions were analyzed for ACE inhibitory activity using modified Cushman and Cheung method. Curd samples were subjected to enzymatic digestion with pepsin, trypsin, and carboxypeptidase-A at their optimum pH and temperature. Peptides isolated using reverse-phase-HPLC was assayed for ACE inhibitory activity. Results: Whey peptides of both brands gave similar patterns (seven major and five minor peaks) in HPLC elution profile. Smaller peptides concentration was higher in brand 1 and penta-octapeptides in brand 2. Pentapeptide had the highest ACE inhibitory activity (brand 2–90% and brand 1–73%). After digestion, di and tri peptides with similar inhibitory patterns were obtained in both which were higher than before digestion. Thirteen fractions were obtained, where nine fractions showed more than 70% inhibition in both brands with 96% ACE inhibition for a di-peptide. Conclusion: Curd has ACE inhibitory peptides and activity increases after digestion. PMID:27011726

  7. Antimicrobial Peptides in Reptiles

    PubMed Central

    van Hoek, Monique L.

    2014-01-01

    Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development. PMID:24918867

  8. Polycyclic peptide therapeutics.

    PubMed

    Baeriswyl, Vanessa; Heinis, Christian

    2013-03-01

    Owing to their excellent binding properties, high stability, and low off-target toxicity, polycyclic peptides are an attractive molecule format for the development of therapeutics. Currently, only a handful of polycyclic peptides are used in the clinic; examples include the antibiotic vancomycin, the anticancer drugs actinomycin D and romidepsin, and the analgesic agent ziconotide. All clinically used polycyclic peptide drugs are derived from natural sources, such as soil bacteria in the case of vancomycin, actinomycin D and romidepsin, or the venom of a fish-hunting coil snail in the case of ziconotide. Unfortunately, nature provides peptide macrocyclic ligands for only a small fraction of therapeutic targets. For the generation of ligands of targets of choice, researchers have inserted artificial binding sites into natural polycyclic peptide scaffolds, such as cystine knot proteins, using rational design or directed evolution approaches. More recently, large combinatorial libraries of genetically encoded bicyclic peptides have been generated de novo and screened by phage display. In this Minireview, the properties of existing polycyclic peptide drugs are discussed and related to their interesting molecular architectures. Furthermore, technologies that allow the development of unnatural polycyclic peptide ligands are discussed. Recent application of these technologies has generated promising results, suggesting that polycyclic peptide therapeutics could potentially be developed for a broad range of diseases. PMID:23355488

  9. Peptide folding simulations.

    PubMed

    Gnanakaran, S; Nymeyer, Hugh; Portman, John; Sanbonmatsu, Kevin Y; García, Angel E

    2003-04-01

    Developments in the design of small peptides that mimic proteins in complexity, recent advances in nanosecond time-resolved spectroscopy methods to study peptides and the development of modern, highly parallel simulation algorithms have come together to give us a detailed picture of peptide folding dynamics. Two newly implemented simulation techniques, parallel replica dynamics and replica exchange molecular dynamics, can now describe directly from simulations the kinetics and thermodynamics of peptide formation, respectively. Given these developments, the simulation community now has the tools to verify and validate simulation protocols and models (forcefields). PMID:12727509

  10. Insulin C-peptide test

    MedlinePlus

    C-peptide ... the test depends on the reason for the C-peptide measurement. Ask your health care provider if ... C-peptide is measured to tell the difference between insulin produced by the body and insulin injected ...

  11. Bacteriocin Inducer Peptides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel peptides produced by bacteriocin-producing bacteria stimulate the production of bacteriocins in vitro. The producer bacteria are cultured in the presence of a novel inducer bacteria and a peptide having a carboxy terminal sequence of VKGLT in order to achieve an increase in bacteriocin produc...

  12. Antimicrobial Peptides from Fish

    PubMed Central

    Masso-Silva, Jorge A.; Diamond, Gill

    2014-01-01

    Antimicrobial peptides (AMPs) are found widely distributed through Nature, and participate in the innate host defense of each species. Fish are a great source of these peptides, as they express all of the major classes of AMPs, including defensins, cathelicidins, hepcidins, histone-derived peptides, and a fish-specific class of the cecropin family, called piscidins. As with other species, the fish peptides exhibit broad-spectrum antimicrobial activity, killing both fish and human pathogens. They are also immunomodulatory, and their genes are highly responsive to microbes and innate immuno-stimulatory molecules. Recent research has demonstrated that some of the unique properties of fish peptides, including their ability to act even in very high salt concentrations, make them good potential targets for development as therapeutic antimicrobials. Further, the stimulation of their gene expression by exogenous factors could be useful in preventing pathogenic microbes in aquaculture. PMID:24594555

  13. Tumor-Penetrating Peptides

    PubMed Central

    Teesalu, Tambet; Sugahara, Kazuki N.; Ruoslahti, Erkki

    2013-01-01

    Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC), contains the integrin-binding RGD motif. RGD mediates tumor-homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR) motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular “zip code” of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies, and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is present in the

  14. Synthetic antimicrobial peptide design.

    PubMed

    Powell, W A; Catranis, C M; Maynard, C A

    1995-01-01

    To guide the design of potential plant pathogen-resistance genes, synthetic variants of naturally occurring antimicrobial gene products were evaluated. Five 20-amino acid (ESF1, ESF4, ESF5, ESF6, ESF13), one 18-amino acid (ESF12), and one 17-amino acid (ESF17) amphipathic peptide sequences were designed, synthesized, and tested with in vitro bioassays. Positive charges on the hydrophilic side of the peptide were shown to be essential for antifungal activity, yet the number of positive charges could be varied with little or no change in activity. The size could be reduced to 18 amino acids, but at 17 amino acids a significant reduction in activity was observed. ESF1, 5, 6, and 12 peptides were inhibitory to the germination of conidia from Cryphonectria parasitica, Fusarium oxysporum f. sp. lycopersici, and Septoria musiva but did not inhibit the germination of pollen from Castanea mollissima and Salix lucida. ESF12 also had no effect on the germination of Malus sylvestris and Lycopersicon esculentum pollen, but inhibited the growth of the bacteria Agrobacterium tumefaciens, Erwinia amylovora, and Pseudomonas syringae. The minimal inhibitory concentrations of the active ESF peptides were similar to those of the naturally occurring control peptides, magainin II and cecropin B. The significant differential in sensitivity between the microbes and plant cells indicated that the active ESF peptides are potentially useful models for designing plant pathogen-resistance genes. PMID:7579625

  15. Antimitotic peptides and depsipeptides.

    PubMed

    Hamel, Ernest; Covell, David G

    2002-01-01

    Tubulin is the target for an ever increasing number of unusual peptides and depsipeptides that were originally isolated from a wide variety of organisms. Since tubulin is the major component of cellular microtubules, which maintain cell shape in interphase and form the mitotic spindle, most of these compounds are highly toxic to mammalian cells. These peptides and depsipeptides disrupt cellular microtubules and prevent formation of a functional spindle, resulting in the accumulation of cultured cells in the G2/M phase of the cell cycle through specific inhibition of mitosis. At the biochemical level, the compounds all inhibit the assembly of tubulin into polymer and, in the cases where it has been studied, strongly suppress microtubule dynamics at low concentrations. In most cases the peptides and depsipeptides inhibit the binding of vinblastine and vincristine to tubulin in a noncompetitive manner, inhibit tubulin-dependent GTP hydrolysis, and interfere with nucleotide turnover at the exchangeable GTP site on beta-tubulin. Most of the peptides and depsipeptides induce tubulin to form oligomers of aberrant morphology, including tubulin rings that vary in diameter depending on the (depsi) peptide under study. The purpose of this review is to give an overview of the cellular, biochemical, in vivo, and SAR aspects of this group of compounds. We also summarize initial efforts by computer modeling to decipher a pharmacophore among the diverse structures of these peptides and depsipeptides. PMID:12678750

  16. Antimicrobial Peptides from Plants.

    PubMed

    Tam, James P; Wang, Shujing; Wong, Ka H; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  17. Electromembrane extraction of peptides.

    PubMed

    Balchen, Marte; Reubsaet, Léon; Pedersen-Bjergaard, Stig

    2008-06-20

    Rapid extraction of eight different peptides using electromembrane extraction (EME) was demonstrated for the first time. During an extraction time of 5 min, the model peptides migrated from a 500 microL aqueous acidic sample solution, through a thin supported liquid membrane (SLM) of an organic liquid sustained in the pores in the wall of a porous hollow fiber, and into a 25 microL aqueous acidic acceptor solution present inside the lumen of the hollow fiber. The driving force of the extraction was a 50 V potential sustained across the SLM, with the positive electrode in the sample and the negative electrode in the acceptor solution. The nature and the composition of the SLM were highly important for the EME process, and a mixture of 1-octanol and 15% di(2-ethylhexyl) phosphate was found to work properly. Using 1mM HCl as background electrolyte in the sample and 100 mM HCl in the acceptor solution, and agitation at 1050 rpm, enrichment up to 11 times was achieved. Recoveries were found to be dependent on the structure of the peptide, indicating that the polarity and the number of ionized groups were important parameters affecting the extraction efficiency. The experimental findings suggested that electromembrane extraction of peptides is possible and may be a valuable tool for future extraction of peptides. PMID:18479691

  18. Antimicrobial Peptides from Plants

    PubMed Central

    Tam, James P.; Wang, Shujing; Wong, Ka H.; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  19. Signal peptide of cellulase.

    PubMed

    Yan, Shaomin; Wu, Guang

    2014-06-01

    Cellulase is an enzyme playing a crucial role in biotechnology industries ranging from textile to biofuel because of tremendous amount of cellulose produced in plant. In order to improve cellulase productivity, huge resource has been spent in search for good cellulases from microorganism in remote areas and in creation of ideal cellulase by engineering. However, not much attention is given to the secretion of cellulases from cell into extracellular space, where a cellulase plays its enzymatic role. In this minireview, the signal peptides, which lead secreted proteins to specific secretion systems and scatter in literature, are reviewed. The patterns of signal peptides are checked against 4,101 cellulases documented in UniProtKB, the largest protein database in the world, to determine how these cellulases are secreted. Simultaneous review on both literature and cellulases from the database not only provides updated knowledge on signal peptides but also indicates the gap in our research. PMID:24743986

  20. Synthetic antibiofilm peptides.

    PubMed

    de la Fuente-Núñez, César; Cardoso, Marlon Henrique; de Souza Cândido, Elizabete; Franco, Octavio Luiz; Hancock, Robert E W

    2016-05-01

    Bacteria predominantly exist as multicellular aggregates known as biofilms that are associated with at least two thirds of all infections and exhibit increased adaptive resistance to conventional antibiotic therapies. Therefore, biofilms are major contributors to the global health problem of antibiotic resistance, and novel approaches to counter them are urgently needed. Small molecules of the innate immune system called host defense peptides (HDPs) have emerged as promising templates for the design of potent, broad-spectrum antibiofilm agents. Here, we review recent developments in the new field of synthetic antibiofilm peptides, including mechanistic insights, synergistic interactions with available antibiotics, and their potential as novel antimicrobials against persistent infections caused by biofilms. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26724202

  1. Biomimetic peptide nanosensors.

    PubMed

    Cui, Yue; Kim, Sang N; Naik, Rajesh R; McAlpine, Michael C

    2012-05-15

    The development of a miniaturized sensing platform tailored for sensitive and selective detection of a variety of biochemical analytes could offer transformative fundamental and technological opportunities. Due to their high surface-to-volume ratios, nanoscale materials are extremely sensitive sensors. Likewise, peptides represent robust substrates for selective recognition due to the potential for broad chemical diversity within their relatively compact size. Here we explore the possibilities of linking peptides to nanosensors for the selective detection of biochemical targets. Such systems raise a number of interesting fundamental challenges: What are the peptide sequences, and how can rational design be used to derive selective binders? What nanomaterials should be used, and what are some strategies for assembling hybrid nanosensors? What role does molecular modeling play in elucidating response mechanisms? What is the resulting performance of these sensors, in terms of sensitivity, selectivity, and response time? What are some potential applications? This Account will highlight our early attempts to address these research challenges. Specifically, we use natural peptide sequences or sequences identified from phage display as capture elements. The sensors are based on a variety of nanomaterials including nanowires, graphene, and carbon nanotubes. We couple peptides to the nanomaterial surfaces via traditional surface functionalization methods or self-assembly. Molecular modeling provides detailed insights into the hybrid nanostructure, as well as the sensor detection mechanisms. The peptide nanosensors can distinguish chemically camouflaged mixtures of vapors and detect chemical warfare agents with sensitivities as low as parts-per-billion levels. Finally, we anticipate future uses of this technology in biomedicine: for example, devices based on these sensors could detect disease from the molecular components in human breath. Overall, these results provide a

  2. Multidimensional signatures in antimicrobial peptides

    PubMed Central

    Yount, Nannette Y.; Yeaman, Michael R.

    2004-01-01

    Conventional analyses distinguish between antimicrobial peptides by differences in amino acid sequence. Yet structural paradigms common to broader classes of these molecules have not been established. The current analyses examined the potential conservation of structural themes in antimicrobial peptides from evolutionarily diverse organisms. Using proteomics, an antimicrobial peptide signature was discovered to integrate stereospecific sequence patterns and a hallmark three-dimensional motif. This striking multidimensional signature is conserved among disulfide-containing antimicrobial peptides spanning biological kingdoms, and it transcends motifs previously limited to defined peptide subclasses. Experimental data validating this model enabled the identification of previously unrecognized antimicrobial activity in peptides of known identity. The multidimensional signature model provides a unifying structural theme in broad classes of antimicrobial peptides, will facilitate discovery of antimicrobial peptides as yet unknown, and offers insights into the evolution of molecular determinants in these and related host defense effector molecules. PMID:15118082

  3. Brain Peptides and Psychopharmacology

    ERIC Educational Resources Information Center

    Arehart-Treichel, Joan

    1976-01-01

    Proteins isolated from the brain and used as drugs can improve and apparently even transfer mental states and behavior. Much of the pioneering work and recent research with humans and animals is reviewed and crucial questions that are being posed about the psychologically active peptides are related. (BT)

  4. Antagonistic peptide technology for functional dissection of CLE peptides revisited

    PubMed Central

    Czyzewicz, Nathan; Wildhagen, Mari; Cattaneo, Pietro; Stahl, Yvonne; Pinto, Karine Gustavo; Aalen, Reidunn B.; Butenko, Melinka A.; Simon, Rüdiger; Hardtke, Christian S.; De Smet, Ive

    2015-01-01

    In the Arabidopsis thaliana genome, over 1000 putative genes encoding small, presumably secreted, signalling peptides can be recognized. However, a major obstacle in identifying the function of genes encoding small signalling peptides is the limited number of available loss-of-function mutants. To overcome this, a promising new tool, antagonistic peptide technology, was recently developed. Here, this antagonistic peptide technology was tested on selected CLE peptides and the related IDA peptide and its usefulness in the context of studies of peptide function discussed. Based on the analyses, it was concluded that the antagonistic peptide approach is not the ultimate means to overcome redundancy or lack of loss-of-function lines. However, information collected using antagonistic peptide approaches (in the broad sense) can be very useful, but these approaches do not work in all cases and require a deep insight on the interaction between the ligand and its receptor to be successful. This, as well as peptide ligand structure considerations, should be taken into account before ordering a wide range of synthetic peptide variants and/or generating transgenic plants. PMID:26136270

  5. Antagonistic peptide technology for functional dissection of CLE peptides revisited.

    PubMed

    Czyzewicz, Nathan; Wildhagen, Mari; Cattaneo, Pietro; Stahl, Yvonne; Pinto, Karine Gustavo; Aalen, Reidunn B; Butenko, Melinka A; Simon, Rüdiger; Hardtke, Christian S; De Smet, Ive

    2015-08-01

    In the Arabidopsis thaliana genome, over 1000 putative genes encoding small, presumably secreted, signalling peptides can be recognized. However, a major obstacle in identifying the function of genes encoding small signalling peptides is the limited number of available loss-of-function mutants. To overcome this, a promising new tool, antagonistic peptide technology, was recently developed. Here, this antagonistic peptide technology was tested on selected CLE peptides and the related IDA peptide and its usefulness in the context of studies of peptide function discussed. Based on the analyses, it was concluded that the antagonistic peptide approach is not the ultimate means to overcome redundancy or lack of loss-of-function lines. However, information collected using antagonistic peptide approaches (in the broad sense) can be very useful, but these approaches do not work in all cases and require a deep insight on the interaction between the ligand and its receptor to be successful. This, as well as peptide ligand structure considerations, should be taken into account before ordering a wide range of synthetic peptide variants and/or generating transgenic plants. PMID:26136270

  6. Biochemical functionalization of peptide nanotubes with phage displayed peptides.

    PubMed

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering. PMID:27479451

  7. Biochemical functionalization of peptide nanotubes with phage displayed peptides

    NASA Astrophysics Data System (ADS)

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering.

  8. Antimicrobial peptides: premises and promises.

    PubMed

    Reddy, K V R; Yedery, R D; Aranha, C

    2004-12-01

    Antimicrobial peptides (AMPs) are an important component of the natural defences of most living organisms against invading pathogens. These are relatively small (< 10kDa), cationic and amphipathic peptides of variable length, sequence and structure. During the past two decades several AMPs have been isolated from a wide variety of animals, both vertebrates and invertebrates, and plants as well as from bacteria and fungi. Most of these peptides are obtained from different sources like macrophages, neutrophils, epithelial cells, haemocytes, fat body, reproductive tract, etc. These peptides exhibit broad-spectrum activity against a wide range of microorganisms including Gram-positive and Gram-negative bacteria, protozoa, yeast, fungi and viruses. A few peptides have also been found to be cytotoxic to sperm and tumour cells. AMPs are classified based on the three dimensional structural studies carried out with the help of NMR. The peptides are broadly classified into five major groups namely (a) peptides that form alpha-helical structures, (b) peptides rich in cysteine residues, (c) peptides that form beta-sheet, (d) peptides rich in regular amino acids namely histatin, arginine and proline and (e) peptides composed of rare and modified amino acids. Most of these peptides are believed to act by disrupting the plasma membrane leading to the lysis of the cell. AMPs have been found to be excellent candidates for developing novel antimicrobial agents and a few of these peptides show antimicrobial activity against pathogens causing sexually transmitted infection (STI), including HIV/HSV. Peptides, namely magainin and nisin have been shown to demonstrate contraceptive properties in vitro and in vivo. A few peptides have already entered clinical trials for the treatment of impetigo, diabetic foot ulcers and gastric helicobacter infections. In this review, we discuss the source, structures and mode of action with special reference to therapeutic considerations of various AMPs

  9. Phage-displayed peptide libraries

    PubMed Central

    Zwick, Michael B; Shen, Juqun; Scott, Jamie K

    2014-01-01

    Over the past year, significant advances have been achieved through the use of phage-displayed peptide libraries. A wide variety of bioactive molecules, including antibodies, receptors and enzymes, have selected high-affinity and/or highly-specific peptide ligands from a number of different types of peptide library. The demonstrated therapeutic potential of some of these peptides, as well as new insights into protein structure and function that peptide ligands have provided, highlight the progress made within this rapidly-expanding field. PMID:9720267

  10. Antibody Production with Synthetic Peptides.

    PubMed

    Lee, Bao-Shiang; Huang, Jin-Sheng; Jayathilaka, Lasanthi P; Lee, Jenny; Gupta, Shalini

    2016-01-01

    Peptides (usually 10-20 amino acid residues in length) can be used as effectively as proteins in raising antibodies producing both polyclonal and monoclonal antibodies routinely with titers higher than 20,000. Peptide antigens do not function as immunogens unless they are conjugated to proteins. Production of high quality antipeptide antibodies is dependent upon peptide sequence selection, the success of peptide synthesis, peptide-carrier protein conjugation, the humoral immune response in the host animal, the adjuvant used, the peptide dose administered, the injection method, and the purification of the antibody. Peptide sequence selection is probably the most critical step in the production of antipeptide antibodies. Although the process for designing peptide antigens is not exact, several guidelines and computational B-cell epitope prediction methods can help maximize the likelihood of producing antipeptide antibodies that recognize the protein. Antibodies raised by peptides have become essential tools in life science research. Virtually all phospho-specific antibodies are now produced using phosphopeptides as antigens. Typically, 5-20 mg of peptide is enough for antipeptide antibody production. It takes 3 months to produce a polyclonal antipeptide antibody in rabbits that yields ~100 mL of serum which corresponds to ~8-10 mg of the specific antibody after affinity purification using a peptide column. PMID:27515072

  11. Concepts for Biologically Active Peptides

    PubMed Central

    Kastin, Abba J.; Pan, Weihong

    2012-01-01

    Here we review a unique aspect of CNS research on biologically active peptides that started against a background of prevalent dogmas but ended by exerting considerable influence on the field. During the course of refuting some doctrines, we introduced several concepts that were unconventional and paradigm-shifting at the time. We showed that (1) hypothalamic peptides can act ‘up’ on the brain as well as ‘down’ on the pituitary, (2) peripheral peptides can affect the brain, (3) peptides can cross the blood-brain barrier, (4) the actions of peptides can persist longer than their half-lives in blood, (5) perinatal administration of peptides can exert actions persisting into adulthood, (6) a single peptide can have more than one action, (7) dose-response relationships of peptides need not be linear, (8) the brain produces antiopiate as well as opiate peptides, (9) there is a selective high affinity endogenous peptide ligand for the mu-opiate receptor, (10) a peptide’s name does not restrict its effects, and (11) astrocytes assume an active role in response to metabolic disturbance and hyperleptinemia. The evolving questions in our laboratories reflect the diligent effort of the neuropeptide community to identify the roles of peptides in the CNS. The next decade is expected to see greater progress in the following areas: (a) interactions of peptides with other molecules in the CNS; (b) peptide involvement in cell-cell interactions; and (c) peptides in neuropsychiatric, autoimmune, and neurodegenerative diseases. The development of peptidomics and gene silencing approaches will expedite the formation of many new concepts in a new era. PMID:20726835

  12. Natriuretic peptides in fish physiology.

    PubMed

    Loretz, C A; Pollina, C

    2000-02-01

    Natriuretic peptides exist in the fishes as a family of structurally-related isohormones including atrial natriuretic peptide (ANP), C-type natriuretic peptide (CNP) and ventricular natriuretic peptide (VNP); to date, brain natriuretic peptide (or B-type natriuretic peptide, BNP) has not been definitively identified in the fishes. Based on nucleotide and amino acid sequence similarity, the natriuretic peptide family of isohormones may have evolved from a neuromodulatory, CNP-like brain peptide. The primary sites of synthesis for the circulating hormones are the heart and brain; additional extracardiac and extracranial sites, including the intestine, synthesize and release natriuretic peptides locally for paracrine regulation of various physiological functions. Membrane-bound, guanylyl cyclase-coupled natriuretic peptide receptors (A- and B-types) are generally implicated in mediating natriuretic peptide effects via the production of cyclic GMP as the intracellular messenger. C- and D-type natriuretic peptide receptors lacking the guanylyl cyclase domain may influence target cell function through G(i) protein-coupled inhibition of membrane adenylyl cyclase activity, and they likely also act as clearance receptors for circulating hormone. In the few systems examined using homologous or piscine reagents, differential receptor binding and tissue responsiveness to specific natriuretic peptide isohormones is demonstrated. Similar to their acute physiological effects in mammals, natriuretic peptides are vasorelaxant in all fishes examined. In contrast to mammals, where natriuretic peptides act through natriuresis and diuresis to bring about long-term reductions in blood volume and blood pressure, in fishes the primary action appears to be the extrusion of excess salt at the gills and rectal gland, and the limiting of drinking-coupled salt uptake by the alimentary system. In teleosts, both hypernatremia and hypervolemia are effective stimuli for cardiac secretion of

  13. Identification of an N-terminal formylated, two-peptide bacteriocin from Enterococcus faecalis 710C.

    PubMed

    Liu, Xiaoji; Vederas, John C; Whittal, Randy M; Zheng, Jing; Stiles, Michael E; Carlson, Denise; Franz, Charles M A P; McMullen, Lynn M; van Belkum, Marco J

    2011-05-25

    Enterococcus faecalis 710C, isolated from beef product, has a broad antimicrobial activity spectrum against foodborne pathogens. Two bacteriocins, enterocin 7A (Ent7A) and enterocin 7B (Ent7B), were purified from the culture supernatant of E. faecalis 710C and characterized using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and electrospray infusion tandem mass spectrometry analyses. These data and subsequent genetic analysis showed that Ent7A and Ent7B are produced without N-terminal leader sequences and have amino acid sequences that are identical to those of enterocins MR10A and MR10B, respectively. However, the observed masses for Ent7A and Ent7B are 5200.80 and 5206.65 Da (monoisotopic mass), respectively, which are higher than the theoretical molecular masses of MR10A and MR10B, respectively. This study provides evidence that both Ent7A and Ent7B are formylated on the N-terminal methionine residue. Purified Ent7A and Ent7B are active against spoilage microorganisms and foodborne pathogens, including Clostridium sporogenes , Listeria monocytogenes , and Staphylococcus aureus as well as Brevundimonas diminuta , which has been associated with infections among immune-suppressed cancer patients. PMID:21469734

  14. [Brain natriuretic peptide].

