Science.gov

Sample records for enterocin l50 peptides

  1. Use of the Yeast Pichia pastoris as an Expression Host for Secretion of Enterocin L50, a Leaderless Two-Peptide (L50A and L50B) Bacteriocin from Enterococcus faecium L50

    PubMed Central

    Basanta, Antonio; Gómez-Sala, Beatriz; Sánchez, Jorge; Diep, Dzung B.; Herranz, Carmen; Hernández, Pablo E.; Cintas, Luis M.

    2010-01-01

    In this work, we report the expression and secretion of the leaderless two-peptide (EntL50A and EntL50B) bacteriocin enterocin L50 from Enterococcus faecium L50 by the methylotrophic yeast Pichia pastoris X-33. The bacteriocin structural genes entL50A and entL50B were fused to the Saccharomyces cerevisiae gene region encoding the mating pheromone α-factor 1 secretion signal (MFα1s) and cloned, separately and together (entL50AB), into the P. pastoris expression and secretion vector pPICZαA, which contains the methanol-inducible alcohol oxidase promoter (PAOX1) to express the fusion genes. After transfer into the yeast, the recombinant plasmids were integrated into the genome, resulting in three bacteriocinogenic yeast strains able to produce and secrete the individual bacteriocin peptides EntL50A and EntL50B separately and together. The secretion was efficiently directed by MFα1s through the Sec system, and the precursor peptides were found to be correctly processed to form mature and active bacteriocin peptides. The present work describes for the first time the heterologous expression and secretion of a two-peptide non-pediocin-like bacteriocin by a yeast. PMID:20348300

  2. Enterocins L50A and L50B, Two Novel Bacteriocins from Enterococcus faecium L50, Are Related to Staphylococcal Hemolysins

    PubMed Central

    Cintas, Luis M.; Casaus, Pilar; Holo, Helge; Hernandez, Pablo E.; Nes, Ingolf F.; Håvarstein, Leiv Sigve

    1998-01-01

    Enterocin L50 (EntL50), initially referred to as pediocin L50 (L. M. Cintas, J. M. Rodríguez, M. F. Fernández, K. Sletten, I. F. Nes, P. E. Hernández, and H. Holo, Appl. Environ. Microbiol. 61:2643–2648, 1995), is a plasmid-encoded broad-spectrum bacteriocin produced by Enterococcus faecium L50. It has previously been purified from the culture supernatant and partly sequenced by Edman degradation. In the present work, the nucleotide sequence of the EntL50 locus was determined, and several putative open reading frames (ORFs) were identified. Unexpectedly, two ORFs were found to encode EntL50-like peptides. These peptides, termed enterocin L50A (EntL50A) and enterocin L50B (EntL50B), have 72% sequence identity and consist of 44 and 43 amino acids, respectively. Interestingly, a comparison of the deduced sequences of EntL50A and EntL50B with the corresponding sequences obtained by Edman degradation shows that these bacteriocins, in contrast to other peptide bacteriocins, are secreted without an N-terminal leader sequence or signal peptide. Expression in vivo and in vitro transcription/translation experiments demonstrated that entL50A and entL50B are the only genes required to obtain antimicrobial activity, strongly indicating that their bacteriocin products are not posttranslationally modified. Both bacteriocins possess antimicrobial activity on their own, with EntL50A being the most active. In addition, when the two bacteriocins were combined, a considerable synergism was observed, especially with some indicator strains. Even though the enterocins in some respects are similar to class II bacteriocins, several conserved features common to class II bacteriocins are absent from the EntL50 system. The enterocins have more in common with members of a small group of cytolytic peptides secreted by certain staphylococci. We therefore propose that the enterocins L50A and L50B and the staphylococcal cytolysins together constitute a new family of peptide toxins, unrelated

  3. Antimicrobial activity of Enterococcus faecium L50, a strain producing enterocins L50 (L50A and L50B), P and Q, against beer-spoilage lactic acid bacteria in broth, wort (hopped and unhopped), and alcoholic and non-alcoholic lager beers.

    PubMed

    Basanta, Antonio; Sánchez, Jorge; Gómez-Sala, Beatriz; Herranz, Carmen; Hernández, Pablo E; Cintas, Luis M

    2008-07-31

    Enterococcus faecium L50 produces enterocin L50 (L50A and L50B) (EntL50, EntL50A and EntL50B), enterocin P (EntP) and enterocin Q (EntQ) and displays a broad antimicrobial spectrum against the most relevant beer-spoilage lactic acid bacteria (LAB) (i.e., Lactobacillus brevis and Pediococcus damnosus), which is mainly due to the production of EntL50 (EntL50A and EntL50B). Bacteriocin assays using in vitro-synthesized EntL50 (EntL50A and EntL50B) showed that both individual peptides possess antimicrobial activity on their own, EntL50A being the most active, but when the two peptides were combined a synergistic effect was observed. The only virulence genes detected in E. faecium L50 were efaAfm (cell wall adhesin) and ccf (sex pheromone), and this strain was susceptible to most clinically relevant antibiotics. E. faecium L50 survived but did not grow nor showed antimicrobial activity in hopped and unhopped wort, and alcoholic (1 and 5% ethanol, v/v) and non-alcoholic (0% ethanol, v/v) commercial lager beers. However, when unhopped wort was supplemented with 50% (v/v) MRS broth, E. faecium L50 grew and exerted antimicrobial activity similarly as in MRS broth. The enterocins produced by this strain were bactericidal (5 log decrease) against P. damnosus and Lb. brevis in a dose- and substrate-dependent manner when challenged in MRS broth, wort (hopped and unhopped), and alcoholic (1 and 5% ethanol, v/v) and non-alcoholic (0% ethanol, v/v) lager beers at 32 degrees C, and no bacterial resistances were detected even after incubation for 6-15 days. The enterocins in wort and lager beer (5% ethanol, v/v) withstood the heat treatments commonly employed in the brewing industry during mashing, wort boiling, fermentation, and pasteurization, and retained most of their antimicrobial activity in lager beer (5% ethanol, v/v) after long-term storage at 8 and 25 degrees C. PMID:18544465

  4. Simultaneous Production of Formylated and Nonformylated Enterocins L50A and L50B as well as 61A, a New Glycosylated Durancin, by Enterococcus durans 61A, a Strain Isolated from Artisanal Fermented Milk in Tunisia.

    PubMed

    Hanchi, Hasna; Hammami, Riadh; Fernandez, Benoit; Kourda, Rim; Ben Hamida, Jeannette; Fliss, Ismail

    2016-05-11

    Enterococcus durans 61A, a broad-spectrum strain, was isolated from artisanal fermented dairy products. The strain is a multibacteriocin producer, free from virulence genes, and could be considered a good candidate for application in food preservation. In the present study, E. durans 61A was shown to produce simultaneously formylated and nonformylated forms of leaderless enterocins L50A and L50B as well as 61A, a new glycosylated durancin. Bacteriocins were characterized using mass spectrometry. Formylation was found to increase enterocin antimicrobial activity of enterocin L50A (8×) and, to a lesser extent, the activity of L50B (2×). Durancin 61A was found glycosylated by two hexoses (glucose and arabinose) and exhibited broad-spectrum inhibition against Gram-positive and Gram-negative bacteria and fungal spores. Durancin 61A was highly bactericidal at 15.6 μg/mL (10× the MIC) on Listeria innocua HPB13 and seems to target bacterial membrane as shown by ion efflux and transmission electron microscopy. PMID:27111259

  5. Complete Sequence of the Enterocin Q-Encoding Plasmid pCIZ2 from the Multiple Bacteriocin Producer Enterococcus faecium L50 and Genetic Characterization of Enterocin Q Production and Immunity

    PubMed Central

    Criado, Raquel; Diep, Dzung B.; Aakra, Ågot; Gutiérrez, Jorge; Nes, Ingolf F.; Hernández, Pablo E.; Cintas, Luis M.

    2006-01-01

    The locations of the genetic determinants for enterocin L50 (EntL50A and EntL50B), enterocin Q (EntQ), and enterocin P (EntP) in the multiple bacteriocin producer Enterococcus faecium strain L50 were determined. These bacteriocin genes occur at different locations; entL50AB (encoding EntL50A and EntL50B) are on the 50-kb plasmid pCIZ1, entqA (encoding EntQ) is on the 7.4-kb plasmid pCIZ2, and entP (encoding EntP) is on the chromosome. The complete nucleotide sequence of pCIZ2 was determined to be 7,383 bp long and contains 10 putative open reading frames (ORFs) organized in three distinct regions. The first region contains three ORFs: entqA preceded by two divergently oriented genes, entqB and entqC. EntqB shows high levels of similarity to bacterial ATP-binding cassette (ABC) transporters, while EntqC displays no significant similarity to any known protein. The second region encompasses four ORFs (orf4 to orf7), and ORF4 and ORF5 display high levels of similarity to mobilization proteins from E. faecium and Enterococcus faecalis. In addition, features resembling a transfer origin region (oriT) were found in the promoter area of orf4. The third region contains three ORFs (orf8 to orf10), and ORF8 and ORF9 exhibit similarity to the replication initiator protein RepE from E. faecalis and to RepB proteins, respectively. To clarify the minimum requirement for EntQ synthesis, we subcloned and heterologously expressed a 2,371-bp fragment from pCIZ2 that encompasses only the entqA, entqB, and entqC genes in Lactobacillus sakei, and we demonstrated that this fragment is sufficient for EntQ production. Moreover, we also obtained experimental results indicating that EntqB is involved in ABC transporter-mediated EntQ secretion, while EntqC confers immunity to this bacteriocin. PMID:17021217

  6. The Cyclic Antibacterial Peptide Enterocin AS-48: Isolation, Mode of Action, and Possible Food Applications

    PubMed Central

    Grande Burgos, María José; Pérez Pulido, Rubén; López Aguayo, María del Carmen; Gálvez, Antonio; Lucas, Rosario

    2014-01-01

    Enterocin AS-48 is a circular bacteriocin produced by Enterococcus. It contains a 70 amino acid-residue chain circularized by a head-to-tail peptide bond. The conformation of enterocin AS-48 is arranged into five alpha-helices with a compact globular structure. Enterocin AS-48 has a wide inhibitory spectrum on Gram-positive bacteria. Sensitivity of Gram-negative bacteria increases in combination with outer-membrane permeabilizing treatments. Eukaryotic cells are bacteriocin-resistant. This cationic peptide inserts into bacterial membranes and causes membrane permeabilization, leading ultimately to cell death. Microarray analysis revealed sets of up-regulated and down-regulated genes in Bacillus cereus cells treated with sublethal bacteriocin concentration. Enterocin AS-48 can be purified in two steps or prepared as lyophilized powder from cultures in whey-based substrates. The potential applications of enterocin AS-48 as a food biopreservative have been corroborated against foodborne pathogens and/or toxigenic bacteria (Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Salmonella enterica) and spoilage bacteria (Alicyclobacillus acidoterrestris, Bacillus spp., Paenibacillus spp., Geobacillus stearothermophilus, Brochothrix thermosphacta, Staphylococcus carnosus, Lactobacillus sakei and other spoilage lactic acid bacteria). The efficacy of enterocin AS-48 in food systems increases greatly in combination with chemical preservatives, essential oils, phenolic compounds, and physico-chemical treatments such as sublethal heat, high-intensity pulsed-electric fields or high hydrostatic pressure. PMID:25493478

  7. The Cyclic Antibacterial Peptide Enterocin AS-48: Isolation, Mode of Action, and Possible Food Applications.

    PubMed

    Grande Burgos, María José; Pulido, Rubén Pérez; Del Carmen López Aguayo, María; Gálvez, Antonio; Lucas, Rosario

    2014-01-01

    Enterocin AS-48 is a circular bacteriocin produced by Enterococcus. It contains a 70 amino acid-residue chain circularized by a head-to-tail peptide bond. The conformation of enterocin AS-48 is arranged into five alpha-helices with a compact globular structure. Enterocin AS-48 has a wide inhibitory spectrum on Gram-positive bacteria. Sensitivity of Gram-negative bacteria increases in combination with outer-membrane permeabilizing treatments. Eukaryotic cells are bacteriocin-resistant. This cationic peptide inserts into bacterial membranes and causes membrane permeabilization, leading ultimately to cell death. Microarray analysis revealed sets of up-regulated and down-regulated genes in Bacillus cereus cells treated with sublethal bacteriocin concentration. Enterocin AS-48 can be purified in two steps or prepared as lyophilized powder from cultures in whey-based substrates. The potential applications of enterocin AS-48 as a food biopreservative have been corroborated against foodborne pathogens and/or toxigenic bacteria (Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Salmonella enterica) and spoilage bacteria (Alicyclobacillus acidoterrestris, Bacillus spp., Paenibacillus spp., Geobacillus stearothermophilus, Brochothrix thermosphacta, Staphylococcus carnosus, Lactobacillus sakei and other spoilage lactic acid bacteria). The efficacy of enterocin AS-48 in food systems increases greatly in combination with chemical preservatives, essential oils, phenolic compounds, and physico-chemical treatments such as sublethal heat, high-intensity pulsed-electric fields or high hydrostatic pressure. PMID:25493478

  8. The fsr Quorum-Sensing System and Cognate Gelatinase Orchestrate the Expression and Processing of Proprotein EF_1097 into the Mature Antimicrobial Peptide Enterocin O16

    PubMed Central

    Dundar, Halil; Brede, Dag A.; La Rosa, Sabina Leanti; El-Gendy, Ahmed Osama; Diep, Dzung B.

    2015-01-01

    ABSTRACT A novel antimicrobial peptide designated enterocin O16 was purified from Enterococcus faecalis. Mass spectrometry showed a monoisotopic mass of 7,231 Da, and N-terminal Edman degradation identified a 29-amino-acid sequence corresponding to residues 90 to 119 of the EF_1097 protein. Bioinformatic analysis showed that enterocin O16 is composed of the 68 most C-terminal residues of the EF_1097 protein. Introduction of an in-frame isogenic deletion in the ef1097 gene abolished the production of enterocin O16. Enterocin O16 has a narrow inhibitory spectrum, as it inhibits mostly lactobacilli. Apparently, E. faecalis is intrinsically resistant to the antimicrobial peptide, as no immunity connected to the production of enterocin O16 could be identified. ef1097 has previously been identified as one of three loci regulated by the fsr quorum-sensing system. The introduction of a nonsense mutation into fsrB consistently impaired enterocin O16 production, but externally added gelatinase biosynthesis-activating pheromone restored the antimicrobial activity. Functional genetic analysis showed that the EF_1097 proprotein is processed extracellularly into enterocin O16 by the metalloprotease GelE. Thus, it is evident that the fsr quorum-sensing system constitutes the regulatory unit that controls the expression of the EF_1097 precursor protein and the protease GelE and that the latter is required for the formation of enterocin O16. On the basis of these results, this study identified antibacterial antagonism as a novel aspect related to the function of fsr and provides a rationale for why ef1097 is part of the fsr regulon. IMPORTANCE The fsr quorum-sensing system modulates important physiological functions in E. faecalis via the activity of GelE. The present study presents a new facet of fsr signaling. The system controls the expression of three primary target operons (fsrABCD, gelE-sprE, and ef1097-ef1097b). We demonstrate that the concerted expression of these operons

  9. Enterocins in food preservation.

    PubMed

    Khan, Haider; Flint, Steve; Yu, Pak-Lam

    2010-06-30

    The Enterococcus genus, a member of the Lactic Acid Bacteria (LAB) is found in various environments, but more particularly in the intestines of humans and other animals. Although sometimes associated with pathogenicity these bacteria have many benefits. They have been found in traditional artisanal fermented products, are used as probiotic cultures and nowadays extensively studied for the production of bacteriocins--the enterocins. Many of these enterocins have been found to be active against Listeria monocytogenes, and a few have also been reported to be active even against Gram negative bacteria, an unusual property for the bacteriocins produced by LAB. These properties have resulted in many studies describing the use of enterocins as preservatives in foods of animal and vegetable origin. This review covers the most recent information on the use of enterocins as food preservatives, either produced in-situ by the addition of enterocin producing strains or as external preservatives in the form of purified or semi-purified extracts, to prevent the growth of spoilage and pathogenic microorganisms. PMID:20399522

  10. Enterocin F4-9, a Novel O-Linked Glycosylated Bacteriocin.

    PubMed

    Maky, Mohamed Abdelfattah; Ishibashi, Naoki; Zendo, Takeshi; Perez, Rodney Honrada; Doud, Jehan Ragab; Karmi, Mohamed; Sonomoto, Kenji

    2015-07-01

    Enterococcus faecalis F4-9 isolated from Egyptian salted-fermented fish produces a novel bacteriocin, termed enterocin F4-9. Enterocin F4-9 was purified from the culture supernatant by three steps, and its molecular mass was determined to be 5,516.6 Da by mass spectrometry. Amino acid and DNA sequencing showed that the propeptide consists of 67 amino acid residues, with a leader peptide containing a double glycine cleavage site to produce a 47-amino-acid mature peptide. Enterocin F4-9 is modified by two molecules of N-acetylglucosamine β-O-linked to Ser37 and Thr46. The O-linked N-acetylglucosamine moieties are essential for the antimicrobial activity of enterocin F4-9. Further analysis of the enterocin F4-9 gene cluster identified enfC, which has high sequence similarity to a glycosyltransferase. The antimicrobial activity of enterocin F4-9 covered a limited range of bacteria, including, interestingly, a Gram-negative strain, Escherichia coli JM109. Enterocin F4-9 is sensitive to protease, active at a wide pH range, and moderately resistant to heat. PMID:25956765

  11. Analysis of the Promoters Involved in Enterocin AS-48 Expression

    PubMed Central

    Cebrián, Rubén; Rodríguez-Ruano, Sonia; Martínez-Bueno, Manuel; Valdivia, Eva; Maqueda, Mercedes; Montalbán-López, Manuel

    2014-01-01

    The enterocin AS-48 is the best characterized antibacterial circular protein in prokaryotes. It is a hydrophobic and cationic bacteriocin, which is ribosomally synthesized by enterococcal cells and post-translationally cyclized by a head-to-tail peptide bond. The production of and immunity towards AS-48 depend upon the coordinated expression of ten genes organized in two operons, as-48ABC (where genes encoding enzymes with processing, secretion, and immunity functions are adjacent to the structural as-48A gene) and as-48C1DD1EFGH. The current study describes the identification of the promoters involved in AS-48 expression. Seven putative promoters have been here amplified, and separately inserted into the promoter-probe vector pTLR1, to create transcriptional fusions with the mCherry gene used as a reporter. The activity of these promoter regions was assessed measuring the expression of the fluorescent mCherry protein using the constitutive pneumococcal promoter PX as a reference. Our results revealed that only three promoters PA, P2(2) and PD1 were recognized in Enterococcus faecalis, Lactococcus lactis and Escherichia coli, in the conditions tested. The maximal fluorescence was obtained with PX in all the strains, followed by the P2(2) promoter, which level of fluorescence was 2-fold compared to PA and 4-fold compared to PD1. Analysis of putative factors influencing the promoter activity in single and double transformants in E. faecalis JH2-2 demonstrated that, in general, a better expression was achieved in presence of pAM401-81. In addition, the P2(2) promoter could be regulated in a negative fashion by genes existing in the native pMB-2 plasmid other than those of the as-48 cluster, while the pH seems to affect differently the as-48 promoter expression. PMID:24594763

  12. Enterocin AS-48RJ: a variant of enterocin AS-48 chromosomally encoded by Enterococcus faecium RJ16 isolated from food.

    PubMed

    Abriouel, Hikmate; Lucas, Rosario; Ben Omar, Nabil; Valdivia, Eva; Maqueda, Mercedes; Martínez-Cañamero, Magdalena; Gálvez, Antonio

    2005-07-01

    The bacteriocinogenic strain RJ16 isolated from goat cheese has been identified as Enterococcusfaecium by species-specific PCR, DNA-rRNA hybridization and rDNA sequencing. Purified bacteriocin from strain RJ16 is a carboxypeptidase A-resistant peptide with a molecular mass (7125 Da) very close to the cyclic peptide enterocin AS-48. Bacteriocin from strain RJ16 and AS-48 show identical antibacterial spectra, although the former is slightly less active on strains of Listeria monocytogenes and Bacillus cereus. Producer strains show cross-immunity. PCR amplification of total DNA from strain RJ16 with primers for the AS-48 structural gene and sequencing of the amplified fragment revealed an almost identical sequence (99.5%), except for a single mutation that predicts the change of Glu residue at position 20 of AS-48 to Val. Therefore, bacteriocin produced by E. faecium RJ16 should be considered a variant of AS-48, which we call AS-48RJ. PCR amplification revealed that strain RJ16 contains the complete as-48. gene cluster. Hybridization with probes for as-48 gene cluster revealed a chromosomal location of as-48 genes in strain RJ16, being the first example of a chromosomal location of this bacteriocin trait. Strain RJ16 produced enzymes of interest in food processing (esterase, esterase lipase and phytase activities), and did not decarboxylate amino acids precursors for biogenic amines. Strain RJ16 did not exhibit haemolytic or gelatinase activities, and PCR amplification revealed the lack of genes encoding for known virulence determinants (aggregation substance, collagen adhesin, enterococcal surface protein, endocarditis antigens, as well as haemolysin and gelatinase production). Strain RJ16 was resistant to ciprofloxacin (MIC > 2 mgl(-1)) and levofloxacin (MIC > 4 mgl(-1)) and showed intermediate resistance to nitrofurantoin and erythromycin, but was sensitive to ampicillin, penicillin, streptomycin, gentamicin, rifampicin, chloramphenicol, tetracycline, quinupristin

  13. Enterococci isolated from farm ostriches and their relation to enterocins.

    PubMed

    Lauková, Andrea; Kandričáková, Anna; Ščerbová, Jana; Strompfová, Viola

    2016-07-01

    The present study focuses on the detection of enterococci in ostrich faeces. Forty-six bacterial colonies from 140 ostriches were identified at the species level using the MALDI-TOF MS identification system. According to the score value evaluation, they were allotted to the species Enterococcus hirae, Enterococcus faecium and Enterococcus mundtii confirmed also by phenotypic testing. Dominated species E. hirae (34 strains) were submitted to more detailed testing. Those strains E. hirae produced either no or only slight amount of the enzymes related to disorders (N-acetyl-β-glucosaminidase, β-glucuronidase, α-chymotrypsin, trypsin). Most of the strains were not hemolytic. They did not harbour the hiracin-producing gene. Five E. hirae strains harboured virulence factor gene gelE; however, they were phenotypically gelatinase negative. They also harboured other virulence factor genes such as esp, efaAfm and ccf. E. hirae strains were mostly sensitive to antibiotics and those resistant at least to one antibiotic were sensitive to enterocins (200-25,600 AU/mL). This study represents original and novel results concerning the enterococcal microflora in ostriches; enterococci in ostriches have not been described in detail up to now; sensitivity to enterocins of E. hirae strains harbouring virulence factor genes to enterocins is also new. PMID:26603748

  14. Biochemical Properties and Mechanism of Action of Enterocin LD3 Purified from Enterococcus hirae LD3.

    PubMed

    Gupta, Aabha; Tiwari, Santosh Kumar; Netrebov, Victoria; Chikindas, Michael L

    2016-09-01

    Enterocin LD3 was purified using activity-guided multistep chromatography techniques such as cation-exchange and gel-filtration chromatography. The preparation's purity was tested using reverse-phase ultra-performance liquid chromatography. The specific activity was tested to be 187.5 AU µg(-1) with 13-fold purification. Purified enterocin LD3 was heat stable up to 121 °C (at 15 psi pressure) and pH 2-6. The activity was lost in the presence of papain, reduced by proteinase K, pepsin and trypsin, but was unaffected by amylase and lipase, suggesting proteinaceous nature of the compound and no role of carbohydrate and lipid moieties in the activity. MALDI-TOF/MS analysis of purified enterocin LD3 resolved m/z 4114.6, and N-terminal amino acid sequence was found to be H2NQGGQANQ-COOH suggesting a new bacteriocin. Dissipation of membrane potential, loss of internal ATP and bactericidal effect were recorded when indicator strain Micrococcus luteus was treated with enterocin LD3. It inhibited Gram-positive and Gram-negative bacteria including human pathogens such as Staphylococcus aureus, Pseudomonas fluorescens, Pseudomonas aeruginosa, Salmonella typhi, Shigella flexneri, Listeria monocytogenes, Escherichia coli O157:H7, E. coli (urogenic, a clinical isolate) and Vibrio sp. These properties of purified enterocin LD3 suggest its applications as a food biopreservative and as an alternative to clinical antibiotics. PMID:27145777

  15. A novel enterocin T1 with anti-Pseudomonas activity produced by Enterococcus faecium T1 from Chinese Tibet cheese.

    PubMed

    Liu, Hui; Zhang, Lanwei; Yi, Huaxi; Han, Xue; Gao, Wei; Chi, Chunliang; Song, Wei; Li, Haiying; Liu, Chunguang

    2016-02-01

    An enterocin-producing Enterococcus faecium T1 was isolated from Chinese Tibet cheese. The enterocin was purified by SP-Sepharose and reversed phase HPLC. It was identified as unique from other reported bacteriocins based on molecular weight (4629 Da) and amino acid compositions; therefore it was subsequently named enterocin T1. Enterocin T1 was stable at 80-100 °C and over a wide pH range, pH 3.0-10.0. Protease sensitivity was observed to trypsin, pepsin, papain, proteinase K, and pronase E. Importantly, enterocin T1 was observed to inhibit the growth of numerous Gram-negative and Gram-positive bacteria including Pseudomonas putida, Pseudomonas aeruginosa, Pseudomonas fluorescens, Escherichia coli, Salmonella typhimurium, Shigella flexneri, Shigella sonnei, Staphylococcus aureus, Listeria monocytogenes. Take together, these results suggest that enterocin T1 is a novel bacteriocin with the potential to be used as a bio-preservative to control Pseudomonas spp. in food. PMID:26745981

  16. Enhanced bactericidal effect of enterocin A in combination with thyme essential oils against L. monocytogenes and E. coli O157:H7.

    PubMed

    Ghrairi, Taoufik; Hani, Khaled

    2015-04-01

    The combined effects of enterocin A with Thymus vulgaris essential oils (EOs) against Listeria monocytogenes and Escherichia coli O157:H7 were investigated in vitro by enumeration of surviving populations of testing pathogens and minimal inhibitory concentration (MIC) determination. Enterocin A was purified to homogeneity by RP-HPLC from the culture fluid of Enterococcus strain and thyme EOs were extracted from local Thymus vulgaris plants. The major constituent of thyme EOs oils determined by GC-MS was thymol (78.4 %). Combination of enterocin A with thyme EOs showed an enhanced bactericidal effect against Listeria monocytogenes. Checkerboard assay and isobologram construction displayed a synergistic interaction between these compounds against Listeria (FIC index <0.5). Moreover, the MIC value of enterocin A has fallen fivefold (from 4.57 to 0.9 μg/ml), while the MIC of thyme EOs decreased threefold (from 3.6 to 1.2 μg/ml). Treatments with enterocin A alone did not affect the growth of the enteric pathogen E. coli O157:H7. However, the addition of thyme EOs and enterocin A yielded a synergistic antimicrobial effect against E. coli (MIC thyme EOs decrease from 2.2 to 0.71 μg/ml). This is the first report on the combined effect of enterocin A and thyme EOs against food pathogen bacteria. This combination could be useful in food bio-preservation. PMID:25829595

  17. Combined effect of enterocin and lipase from Enterococcus faecium NCIM5363 against food borne pathogens: mode of action studies.

    PubMed

    Ramakrishnan, Vrinda; Narayan, Bhaskar; Halami, Prakash M

    2012-08-01

    Food borne diseases have a major impact on public health whose epidemiology is rapidly changing. The whole cells of pathogens involved or their toxins/metabolites affect the human health apart from spoiling sensory properties of the food products finally affecting the food industry as well as consumer health. With pathogens developing mechanisms of antibiotic resistance, there has been an increased need to replace antibiotics as well as chemical additives with naturally occurring bacteriocins. Bacteriocins are known to act mainly against Gram-positive pathogens and with little or no effect towards Gram-negative enteric bacteria. In the present study, combination effect of lipase and bacteriocin produced by Enterococcus faecium NCIM5363, a highly lipolytic lactic acid bacterium against various food pathogens was assessed. The lipase in combination with enterocin exhibited a lethal effect against Gram-negative pathogens. Scanning electron microscopy studies carried out to ascertain the constitutive mode of action of lipase and enterocin revealed that the lipase degrades the cell wall of Gram-negative bacteria and creates a pore through which enterocin enters thereby resulting in cell death. The novelty of this work is the fact that this is the first report revealing the synergistic effect of lipase with enterocin against Gram-negative bacteria. PMID:22580888

  18. Inactivation of Staphylococcus aureus in Oat and Soya Drinks by Enterocin AS-48 in Combination with Other Antimicrobials.

    PubMed

    Burgos, María José Grande; Aguayo, M Carmen López; Pulido, Rubén Pérez; Gálvez, Antonio; López, Rosario Lucas

    2015-09-01

    The presence of toxicogenic Staphylococcus aureus in foods and the dissemination of methicillin-resistant S. aureus (MRSA) in the food chain are matters of concern. In the present study, the circular bacteriocin enterocin AS-48, applied singly or in combination with phenolic compounds (carvacrol, eugenol, geraniol, and citral) or with 2-nitro-1-propanol (2NPOH), was investigated in the control of a cocktail made from 1 methicillin-sensitive and 1 MRSA strains inoculated on commercial oat and soya drinks. Enterocin AS-48 exhibited low bactericidal activity against staphylococci in the drinks investigated when applied singly. The combinations of sub-inhibitory concentrations of enterocin AS-48 (25 μg/mL) and phenolic compounds or 2NPOH caused complete inactivation of staphylococci in the drinks within 24 h of incubation at 22 °C. When tested in oat and soya drinks stored for 7 d at 10 °C, enterocin AS-48 (25 μg/mL) in combination with 2NPOH (5.5 mM) reduced viable counts rapidly in the case of oat drink (4.2 log cycles after 12 h) or slowly in soya drink (3.8 log cycles after 3 d). The same combined treatment applied on drinks stored at 22 °C achieved a fast inactivation of staphylococci within 12 to 24 h in both drinks, and no viable staphylococci were detected for up to 7 d of storage. Results from the study highlight the potential of enterocin AS-48 in combination with 2NPOH for inactivation of staphylococci. PMID:26256434

  19. Antibacterial efficacy of Nisin, Pediocin 34 and Enterocin FH99 against Listeria monocytogenes and cross resistance of its bacteriocin resistant variants to common food preservatives

    PubMed Central

    Kaur, G.; Singh, T.P.; Malik, R.K.

    2013-01-01

    Antilisterial efficiency of three bacteriocins, viz, Nisin, Pediocin 34 and Enterocin FH99 was tested individually and in combination against Listeria mononcytogenes ATCC 53135. A greater antibacterial effect was observed when the bacteriocins were combined in pairs, indicating that the use of more than one LAB bacteriocin in combination have a higher antibacterial action than when used individually. Variants of Listeria monocytogenes ATCC 53135 resistant to Nisin, Pediocin 34 and Enterocin FH99 were developed. Bacteriocin cross-resistance of wild type and their corresponding resistant variants were assessed and results showed that resistance to a bacteriocin may extend to other bacteriocins within the same class. Resistance to Pediocin 34 conferred cross resistance to Enterocin FH 99 but not to Nisin. Similarly resistance to Enterocin FH99 conferred cross resistance to Pediocin 34 but not to Nisin. Also, the sensitivity of Nisin, Pediocin 34 and Enterocin FH99 resistant variants of Listeria monocytogenes to low pH, salt, sodium nitrite, and potassium sorbate was assayed in broth and compared to the parental wild-type strain. The Nisin, Pediocin 34 and Enterocin FH99 resistant variants did not have intrinsic resistance to low pH, sodium chloride, potassium sorbate, or sodium nitrite. In no case were the bacteriocin resistant Listeria monocytogenes variants examined were more resistant to inhibitors than the parental strains. PMID:24159285

  20. Efficacy of enterocin AS-48 against bacilli in ready-to-eat vegetable soups and purees.

    PubMed

    Grande, Maria J; Abriouel, Hikmate; Lucas López, Rosario; Valdivia, Eva; Ben Omar, Nabil; Martínez-Cañamero, Magdalena; Gálvez, Antonio

    2007-10-01

    The broad-spectrum bacteriocin enterocin AS-48 was tested for biopreservation of ready-to-eat vegetable foods (soups and purees) against aerobic mesophilic endospore-forming bacteria. By adding AS-48 (10 microg/ml), Bacillus cereus LWL1 was completely inhibited in all six vegetable products tested (natural vegetable cream, asparagus cream, traditional soup, homemade-style traditional soup, vegetable soup, and vichyssoise) for up to 30 days at 6, 15, and 22 degrees C. A collection of strains isolated from spoiled purees showed slightly higher resistance to AS-48 in the order Paenibacillus sp. > Bacillus macroides > B. cereus, although they were also completely inhibited in natural vegetable cream by AS-48 at 10 microg/ml. However, cocktails of five or eight strains composed of B. cereus (three strains), B. macroides (two strains), and Paenibacillus sp., Paenibacillus polymyxa, and Paenibacillus amylolyticus showed higher bacteriocin resistance with AS-48 of up to 50 microg/ml required for complete inactivation in natural vegetable cream stored at 22 degrees C. Repetitive extragenic palindromic sequence-based PCR (REP-PCR) analysis showed that paenibacilli (along with some B. cereus) was the predominant survivor in the cocktails after bacteriocin treatment. To increase the effectiveness of enterocin AS-48, the bacteriocin was tested (at 20 microg/ml) against the eight-strain cocktail in natural vegetable cream in combination with other antimicrobials. The combination of AS-48 and nisin had a slight but significant additive effect. Bactericidal activity was greatly enhanced by phenolic compounds (carvacrol, eugenol, geraniol, and hydrocinnamic acid), achieving a rapid and complete inactivation of bacilli in the tested puree at 22 degrees C. PMID:17969616

  1. Benefits of combinative application of probiotic, enterocin M-producing strain Enterococcus faecium AL41 and Eleutherococcus senticosus in rabbits.

    PubMed

    Lauková, Andrea; Simonová, Monika Pogány; Chrastinová, Ľubica; Plachá, Iveta; Čobanová, Klaudia; Formelová, Zuzana; Chrenková, Mária; Ondruška, Ľubomír; Strompfová, Viola

    2016-03-01

    This study presents the effects of the probiotic and enterocin M-producing strain Enterococcus faecium AL41 on microbiota, phagocytic activity (PA), oxidative stress, performance and biochemical parameters when applied individually or in combination with Eleutherococcus senticosus in rabbits. The novelty of the study lies in the use of our non-rabbit-derived strain (AL41 = CCM8558) which produces new enterocin M. Ninety-six post-weaned rabbits (Hyplus breed) aged 5 weeks were divided into three experimental groups, 24 in each: E. senticosus (ES, 30 g/100 kg) in feed, E. faecium AL41 (10(9) CFU/mL marked by rifampicin to differentiate it from other enterococci) in water, and ES + AL. AL41 colonized sufficiently in rabbits to reduce coliforms, staphylococci, pseudomonads and clostridia. Slight decrease in bacteria was also found in the caecum and appendix. Phagocytic activity was significantly increased in the experimental groups compared to the control group (CG) (p < 0.001; p < 0.05). Applications did not evoke oxidative stress. Biochemical parameters in blood and caecal organic acids were slightly influenced. Average daily weight gain was slightly higher in ES and AL + ES. Combinative application of E. faecium with E. senticosus can be beneficial in rabbits. AL41 strain alone and in combination with ES produced reduction in spoilage bacteria; the highest stimulation of PA was in the AL41 + ES group. PMID:26354790

  2. Effect of sausage ingredients and additives on the production of enterocin A and B by Enterococcus faecium CTC492. Optimization of in vitro production and anti-listerial effect in dry fermented sausages.

    PubMed

    Aymerich, T; Artigas, M G; Garriga, M; Monfort, J M; Hugas, M

    2000-04-01

    Enterocin A and B in Enterococcus faecium CTC492 were co-induced by the different factors assayed in this study (r = 0.93) and followed primary metabolic kinetics. Enterocin production was significantly inhibited by sausage ingredients and additives, with the exception of nitrate. The addition of sodium chloride and pepper decreased production 16-fold. The temperature and pH influenced enterocin production, with optima between 25 and 35 degrees C, and from 6.0 to 7.5 of initial pH. The maximum activity was achieved, under favourable growth conditions, with MRS supplemented with sucrose (2%) plus glucose (0.25%) and Tween-80 (1%). MRS concentration, NaCl plus pepper addition, absence of Tween-80 in the growth medium, incubation at 45 degrees C and an initial pH under 5.5 were detrimental to bacteriocin production. Stress conditions did not favour enterocin production. Desadsorption was Tween-dependent. Enterocin A activity in the crude extracts stored at -80 degrees C was better preserved than enterocin B (when tested against their specific indicator strain), but anti-listerial activity remained intact. Applied as anti-listerial additives in dry fermented sausages, enterocins significantly diminished Listeria counts by 1. 13 log (P < 0.001), while Enterococcus faecium CTC492 added as starter culture did not significantly reduce Listeria counts (P > 0. 1) compared with the standard starter culture (Bac-). Enterocins A and B could be considered as extra biopreservative hurdles for listeria prevention in dry fermented sausages. PMID:10792528

  3. Anti-MRSA Activities of Enterocins DD28 and DD93 and Evidences on Their Role in the Inhibition of Biofilm Formation

    PubMed Central

    Al Atya, Ahmed K.; Belguesmia, Yanath; Chataigne, Gabrielle; Ravallec, Rozenn; Vachée, Anne; Szunerits, Sabine; Boukherroub, Rabah; Drider, Djamel

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) has become a worrisome superbug. This work aimed at studying the effects of two class IIb bacteriocins, enterocins DD28 and DD93 as anti-MRSA agents. Thus, these bacteriocins were purified, from the cultures supernatants of Enterococcus faecalis 28 and 93, using a simplified purification procedure consisting in a cation exchange chromatography and a reversed-phase high-performance liquid chromatography. The anti-Staphylococcal activity was shown in vitro by the assessment of the minimal inhibitory concentration (MIC), followed by a checkerboard and time-kill kinetics experiments. The data unveiled a clear synergistic effect of enterocins DD28 and DD93 in combination with erythromycin or kanamycin against the clinical MRSA-S1 strain. Besides, these combinations impeded as well the MRSA-S1 clinical strain to setup biofilms on stainless steel and glace devices. PMID:27303396

  4. Anti-MRSA Activities of Enterocins DD28 and DD93 and Evidences on Their Role in the Inhibition of Biofilm Formation.

    PubMed

    Al Atya, Ahmed K; Belguesmia, Yanath; Chataigne, Gabrielle; Ravallec, Rozenn; Vachée, Anne; Szunerits, Sabine; Boukherroub, Rabah; Drider, Djamel

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) has become a worrisome superbug. This work aimed at studying the effects of two class IIb bacteriocins, enterocins DD28 and DD93 as anti-MRSA agents. Thus, these bacteriocins were purified, from the cultures supernatants of Enterococcus faecalis 28 and 93, using a simplified purification procedure consisting in a cation exchange chromatography and a reversed-phase high-performance liquid chromatography. The anti-Staphylococcal activity was shown in vitro by the assessment of the minimal inhibitory concentration (MIC), followed by a checkerboard and time-kill kinetics experiments. The data unveiled a clear synergistic effect of enterocins DD28 and DD93 in combination with erythromycin or kanamycin against the clinical MRSA-S1 strain. Besides, these combinations impeded as well the MRSA-S1 clinical strain to setup biofilms on stainless steel and glace devices. PMID:27303396

  5. Analysis of the effect of high hydrostatic pressure treatment and enterocin AS-48 addition on the bacterial communities of cherimoya pulp.

    PubMed

    Pérez Pulido, Rubén; Toledo, Julia; Grande, M José; Gálvez, Antonio; Lucas, Rosario

    2015-03-01

    In the present study, pulp obtained from cherimoya pulp (Annona cherimola) was inoculated with epiphytic microbiota collected from cherimoya fruits, and supplemented or not with the circular bacteriocin enterocin AS-48 (50μg/g) and then packed under vacuum. Samples supplemented or not with enterocin were treated by high hydrostatic pressure (600MPa, 8min) and then stored at 5°C for 30days. The single AS-48 treatment only delayed microbial growth non-significantly (p>0.05). HHP treatment reduced microbial counts by five log cycles, but it did not prevent further growth of survivors by day 7. The combined treatment (AS-48+HHP) was the most effective, keeping bacterial cell densities at ≤1.5 log CFU/g for up to 15days. 16S rRNA gene pyrosequencing analysis was done on amplicon libraries from the growth on TSA plates seeded with ten-fold dilutions of pulp suspensions and incubated at 22°C for 24h. The results obtained are limited by the experimental conditions used in the study, and only concern the bacterial fraction that was selected by the TSA and growth conditions used. Pantoea (Pantoea agglomerans, Pantoea vagans) were the operational taxonomic units (OTUs) detected at highest relative abundance in bacterial biomass grown from control samples for the first 7days of storage, followed by Enterococcus gallinarum and Leuconostoc mesenteroides during late storage. The single HHP treatment significantly reduced the relative abundance of OTUs belonging to Pantoea and strongly increased that of endosporeformers (mainly Bacillus firmus and Bacillus stratosphericus) early after treatment, although Pantoea became again the predominant OTUs during storage. Samples singly treated with enterocin AS-48 revealed a strong inhibition of E. gallinarum as well as an early decrease in the relative abundance of Pantoea and an increased relative abundance of OTUs belonging to other Gram-negative species (mainly from genera Serratia and Pseudomonas). The strong microbial

  6. Purification and characterization of enterocin MC13 produced by a potential aquaculture probiont Enterococcus faecium MC13 isolated from the gut of Mugil cephalus.

    PubMed

    Satish Kumar, R; Kanmani, P; Yuvaraj, N; Paari, K A; Pattukumar, V; Arul, V

    2011-12-01

    A bacteriocin producer strain MC13 was isolated from the gut of Mugil cephalus (grey mullet) and identified as Enterococcus faecium. The bacteriocin of E. faecium MC13 was purified to homogeneity, as confirmed by Tricine sodium dodecyl sulphate - polyacrylamide gel electrophoresis (SDS-PAGE). Reverse-phase high-performance liquid chromatography (HPLC) analysis showed a single active fraction eluted at 26 min, and matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry analysis showed the molecular mass to be 2.148 kDa. The clear zone in native PAGE corresponding to enterocin MC13 band further substantiated its molecular mass. A dialyzed sample (semicrude preparation) of enterocin MC13 was broad spectrum in its action and inhibited important seafood-borne pathogens: Listeria monocytogenes , Vibrio parahaemolyticus, and Vibrio vulnificus. This antibacterial substance was sensitive to proteolytic enzymes: trypsin, protease, and chymotrypsin but insensitive to catalase and lipase, confirming that inhibition was due to the proteinaceous molecule, i.e., bacteriocin, and not due to hydrogen peroxide. Enterocin MC13 tolerated heat treatment (up to 90 °C for 20 min). Enterococcus faecium MC13 was effective in bile salt tolerance, acid tolerance, and adhesion to the HT-29 cell line. These properties reveal the potential of E. faecium MC13 to be a probiotic bacterium. Enterococcus faecium MC13 could be used as potential fish probiotic against pathogens such as V. parahaemolyticus, Vibrio harveyi, and Aeromonas hydrophila in fisheries. Also, this could be a valuable seafood biopreservative against L. monocytogenes. PMID:22112158

  7. Enterococcus faecium EK13--an enterocin a-producing strain with probiotic character and its effect in piglets.

    PubMed

    Strompfová, Viola; Marcináková, Miroslava; Simonová, Monika; Gancarcíková, Sona; Jonecová, Zuzana; Sciranková, Luboslava; Koscová, Jana; Buleca, Viktor; Cobanová, Klaudia; Lauková, Andrea

    2006-01-01

    The experiment was conducted to determine the effects of the inoculation of the probiotic and enterocin A-producing strain Enterococcus faecium EK13 on selected parameters of metabolic profile, gut microflora, growth, and health in newborn piglets of Slovak White Improved. Piglets for study were divided into two groups: one group (EK13 group, n=8) received strain EK13 per os once daily for 7 days (2ml per piglet, 10(9)CFU/mL of saline buffer). The control group of piglets (n=7) was given placebo-saline buffer. The experiment lasted 14 days. After 7 days, strain EK13 reached 9.8 log(10) CFU/g in faeces of E. faecium EK13 treated piglets while counts of Escherichia coli were significantly lower (P<0.01) than in piglets of the control group. The concentrations of total serum protein, calcium, haemoglobin, haematocrit, red blood cell count and index of phagocytic activity of leukocytes were significantly higher after application of strain EK13. On the other hand, cholesterol was significantly lower in the EK13 group of animals. On day 14, piglets were killed and samples of intestinal contents were taken. Total counts of bacteria in the intestinal contents (jejunum, ileum, caecum, colon) were not significantly influenced. The pH value was significantly lower (P<0.05) only in duodenum of piglets receiving E. faecium EK13. There was a significant higher concentration of lactic acid (P<0.01) and propionic acid in the colon (P<0.001) of the EK13 group. Application of E. faecium EK13 did not influence the daily body weight gain significantly. PMID:17071114

  8. Functional Analysis of Genes Involved in the Biosynthesis of Enterocin NKR-5-3B, a Novel Circular Bacteriocin

    PubMed Central

    Perez, Rodney H.; Ishibashi, Naoki; Inoue, Tomoko; Himeno, Kohei; Masuda, Yoshimitsu; Sawa, Narukiko; Wilaipun, Pongtep; Leelawatcharamas, Vichien; Nakayama, Jiro; Sonomoto, Kenji

    2015-01-01

    ABSTRACT A putative biosynthetic gene cluster of the enterocin NKR-5-3B (Ent53B), a novel circular bacteriocin, was analyzed by sequencing the flanking regions around enkB, the Ent53B structural gene, using a fosmid library. A region approximately 9 kb in length was obtained, and the enkB1, enkB2, enkB3, and enkB4 genes, encoding putative biosynthetic proteins involved in the production, maturation, and secretion of Ent53B, were identified. We also determined the identity of proteins mediating self-immunity against the effects of Ent53B. Heterologous expression systems in various heterologous hosts, such as Enterococcus faecalis and Lactococcus lactis strains, were successfully established. The production and secretion of the mature Ent53B required the cooperative functions of five genes. Ent53B was produced only by those heterologous hosts that expressed protein products of the enkB, enkB1, enkB2, enkB3, and enkB4 genes. Moreover, self-immunity against the antimicrobial action of Ent53B was conferred by at least two independent mechanisms. Heterologous hosts harboring the intact enkB4 gene and/or a combination of intact enkB1 and enkB3 genes were immune to the inhibitory action of Ent53B. IMPORTANCE In addition to their potential application as food preservatives, circular bacteriocins are now considered possible alternatives to therapeutic antibiotics due to the exceptional stability conferred by their circular structure. The successful practical application of circular bacteriocins will become possible only if the molecular details of their biosynthesis are fully understood. The results of the present study offer a new perspective on the possible mechanism of circular bacteriocin biosynthesis. In addition, since some enterococcal strains are associated with pathogenicity, virulence, and drug resistance, the establishment of the first multigenus host heterologous production of Ent53B has very high practical significance, as it widens the scope of possible Ent53B

  9. Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide curvacin A.

    PubMed

    Haugen, Helen Sophie; Fimland, Gunnar; Nissen-Meyer, Jon; Kristiansen, Per Eugen

    2005-12-13

    The 3D structure of the membrane-permeabilizing 41-mer pediocin-like antimicrobial peptide curvacin A produced by lactic acid bacteria has been studied by NMR spectroscopy. In DPC micelles, the cationic and hydrophilic N-terminal half of the peptide forms an S-shaped beta-sheet-like domain stabilized by a disulfide bridge and a few hydrogen bonds. This domain is followed by two alpha-helices: a hydrophilic 6-mer helix between residues 19 and 24 and an amphiphilic/hydrophobic 11-mer helix between residues 29 and 39. There are two hinges in the peptide, one at residues 16-18 between the N-terminal S-shaped beta-sheet-like structure and the central 6-mer helix and one at residues 26-28 between the central helix and the 11-mer C-terminal helix. The latter helix is the only amphiphilic/hydrophobic part of the peptide and is thus presumably the part that penetrates into the hydrophobic phase of target-cell membranes. The hinge between the two helices may introduce the flexibility that allows the helix to dip into membranes. The helix-hinge-helix structure in the C-terminal half of curvacin A clearly distinguishes this peptide from the other pediocin-like peptides whose structures have been analyzed and suggests that curvacin A along with the structural homologues enterocin P and carnobacteriocin BM1 belong to a subgroup of the pediocin-like family of antimicrobial peptides. PMID:16331975

  10. A simple method for semi-preparative-scale production and recovery of enterocin AS-48 derived from Enterococcus faecalis subsp. liquefaciens A-48-32.

    PubMed

    Abriouel, Hikmate; Valdivia, Eva; Martínez-Bueno, Manuel; Maqueda, Mercedes; Gálvez, Antonio

    2003-12-01

    Production of enterocin AS-48 by Enterococcus faecalis A-48-32 was compared between standard and high-cell density batch fermentations. In high-cell density cultures, bacteriocin production was 2.47-fold higher, provided that the pH was controlled during the fermentation. A two-step procedure for recovery of milligram quantities of purified bacteriocin was developed, based on adsorption of the bacteriocin on Carboxymethyl Sephadex CM-25 followed by reversed-phase chromatography on a semi-preparative column. The purified bacteriocin was active on all the Gram-positive bacteria tested (for example, species of Bacillus, Paenibacillus, Staphylococcus, and Listeria). Strains E. coli U-9, E. coli CECT 102, E. coli CECT 104, E. coli CECT 432, E. coli CECT 543, E. coli CECT 877 and Shigella sonnei CECT 542 were sensitive, while seven other E. coli strains as well as Salmonella choleraesuis CECT 722, S. choleraesuis CECT 916, Enterobacter cloacae CECT 194 and Aeromonas hydrophila CECT 398 were resistant. PMID:14607403

  11. Enhanced bactericidal activity of enterocin AS-48 in combination with essential oils, natural bioactive compounds and chemical preservatives against Listeria monocytogenes in ready-to-eat salad.

    PubMed

    Antonio, Cobo Molinos; Abriouel, Hikmate; López, Rosario Lucas; Omar, Nabil Ben; Valdivia, Eva; Gálvez, Antonio

    2009-09-01

    Enterocin AS-48 (30-60 microg/g) significantly reduced viable counts of Listeria monocytogenes in Russian-type salad during one week storage at 10 degrees C. Antilisterial activity of AS-48 (30 microg/g) in salad was strongly enhanced by essential oils (thyme verbena, thyme red, Spanish oregano, ajowan, tea tree, clove, and sage oils tested at 1%, as well as with 2% rosemary oil). Antilisterial activity also increased in combination with bioactive components from essential oils and plant extracts, with other related antimicrobials of natural origin or derived from chemical synthesis (carvacrol, eugenol, thymol, terpineol, tyrosol, hydroxytyrosol, caffeic, ferulic and vanillic acid, luteolin, geranyl butyrate, geranyl phenylacetate, pyrocatechol, hydrocinnamic acid, tert butylhydroquinone, phenylphosphate, isopropyl methyl phenol, coumaric acid, and 2-nitropropanol), and with food preservatives (citric and lactic acid, sucrose palmitate, sucrose stearate, p-hydroxybenzoic methylester acid -- PHBME, and Nisaplin). AS-48 acted synergistically with citric, lactic acid, and PHBME. A mixed population of two L. monocytogenes strains was markedly reduced for one week in salads treated with AS-48 (30 microg/g) in combination with lactic acid, PHBME or Nisaplin. The increased bactericidal activity of these combinations is interesting to improve protection against L. monocytogenes during salad storage. PMID:19520136

  12. Antimicrobial peptides

    PubMed Central

    2014-01-01

    With increasing antibiotics resistance, there is an urgent need for novel infection therapeutics. Since antimicrobial peptides provide opportunities for this, identification and optimization of such peptides have attracted much interest during recent years. Here, a brief overview of antimicrobial peptides is provided, with focus placed on how selected hydrophobic modifications of antimicrobial peptides can be employed to combat also more demanding pathogens, including multi-resistant strains, without conferring unacceptable toxicity. PMID:24758244

  13. Peptide identification

    DOEpatents

    Jarman, Kristin H [Richland, WA; Cannon, William R [Richland, WA; Jarman, Kenneth D [Richland, WA; Heredia-Langner, Alejandro [Richland, WA

    2011-07-12

    Peptides are identified from a list of candidates using collision-induced dissociation tandem mass spectrometry data. A probabilistic model for the occurrence of spectral peaks corresponding to frequently observed partial peptide fragment ions is applied. As part of the identification procedure, a probability score is produced that indicates the likelihood of any given candidate being the correct match. The statistical significance of the score is known without necessarily having reference to the actual identity of the peptide. In one form of the invention, a genetic algorithm is applied to candidate peptides using an objective function that takes into account the number of shifted peaks appearing in the candidate spectrum relative to the test spectrum.

  14. Antimicrobial peptides.

    PubMed

    Zhang, Ling-Juan; Gallo, Richard L

    2016-01-11

    Antimicrobial peptides and proteins (AMPs) are a diverse class of naturally occurring molecules that are produced as a first line of defense by all multicellular organisms. These proteins can have broad activity to directly kill bacteria, yeasts, fungi, viruses and even cancer cells. Insects and plants primarily deploy AMPs as an antibiotic to protect against potential pathogenic microbes, but microbes also produce AMPs to defend their environmental niche. In higher eukaryotic organisms, AMPs can also be referred to as 'host defense peptides', emphasizing their additional immunomodulatory activities. These activities are diverse, specific to the type of AMP, and include a variety of cytokine and growth factor-like effects that are relevant to normal immune homeostasis. In some instances, the inappropriate expression of AMPs can also induce autoimmune diseases, thus further highlighting the importance of understanding these molecules and their complex activities. This Primer will provide an update of our current understanding of AMPs. PMID:26766224

  15. Peptide arrays for screening cancer specific peptides.

    PubMed

    Ahmed, Sahar; Mathews, Anu Stella; Byeon, Nara; Lavasanifar, Afsaneh; Kaur, Kamaljit

    2010-09-15

    In this paper, we describe a novel method to screen peptides for specific recognition by cancer cells. Seventy peptides were synthesized on a cellulose membrane in an array format, and a direct method to study the peptide-whole cell interaction was developed. The relative binding affinity of the cells for different peptides with respect to a lead 12-mer p160 peptide, identified by phage display, was evaluated using the CyQUANT fluorescence of the bound cells. Screening allowed identification of at least five new peptides that displayed higher affinity (up to 3-fold) for MDA-MB-435 and MCF-7 human cancer cells compared to the p160 peptide. These peptides showed very little binding to the control (noncancerous) human umbilical vein endothelial cells (HUVECs). Three of these peptides were synthesized separately and labeled with fluorescein isothiocyanate (FITC) to study their uptake and interaction with the cancer and control cells using confocal laser scanning microscopy and flow cytometry. The results confirmed the high and specific affinity of an 11-mer peptide 11 (RGDPAYQGRFL) and a 10-mer peptide 18 (WXEAAYQRFL) for the cancer cells versus HUVECs. Peptide 11 binds different receptors on target cancer cells as its sequence contains multiple recognition motifs, whereas peptide 18 binds mainly to the putative p160 receptor. The peptide array-whole cell binding assay reported here is a complementary method to phage display for further screening and optimization of cancer targeting peptides for cancer therapy and diagnosis. PMID:20799711

  16. C-Peptide Test

    MedlinePlus

    ... C-peptide is a useful marker of insulin production. The following are some purposes of C-peptide ... it nearly impossible to directly evaluate endogenous insulin production. In these cases, C-peptide measurement is a ...

  17. Brain natriutetic peptide test

    MedlinePlus

    ... medlineplus.gov/ency/article/007509.htm Brain natriuretic peptide test To use the sharing features on this page, please enable JavaScript. Brain natriuretic peptide (BNP) test is a blood test that measures ...

  18. Vasoactive intestinal peptide test

    MedlinePlus

    ... medlineplus.gov/ency/article/003508.htm Vasoactive intestinal peptide test To use the sharing features on this page, please enable JavaScript. Vasoactive intestinal peptide (VIP) is a test that measures the amount ...

  19. [SYNTHETIC PEPTIDE VACCINES].

    PubMed

    Sergeyev, O V; Barinsky, I F

    2016-01-01

    An update on the development and trials of synthetic peptide vaccines is reviewed. The review considers the successful examples of specific protection as a result of immunization with synthetic peptides using various protocols. The importance of conformation for the immunogenicity of the peptide is pointed out. An alternative strategy of the protection of the organism against the infection using synthetic peptides is suggested. PMID:27145593

  20. PH dependent adhesive peptides

    DOEpatents

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  1. Antimicrobial Peptides in 2014

    PubMed Central

    Wang, Guangshun; Mishra, Biswajit; Lau, Kyle; Lushnikova, Tamara; Golla, Radha; Wang, Xiuqing

    2015-01-01

    This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms. PMID:25806720

  2. Antimicrobial peptides in 2014.

    PubMed

    Wang, Guangshun; Mishra, Biswajit; Lau, Kyle; Lushnikova, Tamara; Golla, Radha; Wang, Xiuqing

    2015-01-01

    This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms. PMID:25806720

  3. [Plant signaling peptides. Cysteine-rich peptides].

    PubMed

    Ostrowski, Maciej; Kowalczyk, Stanisław

    2015-01-01

    Recent bioinformatic and genetic analyses of several model plant genomes have revealed the existence of a highly abundant group of signaling peptides that are defined as cysteine-rich peptides (CRPs). CRPs are usually in size between 50 and 90 amino acid residues, they are positively charged, and they contain 4-16 cysteine residues that are important for the correct conformational folding. Despite the structural differences among CRP classes, members from each class have striking similarities in their molecular properties and function. The present review presents the recent progress in research on signaling peptides from several families including: EPF/EPFL, SP11/SCR, PrsS, RALF, LURE, and some other peptides belonging to CRP group. There is convincing evidence indicating multiple roles for these CRPs as signaling molecules during the plant life cycle, ranging from stomata development and patterning, self-incompatibility, pollen tube growth and guidance, reproductive processes, and nodule formation. PMID:26281357

  4. Cell Penetrating Peptides and Cationic Antibacterial Peptides

    PubMed Central

    Rodriguez Plaza, Jonathan G.; Morales-Nava, Rosmarbel; Diener, Christian; Schreiber, Gabriele; Gonzalez, Zyanya D.; Lara Ortiz, Maria Teresa; Ortega Blake, Ivan; Pantoja, Omar; Volkmer, Rudolf; Klipp, Edda; Herrmann, Andreas; Del Rio, Gabriel

    2014-01-01

    Cell penetrating peptides (CPP) and cationic antibacterial peptides (CAP) have similar physicochemical properties and yet it is not understood how such similar peptides display different activities. To address this question, we used Iztli peptide 1 (IP-1) because it has both CPP and CAP activities. Combining experimental and computational modeling of the internalization of IP-1, we show it is not internalized by receptor-mediated endocytosis, yet it permeates into many different cell types, including fungi and human cells. We also show that IP-1 makes pores in the presence of high electrical potential at the membrane, such as those found in bacteria and mitochondria. These results provide the basis to understand the functional redundancy of CPPs and CAPs. PMID:24706763

  5. Plant peptide hormone signalling.

    PubMed

    Motomitsu, Ayane; Sawa, Shinichiro; Ishida, Takashi

    2015-01-01

    The ligand-receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone-receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions. PMID:26374891

  6. Antihypertensive peptides from curd

    PubMed Central

    Dabarera, Melani Chathurika; Athiththan, Lohini V.; Perera, Rasika P.

    2015-01-01

    Introduction: Curd (Dadhi) peptides reduce hypertension by inhibiting angiotensin converting enzyme (ACE) and serum cholesterol. Peptides vary with bacterial species and milk type used during fermentation. Aim: To isolate and assay the antihypertensive peptides, before and after digestion, in two commercially available curd brands in Sri Lanka. Materials and Methods: Whey (Dadhi Mastu) separated by high-speed centrifugation was isolated using reverse-phase-high- performance liquid chromatography (HPLC). Eluted fractions were analyzed for ACE inhibitory activity using modified Cushman and Cheung method. Curd samples were subjected to enzymatic digestion with pepsin, trypsin, and carboxypeptidase-A at their optimum pH and temperature. Peptides isolated using reverse-phase-HPLC was assayed for ACE inhibitory activity. Results: Whey peptides of both brands gave similar patterns (seven major and five minor peaks) in HPLC elution profile. Smaller peptides concentration was higher in brand 1 and penta-octapeptides in brand 2. Pentapeptide had the highest ACE inhibitory activity (brand 2–90% and brand 1–73%). After digestion, di and tri peptides with similar inhibitory patterns were obtained in both which were higher than before digestion. Thirteen fractions were obtained, where nine fractions showed more than 70% inhibition in both brands with 96% ACE inhibition for a di-peptide. Conclusion: Curd has ACE inhibitory peptides and activity increases after digestion. PMID:27011726

  7. Antimicrobial Peptides in Reptiles

    PubMed Central

    van Hoek, Monique L.

    2014-01-01

    Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development. PMID:24918867

  8. Polycyclic peptide therapeutics.

    PubMed

    Baeriswyl, Vanessa; Heinis, Christian

    2013-03-01

    Owing to their excellent binding properties, high stability, and low off-target toxicity, polycyclic peptides are an attractive molecule format for the development of therapeutics. Currently, only a handful of polycyclic peptides are used in the clinic; examples include the antibiotic vancomycin, the anticancer drugs actinomycin D and romidepsin, and the analgesic agent ziconotide. All clinically used polycyclic peptide drugs are derived from natural sources, such as soil bacteria in the case of vancomycin, actinomycin D and romidepsin, or the venom of a fish-hunting coil snail in the case of ziconotide. Unfortunately, nature provides peptide macrocyclic ligands for only a small fraction of therapeutic targets. For the generation of ligands of targets of choice, researchers have inserted artificial binding sites into natural polycyclic peptide scaffolds, such as cystine knot proteins, using rational design or directed evolution approaches. More recently, large combinatorial libraries of genetically encoded bicyclic peptides have been generated de novo and screened by phage display. In this Minireview, the properties of existing polycyclic peptide drugs are discussed and related to their interesting molecular architectures. Furthermore, technologies that allow the development of unnatural polycyclic peptide ligands are discussed. Recent application of these technologies has generated promising results, suggesting that polycyclic peptide therapeutics could potentially be developed for a broad range of diseases. PMID:23355488

  9. Peptide folding simulations.

    PubMed

    Gnanakaran, S; Nymeyer, Hugh; Portman, John; Sanbonmatsu, Kevin Y; García, Angel E

    2003-04-01

    Developments in the design of small peptides that mimic proteins in complexity, recent advances in nanosecond time-resolved spectroscopy methods to study peptides and the development of modern, highly parallel simulation algorithms have come together to give us a detailed picture of peptide folding dynamics. Two newly implemented simulation techniques, parallel replica dynamics and replica exchange molecular dynamics, can now describe directly from simulations the kinetics and thermodynamics of peptide formation, respectively. Given these developments, the simulation community now has the tools to verify and validate simulation protocols and models (forcefields). PMID:12727509

  10. Insulin C-peptide test

    MedlinePlus

    C-peptide ... the test depends on the reason for the C-peptide measurement. Ask your health care provider if ... C-peptide is measured to tell the difference between insulin produced by the body and insulin injected ...

  11. Bacteriocin Inducer Peptides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel peptides produced by bacteriocin-producing bacteria stimulate the production of bacteriocins in vitro. The producer bacteria are cultured in the presence of a novel inducer bacteria and a peptide having a carboxy terminal sequence of VKGLT in order to achieve an increase in bacteriocin produc...

  12. Antimicrobial Peptides from Fish

    PubMed Central

    Masso-Silva, Jorge A.; Diamond, Gill

    2014-01-01

    Antimicrobial peptides (AMPs) are found widely distributed through Nature, and participate in the innate host defense of each species. Fish are a great source of these peptides, as they express all of the major classes of AMPs, including defensins, cathelicidins, hepcidins, histone-derived peptides, and a fish-specific class of the cecropin family, called piscidins. As with other species, the fish peptides exhibit broad-spectrum antimicrobial activity, killing both fish and human pathogens. They are also immunomodulatory, and their genes are highly responsive to microbes and innate immuno-stimulatory molecules. Recent research has demonstrated that some of the unique properties of fish peptides, including their ability to act even in very high salt concentrations, make them good potential targets for development as therapeutic antimicrobials. Further, the stimulation of their gene expression by exogenous factors could be useful in preventing pathogenic microbes in aquaculture. PMID:24594555

  13. Tumor-Penetrating Peptides

    PubMed Central

    Teesalu, Tambet; Sugahara, Kazuki N.; Ruoslahti, Erkki

    2013-01-01

    Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC), contains the integrin-binding RGD motif. RGD mediates tumor-homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR) motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular “zip code” of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies, and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is present in the

  14. Synthetic antimicrobial peptide design.

    PubMed

    Powell, W A; Catranis, C M; Maynard, C A

    1995-01-01

    To guide the design of potential plant pathogen-resistance genes, synthetic variants of naturally occurring antimicrobial gene products were evaluated. Five 20-amino acid (ESF1, ESF4, ESF5, ESF6, ESF13), one 18-amino acid (ESF12), and one 17-amino acid (ESF17) amphipathic peptide sequences were designed, synthesized, and tested with in vitro bioassays. Positive charges on the hydrophilic side of the peptide were shown to be essential for antifungal activity, yet the number of positive charges could be varied with little or no change in activity. The size could be reduced to 18 amino acids, but at 17 amino acids a significant reduction in activity was observed. ESF1, 5, 6, and 12 peptides were inhibitory to the germination of conidia from Cryphonectria parasitica, Fusarium oxysporum f. sp. lycopersici, and Septoria musiva but did not inhibit the germination of pollen from Castanea mollissima and Salix lucida. ESF12 also had no effect on the germination of Malus sylvestris and Lycopersicon esculentum pollen, but inhibited the growth of the bacteria Agrobacterium tumefaciens, Erwinia amylovora, and Pseudomonas syringae. The minimal inhibitory concentrations of the active ESF peptides were similar to those of the naturally occurring control peptides, magainin II and cecropin B. The significant differential in sensitivity between the microbes and plant cells indicated that the active ESF peptides are potentially useful models for designing plant pathogen-resistance genes. PMID:7579625

  15. Antimitotic peptides and depsipeptides.

    PubMed

    Hamel, Ernest; Covell, David G

    2002-01-01

    Tubulin is the target for an ever increasing number of unusual peptides and depsipeptides that were originally isolated from a wide variety of organisms. Since tubulin is the major component of cellular microtubules, which maintain cell shape in interphase and form the mitotic spindle, most of these compounds are highly toxic to mammalian cells. These peptides and depsipeptides disrupt cellular microtubules and prevent formation of a functional spindle, resulting in the accumulation of cultured cells in the G2/M phase of the cell cycle through specific inhibition of mitosis. At the biochemical level, the compounds all inhibit the assembly of tubulin into polymer and, in the cases where it has been studied, strongly suppress microtubule dynamics at low concentrations. In most cases the peptides and depsipeptides inhibit the binding of vinblastine and vincristine to tubulin in a noncompetitive manner, inhibit tubulin-dependent GTP hydrolysis, and interfere with nucleotide turnover at the exchangeable GTP site on beta-tubulin. Most of the peptides and depsipeptides induce tubulin to form oligomers of aberrant morphology, including tubulin rings that vary in diameter depending on the (depsi) peptide under study. The purpose of this review is to give an overview of the cellular, biochemical, in vivo, and SAR aspects of this group of compounds. We also summarize initial efforts by computer modeling to decipher a pharmacophore among the diverse structures of these peptides and depsipeptides. PMID:12678750

  16. Electromembrane extraction of peptides.

    PubMed

    Balchen, Marte; Reubsaet, Léon; Pedersen-Bjergaard, Stig

    2008-06-20

    Rapid extraction of eight different peptides using electromembrane extraction (EME) was demonstrated for the first time. During an extraction time of 5 min, the model peptides migrated from a 500 microL aqueous acidic sample solution, through a thin supported liquid membrane (SLM) of an organic liquid sustained in the pores in the wall of a porous hollow fiber, and into a 25 microL aqueous acidic acceptor solution present inside the lumen of the hollow fiber. The driving force of the extraction was a 50 V potential sustained across the SLM, with the positive electrode in the sample and the negative electrode in the acceptor solution. The nature and the composition of the SLM were highly important for the EME process, and a mixture of 1-octanol and 15% di(2-ethylhexyl) phosphate was found to work properly. Using 1mM HCl as background electrolyte in the sample and 100 mM HCl in the acceptor solution, and agitation at 1050 rpm, enrichment up to 11 times was achieved. Recoveries were found to be dependent on the structure of the peptide, indicating that the polarity and the number of ionized groups were important parameters affecting the extraction efficiency. The experimental findings suggested that electromembrane extraction of peptides is possible and may be a valuable tool for future extraction of peptides. PMID:18479691

  17. Antimicrobial Peptides from Plants.

    PubMed

    Tam, James P; Wang, Shujing; Wong, Ka H; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  18. Antimicrobial Peptides from Plants

    PubMed Central

    Tam, James P.; Wang, Shujing; Wong, Ka H.; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  19. Synthetic antibiofilm peptides.

