Science.gov

Sample records for enteroscopy effectively enables

  1. Enteroscopy

    MedlinePlus

    Small bowel biopsy; Push enteroscopy; Double-balloon enteroscopy; Capsule enteroscopy; Sonde enteroscopy ... into the upper gastrointestinal tract. During a double-balloon enteroscopy, balloons attached to the endoscope can be ...

  2. Enteroscopy.

    PubMed

    Chauhan, Shailendra S; Manfredi, Michael A; Abu Dayyeh, Barham K; Enestvedt, Brintha K; Fujii-Lau, Larissa L; Komanduri, Sri; Konda, Vani; Maple, John T; Murad, Faris M; Pannala, Rahul; Thosani, Nirav C; Banerjee, Subhas

    2015-12-01

    Noninvasive imaging with CT and magnetic resonance enterography or direct visualization with wireless capsule endoscopy can provide valuable diagnostic information and direct therapy. Enteroscopy technology and techniques have evolved significantly and allow diagnosis and therapy deep within the small bowel, previously attainable only with intraoperative enteroscopy. Push enteroscopy, readily available in most endoscopy units, plays an important role in the evaluation and management of lesions located up to the proximal jejunum. Currently available device-assisted enteroscopy systems, DBE, SBE, and spiral enteroscopy each have their technical nuances, clinical advantages, and limitations. Newer, on-demand enteroscopy systems appear promising, but further studies are needed. Despite slight differences in parameters such as procedural times, depths of insertion, and rates of complete enteroscopy, the overall clinical outcomes with all overtube-assisted systems appear to be similar. Endoscopists should therefore master the enteroscopy technology based on institutional availability and their level of technical expertise. PMID:26388546

  3. Deep enteroscopy - indications, diagnostic yield and complications.

    PubMed

    Moeschler, Oliver; Mueller, Michael Karl

    2015-02-01

    Since its introduction in 2001 capsule endoscopy opened up the small bowel for diagnostic approaches followed by double balloon enteroscopy which enabled the endoscopic community to perform therapeutic interventions in the whole small intestine. In this review the scientific developments related to indications, diagnostic yield and complications of the last years between the competing devices double ballon enteroscopy, single balloon enteroscopy and spiral enteroscopy are illustrated. PMID:25663758

  4. Exploring the Small Bowel: Update on Deep Enteroscopy.

    PubMed

    Riff, Brian P; DiMaio, Christopher J

    2016-06-01

    Deep enteroscopy allows for the diagnosis and treatment of small bowel disorders that historically required operative intervention. There are a variety of endoscopic platforms using balloons and rotational overtubes to facilitate small bowel intubation and even allow for total enteroscopy. Obscure gastrointestinal bleeding is the most common indication for deep enteroscopy. By visualizing segments of the small bowel not possible through standard EGD or push enteroscopy, deep enteroscopy has an established high rate of identification and treatment of bleeding sources. In addition to obscure bleeding, other common indications include diagnosis and staging of Crohn's disease, evaluation of findings on capsule endoscopy and investigation of possible small bowel tumors. Large endoscopy databases have shown deep enteroscopy to be not only effective but safe. Recent research has focused on comparing the diagnostic rates, efficacy, and total enteroscopy rates of the different endoscopic platforms. PMID:27098815

  5. Effect of the manipulation of the duodenal papilla during double balloon enteroscopy

    PubMed Central

    Latorre, Rafael; López-Albors, Octavio; Soria, Federico; Candanosa, Eugenia; Pérez-Cuadrado, Enrique

    2016-01-01

    AIM: To determine the hypothesis that inflating the balloons in the duodenal papilla determines changes in the biochemical markers of pancreatitis. METHODS: Four groups of pigs were used: Group papilla (GP), the overtube’s balloon was inflated in the area of the papilla; GP + double balloon enteroscopy (GP + DBE), the overtube’s balloon was kept inflated in the area of the papilla for 20 min before a DBE; Group DBE (GDBE), DBE was carried out after insuring the balloon’s inflation far from the pancreatic papilla; and Group control (GC). Serum concentrations of amylase, lipase and C-reactive protein (CRP) were evaluated. Pancreases were processed for histopathology examination. RESULTS: Main changes occurred 24 h after the procedure compared with baseline levels. Amylase levels increased significantly in GP (59.2% higher) and were moderately higher in groups GP + DBE and GDBE (22.7% and 20%, respectively). Lipase increased in GP and GP + DBE, whereas it hardly changed in GDBE and in GC. CRP increased significantly in GP, GP + DBE and GDBE, while no changes were reported for GC. No statistically significant difference between groups GP and GP + DBE was found for the histopathological findings, except for vacuolization and necrosis of the pancreatic parenchyma that was higher in GP than in GP + DBE. CONCLUSION: The manipulation of the duodenal papilla by the inflated overtube’s balloon during DBE causes pancreatic structural damage and increased biochemical markers associated with pancreatitis. PMID:27158201