    PubMed

    La Villa, G; Lazzeri, C; Fronzaroli, C; Franchi, F; Gentilini, P

    1995-01-01

    Brain natriuretic peptide (BNP) is a cardiac hormone with a spectrum of activities quite similar to those of atrial natriuretic peptide (ANP), including diuretic, natriuretic, hypotensive and smooth muscle relaxant activities. These effects are due to the stimulation of guanylate cyclase-linked natriuretic peptide receptors, leading to an increase in cyclic GMP concentration in target cells. BNP has a lower affinity than ANP for C (clearance) receptors, and is less susceptible to degradation by neutral endopeptidase-24.11, resulting in a longer half-life. In the kidney, BNP increases the glomerular filtration rate and inhibits sodium reabsorption in the distal tubule. It also inhibits the release of renin and aldosterone. Unlike ANP, produced by the atria, BNP is mainly synthesized and released into circulation by the left ventricle and is therefore influenced by stimuli involving this cardiac chamber, such as an increase in arterial pressure, left ventricular hypertrophy and dilation. Plasma BNP levels are very low in healthy subjects, and respond modestly, although significantly to physiological stimuli such as changes in posture or sodium intake. In contrast, plasma BNP concentrations increase in disease states such as cirrhosis with ascites, hypertension, chronic renal failure, acute myocardial infarction and congestive heart failure. In the latter condition, plasma BNP concentration is a reliable prognostic index. Evidence obtained by administering BNP to healthy subjects and hypertensive patients suggests that BNP, at physiological and pathophysiological plasma concentrations, markedly influences cardiovascular homeostasis, mainly due to its effects on sodium excretion and the renin-aldosterone axis. PMID:8718658

  15. Peptide Aptamers: Development and Applications

    PubMed Central

    Reverdatto, Sergey; Burz, David S.; Shekhtman, Alexander

    2015-01-01

    Peptide aptamers are small combinatorial proteins that are selected to bind to specific sites on their target molecules. Peptide aptamers consist of short, 5-20 amino acid residues long sequences, typically embedded as a loop within a stable protein scaffold. Various peptide aptamer scaffolds and in vitro and in vivo selection techniques are reviewed with emphasis on specific biomedical, bioimaging, and bioanalytical applications. PMID:25866267

  16. Macrocyclization of Unprotected Peptide Isocyanates.

    PubMed

    Vinogradov, Alexander A; Choo, Zi-Ning; Totaro, Kyle A; Pentelute, Bradley L

    2016-03-18

    A chemistry for the facile two-component macrocyclization of unprotected peptide isocyanates is described. Starting from peptides containing two glutamic acid γ-hydrazide residues, isocyanates can be readily accessed and cyclized with hydrazides of dicarboxylic acids. The choice of a nucleophilic linker allows for the facile modulation of biochemical properties of a macrocyclic peptide. Four cyclic NYAD-1 analogues were synthesized using the described method and displayed a range of biological activities. PMID:26948900

  17. Improving Peptide Applications Using Nanotechnology.

    PubMed

    Narayanaswamy, Radhika; Wang, Tao; Torchilin, Vladimir P

    2016-01-01

    Peptides are being successfully used in various fields including therapy and drug delivery. With advancement in nanotechnology and targeted delivery carrier systems, suitable modification of peptides has enabled achievement of many desirable goals over-riding some of the major disadvantages associated with the delivery of peptides in vivo. Conjugation or physical encapsulation of peptides to various nanocarriers, such as liposomes, micelles and solid-lipid nanoparticles, has improved their in vivo performance multi-fold. The amenability of peptides to modification in chemistry and functionalization with suitable nanocarriers are very relevant aspects in their use and have led to the use of 'smart' nanoparticles with suitable linker chemistries that favor peptide targeting or release at the desired sites, minimizing off-target effects. This review focuses on how nanotechnology has been used to improve the number of peptide applications. The paper also focuses on the chemistry behind peptide conjugation to nanocarriers, the commonly employed linker chemistries and the several improvements that have already been achieved in the areas of peptide use with the help of nanotechnology. PMID:26279082

  18. Biodiscovery of aluminum binding peptides

    NASA Astrophysics Data System (ADS)

    Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Hurley, Margaret M.; Stratis-Cullum, Dimitra

    2013-05-01

    Cell surface peptide display systems are large and diverse libraries of peptides (7-15 amino acids) which are presented by a display scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the selfsustaining peptide libraries to be rapidly screened for high affinity binders to a given target of interest, and those binders quickly identified. Peptide display systems have traditionally been utilized in conjunction with organic-based targets, such as protein toxins or carbon nanotubes. However, this technology has been expanded for use with inorganic targets, such as metals, for biofabrication, hybrid material assembly and corrosion prevention. While most current peptide display systems employ viruses to host the display scaffold, we have recently shown that a bacterial host, Escherichia coli, displaying peptides in the ubiquitous, membrane protein scaffold eCPX can also provide specific peptide binders to an organic target. We have, for the first time, extended the use of this bacterial peptide display system for the biodiscovery of aluminum binding 15mer peptides. We will present the process of biopanning with macroscopic inorganic targets, binder enrichment, and binder isolation and discovery.

  19. Peptides that influence membrane topology

    NASA Astrophysics Data System (ADS)

    Wong, Gerard C. L.

    2014-03-01

    We examine the mechanism of a range of polypeptides that influence membrane topology, including antimicrobial peptides, cell penetrating peptides, viral fusion peptides, and apoptosis proteins, and show how a combination of geometry, coordination chemistry, and soft matter physics can be used to approach a unified understanding. We will also show how such peptides can impact biomedical problems such as auto-immune diseases (psoriasis, lupus), infectious diseases (viral and bacterial infections), and mitochondrial pathologies (under-regulated apoptosis leads to neurodegenerative diseases whereas over-regulated apoptosis leads to cancer.)

  20. Peptides and food intake.

    PubMed

    Sobrino Crespo, Carmen; Perianes Cachero, Aránzazu; Puebla Jiménez, Lilian; Barrios, Vicente; Arilla Ferreiro, Eduardo

    2014-01-01

    The mechanisms for controlling food intake involve mainly an interplay between gut, brain, and adipose tissue (AT), among the major organs. Parasympathetic, sympathetic, and other systems are required for communication between the brain satiety center, gut, and AT. These neuronal circuits include a variety of peptides and hormones, being ghrelin the only orexigenic molecule known, whereas the plethora of other factors are inhibitors of appetite, suggesting its physiological relevance in the regulation of food intake and energy homeostasis. Nutrients generated by food digestion have been proposed to activate G-protein-coupled receptors on the luminal side of enteroendocrine cells, e.g., the L-cells. This stimulates the release of gut hormones into the circulation such as glucagon-like peptide-1 (GLP-1), oxyntomodulin, pancreatic polypeptides, peptide tyrosine tyrosine, and cholecystokinin, which inhibit appetite. Ghrelin is a peptide secreted from the stomach and, in contrast to other gut hormones, plasma levels decrease after a meal and potently stimulate food intake. Other circulating factors such as insulin and leptin relay information regarding long-term energy stores. Both hormones circulate at proportional levels to body fat content, enter the CNS proportionally to their plasma levels, and reduce food intake. Circulating hormones can influence the activity of the arcuate nucleus (ARC) neurons of the hypothalamus, after passing across the median eminence. Circulating factors such as gut hormones may also influence the nucleus of the tractus solitarius (NTS) through the adjacent circumventricular organ. On the other hand, gastrointestinal vagal afferents converge in the NTS of the brainstem. Neural projections from the NTS, in turn, carry signals to the hypothalamus. The ARC acts as an integrative center, with two major subpopulations of neurons influencing appetite, one of them coexpressing neuropeptide Y and agouti-related protein (AgRP) that increases food

  1. Peptides and Food Intake

    PubMed Central

    Sobrino Crespo, Carmen; Perianes Cachero, Aránzazu; Puebla Jiménez, Lilian; Barrios, Vicente; Arilla Ferreiro, Eduardo

    2014-01-01

    The mechanisms for controlling food intake involve mainly an interplay between gut, brain, and adipose tissue (AT), among the major organs. Parasympathetic, sympathetic, and other systems are required for communication between the brain satiety center, gut, and AT. These neuronal circuits include a variety of peptides and hormones, being ghrelin the only orexigenic molecule known, whereas the plethora of other factors are inhibitors of appetite, suggesting its physiological relevance in the regulation of food intake and energy homeostasis. Nutrients generated by food digestion have been proposed to activate G-protein-coupled receptors on the luminal side of enteroendocrine cells, e.g., the L-cells. This stimulates the release of gut hormones into the circulation such as glucagon-like peptide-1 (GLP-1), oxyntomodulin, pancreatic polypeptides, peptide tyrosine tyrosine, and cholecystokinin, which inhibit appetite. Ghrelin is a peptide secreted from the stomach and, in contrast to other gut hormones, plasma levels decrease after a meal and potently stimulate food intake. Other circulating factors such as insulin and leptin relay information regarding long-term energy stores. Both hormones circulate at proportional levels to body fat content, enter the CNS proportionally to their plasma levels, and reduce food intake. Circulating hormones can influence the activity of the arcuate nucleus (ARC) neurons of the hypothalamus, after passing across the median eminence. Circulating factors such as gut hormones may also influence the nucleus of the tractus solitarius (NTS) through the adjacent circumventricular organ. On the other hand, gastrointestinal vagal afferents converge in the NTS of the brainstem. Neural projections from the NTS, in turn, carry signals to the hypothalamus. The ARC acts as an integrative center, with two major subpopulations of neurons influencing appetite, one of them coexpressing neuropeptide Y and agouti-related protein (AgRP) that increases food

  2. Recognition of Bacterial Signal Peptides by Mammalian Formyl Peptide Receptors

    PubMed Central

    Bufe, Bernd; Schumann, Timo; Kappl, Reinhard; Bogeski, Ivan; Kummerow, Carsten; Podgórska, Marta; Smola, Sigrun; Hoth, Markus; Zufall, Frank

    2015-01-01

    Formyl peptide receptors (FPRs) are G-protein-coupled receptors that function as chemoattractant receptors in innate immune responses. Here we perform systematic structure-function analyses of FPRs from six mammalian species using structurally diverse FPR peptide agonists and identify a common set of conserved agonist properties with typical features of pathogen-associated molecular patterns. Guided by these results, we discover that bacterial signal peptides, normally used to translocate proteins across cytoplasmic membranes, are a vast family of natural FPR agonists. N-terminally formylated signal peptide fragments with variable sequence and length activate human and mouse FPR1 and FPR2 at low nanomolar concentrations, thus establishing FPR1 and FPR2 as sensitive and broad signal peptide receptors. The vomeronasal receptor mFpr-rs1 and its sequence orthologue hFPR3 also react to signal peptides but are much more narrowly tuned in signal peptide recognition. Furthermore, all signal peptides examined here function as potent activators of the innate immune system. They elicit robust, FPR-dependent calcium mobilization in human and mouse leukocytes and trigger a range of classical innate defense mechanisms, such as the production of reactive oxygen species, metalloprotease release, and chemotaxis. Thus, bacterial signal peptides constitute a novel class of immune activators that are likely to contribute to mammalian immune defense against bacteria. This evolutionarily conserved detection mechanism combines structural promiscuity with high specificity and enables discrimination between bacterial and eukaryotic signal sequences. With at least 175,542 predicted sequences, bacterial signal peptides represent the largest and structurally most heterogeneous class of G-protein-coupled receptor agonists currently known for the innate immune system. PMID:25605714

  3. Phytosulfokine peptide signalling.

    PubMed

    Sauter, Margret

    2015-08-01

    Phytosulfokine (PSK) belongs to the group of plant peptide growth factors. It is a disulfated pentapeptide encoded by precursor genes that are ubiquitously present in higher plants, suggestive of universal functions. Processing of the preproprotein involves sulfonylation by a tyrosylprotein sulfotransferase in the trans-golgi and proteolytic cleavage in the apoplast. The secreted peptide is perceived at the cell surface by a membrane-bound receptor kinase of the leucine-rich repeat family. The PSK receptor PSKR1 from Arabidopsis thaliana is an active kinase and has guanylate cyclase activity resulting in dual-signal outputs. Receptor activity is regulated by calmodulin. While PSK may be an autocrine growth factor, it also acts non-cell autonomously by promoting growth of cells that are receptor-deficient. In planta, PSK has multiple functions. It promotes cell growth, acts in the quiescent centre cells of the root apical meristem, contributes to funicular pollen tube guidance, and differentially alters immune responses depending on the pathogen. It has been suggested that PSK integrates growth and defence signals to balance the competing metabolic costs of these responses. This review summarizes our current understanding of PSK synthesis, signalling, and activity. PMID:25754406

  4. Urinary Peptides in Rett Syndrome.

    ERIC Educational Resources Information Center

    Solaas, K. M.; Skjeldal, O.; Gardner, M. L. G.; Kase, B. F.; Reichelt, K. L.

    2002-01-01

    A study found a significantly higher level of peptides in the urine of 53 girls with Rett syndrome compared with controls. The elevation was similar to that in 35 girls with infantile autism. Levels of peptides were lower in girls with classic Rett syndrome than those with congenital Rett syndrome. (Contains references.) (Author/CR)

  5. Natriuretic Peptides and Cardiometabolic Health.

    PubMed

    Gupta, Deepak K; Wang, Thomas J

    2015-01-01

    Natriuretic peptides are cardiac-derived hormones with a range of protective functions, including natriuresis, diuresis, vasodilation, lusitropy, lipolysis, weight loss, and improved insulin sensitivity. Their actions are mediated through membrane-bound guanylyl cyclases that lead to production of the intracellular second-messenger cyclic guanosine monophosphate. A growing body of evidence demonstrates that genetic and acquired deficiencies of the natriuretic peptide system can promote hypertension, cardiac hypertrophy, obesity, diabetes mellitus, the metabolic syndrome, and heart failure. Clinically, natriuretic peptides are robust diagnostic and prognostic markers, and augmenting natriuretic peptides is a target for therapeutic strategies in cardiometabolic disease. This review will summarize current understanding and highlight novel aspects of natriuretic peptide biology. PMID:26103984

  6. Highly Angiogenic Peptide Nanofibers

    PubMed Central

    Kumar, Vivek A.; Taylor, Nichole L.; Shi, Siyu; Wang, Benjamin K.; Jalan, Abhishek A.; Kang, Marci K.; Wickremasinghe, Navindee C.; Hartgerink, Jeffrey D.

    2015-01-01

    Major limitations of current tissue regeneration approaches using artificial scaffolds are fibrous encapsulation, lack of host cellular infiltration, unwanted immune responses, surface degradation preceding biointegration, and artificial degradation byproducts. Specifically, for scaffolds larger than 200 500 μm, implants must be accompanied by host angiogenesis in order to provide adequate nutrient/waste exchange in the newly forming tissue. In the current work, we design a peptide-based self-assembling nanofibrous hydrogel containing cell-mediated degradation and proangiogenic moieties that specifically address these challenges. This hydrogel can be easily delivered by syringe, is rapidly infiltrated by cells of hematopoietic and mesenchymal origin, and rapidly forms an extremely robust mature vascular network. scaffolds show no signs of fibrous encapsulation and after 3 weeks are resorbed into the native tissue. These supramolecular assemblies may prove a vital paradigm for tissue regeneration and specifically for ischemic tissue disease. PMID:25584521

  7. Peptide-formation on cysteine-containing peptide scaffolds

    NASA Technical Reports Server (NTRS)

    Chu, B. C.; Orgel, L. E.

    1999-01-01

    Monomeric cysteine residues attached to cysteine-containing peptides by disulfide bonds can be activated by carbonyldiimidazole. If two monomeric cysteine residues, attached to a 'scaffold' peptide Gly-Cys-Glyn-Cys-Glu10, (n = 0, 1, 2, 3) are activated, they react to form the dipeptide Cys-Cys. in 25-65% yield. Similarly, the activation of a cysteine residue attached to the 'scaffold' peptide Gly-Cys-Gly-Glu10 in the presence of Arg5 leads to the formation of Cys-Arg5 in 50% yield. The significance of these results for prebiotic chemistry is discussed.

  8. Conus venom peptide pharmacology.

    PubMed

    Lewis, Richard J; Dutertre, Sébastien; Vetter, Irina; Christie, MacDonald J

    2012-04-01

    Conopeptides are a diverse group of recently evolved venom peptides used for prey capture and/or defense. Each species of cone snails produces in excess of 1000 conopeptides, with those pharmacologically characterized (≈ 0.1%) targeting a diverse range of membrane proteins typically with high potency and specificity. The majority of conopeptides inhibit voltage- or ligand-gated ion channels, providing valuable research tools for the dissection of the role played by specific ion channels in excitable cells. It is noteworthy that many of these targets are found to be expressed in pain pathways, with several conopeptides having entered the clinic as potential treatments for pain [e.g., pyroglutamate1-MrIA (Xen2174)] and one now marketed for intrathecal treatment of severe pain [ziconotide (Prialt)]. This review discusses the diversity, pharmacology, structure-activity relationships, and therapeutic potential of cone snail venom peptide families acting at voltage-gated ion channels (ω-, μ-, μO-, δ-, ι-, and κ-conotoxins), ligand-gated ion channels (α-conotoxins, σ-conotoxin, ikot-ikot, and conantokins), G-protein-coupled receptors (ρ-conopeptides, conopressins, and contulakins), and neurotransmitter transporters (χ-conopeptides), with expanded discussion on the clinical potential of sodium and calcium channel inhibitors and α-conotoxins. Expanding the discovery of new bioactives using proteomic/transcriptomic approaches combined with high-throughput platforms and better defining conopeptide structure-activity relationships using relevant membrane protein crystal structures are expected to grow the already significant impact conopeptides have had as both research probes and leads to new therapies. PMID:22407615

  9. NK cells: tuned by peptide?

    PubMed

    Das, Jayajit; Khakoo, Salim I

    2015-09-01

    Natural killer cells express multiple receptors for major histocompatibility complex (MHC) class I, including the killer cell immunoglobulin-like receptors (KIRs) and the C-type lectin-like CD94:NKG2 receptors. The KIR locus is extremely polymorphic, paralleling the diversity of its classical MHC class I ligands. Similarly, the conservation of the NKG2 family of receptors parallels the conservation of MHC-E, the ligand for CD94:NKG2A/C/E. Binding of both CD94:NKG2 heterodimers and KIR to their respective MHC class I ligand is peptide dependent, and despite the evolution of these receptors, they have retained the property of peptide selectivity. Such peptide selectivity affects these two systems in different ways. HLA-E binding non-inhibitory peptides augment inhibition at CD94:NKG2A, while HLA-C binding non-inhibitory peptides antagonize inhibition at KIR2DL2/3, implying that KIRs are specialized to respond positively to changes in peptide repertoire. Thus, while specific KIRs, such as KIR2DL3, are associated with beneficial outcomes from viral infections, viral peptides augment inhibition at CD94:NKGA. Conversely, NKG2A-positive NK cells sense MHC class I downregulation more efficiently than KIRs. Thus, these two receptor:ligand systems appear to have complementary functions in recognizing changes in MHC class I. PMID:26284480

  10. Synthetic Peptides as Protein Mimics

    PubMed Central

    Groß, Andrea; Hashimoto, Chie; Sticht, Heinrich; Eichler, Jutta

    2016-01-01

    The design and generation of molecules capable of mimicking the binding and/or functional sites of proteins represents a promising strategy for the exploration and modulation of protein function through controlled interference with the underlying molecular interactions. Synthetic peptides have proven an excellent type of molecule for the mimicry of protein sites because such peptides can be generated as exact copies of protein fragments, as well as in diverse chemical modifications, which includes the incorporation of a large range of non-proteinogenic amino acids as well as the modification of the peptide backbone. Apart from extending the chemical and structural diversity presented by peptides, such modifications also increase the proteolytic stability of the molecules, enhancing their utility for biological applications. This article reviews recent advances by this and other laboratories in the use of synthetic protein mimics to modulate protein function, as well as to provide building blocks for synthetic biology. PMID:26835447

  11. Food-derived immunomodulatory peptides.

    PubMed

    Santiago-López, Lourdes; Hernández-Mendoza, Adrián; Vallejo-Cordoba, Belinda; Mata-Haro, Verónica; González-Córdova, Aarón F

    2016-08-01

    Food proteins contain specific amino acid sequences within their structures that may positively impact bodily functions and have multiple immunomodulatory effects. The functional properties of these specific sequences, also referred to as bioactive peptides, are revealed only after the degradation of native proteins during digestion processes. Currently, milk proteins have been the most explored source of bioactive peptides, which presents an interesting opportunity for the dairy industry. However, plant- and animal-derived proteins have also been shown to be important sources of bioactive peptides. This review summarizes the in vitro and in vivo evidence of the role of various food proteins as sources of immunomodulatory peptides and discusses the possible pathways involving these properties. © 2016 Society of Chemical Industry. PMID:26940008

  12. Moonlighting peptides with emerging function.

    PubMed

    Rodríguez Plaza, Jonathan G; Villalón Rojas, Amanda; Herrera, Sur; Garza-Ramos, Georgina; Torres Larios, Alfredo; Amero, Carlos; Zarraga Granados, Gabriela; Gutiérrez Aguilar, Manuel; Lara Ortiz, María Teresa; Polanco Gonzalez, Carlos; Uribe Carvajal, Salvador; Coria, Roberto; Peña Díaz, Antonio; Bredesen, Dale E; Castro-Obregon, Susana; del Rio, Gabriel

    2012-01-01

    Hunter-killer peptides combine two activities in a single polypeptide that work in an independent fashion like many other multi-functional, multi-domain proteins. We hypothesize that emergent functions may result from the combination of two or more activities in a single protein domain and that could be a mechanism selected in nature to form moonlighting proteins. We designed moonlighting peptides using the two mechanisms proposed to be involved in the evolution of such molecules (i.e., to mutate non-functional residues and the use of natively unfolded peptides). We observed that our moonlighting peptides exhibited two activities that together rendered a new function that induces cell death in yeast. Thus, we propose that moonlighting in proteins promotes emergent properties providing a further level of complexity in living organisms so far unappreciated. PMID:22808104

  13. Marine Peptides: Bioactivities and Applications.

    PubMed

    Cheung, Randy Chi Fai; Ng, Tzi Bun; Wong, Jack Ho

    2015-07-01

    Peptides are important bioactive natural products which are present in many marine species. These marine peptides have high potential nutraceutical and medicinal values because of their broad spectra of bioactivities. Their antimicrobial, antiviral, antitumor, antioxidative, cardioprotective (antihypertensive, antiatherosclerotic and anticoagulant), immunomodulatory, analgesic, anxiolytic anti-diabetic, appetite suppressing and neuroprotective activities have attracted the attention of the pharmaceutical industry, which attempts to design them for use in the treatment or prevention of various diseases. Some marine peptides or their derivatives have high commercial values and had reached the pharmaceutical and nutraceutical markets. A large number of them are already in different phases of the clinical and preclinical pipeline. This review highlights the recent research in marine peptides and the trends and prospects for the future, with special emphasis on nutraceutical and pharmaceutical development into marketed products. PMID:26132844

  14. Marine Peptides: Bioactivities and Applications

    PubMed Central

    Cheung, Randy Chi Fai; Ng, Tzi Bun; Wong, Jack Ho

    2015-01-01

    Peptides are important bioactive natural products which are present in many marine species. These marine peptides have high potential nutraceutical and medicinal values because of their broad spectra of bioactivities. Their antimicrobial, antiviral, antitumor, antioxidative, cardioprotective (antihypertensive, antiatherosclerotic and anticoagulant), immunomodulatory, analgesic, anxiolytic anti-diabetic, appetite suppressing and neuroprotective activities have attracted the attention of the pharmaceutical industry, which attempts to design them for use in the treatment or prevention of various diseases. Some marine peptides or their derivatives have high commercial values and had reached the pharmaceutical and nutraceutical markets. A large number of them are already in different phases of the clinical and preclinical pipeline. This review highlights the recent research in marine peptides and the trends and prospects for the future, with special emphasis on nutraceutical and pharmaceutical development into marketed products. PMID:26132844

  15. Peptide nanostructures in biomedical technology.

    PubMed

    Feyzizarnagh, Hamid; Yoon, Do-Young; Goltz, Mark; Kim, Dong-Shik

    2016-09-01

    Nanostructures of peptides have been investigated for biomedical applications due to their unique mechanical and electrical properties in addition to their excellent biocompatibility. Peptides may form fibrils, spheres and tubes in nanoscale depending on the formation conditions. These peptide nanostructures can be used in electrical, medical, dental, and environmental applications. Applications of these nanostructures include, but are not limited to, electronic devices, biosensing, medical imaging and diagnosis, drug delivery, tissue engineering and stem cell research. This review offers a discussion of basic synthesis methods, properties and application of these nanomaterials. The review concludes with recommendations and future directions for peptide nanostructures. WIREs Nanomed Nanobiotechnol 2016, 8:730-743. doi: 10.1002/wnan.1393 For further resources related to this article, please visit the WIREs website. PMID:26846352

  16. Moonlighting Peptides with Emerging Function

    PubMed Central

    Rodríguez Plaza, Jonathan G.; Villalón Rojas, Amanda; Herrera, Sur; Garza-Ramos, Georgina; Torres Larios, Alfredo; Amero, Carlos; Zarraga Granados, Gabriela; Gutiérrez Aguilar, Manuel; Lara Ortiz, María Teresa; Polanco Gonzalez, Carlos; Uribe Carvajal, Salvador; Coria, Roberto; Peña Díaz, Antonio; Bredesen, Dale E.; Castro-Obregon, Susana; del Rio, Gabriel

    2012-01-01

    Hunter-killer peptides combine two activities in a single polypeptide that work in an independent fashion like many other multi-functional, multi-domain proteins. We hypothesize that emergent functions may result from the combination of two or more activities in a single protein domain and that could be a mechanism selected in nature to form moonlighting proteins. We designed moonlighting peptides using the two mechanisms proposed to be involved in the evolution of such molecules (i.e., to mutate non-functional residues and the use of natively unfolded peptides). We observed that our moonlighting peptides exhibited two activities that together rendered a new function that induces cell death in yeast. Thus, we propose that moonlighting in proteins promotes emergent properties providing a further level of complexity in living organisms so far unappreciated. PMID:22808104

  17. Peptides and proteins

    SciTech Connect

    Bachovchin, W.W.; Unkefer, C.J.

    1994-12-01

    Advances in magnetic resonance and vibrational spectroscopy make it possible to derive detailed structural information about biomolecular structures in solution. These techniques are critically dependent on the availability of labeled compounds. For example, NMR techniques used today to derive peptide and protein structures require uniformity {sup 13}C-and {sup 15}N-labeled samples that are derived biosynthetically from (U-6-{sup 13}C) glucose. These experiments are possible now because, during the 1970s, the National Stable Isotope Resource developed algal methods for producing (U-6-{sup 13}C) glucose. If NMR techniques are to be used to study larger proteins, we will need sophisticated labelling patterns in amino acids that employ a combination of {sup 2}H, {sup 13}C, and {sup 15}N labeling. The availability of these specifically labeled amino acids requires a renewed investment in new methods for chemical synthesis of labeled amino acids. The development of new magnetic resonance or vibrational techniques to elucidate biomolecular structure will be seriously impeded if we do not see rapid progress in labeling technology. Investment in labeling chemistry is as important as investment in the development of advanced spectroscopic tools.