    PubMed

    de la Fuente-Núñez, César; Cardoso, Marlon Henrique; de Souza Cândido, Elizabete; Franco, Octavio Luiz; Hancock, Robert E W

    2016-05-01

    Bacteria predominantly exist as multicellular aggregates known as biofilms that are associated with at least two thirds of all infections and exhibit increased adaptive resistance to conventional antibiotic therapies. Therefore, biofilms are major contributors to the global health problem of antibiotic resistance, and novel approaches to counter them are urgently needed. Small molecules of the innate immune system called host defense peptides (HDPs) have emerged as promising templates for the design of potent, broad-spectrum antibiofilm agents. Here, we review recent developments in the new field of synthetic antibiofilm peptides, including mechanistic insights, synergistic interactions with available antibiotics, and their potential as novel antimicrobials against persistent infections caused by biofilms. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26724202

  20. Signal peptide of cellulase.

    PubMed

    Yan, Shaomin; Wu, Guang

    2014-06-01

    Cellulase is an enzyme playing a crucial role in biotechnology industries ranging from textile to biofuel because of tremendous amount of cellulose produced in plant. In order to improve cellulase productivity, huge resource has been spent in search for good cellulases from microorganism in remote areas and in creation of ideal cellulase by engineering. However, not much attention is given to the secretion of cellulases from cell into extracellular space, where a cellulase plays its enzymatic role. In this minireview, the signal peptides, which lead secreted proteins to specific secretion systems and scatter in literature, are reviewed. The patterns of signal peptides are checked against 4,101 cellulases documented in UniProtKB, the largest protein database in the world, to determine how these cellulases are secreted. Simultaneous review on both literature and cellulases from the database not only provides updated knowledge on signal peptides but also indicates the gap in our research. PMID:24743986

  1. Biomimetic peptide nanosensors.

    PubMed

    Cui, Yue; Kim, Sang N; Naik, Rajesh R; McAlpine, Michael C

    2012-05-15

    The development of a miniaturized sensing platform tailored for sensitive and selective detection of a variety of biochemical analytes could offer transformative fundamental and technological opportunities. Due to their high surface-to-volume ratios, nanoscale materials are extremely sensitive sensors. Likewise, peptides represent robust substrates for selective recognition due to the potential for broad chemical diversity within their relatively compact size. Here we explore the possibilities of linking peptides to nanosensors for the selective detection of biochemical targets. Such systems raise a number of interesting fundamental challenges: What are the peptide sequences, and how can rational design be used to derive selective binders? What nanomaterials should be used, and what are some strategies for assembling hybrid nanosensors? What role does molecular modeling play in elucidating response mechanisms? What is the resulting performance of these sensors, in terms of sensitivity, selectivity, and response time? What are some potential applications? This Account will highlight our early attempts to address these research challenges. Specifically, we use natural peptide sequences or sequences identified from phage display as capture elements. The sensors are based on a variety of nanomaterials including nanowires, graphene, and carbon nanotubes. We couple peptides to the nanomaterial surfaces via traditional surface functionalization methods or self-assembly. Molecular modeling provides detailed insights into the hybrid nanostructure, as well as the sensor detection mechanisms. The peptide nanosensors can distinguish chemically camouflaged mixtures of vapors and detect chemical warfare agents with sensitivities as low as parts-per-billion levels. Finally, we anticipate future uses of this technology in biomedicine: for example, devices based on these sensors could detect disease from the molecular components in human breath. Overall, these results provide a

  2. Multidimensional signatures in antimicrobial peptides

    PubMed Central

    Yount, Nannette Y.; Yeaman, Michael R.

    2004-01-01

    Conventional analyses distinguish between antimicrobial peptides by differences in amino acid sequence. Yet structural paradigms common to broader classes of these molecules have not been established. The current analyses examined the potential conservation of structural themes in antimicrobial peptides from evolutionarily diverse organisms. Using proteomics, an antimicrobial peptide signature was discovered to integrate stereospecific sequence patterns and a hallmark three-dimensional motif. This striking multidimensional signature is conserved among disulfide-containing antimicrobial peptides spanning biological kingdoms, and it transcends motifs previously limited to defined peptide subclasses. Experimental data validating this model enabled the identification of previously unrecognized antimicrobial activity in peptides of known identity. The multidimensional signature model provides a unifying structural theme in broad classes of antimicrobial peptides, will facilitate discovery of antimicrobial peptides as yet unknown, and offers insights into the evolution of molecular determinants in these and related host defense effector molecules. PMID:15118082

  3. Brain Peptides and Psychopharmacology

    ERIC Educational Resources Information Center

    Arehart-Treichel, Joan

    1976-01-01

    Proteins isolated from the brain and used as drugs can improve and apparently even transfer mental states and behavior. Much of the pioneering work and recent research with humans and animals is reviewed and crucial questions that are being posed about the psychologically active peptides are related. (BT)

  4. Antagonistic peptide technology for functional dissection of CLE peptides revisited

    PubMed Central

    Czyzewicz, Nathan; Wildhagen, Mari; Cattaneo, Pietro; Stahl, Yvonne; Pinto, Karine Gustavo; Aalen, Reidunn B.; Butenko, Melinka A.; Simon, Rüdiger; Hardtke, Christian S.; De Smet, Ive

    2015-01-01

    In the Arabidopsis thaliana genome, over 1000 putative genes encoding small, presumably secreted, signalling peptides can be recognized. However, a major obstacle in identifying the function of genes encoding small signalling peptides is the limited number of available loss-of-function mutants. To overcome this, a promising new tool, antagonistic peptide technology, was recently developed. Here, this antagonistic peptide technology was tested on selected CLE peptides and the related IDA peptide and its usefulness in the context of studies of peptide function discussed. Based on the analyses, it was concluded that the antagonistic peptide approach is not the ultimate means to overcome redundancy or lack of loss-of-function lines. However, information collected using antagonistic peptide approaches (in the broad sense) can be very useful, but these approaches do not work in all cases and require a deep insight on the interaction between the ligand and its receptor to be successful. This, as well as peptide ligand structure considerations, should be taken into account before ordering a wide range of synthetic peptide variants and/or generating transgenic plants. PMID:26136270

  5. Antagonistic peptide technology for functional dissection of CLE peptides revisited.

    PubMed

    Czyzewicz, Nathan; Wildhagen, Mari; Cattaneo, Pietro; Stahl, Yvonne; Pinto, Karine Gustavo; Aalen, Reidunn B; Butenko, Melinka A; Simon, Rüdiger; Hardtke, Christian S; De Smet, Ive

    2015-08-01

    In the Arabidopsis thaliana genome, over 1000 putative genes encoding small, presumably secreted, signalling peptides can be recognized. However, a major obstacle in identifying the function of genes encoding small signalling peptides is the limited number of available loss-of-function mutants. To overcome this, a promising new tool, antagonistic peptide technology, was recently developed. Here, this antagonistic peptide technology was tested on selected CLE peptides and the related IDA peptide and its usefulness in the context of studies of peptide function discussed. Based on the analyses, it was concluded that the antagonistic peptide approach is not the ultimate means to overcome redundancy or lack of loss-of-function lines. However, information collected using antagonistic peptide approaches (in the broad sense) can be very useful, but these approaches do not work in all cases and require a deep insight on the interaction between the ligand and its receptor to be successful. This, as well as peptide ligand structure considerations, should be taken into account before ordering a wide range of synthetic peptide variants and/or generating transgenic plants. PMID:26136270

  6. Biochemical functionalization of peptide nanotubes with phage displayed peptides

    NASA Astrophysics Data System (ADS)

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering.

  7. Biochemical functionalization of peptide nanotubes with phage displayed peptides.

    PubMed

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering. PMID:27479451

  8. Antimicrobial peptides: premises and promises.

    PubMed

    Reddy, K V R; Yedery, R D; Aranha, C

    2004-12-01

    Antimicrobial peptides (AMPs) are an important component of the natural defences of most living organisms against invading pathogens. These are relatively small (< 10kDa), cationic and amphipathic peptides of variable length, sequence and structure. During the past two decades several AMPs have been isolated from a wide variety of animals, both vertebrates and invertebrates, and plants as well as from bacteria and fungi. Most of these peptides are obtained from different sources like macrophages, neutrophils, epithelial cells, haemocytes, fat body, reproductive tract, etc. These peptides exhibit broad-spectrum activity against a wide range of microorganisms including Gram-positive and Gram-negative bacteria, protozoa, yeast, fungi and viruses. A few peptides have also been found to be cytotoxic to sperm and tumour cells. AMPs are classified based on the three dimensional structural studies carried out with the help of NMR. The peptides are broadly classified into five major groups namely (a) peptides that form alpha-helical structures, (b) peptides rich in cysteine residues, (c) peptides that form beta-sheet, (d) peptides rich in regular amino acids namely histatin, arginine and proline and (e) peptides composed of rare and modified amino acids. Most of these peptides are believed to act by disrupting the plasma membrane leading to the lysis of the cell. AMPs have been found to be excellent candidates for developing novel antimicrobial agents and a few of these peptides show antimicrobial activity against pathogens causing sexually transmitted infection (STI), including HIV/HSV. Peptides, namely magainin and nisin have been shown to demonstrate contraceptive properties in vitro and in vivo. A few peptides have already entered clinical trials for the treatment of impetigo, diabetic foot ulcers and gastric helicobacter infections. In this review, we discuss the source, structures and mode of action with special reference to therapeutic considerations of various AMPs

  9. Phage-displayed peptide libraries

    PubMed Central

    Zwick, Michael B; Shen, Juqun; Scott, Jamie K

    2014-01-01

    Over the past year, significant advances have been achieved through the use of phage-displayed peptide libraries. A wide variety of bioactive molecules, including antibodies, receptors and enzymes, have selected high-affinity and/or highly-specific peptide ligands from a number of different types of peptide library. The demonstrated therapeutic potential of some of these peptides, as well as new insights into protein structure and function that peptide ligands have provided, highlight the progress made within this rapidly-expanding field. PMID:9720267

  10. Antibody Production with Synthetic Peptides.

    PubMed

    Lee, Bao-Shiang; Huang, Jin-Sheng; Jayathilaka, Lasanthi P; Lee, Jenny; Gupta, Shalini

    2016-01-01

    Peptides (usually 10-20 amino acid residues in length) can be used as effectively as proteins in raising antibodies producing both polyclonal and monoclonal antibodies routinely with titers higher than 20,000. Peptide antigens do not function as immunogens unless they are conjugated to proteins. Production of high quality antipeptide antibodies is dependent upon peptide sequence selection, the success of peptide synthesis, peptide-carrier protein conjugation, the humoral immune response in the host animal, the adjuvant used, the peptide dose administered, the injection method, and the purification of the antibody. Peptide sequence selection is probably the most critical step in the production of antipeptide antibodies. Although the process for designing peptide antigens is not exact, several guidelines and computational B-cell epitope prediction methods can help maximize the likelihood of producing antipeptide antibodies that recognize the protein. Antibodies raised by peptides have become essential tools in life science research. Virtually all phospho-specific antibodies are now produced using phosphopeptides as antigens. Typically, 5-20 mg of peptide is enough for antipeptide antibody production. It takes 3 months to produce a polyclonal antipeptide antibody in rabbits that yields ~100 mL of serum which corresponds to ~8-10 mg of the specific antibody after affinity purification using a peptide column. PMID:27515072

  11. Concepts for Biologically Active Peptides

    PubMed Central

    Kastin, Abba J.; Pan, Weihong

    2012-01-01

    Here we review a unique aspect of CNS research on biologically active peptides that started against a background of prevalent dogmas but ended by exerting considerable influence on the field. During the course of refuting some doctrines, we introduced several concepts that were unconventional and paradigm-shifting at the time. We showed that (1) hypothalamic peptides can act ‘up’ on the brain as well as ‘down’ on the pituitary, (2) peripheral peptides can affect the brain, (3) peptides can cross the blood-brain barrier, (4) the actions of peptides can persist longer than their half-lives in blood, (5) perinatal administration of peptides can exert actions persisting into adulthood, (6) a single peptide can have more than one action, (7) dose-response relationships of peptides need not be linear, (8) the brain produces antiopiate as well as opiate peptides, (9) there is a selective high affinity endogenous peptide ligand for the mu-opiate receptor, (10) a peptide’s name does not restrict its effects, and (11) astrocytes assume an active role in response to metabolic disturbance and hyperleptinemia. The evolving questions in our laboratories reflect the diligent effort of the neuropeptide community to identify the roles of peptides in the CNS. The next decade is expected to see greater progress in the following areas: (a) interactions of peptides with other molecules in the CNS; (b) peptide involvement in cell-cell interactions; and (c) peptides in neuropsychiatric, autoimmune, and neurodegenerative diseases. The development of peptidomics and gene silencing approaches will expedite the formation of many new concepts in a new era. PMID:20726835

  12. Natriuretic peptides in fish physiology.

    PubMed

    Loretz, C A; Pollina, C

    2000-02-01

    Natriuretic peptides exist in the fishes as a family of structurally-related isohormones including atrial natriuretic peptide (ANP), C-type natriuretic peptide (CNP) and ventricular natriuretic peptide (VNP); to date, brain natriuretic peptide (or B-type natriuretic peptide, BNP) has not been definitively identified in the fishes. Based on nucleotide and amino acid sequence similarity, the natriuretic peptide family of isohormones may have evolved from a neuromodulatory, CNP-like brain peptide. The primary sites of synthesis for the circulating hormones are the heart and brain; additional extracardiac and extracranial sites, including the intestine, synthesize and release natriuretic peptides locally for paracrine regulation of various physiological functions. Membrane-bound, guanylyl cyclase-coupled natriuretic peptide receptors (A- and B-types) are generally implicated in mediating natriuretic peptide effects via the production of cyclic GMP as the intracellular messenger. C- and D-type natriuretic peptide receptors lacking the guanylyl cyclase domain may influence target cell function through G(i) protein-coupled inhibition of membrane adenylyl cyclase activity, and they likely also act as clearance receptors for circulating hormone. In the few systems examined using homologous or piscine reagents, differential receptor binding and tissue responsiveness to specific natriuretic peptide isohormones is demonstrated. Similar to their acute physiological effects in mammals, natriuretic peptides are vasorelaxant in all fishes examined. In contrast to mammals, where natriuretic peptides act through natriuresis and diuresis to bring about long-term reductions in blood volume and blood pressure, in fishes the primary action appears to be the extrusion of excess salt at the gills and rectal gland, and the limiting of drinking-coupled salt uptake by the alimentary system. In teleosts, both hypernatremia and hypervolemia are effective stimuli for cardiac secretion of

  13. Identification of an N-terminal formylated, two-peptide bacteriocin from Enterococcus faecalis 710C.

    PubMed

    Liu, Xiaoji; Vederas, John C; Whittal, Randy M; Zheng, Jing; Stiles, Michael E; Carlson, Denise; Franz, Charles M A P; McMullen, Lynn M; van Belkum, Marco J

    2011-05-25

    Enterococcus faecalis 710C, isolated from beef product, has a broad antimicrobial activity spectrum against foodborne pathogens. Two bacteriocins, enterocin 7A (Ent7A) and enterocin 7B (Ent7B), were purified from the culture supernatant of E. faecalis 710C and characterized using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and electrospray infusion tandem mass spectrometry analyses. These data and subsequent genetic analysis showed that Ent7A and Ent7B are produced without N-terminal leader sequences and have amino acid sequences that are identical to those of enterocins MR10A and MR10B, respectively. However, the observed masses for Ent7A and Ent7B are 5200.80 and 5206.65 Da (monoisotopic mass), respectively, which are higher than the theoretical molecular masses of MR10A and MR10B, respectively. This study provides evidence that both Ent7A and Ent7B are formylated on the N-terminal methionine residue. Purified Ent7A and Ent7B are active against spoilage microorganisms and foodborne pathogens, including Clostridium sporogenes , Listeria monocytogenes , and Staphylococcus aureus as well as Brevundimonas diminuta , which has been associated with infections among immune-suppressed cancer patients. PMID:21469734

  14. [Brain natriuretic peptide].

    PubMed

    La Villa, G; Lazzeri, C; Fronzaroli, C; Franchi, F; Gentilini, P

    1995-01-01

    Brain natriuretic peptide (BNP) is a cardiac hormone with a spectrum of activities quite similar to those of atrial natriuretic peptide (ANP), including diuretic, natriuretic, hypotensive and smooth muscle relaxant activities. These effects are due to the stimulation of guanylate cyclase-linked natriuretic peptide receptors, leading to an increase in cyclic GMP concentration in target cells. BNP has a lower affinity than ANP for C (clearance) receptors, and is less susceptible to degradation by neutral endopeptidase-24.11, resulting in a longer half-life. In the kidney, BNP increases the glomerular filtration rate and inhibits sodium reabsorption in the distal tubule. It also inhibits the release of renin and aldosterone. Unlike ANP, produced by the atria, BNP is mainly synthesized and released into circulation by the left ventricle and is therefore influenced by stimuli involving this cardiac chamber, such as an increase in arterial pressure, left ventricular hypertrophy and dilation. Plasma BNP levels are very low in healthy subjects, and respond modestly, although significantly to physiological stimuli such as changes in posture or sodium intake. In contrast, plasma BNP concentrations increase in disease states such as cirrhosis with ascites, hypertension, chronic renal failure, acute myocardial infarction and congestive heart failure. In the latter condition, plasma BNP concentration is a reliable prognostic index. Evidence obtained by administering BNP to healthy subjects and hypertensive patients suggests that BNP, at physiological and pathophysiological plasma concentrations, markedly influences cardiovascular homeostasis, mainly due to its effects on sodium excretion and the renin-aldosterone axis. PMID:8718658

  15. Peptide Aptamers: Development and Applications

    PubMed Central

    Reverdatto, Sergey; Burz, David S.; Shekhtman, Alexander

    2015-01-01

    Peptide aptamers are small combinatorial proteins that are selected to bind to specific sites on their target molecules. Peptide aptamers consist of short, 5-20 amino acid residues long sequences, typically embedded as a loop within a stable protein scaffold. Various peptide aptamer scaffolds and in vitro and in vivo selection techniques are reviewed with emphasis on specific biomedical, bioimaging, and bioanalytical applications. PMID:25866267

  16. Macrocyclization of Unprotected Peptide Isocyanates.

    PubMed

    Vinogradov, Alexander A; Choo, Zi-Ning; Totaro, Kyle A; Pentelute, Bradley L

    2016-03-18

    A chemistry for the facile two-component macrocyclization of unprotected peptide isocyanates is described. Starting from peptides containing two glutamic acid γ-hydrazide residues, isocyanates can be readily accessed and cyclized with hydrazides of dicarboxylic acids. The choice of a nucleophilic linker allows for the facile modulation of biochemical properties of a macrocyclic peptide. Four cyclic NYAD-1 analogues were synthesized using the described method and displayed a range of biological activities. PMID:26948900

  17. Biodiscovery of aluminum binding peptides

    NASA Astrophysics Data System (ADS)

    Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Hurley, Margaret M.; Stratis-Cullum, Dimitra

    2013-05-01

    Cell surface peptide display systems are large and diverse libraries of peptides (7-15 amino acids) which are presented by a display scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the selfsustaining peptide libraries to be rapidly screened for high affinity binders to a given target of interest, and those binders quickly identified. Peptide display systems have traditionally been utilized in conjunction with organic-based targets, such as protein toxins or carbon nanotubes. However, this technology has been expanded for use with inorganic targets, such as metals, for biofabrication, hybrid material assembly and corrosion prevention. While most current peptide display systems employ viruses to host the display scaffold, we have recently shown that a bacterial host, Escherichia coli, displaying peptides in the ubiquitous, membrane protein scaffold eCPX can also provide specific peptide binders to an organic target. We have, for the first time, extended the use of this bacterial peptide display system for the biodiscovery of aluminum binding 15mer peptides. We will present the process of biopanning with macroscopic inorganic targets, binder enrichment, and binder isolation and discovery.

  18. Improving Peptide Applications Using Nanotechnology.

    PubMed

    Narayanaswamy, Radhika; Wang, Tao; Torchilin, Vladimir P

    2016-01-01

    Peptides are being successfully used in various fields including therapy and drug delivery. With advancement in nanotechnology and targeted delivery carrier systems, suitable modification of peptides has enabled achievement of many desirable goals over-riding some of the major disadvantages associated with the delivery of peptides in vivo. Conjugation or physical encapsulation of peptides to various nanocarriers, such as liposomes, micelles and solid-lipid nanoparticles, has improved their in vivo performance multi-fold. The amenability of peptides to modification in chemistry and functionalization with suitable nanocarriers are very relevant aspects in their use and have led to the use of 'smart' nanoparticles with suitable linker chemistries that favor peptide targeting or release at the desired sites, minimizing off-target effects. This review focuses on how nanotechnology has been used to improve the number of peptide applications. The paper also focuses on the chemistry behind peptide conjugation to nanocarriers, the commonly employed linker chemistries and the several improvements that have already been achieved in the areas of peptide use with the help of nanotechnology. PMID:26279082

  19. Peptides that influence membrane topology

    NASA Astrophysics Data System (ADS)

    Wong, Gerard C. L.

    2014-03-01

    We examine the mechanism of a range of polypeptides that influence membrane topology, including antimicrobial peptides, cell penetrating peptides, viral fusion peptides, and apoptosis proteins, and show how a combination of geometry, coordination chemistry, and soft matter physics can be used to approach a unified understanding. We will also show how such peptides can impact biomedical problems such as auto-immune diseases (psoriasis, lupus), infectious diseases (viral and bacterial infections), and mitochondrial pathologies (under-regulated apoptosis leads to neurodegenerative diseases whereas over-regulated apoptosis leads to cancer.)

  20. Peptides and food intake.

    PubMed

    Sobrino Crespo, Carmen; Perianes Cachero, Aránzazu; Puebla Jiménez, Lilian; Barrios, Vicente; Arilla Ferreiro, Eduardo

    2014-01-01

    The mechanisms for controlling food intake involve mainly an interplay between gut, brain, and adipose tissue (AT), among the major organs. Parasympathetic, sympathetic, and other systems are required for communication between the brain satiety center, gut, and AT. These neuronal circuits include a variety of peptides and hormones, being ghrelin the only orexigenic molecule known, whereas the plethora of other factors are inhibitors of appetite, suggesting its physiological relevance in the regulation of food intake and energy homeostasis. Nutrients generated by food digestion have been proposed to activate G-protein-coupled receptors on the luminal side of enteroendocrine cells, e.g., the L-cells. This stimulates the release of gut hormones into the circulation such as glucagon-like peptide-1 (GLP-1), oxyntomodulin, pancreatic polypeptides, peptide tyrosine tyrosine, and cholecystokinin, which inhibit appetite. Ghrelin is a peptide secreted from the stomach and, in contrast to other gut hormones, plasma levels decrease after a meal and potently stimulate food intake. Other circulating factors such as insulin and leptin relay information regarding long-term energy stores. Both hormones circulate at proportional levels to body fat content, enter the CNS proportionally to their plasma levels, and reduce food intake. Circulating hormones can influence the activity of the arcuate nucleus (ARC) neurons of the hypothalamus, after passing across the median eminence. Circulating factors such as gut hormones may also influence the nucleus of the tractus solitarius (NTS) through the adjacent circumventricular organ. On the other hand, gastrointestinal vagal afferents converge in the NTS of the brainstem. Neural projections from the NTS, in turn, carry signals to the hypothalamus. The ARC acts as an integrative center, with two major subpopulations of neurons influencing appetite, one of them coexpressing neuropeptide Y and agouti-related protein (AgRP) that increases food

  1. Peptides and Food Intake

    PubMed Central

    Sobrino Crespo, Carmen; Perianes Cachero, Aránzazu; Puebla Jiménez, Lilian; Barrios, Vicente; Arilla Ferreiro, Eduardo

    2014-01-01

    The mechanisms for controlling food intake involve mainly an interplay between gut, brain, and adipose tissue (AT), among the major organs. Parasympathetic, sympathetic, and other systems are required for communication between the brain satiety center, gut, and AT. These neuronal circuits include a variety of peptides and hormones, being ghrelin the only orexigenic molecule known, whereas the plethora of other factors are inhibitors of appetite, suggesting its physiological relevance in the regulation of food intake and energy homeostasis. Nutrients generated by food digestion have been proposed to activate G-protein-coupled receptors on the luminal side of enteroendocrine cells, e.g., the L-cells. This stimulates the release of gut hormones into the circulation such as glucagon-like peptide-1 (GLP-1), oxyntomodulin, pancreatic polypeptides, peptide tyrosine tyrosine, and cholecystokinin, which inhibit appetite. Ghrelin is a peptide secreted from the stomach and, in contrast to other gut hormones, plasma levels decrease after a meal and potently stimulate food intake. Other circulating factors such as insulin and leptin relay information regarding long-term energy stores. Both hormones circulate at proportional levels to body fat content, enter the CNS proportionally to their plasma levels, and reduce food intake. Circulating hormones can influence the activity of the arcuate nucleus (ARC) neurons of the hypothalamus, after passing across the median eminence. Circulating factors such as gut hormones may also influence the nucleus of the tractus solitarius (NTS) through the adjacent circumventricular organ. On the other hand, gastrointestinal vagal afferents converge in the NTS of the brainstem. Neural projections from the NTS, in turn, carry signals to the hypothalamus. The ARC acts as an integrative center, with two major subpopulations of neurons influencing appetite, one of them coexpressing neuropeptide Y and agouti-related protein (AgRP) that increases food

  2. Recognition of Bacterial Signal Peptides by Mammalian Formyl Peptide Receptors

    PubMed Central

    Bufe, Bernd; Schumann, Timo; Kappl, Reinhard; Bogeski, Ivan; Kummerow, Carsten; Podgórska, Marta; Smola, Sigrun; Hoth, Markus; Zufall, Frank

    2015-01-01

    Formyl peptide receptors (FPRs) are G-protein-coupled receptors that function as chemoattractant receptors in innate immune responses. Here we perform systematic structure-function analyses of FPRs from six mammalian species using structurally diverse FPR peptide agonists and identify a common set of conserved agonist properties with typical features of pathogen-associated molecular patterns. Guided by these results, we discover that bacterial signal peptides, normally used to translocate proteins across cytoplasmic membranes, are a vast family of natural FPR agonists. N-terminally formylated signal peptide fragments with variable sequence and length activate human and mouse FPR1 and FPR2 at low nanomolar concentrations, thus establishing FPR1 and FPR2 as sensitive and broad signal peptide receptors. The vomeronasal receptor mFpr-rs1 and its sequence orthologue hFPR3 also react to signal peptides but are much more narrowly tuned in signal peptide recognition. Furthermore, all signal peptides examined here function as potent activators of the innate immune system. They elicit robust, FPR-dependent calcium mobilization in human and mouse leukocytes and trigger a range of classical innate defense mechanisms, such as the production of reactive oxygen species, metalloprotease release, and chemotaxis. Thus, bacterial signal peptides constitute a novel class of immune activators that are likely to contribute to mammalian immune defense against bacteria. This evolutionarily conserved detection mechanism combines structural promiscuity with high specificity and enables discrimination between bacterial and eukaryotic signal sequences. With at least 175,542 predicted sequences, bacterial signal peptides represent the largest and structurally most heterogeneous class of G-protein-coupled receptor agonists currently known for the innate immune system. PMID:25605714

  3. Phytosulfokine peptide signalling.

    PubMed

    Sauter, Margret

    2015-08-01

    Phytosulfokine (PSK) belongs to the group of plant peptide growth factors. It is a disulfated pentapeptide encoded by precursor genes that are ubiquitously present in higher plants, suggestive of universal functions. Processing of the preproprotein involves sulfonylation by a tyrosylprotein sulfotransferase in the trans-golgi and proteolytic cleavage in the apoplast. The secreted peptide is perceived at the cell surface by a membrane-bound receptor kinase of the leucine-rich repeat family. The PSK receptor PSKR1 from Arabidopsis thaliana is an active kinase and has guanylate cyclase activity resulting in dual-signal outputs. Receptor activity is regulated by calmodulin. While PSK may be an autocrine growth factor, it also acts non-cell autonomously by promoting growth of cells that are receptor-deficient. In planta, PSK has multiple functions. It promotes cell growth, acts in the quiescent centre cells of the root apical meristem, contributes to funicular pollen tube guidance, and differentially alters immune responses depending on the pathogen. It has been suggested that PSK integrates growth and defence signals to balance the competing metabolic costs of these responses. This review summarizes our current understanding of PSK synthesis, signalling, and activity. PMID:25754406

  4. Urinary Peptides in Rett Syndrome.

    ERIC Educational Resources Information Center

    Solaas, K. M.; Skjeldal, O.; Gardner, M. L. G.; Kase, B. F.; Reichelt, K. L.

    2002-01-01

    A study found a significantly higher level of peptides in the urine of 53 girls with Rett syndrome compared with controls. The elevation was similar to that in 35 girls with infantile autism. Levels of peptides were lower in girls with classic Rett syndrome than those with congenital Rett syndrome. (Contains references.) (Author/CR)

  5. Natriuretic Peptides and Cardiometabolic Health.

    PubMed

    Gupta, Deepak K; Wang, Thomas J

    2015-01-01

    Natriuretic peptides are cardiac-derived hormones with a range of protective functions, including natriuresis, diuresis, vasodilation, lusitropy, lipolysis, weight loss, and improved insulin sensitivity. Their actions are mediated through membrane-bound guanylyl cyclases that lead to production of the intracellular second-messenger cyclic guanosine monophosphate. A growing body of evidence demonstrates that genetic and acquired deficiencies of the natriuretic peptide system can promote hypertension, cardiac hypertrophy, obesity, diabetes mellitus, the metabolic syndrome, and heart failure. Clinically, natriuretic peptides are robust diagnostic and prognostic markers, and augmenting natriuretic peptides is a target for therapeutic strategies in cardiometabolic disease. This review will summarize current understanding and highlight novel aspects of natriuretic peptide biology. PMID:26103984

  6. Highly Angiogenic Peptide Nanofibers

    PubMed Central

    Kumar, Vivek A.; Taylor, Nichole L.; Shi, Siyu; Wang, Benjamin K.; Jalan, Abhishek A.; Kang, Marci K.; Wickremasinghe, Navindee C.; Hartgerink, Jeffrey D.

    2015-01-01

    Major limitations of current tissue regeneration approaches using artificial scaffolds are fibrous encapsulation, lack of host cellular infiltration, unwanted immune responses, surface degradation preceding biointegration, and artificial degradation byproducts. Specifically, for scaffolds larger than 200 500 μm, implants must be accompanied by host angiogenesis in order to provide adequate nutrient/waste exchange in the newly forming tissue. In the current work, we design a peptide-based self-assembling nanofibrous hydrogel containing cell-mediated degradation and proangiogenic moieties that specifically address these challenges. This hydrogel can be easily delivered by syringe, is rapidly infiltrated by cells of hematopoietic and mesenchymal origin, and rapidly forms an extremely robust mature vascular network. scaffolds show no signs of fibrous encapsulation and after 3 weeks are resorbed into the native tissue. These supramolecular assemblies may prove a vital paradigm for tissue regeneration and specifically for ischemic tissue disease. PMID:25584521

  7. Peptide-formation on cysteine-containing peptide scaffolds

    NASA Technical Reports Server (NTRS)

    Chu, B. C.; Orgel, L. E.

    1999-01-01

    Monomeric cysteine residues attached to cysteine-containing peptides by disulfide bonds can be activated by carbonyldiimidazole. If two monomeric cysteine residues, attached to a 'scaffold' peptide Gly-Cys-Glyn-Cys-Glu10, (n = 0, 1, 2, 3) are activated, they react to form the dipeptide Cys-Cys. in 25-65% yield. Similarly, the activation of a cysteine residue attached to the 'scaffold' peptide Gly-Cys-Gly-Glu10 in the presence of Arg5 leads to the formation of Cys-Arg5 in 50% yield. The significance of these results for prebiotic chemistry is discussed.

  8. Conus venom peptide pharmacology.

    PubMed

    Lewis, Richard J; Dutertre, Sébastien; Vetter, Irina; Christie, MacDonald J

    2012-04-01

    Conopeptides are a diverse group of recently evolved venom peptides used for prey capture and/or defense. Each species of cone snails produces in excess of 1000 conopeptides, with those pharmacologically characterized (≈ 0.1%) targeting a diverse range of membrane proteins typically with high potency and specificity. The majority of conopeptides inhibit voltage- or ligand-gated ion channels, providing valuable research tools for the dissection of the role played by specific ion channels in excitable cells. It is noteworthy that many of these targets are found to be expressed in pain pathways, with several conopeptides having entered the clinic as potential treatments for pain [e.g., pyroglutamate1-MrIA (Xen2174)] and one now marketed for intrathecal treatment of severe pain [ziconotide (Prialt)]. This review discusses the diversity, pharmacology, structure-activity relationships, and therapeutic potential of cone snail venom peptide families acting at voltage-gated ion channels (ω-, μ-, μO-, δ-, ι-, and κ-conotoxins), ligand-gated ion channels (α-conotoxins, σ-conotoxin, ikot-ikot, and conantokins), G-protein-coupled receptors (ρ-conopeptides, conopressins, and contulakins), and neurotransmitter transporters (χ-conopeptides), with expanded discussion on the clinical potential of sodium and calcium channel inhibitors and α-conotoxins. Expanding the discovery of new bioactives using proteomic/transcriptomic approaches combined with high-throughput platforms and better defining conopeptide structure-activity relationships using relevant membrane protein crystal structures are expected to grow the already significant impact conopeptides have had as both research probes and leads to new therapies. PMID:22407615

  9. NK cells: tuned by peptide?

    PubMed

    Das, Jayajit; Khakoo, Salim I

    2015-09-01

    Natural killer cells express multiple receptors for major histocompatibility complex (MHC) class I, including the killer cell immunoglobulin-like receptors (KIRs) and the C-type lectin-like CD94:NKG2 receptors. The KIR locus is extremely polymorphic, paralleling the diversity of its classical MHC class I ligands. Similarly, the conservation of the NKG2 family of receptors parallels the conservation of MHC-E, the ligand for CD94:NKG2A/C/E. Binding of both CD94:NKG2 heterodimers and KIR to their respective MHC class I ligand is peptide dependent, and despite the evolution of these receptors, they have retained the property of peptide selectivity. Such peptide selectivity affects these two systems in different ways. HLA-E binding non-inhibitory peptides augment inhibition at CD94:NKG2A, while HLA-C binding non-inhibitory peptides antagonize inhibition at KIR2DL2/3, implying that KIRs are specialized to respond positively to changes in peptide repertoire. Thus, while specific KIRs, such as KIR2DL3, are associated with beneficial outcomes from viral infections, viral peptides augment inhibition at CD94:NKGA. Conversely, NKG2A-positive NK cells sense MHC class I downregulation more efficiently than KIRs. Thus, these two receptor:ligand systems appear to have complementary functions in recognizing changes in MHC class I. PMID:26284480

  10. Marine Peptides: Bioactivities and Applications.

    PubMed

    Cheung, Randy Chi Fai; Ng, Tzi Bun; Wong, Jack Ho

    2015-07-01

    Peptides are important bioactive natural products which are present in many marine species. These marine peptides have high potential nutraceutical and medicinal values because of their broad spectra of bioactivities. Their antimicrobial, antiviral, antitumor, antioxidative, cardioprotective (antihypertensive, antiatherosclerotic and anticoagulant), immunomodulatory, analgesic, anxiolytic anti-diabetic, appetite suppressing and neuroprotective activities have attracted the attention of the pharmaceutical industry, which attempts to design them for use in the treatment or prevention of various diseases. Some marine peptides or their derivatives have high commercial values and had reached the pharmaceutical and nutraceutical markets. A large number of them are already in different phases of the clinical and preclinical pipeline. This review highlights the recent research in marine peptides and the trends and prospects for the future, with special emphasis on nutraceutical and pharmaceutical development into marketed products. PMID:26132844

  11. Marine Peptides: Bioactivities and Applications

    PubMed Central

    Cheung, Randy Chi Fai; Ng, Tzi Bun; Wong, Jack Ho

    2015-01-01

    Peptides are important bioactive natural products which are present in many marine species. These marine peptides have high potential nutraceutical and medicinal values because of their broad spectra of bioactivities. Their antimicrobial, antiviral, antitumor, antioxidative, cardioprotective (antihypertensive, antiatherosclerotic and anticoagulant), immunomodulatory, analgesic, anxiolytic anti-diabetic, appetite suppressing and neuroprotective activities have attracted the attention of the pharmaceutical industry, which attempts to design them for use in the treatment or prevention of various diseases. Some marine peptides or their derivatives have high commercial values and had reached the pharmaceutical and nutraceutical markets. A large number of them are already in different phases of the clinical and preclinical pipeline. This review highlights the recent research in marine peptides and the trends and prospects for the future, with special emphasis on nutraceutical and pharmaceutical development into marketed products. PMID:26132844

  12. Synthetic Peptides as Protein Mimics

    PubMed Central

    Groß, Andrea; Hashimoto, Chie; Sticht, Heinrich; Eichler, Jutta

    2016-01-01

    The design and generation of molecules capable of mimicking the binding and/or functional sites of proteins represents a promising strategy for the exploration and modulation of protein function through controlled interference with the underlying molecular interactions. Synthetic peptides have proven an excellent type of molecule for the mimicry of protein sites because such peptides can be generated as exact copies of protein fragments, as well as in diverse chemical modifications, which includes the incorporation of a large range of non-proteinogenic amino acids as well as the modification of the peptide backbone. Apart from extending the chemical and structural diversity presented by peptides, such modifications also increase the proteolytic stability of the molecules, enhancing their utility for biological applications. This article reviews recent advances by this and other laboratories in the use of synthetic protein mimics to modulate protein function, as well as to provide building blocks for synthetic biology. PMID:26835447

  13. Food-derived immunomodulatory peptides.

    PubMed

    Santiago-López, Lourdes; Hernández-Mendoza, Adrián; Vallejo-Cordoba, Belinda; Mata-Haro, Verónica; González-Córdova, Aarón F

    2016-08-01

    Food proteins contain specific amino acid sequences within their structures that may positively impact bodily functions and have multiple immunomodulatory effects. The functional properties of these specific sequences, also referred to as bioactive peptides, are revealed only after the degradation of native proteins during digestion processes. Currently, milk proteins have been the most explored source of bioactive peptides, which presents an interesting opportunity for the dairy industry. However, plant- and animal-derived proteins have also been shown to be important sources of bioactive peptides. This review summarizes the in vitro and in vivo evidence of the role of various food proteins as sources of immunomodulatory peptides and discusses the possible pathways involving these properties. © 2016 Society of Chemical Industry. PMID:26940008

  14. Moonlighting Peptides with Emerging Function

    PubMed Central

    Rodríguez Plaza, Jonathan G.; Villalón Rojas, Amanda; Herrera, Sur; Garza-Ramos, Georgina; Torres Larios, Alfredo; Amero, Carlos; Zarraga Granados, Gabriela; Gutiérrez Aguilar, Manuel; Lara Ortiz, María Teresa; Polanco Gonzalez, Carlos; Uribe Carvajal, Salvador; Coria, Roberto; Peña Díaz, Antonio; Bredesen, Dale E.; Castro-Obregon, Susana; del Rio, Gabriel

    2012-01-01

    Hunter-killer peptides combine two activities in a single polypeptide that work in an independent fashion like many other multi-functional, multi-domain proteins. We hypothesize that emergent functions may result from the combination of two or more activities in a single protein domain and that could be a mechanism selected in nature to form moonlighting proteins. We designed moonlighting peptides using the two mechanisms proposed to be involved in the evolution of such molecules (i.e., to mutate non-functional residues and the use of natively unfolded peptides). We observed that our moonlighting peptides exhibited two activities that together rendered a new function that induces cell death in yeast. Thus, we propose that moonlighting in proteins promotes emergent properties providing a further level of complexity in living organisms so far unappreciated. PMID:22808104

  15. Moonlighting peptides with emerging function.

    PubMed

    Rodríguez Plaza, Jonathan G; Villalón Rojas, Amanda; Herrera, Sur; Garza-Ramos, Georgina; Torres Larios, Alfredo; Amero, Carlos; Zarraga Granados, Gabriela; Gutiérrez Aguilar, Manuel; Lara Ortiz, María Teresa; Polanco Gonzalez, Carlos; Uribe Carvajal, Salvador; Coria, Roberto; Peña Díaz, Antonio; Bredesen, Dale E; Castro-Obregon, Susana; del Rio, Gabriel

    2012-01-01

    Hunter-killer peptides combine two activities in a single polypeptide that work in an independent fashion like many other multi-functional, multi-domain proteins. We hypothesize that emergent functions may result from the combination of two or more activities in a single protein domain and that could be a mechanism selected in nature to form moonlighting proteins. We designed moonlighting peptides using the two mechanisms proposed to be involved in the evolution of such molecules (i.e., to mutate non-functional residues and the use of natively unfolded peptides). We observed that our moonlighting peptides exhibited two activities that together rendered a new function that induces cell death in yeast. Thus, we propose that moonlighting in proteins promotes emergent properties providing a further level of complexity in living organisms so far unappreciated. PMID:22808104

  16. Peptide nanostructures in biomedical technology.

    PubMed

    Feyzizarnagh, Hamid; Yoon, Do-Young; Goltz, Mark; Kim, Dong-Shik

    2016-09-01

    Nanostructures of peptides have been investigated for biomedical applications due to their unique mechanical and electrical properties in addition to their excellent biocompatibility. Peptides may form fibrils, spheres and tubes in nanoscale depending on the formation conditions. These peptide nanostructures can be used in electrical, medical, dental, and environmental applications. Applications of these nanostructures include, but are not limited to, electronic devices, biosensing, medical imaging and diagnosis, drug delivery, tissue engineering and stem cell research. This review offers a discussion of basic synthesis methods, properties and application of these nanomaterials. The review concludes with recommendations and future directions for peptide nanostructures. WIREs Nanomed Nanobiotechnol 2016, 8:730-743. doi: 10.1002/wnan.1393 For further resources related to this article, please visit the WIREs website. PMID:26846352

  17. Kinins and peptide receptors.

    PubMed

    Regoli, Domenico; Gobeil, Fernand

    2016-04-01

    This paper is divided into two sections: the first contains the essential elements of the opening lecture presented by Pr. Regoli to the 2015 International Kinin Symposium in S. Paulo, Brazil on June 28th and the second is the celebration of Dr. Regoli's 60 years of research on vasoactive peptides. The cardiovascular homeostasis derives from a balance of two systems, the renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS). The biologically active effector entity of RAS is angiotensin receptor-1 (AT-1R), and that of KKS is bradykinin B2 receptor (B2R). The first mediates vasoconstriction, the second is the most potent and efficient vasodilator. Thanks to its complex and multi-functional mechanism of action, involving nitric oxide (NO), prostacyclin and endothelial hyperpolarizing factor (EDHF). B2R is instrumental for the supply of blood, oxygen and nutrition to tissues. KKS is present on the vascular endothelium and functions as an autacoid playing major roles in cardiovascular diseases (CVDs) and diabetes. KKS exerts a paramount role in the prevention of thrombosis and atherosclerosis. Such knowledge emphasizes the already prominent value of the ACE-inhibitors (ACEIs) for the treatment of CVDs and diabetes. Indeed, the ACEIs, thanks to their double action (block of the RAS and potentiation of the KKS) are the ideal agents for a rational treatment of these diseases. PMID:26408609

  18. Peptides and proteins

    SciTech Connect

    Bachovchin, W.W.; Unkefer, C.J.

    1994-12-01

    Advances in magnetic resonance and vibrational spectroscopy make it possible to derive detailed structural information about biomolecular structures in solution. These techniques are critically dependent on the availability of labeled compounds. For example, NMR techniques used today to derive peptide and protein structures require uniformity {sup 13}C-and {sup 15}N-labeled samples that are derived biosynthetically from (U-6-{sup 13}C) glucose. These experiments are possible now because, during the 1970s, the National Stable Isotope Resource developed algal methods for producing (U-6-{sup 13}C) glucose. If NMR techniques are to be used to study larger proteins, we will need sophisticated labelling patterns in amino acids that employ a combination of {sup 2}H, {sup 13}C, and {sup 15}N labeling. The availability of these specifically labeled amino acids requires a renewed investment in new methods for chemical synthesis of labeled amino acids. The development of new magnetic resonance or vibrational techniques to elucidate biomolecular structure will be seriously impeded if we do not see rapid progress in labeling technology. Investment in labeling chemistry is as important as investment in the development of advanced spectroscopic tools.

  19. Collagen-like antimicrobial peptides.

    PubMed

    Masuda, Ryo; Kudo, Masakazu; Dazai, Yui; Mima, Takehiko; Koide, Takaki

    2016-11-01

    Combinatorial library composed of rigid rod-like peptides with a triple-helical scaffold was constructed. The component peptides were designed to have various combinations of basic and neutral (or hydrophobic) amino acid residues based on collagen-like (Gly-Pro-Yaa)-repeating sequences, inspired from the basic and amphiphilic nature of naturally occurring antimicrobial peptides. Screening of the peptide pools resulted in identification of antimicrobial peptides. A structure-activity relationship study revealed that the position of Arg-cluster at N-terminus and cystine knots at C-terminus in the triple helix significantly contributed to the antimicrobial activity. The most potent peptide RO-A showed activity against Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. In addition, Escherichia coli exposed to RO-A resulted in abnormal elongation of the cells. RO-A was also shown to have remarkable stability in human serum and low cytotoxicity to mammalian cells. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 453-459, 2016. PMID:27271210

  20. Latarcins: versatile spider venom peptides.

    PubMed

    Dubovskii, Peter V; Vassilevski, Alexander A; Kozlov, Sergey A; Feofanov, Alexey V; Grishin, Eugene V; Efremov, Roman G

    2015-12-01

    Arthropod venoms feature the presence of cytolytic peptides believed to act synergetically with neurotoxins to paralyze prey or deter aggressors. Many of them are linear, i.e., lack disulfide bonds. When isolated from the venom, or obtained by other means, these peptides exhibit common properties. They are cationic; being mostly disordered in aqueous solution, assume amphiphilic α-helical structure in contact with lipid membranes; and exhibit general cytotoxicity, including antifungal, antimicrobial, hemolytic, and anticancer activities. To suit the pharmacological needs, the activity spectrum of these peptides should be modified by rational engineering. As an example, we provide a detailed review on latarcins (Ltc), linear cytolytic peptides from Lachesana tarabaevi spider venom. Diverse experimental and computational techniques were used to investigate the spatial structure of Ltc in membrane-mimicking environments and their effects on model lipid bilayers. The antibacterial activity of Ltc was studied against a panel of Gram-negative and Gram-positive bacteria. In addition, the action of Ltc on erythrocytes and cancer cells was investigated in detail with confocal laser scanning microscopy. In the present review, we give a critical account of the progress in the research of Ltc. We explore the relationship between Ltc structure and their biological activity and derive molecular characteristics, which can be used for optimization of other linear peptides. Current applications of Ltc and prospective use of similar membrane-active peptides are outlined. PMID:26286896

  1. Automated solid-phase peptide synthesis to obtain therapeutic peptides

    PubMed Central

    Mäde, Veronika; Els-Heindl, Sylvia

    2014-01-01

    Summary The great versatility and the inherent high affinities of peptides for their respective targets have led to tremendous progress for therapeutic applications in the last years. In order to increase the drugability of these frequently unstable and rapidly cleared molecules, chemical modifications are of great interest. Automated solid-phase peptide synthesis (SPPS) offers a suitable technology to produce chemically engineered peptides. This review concentrates on the application of SPPS by Fmoc/t-Bu protecting-group strategy, which is most commonly used. Critical issues and suggestions for the synthesis are covered. The development of automated methods from conventional to essentially improved microwave-assisted instruments is discussed. In order to improve pharmacokinetic properties of peptides, lipidation and PEGylation are described as covalent conjugation methods, which can be applied by a combination of automated and manual synthesis approaches. The synthesis and application of SPPS is described for neuropeptide Y receptor analogs as an example for bioactive hormones. The applied strategies represent innovative and potent methods for the development of novel peptide drug candidates that can be manufactured with optimized automated synthesis technologies. PMID:24991269

  2. Perspectives and Peptides of the Next Generation

    NASA Astrophysics Data System (ADS)

    Brogden, Kim A.

    Shortly after their discovery, antimicrobial peptides from prokaryotes and eukaryotes were recognized as the next potential generation of pharmaceuticals to treat antibiotic-resistant bacterial infections and septic shock, to preserve food, or to sanitize surfaces. Initial research focused on identifying the spectrum of antimicrobial agents, determining the range of antimicrobial activities against bacterial, fungal, and viral pathogens, and assessing the antimicrobial activity of synthetic peptides versus their natural counterparts. Subsequent research then focused on the mechanisms of antimicrobial peptide activity in model membrane systems not only to identify the mechanisms of antimicrobial peptide activity in microorganisms but also to discern differences in cytotoxicity for prokaryotic and eukaryotic cells. Recent, contemporary work now focuses on current and future efforts to construct hybrid peptides, peptide congeners, stabilized peptides, peptide conjugates, and immobilized peptides for unique and specific applications to control the growth of microorganisms in vitro and in vivo.

  3. Exploration of the Medicinal Peptide Space.

    PubMed

    Gevaert, Bert; Stalmans, Sofie; Wynendaele, Evelien; Taevernier, Lien; Bracke, Nathalie; D'Hondt, Matthias; De Spiegeleer, Bart

    2016-01-01

    The chemical properties of peptide medicines, known as the 'medicinal peptide space' is considered a multi-dimensional subset of the global peptide space, where each dimension represents a chemical descriptor. These descriptors can be linked to biofunctional, medicinal properties to varying degrees. Knowledge of this space can increase the efficiency of the peptide-drug discovery and development process, as well as advance our understanding and classification of peptide medicines. For 245 peptide drugs, already available on the market or in clinical development, multivariate dataexploration was performed using peptide relevant physicochemical descriptors, their specific peptidedrug target and their clinical use. Our retrospective analysis indicates that clusters in the medicinal peptide space are located in a relatively narrow range of the physicochemical space: dense and empty regions were found, which can be explored for the discovery of novel peptide drugs. PMID:26876881

  4. Peptide Vaccine: Progress and Challenges

    PubMed Central

    Li, Weidang; Joshi, Medha D.; Singhania, Smita; Ramsey, Kyle H.; Murthy, Ashlesh K.

    2014-01-01

    Conventional vaccine strategies have been highly efficacious for several decades in reducing mortality and morbidity due to infectious diseases. The bane of conventional vaccines, such as those that include whole organisms or large proteins, appear to be the inclusion of unnecessary antigenic load that, not only contributes little to the protective immune response, but complicates the situation by inducing allergenic and/or reactogenic responses. Peptide vaccines are an attractive alternative strategy that relies on usage of short peptide fragments to engineer the induction of highly targeted immune responses, consequently avoiding allergenic and/or reactogenic sequences. Conversely, peptide vaccines used in isolation are often weakly immunogenic and require particulate carriers for delivery and adjuvanting. In this article, we discuss the specific advantages and considerations in targeted induction of immune responses by peptide vaccines and progresses in the development of such vaccines against various diseases. Additionally, we also discuss the development of particulate carrier strategies and the inherent challenges with regard to safety when combining such technologies with peptide vaccines. PMID:26344743

  5. Atomic Coordination Reflects Peptide Immunogenicity

    PubMed Central

    Antipas, Georgios S. E.; Germenis, Anastasios E.

    2016-01-01

    We demonstrated that the immunological identity of variant peptides may be accurately predicted on the basis of atomic coordination of both unprotonated and protonated tertiary structures, provided that the structure of the native peptide (index) is known. The metric which was discovered to account for this discrimination is the coordination difference between the variant and the index; we also showed that increasing coordination difference in respect to the index was correlated to a correspondingly weakening immunological outcome of the variant. Additionally, we established that this metric quickly seizes to operate beyond the peptide scale, e.g., within a coordination shell inclusive of atoms up to a distance of 7 Å away from the peptide or over the entire pMHC-TCR complex. Analysis of molecular orbital interactions for a range of formal charges further revealed that the N-terminus of the agonists was always able to sustain a stable ammonium (NH3+) group which was consistently absent in antagonists. We deem that the presence of NH3+ constitutes a secondary observable with a biological consequence, signifying a change in T cell activation. While our analysis of protonated structures relied on the quantum chemical relaxation of the H species, the results were consistent across a wide range of peptide charge and spin polarization conditions. PMID:26793714

  6. Antimicrobial Peptides from Marine Proteobacteria

    PubMed Central

    Desriac, Florie; Jégou, Camille; Balnois, Eric; Brillet, Benjamin; Le Chevalier, Patrick; Fleury, Yannick

    2013-01-01

    After years of inadequate use and the emergence of multidrug resistant (MDR) strains, the efficiency of “classical” antibiotics has decreased significantly. New drugs to fight MDR strains are urgently needed. Bacteria hold much promise as a source of unusual bioactive metabolites. However, the potential of marine bacteria, except for Actinomycetes and Cyanobacteria, has been largely underexplored. In the past two decades, the structures of several antimicrobial compounds have been elucidated in marine Proteobacteria. Of these compounds, polyketides (PKs), synthesised by condensation of malonyl-coenzyme A and/or acetyl-coenzyme A, and non-ribosomal peptides (NRPs), obtained through the linkage of (unusual) amino acids, have recently generated particular interest. NRPs are good examples of naturally modified peptides. Here, we review and compile the data on the antimicrobial peptides isolated from marine Proteobacteria, especially NRPs. PMID:24084784

  7. Antiviral active peptide from oyster

    NASA Astrophysics Data System (ADS)

    Zeng, Mingyong; Cui, Wenxuan; Zhao, Yuanhui; Liu, Zunying; Dong, Shiyuan; Guo, Yao

    2008-08-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster ( Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10 5 kDa, 5 1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10 5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  8. Antimicrobial activity of polycationic peptides.

    PubMed

    Giacometti, A; Cirioni, O; Barchiesi, F; Del Prete, M S; Scalise, G

    1999-11-01

    The in vitro activity of six polycationic peptides, buforin II, cecropin P1, indolicidin, magainin II, nisin, and ranalexin, were evaluated against several clinical isolates of gram-positive and gram-negative aerobic bacteria, yeasts, Pneumocystis carinii and Cryptosporidium parvum, by using microbroth dilution methods. The peptides exhibited different antibacterial activities and rapid time-dependent killing. The gram-negative organisms were more susceptible to buforin II and cecropin P1, whereas buforin II and ranalexin were the most active compounds against the gram-positive strains. Similarly, ranalexin showed the highest activity against Candida spp., whereas magainin II exerted the highest anticryptococcal activity. Finally, the peptides showed high anti-Pneumocystis activity, whereas no compound had strong inhibitory effect on C. parvum. PMID:10612440

  9. Evidence for a novel natriuretic peptide receptor that prefers brain natriuretic peptide over atrial natriuretic peptide.

    PubMed Central

    Goy, M F; Oliver, P M; Purdy, K E; Knowles, J W; Fox, J E; Mohler, P J; Qian, X; Smithies, O; Maeda, N

    2001-01-01

    Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) exert their physiological actions by binding to natriuretic peptide receptor A (NPRA), a receptor guanylate cyclase (rGC) that synthesizes cGMP in response to both ligands. The family of rGCs is rapidly expanding, and it is plausible that there might be additional, as yet undiscovered, rGCs whose function is to provide alternative signalling pathways for one or both of these peptides, particularly given the low affinity of NPRA for BNP. We have investigated this hypothesis, using a genetically modified (knockout) mouse in which the gene encoding NPRA has been disrupted. Enzyme assays and NPRA-specific Western blots performed on tissues from wild-type mice demonstrate that ANP-activated cGMP synthesis provides a good index of NPRA protein expression, which ranges from maximal in adrenal gland, lung, kidney, and testis to minimal in heart and colon. In contrast, immunoreactive NPRA is not detectable in tissues isolated from NPRA knockout animals and ANP- and BNP-stimulatable GC activities are markedly reduced in all mutant tissues. However, testis and adrenal gland retain statistically significant, high-affinity responses to BNP. This residual response to BNP cannot be accounted for by natriuretic peptide receptor B, or any other known mammalian rGC, suggesting the presence of a novel receptor in these tissues that prefers BNP over ANP. PMID:11513736

  10. Novel Formulations for Antimicrobial Peptides

    PubMed Central

    Carmona-Ribeiro, Ana Maria; Carrasco, Letícia Dias de Melo

    2014-01-01

    Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy. PMID:25302615

  11. Peptides and the new endocrinology

    NASA Astrophysics Data System (ADS)

    Schwyzer, Robert

    1982-01-01

    The discovery of regulatory peptides common to the nervous and the endocrine systems (brain, gut, and skin) has brought about a revolution in our concepts of endocrinology and neurology. We are beginning to understand some of the complex interrelationships between soma and psyche that might, someday, be important for an integrated treatment of diseases. Examples of the actions of certain peptides in the periphery and in the central nervous system are given, and their biosynthesis and molecular anatomy as carriers for information are discussed.

  12. Dendroaspis natriuretic peptide binds to the natriuretic peptide clearance receptor

    SciTech Connect

    Johns, Douglas G. . E-mail: Douglas.G.Johns@gsk.com; Ao, Zhaohui; Heidrich, Bradley J.; Hunsberger, Gerald E.; Graham, Taylor; Payne, Lisa; Elshourbagy, Nabil; Lu, Quinn; Aiyar, Nambi; Douglas, Stephen A.

    2007-06-22

    Dendroaspis natriuretic peptide (DNP) is a newly-described natriuretic peptide which lowers blood pressure via vasodilation. The natriuretic peptide clearance receptor (NPR-C) removes natriuretic peptides from the circulation, but whether DNP interacts with human NPR-C directly is unknown. The purpose of this study was to test the hypothesis that DNP binds to NPR-C. ANP, BNP, CNP, and the NPR-C ligands AP-811 and cANP(4-23) displaced [{sup 125}I]-ANP from NPR-C with pM-to-nM K {sub i} values. DNP displaced [{sup 125}I]-ANP from NPR-C with nM potency, which represents the first direct demonstration of binding of DNP to human NPR-C. DNP showed high pM affinity for the GC-A receptor and no affinity for GC-B (K {sub i} > 1000 nM). DNP was nearly 10-fold more potent than ANP at stimulating cGMP production in GC-A expressing cells. Blockade of NPR-C might represent a novel therapeutic approach in augmenting the known beneficial actions of DNP in cardiovascular diseases such as hypertension and heart failure.

  13. Strategic approaches to optimizing peptide ADME properties.

    PubMed

    Di, Li

    2015-01-01

    Development of peptide drugs is challenging but also quite rewarding. Five blockbuster peptide drugs are currently on the market, and six new peptides received first marketing approval as new molecular entities in 2012. Although peptides only represent 2% of the drug market, the market is growing twice as quickly and might soon occupy a larger niche. Natural peptides typically have poor absorption, distribution, metabolism, and excretion (ADME) properties with rapid clearance, short half-life, low permeability, and sometimes low solubility. Strategies have been developed to improve peptide drugability through enhancing permeability, reducing proteolysis and renal clearance, and prolonging half-life. In vivo, in vitro, and in silico tools are available to evaluate ADME properties of peptides, and structural modification strategies are in place to improve peptide developability. PMID:25366889

  14. Membrane disruption mechanism of antimicrobial peptides

    NASA Astrophysics Data System (ADS)

    Lee, Ka Yee

    2012-04-01

    Largely distributed among living organisms, antimicrobial peptides are a class of small (<100 residues) host defense peptides that induce selective membrane lytic activity against microbial pathogens. The permeabilizing behavior of these diverse peptides has been commonly attributed to the formation of pores, and such pore formation has been categorized as barrel-stave, toroidal, or carpet-like. With the continuing discovery of new peptide species, many are uncharacterized and the exact mechanism is unknown. Through the use of atomic force microscopy, the disruption of supported lipid bilayer patches by protegrin-1 is concentration-dependent. The intercalation of antimicrobial peptide into the bilayer results in structures beyond that of pore formation, but with the formation of worm-like micelles at high peptide concentration. Our results suggest that antimicrobial peptide acts to lower the interfacial energy of the bilayer in a way similar to detergents. Antimicrobial peptides with structural differences, magainin-1 and aurein 1.1, exhibit a mechanistic commonality.

  15. Boosting production yield of biomedical peptides

    NASA Technical Reports Server (NTRS)

    Manatt, S. L.

    1978-01-01

    Nuclear magnetic resonance (NMR) technique is employed to monitor synthesis of biomedical peptides. Application of NMR technique may improve production yields of insulin, ACTH, and growth hormones, as well as other synthesized biomedical peptides.

  16. Streptavidin-binding peptides and uses thereof

    NASA Technical Reports Server (NTRS)

    Szostak, Jack W. (Inventor); Wilson, David S. (Inventor); Keefe, Anthony D. (Inventor)

    2006-01-01

    The invention provides peptides with high affinity for streptavidin. These peptides may be expressed as part of fusion proteins to facilitate the detection, quantitation, and purification of proteins of interest.

  17. Streptavidin-binding peptides and uses thereof

    NASA Technical Reports Server (NTRS)

    Szostak, Jack W. (Inventor); Wilson, David S. (Inventor); Keefe, Anthony D. (Inventor)

    2005-01-01

    The invention provides peptides with high affinity for streptavidin. These peptides may be expressed as part of fusion proteins to facilitate the detection, quantitation, and purification of proteins of interest.

  18. Investigating Endogenous Peptides and Peptidases using Peptidomics

    PubMed Central

    Tinoco, Arthur D.; Saghatelian, Alan

    2012-01-01

    Rather than simply being protein degradation products, peptides have proven to be important bioactive molecules. Bioactive peptides act as hormones, neurotransmitters and antimicrobial agents in vivo. The dysregulation of bioactive peptide signaling is also known to be involved in disease, and targeting peptide hormone pathways has been successful strategy in the development of novel therapeutics. The importance of bioactive peptides in biology has spurred research to elucidate the function and regulation of these molecules. Classical methods for peptide analysis have relied on targeted immunoassays, but certain scientific questions necessitated a broader and more detailed view of the peptidome–all the peptides in a cell, tissue or organism. In this review we discuss how peptidomics has emerged to fill this need through the application of advanced liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods that provide unique insights into peptide activity and regulation. PMID:21786763

  19. STM studies of synthetic peptide monolayers

    SciTech Connect

    Bergeron, David J.; Clauss, Wilfried; Johnson, Alan T.; Pilloud, Denis L.; Leslie Dutton, P.

    1998-08-11

    We have used scanning probe microscopy to investigate self-assembled monolayers of chemically synthesized peptides. We find that the peptides form a dense uniform monolayer, above which is found a sparse additional layer. Using scanning tunneling microscopy, submolecular resolution can be obtained, revealing the alpha helices which constitute the peptide. The nature of the images is not significantly affected by the incorporation of redox cofactors (hemes) in the peptides.

  20. Toxins and antimicrobial peptides: interactions with membranes

    NASA Astrophysics Data System (ADS)

    Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2009-08-01

    The innate immunity to pathogenic invasion of organisms in the plant and animal kingdoms relies upon cationic antimicrobial peptides (AMPs) as the first line of defense. In addition to these natural peptide antibiotics, similar cationic peptides, such as the bee venom toxin melittin, act as nonspecific toxins. Molecular details of AMP and peptide toxin action are not known, but the universal function of these peptides to disrupt cell membranes of pathogenic bacteria (AMPs) or a diverse set of eukaryotes and prokaryotes (melittin) is widely accepted. Here, we have utilized spectroscopic techniques to elucidate peptide-membrane interactions of alpha-helical human and mouse AMPs of the cathelicidin family as well as the peptide toxin melittin. The activity of these natural peptides and their engineered analogs was studied on eukaryotic and prokaryotic membrane mimics consisting of <200-nm bilayer vesicles composed of anionic and neutral lipids as well as cholesterol. Vesicle disruption, or peptide potency, was monitored with a sensitive fluorescence leakage assay. Detailed molecular information on peptidemembrane interactions and peptide structure was further gained through vibrational spectroscopy combined with circular dichroism. Finally, steady-state fluorescence experiments yielded insight into the local environment of native or engineered tryptophan residues in melittin and human cathelicidin embedded in bilayer vesicles. Collectively, our results provide clues to the functional structures of the engineered and toxic peptides and may impact the design of synthetic antibiotic peptides that can be used against the growing number of antibiotic-resistant pathogens.

  1. Identification of multifunctional peptides from human milk.

    PubMed

    Mandal, Santi M; Bharti, Rashmi; Porto, William F; Gauri, Samiran S; Mandal, Mahitosh; Franco, Octavio L; Ghosh, Ananta K

    2014-06-01

    Pharmaceutical industries have renewed interest in screening multifunctional bioactive peptides as a marketable product in health care applications. In this context, several animal and plant peptides with potential bioactivity have been reported. Milk proteins and peptides have received much attention as a source of health-enhancing components to be incorporated into nutraceuticals and functional foods. By using this source, 24 peptides have been fractionated and purified from human milk using RP-HPLC. Multifunctional roles including antimicrobial, antioxidant and growth stimulating activity have been evaluated in all 24 fractions. Nevertheless, only four fractions show multiple combined activities among them. Using a proteomic approach, two of these four peptides have been identified as lactoferrin derived peptide and kappa casein short chain peptide. Lactoferrin derived peptide (f8) is arginine-rich and kappa casein derived (f12) peptide is proline-rich. Both peptides (f8 and f12) showed antimicrobial activities against both Gram-positive and Gram-negative bacteria. Fraction 8 (f8) exhibits growth stimulating activity in 3T3 cell line and f12 shows higher free radical scavenging activity in comparison to other fractions. Finally, both peptides were in silico evaluated and some insights into their mechanism of action were provided. Thus, results indicate that these identified peptides have multiple biological activities which are valuable for the quick development of the neonate and may be considered as potential biotechnological products for nutraceutical industry. PMID:24703967

  2. Diversity of wheat anti-microbial peptides.

    PubMed

    Egorov, Tsezi A; Odintsova, Tatyana I; Pukhalsky, Vitaliy A; Grishin, Eugene V

    2005-11-01

    From seeds of Triticum kiharae Dorof. et Migusch., 24 novel anti-microbial peptides were isolated and characterized by a combination of three-step HPLC (affinity, size-exclusion and reversed-phase) with matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and Edman degradation. Based on sequence similarity and cysteine motifs, partially sequenced peptides were assigned to 7 families: defensins, thionins, lipid-transfer proteins, hevein-like peptides, knottin-like peptides, glycine-rich peptides, and MBP-1 homologs. A novel subfamily of defensins consisting of 6 peptides and a new family of glycine-rich (8 peptides with different repeat motifs) were identified. Three 6-cysteine knottin-like peptides represented by N- and C-terminally truncated variants revealed no sequence homology to any known plant anti-microbial peptides. A new 8-cysteine hevein-like peptide and three 4-cysteine peptides homologous to MBP-1 from maize were isolated. This is the first communication on the occurrence of nearly all families of plant anti-microbial peptides in a single species. PMID:16269343

  3. Unsupervised Identification of Isotope-Labeled Peptides.

    PubMed

    Goldford, Joshua E; Libourel, Igor G L

    2016-06-01

    In vivo isotopic labeling coupled with high-resolution proteomics is used to investigate primary metabolism in techniques such as stable isotope probing (protein-SIP) and peptide-based metabolic flux analysis (PMFA). Isotopic enrichment of carbon substrates and intracellular metabolism determine the distribution of isotopes within amino acids. The resulting amino acid mass distributions (AMDs) are convoluted into peptide mass distributions (PMDs) during protein synthesis. With no a priori knowledge on metabolic fluxes, the PMDs are therefore unknown. This complicates labeled peptide identification because prior knowledge on PMDs is used in all available peptide identification software. An automated framework for the identification and quantification of PMDs for nonuniformly labeled samples is therefore lacking. To unlock the potential of peptide labeling experiments for high-throughput flux analysis and other complex labeling experiments, an unsupervised peptide identification and quantification method was developed that uses discrete deconvolution of mass distributions of identified peptides to inform on the mass distributions of otherwise unidentifiable peptides. Uniformly (13)C-labeled Escherichia coli protein was used to test the developed feature reconstruction and deconvolution algorithms. The peptide identification was validated by comparing MS(2)-identified peptides to peptides identified from PMDs using unlabeled E. coli protein. Nonuniformly labeled Glycine max protein was used to demonstrate the technology on a representative sample suitable for flux analysis. Overall, automatic peptide identification and quantification were comparable or superior to manual extraction, enabling proteomics-based technology for high-throughput flux analysis studies. PMID:27145348

  4. Diverse CLE peptides from cyst nematode species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant CLAVATA3/ESR (CLE)-like peptides play diverse roles in plant growth and development including maintenance of the stem cell population in the root meristem. Small secreted peptides sharing similarity to plant CLE signaling peptides have been isolated from several cyst nematode species including...

  5. Bi- or multifunctional peptide drugs

    PubMed Central

    Schiller, Peter W.

    2009-01-01

    Strategies for the design of bi- or multifunctional drugs are reviewed. A distinction is made between bifunctional drugs interacting in a monovalent fashion with two targets and ligands containing two distinct pharmacophores binding in a bivalent mode to the two binding sites in a receptor heterodimer. Arguments are presented to indicate that some of the so-called “bivalent” ligands reported in the literature are unlikely to simultaneously interact with two binding sites. Aspects related to the development of bi- or multifunctional drugs are illustrated with examples from the field of opioid analgesics. The drug-like properties of the tetrapeptide Dmt1[DALDA] with triple action as a μ opioid agonist, norepinephrine uptake inhibitor and releaser of endogenous opioid peptides to produce potent spinal analgesia are reviewed. Rationales for the development of opioid peptides with mixed agonist/antagonist profiles as analgesics with reduced side effects are presented. Progress in the development of mixed μ opioid agonist/δ opioid antagonists with low propensity to produce tolerance and physical dependence is reviewed. Efforts to develop bifunctional peptides containing a μ opioid agonist and a cholecystokinin antagonist or an NK1 receptor antagonist as analgesics expected to produce less tolerance and dependence are also reviewed. A strategy to improve the drug-like properties of bifunctional opioid peptide analgesics is presented. PMID:19285088

  6. Free-living nematode peptides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All nematodes employ a wide array of peptide messengers to control nearly all aspects of the life cycle, including hatching, locomotion, feeding, defense, mating, reproduction, and other behavioral and metabolic events. There are molecular and biological similarities, as well as significant differen...

  7. Fabrication of Odor Sensor Using Peptide

    NASA Astrophysics Data System (ADS)

    Hotokebuchi, Yuta; Hayashi, Kenshi; Toko, Kiyoshi; Chen, Ronggang; Ikezaki, Hidekazu

    We report fabrication of an odor sensor using peptides. Peptides were designed to acquire the specific reception for a target odor molecule. Au surface of the sensor electrode was coated by the designed peptide using the method of self assembled monolayers (SAMs). Functionalized Au surfaces by the peptides were confirmed by ellipsometry and cyclic voltammetry. The odorants of vanillin, phenethyl alcohol and hexanol were discriminated by QCM sensor with the peptide surface. Moreover, we verified specific interaction between amino acid (Trp) and vanillin by fluorescence assay.

  8. Isoelectric focusing of proteins and peptides

    NASA Technical Reports Server (NTRS)

    Egen, N.

    1979-01-01

    Egg-white solution was chosen as the reference solution in order to assess the effects of operational parameters (voltage, flow rate, ampholine pH range and concentration, and protein concentration) of the RIEF apparatus on protein resolution. Topics of discussion include: (1) comparison of RIEF apparatus to conventional IEF techniques (column and PAG) with respect to resolution and throughput; (2) peptide and protein separation (AHF, Thymosin - Fraction 5, vasoactive peptide, L-asparaginase and ACP); and (3) detection of peptides - dansyl derivatives of amino acids and peptides, post-focusing fluorescent labeling of amino acids, peptides and proteins, and ampholine extraction from focused gels.