  6. Effects of carbon dioxide insufflation in balloon-assisted enteroscopy: A systematic review and meta-analysis

    PubMed Central

    Nishizawa, Toshihiro; Fujimoto, Ai; Ochiai, Yasutoshi; Kanai, Takanori; Naohisa, Yahagi

    2015-01-01

    Background and aim The efficacy of CO2 insufflation during balloon-assisted enteroscopy remains controversial. This study aimed to perform a systematic review with meta-analysis of randomized controlled trials (RCTs) in which CO2 insufflation was compared with air insufflation in balloon-assisted enteroscopy. Methods PubMed, the Cochrane library, and the Igaku-Chuo-Zasshi database were searched to identify RCTs eligible for inclusion in the systematic review. Data from the eligible studies were combined to calculate the pooled odds ratios (ORs) or weighted mean differences (WMDs) with 95% confidence intervals (CIs). Results Four RCTs (461 patients) were identified. Compared with air insufflation, CO2 insufflation significantly increased intubation depth of oral enteroscopy (WMD: 55.2, 95% CI: 10.77–99.65, p = 0.015). However, there was significant heterogeneity. The intubation depth of anal enteroscopy showed no significant difference between the CO2 group and the air group. CO2 insufflation significantly reduced abdominal pain compared with air insufflation (WMD: −2.463, 95% CI: −4.452 to −0.474, p = 0.015), without significant heterogeneity. The PaCO2 or end-tidal CO2 level showed no significant difference between the CO2 group and air group. Conclusions Compared with air insufflation, CO2 insufflation during balloon-assisted enteroscopy caused less post-procedural pain without CO2 retention. PMID:26966518

  7. The utility of single-balloon enteroscopy for the diagnosis and management of small bowel disorders according to their clinical manifestations: a retrospective review

    PubMed Central

    2013-01-01

    Background The advent of double-balloon enteroscopy has enabled more accurate diagnosis and treatment of small bowel disorders. Single-balloon enteroscopy permits visualization of the entire small intestine less often than does double-balloon enteroscopy. However, the relative clinical advantages of the 2 methods remain controversial. This study therefore aimed to identify the indications for and therapeutic impact of performing single-balloon enteroscopy. Methods We retrospectively reviewed prospectively collected data from adults who underwent single-balloon enteroscopy from January 2007 through November 2011 and analyzed their baseline characteristics, endoscopic findings, pathological diagnoses, and clinical outcomes. Results A total of 145 procedures were performed in 116 patients with a mean age of 58.1 ± 17.7 years (range, 18–89 years). The most common indications for performing single-balloon enteroscopy were overt gastrointestinal (GI) bleeding, chronic diarrhea, and occult GI bleeding, accounting for 57.9%, 12.4%, and 9.7% of the patients, respectively. The area of interest was achieved in 80.7% of the cases, with a 5.5% rate of technical failure. An overall positive finding was detected in 65.5% of the cases, of which 33.8% were ulcers and erosions; 8.3%, masses; and 3.4%, angiodysplasia. The diagnostic yields were 42.9%, 52.4%, 78.6%, 50.0%, and 25.0% for patients with overt GI bleeding, occult GI bleeding, abdominal pain, chronic diarrhea, and abnormal imaging results, respectively. Therapeutic procedures were performed in 11% of patients with GI bleeding and achieved a therapeutic yield of 14.6% with a minor complication rate of 11.7%. Conclusions Single-balloon enteroscopy was effective for the diagnosis and treatment of small bowel disorders, especially in patients who presented with abdominal pain, GI bleeding, or focal abnormalities on imaging scans. PMID:23800178

  8. [Enteroscopy and imaging in sclerosing mesenteritis].