  18. Kinins and peptide receptors.

    PubMed

    Regoli, Domenico; Gobeil, Fernand

    2016-04-01

    This paper is divided into two sections: the first contains the essential elements of the opening lecture presented by Pr. Regoli to the 2015 International Kinin Symposium in S. Paulo, Brazil on June 28th and the second is the celebration of Dr. Regoli's 60 years of research on vasoactive peptides. The cardiovascular homeostasis derives from a balance of two systems, the renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS). The biologically active effector entity of RAS is angiotensin receptor-1 (AT-1R), and that of KKS is bradykinin B2 receptor (B2R). The first mediates vasoconstriction, the second is the most potent and efficient vasodilator. Thanks to its complex and multi-functional mechanism of action, involving nitric oxide (NO), prostacyclin and endothelial hyperpolarizing factor (EDHF). B2R is instrumental for the supply of blood, oxygen and nutrition to tissues. KKS is present on the vascular endothelium and functions as an autacoid playing major roles in cardiovascular diseases (CVDs) and diabetes. KKS exerts a paramount role in the prevention of thrombosis and atherosclerosis. Such knowledge emphasizes the already prominent value of the ACE-inhibitors (ACEIs) for the treatment of CVDs and diabetes. Indeed, the ACEIs, thanks to their double action (block of the RAS and potentiation of the KKS) are the ideal agents for a rational treatment of these diseases. PMID:26408609

  19. Collagen-like antimicrobial peptides.

    PubMed

    Masuda, Ryo; Kudo, Masakazu; Dazai, Yui; Mima, Takehiko; Koide, Takaki

    2016-11-01

    Combinatorial library composed of rigid rod-like peptides with a triple-helical scaffold was constructed. The component peptides were designed to have various combinations of basic and neutral (or hydrophobic) amino acid residues based on collagen-like (Gly-Pro-Yaa)-repeating sequences, inspired from the basic and amphiphilic nature of naturally occurring antimicrobial peptides. Screening of the peptide pools resulted in identification of antimicrobial peptides. A structure-activity relationship study revealed that the position of Arg-cluster at N-terminus and cystine knots at C-terminus in the triple helix significantly contributed to the antimicrobial activity. The most potent peptide RO-A showed activity against Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. In addition, Escherichia coli exposed to RO-A resulted in abnormal elongation of the cells. RO-A was also shown to have remarkable stability in human serum and low cytotoxicity to mammalian cells. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 453-459, 2016. PMID:27271210

  20. Latarcins: versatile spider venom peptides.

    PubMed

    Dubovskii, Peter V; Vassilevski, Alexander A; Kozlov, Sergey A; Feofanov, Alexey V; Grishin, Eugene V; Efremov, Roman G

    2015-12-01

    Arthropod venoms feature the presence of cytolytic peptides believed to act synergetically with neurotoxins to paralyze prey or deter aggressors. Many of them are linear, i.e., lack disulfide bonds. When isolated from the venom, or obtained by other means, these peptides exhibit common properties. They are cationic; being mostly disordered in aqueous solution, assume amphiphilic α-helical structure in contact with lipid membranes; and exhibit general cytotoxicity, including antifungal, antimicrobial, hemolytic, and anticancer activities. To suit the pharmacological needs, the activity spectrum of these peptides should be modified by rational engineering. As an example, we provide a detailed review on latarcins (Ltc), linear cytolytic peptides from Lachesana tarabaevi spider venom. Diverse experimental and computational techniques were used to investigate the spatial structure of Ltc in membrane-mimicking environments and their effects on model lipid bilayers. The antibacterial activity of Ltc was studied against a panel of Gram-negative and Gram-positive bacteria. In addition, the action of Ltc on erythrocytes and cancer cells was investigated in detail with confocal laser scanning microscopy. In the present review, we give a critical account of the progress in the research of Ltc. We explore the relationship between Ltc structure and their biological activity and derive molecular characteristics, which can be used for optimization of other linear peptides. Current applications of Ltc and prospective use of similar membrane-active peptides are outlined. PMID:26286896

  1. Automated solid-phase peptide synthesis to obtain therapeutic peptides

    PubMed Central

    Mäde, Veronika; Els-Heindl, Sylvia

    2014-01-01

    Summary The great versatility and the inherent high affinities of peptides for their respective targets have led to tremendous progress for therapeutic applications in the last years. In order to increase the drugability of these frequently unstable and rapidly cleared molecules, chemical modifications are of great interest. Automated solid-phase peptide synthesis (SPPS) offers a suitable technology to produce chemically engineered peptides. This review concentrates on the application of SPPS by Fmoc/t-Bu protecting-group strategy, which is most commonly used. Critical issues and suggestions for the synthesis are covered. The development of automated methods from conventional to essentially improved microwave-assisted instruments is discussed. In order to improve pharmacokinetic properties of peptides, lipidation and PEGylation are described as covalent conjugation methods, which can be applied by a combination of automated and manual synthesis approaches. The synthesis and application of SPPS is described for neuropeptide Y receptor analogs as an example for bioactive hormones. The applied strategies represent innovative and potent methods for the development of novel peptide drug candidates that can be manufactured with optimized automated synthesis technologies. PMID:24991269

  2. Perspectives and Peptides of the Next Generation

    NASA Astrophysics Data System (ADS)

    Brogden, Kim A.

    Shortly after their discovery, antimicrobial peptides from prokaryotes and eukaryotes were recognized as the next potential generation of pharmaceuticals to treat antibiotic-resistant bacterial infections and septic shock, to preserve food, or to sanitize surfaces. Initial research focused on identifying the spectrum of antimicrobial agents, determining the range of antimicrobial activities against bacterial, fungal, and viral pathogens, and assessing the antimicrobial activity of synthetic peptides versus their natural counterparts. Subsequent research then focused on the mechanisms of antimicrobial peptide activity in model membrane systems not only to identify the mechanisms of antimicrobial peptide activity in microorganisms but also to discern differences in cytotoxicity for prokaryotic and eukaryotic cells. Recent, contemporary work now focuses on current and future efforts to construct hybrid peptides, peptide congeners, stabilized peptides, peptide conjugates, and immobilized peptides for unique and specific applications to control the growth of microorganisms in vitro and in vivo.

  3. Exploration of the Medicinal Peptide Space.

    PubMed

    Gevaert, Bert; Stalmans, Sofie; Wynendaele, Evelien; Taevernier, Lien; Bracke, Nathalie; D'Hondt, Matthias; De Spiegeleer, Bart

    2016-01-01

    The chemical properties of peptide medicines, known as the 'medicinal peptide space' is considered a multi-dimensional subset of the global peptide space, where each dimension represents a chemical descriptor. These descriptors can be linked to biofunctional, medicinal properties to varying degrees. Knowledge of this space can increase the efficiency of the peptide-drug discovery and development process, as well as advance our understanding and classification of peptide medicines. For 245 peptide drugs, already available on the market or in clinical development, multivariate dataexploration was performed using peptide relevant physicochemical descriptors, their specific peptidedrug target and their clinical use. Our retrospective analysis indicates that clusters in the medicinal peptide space are located in a relatively narrow range of the physicochemical space: dense and empty regions were found, which can be explored for the discovery of novel peptide drugs. PMID:26876881

  4. Peptide Vaccine: Progress and Challenges

    PubMed Central

    Li, Weidang; Joshi, Medha D.; Singhania, Smita; Ramsey, Kyle H.; Murthy, Ashlesh K.

    2014-01-01

    Conventional vaccine strategies have been highly efficacious for several decades in reducing mortality and morbidity due to infectious diseases. The bane of conventional vaccines, such as those that include whole organisms or large proteins, appear to be the inclusion of unnecessary antigenic load that, not only contributes little to the protective immune response, but complicates the situation by inducing allergenic and/or reactogenic responses. Peptide vaccines are an attractive alternative strategy that relies on usage of short peptide fragments to engineer the induction of highly targeted immune responses, consequently avoiding allergenic and/or reactogenic sequences. Conversely, peptide vaccines used in isolation are often weakly immunogenic and require particulate carriers for delivery and adjuvanting. In this article, we discuss the specific advantages and considerations in targeted induction of immune responses by peptide vaccines and progresses in the development of such vaccines against various diseases. Additionally, we also discuss the development of particulate carrier strategies and the inherent challenges with regard to safety when combining such technologies with peptide vaccines. PMID:26344743

  5. Atomic Coordination Reflects Peptide Immunogenicity

    PubMed Central

    Antipas, Georgios S. E.; Germenis, Anastasios E.

    2016-01-01

    We demonstrated that the immunological identity of variant peptides may be accurately predicted on the basis of atomic coordination of both unprotonated and protonated tertiary structures, provided that the structure of the native peptide (index) is known. The metric which was discovered to account for this discrimination is the coordination difference between the variant and the index; we also showed that increasing coordination difference in respect to the index was correlated to a correspondingly weakening immunological outcome of the variant. Additionally, we established that this metric quickly seizes to operate beyond the peptide scale, e.g., within a coordination shell inclusive of atoms up to a distance of 7 Å away from the peptide or over the entire pMHC-TCR complex. Analysis of molecular orbital interactions for a range of formal charges further revealed that the N-terminus of the agonists was always able to sustain a stable ammonium (NH3+) group which was consistently absent in antagonists. We deem that the presence of NH3+ constitutes a secondary observable with a biological consequence, signifying a change in T cell activation. While our analysis of protonated structures relied on the quantum chemical relaxation of the H species, the results were consistent across a wide range of peptide charge and spin polarization conditions. PMID:26793714

  6. Antimicrobial activity of polycationic peptides.

    PubMed

    Giacometti, A; Cirioni, O; Barchiesi, F; Del Prete, M S; Scalise, G

    1999-11-01

    The in vitro activity of six polycationic peptides, buforin II, cecropin P1, indolicidin, magainin II, nisin, and ranalexin, were evaluated against several clinical isolates of gram-positive and gram-negative aerobic bacteria, yeasts, Pneumocystis carinii and Cryptosporidium parvum, by using microbroth dilution methods. The peptides exhibited different antibacterial activities and rapid time-dependent killing. The gram-negative organisms were more susceptible to buforin II and cecropin P1, whereas buforin II and ranalexin were the most active compounds against the gram-positive strains. Similarly, ranalexin showed the highest activity against Candida spp., whereas magainin II exerted the highest anticryptococcal activity. Finally, the peptides showed high anti-Pneumocystis activity, whereas no compound had strong inhibitory effect on C. parvum. PMID:10612440

  7. Antimicrobial Peptides from Marine Proteobacteria

    PubMed Central

    Desriac, Florie; Jégou, Camille; Balnois, Eric; Brillet, Benjamin; Le Chevalier, Patrick; Fleury, Yannick

    2013-01-01

    After years of inadequate use and the emergence of multidrug resistant (MDR) strains, the efficiency of “classical” antibiotics has decreased significantly. New drugs to fight MDR strains are urgently needed. Bacteria hold much promise as a source of unusual bioactive metabolites. However, the potential of marine bacteria, except for Actinomycetes and Cyanobacteria, has been largely underexplored. In the past two decades, the structures of several antimicrobial compounds have been elucidated in marine Proteobacteria. Of these compounds, polyketides (PKs), synthesised by condensation of malonyl-coenzyme A and/or acetyl-coenzyme A, and non-ribosomal peptides (NRPs), obtained through the linkage of (unusual) amino acids, have recently generated particular interest. NRPs are good examples of naturally modified peptides. Here, we review and compile the data on the antimicrobial peptides isolated from marine Proteobacteria, especially NRPs. PMID:24084784

  8. Antiviral active peptide from oyster

    NASA Astrophysics Data System (ADS)

    Zeng, Mingyong; Cui, Wenxuan; Zhao, Yuanhui; Liu, Zunying; Dong, Shiyuan; Guo, Yao

    2008-08-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster ( Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10 5 kDa, 5 1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10 5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  9. Evidence for a novel natriuretic peptide receptor that prefers brain natriuretic peptide over atrial natriuretic peptide.

    PubMed Central

    Goy, M F; Oliver, P M; Purdy, K E; Knowles, J W; Fox, J E; Mohler, P J; Qian, X; Smithies, O; Maeda, N

    2001-01-01

    Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) exert their physiological actions by binding to natriuretic peptide receptor A (NPRA), a receptor guanylate cyclase (rGC) that synthesizes cGMP in response to both ligands. The family of rGCs is rapidly expanding, and it is plausible that there might be additional, as yet undiscovered, rGCs whose function is to provide alternative signalling pathways for one or both of these peptides, particularly given the low affinity of NPRA for BNP. We have investigated this hypothesis, using a genetically modified (knockout) mouse in which the gene encoding NPRA has been disrupted. Enzyme assays and NPRA-specific Western blots performed on tissues from wild-type mice demonstrate that ANP-activated cGMP synthesis provides a good index of NPRA protein expression, which ranges from maximal in adrenal gland, lung, kidney, and testis to minimal in heart and colon. In contrast, immunoreactive NPRA is not detectable in tissues isolated from NPRA knockout animals and ANP- and BNP-stimulatable GC activities are markedly reduced in all mutant tissues. However, testis and adrenal gland retain statistically significant, high-affinity responses to BNP. This residual response to BNP cannot be accounted for by natriuretic peptide receptor B, or any other known mammalian rGC, suggesting the presence of a novel receptor in these tissues that prefers BNP over ANP. PMID:11513736

  10. Peptides and the new endocrinology

    NASA Astrophysics Data System (ADS)

    Schwyzer, Robert

    1982-01-01

    The discovery of regulatory peptides common to the nervous and the endocrine systems (brain, gut, and skin) has brought about a revolution in our concepts of endocrinology and neurology. We are beginning to understand some of the complex interrelationships between soma and psyche that might, someday, be important for an integrated treatment of diseases. Examples of the actions of certain peptides in the periphery and in the central nervous system are given, and their biosynthesis and molecular anatomy as carriers for information are discussed.

  11. Novel Formulations for Antimicrobial Peptides

    PubMed Central

    Carmona-Ribeiro, Ana Maria; Carrasco, Letícia Dias de Melo

    2014-01-01

    Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy. PMID:25302615

  12. Dendroaspis natriuretic peptide binds to the natriuretic peptide clearance receptor

    SciTech Connect

    Johns, Douglas G. . E-mail: Douglas.G.Johns@gsk.com; Ao, Zhaohui; Heidrich, Bradley J.; Hunsberger, Gerald E.; Graham, Taylor; Payne, Lisa; Elshourbagy, Nabil; Lu, Quinn; Aiyar, Nambi; Douglas, Stephen A.

    2007-06-22

    Dendroaspis natriuretic peptide (DNP) is a newly-described natriuretic peptide which lowers blood pressure via vasodilation. The natriuretic peptide clearance receptor (NPR-C) removes natriuretic peptides from the circulation, but whether DNP interacts with human NPR-C directly is unknown. The purpose of this study was to test the hypothesis that DNP binds to NPR-C. ANP, BNP, CNP, and the NPR-C ligands AP-811 and cANP(4-23) displaced [{sup 125}I]-ANP from NPR-C with pM-to-nM K {sub i} values. DNP displaced [{sup 125}I]-ANP from NPR-C with nM potency, which represents the first direct demonstration of binding of DNP to human NPR-C. DNP showed high pM affinity for the GC-A receptor and no affinity for GC-B (K {sub i} > 1000 nM). DNP was nearly 10-fold more potent than ANP at stimulating cGMP production in GC-A expressing cells. Blockade of NPR-C might represent a novel therapeutic approach in augmenting the known beneficial actions of DNP in cardiovascular diseases such as hypertension and heart failure.

  13. Membrane disruption mechanism of antimicrobial peptides

    NASA Astrophysics Data System (ADS)

    Lee, Ka Yee

    2012-04-01

    Largely distributed among living organisms, antimicrobial peptides are a class of small (<100 residues) host defense peptides that induce selective membrane lytic activity against microbial pathogens. The permeabilizing behavior of these diverse peptides has been commonly attributed to the formation of pores, and such pore formation has been categorized as barrel-stave, toroidal, or carpet-like. With the continuing discovery of new peptide species, many are uncharacterized and the exact mechanism is unknown. Through the use of atomic force microscopy, the disruption of supported lipid bilayer patches by protegrin-1 is concentration-dependent. The intercalation of antimicrobial peptide into the bilayer results in structures beyond that of pore formation, but with the formation of worm-like micelles at high peptide concentration. Our results suggest that antimicrobial peptide acts to lower the interfacial energy of the bilayer in a way similar to detergents. Antimicrobial peptides with structural differences, magainin-1 and aurein 1.1, exhibit a mechanistic commonality.

  14. Boosting production yield of biomedical peptides

    NASA Technical Reports Server (NTRS)

    Manatt, S. L.

    1978-01-01

    Nuclear magnetic resonance (NMR) technique is employed to monitor synthesis of biomedical peptides. Application of NMR technique may improve production yields of insulin, ACTH, and growth hormones, as well as other synthesized biomedical peptides.

  15. Streptavidin-binding peptides and uses thereof

    NASA Technical Reports Server (NTRS)

    Szostak, Jack W. (Inventor); Wilson, David S. (Inventor); Keefe, Anthony D. (Inventor)

    2006-01-01

    The invention provides peptides with high affinity for streptavidin. These peptides may be expressed as part of fusion proteins to facilitate the detection, quantitation, and purification of proteins of interest.

  16. Streptavidin-binding peptides and uses thereof

    NASA Technical Reports Server (NTRS)

    Szostak, Jack W. (Inventor); Wilson, David S. (Inventor); Keefe, Anthony D. (Inventor)

    2005-01-01

    The invention provides peptides with high affinity for streptavidin. These peptides may be expressed as part of fusion proteins to facilitate the detection, quantitation, and purification of proteins of interest.

  17. Investigating Endogenous Peptides and Peptidases using Peptidomics

    PubMed Central

    Tinoco, Arthur D.; Saghatelian, Alan

    2012-01-01

    Rather than simply being protein degradation products, peptides have proven to be important bioactive molecules. Bioactive peptides act as hormones, neurotransmitters and antimicrobial agents in vivo. The dysregulation of bioactive peptide signaling is also known to be involved in disease, and targeting peptide hormone pathways has been successful strategy in the development of novel therapeutics. The importance of bioactive peptides in biology has spurred research to elucidate the function and regulation of these molecules. Classical methods for peptide analysis have relied on targeted immunoassays, but certain scientific questions necessitated a broader and more detailed view of the peptidome–all the peptides in a cell, tissue or organism. In this review we discuss how peptidomics has emerged to fill this need through the application of advanced liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods that provide unique insights into peptide activity and regulation. PMID:21786763

  18. Strategic approaches to optimizing peptide ADME properties.

    PubMed

    Di, Li

    2015-01-01

    Development of peptide drugs is challenging but also quite rewarding. Five blockbuster peptide drugs are currently on the market, and six new peptides received first marketing approval as new molecular entities in 2012. Although peptides only represent 2% of the drug market, the market is growing twice as quickly and might soon occupy a larger niche. Natural peptides typically have poor absorption, distribution, metabolism, and excretion (ADME) properties with rapid clearance, short half-life, low permeability, and sometimes low solubility. Strategies have been developed to improve peptide drugability through enhancing permeability, reducing proteolysis and renal clearance, and prolonging half-life. In vivo, in vitro, and in silico tools are available to evaluate ADME properties of peptides, and structural modification strategies are in place to improve peptide developability. PMID:25366889

  19. STM studies of synthetic peptide monolayers

    SciTech Connect

    Bergeron, David J.; Clauss, Wilfried; Johnson, Alan T.; Pilloud, Denis L.; Leslie Dutton, P.

    1998-08-11

    We have used scanning probe microscopy to investigate self-assembled monolayers of chemically synthesized peptides. We find that the peptides form a dense uniform monolayer, above which is found a sparse additional layer. Using scanning tunneling microscopy, submolecular resolution can be obtained, revealing the alpha helices which constitute the peptide. The nature of the images is not significantly affected by the incorporation of redox cofactors (hemes) in the peptides.

  20. Diverse CLE peptides from cyst nematode species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant CLAVATA3/ESR (CLE)-like peptides play diverse roles in plant growth and development including maintenance of the stem cell population in the root meristem. Small secreted peptides sharing similarity to plant CLE signaling peptides have been isolated from several cyst nematode species including...

  1. Unsupervised Identification of Isotope-Labeled Peptides.

    PubMed

    Goldford, Joshua E; Libourel, Igor G L

    2016-06-01

    In vivo isotopic labeling coupled with high-resolution proteomics is used to investigate primary metabolism in techniques such as stable isotope probing (protein-SIP) and peptide-based metabolic flux analysis (PMFA). Isotopic enrichment of carbon substrates and intracellular metabolism determine the distribution of isotopes within amino acids. The resulting amino acid mass distributions (AMDs) are convoluted into peptide mass distributions (PMDs) during protein synthesis. With no a priori knowledge on metabolic fluxes, the PMDs are therefore unknown. This complicates labeled peptide identification because prior knowledge on PMDs is used in all available peptide identification software. An automated framework for the identification and quantification of PMDs for nonuniformly labeled samples is therefore lacking. To unlock the potential of peptide labeling experiments for high-throughput flux analysis and other complex labeling experiments, an unsupervised peptide identification and quantification method was developed that uses discrete deconvolution of mass distributions of identified peptides to inform on the mass distributions of otherwise unidentifiable peptides. Uniformly (13)C-labeled Escherichia coli protein was used to test the developed feature reconstruction and deconvolution algorithms. The peptide identification was validated by comparing MS(2)-identified peptides to peptides identified from PMDs using unlabeled E. coli protein. Nonuniformly labeled Glycine max protein was used to demonstrate the technology on a representative sample suitable for flux analysis. Overall, automatic peptide identification and quantification were comparable or superior to manual extraction, enabling proteomics-based technology for high-throughput flux analysis studies. PMID:27145348

  2. Toxins and antimicrobial peptides: interactions with membranes

    NASA Astrophysics Data System (ADS)

    Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2009-08-01

    The innate immunity to pathogenic invasion of organisms in the plant and animal kingdoms relies upon cationic antimicrobial peptides (AMPs) as the first line of defense. In addition to these natural peptide antibiotics, similar cationic peptides, such as the bee venom toxin melittin, act as nonspecific toxins. Molecular details of AMP and peptide toxin action are not known, but the universal function of these peptides to disrupt cell membranes of pathogenic bacteria (AMPs) or a diverse set of eukaryotes and prokaryotes (melittin) is widely accepted. Here, we have utilized spectroscopic techniques to elucidate peptide-membrane interactions of alpha-helical human and mouse AMPs of the cathelicidin family as well as the peptide toxin melittin. The activity of these natural peptides and their engineered analogs was studied on eukaryotic and prokaryotic membrane mimics consisting of <200-nm bilayer vesicles composed of anionic and neutral lipids as well as cholesterol. Vesicle disruption, or peptide potency, was monitored with a sensitive fluorescence leakage assay. Detailed molecular information on peptidemembrane interactions and peptide structure was further gained through vibrational spectroscopy combined with circular dichroism. Finally, steady-state fluorescence experiments yielded insight into the local environment of native or engineered tryptophan residues in melittin and human cathelicidin embedded in bilayer vesicles. Collectively, our results provide clues to the functional structures of the engineered and toxic peptides and may impact the design of synthetic antibiotic peptides that can be used against the growing number of antibiotic-resistant pathogens.

  3. Identification of multifunctional peptides from human milk.

    PubMed

    Mandal, Santi M; Bharti, Rashmi; Porto, William F; Gauri, Samiran S; Mandal, Mahitosh; Franco, Octavio L; Ghosh, Ananta K

    2014-06-01

    Pharmaceutical industries have renewed interest in screening multifunctional bioactive peptides as a marketable product in health care applications. In this context, several animal and plant peptides with potential bioactivity have been reported. Milk proteins and peptides have received much attention as a source of health-enhancing components to be incorporated into nutraceuticals and functional foods. By using this source, 24 peptides have been fractionated and purified from human milk using RP-HPLC. Multifunctional roles including antimicrobial, antioxidant and growth stimulating activity have been evaluated in all 24 fractions. Nevertheless, only four fractions show multiple combined activities among them. Using a proteomic approach, two of these four peptides have been identified as lactoferrin derived peptide and kappa casein short chain peptide. Lactoferrin derived peptide (f8) is arginine-rich and kappa casein derived (f12) peptide is proline-rich. Both peptides (f8 and f12) showed antimicrobial activities against both Gram-positive and Gram-negative bacteria. Fraction 8 (f8) exhibits growth stimulating activity in 3T3 cell line and f12 shows higher free radical scavenging activity in comparison to other fractions. Finally, both peptides were in silico evaluated and some insights into their mechanism of action were provided. Thus, results indicate that these identified peptides have multiple biological activities which are valuable for the quick development of the neonate and may be considered as potential biotechnological products for nutraceutical industry. PMID:24703967

  4. Diversity of wheat anti-microbial peptides.

    PubMed

    Egorov, Tsezi A; Odintsova, Tatyana I; Pukhalsky, Vitaliy A; Grishin, Eugene V

    2005-11-01

    From seeds of Triticum kiharae Dorof. et Migusch., 24 novel anti-microbial peptides were isolated and characterized by a combination of three-step HPLC (affinity, size-exclusion and reversed-phase) with matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and Edman degradation. Based on sequence similarity and cysteine motifs, partially sequenced peptides were assigned to 7 families: defensins, thionins, lipid-transfer proteins, hevein-like peptides, knottin-like peptides, glycine-rich peptides, and MBP-1 homologs. A novel subfamily of defensins consisting of 6 peptides and a new family of glycine-rich (8 peptides with different repeat motifs) were identified. Three 6-cysteine knottin-like peptides represented by N- and C-terminally truncated variants revealed no sequence homology to any known plant anti-microbial peptides. A new 8-cysteine hevein-like peptide and three 4-cysteine peptides homologous to MBP-1 from maize were isolated. This is the first communication on the occurrence of nearly all families of plant anti-microbial peptides in a single species. PMID:16269343

  5. Bi- or multifunctional peptide drugs

    PubMed Central

    Schiller, Peter W.

    2009-01-01

    Strategies for the design of bi- or multifunctional drugs are reviewed. A distinction is made between bifunctional drugs interacting in a monovalent fashion with two targets and ligands containing two distinct pharmacophores binding in a bivalent mode to the two binding sites in a receptor heterodimer. Arguments are presented to indicate that some of the so-called “bivalent” ligands reported in the literature are unlikely to simultaneously interact with two binding sites. Aspects related to the development of bi- or multifunctional drugs are illustrated with examples from the field of opioid analgesics. The drug-like properties of the tetrapeptide Dmt1[DALDA] with triple action as a μ opioid agonist, norepinephrine uptake inhibitor and releaser of endogenous opioid peptides to produce potent spinal analgesia are reviewed. Rationales for the development of opioid peptides with mixed agonist/antagonist profiles as analgesics with reduced side effects are presented. Progress in the development of mixed μ opioid agonist/δ opioid antagonists with low propensity to produce tolerance and physical dependence is reviewed. Efforts to develop bifunctional peptides containing a μ opioid agonist and a cholecystokinin antagonist or an NK1 receptor antagonist as analgesics expected to produce less tolerance and dependence are also reviewed. A strategy to improve the drug-like properties of bifunctional opioid peptide analgesics is presented. PMID:19285088

  6. Free-living nematode peptides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All nematodes employ a wide array of peptide messengers to control nearly all aspects of the life cycle, including hatching, locomotion, feeding, defense, mating, reproduction, and other behavioral and metabolic events. There are molecular and biological similarities, as well as significant differen...