  9. Peptide ligation from alkoxyamine based radical addition.

    PubMed

    Trimaille, Thomas; Autissier, Laurent; Rakotonirina, Mamy Daniel; Guillaneuf, Yohann; Villard, Claude; Bertin, Denis; Gigmes, Didier; Mabrouk, Kamel

    2014-03-14

    Intermolecular radical 1,2-addition (IRA) of N-tert-butyl-N-(1-diethylphosphono-2,2-dimethylpropyl)aminoxyl (SG1) based alkoxyamines onto activated olefins is used as a tool for peptide ligation. This strategy relies on simple peptide pre-derivatization to obtain (i) a SG1 nitroxide functionalized resin peptide at its N-terminus (SG1-peptide alkoxyamine), (ii) a vinyl functionalized peptide (either at its C-terminus or N-terminus), and does not require any coupling agents. PMID:24476638

  10. How antimicrobial peptides disrupt lipid bilayers?

    NASA Astrophysics Data System (ADS)

    Sengupta, Durba

    2011-03-01

    The molecular basis for the activity of cyclic and linear antimicrobial peptides is analysed. We performed multi-scale molecular dynamics simulations and biophysical measurements to probe the interaction of antimicrobial peptides with model membranes. Two linear antimicrobial peptides, magainin and melittin and a cyclic one, BPC194 have been studied. We test different models to determine the generic and specific forces that lead to bilayer disruption. We probe whether interfacial stress or local membrane perturbation is more likely to lead to the porated state. We further analyse the reasons that determine specificity and increase of activity in antimicrobial peptides. The results provide detailed insight in the mode of action of antimicrobial peptides.

  11. Comparative conformational analysis of peptide T analogs

    NASA Astrophysics Data System (ADS)

    Akverdieva, Gulnare; Godjayev, Niftali; Akyuz, Sevim

    2009-01-01

    A series of peptide T analogs were investigated within the molecular mechanics framework. In order to determine the role of the aminoacid residues in spatial formation of peptide T the conformational peculiarities of the glycine-substituted analogs were investigated. The conformational profiles of some biologically tested analogs of this peptide were determined independently. The received data permit to assess the active form of this peptide. It is characterized by β-turn at the C-terminal physiologically active pentapeptide fragment of peptide molecule. The received results are important for the investigation of the structure-activity relationship and may be used at design of a rigid-molecule drug against HIV.

  12. Peptides and Peptidomimetics for Antimicrobial Drug Design

    PubMed Central

    Mojsoska, Biljana; Jenssen, Håvard

    2015-01-01

    The purpose of this paper is to introduce and highlight a few classes of traditional antimicrobial peptides with a focus on structure-activity relationship studies. After first dissecting the important physiochemical properties that influence the antimicrobial and toxic properties of antimicrobial peptides, the contributions of individual amino acids with respect to the peptides antibacterial properties are presented. A brief discussion of the mechanisms of action of different antimicrobials as well as the development of bacterial resistance towards antimicrobial peptides follows. Finally, current efforts on novel design strategies and peptidomimetics are introduced to illustrate the importance of antimicrobial peptide research in the development of future antibiotics. PMID:26184232

  13. Effect of peptide conformation on membrane permeability.

    PubMed

    Boguslavsky, V; Hruby, V J; O'Brien, D F; Misicka, A; Lipkowski, A W

    2003-06-01

    The effect of peptide conformational constraint on the peptide permeation across the model membranes was examined by determining the permeability of pairs of cyclic and acyclic peptides related to c[d-Pen2, d-Pen5] enkephalin (DPDPE). The peptides were cyclized by formation of an intramolecular disulfide bridge between the second and fifth residues composed of either d-penicillamine or cysteine. In each case the acyclic peptide was three to seven times more permeable than corresponding cyclic peptide. The possibility that the differences in permeability of cyclic and acyclic peptides is based on the greater conformational freedom of the acyclic peptides in the presence of membrane was examined in more detail by isothermal titration calorimetric studies of Trp6-DPDPE and its acyclic analog. The membrane binding of the acyclic peptide is a more exothermic process than binding of its cyclic Trp6-DPDPE. The transfer of acyclic peptide from water to membrane is an enthalpy driven process, whereas the transfer of the cyclic peptide is driven by entropy. PMID:12753376

  14. Peptide modulators of alpha-glucosidase

    PubMed Central

    Roskar, Irena; Molek, Peter; Vodnik, Miha; Stempelj, Mateja; Strukelj, Borut; Lunder, Mojca

    2015-01-01

    Aims/Introduction Acute glucose fluctuations during the postprandial period pose great risk for cardiovascular complications and thus represent an important therapeutic approach in type 2 diabetes. In the present study, screening of peptide libraries was used to select peptides with an affinity towards mammalian intestinal alpha-glucosidase as potential leads in antidiabetic agent development. Materials and Methods Three phage-displayed peptide libraries were used in independent selections with different elution strategies to isolate target-binding peptides. Selected peptides displayed on phage were tested to compete for an enzyme-binding site with known competitive inhibitors, acarbose and voglibose. The four best performing peptides were synthesized. Their binding to the mammalian alpha-glucosidase and their effect on enzyme activity were evaluated. Results Two linear and two cyclic heptapeptides with high affinity towards intestinal alpha-glucosidase were selected. Phage-displayed as well as synthetic peptides bind into or to the vicinity of the active site on the enzyme. Both cyclic peptides inhibited enzyme activity, whereas both linear peptides increased enzyme activity. Conclusions Although natural substrates of glycosidase are polysaccharides, in the present study we successfully isolated novel peptide modulators of alpha-glucosidase. Modulatory activity of selected peptides could be further optimized through peptidomimetic design. They represent promising leads for development of efficient alpha-glucosidase inhibitors. PMID:26543535

  15. Natural and synthetic peptides with antifungal activity.

    PubMed

    Ciociola, Tecla; Giovati, Laura; Conti, Stefania; Magliani, Walter; Santinoli, Claudia; Polonelli, Luciano

    2016-08-01

    In recent years, the increase of invasive fungal infections and the emergence of antifungal resistance stressed the need for new antifungal drugs. Peptides have shown to be good candidates for the development of alternative antimicrobial agents through high-throughput screening, and subsequent optimization according to a rational approach. This review presents a brief overview on antifungal natural peptides of different sources (animals, plants, micro-organisms), peptide fragments derived by proteolytic cleavage of precursor physiological proteins (cryptides), synthetic unnatural peptides and peptide derivatives. Antifungal peptides are schematically reported based on their structure, antifungal spectrum and reported effects. Natural or synthetic peptides and their modified derivatives may represent the basis for new compounds active against fungal infections. PMID:27502155

  16. The First Salamander Defensin Antimicrobial Peptide

    PubMed Central

    Jiang, Ke; Rong, Mingqiang; Lai, Ren

    2013-01-01

    Antimicrobial peptides have been widely identified from amphibian skins except salamanders. A novel antimicrobial peptide (CFBD) was isolated and characterized from skin secretions of the salamander, Cynops fudingensis. The cDNA encoding CFBD precursor was cloned from the skin cDNA library of C. fudingensis. The precursor was composed of three domains: signal peptide of 17 residues, mature peptide of 41 residues and intervening propeptide of 3 residues. There are six cysteines in the sequence of mature CFBD peptide, which possibly form three disulfide-bridges. CFBD showed antimicrobial activities against Staphylococcus aureus, Bacillus subtilis, Candida albicans and Escherichia coli. This peptide could be classified into family of β-defensin based on its seqeuence similarity with β-defensins from other vertebrates. Evolution analysis indicated that CFBD was close to fish β-defensin. As far as we know, CFBD is the first β-defensin antimicrobial peptide from salamanders. PMID:24386139

  17. Bioinformatic analysis of peptide precursor proteins.

    PubMed

    Baggerman, G; Liu, F; Wets, G; Schoofs, L

    2005-04-01

    Neuropeptides are among the most important signal molecules in animals. Traditional identification of peptide hormones through peptide purification is a tedious and time-consuming process. With the advent of the genome sequencing projects, putative peptide precursor can be mined from the genome. However, because bioactive peptides are usually quite short in length and because the active core of a peptide is often limited to only a few amino acids, using the BLAST search engine to identify neuropeptide precursors in the genome is difficult and sometimes impossible. To overcome these shortcomings, we subject the entire set of all known Drosophila melanogaster peptide precursor sequences to motif-finding algorithms in search of a motif that is common for all prepropeptides and that could be used in the search for new peptide precursors. PMID:15891006

  18. RFamide peptides in agnathans and basal chordates.

    PubMed

    Osugi, Tomohiro; Son, You Lee; Ubuka, Takayoshi; Satake, Honoo; Tsutsui, Kazuyoshi

    2016-02-01

    Since a peptide with a C-terminal Arg-Phe-NH2 (RFamide peptide) was first identified in the ganglia of the venus clam in 1977, RFamide peptides have been found in the nervous system of both invertebrates and vertebrates. In vertebrates, the RFamide peptide family includes gonadotropin-inhibitory hormone (GnIH), neuropeptide FF (NPFF), prolactin-releasing peptide (PrRP), pyroglutamylated RFamide peptide/26RFamide peptide (QRFP/26RFa), and kisspeptins (kiss1 and kiss2). They are involved in important functions such as the release of hormones, regulation of sexual or social behavior, pain transmission, reproduction, and feeding. In contrast to tetrapods and jawed fish, the information available on RFamide peptides in agnathans and basal chordates is limited, thus preventing further insights into the evolution of RFamide peptides in vertebrates. In this review, we focus on the previous research and recent advances in the studies on RFamide peptides in agnathans and basal chordates. In agnathans, the genes encoding GnIH, NPFF, and PrRP precursors and the mature peptides have been identified in lamprey (Petromyzon marinus) and hagfish (Paramyxine atami). Putative kiss1 and kiss2 genes have also been found in the genome database of lamprey. In basal chordates, namely, in amphioxus (Branchiostoma japonicum), a common ancestral form of GnIH and NPFF genes and their mature peptides, as well as the ortholog of the QRFP gene have been identified. The studies revealed that the number of orthologs of vertebrate RFamide peptides present in agnathans and basal chordates is greater than expected, suggesting that the vertebrate RFamide peptides might have emerged and expanded at an early stage of chordate evolution. PMID:26130238

  19. Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight.

    PubMed

    Mohan, Aishwarya; McClements, David Julian; Udenigwe, Chibuike C

    2016-12-15

    Encapsulation of peptides can be used to enhance their stability, delivery and bioavailability. This study focused on the effect of the molecular weight range of whey peptides on their encapsulation within soy lecithin-derived nanoliposomes. Peptide molecular weight did not have a major impact on encapsulation efficiency or liposome size. However, it influenced peptide distribution amongst the surface, core, and bilayer regions of the liposomes, as determined by electrical charge (ζ-potential) and FTIR analysis. The liposome ζ-potential depended on peptide molecular weight, suggesting that the peptide charged groups were in different locations relative to the liposome surfaces. FTIR analysis indicated that the least hydrophobic peptide fractions interacted more strongly with choline on the liposome surfaces. The results suggested that the peptides were unequally distributed within the liposomes, even at the same encapsulation efficiency. These findings are important for designing delivery systems for commercial production of encapsulated peptides with improved functional attributes. PMID:27451165

  20. Peptides and methods against diabetes

    DOEpatents

    Albertini, Richard J.; Falta, Michael T.

    2000-01-01

    This invention relates to methods of preventing or reducing the severity of diabetes. In one embodiment, the method involves administering to the individual a peptide having substantially the sequence of a on-conserved region sequence of a T cell receptor present on the surface of T cells mediating diabetes or a fragment thereof, wherein the peptide or fragment is capable of causing an effect on the immune system to regulate the T cells. In particular, the T cell receptor has the V.beta. regional V.beta.6 or V.beta.14. In another embodiment, the method involves gene therapy. The invention also relates to methods of diagnosing diabetes by determining the presence of diabetes predominant T cell receptors.

  1. Antimicrobial Peptides in Human Sepsis.

    PubMed

    Martin, Lukas; van Meegern, Anne; Doemming, Sabine; Schuerholz, Tobias

    2015-01-01

    Nearly 100 years ago, antimicrobial peptides (AMPs) were identified as an important part of innate immunity. They exist in species from bacteria to mammals and can be isolated in body fluids and on surfaces constitutively or induced by inflammation. Defensins have anti-bacterial effects against Gram-positive and Gram-negative bacteria as well as anti-viral and anti-yeast effects. Human neutrophil peptides (HNP) 1-3 and human beta-defensins (HBDs) 1-3 are some of the most important defensins in humans. Recent studies have demonstrated higher levels of HNP 1-3 and HBD-2 in sepsis. The bactericidal/permeability-increasing protein (BPI) attenuates local inflammatory response and decreases systemic toxicity of endotoxins. Moreover, BPI might reflect the severity of organ dysfunction in sepsis. Elevated plasma lactoferrin is detected in patients with organ failure. HNP 1-3, lactoferrin, BPI, and heparin-binding protein are increased in sepsis. Human lactoferrin peptide 1-11 (hLF 1-11) possesses antimicrobial activity and modulates inflammation. The recombinant form of lactoferrin [talactoferrin alpha (TLF)] has been shown to decrease mortality in critically ill patients. A phase II/III study with TLF in sepsis did not confirm this result. The growing number of multiresistant bacteria is an ongoing problem in sepsis therapy. Furthermore, antibiotics are known to promote the liberation of pro-inflammatory cell components and thus augment the severity of sepsis. Compared to antibiotics, AMPs kill bacteria but also neutralize pathogenic factors such as lipopolysaccharide. The obstacle to applying naturally occurring AMPs is their high nephro- and neurotoxicity. Therefore, the challenge is to develop peptides to treat septic patients effectively without causing harm. This overview focuses on natural and synthetic AMPs in human and experimental sepsis and their potential to provide significant improvements in the treatment of critically ill with severe infections. PMID

  2. Antimicrobial Peptides in Human Sepsis

    PubMed Central

    Martin, Lukas; van Meegern, Anne; Doemming, Sabine; Schuerholz, Tobias

    2015-01-01

    Nearly 100 years ago, antimicrobial peptides (AMPs) were identified as an important part of innate immunity. They exist in species from bacteria to mammals and can be isolated in body fluids and on surfaces constitutively or induced by inflammation. Defensins have anti-bacterial effects against Gram-positive and Gram-negative bacteria as well as anti-viral and anti-yeast effects. Human neutrophil peptides (HNP) 1–3 and human beta-defensins (HBDs) 1–3 are some of the most important defensins in humans. Recent studies have demonstrated higher levels of HNP 1–3 and HBD-2 in sepsis. The bactericidal/permeability-increasing protein (BPI) attenuates local inflammatory response and decreases systemic toxicity of endotoxins. Moreover, BPI might reflect the severity of organ dysfunction in sepsis. Elevated plasma lactoferrin is detected in patients with organ failure. HNP 1–3, lactoferrin, BPI, and heparin-binding protein are increased in sepsis. Human lactoferrin peptide 1–11 (hLF 1–11) possesses antimicrobial activity and modulates inflammation. The recombinant form of lactoferrin [talactoferrin alpha (TLF)] has been shown to decrease mortality in critically ill patients. A phase II/III study with TLF in sepsis did not confirm this result. The growing number of multiresistant bacteria is an ongoing problem in sepsis therapy. Furthermore, antibiotics are known to promote the liberation of pro-inflammatory cell components and thus augment the severity of sepsis. Compared to antibiotics, AMPs kill bacteria but also neutralize pathogenic factors such as lipopolysaccharide. The obstacle to applying naturally occurring AMPs is their high nephro- and neurotoxicity. Therefore, the challenge is to develop peptides to treat septic patients effectively without causing harm. This overview focuses on natural and synthetic AMPs in human and experimental sepsis and their potential to provide significant improvements in the treatment of critically ill with severe infections

  3. Antimicrobial Peptides: Versatile Biological Properties

    PubMed Central

    Pushpanathan, Muthuirulan; Rajendhran, Jeyaprakash

    2013-01-01

    Antimicrobial peptides are diverse group of biologically active molecules with multidimensional properties. In recent past, a wide variety of AMPs with diverse structures have been reported from different sources such as plants, animals, mammals, and microorganisms. The presence of unusual amino acids and structural motifs in AMPs confers unique structural properties to the peptide that attribute for their specific mode of action. The ability of these active AMPs to act as multifunctional effector molecules such as signalling molecule, immune modulators, mitogen, antitumor, and contraceptive agent makes it an interesting candidate to study every aspect of their structural and biological properties for prophylactic and therapeutic applications. In addition, easy cloning and recombinant expression of AMPs in heterologous plant host systems provided a pipeline for production of disease resistant transgenic plants. Besides these properties, AMPs were also used as drug delivery vectors to deliver cell impermeable drugs to cell interior. The present review focuses on the diversity and broad spectrum antimicrobial activity of AMPs along with its multidimensional properties that could be exploited for the application of these bioactive peptides as a potential and promising drug candidate in pharmaceutical industries. PMID:23935642

  4. Predicting protein-peptide interactions from scratch

    NASA Astrophysics Data System (ADS)

    Yan, Chengfei; Xu, Xianjin; Zou, Xiaoqin; Zou lab Team

    Protein-peptide interactions play an important role in many cellular processes. The ability to predict protein-peptide complex structures is valuable for mechanistic investigation and therapeutic development. Due to the high flexibility of peptides and lack of templates for homologous modeling, predicting protein-peptide complex structures is extremely challenging. Recently, we have developed a novel docking framework for protein-peptide structure prediction. Specifically, given the sequence of a peptide and a 3D structure of the protein, initial conformations of the peptide are built through protein threading. Then, the peptide is globally and flexibly docked onto the protein using a novel iterative approach. Finally, the sampled modes are scored and ranked by a statistical potential-based energy scoring function that was derived for protein-peptide interactions from statistical mechanics principles. Our docking methodology has been tested on the Peptidb database and compared with other protein-peptide docking methods. Systematic analysis shows significantly improved results compared to the performances of the existing methods. Our method is computationally efficient and suitable for large-scale applications. Nsf CAREER Award 0953839 (XZ) NIH R01GM109980 (XZ).

  5. Stability of peptide drugs in the colon.

    PubMed

    Wang, Jie; Yadav, Vipul; Smart, Alice L; Tajiri, Shinichiro; Basit, Abdul W

    2015-10-12

    This study was the first to investigate the colonic stability of 17 peptide molecules (insulin, calcitonin, glucagon, secretin, somatostatin, desmopressin, oxytocin, Arg-vasopressin, octreotide, ciclosporin, leuprolide, nafarelin, buserelin, histrelin, [D-Ser(4)]-gonadorelin, deslorelin, and goserelin) in a model of the large intestine using mixed human faecal bacteria. Of these, the larger peptides - insulin, calcitonin, somatostatin, glucagon and secretin - were metabolized rapidly, with complete degradation observed within 5 min. In contrast, a number of the smaller peptides - Arg-vasopressin, desmopressin, oxytocin, gonadorelin, goserelin, buserelin, leuprolide, nafarelin and deslorelin - degraded more slowly, while octreotide, histrelin and ciclosporin were seen to be more stable as compared to the other small peptides under the same conditions. Peptide degradation rate was directly correlated to peptide lipophilicity (logP); those peptides with a higher logP were more stable in the colonic model (R(2)=0.94). In the absence of human faecal bacteria, all peptides were stable. This study highlights the impact of the colonic environment - in particular, the gut microbiota - on the metabolism of peptide drugs, and identifies potential peptide candidates for drug delivery to the colon. PMID:26111980

  6. Construction of Lasso Peptide Fusion Proteins.

    PubMed

    Zong, Chuhan; Maksimov, Mikhail O; Link, A James

    2016-01-15

    Lasso peptides are a family of ribosomally synthesized and post-translationally modified peptides (RiPPs) typified by an isopeptide-bonded macrocycle between the peptide N-terminus and an aspartate or glutamate side chain. The C-terminal portion of the peptide threads through the N-terminal macrocycle to give the characteristic lasso fold. Because of the inherent stability, both proteolytic and often thermal, of lasso peptides, we became interested in whether proteins could be fused to the free C-terminus of lasso peptides. Here, we demonstrate fusion of two model proteins, the artificial leucine zipper A1 and the superfolder variant of GFP, to the C-terminus of the lasso peptide astexin-1. Successful lasso cyclization of the N-terminus of these fusion proteins requires a flexible linker in between the C-terminus of the lasso peptide and the N-terminus of the protein of interest. The ability to fuse lasso peptides to a protein of interest is an important step toward phage and bacterial display systems for the high-throughput screening of lasso peptide libraries for new functions. PMID:26492187

  7. Peptide agonists of the thrombopoietin receptor.

    PubMed

    Dower, W J; Cwirla, S E; Balasubramanian, P; Schatz, P J; Baccanari, D P; Barrett, R W

    1998-01-01

    We have screened a variety of L-amino acid peptide libraries against the extracellular domain of the human thrombopoietin (HuTPO) receptor, c-Mpl. A large number of peptide ligands were recovered and categorized into two families. Peptides from each family compete with the binding of HuTPO and with the binding of peptides from the other familiy. Representative peptides were synthesized and found to activate the full-length HuTPO receptor expressed in Ba/F3 cells to promote proliferation. These peptide families show no apparent homology to the primary sequence of TPO. We have focused our optimization efforts on one of the peptides, a linear 14-mer (IEGPTLRQWLAARA) with an IC50 of 2 nM in a competition binding assay and an EC50 of 400 nM in the proliferation assay. In order to enhance the potency of the compound, we constructed dimeric peptides by linking the carboxy-termini of the 14-mers to a lysine branch. These molecules exhibited slightly higher affinity (0.5 nM) and greatly increased potency (0.1 nM). The EC50 of the dimeric peptide was equivalent to that of the 332 aa form of baculovirus-expressed recombinant HuTPO. As previously shown for the erythropoietin-mimetic peptides, the TPO-mimetic peptides probably activate the TPO receptor by binding and inducing receptor dimerization. This supposition is supported by the observation that covalent dimerization of the peptide enhances its potency by 4,000-fold over that of the monomer. The peptide dimer is also active in stimulating in vitro proliferation of progenitors and maturation of megakaryocytes from human bone marrow, and in promoting an increase in platelet count when administered to normal mice. PMID:11012174

  8. Human Antimicrobial Peptides and Proteins

    PubMed Central

    Wang, Guangshun

    2014-01-01

    As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between −3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32) can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized medicine to

  9. Molecular imaging probes derived from natural peptides.

    PubMed

    Charron, C L; Hickey, J L; Nsiama, T K; Cruickshank, D R; Turnbull, W L; Luyt, L G

    2016-06-01

    Covering: up to the end of 2015.Peptides are naturally occurring compounds that play an important role in all living systems and are responsible for a range of essential functions. Peptide receptors have been implicated in disease states such as oncology, metabolic disorders and cardiovascular disease. Therefore, natural peptides have been exploited as diagnostic and therapeutic agents due to the unique target specificity for their endogenous receptors. This review discusses a variety of natural peptides highlighting their discovery, endogenous receptors, as well as their derivatization to create molecular imaging agents, with an emphasis on the design of radiolabelled peptides. This review also highlights methods for discovering new and novel peptides when knowledge of specific targets and endogenous ligands are not available. PMID:26911790

  10. Synthesis of peptide .alpha.-thioesters

    DOEpatents

    Camarero, Julio A.; Mitchell, Alexander R.; De Yoreo, James J.

    2008-08-19

    Disclosed herein is a new method for the solid phase peptide synthesis (SPPS) of C-terminal peptide .alpha. thioesters using Fmoc/t-Bu chemistry. This method is based on the use of an aryl hydrazine linker, which is totally stable to conditions required for Fmoc-SPPS. When the peptide synthesis has been completed, activation of the linker is achieved by mild oxidation. The oxidation step converts the acyl-hydrazine group into a highly reactive acyl-diazene intermediate which reacts with an .alpha.-amino acid alkylthioester (H-AA-SR) to yield the corresponding peptide .alpha.-thioester in good yield. A variety of peptide thioesters, cyclic peptides and a fully functional Src homology 3 (SH3) protein domain have been successfully prepared.

  11. Peptide YY receptors in the brain

    SciTech Connect

    Inui, A.; Oya, M.; Okita, M.; Inoue, T.; Sakatani, N.; Morioka, H.; Shii, K.; Yokono, K.; Mizuno, N.; Baba, S.

    1988-01-15

    Radiolabelled ligand binding studies demonstrated that specific receptors for peptide YY are present in the porcine as well as the canine brains. Peptide YY was bound to brain tissue membranes via high-affinity (dissociation constant, 1.39 X 10(-10)M) and low-affinity (dissociation constant, 3.72 X 10(-8)M) components. The binding sites showed a high specificity for peptide YY and neuropeptide Y, but not for pancreatic polypeptide or structurally unrelated peptides. The specific activity of peptide YY binding was highest in the hippocampus, followed by the pituitary gland, the hypothalamus, and the amygdala of the porcine brain, this pattern being similarly observed in the canine brain. The results suggest that peptide YY and neuropeptide Y may regulate the function of these regions of the brain through interaction with a common receptor site.

  12. Use of Galerina marginata genes and proteins for peptide production

    DOEpatents

    Hallen-Adams, Heather E.; Scott-Craig, John S.; Walton, Jonathan D.; Luo, Hong

    2016-03-01

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptides and cyclic peptide production in mushrooms. In particular, the present invention relates to using genes and proteins from Galerina species encoding peptides specifically relating to amatoxins in addition to proteins involved with processing cyclic peptide toxins. In a preferred embodiment, the present invention also relates to methods for making small peptides and small cyclic peptides including peptides similar to amanitin. Further, the present inventions relate to providing kits for making small peptides.

  13. Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides

    PubMed Central

    Mulder, Kelly C. L.; Lima, Loiane A.; Miranda, Vivian J.; Dias, Simoni C.; Franco, Octávio L.

    2013-01-01

    Cationic antimicrobial peptides (AMPs) and host defense peptides (HDPs) show vast potential as peptide-based drugs. Great effort has been made in order to exploit their mechanisms of action, aiming to identify their targets as well as to enhance their activity and bioavailability. In this review, we will focus on both naturally occurring and designed antiviral and antitumor cationic peptides, including those here called promiscuous, in which multiple targets are associated with a single peptide structure. Emphasis will be given to their biochemical features, selectivity against extra targets, and molecular mechanisms. Peptides which possess antitumor activity against different cancer cell lines will be discussed, as well as peptides which inhibit virus replication, focusing on their applications for human health, animal health and agriculture, and their potential as new therapeutic drugs. Moreover, the current scenario for production and the use of nanotechnology as delivery tool for both classes of cationic peptides, as well as the perspectives on improving them is considered. PMID:24198814

  14. Screening peptide array library for the identification of cancer cell-binding peptides.

    PubMed

    Kaur, Kamaljit; Ahmed, Sahar; Soudy, Rania; Azmi, Sarfuddin

    2015-01-01

    The identification of cancer cell-specific ligands is a key requirement for the targeted delivery of chemotherapeutic agents. Usually phage display system is employed to discover cancer-specific peptides through a biopanning process. Synthetic peptide array libraries can be used as a complementary method to phage display for screening and identifying cancer cell-specific ligands. Here, we describe a peptide array-whole cell binding assay to identify cancer cell-specific peptides. A peptide array library based on a lead dodecapeptide, p160, is synthesized on a functionalized cellulose membrane using solid phase chemistry and a robotic synthesizer. The relative binding affinity of the peptide library is evaluated by incubating the library with fluorescently labeled cancerous or non-cancerous cells. Thereby the assay allows picking peptides that show selective and high binding to cancerous cells. These peptides represent potential candidates for use in cancer-targeted drug delivery, imaging, and diagnosis. PMID:25616337

  15. [Progress on parasiticidal activity of anitimicrobial peptides].

    PubMed

    Liu, Ze-hua; Zhao, Jun-long

    2014-10-01

    Antimicrobial peptides are a kind of gene encoded, ribosome synthesized, small molecular polypeptides that have high efficiency, wide antibacterial spectrum, and low immunogenicity. Many studies have indicated that antimicrobial peptides can inhibit the growth of parasites or even kill them. This paper reviews the research progress on parasiticidal activity of the antimicrobial peptides in recent years, and presents the problems in the research. PMID:25726604

  16. Salt-resistant short antimicrobial peptides.

    PubMed

    Mohanram, Harini; Bhattacharjya, Surajit

    2016-05-01

    Antimicrobial peptides (AMPs) are promising leads for the development of antibiotics against drug resistant bacterial pathogens. However, in vivo applications of AMPs remain obscure due to salt and serum mediated inactivation. The high cost of chemical synthesis of AMPs also impedes potential clinical application. Consequently, short AMPs resistant toward salt and serum inactivation are desirable for the development of peptide antibiotics. In this work, we designed a 12-residue amphipathic helical peptide RR12 (R-R-L-I-R-L-I-L-R-L-L-R-amide) and two Trp containing analogs of RR12 namely RR12Wpolar (R-R-L-I-W-L-I-L-R-L-L-R-amide), and RR12Whydro (R-R-L-I-R-L-W-L-R-L-L-R-amide). Designed peptides demonstrated potent antibacterial activity; MIC ranging from 2 to 8 μM, in the presence of sodium chloride (150 mM and 300 mM). Antibacterial activity of these peptides was also detected in the presence of human serum. Designed peptides, in particular RR12 and RR12Whydro, were only poorly hemolytic. As a mode of action; these peptides demonstrated efficient permeabilization of bacterial cell membrane and lysis of cell structure. We further investigated interactions of the designed peptides with lipopolysaccharide (LPS), the major component of the outer membrane permeability barrier of Gram-negative bacteria. Designed peptides adopted helical conformations in complex with LPS. Binding of peptides with LPS has yielded dissociation the aggregated structures of LPS. Collectively, these designed peptides hold ability to be developed for salt-resistant antimicrobial compounds. Most importantly, current work provides insights for designing salt-resistant antimicrobial peptides. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 345-356, 2016. PMID:26849911

  17. HPLC analysis and purification of peptides.

    PubMed

    Mant, Colin T; Chen, Yuxin; Yan, Zhe; Popa, Traian V; Kovacs, James M; Mills, Janine B; Tripet, Brian P; Hodges, Robert S

    2007-01-01

    High-performance liquid chromatography (HPLC) has proved extremely versatile over the past 25 yr for the isolation and purification of peptides varying widely in their sources, quantity and complexity. This article covers the major modes of HPLC utilized for peptides (size-exclusion, ion-exchange, and reversed-phase), as well as demonstrating the potential of a novel mixed-mode hydrophilic interaction/cation-exchange approach developed in this laboratory. In addition to the value of these HPLC modes for peptide separations, the value of various HPLC techniques for structural characterization of peptides and proteins will be addressed, e.g., assessment of oligomerization state of peptides/proteins by size-exclusion chromatography and monitoring the hydrophilicity/hydrophobicity of amphipathic alpha-helical peptides, a vital precursor for the development of novel antimicrobial peptides. The value of capillary electrophoresis for peptide separations is also demonstrated. Preparative reversed-phase chromatography purification protocols for sample loads of up to 200 mg on analytical columns and instrumentation are introduced for both peptides and recombinant proteins. PMID:18604941

  18. Turning peptides in comb silicone polymers.

    PubMed

    Jebors, Said; Pinese, Coline; Nottelet, Benjamin; Parra, Karine; Amblard, Muriel; Mehdi, Ahmad; Martinez, Jean; Subra, Gilles

    2015-03-01

    We have recently reported on a new class of silicone-peptide' biopolymers obtained by polymerization of di-functionalized chlorodimethylsilyl hybrid peptides. Herein, we describe a related strategy based on dichloromethylsilane-derived peptides, which yield novel polymers with a polysiloxane backbone, comparable with a silicone-bearing pendent peptide chains. Interestingly, polymerization is chemoselective toward amino acids side-chains and proceeds in a single step in very mild conditions (neutral pH, water, and room temperature). As potential application, a cationic sequence was polymerized and used for antibacterial coating. PMID:25688748

  19. APD2: the updated antimicrobial peptide database and its application in peptide design

    PubMed Central

    Wang, Guangshun; Li, Xia; Wang, Zhe

    2009-01-01

    The antimicrobial peptide database (APD, http://aps.unmc.edu/AP/main.php) has been updated and expanded. It now hosts 1228 entries with 65 anticancer, 76 antiviral (53 anti-HIV), 327 antifungal and 944 antibacterial peptides. The second version of our database (APD2) allows users to search peptide families (e.g. bacteriocins, cyclotides, or defensins), peptide sources (e.g. fish, frogs or chicken), post-translationally modified peptides (e.g. amidation, oxidation, lipidation, glycosylation or d-amino acids), and peptide binding targets (e.g. membranes, proteins, DNA/RNA, LPS or sugars). Statistical analyses reveal that the frequently used amino acid residues (>10%) are Ala and Gly in bacterial peptides, Cys and Gly in plant peptides, Ala, Gly and Lys in insect peptides, and Leu, Ala, Gly and Lys in amphibian peptides. Using frequently occurring residues, we demonstrate database-aided peptide design in different ways. Among the three peptides designed, GLK-19 showed a higher activity against Escherichia coli than human LL-37. PMID:18957441

  20. Protein-templated peptide ligation.

    PubMed

    Brauckhoff, Nicolas; Hahne, Gernot; Yeh, Johannes T-H; Grossmann, Tom N

    2014-04-22

    Molecular templates bind particular reactants, thereby increasing their effective concentrations and accelerating the corresponding reaction. This concept has been successfully applied to a number of chemical problems with a strong focus on nucleic acid templated reactions. We present the first protein-templated reaction that allows N-terminal linkage of two peptides. In the presence of a protein template, ligation reactions were accelerated by more than three orders of magnitude. The templated reaction is highly selective and proved its robustness in a protein-labeling reaction that was performed in crude cell lysate. PMID:24644125

  1. PGx: Putting Peptides to BED

    PubMed Central

    2015-01-01

    Every molecular player in the cast of biology’s central dogma is being sequenced and quantified with increasing ease and coverage. To bring the resulting genomic, transcriptomic, and proteomic data sets into coherence, tools must be developed that do not constrain data acquisition and analytics in any way but rather provide simple links across previously acquired data sets with minimal preprocessing and hassle. Here we present such a tool: PGx, which supports proteogenomic integration of mass spectrometry proteomics data with next-generation sequencing by mapping identified peptides onto their putative genomic coordinates. PMID:26638927

  2. PGx: Putting Peptides to BED.

    PubMed

    Askenazi, Manor; Ruggles, Kelly V; Fenyö, David

    2016-03-01

    Every molecular player in the cast of biology's central dogma is being sequenced and quantified with increasing ease and coverage. To bring the resulting genomic, transcriptomic, and proteomic data sets into coherence, tools must be developed that do not constrain data acquisition and analytics in any way but rather provide simple links across previously acquired data sets with minimal preprocessing and hassle. Here we present such a tool: PGx, which supports proteogenomic integration of mass spectrometry proteomics data with next-generation sequencing by mapping identified peptides onto their putative genomic coordinates. PMID:26638927

  3. Peptide Membranes in Chemical Evolution*

    PubMed Central

    Childers, W. Seth; Ni, Rong; Mehta, Anil K.; Lynn, David G.

    2009-01-01

    SUMMARY Simple surfactants achieve remarkable long-range order in aqueous environments. This organizing potential is seen most dramatically in biological membranes where phospholipid assemblies both define cell boundaries and provide a ubiquitous structural scaffold for controlling cellular chemistry. Here we consider simple peptides that also spontaneously assemble into exceptionally ordered scaffolds, and review early data suggesting that these structures maintain the functional diversity of proteins. We argue that such scaffolds can achieve the required molecular order and catalytic agility for the emergence of chemical evolution. PMID:19879180

  4. Natriuretic peptides and their therapeutic potential.

    PubMed

    Cho, Y; Somer, B G; Amatya, A

    1999-01-01

    Natriuretic peptides are a group of naturally occurring substances that act in the body to oppose the activity of the renin-angiotensin system. There are three major natriuretic peptides: atrial natriuretic peptide (ANP), which is synthesized in the atria; brain natriuretic peptide (BNP), which is synthesized in the ventricles; and C-type natriuretic peptide (CNP), which is synthesized in the brain. Both ANP and BNP are released in response to atrial and ventricular stretch, respectively, and will cause vasorelaxation, inhibition of aldosterone secretion in the adrenal cortex, and inhibition of renin secretion in the kidney. Both ANP and BNP will cause natriuresis and a reduction in intravascular volume, effects amplified by antagonism of antidiuretic hormone (ADH). The physiologic effects of CNP are different from those of ANP and BNP. CNP has a hypotensive effect, but no significant diuretic or natriuretic actions. Three natriuretic peptide receptors (NPRs) have been described that have different binding capacities for ANP, BNP, and CNP. Removal of the natriuretic peptides from the circulation is affected mainly by binding to clearance receptors and enzymatic degradation in the circulation. Increased blood levels of natriuretic peptides have been found in certain disease states, suggesting a role in the pathophysiology of those diseases, including congestive heart failure (CHF), systemic hypertension, and acute myocardial infarction. The natriuretic peptides also serve as disease markers and indicators of prognosis in various cardiovascular conditions. The natriuretic peptides have been used in the treatment of disease, with the most experience with intravenous BNP in the treatment of CHF. Another pharmacologic approach being used is the inhibition of natriuretic peptide metabolism by neutral endopeptidase (NEP) inhibitor drugs. The NEP inhibitors are currently being investigated as treatments for CHF and systemic hypertension. PMID:11720638

  5. Combination Effects of Antimicrobial Peptides

    PubMed Central

    Yu, Guozhi; Baeder, Desiree Y.; Regoes, Roland R.

    2016-01-01

    Antimicrobial peptides (AMPs) are ancient and conserved across the tree of life. Their efficacy over evolutionary time has been largely attributed to their mechanisms of killing. Yet, the understanding of their pharmacodynamics both in vivo and in vitro is very limited. This is, however, crucial for applications of AMPs as drugs and also informs the understanding of the action of AMPs in natural immune systems. Here, we selected six different AMPs from different organisms to test their individual and combined effects in vitro. We analyzed their pharmacodynamics based on the Hill function and evaluated the interaction of combinations of two and three AMPs. Interactions of AMPs in our study were mostly synergistic, and three-AMP combinations displayed stronger synergism than two-AMP combinations. This suggests synergism to be a common phenomenon in AMP interaction. Additionally, AMPs displayed a sharp increase in killing within a narrow dose range, contrasting with those of antibiotics. We suggest that our results could lead a way toward better evaluation of AMP application in practice and shed some light on the evolutionary consequences of antimicrobial peptide interactions within the immune system of organisms. PMID:26729502

  6. Antimicrobial Properties of Amyloid Peptides

    PubMed Central

    Kagan, Bruce L.; Jang, Hyunbum; Capone, Ricardo; Arce, Fernando Teran; Ramachandran, Srinivasan; Lal, Ratnesh; Nussinov, Ruth

    2011-01-01

    More than two dozen clinical syndromes known as amyloid diseases are characterized by the buildup of extended insoluble fibrillar deposits in tissues. These amorphous Congo red staining deposits known as amyloids exhibit a characteristic green birefringence and cross-β structure. Substantial evidence implicates oligomeric intermediates of amyloids as toxic species in the pathogenesis of these chronic disease states. A growing body of data has suggested that these toxic species form ion channels in cellular membranes causing disruption of calcium homeostasis, membrane depolarization, energy drainage, and in some cases apoptosis. Amyloid peptide channels exhibit a number of common biological properties including the universal U-shape β-strand-turn-β-strand structure, irreversible and spontaneous insertion into membranes, production of large heterogeneous single-channel conductances, relatively poor ion selectivity, inhibition by Congo red, and channel blockade by zinc. Recent evidence has suggested that increased amounts of amyloids are not only toxic to its host target cells but also possess antimicrobial activity. Furthermore, at least one human antimicrobial peptide, protegrin-1, which kills microbes by a channel-forming mechanism, has been shown to possess the ability to form extended amyloid fibrils very similar to those of classic disease-forming amyloids. In this paper, we will review the reported antimicrobial properties of amyloids and the implications of these discoveries for our understanding of amyloid structure and function. PMID:22081976

  7. Hydrophobic peptide auxotrophy in Salmonella typhimurium.

    PubMed Central

    Brãnes, L V; Somers, J M; Kay, W W

    1981-01-01

    The growth of a pleiotropic membrane mutant of Salmonella typhimurium with modified lipopolysaccharide composition was found to be strictly dependent on the peptone component of complex media. Nutritional Shiftdown into minimal media allowed growth for three to four generations. Of 20 commercial peptones, only enzymatic digests supported growth to varying degrees. Neither trace cations, amino acids, vitamins, carbohydrates, lipids, glutathione, polyamines, carbodimides, nor synthetic peptides stimulated growth; however, cells still metabolized carbohydrates, and amino acid transport systems were shown to be functional. A tryptic digest of casein was fractionated into four electrophoretically different peptide fractions of 1,000 to 1,200 molecular weight which supported growth to varying degrees. The best of these was further fractionated to two highly hydrophopic peptides. N-terminal modifications eliminated biological activity. Fluorescein-conjugated goat antibody to rabbit immunoglobulin G was used as a probe to detect antipeptide antibody-peptide complexes on membrane preparations. Cells grown on peptone distributed the peptide into both inner and outer membranes. The peptide could be removed with chaotropic agents, and cells had to be pregrown in peptone-containing media to bind the hydrophobic peptide. The gene (hyp) responsible for peptide auxotrophy was mapped at 44 to 45 units by conjugation. Images PMID:7024254

  8. Peptide Mass Fingerprinting of Egg White Proteins

    ERIC Educational Resources Information Center

    Alty, Lisa T.; LaRiviere, Frederick J.

    2016-01-01

    Use of advanced mass spectrometry techniques in the undergraduate setting has burgeoned in the past decade. However, relatively few undergraduate experiments examine the proteomics tools of protein digestion, peptide accurate mass determination, and database searching, also known as peptide mass fingerprinting. In this experiment, biochemistry…

  9. Peptides and the blood-brain barrier.

    PubMed

    Banks, William A

    2015-10-01

    The demonstration that peptides and regulatory proteins can cross the blood-brain barrier (BBB) is one of the major contributions of Dr. Abba J. Kastin. He was the first to propose that peptides could cross the BBB, the first to show that an endogenous peptide did so, and the first to describe a saturable transport system at the BBB for peptides. His work shows that in crossing the BBB, peptides and regulatory proteins act as informational molecules, informing the brain of peripheral events. Brain-to-blood passage helps to control levels of peptides with the brain and can deliver information in the brain-to-blood direction. He showed that the transporters for peptides and proteins are not static, but respond to developmental and physiological changes and are affected by disease states. As such, the BBB is adaptive to the needs of the CNS, but when that adaption goes awry, the BBB can be a cause of disease. The mechanisms by which peptides and proteins cross the BBB offer opportunities for drug delivery of these substances or their analogs to the brain in the treatment of diseases of the central nervous system. PMID:25805003

  10. Constrained Peptides as Miniature Protein Structures

    PubMed Central

    Yin, Hang

    2012-01-01

    This paper discusses the recent developments of protein engineering using both covalent and noncovalent bonds to constrain peptides, forcing them into designed protein secondary structures. These constrained peptides subsequently can be used as peptidomimetics for biological functions such as regulations of protein-protein interactions. PMID:25969758

  11. Engineered Adhesion Peptides for Improved Silicon Adsorption.

    PubMed

    Ramakrishnan, Sathish Kumar; Jebors, Said; Martin, Marta; Cloitre, Thierry; Agarwal, Vivechana; Mehdi, Ahmad; Martinez, Jean; Subra, Gilles; Gergely, Csilla

    2015-11-01

    Engineering peptides that present selective recognition and high affinity for a material is a major challenge for assembly-driven elaboration of complex systems with wide applications in the field of biomaterials, hard-tissue regeneration, and functional materials for therapeutics. Peptide-material interactions are of vital importance in natural processes but less exploited for the design of novel systems for practical applications because of our poor understanding of mechanisms underlying these interactions. Here, we present an approach based on the synthesis of several truncated peptides issued from a silicon-specific peptide recovered via phage display technology. We use the photonic response provided by porous silicon microcavities to evaluate the binding efficiency of 14 different peptide derivatives. We identify and engineer a short peptide sequence (SLVSHMQT), revealing the highest affinity for p(+)-Si. The molecular recognition behavior of the obtained peptide fragment can be revealed through mutations allowing identification of the preferential affinity of certain amino acids toward silicon. These results constitute an advance in both the engineering of peptides that reveal recognition properties for silicon and the understanding of biomolecule-material interactions. PMID:26440047

  12. Secondary structure formation in peptide amphiphile micelles

    NASA Astrophysics Data System (ADS)

    Tirrell, Matthew

    2012-02-01

    Peptide amphiphiles (PAs) are capable of self-assembly into micelles for use in the targeted delivery of peptide therapeutics and diagnostics. PA micelles exhibit a structural resemblance to proteins by having folded bioactive peptides displayed on the exterior of a hydrophobic core. We have studied two factors that influence PA secondary structure in micellar assemblies: the length of the peptide headgroup and amino acids closest to the micelle core. Peptide length was systematically varied using a heptad repeat PA. For all PAs the addition of a C12 tail induced micellization and secondary structure. PAs with 9 amino acids formed beta-sheet interactions upon aggregation, whereas the 23 and 30 residue peptides were displayed in an apha-helical conformation. The 16 amino acid PA experienced a structural transition from helix to sheet, indicating that kinetics play a role in secondary structure formation. A p53 peptide was conjugated to a C16 tail via various linkers to study the effect of linker chemistry on PA headgroup conformation. With no linker the p53 headgroup was predominantly alpha helix and a four alanine linker drastically changed the structure of the peptide headgroup to beta-sheet, highlighting the importance of hydrogen boding potential near the micelle core.

  13. B-Type allatostatins and sex peptides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In many species, mating induces a number of behavioral changes in the female. For Drosophila melanogaster, the sex peptide (SP) has been identified as the main molecular factor behind these responses. Recently, the sex peptide receptor (SPR), a GPCR activated by SP has also been characterized as res...

  14. Peptide mimotopes of Mycobacterium tuberculosis carbohydrate immunodeterminants

    PubMed Central

    2004-01-01

    Cell-surface saccharides of Mycobacterium tuberculosis appear to be crucial factors in tuberculosis pathogenicity and could be useful antigens in tuberculosis immunodiagnosis. In the present study, we report the successful antigenic and immunogenic mimicry of mannose-containing cell-wall compounds of M. tuberculosis by dodecamer peptides identified by phage-display technology. Using a rabbit antiserum raised against M. tuberculosis cell-surface saccharides as a target for biopanning, peptides with three different consensus sequences were identified. Phage-displayed and chemically synthesized peptides bound to the anticarbohydrate antiserum. Rabbit antibodies elicited against the peptide QEPLMGTVPIRAGGGS recognize the mannosylated M. tuberculosis cell-wall antigens arabinomannan and lipoarabinomannan, and the glycosylated recombinant protein alanine/proline-rich antigen. Furthermore, antibodies were also able to react with mannan from Saccharomyces cerevisiae, but not with phosphatidylinositol dimannosides or arabinogalactan from mycobacteria. These results suggest that the immunogenic peptide mimics oligomannosidic epitopes. Interestingly, this report provides evidence that, in contrast with previously known carbohydrate mimotopes, no aromatic residues are necessary in a peptide sequence for mimicking unusual glycoconjugates synthesized by mycobacteria. The possible usefulness of the identified peptide mimotopes as surrogate reagents for immunodiagnosis and for the study of functional roles of the native non-peptide epitopes is discussed. PMID:15560754

  15. Delivery of oligonucleotides into mammalian cells by anionic peptides: comparison between monomeric and dimeric peptides.

    PubMed Central

    Freulon, I; Roche, A C; Monsigny, M; Mayer, R

    2001-01-01

    The use of antisense oligonucleotides as putative therapeutic agents is limited by their poor delivery into the cytosol and/or the nucleus because they are not able to efficiently cross lipid bilayers. To circumvent this pitfall, anionic amphipathic peptides derived from the influenza virus fusogenic peptide have been used to destabilize membranes in an acidic environment. In this paper, we compare the ability of a monomeric and a dimeric peptide to introduce oligonucleotides into the cytosol and nuclei of several types of cultured cells. Cells incubated at pH 6.2 or at a slightly lower pH in the presence of the monomeric peptide but not the dimeric peptide were efficiently permeabilized. The location of fluorescent derivatives of peptides and of oligonucleotides was assessed by confocal microscopy. Both the peptides and oligonucleotides remained entrapped in vesicular compartments at neutral pH; at acidic pH, oligonucleotides in the presence of the monomeric peptide were mainly in the nucleus, while in the presence of the dimeric peptide they co-localized with the peptide into vesicles. The data are interpreted on the basis of the spectroscopic behaviour of monomeric and dimeric peptides in relation to the environmental pH. PMID:11237872

  16. Superior Antifouling Performance of a Zwitterionic Peptide Compared to an Amphiphilic, Non-Ionic Peptide.

    PubMed

    Ye, Huijun; Wang, Libing; Huang, Renliang; Su, Rongxin; Liu, Boshi; Qi, Wei; He, Zhimin

    2015-10-14

    The aim of this study was to explore the influence of amphiphilic and zwitterionic structures on the resistance of protein adsorption to peptide self-assembled monolayers (SAMs) and gain insight into the associated antifouling mechanism. Two kinds of cysteine-terminated heptapeptides were studied. One peptide had alternating hydrophobic and hydrophilic residues with an amphiphilic sequence of CYSYSYS. The other peptide (CRERERE) was zwitterionic. Both peptides were covalently attached onto gold substrates via gold-thiol bond formation. Surface plasmon resonance analysis results showed that both peptide SAMs had ultralow or low protein adsorption amounts of 1.97-11.78 ng/cm2 in the presence of single proteins. The zwitterionic peptide showed relatively higher antifouling ability with single proteins and natural complex protein media. We performed molecular dynamics simulations to understand their respective antifouling behaviors. The results indicated that strong surface hydration of peptide SAMs contributes to fouling resistance by impeding interactions with proteins. Compared to the CYSYSYS peptide, more water molecules were predicted to form hydrogen-bonding interactions with the zwitterionic CRERERE peptide, which is in agreement with the antifouling test results. These findings reveal a clear relation between peptide structures and resistance to protein adsorption, facilitating the development of novel peptide-containing antifouling materials. PMID:26407144

  17. Peptide nanospheres self-assembled from a modified β-annulus peptide of Sesbania mosaic virus.

    PubMed

    Matsuura, Kazunori; Mizuguchi, Yusaku; Kimizuka, Nobuo

    2016-11-01

    A novel β-annulus peptide of Sesbania mosaic virus bearing an FKFE sequence at the C terminus was synthesized, and its self-assembling behavior in water was investigated. Dynamic light scattering and transmission electron microscopy showed that the β-annulus peptide bearing an FKFE sequence self-assembled into approximately 30 nm nanospheres in water at pH 3.8, whereas the β-annulus peptide without the FKFE sequence afforded only irregular aggregates. The peptide nanospheres possessed a definite critical aggregation concentration (CAC = 26 μM), above which the size of nanospheres were nearly unaffected by the peptide concentration. The formation of peptide nanospheres was significantly affected by pH; the peptide did not form any assemblies at pH 2.2, whereas larger aggregates were formed at pH 6.4-11.6. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 470-475, 2016. PMID:26573103

  18. Insights into How Cyclic Peptides Switch Conformations.

    PubMed

    McHugh, Sean M; Rogers, Julia R; Yu, Hongtao; Lin, Yu-Shan

    2016-05-10

    Cyclic peptides have recently emerged as promising modulators of protein-protein interactions. However, it is currently highly difficult to predict the structures of cyclic peptides owing to their rugged conformational free energy landscape, which prevents sampling of all thermodynamically relevant conformations. In this article, we first investigate how a relatively flexible cyclic hexapeptide switches conformations. It is found that, although the circular geometry of small cyclic peptides of size 6-8 may require rare, coherent dihedral changes to sample a new conformation, the changes are rather local, involving simultaneous changes of ϕi and ψi or ψi and ϕi+1. The understanding of how these cyclic peptides switch conformations enables the use of metadynamics simulations with reaction coordinates specifically targeting such coupled two-dihedral changes to effectively sample cyclic peptide conformational space. PMID:27031286

  19. Postformulation Peptide Drug Loading of Nanostructures

    PubMed Central

    Pan, Hua; Marsh, Jon N.; Christenson, Eric T.; Soman, Neelesh R.; Ivashyna, Olena; Lanza, Gregory M.; Schlesinger, Paul H.; Wickline, Samuel A.

    2013-01-01

    Cytolytic peptides have commanded attention for their anticancer potential because the membrane-disrupting function that produces cell death is less likely to be overcome by resistant mutations. Congruently, peptides that are involved in molecular recognition and biological activities become attractive therapeutic candidates because of their high specificity, better affinity, reduced immunogenicity, and reduced off target toxicity. However, problems of inadequate delivery, rapid deactivation in vivo, and poor bioavailability have limited clinical application. Therefore, peptide drug development for clinical use requires an appropriate combination of an effective therapeutic peptide and a robust delivery methodology. In this chapter, we describe methods for the postformulation insertion of peptide drugs into lipidic nanostructures, the physical characterization of peptide–nanostructure complexes, and the evaluation of their therapeutic effectiveness both in vitro and in vivo. PMID:22449919

  20. Novel African Trypanocidal Agents: Membrane Rigidifying Peptides

    PubMed Central

    Harrington, John M.; Scelsi, Chris; Hartel, Andreas; Jones, Nicola G.; Engstler, Markus; Capewell, Paul; MacLeod, Annette; Hajduk, Stephen

    2012-01-01

    The bloodstream developmental forms of pathogenic African trypanosomes are uniquely susceptible to killing by small hydrophobic peptides. Trypanocidal activity is conferred by peptide hydrophobicity and charge distribution and results from increased rigidity of the plasma membrane. Structural analysis of lipid-associated peptide suggests a mechanism of phospholipid clamping in which an internal hydrophobic bulge anchors the peptide in the membrane and positively charged moieties at the termini coordinate phosphates of the polar lipid headgroups. This mechanism reveals a necessary phenotype in bloodstream form African trypanosomes, high membrane fluidity, and we suggest that targeting the plasma membrane lipid bilayer as a whole may be a novel strategy for the development of new pharmaceutical agents. Additionally, the peptides we have described may be valuable tools for probing the biosynthetic machinery responsible for the unique composition and characteristics of African trypanosome plasma membranes. PMID:22970207

  1. Beta-peptide bundles with fluorous cores.

    PubMed

    Molski, Matthew A; Goodman, Jessica L; Craig, Cody J; Meng, He; Kumar, Krishna; Schepartz, Alanna

    2010-03-24

    We reported recently that certain beta-peptides self-assemble spontaneously into cooperatively folded bundles whose kinetic and thermodynamic metrics mirror those of natural helix bundle proteins. The structures of four such beta-peptide bundles are known in atomic detail. These structures reveal a solvent-sequestered, hydrophobic core stabilized by a unique arrangement of leucine side chains and backbone methylene groups. Here we report that this hydrophobic core can be re-engineered to contain a fluorous subdomain while maintaining the characteristic beta-peptide bundle fold. Like alpha-helical bundles possessing fluorous cores, fluorous beta-peptide bundles are stabilized relative to hydrocarbon analogues and undergo cold denaturation. Beta-peptide bundles with fluorous cores represent the essential first step in the synthesis of orthogonal protein assemblies that can sequester selectively in an interstitial membrane environment. PMID:20196598

  2. Peptide-Lipid Interactions: Experiments and Applications

    PubMed Central

    Galdiero, Stefania; Falanga, Annarita; Cantisani, Marco; Vitiello, Mariateresa; Morelli, Giancarlo; Galdiero, Massimiliano

    2013-01-01

    The interactions between peptides and lipids are of fundamental importance in the functioning of numerous membrane-mediated cellular processes including antimicrobial peptide action, hormone-receptor interactions, drug bioavailability across the blood-brain barrier and viral fusion processes. Moreover, a major goal of modern biotechnology is obtaining new potent pharmaceutical agents whose biological action is dependent on the binding of peptides to lipid-bilayers. Several issues need to be addressed such as secondary structure, orientation, oligomerization and localization inside the membrane. At the same time, the structural effects which the peptides cause on the lipid bilayer are important for the interactions and need to be elucidated. The structural characterization of membrane active peptides in membranes is a harsh experimental challenge. It is in fact accepted that no single experimental technique can give a complete structural picture of the interaction, but rather a combination of different techniques is necessary. PMID:24036440

  3. Supramolecular Nanofibers of Peptide Amphiphiles for Medicine

    PubMed Central

    Webber, Matthew J.; Berns, Eric J.; Stupp, Samuel I.

    2014-01-01

    Peptide nanostructures are an exciting class of supramolecular systems that can be designed for novel therapies with great potential in advanced medicine. This paper reviews progress on nanostructures based on peptide amphiphiles capable of forming one-dimensional assemblies that emulate in structure the nanofibers present in extracellular matrices. These systems are highly tunable using supramolecular chemistry, and can be designed to signal cells directly with bioactive peptides. Peptide amphiphile nanofibers can also be used to multiplex functions through co-assembly and designed to deliver proteins, nucleic acids, drugs, or cells. We illustrate here the functionality of these systems describing their use in regenerative medicine of bone, cartilage, the nervous system, the cardiovascular system, and other tissues. In addition, we highlight recent work on the use of peptide amphiphile assemblies to create hierarchical biomimetic structures with order beyond the nanoscale, and also discuss the future prospects of these supramolecular systems. PMID:24532851

  4. A peptide's perspective of water dynamics.

    PubMed

    Ghosh, Ayanjeet; Hochstrasser, Robin M

    2011-11-18

    This Perspective is focused on amide groups of peptides interacting with water. The 2D IR spectroscopy has already enabled structural aspects of the peptide backbone to be determined through its ability to measure the coupling between different amide-I modes. Here we describe why nonlinear IR is emerging as the method of choice to examine the fast components of the water dynamics near peptides and how isotopically edited peptide links can be used to probe the local water at a residue level in proteins. This type of research necessarily involves an intimate mix of theory and experiment. The description of the results is underpinned by relatively well established quantum-statistical theories that describe the important manifestations of peptide vibrational frequency fluctuations. PMID:22844177

  5. Chemical Reactions Directed Peptide Self-Assembly

    PubMed Central

    Rasale, Dnyaneshwar B.; Das, Apurba K.

    2015-01-01

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly. PMID:25984603

  6. Design of Asymmetric Peptide Bilayer Membranes.

    PubMed

    Li, Sha; Mehta, Anil K; Sidorov, Anton N; Orlando, Thomas M; Jiang, Zhigang; Anthony, Neil R; Lynn, David G

    2016-03-16

    Energetic insights emerging from the structural characterization of peptide cross-β assemblies have enabled the design and construction of robust asymmetric bilayer peptide membranes. Two peptides differing only in their N-terminal residue, phosphotyrosine vs lysine, coassemble as stacks of antiparallel β-sheets with precisely patterned charged lattices stabilizing the bilayer leaflet interface. Either homogeneous or mixed leaflet composition is possible, and both create nanotubes with dense negative external and positive internal solvent exposed surfaces. Cross-seeding peptide solutions with a preassembled peptide nanotube seed leads to domains of different leaflet architecture within single nanotubes. Architectural control over these cross-β assemblies, both across the bilayer membrane and along the nanotube length, provides access to highly ordered asymmetric membranes for the further construction of functional mesoscale assemblies. PMID:26942690

  7. A Candida albicans PeptideAtlas

    PubMed Central

    Vialas, Vital; Sun, Zhi; Penha, Carla Verónica Loureiro y; Carrascal, Montserrat; Abian, Joaquin; Monteoliva, Lucía; Deutsch, Eric W.; Aebersold, Ruedi; Moritz, Robert L.; Gil, Concha

    2013-01-01

    Candida albicans public proteomic data sets, though growing steadily in the last few years, still have a very limited presence in online repositories. We report here the creation of a C. albicans PeptideAtlas comprising near 22000 distinct peptides at a 0.24 % False Discovery Rate (FDR) that account for over 2500 canonical proteins at a 1.2% FDR. Based on data from 16 experiments, we attained coverage of 41% of the C.albicans open reading frame sequences (ORFs) in the database used for the searches. This PeptideAtlas provides several useful features, including comprehensive protein and peptide-centered search capabilities and visualization tools that establish a solid basis for the study of basic biological mechanisms key to virulence and pathogenesis such as dimorphism, adherence, and apoptosis. Further, it is a valuable resource for the selection of candidate proteotypic peptides for targeted proteomic experiments via selected reaction monitoring (SRM) or SWATH-MS. PMID:23811049

  8. Intracellular signalling by C-peptide.

    PubMed

    Hills, Claire E; Brunskill, Nigel J

    2008-01-01

    C-peptide, a cleavage product of the proinsulin molecule, has long been regarded as biologically inert, serving merely as a surrogate marker for insulin release. Recent findings demonstrate both a physiological and protective role of C-peptide when administered to individuals with type I diabetes. Data indicate that C-peptide appears to bind in nanomolar concentrations to a cell surface receptor which is most likely to be G-protein coupled. Binding of C-peptide initiates multiple cellular effects, evoking a rise in intracellular calcium, increased PI-3-kinase activity, stimulation of the Na(+)/K(+) ATPase, increased eNOS transcription, and activation of the MAPK signalling pathway. These cell signalling effects have been studied in multiple cell types from multiple tissues. Overall these observations raise the possibility that C-peptide may serve as a potential therapeutic agent for the treatment or prevention of long-term complications associated with diabetes. PMID:18382618

  9. A peptide's perspective of water dynamics

    PubMed Central

    Ghosh, Ayanjeet; Hochstrasser, Robin M.

    2012-01-01

    This Perspective is focused on amide groups of peptides interacting with water. The 2D IR spectroscopy has already enabled structural aspects of the peptide backbone to be determined through its ability to measure the coupling between different amide-I modes. Here we describe why nonlinear IR is emerging as the method of choice to examine the fast components of the water dynamics near peptides and how isotopically edited peptide links can be used to probe the local water at a residue level in proteins. This type of research necessarily involves an intimate mix of theory and experiment. The description of the results is underpinned by relatively well established quantum-statistical theories that describe the important manifestations of peptide vibrational frequency fluctuations. PMID:22844177

  10. Drug development of intranasally delivered peptides.

    PubMed

    Campbell, Catherine; Morimoto, Bruce H; Nenciu, Daniela; Fox, Anthony W

    2012-04-01

    Intranasal drug delivery has attracted increasing attention as a noninvasive route of administration for therapeutic proteins and peptides. The delivery of therapeutic peptides through the nasal route provides an alternative to intravenous or subcutaneous injections. This review highlights the drug-development considerations unique to nasal therapeutics and discusses some of the factors and strategies that affect and can improve nasal absorption of peptides. The selectivity and good safety profile typical of peptide therapeutics, along with the dose limitation for intranasal administration, can provide challenges in drug development. Therefore, nasal peptide therapeutics often require special considerations in the nonclinical safety evaluations, such as determining drug exposure in the context of the maximum feasible dose in order to adequately prepare nasal products for clinical studies. PMID:22834082

  11. The natriuretic peptides and cardiometabolic health

    PubMed Central

    Gupta, Deepak K.; Wang, Thomas J.

    2016-01-01

    Natriuretic peptides are cardiac-derived hormones with a range of protective functions, including natriuresis, diuresis, vasodilation, lusitropy, lipolysis, weight loss, and improved insulin sensitivity. The actions are mediated through membrane bound guanylyl cyclases that lead to production of the intracellular second-messenger cGMP. A growing body of evidence demonstrates that genetic and acquired deficiencies of the natriuretic peptide system can promote hypertension, cardiac hypertrophy, obesity, diabetes mellitus, the metabolic syndrome, and heart failure. Clinically, natriuretic peptides are robust diagnostic and prognostic markers and augmenting natriuretic peptides is a target for therapeutic strategies in cardio-metabolic disease. This review will summarize current understanding and highlight novel aspects of natriuretic peptide biology. PMID:26103984

  12. Efficient Inactivation of Multi-Antibiotics Resistant Nosocomial Enterococci by Purified Hiracin Bacteriocin

    PubMed Central

    Hassan, Maryam; Brede, Dag Anders; Diep, Dzung B.; Nes, Ingolf F.; Lotfipour, Farzaneh; Hojabri, Zoya

    2015-01-01

    Purpose: Because of the emergence of multi-antibiotic resistant bacteria, a number of infectious diseases have become a major concern to treat in health care services worldwide. This situation is worsened by the fact that very limited progress has been made in developing new and potent antibiotics in recent years. In this context antimicrobial peptides (AMPs) represent new potential therapeutic compounds with bactericidal or bacteriostatic activity against closely related bacterial strains. Methods: In this study, a collection of enterococci (n=170) from clinical sources were investigated for their potential to inhibit multiresistant nosocomial enterococci from Iranian hospitals. Results: Four isolates produced antimicrobial peptides that inhibited all the antibiotic resistant enterococci. This included three Enterococcus faecium isolates producing combinations of enterocin A, B and L50 AB. The most potent antagonism was produced by E. faecalis HO91. Purification and subsequent characterization by MALDI-TOF MS, Edman degradation and DNA-sequencing revealed that the antimicrobial compound was Hiracin. The purified Hiracin was evaluated for antibacterial activity against 12 multiresistant enterococcal isolates from clinical samples. The results demonstrated that Hiracin is highly effective towards enterococci which were resistant even to antibiotics from four distinct classes. Conclusion: The present research addresses Hiracin as a promising alternative to conventional antibiotics in treatment of multiresistant enterococcal infections. PMID:26504762

  13. Novel bifunctional natriuretic peptides as potential therapeutics.

    PubMed

    Dickey, Deborah M; Burnett, John C; Potter, Lincoln R

    2008-12-12

    Synthetic atrial natriuretic peptide (carperitide) and B-type natriuretic peptide (BNP; nesiritide) are used to treat congestive heart failure. However, despite beneficial cardiac unloading properties, reductions in renal perfusion pressures limit their clinical effectiveness. Recently, CD-NP, a chimeric peptide composed of C-type natriuretic peptide (CNP) fused to the C-terminal tail of Dendroaspis natriuretic peptide (DNP), was shown to be more glomerular filtration rate-enhancing than BNP in dogs. However, the molecular basis for the increased responsiveness was not determined. Here, we show that the DNP tail has a striking effect on CNP, converting it from a non-agonist to a partial agonist of natriuretic peptide receptor (NPR)-A while maintaining the ability to activate NPR-B. This effect is specific for human receptors because CD-NP was only a slightly better activator of rat NPR-A due to the promiscuous nature of CNP in this species. Interesting, the DNP tail alone had no effect on any NPR even though it is effective in vivo. To further increase the potency of CD-NP for NPR-A, we converted two different triplet sequences within the CNP ring to their corresponding residues in BNP. Both variants demonstrated increased affinity and full agonist activity for NPR-A, whereas one was as potent as any NPR-A activator known. In contrast to a previous report, we found that DNP binds the natriuretic peptide clearance receptor (NPR-C). However, none of the chimeric peptides bound NPR-C with significantly higher affinity than endogenous ligands. We suggest that bifunctional chimeric peptides represent a new generation of natriuretic peptide therapeutics. PMID:18940797

  14. Novel Bifunctional Natriuretic Peptides as Potential Therapeutics*

    PubMed Central

    Dickey, Deborah M.; Burnett, John C.; Potter, Lincoln R.

    2008-01-01

    Synthetic atrial natriuretic peptide (carperitide) and B-type natriuretic peptide (BNP; nesiritide) are used to treat congestive heart failure. However, despite beneficial cardiac unloading properties, reductions in renal perfusion pressures limit their clinical effectiveness. Recently, CD-NP, a chimeric peptide composed of C-type natriuretic peptide (CNP) fused to the C-terminal tail of Dendroaspis natriuretic peptide (DNP), was shown to be more glomerular filtration rate-enhancing than BNP in dogs. However, the molecular basis for the increased responsiveness was not determined. Here, we show that the DNP tail has a striking effect on CNP, converting it from a non-agonist to a partial agonist of natriuretic peptide receptor (NPR)-A while maintaining the ability to activate NPR-B. This effect is specific for human receptors because CD-NP was only a slightly better activator of rat NPR-A due to the promiscuous nature of CNP in this species. Interesting, the DNP tail alone had no effect on any NPR even though it is effective in vivo. To further increase the potency of CD-NP for NPR-A, we converted two different triplet sequences within the CNP ring to their corresponding residues in BNP. Both variants demonstrated increased affinity and full agonist activity for NPR-A, whereas one was as potent as any NPR-A activator known. In contrast to a previous report, we found that DNP binds the natriuretic peptide clearance receptor (NPR-C). However, none of the chimeric peptides bound NPR-C with significantly higher affinity than endogenous ligands. We suggest that bifunctional chimeric peptides represent a new generation of natriuretic peptide therapeutics. PMID:18940797

  15. Modelling water molecules inside cyclic peptide nanotubes

    NASA Astrophysics Data System (ADS)

    Tiangtrong, Prangsai; Thamwattana, Ngamta; Baowan, Duangkamon

    2016-03-01

    Cyclic peptide nanotubes occur during the self-assembly process of cyclic peptides. Due to the ease of synthesis and ability to control the properties of outer surface and inner diameter by manipulating the functional side chains and the number of amino acids, cyclic peptide nanotubes have attracted much interest from many research areas. A potential application of peptide nanotubes is their use as artificial transmembrane channels for transporting ions, biomolecules and waters into cells. Here, we use the Lennard-Jones potential and a continuum approach to study the interaction of a water molecule in a cyclo[(- D-Ala- L-Ala)_4-] peptide nanotube. Assuming that each unit of a nanotube comprises an inner and an outer tube and that a water molecule is made up of a sphere of two hydrogen atoms uniformly distributed over its surface and a single oxygen atom at the centre, we determine analytically the interaction energy of the water molecule and the peptide nanotube. Using this energy, we find that, independent of the number of peptide units, the water molecule will be accepted inside the nanotube. Once inside the nanotube, we show that a water molecule prefers to be off-axis, closer to the surface of the inner nanotube. Furthermore, our study of two water molecules inside the peptide nanotube supports the finding that water molecules form an array of a 1-2-1-2 file inside peptide nanotubes. The theoretical study presented here can facilitate thorough understanding of the behaviour of water molecules inside peptide nanotubes for applications, such as artificial transmembrane channels.

  16. Antimicrobial peptides of multicellular organisms

    NASA Astrophysics Data System (ADS)

    Zasloff, Michael

    2002-01-01

    Multicellular organisms live, by and large, harmoniously with microbes. The cornea of the eye of an animal is almost always free of signs of infection. The insect flourishes without lymphocytes or antibodies. A plant seed germinates successfully in the midst of soil microbes. How is this accomplished? Both animals and plants possess potent, broad-spectrum antimicrobial peptides, which they use to fend off a wide range of microbes, including bacteria, fungi, viruses and protozoa. What sorts of molecules are they? How are they employed by animals in their defence? As our need for new antibiotics becomes more pressing, could we design anti-infective drugs based on the design principles these molecules teach us?