    PubMed

    Gottschalk, U; Nitzsche, C; Felber, J; Dietrich, C F

    2012-09-01

    Sclerosing mesenteritis is a rare, benign, and chronic fibrosing inflammatory disease of the mesenteric fatty tissue. Its aetiology is unknown. In the present report we describe a 56-year-old women who presented with postprandial abdominal pain, and weight loss. Ultrasound, computed tomography, and magnetic resonance imaging revealed a mesenteric mass of 15 cm. The findings were typical for this disease. Additionally the patient underwent a single ballon enteroscopy in which the mucosa showed a considerable hyperergic reaction. The histological examination of the ileum was appropriate to support the suspicion. The patient's symptoms responded to a therapy with tamoxifen. PMID:22965632

  9. Multicenter survey on the use of device-assisted enteroscopy in Portugal

    PubMed Central

    Mascarenhas-Saraiva, Miguel; Mão-de-Ferro, Susana; Ferreira, Sara; Almeida, Nuno; Figueiredo, Pedro; Rodrigues, Adélia; Cardoso, Hélder; Marques, Margarida; Rosa, Bruno; Cotter, José; Vilas-Boas, Germano; Cardoso, Carla; Salgado, Marta; Marcos-Pinto, Ricardo

    2015-01-01

    Background Device-assisted enteroscopies (DAEs) are recent endoscopic techniques that enable direct endoscopic small-bowel evaluation. Objective The objective of this article is to evaluate the implementation of DAEs in Portugal and assess the main indications, diagnoses, diagnostic yield, therapeutic yield and complication rate. Methods We conducted a multicenter retrospective series using a national Web-based survey on behalf of the Portuguese Small-Bowel Study Group. Participants were asked to fill out two online databases regarding procedural data, indications, diagnoses, endoscopic therapy and complications using prospectively collected institutional data records. Results A total of eight centers were enrolled in the survey, corresponding to 1411 DAEs. The most frequent indications were obscure gastrointestinal bleeding (OGIB), inflammatory bowel disease and small-bowel tumors. The pooled diagnostic yield was 63%. A relation between the diagnostic yield and the indications was clear, with a diagnostic yield for OGIB of 69% (p = 0.02) with a 52% therapeutic yield. Complications occurred in 1.2%, with a major complication rate of 0.57%. Perforations occurred in four patients (0.28%). Conclusion DAEs are safe and effective procedures, with complication rates of 1.2%, the most serious of which is perforation. Most procedures are performed in the setting of OGIB. Diagnostic and therapeutic yields are dependent on the indication, hence appropriate patient selection is crucial. PMID:27087956

  10. From Capsule Endoscopy to Balloon-Assisted Deep Enteroscopy: Exploring Small-Bowel Endoscopic Imaging.

    PubMed

    Cooley, D Matthew; Walker, Andrew J; Gopal, Deepak V

    2015-03-01

    In the past 15 years, the use of endoscopic evaluations in patients with obscure gastrointestinal bleeding has become more common. Indications for further endoscopic interventions include iron deficiency anemia, suspicion of Crohn's disease or small-bowel tumors, assessment of celiac disease or of ulcers induced by nonsteroidal anti-inflammatory drugs, and screening for familial adenomatous polyposis. Often, capsule endoscopy is performed in concert with other endoscopic studies and can guide decisions regarding whether enteroscopy should be carried out in an anterograde or a retrograde approach. Retrograde endoscopy is beneficial in dealing with disease of the more distal small bowel. Multiple studies have examined the diagnostic yield of balloon-assisted deep enteroscopy and have estimated a diagnostic yield of 40% to 80%. Some of the studies have found that diagnostic yields are higher when capsule endoscopy is performed before balloon-assisted deep enteroscopy in a search for small-bowel bleeds. Each of these procedures has a role when performed alone; however, research suggests that they are especially effective as complementary techniques and together can provide better-directed therapy. Both procedures are relatively safe, with high diagnostic and therapeutic yields that allow evaluation of the small bowel. Because both interventions are relatively new to the world of gastroenterology, much research remains to be done regarding their overall efficacy, cost, and safety, as well as further indications for their use in the detection and treatment of diseases of the small bowel. PMID:27099585

  11. From Capsule Endoscopy to Balloon-Assisted Deep Enteroscopy: Exploring Small-Bowel Endoscopic Imaging

    PubMed Central

    Cooley, D. Matthew; Walker, Andrew J.