  7. Peptide ligation from alkoxyamine based radical addition.

    PubMed

    Trimaille, Thomas; Autissier, Laurent; Rakotonirina, Mamy Daniel; Guillaneuf, Yohann; Villard, Claude; Bertin, Denis; Gigmes, Didier; Mabrouk, Kamel

    2014-03-14

    Intermolecular radical 1,2-addition (IRA) of N-tert-butyl-N-(1-diethylphosphono-2,2-dimethylpropyl)aminoxyl (SG1) based alkoxyamines onto activated olefins is used as a tool for peptide ligation. This strategy relies on simple peptide pre-derivatization to obtain (i) a SG1 nitroxide functionalized resin peptide at its N-terminus (SG1-peptide alkoxyamine), (ii) a vinyl functionalized peptide (either at its C-terminus or N-terminus), and does not require any coupling agents. PMID:24476638

  8. How antimicrobial peptides disrupt lipid bilayers?

    NASA Astrophysics Data System (ADS)

    Sengupta, Durba

    2011-03-01

    The molecular basis for the activity of cyclic and linear antimicrobial peptides is analysed. We performed multi-scale molecular dynamics simulations and biophysical measurements to probe the interaction of antimicrobial peptides with model membranes. Two linear antimicrobial peptides, magainin and melittin and a cyclic one, BPC194 have been studied. We test different models to determine the generic and specific forces that lead to bilayer disruption. We probe whether interfacial stress or local membrane perturbation is more likely to lead to the porated state. We further analyse the reasons that determine specificity and increase of activity in antimicrobial peptides. The results provide detailed insight in the mode of action of antimicrobial peptides.

  9. Fabrication of Odor Sensor Using Peptide

    NASA Astrophysics Data System (ADS)

    Hotokebuchi, Yuta; Hayashi, Kenshi; Toko, Kiyoshi; Chen, Ronggang; Ikezaki, Hidekazu

    We report fabrication of an odor sensor using peptides. Peptides were designed to acquire the specific reception for a target odor molecule. Au surface of the sensor electrode was coated by the designed peptide using the method of self assembled monolayers (SAMs). Functionalized Au surfaces by the peptides were confirmed by ellipsometry and cyclic voltammetry. The odorants of vanillin, phenethyl alcohol and hexanol were discriminated by QCM sensor with the peptide surface. Moreover, we verified specific interaction between amino acid (Trp) and vanillin by fluorescence assay.

  10. Isoelectric focusing of proteins and peptides

    NASA Technical Reports Server (NTRS)

    Egen, N.

    1979-01-01

    Egg-white solution was chosen as the reference solution in order to assess the effects of operational parameters (voltage, flow rate, ampholine pH range and concentration, and protein concentration) of the RIEF apparatus on protein resolution. Topics of discussion include: (1) comparison of RIEF apparatus to conventional IEF techniques (column and PAG) with respect to resolution and throughput; (2) peptide and protein separation (AHF, Thymosin - Fraction 5, vasoactive peptide, L-asparaginase and ACP); and (3) detection of peptides - dansyl derivatives of amino acids and peptides, post-focusing fluorescent labeling of amino acids, peptides and proteins, and ampholine extraction from focused gels.

  11. Peptides and Peptidomimetics for Antimicrobial Drug Design

    PubMed Central

    Mojsoska, Biljana; Jenssen, Håvard

    2015-01-01

    The purpose of this paper is to introduce and highlight a few classes of traditional antimicrobial peptides with a focus on structure-activity relationship studies. After first dissecting the important physiochemical properties that influence the antimicrobial and toxic properties of antimicrobial peptides, the contributions of individual amino acids with respect to the peptides antibacterial properties are presented. A brief discussion of the mechanisms of action of different antimicrobials as well as the development of bacterial resistance towards antimicrobial peptides follows. Finally, current efforts on novel design strategies and peptidomimetics are introduced to illustrate the importance of antimicrobial peptide research in the development of future antibiotics. PMID:26184232

  12. Comparative conformational analysis of peptide T analogs

    NASA Astrophysics Data System (ADS)

    Akverdieva, Gulnare; Godjayev, Niftali; Akyuz, Sevim

    2009-01-01

    A series of peptide T analogs were investigated within the molecular mechanics framework. In order to determine the role of the aminoacid residues in spatial formation of peptide T the conformational peculiarities of the glycine-substituted analogs were investigated. The conformational profiles of some biologically tested analogs of this peptide were determined independently. The received data permit to assess the active form of this peptide. It is characterized by β-turn at the C-terminal physiologically active pentapeptide fragment of peptide molecule. The received results are important for the investigation of the structure-activity relationship and may be used at design of a rigid-molecule drug against HIV.

  13. Effect of peptide conformation on membrane permeability.

    PubMed

    Boguslavsky, V; Hruby, V J; O'Brien, D F; Misicka, A; Lipkowski, A W

    2003-06-01

    The effect of peptide conformational constraint on the peptide permeation across the model membranes was examined by determining the permeability of pairs of cyclic and acyclic peptides related to c[d-Pen2, d-Pen5] enkephalin (DPDPE). The peptides were cyclized by formation of an intramolecular disulfide bridge between the second and fifth residues composed of either d-penicillamine or cysteine. In each case the acyclic peptide was three to seven times more permeable than corresponding cyclic peptide. The possibility that the differences in permeability of cyclic and acyclic peptides is based on the greater conformational freedom of the acyclic peptides in the presence of membrane was examined in more detail by isothermal titration calorimetric studies of Trp6-DPDPE and its acyclic analog. The membrane binding of the acyclic peptide is a more exothermic process than binding of its cyclic Trp6-DPDPE. The transfer of acyclic peptide from water to membrane is an enthalpy driven process, whereas the transfer of the cyclic peptide is driven by entropy. PMID:12753376

  14. Peptide modulators of alpha-glucosidase

    PubMed Central

    Roskar, Irena; Molek, Peter; Vodnik, Miha; Stempelj, Mateja; Strukelj, Borut; Lunder, Mojca

    2015-01-01

    Aims/Introduction Acute glucose fluctuations during the postprandial period pose great risk for cardiovascular complications and thus represent an important therapeutic approach in type 2 diabetes. In the present study, screening of peptide libraries was used to select peptides with an affinity towards mammalian intestinal alpha-glucosidase as potential leads in antidiabetic agent development. Materials and Methods Three phage-displayed peptide libraries were used in independent selections with different elution strategies to isolate target-binding peptides. Selected peptides displayed on phage were tested to compete for an enzyme-binding site with known competitive inhibitors, acarbose and voglibose. The four best performing peptides were synthesized. Their binding to the mammalian alpha-glucosidase and their effect on enzyme activity were evaluated. Results Two linear and two cyclic heptapeptides with high affinity towards intestinal alpha-glucosidase were selected. Phage-displayed as well as synthetic peptides bind into or to the vicinity of the active site on the enzyme. Both cyclic peptides inhibited enzyme activity, whereas both linear peptides increased enzyme activity. Conclusions Although natural substrates of glycosidase are polysaccharides, in the present study we successfully isolated novel peptide modulators of alpha-glucosidase. Modulatory activity of selected peptides could be further optimized through peptidomimetic design. They represent promising leads for development of efficient alpha-glucosidase inhibitors. PMID:26543535

  15. The First Salamander Defensin Antimicrobial Peptide

    PubMed Central

    Jiang, Ke; Rong, Mingqiang; Lai, Ren

    2013-01-01

    Antimicrobial peptides have been widely identified from amphibian skins except salamanders. A novel antimicrobial peptide (CFBD) was isolated and characterized from skin secretions of the salamander, Cynops fudingensis. The cDNA encoding CFBD precursor was cloned from the skin cDNA library of C. fudingensis. The precursor was composed of three domains: signal peptide of 17 residues, mature peptide of 41 residues and intervening propeptide of 3 residues. There are six cysteines in the sequence of mature CFBD peptide, which possibly form three disulfide-bridges. CFBD showed antimicrobial activities against Staphylococcus aureus, Bacillus subtilis, Candida albicans and Escherichia coli. This peptide could be classified into family of β-defensin based on its seqeuence similarity with β-defensins from other vertebrates. Evolution analysis indicated that CFBD was close to fish β-defensin. As far as we know, CFBD is the first β-defensin antimicrobial peptide from salamanders. PMID:24386139

  16. Natural and synthetic peptides with antifungal activity.

    PubMed

    Ciociola, Tecla; Giovati, Laura; Conti, Stefania; Magliani, Walter; Santinoli, Claudia; Polonelli, Luciano

    2016-08-01

    In recent years, the increase of invasive fungal infections and the emergence of antifungal resistance stressed the need for new antifungal drugs. Peptides have shown to be good candidates for the development of alternative antimicrobial agents through high-throughput screening, and subsequent optimization according to a rational approach. This review presents a brief overview on antifungal natural peptides of different sources (animals, plants, micro-organisms), peptide fragments derived by proteolytic cleavage of precursor physiological proteins (cryptides), synthetic unnatural peptides and peptide derivatives. Antifungal peptides are schematically reported based on their structure, antifungal spectrum and reported effects. Natural or synthetic peptides and their modified derivatives may represent the basis for new compounds active against fungal infections. PMID:27502155

  17. Bioinformatic analysis of peptide precursor proteins.

    PubMed

    Baggerman, G; Liu, F; Wets, G; Schoofs, L

    2005-04-01

    Neuropeptides are among the most important signal molecules in animals. Traditional identification of peptide hormones through peptide purification is a tedious and time-consuming process. With the advent of the genome sequencing projects, putative peptide precursor can be mined from the genome. However, because bioactive peptides are usually quite short in length and because the active core of a peptide is often limited to only a few amino acids, using the BLAST search engine to identify neuropeptide precursors in the genome is difficult and sometimes impossible. To overcome these shortcomings, we subject the entire set of all known Drosophila melanogaster peptide precursor sequences to motif-finding algorithms in search of a motif that is common for all prepropeptides and that could be used in the search for new peptide precursors. PMID:15891006

  18. RFamide peptides in agnathans and basal chordates.

    PubMed

    Osugi, Tomohiro; Son, You Lee; Ubuka, Takayoshi; Satake, Honoo; Tsutsui, Kazuyoshi

    2016-02-01

    Since a peptide with a C-terminal Arg-Phe-NH2 (RFamide peptide) was first identified in the ganglia of the venus clam in 1977, RFamide peptides have been found in the nervous system of both invertebrates and vertebrates. In vertebrates, the RFamide peptide family includes gonadotropin-inhibitory hormone (GnIH), neuropeptide FF (NPFF), prolactin-releasing peptide (PrRP), pyroglutamylated RFamide peptide/26RFamide peptide (QRFP/26RFa), and kisspeptins (kiss1 and kiss2). They are involved in important functions such as the release of hormones, regulation of sexual or social behavior, pain transmission, reproduction, and feeding. In contrast to tetrapods and jawed fish, the information available on RFamide peptides in agnathans and basal chordates is limited, thus preventing further insights into the evolution of RFamide peptides in vertebrates. In this review, we focus on the previous research and recent advances in the studies on RFamide peptides in agnathans and basal chordates. In agnathans, the genes encoding GnIH, NPFF, and PrRP precursors and the mature peptides have been identified in lamprey (Petromyzon marinus) and hagfish (Paramyxine atami). Putative kiss1 and kiss2 genes have also been found in the genome database of lamprey. In basal chordates, namely, in amphioxus (Branchiostoma japonicum), a common ancestral form of GnIH and NPFF genes and their mature peptides, as well as the ortholog of the QRFP gene have been identified. The studies revealed that the number of orthologs of vertebrate RFamide peptides present in agnathans and basal chordates is greater than expected, suggesting that the vertebrate RFamide peptides might have emerged and expanded at an early stage of chordate evolution. PMID:26130238

  19. Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight.

    PubMed

    Mohan, Aishwarya; McClements, David Julian; Udenigwe, Chibuike C

    2016-12-15

    Encapsulation of peptides can be used to enhance their stability, delivery and bioavailability. This study focused on the effect of the molecular weight range of whey peptides on their encapsulation within soy lecithin-derived nanoliposomes. Peptide molecular weight did not have a major impact on encapsulation efficiency or liposome size. However, it influenced peptide distribution amongst the surface, core, and bilayer regions of the liposomes, as determined by electrical charge (ζ-potential) and FTIR analysis. The liposome ζ-potential depended on peptide molecular weight, suggesting that the peptide charged groups were in different locations relative to the liposome surfaces. FTIR analysis indicated that the least hydrophobic peptide fractions interacted more strongly with choline on the liposome surfaces. The results suggested that the peptides were unequally distributed within the liposomes, even at the same encapsulation efficiency. These findings are important for designing delivery systems for commercial production of encapsulated peptides with improved functional attributes. PMID:27451165

  20. Peptides and methods against diabetes

    DOEpatents

    Albertini, Richard J.; Falta, Michael T.

    2000-01-01

    This invention relates to methods of preventing or reducing the severity of diabetes. In one embodiment, the method involves administering to the individual a peptide having substantially the sequence of a on-conserved region sequence of a T cell receptor present on the surface of T cells mediating diabetes or a fragment thereof, wherein the peptide or fragment is capable of causing an effect on the immune system to regulate the T cells. In particular, the T cell receptor has the V.beta. regional V.beta.6 or V.beta.14. In another embodiment, the method involves gene therapy. The invention also relates to methods of diagnosing diabetes by determining the presence of diabetes predominant T cell receptors.

  1. Antimicrobial Peptides in Human Sepsis

    PubMed Central

    Martin, Lukas; van Meegern, Anne; Doemming, Sabine; Schuerholz, Tobias

    2015-01-01

    Nearly 100 years ago, antimicrobial peptides (AMPs) were identified as an important part of innate immunity. They exist in species from bacteria to mammals and can be isolated in body fluids and on surfaces constitutively or induced by inflammation. Defensins have anti-bacterial effects against Gram-positive and Gram-negative bacteria as well as anti-viral and anti-yeast effects. Human neutrophil peptides (HNP) 1–3 and human beta-defensins (HBDs) 1–3 are some of the most important defensins in humans. Recent studies have demonstrated higher levels of HNP 1–3 and HBD-2 in sepsis. The bactericidal/permeability-increasing protein (BPI) attenuates local inflammatory response and decreases systemic toxicity of endotoxins. Moreover, BPI might reflect the severity of organ dysfunction in sepsis. Elevated plasma lactoferrin is detected in patients with organ failure. HNP 1–3, lactoferrin, BPI, and heparin-binding protein are increased in sepsis. Human lactoferrin peptide 1–11 (hLF 1–11) possesses antimicrobial activity and modulates inflammation. The recombinant form of lactoferrin [talactoferrin alpha (TLF)] has been shown to decrease mortality in critically ill patients. A phase II/III study with TLF in sepsis did not confirm this result. The growing number of multiresistant bacteria is an ongoing problem in sepsis therapy. Furthermore, antibiotics are known to promote the liberation of pro-inflammatory cell components and thus augment the severity of sepsis. Compared to antibiotics, AMPs kill bacteria but also neutralize pathogenic factors such as lipopolysaccharide. The obstacle to applying naturally occurring AMPs is their high nephro- and neurotoxicity. Therefore, the challenge is to develop peptides to treat septic patients effectively without causing harm. This overview focuses on natural and synthetic AMPs in human and experimental sepsis and their potential to provide significant improvements in the treatment of critically ill with severe infections

  2. Antimicrobial Peptides in Human Sepsis.

    PubMed

    Martin, Lukas; van Meegern, Anne; Doemming, Sabine; Schuerholz, Tobias

    2015-01-01

    Nearly 100 years ago, antimicrobial peptides (AMPs) were identified as an important part of innate immunity. They exist in species from bacteria to mammals and can be isolated in body fluids and on surfaces constitutively or induced by inflammation. Defensins have anti-bacterial effects against Gram-positive and Gram-negative bacteria as well as anti-viral and anti-yeast effects. Human neutrophil peptides (HNP) 1-3 and human beta-defensins (HBDs) 1-3 are some of the most important defensins in humans. Recent studies have demonstrated higher levels of HNP 1-3 and HBD-2 in sepsis. The bactericidal/permeability-increasing protein (BPI) attenuates local inflammatory response and decreases systemic toxicity of endotoxins. Moreover, BPI might reflect the severity of organ dysfunction in sepsis. Elevated plasma lactoferrin is detected in patients with organ failure. HNP 1-3, lactoferrin, BPI, and heparin-binding protein are increased in sepsis. Human lactoferrin peptide 1-11 (hLF 1-11) possesses antimicrobial activity and modulates inflammation. The recombinant form of lactoferrin [talactoferrin alpha (TLF)] has been shown to decrease mortality in critically ill patients. A phase II/III study with TLF in sepsis did not confirm this result. The growing number of multiresistant bacteria is an ongoing problem in sepsis therapy. Furthermore, antibiotics are known to promote the liberation of pro-inflammatory cell components and thus augment the severity of sepsis. Compared to antibiotics, AMPs kill bacteria but also neutralize pathogenic factors such as lipopolysaccharide. The obstacle to applying naturally occurring AMPs is their high nephro- and neurotoxicity. Therefore, the challenge is to develop peptides to treat septic patients effectively without causing harm. This overview focuses on natural and synthetic AMPs in human and experimental sepsis and their potential to provide significant improvements in the treatment of critically ill with severe infections. PMID

  3. Antimicrobial Peptides: Versatile Biological Properties

    PubMed Central

    Pushpanathan, Muthuirulan; Rajendhran, Jeyaprakash

    2013-01-01

    Antimicrobial peptides are diverse group of biologically active molecules with multidimensional properties. In recent past, a wide variety of AMPs with diverse structures have been reported from different sources such as plants, animals, mammals, and microorganisms. The presence of unusual amino acids and structural motifs in AMPs confers unique structural properties to the peptide that attribute for their specific mode of action. The ability of these active AMPs to act as multifunctional effector molecules such as signalling molecule, immune modulators, mitogen, antitumor, and contraceptive agent makes it an interesting candidate to study every aspect of their structural and biological properties for prophylactic and therapeutic applications. In addition, easy cloning and recombinant expression of AMPs in heterologous plant host systems provided a pipeline for production of disease resistant transgenic plants. Besides these properties, AMPs were also used as drug delivery vectors to deliver cell impermeable drugs to cell interior. The present review focuses on the diversity and broad spectrum antimicrobial activity of AMPs along with its multidimensional properties that could be exploited for the application of these bioactive peptides as a potential and promising drug candidate in pharmaceutical industries. PMID:23935642

  4. Construction of Lasso Peptide Fusion Proteins.

    PubMed

    Zong, Chuhan; Maksimov, Mikhail O; Link, A James

    2016-01-15

    Lasso peptides are a family of ribosomally synthesized and post-translationally modified peptides (RiPPs) typified by an isopeptide-bonded macrocycle between the peptide N-terminus and an aspartate or glutamate side chain. The C-terminal portion of the peptide threads through the N-terminal macrocycle to give the characteristic lasso fold. Because of the inherent stability, both proteolytic and often thermal, of lasso peptides, we became interested in whether proteins could be fused to the free C-terminus of lasso peptides. Here, we demonstrate fusion of two model proteins, the artificial leucine zipper A1 and the superfolder variant of GFP, to the C-terminus of the lasso peptide astexin-1. Successful lasso cyclization of the N-terminus of these fusion proteins requires a flexible linker in between the C-terminus of the lasso peptide and the N-terminus of the protein of interest. The ability to fuse lasso peptides to a protein of interest is an important step toward phage and bacterial display systems for the high-throughput screening of lasso peptide libraries for new functions. PMID:26492187

  5. Predicting protein-peptide interactions from scratch

    NASA Astrophysics Data System (ADS)

    Yan, Chengfei; Xu, Xianjin; Zou, Xiaoqin; Zou lab Team

    Protein-peptide interactions play an important role in many cellular processes. The ability to predict protein-peptide complex structures is valuable for mechanistic investigation and therapeutic development. Due to the high flexibility of peptides and lack of templates for homologous modeling, predicting protein-peptide complex structures is extremely challenging. Recently, we have developed a novel docking framework for protein-peptide structure prediction. Specifically, given the sequence of a peptide and a 3D structure of the protein, initial conformations of the peptide are built through protein threading. Then, the peptide is globally and flexibly docked onto the protein using a novel iterative approach. Finally, the sampled modes are scored and ranked by a statistical potential-based energy scoring function that was derived for protein-peptide interactions from statistical mechanics principles. Our docking methodology has been tested on the Peptidb database and compared with other protein-peptide docking methods. Systematic analysis shows significantly improved results compared to the performances of the existing methods. Our method is computationally efficient and suitable for large-scale applications. Nsf CAREER Award 0953839 (XZ) NIH R01GM109980 (XZ).

  6. Stability of peptide drugs in the colon.

    PubMed

    Wang, Jie; Yadav, Vipul; Smart, Alice L; Tajiri, Shinichiro; Basit, Abdul W

    2015-10-12

    This study was the first to investigate the colonic stability of 17 peptide molecules (insulin, calcitonin, glucagon, secretin, somatostatin, desmopressin, oxytocin, Arg-vasopressin, octreotide, ciclosporin, leuprolide, nafarelin, buserelin, histrelin, [D-Ser(4)]-gonadorelin, deslorelin, and goserelin) in a model of the large intestine using mixed human faecal bacteria. Of these, the larger peptides - insulin, calcitonin, somatostatin, glucagon and secretin - were metabolized rapidly, with complete degradation observed within 5 min. In contrast, a number of the smaller peptides - Arg-vasopressin, desmopressin, oxytocin, gonadorelin, goserelin, buserelin, leuprolide, nafarelin and deslorelin - degraded more slowly, while octreotide, histrelin and ciclosporin were seen to be more stable as compared to the other small peptides under the same conditions. Peptide degradation rate was directly correlated to peptide lipophilicity (logP); those peptides with a higher logP were more stable in the colonic model (R(2)=0.94). In the absence of human faecal bacteria, all peptides were stable. This study highlights the impact of the colonic environment - in particular, the gut microbiota - on the metabolism of peptide drugs, and identifies potential peptide candidates for drug delivery to the colon. PMID:26111980

  7. Peptide agonists of the thrombopoietin receptor.

    PubMed

    Dower, W J; Cwirla, S E; Balasubramanian, P; Schatz, P J; Baccanari, D P; Barrett, R W

    1998-01-01

    We have screened a variety of L-amino acid peptide libraries against the extracellular domain of the human thrombopoietin (HuTPO) receptor, c-Mpl. A large number of peptide ligands were recovered and categorized into two families. Peptides from each family compete with the binding of HuTPO and with the binding of peptides from the other familiy. Representative peptides were synthesized and found to activate the full-length HuTPO receptor expressed in Ba/F3 cells to promote proliferation. These peptide families show no apparent homology to the primary sequence of TPO. We have focused our optimization efforts on one of the peptides, a linear 14-mer (IEGPTLRQWLAARA) with an IC50 of 2 nM in a competition binding assay and an EC50 of 400 nM in the proliferation assay. In order to enhance the potency of the compound, we constructed dimeric peptides by linking the carboxy-termini of the 14-mers to a lysine branch. These molecules exhibited slightly higher affinity (0.5 nM) and greatly increased potency (0.1 nM). The EC50 of the dimeric peptide was equivalent to that of the 332 aa form of baculovirus-expressed recombinant HuTPO. As previously shown for the erythropoietin-mimetic peptides, the TPO-mimetic peptides probably activate the TPO receptor by binding and inducing receptor dimerization. This supposition is supported by the observation that covalent dimerization of the peptide enhances its potency by 4,000-fold over that of the monomer. The peptide dimer is also active in stimulating in vitro proliferation of progenitors and maturation of megakaryocytes from human bone marrow, and in promoting an increase in platelet count when administered to normal mice. PMID:11012174

  8. Human Antimicrobial Peptides and Proteins

    PubMed Central

    Wang, Guangshun

    2014-01-01

    As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between −3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32) can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized medicine to

  9. Synthesis of peptide .alpha.-thioesters

    DOEpatents

    Camarero, Julio A.; Mitchell, Alexander R.; De Yoreo, James J.

    2008-08-19

    Disclosed herein is a new method for the solid phase peptide synthesis (SPPS) of C-terminal peptide .alpha. thioesters using Fmoc/t-Bu chemistry. This method is based on the use of an aryl hydrazine linker, which is totally stable to conditions required for Fmoc-SPPS. When the peptide synthesis has been completed, activation of the linker is achieved by mild oxidation. The oxidation step converts the acyl-hydrazine group into a highly reactive acyl-diazene intermediate which reacts with an .alpha.-amino acid alkylthioester (H-AA-SR) to yield the corresponding peptide .alpha.-thioester in good yield. A variety of peptide thioesters, cyclic peptides and a fully functional Src homology 3 (SH3) protein domain have been successfully prepared.

  10. Molecular imaging probes derived from natural peptides.

    PubMed

    Charron, C L; Hickey, J L; Nsiama, T K; Cruickshank, D R; Turnbull, W L; Luyt, L G

    2016-06-01

    Covering: up to the end of 2015.Peptides are naturally occurring compounds that play an important role in all living systems and are responsible for a range of essential functions. Peptide receptors have been implicated in disease states such as oncology, metabolic disorders and cardiovascular disease. Therefore, natural peptides have been exploited as diagnostic and therapeutic agents due to the unique target specificity for their endogenous receptors. This review discusses a variety of natural peptides highlighting their discovery, endogenous receptors, as well as their derivatization to create molecular imaging agents, with an emphasis on the design of radiolabelled peptides. This review also highlights methods for discovering new and novel peptides when knowledge of specific targets and endogenous ligands are not available. PMID:26911790

  11. Peptide YY receptors in the brain

    SciTech Connect

    Inui, A.; Oya, M.; Okita, M.; Inoue, T.; Sakatani, N.; Morioka, H.; Shii, K.; Yokono, K.; Mizuno, N.; Baba, S.