  17. Peptide-Based Treatment: A Promising Cancer Therapy

    PubMed Central

    Xiao, Yu-Feng; Jie, Meng-Meng; Li, Bo-Sheng; Hu, Chang-Jiang; Xie, Rui; Tang, Bo; Yang, Shi-Ming

    2015-01-01

    Many new therapies are currently being used to treat cancer. Among these new methods, chemotherapy based on peptides has been of great interest due to the unique advantages of peptides, such as a low molecular weight, the ability to specifically target tumor cells, and low toxicity in normal tissues. In treating cancer, peptide-based chemotherapy can be mainly divided into three types, peptide-alone therapy, peptide vaccines, and peptide-conjugated nanomaterials. Peptide-alone therapy may specifically enhance the immune system's response to kill tumor cells. Peptide-based vaccines have been used in advanced cancers to improve patients' overall survival. Additionally, the combination of peptides with nanomaterials expands the therapeutic ability of peptides to treat cancer by enhancing drug delivery and sensitivity. In this review, we mainly focus on the new advances in the application of peptides in treating cancer in recent years, including diagnosis, treatment, and prognosis. PMID:26568964

  18. Solid Phase Synthesis and Application of Labeled Peptide Derivatives: Probes of Receptor-Opioid Peptide Interactions

    PubMed Central

    Aldrich, Jane V.; Kumar, Vivek; Dattachowdhury, Bhaswati; Peck, Angela M.; Wang, Xin; Murray, Thomas F.

    2009-01-01

    Solid phase synthetic methodology has been developed in our laboratory to incorporate an affinity label (a reactive functionality such as isothiocyanate or bromoacetamide) into peptides (Leelasvatanakij, L. and Aldrich, J. V. (2000) J. Peptide Res. 56, 80), and we have used this synthetic strategy to prepare affinity label derivatives of a variety of opioid peptides. To date side reactions have been detected only in two cases, both involving intramolecular cyclization. We have identified several peptide-based affinity labels for δ opioid receptors that exhibit wash-resistant inhibition of binding to these receptors and are valuable pharmacological tools to study opioid receptors. Even in cases where the peptide derivatives do not bind covalently to their target receptor, studying their binding has revealed subtle differences in receptor interactions with particular opioid peptide residues, especially Phe residues in the N-terminal “message” sequences. Solid phase synthetic methodology for the incorporation of other labels (e.g. biotin) into the C-terminus of peptides has also been developed in our laboratory (Kumar, V. and Aldrich, J. V. (2003) Org. Lett. 5, 613). These two synthetic approaches have been combined to prepare peptides containing multiple labels that can be used as tools to study peptide ligand-receptor interactions. These solid phase synthetic methodologies are versatile strategies that are applicable to the preparation of labeled peptides for a variety of targets in addition to opioid receptors. PMID:19956785

  19. Biosynthesis of peptide neurotransmitters: studies on the formation of peptide amides.

    PubMed

    Bradbury, A F; Smyth, D G

    1988-01-01

    A high proportion of peptide transmitters and peptide hormones terminate their peptide chain in a C-terminal amide group which is essential for their biological activity. The specificity of an enzyme that catalyses the formation of the amide was investigated with the aid of synthetic peptide substrates. With peptides containing l-amino acids the enzyme exhibited an essential requirement for glycine in the C-terminal position; amidation did not take place with peptides that had leucine, alanine, glutamic acid, lysine or N-methylglycine at the C-terminus and a peptide extended by the attachment of lysine to the C-terminal glycine did not act as a substrate. Amidation did occur with a peptide containing C-terminal D-alanine but no reaction was detected with peptides having C-terminal, D-serine or D-leucine. In tripeptides with a neutral amino acid in the penultimate position, amidation, took place readily but the reaction was slower when this position was occupied by an acidic or a basic residue. A series of overlapping peptides with C-terminal glycine, based on partial sequences of calcitonin, underwent amidation at similar rates, indicating that the amidating enzyme recognizes only a limited sequence at the C-terminus of its substrates. The results provide evidence that the amidating enzyme has a highly compact substrate binding site. PMID:2906151

  20. Peptide separation in hydrophilic interaction capillary electrochromatography.

    PubMed

    Fu, Hongjing; Jin, Wenhai; Xiao, Hua; Huang, Haiwei; Zou, Hanfa

    2003-06-01

    Separation of small peptides by hydrophilic interaction capillary electrochromatography (HI-CEC) has been investigated. The negative surface charge of a hydrophilic, strong-cation-exchange stationary phase (PolySULFOETHYL A) provided a substantial cathodic electroosmotic flow (EOF). The influence of acetonitrile content, ionic strength, mobile phase pH as well as applied voltage on the migration of the peptides was studied. Possible retention mechanisms of the peptides in HI-CEC were discussed. It was found that hydrophilic interaction between the solutes and the stationary phase played a major role in this system, especially when mobile phases with high acetonitrile content were used. However, an ion-exchange mechanism and electrophoretic mobility also affect the migration of the peptides in HI-CEC. Elution order and selectivity was proved to be different in HI-CEC and capillary zone electrophoresis (CZE), thus revealing the potential of HI-CEC as a complementary technique to CZE for the separation of peptides. Efficiency and selectivity of HI-CEC for the separation of peptides were demonstrated by baseline separating nine peptides in 6 min. PMID:12858379

  1. Novel pH-Sensitive Cyclic Peptides

    PubMed Central

    Weerakkody, Dhammika; Moshnikova, Anna; El-Sayed, Naglaa Salem; Adochite, Ramona-Cosmina; Slaybaugh, Gregory; Golijanin, Jovana; Tiwari, Rakesh K.; Andreev, Oleg A.; Parang, Keykavous; Reshetnyak, Yana K.

    2016-01-01

    A series of cyclic peptides containing a number of tryptophan (W) and glutamic acid (E) residues were synthesized and evaluated as pH-sensitive agents for targeting of acidic tissue and pH-dependent cytoplasmic delivery of molecules. Biophysical studies revealed the molecular mechanism of peptides action and localization within the lipid bilayer of the membrane at high and low pHs. The symmetric, c[(WE)4WC], and asymmetric, c[E4W5C], cyclic peptides translocated amanitin, a polar cargo molecule of similar size, across the lipid bilayer and induced cell death in a pH- and concentration-dependent manner. Fluorescently-labelled peptides were evaluated for targeting of acidic 4T1 mammary tumors in mice. The highest tumor to muscle ratio (5.6) was established for asymmetric cyclic peptide, c[E4W5C], at 24 hours after intravenous administration. pH-insensitive cyclic peptide c[R4W5C], where glutamic acid residues (E) were replaced by positively charged arginine residues (R), did not exhibit tumor targeting. We have introduced a novel class of cyclic peptides, which can be utilized as a new pH-sensitive tool in investigation or targeting of acidic tissue. PMID:27515582

  2. Immunoreactive opioid peptides in human breast cancer.

    PubMed Central

    Scopsi, L.; Balslev, E.; Brünner, N.; Poulsen, H. S.; Andersen, J.; Rank, F.; Larsson, L. I.

    1989-01-01

    Opioid peptides have a variety of actions on inter alia pituitary hormone secretion and the immune system. Release of endogenous opioids has been found to stimulate growth of experimental breast cancers and opiate receptor blockers have reduced the growth of chemically induced rat breast tumors. Opioid peptides may therefore play a role in human breast cancer. Invasive ductal carcinomas from 61 premenopausal women were immunocytochemically analyzed for the presence of opioid peptide immunoreactivity. Positive staining was unambiguously identified in 34 of the tumors (56%). In addition, a medullary carcinoma was positive. In a smaller series of tumors, opioid peptide immunoreactive cells were detected in both primary tumors and metastases. Positive tumor cells were usually few and scattered. Therefore, underestimates of their true frequency of occurrence are likely to have occurred, making accurate correlations with clinical behavior and estrogen receptor status difficult. No correlations with estrogen receptors were established for the unambiguously opioid peptide-positive tumors. Many of the positive tumors also stained with antibodies to gamma-endorphin and alpha-melanocyte-stimulating hormone, suggesting the presence of proopiomelanocortin-derived peptides in them. However, peptides derived from other opioid precursors also may be present in breast cancer. Images Figure 1 PMID:2464945

  3. Antimicrobial peptides in human skin disease

    PubMed Central

    Kenshi, Yamasaki; Richard, L. Gallo

    2009-01-01

    The skin continuously encounters microbial pathogens. To defend against this, cells of the epidermis and dermis have evolved several innate strategies to prevent infection. Antimicrobial peptides are one of the primary mechanisms used by the skin in the early stages of immune defense. In general, antimicrobial peptides have broad antibacterial activity against gram-positive and negative bacteria and also show antifungal and antiviral activity. The antimicrobial activity of most peptides occurs as a result of unique structural characteristics that enable them to disrupt the microbial membrane while leaving human cell membranes intact. However, antimicrobial peptides also act on host cells to stimulate cytokine production, cell migration, proliferation, maturation, and extracellular matrix synthesis. The production by human skin of antimicrobial peptides such as defensins and cathelicidins occurs constitutively but also greatly increases after infection, inflammation or injury. Some skin diseases show altered expression of antimicrobial peptides, partially explaining the pathophysiology of these diseases. Thus, current research suggests that understanding how antimicrobial peptides modify susceptibility to microbes, influence skin inflammation, and modify wound healing, provides greater insight into the pathophysiology of skin disorders and offers new therapeutic opportunities. PMID:18086583

  4. Multiplex De Novo Sequencing of Peptide Antibiotics

    NASA Astrophysics Data System (ADS)

    Mohimani, Hosein; Liu, Wei-Ting; Yang, Yu-Liang; Gaudêncio, Susana P.; Fenical, William; Dorrestein, Pieter C.; Pevzner, Pavel A.

    Proliferation of drug-resistant diseases raises the challenge of searching for new, more efficient antibiotics. Currently, some of the most effective antibiotics (i.e., Vancomycin and Daptomycin) are cyclic peptides produced by non-ribosomal biosynthetic pathways. The isolation and sequencing of cyclic peptide antibiotics, unlike the same activity with linear peptides, is time-consuming and error-prone. The dominant technique for sequencing cyclic peptides is NMR-based and requires large amounts (milligrams) of purified materials that, for most compounds, are not possible to obtain. Given these facts, there is a need for new tools to sequence cyclic NRPs using picograms of material. Since nearly all cyclic NRPs are produced along with related analogs, we develop a mass spectrometry approach for sequencing all related peptides at once (in contrast to the existing approach that analyzes individual peptides). Our results suggest that instead of attempting to isolate and NMR-sequence the most abundant compound, one should acquire spectra of many related compounds and sequence all of them simultaneously using tandem mass spectrometry. We illustrate applications of this approach by sequencing new variants of cyclic peptide antibiotics from Bacillus brevis, as well as sequencing a previously unknown familiy of cyclic NRPs produced by marine bacteria.

  5. C-Peptide and its intracellular signaling.

    PubMed

    Hills, Claire E; Brunskill, Nigel J

    2009-01-01

    Although long believed to be inert, C-peptide has now been shown to have definite biological effects both in vitro and in vivo in diabetic animals and in patients with type 1 diabetes. These effects point to a protective action of C-peptide against the development of diabetic microvascular complications. Underpinning these observations is undisputed evidence of C-peptide binding to a variety of cell types at physiologically relevant concentrations, and the downstream stimulation of multiple cell signaling pathways and gene transcription via the activation of numerous transcription factors. These pathways affect such fundamental cellular processes as re-absorptive and/or secretory phenotype, migration, growth, and survival. Whilst the receptor remains to be identified, experimental data points strongly to the existence of a specific G-protein-coupled receptor for C-peptide. Of the cell types studied so far, kidney tubular cells express the highest number of C-peptide binding sites. Accordingly, C-peptide exerts major effects on the function of these cells, and in the context of diabetic nephropathy appears to antagonise the pathophysiological effects of major disease mediators such as TGFbeta1 and TNFalpha. Therefore, based on its cellular activity profile C-peptide appears well positioned for development as a therapeutic tool to treat microvascular complications in type 1 diabetes. PMID:20039003

  6. Peptide Therapeutics for Treating Ocular Surface Infections

    PubMed Central

    2014-01-01

    Abstract Microbial pathogens—bacteria, viruses, fungi, and parasites—are significant causes of blindness, particularly in developing countries. For bacterial and some viral infections a number of antimicrobial drugs are available for therapy but there are fewer available for use in treating fungal and parasitic keratitis. There are also problems with current antimicrobials, such as limited efficacy and the presence of drug-resistant microbes. Thus, there is a need to develop additional drugs. Nature has given us an example of 1 potential source of new antimicrobials: antimicrobial peptides and proteins that are either present in bodily fluids and tissues constitutively or are induced upon infection. Given the nature of peptides, topical applications are the most likely use to be successful and this is ideal for treating keratitis. Such peptides would also be active against drug-resistant pathogens and might act synergistically if used in combination therapy. Hundreds of peptides with antimicrobial properties have been isolated or synthesized but only a handful have been tested against ocular pathogens and even fewer have been tested in animal models. This review summarizes the currently available information on the use of peptides to treat keratitis, outlines some of the problems that have been identified, and discusses future studies that will be needed. Most of the peptides that have been tested have shown activity at concentrations that do not warrant further development, but 1 or 2 have promising activity raising the possibility that peptides can be developed to treat keratitis. PMID:25250986

  7. Synthetic Multivalent Antifungal Peptides Effective against Fungi

    PubMed Central

    Li, Jianguo; Nandhakumar, Muruganantham; Aung, Thet Tun; Goh, Eunice; Chang, Jamie Ya Ting; Saraswathi, Padhmanaban; Tang, Charles; Safie, Siti Radiah Binte; Lin, Lim Yih; Riezman, Howard; Lei, Zhou; Verma, Chandra S.; Beuerman, Roger W.

    2014-01-01

    Taking advantage of the cluster effect observed in multivalent peptides, this work describes antifungal activity and possible mechanism of action of tetravalent peptide (B4010) which carries 4 copies of the sequence RGRKVVRR through a branched lysine core. B4010 displayed better antifungal properties than natamycin and amphotericin B. The peptide retained significant activity in the presence of monovalent/divalent cations, trypsin and serum and tear fluid. Moreover, B4010 is non-haemolytic and non-toxic to mice by intraperitoneal (200 mg/kg) or intravenous (100 mg/kg) routes. S. cerevisiae mutant strains with altered membrane sterol structures and composition showed hyper senstivity to B4010. The peptide had no affinity for cell wall polysaccharides and caused rapid dissipation of membrane potential and release of vital ions and ATP when treated with C. albicans. We demonstrate that additives which alter the membrane potential or membrane rigidity protect C. albicans from B4010-induced lethality. Calcein release assay and molecular dynamics simulations showed that the peptide preferentially binds to mixed bilayer containing ergosterol over phophotidylcholine-cholesterol bilayers. The studies further suggested that the first arginine is important for mediating peptide-bilayer interactions. Replacing the first arginine led to a 2–4 fold decrease in antifungal activities and reduced membrane disruption properties. The combined in silico and in vitro approach should facilitate rational design of new tetravalent antifungal peptides. PMID:24498363

  8. Novel pH-Sensitive Cyclic Peptides.

    PubMed

    Weerakkody, Dhammika; Moshnikova, Anna; El-Sayed, Naglaa Salem; Adochite, Ramona-Cosmina; Slaybaugh, Gregory; Golijanin, Jovana; Tiwari, Rakesh K; Andreev, Oleg A; Parang, Keykavous; Reshetnyak, Yana K

    2016-01-01

    A series of cyclic peptides containing a number of tryptophan (W) and glutamic acid (E) residues were synthesized and evaluated as pH-sensitive agents for targeting of acidic tissue and pH-dependent cytoplasmic delivery of molecules. Biophysical studies revealed the molecular mechanism of peptides action and localization within the lipid bilayer of the membrane at high and low pHs. The symmetric, c[(WE)4WC], and asymmetric, c[E4W5C], cyclic peptides translocated amanitin, a polar cargo molecule of similar size, across the lipid bilayer and induced cell death in a pH- and concentration-dependent manner. Fluorescently-labelled peptides were evaluated for targeting of acidic 4T1 mammary tumors in mice. The highest tumor to muscle ratio (5.6) was established for asymmetric cyclic peptide, c[E4W5C], at 24 hours after intravenous administration. pH-insensitive cyclic peptide c[R4W5C], where glutamic acid residues (E) were replaced by positively charged arginine residues (R), did not exhibit tumor targeting. We have introduced a novel class of cyclic peptides, which can be utilized as a new pH-sensitive tool in investigation or targeting of acidic tissue. PMID:27515582

  9. Chemical Platforms for Peptide Vaccine Constructs.

    PubMed

    Ramesh, Suhas; Cherkupally, Prabhakar; Govender, Thavendran; Kruger, Hendrik G; Albericio, Fernando; de la Torre, Beatriz G

    2015-01-01

    Knowledge of the sequences and structures of proteins from pathogenic microorganisms has been put to great use in the field of protein chemistry for the development of peptide-based vaccines. These vaccine constructs include chemically tailored, shorter peptidic fragments that can induce high immunogenicity, thus shunning the allergenic and nonimmunogenic part of the antigens. Based on this concept, several different chemistries have been pursued to obtain novel platforms onto which antigenic epitopes can be tethered, with the aim to achieve a higher antibody response. In this regard, here we attempt to summarize the chemical strategies developed for the presentation of peptide epitopes. PMID:26067818

  10. Cysteine-containing peptides having antioxidant properties

    DOEpatents

    Bielicki, John K.

    2009-10-13

    Cysteine containing amphipathic alpha helices of the exchangeable apolipoproteins, as exemplified by apolipoprotein (apo) A-I.sub.Milano (R173C) and apoA-I.sub.Paris, (R151C) were found to exhibit potent antioxidant activity on phospholipid surfaces. The addition of a free thiol, at the hydrophobic/hydrophilic interface of an amphipathic alpha helix of synthetic peptides that mimic HDL-related proteins, imparts a unique antioxidant activity to these peptides which inhibits lipid peroxidation and protects phospholipids from water-soluble free radical initiators. These peptides can be used as therapeutic agents to combat cardiovascular disease, ischemia, bone disease and other inflammatory related diseases.

  11. Cysteine-containing peptides having antioxidant properties

    DOEpatents

    Bielicki, John K.

    2008-10-21

    Cysteine containing amphipathic alpha helices of the exchangeable apolipoproteins, as exemplified by apolipoprotein (apo) A-I.sub.Milano (R173C) and apoA-I.sub.Paris, (R151C) were found to exhibit potent antioxidant activity on phospholipid surfaces. The addition of a free thiol, at the hydrophobic/hydrophilic interface of an amphipathic alpha helix of synthetic peptides that mimic HDL-related proteins, imparts a unique antioxidant activity to these peptides which inhibits lipid peroxidation and protects phospholipids from water-soluble free radical initiators. These peptides can be used as therapeutic agents to combat cardiovascular disease, ischemia, bone disease and other inflammatory related diseases.

  12. Ultrashort Antimicrobial Peptides with Antiendotoxin Properties

    PubMed Central

    Chih, Ya-Han; Lin, Yen-Shan; Yip, Bak-Sau; Wei, Hsiu-Ju; Chu, Hung-Lun; Yu, Hui-Yuan; Cheng, Hsi-Tsung

    2015-01-01

    Release of lipopolysaccharide (LPS) (endotoxin) from bacteria into the bloodstream may cause serious unwanted stimulation of the host immune system. Some but not all antimicrobial peptides can neutralize LPS-stimulated proinflammatory responses. Salt resistance and serum stability of short antimicrobial peptides can be boosted by adding β-naphthylalanine to their termini. Herein, significant antiendotoxin effects were observed in vitro and in vivo with the β-naphthylalanine end-tagged variants of the short antimicrobial peptides S1 and KWWK. PMID:26033727

  13. How Nature Morphs Peptide Scaffolds into Antibiotics

    PubMed Central

    Nolan, Elizabeth M.; Walsh, Christopher T.

    2010-01-01

    The conventional notion that peptides are poor candidates for orally available drugs because of protease-sensitive peptide bonds, intrinsic hydrophilicity, and ionic charges contrasts with the diversity of antibiotic natural products with peptide-based frameworks that are synthesized and utilized by Nature. Several of these antibiotics, including penicillin and vancomycin, are employed to treat bacterial infections in humans and have been best-selling therapeutics for decades. Others might provide new platforms for the design of novel therapeutics to combat emerging antibiotic-resistant bacterial pathogens. PMID:19058272

  14. Processable Cyclic Peptide Nanotubes with Tunable Interiors

    SciTech Connect

    Hourani, Rami; Zhang, Chen; van der Weegen, Rob; Ruiz, Luis; Li, Changyi; Keten, Sinan; Helms, Brett A.; Xu, Ting

    2011-09-06

    A facile route to generate cyclic peptide nanotubes with tunable interiors is presented. By incorporating 3-amino-2-methylbenzoic acid in the d,l-alternating primary sequence of a cyclic peptide, a functional group can be presented in the interior of the nanotubes without compromising the formation of high aspect ratio nanotubes. The new design of such a cyclic peptide also enables one to modulate the nanotube growth process to be compatible with the polymer processing window without compromising the formation of high aspect ratio nanotubes, thus opening a viable approach toward molecularly defined porous membranes.

  15. The Potential of Antimicrobial Peptides as Biocides

    PubMed Central

    Laverty, Garry; Gorman, Sean P.; Gilmore, Brendan F.

    2011-01-01

    Antimicrobial peptides constitute a diverse class of naturally occurring antimicrobial molecules which have activity against a wide range of pathogenic microorganisms. Antimicrobial peptides are exciting leads in the development of novel biocidal agents at a time when classical antibiotics are under intense pressure from emerging resistance, and the global industry in antibiotic research and development stagnates. This review will examine the potential of antimicrobial peptides, both natural and synthetic, as novel biocidal agents in the battle against multi-drug resistant pathogen infections. PMID:22072905

  16. Effects of the properties of short peptides conjugated with cell-penetrating peptides on their internalization into cells.

    PubMed

    Matsumoto, Ryo; Okochi, Mina; Shimizu, Kazunori; Kanie, Kei; Kato, Ryuji; Honda, Hiroyuki

    2015-01-01

    Peptides, especially intracellular functional peptides that can play a particular role inside a cell, have attracted attention as promising materials to control cell fate. However, hydrophilic materials like peptides are difficult for cells to internalize. Therefore, the screening and design of intracellular functional peptides are more difficult than that of extracellular ones. An effective high-throughput screening system for intracellular functional peptides has not been reported. Here, we demonstrate a novel peptide array system for screening intracellular functional peptides, in which both cell-penetrating peptide (CPP) domain and photo-cleavable linkers are used. By using this screening system, we determined how the cellular uptake properties of CPP-conjugated peptides varied depending on the properties of the conjugated peptides. We found that the internalization ability of CPP-conjugated peptides varied greatly depending on the property of the conjugated peptides, and anionic peptides drastically decreased the uptake ability. We summarized our data in a scatter diagram that plots hydrophobicity versus isoelectric point (pI) of conjugated peptides. These results define a peptide library suitable for screening of intracellular functional peptides. Thus, our system, including the diagram, is a promising tool for searching biological active molecules such as peptide-based drugs. PMID:26256261

  17. Effects of the properties of short peptides conjugated with cell-penetrating peptides on their internalization into cells

    PubMed Central

    Matsumoto, Ryo; Okochi, Mina; Shimizu, Kazunori; Kanie, Kei; Kato, Ryuji; Honda, Hiroyuki

    2015-01-01

    Peptides, especially intracellular functional peptides that can play a particular role inside a cell, have attracted attention as promising materials to control cell fate. However, hydrophilic materials like peptides are difficult for cells to internalize. Therefore, the screening and design of intracellular functional peptides are more difficult than that of extracellular ones. An effective high-throughput screening system for intracellular functional peptides has not been reported. Here, we demonstrate a novel peptide array system for screening intracellular functional peptides, in which both cell-penetrating peptide (CPP) domain and photo-cleavable linkers are used. By using this screening system, we determined how the cellular uptake properties of CPP-conjugated peptides varied depending on the properties of the conjugated peptides. We found that the internalization ability of CPP-conjugated peptides varied greatly depending on the property of the conjugated peptides, and anionic peptides drastically decreased the uptake ability. We summarized our data in a scatter diagram that plots hydrophobicity versus isoelectric point (pI) of conjugated peptides. These results define a peptide library suitable for screening of intracellular functional peptides. Thus, our system, including the diagram, is a promising tool for searching biological active molecules such as peptide-based drugs. PMID:26256261

  18. Peptides from milk proteins and their properties.

    PubMed

    Kilara, Arun; Panyam, Dinakar

    2003-01-01

    This review has attempted to study the literature pertaining to peptides derived from milk proteins. Hydrolysis of milk proteins to generate peptides has been practiced for a long time and it was recognized early on in this process that the taste of hydrolyzates might hinder use of these products in food formulations. Modification of protein is necessary to form a more acceptable or utilizable product, to form a product that is less susceptible to deteriorative reactions and to form a product that is of higher nutritionall quality. Modifications may be achieved by a number of chemical and enzymatic means. This review has considered only enzymatic modification of dairy proteins. Modified proteins contain peptides and some of these peptides have been purified and their functionalities have been compared with unmodified proteins. This paper has examined the literature pertaining to improvement in functionality of enzyme-modified proteins. Improvements in solubility, emulsification, foaming and gelation were examined. There is limited information available on the sequence of the peptides necessary to improve the functional characteristics of proteins. Knowing the sequences of desirable functional peptides can lead to genetic alteration of proteins to improve functionality. Addition of synthetic peptides to intact proteins may be another way in which the functionality of proteins can be augmented. Some of the peptides in milk proteins are capable of affecting biological functions of an organism. These effects can be antimicrobial and probiotic, i.e., prevent the growth and proliferation of undesirable and pathogenic organisms, or they may promote the growth of desirable bacteria in the digestive tract of humans and animals. Peptides derived from milk protein have been shown to exert digestive and metabolic effects as well. They may also influence the immune system. These biological effects may play an important role in the development of medical foods that treat or

  19. Effects of peptide acetylation and dimethylation on electrospray ionization efficiency.

    PubMed

    Cho, Kyung-Cho; Kang, Jeong Won; Choi, Yuri; Kim, Tae Woo; Kim, Kwang Pyo

    2016-02-01

    Peptide acetylation and dimethylation have been widely used to derivatize primary amino groups (peptide N-termini and the ε-amino group of lysines) for chemical isotope labeling of quantitative proteomics or for affinity tag labeling for selection and enrichment of labeled peptides. However, peptide acetylation results in signal suppression during electrospray ionization (ESI) due to charge neutralization. In contrast, dimethylated peptides show increased ionization efficiency after derivatization, since dimethylation increases hydrophobicity and maintains a positive charge on the peptide under common LC conditions. In this study, we quantitatively compared the ESI efficiencies of acetylated and dimethylated model peptides and tryptic peptides of BSA. Dimethylated peptides showed higher ionization efficiency than acetylated peptides for both model peptides and tryptic BSA peptides. At the proteome level, peptide dimethylation led to better protein identification than peptide acetylation when tryptic peptides of mouse brain lysate were analyzed with LC-ESI-MS/MS. These results demonstrate that dimethylation of tryptic peptides enhanced ESI efficiency and provided up to two-fold improved protein identification sensitivity in comparison with acetylation. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26889926

  20. A new way to silicone-based peptide polymers.

    PubMed

    Jebors, Said; Ciccione, Jeremie; Al-Halifa, Soultan; Nottelet, Benjamin; Enjalbal, Christine; M'Kadmi, Céline; Amblard, Muriel; Mehdi, Ahmad; Martinez, Jean; Subra, Gilles

    2015-03-16

    We describe a new class of silicone-containing peptide polymers obtained by a straightforward polymerization in water using tailored chlorodimethylsilyl peptide blocks as monomeric units. This general strategy is applicable to any type of peptide sequences, yielding linear or branched polymer chains composed of well-defined peptide sequences. PMID:25650781

  1. Combined Statistical Analyses of Peptide Intensities and Peptide Occurrences Improves Identification of Significant Peptides from MS-based Proteomics Data

    SciTech Connect

    Webb-Robertson, Bobbie-Jo M.; McCue, Lee Ann; Waters, Katrina M.; Matzke, Melissa M.; Jacobs, Jon M.; Metz, Thomas O.; Varnum, Susan M.; Pounds, Joel G.

    2010-11-01

    Liquid chromatography-mass spectrometry-based (LC-MS) proteomics uses peak intensities of proteolytic peptides to infer the differential abundance of peptides/proteins. However, substantial run-to-run variability in peptide intensities and observations (presence/absence) of peptides makes data analysis quite challenging. The missing abundance values in LC-MS proteomics data are difficult to address with traditional imputation-based approaches because the mechanisms by which data are missing are unknown a priori. Data can be missing due to random mechanisms such as experimental error, or non-random mechanisms such as a true biological effect. We present a statistical approach that uses a test of independence known as a G-test to test the null hypothesis of independence between the number of missing values and the experimental groups. We pair the G-test results evaluating independence of missing data (IMD) with a standard analysis of variance (ANOVA) that uses only means and variances computed from the observed data. Each peptide is therefore represented by two statistical confidence metrics, one for qualitative differential observation and one for quantitative differential intensity. We use two simulated and two real LC-MS datasets to demonstrate the robustness and sensitivity of the ANOVA-IMD approach for assigning confidence to peptides with significant differential abundance among experimental groups.

  2. On the hydrophobicity of peptides: Comparing empirical predictions of peptide log P values.

    PubMed

    Thompson, Sarah J; Hattotuwagama, Channa K; Holliday, John D; Flower, Darren R

    2006-01-01

    Peptides are of great therapeutic potential as vaccines and drugs. Knowledge of physicochemical descriptors, including the partition coefficient logP, is useful for the development of predictive Quantitative Structure-Activity Relationships (QSARs). We have investigated the accuracy of available programs for the prediction of logP values for peptides with known experimental values obtained from the literature. Eight prediction programs were tested, of which seven programs were fragment-based methods: XLogP, LogKow, PLogP, ACDLogP, AlogP, Interactive Analysis's LogP and MlogP; and one program used a whole molecule approach: QikProp. The predictive accuracy of the programs was assessed using r(2) values, with ALogP being the most effective (r( 2) = 0.822) and MLogP the least (r(2) = 0.090). We also examined three distinct types of peptide structure: blocked, unblocked, and cyclic. For each study (all peptides, blocked, unblocked and cyclic peptides) the performance of programs rated from best to worse is as follows: all peptides - ALogP, QikProp, PLogP, XLogP, IALogP, LogKow, ACDLogP, and MlogP; blocked peptides - PLogP, XLogP, ACDLogP, IALogP, LogKow, QikProp, ALogP, and MLogP; unblocked peptides - QikProp, IALogP, ALogP, ACDLogP, MLogP, XLogP, LogKow and PLogP; cyclic peptides - LogKow, ALogP, XLogP, MLogP, QikProp, ACDLogP, IALogP. In summary, all programs gave better predictions for blocked peptides, while, in general, logP values for cyclic peptides were under-predicted and those of unblocked peptides were over-predicted. PMID:17597897

  3. A statistical approach to determining responses to individual peptides from pooled-peptide ELISpot data.

    PubMed

    Ström, Peter; Støer, Nathalie; Borthwick, Nicola; Dong, Tao; Hanke, Tomáš; Reilly, Marie

    2016-08-01

    To investigate in detail the effect of infection or vaccination on the human immune system, ELISpot assays are used to simultaneously test the immune response to a large number of peptides of interest. Scientists commonly use "peptide pools", where, instead of an individual peptide, a test well contains a group of peptides. Since the response from a well may be due to any or many of the peptides in the pool, pooled assays usually need to be followed by confirmatory assays of a number of individual peptides. We present a statistical method that enables estimation of individual peptide responses from pool responses using the Expectation Maximization (EM) algorithm for "incomplete data". We demonstrate the accuracy and precision of these estimates in simulation studies of ELISpot plates with 90 pools of 6 or 7 peptides arranged in three dimensions and three Mock wells for the estimation of background. In analysis of real pooled data from 6 subjects in a HIV-1 vaccine trial, where 199 peptides were arranged in 80 pools if size 9 or 10, our estimates were in very good agreement with the results from individual-peptide confirmatory assays. Compared to the classical approach, we could identify almost all the same peptides with high or moderate response, with less than half the number of confirmatory tests. Our method facilitates efficient use of the information available in pooled ELISpot data to avoid or reduce the need for confirmatory testing. We provide an easy-to-use free online application for implementing the method, where on uploading two spreadsheets with the pool design and pool responses, the user obtains the estimates of the individual peptide responses. PMID:27196788

  4. cis-Peptide Bonds: A Key for Intestinal Permeability of Peptides? .

    PubMed

    Marelli, Udaya Kiran; Ovadia, Oded; Frank, Andreas Oliver; Chatterjee, Jayanta; Gilon, Chaim; Hoffman, Amnon; Kessler, Horst

    2015-10-19

    Recent structural studies on libraries of cyclic hexapeptides led to the identification of common backbone conformations that may be instrumental to the oral availability of peptides. Furthermore, the observation of differential Caco-2 permeabilities of enantiomeric pairs of some of these peptides strongly supports the concept of conformational specificity driven uptake and also suggests a pivotal role of carrier-mediated pathways for peptide transport, especially for scaffolds of polar nature. This work presents investigations on the Caco-2 and PAMPA permeability profiles of 13 selected N-methylated cyclic pentaalanine peptides derived from the basic cyclo(-D-Ala-Ala4 -) template. These molecules generally showed moderate to low transport in intestinal epithelia with a few of them exhibiting a Caco-2 permeability equal to or slightly higher than that of mannitol, a marker for paracellular permeability. We identified that the majority of the permeable cyclic penta- and hexapeptides possess an N-methylated cis-peptide bond, a structural feature that is also present in the orally available peptides cyclosporine A and the tri-N-methylated analogue of the Veber-Hirschmann peptide. Based on these observations it appears that the presence of N-methylated cis-peptide bonds at certain locations may promote the intestinal permeability of peptides through a suitable conformational preorganization. PMID:26337831

  5. Assessment of RNA carrier function in peptide amphiphiles derived from the HIV fusion peptide.

    PubMed

    Pratumyot, Yaowalak; Torres, Oscar B; Bong, Dennis

    2016-05-01

    A small library of amphiphilic peptides has been evaluated for duplex RNA carrier function into A549 cells. We studied peptides in which a C-terminal 7-residue cationic domain is attached to a neutral/hydrophobic 23-residue domain that is based on the viral fusion peptide of HIV. We also examined peptides in which the cationic charge was evenly distributed throughout the peptide. Strikingly, subtle sequence variations in the hydrophobic domain that do not alter net hydrophobicity result in wide variation in RNA uptake. Additionally, cyclic cystine variants are much less active as RNA carriers than their open-chain cysteine analogs. With regard to electrostatic effects, we find that lysine is less effective than arginine in facilitating uptake, and that even distribution of cationic residues throughout the peptide sequence results in especially effective RNA carrier function. Overall, minor changes in peptide hydrophobicity, flexibility and charge distribution can significantly alter carrier function. We hypothesize this is due to altered properties of the peptide-RNA assembly rather than peptide secondary structure. PMID:26988874

  6. Evolution of Antimicrobial Peptides to Self-Assembled Peptides for Biomaterial Applications

    PubMed Central

    McCloskey, Alice P.; Gilmore, Brendan F.; Laverty, Garry

    2014-01-01

    Biomaterial-related infections are a persistent burden on patient health, recovery, mortality and healthcare budgets. Self-assembled antimicrobial peptides have evolved from the area of antimicrobial peptides. Peptides serve as important weapons in nature, and increasingly medicine, for combating microbial infection and biofilms. Self-assembled peptides harness a “bottom-up” approach, whereby the primary peptide sequence may be modified with natural and unnatural amino acids to produce an inherently antimicrobial hydrogel. Gelation may be tailored to occur in the presence of physiological and infective indicators (e.g. pH, enzymes) and therefore allow local, targeted antimicrobial therapy at the site of infection. Peptides demonstrate inherent biocompatibility, antimicrobial activity, biodegradability and numerous functional groups. They are therefore prime candidates for the production of polymeric molecules that have the potential to be conjugated to biomaterials with precision. Non-native chemistries and functional groups are easily incorporated into the peptide backbone allowing peptide hydrogels to be tailored to specific functional requirements. This article reviews an area of increasing interest, namely self-assembled peptides and their potential therapeutic applications as innovative hydrogels and biomaterials in the prevention of biofilm-related infection. PMID:25436505

  7. From a pro-apoptotic peptide to a lytic peptide: One single residue mutation.

    PubMed

    Zhou, Xi-Rui; Zhang, Qiang; Tian, Xi-Bo; Cao, Yi-Meng; Liu, Zhu-Qing; Fan, Ruru; Ding, Xiu-Fang; Zhu, Zhentai; Chen, Long; Luo, Shi-Zhong

    2016-08-01

    Further discovery and design of new anticancer peptides are important for the development of anticancer therapeutics, and study on the detailed acting mechanism and structure-function relationship of peptides is critical for anticancer peptide design and application. In this study, a novel anticancer peptide ZXR-1 (FKIGGFIKKLWRSKLA) derived from a known anticancer peptide mauriporin was developed, and a mutant ZXR-2 (FKIGGFIKKLWRSLLA) with only one residue difference at the 14th position (Lys→Leu) was also engineered. Replacement of the lysine with leucine made ZXR-2 more potent than ZXR-1 in general. Even with only one residue mutation, the two peptides displayed distinct anticancer modes of action. ZXR-1 could translocate into cells, target on the mitochondria and induce cell apoptosis, while ZXR-2 directly targeted on the cell membranes and caused membrane lysis. The variance in their acting mechanisms might be due to the different amphipathicity and positive charge distribution. In addition, the two Ile-Leu pairs (3-10 and 7-14) in ZXR-2 might also play a role in improving its cytotoxicity. Further study on the structure-function relationship of the two peptides may be beneficial for the design of novel anticancer peptides and peptide based therapeutics. PMID:27207743

  8. Electron Transport in Short Peptide Single Molecules

    NASA Astrophysics Data System (ADS)

    Cui, Jing; Brisendine, Joseph; Ng, Fay; Nuckolls, Colin; Koder, Ronald; Venkarataman, Latha

    We present a study of the electron transport through a series of short peptides using scanning tunneling microscope-based break junction method. Our work is motivated by the need to gain a better understanding of how various levels of protein structure contribute to the remarkable capacity of proteins to transport charge in biophysical processes such as respiration and photosynthesis. We focus here on short mono, di and tri-peptides, and probe their conductance when bound to gold electrodes in a native buffer environment. We first show that these peptides can bind to gold through amine, carboxyl, thiol and methyl-sulfide termini. We then focus on two systems (glycine and alanine) and show that their conductance decays faster than alkanes terminated by the same linkers. Importantly, our results show that the peptide bond is less conductive than a sigma carbon-carbon bond. This work was supported in part by NSF-DMR 1507440.

  9. Self-Assembly of Peptides to Nanostructures

    PubMed Central

    Mandal, Dindyal; Shirazi, Amir Nasrolahi; Parang, Keykavous

    2014-01-01

    The formation of well-ordered nanostructures through self-assembly of diverse organic and inorganic building blocks has drawn much attention owing to their potential applications in biology and chemistry. Among all organic building blocks, peptides are one of the most promising platforms due to their biocompatibility, chemical diversity, and resemblance with proteins. Inspired from the protein assembly in biological systems, various self-assembled peptide structures have been constructed using several amino acids and sequences. This review focuses on this emerging area, the recent advances in peptide self-assembly, and formation of different nanostructures, such as tubular, fibers, vesicles, spherical, and rod coil structures. While different peptide nanostructures are discovered, potential applications will be explored in drug delivery, tissue engineering, wound healing, and surfactants. PMID:24756480

  10. Electrocatalytic monitoring of peptidic proton-wires.

    PubMed

    Dorčák, V; Kabeláč, M; Kroutil, O; Bednářová, K; Vacek, J

    2016-08-01

    The transfer of protons or proton donor/acceptor abilities is an important phenomenon in many biomolecular systems. One example is the recently proposed peptidic proton-wires (H-wires), but the ability of these His-containing peptides to transfer protons has only been studied at the theoretical level so far. Here, for the first time the proton transfer ability of peptidic H-wires is examined experimentally in an adsorbed state using an approach based on a label-free electrocatalytic reaction. The experimental findings are complemented by theoretical calculations at the ab initio level in a vacuum and in an implicit solvent. Experimental and theoretical results indicated Ala3(His-Ala2)6 to be a high proton-affinity peptidic H-wire model. The methodology presented here could be used for the further investigation of the proton-exchange chemistry of other biologically or technologically important macromolecules. PMID:27353221

  11. Surface-enhanced Raman spectroscopy of peptides

    NASA Astrophysics Data System (ADS)

    Garrell, Robin L.; Herne, Tonya M.; Ahern, Angela M.; Sullenberger, Eve L.

    1990-07-01

    Surface-enhanced Raman (SER) spectroscopy has been used to probe the adsorption, surface interactions, and orientations of peptides on metal surfaces. Amino acids in homodipeptides give SER spectra with unique features that can be used to characterize the surface interactions of specific functional groups in more complicated peptides. In heterodipeptides, there is a hierarchy of functional group-surface interactions that prescribe their orientation and conformation on metal surfaces. By establishing this hierarchy, it is now possible to predict the interactions that occur between larger peptides and surfaces. Furthermore, the observed trends suggest that it should be possible to control these interactions by varying the solution pH, the charge on the surface, and other parameters of the measurement in order to adsorb species selectively from mixtures of peptides in solution. Potential biomedical applications of this technique will be described.

  12. Peptide mediated cancer targeting of nanoconjugates

    PubMed Central

    Raha, Sumita; Paunesku, Tatjana; Woloschak, Gayle

    2013-01-01

    Targeted use of nanoparticles in vitro, in cells and in vivo requires nanoparticle surface functionalization. Moieties that can be used for such a purpose include small molecules as well as polymers made of different biological and organic materials. Short amino acid polymers--peptides can often rival target binding avidity of much larger molecules. At the same time, peptides are smaller than most nanoparticles and thus allow for multiple nanoparticle modifications and creation of pluripotent nanoparticles. Most nanoparticles provide multiple binding sites for different cargo and targeting peptides which can be used for development of novel approaches for cancer targeting, diagnostics and therapy. In this review, we will focus on peptides which have been used for preparation of different nanoparticles designed for cancer research. PMID:21046660

  13. Clickable bifunctional radiometal chelates for peptide labeling†

    PubMed Central

    Lebedev, Artem Y.; Holland, Jason P.; Lewis, Jason S.

    2016-01-01

    Novel synthetic methods for producing an array of chelates for use in “click”-radiolabeling of peptides are described, and their reactivity with regards to subsequent conjugation and radiolabeling is discussed. PMID:20177623

  14. Tailoring elastase inhibition with synthetic peptides.

    PubMed

    Vasconcelos, Andreia; Azoia, Nuno G; Carvalho, Ana C; Gomes, Andreia C; Güebitz, Georg; Cavaco-Paulo, Artur

    2011-09-01

    Chronic wounds are the result of excessive amounts of tissue destructive proteases such as human neutrophil elastase (HNE). The high levels of this enzyme found on those types of wounds inactivate the endogenous inhibitor barrier thus, the search for new HNE inhibitors is required. This work presents two new HNE inhibitor peptides, which were synthesized based on the reactive-site loop of the Bowman-Birk inhibitor protein. The results obtained indicated that these new peptides are competitive inhibitors for HNE and, the inhibitory activity can be modulated by modifications introduced at the N- and C-terminal of the peptides. Furthermore, these peptides were also able to inhibit elastase from a human wound exudate while showing no cytotoxicity against human skin fibroblasts in vitro, greatly supporting their potential application in chronic wound treatment. PMID:21658384

  15. Synthetic therapeutic peptides: science and market.

    PubMed

    Vlieghe, Patrick; Lisowski, Vincent; Martinez, Jean; Khrestchatisky, Michel

    2010-01-01

    The decreasing number of approved drugs produced by the pharmaceutical industry, which has been accompanied by increasing expenses for R&D, demands alternative approaches to increase pharmaceutical R&D productivity. This situation has contributed to a revival of interest in peptides as potential drug candidates. New synthetic strategies for limiting metabolism and alternative routes of administration have emerged in recent years and resulted in a large number of peptide-based drugs that are now being marketed. This review reports on the unexpected and considerable number of peptides that are currently available as drugs and the chemical strategies that were used to bring them into the market. As demonstrated here, peptide-based drug discovery could be a serious option for addressing new therapeutic challenges. PMID:19879957

  16. Peptide-based vaccines for cancer therapy

    PubMed Central

    Parmiani, Giorgio; Russo, Vincenzo; Maccalli, Cristina; Parolini, Danilo; Rizzo, Nathalie; Maio, Michele

    2014-01-01

    Interest for cancer vaccination started more than 30 years ago after the demonstration that both in animal models and later on in patients it is possible to generate anti-tumor immune responses. The clinical application of this knowledge, however, was disappointing. In this review we summarize results on peptides epitopes recognized by T cells that have been studied thanks to their easy synthesis and the lack of significant side effects when administered in-vivo. To improve the clinical efficacy, peptides were modified in their aminoacid sequence to augment their immunogenicity. Peptides vaccines were recently shown to induce a high frequency of immune response in patients that were accompanied by clinical efficacy. These data are discussed at the light of recent progression of immunotherapy caused by the addition of check-point antibodies thus providing a general picture of the potential therapeutic efficacy of the peptide-based vaccines and their combination with other biological agents. PMID:25483658

  17. Peptide-based vaccines for cancer therapy.

    PubMed

    Parmiani, Giorgio; Russo, Vincenzo; Maccalli, Cristina; Parolini, Danilo; Rizzo, Nathalie; Maio, Michele

    2014-01-01

    Interest for cancer vaccination started more than 30 years ago after the demonstration that both in animal models and later on in patients it is possible to generate anti-tumor immune responses. The clinical application of this knowledge, however, was disappointing. In this review we summarize results on peptides epitopes recognized by T cells that have been studied thanks to their easy synthesis and the lack of significant side effects when administered in-vivo. To improve the clinical efficacy, peptides were modified in their aminoacid sequence to augment their immunogenicity. Peptides vaccines were recently shown to induce a high frequency of immune response in patients that were accompanied by clinical efficacy. These data are discussed at the light of recent progression of immunotherapy caused by the addition of check-point antibodies thus providing a general picture of the potential therapeutic efficacy of the peptide-based vaccines and their combination with other biological agents. PMID:25483658

  18. New antibacterial peptide derived from bovine hemoglobin.

    PubMed

    Daoud, Rachid; Dubois, Veronique; Bors-Dodita, Loredana; Nedjar-Arroume, Naima; Krier, Francois; Chihib, Nour-Eddine; Mary, Patrice; Kouach, Mostafa; Briand, Gilbert; Guillochon, Didier

    2005-05-01

    Peptic digestion of bovine hemoglobin at low degree of hydrolysis yields an intermediate peptide fraction exhibiting antibacterial activity against Micrococcus luteus A270, Listeria innocua, Escherichia coli and Salmonella enteritidis after separation by reversed-phase HPLC. From this fraction a pure peptide was isolated and analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and electrospray ionization tandem mass spectrometry (ESI-MS/MS). This peptide correspond to the 107-136 fragment of the alpha chain of bovine hemoglobin. The minimum inhibitory concentrations (MIC) towards the four strains and its hemolytic activity towards bovine erythrocytes were determined. A MIC of 38 microM was reported against L. innocua and 76 microM for other various bacterial species. This peptide had no hemolytic activity up to 380 microM concentration. PMID:15808900

  19. Peptide Seems to Boost Human Memory.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1981

    1981-01-01

    This article discusses recent studies which have shown that the peptide hormone vasopressin apparently can stimulate memory and learning in healthy human volunteers and in certain mentally disturbed patients. (ECO)

  20. Anti-chlamydial effect of plant peptides.

    PubMed

    Balogh, Emese Petra; Mosolygó, Tímea; Tiricz, Hilda; Szabó, Agnes Míra; Karai, Adrienn; Kerekes, Fanni; Virók, Dezső P; Kondorosi, Eva; Burián, Katalin

    2014-06-01

    Even in asymptomatic cases of Chlamydia trachomatis infection, the aim of the antibiotic strategy is eradication of the pathogen so as to avoid the severe late sequelae, such as pelvic inflammatory disease, ectopic pregnancy, and tubal infertility. Although first-line antimicrobial agents have been demonstrated to be predominantly successful in the treatment of C. trachomatis infection, treatment failures have been observed in some cases. Rich source of antimicrobial peptides was recently discovered in Medicago species, which act in plants as differentiation factors of the endosymbiotic bacterium partner. Several of these symbiotic plant peptides have proved to be potent killers of various bacteria in vitro. We show here that 7 of 11 peptides tested exhibited antimicrobial activity against C. trachomatis D, and that the killing activity of these peptides is most likely due to their interaction with specific bacterial targets. PMID:24939689

  1. Advances in synthetic peptides reagent discovery

    NASA Astrophysics Data System (ADS)

    Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Stratis-Cullum, Dimitra N.

    2013-05-01

    Bacterial display technology offers a number of advantages over competing display technologies (e.g, phage) for the rapid discovery and development of peptides with interaction targeted to materials ranging from biological hazards through inorganic metals. We have previously shown that discovery of synthetic peptide reagents utilizing bacterial display technology is relatively simple and rapid to make laboratory automation possible. This included extensive study of the protective antigen system of Bacillus anthracis, including development of discovery, characterization, and computational biology capabilities for in-silico optimization. Although the benefits towards CBD goals are evident, the impact is far-reaching due to our ability to understand and harness peptide interactions that are ultimately extendable to the hybrid biomaterials of the future. In this paper, we describe advances in peptide discovery including, new target systems (e.g. non-biological materials), advanced library development and clone analysis including integrated reporting.

  2. Biologically Active and Antimicrobial Peptides from Plants

    PubMed Central

    Salas, Carlos E.; Badillo-Corona, Jesus A.; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application. PMID:25815307

  3. Lipid-based nanoformulations for peptide delivery.

    PubMed

    Matougui, Nada; Boge, Lukas; Groo, Anne-Claire; Umerska, Anita; Ringstad, Lovisa; Bysell, Helena; Saulnier, Patrick

    2016-04-11

    Nanoformulations have attracted a lot of attention because of their size-dependent properties. Among the array of nanoformulations, lipid nanoformulations (LNFs) have evoked increasing interest because of the advantages of their high degree of biocompatibility and versatility. The performance of lipid nanoformulations is greatly influenced by their composition and structure. Therapeutic peptides represent a growing share of the pharmaceutical market. However, the main challenge for their development into commercial products is their inherent physicochemical and biological instability. Important peptides such as insulin, calcitonin and cyclosporin A have been incorporated into LNFs. The association or encapsulation of peptides within lipid-based carriers has shown to protect the labile molecules against enzymatic degradation. This review describes strategies used for the formulation of peptides and some methods used for the assessment of association efficiency. The advantages and drawbacks of such carriers are also described. PMID:26899976

  4. Simulation of Peptides at Aqueous Interfaces

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, M.; Chipot, C.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Behavior of peptides at water-membrane interfaces is of great interest in studies on cellular transport and signaling, membrane fusion, and the action of toxins and antibiotics. Many peptides, which exist in water only as random coils, can form sequence-dependent, ordered structures at aqueous interfaces, incorporate into membranes and self-assembly into functional units, such as simple ion channels. Multi -nanosecond molecular dynamics simulations have been carried out to study the mechanism and energetics of interfacial folding of both non-polar and amphiphilic peptides, their insertion into membranes and association into higher-order structures. The simulations indicate that peptides fold non-sequentially, often through a series of amphiphilic intermediates. They further incorporate into the membrane in a preferred direction as folded monomers, and only then aggregate into dimers and, possibly, further into "dimers of dimers".

  5. Peptide regulation of Maize defense reponses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ZmPEP1 is a peptide signal encoded by a previously uncharacterized maize gene that we have named ZmPROPEP1. The ZmPROPEP1 gene was identified by homology to the Arabidopsis AtPROPEP1 gene that encodes the precursor protein to the peptide signal AtPEP1. Together with its receptors, AtPEPR1 and AtPEP...

  6. Urokinase-controlled tumor penetrating peptide.

    PubMed

    Braun, Gary B; Sugahara, Kazuki N; Yu, Olivia M; Kotamraju, Venkata Ramana; Mölder, Tarmo; Lowy, Andrew M; Ruoslahti, Erkki; Teesalu, Tambet

    2016-06-28

    Tumor penetrating peptides contain a cryptic (R/K)XX(R/K) CendR element that must be C-terminally exposed to trigger neuropilin-1 (NRP-1) binding, cellular internalization and malignant tissue penetration. The specific proteases that are involved in processing of tumor penetrating peptides identified using phage display are not known. Here we design de novo a tumor-penetrating peptide based on consensus cleavage motif of urokinase-type plasminogen activator (uPA). We expressed the peptide, uCendR (RPARSGR↓SAGGSVA, ↓ shows cleavage site), on phage or coated it onto silver nanoparticles and showed that it is cleaved by uPA, and that the cleavage triggers binding to recombinant NRP-1 and to NPR-1-expressing cells. Upon systemic administration to mice bearing uPA-overexpressing breast tumors, FAM-labeled uCendR peptide and uCendR-coated nanoparticles preferentially accumulated in tumor tissue. We also show that uCendR phage internalization into cultured cancer cells and its penetration in explants of murine tumors and clinical tumor explants can be potentiated by combining the uCendR peptide with tumor-homing module, CRGDC. Our work demonstrates the feasibility of designing tumor-penetrating peptides that are activated by a specific tumor protease. As upregulation of protease expression is one of the hallmarks of cancer, and numerous tumor proteases have substrate specificities compatible with proteolytic unmasking of cryptic CendR motifs, the strategy described here may provide a generic approach for designing proteolytically-actuated peptides for tumor-penetrative payload delivery. PMID:27106816

  7. D-Peptides as Recognition Molecules and Therapeutic Agents.

    PubMed

    Liu, Min; Li, Xue; Xie, Zuoxu; Xie, Cao; Zhan, Changyou; Hu, Xuefeng; Shen, Qing; Wei, Xiaoli; Su, Bingxia; Wang, Jing; Lu, Weiyue

    2016-08-01

    Over recent years, D-peptides have attracted increasing attention. D-peptides increase enzymatic stability, prolong the plasma half-life, improve oral bioavailability, and enhance binding activity and specificity with receptor or target proteins, in comparison with the corresponding L-peptide. Therefore, D-peptides are considered to have potential as recognition molecules and therapeutic agents. This review focuses on the design and application of D-peptides with biological activity. PMID:27255896

  8. HCD Fragmentation of Glycated Peptides.

    PubMed

    Keilhauer, Eva C; Geyer, Philipp E; Mann, Matthias

    2016-08-01

    Protein glycation is a concentration-dependent nonenzymatic reaction of reducing sugars with amine groups of proteins to form early as well as advanced glycation (end-) products (AGEs). Glycation is a highly disease-relevant modification but is typically only studied on a few blood proteins. To complement our blood proteomics studies in diabetics, we here investigate protein glycation by higher energy collisional dissociation (HCD) fragmentation on Orbitrap mass spectrometers. We established parameters to most efficiently fragment and identify early glycation products on in vitro glycated model proteins. Retaining standard collision energies does not degrade performance if the most dominant neutral loss of H6O3 is included into the database search strategy. Glycation analysis of the entire HeLa proteome revealed an unexpected intracellular preponderance for arginine over lysine modification in early and advanced glycation (end-) products. Single-run analysis from 1 μL of undepleted and unenriched blood plasma identified 101 early glycation sites as well as numerous AGE sites on diverse plasma proteins. We conclude that HCD fragmentation is well-suited for analyzing glycated peptides and that the diabetic status of patients can be directly diagnosed from single-run plasma proteomics measurements. PMID:27425404

  9. Relaxin family peptides and their receptors.

    PubMed

    Bathgate, R A D; Halls, M L; van der Westhuizen, E T; Callander, G E; Kocan, M; Summers, R J

    2013-01-01

    There are seven relaxin family peptides that are all structurally related to insulin. Relaxin has many roles in female and male reproduction, as a neuropeptide in the central nervous system, as a vasodilator and cardiac stimulant in the cardiovascular system, and as an antifibrotic agent. Insulin-like peptide-3 (INSL3) has clearly defined specialist roles in male and female reproduction, relaxin-3 is primarily a neuropeptide involved in stress and metabolic control, and INSL5 is widely distributed particularly in the gastrointestinal tract. Although they are structurally related to insulin, the relaxin family peptides produce their physiological effects by activating a group of four G protein-coupled receptors (GPCRs), relaxin family peptide receptors 1-4 (RXFP1-4). Relaxin and INSL3 are the cognate ligands for RXFP1 and RXFP2, respectively, that are leucine-rich repeat containing GPCRs. RXFP1 activates a wide spectrum of signaling pathways to generate second messengers that include cAMP and nitric oxide, whereas RXFP2 activates a subset of these pathways. Relaxin-3 and INSL5 are the cognate ligands for RXFP3 and RXFP4 that are closely related to small peptide receptors that when activated inhibit cAMP production and activate MAP kinases. Although there are still many unanswered questions regarding the mode of action of relaxin family peptides, it is clear that they have important physiological roles that could be exploited for therapeutic benefit. PMID:23303914

  10. Peptide Binding for Bio-Based Nanomaterials.

    PubMed

    Bedford, N M; Munro, C J; Knecht, M R

    2016-01-01

    Peptide-based strategies represent transformative approaches to fabricate functional inorganic materials under sustainable conditions by modeling the methods exploited in biology. In general, peptides with inorganic affinity and specificity have been isolated from organisms and through biocombinatorial selection techniques (ie, phage and cell surface display). These peptides recognize and bind the inorganic surface through a series of noncovalent interactions, driven by both enthalpic and entropic contributions, wherein the biomolecules wrap the metallic nanoparticle structure. Through these interactions, modification of the inorganic surface can be accessed to drive the incorporation of significantly disordered surface metal atoms, which have been found to be highly catalytically active for a variety of chemical transformations. We have employed synthetic, site-directed mutagenesis studies to reveal localized binding effects of the peptide at the metallic nanoparticle structure to begin to identify the biological basis of control over biomimetic nanoparticle catalytic activity. The protocols described herein were used to fabricate and characterize peptide-capped nanoparticles in atomic resolution to identify peptide sequence effects on the surface structure of the materials, which can then be directly correlated to the catalytic activity to identify structure/function relationships. PMID:27586350

  11. Biomathematical Description of Synthetic Peptide Libraries

    PubMed Central

    Trepel, Martin

    2015-01-01

    Libraries of randomised peptides displayed on phages or viral particles are essential tools in a wide spectrum of applications. However, there is only limited understanding of a library's fundamental dynamics and the influences of encoding schemes and sizes on their quality. Numeric properties of libraries, such as the expected number of different peptides and the library's coverage, have long been in use as measures of a library's quality. Here, we present a graphical framework of these measures together with a library's relative efficiency to help to describe libraries in enough detail for researchers to plan new experiments in a more informed manner. In particular, these values allow us to answer-in a probabilistic fashion-the question of whether a specific library does indeed contain one of the "best" possible peptides. The framework is implemented in a web-interface based on two packages, discreteRV and peptider, to the statistical software environment R. We further provide a user-friendly web-interface called PeLiCa (Peptide Library Calculator, http://www.pelica.org), allowing scientists to plan and analyse their peptide libraries. PMID:26042419

  12. Peptide Toxins in Solitary Wasp Venoms.

    PubMed

    Konno, Katsuhiro; Kazuma, Kohei; Nihei, Ken-ichi

    2016-04-01

    Solitary wasps paralyze insects or spiders with stinging venom and feed the paralyzed preys to their larva. Accordingly, the venoms should contain a variety of constituents acting on nervous systems. However, only a few solitary wasp venoms have been chemically studied despite thousands of species inhabiting the planet. We have surveyed bioactive substances in solitary wasp venoms found in Japan and discovered a variety of novel bioactive peptides. Pompilidotoxins (PMTXs), in the venoms of the pompilid wasps Anoplius samariensis and Batozonellus maculifrons, are small peptides consisting of 13 amino acids without a disulfide bond. PMTXs slowed Na⁺ channel inactivation, in particular against neuronal type Na⁺ channels, and were rather selective to the Nav1.6 channel. Mastoparan-like cytolytic and antimicrobial peptides are the major components of eumenine wasp venoms. They are rich in hydrophobic and basic amino acids, adopting a α-helical secondary structure, and showing mast cell degranulating, antimicrobial and hemolytic activities. The venom of the spider wasp Cyphononyx fulvognathus contained four bradykinin-related peptides. They are hyperalgesic and, dependent on the structure, differently associated with B₁ or B₂ receptors. Further survey led to the isolation of leucomyosuppressin-like FMRFamide peptides from the venoms of the digger wasps Sphex argentatus and Isodontia harmandi. These results of peptide toxins in solitary wasp venoms from our studies are summarized. PMID:27096870

  13. Antimicrobial Cyclic Peptides for Plant Disease Control

    PubMed Central

    Lee, Dong Wan; Kim, Beom Seok

    2015-01-01

    Antimicrobial cyclic peptides derived from microbes bind stably with target sites, have a tolerance to hydrolysis by proteases, and a favorable degradability under field conditions, which make them an attractive proposition for use as agricultural fungicides. Antimicrobial cyclic peptides are classified according to the types of bonds within the ring structure; homodetic, heterodetic, and complex cyclic peptides, which in turn reflect diverse physicochemical features. Most antimicrobial cyclic peptides affect the integrity of the cell envelope. This is achieved through direct interaction with the cell membrane or disturbance of the cell wall and membrane component biosynthesis such as chitin, glucan, and sphingolipid. These are specific and selective targets providing reliable activity and safety for non-target organisms. Synthetic cyclic peptides produced through combinatorial chemistry offer an alternative approach to develop antimicrobials for agricultural uses. Those synthesized so far have been studied for antibacterial activity, however, the recent advancements in powerful technologies now promise to provide novel antimicrobial cyclic peptides that are yet to be discovered from natural resources. PMID:25774105

  14. Peptide pheromone signaling in Streptococcus and Enterococcus

    PubMed Central

    Cook, Laura C.; Federle, Michael J.

    2014-01-01

    Intercellular chemical signaling in bacteria, commonly referred to as quorum sensing (QS), relies on the production and detection of compounds known as pheromones to elicit coordinated responses among members of a community. Pheromones produced by Gram-positive bacteria are comprised of small peptides. Based on both peptide structure and sensory system architectures, Gram-positive bacterial signaling pathways may be classified into one of four groups with a defining hallmark: cyclical peptides of the Agr type, peptides that contain Gly-Gly processing motifs, sensory systems of the RNPP family, or the recently characterized Rgg-like regulatory family. The recent discovery that Rgg family members respond to peptide pheromones increases substantially the number of species in which QS is likely a key regulatory component. These pathways control a variety of fundamental behaviors including conjugation, natural competence for transformation, biofilm development, and virulence factor regulation. Overlapping QS pathways found in multiple species and pathways that utilize conserved peptide pheromones provide opportunities for interspecies communication. Here we review pheromone signaling identified in the genera Enterococcus and Streptococcus, providing examples of all four types of pathways. PMID:24118108

  15. Laminin-111-derived peptides and cancer

    PubMed Central

    Kikkawa, Yamato; Hozumi, Kentaro; Katagiri, Fumihiko; Nomizu, Motoyoshi; Kleinman, Hynda K.; Koblinski, Jennifer E.

    2013-01-01

    Laminin-111 is a large trimeric basement membrane glycoprotein with many active sites. In particular, four peptides active in tumor malignancy studies have been identified in laminin-111 using a systematic peptide screening method followed by various assays. Two of the peptides (IKVAV and AG73) are found on the α1 chain, one (YIGSR) of the β1 chain and one (C16) on the γ1 chain. The four peptides have distinct activities and receptors. Since three of the peptides (IKVAV, AG73 and C16) strongly promote tumor growth, this may explain the potent effects laminin-111 has on malignant cells. The peptide, YIGSR, decreases tumor growth and experimental metastasis via a 32/67 kD receptor while IKVAV increases tumor growth, angiogenesis and protease activity via integrin receptors. AG73 increases tumor growth and metastases via syndecan receptors. C16 increases tumor growth and angiogenesis via integrins. Identification of such sites on laminin-111 will have use in defining strategies to develop therapeutics for cancer. PMID:23263633

  16. A bombesin immunoreactive peptide in milk.

    PubMed Central

    Jahnke, G D; Lazarus, L H

    1984-01-01

    Immunoreactivity to the amphibian peptide bombesin was found in instant nonfat dry milk (ca. 0.7 ng/ml) and in the whey of whole or skim bovine milk (ca. 1.2 ng/ml) even after ultracentrifugation. The soluble immunoreactivity was associated with a peptide exhibiting the following characteristics: (i) parallel displacement in an immunoassay using an antiserum recognizing bombesin amino acid residues 5-8; (ii) separation from both gastrin-releasing peptide and amphibian bombesin by gel filtration--the approximate Mr was 3,200; (iii) denaturation in urea, reduction by dithiothreitol, and acetylation by iodoacetamide had no effect on its elution profile by gel-filtration chromatography and the aggregation of added bombesin to milk proteins or peptides was not observed; (iv) reversed-phase HPLC separated milk immunoreactivity from gastrin-releasing peptide and bombesin; (v) digestion by trypsin yielded a smaller immunoreactive peptide fragment, whereas nearly all immunoreactivity was lost by treatment with alpha-chymotrypsin; and (vi) the level of immunoreactivity was unaffected by boiling. These data show that milk is an exogenous source of bombesin-like immunoreactivity, which may account for the increase of gastric acid and gastrointestinal hormone levels after the consumption of milk. PMID:6582513

  17. Peptide neurons in the canine small intestine.

    PubMed

    Daniel, E E; Costa, M; Furness, J B; Keast, J R

    1985-07-01

    The distributions of peptide-containing nerve fibers and cell bodies in the canine small intestine were determined with antibodies raised against seven peptides: enkephalin, gastrin-releasing peptide (GRP), neuropeptide Y, neurotensin, somatostatin, substance P, and vasoactive intestinal peptide (VIP). Immunoreactive nerve cell bodies and fibers were found for each peptide except neurotensin. In the muscle layers there were numerous substance P, VIP, and enkephalin fibers, fewer neuropeptide Y fibers, and very few GRP or somatostatin fibers. The mucosa contained many VIP and substance P fibers, moderate numbers of neuropeptide Y, somatostatin, and GRP fibers and rare enkephalin fibers. Nerve cell bodies reactive for each of the six neural peptides were located in both the myenteric and submucous plexuses. The distributions of nerve cell bodies and processes in the canine small intestine show many similarities with other mammals, for example, in the distributions of VIP, substance P, neuropeptide Y, and somatostatin nerves. There are some major differences, such as the presence in dogs of numerous submucosal nerve cell bodies with enkephalinlike immunoreactivity and of GRP-like immunoreactivity in submucous nerve cell bodies and mucosal fibers. PMID:2411766

  18. Self-Assembly of Tetraphenylalanine Peptides.

    PubMed

    Mayans, Enric; Ballano, Gema; Casanovas, Jordi; Díaz, Angélica; Pérez-Madrigal, Maria M; Estrany, Francesc; Puiggalí, Jordi; Cativiela, Carlos; Alemán, Carlos

    2015-11-16

    Three different tetraphenylalanine (FFFF) based peptides that differ at the N- and C-termini have been synthesized by using standard procedures to study their ability to form different nanoassemblies under a variety of conditions. The FFFF peptide assembles into nanotubes that show more structural imperfections at the surface than those formed by the diphenylalanine (FF) peptide under the same conditions. Periodic DFT calculations (M06L functional) were used to propose a model that consists of three FFFF molecules defining a ring through head-to-tail NH3(+)⋅⋅⋅(-)OOC interactions, which in turn stack to produce deformed channels with internal diameters between 12 and 16 Å. Depending on the experimental conditions used for the peptide incubation, N-fluorenylmethoxycarbonyl (Fmoc) protected FFFF self-assembles into a variety of polymorphs: ultra-thin nanoplates, fibrils, and star-like submicrometric aggregates. DFT calculations indicate that Fmoc-FFFF prefers a parallel rather than an antiparallel β-sheet assembly. Finally, coexisting multiple assemblies (up to three) were observed for Fmoc-FFFF-OBzl (OBzl = benzyl ester), which incorporates aromatic protecting groups at the two peptide terminals. This unusual and noticeable feature is attributed to the fact that the assemblies obtained by combining the Fmoc and OBzl groups contained in the peptide are isoenergetic. PMID:26419936

  19. Confinement-dependent friction in peptide bundles.

    PubMed

    Erbaş, Aykut; Netz, Roland R

    2013-03-19

    Friction within globular proteins or between adhering macromolecules crucially determines the kinetics of protein folding, the formation, and the relaxation of self-assembled molecular systems. One fundamental question is how these friction effects depend on the local environment and in particular on the presence of water. In this model study, we use fully atomistic MD simulations with explicit water to obtain friction forces as a single polyglycine peptide chain is pulled out of a bundle of k adhering parallel polyglycine peptide chains. The whole system is periodically replicated along the peptide axes, so a stationary state at prescribed mean sliding velocity V is achieved. The aggregation number is varied between k = 2 (two peptide chains adhering to each other with plenty of water present at the adhesion sites) and k = 7 (one peptide chain pulled out from a close-packed cylindrical array of six neighboring peptide chains with no water inside the bundle). The friction coefficient per hydrogen bond, extrapolated to the viscous limit of vanishing pulling velocity V → 0, exhibits an increase by five orders of magnitude when going from k = 2 to k = 7. This dramatic confinement-induced friction enhancement we argue to be due to a combination of water depletion and increased hydrogen-bond cooperativity. PMID:23528088

  20. Effects of opioid peptides on thermoregulation

    SciTech Connect

    Clark, W.G.

    1981-11-01

    In a given species, injected opioid peptides usually cause changes in temperature similar to those caused by nonpeptide opioids. The main effect in those species most studied, the cat, rat, and mouse, is an increase in the level about which body temperature is regulated; there is a coordinated change in the activity of thermoregulatory effectors such that hyperthermia is produced in both hot and cold environments. Larger doses may depress thermoregulation, thereby causing body temperature to decrease in the cold. Elicitation of different patterns of response over a range of environmental temperatures and studies with naloxone and naltrexone indicate that stimulation of a number of different receptors by both peptide and nonpeptide opioids can evoke thermoregulatory responses. ..beta..-Endorphin is readily antagonized by naloxone whereas methionine-enkephalin can act on naloxone-insensitive receptors. Moreover, synthetic peptide analogs do not necessarily evoke the same response as does the related endogenous peptide. The lack of effect of naloxone on body temperature of subjects housed at usual laboratory temperature or on pyrogen-induced increases in body temperature indicates that an action of endogenous peptides on naloxone-sensitive receptors plays little, if any, role in normal thermoregulation or in fever. However, there is some evidence that such an action may be involved in responses to restraint or ambient temperature-induced stress. Further evaluation of possible physiological roles of endogenous opioid peptides will be facilitated when specific antagonists at other types of opioid receptors become available.