    1988-01-15

    Radiolabelled ligand binding studies demonstrated that specific receptors for peptide YY are present in the porcine as well as the canine brains. Peptide YY was bound to brain tissue membranes via high-affinity (dissociation constant, 1.39 X 10(-10)M) and low-affinity (dissociation constant, 3.72 X 10(-8)M) components. The binding sites showed a high specificity for peptide YY and neuropeptide Y, but not for pancreatic polypeptide or structurally unrelated peptides. The specific activity of peptide YY binding was highest in the hippocampus, followed by the pituitary gland, the hypothalamus, and the amygdala of the porcine brain, this pattern being similarly observed in the canine brain. The results suggest that peptide YY and neuropeptide Y may regulate the function of these regions of the brain through interaction with a common receptor site.

  12. Use of Galerina marginata genes and proteins for peptide production

    DOEpatents

    Hallen-Adams, Heather E.; Scott-Craig, John S.; Walton, Jonathan D.; Luo, Hong

    2016-03-01

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptides and cyclic peptide production in mushrooms. In particular, the present invention relates to using genes and proteins from Galerina species encoding peptides specifically relating to amatoxins in addition to proteins involved with processing cyclic peptide toxins. In a preferred embodiment, the present invention also relates to methods for making small peptides and small cyclic peptides including peptides similar to amanitin. Further, the present inventions relate to providing kits for making small peptides.

  13. Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides

    PubMed Central

    Mulder, Kelly C. L.; Lima, Loiane A.; Miranda, Vivian J.; Dias, Simoni C.; Franco, Octávio L.

    2013-01-01

    Cationic antimicrobial peptides (AMPs) and host defense peptides (HDPs) show vast potential as peptide-based drugs. Great effort has been made in order to exploit their mechanisms of action, aiming to identify their targets as well as to enhance their activity and bioavailability. In this review, we will focus on both naturally occurring and designed antiviral and antitumor cationic peptides, including those here called promiscuous, in which multiple targets are associated with a single peptide structure. Emphasis will be given to their biochemical features, selectivity against extra targets, and molecular mechanisms. Peptides which possess antitumor activity against different cancer cell lines will be discussed, as well as peptides which inhibit virus replication, focusing on their applications for human health, animal health and agriculture, and their potential as new therapeutic drugs. Moreover, the current scenario for production and the use of nanotechnology as delivery tool for both classes of cationic peptides, as well as the perspectives on improving them is considered. PMID:24198814

  14. Screening peptide array library for the identification of cancer cell-binding peptides.

    PubMed

    Kaur, Kamaljit; Ahmed, Sahar; Soudy, Rania; Azmi, Sarfuddin

    2015-01-01

    The identification of cancer cell-specific ligands is a key requirement for the targeted delivery of chemotherapeutic agents. Usually phage display system is employed to discover cancer-specific peptides through a biopanning process. Synthetic peptide array libraries can be used as a complementary method to phage display for screening and identifying cancer cell-specific ligands. Here, we describe a peptide array-whole cell binding assay to identify cancer cell-specific peptides. A peptide array library based on a lead dodecapeptide, p160, is synthesized on a functionalized cellulose membrane using solid phase chemistry and a robotic synthesizer. The relative binding affinity of the peptide library is evaluated by incubating the library with fluorescently labeled cancerous or non-cancerous cells. Thereby the assay allows picking peptides that show selective and high binding to cancerous cells. These peptides represent potential candidates for use in cancer-targeted drug delivery, imaging, and diagnosis. PMID:25616337

  15. Salt-resistant short antimicrobial peptides.

    PubMed

    Mohanram, Harini; Bhattacharjya, Surajit

    2016-05-01

    Antimicrobial peptides (AMPs) are promising leads for the development of antibiotics against drug resistant bacterial pathogens. However, in vivo applications of AMPs remain obscure due to salt and serum mediated inactivation. The high cost of chemical synthesis of AMPs also impedes potential clinical application. Consequently, short AMPs resistant toward salt and serum inactivation are desirable for the development of peptide antibiotics. In this work, we designed a 12-residue amphipathic helical peptide RR12 (R-R-L-I-R-L-I-L-R-L-L-R-amide) and two Trp containing analogs of RR12 namely RR12Wpolar (R-R-L-I-W-L-I-L-R-L-L-R-amide), and RR12Whydro (R-R-L-I-R-L-W-L-R-L-L-R-amide). Designed peptides demonstrated potent antibacterial activity; MIC ranging from 2 to 8 μM, in the presence of sodium chloride (150 mM and 300 mM). Antibacterial activity of these peptides was also detected in the presence of human serum. Designed peptides, in particular RR12 and RR12Whydro, were only poorly hemolytic. As a mode of action; these peptides demonstrated efficient permeabilization of bacterial cell membrane and lysis of cell structure. We further investigated interactions of the designed peptides with lipopolysaccharide (LPS), the major component of the outer membrane permeability barrier of Gram-negative bacteria. Designed peptides adopted helical conformations in complex with LPS. Binding of peptides with LPS has yielded dissociation the aggregated structures of LPS. Collectively, these designed peptides hold ability to be developed for salt-resistant antimicrobial compounds. Most importantly, current work provides insights for designing salt-resistant antimicrobial peptides. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 345-356, 2016. PMID:26849911

  16. [Progress on parasiticidal activity of anitimicrobial peptides].

    PubMed

    Liu, Ze-hua; Zhao, Jun-long

    2014-10-01

    Antimicrobial peptides are a kind of gene encoded, ribosome synthesized, small molecular polypeptides that have high efficiency, wide antibacterial spectrum, and low immunogenicity. Many studies have indicated that antimicrobial peptides can inhibit the growth of parasites or even kill them. This paper reviews the research progress on parasiticidal activity of the antimicrobial peptides in recent years, and presents the problems in the research. PMID:25726604

  17. Turning peptides in comb silicone polymers.

    PubMed

    Jebors, Said; Pinese, Coline; Nottelet, Benjamin; Parra, Karine; Amblard, Muriel; Mehdi, Ahmad; Martinez, Jean; Subra, Gilles

    2015-03-01

    We have recently reported on a new class of silicone-peptide' biopolymers obtained by polymerization of di-functionalized chlorodimethylsilyl hybrid peptides. Herein, we describe a related strategy based on dichloromethylsilane-derived peptides, which yield novel polymers with a polysiloxane backbone, comparable with a silicone-bearing pendent peptide chains. Interestingly, polymerization is chemoselective toward amino acids side-chains and proceeds in a single step in very mild conditions (neutral pH, water, and room temperature). As potential application, a cationic sequence was polymerized and used for antibacterial coating. PMID:25688748

  18. HPLC analysis and purification of peptides.

    PubMed

    Mant, Colin T; Chen, Yuxin; Yan, Zhe; Popa, Traian V; Kovacs, James M; Mills, Janine B; Tripet, Brian P; Hodges, Robert S

    2007-01-01

    High-performance liquid chromatography (HPLC) has proved extremely versatile over the past 25 yr for the isolation and purification of peptides varying widely in their sources, quantity and complexity. This article covers the major modes of HPLC utilized for peptides (size-exclusion, ion-exchange, and reversed-phase), as well as demonstrating the potential of a novel mixed-mode hydrophilic interaction/cation-exchange approach developed in this laboratory. In addition to the value of these HPLC modes for peptide separations, the value of various HPLC techniques for structural characterization of peptides and proteins will be addressed, e.g., assessment of oligomerization state of peptides/proteins by size-exclusion chromatography and monitoring the hydrophilicity/hydrophobicity of amphipathic alpha-helical peptides, a vital precursor for the development of novel antimicrobial peptides. The value of capillary electrophoresis for peptide separations is also demonstrated. Preparative reversed-phase chromatography purification protocols for sample loads of up to 200 mg on analytical columns and instrumentation are introduced for both peptides and recombinant proteins. PMID:18604941

  19. APD2: the updated antimicrobial peptide database and its application in peptide design

    PubMed Central

    Wang, Guangshun; Li, Xia; Wang, Zhe

    2009-01-01

    The antimicrobial peptide database (APD, http://aps.unmc.edu/AP/main.php) has been updated and expanded. It now hosts 1228 entries with 65 anticancer, 76 antiviral (53 anti-HIV), 327 antifungal and 944 antibacterial peptides. The second version of our database (APD2) allows users to search peptide families (e.g. bacteriocins, cyclotides, or defensins), peptide sources (e.g. fish, frogs or chicken), post-translationally modified peptides (e.g. amidation, oxidation, lipidation, glycosylation or d-amino acids), and peptide binding targets (e.g. membranes, proteins, DNA/RNA, LPS or sugars). Statistical analyses reveal that the frequently used amino acid residues (>10%) are Ala and Gly in bacterial peptides, Cys and Gly in plant peptides, Ala, Gly and Lys in insect peptides, and Leu, Ala, Gly and Lys in amphibian peptides. Using frequently occurring residues, we demonstrate database-aided peptide design in different ways. Among the three peptides designed, GLK-19 showed a higher activity against Escherichia coli than human LL-37. PMID:18957441

  20. Protein-templated peptide ligation.

    PubMed

    Brauckhoff, Nicolas; Hahne, Gernot; Yeh, Johannes T-H; Grossmann, Tom N

    2014-04-22

    Molecular templates bind particular reactants, thereby increasing their effective concentrations and accelerating the corresponding reaction. This concept has been successfully applied to a number of chemical problems with a strong focus on nucleic acid templated reactions. We present the first protein-templated reaction that allows N-terminal linkage of two peptides. In the presence of a protein template, ligation reactions were accelerated by more than three orders of magnitude. The templated reaction is highly selective and proved its robustness in a protein-labeling reaction that was performed in crude cell lysate. PMID:24644125

  1. PGx: Putting Peptides to BED

    PubMed Central

    2015-01-01

    Every molecular player in the cast of biology’s central dogma is being sequenced and quantified with increasing ease and coverage. To bring the resulting genomic, transcriptomic, and proteomic data sets into coherence, tools must be developed that do not constrain data acquisition and analytics in any way but rather provide simple links across previously acquired data sets with minimal preprocessing and hassle. Here we present such a tool: PGx, which supports proteogenomic integration of mass spectrometry proteomics data with next-generation sequencing by mapping identified peptides onto their putative genomic coordinates. PMID:26638927

  2. PGx: Putting Peptides to BED.

    PubMed

    Askenazi, Manor; Ruggles, Kelly V; Fenyö, David

    2016-03-01

    Every molecular player in the cast of biology's central dogma is being sequenced and quantified with increasing ease and coverage. To bring the resulting genomic, transcriptomic, and proteomic data sets into coherence, tools must be developed that do not constrain data acquisition and analytics in any way but rather provide simple links across previously acquired data sets with minimal preprocessing and hassle. Here we present such a tool: PGx, which supports proteogenomic integration of mass spectrometry proteomics data with next-generation sequencing by mapping identified peptides onto their putative genomic coordinates. PMID:26638927

  3. Peptide Membranes in Chemical Evolution*

    PubMed Central

    Childers, W. Seth; Ni, Rong; Mehta, Anil K.; Lynn, David G.

    2009-01-01

    SUMMARY Simple surfactants achieve remarkable long-range order in aqueous environments. This organizing potential is seen most dramatically in biological membranes where phospholipid assemblies both define cell boundaries and provide a ubiquitous structural scaffold for controlling cellular chemistry. Here we consider simple peptides that also spontaneously assemble into exceptionally ordered scaffolds, and review early data suggesting that these structures maintain the functional diversity of proteins. We argue that such scaffolds can achieve the required molecular order and catalytic agility for the emergence of chemical evolution. PMID:19879180

  4. Natriuretic peptides and their therapeutic potential.

    PubMed

    Cho, Y; Somer, B G; Amatya, A

    1999-01-01

    Natriuretic peptides are a group of naturally occurring substances that act in the body to oppose the activity of the renin-angiotensin system. There are three major natriuretic peptides: atrial natriuretic peptide (ANP), which is synthesized in the atria; brain natriuretic peptide (BNP), which is synthesized in the ventricles; and C-type natriuretic peptide (CNP), which is synthesized in the brain. Both ANP and BNP are released in response to atrial and ventricular stretch, respectively, and will cause vasorelaxation, inhibition of aldosterone secretion in the adrenal cortex, and inhibition of renin secretion in the kidney. Both ANP and BNP will cause natriuresis and a reduction in intravascular volume, effects amplified by antagonism of antidiuretic hormone (ADH). The physiologic effects of CNP are different from those of ANP and BNP. CNP has a hypotensive effect, but no significant diuretic or natriuretic actions. Three natriuretic peptide receptors (NPRs) have been described that have different binding capacities for ANP, BNP, and CNP. Removal of the natriuretic peptides from the circulation is affected mainly by binding to clearance receptors and enzymatic degradation in the circulation. Increased blood levels of natriuretic peptides have been found in certain disease states, suggesting a role in the pathophysiology of those diseases, including congestive heart failure (CHF), systemic hypertension, and acute myocardial infarction. The natriuretic peptides also serve as disease markers and indicators of prognosis in various cardiovascular conditions. The natriuretic peptides have been used in the treatment of disease, with the most experience with intravenous BNP in the treatment of CHF. Another pharmacologic approach being used is the inhibition of natriuretic peptide metabolism by neutral endopeptidase (NEP) inhibitor drugs. The NEP inhibitors are currently being investigated as treatments for CHF and systemic hypertension. PMID:11720638

  5. Combination Effects of Antimicrobial Peptides

    PubMed Central

    Yu, Guozhi; Baeder, Desiree Y.; Regoes, Roland R.

    2016-01-01

    Antimicrobial peptides (AMPs) are ancient and conserved across the tree of life. Their efficacy over evolutionary time has been largely attributed to their mechanisms of killing. Yet, the understanding of their pharmacodynamics both in vivo and in vitro is very limited. This is, however, crucial for applications of AMPs as drugs and also informs the understanding of the action of AMPs in natural immune systems. Here, we selected six different AMPs from different organisms to test their individual and combined effects in vitro. We analyzed their pharmacodynamics based on the Hill function and evaluated the interaction of combinations of two and three AMPs. Interactions of AMPs in our study were mostly synergistic, and three-AMP combinations displayed stronger synergism than two-AMP combinations. This suggests synergism to be a common phenomenon in AMP interaction. Additionally, AMPs displayed a sharp increase in killing within a narrow dose range, contrasting with those of antibiotics. We suggest that our results could lead a way toward better evaluation of AMP application in practice and shed some light on the evolutionary consequences of antimicrobial peptide interactions within the immune system of organisms. PMID:26729502

  6. Antimicrobial Properties of Amyloid Peptides

    PubMed Central

    Kagan, Bruce L.; Jang, Hyunbum; Capone, Ricardo; Arce, Fernando Teran; Ramachandran, Srinivasan; Lal, Ratnesh; Nussinov, Ruth

    2011-01-01

    More than two dozen clinical syndromes known as amyloid diseases are characterized by the buildup of extended insoluble fibrillar deposits in tissues. These amorphous Congo red staining deposits known as amyloids exhibit a characteristic green birefringence and cross-β structure. Substantial evidence implicates oligomeric intermediates of amyloids as toxic species in the pathogenesis of these chronic disease states. A growing body of data has suggested that these toxic species form ion channels in cellular membranes causing disruption of calcium homeostasis, membrane depolarization, energy drainage, and in some cases apoptosis. Amyloid peptide channels exhibit a number of common biological properties including the universal U-shape β-strand-turn-β-strand structure, irreversible and spontaneous insertion into membranes, production of large heterogeneous single-channel conductances, relatively poor ion selectivity, inhibition by Congo red, and channel blockade by zinc. Recent evidence has suggested that increased amounts of amyloids are not only toxic to its host target cells but also possess antimicrobial activity. Furthermore, at least one human antimicrobial peptide, protegrin-1, which kills microbes by a channel-forming mechanism, has been shown to possess the ability to form extended amyloid fibrils very similar to those of classic disease-forming amyloids. In this paper, we will review the reported antimicrobial properties of amyloids and the implications of these discoveries for our understanding of amyloid structure and function. PMID:22081976

  7. Secondary structure formation in peptide amphiphile micelles

    NASA Astrophysics Data System (ADS)

    Tirrell, Matthew

    2012-02-01

    Peptide amphiphiles (PAs) are capable of self-assembly into micelles for use in the targeted delivery of peptide therapeutics and diagnostics. PA micelles exhibit a structural resemblance to proteins by having folded bioactive peptides displayed on the exterior of a hydrophobic core. We have studied two factors that influence PA secondary structure in micellar assemblies: the length of the peptide headgroup and amino acids closest to the micelle core. Peptide length was systematically varied using a heptad repeat PA. For all PAs the addition of a C12 tail induced micellization and secondary structure. PAs with 9 amino acids formed beta-sheet interactions upon aggregation, whereas the 23 and 30 residue peptides were displayed in an apha-helical conformation. The 16 amino acid PA experienced a structural transition from helix to sheet, indicating that kinetics play a role in secondary structure formation. A p53 peptide was conjugated to a C16 tail via various linkers to study the effect of linker chemistry on PA headgroup conformation. With no linker the p53 headgroup was predominantly alpha helix and a four alanine linker drastically changed the structure of the peptide headgroup to beta-sheet, highlighting the importance of hydrogen boding potential near the micelle core.

  8. B-Type allatostatins and sex peptides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In many species, mating induces a number of behavioral changes in the female. For Drosophila melanogaster, the sex peptide (SP) has been identified as the main molecular factor behind these responses. Recently, the sex peptide receptor (SPR), a GPCR activated by SP has also been characterized as res...

  9. Engineered Adhesion Peptides for Improved Silicon Adsorption.

    PubMed

    Ramakrishnan, Sathish Kumar; Jebors, Said; Martin, Marta; Cloitre, Thierry; Agarwal, Vivechana; Mehdi, Ahmad; Martinez, Jean; Subra, Gilles; Gergely, Csilla

    2015-11-01

    Engineering peptides that present selective recognition and high affinity for a material is a major challenge for assembly-driven elaboration of complex systems with wide applications in the field of biomaterials, hard-tissue regeneration, and functional materials for therapeutics. Peptide-material interactions are of vital importance in natural processes but less exploited for the design of novel systems for practical applications because of our poor understanding of mechanisms underlying these interactions. Here, we present an approach based on the synthesis of several truncated peptides issued from a silicon-specific peptide recovered via phage display technology. We use the photonic response provided by porous silicon microcavities to evaluate the binding efficiency of 14 different peptide derivatives. We identify and engineer a short peptide sequence (SLVSHMQT), revealing the highest affinity for p(+)-Si. The molecular recognition behavior of the obtained peptide fragment can be revealed through mutations allowing identification of the preferential affinity of certain amino acids toward silicon. These results constitute an advance in both the engineering of peptides that reveal recognition properties for silicon and the understanding of biomolecule-material interactions. PMID:26440047

  10. Peptides and the blood-brain barrier.

    PubMed

    Banks, William A

    2015-10-01

    The demonstration that peptides and regulatory proteins can cross the blood-brain barrier (BBB) is one of the major contributions of Dr. Abba J. Kastin. He was the first to propose that peptides could cross the BBB, the first to show that an endogenous peptide did so, and the first to describe a saturable transport system at the BBB for peptides. His work shows that in crossing the BBB, peptides and regulatory proteins act as informational molecules, informing the brain of peripheral events. Brain-to-blood passage helps to control levels of peptides with the brain and can deliver information in the brain-to-blood direction. He showed that the transporters for peptides and proteins are not static, but respond to developmental and physiological changes and are affected by disease states. As such, the BBB is adaptive to the needs of the CNS, but when that adaption goes awry, the BBB can be a cause of disease. The mechanisms by which peptides and proteins cross the BBB offer opportunities for drug delivery of these substances or their analogs to the brain in the treatment of diseases of the central nervous system. PMID:25805003

  11. Constrained Peptides as Miniature Protein Structures

    PubMed Central

    Yin, Hang

    2012-01-01

    This paper discusses the recent developments of protein engineering using both covalent and noncovalent bonds to constrain peptides, forcing them into designed protein secondary structures. These constrained peptides subsequently can be used as peptidomimetics for biological functions such as regulations of protein-protein interactions. PMID:25969758

  12. Hydrophobic peptide auxotrophy in Salmonella typhimurium.

    PubMed Central

    Brãnes, L V; Somers, J M; Kay, W W

    1981-01-01

    The growth of a pleiotropic membrane mutant of Salmonella typhimurium with modified lipopolysaccharide composition was found to be strictly dependent on the peptone component of complex media. Nutritional Shiftdown into minimal media allowed growth for three to four generations. Of 20 commercial peptones, only enzymatic digests supported growth to varying degrees. Neither trace cations, amino acids, vitamins, carbohydrates, lipids, glutathione, polyamines, carbodimides, nor synthetic peptides stimulated growth; however, cells still metabolized carbohydrates, and amino acid transport systems were shown to be functional. A tryptic digest of casein was fractionated into four electrophoretically different peptide fractions of 1,000 to 1,200 molecular weight which supported growth to varying degrees. The best of these was further fractionated to two highly hydrophopic peptides. N-terminal modifications eliminated biological activity. Fluorescein-conjugated goat antibody to rabbit immunoglobulin G was used as a probe to detect antipeptide antibody-peptide complexes on membrane preparations. Cells grown on peptone distributed the peptide into both inner and outer membranes. The peptide could be removed with chaotropic agents, and cells had to be pregrown in peptone-containing media to bind the hydrophobic peptide. The gene (hyp) responsible for peptide auxotrophy was mapped at 44 to 45 units by conjugation. Images PMID:7024254

  13. Peptide Mass Fingerprinting of Egg White Proteins

    ERIC Educational Resources Information Center

    Alty, Lisa T.; LaRiviere, Frederick J.

    2016-01-01

    Use of advanced mass spectrometry techniques in the undergraduate setting has burgeoned in the past decade. However, relatively few undergraduate experiments examine the proteomics tools of protein digestion, peptide accurate mass determination, and database searching, also known as peptide mass fingerprinting. In this experiment, biochemistry…

  14. Peptide mimotopes of Mycobacterium tuberculosis carbohydrate immunodeterminants

    PubMed Central

    2004-01-01

    Cell-surface saccharides of Mycobacterium tuberculosis appear to be crucial factors in tuberculosis pathogenicity and could be useful antigens in tuberculosis immunodiagnosis. In the present study, we report the successful antigenic and immunogenic mimicry of mannose-containing cell-wall compounds of M. tuberculosis by dodecamer peptides identified by phage-display technology. Using a rabbit antiserum raised against M. tuberculosis cell-surface saccharides as a target for biopanning, peptides with three different consensus sequences were identified. Phage-displayed and chemically synthesized peptides bound to the anticarbohydrate antiserum. Rabbit antibodies elicited against the peptide QEPLMGTVPIRAGGGS recognize the mannosylated M. tuberculosis cell-wall antigens arabinomannan and lipoarabinomannan, and the glycosylated recombinant protein alanine/proline-rich antigen. Furthermore, antibodies were also able to react with mannan from Saccharomyces cerevisiae, but not with phosphatidylinositol dimannosides or arabinogalactan from mycobacteria. These results suggest that the immunogenic peptide mimics oligomannosidic epitopes. Interestingly, this report provides evidence that, in contrast with previously known carbohydrate mimotopes, no aromatic residues are necessary in a peptide sequence for mimicking unusual glycoconjugates synthesized by mycobacteria. The possible usefulness of the identified peptide mimotopes as surrogate reagents for immunodiagnosis and for the study of functional roles of the native non-peptide epitopes is discussed. PMID:15560754

  15. Superior Antifouling Performance of a Zwitterionic Peptide Compared to an Amphiphilic, Non-Ionic Peptide.

    PubMed

    Ye, Huijun; Wang, Libing; Huang, Renliang; Su, Rongxin; Liu, Boshi; Qi, Wei; He, Zhimin

    2015-10-14

    The aim of this study was to explore the influence of amphiphilic and zwitterionic structures on the resistance of protein adsorption to peptide self-assembled monolayers (SAMs) and gain insight into the associated antifouling mechanism. Two kinds of cysteine-terminated heptapeptides were studied. One peptide had alternating hydrophobic and hydrophilic residues with an amphiphilic sequence of CYSYSYS. The other peptide (CRERERE) was zwitterionic. Both peptides were covalently attached onto gold substrates via gold-thiol bond formation. Surface plasmon resonance analysis results showed that both peptide SAMs had ultralow or low protein adsorption amounts of 1.97-11.78 ng/cm2 in the presence of single proteins. The zwitterionic peptide showed relatively higher antifouling ability with single proteins and natural complex protein media. We performed molecular dynamics simulations to understand their respective antifouling behaviors. The results indicated that strong surface hydration of peptide SAMs contributes to fouling resistance by impeding interactions with proteins. Compared to the CYSYSYS peptide, more water molecules were predicted to form hydrogen-bonding interactions with the zwitterionic CRERERE peptide, which is in agreement with the antifouling test results. These findings reveal a clear relation between peptide structures and resistance to protein adsorption, facilitating the development of novel peptide-containing antifouling materials. PMID:26407144

  16. Delivery of oligonucleotides into mammalian cells by anionic peptides: comparison between monomeric and dimeric peptides.