  1. Neutron diffraction studies of viral fusion peptides

    NASA Astrophysics Data System (ADS)

    Bradshaw, Jeremy P.; J. M. Darkes, Malcolm; Katsaras, John; Epand, Richard M.

    2000-03-01

    Membrane fusion plays a vital role in a large and diverse number of essential biological processes. Despite this fact, the precise molecular events that occur during fusion are still not known. We are currently engaged on a study of membrane fusion as mediated by viral fusion peptides. These peptides are the N-terminal regions of certain viral envelope proteins that mediate the process of fusion between the viral envelope and the membranes of the host cell during the infection process. As part of this study, we have carried out neutron diffraction measurements at the ILL, BeNSC and Chalk River, on a range of viral fusion peptides. The peptides, from simian immunodeficiency virus (SIV), influenza A and feline leukaemia virus (FeLV), were incorporated into stacked phospholipid bilayers. Some of the peptides had been specifically deuterated at key amino acids. Lamellar diffraction data were collected and analysed to yield information on the peptide conformation, location and orientation relative to the bilayer.

  2. Peptide conversations in Gram-positive bacteria.

    PubMed

    Monnet, Véronique; Juillard, Vincent; Gardan, Rozenn

    2016-05-01

    Within Gram-positive bacteria, the expression of target genes is controlled at the population level via signaling peptides, also known as pheromones. Pheromones control a wide range of functions, including competence, virulence, and others that remain unknown. Until now, their role in bacterial gene regulation has probably been underestimated; indeed, bacteria are able to produce, by ribosomal synthesis or surface protein degradation, an extraordinary variety of peptides which are released outside bacteria and among which, some are pheromones that mediate cell-to-cell communication. The review aims at giving an updated overview of these peptide-dependant communication pathways. More specifically, it follows the whole peptide circuit from the peptide production and secretion in the extracellular medium to its interaction with sensors at bacterial surface or re-import into the bacteria where it plays its regulation role. In recent years, as we have accumulated more knowledge about these systems, it has become apparent that they are more complex than they first appeared. For this reason, more research on peptide-dependant pathways is needed to develop new strategies for controlling functions of interest in Gram-positive bacteria. In particular, such research could lead to alternatives to the use of antibiotics against pathogenic bacteria. In perspective, the review identifies new research questions that emerge in this field and that have to be addressed. PMID:25198780

  3. Biomathematical description of synthetic peptide libraries.

    PubMed

    Sieber, Timo; Hare, Eric; Hofmann, Heike; Trepel, Martin

    2015-01-01

    Libraries of randomised peptides displayed on phages or viral particles are essential tools in a wide spectrum of applications. However, there is only limited understanding of a library's fundamental dynamics and the influences of encoding schemes and sizes on their quality. Numeric properties of libraries, such as the expected number of different peptides and the library's coverage, have long been in use as measures of a library's quality. Here, we present a graphical framework of these measures together with a library's relative efficiency to help to describe libraries in enough detail for researchers to plan new experiments in a more informed manner. In particular, these values allow us to answer-in a probabilistic fashion-the question of whether a specific library does indeed contain one of the "best" possible peptides. The framework is implemented in a web-interface based on two packages, discreteRV and peptider, to the statistical software environment R. We further provide a user-friendly web-interface called PeLiCa (Peptide Library Calculator, http://www.pelica.org), allowing scientists to plan and analyse their peptide libraries. PMID:26042419

  4. Peptide Toxins in Solitary Wasp Venoms

    PubMed Central

    Konno, Katsuhiro; Kazuma, Kohei; Nihei, Ken-ichi

    2016-01-01

    Solitary wasps paralyze insects or spiders with stinging venom and feed the paralyzed preys to their larva. Accordingly, the venoms should contain a variety of constituents acting on nervous systems. However, only a few solitary wasp venoms have been chemically studied despite thousands of species inhabiting the planet. We have surveyed bioactive substances in solitary wasp venoms found in Japan and discovered a variety of novel bioactive peptides. Pompilidotoxins (PMTXs), in the venoms of the pompilid wasps Anoplius samariensis and Batozonellus maculifrons, are small peptides consisting of 13 amino acids without a disulfide bond. PMTXs slowed Na+ channel inactivation, in particular against neuronal type Na+ channels, and were rather selective to the Nav1.6 channel. Mastoparan-like cytolytic and antimicrobial peptides are the major components of eumenine wasp venoms. They are rich in hydrophobic and basic amino acids, adopting a α-helical secondary structure, and showing mast cell degranulating, antimicrobial and hemolytic activities. The venom of the spider wasp Cyphononyx fulvognathus contained four bradykinin-related peptides. They are hyperalgesic and, dependent on the structure, differently associated with B1 or B2 receptors. Further survey led to the isolation of leucomyosuppressin-like FMRFamide peptides from the venoms of the digger wasps Sphex argentatus and Isodontia harmandi. These results of peptide toxins in solitary wasp venoms from our studies are summarized. PMID:27096870

  5. Factors Affecting Peptide Interactions with Surface-Bound Microgels.

    PubMed

    Nyström, Lina; Nordström, Randi; Bramhill, Jane; Saunders, Brian R; Álvarez-Asencio, Rubén; Rutland, Mark W; Malmsten, Martin

    2016-02-01

    Effects of electrostatics and peptide size on peptide interactions with surface-bound microgels were investigated with ellipsometry, confocal microscopy, and atomic force microscopy (AFM). Results show that binding of cationic poly-L-lysine (pLys) to anionic, covalently immobilized, poly(ethyl acrylate-co-methacrylic acid) microgels increased with increasing peptide net charge and microgel charge density. Furthermore, peptide release was facilitated by decreasing either microgel or peptide charge density. Analogously, increasing ionic strength facilitated peptide release for short peptides. As a result of peptide binding, the surface-bound microgels displayed pronounced deswelling and increased mechanical rigidity, the latter quantified by quantitative nanomechanical mapping. While short pLys was found to penetrate the entire microgel network and to result in almost complete charge neutralization, larger peptides were partially excluded from the microgel network, forming an outer peptide layer on the microgels. As a result of this difference, microgel flattening was more influenced by the lower Mw peptide than the higher. Peptide-induced deswelling was found to be lower for higher Mw pLys, the latter effect not observed for the corresponding microgels in the dispersed state. While the effects of electrostatics on peptide loading and release were similar to those observed for dispersed microgels, there were thus considerable effects of the underlying surface on peptide-induced microgel deswelling, which need to be considered in the design of surface-bound microgels as carriers of peptide loads, for example, in drug delivery or in functionalized biomaterials. PMID:26750986

  6. Sequential and competitive adsorption of peptides at pendant PEO layers.

    PubMed

    Wu, Xiangming; Ryder, Matthew P; McGuire, Joseph; Snider, Joshua L; Schilke, Karl F

    2015-06-01

    Earlier work provided direction for development of responsive drug delivery systems based on modulation of the structure, amphiphilicity, and surface density of bioactive peptides entrapped within pendant polyethylene oxide (PEO) brush layers. In this work, we describe the sequential and competitive adsorption behavior of such peptides at pendant PEO layers. Three cationic peptides were used for this purpose: the arginine-rich, amphiphilic peptide WLBU2, a peptide chemically identical to WLBU2 but of scrambled sequence (S-WLBU2), and the non-amphiphilic peptide poly-L-arginine (PLR). Optical waveguide lightmode spectroscopy (OWLS) was used to quantify the rate and extent of peptide adsorption and elution at surfaces coated with PEO. UV spectroscopy and time-of-flight secondary ion mass spectrometry (TOF-SIMS) were used to quantify the extent of peptide exchange during the course of sequential and competitive adsorption. Circular dichroism (CD) was used to evaluate conformational changes after adsorption of peptide mixtures at PEO-coated silica nanoparticles. Results indicated that amphiphilic peptides are able to displace adsorbed, non-amphiphilic peptides in PEO layers, while non-amphiphilic peptides were not able to displace more amphiphilic peptides. In addition, peptides of greater amphiphilicity dominated the adsorption at the PEO layer from mixtures with less amphiphilic or non-amphiphilic peptides. PMID:25909181

  7. Human IgA-binding Peptides Selected from Random Peptide Libraries

    PubMed Central

    Hatanaka, Takaaki; Ohzono, Shinji; Park, Mirae; Sakamoto, Kotaro; Tsukamoto, Shogo; Sugita, Ryohei; Ishitobi, Hiroyuki; Mori, Toshiyuki; Ito, Osamu; Sorajo, Koichi; Sugimura, Kazuhisa; Ham, Sihyun; Ito, Yuji

    2012-01-01

    Phage display system is a powerful tool to design specific ligands for target molecules. Here, we used disulfide-constrained random peptide libraries constructed with the T7 phage display system to isolate peptides specific to human IgA. The binding clones (A1–A4) isolated by biopanning exhibited clear specificity to human IgA, but the synthetic peptide derived from the A2 clone exhibited a low specificity/affinity (Kd = 1.3 μm). Therefore, we tried to improve the peptide using a partial randomized phage display library and mutational studies on the synthetic peptides. The designed Opt-1 peptide exhibited a 39-fold higher affinity (Kd = 33 nm) than the A2 peptide. An Opt-1 peptide-conjugated column was used to purify IgA from human plasma. However, the recovered IgA fraction was contaminated with other proteins, indicating nonspecific binding. To design a peptide with increased binding specificity, we examined the structural features of Opt-1 and the Opt-1-IgA complex using all-atom molecular dynamics simulations with explicit water. The simulation results revealed that the Opt-1 peptide displayed partial helicity in the N-terminal region and possessed a hydrophobic cluster that played a significant role in tight binding with IgA-Fc. However, these hydrophobic residues of Opt-1 may contribute to nonspecific binding with other proteins. To increase binding specificity, we introduced several mutations in the hydrophobic residues of Opt-1. The resultant Opt-3 peptide exhibited high specificity and high binding affinity for IgA, leading to successful isolation of IgA without contamination. PMID:23076147

  8. A Cocoa Peptide Protects Caenorhabditis elegans from Oxidative Stress and β-Amyloid Peptide Toxicity

    PubMed Central

    Martorell, Patricia; Bataller, Esther; Llopis, Silvia; Gonzalez, Núria; Álvarez, Beatriz; Montón, Fernando; Ortiz, Pepa; Ramón, Daniel; Genovés, Salvador

    2013-01-01

    Background Cocoa and cocoa-based products contain different compounds with beneficial properties for human health. Polyphenols are the most frequently studied, and display antioxidant properties. Moreover, protein content is a very interesting source of antioxidant bioactive peptides, which can be used therapeutically for the prevention of age-related diseases. Methodology/Principal Findings A bioactive peptide, 13L (DNYDNSAGKWWVT), was obtained from a hydrolyzed cocoa by-product by chromatography. The in vitro inhibition of prolyl endopeptidase (PEP) was used as screening method to select the suitable fraction for peptide identification. Functional analysis of 13L peptide was achieved using the transgenic Caenorhabditis elegans strain CL4176 expressing the human Aβ1–42 peptide as a pre-clinical in vivo model for Alzheimer's disease. Among the peptides isolated, peptide 13L (1 µg/mL) showed the highest antioxidant activity (P≤0.001) in the wild-type strain (N2). Furthermore, 13L produced a significant delay in body paralysis in strain CL4176, especially in the 24–47 h period after Aβ1–42 peptide induction (P≤0.0001). This observation is in accordance with the reduction of Aβ deposits in CL4176 by western blot. Finally, transcriptomic analysis in wild-type nematodes treated with 13L revealed modulation of the proteosomal and synaptic functions as the main metabolic targets of the peptide. Conclusions/Significance These findings suggest that the cocoa 13L peptide has antioxidant activity and may reduce Aβ deposition in a C. elegans model of Alzheimer's disease; and therefore has a putative therapeutic potential for prevention of age-related diseases. Further studies in murine models and humans will be essential to analyze the effectiveness of the 13L peptide in higher animals. PMID:23675471

  9. Myoinhibiting peptides are the ancestral ligands of the promiscuous Drosophila sex peptide receptor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Male insects change behaviors of female partners by co-transferring accessory gland proteins (Acps) like sex peptide (SP), with their sperm. The Drosophila sex peptide receptor (SPR) is a G protein-coupled receptor expressed in the female’s nervous system and genital tract. While most Acps show a fa...

  10. Dynamics and aggregation of the peptide ion channel alamethicin. Measurements using spin-labeled peptides.

    PubMed Central

    Archer, S J; Ellena, J F; Cafiso, D S

    1991-01-01

    Two spin-labeled derivatives of the ion conductive peptide alamethicin were synthesized and used to examine its binding and state of aggregation. One derivative was spin labeled at the C-terminus and the other, a leucine analogue, was spin labeled at the N-terminus. In methanol, both the C and N terminal labeled peptides were monomeric. In aqueous solution, the C-terminal derivative was monomeric at low concentrations, but aggregated at higher concentrations with a critical concentration of 23 microM. In the membrane, the C-terminal label was localized to the membrane-aqueous interface using 13C-NMR, and could assume more than one orientation. The membrane binding of the C-terminal derivative was examined using EPR, and it exhibited a cooperativity seen previously for native alamethicin. However, this cooperativity was not the result of an aggregation of the peptide in the membrane. When the spectra of either the C or N-terminal labeled peptide were examined over a wide range of membrane lipid to peptide ratios, no evidence for aggregation could be found and the peptides remained monomeric under all conditions examined. Because electrical measurements on this peptide provide strong evidence for an ion-conductive aggregate, the ion-conductive form of alamethicin likely represents a minor fraction of the total membrane bound peptide. PMID:1717016

  11. Peptide binding to a bacterial signal peptidase visualized by peptide tethering and carrier-driven crystallization

    PubMed Central

    Ting, Yi Tian; Harris, Paul W. R.; Batot, Gaelle; Brimble, Margaret A.; Baker, Edward N.; Young, Paul G.

    2016-01-01

    Bacterial type I signal peptidases (SPases) are membrane-anchored serine proteases that process the signal peptides of proteins exported via the Sec and Tat secretion systems. Despite their crucial importance for bacterial virulence and their attractiveness as drug targets, only one such enzyme, LepB from Escherichia coli, has been structurally characterized, and the transient nature of peptide binding has stymied attempts to directly visualize SPase–substrate complexes. Here, the crystal structure of SpsB, the type I signal peptidase from the Gram-positive pathogen Staphylococcus aureus, is reported, and a peptide-tethering strategy that exploits the use of carrier-driven crystallization is described. This enabled the determination of the crystal structures of three SpsB–peptide complexes, both with cleavable substrates and with an inhibitory peptide. SpsB–peptide interactions in these complexes are almost exclusively limited to the canonical signal-peptide motif Ala-X-Ala, for which clear specificity pockets are found. Minimal contacts are made outside this core, with the variable side chains of the peptides accommodated in shallow grooves or exposed faces. These results illustrate how high fidelity is retained despite broad sequence diversity, in a process that is vital for cell survival. PMID:26870377

  12. Manual Solid-Phase Peptide Synthesis of Metallocene-Peptide Bioconjugates

    ERIC Educational Resources Information Center

    Kirin, Srecko I.; Noor, Fozia; Metzler-Nolte, Nils; Mier, Walter

    2007-01-01

    A simple and relatively inexpensive procedure for preparing a biologically active peptide using solid phase peptide synthesis (SPPS) is described. Fourth-year undergraduate students have gained firsthand experience from the solid-phase synthesis techniques and they have become familiar with modern analytical techniques based on the particular…

  13. Protein-peptide interactions in mixtures of whey peptides and whey proteins.

    PubMed

    Creusot, Nathalie; Gruppen, Harry

    2007-03-21

    The effects of several conditions on the amounts and compositions of aggregates formed in mixtures of whey protein hydrolysate, made with Bacillus licheniformis protease, and whey protein isolate were investigated using response surface methodology. Next, the peptides present in the aggregates were separated from the intact protein and identified with liquid chromatography-mass spectrometry. Increasing both temperature and ionic strength increased the amounts of both intact protein and peptides in the aggregates. There was an optimal amount of added intact WPI that could aggregate with peptides, yielding a maximal amount of aggregated material in which the peptide/protein molar ratio was around 6. Under all conditions applied, the same peptides were observed in the protein-peptide aggregates formed. The dominant peptides were beta-lg AB [f1-45], beta-lg AB [f90-108], and alpha-la [f50-113]. It was hypothesized that peptides could form a kind of glue network that can include beta-lactoglobulin via hydrophobic interactions at the hydrophobic binding sites at the surface of the protein. PMID:17295504

  14. SMALL CYSTEINE-RICH PEPTIDES RESEMBLING ANTIMICROBIAL PEPTIDES HAVE BEEN UNDER-PREDICTED IN PLANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multicellular organisms produce small cysteine-rich anti-microbial peptides as an innate defense against pathogens. While defensins, a well-known class of such peptides, are common among eukaryotes, there are classes restricted to the plant kingdom. These include thionins, lipid transfer proteins,...

  15. Peptide receptor radionuclide therapy: an overview.

    PubMed

    Dash, Ashutosh; Chakraborty, Sudipta; Pillai, Maroor Raghavan Ambikalmajan; Knapp, Furn F Russ

    2015-03-01

    Peptide receptor radionuclide therapy (PRRT) is a site-directed targeted therapeutic strategy that specifically uses radiolabeled peptides as biological targeting vectors designed to deliver cytotoxic levels of radiation dose to cancer cells, which overexpress specific receptors. Interest in PRRT has steadily grown because of the advantages of targeting cellular receptors in vivo with high sensitivity as well as specificity and treatment at the molecular level. Recent advances in molecular biology have not only stimulated advances in PRRT in a sustainable manner but have also pushed the field significantly forward to several unexplored possibilities. Recent decades have witnessed unprecedented endeavors for developing radiolabeled receptor-binding somatostatin analogs for the treatment of neuroendocrine tumors, which have played an important role in the evolution of PRRT and paved the way for the development of other receptor-targeting peptides. Several peptides targeting a variety of receptors have been identified, demonstrating their potential to catalyze breakthroughs in PRRT. In this review, the authors discuss several of these peptides and their analogs with regard to their applications and potential in radionuclide therapy. The advancement in the availability of combinatorial peptide libraries for peptide designing and screening provides the capability of regulating immunogenicity and chemical manipulability. Moreover, the availability of a wide range of bifunctional chelating agents opens up the scope of convenient radiolabeling. For these reasons, it would be possible to envision a future where the scope of PRRT can be tailored for patient-specific application. While PRRT lies at the interface between many disciplines, this technology is inextricably linked to the availability of the therapeutic radionuclides of required quality and activity levels and hence their production is also reviewed. PMID:25710506

  16. Antimicrobial Peptides Design by Evolutionary Multiobjective Optimization

    PubMed Central

    Maccari, Giuseppe; Di Luca, Mariagrazia; Nifosí, Riccardo; Cardarelli, Francesco; Signore, Giovanni; Boccardi, Claudia; Bifone, Angelo

    2013-01-01

    Antimicrobial peptides (AMPs) are an abundant and wide class of molecules produced by many tissues and cell types in a variety of mammals, plant and animal species. Linear alpha-helical antimicrobial peptides are among the most widespread membrane-disruptive AMPs in nature, representing a particularly successful structural arrangement in innate defense. Recently, AMPs have received increasing attention as potential therapeutic agents, owing to their broad activity spectrum and their reduced tendency to induce resistance. The introduction of non-natural amino acids will be a key requisite in order to contrast host resistance and increase compound's life. In this work, the possibility to design novel AMP sequences with non-natural amino acids was achieved through a flexible computational approach, based on chemophysical profiles of peptide sequences. Quantitative structure-activity relationship (QSAR) descriptors were employed to code each peptide and train two statistical models in order to account for structural and functional properties of alpha-helical amphipathic AMPs. These models were then used as fitness functions for a multi-objective evolutional algorithm, together with a set of constraints for the design of a series of candidate AMPs. Two ab-initio natural peptides were synthesized and experimentally validated for antimicrobial activity, together with a series of control peptides. Furthermore, a well-known Cecropin-Mellitin alpha helical antimicrobial hybrid (CM18) was optimized by shortening its amino acid sequence while maintaining its activity and a peptide with non-natural amino acids was designed and tested, demonstrating the higher activity achievable with artificial residues. PMID:24039565

  17. Distribution and localization of regulatory peptides.

    PubMed

    Ballesta, J; Bloom, S R; Polak, J M

    1985-01-01

    A new group of modulatory substances present in both endocrine cells and central and peripheral nerves has been described in the past few years. These substances are biochemically recognized as peptides and their actions affect many bodily functions. They are now widely known as regulatory peptides. The development of new immunocytochemical techniques, closely allied to radioimmunoassay, has disclosed that the regulatory peptides are present either in cells or in nerves, in almost every tissue of the body. The presence of peptides (the classical hormones) in endocrine cells was already known at the beginning of the century, but the presence of similar substances in nerve fibers, where they probably act as neurotransmitters, is a recent and revolutionary discovery. More than 30 peptides (neuropeptides) have been found to be present in nerves, to which the term "peptidergic" has been applied, although it is now known that in certain cases a neuropeptide can be present in the same nerves as a classical neurotransmitter, for example acetylcholine with VIP, or noradrenaline with NPY. Little is known about the physiological role of these neuropeptides. It is not yet fully accepted that they act as neurotransmitters although there is strong evidence for this, particularly in the case of substance P and VIP. The investigation of the regulatory peptides is now in an initial phase. The involvement of new disciplines, such as molecular biology, in this field is producing new and very exciting discoveries, including the isolation of novel peptides and precursors, the study of which will further contribute to the understanding of the basic control mechanisms. PMID:2412761

  18. A peptide & peptide nucleic acid synthesis technology for transporter molecules and theranostics--the SPPS.

    PubMed

    Pipkorn, Ruediger; Braun, Klaus; Wiessler, Manfred; Waldeck, Waldemar; Schrenk, Hans-Hermann; Koch, Mario; Semmler, Wolfhard; Komljenovic, Dorde

    2014-01-01

    Advances in imaging diagnostics using magnetic resonance tomography (MRT), positron emission tomography (PET) and fluorescence imaging including near infrared (NIR) imaging methods are facilitated by constant improvement of the concepts of peptide synthesis. Feasible patient-specific theranostic platforms in the personalized medicine are particularly dependent on efficient and clinically applicable peptide constructs. The role of peptides in the interrelations between the structure and function of proteins is widely investigated, especially by using computer-assisted methods. Nowadays the solid phase synthesis (SPPS) chemistry emerges as a key technology and is considered as a promising methodology to design peptides for the investigation of molecular pharmacological processes at the transcriptional level. SPPS syntheses could be carried out in core facilities producing peptides for large-scale scientific implementations as presented here. PMID:24843319

  19. A Peptide & Peptide Nucleic Acid Synthesis Technology for Transporter Molecules and Theranostics - The SPPS

    PubMed Central

    Pipkorn, Ruediger; Braun, Klaus; Wiessler, Manfred; Waldeck, Waldemar; Schrenk, Hans-Hermann; Koch, Mario; Semmler, Wolfhard; Komljenovic, Dorde

    2014-01-01

    Advances in imaging diagnostics using magnetic resonance tomography (MRT), positron emission tomography (PET) and fluorescence imaging including near infrared (NIR) imaging methods are facilitated by constant improvement of the concepts of peptide synthesis. Feasible patient-specific theranostic platforms in the personalized medicine are particularly dependent on efficient and clinically applicable peptide constructs. The role of peptides in the interrelations between the structure and function of proteins is widely investigated, especially by using computer-assisted methods. Nowadays the solid phase synthesis (SPPS) chemistry emerges as a key technology and is considered as a promising methodology to design peptides for the investigation of molecular pharmacological processes at the transcriptional level. SPPS syntheses could be carried out in core facilities producing peptides for large-scale scientific implementations as presented here. PMID:24843319

  20. Detecting small plant peptides using SPADA (Small Peptide Alignment Discovery Application)

    PubMed Central

    2013-01-01

    Background Small peptides encoded as one- or two-exon genes in plants have recently been shown to affect multiple aspects of plant development, reproduction and defense responses. However, popular similarity search tools and gene prediction techniques generally fail to identify most members belonging to this class of genes. This is largely due to the high sequence divergence among family members and the limited availability of experimentally verified small peptides to use as training sets for homology search and ab initio prediction. Consequently, there is an urgent need for both experimental and computational studies in order to further advance the accurate prediction of small peptides. Results We present here a homology-based gene prediction program to accurately predict small peptides at the genome level. Given a high-quality profile alignment, SPADA identifies and annotates nearly all family members in tested genomes with better performance than all general-purpose gene prediction programs surveyed. We find numerous mis-annotations in the current Arabidopsis thaliana and Medicago truncatula genome databases using SPADA, most of which have RNA-Seq expression support. We also show that SPADA works well on other classes of small secreted peptides in plants (e.g., self-incompatibility protein homologues) as well as non-secreted peptides outside the plant kingdom (e.g., the alpha-amanitin toxin gene family in the mushroom, Amanita bisporigera). Conclusions SPADA is a free software tool that accurately identifies and predicts the gene structure for short peptides with one or two exons. SPADA is able to incorporate information from profile alignments into the model prediction process and makes use of it to score different candidate models. SPADA achieves high sensitivity and specificity in predicting small plant peptides such as the cysteine-rich peptide families. A systematic application of SPADA to other classes of small peptides by research communities will greatly

  1. Recognition of bacterial signal peptides by mammalian formyl peptide receptors: a new mechanism for sensing pathogens.

    PubMed

    Bufe, Bernd; Schumann, Timo; Kappl, Reinhard; Bogeski, Ivan; Kummerow, Carsten; Podgórska, Marta; Smola, Sigrun; Hoth, Markus; Zufall, Frank

    2015-03-20

    Formyl peptide receptors (FPRs) are G-protein-coupled receptors that function as chemoattractant receptors in innate immune responses. Here we perform systematic structure-function analyses of FPRs from six mammalian species using structurally diverse FPR peptide agonists and identify a common set of conserved agonist properties with typical features of pathogen-associated molecular patterns. Guided by these results, we discover that bacterial signal peptides, normally used to translocate proteins across cytoplasmic membranes, are a vast family of natural FPR agonists. N-terminally formylated signal peptide fragments with variable sequence and length activate human and mouse FPR1 and FPR2 at low nanomolar concentrations, thus establishing FPR1 and FPR2 as sensitive and broad signal peptide receptors. The vomeronasal receptor mFpr-rs1 and its sequence orthologue hFPR3 also react to signal peptides but are much more narrowly tuned in signal peptide recognition. Furthermore, all signal peptides examined here function as potent activators of the innate immune system. They elicit robust, FPR-dependent calcium mobilization in human and mouse leukocytes and trigger a range of classical innate defense mechanisms, such as the production of reactive oxygen species, metalloprotease release, and chemotaxis. Thus, bacterial signal peptides constitute a novel class of immune activators that are likely to contribute to mammalian immune defense against bacteria. This evolutionarily conserved detection mechanism combines structural promiscuity with high specificity and enables discrimination between bacterial and eukaryotic signal sequences. With at least 175,542 predicted sequences, bacterial signal peptides represent the largest and structurally most heterogeneous class of G-protein-coupled receptor agonists currently known for the innate immune system. PMID:25605714

  2. Peptide inhibition of human cytomegalovirus infection

    PubMed Central

    2011-01-01

    Background Human cytomegalovirus (HCMV) is the most prevalent congenital viral infection in the United States and Europe causing significant morbidity and mortality to both mother and child. HCMV is also an opportunistic pathogen in immunocompromised individuals, including human immunodeficiency virus (HIV)- infected patients with AIDS, and solid organ and allogeneic stem cell transplantation recipients. Current treatments for HCMV-associated diseases are insufficient due to the emergence of drug-induced resistance and cytotoxicity, necessitating novel approaches to limit HCMV infection. The aim of this study was to develop therapeutic peptides targeting glycoprotein B (gB), a major glycoprotein of HCMV that is highly conserved across the Herpesviridae family, that specifically inhibit fusion of the viral envelope with the host cell membrane preventing HCMV entry and infection. Results Using the Wimley-White Interfacial Hydrophobicity Scale (WWIHS), several regions within gB were identified that display a high potential to interact with lipid bilayers of cell membranes and hydrophobic surfaces within proteins. The ability of synthetic peptides analogous to WWIHS-positive sequences of HCMV gB to inhibit viral infectivity was evaluated. Human foreskin fibroblasts (HFF) were infected with the Towne-GFP strain of HCMV (0.5 MOI), preincubated with peptides at a range of concentrations (78 nm to 100 μM), and GFP-positive cells were visualized 48 hours post-infection by fluorescence microscopy and analyzed quantitatively by flow cytometry. Peptides that inhibited HCMV infection demonstrated different inhibitory concentration curves indicating that each peptide possesses distinct biophysical properties. Peptide 174-200 showed 80% inhibition of viral infection at a concentration of 100 μM, and 51% and 62% inhibition at concentrations of 5 μM and 2.5 μM, respectively. Peptide 233-263 inhibited infection by 97% and 92% at concentrations of 100 μM and 50 μM, respectively

  3. New peptides players in metabolic disorders.

    PubMed

    Mierzwicka, Agata; Bolanowski, Marek

    2016-01-01

    Among new peptides responsible for the pathogenesis of metabolic disorders and carbohydrate metabolism, adipokines are of great importance. Adipokines are substances of hormonal character, secreted by adipose tissue. Apart from the well-known adipokines, adropin and preptin are relatively newly discovered, hence their function is not fully understood. They are peptides not secreted by adipose tissue but their role in the metabolic regulations seems to be significant. Preptin is a 34-amino acid peptide, a derivative of proinsulin growth factor II (pro-IGF-II), secreted by pancreatic β cells, considered to be a physiological enhancer of insulin secretion. Additionally, preptin has a stimulating effect on osteoblasts, inducing their proliferation, differentiation and survival. Adropin is a 76-amino acid peptide, encoded by the energy homeostasis associated gene (Enho), mainly in liver and brain, and its expression is dependent on a diet. Adropin is believed to play an important role in metabolic homeostasis, fatty acids metabolism control, insulin resistance prevention, dyslipidemia, and impaired glucose tolerance. The results of studies conducted so far show that the diseases resulting from metabolic syndrome, such as obesity, type 2 diabetes mellitus, polycystic ovary syndrome, non-alcoholic fatty liver disease, or cardiovascular disease are accompanied by significant changes in the concentration of these peptides. It is also important to note that preptin has an anabolic effect on bone tissue, which might be preventive in osteoporosis. PMID:27594563

  4. Dinosaur Peptides Suggest Mechanisms of Protein Survival

    PubMed Central

    San Antonio, James D.; Schweitzer, Mary H.; Jensen, Shane T.; Kalluri, Raghu; Buckley, Michael; Orgel, Joseph P. R. O.

    2011-01-01

    Eleven collagen peptide sequences recovered from chemical extracts of dinosaur bones were mapped onto molecular models of the vertebrate collagen fibril derived from extant taxa. The dinosaur peptides localized to fibril regions protected by the close packing of collagen molecules, and contained few acidic amino acids. Four peptides mapped to collagen regions crucial for cell-collagen interactions and tissue development. Dinosaur peptides were not represented in more exposed parts of the collagen fibril or regions mediating intermolecular cross-linking. Thus functionally significant regions of collagen fibrils that are physically shielded within the fibril may be preferentially preserved in fossils. These results show empirically that structure-function relationships at the molecular level could contribute to selective preservation in fossilized vertebrate remains across geological time, suggest a ‘preservation motif’, and bolster current concepts linking collagen structure to biological function. This non-random distribution supports the hypothesis that the peptides are produced by the extinct organisms and suggests a chemical mechanism for survival. PMID:21687667

  5. Peptide assembly for nanoscale control of materials

    NASA Astrophysics Data System (ADS)

    Pochan, Darrin

    2011-03-01

    Self-assembly of molecules is an attractive materials construction strategy due to its simplicity in application. By considering peptidic, charged synthetic molecules in the bottom-up materials self-assembly design process, one can take advantage of inherently biomolecular attributes; intramolecular folding events, secondary structure, and electrostatic interactions; in addition to more traditional self-assembling molecular attributes such as amphiphilicty, to define hierarchical material structure and consequent properties. Design strategies for materials self-assembly based on small (less than 24 amino acids) beta-hairpin peptides will be discussed. Self-assembly of the peptides is predicated on an intramolecular folding event caused by desired solution properties. Importantly, kinetics of self-assembly can be tuned in order to control gelation time. The final gel behaves as a shear thinning, but immediately rehealing, solid that is potentially useful for cell injection therapies. The morphological, and viscoelastic properties of these peptide hydrogels will be discussed. In addition, slight changes in peptide primary sequence can have drastic effects on the self-assembled morphology. Additional sequences will be discussed that do not form hydrogels but rather form nanoscale templates for inorganic material assembly.

  6. Biosynthetic engineering of nonribosomal peptide synthetases.

    PubMed

    Kries, Hajo

    2016-09-01

    From the evolutionary melting pot of natural product synthetase genes, microorganisms elicit antibiotics, communication tools, and iron scavengers. Chemical biologists manipulate these genes to recreate similarly diverse and potent biological activities not on evolutionary time scales but within months. Enzyme engineering has progressed considerably in recent years and offers new screening, modelling, and design tools for natural product designers. Here, recent advances in enzyme engineering and their application to nonribosomal peptide synthetases are reviewed. Among the nonribosomal peptides that have been subjected to biosynthetic engineering are the antibiotics daptomycin, calcium-dependent antibiotic, and gramicidin S. With these peptides, incorporation of unnatural building blocks and modulation of bioactivities via various structural modifications have been successfully demonstrated. Natural product engineering on the biosynthetic level is not a reliable method yet. However, progress in the understanding and manipulation of biosynthetic pathways may enable the routine production of optimized peptide drugs in the near future. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:27465074

  7. Dinosaur Peptides Suggest Mechanisms of Protein Survival

    SciTech Connect

    San Antonio, James D.; Schweitzer, Mary H.; Jensen, Shane T.; Kalluri, Raghu; Buckley, Michael; Orgel, Joseph P.R.O.

    2011-09-16

    Eleven collagen peptide sequences recovered from chemical extracts of dinosaur bones were mapped onto molecular models of the vertebrate collagen fibril derived from extant taxa. The dinosaur peptides localized to fibril regions protected by the close packing of collagen molecules, and contained few acidic amino acids. Four peptides mapped to collagen regions crucial for cell-collagen interactions and tissue development. Dinosaur peptides were not represented in more exposed parts of the collagen fibril or regions mediating intermolecular cross-linking. Thus functionally significant regions of collagen fibrils that are physically shielded within the fibril may be preferentially preserved in fossils. These results show empirically that structure-function relationships at the molecular level could contribute to selective preservation in fossilized vertebrate remains across geological time, suggest a 'preservation motif', and bolster current concepts linking collagen structure to biological function. This non-random distribution supports the hypothesis that the peptides are produced by the extinct organisms and suggests a chemical mechanism for survival.

  8. The Equilibrium Thermodynamics of Various Peptide Sequences

    NASA Astrophysics Data System (ADS)

    Yaşar, Fatih

    The equilibrium thermodynamic properties of two peptide sequences of β-casein in the α-helix regions were studied by three-dimensional molecular modeling in vacuum. All the three-dimensional conformations of each peptide sequences were obtained by multicanonical simulations using ECEPP/2 force field and each simulation was started from completely random initial conformation. No a-priori information about ground-state is used in the simulations. In the present study, we calculated the average values of total energy, specific heat, fourth-order cumulant for two peptide sequences of β-casein as a function of temperature. We observed that the specific heat shows two peaks as a function of temperature for both peptides. Because our sequences have highly helical structure and two peaks in the specific heat, we have also studied the helix-coil transitions to determine these peaks. Our data indeed show these peptides have highly helical structure and better agreement with the results of spectroscopic techniques and other prediction methods.

  9. Peptide synthesis in early earth hydrothermal systems

    USGS Publications Warehouse

    Lemke, K.H.; Rosenbauer, R.J.; Bird, D.K.

    2009-01-01

    We report here results from experiments and thermodynamic calculations that demonstrate a rapid, temperature-enhanced synthesis of oligopeptides from the condensation of aqueous glycine. Experiments were conducted in custom-made hydrothermal reactors, and organic compounds were characterized with ultraviolet-visible procedures. A comparison of peptide yields at 260??C with those obtained at more moderate temperatures (160??C) gives evidence of a significant (13 kJ ?? mol-1) exergonic shift. In contrast to previous hydrothermal studies, we demonstrate that peptide synthesis is favored in hydrothermal fluids and that rates of peptide hydrolysis are controlled by the stability of the parent amino acid, with a critical dependence on reactor surface composition. From our study, we predict that rapid recycling of product peptides from cool into near-supercritical fluids in mid-ocean ridge hydrothermal systems will enhance peptide chain elongation. It is anticipated that the abundant hydrothermal systems on early Earth could have provided a substantial source of biomolecules required for the origin of life. Astrobiology 9, 141-146. ?? 2009 Mary Ann Liebert, Inc. 2009.

  10. A viral peptide for intracellular delivery

    NASA Astrophysics Data System (ADS)

    Falanga, Annarita; Tarallo, Rossella; Cantisani, Marco; Della Pepa, Maria Elena; Galdiero, Massimiliano; Galdiero, Stefania

    2012-10-01

    Biological membranes represent a critical hindrance for administering active molecules which are often unable to reach their designated intracellular target sites. In order to overcome this barrier-like behavior not easily circumvented by many pharmacologically-active molecules, synthetic transporters have been exploited to promote cellular uptake. Linking or complexing therapeutic molecules to peptides that can translocate through the cellular membranes could enhance their internal delivery, and consequently, a higher amount of active compound would reach the site of action. Use of cell penetrating peptides (CPPs) is one of the most promising strategy to efficiently translocate macromolecules through the plasma membrane, and have attracted a lot of attention. New translocating peptides are continuously described and in the present review, we will focus on viral derived peptides, and in particular a peptide (gH625) derived from the herpes simplex virus type 1 (HSV-1) glycoprotein H (gH) that has proved to be a useful delivery vehicle due to its intrinsic properties of inducing membrane perturbation.

  11. Glucagon-Like Peptide-1 Gene Therapy

    PubMed Central

    Rowzee, Anne M.; Cawley, Niamh X.; Chiorini, John A.; Di Pasquale, Giovanni

    2011-01-01

    Glucagon-like peptide 1 (GLP-1) is a small peptide component of the prohormone, proglucagon, that is produced in the gut. Exendin-4, a GLP-1 receptor agonist originally isolated from the saliva of H. suspectum or Gila monster, is a peptide that shares sequence and functional homology with GLP-1. Both peptides have been demonstrated to stimulate insulin secretion, inhibit glucagon secretion, promote satiety and slow gastric emptying. As such, GLP-1 and Exendin-4 have become attractive pharmaceutical targets as an adjunctive therapy for individuals with type II diabetes mellitus, with several products currently available clinically. Herein we summarize the cell biology leading to GLP-1 production and secretion from intestinal L-cells and the endocrine functions of this peptide and Exendin-4 in humans. Additionally, gene therapeutic applications of GLP-1 and Exendin-4 are discussed with a focus on recent work using the salivary gland as a gene therapy target organ for the treatment of diabetes mellitus. PMID:21747830

  12. C-Peptide in the Vessel Wall

    PubMed Central

    Walcher, Daniel; Marx, Nikolaus

    2009-01-01

    Patients with insulin resistance and early type 2 diabetes exhibit an increased sensitivity to develop a diffuse and extensive pattern of arteriosclerosis leading to a remarkable increase in vascular complications, including myocardial infarction and stroke. The accelerated atherosclerosis in these patients is likely to be multifactorial. In this review, we introduce the new hypothesis that C-peptide could play a role as a mediator of lesion development. Patients with type 2 diabetes show increased levels of the proinsulin cleavage product C-peptide, and in the past few years, various groups have examined the effect of C-peptide in vascular cells as well as its potential role in lesion development. Recent data suggest that C-peptide deposits in the vessel wall could promote the recruitment of monocytes and CD4-positive lymphocytes in early arteriosclerotic lesions. Furthermore, C-peptide induces proliferation of vascular smooth muscle cells, a critical step in atherogenesis and restenosis formation. The present review summarizes this new pathophysiological aspect and discusses the potential relevance for lesion development. PMID:20039007

  13. Membrane Thickening by the Antimicrobial Peptide PGLa

    PubMed Central

    Pabst, Georg; Grage, Stephan L.; Danner-Pongratz, Sabine; Jing, Weiguo; Ulrich, Anne S.; Watts, Anthony; Lohner, Karl; Hickel, Andrea

    2008-01-01

    Using x-ray diffraction, solid-state 2H-NMR, differential scanning calorimetry, and dilatometry, we have observed a perturbation of saturated acyl chain phosphatidylglycerol bilayers by the antimicrobial peptide peptidyl-glycylleucine-carboxyamide (PGLa) that is dependent on the length of the hydrocarbon chain. In the gel phase, PGLa induces a quasi-interdigitated phase, previously reported also for other peptides, which is most pronounced for C18 phosphatidylglycerol. In the fluid phase, we found an increase of the membrane thickness and NMR order parameter for C14 and C16 phosphatidylglycerol bilayers, though not for C18. The data is best understood in terms of a close hydrophobic match between the C18 bilayer core and the peptide length when PGLa is inserted with its helical axis normal to the bilayer surface. The C16 acyl chains appear to stretch to accommodate PGLa, whereas tilting within the bilayer seems to be energetically favorable for the peptide when inserted into bilayers of C14 phosphatidylglycerol. In contrast to the commonly accepted membrane thinning effect of antimicrobial peptides, the data demonstrate that pore formation does not necessarily relate to changes in the overall bilayer structure. PMID:18835902

  14. α-Peptide-Oligourea Chimeras: Stabilization of Short α-Helices by Non-Peptide Helical Foldamers.

    PubMed

    Fremaux, Juliette; Mauran, Laura; Pulka-Ziach, Karolina; Kauffmann, Brice; Odaert, Benoit; Guichard, Gilles

    2015-08-17

    Short α-peptides with less than 10 residues generally display a low propensity to nucleate stable helical conformations. While various strategies to stabilize peptide helices have been previously reported, the ability of non-peptide helical foldamers to stabilize α-helices when fused to short α-peptide segments has not been investigated. Towards this end, structural investigations into a series of chimeric oligomers obtained by joining aliphatic oligoureas to the C- or N-termini of α-peptides are described. All chimeras were found to be fully helical, with as few as 2 (or 3) urea units sufficient to propagate an α-helical conformation in the fused peptide segment. The remarkable compatibility of α-peptides with oligoureas described here, along with the simplicity of the approach, highlights the potential of interfacing natural and non-peptide backbones as a means to further control the behavior of α-peptides. PMID:26136402

  15. Modifications of Natural Peptides for Nanoparticle and Drug Design

    PubMed Central

    Jallouk, Andrew P.; Palekar, Rohun U.; Pan, Hua; Schlesinger, Paul H.; Wickline, Samuel A.

    2016-01-01

    Natural products serve as an important source of novel compounds for drug development. Recently, peptides have emerged as a new class of therapeutic agents due to their versatility and specificity for biological targets. Yet, their effective application often requires use of a nanoparticle delivery system. In this chapter, we review the role of natural peptides in the design and creation of nanomedicines, with a particular focus on cell-penetrating peptides, antimicrobial peptides, and peptide toxins. The use of natural peptides in conjunction with nanoparticle delivery systems holds great promise for the development of new therapeutic formulations as well as novel platforms for the delivery of various cargoes. PMID:25819276

  16. Solution Structures of Two Homologous Venom Peptides from Sicarius dolichocephalus

    PubMed Central

    Loening, Nikolaus M.; Wilson, Zachary N.; Zobel-Thropp, Pamela A.; Binford, Greta J.

    2013-01-01

    We present solution-state NMR structures for two putative venom peptides from Sicarius dolichocephalus. These peptides were identified from cDNA libraries created from venom gland mRNA and then recombinantly expressed. They are the first structures from any species of Sicarius spiders, and the first peptide structures for any haplogyne spiders. These peptides are homologous to one another, and while they have at most only 20% sequence identity with known venom peptides their structures follow the inhibitor cystine knot motif that has been found in a broad range of venom peptides. PMID:23342149

  17. Glucagonlike Peptide 2 Analogue Teduglutide

    PubMed Central

    Chaturvedi, Lakshmi S.; Basson, Marc D.

    2015-01-01

    IMPORTANCE Short bowel syndrome occurs when a shortened intestine cannot absorb sufficient nutrients or fluids. Teduglutide is a recombinant analogue of human glucagonlike peptide 2 that reduces dependence on parenteral nutrition in patients with short bowel syndrome by promoting enterocytic proliferation, increasing the absorptive surface area. However, enterocyte function depends not only on the number of cells that are present but also on differentiated features that facilitate nutrient absorption and digestion. OBJECTIVE To test the hypothesis that teduglutide impairs human intestinal epithelial differentiation. DESIGN AND SETTING We investigated the effects of teduglutide in the modulation of proliferation and differentiation in human Caco-2 intestinal epithelial cells at a basic science laboratory. This was an in vitro study using Caco-2 cells, a human-derived intestinal epithelial cell line commonly used to model enterocytic biology. EXPOSURE Cells were exposed to teduglutide or vehicle control. MAINOUTCOMESAND MEASURES We analyzed the cell cycle by bromodeoxyuridine incorporation or propidium iodide staining and flow cytometry and measured cell proliferation by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. We used quantitative reverse transcription–polymerase chain reaction to assay the expression of the enterocytic differentiation markers villin, sucrase-isomaltase, glucose transporter 2 (GLUT2), and dipeptidyl peptidase 4 (DPP-4), as well as that of the putative differentiation signals schlafen 12 (SLFN12) and caudal-related homeobox intestine-specific transcription factor (Cdx2). Villin promoter activity was measured by a luciferase-based assay. RESULTS The MTS assay demonstrated that teduglutide increased cell numbers by a mean (SD) of 10% (2%) over untreated controls at a maximal 500nM (n = 6, P < .05). Teduglutide increased bromodeoxyuridine-positive cells vs untreated controls by a mean (SD

  18. Peptide Based Radiopharmaceuticals: Specific Construct Approach

    SciTech Connect

    Som, P; Rhodes, B A; Sharma, S S

    1997-10-21

    The objective of this project was to develop receptor based peptides for diagnostic imaging and therapy. A series of peptides related to cell adhesion molecules (CAM) and immune regulation were designed for radiolabeling with 99mTc and evaluated in animal models as potential diagnostic imaging agents for various disease conditions such as thrombus (clot), acute kidney failure, and inflection/inflammation imaging. The peptides for this project were designed by the industrial partner, Palatin Technologies, (formerly Rhomed, Inc.) using various peptide design approaches including a newly developed rational computer assisted drug design (CADD) approach termed MIDAS (Metal ion Induced Distinctive Array of Structures). In this approach, the biological function domain and the 99mTc complexing domain are fused together so that structurally these domains are indistinguishable. This approach allows construction of conformationally rigid metallo-peptide molecules (similar to cyclic peptides) that are metabolically stable in-vivo. All the newly designed peptides were screened in various in vitro receptor binding and functional assays to identify a lead compound. The lead compounds were formulated in a one-step 99mTc labeling kit form which were studied by BNL for detailed in-vivo imaging using various animals models of human disease. Two main peptides usingMIDAS approach evolved and were investigated: RGD peptide for acute renal failure and an immunomodulatory peptide derived from tuftsin (RMT-1) for infection/inflammation imaging. Various RGD based metallopeptides were designed, synthesized and assayed for their efficacy in inhibiting ADP-induced human platelet aggregation. Most of these peptides displayed biological activity in the 1-100 µM range. Based on previous work by others, RGD-I and RGD-II were evaluated in animal models of acute renal failure. These earlier studies showed that after acute ischemic injury the renal cortex displays

  19. Design and Application of Antimicrobial Peptide Conjugates.

    PubMed

    Reinhardt, Andre; Neundorf, Ines

    2016-01-01

    Antimicrobial peptides (AMPs) are an interesting class of antibiotics characterized by their unique antibiotic activity and lower propensity for developing resistance compared to common antibiotics. They belong to the class of membrane-active peptides and usually act selectively against bacteria, fungi and protozoans. AMPs, but also peptide conjugates containing AMPs, have come more and more into the focus of research during the last few years. Within this article, recent work on AMP conjugates is reviewed. Different aspects will be highlighted as a combination of AMPs with antibiotics or organometallic compounds aiming to increase antibacterial activity or target selectivity, conjugation with photosensitizers for improving photodynamic therapy (PDT) or the attachment to particles, to name only a few. Owing to the enormous resonance of antimicrobial conjugates in the literature so far, this research topic seems to be very attractive to different scientific fields, like medicine, biology, biochemistry or chemistry. PMID:27187357

  20. Spider-Venom Peptides as Therapeutics

    PubMed Central

    Saez, Natalie J.; Senff, Sebastian; Jensen, Jonas E.; Er, Sing Yan; Herzig, Volker; Rash, Lachlan D.; King, Glenn F.

    2010-01-01

    Spiders are the most successful venomous animals and the most abundant terrestrial predators. Their remarkable success is due in large part to their ingenious exploitation of silk and the evolution of pharmacologically complex venoms that ensure rapid subjugation of prey. Most spider venoms are dominated by disulfide-rich peptides that typically have high affinity and specificity for particular subtypes of ion channels and receptors. Spider venoms are conservatively predicted to contain more than 10 million bioactive peptides, making them a valuable resource for drug discovery. Here we review the structure and pharmacology of spider-venom peptides that are being used as leads for the development of therapeutics against a wide range of pathophysiological conditions including cardiovascular disorders, chronic pain, inflammation, and erectile dysfunction. PMID:22069579

  1. RFamide Peptides in Early Vertebrate Development

    PubMed Central

    Sandvik, Guro Katrine; Hodne, Kjetil; Haug, Trude Marie; Okubo, Kataaki; Weltzien, Finn-Arne

    2014-01-01

    RFamides (RFa) are neuropeptides involved in many different physiological processes in vertebrates, such as reproductive behavior, pubertal activation of the reproductive endocrine axis, control of feeding behavior, and pain modulation. As research has focused mostly on their role in adult vertebrates, the possible roles of these peptides during development are poorly understood. However, the few studies that exist show that RFa are expressed early in development in different vertebrate classes, perhaps mostly associated with the central nervous system. Interestingly, the related peptide family of FMRFa has been shown to be important for brain development in invertebrates. In a teleost, the Japanese medaka, knockdown of genes in the Kiss system indicates that Kiss ligands and receptors are vital for brain development, but few other functional studies exist. Here, we review the literature of RFa in early vertebrate development, including the possible functional roles these peptides may play. PMID:25538682

  2. Anisotropic Membrane Curvature Sensing by Amphipathic Peptides.

    PubMed

    Gómez-Llobregat, Jordi; Elías-Wolff, Federico; Lindén, Martin

    2016-01-01

    Many proteins and peptides have an intrinsic capacity to sense and induce membrane curvature, and play crucial roles for organizing and remodeling cell membranes. However, the molecular driving forces behind these processes are not well understood. Here, we describe an approach to study curvature sensing by simulating the interactions of single molecules with a buckled lipid bilayer. We analyze three amphipathic antimicrobial peptides, a class of membrane-associated molecules that specifically target and destabilize bacterial membranes, and find qualitatively different sensing characteristics that would be difficult to resolve with other methods. Our findings provide evidence for direction-dependent curvature sensing mechanisms in amphipathic peptides and challenge existing theories of hydrophobic insertion. The buckling approach is generally applicable to a wide range of curvature-sensing molecules, and our results provide strong motivation to develop new experimental methods to track position and orientation of membrane proteins. PMID:26745422

  3. Thiazomycins, thiazolyl peptide antibiotics from Amycolatopsis fastidiosa.

    PubMed

    Zhang, Chaowei; Herath, Kithsiri; Jayasuriya, Hiranthi; Ondeyka, John G; Zink, Deborah L; Occi, James; Birdsall, Gwyneth; Venugopal, Jayashree; Ushio, Misti; Burgess, Bruce; Masurekar, Prakash; Barrett, John F; Singh, Sheo B

    2009-05-22

    Thiazolyl peptides are a class of highly rigid trimacrocyclic compounds consisting of varying but large numbers of thiazole rings. The need for new antibacterial agents to treat infections caused by resistant bacteria prompted a reinvestigation of this class, leading to the previous isolation of thiazolyl peptides, namely, thiazomycin (5) and thiazomycin A (6), congeners of nocathiacins (1-4). Continued chemical screening led to the isolation of six new thiazolyl peptide congeners (8-13), of which three had truncated structures lacking an indole residue. From these, compound 8 showed activity similar to thiazomycin. Two compounds (9 and 10) showed intermediate activities, and the three truncated compounds (11-13) were essentially inactive. The discovery of the truncated compounds revealed the minimal structural requirements for activity and suggested probable biosynthetic pathways for more advanced compounds. The isolation, structure elucidation, antibacterial activity, and proposed biogenesis of thiazomycins are herein described. PMID:19334707

  4. Gastrin receptor-avid peptide conjugates

    DOEpatents

    Hoffman, Timothy J.; Volkert, Wynn A.; Li, Ning; Sieckman, Gary; Higginbotham, Chrys-Ann

    2006-12-12

    A compound for use as a therapeutic or diagnostic radiopharmaceutical includes a group capable of complexing a medically useful metal attached to a moiety which is capable of binding to a gastrin releasing peptide receptor. A method for treating a subject having a neoplastic disease includes administering to the subject an effective amount of a radiopharmaceutical having a metal chelated with a chelating group attached to a moiety capable of binding to a gastrin releasing peptide receptor expressed on tumor cells with subsequent internalization inside of the cell. A method of forming a therapeutic or diagnostic compound includes reacting a metal synthon with a chelating group covalently linked with a moiety capable of binding a gastrin releasing peptide receptor.

  5. Gastrin receptor-avid peptide conjugates

    DOEpatents

    Hoffman, Timothy J.; Volkert, Wynn A.; Li, Ning; Sieckman, Gary; Higginbotham, C. A.

    2001-01-01

    A compound for use as a therapeutic or diagnostic radiopharmaceutical includes a group capable of complexing a medically useful metal attached to a moiety which is capable of binding to a gastrin releasing peptide receptor. A method for treating a subject having a neoplastic disease includes administering to the subject an effective amount of a radiopharmaceutical having a metal chelated with a chelating group attached to a moiety capable of binding to a gastrin releasing peptide receptor expressed on tumor cells with subsequent internalization inside of the cell. A method of forming a therapeutic or diagnostic compound includes reacting a metal synthon with a chelating group covalently linked with a moiety capable of binding a gastrin releasing peptide receptor.

  6. Gastrin Receptor-Avid Peptide Conjugates

    DOEpatents

    Hoffman, Timothy J.; Volkert, Wynn A.; Li, Ning; Sieckman, Gary; Higginbotham, Chrys-Ann

    2005-07-26

    A compound for use as a therapeutic or diagnostic radiopharmaceutical includes a group capable of complexing a medically useful metal attached to a moiety which is capable of binding to a gastrin releasing peptide receptor. A method for treating a subject having a neoplastic disease includes administering to the subject an effective amount of a radiopharmaceutical having a metal chelated with a chelating group attached to a moiety capable of binding to a gastrin releasing peptide receptor expressed on tumor cells with subsequent internalization inside of the cell. A method of forming a therapeutic or diagnostic compound includes reacting a metal synthon with a chelating group covalently linked with a moiety capable of binding a gastrin releasing peptide receptor.

  7. Gastrin receptor-avid peptide conjugates

    DOEpatents

    Hoffman, Timothy J.; Volkert, Wynn A.; Sieckman, Gary; Smith, Charles J.; Gali, Hariprasad

    2006-06-13

    A compound for use as a therapeutic or diagnostic radiopharmaceutical includes a group capable of complexing a medically useful metal attached to a moiety which is capable of binding to a gastrin releasing peptide receptor. A method for treating a subject having a neoplastic disease includes administering to the subject an effective amount of a radiopharmaceutical having a metal chelated with a chelating group attached to a-moiety capable of binding to a gastrin releasing peptide receptor expressed on tumor cells with subsequent internalization inside of the cell. A method of forming a therapeutic or diagnostic compound includes reacting a metal synthon with a chelating group covalently linked with a moiety capable of binding a gastrin releasing peptide receptor.

  8. Design and Application of Antimicrobial Peptide Conjugates

    PubMed Central

    Reinhardt, Andre; Neundorf, Ines

    2016-01-01

    Antimicrobial peptides (AMPs) are an interesting class of antibiotics characterized by their unique antibiotic activity and lower propensity for developing resistance compared to common antibiotics. They belong to the class of membrane-active peptides and usually act selectively against bacteria, fungi and protozoans. AMPs, but also peptide conjugates containing AMPs, have come more and more into the focus of research during the last few years. Within this article, recent work on AMP conjugates is reviewed. Different aspects will be highlighted as a combination of AMPs with antibiotics or organometallic compounds aiming to increase antibacterial activity or target selectivity, conjugation with photosensitizers for improving photodynamic therapy (PDT) or the attachment to particles, to name only a few. Owing to the enormous resonance of antimicrobial conjugates in the literature so far, this research topic seems to be very attractive to different scientific fields, like medicine, biology, biochemistry or chemistry. PMID:27187357

  9. Silica precipitation with synthetic silaffin peptides.

    PubMed

    Wieneke, Ralph; Bernecker, Anja; Riedel, Radostan; Sumper, Manfred; Steinem, Claudia; Geyer, Armin

    2011-08-01

    Silaffins are highly charged proteins which are one of the major contributing compounds that are thought to be responsible for the formation of the hierarchically structured silica-based cell walls of diatoms. Here we describe the synthesis of an oligo-propyleneamine substituted lysine derivative and its incorporation into the KXXK peptide motif occurring repeatedly in silaffins. N(ε)-alkylation of lysine was achieved by a Mitsunobu reaction to obtain a protected lysine derivative which is convenient for solid phase peptide synthesis. Quantitative silica precipitation experiments together with structural information about the precipitated silica structures gained by scanning electron microscopy revealed a dependence of the amount and form of the silica precipitates on the peptide structure. PMID:21674108

  10. Physiological effects and therapeutic potential of proinsulin C-peptide

    PubMed Central

    Maric-Bilkan, Christine; Luppi, Patrizia; Wahren, John

    2014-01-01

    Connecting Peptide, or C-peptide, is a product of the insulin prohormone, and is released with and in amounts equimolar to those of insulin. While it was once thought that C-peptide was biologically inert and had little biological significance beyond its role in the proper folding of insulin, it is now known that C-peptide binds specifically to the cell membranes of a variety of tissues and initiates specific intracellular signaling cascades that are pertussis toxin sensitive. Although it is now clear that C-peptide is a biologically active molecule, controversy still remains as to the physiological significance of the peptide. Interestingly, C-peptide appears to reverse the deleterious effects of high glucose in some tissues, including the kidney, the peripheral nerves, and the vasculature. C-peptide is thus a potential therapeutic agent for the treatment of diabetes-associated long-term complications. This review addresses the possible physiologically relevant roles of C-peptide in both normal and disease states and discusses the effects of the peptide on sensory nerve, renal, and vascular function. Furthermore, we highlight the intracellular effects of the peptide and present novel strategies for the determination of the C-peptide receptor(s). Finally, a hypothesis is offered concerning the relationship between C-peptide and the development of microvascular complications of diabetes. PMID:25249503

  11. A peptide ligase and the ribosome cooperate to synthesize the peptide pheganomycin.

    PubMed

    Noike, Motoyoshi; Matsui, Takashi; Ooya, Koichi; Sasaki, Ikuo; Ohtaki, Shouta; Hamano, Yoshimitsu; Maruyama, Chitose; Ishikawa, Jun; Satoh, Yasuharu; Ito, Hajime; Morita, Hiroyuki; Dairi, Tohru

    2015-01-01

    Peptide antibiotics are typically biosynthesized by one of two distinct machineries in a ribosome-dependent or ribosome-independent manner. Pheganomycin (PGM (1)) and related analogs consist of the nonproteinogenic amino acid (S)-2-(3,5-dihydroxy-4-hydroxymethyl)phenyl-2-guanidinoacetic acid (2) and a proteinogenic core peptide, making their origin uncertain. We report the identification of the biosynthetic gene cluster from Streptomyces cirratus responsible for PGM production. Unexpectedly, the cluster contains a gene encoding multiple precursor peptides along with several genes plausibly encoding enzymes for the synthesis of amino acid 2. We identified PGM1, which has an ATP-grasp domain, as potentially capable of linking the precursor peptides with 2, and validate this hypothesis using deletion mutants and in vitro reconstitution. We document PGM1's substrate permissivity, which could be rationalized by a large binding pocket as confirmed via structural and mutagenesis experiments. This is to our knowledge the first example of cooperative peptide synthesis achieved by ribosomes and peptide ligases using a peptide nucleophile. PMID:25402768

  12. Application of mimotope peptides of fumonisin b1 in Peptide ELISA.

    PubMed

    Liu, Xing; Xu, Yang; He, Qing-hua; He, Zhen-yun; Xiong, Zheng-ping

    2013-05-22

    Anti-fumonisin B(1) (FB(1)) McAb 1D11 was used as the target for biopanning from a phage random loop-constrained heptapeptide library. After three cycles of panning, seven phages with three mimotope peptides were selected to mimic the binding of FB(1) to 1D11. After the identification of phage ELISA, the phage clone that showed the best linear range of detection was chosen for further research. One peptide with the inserted peptide sequence of the phage was synthetized, named CT-452. An indirect competitive ELISA (peptide ELISA) for detecting FB(1) was established using the CT-452-bovine serum albumin conjugate as coating antigen. The linear range of the inhibition curve was 1.77-20.73 ng/mL. The half inhibitory concentration (IC50) was 6.06 ng/mL, and the limit of detection was 1.18 ng/mL. This method was compared with conventional indirect ELISA (commercial ELISA kit) and high-performance liquid chromatography (HPLC), and the results showed the reliability of the peptide ELISA for the determination of FB(1) in cereal samples. The relationship between the CT-452 and FB(1) standard concentrations in peptide ELISA was evaluated. The results indicated that synthetic peptide CT-452 can replace the FB(1) standard to establish an immunoassay free of FB(1). PMID:23692446

  13. Interactions at the Peptide/Silicon Surfaces: Evidence of Peptide Multilayer Assembly.

    PubMed

    Pápa, Zsuzsanna; Ramakrishnan, Sathish Kumar; Martin, Marta; Cloitre, Thierry; Zimányi, László; Márquez, Jessica; Budai, Judit; Tóth, Zsolt; Gergely, Csilla

    2016-07-19

    Selective deposition of peptides from liquid solutions to n- and p-doped silicon has been demonstrated. The selectivity is governed by peptide/silicon adhesion differences. A noninvasive, fast characterization of the obtained peptide layers is required to promote their application for interfacing silicon-based devices with biological material. In this study we show that spectroscopic ellipsometry-a method increasingly used for the investigation of biointerfaces-can provide essential information about the amount of adsorbed peptide material and the degree of coverage on silicon surfaces. We observed the formation of peptide multilayers for a strongly binding adhesion peptide on p-doped silicon. Application of the patterned layer ellipsometric evaluation method combined with Sellmeier dispersion led to physically consistent results, which describe well the optical properties of peptide layers in the visible spectral range. This evaluation allowed the estimation of surface coverage, which is an important indicator of adsorption quality. The ellipsometric findings were well supported by atomic force microscopy results. PMID:27315212

  14. Peptide-targeted radionuclide therapy for melanoma.

    PubMed

    Miao, Yubin; Quinn, Thomas P

    2008-09-01

    Melanocortin-1 receptor (MC1-R) and melanin are two attractive melanoma-specific targets for peptide-targeted radionuclide therapy for melanoma. Radiolabeled peptides targeting MC1-R/melanin can selectively and specifically target cytotoxic radiation generated from therapeutic radionuclides to melanoma cells for cell killing, while sparing the normal tissues and organs. This review highlights the recent advances of peptide-targeted radionuclide therapy of melanoma targeting MC1-R and melanin. The promising therapeutic efficacies of 188Re-(Arg(11))CCMSH (188Re-[Cys(3,4,10), D-Phe(7),Arg(11)]-alpha-MSH(3-13)), 177Lu- and 212Pb-labeled DOTA-Re(Arg(11))CCMSH (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-[ReO-(Cys(3,4,10), D-Phe(7), Arg(11))]-alpha-MSH(3-13)) and 188Re-HYNIC-4B4 (188Re-hydrazinonicotinamide-Tyr-Glu-Arg-Lys-Phe-Trp-His-Gly-Arg-His) in preclinical melanoma-bearing models demonstrate an optimistic outlook for peptide-targeted radionuclide therapy for melanoma. Peptide-targeted radionuclide therapy for melanoma will likely contribute in an adjuvant setting, once the primary tumor has been surgically removed, to treat metastatic deposits and for treatment of end-stage disease. The lack of effective treatments for metastatic melanoma and end-stage disease underscores the necessity to develop and implement new treatment strategies, such as peptide-targeted radionuclide therapy. PMID:18387816

  15. Aerosolized Medications for Gene and Peptide Therapy.

    PubMed

    Laube, Beth L

    2015-06-01

    Inhalation therapy has matured to include drugs that: (1) deliver nucleic acids that either lead to the restoration of a gene construct or protein coding sequence in a population of cells or suppress or disrupt production of an abnormal gene product (gene therapy); (2) deliver peptides that target lung diseases such as asthma, sarcoidosis, pulmonary hypertension, and cystic fibrosis; and (3) deliver peptides to treat diseases outside the lung whose target is the systemic circulation (systemic drug delivery). These newer applications for aerosol therapy are the focus of this paper, and I discuss the status of each and the challenges that remain to their successful development. Drugs that are highlighted include: small interfering ribonucleic acid to treat lung cancer and Mycobacterium tuberculosis; vectors carrying the normal alpha-1 antitrypsin gene to treat alpha-1 antitrypsin deficiency; vectors carrying the normal cystic fibrosis transmembrane conductance regulator gene to treat cystic fibrosis; vasoactive intestinal peptide to treat asthma, pulmonary hypertension, and sarcoidosis; glutathione to treat cystic fibrosis; granulocyte-macrophage colony-stimulating factor to treat pulmonary alveolar proteinosis; calcitonin for postmenopausal osteoporosis; and insulin to treat diabetes. The success of these new aerosol applications will depend on many factors, such as: (1) developing gene therapy formulations that are safe for acute and chronic administrations to the lung, (2) improving the delivery of the genetic material beyond the airway mucus barrier and cell membrane and transferring the material to the cell cytoplasm or the cell nucleus, (3) developing aerosol devices that efficiently deliver genetic material and peptides to their lung targets over a short period of time, (4) developing devices that increase aerosol delivery to the lungs of infants, (5) optimizing the bioavailability of systemically delivered peptides, and (6) developing peptide formulations for

  16. Neuropeptides and Peptide Hormones in Anopheles gambiae

    NASA Astrophysics Data System (ADS)

    Riehle, Michael A.; Garczynski, Stephen F.; Crim, Joe W.; Hill, Catherine A.; Brown, Mark R.

    2002-10-01

    The African malaria mosquito, Anopheles gambiae, is specialized for rapid completion of development and reproduction. A vertebrate blood meal is required for egg production, and multiple feedings subsequently allow transmission of malaria parasites, Plasmodium spp. Regulatory peptides from 35 genes annotated from the A. gambiae genome likely coordinate these and other physiological processes. Plasmodium parasites may affect actions of newly identified insulin-like peptides, which coordinate growth and reproduction of its vector, A. gambiae, as in Drosophila melanogaster, Caenorhabditis elegans, and mammals. This genomic information provides a basis to expand understanding of hematophagy and pathogen transmission in this mosquito.

  17. [Antimicrobial peptide in dentisty. Literature review].

    PubMed

    Sato, F Simain; Rompen, E; Heinen, E

    2009-12-01

    The use of antimicrobial substances has contributed to the development of multiple antimicrobial resistances (1), challenging the pharmaceutical industry to develop with new, innovative, and effective molecules. Discovered around 1980, molecules called natural antimicrobial peptides (AMPs) appear to hold great potential for the treatment of infections. These cationic peptides are able to stop the bacterial development and to control infections. The purpose of this review is to help improve the understanding of the way AMPs operate in the context of the development of new cures against viruses, bacteria, and mushrooms found in the human body in general and in the oral cavity in particular. PMID:20143750

  18. Cysteine-containing peptides having antioxidant properties

    DOEpatents

    Bielicki, John K.

    2007-05-15

    The term "homology" or "homologous" means an amino acid similarity measured by the program, BLAST (Altschul et al (1997), "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:33 89 3402), and expressed as --(% identity n/n). In measuring homology between a peptide and a protein of greater size, homology is measured only in the corresponding region; that is, the protein is regarded as only having the same general length as the peptide, allowing for gaps and insertions.

  19. Stable Peptides Instead of Stapled Peptides: Highly Potent αvβ6-Selective Integrin Ligands.

    PubMed

    Maltsev, Oleg V; Marelli, Udaya Kiran; Kapp, Tobias G; Di Leva, Francesco Saverio; Di Maro, Salvatore; Nieberler, Markus; Reuning, Ute; Schwaiger, Markus; Novellino, Ettore; Marinelli, Luciana; Kessler, Horst

    2016-01-22

    The αvβ6 integrin binds the RGD-containing peptide of the foot and mouth disease virus with high selectivity. In this study, the long binding helix of this ligand was downsized to an enzymatically stable cyclic peptide endowed with sub-nanomolar binding affinity toward the αvβ6 receptor and remarkable selectivity against other integrins. Computational studies were performed to disclose the molecular bases underlying the high binding affinity and receptor subtype selectivity of this peptide. Finally, the utility of the ligand for use in biomedical studies was also demonstrated here. PMID:26663660

  20. Calcitonin gene-related peptide (CGRP), peptide YY (PYY) gastrin releasing peptide (GRP) and others in hamster lung and plasma

    SciTech Connect

    Ekman, R.; Keith, I.M.

    1986-03-05

    Rabbit antisera to CGRP, PYY, neuropeptide Y (NPY) and GRP were used for immunocytochemical localization of these peptides in lungs of neonate hamsters at birth and 6 d of age and young (70 gm) and adult (107 gm) hamsters. The peroxidase-antiperoxidase method was applied to paraffin sections of tissue fixed in Bouin's or Zamboni's solution. Furthermore, radioimmunoassay (RIA) was used to quantify these peptides in lung tissue and plasma from the young hamsters (n=13). Distinct CGRP-like immunoreactivity (IR) was noted in grouped (NEB) and individual (NEC) neuroendocrine cells at all ages including all airways from trachea (NECs only) to alveoli. In some NEBs this IR coexisted with 5-HT-like IR. PYY- and NPY-like Ir was mainly noted in NEBs and NECs at the level of bronchioles and alveoli, and weak GRP-like IR was present in neuroendocrine-like cells of small airways. Measurable quantities of all peptides were recorded by RIA. Females had higher lung and plasma levels of CGRP and plasma levels of PYY than males and tended to have higher lung levels of GRP. The neuropeptides CGRP, PYY and the analog NPY are putative regulators of local pulmonary blood flow by vasodilation (CGRP) and constriction (PYY, NPY), and GRP is known to regulate peptide release.