    PubMed Central

    Freulon, I; Roche, A C; Monsigny, M; Mayer, R

    2001-01-01

    The use of antisense oligonucleotides as putative therapeutic agents is limited by their poor delivery into the cytosol and/or the nucleus because they are not able to efficiently cross lipid bilayers. To circumvent this pitfall, anionic amphipathic peptides derived from the influenza virus fusogenic peptide have been used to destabilize membranes in an acidic environment. In this paper, we compare the ability of a monomeric and a dimeric peptide to introduce oligonucleotides into the cytosol and nuclei of several types of cultured cells. Cells incubated at pH 6.2 or at a slightly lower pH in the presence of the monomeric peptide but not the dimeric peptide were efficiently permeabilized. The location of fluorescent derivatives of peptides and of oligonucleotides was assessed by confocal microscopy. Both the peptides and oligonucleotides remained entrapped in vesicular compartments at neutral pH; at acidic pH, oligonucleotides in the presence of the monomeric peptide were mainly in the nucleus, while in the presence of the dimeric peptide they co-localized with the peptide into vesicles. The data are interpreted on the basis of the spectroscopic behaviour of monomeric and dimeric peptides in relation to the environmental pH. PMID:11237872

  17. Peptide nanospheres self-assembled from a modified β-annulus peptide of Sesbania mosaic virus.

    PubMed

    Matsuura, Kazunori; Mizuguchi, Yusaku; Kimizuka, Nobuo

    2016-11-01

    A novel β-annulus peptide of Sesbania mosaic virus bearing an FKFE sequence at the C terminus was synthesized, and its self-assembling behavior in water was investigated. Dynamic light scattering and transmission electron microscopy showed that the β-annulus peptide bearing an FKFE sequence self-assembled into approximately 30 nm nanospheres in water at pH 3.8, whereas the β-annulus peptide without the FKFE sequence afforded only irregular aggregates. The peptide nanospheres possessed a definite critical aggregation concentration (CAC = 26 μM), above which the size of nanospheres were nearly unaffected by the peptide concentration. The formation of peptide nanospheres was significantly affected by pH; the peptide did not form any assemblies at pH 2.2, whereas larger aggregates were formed at pH 6.4-11.6. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 470-475, 2016. PMID:26573103

  18. Beta-peptide bundles with fluorous cores.

    PubMed

    Molski, Matthew A; Goodman, Jessica L; Craig, Cody J; Meng, He; Kumar, Krishna; Schepartz, Alanna

    2010-03-24

    We reported recently that certain beta-peptides self-assemble spontaneously into cooperatively folded bundles whose kinetic and thermodynamic metrics mirror those of natural helix bundle proteins. The structures of four such beta-peptide bundles are known in atomic detail. These structures reveal a solvent-sequestered, hydrophobic core stabilized by a unique arrangement of leucine side chains and backbone methylene groups. Here we report that this hydrophobic core can be re-engineered to contain a fluorous subdomain while maintaining the characteristic beta-peptide bundle fold. Like alpha-helical bundles possessing fluorous cores, fluorous beta-peptide bundles are stabilized relative to hydrocarbon analogues and undergo cold denaturation. Beta-peptide bundles with fluorous cores represent the essential first step in the synthesis of orthogonal protein assemblies that can sequester selectively in an interstitial membrane environment. PMID:20196598

  19. Peptide-Lipid Interactions: Experiments and Applications

    PubMed Central

    Galdiero, Stefania; Falanga, Annarita; Cantisani, Marco; Vitiello, Mariateresa; Morelli, Giancarlo; Galdiero, Massimiliano

    2013-01-01

    The interactions between peptides and lipids are of fundamental importance in the functioning of numerous membrane-mediated cellular processes including antimicrobial peptide action, hormone-receptor interactions, drug bioavailability across the blood-brain barrier and viral fusion processes. Moreover, a major goal of modern biotechnology is obtaining new potent pharmaceutical agents whose biological action is dependent on the binding of peptides to lipid-bilayers. Several issues need to be addressed such as secondary structure, orientation, oligomerization and localization inside the membrane. At the same time, the structural effects which the peptides cause on the lipid bilayer are important for the interactions and need to be elucidated. The structural characterization of membrane active peptides in membranes is a harsh experimental challenge. It is in fact accepted that no single experimental technique can give a complete structural picture of the interaction, but rather a combination of different techniques is necessary. PMID:24036440

  20. Supramolecular Nanofibers of Peptide Amphiphiles for Medicine

    PubMed Central

    Webber, Matthew J.; Berns, Eric J.; Stupp, Samuel I.

    2014-01-01

    Peptide nanostructures are an exciting class of supramolecular systems that can be designed for novel therapies with great potential in advanced medicine. This paper reviews progress on nanostructures based on peptide amphiphiles capable of forming one-dimensional assemblies that emulate in structure the nanofibers present in extracellular matrices. These systems are highly tunable using supramolecular chemistry, and can be designed to signal cells directly with bioactive peptides. Peptide amphiphile nanofibers can also be used to multiplex functions through co-assembly and designed to deliver proteins, nucleic acids, drugs, or cells. We illustrate here the functionality of these systems describing their use in regenerative medicine of bone, cartilage, the nervous system, the cardiovascular system, and other tissues. In addition, we highlight recent work on the use of peptide amphiphile assemblies to create hierarchical biomimetic structures with order beyond the nanoscale, and also discuss the future prospects of these supramolecular systems. PMID:24532851

  1. A peptide's perspective of water dynamics.

    PubMed

    Ghosh, Ayanjeet; Hochstrasser, Robin M

    2011-11-18

    This Perspective is focused on amide groups of peptides interacting with water. The 2D IR spectroscopy has already enabled structural aspects of the peptide backbone to be determined through its ability to measure the coupling between different amide-I modes. Here we describe why nonlinear IR is emerging as the method of choice to examine the fast components of the water dynamics near peptides and how isotopically edited peptide links can be used to probe the local water at a residue level in proteins. This type of research necessarily involves an intimate mix of theory and experiment. The description of the results is underpinned by relatively well established quantum-statistical theories that describe the important manifestations of peptide vibrational frequency fluctuations. PMID:22844177

  2. Chemical Reactions Directed Peptide Self-Assembly

    PubMed Central

    Rasale, Dnyaneshwar B.; Das, Apurba K.

    2015-01-01

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly. PMID:25984603

  3. Insights into How Cyclic Peptides Switch Conformations.

    PubMed

    McHugh, Sean M; Rogers, Julia R; Yu, Hongtao; Lin, Yu-Shan

    2016-05-10

    Cyclic peptides have recently emerged as promising modulators of protein-protein interactions. However, it is currently highly difficult to predict the structures of cyclic peptides owing to their rugged conformational free energy landscape, which prevents sampling of all thermodynamically relevant conformations. In this article, we first investigate how a relatively flexible cyclic hexapeptide switches conformations. It is found that, although the circular geometry of small cyclic peptides of size 6-8 may require rare, coherent dihedral changes to sample a new conformation, the changes are rather local, involving simultaneous changes of ϕi and ψi or ψi and ϕi+1. The understanding of how these cyclic peptides switch conformations enables the use of metadynamics simulations with reaction coordinates specifically targeting such coupled two-dihedral changes to effectively sample cyclic peptide conformational space. PMID:27031286

  4. Postformulation Peptide Drug Loading of Nanostructures

    PubMed Central

    Pan, Hua; Marsh, Jon N.; Christenson, Eric T.; Soman, Neelesh R.; Ivashyna, Olena; Lanza, Gregory M.; Schlesinger, Paul H.; Wickline, Samuel A.

    2013-01-01

    Cytolytic peptides have commanded attention for their anticancer potential because the membrane-disrupting function that produces cell death is less likely to be overcome by resistant mutations. Congruently, peptides that are involved in molecular recognition and biological activities become attractive therapeutic candidates because of their high specificity, better affinity, reduced immunogenicity, and reduced off target toxicity. However, problems of inadequate delivery, rapid deactivation in vivo, and poor bioavailability have limited clinical application. Therefore, peptide drug development for clinical use requires an appropriate combination of an effective therapeutic peptide and a robust delivery methodology. In this chapter, we describe methods for the postformulation insertion of peptide drugs into lipidic nanostructures, the physical characterization of peptide–nanostructure complexes, and the evaluation of their therapeutic effectiveness both in vitro and in vivo. PMID:22449919

  5. Novel African Trypanocidal Agents: Membrane Rigidifying Peptides

    PubMed Central

    Harrington, John M.; Scelsi, Chris; Hartel, Andreas; Jones, Nicola G.; Engstler, Markus; Capewell, Paul; MacLeod, Annette; Hajduk, Stephen

    2012-01-01

    The bloodstream developmental forms of pathogenic African trypanosomes are uniquely susceptible to killing by small hydrophobic peptides. Trypanocidal activity is conferred by peptide hydrophobicity and charge distribution and results from increased rigidity of the plasma membrane. Structural analysis of lipid-associated peptide suggests a mechanism of phospholipid clamping in which an internal hydrophobic bulge anchors the peptide in the membrane and positively charged moieties at the termini coordinate phosphates of the polar lipid headgroups. This mechanism reveals a necessary phenotype in bloodstream form African trypanosomes, high membrane fluidity, and we suggest that targeting the plasma membrane lipid bilayer as a whole may be a novel strategy for the development of new pharmaceutical agents. Additionally, the peptides we have described may be valuable tools for probing the biosynthetic machinery responsible for the unique composition and characteristics of African trypanosome plasma membranes. PMID:22970207

  6. The natriuretic peptides and cardiometabolic health

    PubMed Central

    Gupta, Deepak K.; Wang, Thomas J.

    2016-01-01

    Natriuretic peptides are cardiac-derived hormones with a range of protective functions, including natriuresis, diuresis, vasodilation, lusitropy, lipolysis, weight loss, and improved insulin sensitivity. The actions are mediated through membrane bound guanylyl cyclases that lead to production of the intracellular second-messenger cGMP. A growing body of evidence demonstrates that genetic and acquired deficiencies of the natriuretic peptide system can promote hypertension, cardiac hypertrophy, obesity, diabetes mellitus, the metabolic syndrome, and heart failure. Clinically, natriuretic peptides are robust diagnostic and prognostic markers and augmenting natriuretic peptides is a target for therapeutic strategies in cardio-metabolic disease. This review will summarize current understanding and highlight novel aspects of natriuretic peptide biology. PMID:26103984

  7. A peptide's perspective of water dynamics

    PubMed Central

    Ghosh, Ayanjeet; Hochstrasser, Robin M.

    2012-01-01

    This Perspective is focused on amide groups of peptides interacting with water. The 2D IR spectroscopy has already enabled structural aspects of the peptide backbone to be determined through its ability to measure the coupling between different amide-I modes. Here we describe why nonlinear IR is emerging as the method of choice to examine the fast components of the water dynamics near peptides and how isotopically edited peptide links can be used to probe the local water at a residue level in proteins. This type of research necessarily involves an intimate mix of theory and experiment. The description of the results is underpinned by relatively well established quantum-statistical theories that describe the important manifestations of peptide vibrational frequency fluctuations. PMID:22844177

  8. Intracellular signalling by C-peptide.

    PubMed

    Hills, Claire E; Brunskill, Nigel J

    2008-01-01

    C-peptide, a cleavage product of the proinsulin molecule, has long been regarded as biologically inert, serving merely as a surrogate marker for insulin release. Recent findings demonstrate both a physiological and protective role of C-peptide when administered to individuals with type I diabetes. Data indicate that C-peptide appears to bind in nanomolar concentrations to a cell surface receptor which is most likely to be G-protein coupled. Binding of C-peptide initiates multiple cellular effects, evoking a rise in intracellular calcium, increased PI-3-kinase activity, stimulation of the Na(+)/K(+) ATPase, increased eNOS transcription, and activation of the MAPK signalling pathway. These cell signalling effects have been studied in multiple cell types from multiple tissues. Overall these observations raise the possibility that C-peptide may serve as a potential therapeutic agent for the treatment or prevention of long-term complications associated with diabetes. PMID:18382618

  9. Drug development of intranasally delivered peptides.

    PubMed

    Campbell, Catherine; Morimoto, Bruce H; Nenciu, Daniela; Fox, Anthony W

    2012-04-01

    Intranasal drug delivery has attracted increasing attention as a noninvasive route of administration for therapeutic proteins and peptides. The delivery of therapeutic peptides through the nasal route provides an alternative to intravenous or subcutaneous injections. This review highlights the drug-development considerations unique to nasal therapeutics and discusses some of the factors and strategies that affect and can improve nasal absorption of peptides. The selectivity and good safety profile typical of peptide therapeutics, along with the dose limitation for intranasal administration, can provide challenges in drug development. Therefore, nasal peptide therapeutics often require special considerations in the nonclinical safety evaluations, such as determining drug exposure in the context of the maximum feasible dose in order to adequately prepare nasal products for clinical studies. PMID:22834082

  10. A Candida albicans PeptideAtlas

    PubMed Central

    Vialas, Vital; Sun, Zhi; Penha, Carla Verónica Loureiro y; Carrascal, Montserrat; Abian, Joaquin; Monteoliva, Lucía; Deutsch, Eric W.; Aebersold, Ruedi; Moritz, Robert L.; Gil, Concha

    2013-01-01

    Candida albicans public proteomic data sets, though growing steadily in the last few years, still have a very limited presence in online repositories. We report here the creation of a C. albicans PeptideAtlas comprising near 22000 distinct peptides at a 0.24 % False Discovery Rate (FDR) that account for over 2500 canonical proteins at a 1.2% FDR. Based on data from 16 experiments, we attained coverage of 41% of the C.albicans open reading frame sequences (ORFs) in the database used for the searches. This PeptideAtlas provides several useful features, including comprehensive protein and peptide-centered search capabilities and visualization tools that establish a solid basis for the study of basic biological mechanisms key to virulence and pathogenesis such as dimorphism, adherence, and apoptosis. Further, it is a valuable resource for the selection of candidate proteotypic peptides for targeted proteomic experiments via selected reaction monitoring (SRM) or SWATH-MS. PMID:23811049

  11. Design of Asymmetric Peptide Bilayer Membranes.

    PubMed

    Li, Sha; Mehta, Anil K; Sidorov, Anton N; Orlando, Thomas M; Jiang, Zhigang; Anthony, Neil R; Lynn, David G

    2016-03-16

    Energetic insights emerging from the structural characterization of peptide cross-β assemblies have enabled the design and construction of robust asymmetric bilayer peptide membranes. Two peptides differing only in their N-terminal residue, phosphotyrosine vs lysine, coassemble as stacks of antiparallel β-sheets with precisely patterned charged lattices stabilizing the bilayer leaflet interface. Either homogeneous or mixed leaflet composition is possible, and both create nanotubes with dense negative external and positive internal solvent exposed surfaces. Cross-seeding peptide solutions with a preassembled peptide nanotube seed leads to domains of different leaflet architecture within single nanotubes. Architectural control over these cross-β assemblies, both across the bilayer membrane and along the nanotube length, provides access to highly ordered asymmetric membranes for the further construction of functional mesoscale assemblies. PMID:26942690

  12. Novel bifunctional natriuretic peptides as potential therapeutics.

    PubMed

    Dickey, Deborah M; Burnett, John C; Potter, Lincoln R

    2008-12-12

    Synthetic atrial natriuretic peptide (carperitide) and B-type natriuretic peptide (BNP; nesiritide) are used to treat congestive heart failure. However, despite beneficial cardiac unloading properties, reductions in renal perfusion pressures limit their clinical effectiveness. Recently, CD-NP, a chimeric peptide composed of C-type natriuretic peptide (CNP) fused to the C-terminal tail of Dendroaspis natriuretic peptide (DNP), was shown to be more glomerular filtration rate-enhancing than BNP in dogs. However, the molecular basis for the increased responsiveness was not determined. Here, we show that the DNP tail has a striking effect on CNP, converting it from a non-agonist to a partial agonist of natriuretic peptide receptor (NPR)-A while maintaining the ability to activate NPR-B. This effect is specific for human receptors because CD-NP was only a slightly better activator of rat NPR-A due to the promiscuous nature of CNP in this species. Interesting, the DNP tail alone had no effect on any NPR even though it is effective in vivo. To further increase the potency of CD-NP for NPR-A, we converted two different triplet sequences within the CNP ring to their corresponding residues in BNP. Both variants demonstrated increased affinity and full agonist activity for NPR-A, whereas one was as potent as any NPR-A activator known. In contrast to a previous report, we found that DNP binds the natriuretic peptide clearance receptor (NPR-C). However, none of the chimeric peptides bound NPR-C with significantly higher affinity than endogenous ligands. We suggest that bifunctional chimeric peptides represent a new generation of natriuretic peptide therapeutics. PMID:18940797

  13. Novel Bifunctional Natriuretic Peptides as Potential Therapeutics*

    PubMed Central

    Dickey, Deborah M.; Burnett, John C.; Potter, Lincoln R.

    2008-01-01

    Synthetic atrial natriuretic peptide (carperitide) and B-type natriuretic peptide (BNP; nesiritide) are used to treat congestive heart failure. However, despite beneficial cardiac unloading properties, reductions in renal perfusion pressures limit their clinical effectiveness. Recently, CD-NP, a chimeric peptide composed of C-type natriuretic peptide (CNP) fused to the C-terminal tail of Dendroaspis natriuretic peptide (DNP), was shown to be more glomerular filtration rate-enhancing than BNP in dogs. However, the molecular basis for the increased responsiveness was not determined. Here, we show that the DNP tail has a striking effect on CNP, converting it from a non-agonist to a partial agonist of natriuretic peptide receptor (NPR)-A while maintaining the ability to activate NPR-B. This effect is specific for human receptors because CD-NP was only a slightly better activator of rat NPR-A due to the promiscuous nature of CNP in this species. Interesting, the DNP tail alone had no effect on any NPR even though it is effective in vivo. To further increase the potency of CD-NP for NPR-A, we converted two different triplet sequences within the CNP ring to their corresponding residues in BNP. Both variants demonstrated increased affinity and full agonist activity for NPR-A, whereas one was as potent as any NPR-A activator known. In contrast to a previous report, we found that DNP binds the natriuretic peptide clearance receptor (NPR-C). However, none of the chimeric peptides bound NPR-C with significantly higher affinity than endogenous ligands. We suggest that bifunctional chimeric peptides represent a new generation of natriuretic peptide therapeutics. PMID:18940797

  14. Modelling water molecules inside cyclic peptide nanotubes

    NASA Astrophysics Data System (ADS)

    Tiangtrong, Prangsai; Thamwattana, Ngamta; Baowan, Duangkamon

    2016-03-01

    Cyclic peptide nanotubes occur during the self-assembly process of cyclic peptides. Due to the ease of synthesis and ability to control the properties of outer surface and inner diameter by manipulating the functional side chains and the number of amino acids, cyclic peptide nanotubes have attracted much interest from many research areas. A potential application of peptide nanotubes is their use as artificial transmembrane channels for transporting ions, biomolecules and waters into cells. Here, we use the Lennard-Jones potential and a continuum approach to study the interaction of a water molecule in a cyclo[(- D-Ala- L-Ala)_4-] peptide nanotube. Assuming that each unit of a nanotube comprises an inner and an outer tube and that a water molecule is made up of a sphere of two hydrogen atoms uniformly distributed over its surface and a single oxygen atom at the centre, we determine analytically the interaction energy of the water molecule and the peptide nanotube. Using this energy, we find that, independent of the number of peptide units, the water molecule will be accepted inside the nanotube. Once inside the nanotube, we show that a water molecule prefers to be off-axis, closer to the surface of the inner nanotube. Furthermore, our study of two water molecules inside the peptide nanotube supports the finding that water molecules form an array of a 1-2-1-2 file inside peptide nanotubes. The theoretical study presented here can facilitate thorough understanding of the behaviour of water molecules inside peptide nanotubes for applications, such as artificial transmembrane channels.

  15. Efficient Inactivation of Multi-Antibiotics Resistant Nosocomial Enterococci by Purified Hiracin Bacteriocin

    PubMed Central

    Hassan, Maryam; Brede, Dag Anders; Diep, Dzung B.; Nes, Ingolf F.; Lotfipour, Farzaneh; Hojabri, Zoya

    2015-01-01

    Purpose: Because of the emergence of multi-antibiotic resistant bacteria, a number of infectious diseases have become a major concern to treat in health care services worldwide. This situation is worsened by the fact that very limited progress has been made in developing new and potent antibiotics in recent years. In this context antimicrobial peptides (AMPs) represent new potential therapeutic compounds with bactericidal or bacteriostatic activity against closely related bacterial strains. Methods: In this study, a collection of enterococci (n=170) from clinical sources were investigated for their potential to inhibit multiresistant nosocomial enterococci from Iranian hospitals. Results: Four isolates produced antimicrobial peptides that inhibited all the antibiotic resistant enterococci. This included three Enterococcus faecium isolates producing combinations of enterocin A, B and L50 AB. The most potent antagonism was produced by E. faecalis HO91. Purification and subsequent characterization by MALDI-TOF MS, Edman degradation and DNA-sequencing revealed that the antimicrobial compound was Hiracin. The purified Hiracin was evaluated for antibacterial activity against 12 multiresistant enterococcal isolates from clinical samples. The results demonstrated that Hiracin is highly effective towards enterococci which were resistant even to antibiotics from four distinct classes. Conclusion: The present research addresses Hiracin as a promising alternative to conventional antibiotics in treatment of multiresistant enterococcal infections. PMID:26504762

  16. Antimicrobial peptides of multicellular organisms

    NASA Astrophysics Data System (ADS)

    Zasloff, Michael

    2002-01-01

    Multicellular organisms live, by and large, harmoniously with microbes. The cornea of the eye of an animal is almost always free of signs of infection. The insect flourishes without lymphocytes or antibodies. A plant seed germinates successfully in the midst of soil microbes. How is this accomplished? Both animals and plants possess potent, broad-spectrum antimicrobial peptides, which they use to fend off a wide range of microbes, including bacteria, fungi, viruses and protozoa. What sorts of molecules are they? How are they employed by animals in their defence? As our need for new antibiotics becomes more pressing, could we design anti-infective drugs based on the design principles these molecules teach us?

  17. Peptide-Based Treatment: A Promising Cancer Therapy

    PubMed Central

    Xiao, Yu-Feng; Jie, Meng-Meng; Li, Bo-Sheng; Hu, Chang-Jiang; Xie, Rui; Tang, Bo; Yang, Shi-Ming

    2015-01-01

    Many new therapies are currently being used to treat cancer. Among these new methods, chemotherapy based on peptides has been of great interest due to the unique advantages of peptides, such as a low molecular weight, the ability to specifically target tumor cells, and low toxicity in normal tissues. In treating cancer, peptide-based chemotherapy can be mainly divided into three types, peptide-alone therapy, peptide vaccines, and peptide-conjugated nanomaterials. Peptide-alone therapy may specifically enhance the immune system's response to kill tumor cells. Peptide-based vaccines have been used in advanced cancers to improve patients' overall survival. Additionally, the combination of peptides with nanomaterials expands the therapeutic ability of peptides to treat cancer by enhancing drug delivery and sensitivity. In this review, we mainly focus on the new advances in the application of peptides in treating cancer in recent years, including diagnosis, treatment, and prognosis. PMID:26568964

  18. Biosynthesis of peptide neurotransmitters: studies on the formation of peptide amides.

    PubMed

    Bradbury, A F; Smyth, D G

    1988-01-01

    A high proportion of peptide transmitters and peptide hormones terminate their peptide chain in a C-terminal amide group which is essential for their biological activity. The specificity of an enzyme that catalyses the formation of the amide was investigated with the aid of synthetic peptide substrates. With peptides containing l-amino acids the enzyme exhibited an essential requirement for glycine in the C-terminal position; amidation did not take place with peptides that had leucine, alanine, glutamic acid, lysine or N-methylglycine at the C-terminus and a peptide extended by the attachment of lysine to the C-terminal glycine did not act as a substrate. Amidation did occur with a peptide containing C-terminal D-alanine but no reaction was detected with peptides having C-terminal, D-serine or D-leucine. In tripeptides with a neutral amino acid in the penultimate position, amidation, took place readily but the reaction was slower when this position was occupied by an acidic or a basic residue. A series of overlapping peptides with C-terminal glycine, based on partial sequences of calcitonin, underwent amidation at similar rates, indicating that the amidating enzyme recognizes only a limited sequence at the C-terminus of its substrates. The results provide evidence that the amidating enzyme has a highly compact substrate binding site. PMID:2906151

  19. Solid Phase Synthesis and Application of Labeled Peptide Derivatives: Probes of Receptor-Opioid Peptide Interactions

    PubMed Central

    Aldrich, Jane V.; Kumar, Vivek; Dattachowdhury, Bhaswati; Peck, Angela M.; Wang, Xin; Murray, Thomas F.

    2009-01-01

    Solid phase synthetic methodology has been developed in our laboratory to incorporate an affinity label (a reactive functionality such as isothiocyanate or bromoacetamide) into peptides (Leelasvatanakij, L. and Aldrich, J. V. (2000) J. Peptide Res. 56, 80), and we have used this synthetic strategy to prepare affinity label derivatives of a variety of opioid peptides. To date side reactions have been detected only in two cases, both involving intramolecular cyclization. We have identified several peptide-based affinity labels for δ opioid receptors that exhibit wash-resistant inhibition of binding to these receptors and are valuable pharmacological tools to study opioid receptors. Even in cases where the peptide derivatives do not bind covalently to their target receptor, studying their binding has revealed subtle differences in receptor interactions with particular opioid peptide residues, especially Phe residues in the N-terminal “message” sequences. Solid phase synthetic methodology for the incorporation of other labels (e.g. biotin) into the C-terminus of peptides has also been developed in our laboratory (Kumar, V. and Aldrich, J. V. (2003) Org. Lett. 5, 613). These two synthetic approaches have been combined to prepare peptides containing multiple labels that can be used as tools to study peptide ligand-receptor interactions. These solid phase synthetic methodologies are versatile strategies that are applicable to the preparation of labeled peptides for a variety of targets in addition to opioid receptors. PMID:19956785

  20. Peptide Therapeutics for Treating Ocular Surface Infections

    PubMed Central

    2014-01-01

    Abstract Microbial pathogens—bacteria, viruses, fungi, and parasites—are significant causes of blindness, particularly in developing countries. For bacterial and some viral infections a number of antimicrobial drugs are available for therapy but there are fewer available for use in treating fungal and parasitic keratitis. There are also problems with current antimicrobials, such as limited efficacy and the presence of drug-resistant microbes. Thus, there is a need to develop additional drugs. Nature has given us an example of 1 potential source of new antimicrobials: antimicrobial peptides and proteins that are either present in bodily fluids and tissues constitutively or are induced upon infection. Given the nature of peptides, topical applications are the most likely use to be successful and this is ideal for treating keratitis. Such peptides would also be active against drug-resistant pathogens and might act synergistically if used in combination therapy. Hundreds of peptides with antimicrobial properties have been isolated or synthesized but only a handful have been tested against ocular pathogens and even fewer have been tested in animal models. This review summarizes the currently available information on the use of peptides to treat keratitis, outlines some of the problems that have been identified, and discusses future studies that will be needed. Most of the peptides that have been tested have shown activity at concentrations that do not warrant further development, but 1 or 2 have promising activity raising the possibility that peptides can be developed to treat keratitis. PMID:25250986

  1. Immunoreactive opioid peptides in human breast cancer.

    PubMed Central

    Scopsi, L.; Balslev, E.; Brünner, N.; Poulsen, H. S.; Andersen, J.; Rank, F.; Larsson, L. I.

    1989-01-01

    Opioid peptides have a variety of actions on inter alia pituitary hormone secretion and the immune system. Release of endogenous opioids has been found to stimulate growth of experimental breast cancers and opiate receptor blockers have reduced the growth of chemically induced rat breast tumors. Opioid peptides may therefore play a role in human breast cancer. Invasive ductal carcinomas from 61 premenopausal women were immunocytochemically analyzed for the presence of opioid peptide immunoreactivity. Positive staining was unambiguously identified in 34 of the tumors (56%). In addition, a medullary carcinoma was positive. In a smaller series of tumors, opioid peptide immunoreactive cells were detected in both primary tumors and metastases. Positive tumor cells were usually few and scattered. Therefore, underestimates of their true frequency of occurrence are likely to have occurred, making accurate correlations with clinical behavior and estrogen receptor status difficult. No correlations with estrogen receptors were established for the unambiguously opioid peptide-positive tumors. Many of the positive tumors also stained with antibodies to gamma-endorphin and alpha-melanocyte-stimulating hormone, suggesting the presence of proopiomelanocortin-derived peptides in them. However, peptides derived from other opioid precursors also may be present in breast cancer. Images Figure 1 PMID:2464945

  2. Antimicrobial peptides in human skin disease

    PubMed Central

    Kenshi, Yamasaki; Richard, L. Gallo

    2009-01-01

    The skin continuously encounters microbial pathogens. To defend against this, cells of the epidermis and dermis have evolved several innate strategies to prevent infection. Antimicrobial peptides are one of the primary mechanisms used by the skin in the early stages of immune defense. In general, antimicrobial peptides have broad antibacterial activity against gram-positive and negative bacteria and also show antifungal and antiviral activity. The antimicrobial activity of most peptides occurs as a result of unique structural characteristics that enable them to disrupt the microbial membrane while leaving human cell membranes intact. However, antimicrobial peptides also act on host cells to stimulate cytokine production, cell migration, proliferation, maturation, and extracellular matrix synthesis. The production by human skin of antimicrobial peptides such as defensins and cathelicidins occurs constitutively but also greatly increases after infection, inflammation or injury. Some skin diseases show altered expression of antimicrobial peptides, partially explaining the pathophysiology of these diseases. Thus, current research suggests that understanding how antimicrobial peptides modify susceptibility to microbes, influence skin inflammation, and modify wound healing, provides greater insight into the pathophysiology of skin disorders and offers new therapeutic opportunities. PMID:18086583

  3. Multiplex De Novo Sequencing of Peptide Antibiotics

    NASA Astrophysics Data System (ADS)

    Mohimani, Hosein; Liu, Wei-Ting; Yang, Yu-Liang; Gaudêncio, Susana P.; Fenical, William; Dorrestein, Pieter C.; Pevzner, Pavel A.

    Proliferation of drug-resistant diseases raises the challenge of searching for new, more efficient antibiotics. Currently, some of the most effective antibiotics (i.e., Vancomycin and Daptomycin) are cyclic peptides produced by non-ribosomal biosynthetic pathways. The isolation and sequencing of cyclic peptide antibiotics, unlike the same activity with linear peptides, is time-consuming and error-prone. The dominant technique for sequencing cyclic peptides is NMR-based and requires large amounts (milligrams) of purified materials that, for most compounds, are not possible to obtain. Given these facts, there is a need for new tools to sequence cyclic NRPs using picograms of material. Since nearly all cyclic NRPs are produced along with related analogs, we develop a mass spectrometry approach for sequencing all related peptides at once (in contrast to the existing approach that analyzes individual peptides). Our results suggest that instead of attempting to isolate and NMR-sequence the most abundant compound, one should acquire spectra of many related compounds and sequence all of them simultaneously using tandem mass spectrometry. We illustrate applications of this approach by sequencing new variants of cyclic peptide antibiotics from Bacillus brevis, as well as sequencing a previously unknown familiy of cyclic NRPs produced by marine bacteria.

  4. Peptide separation in hydrophilic interaction capillary electrochromatography.

    PubMed

    Fu, Hongjing; Jin, Wenhai; Xiao, Hua; Huang, Haiwei; Zou, Hanfa

    2003-06-01

    Separation of small peptides by hydrophilic interaction capillary electrochromatography (HI-CEC) has been investigated. The negative surface charge of a hydrophilic, strong-cation-exchange stationary phase (PolySULFOETHYL A) provided a substantial cathodic electroosmotic flow (EOF). The influence of acetonitrile content, ionic strength, mobile phase pH as well as applied voltage on the migration of the peptides was studied. Possible retention mechanisms of the peptides in HI-CEC were discussed. It was found that hydrophilic interaction between the solutes and the stationary phase played a major role in this system, especially when mobile phases with high acetonitrile content were used. However, an ion-exchange mechanism and electrophoretic mobility also affect the migration of the peptides in HI-CEC. Elution order and selectivity was proved to be different in HI-CEC and capillary zone electrophoresis (CZE), thus revealing the potential of HI-CEC as a complementary technique to CZE for the separation of peptides. Efficiency and selectivity of HI-CEC for the separation of peptides were demonstrated by baseline separating nine peptides in 6 min. PMID:12858379

  5. Novel pH-Sensitive Cyclic Peptides

    PubMed Central

    Weerakkody, Dhammika; Moshnikova, Anna; El-Sayed, Naglaa Salem; Adochite, Ramona-Cosmina; Slaybaugh, Gregory; Golijanin, Jovana; Tiwari, Rakesh K.; Andreev, Oleg A.; Parang, Keykavous; Reshetnyak, Yana K.

    2016-01-01

    A series of cyclic peptides containing a number of tryptophan (W) and glutamic acid (E) residues were synthesized and evaluated as pH-sensitive agents for targeting of acidic tissue and pH-dependent cytoplasmic delivery of molecules. Biophysical studies revealed the molecular mechanism of peptides action and localization within the lipid bilayer of the membrane at high and low pHs. The symmetric, c[(WE)4WC], and asymmetric, c[E4W5C], cyclic peptides translocated amanitin, a polar cargo molecule of similar size, across the lipid bilayer and induced cell death in a pH- and concentration-dependent manner. Fluorescently-labelled peptides were evaluated for targeting of acidic 4T1 mammary tumors in mice. The highest tumor to muscle ratio (5.6) was established for asymmetric cyclic peptide, c[E4W5C], at 24 hours after intravenous administration. pH-insensitive cyclic peptide c[R4W5C], where glutamic acid residues (E) were replaced by positively charged arginine residues (R), did not exhibit tumor targeting. We have introduced a novel class of cyclic peptides, which can be utilized as a new pH-sensitive tool in investigation or targeting of acidic tissue. PMID:27515582

  6. Synthetic Multivalent Antifungal Peptides Effective against Fungi

    PubMed Central

    Li, Jianguo; Nandhakumar, Muruganantham; Aung, Thet Tun; Goh, Eunice; Chang, Jamie Ya Ting; Saraswathi, Padhmanaban; Tang, Charles; Safie, Siti Radiah Binte; Lin, Lim Yih; Riezman, Howard; Lei, Zhou; Verma, Chandra S.; Beuerman, Roger W.

    2014-01-01

    Taking advantage of the cluster effect observed in multivalent peptides, this work describes antifungal activity and possible mechanism of action of tetravalent peptide (B4010) which carries 4 copies of the sequence RGRKVVRR through a branched lysine core. B4010 displayed better antifungal properties than natamycin and amphotericin B. The peptide retained significant activity in the presence of monovalent/divalent cations, trypsin and serum and tear fluid. Moreover, B4010 is non-haemolytic and non-toxic to mice by intraperitoneal (200 mg/kg) or intravenous (100 mg/kg) routes. S. cerevisiae mutant strains with altered membrane sterol structures and composition showed hyper senstivity to B4010. The peptide had no affinity for cell wall polysaccharides and caused rapid dissipation of membrane potential and release of vital ions and ATP when treated with C. albicans. We demonstrate that additives which alter the membrane potential or membrane rigidity protect C. albicans from B4010-induced lethality. Calcein release assay and molecular dynamics simulations showed that the peptide preferentially binds to mixed bilayer containing ergosterol over phophotidylcholine-cholesterol bilayers. The studies further suggested that the first arginine is important for mediating peptide-bilayer interactions. Replacing the first arginine led to a 2–4 fold decrease in antifungal activities and reduced membrane disruption properties. The combined in silico and in vitro approach should facilitate rational design of new tetravalent antifungal peptides. PMID:24498363

  7. Novel pH-Sensitive Cyclic Peptides.

    PubMed

    Weerakkody, Dhammika; Moshnikova, Anna; El-Sayed, Naglaa Salem; Adochite, Ramona-Cosmina; Slaybaugh, Gregory; Golijanin, Jovana; Tiwari, Rakesh K; Andreev, Oleg A; Parang, Keykavous; Reshetnyak, Yana K

    2016-01-01

    A series of cyclic peptides containing a number of tryptophan (W) and glutamic acid (E) residues were synthesized and evaluated as pH-sensitive agents for targeting of acidic tissue and pH-dependent cytoplasmic delivery of molecules. Biophysical studies revealed the molecular mechanism of peptides action and localization within the lipid bilayer of the membrane at high and low pHs. The symmetric, c[(WE)4WC], and asymmetric, c[E4W5C], cyclic peptides translocated amanitin, a polar cargo molecule of similar size, across the lipid bilayer and induced cell death in a pH- and concentration-dependent manner. Fluorescently-labelled peptides were evaluated for targeting of acidic 4T1 mammary tumors in mice. The highest tumor to muscle ratio (5.6) was established for asymmetric cyclic peptide, c[E4W5C], at 24 hours after intravenous administration. pH-insensitive cyclic peptide c[R4W5C], where glutamic acid residues (E) were replaced by positively charged arginine residues (R), did not exhibit tumor targeting. We have introduced a novel class of cyclic peptides, which can be utilized as a new pH-sensitive tool in investigation or targeting of acidic tissue. PMID:27515582

  8. C-Peptide and its intracellular signaling.

    PubMed

    Hills, Claire E; Brunskill, Nigel J

    2009-01-01

    Although long believed to be inert, C-peptide has now been shown to have definite biological effects both in vitro and in vivo in diabetic animals and in patients with type 1 diabetes. These effects point to a protective action of C-peptide against the development of diabetic microvascular complications. Underpinning these observations is undisputed evidence of C-peptide binding to a variety of cell types at physiologically relevant concentrations, and the downstream stimulation of multiple cell signaling pathways and gene transcription via the activation of numerous transcription factors. These pathways affect such fundamental cellular processes as re-absorptive and/or secretory phenotype, migration, growth, and survival. Whilst the receptor remains to be identified, experimental data points strongly to the existence of a specific G-protein-coupled receptor for C-peptide. Of the cell types studied so far, kidney tubular cells express the highest number of C-peptide binding sites. Accordingly, C-peptide exerts major effects on the function of these cells, and in the context of diabetic nephropathy appears to antagonise the pathophysiological effects of major disease mediators such as TGFbeta1 and TNFalpha. Therefore, based on its cellular activity profile C-peptide appears well positioned for development as a therapeutic tool to treat microvascular complications in type 1 diabetes. PMID:20039003

  9. Cysteine-containing peptides having antioxidant properties

    DOEpatents

    Bielicki, John K.

    2009-10-13

    Cysteine containing amphipathic alpha helices of the exchangeable apolipoproteins, as exemplified by apolipoprotein (apo) A-I.sub.Milano (R173C) and apoA-I.sub.Paris, (R151C) were found to exhibit potent antioxidant activity on phospholipid surfaces. The addition of a free thiol, at the hydrophobic/hydrophilic interface of an amphipathic alpha helix of synthetic peptides that mimic HDL-related proteins, imparts a unique antioxidant activity to these peptides which inhibits lipid peroxidation and protects phospholipids from water-soluble free radical initiators. These peptides can be used as therapeutic agents to combat cardiovascular disease, ischemia, bone disease and other inflammatory related diseases.

  10. Cysteine-containing peptides having antioxidant properties

    DOEpatents

    Bielicki, John K.

    2008-10-21

    Cysteine containing amphipathic alpha helices of the exchangeable apolipoproteins, as exemplified by apolipoprotein (apo) A-I.sub.Milano (R173C) and apoA-I.sub.Paris, (R151C) were found to exhibit potent antioxidant activity on phospholipid surfaces. The addition of a free thiol, at the hydrophobic/hydrophilic interface of an amphipathic alpha helix of synthetic peptides that mimic HDL-related proteins, imparts a unique antioxidant activity to these peptides which inhibits lipid peroxidation and protects phospholipids from water-soluble free radical initiators. These peptides can be used as therapeutic agents to combat cardiovascular disease, ischemia, bone disease and other inflammatory related diseases.

  11. Ultrashort Antimicrobial Peptides with Antiendotoxin Properties

    PubMed Central

    Chih, Ya-Han; Lin, Yen-Shan; Yip, Bak-Sau; Wei, Hsiu-Ju; Chu, Hung-Lun; Yu, Hui-Yuan; Cheng, Hsi-Tsung

    2015-01-01

    Release of lipopolysaccharide (LPS) (endotoxin) from bacteria into the bloodstream may cause serious unwanted stimulation of the host immune system. Some but not all antimicrobial peptides can neutralize LPS-stimulated proinflammatory responses. Salt resistance and serum stability of short antimicrobial peptides can be boosted by adding β-naphthylalanine to their termini. Herein, significant antiendotoxin effects were observed in vitro and in vivo with the β-naphthylalanine end-tagged variants of the short antimicrobial peptides S1 and KWWK. PMID:26033727

  12. How Nature Morphs Peptide Scaffolds into Antibiotics

    PubMed Central

    Nolan, Elizabeth M.; Walsh, Christopher T.

    2010-01-01

    The conventional notion that peptides are poor candidates for orally available drugs because of protease-sensitive peptide bonds, intrinsic hydrophilicity, and ionic charges contrasts with the diversity of antibiotic natural products with peptide-based frameworks that are synthesized and utilized by Nature. Several of these antibiotics, including penicillin and vancomycin, are employed to treat bacterial infections in humans and have been best-selling therapeutics for decades. Others might provide new platforms for the design of novel therapeutics to combat emerging antibiotic-resistant bacterial pathogens. PMID:19058272

  13. Processable Cyclic Peptide Nanotubes with Tunable Interiors

    SciTech Connect

    Hourani, Rami; Zhang, Chen; van der Weegen, Rob; Ruiz, Luis; Li, Changyi; Keten, Sinan; Helms, Brett A.; Xu, Ting

    2011-09-06

    A facile route to generate cyclic peptide nanotubes with tunable interiors is presented. By incorporating 3-amino-2-methylbenzoic acid in the d,l-alternating primary sequence of a cyclic peptide, a functional group can be presented in the interior of the nanotubes without compromising the formation of high aspect ratio nanotubes. The new design of such a cyclic peptide also enables one to modulate the nanotube growth process to be compatible with the polymer processing window without compromising the formation of high aspect ratio nanotubes, thus opening a viable approach toward molecularly defined porous membranes.

  14. Chemical Platforms for Peptide Vaccine Constructs.

    PubMed

    Ramesh, Suhas; Cherkupally, Prabhakar; Govender, Thavendran; Kruger, Hendrik G; Albericio, Fernando; de la Torre, Beatriz G

    2015-01-01

    Knowledge of the sequences and structures of proteins from pathogenic microorganisms has been put to great use in the field of protein chemistry for the development of peptide-based vaccines. These vaccine constructs include chemically tailored, shorter peptidic fragments that can induce high immunogenicity, thus shunning the allergenic and nonimmunogenic part of the antigens. Based on this concept, several different chemistries have been pursued to obtain novel platforms onto which antigenic epitopes can be tethered, with the aim to achieve a higher antibody response. In this regard, here we attempt to summarize the chemical strategies developed for the presentation of peptide epitopes. PMID:26067818

  15. The Potential of Antimicrobial Peptides as Biocides

    PubMed Central

    Laverty, Garry; Gorman, Sean P.; Gilmore, Brendan F.

    2011-01-01

    Antimicrobial peptides constitute a diverse class of naturally occurring antimicrobial molecules which have activity against a wide range of pathogenic microorganisms. Antimicrobial peptides are exciting leads in the development of novel biocidal agents at a time when classical antibiotics are under intense pressure from emerging resistance, and the global industry in antibiotic research and development stagnates. This review will examine the potential of antimicrobial peptides, both natural and synthetic, as novel biocidal agents in the battle against multi-drug resistant pathogen infections. PMID:22072905

  16. Effects of the properties of short peptides conjugated with cell-penetrating peptides on their internalization into cells.

    PubMed

    Matsumoto, Ryo; Okochi, Mina; Shimizu, Kazunori; Kanie, Kei; Kato, Ryuji; Honda, Hiroyuki

    2015-01-01

    Peptides, especially intracellular functional peptides that can play a particular role inside a cell, have attracted attention as promising materials to control cell fate. However, hydrophilic materials like peptides are difficult for cells to internalize. Therefore, the screening and design of intracellular functional peptides are more difficult than that of extracellular ones. An effective high-throughput screening system for intracellular functional peptides has not been reported. Here, we demonstrate a novel peptide array system for screening intracellular functional peptides, in which both cell-penetrating peptide (CPP) domain and photo-cleavable linkers are used. By using this screening system, we determined how the cellular uptake properties of CPP-conjugated peptides varied depending on the properties of the conjugated peptides. We found that the internalization ability of CPP-conjugated peptides varied greatly depending on the property of the conjugated peptides, and anionic peptides drastically decreased the uptake ability. We summarized our data in a scatter diagram that plots hydrophobicity versus isoelectric point (pI) of conjugated peptides. These results define a peptide library suitable for screening of intracellular functional peptides. Thus, our system, including the diagram, is a promising tool for searching biological active molecules such as peptide-based drugs. PMID:26256261

  17. Effects of the properties of short peptides conjugated with cell-penetrating peptides on their internalization into cells

    PubMed Central

    Matsumoto, Ryo; Okochi, Mina; Shimizu, Kazunori; Kanie, Kei; Kato, Ryuji; Honda, Hiroyuki

    2015-01-01

    Peptides, especially intracellular functional peptides that can play a particular role inside a cell, have attracted attention as promising materials to control cell fate. However, hydrophilic materials like peptides are difficult for cells to internalize. Therefore, the screening and design of intracellular functional peptides are more difficult than that of extracellular ones. An effective high-throughput screening system for intracellular functional peptides has not been reported. Here, we demonstrate a novel peptide array system for screening intracellular functional peptides, in which both cell-penetrating peptide (CPP) domain and photo-cleavable linkers are used. By using this screening system, we determined how the cellular uptake properties of CPP-conjugated peptides varied depending on the properties of the conjugated peptides. We found that the internalization ability of CPP-conjugated peptides varied greatly depending on the property of the conjugated peptides, and anionic peptides drastically decreased the uptake ability. We summarized our data in a scatter diagram that plots hydrophobicity versus isoelectric point (pI) of conjugated peptides. These results define a peptide library suitable for screening of intracellular functional peptides. Thus, our system, including the diagram, is a promising tool for searching biological active molecules such as peptide-based drugs. PMID:26256261

  18. Peptides from milk proteins and their properties.

    PubMed

    Kilara, Arun; Panyam, Dinakar

    2003-01-01

    This review has attempted to study the literature pertaining to peptides derived from milk proteins. Hydrolysis of milk proteins to generate peptides has been practiced for a long time and it was recognized early on in this process that the taste of hydrolyzates might hinder use of these products in food formulations. Modification of protein is necessary to form a more acceptable or utilizable product, to form a product that is less susceptible to deteriorative reactions and to form a product that is of higher nutritionall quality. Modifications may be achieved by a number of chemical and enzymatic means. This review has considered only enzymatic modification of dairy proteins. Modified proteins contain peptides and some of these peptides have been purified and their functionalities have been compared with unmodified proteins. This paper has examined the literature pertaining to improvement in functionality of enzyme-modified proteins. Improvements in solubility, emulsification, foaming and gelation were examined. There is limited information available on the sequence of the peptides necessary to improve the functional characteristics of proteins. Knowing the sequences of desirable functional peptides can lead to genetic alteration of proteins to improve functionality. Addition of synthetic peptides to intact proteins may be another way in which the functionality of proteins can be augmented. Some of the peptides in milk proteins are capable of affecting biological functions of an organism. These effects can be antimicrobial and probiotic, i.e., prevent the growth and proliferation of undesirable and pathogenic organisms, or they may promote the growth of desirable bacteria in the digestive tract of humans and animals. Peptides derived from milk protein have been shown to exert digestive and metabolic effects as well. They may also influence the immune system. These biological effects may play an important role in the development of medical foods that treat or

  19. A new way to silicone-based peptide polymers.

    PubMed

    Jebors, Said; Ciccione, Jeremie; Al-Halifa, Soultan; Nottelet, Benjamin; Enjalbal, Christine; M'Kadmi, Céline; Amblard, Muriel; Mehdi, Ahmad; Martinez, Jean; Subra, Gilles

    2015-03-16

    We describe a new class of silicone-containing peptide polymers obtained by a straightforward polymerization in water using tailored chlorodimethylsilyl peptide blocks as monomeric units. This general strategy is applicable to any type of peptide sequences, yielding linear or branched polymer chains composed of well-defined peptide sequences. PMID:25650781

  20. Effects of peptide acetylation and dimethylation on electrospray ionization efficiency.

    PubMed

    Cho, Kyung-Cho; Kang, Jeong Won; Choi, Yuri; Kim, Tae Woo; Kim, Kwang Pyo

    2016-02-01

    Peptide acetylation and dimethylation have been widely used to derivatize primary amino groups (peptide N-termini and the ε-amino group of lysines) for chemical isotope labeling of quantitative proteomics or for affinity tag labeling for selection and enrichment of labeled peptides. However, peptide acetylation results in signal suppression during electrospray ionization (ESI) due to charge neutralization. In contrast, dimethylated peptides show increased ionization efficiency after derivatization, since dimethylation increases hydrophobicity and maintains a positive charge on the peptide under common LC conditions. In this study, we quantitatively compared the ESI efficiencies of acetylated and dimethylated model peptides and tryptic peptides of BSA. Dimethylated peptides showed higher ionization efficiency than acetylated peptides for both model peptides and tryptic BSA peptides. At the proteome level, peptide dimethylation led to better protein identification than peptide acetylation when tryptic peptides of mouse brain lysate were analyzed with LC-ESI-MS/MS. These results demonstrate that dimethylation of tryptic peptides enhanced ESI efficiency and provided up to two-fold improved protein identification sensitivity in comparison with acetylation. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26889926

  1. Combined Statistical Analyses of Peptide Intensities and Peptide Occurrences Improves Identification of Significant Peptides from MS-based Proteomics Data

    SciTech Connect

    Webb-Robertson, Bobbie-Jo M.; McCue, Lee Ann; Waters, Katrina M.; Matzke, Melissa M.; Jacobs, Jon M.; Metz, Thomas O.; Varnum, Susan M.; Pounds, Joel G.

    2010-11-01

    Liquid chromatography-mass spectrometry-based (LC-MS) proteomics uses peak intensities of proteolytic peptides to infer the differential abundance of peptides/proteins. However, substantial run-to-run variability in peptide intensities and observations (presence/absence) of peptides makes data analysis quite challenging. The missing abundance values in LC-MS proteomics data are difficult to address with traditional imputation-based approaches because the mechanisms by which data are missing are unknown a priori. Data can be missing due to random mechanisms such as experimental error, or non-random mechanisms such as a true biological effect. We present a statistical approach that uses a test of independence known as a G-test to test the null hypothesis of independence between the number of missing values and the experimental groups. We pair the G-test results evaluating independence of missing data (IMD) with a standard analysis of variance (ANOVA) that uses only means and variances computed from the observed data. Each peptide is therefore represented by two statistical confidence metrics, one for qualitative differential observation and one for quantitative differential intensity. We use two simulated and two real LC-MS datasets to demonstrate the robustness and sensitivity of the ANOVA-IMD approach for assigning confidence to peptides with significant differential abundance among experimental groups.

  2. On the hydrophobicity of peptides: Comparing empirical predictions of peptide log P values.

    PubMed

    Thompson, Sarah J; Hattotuwagama, Channa K; Holliday, John D; Flower, Darren R

    2006-01-01

    Peptides are of great therapeutic potential as vaccines and drugs. Knowledge of physicochemical descriptors, including the partition coefficient logP, is useful for the development of predictive Quantitative Structure-Activity Relationships (QSARs). We have investigated the accuracy of available programs for the prediction of logP values for peptides with known experimental values obtained from the literature. Eight prediction programs were tested, of which seven programs were fragment-based methods: XLogP, LogKow, PLogP, ACDLogP, AlogP, Interactive Analysis's LogP and MlogP; and one program used a whole molecule approach: QikProp. The predictive accuracy of the programs was assessed using r(2) values, with ALogP being the most effective (r( 2) = 0.822) and MLogP the least (r(2) = 0.090). We also examined three distinct types of peptide structure: blocked, unblocked, and cyclic. For each study (all peptides, blocked, unblocked and cyclic peptides) the performance of programs rated from best to worse is as follows: all peptides - ALogP, QikProp, PLogP, XLogP, IALogP, LogKow, ACDLogP, and MlogP; blocked peptides - PLogP, XLogP, ACDLogP, IALogP, LogKow, QikProp, ALogP, and MLogP; unblocked peptides - QikProp, IALogP, ALogP, ACDLogP, MLogP, XLogP, LogKow and PLogP; cyclic peptides - LogKow, ALogP, XLogP, MLogP, QikProp, ACDLogP, IALogP. In summary, all programs gave better predictions for blocked peptides, while, in general, logP values for cyclic peptides were under-predicted and those of unblocked peptides were over-predicted. PMID:17597897

  3. A statistical approach to determining responses to individual peptides from pooled-peptide ELISpot data.

    PubMed

    Ström, Peter; Støer, Nathalie; Borthwick, Nicola; Dong, Tao; Hanke, Tomáš; Reilly, Marie

    2016-08-01

    To investigate in detail the effect of infection or vaccination on the human immune system, ELISpot assays are used to simultaneously test the immune response to a large number of peptides of interest. Scientists commonly use "peptide pools", where, instead of an individual peptide, a test well contains a group of peptides. Since the response from a well may be due to any or many of the peptides in the pool, pooled assays usually need to be followed by confirmatory assays of a number of individual peptides. We present a statistical method that enables estimation of individual peptide responses from pool responses using the Expectation Maximization (EM) algorithm for "incomplete data". We demonstrate the accuracy and precision of these estimates in simulation studies of ELISpot plates with 90 pools of 6 or 7 peptides arranged in three dimensions and three Mock wells for the estimation of background. In analysis of real pooled data from 6 subjects in a HIV-1 vaccine trial, where 199 peptides were arranged in 80 pools if size 9 or 10, our estimates were in very good agreement with the results from individual-peptide confirmatory assays. Compared to the classical approach, we could identify almost all the same peptides with high or moderate response, with less than half the number of confirmatory tests. Our method facilitates efficient use of the information available in pooled ELISpot data to avoid or reduce the need for confirmatory testing. We provide an easy-to-use free online application for implementing the method, where on uploading two spreadsheets with the pool design and pool responses, the user obtains the estimates of the individual peptide responses. PMID:27196788

  4. cis-Peptide Bonds: A Key for Intestinal Permeability of Peptides? .