  1. Helical synthetic peptides that stimulate cellular cholesterol efflux

    SciTech Connect

    Bielicki, John K.; Natarajan, Pradeep

    2010-04-06

    The present invention provides peptides comprising at least one amphipathic alpha helix and having an cholesterol mediating activity and a ABCA stabilization activity. The invention further provides methods of using such peptides.

  2. Binding studies of antimicrobial peptides to Escherichia coli cells.

    PubMed

    Avitabile, Concetta; D'Andrea, Luca D; Saviano, Michele; Olivieri, Michele; Cimmino, Amelia; Romanelli, Alessandra

    2016-09-01

    Understanding the mechanism of action of antimicrobial peptides is pivotal to the design of new and more active peptides. In the last few years it has become clear that the behavior of antimicrobial peptides on membrane model systems does not always translate to cells; therefore the need to develop methods aimed at capturing details of the interactions of peptides with bacterial cells is compelling. In this work we analyzed binding of two peptides, namely temporin B and TB_KKG6A, to Escherichia coli cells and to Escherichia coli LPS. Temporin B is a natural peptide active against Gram positive bacteria but inactive against Gram negative bacteria, TB_KKG6A is an analogue of temporin B showing activity against both Gram positive and Gram negative bacteria. We found that binding to cells occurs only for the active peptide TB_KKG6A; stoichiometry and affinity constant of this peptide toward Escherichia coli cells were determined. PMID:27450805

  3. Production of recombinant peptides as fusions with SUMO.

    PubMed

    Satakarni, Makkapati; Curtis, Robin

    2011-08-01

    Recombinant production of non-native peptides requires using protein fusion technology to prevent peptide degradation by host-cell proteases. In this work, we have used SUMO protein as a fusion partner for the production of difficult-to-express, antimicrobial, self-assembling and amyloidogenic peptides using Escherichia coli. SUMO-peptide fusions were expressed as intracellular products by utilizing pET based expression vectors constructed by Life Sensors Inc., USA. Histidine tagged SUMO-peptide fusions were purified using Ni-NTA affinity chromatography. Complete (100%) cleavage of the SUMO-peptide fusion was achieved using SUMO protease-1. Our findings demonstrate that SUMO fusion technology is a promising alternative for production of peptides in E. coli. The key advantage of this technology is that the enzymatic activity of SUMO protease-1 is specific and efficient leading to inexpensive costs for cleaving the peptide fusion when compared with other fusion systems. PMID:21586326

  4. Enzymatic transhalogenation of dendritic RGD peptide constructs with the fluorinase.

    PubMed

    Thompson, Stephen; Fleming, Ian N; O'Hagan, David

    2016-03-21

    The substrate scope of fluorinase enzyme mediated transhalogenation reactions is extended. Substrate tolerance allows a peptide cargo to be tethered to a 5'-chloro-5'-deoxynucleoside substrate for transhalogenation by the enzyme to a 5'-fluoro-5'-deoxynucleoside. The reaction is successfully extended from that previously reported for a monomeric cyclic peptide (cRGD) to cargoes of dendritic scaffolds carrying two and four cyclic peptide motifs. The RGD peptide sequence is known to bind upregulated αVβ3 integrin motifs on the surface of cancer cells and it is demonstrated that the fluorinated products have a higher affinity to αVβ3 integrin than their monomeric counterparts. Extending the strategy to radiolabelling of the peptide cargoes by tagging the peptides with [(18)F]fluoride was only moderately successful due to the poor water solubility of these higher order peptide scaffolds although the strategy holds promise for peptide constructs with improved solubility. PMID:26906931

  5. Current trends in the clinical development of peptide therapeutics.

    PubMed

    Saladin, Pauline M; Zhang, Bodi D; Reichert, Janice M

    2009-12-01

    The development of peptides as drugs is attracting increasing attention from the pharmaceutical industry. This interest is at least partially a consequence of the widespread acceptance of therapeutic proteins by physicians and patients, and because of improvements to problems such as a short half-life and delivery issues. The markets for peptide-based compounds can be substantial, with six peptide drugs attaining global sales of more than US $750 million in 2008. To track trends in the clinical development and marketing approval of peptides, Tufts Center for the Study of Drug Development and Ferring Research Institute compiled publically available data for peptides that entered clinical trials sponsored by commercial firms, with a focus on peptide therapeutics, but also including peptide vaccines and diagnostics. The results provide an historical overview of the development of peptide therapeutics, and may inform strategic planning in this area. PMID:19943221

  6. Microwave heating in peptide side chain modification via cysteine alkylation.

    PubMed

    Calce, Enrica; De Luca, Stefania

    2016-09-01

    Microwave irradiation has been successfully applied to a selective synthetic procedure for introducing molecular substituents on peptides, providing a noticeable reduction of the reaction time and also an increased crude peptide purity for some compounds. PMID:27351201

  7. CHARACTERIZATION OF ANTILISTERIAL BACTERIOCINS PRODUCED BY E. FAECIUM AND E. DURANS ISOLATES FROM HISPANIC-STYLE CHEESES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enterococci are often identified as constituents of the indigenous microflora from raw milk artisanal cheeses and are believed to contribute to the unique organoleptic qualities of these products. Many strains of enterococci are also known to produce antimicrobial peptides, enterocins, which may pr...

  8. [Neuroprotective effects of peptides bioregulators in people of various age].

    PubMed

    Umnov, R S; Lin'kova, N S; Khavinson, V Kh

    2013-01-01

    The review presents comparative characteristics of 2 peptide neuroprotective groups: polypeptide complexes (cortexin, cerebrolizin) and short peptides (semax, kortagen, pinealon). The data of clinical applying of peptides in elderly and old age people and cellular and molecular mechanisms of their neuroprotective activity is described. PMID:24738258

  9. The Synthesis of Beta-Peptides Containing Guanidino Groups

    NASA Technical Reports Server (NTRS)

    Wen, Ke; Han, Hyunsoo; Hoffman, Timothy Z.; Janda, Kim D.; Orgel, Leslie E.

    2003-01-01

    The synthesis of the beta-peptide 1 by the postsynthetic modification of the corresponding amino-containing peptide 3 is described. The potential of 1 to act as a template for the ligation of complementary negatively-charged peptides is discussed.

  10. New Peptides Isolated from Lyngbya Species: A Review

    PubMed Central

    Liu, Li; Rein, Kathleen S.

    2010-01-01

    Cyanobacteria of the genus Lyngbya have proven to be prodigious producers of secondary metabolites. Many of these compounds are bioactive and show potential for therapeutic use. This review covers peptides and hybrid polyketide-non-ribosomal peptides isolated from Lyngbya species. The structures and bioactivities of 50 Lyngbya peptides which were reported since 2007 are presented. PMID:20631872

  11. Facilitating protein solubility by use of peptide extensions

    SciTech Connect

    Freimuth, Paul I; Zhang, Yian-Biao; Howitt, Jason

    2013-09-17

    Expression vectors for expression of a protein or polypeptide of interest as a fusion product composed of the protein or polypeptide of interest fused at one terminus to a solubility enhancing peptide extension are provided. Sequences encoding the peptide extensions are provided. The invention further comprises antibodies which bind specifically to one or more of the solubility enhancing peptide extensions.

  12. Occurrence and function of D-amino acid-containing peptides and proteins: antimicrobial peptides.

    PubMed

    Mignogna, G; Simmaco, M; Barra, D

    1998-01-01

    Antimicrobial peptides are widely distributed in living organisms, where they represent a constitutive defence system acting as a first line of response against infections. The number of such peptides discovered has increased rapidly in the last few years, and more than 100 have been described from different sources. So far, antimicrobial peptides containing a D-amino acid have only been found in the skin secretions of frogs belonging to the genus Bombina. In the second position of the sequence of the mature peptides either D-alloisoleucine or D-leucine were detected. The D-amino acids are derived from the corresponding L forms by an as yet unknown posttranslational reaction. PMID:9949866

  13. Stereoselective terminal functionalization of small peptides for catalytic asymmetric synthesis of unnatural peptides

    PubMed Central

    Maruoka, Keiji; Tayama, Eiji; Ooi, Takashi

    2004-01-01

    The asymmetric phase-transfer catalytic alkylation of peptides has been achieved by the use of designed C2-symmetric chiral quaternary ammonium bromide 1 as catalyst. Excellent stereoselectivities were uniformly observed in the alkylation with a variety of alkyl halides and the efficiency of the transmission of stereochemical information was not affected by the side-chain structure of the preexisting amino acid residues. This method also enables an asymmetric construction of noncoded α,α-dialkyl-α-amino acid residues at the peptide terminal. Since this chirality can be efficiently transferred to the adjacent amino acid moiety, our approach provides a general procedure not only for the highly stereoselective terminal functionalization of peptides but also for the sequential asymmetric construction of unnatural oligopeptides, which should play a vital role in the peptide-based drug discovery process. PMID:15079083

  14. Anginex, a designed peptide that inhibits angiogenesis.

    PubMed Central

    Griffioen, A W; van der Schaft, D W; Barendsz-Janson, A F; Cox, A; Struijker Boudier, H A; Hillen, H F; Mayo, K H

    2001-01-01

    Novel beta-sheet-forming peptide 33-mers, betapep peptides, have been designed by using a combination approach employing basic folding principles and incorporating short sequences from the beta-sheet domains of anti-angiogenic proteins. One of these designed peptides (betapep-25), named anginex, was observed to be potently anti-angiogenic. Anginex specifically inhibits vascular endothelial cell proliferation and induces apoptosis in these cells, as shown by flow-cytometric detection of sub-diploid cells, TUNEL (terminal deoxyribonucleotidyl transferase-mediated dUTP-nick-end labelling) analysis and cell morphology. Anginex also inhibits endothelial cell adhesion to and migration on different extracellular matrix components. Inhibition of angiogenesis in vitro is demonstrated in the sprout-formation assay and in vivo in the chick embryo chorio-allantoic membrane angiogenesis assay. Comparison of active and inactive betapep sequences allows structure-function relationships to be deduced. Five hydrophobic residues and two lysines appear to be crucial to activity. This is the first report of a designed peptide having a well-defined biological function as a novel cytokine, which may be an effective anti-angiogenic agent for therapeutic use against various pathological disorders, such as neoplasia, rheumatoid arthritis, diabetic retinopathy and restenosis. PMID:11171099

  15. Peptide Amphiphiles in Corneal Tissue Engineering

    PubMed Central

    Miotto, Martina; Gouveia, Ricardo M.; Connon, Che J.

    2015-01-01

    The increasing interest in effort towards creating alternative therapies have led to exciting breakthroughs in the attempt to bio-fabricate and engineer live tissues. This has been particularly evident in the development of new approaches applied to reconstruct corneal tissue. The need for tissue-engineered corneas is largely a response to the shortage of donor tissue and the lack of suitable alternative biological scaffolds preventing the treatment of millions of blind people worldwide. This review is focused on recent developments in corneal tissue engineering, specifically on the use of self-assembling peptide amphiphiles for this purpose. Recently, peptide amphiphiles have generated great interest as therapeutic molecules, both in vitro and in vivo. Here we introduce this rapidly developing field, and examine innovative applications of peptide amphiphiles to create natural bio-prosthetic corneal tissue in vitro. The advantages of peptide amphiphiles over other biomaterials, namely their wide range of functions and applications, versatility, and transferability are also discussed to better understand how these fascinating molecules can help solve current challenges in corneal regeneration. PMID:26258796

  16. PQuad: Visualization of Predicted Peptides and Proteins

    SciTech Connect

    Havre, Susan L.; Singhal, Mudita; Payne, Deborah A.; Webb-Robertson, Bobbie-Jo M.

    2004-10-10

    New high-throughput proteomic techniques generate data faster than biologist and bioinformaticists can analyze it. Yet, hidden within this massive and complex data are answers to basic questions about how cells function to support life or respond to disease. Now biologists can take a global or systems approach studying not one or two proteins at a time but whole proteomes comprising all the proteins in a cell. However, the tremendous size and complexity of the high-throughput experiment data make it difficult to process and interpret. Visualization provides powerful analysis capabilities for such enormous and complex data. In this paper, we introduce a novel interactive visualization, PQuad (Peptide Permutation and Protein Prediction), designed for the visual analysis of peptides (protein fragments) identified from high-throughput data. PQuad depicts the experiment peptides in the context of their parent protein and DNA, thereby integrating proteomic and genomic information. A wrapped line metaphor is applied across key resolutions of the data, from a compressed view of an entire chromosome to the actual nucleotide sequence. PQuad provides a difference visualization for comparing peptides from different experimental conditions. We describe the requirements for such a visual analysis tool, the design decisions, and the novel aspects of PQuad.

  17. Theoretical Sum Frequency Generation Spectroscopy of Peptides.

    PubMed

    Carr, Joshua K; Wang, Lu; Roy, Santanu; Skinner, James L

    2015-07-23

    Vibrational sum frequency generation (SFG) has become a very promising technique for the study of proteins at interfaces, and it has been applied to important systems such as anti-microbial peptides, ion channel proteins, and human islet amyloid polypeptide. Moreover, so-called "chiral" SFG techniques, which rely on polarization combinations that generate strong signals primarily for chiral molecules, have proven to be particularly discriminatory of protein secondary structure. In this work, we present a theoretical strategy for calculating protein amide I SFG spectra by combining line-shape theory with molecular dynamics simulations. We then apply this method to three model peptides, demonstrating the existence of a significant chiral SFG signal for peptides with chiral centers, and providing a framework for interpreting the results on the basis of the dependence of the SFG signal on the peptide orientation. We also examine the importance of dynamical and coupling effects. Finally, we suggest a simple method for determining a chromophore's orientation relative to the surface using ratios of experimental heterodyne-detected signals with different polarizations, and test this method using theoretical spectra. PMID:25203677

  18. Peptide Synthetase Gene in Trichoderma virens

    PubMed Central

    Wilhite, S. E.; Lumsden, R. D.; Straney, D. C.

    2001-01-01

    Trichoderma virens (synonym, Gliocladium virens), a deuteromycete fungus, suppresses soilborne plant diseases caused by a number of fungi and is used as a biocontrol agent. Several traits that may contribute to the antagonistic interactions of T. virens with disease-causing fungi involve the production of peptide metabolites (e.g., the antibiotic gliotoxin and siderophores used for iron acquisition). We cloned a 5,056-bp partial cDNA encoding a putative peptide synthetase (Psy1) from T. virens using conserved motifs found within the adenylate domain of peptide synthetases. Sequence similarities with conserved motifs of the adenylation domain, acyl transfer, and two condensation domains support identification of the Psy1 gene as a gene that encodes a peptide synthetase. Disruption of the native Psy1 gene through gene replacement was used to identify the function of this gene. Psy1 disruptants produced normal amounts of gliotoxin but grew poorly under low-iron conditions, suggesting that Psy1 plays a role in siderophore production. Psy1 disruptants cannot produce the major T. virens siderophore dimerum acid, a dipetide of acylated Nδ-hydroxyornithine. Biocontrol activity against damping-off diseases caused by Pythium ultimum and Rhizoctonia solani was not reduced by the Psy1 disruption, suggesting that iron competition through dimerum acid production does not contribute significantly to disease suppression activity under the conditions used. PMID:11679326

  19. Peptide binding at the GLP-1 receptor.

    PubMed

    Mann, R; Nasr, N; Hadden, D; Sinfield, J; Abidi, F; Al-Sabah, S; de Maturana, R López; Treece-Birch, J; Willshaw, A; Donnelly, D

    2007-08-01

    The receptor for GLP-1 [glucagon-like peptide-1-(7-36)-amide] is a member of the 'Family B' of GPCRs (G-protein-coupled receptors) comprising an extracellular N-terminal domain containing six conserved cysteine residues (the N-domain) and a core domain (or J-domain) comprising the seven transmembrane helices and interconnecting loop regions. According to the two-domain model for peptide binding, the N-domain is primarily responsible for providing most of the peptide binding energy, whereas the core domain is responsible for binding the N-terminal region of the peptide agonists and transmitting the signal to the intracellular G-protein. Two interesting differences between the binding properties of two GLP-1 receptor agonists, GLP-1 and EX-4 (exendin-4), can be observed. First, while GLP-1 requires its full length to maintain high affinity, the eight N-terminal residues of EX-4 can be removed with little reduction in affinity. Secondly, EX-4 (but not GLP-1) can bind to the fully isolated N-domain of the receptor with an affinity matching that of the full-length receptor. In order to better understand these differences, we have studied the interaction between combinations of full-length or truncated ligands with full-length or truncated receptors. PMID:17635131

  20. Theoretical Sum Frequency Generation Spectroscopy of Peptides

    PubMed Central

    2015-01-01

    Vibrational sum frequency generation (SFG) has become a very promising technique for the study of proteins at interfaces, and it has been applied to important systems such as anti-microbial peptides, ion channel proteins, and human islet amyloid polypeptide. Moreover, so-called “chiral” SFG techniques, which rely on polarization combinations that generate strong signals primarily for chiral molecules, have proven to be particularly discriminatory of protein secondary structure. In this work, we present a theoretical strategy for calculating protein amide I SFG spectra by combining line-shape theory with molecular dynamics simulations. We then apply this method to three model peptides, demonstrating the existence of a significant chiral SFG signal for peptides with chiral centers, and providing a framework for interpreting the results on the basis of the dependence of the SFG signal on the peptide orientation. We also examine the importance of dynamical and coupling effects. Finally, we suggest a simple method for determining a chromophore’s orientation relative to the surface using ratios of experimental heterodyne-detected signals with different polarizations, and test this method using theoretical spectra. PMID:25203677

  1. Peptides and proteins with antimicrobial activity

    PubMed Central

    Coutinho, Henrique Douglas Melo; Lôbo, Katiuscia Menezes; Bezerra, Denise Aline Casimiro; Lôbo, Inalzuir

    2008-01-01

    The increase of microbial resistance to antibiotics has led to a continuing search for newer and more effective drugs. Antimicrobial peptides are generally found in animals, plants, and microorganisms and are of great interest to medicine, pharmacology, and the food industry. These peptides are capable of inhibiting pathogenic microorganisms. They can attack parasites, while causing little or no harm to the host cells. The defensins are peptides found in granules in the polymorphonuclear neutrophils (PMNs) and are responsible for the defense of the organism. Several animal defensins, like dermaseptin, antileukoprotease, protegrin, and others, have had their activities and efficacy tested and been shown to be effective against bacteria, fungi, and protists; there are also specific defensins from invertebrates, e.g., drosomycin and heliomicin; from plants, e.g., the types A and B; and the bacteriocins, e.g., acrocin, marcescin, etc. The aim of the present work was to compile a comprehensive bibliographic review of the diverse potentially antimicrobial peptides in an effort to systematize the current knowledge on these substances as a contribution for further researches. The currently available bibliography does not give a holistic approach on this subject. The present work intends to show that the mechanism of defense represented by defensins is promising from the perspective of its application in the treatment of infectious diseases in human, animals and plants. PMID:21264153

  2. Fibrillar peptide gels in biotechnology and biomedicine

    PubMed Central

    Jung, Jangwook P.; Gasiorowski, Joshua Z.; Collier, Joel H.

    2012-01-01

    Peptides, peptidomimetics, and peptide derivatives that self-assemble into fibrillar gels have received increasing interest as synthetic extracellular matrices for applications in 3D cell culture and regenerative medicine. Recently, several of these fibrillizing molecules have been functionalized with bioactive components such as cell-binding ligands, degradable sequences, drug-eluting compounds, and chemical modifications for cross-linking, producing gels that can reliably display multiple factors simultaneously. This capacity for incorporating precise levels of many different biological and chemical factors is advantageous given the natural complexity of cell-matrix interactions that many current biomaterial strategies seek to mimic. In this review, recent efforts in the area of fibril-forming peptide materials are described, and advantages of biomaterials containing multiple modular elements are outlined. In addition, a few hurdles and open questions surrounding fibrillar peptide gels are discussed, including issues of the materials’ structural heterogeneity, challenges in fully characterizing the diversity of their self-assembled structures, and incomplete knowledge of how the materials are processed in vivo. PMID:20091870

  3. Evolutionary origin of inhibitor cystine knot peptides.

    PubMed

    Zhu, Shunyi; Darbon, Herve; Dyason, Karin; Verdonck, Fons; Tytgat, Jan

    2003-09-01

    The inhibitor cystine knot (ICK) fold is an evolutionarily conserved structural motif shared by a large group of polypeptides with diverse sequences and bioactivities. Although found in different phyla (animal, plant, and fungus), ICK peptides appear to be most prominent in venoms of cone snail and spider. Recently, two scorpion toxins activating a calcium release channel have been found to adopt an ICK fold. We have isolated and identified both cDNA and genomic clones for this family of ICK peptides from the scorpion Opistophthalmus carinatus. The gene characterized by three well-delineated exons respectively coding for three structural and functional domains in the toxin precursors illustrates the correlation between exon and module as suggested by the "exon theory of genes." Based on the analysis of precursor organization and gene structure combined with the 3-D fold and functional data, our results highlight a common evolutionary origin for ICK peptides from animals. In contrast, ICK peptides from plant and fungus might be independently evolved from another ancestor. PMID:12958203

  4. Exhaustively sampling peptide adsorption with metadynamics.

    PubMed

    Deighan, Michael; Pfaendtner, Jim

    2013-06-25

    Simulating the adsorption of a peptide or protein and obtaining quantitative estimates of thermodynamic observables remains challenging for many reasons. One reason is the dearth of molecular scale experimental data available for validating such computational models. We also lack simulation methodologies that effectively address the dual challenges of simulating protein adsorption: overcoming strong surface binding and sampling conformational changes. Unbiased classical simulations do not address either of these challenges. Previous attempts that apply enhanced sampling generally focus on only one of the two issues, leaving the other to chance or brute force computing. To improve our ability to accurately resolve adsorbed protein orientation and conformational states, we have applied the Parallel Tempering Metadynamics in the Well-Tempered Ensemble (PTMetaD-WTE) method to several explicitly solvated protein/surface systems. We simulated the adsorption behavior of two peptides, LKα14 and LKβ15, onto two self-assembled monolayer (SAM) surfaces with carboxyl and methyl terminal functionalities. PTMetaD-WTE proved effective at achieving rapid convergence of the simulations, whose results elucidated different aspects of peptide adsorption including: binding free energies, side chain orientations, and preferred conformations. We investigated how specific molecular features of the surface/protein interface change the shape of the multidimensional peptide binding free energy landscape. Additionally, we compared our enhanced sampling technique with umbrella sampling and also evaluated three commonly used molecular dynamics force fields. PMID:23706011

  5. Membranotropic Cell Penetrating Peptides: The Outstanding Journey

    PubMed Central

    Falanga, Annarita; Galdiero, Massimiliano; Galdiero, Stefania

    2015-01-01

    The membrane bilayer delimits the interior of individual cells and provides them with the ability to survive and function properly. However, the crossing of cellular membranes constitutes the principal impediment to gaining entry into cells, and the potential therapeutic application of many drugs is predominantly dependent on the development of delivery tools that should take the drug to target cells selectively and efficiently with only minimal toxicity. Cell-penetrating peptides are short and basic peptides are widely used due to their ability to deliver a cargo across the membrane both in vitro and in vivo. It is widely accepted that their uptake mechanism involves mainly the endocytic pathway, the drug is catched inside endosomes and lysosomes, and only a small quantity is able to reach the intracellular target. In this wide-ranging scenario, a fascinating novel hypothesis is that membranotropic peptides that efficiently cross biological membranes, promote lipid-membrane reorganizing processes and cause a local and temporary destabilization and reorganization of the membrane bilayer, may also be able to enter cells circumventing the endosomal entrapment; in particular, by either favoring the escape from the endosome or by direct translocation. This review summarizes current data on membranotropic peptides for drug delivery. PMID:26512649

  6. Determining Peptide Partitioning Properties via Computer Simulation

    PubMed Central

    Ulmschneider, Jakob P.; Ulmschneider, Martin B.

    2010-01-01

    The transfer of polypeptide segments into lipid bilayers to form transmembrane helices represents the crucial first step in cellular membrane protein folding and assembly. This process is driven by complex and poorly understood atomic interactions of peptides with the lipid bilayer environment. The lack of suitable experimental techniques that can resolve these processes both at atomic resolution and nanosecond timescales has spurred the development of computational techniques. In this review, we summarize the significant progress achieved in the last few years in elucidating the partitioning of peptides into lipid bilayer membranes using atomic detail molecular dynamics simulations. Indeed, partitioning simulations can now provide a wealth of structural and dynamic information. Furthermore, we show that peptide-induced bilayer distortions, insertion pathways, transfer free energies, and kinetic insertion barriers are now accurate enough to complement experiments. Further advances in simulation methods and force field parameter accuracy promise to turn molecular dynamics simulations into a powerful tool for investigating a wide range of membrane active peptide phenomena. PMID:21107546

  7. Localized lentivirus delivery via peptide interactions.

    PubMed

    Skoumal, Michael; Seidlits, Stephanie; Shin, Seungjin; Shea, Lonnie

    2016-09-01

    Gene delivery from biomaterial scaffolds has been employed to induce the expression of tissue inductive factors for applications in regenerative medicine. The delivery of viral vectors has been described as reflecting a balance between vector retention and release. Herein, we investigated the design of hydrogels in order to retain the vector at the material in order to enhance transgene expression. Poly(ethylene-glycol) (PEG) hydrogels were modified with poly-l-lysine (PLL) to non-covalently bind lentivirus. For cells cultured on the hydrogels, increasing the PLL molecular weight from 1 to 70 kDa led to increased transgene expression. The incubation time of the virus with the hydrogel and the PLL concentration modulated the extent of virus adsorption, and adsorbed virus had a 20% increase in the half-life at 37°C. Alternatives to high molecular weight PLL were identified through phage display technology, with peptide sequences specific for the VSV-G ectodomain, an envelope protein pseudotyped on the virus. These affinity peptides could easily be incorporated into the hydrogel, and expression was increased 20-fold relative to control peptide, and comparable to levels observed with the high molecular weight PLL. The modification of hydrogels with affinity proteins or peptides to bind lentivirus can be a powerful strategy to enhance and localized transgene expression. Biotechnol. Bioeng. 2016;113: 2033-2040. © 2016 Wiley Periodicals, Inc. PMID:26913962

  8. [Biologically Active Peptides of King Crab Hepatopancreas].

    PubMed

    Bogdanov, V V; Berezin, B B; Il'ina, A P; Yamskova, V P; Yamskov, I A

    2015-01-01

    Substances of a peptide nature isolated from the hepatopancreas of the king crab Paralithodes camtschaticus exhibited physicochemical properties and membranotropic and specific activities similar to those of membranotropic homeostatic tissue-specific bioregulators previously found in different mammalian and plant tissues. Their biological effect on vertebrate tissues was demonstrated on a model of roller organotypic cultivation of Pleurodeles waltl newt liver tissue. PMID:26353409

  9. Classification of antimicrobial peptides with imbalanced datasets

    NASA Astrophysics Data System (ADS)

    Camacho, Francy L.; Torres, Rodrigo; Ramos Pollán, Raúl

    2015-12-01

    In the last years, pattern recognition has been applied to several fields for solving multiple problems in science and technology as for example in protein prediction. This methodology can be useful for prediction of activity of biological molecules, e.g. for determination of antimicrobial activity of synthetic and natural peptides. In this work, we evaluate the performance of different physico-chemical properties of peptides (descriptors groups) in the presence of imbalanced data sets, when facing the task of detecting whether a peptide has antimicrobial activity. We evaluate undersampling and class weighting techniques to deal with the class imbalance with different classification methods and descriptor groups. Our classification model showed an estimated precision of 96% showing that descriptors used to codify the amino acid sequences contain enough information to correlate the peptides sequences with their antimicrobial activity by means of learning machines. Moreover, we show how certain descriptor groups (pseudoaminoacid composition type I) work better with imbalanced datasets while others (dipeptide composition) work better with balanced ones.

  10. Immunodiagnosis of parasitic diseases with synthetic peptides.

    PubMed

    Noya, O; Patarroyo, M E; Guzmán, F; Alarcón de Noya, B

    2003-08-01

    Parasitic diseases remain as a major public health problem worldwide, not only based on their historically high morbidity and mortality rates, but also because risk factors associated with their transmission are increasing. Laboratory diagnosis and particularly immunodiagnosis is a basic tool for the demonstration, clinical management and control of these infections. Classically, the serological tests for the detection of antibodies or antigens are based on the use of crude and purified antigens. Synthetic peptides have opened a new field and perspectives, as the source of pure epitopes and molecules for diagnosis of malaria, Chagas' disease, leishmaniasis, schistosomiasis, hidatidosis, cysticercosis and fasciolosis based on the detection of antibodies and circulating antigens. Herein, are critically reviewed the relevant advances and applications of the synthetic peptides on immunodiagnosis of parasitic diseases. A variety of sequences, constructs (monomers, polymers, MAPs), immunological methods and samples have been used, demonstrating their diagnostic potential. However, in most parasitic infections it is necessary to use more than a single peptide in order to avoid the genetic restriction against certain epitopes, as well as to test them in well characteized groups of patients, in order to confirm their sensitivity and specificity. The concept of multidiagnosis with synthetic peptides, using a novel multi-dot blot assay is introduced. Finally, the chemical imitation of antigens, offers a tremendous posibilities in the diagnosis of parasitic infections in developing countries since this strategy is cheaper, simpler, reproducible, useful for large scale testing and in most cases, specific and sensitive. PMID:14529537

  11. Thionin antifungal peptide synthesis in transgenic barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In seeds and vegetative organs of barley and other cereals, thionins are processed into peptides with pronounced anti-microbial properties. In vitro studies demonstrated the toxicity of a- and ß-hordothionins (HTHs) to the fungal pathogen Fusarium graminearum. Increasing the expression of thionin g...

  12. Selection of a peptide mimicking neutralization epitope of hepatitis E virus with phage peptide display technology

    PubMed Central

    Gu, Ying; Zhang, Jun; Wang, Ying-Bing; Li, Shao-Wei; Yang, Hai-Jie; Luo, Wen-Xin; Xia, Ning-Shao

    2004-01-01

    AIM: To select the peptide mimicking the neutralization epitope of hepatitis E virus which bound to non-type-specific and conformational monoclonal antibodies (mAbs) 8C11 and 8H3 fromed 7-peptide phage display library, and expressed the peptide recombinant with HBcAg in E.coli, and to observe whether the recombinant HBcAg could still form virus like particle (VLP) and to test the activation of the recombinant polyprotein and chemo-synthesized peptide that was selected by mAb 8H3. METHODS: 8C11 and 8H3 were used to screen for binding peptides through a 7-peptide phage display library. After 4 rounds of panning, monoclonal phages were selected and sequenced. The obtained dominant peptide coding sequences was then synthesized and inserted into amino acid 78 to 83 of hepatitis B core antigen (HBcAg), and then expressed in E.coli. Activity of the recombinant proteins was detected by Western blotting, VLPs of the recombinant polyproteins were tested by transmission electron microscopy and binding activity of the chemo-synthesized peptide was confirmed by BIAcore biosensor. RESULTS: Twenty-one positive monoclonal phages (10 for 8C11, and 11 for 8H3) were selected and the inserted fragments were sequenced. The DNA sequence coding for the obtained dominant peptides 8C11 (N’-His-Pro-Thr-Leu-Leu-Arg-Ile-C’, named 8C11A) and 8H3 (N’-Ser-Ile-Leu-Pro- Tyr-Pro-Tyr-C’, named 8H3A) were then synthesized and cloned to the HBcAg vector, then expressed in E.coli. The recombinant proteins aggregated into homodimer or polymer on SDS-PAGE, and could bind to mAb 8C11 and 8H3 in Western blotting. At the same time, the recombinant polyprotein could form virus like particles (VLPs), which could be visualized on electron micrograph. The dominant peptide 8H3A selected by mAb 8H3 was further chemo-synthesized, and its binding to mAb 8H3 could be detected by BIAcore biosensor. CONCLUSION: These results implicate that conformational neutralizing epitope can be partially modeled by a short

  13. Exploring multidimensional free energy surfaces of peptides

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Kuczera, Krzysztof

    1997-03-01

    A new statistical mechanics thermodynamic integration method is presented, enabling exploration of multidimensional conformational free energy surfaces of large flexible molecules. In this approach a single molecular dynamics simulation in which a set of coordinates has been constrained to fixed values yields the free energy gradient with respect to all coordinates in the set. The availability of the multidimensional gradient opens new possibilities for exploration of molecular conformational free energy surfaces, including free energy optimization to locate free energy minima, calculation of higher free energy derivatives, and finding optimal free energy paths between states. Additionally, choosing of all "soft" degrees of freedom as the constrained set leads to accelerated convergence of averages, effectively overcoming the sampling problem of free energy simulations. Two applications of the method are presented: Helical states of model peptides. For model peptides (Ala)n and (Aib)n where n=6,8,10 and Aib is α-methylalanine in vacuum, free energy maps and free energy optimization in φ-ψ space are used to locate free energy minima corresponding to α-, π- and 3_10-helical structures. The stability of the minima is characterized by calculating numerical second derivatives of the free energy. Free energy decomposition is employed to reveal the molecular mechanism for the improved stability of the 3_10h relative to the ah in Aib-containing peptides. DPDPE peptide pre-organization. For the linear form of the opioid peptide DPDPE in aqueous solution, the effective local sampling made possible by fixing all soft degrees of freedom is used to calculate the free energy difference between the open and cyclic-like structures, providing an estimate of the free energy of pre-organizing the peptide for disulfide bond formation. The open structure was found to be more stable by 4.0 ± 0.8 kcal/mol. The cyclic-like conformation was much better solvated than the open

  14. Application of synthetic peptides for detection of anti-citrullinated peptide antibodies.

    PubMed

    Trier, Nicole Hartwig; Holm, Bettina Eide; Slot, Ole; Locht, Henning; Lindegaard, Hanne; Svendsen, Anders; Nielsen, Christoffer Tandrup; Jacobsen, Søren; Theander, Elke; Houen, Gunnar

    2016-02-01

    Anti-citrullinated protein antibodies (ACPAs) are a hallmark of rheumatoid arthritis (RA) and represent an important tool for the serological diagnosis of RA. In this study, we describe ACPA reactivity to overlapping citrullinated Epstein-Barr virus nuclear antigen-1 (EBNA-1)-derived peptides and analyze their potential as substrates for ACPA detection by streptavidin capture enzyme-linked immunosorbent assay. Using systematically overlapping peptides, containing a 10 amino acid overlap, labelled with biotin C-terminally or N-terminally, sera from 160 individuals (RA sera (n=60), healthy controls (n=40), systemic lupus erythematosus (n=20), Sjögren's syndrome (n=40)) were screened for antibody reactivity. Antibodies to a panel of five citrullinated EBNA-1 peptides were found in 67% of RA sera, exclusively of the IgG isotype, while 53% of the patient sera reacted with a single peptide, ARGGSRERARGRGRG-Cit-GEKR, accounting for more than half of the ACPA reactivity alone. Moreover, these antibodies were detected in 10% of CCP2-negative RA sera. In addition, 47% of the RA sera reacted with two or three citrullinated EBNA-1 peptides from the selected peptide panel. Furthermore, a negative correlation between the biotin attachment site and the location of citrulline in the peptides was found, i.e. the closer the citrulline was located to biotin, the lower the antibody reactivity. Our data suggest that citrullinated EBNA-1 peptides may be considered a substrate for the detection of ACPAs and that the presence of Epstein-Barr virus may play a role in the induction of these autoantibodies. PMID:26796582

  15. Natriuretic peptide receptors in the fetal rat.

    PubMed

    Brown, J; Zuo, Z

    1995-08-01

    In vitro autoradiography of rat fetuses from embryonic days 12-19 (E12-E19) showed widespread high-affinity specific binding sites for natriuretic peptides. The sites on E16 somites avidly bound C-type natriuretic peptide [CNP-(1-22)] as well as C-ANP, a synthetic ligand that selects the C-type natriuretic peptide receptor (NPR-C). Most somitic binding sites had high affinity for atrial natriuretic peptide [ANP-(1-28)], confirming their resemblance to NPR-C. A few had a lower apparent affinity for ANP-(1-28), suggesting that they might be NPR-B. CNP-(1-22) was more powerful than ANP-(1-28) as an agonist of guanosine 3',5'-cyclic monophosphate production in somites, and ATP augmented the action of CNP-(1-22). These observations further suggest the presence of NPR-B. However, with cross-linking of 3-[125I]iodo-0-tyrosyl rat CNP-(1-22) to somitic membranes followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, only a single 64-kDa binding protein was detected under reducing conditions. This is not consistent with intact approximately 120-kDa NPR-B. In vitro autoradiography of the binding of natriuretic peptides to E16 liver implied the presence of NPR-A and NPR-C-like receptors. Hepatic guanosine 3',5'-cyclic monophosphate production was most powerfully stimulated by ANP-(1-28), as expected for NPR-A. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis also identified NPR-A and NPR-C-like proteins in E16 hepatic membranes. Thus different NPRs are expressed by specific fetal tissues. This may be developmentally significant. PMID:7653543

  16. Coarse Graining to Investigate Membrane Induced Peptide Folding of Anticancer Peptides

    NASA Astrophysics Data System (ADS)

    Ganesan, Sai; Xu, Hongcheng; Matysiak, Silvina

    Information about membrane induced peptide folding mechanisms using all-atom molecular dynamics simulations is a challenge due to time and length scale issues.We recently developed a low resolution Water Explicit Polarizable PROtein coarse-grained Model by adding oppositely charged dummy particles inside protein backbone beads.These two dummy particles represent a fluctuating dipole,thus introducing structural polarization into the coarse-grained model.With this model,we were able to achieve significant α- β secondary structure content de novo,without any added bias.We extended the model to zwitterionic and anionic lipids,by adding oppositely charged dummy particles inside polar beads, to capture the ability of the head group region to form hydrogen bonds.We use zwitterionic POPC and anionic POPS as our model lipids, and a cationic anticancer peptide,SVS1,as our model peptide.We have characterized the driving forces for SVS1 folding on lipid bilayers with varying anionic and zwitterionic lipid compositions.Based on our results, dipolar interactions between peptide backbone and lipid head groups contribute to stabilize folded conformations.Cooperativity in folding is induced by both intra peptide and membrane-peptide interaction.

  17. Two-dimensional replica exchange approach for peptide-peptide interactions

    NASA Astrophysics Data System (ADS)

    Gee, Jason; Shell, M. Scott

    2011-02-01

    The replica exchange molecular dynamics (REMD) method has emerged as a standard approach for simulating proteins and peptides with rugged underlying free energy landscapes. We describe an extension to the original methodology—here termed umbrella-sampling REMD (UREMD)—that offers specific advantages in simulating peptide-peptide interactions. This method is based on the use of two dimensions in the replica cascade, one in temperature as in conventional REMD, and one in an umbrella sampling coordinate between the center of mass of the two peptides that aids explicit exploration of the complete association-dissociation reaction coordinate. To mitigate the increased number of replicas required, we pursue an approach in which the temperature and umbrella dimensions are linked at only fully associated and dissociated states. Coupled with the reweighting equations, the UREMD method aids accurate calculations of normalized free energy profiles and structural or energetic measures as a function of interpeptide separation distance. We test the approach on two families of peptides: a series of designed tetrapeptides that serve as minimal models for amyloid fibril formation, and a fragment of a classic leucine zipper peptide and its mutant. The results for these systems are compared to those from conventional REMD simulations, and demonstrate good convergence properties, low statistical errors, and, for the leucine zippers, an ability to sample near-native structures.

  18. Antimicrobial peptides: a review of how peptide structure impacts antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Soares, Jason W.; Mello, Charlene M.

    2004-03-01

    Antimicrobial peptides (AMPs) have been discovered in insects, mammals, reptiles, and plants to protect against microbial infection. Many of these peptides have been isolated and studied exhaustively to decipher the molecular mechanisms that impart protection against infectious bacteria, fungi, and viruses. Unfortunately, the molecular mechanisms are still being debated within the scientific community but valuable clues have been obtained through structure/function relationship studies1. Biophysical studies have revealed that cecropins, isolated from insects and pigs, exhibit random structure in solution but undergo a conformational change to an amphipathic α-helix upon interaction with a membrane surface2. The lack of secondary structure in solution results in an extremely durable peptide able to survive exposure to high temperatures, organic solvents and incorporation into fibers and films without compromising antibacterial activity. Studies to better understand the antimicrobial action of cecropins and other AMPs have provided insight into the importance of peptide sequence and structure in antimicrobial activities. Therefore, enhancing our knowledge of how peptide structure imparts function may result in customized peptide sequences tailored for specific applications such as targeted cell delivery systems, novel antibiotics and food preservation additives. This review will summarize the current state of knowledge with respect to cell binding and antimicrobial activity of AMPs focusing primarily upon cecropins.

  19. Peptidic Tumor Targeting Agents: The Road from Phage Display Peptide Selections to Clinical Applications

    PubMed Central

    Brown, Kathlynn C.

    2014-01-01

    Cancer has become the number one cause of death amongst Americans, killing approximately 1,600 people per day. Novel methods for early detection and the development of effective treatments are an eminent priority in medicine. For this reason, isolation of tumor-specific ligands is a growing area of research. Tumor-specific binding agents can be used to probe the tumor cell surface phenotype and customize treatment accordingly by conjugating the appropriate cell-targeting ligand to an anticancer drug. This refines the molecular diagnosis of the tumor and creates guided drugs that can target the tumor while sparing healthy tissues. Additionally, these targeting agents can be used as in vivo imaging agents that allow for earlier detection of tumors and micrometastasis. Phage display is a powerful technique for the isolation of peptides that bind to a particular target with high affinity and specificity. The biopanning of intact cancer cells or tumors in animals can be used to isolate peptides that bind to cancer-specific cell surface biomarkers. Over the past 10 years, unbiased biopanning of phage-displayed peptide libraries has generated a suite of cancer targeting peptidic ligands. This review discusses the recent advances in the isolation of cancer-targeting peptides by unbiased biopanning methods and highlights the use of the isolated peptides in clinical applications. PMID:20030617

  20. Peptide Nanovesicles Formed by the Self-Assembly of Branched Amphiphilic Peptides

    PubMed Central

    Gudlur, Sushanth; Sukthankar, Pinakin; Gao, Jian; Avila, L. Adriana; Hiromasa, Yasuaki; Chen, Jianhan; Iwamoto, Takeo; Tomich, John M.

    2012-01-01

    Peptide-based packaging systems show great potential as safer drug delivery systems. They overcome problems associated with lipid-based or viral delivery systems, vis-a-vis stability, specificity, inflammation, antigenicity, and tune-ability. Here, we describe a set of 15 & 23-residue branched, amphiphilic peptides that mimic phosphoglycerides in molecular architecture. These peptides undergo supramolecular self-assembly and form solvent-filled, bilayer delimited spheres with 50–200 nm diameters as confirmed by TEM, STEM and DLS. Whereas weak hydrophobic forces drive and sustain lipid bilayer assemblies, these all-peptide structures are stabilized potentially by both hydrophobic interactions and hydrogen bonds and remain intact at low micromolar concentrations and higher temperatures. A linear peptide lacking the branch point showed no self-assembly properties. We have observed that these peptide vesicles can trap fluorescent dye molecules within their interior and are taken up by N/N 1003A rabbit lens epithelial cells grown in culture. These assemblies are thus potential drug delivery systems that can overcome some of the key limitations of the current packaging systems. PMID:23028970

  1. Synthesis of peptide thioacids at neutral pH using bis(2-sulfanylethyl)amido peptide precursors.

    PubMed

    Pira, Silvain L; Boll, Emmanuelle; Melnyk, Oleg

    2013-10-18

    Reaction of bis(2-sulfanylethyl)amido (SEA) peptides with triisopropylsilylthiol in water at neutral pH yields peptide thiocarboxylates. An alkylthioester derived from β-alanine was used to trap the released bis(2-sulfanylethyl)amine and displace the equilibrium toward the peptide thiocarboxylate. PMID:24073852

  2. Peptide-based Biopolymers in Biomedicine and Biotechnology

    PubMed Central

    Chow, Dominic; Nunalee, Michelle L.; Lim, Dong Woo; Simnick, Andrew J.; Chilkoti, Ashutosh

    2008-01-01

    Peptides are emerging as a new class of biomaterials due to their unique chemical, physical, and biological properties. The development of peptide-based biomaterials is driven by the convergence of protein engineering and macromolecular self-assembly. This review covers the basic principles, applications, and prospects of peptide-based biomaterials. We focus on both chemically synthesized and genetically encoded peptides, including poly-amino acids, elastin-like polypeptides, silk-like polymers and other biopolymers based on repetitive peptide motifs. Applications of these engineered biomolecules in protein purification, controlled drug delivery, tissue engineering, and biosurface engineering are discussed. PMID:19122836

  3. Iron-chelating activity of chickpea protein hydrolysate peptides.

    PubMed

    Torres-Fuentes, Cristina; Alaiz, Manuel; Vioque, Javier

    2012-10-01

    Chickpea-chelating peptides were purified and analysed for their iron-chelating activity. These peptides were purified after affinity and gel filtration chromatography from a chickpea protein hydrolysate produced with pepsin and pancreatin. Iron-chelating activity was higher in purified peptide fractions than in the original hydrolysate. Histidine contents were positively correlated with the iron-chelating activity. Hence fractions with histidine contents above 20% showed the highest chelating activity. These results show that iron-chelating peptides are generated after chickpea protein hydrolysis with pepsin plus pancreatin. These peptides, through metal chelation, may increase iron solubility and bioavailability and improve iron absorption. PMID:25005984

  4. Morphogenic Peptides in Regeneration of Load Bearing Tissues.

    PubMed

    Moeinzadeh, Seyedsina; Jabbari, Esmaiel

    2015-01-01

    Morphogenic proteins due to their short half-life require high doses of growth factors in regeneration of load bearing tissues which leads to undesirable side effects. These side effects include bone overgrowth, tumor formation and immune reaction. An alternative approach to reduce undesirable side effects of proteins in regenerative medicine is to use morphogenic peptides derived from the active domains of morphogenic proteins or soluble and insoluble components of the extracellular matrix of mineralized load bearing tissues to induce differentiation of progenitor cells, mineralization, maturation and bone formation. In that regard, many peptides with osteogenic activity have been discovered. These include peptides derived from bone morphogenic proteins (BMPs), those based on interaction with integrin and heparin-binding receptors, collagen derived peptides, peptides derived from other soluble ECM proteins such as bone sialoprotein and enamel matrix proteins, and those peptides derived from vasculoinductive and neuro-inductive proteins. Although these peptides show significant osteogenic activity in vitro and increase mineralization and bone formation in animal models, they are not widely used in clinical orthopedic applications as an alternative to morphogenic proteins. This is partly due to the limited availability of data on structure and function of morphogenic peptides in physiological medium, particularly in tissue engineered scaffolds. Due to their amphiphilic nature, peptides spontaneously self-assemble and aggregate into micellar structures in physiological medium. Aggregation alters the sequence of amino acids in morphogenic peptides that interact with cell surface receptors thus affecting osteogenic activity of the peptide. Aggregation and micelle formation can dramatically reduce the active concentration of morphogenic peptides with many-fold increase in peptide concentration in physiological medium. Other factors that affect bioactivity are the non

  5. A cardioactive peptide from the southern armyworm, Spodoptera eridania.

    PubMed

    Furuya, K; Hackett, M; Cirelli, M A; Schegg, K M; Wang, H; Shabanowitz, J; Hunt, D F; Schooley, D A

    1999-01-01

    A cardioactive peptide was isolated from extracts of whole heads of the southern armyworm, Spodoptera eridania. This peptide has the sequence ENFAVGCTPGYQRTADGRCKPTF (Mr = 2516.8), determined from both Edman sequencing and tandem mass spectrometry in combination with off-line micropreparative capillary liquid chromatography. This peptide, termed Spoer-CAP23, has excitatory effects on a semi-isolated heart from larval Manduca sexta, causing an inotropic effect at low concentrations of peptide and chronotropic and inotropic effects at high doses. The threshold concentration for stimulatory effects of the synthetic peptide on the semi-isolated heart was about 1 nM, suggesting a physiological role as a neuropeptide. PMID:10098624

  6. Molecular imaging of cancer with radiolabeled peptides and PET.

    PubMed

    Vāvere, Amy L; Rossin, Raffaella

    2012-06-01

    Radiolabeled peptides hold promise for diagnosis and therapy of cancer as well as for early monitoring of therapy outcomes, patient stratification, etc. This manuscript focuses on the development of peptides labeled with 18F, 64Cu, 68Ga and other positron-emitting radionuclides for PET imaging. The major techniques for radionuclide incorporation are briefly discussed. Then, examples of positron-emitting peptides targeting somatostatin receptors, integrins, gastrin-releasing peptide receptors, vasointestinal peptide receptors, melanocortin 1 receptors and others are reviewed. PMID:22292762

  7. Amide I band and photoinduced disassembly of a peptide hydrogel

    NASA Astrophysics Data System (ADS)

    Measey, Thomas J.; Markiewicz, Beatrice N.; Gai, Feng

    2013-08-01

    Peptide hydrogels are promising candidates for a wide range of medical and biotechnological applications. To further expand the potential utility of peptide hydrogels, herein we demonstrate a simple yet effective strategy to render peptide hydrogels photodegradable, making controlled disassembly of the gel structure of interest feasible. In addition, we find that the high-frequency amide I' component (i.e., the peak at ˜1685 cm-1) of the photodegradable peptide hydrogel studied shows an unusually large enhancement, in comparison to that of other peptide fibrils consisting of antiparallel β-sheets, making it a good model system for further study of the coupling-structure relationship.

  8. Picosecond dynamics in water-soluble azobenzene-peptides

    NASA Astrophysics Data System (ADS)

    Satzger, H.; Root, C.; Renner, C.; Behrendt, R.; Moroder, L.; Wachtveitl, J.; Zinth, W.

    2004-09-01

    Ultrafast absorption changes are recorded for water-soluble cyclic azobenzene peptides containing the photoswitch (4-aminomethyl)-phenyl-azobenzoic acid (AMPB) and a bioactive peptide motif. They can be separated into the fast reactions in the AMPB chromophore and the slower response of the peptide moiety. While the fastest reactions display similar time constants as observed for AMPB peptides dissolved in DMSO the slower reaction dynamics assigned to vibrational cooling and motions of the peptide moiety are faster in water by a factor of up to two. The changes in the reaction times are explained by solvent heat capacity and viscosity.

  9. Peptide fibrils with altered stability, activity, and cell selectivity

    PubMed Central

    Chen, Long; Liang, Jun F.

    2014-01-01

    Peptides have some unique and superior features compared to proteins. However, the use of peptides as therapeutics is hampered by their low stability and cell selectivity. In this study, a new lytic peptide (CL-1, FLGALFRALSRLL) was constructed. Under the physiological condition, peptide CL-1 self-assembled into dynamically stable aggregates with fibrils-like structures. Aggregated CL-1 demonstrated dramatically altered activity and stability in comparison with single molecule CL-1 and other lytic peptides: when incubated with co-cultured bacteria and tissue cells, CL-1 aggregates killed bacteria selectively but spared co-cultured human cells; CL-1 aggregates kept intact in human serum for more than five hours. Peptide-cell interaction studies performed on lipid monolayers and live human tissue cells revealed that in comparison with monomeric CL-1, aggregated CL-1 had decreased cell affinity and membrane insertion capability on tissue cells. A dynamic process involving aggregate dissociation and rearrangement seemed to be an essential step for membrane bound CL-1 aggregates to realize its cytotoxicity to tissue cells. Our study suggests that peptide aggregation could be as important as the charge and secondary structure of a peptide in affecting peptide-cell interactions. Controlling peptide self-assembly represents a new way to increase the stability and cell selectivity of bioactive peptides for wide biomedical applications. PMID:23713839

  10. Towards Identify Selective Antibacterial Peptides Based on Abstracts Meaning

    PubMed Central

    Barbosa-Santillán, Liliana I.; Sánchez-Escobar, Juan J.; Calixto-Romo, M. Angeles; Barbosa-Santillán, Luis F.

    2016-01-01

    We present an Identify Selective Antibacterial Peptides (ISAP) approach based on abstracts meaning. Laboratories and researchers have significantly increased the report of their discoveries related to antibacterial peptides in primary publications. It is important to find antibacterial peptides that have been reported in primary publications because they can produce antibiotics of different generations that attack and destroy the bacteria. Unfortunately, researchers used heterogeneous forms of natural language to describe their discoveries (sometimes without the sequence of the peptides). Thus, we propose that learning the words meaning instead of the antibacterial peptides sequence is possible to identify and predict antibacterial peptides reported in the PubMed engine. The ISAP approach consists of two stages: training and discovering. ISAP founds that the 35% of the abstracts sample had antibacterial peptides and we tested in the updated Antimicrobial Peptide Database 2 (APD2). ISAP predicted that 45% of the abstracts had antibacterial peptides. That is, ISAP found that 810 antibacterial peptides were not classified like that, so they are not reported in APD2. As a result, this new search tool would complement the APD2 with a set of peptides that are candidates to be antibacterial. Finally, 20% of the abstracts were not semantic related to APD2. PMID:27366202

  11. Short communication: peptide profiling in cheeses packed using different technologies.

    PubMed

    Sánchez-Rivera, Laura; Recio, Isidra; Ramos, Mercedes; Gómez-Ruiz, José Ángel

    2013-06-01

    Peptides released during the shelf life of cheeses packaged using 2 different technologies, vacuum packaging (VP) and modified-atmosphere packaging (MAP), were identified by on-line reverse phase-HPLC-tandem mass spectrometry. A total of 22 peptides from the N-terminal domain of αS1-casein (CN) and 26 from β-CN were identified, the latter more evenly distributed over the whole sequence. Peptides were monitored during the shelf life of these cheeses when stored at 4°C, revealing that the peptide profile changed significantly with the storage time. Qualitative differences between VP and MAP cheeses were only found for 3 αS1-CN peptides, which were absent in MAP cheeses. Semiquantitative analysis of peptides revealed some differences between cheeses packaged using different technologies. However, evolution of peptides during storage followed a common trend in both types of cheeses. In addition, the presence of certain peptides, which had been previously described because of their potential bioactivity, is illustrated. For instance, some of the identified peptides had been previously reported as antihypertensive peptides, such as peptide αS1-CN (1-9) or β-CN f(201-209). PMID:23548291

  12. Development of peptide-based patterns by laser transfer

    NASA Astrophysics Data System (ADS)

    Dinca, V.; Kasotakis, E.; Catherine, J.; Mourka, A.; Mitraki, A.; Popescu, A.; Dinescu, M.; Farsari, M.; Fotakis, C.

    2007-12-01

    Peptide-based arrays and patterns have provided a powerful tool in the study of protein recognition and function. A variety of applications have been identified, including the interactions between peptides-enzymes, peptides-proteins, peptides-DNA, peptides-small molecules and peptides-cells. One of the main and most critical unresolved issues is the generation of high-density arrays which maintain the biological function of the peptides. In this study, we employ nanosecond laser-induced forward transfer for the generation of high-density peptide arrays and patterns on modified glass surfaces. We show that peptide-based microarrays can be fabricated on solid surfaces and specifically recognized by appropriate fluorescent tags, with the transfer not affecting the ability of the peptides to form fibrils. These initial results are poised to the construction of larger peptide patterns as scaffolds for the incorporation and display of ligands critical for cell attachment and growth, or for the templating of inorganic materials.

  13. Towards Identify Selective Antibacterial Peptides Based on Abstracts Meaning.

    PubMed

    Barbosa-Santillán, Liliana I; Sánchez-Escobar, Juan J; Calixto-Romo, M Angeles; Barbosa-Santillán, Luis F

    2016-01-01

    We present an Identify Selective Antibacterial Peptides (ISAP) approach based on abstracts meaning. Laboratories and researchers have significantly increased the report of their discoveries related to antibacterial peptides in primary publications. It is important to find antibacterial peptides that have been reported in primary publications because they can produce antibiotics of different generations that attack and destroy the bacteria. Unfortunately, researchers used heterogeneous forms of natural language to describe their discoveries (sometimes without the sequence of the peptides). Thus, we propose that learning the words meaning instead of the antibacterial peptides sequence is possible to identify and predict antibacterial peptides reported in the PubMed engine. The ISAP approach consists of two stages: training and discovering. ISAP founds that the 35% of the abstracts sample had antibacterial peptides and we tested in the updated Antimicrobial Peptide Database 2 (APD2). ISAP predicted that 45% of the abstracts had antibacterial peptides. That is, ISAP found that 810 antibacterial peptides were not classified like that, so they are not reported in APD2. As a result, this new search tool would complement the APD2 with a set of peptides that are candidates to be antibacterial. Finally, 20% of the abstracts were not semantic related to APD2. PMID:27366202

  14. SATPdb: a database of structurally annotated therapeutic peptides.

    PubMed

    Singh, Sandeep; Chaudhary, Kumardeep; Dhanda, Sandeep Kumar; Bhalla, Sherry; Usmani, Salman Sadullah; Gautam, Ankur; Tuknait, Abhishek; Agrawal, Piyush; Mathur, Deepika; Raghava, Gajendra P S

    2016-01-01

    SATPdb (http://crdd.osdd.net/raghava/satpdb/) is a database of structurally annotated therapeutic peptides, curated from 22 public domain peptide databases/datasets including 9 of our own. The current version holds 19192 unique experimentally validated therapeutic peptide sequences having length between 2 and 50 amino acids. It covers peptides having natural, non-natural and modified residues. These peptides were systematically grouped into 10 categories based on their major function or therapeutic property like 1099 anticancer, 10585 antimicrobial, 1642 drug delivery and 1698 antihypertensive peptides. We assigned or annotated structure of these therapeutic peptides using structural databases (Protein Data Bank) and state-of-the-art structure prediction methods like I-TASSER, HHsearch and PEPstrMOD. In addition, SATPdb facilitates users in performing various tasks that include: (i) structure and sequence similarity search, (ii) peptide browsing based on their function and properties, (iii) identification of moonlighting peptides and (iv) searching of peptides having desired structure and therapeutic activities. We hope this database will be useful for researchers working in the field of peptide-based therapeutics. PMID:26527728

  15. Obtaining antimicrobial peptides by controlled peptic hydrolysis of bovine hemoglobin.

    PubMed

    Adje, Estelle Yaba; Balti, Rafik; Kouach, Mostafa; Dhulster, Pascal; Guillochon, Didier; Nedjar-Arroume, Naïma

    2011-08-01

    Under standard conditions, the peptides and specially the active peptides were obtained from either the denatured hemoglobin that all structures are completely modified or either the native hemoglobin where all structures are intact. In these conditions, antibacterial peptides were isolated from a very complex peptidic hydrolysate which contains more than one hundred peptides having various sizes and characteristics, involving a complex purification process. The new hydrolysis conditions were obtained by using 40% methanol, 30% ethanol, 20% propanol or 10% butanol. These conditions, where only the secondary structure of hemoglobin retains intact, were followed in order to enrich the hydrolyzed hemoglobin by active peptides or obtain new antibacterial peptides. In these controlled peptic hydrolysis of hemoglobin, a selective and restrictive hydrolysate contained only 29 peptides was obtained. 26 peptides have an antibacterial activity against Micrococcus luteus, Listeria innocua, and Escherichia coli with MIC from 187.1 to 1 μM. Among these peptides, 13 new antibacterial peptides are obtained only in these new hydrolysis conditions. PMID:21510973

  16. Electron Capture Dissociation of Trivalent Metal Ion-Peptide Complexes

    NASA Astrophysics Data System (ADS)

    Flick, Tawnya G.; Donald, William A.; Williams, Evan R.

    2013-02-01

    With electrospray ionization from aqueous solutions, trivalent metal ions readily adduct to small peptides resulting in formation of predominantly (peptide + MT - H)2+, where MT = La, Tm, Lu, Sm, Ho, Yb, Pm, Tb, or Eu, for peptides with molecular weights below ~1000 Da, and predominantly (peptide + MT)3+ for larger peptides. ECD of (peptide + MT - H)2+ results in extensive fragmentation from which nearly complete sequence information can be obtained, even for peptides for which only singly protonated ions are formed in the absence of the metal ions. ECD of these doubly charged complexes containing MT results in significantly higher electron capture efficiency and sequence coverage than peptide-divalent metal ion complexes that have the same net charge. Formation of salt-bridge structures in which the metal ion coordinates to a carboxylate group are favored even for (peptide + MT)3+. ECD of these latter complexes for large peptides results in electron capture by the protonation site located remotely from the metal ion and predominantly c/ z fragments for all metals, except Eu3+, which undergoes a one electron reduction and only loss of small neutral molecules and b/ y fragments are formed. These results indicate that solvation of the metal ion in these complexes is extensive, which results in the electrochemical properties of these metal ions being similar in both the peptide environment and in bulk water.

  17. Peptides Interfering 3A Protein Dimerization Decrease FMDV Multiplication

    PubMed Central

    de la Torre, Beatriz G.; Valle, Javier; Andreu, David; Sobrino, Francisco

    2015-01-01

    Nonstructural protein 3A is involved in relevant functions in foot-and-mouth disease virus (FMDV) replication. FMDV 3A can form homodimers and preservation of the two hydrophobic α-helices (α1 and α2) that stabilize the dimer interface is essential for virus replication. In this work, small peptides mimicking residues involved in the dimer interface were used to interfere with dimerization and thus gain insight on its biological function. The dimer interface peptides α1, α2 and that spanning the two hydrophobic α-helices, α12, impaired in vitro dimer formation of a peptide containing the two α-helices, this effect being higher with peptide α12. To assess the effect of dimer inhibition in cultured cells, the interfering peptides were N-terminally fused to a heptaarginine (R7) sequence to favor their intracellular translocation. Thus, when fused to R7, interference peptides (100 μM) were able to inhibit dimerization of transiently expressed 3A, the higher inhibitions being found with peptides α1 and α12. The 3A dimerization impairment exerted by the peptides correlated with significant, specific reductions in the viral yield recovered from peptide-treated FMDV infected cells. In this case, α2 was the only peptide producing significant reductions at concentrations lower than 100 μM. Thus, dimer interface peptides constitute a tool to understand the structure-function relationship of this viral protein and point to 3A dimerization as a potential antiviral target. PMID:26505190

  18. SATPdb: a database of structurally annotated therapeutic peptides

    PubMed Central

    Singh, Sandeep; Chaudhary, Kumardeep; Dhanda, Sandeep Kumar; Bhalla, Sherry; Usmani, Salman Sadullah; Gautam, Ankur; Tuknait, Abhishek; Agrawal, Piyush; Mathur, Deepika; Raghava, Gajendra P.S.

    2016-01-01

    SATPdb (http://crdd.osdd.net/raghava/satpdb/) is a database of structurally annotated therapeutic peptides, curated from 22 public domain peptide databases/datasets including 9 of our own. The current version holds 19192 unique experimentally validated therapeutic peptide sequences having length between 2 and 50 amino acids. It covers peptides having natural, non-natural and modified residues. These peptides were systematically grouped into 10 categories based on their major function or therapeutic property like 1099 anticancer, 10585 antimicrobial, 1642 drug delivery and 1698 antihypertensive peptides. We assigned or annotated structure of these therapeutic peptides using structural databases (Protein Data Bank) and state-of-the-art structure prediction methods like I-TASSER, HHsearch and PEPstrMOD. In addition, SATPdb facilitates users in performing various tasks that include: (i) structure and sequence similarity search, (ii) peptide browsing based on their function and properties, (iii) identification of moonlighting peptides and (iv) searching of peptides having desired structure and therapeutic activities. We hope this database will be useful for researchers working in the field of peptide-based therapeutics. PMID:26527728

  19. Polyproline Tetramer Organizing Peptides in Fetal Bovine Serum Acetylcholinesterase

    PubMed Central

    Biberoglu, Kevser; Schopfer, Lawrence M.; Saxena, Ashima; Tacal, Ozden; Lockridge, Oksana

    2013-01-01

    Acetylcholinesterase (AChE) in the serum of fetal cow is a tetramer. The related enzyme, butyrylcholinesterase (BChE), in the sera of humans and horse requires polyproline peptides for assembly into tetramers. Our goal was to determine whether soluble tetrameric AChE includes tetramer organizing peptides in its structure. Fetal bovine serum AChE was denatured by boiling to release non-covalently bound peptides. Bulk protein was separated from peptides by filtration and by high performance liquid chromatography. Peptide mass and amino acid sequence of the released peptides were determined by MALDI-TOF-TOF and LTQ-Orbitrap mass spectrometry. Twenty polyproline peptides, divided into 5 families, were identified. The longest peptide contained 25 consecutive prolines and no other amino acid. Other polyproline peptides included one non-proline amino acid, for example serine at the C-terminus of 20 prolines. A search of the mammalian proteome database suggested that this assortment of polyproline peptides originated from at least 5 different precursor proteins, none of which were the ColQ or PRiMA of membrane-anchored AChE. To date, AChE and BChE are the only proteins known that include polyproline tetramer organizing peptides in their tetrameric structure. PMID:23352838

  20. Cell-penetrating peptides transport therapeutics into cells.

    PubMed

    Ramsey, Joshua D; Flynn, Nicholas H

    2015-10-01

    Nearly 30years ago, certain small, relatively nontoxic peptides were discovered to be capable of traversing the cell membrane. These cell-penetrating peptides, as they are now called, have been shown to not only be capable of crossing the cell membrane themselves but can also carry many different therapeutic agents into cells, including small molecules, plasmid DNA, siRNA, therapeutic proteins, viruses, imaging agents, and other various nanoparticles. Many cell-penetrating peptides have been derived from natural proteins, but several other cell-penetrating peptides have been developed that are either chimeric or completely synthetic. How cell-penetrating peptides are internalized into cells has been a topic of debate, with some peptides seemingly entering cells through an endocytic mechanism and others by directly penetrating the cell membrane. Although the entry mechanism is still not entirely understood, it seems to be dependent on the peptide type, the peptide concentration, the cargo the peptide transports, and the cell type tested. With new intracellular disease targets being discovered, cell-penetrating peptides offer an exciting approach for delivering drugs to these intracellular targets. There are hundreds of cell-penetrating peptides being studied for drug delivery, and ongoing studies are demonstrating their success both in vitro and in vivo. PMID:26210404

  1. Tityus serrulatus venom peptidomics: assessing venom peptide diversity.

    PubMed

    Rates, Breno; Ferraz, Karla K F; Borges, Márcia H; Richardson, Michael; De Lima, Maria Elena; Pimenta, Adriano M C

    2008-10-01

    MALDI-TOF-TOF and de novo sequencing were employed to assess the Tityus serrulatus venom peptide diversity. Previous works has shown the cornucopia of molecular masses, ranging from 800 to 3000Da, present in the venom from this and other scorpions species. This work reports the identification/sequencing of several of these peptides. The majority of the peptides found were fragments of larger venom toxins. For instance, 28 peptides could be identified as fragments from Pape proteins, 10 peptides corresponded to N-terminal fragments of the TsK beta (scorpine-like) toxin and fragments of potassium channel toxins (other than the k-beta) were sequenced as well. N-terminal fragments from the T. serrulatus hypotensins-I and II and a novel hypotensin-like peptide could also be found. This work also reports the sequencing of novel peptides without sequence similarities to other known molecules. PMID:18718845

  2. Therapeutic utility of antibacterial peptides in wound healing.

    PubMed

    Otvos, Laszlo; Ostorhazi, Eszter

    2015-07-01

    Cationic antimicrobial peptides were first thought to fight infection in animal models by disintegrating bacterial peptides and later by inhibiting bacteria-specific intracellular processes. However, ever increasing evidences indicate that cationic peptides accumulate around and modulate the immune system both systemically and in cutaneous and mucosal surfaces where injuries and infections occur. Native and designer antibacterial peptides as well as cationic peptides, never considered as antibiotics, promote wound healing at every step of cutaneous tissue regeneration. This article provides an introductory list of examples of how cationic peptides are involved in immunostimulation and epithelial tissue repair, eliminating wound infections and promoting wound healing in potential therapeutic utility in sight. Although a few antimicrobial peptides reached the Phase II clinical trial stage, toxicity concerns limit the potential administration routes. Resistance induction to both microbiology actions and the integrity of the innate immune system has to be carefully monitored. PMID:25835521

  3. Cyclic Peptides Made by Linking Synthetic and Genetically Encoded Fragments.

    PubMed

    Palei, Shubhendu; Mootz, Henning D

    2016-03-01

    Cyclic peptides can be highly valuable as bioactive molecules, both for biomedical applications and in basic research. We introduce a new fragment-based approach to access cyclic peptide structures in which one fragment is of synthetic origin and the other is genetically encoded. The synthetic peptide, which can contain one or more non-proteinogenic building blocks, is coupled to the recombinantly expressed peptide through two bonds, one formed by protein trans-splicing with a split intein and the other by oxime ligation. Semisynthetic macrocycles were obtained with high efficiency for various sequences and ring sizes; they can be prepared in quantities sufficient for initial bioactivity tests. We also prepared lipidated and d-amino-acid-containing peptides that were inspired by the peptide antibiotic daptomycin. Such structures are not accessible by other methods that harness the power of simple genetic diversification in the DNA-encoded part of the peptide. PMID:26691013

  4. De-Novo Design of Antimicrobial Peptides for Plant Protection

    PubMed Central

    Zeitler, Benjamin; Herrera Diaz, Areli; Dangel, Alexandra; Thellmann, Martha; Meyer, Helge; Sattler, Michael; Lindermayr, Christian

    2013-01-01

    This work describes the de-novo design of peptides that inhibit a broad range of plant pathogens. Four structurally different groups of peptides were developed that differ in size and position of their charged and hydrophobic clusters and were assayed for their ability to inhibit bacterial growth and fungal spore germination. Several peptides are highly active at concentrations between 0,1 and 1 µg/ml against plant pathogenic bacteria, such as Pseudomonas syringae, Pectobacterium carotovorum, and Xanthomonas vesicatoria. Importantly, no hemolytic activity could be detected for these peptides at concentrations up to 200 µg/ml. Moreover, the peptides are also active after spraying on the plant surface demonstrating a possible way of application. In sum, our designed peptides represent new antimicrobial agents and with the increasing demand for antimicrobial compounds for production of “healthy” food, these peptides might serve as templates for novel antibacterial and antifungal agents. PMID:23951222

  5. Identification of short peptide sequences in complex milk protein hydrolysates.

    PubMed

    O'Keeffe, Martina B; FitzGerald, Richard J

    2015-10-01

    Numerous low molecular mass bioactive peptides (BAPs) can be generated during the hydrolysis of bovine milk proteins. Low molecular mass BAP sequences are less likely to be broken down by digestive enzymes and are thus more likely to be active in vivo. However, the identification of short peptides remains a challenge during mass spectrometry (MS) analysis due to issues with the transfer and over-fragmentation of low molecular mass ions. A method is described herein using time-of-flight ESI-MS/MS to effectively fragment and identify short peptides. This includes (a) short synthetic peptides, (b) short peptides within a defined hydrolysate sample, i.e. a prolyl endoproteinase hydrolysate of β-casein and (c) short peptides within a complex hydrolysate, i.e. a Corolase PP digest of sodium caseinate. The methodology may find widespread utilisation in the efficient identification of low molecular mass peptide sequences in food protein hydrolysates. PMID:25872436

  6. Recent advances in peptide-based subunit nanovaccines.

    PubMed

    Skwarczynski, Mariusz; Toth, Istvan

    2014-12-01

    Vaccination is the most efficient way to protect humans against pathogens. Peptide-based vaccines offer several advantages over classical vaccines, which utilized whole organisms or proteins. However, peptides alone are not immunogenic and need a delivery system that can boost their recognition by the immune system. In recent years, nanotechnology-based approaches have become one of the most promising strategies in peptide vaccine delivery. This review summarizes knowledge on peptide vaccines and nanotechnology-based approaches for their delivery. The recently reported nano-sized delivery platforms for peptide antigens are reviewed, including nanoparticles composed of polymers, peptides, lipids, inorganic materials and nanotubes. The future prospects for peptide-based nanovaccines are discussed. PMID:25529569

  7. Advances in Fmoc solid‐phase peptide synthesis

    PubMed Central

    Behrendt, Raymond; White, Peter

    2016-01-01

    Today, Fmoc SPPS is the method of choice for peptide synthesis. Very‐high‐quality Fmoc building blocks are available at low cost because of the economies of scale arising from current multiton production of therapeutic peptides by Fmoc SPPS. Many modified derivatives are commercially available as Fmoc building blocks, making synthetic access to a broad range of peptide derivatives straightforward. The number of synthetic peptides entering clinical trials has grown continuously over the last decade, and recent advances in the Fmoc SPPS technology are a response to the growing demand from medicinal chemistry and pharmacology. Improvements are being continually reported for peptide quality, synthesis time and novel synthetic targets. Topical peptide research has contributed to a continuous improvement and expansion of Fmoc SPPS applications. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd. PMID:26785684

  8. Stimuli-responsive self-assembling peptides made from antibacterial peptides

    NASA Astrophysics Data System (ADS)

    Liu, Yanfei; Yang, Yanlian; Wang, Chen; Zhao, Xiaojun

    2013-06-01

    How to use bioactive peptide sequences as fundamental building blocks to make hydrogel materials which are stimuli-responsive? In this article, we provide a novel designed peptide comprising two antibacterial peptide sequences (KIGAKI)3-NH2 and a central tetrapeptide linker. Results show that balancing the forces of the electrostatic repulsion of the charged lysine residues against the hydrophobic collapse of the isoleucine and alanine residues and backbone β-sheet hydrogen bonding allows the structural transition and formation of individually dispersed nanofibers. Circular Dichroism (CD) and rheology analysis demonstrated that the designed peptide can undergo an abrupt structural transition from a random coil to a stable unimolecular β-hairpin conformation and subsequently form an elastic hydrogel when exposed to external stimuli such as pH, ionic strength and heat. The assembly kinetics of the obtained antibacterial sequence comprising peptide (ASCP) was studied by time-lapse Atomic Force Microscopy (AFM) and Thioflavin T (ThT) binding assay. In addition, the inherent antibacterial activity of the peptide hydrogel was confirmed by the antibacterial assay against Escherichia coli. This example described epitomizes the use of bioactive peptide sequences in the design of finite self-assembled structures with potential inherent activity. These hydrogel materials may find applications in drug delivery, tissue engineering and regenerative medicine.How to use bioactive peptide sequences as fundamental building blocks to make hydrogel materials which are stimuli-responsive? In this article, we provide a novel designed peptide comprising two antibacterial peptide sequences (KIGAKI)3-NH2 and a central tetrapeptide linker. Results show that balancing the forces of the electrostatic repulsion of the charged lysine residues against the hydrophobic collapse of the isoleucine and alanine residues and backbone β-sheet hydrogen bonding allows the structural transition and

  9. Peptide-Like Molecules (PLMs): A Journey from Peptide Bond Isosteres to Gramicidin S Mimetics and Mitochondrial Targeting Agents

    PubMed Central

    Wipf, Peter; Xiao, Jingbo; Stephenson, Corey R. J.