    PubMed

    Marelli, Udaya Kiran; Ovadia, Oded; Frank, Andreas Oliver; Chatterjee, Jayanta; Gilon, Chaim; Hoffman, Amnon; Kessler, Horst

    2015-10-19

    Recent structural studies on libraries of cyclic hexapeptides led to the identification of common backbone conformations that may be instrumental to the oral availability of peptides. Furthermore, the observation of differential Caco-2 permeabilities of enantiomeric pairs of some of these peptides strongly supports the concept of conformational specificity driven uptake and also suggests a pivotal role of carrier-mediated pathways for peptide transport, especially for scaffolds of polar nature. This work presents investigations on the Caco-2 and PAMPA permeability profiles of 13 selected N-methylated cyclic pentaalanine peptides derived from the basic cyclo(-D-Ala-Ala4 -) template. These molecules generally showed moderate to low transport in intestinal epithelia with a few of them exhibiting a Caco-2 permeability equal to or slightly higher than that of mannitol, a marker for paracellular permeability. We identified that the majority of the permeable cyclic penta- and hexapeptides possess an N-methylated cis-peptide bond, a structural feature that is also present in the orally available peptides cyclosporine A and the tri-N-methylated analogue of the Veber-Hirschmann peptide. Based on these observations it appears that the presence of N-methylated cis-peptide bonds at certain locations may promote the intestinal permeability of peptides through a suitable conformational preorganization. PMID:26337831

  5. Assessment of RNA carrier function in peptide amphiphiles derived from the HIV fusion peptide.

    PubMed

    Pratumyot, Yaowalak; Torres, Oscar B; Bong, Dennis

    2016-05-01

    A small library of amphiphilic peptides has been evaluated for duplex RNA carrier function into A549 cells. We studied peptides in which a C-terminal 7-residue cationic domain is attached to a neutral/hydrophobic 23-residue domain that is based on the viral fusion peptide of HIV. We also examined peptides in which the cationic charge was evenly distributed throughout the peptide. Strikingly, subtle sequence variations in the hydrophobic domain that do not alter net hydrophobicity result in wide variation in RNA uptake. Additionally, cyclic cystine variants are much less active as RNA carriers than their open-chain cysteine analogs. With regard to electrostatic effects, we find that lysine is less effective than arginine in facilitating uptake, and that even distribution of cationic residues throughout the peptide sequence results in especially effective RNA carrier function. Overall, minor changes in peptide hydrophobicity, flexibility and charge distribution can significantly alter carrier function. We hypothesize this is due to altered properties of the peptide-RNA assembly rather than peptide secondary structure. PMID:26988874

  6. Evolution of Antimicrobial Peptides to Self-Assembled Peptides for Biomaterial Applications

    PubMed Central

    McCloskey, Alice P.; Gilmore, Brendan F.; Laverty, Garry

    2014-01-01

    Biomaterial-related infections are a persistent burden on patient health, recovery, mortality and healthcare budgets. Self-assembled antimicrobial peptides have evolved from the area of antimicrobial peptides. Peptides serve as important weapons in nature, and increasingly medicine, for combating microbial infection and biofilms. Self-assembled peptides harness a “bottom-up” approach, whereby the primary peptide sequence may be modified with natural and unnatural amino acids to produce an inherently antimicrobial hydrogel. Gelation may be tailored to occur in the presence of physiological and infective indicators (e.g. pH, enzymes) and therefore allow local, targeted antimicrobial therapy at the site of infection. Peptides demonstrate inherent biocompatibility, antimicrobial activity, biodegradability and numerous functional groups. They are therefore prime candidates for the production of polymeric molecules that have the potential to be conjugated to biomaterials with precision. Non-native chemistries and functional groups are easily incorporated into the peptide backbone allowing peptide hydrogels to be tailored to specific functional requirements. This article reviews an area of increasing interest, namely self-assembled peptides and their potential therapeutic applications as innovative hydrogels and biomaterials in the prevention of biofilm-related infection. PMID:25436505

  7. From a pro-apoptotic peptide to a lytic peptide: One single residue mutation.

    PubMed

    Zhou, Xi-Rui; Zhang, Qiang; Tian, Xi-Bo; Cao, Yi-Meng; Liu, Zhu-Qing; Fan, Ruru; Ding, Xiu-Fang; Zhu, Zhentai; Chen, Long; Luo, Shi-Zhong

    2016-08-01

    Further discovery and design of new anticancer peptides are important for the development of anticancer therapeutics, and study on the detailed acting mechanism and structure-function relationship of peptides is critical for anticancer peptide design and application. In this study, a novel anticancer peptide ZXR-1 (FKIGGFIKKLWRSKLA) derived from a known anticancer peptide mauriporin was developed, and a mutant ZXR-2 (FKIGGFIKKLWRSLLA) with only one residue difference at the 14th position (Lys→Leu) was also engineered. Replacement of the lysine with leucine made ZXR-2 more potent than ZXR-1 in general. Even with only one residue mutation, the two peptides displayed distinct anticancer modes of action. ZXR-1 could translocate into cells, target on the mitochondria and induce cell apoptosis, while ZXR-2 directly targeted on the cell membranes and caused membrane lysis. The variance in their acting mechanisms might be due to the different amphipathicity and positive charge distribution. In addition, the two Ile-Leu pairs (3-10 and 7-14) in ZXR-2 might also play a role in improving its cytotoxicity. Further study on the structure-function relationship of the two peptides may be beneficial for the design of novel anticancer peptides and peptide based therapeutics. PMID:27207743

  8. Lipid-based nanoformulations for peptide delivery.

    PubMed

    Matougui, Nada; Boge, Lukas; Groo, Anne-Claire; Umerska, Anita; Ringstad, Lovisa; Bysell, Helena; Saulnier, Patrick

    2016-04-11

    Nanoformulations have attracted a lot of attention because of their size-dependent properties. Among the array of nanoformulations, lipid nanoformulations (LNFs) have evoked increasing interest because of the advantages of their high degree of biocompatibility and versatility. The performance of lipid nanoformulations is greatly influenced by their composition and structure. Therapeutic peptides represent a growing share of the pharmaceutical market. However, the main challenge for their development into commercial products is their inherent physicochemical and biological instability. Important peptides such as insulin, calcitonin and cyclosporin A have been incorporated into LNFs. The association or encapsulation of peptides within lipid-based carriers has shown to protect the labile molecules against enzymatic degradation. This review describes strategies used for the formulation of peptides and some methods used for the assessment of association efficiency. The advantages and drawbacks of such carriers are also described. PMID:26899976

  9. Peptide-based vaccines for cancer therapy.

    PubMed

    Parmiani, Giorgio; Russo, Vincenzo; Maccalli, Cristina; Parolini, Danilo; Rizzo, Nathalie; Maio, Michele

    2014-01-01

    Interest for cancer vaccination started more than 30 years ago after the demonstration that both in animal models and later on in patients it is possible to generate anti-tumor immune responses. The clinical application of this knowledge, however, was disappointing. In this review we summarize results on peptides epitopes recognized by T cells that have been studied thanks to their easy synthesis and the lack of significant side effects when administered in-vivo. To improve the clinical efficacy, peptides were modified in their aminoacid sequence to augment their immunogenicity. Peptides vaccines were recently shown to induce a high frequency of immune response in patients that were accompanied by clinical efficacy. These data are discussed at the light of recent progression of immunotherapy caused by the addition of check-point antibodies thus providing a general picture of the potential therapeutic efficacy of the peptide-based vaccines and their combination with other biological agents. PMID:25483658

  10. New antibacterial peptide derived from bovine hemoglobin.

    PubMed

    Daoud, Rachid; Dubois, Veronique; Bors-Dodita, Loredana; Nedjar-Arroume, Naima; Krier, Francois; Chihib, Nour-Eddine; Mary, Patrice; Kouach, Mostafa; Briand, Gilbert; Guillochon, Didier

    2005-05-01

    Peptic digestion of bovine hemoglobin at low degree of hydrolysis yields an intermediate peptide fraction exhibiting antibacterial activity against Micrococcus luteus A270, Listeria innocua, Escherichia coli and Salmonella enteritidis after separation by reversed-phase HPLC. From this fraction a pure peptide was isolated and analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and electrospray ionization tandem mass spectrometry (ESI-MS/MS). This peptide correspond to the 107-136 fragment of the alpha chain of bovine hemoglobin. The minimum inhibitory concentrations (MIC) towards the four strains and its hemolytic activity towards bovine erythrocytes were determined. A MIC of 38 microM was reported against L. innocua and 76 microM for other various bacterial species. This peptide had no hemolytic activity up to 380 microM concentration. PMID:15808900

  11. Electron Transport in Short Peptide Single Molecules

    NASA Astrophysics Data System (ADS)

    Cui, Jing; Brisendine, Joseph; Ng, Fay; Nuckolls, Colin; Koder, Ronald; Venkarataman, Latha

    We present a study of the electron transport through a series of short peptides using scanning tunneling microscope-based break junction method. Our work is motivated by the need to gain a better understanding of how various levels of protein structure contribute to the remarkable capacity of proteins to transport charge in biophysical processes such as respiration and photosynthesis. We focus here on short mono, di and tri-peptides, and probe their conductance when bound to gold electrodes in a native buffer environment. We first show that these peptides can bind to gold through amine, carboxyl, thiol and methyl-sulfide termini. We then focus on two systems (glycine and alanine) and show that their conductance decays faster than alkanes terminated by the same linkers. Importantly, our results show that the peptide bond is less conductive than a sigma carbon-carbon bond. This work was supported in part by NSF-DMR 1507440.

  12. Self-Assembly of Peptides to Nanostructures

    PubMed Central

    Mandal, Dindyal; Shirazi, Amir Nasrolahi; Parang, Keykavous

    2014-01-01

    The formation of well-ordered nanostructures through self-assembly of diverse organic and inorganic building blocks has drawn much attention owing to their potential applications in biology and chemistry. Among all organic building blocks, peptides are one of the most promising platforms due to their biocompatibility, chemical diversity, and resemblance with proteins. Inspired from the protein assembly in biological systems, various self-assembled peptide structures have been constructed using several amino acids and sequences. This review focuses on this emerging area, the recent advances in peptide self-assembly, and formation of different nanostructures, such as tubular, fibers, vesicles, spherical, and rod coil structures. While different peptide nanostructures are discovered, potential applications will be explored in drug delivery, tissue engineering, wound healing, and surfactants. PMID:24756480

  13. Electrocatalytic monitoring of peptidic proton-wires.

    PubMed

    Dorčák, V; Kabeláč, M; Kroutil, O; Bednářová, K; Vacek, J

    2016-08-01

    The transfer of protons or proton donor/acceptor abilities is an important phenomenon in many biomolecular systems. One example is the recently proposed peptidic proton-wires (H-wires), but the ability of these His-containing peptides to transfer protons has only been studied at the theoretical level so far. Here, for the first time the proton transfer ability of peptidic H-wires is examined experimentally in an adsorbed state using an approach based on a label-free electrocatalytic reaction. The experimental findings are complemented by theoretical calculations at the ab initio level in a vacuum and in an implicit solvent. Experimental and theoretical results indicated Ala3(His-Ala2)6 to be a high proton-affinity peptidic H-wire model. The methodology presented here could be used for the further investigation of the proton-exchange chemistry of other biologically or technologically important macromolecules. PMID:27353221

  14. Surface-enhanced Raman spectroscopy of peptides

    NASA Astrophysics Data System (ADS)

    Garrell, Robin L.; Herne, Tonya M.; Ahern, Angela M.; Sullenberger, Eve L.

    1990-07-01

    Surface-enhanced Raman (SER) spectroscopy has been used to probe the adsorption, surface interactions, and orientations of peptides on metal surfaces. Amino acids in homodipeptides give SER spectra with unique features that can be used to characterize the surface interactions of specific functional groups in more complicated peptides. In heterodipeptides, there is a hierarchy of functional group-surface interactions that prescribe their orientation and conformation on metal surfaces. By establishing this hierarchy, it is now possible to predict the interactions that occur between larger peptides and surfaces. Furthermore, the observed trends suggest that it should be possible to control these interactions by varying the solution pH, the charge on the surface, and other parameters of the measurement in order to adsorb species selectively from mixtures of peptides in solution. Potential biomedical applications of this technique will be described.

  15. Peptide mediated cancer targeting of nanoconjugates

    PubMed Central

    Raha, Sumita; Paunesku, Tatjana; Woloschak, Gayle

    2013-01-01

    Targeted use of nanoparticles in vitro, in cells and in vivo requires nanoparticle surface functionalization. Moieties that can be used for such a purpose include small molecules as well as polymers made of different biological and organic materials. Short amino acid polymers--peptides can often rival target binding avidity of much larger molecules. At the same time, peptides are smaller than most nanoparticles and thus allow for multiple nanoparticle modifications and creation of pluripotent nanoparticles. Most nanoparticles provide multiple binding sites for different cargo and targeting peptides which can be used for development of novel approaches for cancer targeting, diagnostics and therapy. In this review, we will focus on peptides which have been used for preparation of different nanoparticles designed for cancer research. PMID:21046660

  16. Clickable bifunctional radiometal chelates for peptide labeling†

    PubMed Central

    Lebedev, Artem Y.; Holland, Jason P.; Lewis, Jason S.

    2016-01-01

    Novel synthetic methods for producing an array of chelates for use in “click”-radiolabeling of peptides are described, and their reactivity with regards to subsequent conjugation and radiolabeling is discussed. PMID:20177623

  17. Tailoring elastase inhibition with synthetic peptides.

    PubMed

    Vasconcelos, Andreia; Azoia, Nuno G; Carvalho, Ana C; Gomes, Andreia C; Güebitz, Georg; Cavaco-Paulo, Artur

    2011-09-01

    Chronic wounds are the result of excessive amounts of tissue destructive proteases such as human neutrophil elastase (HNE). The high levels of this enzyme found on those types of wounds inactivate the endogenous inhibitor barrier thus, the search for new HNE inhibitors is required. This work presents two new HNE inhibitor peptides, which were synthesized based on the reactive-site loop of the Bowman-Birk inhibitor protein. The results obtained indicated that these new peptides are competitive inhibitors for HNE and, the inhibitory activity can be modulated by modifications introduced at the N- and C-terminal of the peptides. Furthermore, these peptides were also able to inhibit elastase from a human wound exudate while showing no cytotoxicity against human skin fibroblasts in vitro, greatly supporting their potential application in chronic wound treatment. PMID:21658384

  18. Synthetic therapeutic peptides: science and market.

    PubMed

    Vlieghe, Patrick; Lisowski, Vincent; Martinez, Jean; Khrestchatisky, Michel

    2010-01-01

    The decreasing number of approved drugs produced by the pharmaceutical industry, which has been accompanied by increasing expenses for R&D, demands alternative approaches to increase pharmaceutical R&D productivity. This situation has contributed to a revival of interest in peptides as potential drug candidates. New synthetic strategies for limiting metabolism and alternative routes of administration have emerged in recent years and resulted in a large number of peptide-based drugs that are now being marketed. This review reports on the unexpected and considerable number of peptides that are currently available as drugs and the chemical strategies that were used to bring them into the market. As demonstrated here, peptide-based drug discovery could be a serious option for addressing new therapeutic challenges. PMID:19879957

  19. Peptide-based vaccines for cancer therapy

    PubMed Central

    Parmiani, Giorgio; Russo, Vincenzo; Maccalli, Cristina; Parolini, Danilo; Rizzo, Nathalie; Maio, Michele

    2014-01-01

    Interest for cancer vaccination started more than 30 years ago after the demonstration that both in animal models and later on in patients it is possible to generate anti-tumor immune responses. The clinical application of this knowledge, however, was disappointing. In this review we summarize results on peptides epitopes recognized by T cells that have been studied thanks to their easy synthesis and the lack of significant side effects when administered in-vivo. To improve the clinical efficacy, peptides were modified in their aminoacid sequence to augment their immunogenicity. Peptides vaccines were recently shown to induce a high frequency of immune response in patients that were accompanied by clinical efficacy. These data are discussed at the light of recent progression of immunotherapy caused by the addition of check-point antibodies thus providing a general picture of the potential therapeutic efficacy of the peptide-based vaccines and their combination with other biological agents. PMID:25483658

  20. Simulation of Peptides at Aqueous Interfaces

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, M.; Chipot, C.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Behavior of peptides at water-membrane interfaces is of great interest in studies on cellular transport and signaling, membrane fusion, and the action of toxins and antibiotics. Many peptides, which exist in water only as random coils, can form sequence-dependent, ordered structures at aqueous interfaces, incorporate into membranes and self-assembly into functional units, such as simple ion channels. Multi -nanosecond molecular dynamics simulations have been carried out to study the mechanism and energetics of interfacial folding of both non-polar and amphiphilic peptides, their insertion into membranes and association into higher-order structures. The simulations indicate that peptides fold non-sequentially, often through a series of amphiphilic intermediates. They further incorporate into the membrane in a preferred direction as folded monomers, and only then aggregate into dimers and, possibly, further into "dimers of dimers".

  1. Biologically Active and Antimicrobial Peptides from Plants

    PubMed Central

    Salas, Carlos E.; Badillo-Corona, Jesus A.; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application. PMID:25815307

  2. Advances in synthetic peptides reagent discovery

    NASA Astrophysics Data System (ADS)

    Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Stratis-Cullum, Dimitra N.

    2013-05-01

    Bacterial display technology offers a number of advantages over competing display technologies (e.g, phage) for the rapid discovery and development of peptides with interaction targeted to materials ranging from biological hazards through inorganic metals. We have previously shown that discovery of synthetic peptide reagents utilizing bacterial display technology is relatively simple and rapid to make laboratory automation possible. This included extensive study of the protective antigen system of Bacillus anthracis, including development of discovery, characterization, and computational biology capabilities for in-silico optimization. Although the benefits towards CBD goals are evident, the impact is far-reaching due to our ability to understand and harness peptide interactions that are ultimately extendable to the hybrid biomaterials of the future. In this paper, we describe advances in peptide discovery including, new target systems (e.g. non-biological materials), advanced library development and clone analysis including integrated reporting.

  3. Peptide Seems to Boost Human Memory.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1981

    1981-01-01

    This article discusses recent studies which have shown that the peptide hormone vasopressin apparently can stimulate memory and learning in healthy human volunteers and in certain mentally disturbed patients. (ECO)

  4. Anti-chlamydial effect of plant peptides.

    PubMed

    Balogh, Emese Petra; Mosolygó, Tímea; Tiricz, Hilda; Szabó, Agnes Míra; Karai, Adrienn; Kerekes, Fanni; Virók, Dezső P; Kondorosi, Eva; Burián, Katalin

    2014-06-01

    Even in asymptomatic cases of Chlamydia trachomatis infection, the aim of the antibiotic strategy is eradication of the pathogen so as to avoid the severe late sequelae, such as pelvic inflammatory disease, ectopic pregnancy, and tubal infertility. Although first-line antimicrobial agents have been demonstrated to be predominantly successful in the treatment of C. trachomatis infection, treatment failures have been observed in some cases. Rich source of antimicrobial peptides was recently discovered in Medicago species, which act in plants as differentiation factors of the endosymbiotic bacterium partner. Several of these symbiotic plant peptides have proved to be potent killers of various bacteria in vitro. We show here that 7 of 11 peptides tested exhibited antimicrobial activity against C. trachomatis D, and that the killing activity of these peptides is most likely due to their interaction with specific bacterial targets. PMID:24939689

  5. Peptide regulation of Maize defense reponses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ZmPEP1 is a peptide signal encoded by a previously uncharacterized maize gene that we have named ZmPROPEP1. The ZmPROPEP1 gene was identified by homology to the Arabidopsis AtPROPEP1 gene that encodes the precursor protein to the peptide signal AtPEP1. Together with its receptors, AtPEPR1 and AtPEP...

  6. Urokinase-controlled tumor penetrating peptide.

    PubMed

    Braun, Gary B; Sugahara, Kazuki N; Yu, Olivia M; Kotamraju, Venkata Ramana; Mölder, Tarmo; Lowy, Andrew M; Ruoslahti, Erkki; Teesalu, Tambet

    2016-06-28

    Tumor penetrating peptides contain a cryptic (R/K)XX(R/K) CendR element that must be C-terminally exposed to trigger neuropilin-1 (NRP-1) binding, cellular internalization and malignant tissue penetration. The specific proteases that are involved in processing of tumor penetrating peptides identified using phage display are not known. Here we design de novo a tumor-penetrating peptide based on consensus cleavage motif of urokinase-type plasminogen activator (uPA). We expressed the peptide, uCendR (RPARSGR↓SAGGSVA, ↓ shows cleavage site), on phage or coated it onto silver nanoparticles and showed that it is cleaved by uPA, and that the cleavage triggers binding to recombinant NRP-1 and to NPR-1-expressing cells. Upon systemic administration to mice bearing uPA-overexpressing breast tumors, FAM-labeled uCendR peptide and uCendR-coated nanoparticles preferentially accumulated in tumor tissue. We also show that uCendR phage internalization into cultured cancer cells and its penetration in explants of murine tumors and clinical tumor explants can be potentiated by combining the uCendR peptide with tumor-homing module, CRGDC. Our work demonstrates the feasibility of designing tumor-penetrating peptides that are activated by a specific tumor protease. As upregulation of protease expression is one of the hallmarks of cancer, and numerous tumor proteases have substrate specificities compatible with proteolytic unmasking of cryptic CendR motifs, the strategy described here may provide a generic approach for designing proteolytically-actuated peptides for tumor-penetrative payload delivery. PMID:27106816

  7. D-Peptides as Recognition Molecules and Therapeutic Agents.

    PubMed

    Liu, Min; Li, Xue; Xie, Zuoxu; Xie, Cao; Zhan, Changyou; Hu, Xuefeng; Shen, Qing; Wei, Xiaoli; Su, Bingxia; Wang, Jing; Lu, Weiyue

    2016-08-01

    Over recent years, D-peptides have attracted increasing attention. D-peptides increase enzymatic stability, prolong the plasma half-life, improve oral bioavailability, and enhance binding activity and specificity with receptor or target proteins, in comparison with the corresponding L-peptide. Therefore, D-peptides are considered to have potential as recognition molecules and therapeutic agents. This review focuses on the design and application of D-peptides with biological activity. PMID:27255896

  8. HCD Fragmentation of Glycated Peptides.

    PubMed

    Keilhauer, Eva C; Geyer, Philipp E; Mann, Matthias

    2016-08-01

    Protein glycation is a concentration-dependent nonenzymatic reaction of reducing sugars with amine groups of proteins to form early as well as advanced glycation (end-) products (AGEs). Glycation is a highly disease-relevant modification but is typically only studied on a few blood proteins. To complement our blood proteomics studies in diabetics, we here investigate protein glycation by higher energy collisional dissociation (HCD) fragmentation on Orbitrap mass spectrometers. We established parameters to most efficiently fragment and identify early glycation products on in vitro glycated model proteins. Retaining standard collision energies does not degrade performance if the most dominant neutral loss of H6O3 is included into the database search strategy. Glycation analysis of the entire HeLa proteome revealed an unexpected intracellular preponderance for arginine over lysine modification in early and advanced glycation (end-) products. Single-run analysis from 1 μL of undepleted and unenriched blood plasma identified 101 early glycation sites as well as numerous AGE sites on diverse plasma proteins. We conclude that HCD fragmentation is well-suited for analyzing glycated peptides and that the diabetic status of patients can be directly diagnosed from single-run plasma proteomics measurements. PMID:27425404

  9. Neutron diffraction studies of viral fusion peptides

    NASA Astrophysics Data System (ADS)

    Bradshaw, Jeremy P.; J. M. Darkes, Malcolm; Katsaras, John; Epand, Richard M.

    2000-03-01

    Membrane fusion plays a vital role in a large and diverse number of essential biological processes. Despite this fact, the precise molecular events that occur during fusion are still not known. We are currently engaged on a study of membrane fusion as mediated by viral fusion peptides. These peptides are the N-terminal regions of certain viral envelope proteins that mediate the process of fusion between the viral envelope and the membranes of the host cell during the infection process. As part of this study, we have carried out neutron diffraction measurements at the ILL, BeNSC and Chalk River, on a range of viral fusion peptides. The peptides, from simian immunodeficiency virus (SIV), influenza A and feline leukaemia virus (FeLV), were incorporated into stacked phospholipid bilayers. Some of the peptides had been specifically deuterated at key amino acids. Lamellar diffraction data were collected and analysed to yield information on the peptide conformation, location and orientation relative to the bilayer.

  10. Peptide neurons in the canine small intestine.

    PubMed

    Daniel, E E; Costa, M; Furness, J B; Keast, J R

    1985-07-01

    The distributions of peptide-containing nerve fibers and cell bodies in the canine small intestine were determined with antibodies raised against seven peptides: enkephalin, gastrin-releasing peptide (GRP), neuropeptide Y, neurotensin, somatostatin, substance P, and vasoactive intestinal peptide (VIP). Immunoreactive nerve cell bodies and fibers were found for each peptide except neurotensin. In the muscle layers there were numerous substance P, VIP, and enkephalin fibers, fewer neuropeptide Y fibers, and very few GRP or somatostatin fibers. The mucosa contained many VIP and substance P fibers, moderate numbers of neuropeptide Y, somatostatin, and GRP fibers and rare enkephalin fibers. Nerve cell bodies reactive for each of the six neural peptides were located in both the myenteric and submucous plexuses. The distributions of nerve cell bodies and processes in the canine small intestine show many similarities with other mammals, for example, in the distributions of VIP, substance P, neuropeptide Y, and somatostatin nerves. There are some major differences, such as the presence in dogs of numerous submucosal nerve cell bodies with enkephalinlike immunoreactivity and of GRP-like immunoreactivity in submucous nerve cell bodies and mucosal fibers. PMID:2411766