    2010-01-01

    Peptides are natural ligands and substrates for receptors and enzymes and exhibit broad physiological effects. However, their use as therapeutic agents often suffers from poor bioavailability and insufficient membrane permeability. The success of peptide mimicry hinges on the ability of bioisosteres, in particular peptide bond replacements, to adopt suitable secondary structures relevant to peptide strands and position functional groups in equivalent space. This perspective highlights past and ongoing studies in our group that involve new methods development as well as specific synthetic library preparations and applications in chemical biology, with the goal to enhance the use of alkene and cyclopropane peptide bond isosteres. PMID:20725595

  10. Non-peptide ligand binding to the formyl peptide receptor FPR2--A comparison to peptide ligand binding modes.

    PubMed

    Stepniewski, Tomasz M; Filipek, Slawomir

    2015-07-15

    Ligands of the FPR2 receptor initiate many signaling pathways including activation of phospholipase C, protein kinase C, the mitogen-activated protein kinase, and phosphatidylinositol 3-kinase/protein kinase B pathway. The possible actions include also calcium flux, superoxide generation, as well as migration and proliferation of monocytes. FPR2 activation may induce a pro- and anti-inflammatory effect depending on the ligand type. It is also found that this receptor is involved in tumor growth. Most of currently known FPR2 ligands are agonists since they were designed based on N-formyl peptides, which are natural agonists of formyl receptors. Since the non-peptide drugs are indispensable for effective treatment strategies, we performed a docking study of such ligands employing a generated dual template homology model of the FPR2 receptor. The study revealed different binding modes of particular classes of these drugs. Based on the obtained docking poses we proposed a detailed location of three hydrophobic pockets in orthosteric binding site of FPR2. Our model emphasizes the importance of aromatic stacking, especially with regard to residues His102(3.29) and Phe257(6.51), for binding of FPR2 ligands. We also identified other residues important for non-peptide ligand binding in the binding site of FPR2. PMID:25882522

  11. Bacterial expression of self-assembling peptide hydrogelators

    NASA Astrophysics Data System (ADS)

    Sonmez, Cem

    For tissue regeneration and drug delivery applications, various architectures are explored to serve as biomaterial tools. Via de novo design, functional peptide hydrogel materials have been developed as scaffolds for biomedical applications. The objective of this study is to investigate bacterial expression as an alternative method to chemical synthesis for the recombinant production of self-assembling peptides that can form rigid hydrogels under physiological conditions. The Schneider and Pochan Labs have designed and characterized a 20 amino acid beta-hairpin forming amphiphilic peptide containing a D-residue in its turn region (MAX1). As a result, this peptide must be prepared chemically. Peptide engineering, using the sequence of MAX1 as a template, afforded a small family of peptides for expression (EX peptides) that have different turn sequences consisting of natural amino acids and amenable to bacterial expression. Each sequence was initially chemically synthesized to quickly assess the material properties of its corresponding gel. One model peptide EX1, was chosen to start the bacterial expression studies. DNA constructs facilitating the expression of EX1 were designed in such that the peptide could be expressed with different fusion partners and subsequently cleaved by enzymatic or chemical means to afford the free peptide. Optimization studies were performed to increase the yield of pure peptide that ultimately allowed 50 mg of pure peptide to be harvested from one liter of culture, providing an alternate means to produce this hydrogel-forming peptide. Recombinant production of other self-assembling hairpins with different turn sequences was also successful using this optimized protocol. The studies demonstrate that new beta-hairpin self-assembling peptides that are amenable to bacterial production and form rigid hydrogels at physiological conditions can be designed and produced by fermentation in good yield at significantly reduced cost when compared to

  12. Selection of peptide ligands for piezoelectric peptide based gas sensors arrays using a virtual screening approach.

    PubMed

    Pizzoni, Daniel; Mascini, Marcello; Lanzone, Valentina; Del Carlo, Michele; Di Natale, Corrado; Compagnone, Dario

    2014-02-15

    Virtual and experimental affinity binding properties of 5 different peptides (cysteinylglycine, glutathione, Cys-Ile-His-Asn-Pro, Cys-Ile-Gln-Pro-Val, Cys-Arg-Gln-Val-Phe) vs. 14 volatile compounds belonging to relevant chemical classes were evaluated. The peptides were selected in order to have a large variability in physicochemical characteristics (including length). In virtual screening a rapid and cost-effective computational methodology for predicting binding scores of small peptide receptors vs. volatile compounds is proposed. Flexibility was considered for both ligands and peptides and each peptide conformer was treated as a possible receptor, generating a dedicated box and then running a docking process vs. all possible conformers of the 14 volatile compounds. The 5 peptides were covalently bound to gold nanoparticles and deposited onto 20 MHz quartz crystal microbalances to realize gas sensors. Gas sensing confirmed that each of the peptide conferred to the gold nanoparticles a particular selectivity pattern able to discriminate the 14 volatile compounds. The largest response was obtained for the pentapeptides Cys-Ile-His-Asn-Pro and Cys-Ile-Gln-Pro-Val while low response was achieved for the dipeptide. The comparative study, carried using a two-tailed T test, demonstrated that virtual screening was able to predict reliably the sensing ability of the pentapeptides. The dipeptide receptor exhibited 29% of virtual-experimental matching vs. 71% of glutathione and up to 93% for the pentapeptides. This virtual screening approach was proved to be a promising tool in predicting the behaviour of sensors array for gas detection. PMID:24060973

  13. Pronase E-Based Generation of Fluorescent Peptide Fragments: Tracking Intracellular Peptide Fate in Single Cells.

    PubMed

    Mainz, Emilie R; Dobes, Nicholas C; Allbritton, Nancy L

    2015-08-01

    The ability to track intracellular peptide proteolysis at the single cell level is of growing interest, particularly as short peptide sequences continue to play important roles as biosensors, therapeutics, and endogenous participants in antigen processing and intracellular signaling. We describe a rapid and inexpensive methodology to generate fluorescent peptide fragments from a parent sequence with diverse chemical properties, including aliphatic, nonpolar, basic, acidic, and non-native amino acids. Four peptide sequences with existing biochemical applications were fragmented using incubation with Pronase E and/or formic acid, and in each case a complete set of fluorescent fragments was generated for use as proteolysis standards in chemical cytometry. Fragment formation and identity was monitored with capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) and matrix assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-MS) to confirm the presence of all sequences and yield fragmentation profiles across Pronase E concentrations which can readily be used by others. As a pilot study, Pronase E-generated standards from an Abl kinase sensor and an ovalbumin antigenic peptide were then employed to identify proteolysis products arising from the metabolism of these sequences in single cells. The Abl kinase sensor fragmented at 4.2 ± 4.8 zmol μM(-1) s(-1) and the majority of cells possessed similar fragment identities. In contrast, an ovalbumin epitope peptide was degraded at 8.9 ± 0.1 zmol μM(-1) s(-1), but with differential fragment formation between individual cells. Overall, Pronase E-generated peptide standards were a rapid and efficient method to identify proteolysis products from cells. PMID:26171808

  14. Inhibition of aggregation of amyloid peptides by beta-sheet breaker peptides and their binding affinity.

    PubMed

    Viet, Man Hoang; Ngo, Son Tung; Lam, Nguyen Sy; Li, Mai Suan

    2011-06-01

    The effects of beta-sheet breaker peptides KLVFF and LPFFD on the oligomerization of amyloid peptides were studied by all-atom simulations. It was found that LPFFD interferes the aggregation of Aβ(16-22) peptides to a greater extent than does KLVFF. Using the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method, we found that the former binds more strongly to Aβ(16-22). Therefore, by simulations, we have clarified the relationship between aggregation rates and binding affinity: the stronger the ligand binding, the slower the oligomerization process. The binding affinity of pentapeptides to full-length peptide Aβ(1-40) and its mature fibrils has been considered using the Autodock and MM-PBSA methods. The hydrophobic interaction between ligands and receptors plays a more important role for association than does hydrogen bonding. The influence of beta-sheet breaker peptides on the secondary structures of monomer Aβ(1-40) was studied in detail, and it turns out that, in their presence, the total beta-sheet content can be enhanced. However, the aggregation can be slowed because the beta-content is reduced in fibril-prone regions. Both pentapeptides strongly bind to monomer Aβ(1-40), as well as to mature fibrils, but KLVFF displays a lower binding affinity than LPFFD. Our findings are in accord with earlier experiments that both of these peptides can serve as prominent inhibitors. In addition, we predict that LPFFD inhibits/degrades the fibrillogenesis of full-length amyloid peptides better than KLVFF. This is probably related to a difference in their total hydrophobicities in that the higher the hydrophobicity, the lower the inhibitory capacity. The GROMOS96 43a1 force field with explicit water and the force field proposed by Morris et al. (Morris et al. J. Comput. Chem. 1998, 19, 1639 ) were employed for all-atom molecular dynamics simulations and Autodock experiments, respectively. PMID:21563780

  15. Surface expression, peptide repertoire, and thermostability of chicken class I molecules correlate with peptide transporter specificity.

    PubMed

    Tregaskes, Clive A; Harrison, Michael; Sowa, Anna K; van Hateren, Andy; Hunt, Lawrence G; Vainio, Olli; Kaufman, Jim

    2016-01-19

    The chicken major histocompatibility complex (MHC) has strong genetic associations with resistance and susceptibility to certain infectious pathogens. The cell surface expression level of MHC class I molecules varies as much as 10-fold between chicken haplotypes and is inversely correlated with diversity of peptide repertoire and with resistance to Marek's disease caused by an oncogenic herpesvirus. Here we show that the average thermostability of class I molecules isolated from cells also varies, being higher for high-expressing MHC haplotypes. However, we find roughly the same amount of class I protein synthesized by high- and low-expressing MHC haplotypes, with movement to the cell surface responsible for the difference in expression. Previous data show that chicken TAP genes have high allelic polymorphism, with peptide translocation specific for each MHC haplotype. Here we use assembly assays with peptide libraries to show that high-expressing B15 class I molecules can bind a much wider variety of peptides than are found on the cell surface, with the B15 TAPs restricting the peptides available. In contrast, the translocation specificity of TAPs from the low-expressing B21 haplotype is even more permissive than the promiscuous binding shown by the dominantly expressed class I molecule. B15/B21 heterozygote cells show much greater expression of B15 class I molecules than B15/B15 homozygote cells, presumably as a result of receiving additional peptides from the B21 TAPs. Thus, chicken MHC haplotypes vary in several correlated attributes, with the most obvious candidate linking all these properties being molecular interactions within the peptide-loading complex (PLC). PMID:26699458

  16. Surface expression, peptide repertoire, and thermostability of chicken class I molecules correlate with peptide transporter specificity

    PubMed Central

    Tregaskes, Clive A.; Harrison, Michael; Sowa, Anna K.; van Hateren, Andy; Hunt, Lawrence G.; Vainio, Olli; Kaufman, Jim

    2016-01-01

    The chicken major histocompatibility complex (MHC) has strong genetic associations with resistance and susceptibility to certain infectious pathogens. The cell surface expression level of MHC class I molecules varies as much as 10-fold between chicken haplotypes and is inversely correlated with diversity of peptide repertoire and with resistance to Marek’s disease caused by an oncogenic herpesvirus. Here we show that the average thermostability of class I molecules isolated from cells also varies, being higher for high-expressing MHC haplotypes. However, we find roughly the same amount of class I protein synthesized by high- and low-expressing MHC haplotypes, with movement to the cell surface responsible for the difference in expression. Previous data show that chicken TAP genes have high allelic polymorphism, with peptide translocation specific for each MHC haplotype. Here we use assembly assays with peptide libraries to show that high-expressing B15 class I molecules can bind a much wider variety of peptides than are found on the cell surface, with the B15 TAPs restricting the peptides available. In contrast, the translocation specificity of TAPs from the low-expressing B21 haplotype is even more permissive than the promiscuous binding shown by the dominantly expressed class I molecule. B15/B21 heterozygote cells show much greater expression of B15 class I molecules than B15/B15 homozygote cells, presumably as a result of receiving additional peptides from the B21 TAPs. Thus, chicken MHC haplotypes vary in several correlated attributes, with the most obvious candidate linking all these properties being molecular interactions within the peptide-loading complex (PLC). PMID:26699458

  17. A bradykinin-potentiating peptide (peptide K12) isolated from the venom of Egyptian scorpion Buthus occitanus.

    PubMed

    Meki, A R; Nassar, A Y; Rochat, H

    1995-01-01

    A nontoxic peptide with bradykinin-potentiating activity was isolated from the dialyzed venom of the scorpion Buthus occitanus by reverse-phase high performance liquid chromatography (RP-HPLC). The pharmacological activity of the peptide was bioassayed by its ability to potentiate added bradykinin (BK) on the isolated guinea pig ileum as well as the isolated rat uterus for contraction. Moreover, the peptide potentiates in vivo the depressor effect of BK on arterial blood pressure in the normotensive anesthetized rat. Chemical characterization of the peptide was also performed. The amino acid composition of the peptide showed 21 amino acid residues per molecule including three proline residues. The amino acid sequence of the purified peptide was confirmed by mass spectrometry. Either N- or C-terminal ends were free. The sequence does not show a homology with bradykinin-potentiating peptides isolated from either scorpion or snake venoms. Furthermore, we did not find a significant sequence homology between the sequence of the isolated peptide and any of proteins or peptides in GenPro or NBRF data banks. The peptide also inhibited angiotensin-converting enzyme (ACE), and could not serve as substrate for the enzyme. It could be concluded that the mechanism of bradykinin-potentiating peptide (BPP) activity may be due to ACE inhibition. PMID:8745044

  18. Isolation and structural determination of three peptides from the insect Locusta migratoria. Identification of a deoxyhexose-linked peptide.

    PubMed

    Nakakura, N; Hietter, H; Van Dorsselaer, A; Luu, B

    1992-02-15

    We have isolated three novel peptides from the aqueous extract of the pars intercerebralis of male and female adults of the insect Locusta migratoria. After extensive HPLC purification, the peptides were characterised by automated Edman degradation and electrospray mass spectrometry: one is a 35-residue peptide (3752.3 +/- 1.1 Da) containing six cysteines involved in three intramolecular disulfide bridges, the second is a 36-residue peptide (3919.2 +/- 0.9 Da), also cross-linked by three intramolecular disulfide bridges. This second peptide is post-translationally modified by a single fucose moiety, which was identified by gas chromatography coupled to mass spectrometry. These two peptides show a strong sequence similarity. Additionally, they were also found in larger amounts in the fat body of Locusta; this finding raises the question of their exact site of synthesis. The third peptide (5776.3 +/- 0.9 Da), a 54-residue peptide cross-linked by six intramolecular disulfide bridges, is structurally related to the two other peptides, but to a lesser extent. Mass spectrometry has shown that all the cysteines within these three peptides are involved in intramolecular disulfide bridges; however, the location of these bridges is not yet established and is currently being investigated. A computer search of sequence data banks did not reveal any significant similarity of these three peptides with other known proteins. PMID:1740125

  19. PFR peptide, one of the antimicrobial peptides identified from the derivatives of lactoferrin, induces necrosis in leukemia cells

    PubMed Central

    Lu, Yan; Zhang, Teng-Fei; Shi, Yue; Zhou, Han-Wei; Chen, Qi; Wei, Bu-Yun; Wang, Xi; Yang, Tian-Xin; Chinn, Y. Eugene; Kang, Jian; Fu, Cai-Yun

    2016-01-01

    LF11-322 (PFWRIRIRR-NH2) (PFR peptide), a nine amino acid-residue peptide fragment derived from human lactoferricin, possesses potent cytotoxicity against bacteria. We report here the discovery and characterization of its antitumor activity in leukemia cells. PFR peptide inhibited the proliferation of MEL and HL-60 leukemia cells by inducing cell death in the absence of the classical features of apoptosis, including chromatin condensation, Annexin V staining, Caspase activation and increase of abundance of pro-apoptotic proteins. Instead, necrotic cell death as evidenced by increasing intracellular PI staining and LDH release, inducing membrane disruption and up-regulating intracellular calcium level, was observed following PFR peptide treatment. In addition to necrotic cell death, PFR peptide also induced G0/G1 cell cycle arrest. Moreover, PFR peptide exhibited favorable antitumor activity and tolerability in vivo. These findings thus provide a new clue of antimicrobial peptides as a potential novel therapy for leukemia. PMID:26860588

  20. Signal peptide protection by specific chaperone

    SciTech Connect

    Genest, Olivier; Seduk, Farida; Ilbert, Marianne; Mejean, Vincent; Iobbi-Nivol, Chantal . E-mail: iobbi@ibsm.cnrs-mrs.fr

    2006-01-20

    TorD is the private chaperone of TorA, a periplasmic respiratory molybdoenzyme of Escherichia coli. In this study, it is demonstrated that TorD is required to maintain the integrity of the twin-arginine signal sequence of the cytoplasmic TorA precursors. In the absence of TorD, 35 out of the 39 amino acid residues of the signal peptide were lost and the proteolysis of the N-terminal extremity of TorA precursors was not prevented by the molybdenum cofactor insertion. We thus propose that one of the main roles of TorD is to protect the TorA signal peptide to allow translocation of the enzyme by the TAT system.

  1. Identification of Immunodominant Peptides from Gnathostoma binucleatum

    PubMed Central

    Campista-León, Samuel; Delgado-Vargas, Francisco; Landa, Abraham; Willms, Kaethe; López-Moreno, Hector Samuel; Mendoza-Hernández, Guillermo; Ríos-Sicairos, Julian; Bojórquez-Contreras, Ángel Noel; Díaz-Camacho, Sylvia Páz

    2012-01-01

    Gnathostomiasis is now recognized as a zoonosis with a worldwide distribution. In the Americas, it is caused by the third-stage larvae of Gnathostoma binucleatum and in Asia mainly by G. spinigerum. The availability and preparation of specific antigens are among the main obstacles for developing reliable immunodiagnostic tests. In this study, six immunodominant peptides were identified and characterized from G. binucleatum, somatic antigens (AgS: 24, 32, and 40 kDa) and excretory-secretory antigens (AgES: 42, 44, and 56 kDa) by two-dimensional immunoblot analysis. Among those immunodominant peptides, two AgS spots were characterized by mass spectrometric analysis (32 kDa; pI 6.3 and 6.5) and identified as type 1 galectins. In accordance with this finding, a fraction of AgS exhibited affinity to lactose and displayed a 100% specificity and sensitivity for the diagnosis of human gnathostomiasis. PMID:22949520

  2. Bacterial strategies of resistance to antimicrobial peptides.

    PubMed

    Joo, Hwang-Soo; Fu, Chih-Iung; Otto, Michael

    2016-05-26

    Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. PMID:27160595

  3. Membrane Disruption Mechanism by Antimicrobial Peptides

    NASA Astrophysics Data System (ADS)

    Lee, Ka Yee C.

    2011-03-01

    Antimicrobial peptides (AMPs) are a class of small (less than100 residues) host defense peptides that induce selective membrane lytic activity against microbes. To understand the mechanism of membrane disruption by AMPs, we investigated, via atomic force microscopy, topological changes in supported phospholipid bilayers induced by protegrin-1 (PG-1). We have observed that PG-1 induces structural transformations, progressing from fingerlike instabilities at bilayer edges, to the formation of sievelike nanoporous structures and finally to a network of stripelike structures in a zwitterionic dimyristoylphosphatidylcholine (DMPC) model membrane in buffer, with increasing PG-1 concentration. Our results suggest that AMPs act to lower the interfacial energy of the bilayer in a way similar to detergents. By varying the lipid composition, temperature and using AMPs with different secondary structures, we are able to identify factors other than electrostatics that are important for the efficacy of AMPs.

  4. Peptide Bacteriocins--Structure Activity Relationships.

    PubMed

    Etayash, Hashem; Azmi, Sarfuddin; Dangeti, Ramana; Kaur, Kamaljit

    2015-01-01

    With the growing concerns in the scientific and health communities over increasing levels of antibiotic resistance, antimicrobial peptide bacteriocins have emerged as promising alternatives to conventional small molecule antibiotics. A substantial attention has recently focused on the utilization of bacteriocins in food preservation and health safety. Despite the fact that a large number of bacteriocins have been reported, only a few have been fully characterized and structurally elucidated. Since knowledge of the molecular structure is a key for understanding the mechanism of action and therapeutic effects of peptide, we centered our focus in this review on the structure-activity relationships of bacteriocins with a particular focus in seven bacteriocins, namely, nisin, microcin J25, microcin B17, microcin C, leucocin A, sakacin P, and pediocin PA-1. Significant structural changes responsible for the altered activity of the recent bacteriocin analogues are discussed here. PMID:26265354

  5. Elastin peptides in aging and pathological conditions.

    PubMed

    Baud, Stéphanie; Duca, Laurent; Bochicchio, Brigida; Brassart, Bertrand; Belloy, Nicolas; Pepe, Antonietta; Dauchez, Manuel; Martiny, Laurent; Debelle, Laurent

    2013-02-01

    Elastin is the protein responsible for the resilience of vertebrate tissue. It is an extremely stable protein deposited during the early stages of life and experiencing almost no renewal. As a consequence, it can be considered that each individual has an elastin capital for life. Despite its extreme stability, elastin can be degraded by several enzymes termed elastases. Elastases are among the most aggressive proteases, and their presence is increased with age. As a consequence, elastin fragmentation resulting in the generation of elastin peptides is one of the hallmarks of aging. This review will examine their nature and further expose our current understanding of the role played by these peptides in aging and their contribution to tissue homeostasis and several pathologies. PMID:25436566

  6. Immunosuppressive peptides and their therapeutic applications☆

    PubMed Central

    Thell, Kathrin; Hellinger, Roland; Schabbauer, Gernot; Gruber, Christian W.

    2014-01-01

    The immune system is vital for detecting and evading endogenous and exogenous threats to the body. Failure to regulate this homeostasis leads to autoimmunity, which is often associated with malfunctioning T cell signaling. Several medications are available to suppress over-reactive T lymphocytes, but many of the currently marketed drugs produce severe and life-threatening side-effects. Ribosomally synthesized peptides are gaining recognition from the pharmaceutical industry for their enhanced selectivity and decreased toxicity compared with small molecules; in particular, circular peptides exhibit remarkable stability and increased oral administration properties. For example, plant cyclotides effectively inhibit T lymphocyte proliferation. They are composed of a head-to-tail cyclized backbone and a cystine-knot motif, which confers them with remarkable stability, thus making them attractive pharmaceutical tools. PMID:24333193

  7. Engineering polyketide synthases and nonribosomal peptide synthetases

    PubMed Central

    Williams, Gavin

    2014-01-01

    Naturally occurring polyketides and non-ribosomal peptides with broad and potent biological activities continue to inspire the discovery of new and improved analogs. The biosynthetic apparatus responsible for the construction of these natural products has been the target of intensive protein engineering efforts. Traditionally, engineering has focused on substituting individual enzymatic domains or entire modules with those of different building block specificity, or by deleting various enzymatic functions, in an attempt to generate analogs. This review highlights strategies based on site-directed mutagenesis of substrate binding pockets, semi-rational mutagenesis, and whole-gene random mutagenesis to engineer the substrate specificity, activity, and protein interactions of polyketide and non-ribosomal peptide biosynthetic machinery. PMID:23838175

  8. Proton transfer reactions for improved peptide characterisation.

    PubMed

    Rožman, Marko; Schneider, Andrea; Gaskell, Simon J

    2011-06-01

    The combination of deprotonation (via ion/molecule and ion/ion reactions) and low-energy collision-induced dissociation (CID) has been explored for the enhanced characterisation of tryptic peptides via access to different precursor charge states. This approach allows instant access to fragmentation properties of singly and doubly protonated precursors (arising from the availability of mobile protons) in a single experiment. Considering both charge states extended our base of structurally informative data (in comparison with considering just a single charge state) due to generation of additional sequence ions and by obtaining supplementary structural information derived from selective cleavages. Roughly 37% of combined data sets (CID spectra of doubly and singly charged precursor) showed a greater database identification confidence than each set alone. Moreover, comparison between a number of sequence ions of the singly charged precursor and the doubly charged precursor provided a mean of distinguishing the two classes of tryptic peptides (arginine or lysine containing). PMID:21630380

  9. Proteins and peptides as renewable flocculants.

    PubMed

    Piazza, G J; Garcia, R A

    2010-08-01

    Partially hydrolyzed extracts from blood meal, feather meal, and meat and bone meal, as well as a variety of common surplus agricultural proteins were tested for their ability to promote the flocculation of clay. Partial alkaline or enzymatic hydrolyses of blood meal, feather meal, and meat and bone meal were performed to liberate proteins and peptides from their water-insoluble forms. Some of these extracts promoted flocculation. However, if hydrolysis was extensive, low molecular weight peptides were mainly produced, and these extracts did not promote flocculation. Beef skin gelatins and hydrolyzed fish collagen were found to promote flocculation when pH 5.5 buffer was added. Commercial preparations of peptone enzymatic digest and a mixture of keratin and hydrolyzed keratin did not promote flocculation. PMID:20236820

  10. Antimicrobial Peptides, Infections and the Skin Barrier.

    PubMed

    Clausen, Maja-Lisa; Agner, Tove

    2016-01-01

    The skin serves as a strong barrier protecting us from invading pathogens and harmful organisms. An important part of this barrier comes from antimicrobial peptides (AMPs), which are small peptides expressed abundantly in the skin. AMPs are produced in the deeper layers of the epidermis and transported to the stratum corneum, where they play a vital role in the first line of defense against potential pathogens. Numerous AMPs exist, and they have a broad antibiotic-like activity against bacteria, fungi and viruses. They also act as multifunctional effector molecules, linking innate and adaptive immune responses. AMPs play an essential part in maintaining an optimal and functional skin barrier - not only by direct killing of pathogens, but also by balancing immune responses and interfering in wound healing, cell differentiation, reepithelialization and their synergistic interplay with the skin microflora. PMID:26844896

  11. Exhaustive extraction of peptides by electromembrane extraction.

    PubMed

    Huang, Chuixiu; Gjelstad, Astrid; Pedersen-Bjergaard, Stig

    2015-01-01

    This fundamental work illustrates for the first time the possibility of exhaustive extraction of peptides using electromembrane extraction (EME) under low system-current conditions (<50 μA). Bradykinin acetate, angiotensin II antipeptide, angiotensin II acetate, neurotensin, angiotensin I trifluoroacetate, and leu-enkephalin were extracted from 600 μL of 25 mM phosphate buffer (pH 3.5), through a supported liquid membrane (SLM) containing di-(2-ethylhexyl)-phosphate (DEHP) dissolved in an organic solvent, and into 600 μL of an acidified aqueous acceptor solution using a thin flat membrane-based EME device. Mass transfer of peptides across the SLM was enhanced by complex formation with the negatively charged DEHP. The composition of the SLM and the extraction voltage were important factors influencing recoveries and current with the EME system. 1-nonanol diluted with 2-decanone (1:1 v/v) containing 15% (v/v) DEHP was selected as a suitable SLM for exhaustive extraction of peptides under low system-current conditions. Interestingly, increasing the SLM volume from 5 to 10 μL was found to be beneficial for stable and efficient EME. The pH of the sample strongly affected the EME process, and pH 3.5 was found to be optimal. The EME efficiency was also dependent on the acceptor solution composition, and the extraction time was found to be an important element for exhaustive extraction. When EME was carried out for 25 min with an extraction voltage of 15 V, the system-current across the SLM was less than 50 μA, and extraction recoveries for the model peptides were in the range of 77-94%, with RSD values less than 10%. PMID:25467476

  12. Ion Mobility Separation of Peptide Isotopomers

    NASA Astrophysics Data System (ADS)

    Kaszycki, Julia L.; Bowman, Andrew P.; Shvartsburg, Alexandre A.

    2016-03-01

    Differential or field asymmetric waveform ion mobility spectrometry (FAIMS) operating at high electric fields fully resolves isotopic isomers for a peptide with labeled residues. The naturally present isotopes, alone and together with targeted labels, also cause spectral shifts that approximately add for multiple heavy atoms. Separation qualitatively depends on the gas composition. These findings may enable novel strategies in proteomic and metabolomic analyses using stable isotope labeling.

  13. Catalytic Activities Of [GADV]-Peptides

    NASA Astrophysics Data System (ADS)

    Oba, Takae; Fukushima, Jun; Maruyama, Masako; Iwamoto, Ryoko; Ikehara, Kenji

    2005-10-01

    We have previously postulated a novel hypothesis for the origin of life, assuming that life on the earth originated from “[GADV]-protein world”, not from the “RNA world” (see Ikehara's review, 2002). The [GADV]-protein world is constituted from peptides and proteins with random sequences of four amino acids (glycine [G], alanine [A], aspartic acid [D] and valine [V]), which accumulated by pseudo-replication of the [GADV]-proteins. To obtain evidence for the hypothesis, we produced [GADV]-peptides by repeated heat-drying of the amino acids for 30 cycles ([GADV]-P30) and examined whether the peptides have some catalytic activities or not. From the results, it was found that the [GADV]-P30 can hydrolyze several kinds of chemical bonds in molecules, such as umbelliferyl-β-D-galactoside, glycine-p-nitroanilide and bovine serum albumin. This suggests that [GADV]-P30 could play an important role in the accumulation of [GADV]-proteins through pseudo-replication, leading to the emergence of life. We further show that [GADV]-octapaptides with random sequences, but containing no cyclic compounds as diketepiperazines, have catalytic activity, hydrolyzing peptide bonds in a natural protein, bovine serum albumin. The catalytic activity of the octapeptides was much higher than the [GADV]-P30 produced through repeated heat-drying treatments. These results also support the [GADV]-protein-world hypothesis of the origin of life (see Ikehara's review, 2002). Possible steps for the emergence of life on the primitive earth are presented.

  14. From antimicrobial to anticancer peptides. A review.

    PubMed

    Gaspar, Diana; Veiga, A Salomé; Castanho, Miguel A R B

    2013-01-01

    Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms. Although AMPs have been essentially studied and developed as potential alternatives for fighting infectious diseases, their use as anticancer peptides (ACPs) in cancer therapy either alone or in combination with other conventional drugs has been regarded as a therapeutic strategy to explore. As human cancer remains a cause of high morbidity and mortality worldwide, an urgent need of new, selective, and more efficient drugs is evident. Even though ACPs are expected to be selective toward tumor cells without impairing the normal body physiological functions, the development of a selective ACP has been a challenge. It is not yet possible to predict antitumor activity based on ACPs structures. ACPs are unique molecules when compared to the actual chemotherapeutic arsenal available for cancer treatment and display a variety of modes of action which in some types of cancer seem to co-exist. Regardless the debate surrounding the definition of structure-activity relationships for ACPs, great effort has been invested in ACP design and the challenge of improving effective killing of tumor cells remains. As detailed studies on ACPs mechanisms of action are crucial for optimizing drug development, in this review we provide an overview of the literature concerning peptides' structure, modes of action, selectivity, and efficacy and also summarize some of the many ACPs studied and/or developed for targeting different solid and hematologic malignancies with special emphasis on the first group. Strategies described for drug development and for increasing peptide selectivity toward specific cells while reducing toxicity are also discussed. PMID:24101917

  15. Ion Mobility Separation of Peptide Isotopomers.

    PubMed

    Kaszycki, Julia L; Bowman, Andrew P; Shvartsburg, Alexandre A

    2016-05-01

    Differential or field asymmetric waveform ion mobility spectrometry (FAIMS) operating at high electric fields fully resolves isotopic isomers for a peptide with labeled residues. The naturally present isotopes, alone and together with targeted labels, also cause spectral shifts that approximately add for multiple heavy atoms. Separation qualitatively depends on the gas composition. These findings may enable novel strategies in proteomic and metabolomic analyses using stable isotope labeling. Graphical Abstract ᅟ. PMID:26944281

  16. Method of identity analyte-binding peptides

    DOEpatents

    Kauvar, Lawrence M.

    1990-01-01

    A method for affinity chromatography or adsorption of a designated analyte utilizes a paralog as the affinity partner. The immobilized paralog can be used in purification or analysis of the analyte; the paralog can also be used as a substitute for antibody in an immunoassay. The paralog is identified by screening candidate peptide sequences of 4-20 amino acids for specific affinity to the analyte.

  17. From antimicrobial to anticancer peptides. A review

    PubMed Central

    Gaspar, Diana; Veiga, A. Salomé; Castanho, Miguel A. R. B.

    2013-01-01

    Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms. Although AMPs have been essentially studied and developed as potential alternatives for fighting infectious diseases, their use as anticancer peptides (ACPs) in cancer therapy either alone or in combination with other conventional drugs has been regarded as a therapeutic strategy to explore. As human cancer remains a cause of high morbidity and mortality worldwide, an urgent need of new, selective, and more efficient drugs is evident. Even though ACPs are expected to be selective toward tumor cells without impairing the normal body physiological functions, the development of a selective ACP has been a challenge. It is not yet possible to predict antitumor activity based on ACPs structures. ACPs are unique molecules when compared to the actual chemotherapeutic arsenal available for cancer treatment and display a variety of modes of action which in some types of cancer seem to co-exist. Regardless the debate surrounding the definition of structure-activity relationships for ACPs, great effort has been invested in ACP design and the challenge of improving effective killing of tumor cells remains. As detailed studies on ACPs mechanisms of action are crucial for optimizing drug development, in this review we provide an overview of the literature concerning peptides' structure, modes of action, selectivity, and efficacy and also summarize some of the many ACPs studied and/or developed for targeting different solid and hematologic malignancies with special emphasis on the first group. Strategies described for drug development and for increasing peptide selectivity toward specific cells while reducing toxicity are also discussed. PMID:24101917

  18. Ion Mobility Separation of Peptide Isotopomers

    NASA Astrophysics Data System (ADS)

    Kaszycki, Julia L.; Bowman, Andrew P.; Shvartsburg, Alexandre A.

    2016-05-01

    Differential or field asymmetric waveform ion mobility spectrometry (FAIMS) operating at high electric fields fully resolves isotopic isomers for a peptide with labeled residues. The naturally present isotopes, alone and together with targeted labels, also cause spectral shifts that approximately add for multiple heavy atoms. Separation qualitatively depends on the gas composition. These findings may enable novel strategies in proteomic and metabolomic analyses using stable isotope labeling.

  19. Method of identity analyte-binding peptides

    DOEpatents

    Kauvar, L.M.

    1990-10-16

    A method for affinity chromatography or adsorption of a designated analyte utilizes a paralog as the affinity partner. The immobilized paralog can be used in purification or analysis of the analyte; the paralog can also be used as a substitute for antibody in an immunoassay. The paralog is identified by screening candidate peptide sequences of 4--20 amino acids for specific affinity to the analyte. 5 figs.

  20. Amyloid beta peptide immunotherapy in Alzheimer disease.

    PubMed

    Delrieu, J; Ousset, P J; Voisin, T; Vellas, B

    2014-12-01

    Recent advances in the understanding of Alzheimer's disease pathogenesis have led to the development of numerous compounds that might modify the disease process. Amyloid β peptide represents an important molecular target for intervention in Alzheimer's disease. The main purpose of this work is to review immunotherapy studies in relation to the Alzheimer's disease. Several types of amyloid β peptide immunotherapy for Alzheimer's disease are under investigation, active immunization and passive administration with monoclonal antibodies directed against amyloid β peptide. Although immunotherapy approaches resulted in clearance of amyloid plaques in patients with Alzheimer's disease, this clearance did not show significant cognitive effect for the moment. Currently, several amyloid β peptide immunotherapy approaches are under investigation but also against tau pathology. Results from amyloid-based immunotherapy studies in clinical trials indicate that intervention appears to be more effective in early stages of amyloid accumulation in particular solanezumab with a potential impact at mild Alzheimer's disease, highlighting the importance of diagnosing Alzheimer's disease as early as possible and undertaking clinical trials at this stage. In both phase III solanezumab and bapineuzumab trials, PET imaging revealed that about a quarter of patients lacked fibrillar amyloid pathology at baseline, suggesting that they did not have Alzheimer's disease in the first place. So a new third phase 3 clinical trial for solanezumab, called Expedition 3, in patients with mild Alzheimer's disease and evidence of amyloid burden has been started. Thus, currently, amyloid intervention is realized at early stage of the Alzheimer's disease in clinical trials, at prodromal Alzheimer's disease, or at asymptomatic subjects or at risk to develop Alzheimer's disease and or at asymptomatic subjects with autosomal dominant mutation. PMID:25459121

  1. Mass spectrometric survey of peptides in cephalopods with an emphasis on the FMRFamide-related peptides.

    PubMed

    Sweedler, J V; Li, L; Floyd, P; Gilly, W

    2000-12-01

    A matrix-assisted laser desorption/ionization (MALDI) mass spectrometric (MS) survey of the major peptides in the stellar, fin and pallial nerves and the posterior chromatophore lobe of the cephalopods Sepia officinalis, Loligo opalescens and Dosidicus gigas has been performed. Although a large number of putative peptides are distinct among the three species, several molecular masses are conserved. In addition to peptides, characterization of the lipid content of the nerves is reported, and these lipid peaks account for many of the lower molecular masses observed. One conserved set of peaks corresponds to the FMRFamide-related peptides (FRPs). The Loligo opalescens FMRFa gene has been sequenced. It encodes a 331 amino acid residue prohormone that is processed into 14 FRPs, which are both predicted by the nucleotide sequence and confirmed by MALDI MS. The FRPs predicted by this gene (FMRFa, FLRFa/FIRFa and ALSGDAFLRFa) are observed in all three species, indicating that members of this peptide family are highly conserved across cephalopods. PMID:11060217

  2. De Novo Design of Skin-Penetrating Peptides for Enhanced Transdermal Delivery of Peptide Drugs.

    PubMed

    Menegatti, Stefano; Zakrewsky, Michael; Kumar, Sunny; De Oliveira, Joshua Sanchez; Muraski, John A; Mitragotri, Samir

    2016-03-01

    Skin-penetrating peptides (SPPs) are attracting increasing attention as a non-invasive strategy for transdermal delivery of therapeutics. The identification of SPP sequences, however, currently performed by experimental screening of peptide libraries, is very laborious. Recent studies have shown that, to be effective enhancers, SPPs must possess affinity for both skin keratin and the drug of interest. We therefore developed a computational process for generating and screening virtual libraries of disulfide-cyclic peptides against keratin and cyclosporine A (CsA) to identify SPPs capable of enhancing transdermal CsA delivery. The selected sequences were experimentally tested and found to bind both CsA and keratin, as determined by mass spectrometry and affinity chromatography, and enhance transdermal permeation of CsA. Four heptameric sequences that emerged as leading candidates (ACSATLQHSCG, ACSLTVNWNCG, ACTSTGRNACG, and ACSASTNHNCG) were tested and yielded CsA permeation on par with previously identified SPP SPACE (TM) . An octameric peptide (ACNAHQARSTCG) yielded significantly higher delivery of CsA compared to heptameric SPPs. The safety profile of the selected sequences was also validated by incubation with skin keratinocytes. This method thus represents an effective procedure for the de novo design of skin-penetrating peptides for the delivery of desired therapeutic or cosmetic agents. PMID:26799634

  3. Peptides: Basic determinants of reproductive functions.

    PubMed

    Celik, Onder; Aydin, Suleyman; Celik, Nilufer; Yilmaz, Musa

    2015-10-01

    Mammalian reproduction is a costly process in terms of energy consumption. The critical information regarding metabolic status is signaled to the hypothalamus mainly through peripheral peptides from the adipose tissue and gastrointestinal tract. Changes in energy stores produce fluctuations in leptin, insulin, ghrelin and glucose signals that feedback mainly to the hypothalamus to regulate metabolism and fertility. In near future, possible effects of the nutritional status on GnRH regulation can be evaluated by measuring serum or tissue levels of leptin and ghrelin in patiens suffering from infertility. The fact that leptin and ghrelin are antagonistic in their effects on GnRH neurons, their respective agonistic and antagonistic roles make them ideal candidates to use instead of GnRH agonist and antagonist. Similarly, kisspeptin expressing neurons are likely to mediate the well-established link between energy balance and reproductive functions. Exogenous kisspeptin can be used for physiological ovarian hyperstimulation for in-vitro fertilization. Moreover, kisspeptin antagonist therapy can be used for the treatment of postmenapousal women, precocious puberty, PCOS, endometriosis and uterine fibroids. In this review, we will analyze the central mechanisms involved in the integration of metabolic information and their contribution to the control of the reproductive function. Particular attention will be paid to summarize the participation of leptin, kisspeptin, ghrelin, NPY, orexin, urocortin, VIP, insulin, galanin, galanin like peptide, oxytocin, agouti gene-related peptide, and POMC neurons in this process and their possible interactions to contribute to the metabolic control of reproduction. PMID:26074346

  4. Pharmacokinetics of Peptide-Fc fusion proteins.

    PubMed

    Wu, Benjamin; Sun, Yu-Nien

    2014-01-01

    Peptide-Fc fusion proteins (or peptibodies) are chimeric proteins generated by fusing a biologically active peptide with the Fc-domain of immunoglobulin G. In this review, we describe recent studies that have evaluated the absorption, distribution, metabolism, and excretion characteristics of peptibodies. Key features of the pharmacokinetics of peptibodies include their extended half-life due to recycling by the neonatal Fc receptor (FcRn), a substantial contribution by renal excretion to total clearance and, for certain peptibodies, target-mediated drug disposition. The prolonged half-life of peptibodies permits less-frequent dose administration compared with small therapeutic peptides, thereby supporting patient convenience and compliance. Hence, a considerable number of peptibodies are currently in preclinical and clinical development. Investigation of the metabolism (biotransformation) of biologics is an evolving area of research: ligand-binding mass spectrometry techniques have been employed for the characterization of the peptibody romiplostim, providing a new approach to evaluation of the degradation products of biologics. Pharmacokinetic/pharmacodynamic modeling and simulation techniques have been used to predict the pharmacokinetics of peptibodies which can inform clinical decision-making, particularly selection of dosing regimens. This integrated review highlights the distinct pharmacokinetic characteristics of peptibodies and their influence on the drug development process for this emerging family of therapeutics. PMID:24285510

  5. The insecticidal potential of venom peptides.

    PubMed

    Smith, Jennifer J; Herzig, Volker; King, Glenn F; Alewood, Paul F

    2013-10-01

    Pest insect species are a burden to humans as they destroy crops and serve as vectors for a wide range of diseases including malaria and dengue. Chemical insecticides are currently the dominant approach for combating these pests. However, the de-registration of key classes of chemical insecticides due to their perceived ecological and human health risks in combination with the development of insecticide resistance in many pest insect populations has created an urgent need for improved methods of insect pest control. The venoms of arthropod predators such as spiders and scorpions are a promising source of novel insecticidal peptides that often have different modes of action to extant chemical insecticides. These peptides have been optimized via a prey-predator arms race spanning hundreds of millions of years to target specific types of insect ion channels and receptors. Here we review the current literature on insecticidal venom peptides, with a particular focus on their structural and pharmacological diversity, and discuss their potential for deployment as insecticides. PMID:23525661

  6. Trial Watch: Peptide-based anticancer vaccines

    PubMed Central

    Pol, Jonathan; Bloy, Norma; Buqué, Aitziber; Eggermont, Alexander; Cremer, Isabelle; Sautès-Fridman, Catherine; Galon, Jérôme; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-01-01

    Malignant cells express antigens that can be harnessed to elicit anticancer immune responses. One approach to achieve such goal consists in the administration of tumor-associated antigens (TAAs) or peptides thereof as recombinant proteins in the presence of adequate adjuvants. Throughout the past decade, peptide vaccines have been shown to mediate antineoplastic effects in various murine tumor models, especially when administered in the context of potent immunostimulatory regimens. In spite of multiple limitations, first of all the fact that anticancer vaccines are often employed as therapeutic (rather than prophylactic) agents, this immunotherapeutic paradigm has been intensively investigated in clinical scenarios, with promising results. Currently, both experimentalists and clinicians are focusing their efforts on the identification of so-called tumor rejection antigens, i.e., TAAs that can elicit an immune response leading to disease eradication, as well as to combinatorial immunostimulatory interventions with superior adjuvant activity in patients. Here, we summarize the latest advances in the development of peptide vaccines for cancer therapy. PMID:26137405

  7. Dissociation of Peptides by Ions and Photons

    NASA Astrophysics Data System (ADS)

    Bari, Sadia

    2015-05-01

    Little is known about biological radiation action on the molecular level. The response of isolated biomolecules upon energetic photons is of great interest i.e. for astrobiology and radiobiology. Key questions concern ion chemistry in the interstellar medium, possible transport of biomolecules from space to earth and molecular mechanisms underlying biological radiation damage. Experiments with small biomolecules in the gas phase have the advantage of studying ionization and fragmentation dynamics in finite systems but are less realistic radiation damage models. To be able to investigate more complex biomolecular systems, such as peptides and proteins, we have developed a new apparatus in which a home-made electrospray source can be interfaced with a low energy (keV) ion beamline or different photon beamlines (e.g. of synchrotrons or free electron lasers). Spectra of peptides obtained with this set-up will be presented. Dependencies on energy and polarization of the radiation as well as peptide length and structure will be thereby discussed.

  8. High-affinity Cyclic Peptide Matriptase Inhibitors*

    PubMed Central

    Quimbar, Pedro; Malik, Uru; Sommerhoff, Christian P.; Kaas, Quentin; Chan, Lai Y.; Huang, Yen-Hua; Grundhuber, Maresa; Dunse, Kerry; Craik, David J.; Anderson, Marilyn A.; Daly, Norelle L.

    2013-01-01

    The type II transmembrane serine protease matriptase is a key activator of multiple signaling pathways associated with cell proliferation and modification of the extracellular matrix. Deregulated matriptase activity correlates with a number of diseases, including cancer and hence highly selective matriptase inhibitors may have therapeutic potential. The plant-derived cyclic peptide, sunflower trypsin inhibitor-1 (SFTI-1), is a promising drug scaffold with potent matriptase inhibitory activity. In the current study we have analyzed the structure-activity relationships of SFTI-1 and Momordica cochinchinensis trypsin inhibitor-II (MCoTI-II), a structurally divergent trypsin inhibitor from Momordica cochinchinensis that also contains a cyclic backbone. We show that MCoTI-II is a significantly more potent matriptase inhibitor than SFTI-1 and that all alanine mutants of both peptides, generated using positional scanning mutagenesis, have decreased trypsin affinity, whereas several mutations either maintain or result in enhanced matriptase inhibitory activity. These intriguing results were used to design one of the most potent matriptase inhibitors known to date with a 290 pm equilibrium dissociation constant, and provide the first indication on how to modulate affinity for matriptase over trypsin in cyclic peptides. This information might be useful for the design of more selective and therapeutically relevant inhibitors of matriptase. PMID:23548907

  9. Peptide-mediated interference with baculovirus transduction.

    PubMed

    Mäkelä, Anna R; Närvänen, Ale; Oker-Blom, Christian

    2008-03-20

    Baculovirus represents a multifunctional platform with potential for biomedical applications including disease therapies. The importance of F3, a tumor-homing peptide, in baculovirus transduction was previously recognized by the ability of F3 to augment viral binding and gene delivery to human cancer cells following display on the viral envelope. Here, F3 was utilized as a molecular tool to expand understanding of the poorly characterized baculovirus-mammalian cell interactions. Baculovirus-mediated transduction of HepG2 hepatocarcinoma cells was strongly inhibited by coincubating the virus with synthetic F3 or following incorporation of F3 into viral nucleocapsid by genetic engineering, the former suggesting direct interaction of the soluble peptide with the virus particles. Since internalization and nuclear accumulation of the virus were significantly inhibited or delayed, but the kinetics of viral binding, initial uptake, and endosomal release were unaffected, F3 likely interferes with cytoplasmic trafficking and subsequent nuclear transport of the virus. A polyclonal antibody raised against nucleolin, the internalizing receptor of F3, failed to inhibit cellular binding, but considerably reduced viral transduction efficiency, proposing the involvement of nucleolin in baculovirus entry. Together, these results render the F3 peptide a tool for elucidating the mechanism and molecular details conferring to baculovirus-mediated gene transduction in mammalian cells. PMID:18294718

  10. Multifunctional matrices for oral peptide delivery.

    PubMed

    Bernkop-Schnürch, A; Walker, G

    2001-01-01

    The oral administration of peptide drugs represents one of the greatest challenges in pharmaceutical technology. To gain a sufficient bioavailability of these therapeutic agents, various barriers including the mucus-layer barrier, the enzymatic barrier, and the membrane barrier have to be overcome. A promising strategy for achieving this goal is the use of multifunctional matrices. These matrices are based on polymers that display mucoadhesive properties, a permeation-enhancing effect, enzyme-inhibiting properties, and/or a high buffer capacity. Moreover, a sustained or delayed drug release can be provided by delivery systems that contain such polymers. Among them, polyacrylates, cellulose derivatives, and chitosan are promising excipients that can also be customized by chemical modification to improve certain properties. For example, the covalent attachment of thiol moieties on these polymers leads to improved mucoadhesive and permeation-enhancing properties, and the conjugation of enzyme inhibitors enables the matrices to provide protection for peptide drugs against enzymatic degradation. The efficacy of multifunctional matrices in oral peptide delivery has been verified by various in vivo studies that could pave the way for the development of commercially viable formulations. PMID:11763498

  11. Hierarchical organization of ferrocene-peptides.

    PubMed

    Beheshti, Samaneh; Martić, Sanela; Kraatz, Heinz-Bernhard

    2012-07-16

    Hierarchical self-assembly of disubstituted ferrocene (Fc)-peptide conjugates that possess Gly-Val-Phe and Gly-Val-Phe-Phe peptide substituents leads to the formation of nano- and micro-sized assemblies. Hydrogen-bonding and hydrophobic interactions provide directionality to the assembly patterns. The self-assembling behavior of these compounds was studied in solution by using (1)H NMR and circular dichroism (CD) spectroscopies. In the solid state, attenuated total reflectance (ATR) FTIR spectroscopy, single-crystal X-ray diffraction (XRD), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM) methods were used. Spontaneous self-assembly of Fc-peptides through intra- and intermolecular hydrogen-bonding interactions induces supramolecular assemblies, which further associate and give rise to fibers, large fibrous crystals, and twisted ropes. In the case of Fc[CO-Gly-Val-Phe-OMe](2) (1), molecules initially interact to form pleated sheets that undergo association into long fibers that form bundles and rectangular crystalline cuboids. Molecular offsets and defects, such as screw dislocations and solvent effects that occur during crystal growth, induce the formation of helical arrangements, ultimately leading to large twisted ropes. By contrast, the Fc-tetrapeptide conjugate Fc[CO-Gly-Val-Phe-Phe-OMe](2) (2) forms a network of nanofibers at the supramolecular level, presumably due to the additional hydrogen-bonding and hydrophobic interactions that stem from the additional Phe residues. PMID:22707407

  12. Circular dichroism of bradykinin and related peptides

    PubMed Central

    Brady, A. H.; Ryan, J. W.; Stewart, J. M.

    1971-01-01

    1. The circular dichroism of bradykinin and a number of its analogues and homologues was measured over the spectral range 200–300nm. All of the biologically active peptides showed maxima at 220nm and minima at 235nm. The spectra were independent of solvent and temperature. The vibronic transitions of phenylalanyl residues in the 250–280nm range showed no evidence of intra- or inter-molecular interactions. We take this as evidence that bradykinin and its biologically active analogues and homologues exist in solution as disordered chains. 2. None of the analogues with spectra unlike bradykinin possessed biological activity. However, peptides such as retro-bradykinin, des-6-serine-bradykinin, des-1-arginine-bradykinin and des-9-arginine-bradykinin produced spectra like that of bradykinin but were devoid of biological activity. Although we could not identify spectral features that were clearly correlated with biological activity, it appears unlikely that highly ordered peptides of the same amino acid composition as bradykinin would possess bradykinin-like effects. PMID:5117026

  13. Conformational Sampling of Peptides in Cellular Environments☆

    PubMed Central

    Tanizaki, Seiichiro; Clifford, Jacob; Connelly, Brian D.; Feig, Michael

    2008-01-01

    Abstract Biological systems provide a complex environment that can be understood in terms of its dielectric properties. High concentrations of macromolecules and cosolvents effectively reduce the dielectric constant of cellular environments, thereby affecting the conformational sampling of biomolecules. To examine this effect in more detail, the conformational preference of alanine dipeptide, poly-alanine, and melittin in different dielectric environments is studied with computer simulations based on recently developed generalized Born methodology. Results from these simulations suggest that extended conformations are favored over α-helical conformations at the dipeptide level at and below dielectric constants of 5–10. Furthermore, lower-dielectric environments begin to significantly stabilize helical structures in poly-alanine at ɛ = 20. In the more complex peptide melittin, different dielectric environments shift the equilibrium between two main conformations: a nearly fully extended helix that is most stable in low dielectrics and a compact, V-shaped conformation consisting of two helices that is preferred in higher dielectric environments. An additional conformation is only found to be significantly populated at intermediate dielectric constants. Good agreement with previous studies of different peptides in specific, less-polar solvent environments, suggest that helix stabilization and shifts in conformational preferences in such environments are primarily due to a reduced dielectric environment rather than specific molecular details. The findings presented here make predictions of how peptide sampling may be altered in dense cellular environments with reduced dielectric response. PMID:17905846

  14. Fingerprinting Desmosine-Containing Elastin Peptides

    NASA Astrophysics Data System (ADS)

    Schräder, Christoph U.; Heinz, Andrea; Majovsky, Petra; Schmelzer, Christian E. H.

    2015-05-01

    Elastin is a vital protein of the extracellular matrix of jawed vertebrates and provides elasticity to numerous tissues. It is secreted in the form of its soluble precursor tropoelastin, which is subsequently cross-linked in the course of the elastic fiber assembly. The process involves the formation of the two tetrafunctional amino acids desmosine (DES) and isodesmosine (IDES), which are unique to elastin. The resulting high degree of cross-linking confers remarkable properties, including mechanical integrity, insolubility, and long-term stability to the protein. These characteristics hinder the structural elucidation of mature elastin. However, MS2 data of linear and cross-linked peptides released by proteolysis can provide indirect insights into the structure of elastin. In this study, we performed energy-resolved collision-induced dissociation experiments of DES, IDES, their derivatives, and DES-/IDES-containing peptides to determine characteristic product ions. It was found that all investigated compounds yielded the same product ion clusters at elevated collision energies. Elemental composition determination using the exact masses of these ions revealed molecular formulas of the type CxHyN, suggesting that the pyridinium core of DES/IDES remains intact even at relatively high collision energies. The finding of these specific product ions enabled the development of a similarity-based scoring algorithm that was successfully applied on LC-MS/MS data of bovine elastin digests for the identification of DES-/IDES-cross-linked peptides. This approach facilitates the straightforward investigation of native cross-links in elastin.

  15. Antiendotoxin activity of cationic peptide antimicrobial agents.

    PubMed Central

    Gough, M; Hancock, R E; Kelly, N M

    1996-01-01

    The endotoxin from gram-negative bacteria consists of a molecule lipopolysaccharide (LPS) which can be shed by bacteria during antimicrobial therapy. A resulting syndrome, endotoxic shock, is a leading cause of death in the developed world. Thus, there is great interest in the development of antimicrobial agents which can reverse rather than promote sepsis, especially given the recent disappointing clinical performance of antiendotoxin therapies. We describe here two small cationic peptides, MBI-27 and MBI-28, which have both antiendotoxic and antibacterial activities in vitro and in vivo in animal models. We had previously demonstrated that these peptides bind to LPS with an affinity equivalent to that of polymyxin B. Consistent with this, the peptides blocked the ability of LPS and intact cells to induce the endotoxic shock mediator, tumor necrosis factor (TNF), upon incubation with the RAW 264.7 murine macrophage cell line. MBI-28 was equivalent to polymyxin B in its ability to block LPS induction of TNF by this cell line, even when added 60 min after the TNF stimulus. Furthermore, MBI-28 offered significant protection in a galactosamine-sensitized mouse model of lethal endotoxic shock. This protection correlated with the ability of MBI-28 to reduce LPS-induced circulating TNF by nearly 90% in this mouse model. Both MBI-27 and MBI-28 demonstrated antibacterial activity against gram-negative bacteria in vitro and in vivo against Pseudomonas aeruginosa infections in neutropenic mice. PMID:8945527

  16. Antimicrobial peptides in echinoderm host defense.

    PubMed

    Li, Chun; Blencke, Hans-Matti; Haug, Tor; Stensvåg, Klara

    2015-03-01

    Antimicrobial peptides (AMPs) are important effector molecules in innate immunity. Here we briefly summarize characteristic traits of AMPs and their mechanisms of antimicrobial activity. Echinoderms live in a microbe-rich marine environment and are known to express a wide range of AMPs. We address two novel AMP families from coelomocytes of sea urchins: cysteine-rich AMPs (strongylocins) and heterodimeric AMPs (centrocins). These peptide families have conserved preprosequences, are present in both adults and pluteus stage larvae, have potent antimicrobial properties, and therefore appear to be important innate immune effectors. Strongylocins have a unique cysteine pattern compared to other cysteine-rich peptides, which suggests a novel AMP folding pattern. Centrocins and SdStrongylocin 2 contain brominated tryptophan residues in their native form. This review also includes AMPs isolated from other echinoderms, such as holothuroidins, fragments of beta-thymosin, and fragments of lectin (CEL-III). Echinoderm AMPs are crucial molecules for the understanding of echinoderm immunity, and their potent antimicrobial activity makes them potential precursors of novel drug leads. PMID:25445901

  17. Current Understanding of Guanylin Peptides Actions

    PubMed Central

    2013-01-01

    Guanylin peptides (GPs) family includes guanylin (GN), uroguanylin (UGN), lymphoguanylin, and recently discovered renoguanylin. This growing family is proposed to be intestinal natriuretic peptides. After ingestion of a salty meal, GN and UGN are secreted into the intestinal lumen, where they inhibit sodium absorption and induce anion and water secretion. At the same conditions, those hormones stimulate renal electrolyte excretion by inducing natriuresis, kaliuresis, and diuresis and therefore prevent hypernatremia and hypervolemia after salty meals. In the intestine, a well-known receptor for GPs is guanylate cyclase C (GC-C) whose activation increases intracellular concentration of cGMP. However, in the kidney of GC-C-deficient mice, effects of GPs are unaltered, which could be by new cGMP-independent signaling pathway (G-protein-coupled receptor). This is not unusual as atrial natriuretic peptide also activates two different types of receptors: guanylate cylcase A and clearance receptor which is also G-protein coupled receptor. Physiological role of GPs in other organs (liver, pancreas, lung, sweat glands, and male reproductive system) needs to be discovered. However, it is known that they are involved in pathological conditions like cystic fibrosis, asthma, intestinal tumors, kidney and heart failure, obesity, and metabolic syndrome. PMID:24967239

  18. Ghrelin family of peptides and gut motility.

    PubMed

    Asakawa, Akihiro; Ataka, Koji; Fujino, Kazunori; Chen, Chih-Yen; Kato, Ikuo; Fujimiya, Mineko; Inui, Akio

    2011-04-01

    Acyl ghrelin, des-acyl ghrelin, and obestatin are three peptides isolated from the gastrointestinal tract and encoded by the same preproghrelin gene. Three ghrelin gene products participate in modulating appetite, adipogenesis, glucose metabolism, cell proliferation, immune, sleep, memory, anxiety, cognition, and stress. We have investigated the effects of ghrelin family of peptides on fed and fasted motor activities in the stomach and duodenum of freely moving conscious rats by manometric method. Intracerebroventricular (ICV) and intravenous (IV) administration of acyl ghrelin induced fasted motor activity in the duodenum in fed rats. ICV and IV administration of des-acyl ghrelin disrupted fasted motor activity in the antrum. Changes in gastric motility induced by IV administration of des-acyl ghrelin were antagonized by ICV administration of a corticotropin-releasing factor (CRF) 2 receptor antagonist. IV administration of obestatin decreased the percentage motor index in the antrum and prolonged the time taken to return to fasted motility in the duodenum in fed rats. ICV administration of CRF 1 and 2 receptor antagonists prevented the effects of obestatin on gastroduodenal motility. Ghrelin gene products regulate feeding-associated gastroduodenal motility. Stomach may regulate various functions including gastrointestinal motility via acyl ghrelin, des-acyl ghrelin and obestatin as an endocrine organ. Increasing knowledge of the effects of ghrelin family of peptides on gastrointestinal motility could lead to innovative new therapies for functional gastrointestinal disorders. PMID:21443714

  19. Surfactant-induced assembly of enzymatically-stable peptide hydrogels

    SciTech Connect

    Jones, Brad H.; Martinez, Alina M.; Wheeler, Jill S.; Spoerke, Erik D.

    2015-04-07

    The secondary structure of peptides in the presence of interacting additives is an important topic of study, having implications in the application of peptide science to a broad range of modern technologies. Surfactants constitute a class of biologically relevant compounds that are known to influence both peptide conformation and aggregation or assembly. In addition, we have characterized the secondary structure of a linear nonapeptide composed of a hydrophobic alanine/phenylalanine core flanked by hydrophilic acid/amine units. We show that the anionic surfactant sodium dodecyl sulfate (SDS) induces the formation of β-sheets and macroscopic gelation in this otherwise unstructured peptide. Through comparison to related additives, we propose that SDS-induced secondary structure formation is the result of amphiphilicity created by electrostatic binding of SDS to the peptide. In addition, we demonstrate a novel utility of surfactants in manipulating and stabilizing peptide nanostructures. SDS is used to simultaneously induce secondary structure in a peptide and to inhibit the activity of a model enzyme, resulting in a peptide hydrogel that is impervious to enzymatic degradation. These results complement our understanding of the behavior of peptides in the presence of interacting secondary molecules and provide new potential pathways for programmable organization of peptides by the addition of such components.

  20. Mechanical tuning of elastomers via peptide secondary structure

    NASA Astrophysics Data System (ADS)

    Wanasekara, Nandula; Johnson, J. Casey; Korley, Lashanda T. J.

    2014-03-01

    Nature utilizes an array of design tools for engineering materials with multiple functions and tunable mechanical properties. The precise control of hierarchical structure, self-assembly, and secondary structure is essential to achieve the desired properties in bio-inspired materials design. We have developed a series of peptidic-poyurea hybrids to determine the effects of peptide secondary structure and hydrogen bonding arrangement on morphology, thermal and mechanical properties. These materials were fabricated by incorporating peptide segments containing either poly(β-benzyl-L-aspartate) or poly(ɛ-carbobenzyloxy-L-lysine) into non-chain extended polyureas to form either β-sheets or α-helix conformations based on peptide length. Infrared analysis proved the retention of peptide secondary structure when incorporated into peptidic-polyureas. The polymers containing β-sheet forming peptide blocks exhibited higher modulus and toughness due to intermolecular H-bonding. Additionally, higher peptide weight fractions lead to higher plateau moduli due to a transition of continuous domain morphology from a soft segment continuous to a fibrous and interconnected stiffer peptide domain. All the polymers exhibited microphase separated morphology with nanofibrous or ribbon-like structures. It is observed that fiber aspect ratio and percolation were influenced by the peptide secondary structure and the weight fraction.

  1. Surfactant-induced assembly of enzymatically-stable peptide hydrogels

    DOE PAGESBeta

    Jones, Brad H.; Martinez, Alina M.; Wheeler, Jill S.; Spoerke, Erik D.

    2015-04-07

    The secondary structure of peptides in the presence of interacting additives is an important topic of study, having implications in the application of peptide science to a broad range of modern technologies. Surfactants constitute a class of biologically relevant compounds that are known to influence both peptide conformation and aggregation or assembly. In addition, we have characterized the secondary structure of a linear nonapeptide composed of a hydrophobic alanine/phenylalanine core flanked by hydrophilic acid/amine units. We show that the anionic surfactant sodium dodecyl sulfate (SDS) induces the formation of β-sheets and macroscopic gelation in this otherwise unstructured peptide. Through comparisonmore » to related additives, we propose that SDS-induced secondary structure formation is the result of amphiphilicity created by electrostatic binding of SDS to the peptide. In addition, we demonstrate a novel utility of surfactants in manipulating and stabilizing peptide nanostructures. SDS is used to simultaneously induce secondary structure in a peptide and to inhibit the activity of a model enzyme, resulting in a peptide hydrogel that is impervious to enzymatic degradation. These results complement our understanding of the behavior of peptides in the presence of interacting secondary molecules and provide new potential pathways for programmable organization of peptides by the addition of such components.« less

  2. Improving short antimicrobial peptides despite elusive rules for activity.

    PubMed

    Mikut, Ralf; Ruden, Serge; Reischl, Markus; Breitling, Frank; Volkmer, Rudolf; Hilpert, Kai

    2016-05-01

    Antimicrobial peptides (AMPs) can effectively kill a broad range of life threatening multidrug-resistant bacteria, a serious threat to public health worldwide. However, despite great hopes novel drugs based on AMPs are still rare. To accelerate drug development we studied different approaches to improve the antibacterial activity of short antimicrobial peptides. Short antimicrobial peptides seem to be ideal drug candidates since they can be synthesized quickly and easily, modified and optimized. In addition, manufacturing a short peptide drug will be more cost efficient than long and structured ones. In contrast to longer and structured peptides short AMPs seem hard to design and predict. Here, we designed, synthesized and screened five different peptide libraries, each consisting of 600 9-mer peptides, against Pseudomonas aeruginosa. Each library is presenting a different approach to investigate effectiveness of an optimization strategy. The data for the 3000 peptides were analyzed using models based on fuzzy logic bioinformatics and plausible descriptors. The rate of active or superior active peptides was improved from 31.0% in a semi-random library from a previous study to 97.8% in the best new designed library. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26687790

  3. High Divergence of the Precursor Peptides in Combinatorial Lanthipeptide Biosynthesis

    PubMed Central

    2015-01-01

    Lanthionine-containing peptides (lanthipeptides) are a rapidly growing family of polycyclic peptide natural products belonging to the large class of ribosomally synthesized and post-translationally modified peptides (RiPPs). These compounds are widely distributed in taxonomically distant species, and their biosynthetic systems and biological activities are diverse. A unique example of lanthipeptide biosynthesis is the prochlorosin synthetase ProcM from the marine cyanobacterium Prochlorococcus MIT9313, which transforms up to 29 different precursor peptides (ProcAs) into a library of lanthipeptides called prochlorosins (Pcns) with highly diverse sequences and ring topologies. Here, we show that many ProcM-like enzymes from a variety of bacteria have the capacity to carry out post-translational modifications on highly diverse precursor peptides, providing new examples of natural combinatorial biosynthesis. We also demonstrate that the leader peptides come from different evolutionary origins, suggesting that the combinatorial biosynthesis is tied to the enzyme and not a specific type of leader peptide. For some precursor peptides encoded in the genomes, the leader peptides apparently have been truncated at the N-termini, and we show that these N-terminally truncated peptides are still substrates of the enzymes. Consistent with this hypothesis, we demonstrate that about two-thirds of the ProcA N-terminal sequence is not essential for ProcM activity. Our results also highlight the potential of exploring this class of natural products by genome mining and bioengineering. PMID:25244001

  4. Role of signal peptides in targeting of proteins in cyanobacteria.

    PubMed Central

    Mackle, M M; Zilinskas, B A

    1994-01-01

    Proteins of cyanobacteria may be transported across one of two membrane systems: the typical eubacterial cell envelope (consisting of an inner membrane, periplasmic space, and an outer membrane) and the photosynthetic thylakoids. To investigate the role of signal peptides in targeting in cyanobacteria, Synechococcus sp. strain PCC 7942 was transformed with vectors carrying the chloramphenicol acetyltransferase reporter gene fused to coding sequences for one of four different signal peptides. These included signal peptides of two proteins of periplasmic space origin (one from Escherichia coli and the other from Synechococcus sp. strain PCC 7942) and two other signal peptides of proteins located in the thylakoid lumen (one from a cyanobacterium and the other from a higher plant). The location of the gene fusion products expressed in Synechococcus sp. strain PCC 7942 was determined by a chloramphenicol acetyltransferase enzyme-linked immunosorbent assay of subcellular fractions. The distribution pattern for gene fusions with periplasmic signal peptides was different from that of gene fusions with thylakoid lumen signal peptides. Primary sequence analysis revealed conserved features in the thylakoid lumen signal peptides that were absent from the periplasmic signal peptides. These results suggest the importance of the signal peptide in protein targeting in cyanobacteria and point to the presence of signal peptide features conserved between chloroplasts and cyanobacteria for targeting of proteins to the thylakoid lumen. Images PMID:8144451

  5. Bovine hemoglobin: an attractive source of antibacterial peptides.

    PubMed

    Nedjar-Arroume, Naïma; Dubois-Delval, Véronique; Adje, Estelle Yaba; Traisnel, Jonathan; Krier, François; Mary, Patrice; Kouach, Mostafa; Briand, Gilbert; Guillochon, Didier

    2008-06-01

    A peptic hemoglobin hydrolysate was fractioned by a semi-preparative reversed-phase HPLC and some fractions have an antibacterial activity against four bacteria strains: Micrococcus luteus A270, Listeria innocua, Escherichia coli and Salmonella enteritidis. These fractions were analyzed by ESI/MS and ESI/MS/MS, in order to characterize the peptides in these fractions. Each fraction contains at least three peptides and some fractions contain five peptides. All these fractions were purified several times by HPLC to obtain pure peptides. Thirty antibacterial peptides were identified. From the isolated antibacterial peptides, 24 peptides were derived from the alpha chains of hemoglobin and 6 peptides were derived from the beta chains of hemoglobin. The lowest concentration of these peptides (minimum inhibitory concentration (MIC)) necessary to completely inhibit the growth of four bacteria strain was determined. The cell population of all of the tested bacteria species decreased by at least 97% after a 24-h incubation with any of the peptides at the minimum inhibitory concentration. PMID:18342399

  6. Antimicrobial and Immunomodulatory Activities of PR-39 Derived Peptides

    PubMed Central

    Veldhuizen, Edwin J. A.; Schneider, Viktoria A. F.; Agustiandari, Herfita; van Dijk, Albert; Tjeerdsma-van Bokhoven, Johanna L. M.; Bikker, Floris J.; Haagsman, Henk P.

    2014-01-01

    The porcine cathelicidin PR-39 is a host defence peptide that plays a pivotal role in the innate immune defence of the pig against infections. Besides direct antimicrobial activity, it is involved in immunomodulation, wound healing and several other biological processes. In this study, the antimicrobial- and immunomodulatory activity of PR-39, and N- and C-terminal derivatives of PR-39 were tested. PR-39 exhibited an unexpected broad antimicrobial spectrum including several Gram positive strains such as Bacillus globigii and Enterococcus faecalis. Of organisms tested, only Staphylococcus aureus was insensitive to PR-39. Truncation of PR-39 down to 15 (N-terminal) amino acids did not lead to major loss of activity, while peptides corresponding to the C-terminal part of PR-39 were hampered in their antimicrobial activity. However, shorter peptides were all much more sensitive to inhibition by salt. Active peptides induced ATP leakage and loss of membrane potential in Bacillus globigii and Escherichia coli, indicating a lytic mechanism of action for these peptides. Finally, only the mature peptide was able to induce IL-8 production in porcine macrophages, but some shorter peptides also had an effect on TNF-α production showing differential regulation of cytokine induction by PR-39 derived peptides. None of the active peptides showed high cytotoxicity highlighting the potential of these peptides for use as an alternative to antibiotics. PMID:24755622

  7. An extensive library of surrogate peptides for all human proteins.

    PubMed

    Mohammed, Yassene; Borchers, Christoph H

    2015-11-01

    Selecting the most appropriate surrogate peptides to represent a target protein is a major component of experimental design in Multiple Reaction Monitoring (MRM). Our software PeptidePicker with its v-score remains distinctive in its approach of integrating information about the proteins, their tryptic peptides, and the suitability of these peptides for MRM that is available online in UniProtKB, NCBI's dbSNP, ExPASy, PeptideAtlas, PRIDE, and GPMDB. The scoring algorithm reflects our "best knowledge" for selecting candidate peptides for MRM, based on the uniqueness of the peptide in the targeted proteome, its physiochemical properties, and whether it has previously been observed. Here we present an updated approach where we have already compiled a list of all possible surrogate peptides of the human proteome. Using our stringent selection criteria, the list includes 165k suitable MRM peptides covering 17k proteins of the human reviewed proteins in UniProtKB. Compared to average of 2-4min per protein for retrieving and integrating the information, the precompiled list includes all peptides available instantly. This allows a more cohesive and faster design of a multiplexed MRM experiment and provides insights into evidence for a protein's existence. We will keep this list up-to-date as proteomics data repositories continue to grow. This article is part of a Special Issue entitled: Computational Proteomics. PMID:26232110

  8. Selective enrichment and desalting of hydrophilic peptides using graphene oxide.

    PubMed

    Jiang, Miao; Qi, Linyu; Liu, Peiru; Wang, Zijun; Duan, Zhigui; Wang, Ying; Liu, Zhonghua; Chen, Ping

    2016-08-01

    The wide variety and low abundance of peptides in tissue brought great difficulties to the separation and identification of peptides, which is not in favor of the development of peptidomics. RP-HPLC, which could purify small molecules based on their hydrophobicity, has been widely used in the separation and enrichment of peptide due to its fast, good reproducibility and high resolution. However, RP-HPLC requires the instrument and expensive C18 column and its sample capacity is also limited. Recently, graphene oxide has been applied to the adsorption of amino acids. However, the enrichment efficiency and selectivity of graphene oxide for peptides remain unclear. In this study, the adsorption efficiency and selectivity of graphene oxide and RP-C18 matrix were compared on trypsinized α-actin and also on tissue extracts from pituitary gland and hippocampus. For α-actin, there exhibit similar elution peaks for total trypsinized products and those adsorpted by GO and C18 matrix. But peptides adsorbed by GO showed the higher hydrophilic peaks than which adsorbed by C18 matrix. The resulted RP-HPLC profile showed that most of peptides enriched by graphene oxide were eluted at low concentration of organic solvent, while peptides adsorbed by RP-C18 matrix were mostly eluted at relatively high concentration. Moreover, mass spectrometry analysis suggested that, in pituitary sample, there were 495 peptides enriched by graphene oxide, 447 peptides enriched by RP-C18 matrix while in hippocampus sample 333 and 243 peptides respectively. The GRAVY value analysis suggested that the graphene oxide has a stronger adsorption for highly hydrophilic peptides compared to the RP-C18 matrix. Furthermore, the combination of these two methods could notably increase the number of identification peptides but also the number of predicted protein precursors. Our study provided a new thought to the role of graphene oxide during the enrichment of peptides from tissue which should be useful for

  9. Hydroxyapatite Growth Inhibition Effect of Pellicle Statherin Peptides.

    PubMed

    Xiao, Y; Karttunen, M; Jalkanen, J; Mussi, M C M; Liao, Y; Grohe, B; Lagugné-Labarthet, F; Siqueira, W L

    2015-08-01

    In our recent studies, we have shown that in vivo-acquired enamel pellicle is a sophisticated biological structure containing a significant portion of naturally occurring salivary peptides. From a functional aspect, the identification of peptides in the acquired enamel pellicle is of interest because many salivary proteins exhibit functional domains that maintain the activities of the native protein. Among the in vivo-acquired enamel pellicle peptides that have been newly identified, 5 peptides are derived from statherin. Here, we assessed the ability of these statherin pellicle peptides to inhibit hydroxyapatite crystal growth. In addition, atomistic molecular dynamics (MD) simulations were performed to better understand the underlying physical mechanisms of hydroxyapatite growth inhibition. A microplate colorimetric assay was used to quantify hydroxyapatite growth. Statherin protein, 5 statherin-derived peptides, and a peptide lacking phosphate at residues 2 and 3 were analyzed. Statherin peptide phosphorylated on residues 2 and 3 indicated a significant inhibitory effect when compared with the 5 other peptides (P < 0.05). MD simulations showed a strong affinity and fast adsorption to hydroxyapatite for phosphopeptides, whereas unphosphorylated peptides interacted weakly with the hydroxyapatite. Our data suggest that the presence of a covalently linked phosphate group (at residues 2 and 3) in statherin peptides modulates the effect of hydroxyapatite growth inhibition. This study provides a mechanism to account for the composition and function of acquired enamel pellicle statherin peptides that will contribute as a base for the development of biologically stable and functional synthetic peptides for therapeutic use against dental caries and/or periodontal disease. PMID:26116492

  10. Stability of diphenylalanine peptide nanotubes in solution

    NASA Astrophysics Data System (ADS)

    Andersen, Karsten Brandt; Castillo-Leon, Jaime; Hedström, Martin; Svendsen, Winnie Edith

    2011-03-01

    Over the last couple of years, self-organizing nanotubes based on the dipeptide diphenylalanine have received much attention, mainly as possible building blocks for the next generation of biosensors and as drug delivery systems. One of the main reasons for this large interest is that these peptide nanotubes are believed to be very stable both thermally and chemically. Previously, the chemical and thermal stability of self-organizing structures has been investigated after the evaporation of the solvent. However, it was recently discovered that the stability of the structures differed significantly when the tubes were in solution. It has been shown that, in solution, the peptide nanotubes can easily be dissolved in several solvents including water. It is therefore of critical importance that the stability of the nanotubes in solution and not after solvent evaporation be investigated prior to applications in which the nanotube will be submerged in liquid. The present article reports results demonstrating the instability and suggests a possible approach to a stabilization procedure, which drastically improves the stability of the formed structures. The results presented herein provide new information regarding the stability of self-organizing diphenylalanine nanotubes in solution.Over the last couple of years, self-organizing nanotubes based on the dipeptide diphenylalanine have received much attention, mainly as possible building blocks for the next generation of biosensors and as drug delivery systems. One of the main reasons for this large interest is that these peptide nanotubes are believed to be very stable both thermally and chemically. Previously, the chemical and thermal stability of self-organizing structures has been investigated after the evaporation of the solvent. However, it was recently discovered that the stability of the structures differed significantly when the tubes were in solution. It has been shown that, in solution, the peptide nanotubes can

  11. Peptide and non-peptide opioid-induced hyperthermia in rabbits

    NASA Technical Reports Server (NTRS)

    Kandasamy, S. B.; Williams, B. A.

    1983-01-01

    The intracerebroventricular administration of prototype nonpeptide opioid receptor (mu, kappa, and sigma) agonists, morphine, ketocyclazocine, and N-allyl-normetazocine was found to induce hyperthermia in rabbits. The similar administration of peptide opioids like beta-endorphin (BE), methionine-enkephalin (ME), and its synthetic analogue D-ala2-methionine-enkephalinamide (DAME) was also found to cause hyperthermia. Results indicate that only the liver-like transport system is important to the ventricular inactivation of BE and DAME. Prostaglandins and norepinephrine were determined not to be involved in peptide and nonpeptide opioid-induced hyperthermia. In addition, cAMP was not required since a phosphodiesterase inhibitor, theophylline, did not accentuate the hyperthermia due to peptide and nonpeptide opioids. Naloxone-sensitive receptors were found to be involved in the induction of hyperthermia by morphine, BE, ME, and DAME since naloxone attenuated them. However, the hyperthermic response to ketocyclazocine and N-allyl-normetazocine was not antagonized by naloxone.

  12. Peptide length and prime-side sterics influence potency of peptide phosphonate protease inhibitors

    PubMed Central

    Brown, Christopher M.; Ray, Manisha; Eroy-Reveles, Aura A.; Egea, Pascal; Tajon, Cheryl; Craik, Charles S.

    2010-01-01

    Summary The ability to follow enzyme activity in a cellular context represents a challenging technological frontier that impacts fields ranging from disease pathogenesis to epigenetics. Activity-based probes (ABPs) label the active form of an enzyme via covalent modification of catalytic residues. Here we present an analysis of parameters influencing potency of peptide phosphonate ABPs for trypsin-fold S1A proteases, an abundant and important class of enzymes with similar substrate specificities. We find that peptide length and stability influence potency more than sequence composition and present structural evidence that steric interactions at the prime-side of the substrate-binding cleft affect potency in a protease-dependent manner. We introduce guidelines for the design of peptide phosphonate ABPs and demonstrate their utility in a live-cell labeling application that specifically targets active S1A proteases at the cell surface of cancer cells. PMID:21276938

  13. Light-Switchable Peptides with a Hemithioindigo Unit: Peptide Design, Photochromism, and Optical Spectroscopy.

    PubMed

    Kitzig, S; Thilemann, M; Cordes, T; Rück-Braun, Karola

    2016-05-01

    This Minireview focuses on the hemithioindigo photoswitch and its use for the reversible control of three-dimensional peptide structure and related biological functions. Both the general design aspects and biophysical properties of various hemithioindigo-based chromopeptides are summarized. Hemithioindigo undergoes reversible Z→E photoisomerization after absorption of visible light. The unique ultrafast switching mechanism of hemithioindigo combines picosecond isomerization kinetics with strong double-bond torsion after light absorption, making it the ideal tool for instantaneous modulation of biological structure. Various inhibitors and model peptides based on hemithioindigo are described that can directly regulate biological signaling or allow the fastest events in peptide folding to be studied. Finally, a diverse range of chromopeptides with photoswitchable β-hairpin structures based on azobenzenes, stilbenes, and hemithioindigo are compared to emphasize the unique properties of hemithioindigo. PMID:26789782

  14. Ligand-Based Peptide Design and Combinatorial Peptide Libraries to Target G Protein-Coupled Receptors

    PubMed Central

    Gruber, Christian W.; Muttenthaler, Markus; Freissmuth, Michael

    2016-01-01

    G protein-coupled receptors (GPCRs) are considered to represent the most promising drug targets; it has been repeatedly said that a large fraction of the currently marketed drugs elicit their actions by binding to GPCRs (with cited numbers varying from 30–50%). Closer scrutiny, however, shows that only a modest fraction of (~60) GPCRs are, in fact, exploited as drug targets, only ~20 of which are peptide-binding receptors. The vast majority of receptors in the humane genome have not yet been explored as sites of action for drugs. Given the drugability of this receptor class, it appears that opportunities for drug discovery abound. In addition, GPCRs provide for binding sites other than the ligand binding sites (referred to as the “orthosteric site”). These additional sites include (i) binding sites for ligands (referred to as “allosteric ligands”) that modulate the affinity and efficacy of orthosteric ligands, (ii) the interaction surface that recruits G proteins and arrestins, (iii) the interaction sites of additional proteins (GIPs, GPCR interacting proteins that regulate G protein signaling or give rise to G protein-independent signals). These sites can also be targeted by peptides. Combinatorial and natural peptide libraries are therefore likely to play a major role in identifying new GPCR ligands at each of these sites. In particular the diverse natural peptide libraries such as the venom peptides from marine cone-snails and plant cyclotides have been established as a rich source of drug leads. High-throughput screening and combinatorial chemistry approaches allow for progressing from these starting points to potential drug candidates. This will be illustrated by focusing on the ligand-based drug design of oxytocin (OT) and vasopressin (AVP) receptor ligands using natural peptide leads as starting points. PMID:20687879

  15. A cyclic peptidic serine protease inhibitor: increasing affinity by increasing peptide flexibility.

    PubMed

    Zhao, Baoyu; Xu, Peng; Jiang, Longguang; Paaske, Berit; Kromann-Hansen, Tobias; Jensen, Jan K; Sørensen, Hans Peter; Liu, Zhuo; Nielsen, Jakob T; Christensen, Anni; Hosseini, Masood; Sørensen, Kasper K; Nielsen, Niels Christian; Jensen, Knud J; Huang, Mingdong; Andreasen, Peter A

    2014-01-01

    Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase-type plasminogen activator (uPA). We used X-ray crystal structure analysis, site-directed mutagenesis, liquid state NMR, surface plasmon resonance analysis, and isothermal titration calorimetry and wild type and engineered variants of murine and human uPA. We demonstrate that Arg6 inserts into the S1 specificity pocket, its carbonyl group aligning improperly relative to Ser195 and the oxyanion hole, explaining why the peptide is an inhibitor rather than a substrate. Substitution of the P1 Arg with novel unnatural Arg analogues with aliphatic or aromatic ring structures led to an increased affinity, depending on changes in both P1 - S1 and exosite interactions. Site-directed mutagenesis showed that exosite interactions, while still supporting high affinity binding, differed substantially between different uPA variants. Surprisingly, high affinity binding was facilitated by Ala-substitution of Asp9 of the peptide, in spite of a less favorable binding entropy and loss of a polar interaction. We conclude that increased flexibility of the peptide allows more favorable exosite interactions, which, in combination with the use of novel Arg analogues as P1 residues, can be used to manipulate the affinity and specificity of this peptidic inhibitor, a concept different from conventional attempts at improving inhibitor affinity by reducing the entropic burden. PMID:25545505

  16. Improved peptide elution time prediction for reversed-phase liquid chromatography-MS by incorporating peptide sequence information

    SciTech Connect

    Petritis, Konstantinos; Kangas, Lars J.; Yan, Bo; Monroe, Matthew E.; Strittmatter, Eric F.; Qian, Weijun; Adkins, Joshua N.; Moore, Ronald J.; Xu, Ying; Lipton, Mary S.; Camp, David G.; Smith, Richard D.

    2006-07-15

    We describe an improved artificial neural network (ANN)-based method for predicting peptide retention times in reversed phase liquid chromatography. In addition to the peptide amino acid composition, this study investigated several other peptide descriptors to improve the predictive capability, such as peptide length, sequence, hydrophobicity and hydrophobic moment, and nearest neighbor amino acid, as well as peptide predicted structural configurations (i.e., helix, sheet, coil). An ANN architecture that consisted of 1052 input nodes, 24 hidden nodes, and 1 output node was used to fully consider the amino acid residue sequence in each peptide. The network was trained using {approx}345,000 non-redundant peptides identified from a total of 12,059 LC-MS/MS analyses of more than 20 different organisms, and the predictive capability of the model was tested using 1303 confidently identified peptides that were not included in the training set. The model demonstrated an average elution time precision of {approx}1.5% and was able to distinguish among isomeric peptides based upon the inclusion of peptide sequence information. The prediction power represents a significant improvement over our earlier report (Petritis et al., Anal. Chem. 2003, 75, 1039-1048) and other previously reported models.

  17. The Role of Hydrophobic Surfaces in Altering Water-Mediated Peptide-Peptide Interactions in an Aqueous Environment

    SciTech Connect

    Yoo, Soohaeng; Xantheas, Sotiris S

    2011-06-16

    Using Born-Oppenheimer molecular dynamics within the density functional framework, we calculated the effective force acting on water-mediated peptide-peptide interaction between antiparallel β-sheets in an aqueous environment and also in the vicinity of a hydrophobic surface. From the magnitude of the effective force (corresponding to the slope of the free energy as a function of the inter-peptide distance) and its sign (a negative value indicating an effective attraction whereas a positive value an effective repulsion) we can elucidate the fundamental differences of the water-mediated peptide-peptide interactions in those two environments. The computed effective forces indicate that the water-mediated interaction between peptides in an aqueous environment is attractive in the range of inter-peptide distance d=7-8 Å when hydrophobic surfaces are not nearby. Due to the stabilization of the water molecules bridging between the two β-sheets, a free energy barrier exists between the direct and indirect (water-mediated) inter-peptide interactions. However, when the peptides are in the proximity of hydrophobic surfaces, this free energy barrier decreases because the hydrophobic surfaces enhance the inter-peptide attraction by the destabilization and ease-to-libration of the bridging water molecules between them. This work was supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, US Department of Energy. Battelle operates the Pacific Northwest National Laboratory for the U.S. Department of Energy.

  18. Review: Formation of Peptide Radical Ions Through Dissociative Electron Transfer in Ternary Metal-Ligand-Peptide Complexes

    SciTech Connect

    Chu, Ivan K.; Laskin, Julia

    2011-12-31

    The formation and fragmentation of odd-electron ions of peptides and proteins is of interest to applications in biological mass spectrometry. Gas-phase redox chemistry occurring during collision-induced dissociation of ternary metal-ligand-peptide complexes enables the formation of a variety of peptide radicals including the canonical radical cations, M{sup +{sm_bullet}}, radical dications, [M{sup +}H]{sup 2+{sm_bullet}}, radical anions, [M-2H]{sup -{sm_bullet}}. In addition, odd-electron peptide ions with well-defined initial location of the radical site are produced through side chain losses from the radical ions. Subsequent fragmentation of these species provides information on the role of charge and the location of the radical site on the competition between radical-induced and proton-driven fragmentation of odd-electron peptide ions. This account summarizes current understanding of the factors that control the efficiency of the intramolecular electron transfer (ET) in ternary metal-ligand-peptide complexes resulting in formation of odd-electron peptide ions. Specifically, we discuss the effect of the metal center, the ligand and the peptide structure on the competition between the ET, proton transfer (PT), and loss of neutral peptide and neutral peptide fragments from the complex. Fundamental studies of the structures, stabilities, and the energetics and dynamics of fragmentation of such complexes are also important for detailed molecular-level understanding of photosynthesis and respiration in biological systems.

  19. Mixed α/β-Peptides as a Class of Short Amphipathic Peptide Hydrogelators with Enhanced Proteolytic Stability.

    PubMed

    Mangelschots, Jeroen; Bibian, Mathieu; Gardiner, James; Waddington, Lynne; Van Wanseele, Yannick; Van Eeckhaut, Ann; Acevedo, Maria M Diaz; Van Mele, Bruno; Madder, Annemieke; Hoogenboom, Richard; Ballet, Steven

    2016-02-01

    Peptide hydrogels are a highly promising class of materials for biomedical application, albeit facing many challenges with regard to stability and tunability. Here, we report a new class of amphipathic peptide hydrogelators, namely mixed α/β-peptide hydrogelators. These mixed α/β-gelators possess good rheological properties (high storage moduli) and form transparent self-supporting gels with shear-thinning behavior. Infrared spectroscopy indicates the presence of β-sheets as the underlying secondary structure. Interestingly, self-assembled nanofibers of the mixed α/β-peptides display unique structural morphologies with alteration of the C-terminus (acid vs amide) playing a key role in the fiber formation and gelation properties of the resulting hydrogels. The incorporation of β3-homoamino acid residues within the mixed α/β-peptide gelators led to an increase in proteolytic stability of the peptides under nongelating conditions (in solution) as well as gelating conditions (as hydrogel). Under diluted conditions, degradation of mixed α/β-peptides in the presence of elastase was slowed down 120-fold compared to that of an α-peptide, thereby demonstrating beneficial enzymatic resistance for hydrogel applications in vivo. In addition, increased half-life values were obtained for the mixed α/β-peptides in human blood plasma, as compared to corresponding α-peptides. It was also found that the mixed α/β-peptides were amenable to injection via needles used for subcutaneous administrations. The preformed peptide gels could be sheared upon injection and were found to quickly reform to a state close to that of the original hydrogel. The shown properties of enhanced proteolytic stability and injectability hold great promise for the use of these novel mixed α/β-peptide hydrogels for applications in the areas of tissue engineering and drug delivery. PMID:26741458

  20. Data on the peptide mapping and MS identification for phosphorylated peptide.

    PubMed

    Wang, Hui; Tu, Zong-Cai; Liu, Guang-Xian; Zhang, Lu; Chen, Yuan

    2016-09-01

    This article contains peptides mapping, mass spectrometry and processed data related to the research "Identification and quantification of the phosphorylated ovalbumin by high resolution mass spectrometry under dry-heating treatment" [1]. Fourier transform ion cyclotron mass spectrometry (FTICR MS) was used to investigate the specific phosphorylation sites and the degree of phosphorylation (DSP) at each site. Specifically, phosphorylated peptides were monitored through mass shift on the FTICR MS spectrum. DSP was evaluated through the relative abundance levels of the FTICR MS spectrometry. From these data, the calculation method of DSP was exemplified. PMID:27274527

  1. Peptide mini-scaffold facilitates JNK3 activation in cells

    PubMed Central

    Zhan, Xuanzhi; Stoy, Henriette; Kaoud, Tamer S.; Perry, Nicole A.; Chen, Qiuyan; Perez, Alejandro; Els-Heindl, Sylvia; Slagis, Jack V.; Iverson, Tina M.; Beck-Sickinger, Annette G.; Gurevich, Eugenia V.; Dalby, Kevin N.; Gurevich, Vsevolod V.

    2016-01-01

    Three-kinase mitogen-activated protein kinase (MAPK) signaling cascades are present in virtually all eukaryotic cells. MAPK cascades are organized by scaffold proteins, which assemble cognate kinases into productive signaling complexes. Arrestin-3 facilitates JNK activation in cells, and a short 25-residue arrestin-3 peptide was identified as the critical JNK3-binding element. Here we demonstrate that this peptide also binds MKK4, MKK7, and ASK1, which are upstream JNK3-activating kinases. This peptide is sufficient to enhance JNK3 activity in cells. A homologous arrestin-2 peptide, which differs only in four positions, binds MKK4, but not MKK7 or JNK3, and is ineffective in cells at enhancing activation of JNK3. The arrestin-3 peptide is the smallest MAPK scaffold known. This peptide or its mimics can regulate MAPKs, affecting cellular decisions to live or die. PMID:26868142

  2. Small peptides as potent mimetics of the protein hormone erythropoietin.

    PubMed

    Wrighton, N C; Farrell, F X; Chang, R; Kashyap, A K; Barbone, F P; Mulcahy, L S; Johnson, D L; Barrett, R W; Jolliffe, L K; Dower, W J

    1996-07-26

    Random phage display peptide libraries and affinity selective methods were used to isolate small peptides that bind to and activate the receptor for the cytokine erythropoietin (EPO). In a panel of in vitro biological assays, the peptides act as full agonists and they can also stimulate erythropoiesis in mice. These agonists are represented by a 14- amino acid disulfide-bonded, cyclic peptide with the minimum consensus sequence YXCXXGPXTWXCXP, where X represents positions allowing occupation by several amino acids. The amino acid sequences of these peptides are not found in the primary sequence of EPO. The signaling pathways activated by these peptides appear to be identical to those induced by the natural ligand. This discovery may form the basis for the design of small molecule mimetics of EPO. PMID:8662529

  3. [Peptide-deformylase inhibitors, a new class of antibiotics].

    PubMed

    Dubreuil, Luc

    2002-11-30

    PEPTIDE-DEFORMYLASE: During protein synthesis in bacteria, a transformylase coding the fmt gene provides a formyl group on methionine before binding to the ARNm-ARNt complex. This tormylated methionine initiates the protein synthesis. The adjunction of an amino acid to the peptide chain leads to a peptide associated with a formylated methionine. The final stage requires a metallo-enzyme, peptide deformylase, which releases the peptide and regenerates the methionin. PEPTIDE-DEFORMYLASE INHIBITORS (PDF): Often rejected by the efflux pumps of Gram negative bacteria, PDF inhibitors are administered in the form of pro-drugs, capable of acting even in the bacteria that have lost their transformylase gene. TWO PRODUCTS: These are VCR 4887 developed by Versicor and Novartis and BB 83698 developed by British Biotechnology Genesoft. They are presently in the process of clinical predevelopment. They represent an important innovation and widen the range of new antibiotic classes. PMID:12497724

  4. Optimization of reversed-phase chromatography methods for peptide analytics.

    PubMed

    Khalaf, Rushd; Baur, Daniel; Pfister, David

    2015-12-18

    The analytical description and quantification of peptide solutions is an essential part in the quality control of peptide production processes and in peptide mapping techniques. Traditionally, an important tool is analytical reversed phase liquid chromatography. In this work, we develop a model-based tool to find optimal analytical conditions in a clear, efficient and robust manner. The model, based on the Van't Hoff equation, the linear solvent strength correlation, and an analytical solution of the mass balance on a chromatographic column describing peptide retention in gradient conditions is used to optimize the analytical scale separation between components in a peptide mixture. The proposed tool is then applied in the design of analytical reversed phase liquid chromatography methods of five different peptide mixtures. PMID:26620597

  5. Olfactory imprinting is triggered by MHC peptide ligands.

    PubMed

    Hinz, Cornelia; Namekawa, Iori; Namekawa, Ri; Behrmann-Godel, Jasminca; Oppelt, Claus; Jaeschke, Aaron; Müller, Anke; Friedrich, Rainer W; Gerlach, Gabriele

    2013-01-01

    Olfactory imprinting on environmental, population- and kin-specific cues is a specific form of life-long memory promoting homing of salmon to their natal rivers and the return of coral reef fish to natal sites. Despite its ecological significance, natural chemicals for olfactory imprinting have not been identified yet. Here, we show that MHC peptides function as chemical signals for olfactory imprinting in zebrafish. We found that MHC peptides consisting of nine amino acids elicit olfactory imprinting and subsequent kin recognition depending on the MHC genotype of the fish. In vivo calcium imaging shows that some olfactory bulb neurons are highly sensitive to MHC peptides with a detection threshold at 1 pM or lower, indicating that MHC peptides are potent olfactory stimuli. Responses to MHC peptides overlapped spatially with responses to kin odour but not food odour, consistent with the hypothesis that MHC peptides are natural signals for olfactory imprinting. PMID:24077566

  6. Interaction of peptides with cell membranes: insights from molecular modeling

    NASA Astrophysics Data System (ADS)

    Li, Zhen-lu; Ding, Hong-ming; Ma, Yu-qiang

    2016-03-01

    The investigation of the interaction of peptides with cell membranes is the focus of active research. It can enhance the understanding of basic membrane functions such as membrane transport, fusion, and signaling processes, and it may shed light on potential applications of peptides in biomedicine. In this review, we will present current advances in computational studies on the interaction of different types of peptides with the cell membrane. Depending on the properties of the peptide, membrane, and external environment, the peptide-membrane interaction shows a variety of different forms. Here, on the basis of recent computational progress, we will discuss how different peptides could initiate membrane pores, translocate across the membrane, induce membrane endocytosis, produce membrane curvature, form fibrils on the membrane surface, as well as interact with functional membrane proteins. Finally, we will present a conclusion summarizing recent progress and providing some specific insights into future developments in this field.

  7. Survey of small antifungal peptides with chemotherapeutic potential.

    PubMed

    Desbois, Andrew P; Tschörner, David; Coote, Peter J

    2011-08-01

    Many cationic peptides with antimicrobial properties have been isolated from bacteria, fungi, plants, and animals. These peptides vary in molecular size, potency and spectra of activities. This report surveyed the literature to highlight the peptides that have antifungal activity and greatest potential for development as new therapeutic agents. Thus, to be included in the evaluation, each peptide had to fulfil the following criteria: (i) potent antifungal activity, (ii) no, or minimal, mammalian cell toxicity, (iii) of ≤25 amino acids in length, which minimises the costs of synthesis, reduces immunogenicity and enhances bioavailability and stability in vivo, (iv) minimal post-translational modifications (also reduces the production costs). The ~80 peptides that satisfied these criteria are discussed with respect to their structures, mechanisms of antimicrobial action and in vitro and in vivo toxicities. Certainly, some of these small peptides warrant further study and have potential for future exploitation as new antifungal agents. PMID:21470150

  8. Spherulitic assembly of peptide nanowires via spontaneous crystallization.

    PubMed

    Han, Tae Hee

    2014-11-01

    In this work, the hierarchal arrangement of peptide nanowires was achieved via the spontaneous crystallization of peptide molecules. Peptide molecules, which are structural motifs associated with Alzheimer's disease, assembled into one-dimensional nanowires and spontaneously formed two-dimensional peptide spherulites during crystallization of the peptide melt. The assembly behavior of the peptides could be directed by physically confining the soft mold. Furthermore, a hybrid assembly of small functional molecules, such as photoluminescent Alq3, was also achieved. Our approach offers a simple method for achieving spontaneous long-range crystalline order of building blocks approaching macroscopic dimensions and also a facile hybridization strategy to conjugate biomolecules and functional small molecules. PMID:25958606

  9. Characterization of selective antibacterial peptides by polarity index.

    PubMed

    Polanco, C; Samaniego, J L; Buhse, T; Mosqueira, F G; Negron-Mendoza, A; Ramos-Bernal, S; Castanon-Gonzalez, J A

    2012-01-01

    In the recent decades, antibacterial peptides have occupied a strategic position for pharmaceutical drug applications and became subject of intense research activities since they are used to strengthen the immune system of all living organisms by protecting them from pathogenic bacteria. This work proposes a simple and easy statistical/computational method through a peptide polarity index measure by which an antibacterial peptide subgroup can be efficiently identified, that is, characterized by a high toxicity to bacterial membranes but presents a low toxicity to mammal cells. These peptides also have the feature not to adopt to an alpha-helicoidal structure in aqueous solution. The double-blind test carried out to the whole Antimicrobial Peptide Database (November 2011) showed an accuracy of 90% applying the polarity index method for the identification of such antibacterial peptide groups. PMID:22611416

  10. Characterization of Selective Antibacterial Peptides by Polarity Index

    PubMed Central

    Polanco, C.; Samaniego, J. L.; Buhse, T.; Mosqueira, F. G.; Negron-Mendoza, A.; Ramos-Bernal, S.; Castanon-Gonzalez, J. A.

    2012-01-01

    In the recent decades, antibacterial peptides have occupied a strategic position for pharmaceutical drug applications and became subject of intense research activities since they are used to strengthen the immune system of all living organisms by protecting them from pathogenic bacteria. This work proposes a simple and easy statistical/computational method through a peptide polarity index measure by which an antibacterial peptide subgroup can be efficiently identified, that is, characterized by a high toxicity to bacterial membranes but presents a low toxicity to mammal cells. These peptides also have the feature not to adopt to an alpha-helicoidal structure in aqueous solution. The double-blind test carried out to the whole Antimicrobial Peptide Database (November 2011) showed an accuracy of 90% applying the polarity index method for the identification of such antibacterial peptide groups. PMID:22611416

  11. Advances in Fmoc solid-phase peptide synthesis.

    PubMed

    Behrendt, Raymond; White, Peter; Offer, John

    2016-01-01

    Today, Fmoc SPPS is the method of choice for peptide synthesis. Very-high-quality Fmoc building blocks are available at low cost because of the economies of scale arising from current multiton production of therapeutic peptides by Fmoc SPPS. Many modified derivatives are commercially available as Fmoc building blocks, making synthetic access to a broad range of peptide derivatives straightforward. The number of synthetic peptides entering clinical trials has grown continuously over the last decade, and recent advances in the Fmoc SPPS technology are a response to the growing demand from medicinal chemistry and pharmacology. Improvements are being continually reported for peptide quality, synthesis time and novel synthetic targets. Topical peptide research has contributed to a continuous improvement and expansion of Fmoc SPPS applications. PMID:26785684

  12. Application of peptide-mediated ring current shifts to the study of neurophysin-peptide interactions: a partial model of the neurophysin-peptide complex

    SciTech Connect

    Peyton, D.; Sardana, V.; Breslow, E.

    1987-03-24

    Perdeuteriated peptides were synthesized that are capable of binding to the hormone binding site of neurophysin but that differ in the position of aromatic residues. The binding of these peptides to bovine neurophysin I and its des-1-8 derivative was studied by proton nuclear magnetic resonance spectroscopy in order to identify protein residues near the binding site through the observation of differential ring current effects on assignable protein resonances. Phenylalanine in position 3 of bound peptides was shown to induce significant ring current shifts in several resonances assignable to the 1-8 sequence, including those of Leu-3 and/or Leu-5, but was without effect on Tyr-49 ring protons. The magnitude of these shifts was dependent on the identify of peptide residue 1. By contrast, the sole demonstrable direct effect of an aromatic residue in position 1 was a downfield shift in Tyr-49 ring protons. Study of peptide binding to des-1-8-neurophysin demonstrated similar conformations of native and des-1-8 complexes except for the environment of Tyr-49, confirmed the peptide-induced ring current shift assignments in native neurophysin, and indicated an effect of binding on Thr-9. These observations are integrated with other results to provide a partial model of neurophysin-peptide complexes that places the ring of Tyr-49 at a distance 5-10 A from residue 1 of bound peptide and that places both the 1-8 sequence and the protein backbone region containing Tyr-49 proximal to each other and to peptide residue 3. The peptide-protein topographical relationships deduced from the ring current shift data support and extend the preliminary model suggested by spin-label data and indicate that systematically introduced ring current shifts can be employed to provide a qualitative picture of protein topography.

  13. Interpretation of tandem mass spectra obtained from cyclic nonribosomal peptides.

    PubMed

    Liu, Wei-Ting; Ng, Julio; Meluzzi, Dario; Bandeira, Nuno; Gutierrez, Marcelino; Simmons, Thomas L; Schultz, Andrew W; Linington, Roger G; Moore, Bradley S; Gerwick, William H; Pevzner, Pavel A; Dorrestein, Pieter C

    2009-06-01

    Natural and non-natural cyclic peptides are a crucial component in drug discovery programs because of their considerable pharmaceutical properties. Cyclosporin, microcystins, and nodularins are all notable pharmacologically important cyclic peptides. Because these biologically active peptides are often biosynthesized nonribosomally, they often contain nonstandard amino acids, thus increasing the complexity of the resulting tandem mass spectrometry data. In addition, because of the cyclic nature, the fragmentation patterns of many of these peptides showed much higher complexity when compared to related counterparts. Therefore, at the present time it is still difficult to annotate cyclic peptides MS/MS spectra. In this current work, an annotation program was developed for the annotation and characterization of tandem mass spectra obtained from cyclic peptides. This program, which we call MS-CPA is available as a web tool (http://lol.ucsd.edu/ms-cpa_v1/Input.py). Using this program, we have successfully annotated the sequence of representative cyclic peptides, such as seglitide, tyrothricin, desmethoxymajusculamide C, dudawalamide A, and cyclomarins, in a rapid manner and also were able to provide the first-pass structure evidence of a newly discovered natural product based on predicted sequence. This compound is not available in sufficient quantities for structural elucidation by other means such as NMR. In addition to the development of this cyclic annotation program, it was observed that some cyclic peptides fragmented in unexpected ways resulting in the scrambling of sequences. In summary, MS-CPA not only provides a platform for rapid confirmation and annotation of tandem mass spectrometry data obtained with cyclic peptides but also enables quantitative analysis of the ion intensities. This program facilitates cyclic peptide analysis, sequencing, and also acts as a useful tool to investigate the uncommon fragmentation phenomena of cyclic peptides and aids the

  14. Proinsulin C-peptide interferes with insulin fibril formation

    SciTech Connect

    Landreh, Michael; Stukenborg, Jan-Bernd; Willander, Hanna; Soeder, Olle; Johansson, Jan; Joernvall, Hans

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Insulin and C-peptide can interact under insulin fibril forming conditions. Black-Right-Pointing-Pointer C-peptide is incorporated into insulin aggregates and alters aggregation lag time. Black-Right-Pointing-Pointer C-peptide changes insulin fibril morphology and affects backbone accessibility. Black-Right-Pointing-Pointer C-peptide may be a regulator of fibril formation by {beta}-cell granule proteins. -- Abstract: Insulin aggregation can prevent rapid insulin uptake and cause localized amyloidosis in the treatment of type-1 diabetes. In this study, we investigated the effect of C-peptide, the 31-residue peptide cleaved from proinsulin, on insulin fibrillation at optimal conditions for fibrillation. This is at low pH and high concentration, when the fibrils formed are regular and extended. We report that C-peptide then modulates the insulin aggregation lag time and profoundly changes the fibril appearance, to rounded clumps of short fibrils, which, however, still are Thioflavine T-positive. Electrospray ionization mass spectrometry also indicates that C-peptide interacts with aggregating insulin and is incorporated into the aggregates. Hydrogen/deuterium exchange mass spectrometry further reveals reduced backbone accessibility in insulin aggregates formed in the presence of C-peptide. Combined, these effects are similar to those of C-peptide on islet amyloid polypeptide fibrillation and suggest that C-peptide has a general ability to interact with amyloidogenic proteins from pancreatic {beta}-cell granules. Considering the concentrations, these peptide interactions should be relevant also during physiological secretion, and even so at special sites post-secretory or under insulin treatment conditions in vivo.

  15. Lasso peptide, a highly stable structure and designable multifunctional backbone.

    PubMed

    Zhao, Ning; Pan, Yongxu; Cheng, Zhen; Liu, Hongguang

    2016-06-01

    Lasso peptide belongs to a new class of natural product with highly compact and stable structure. It has varieties of biological activities, among which the most important one is its antibacterial efficacy. Novel lasso peptides have been constantly discovered and analyzed by advanced techniques, and the biosynthesis or even chemical synthesis of lasso peptide has been studied after learning its constituent amino acids and maturation process. Structural identification of lasso peptide provides information for elucidating the mechanisms of its antibacterial activity and basis for further modifications. Ring of lasso peptide is the key to both its highly compact and stable structure and its intrinsic antibacterial property. The loop has been considered as suitable modification region of lasso peptide, such as V11-S18 of MccJ25 being modifiable without disrupting the lasso structure in biosynthesis. The tail is the immunity protein that can export lasso peptide out of its produced strain and serve as a self-protection mechanism at the same time. Most of currently known lasso peptides are non-pathogenic, which implies that the modified lasso peptides are promising candidates for medical applications. Arginine, glycine, and aspartic acid as a ligands of cancer-specific receptor have been grafted to the loop of lasso peptide without losing its bioactivity, and many other targets are expected to be used for lasso peptide modification. Multi-molecular modification and large-scale production need to be studied and solved in future for designing and using multifunctional lasso peptide based on its extraordinary stable structure. PMID:27074719

  16. Analysis of illegal peptide biopharmaceuticals frequently encountered by controlling agencies.

    PubMed

    Vanhee, Celine; Janvier, Steven; Desmedt, Bart; Moens, Goedele; Deconinck, Eric; De Beer, Jacques O; Courselle, Patricia

    2015-09-01

    Recent advances in genomics, recombinant expression technologies and peptide synthesis have led to an increased development of protein and peptide therapeutics. Unfortunately this goes hand in hand with a growing market of counterfeit and illegal biopharmaceuticals, including substances that are still under pre-clinical and clinical development. These counterfeit and illegal protein and peptide substances could imply severe health threats as has been demonstrated by numerous case reports. The Belgian Federal Agency for Medicines and Health Products (FAMHP) and customs are striving, together with their global counterparts, to curtail the trafficking and distributions of these substances. At their request, suspected protein and peptide preparations are analysed in our Official Medicines Control Laboratory (OMCL). It stands to reason that a general screening method would be beneficiary in the battle against counterfeit and illegal peptide drugs. In this paper we present such general screening method employing liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the identification of counterfeit and illegal injectable peptide preparations, extended with a subsequent quantification method using ultra-high performance liquid chromatography with diode array detection (UHPLC-DAD). The screening method, taking only 30 min, is able to selectively detect 25 different peptides and incorporates the proposed minimum of five identification points (IP) as has been recommended for sports drug testing applications. The group of peptides represent substances which have already been detected in illegal and counterfeit products seized by different European countries as well as some biopharmaceutical peptides which have not been confiscated yet by the controlling agencies, but are already being used according to the many internet users forums. Additionally, we also show that when applying the same LC gradient, it is also possible to quantify these peptides without the need for

  17. Nonlinear Optical Properties of Triphenylalanine-based Peptide Nanostructures

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, A. V.; Mishina, E. D.; Sigov, A. S.

    2016-05-01

    Nonlinear optical properties of peptide nanobelts and peptide nanospheres, the two types of self-assembled triphenylalanine-based peptide nanostructures, are studied. Nanobelts nonlinear susceptibility tensor components are evaluated, and nanobelts crystal structure and crystallographic orientation are defined on the basis of nonlinear optical mapping and polarization dependences of the second harmonic signal. The results obtained suggest that it is possible to use these materials as biologically compatible nonlinear optical converters.

  18. Mycocerein, a novel antifungal peptide antibiotic produced by Bacillus cereus.

    PubMed Central

    Wakayama, S; Ishikawa, F; Oishi, K

    1984-01-01

    A peptide was obtained from culture filtrates of a bacterium which was newly isolated and tentatively named Bacillus cereus SW. The peptide was composed of Asx, Ser, Glx, Leu, Tyr, Pro, and an unknown amino acid in a ratio of 2:1:1:1:1:1:1, but, unless hydrolyzed with HCI, it was ninhydrin reaction negative. The peptide effectively inhibited the growth of all fungi and yeasts so far examined, whereas it inhibited none of the bacteria tested. PMID:6441513

  19. Porcine parvovirus removal using trimer and biased hexamer peptides

    PubMed Central

    Heldt, Caryn L.; Gurgel, Patrick V.; Jaykus, Lee-Ann; Carbonell, Ruben G.

    2014-01-01

    Assuring the microbiological safety of biological therapeutics remains an important concern. Our group has recently reported small trimeric peptides that have the ability to bind and remove a model non-enveloped virus, porcine parvovirus (PPV), from complex solutions containing human blood plasma. In an effort to improve the removal efficiency of these small peptides, we created a biased library of hexamer peptides that contain two previously reported trimeric peptides designated WRW and KYY. This library was screened and several hexamer peptides were discovered that also removed PPV from solution, but there was no marked improvement in removal efficiency when compared to the trimeric peptides. Based on simulated docking experiments, it appeared that hexamer peptide binding is dictated more by secondary structure, whereas the binding of trimeric peptides is dominated by charge and hydrophobicity. This study demonstrates that trimeric and hexameric peptides may have different, matrix-specific roles to play in virus removal applications. In general, the hexamer ligand may perform better for binding of specific viruses, whereas the trimer ligand may have more broadly reactive virus-binding properties. PMID:21751387

  20. Engineering β-sheet peptide assemblies for biomedical applications.

    PubMed

    Yu, Zhiqiang; Cai, Zheng; Chen, Qiling; Liu, Menghua; Ye, Ling; Ren, Jiaoyan; Liao, Wenzhen; Liu, Shuwen

    2016-02-23

    Hydrogels have been widely studied in various biomedical applications, such as tissue engineering, cell culture, immunotherapy and vaccines, and drug delivery. Peptide-based nanofibers represent a promising new strategy for current drug delivery approaches and cell carriers for tissue engineering. This review focuses on the recent advances in the use of self-assembling engineered β-sheet peptide assemblies for biomedical applications. The applications of peptide nanofibers in biomedical fields, such as drug delivery, tissue engineering, immunotherapy, and vaccines, are highlighted. The current challenges and future perspectives for self-assembling peptide nanofibers in biomedical applications are discussed. PMID:26700207

  1. Impact of multivalent charge presentation on peptide-nanoparticle aggregation.

    PubMed

    Schöne, Daniel; Schade, Boris; Böttcher, Christoph; Koksch, Beate

    2015-01-01

    Strategies to achieve controlled nanoparticle aggregation have gained much interest, due to the versatility of such systems and their applications in materials science and medicine. In this article we demonstrate that coiled-coil peptide-induced aggregation based on electrostatic interactions is highly sensitive to the length of the peptide as well as the number of presented charges. The quaternary structure of the peptide was found to play an important role in aggregation kinetics. Furthermore, we show that the presence of peptide fibers leads to well-defined nanoparticle assembly on the surface of these macrostructures. PMID:26124881

  2. Expression of peptide YY by human blood leukocytes.

    PubMed

    Holler, Julia Pia Natascha; Schmitz, Jessica; Roehrig, Rainer; Wilker, Sigrid; Hecker, Andreas; Padberg, Winfried; Grau, Veronika

    2014-08-01

    Peptide YY is produced by L cells in the mucosa of the distal ileum, colon, and rectum and may have systemic and paracrine functions. We hypothesized that peptide YY is expressed by peripheral blood mononuclear cells. The purpose of the present study was to evaluate the expression of peptide YY mRNA and peptide by peripheral blood mononuclear cells and differentiated THP-1 cells after lipopolysaccharide treatment as an in vitro model of inflammation. Blood was drawn by venipuncture from 18- to 63-year-old healthy male blood donors (n=63); peptide YY mRNA expression levels were detected in peripheral blood mononuclear cells from all healthy male subjects. In 3 subjects, peripheral blood mononuclear cells were cultured for 3 and 24h and peptide YY was detected in the cell culture supernatant. In human monocytic THP-1 cells treated with phorbol-12-myristate-13-acetate to induce differentiation to macrophages, treatment with lipopolysaccharide caused down-regulation of peptide YY mRNA levels. In summary, freshly isolated peripheral blood mononuclear cells from healthy humans expressed peptide YY. In vitro data suggested that peptide YY expression is down-regulated by differentiation of monocytes to macrophages and proinflammatory stimuli. PMID:24969624

  3. Lipid-peptide-polymer conjugates and nanoparticles thereof

    SciTech Connect

    Xu, Ting; Dong, He; Shu, Jessica

    2015-06-02

    The present invention provides a conjugate having a peptide with from about 10 to about 100 amino acids, wherein the peptide adopts a helical structure. The conjugate also includes a first polymer covalently linked to the peptide, and a hydrophobic moiety covalently linked to the N-terminus of the peptide, wherein the hydrophobic moiety comprises a second polymer or a lipid moiety. The present invention also provides helix bundles form by self-assembling the conjugates, and particles formed by self-assembling the helix bundles. Methods of preparing the helix bundles and particles are also provided.

  4. Chimeric Glutathione S-Transferases Containing Inserts of Kininogen Peptides

    PubMed Central

    Bentley, Amber A.; Merkulov, Sergei M.; Peng, Yi; Rozmarynowycz, Rita; Qi, Xiaoping; Pusztai-Carey, Marianne; Merrick, William C.; Yee, Vivien C.; McCrae, Keith R.; Komar, Anton A.

    2012-01-01

    The study of synthetic peptides corresponding to discrete regions of proteins has facilitated the understanding of protein structure-activity relationships. Short peptides can also be used as powerful therapeutic agents. However, in many instances, small peptides are prone to rapid degradation or aggregation and may lack the conformation required to mimic the functional motifs of the protein. For peptides to function as pharmacologically active agents, efficient production or expression, high solubility, and retention of biological activity through purification and storage steps are required. We report here the design, expression, and functional analysis of eight engineered GST proteins (denoted GSHKTs) in which peptides ranging in size from 8 to 16 amino acids and derived from human high molecular weight kininogen (HK) domain 5 were inserted into GST (between Gly-49 and Leu-50). Peptides derived from HK are known to inhibit cell proliferation, angiogenesis, and tumor metastasis, and the biological activity of the HK peptides was dramatically (>50-fold) enhanced following insertion into GST. GSHKTs are soluble and easily purified from Escherichia coli by affinity chromatography. Functionally, these hybrid proteins cause inhibition of endothelial cell proliferation. Crystallographic analysis of GSHKT10 and GSHKT13 (harboring 10- and 13-residue HK peptides, respectively) showed that the overall GST structure was not perturbed. These results suggest that the therapeutic efficacy of short peptides can be enhanced by insertion into larger proteins that are easily expressed and purified and that GST may potentially be used as such a carrier. PMID:22577144

  5. Peptide-directed self-assembly of hydrogels

    PubMed Central

    Kopeček, Jindřich; Yang, Jiyuan

    2009-01-01

    This review focuses on the self-assembly of macromolecules mediated by the biorecognition of peptide/protein domains. Structures forming α-helices and β-sheets have been used to mediate self-assembly into hydrogels of peptides, reactive copolymers and peptide motifs, block copolymers, and graft copolymers. Structural factors governing the self-assembly of these molecules into precisely defined three-dimensional structures (hydrogels) are reviewed. The incorporation of peptide motifs into hybrid systems, composed of synthetic and natural macromolecules, enhances design opportunities for new biomaterials when compared to individual components. PMID:18952513

  6. Developing a Dissociative Nanocontainer for Peptide Drug Delivery.

    PubMed

    Kelly, Patrick; Anand, Prachi; Uvaydov, Alexander; Chakravartula, Srinivas; Sherpa, Chhime; Pires, Elena; O'Neil, Alison; Douglas, Trevor; Holford, Mandë

    2015-10-01

    The potency, selectivity, and decreased side effects of bioactive peptides have propelled these agents to the forefront of pharmacological research. Peptides are especially promising for the treatment of neurological disorders and pain. However, delivery of peptide therapeutics often requires invasive techniques, which is a major obstacle to their widespread application. We have developed a tailored peptide drug delivery system in which the viral capsid of P22 bacteriophage is modified to serve as a tunable nanocontainer for the packaging and controlled release of bioactive peptides. Recent efforts have demonstrated that P22 nanocontainers can effectively encapsulate analgesic peptides and translocate them across blood-brain-barrier (BBB) models. However, release of encapsulated peptides at their target site remains a challenge. Here a Ring Opening Metathesis Polymerization (ROMP) reaction is applied to trigger P22 nanocontainer disassembly under physiological conditions. Specifically, the ROMP substrate norbornene (5-Norbornene-2-carboxylic acid) is conjugated to the exterior of a loaded P22 nanocontainer and Grubbs II Catalyst is used to trigger the polymerization reaction leading to nanocontainer disassembly. Our results demonstrate initial attempts to characterize the ROMP-triggered release of cargo peptides from P22 nanocontainers. This work provides proof-of-concept for the construction of a triggerable peptide drug delivery system using viral nanocontainers. PMID:26473893

  7. A common landscape for membrane-active peptides

    PubMed Central

    Last, Nicholas B; Schlamadinger, Diana E; Miranker, Andrew D

    2013-01-01

    Three families of membrane-active peptides are commonly found in nature and are classified according to their initial apparent activity. Antimicrobial peptides are ancient components of the innate immune system and typically act by disruption of microbial membranes leading to cell death. Amyloid peptides contribute to the pathology of diverse diseases from Alzheimer's to type II diabetes. Preamyloid states of these peptides can act as toxins by binding to and permeabilizing cellular membranes. Cell-penetrating peptides are natural or engineered short sequences that can spontaneously translocate across a membrane. Despite these differences in classification, many similarities in sequence, structure, and activity suggest that peptides from all three classes act through a small, common set of physical principles. Namely, these peptides alter the Brownian properties of phospholipid bilayers, enhancing the sampling of intrinsic fluctuations that include membrane defects. A complete energy landscape for such systems can be described by the innate membrane properties, differential partition, and the associated kinetics of peptides dividing between surface and defect regions of the bilayer. The goal of this review is to argue that the activities of these membrane-active families of peptides simply represent different facets of what is a shared energy landscape. PMID:23649542

  8. Bioactive Peptides from Muscle Sources: Meat and Fish

    PubMed Central

    Ryan, Joseph Thomas; Ross, Reynolds Paul; Bolton, Declan; Fitzgerald, Gerald F.; Stanton, Catherine

    2011-01-01

    Bioactive peptides have been identified in a range of foods, including plant, milk and muscle, e.g., beef, chicken, pork and fish muscle proteins. Bioactive peptides from food proteins offer major potential for incorporation into functional foods and nutraceuticals. The aim of this paper is to present an outline of the bioactive peptides identified in the muscle protein of meat to date, with a focus on muscle protein from domestic animals and fish. The majority of research on bioactives from meat sources has focused on angiotensin-1-converting enzyme (ACE) inhibitory and antioxidant peptides. PMID:22254123

  9. Adhesion Peptide Immobilization on Electrospun Polymers: a Photoelectron Spectroscopy Study

    SciTech Connect

    Iucci, G.; Polzonetti, G.; Ghezzo, F.; Modesti, M.; Roso, M.; Dettin, M.

    2010-06-02

    The immobilization of an oligopeptide, mimicking the adhesion sequence of fibronectin, on the surface of polymer films prepared by electrospinning was investigated by XPS spectroscopy. Films of polycaprolactone (PCL) and poly(l-lactide-caprolactone)[P(LLA-CL)] were prepared by electrospinning onto aluminium substrates. A modified adhesion peptide containing a photoreactive group was immobilized on the surface of the polymer nanofibers by incubation in peptide solution and subsequent UV irradiation. XPS analysis yield evidence of successful peptide immobilization on the polymer surface; the amount of immobilized peptide increases with the concentration of the mother solution.

  10. LPS interactions with immobilized and soluble antimicrobial peptides.

    PubMed

    Gustafsson, Anna; Olin, Anders I; Ljunggren, Lennart

    2010-04-19

    A promising approach in sepsis therapy is the use of peptides truncated from serum- and membrane-proteins with binding domains for LPS: antimicrobial peptides (AMPs). AMPs can be useful in combination with conventional antibiotics to increase killing and neutralize LPS. Although many AMPs show a high specificity towards bacterial membranes, they can also exhibit toxicity, i.e. non-specific membrane lysis, of mammalian cells such as erythrocytes and therefore, unsuitable as systemic drugs. A way to overcome this problem may be an extracorporeal therapy with immobilized peptides. This study will compare neutralization of LPS using different AMPs in solution and when immobilized on to solid phases. The peptides ability to neutralize LPS-induced cytokine release in whole blood will also be tested. The peptides are truncated derivates from the known AMPs LL-37, SC4, BPI, S3 Delta and CEME. Two different methods were used to immobilize peptides, biomolecular interaction analysis, and Pierce SulfoLink Coupling Gel. To investigate LPS binding in solution the LAL test was used. After whole blood incubation with LPS and AMPs ELISA was used to measure TNFalpha, IL-1 beta and IL-6 production. The results suggest that immobilization of antimicrobial peptides does not inhibit their capacity to neutralize LPS, although there are differences between the peptides tested. Thus, peptides derived from LL-37 and CEME were more efficient both in LPS binding and neutralizing LPS-induced cytokine production. PMID:20233038

  11. Probing protein sequences as sources for encrypted antimicrobial peptides.

    PubMed

    Brand, Guilherme D; Magalhães, Mariana T Q; Tinoco, Maria L P; Aragão, Francisco J L; Nicoli, Jacques; Kelly, Sharon M; Cooper, Alan; Bloch, Carlos

    2012-01-01

    Starting from the premise that a wealth of potentially biologically active peptides may lurk within proteins, we describe here a methodology to identify putative antimicrobial peptides encrypted in protein sequences. Candidate peptides were identified using a new screening procedure based on physicochemical criteria to reveal matching peptides within protein databases. Fifteen such peptides, along with a range of natural antimicrobial peptides, were examined using DSC and CD to characterize their interaction with phospholipid membranes. Principal component analysis of DSC data shows that the investigated peptides group according to their effects on the main phase transition of phospholipid vesicles, and that these effects correlate both to antimicrobial activity and to the changes in peptide secondary structure. Consequently, we have been able to identify novel antimicrobial peptides from larger proteins not hitherto associated with such activity, mimicking endogenous and/or exogenous microorganism enzymatic processing of parent proteins to smaller bioactive molecules. A biotechnological application for this methodology is explored. Soybean (Glycine max) plants, transformed to include a putative antimicrobial protein fragment encoded in its own genome were tested for tolerance against Phakopsora pachyrhizi, the causative agent of the Asian soybean rust. This procedure may represent an inventive alternative to the transgenic technology, since the genetic material to be used belongs to the host organism and not to exogenous sources. PMID:23029273

  12. Perspective of Use of Antiviral Peptides against Influenza Virus

    PubMed Central

    Skalickova, Sylvie; Heger, Zbynek; Krejcova, Ludmila; Pekarik, Vladimir; Bastl, Karel; Janda, Jozef; Kostolansky, Frantisek; Vareckova, Eva; Zitka, Ondrej; Adam, Vojtech; Kizek, Rene

    2015-01-01

    The threat of a worldwide influenza pandemic has greatly increased over the past decade with the emergence of highly virulent avian influenza strains. The increased frequency of drug-resistant influenza strains against currently available antiviral drugs requires urgent development of new strategies for antiviral therapy, too. The research in the field of therapeutic peptides began to develop extensively in the second half of the 20th century. Since then, the mechanisms of action for several peptides and their antiviral prospect received large attention due to the global threat posed by viruses. Here, we discussed the therapeutic properties of peptides used in influenza treatment. Peptides with antiviral activity against influenza can be divided into three main groups. First, entry blocker peptides such as a Flupep that interact with influenza hemagglutinin, block its binding to host cells and prevent viral fusion. Second, several peptides display virucidal activity, disrupting viral envelopes, e.g., Melittin. Finally, a third set of peptides interacts with the viral polymerase complex and act as viral replication inhibitors such as PB1 derived peptides. Here, we present a review of the current literature describing the antiviral activity, mechanism and future therapeutic potential of these influenza antiviral peptides. PMID:26492266

  13. Developing a Dissociative Nanocontainer for Peptide Drug Delivery

    PubMed Central

    Kelly, Patrick; Anand, Prachi; Uvaydov, Alexander; Chakravartula, Srinivas; Sherpa, Chhime; Pires, Elena; O’Neil, Alison; Douglas, Trevor; Holford, Mandë

    2015-01-01

    The potency, selectivity, and decreased side effects of bioactive peptides have propelled these agents to the forefront of pharmacological research. Peptides are especially promising for the treatment of neurological disorders and pain. However, delivery of peptide therapeutics often requires invasive techniques, which is a major obstacle to their widespread application. We have developed a tailored peptide drug delivery system in which the viral capsid of P22 bacteriophage is modified to serve as a tunable nanocontainer for the packaging and controlled release of bioactive peptides. Recent efforts have demonstrated that P22 nanocontainers can effectively encapsulate analgesic peptides and translocate them across blood-brain-barrier (BBB) models. However, release of encapsulated peptides at their target site remains a challenge. Here a Ring Opening Metathesis Polymerization (ROMP) reaction is applied to trigger P22 nanocontainer disassembly under physiological conditions. Specifically, the ROMP substrate norbornene (5-Norbornene-2-carboxylic acid) is conjugated to the exterior of a loaded P22 nanocontainer and Grubbs II Catalyst is used to trigger the polymerization reaction leading to nanocontainer disassembly. Our results demonstrate initial attempts to characterize the ROMP-triggered release of cargo peptides from P22 nanocontainers. This work provides proof-of-concept for the construction of a triggerable peptide drug delivery system using viral nanocontainers. PMID:26473893

  14. Metabolism of Peptide Reporters in Cell Lysates and Single Cells

    PubMed Central

    Proctor, Angela; Wang, Qunzhao; Lawrence, David S.; Allbritton, Nancy L.

    2013-01-01

    The stability of an Abl kinase substrate peptide in a cytosolic lysate and in single cells was characterized. In the cytosolic lysate, the starting peptide was metabolized at an average initial rate of 1.7 ± 0.3 zmol pg−;1 s−;1 with a t1/2 of 1.3 min. Five different fragments formed over time; however, a dominant cleavage site was identified. Multiple rational design cycles were utilized to develop a lead peptide with a phenylalanine and alanine replaced by an (N-methyl)phenylalanine and isoleucine, respectively, to attain cytosolic peptidase resistance while maintaining Abl substrate efficacy. This lead peptide possessed a 15-fold greater lifetime in the cytosolic lysate while attaining a 7-fold improvement in kcat as an Abl kinase substrate compared to the starting peptide. However, when loaded into single cells, the starting peptide and lead peptide possessed nearly identical degradation rates and an altered pattern of fragmentation relative to that in cell lysates. Preferential accumulation of a fragment with cleavage at an Ala-Ala bond in single cells suggested that dissimilar peptidases act on the peptides in the lysate versus single cells. A design strategy for peptide stabilization, analogous to that demonstrated for the lysate, should be effective for stabilization in single cells. PMID:22314840

  15. Perspective of Use of Antiviral Peptides against Influenza Virus.

    PubMed

    Skalickova, Sylvie; Heger, Zbynek; Krejcova, Ludmila; Pekarik, Vladimir; Bastl, Karel; Janda, Jozef; Kostolansky, Frantisek; Vareckova, Eva; Zitka, Ondrej; Adam, Vojtech; Kizek, Rene

    2015-10-01

    The threat of a worldwide influenza pandemic has greatly increased over the past decade with the emergence of highly virulent avian influenza strains. The increased frequency of drug-resistant influenza strains against currently available antiviral drugs requires urgent development of new strategies for antiviral therapy, too. The research in the field of therapeutic peptides began to develop extensively in the second half of the 20(th) century. Since then, the mechanisms of action for several peptides and their antiviral prospect received large attention due to the global threat posed by viruses. Here, we discussed the therapeutic properties of peptides used in influenza treatment. Peptides with antiviral activity against influenza can be divided into three main groups. First, entry blocker peptides such as a Flupep that interact with influenza hemagglutinin, block its binding to host cells and prevent viral fusion. Second, several peptides display virucidal activity, disrupting viral envelopes, e.g., Melittin. Finally, a third set of peptides interacts with the viral polymerase complex and act as viral replication inhibitors such as PB1 derived peptides. Here, we present a review of the current literature describing the antiviral activity, mechanism and future therapeutic potential of these influenza antiviral peptides. PMID:26492266

  16. CART peptides: regulators of body weight, reward and other functions

    PubMed Central

    Rogge, G.; Jones, D.; Hubert, G. W.; Lin, Y.; Kuhar, M. J.

    2015-01-01

    Over the past decade or so, CART (cocaine- and amphetamine-regulated transcript) peptides have emerged as major neurotransmitters and hormones. CART peptides are widely distributed in the CNS and are involved in regulating many processes, including food intake and the maintenance of body weight, reward and endocrine functions. Recent studies have produced a wealth of information about the location, regulation, processing and functions of CART peptides, but additional studies aimed at elucidating the physiological effects of the peptides and at characterizing the CART receptor(s) are needed to take advantage of possible therapeutic applications. PMID:18802445

  17. Method for predicting peptide detection in mass spectrometry

    DOEpatents

    Kangas, Lars [West Richland, WA; Smith, Richard D [Richland, WA; Petritis, Konstantinos [Richland, WA

    2010-07-13

    A method of predicting whether a peptide present in a biological sample will be detected by analysis with a mass spectrometer. The method uses at least one mass spectrometer to perform repeated analysis of a sample containing peptides from proteins with known amino acids. The method then generates a data set of peptides identified as contained within the sample by the repeated analysis. The method then calculates the probability that a specific peptide in the data set was detected in the repeated analysis. The method then creates a plurality of vectors, where each vector has a plurality of dimensions, and each dimension represents a property of one or more of the amino acids present in each peptide and adjacent peptides in the data set. Using these vectors, the method then generates an algorithm from the plurality of vectors and the calculated probabilities that specific peptides in the data set were detected in the repeated analysis. The algorithm is thus capable of calculating the probability that a hypothetical peptide represented as a vector will be detected by a mass spectrometry based proteomic platform, given that the peptide is present in a sample introduced into a mass spectrometer.

  18. Effective Design of Multifunctional Peptides by Combining Compatible Functions

    PubMed Central

    Diener, Christian; Garza Ramos Martínez, Georgina; Moreno Blas, Daniel; Castillo González, David A.; Corzo, Gerardo; Castro-Obregon, Susana; Del Rio, Gabriel

    2016-01-01

    Multifunctionality is a common trait of many natural proteins and peptides, yet the rules to generate such multifunctionality remain unclear. We propose that the rules defining some protein/peptide functions are compatible. To explore this hypothesis, we trained a computational method to predict cell-penetrating peptides at the sequence level and learned that antimicrobial peptides and DNA-binding proteins are compatible with the rules of our predictor. Based on this finding, we expected that designing peptides for CPP activity may render AMP and DNA-binding activities. To test this prediction, we designed peptides that embedded two independent functional domains (nuclear localization and yeast pheromone activity), linked by optimizing their composition to fit the rules characterizing cell-penetrating peptides. These peptides presented effective cell penetration, DNA-binding, pheromone and antimicrobial activities, thus confirming the effectiveness of our computational approach to design multifunctional peptides with potential therapeutic uses. Our computational implementation is available at http://bis.ifc.unam.mx/en/software/dcf. PMID:27096600

  19. BDNF pro-peptide regulates dendritic spines via caspase-3.

    PubMed

    Guo, J; Ji, Y; Ding, Y; Jiang, W; Sun, Y; Lu, B; Nagappan, G

    2016-01-01

    The precursor of brain-derived neurotrophic factor (BDNF) (proBDNF) is enzymatically cleaved, by either intracellular (furin/PC1) or extracellular proteases (tPA/plasmin/MMP), to generate mature BDNF (mBDNF) and its pro-peptide (BDNF pro-peptide). Little is known about the function of BDNF pro-peptide. We have developed an antibody that specifically detects cleaved BDNF pro-peptide, but not proBDNF or mBDNF. Neuronal depolarization elicited a marked increase in extracellular BDNF pro-peptide, suggesting activity-dependent regulation of its extracellular levels. Exposure of BDNF pro-peptide to mature hippocampal neurons in culture dramatically reduced dendritic spine density. This effect was mediated by caspase-3, as revealed by studies with pharmacological inhibitors and genetic knockdown. BDNF pro-peptide also increased the number of 'elongated' mitochondria and cytosolic cytochrome c, suggesting the involvement of mitochondrial-caspase-3 pathway. These results, along with BDNF pro-peptide effects recently reported on growth cones and long-term depression (LTD), suggest that BDNF pro-peptide is a negative regulator of neuronal structure and function. PMID:27310873

  20. Maturation processes and structures of small secreted peptides in plants

    PubMed Central

    Tabata, Ryo; Sawa, Shinichiro

    2014-01-01

    In the past decade, small secreted peptides have proven to be essential for various aspects of plant growth and development, including the maintenance of certain stem cell populations. Most small secreted peptides identified in plants to date are recognized by membrane-localized receptor kinases, the largest family of receptor proteins in the plant genome. This peptide-receptor interaction is essential for initiating intracellular signaling cascades. Small secreted peptides often undergo post-translational modifications and proteolytic processing to generate the mature peptides. Recent studies suggest that, in contrast to the situation in mammals, the proteolytic processing of plant peptides involves a number of complex steps. Furthermore, NMR-based structural analysis demonstrated that post-translational modifications induce the conformational changes needed for full activity. In this mini review, we summarize recent advances in our understanding of how small secreted peptides are modified and processed into biologically active peptides and describe the mature structures of small secreted peptides in plants. PMID:25071794