    2015-01-01

    In the past 15 years, the use of endoscopic evaluations in patients with obscure gastrointestinal bleeding has become more common. Indications for further endoscopic interventions include iron deficiency anemia, suspicion of Crohn’s disease or small-bowel tumors, assessment of celiac disease or of ulcers induced by nonsteroidal anti-inflammatory drugs, and screening for familial adenomatous polyposis. Often, capsule endoscopy is performed in concert with other endoscopic studies and can guide decisions regarding whether enteroscopy should be carried out in an anterograde or a retrograde approach. Retrograde endoscopy is beneficial in dealing with disease of the more distal small bowel. Multiple studies have examined the diagnostic yield of balloon-assisted deep enteroscopy and have estimated a diagnostic yield of 40% to 80%. Some of the studies have found that diagnostic yields are higher when capsule endoscopy is performed before balloon-assisted deep enteroscopy in a search for small-bowel bleeds. Each of these procedures has a role when performed alone; however, research suggests that they are especially effective as complementary techniques and together can provide better-directed therapy. Both procedures are relatively safe, with high diagnostic and therapeutic yields that allow evaluation of the small bowel. Because both interventions are relatively new to the world of gastroenterology, much research remains to be done regarding their overall efficacy, cost, and safety, as well as further indications for their use in the detection and treatment of diseases of the small bowel. PMID:27099585

  12. Diagnostic and Therapeutic Capability of Double-Balloon Enteroscopy in Clinical Practice

    PubMed Central

    Akyuz, Umit; Akyuz, Filiz

    2016-01-01

    Advances in technology have facilitated the common use of small-bowel imaging. Intraoperative enteroscopy was the gold standard method for small-bowel imaging. However, noninvasive capsule endoscopy and invasive balloon enteroscopy are currently the main endoscopic procedures that are routinely used for small-bowel pathologies, and the indications for both techniques are similar. Although obstruction is a contraindication for capsule endoscopy, it is not considered to be problematic for double-balloon enteroscopy. The most important advantage of double-balloon enteroscopy is the applicability of therapeutic interventions during the procedure; however, double-balloon enteroscopy has certain advantages as well as disadvantages. PMID:26950010

  13. First report of splenic rupture following deep enteroscopy.

    PubMed

    Girelli, Carlo Maria; Pometta, Roberta; Facciotto, Corinna; Mella, Roberto; Bernasconi, Giordano

    2016-05-10

    Splenic rupture is a rare complication of diagnostic and therapeutic gastrointestinal endoscopy procedures. Herein, we report for the first time a case of splenic rupture following therapeutic retrograde double-balloon enteroscopy, which occurred in an 85-year-old man who was treated for recurrent mid-intestinal bleeding that resulted from ileal angioectasia. This patient promptly underwent an operation and eventually recovered. PMID:27170840

  14. First report of splenic rupture following deep enteroscopy

    PubMed Central

    Girelli, Carlo Maria; Pometta, Roberta; Facciotto, Corinna; Mella, Roberto; Bernasconi, Giordano

    2016-01-01

    Splenic rupture is a rare complication of diagnostic and therapeutic gastrointestinal endoscopy procedures. Herein, we report for the first time a case of splenic rupture following therapeutic retrograde double-balloon enteroscopy, which occurred in an 85-year-old man who was treated for recurrent mid-intestinal bleeding that resulted from ileal angioectasia. This patient promptly underwent an operation and eventually recovered. PMID:27170840

  15. Inverted Meckel's diverticulum preoperatively diagnosed using double-balloon enteroscopy.

    PubMed

    Takagaki, Kosuke; Osawa, Satoshi; Ito, Tatsuhiro; Iwaizumi, Moriya; Hamaya, Yasushi; Tsukui, Hiroe; Furuta, Takahisa; Wada, Hidetoshi; Baba, Satoshi; Sugimoto, Ken

    2016-05-01

    An inverted Meckel's diverticulum is a rare gastrointestinal congenital anomaly that is difficult to diagnose prior to surgery and presents with anemia, abdominal pain, or intussusception. Here, we report the case of 57-year-old men with an inverted Meckel's diverticulum, who was preoperatively diagnosed using double-balloon enteroscopy. He had repeatedly experienced epigastric pain for 2 mo. Ultrasonography and computed tomography showed intestinal wall thickening in the pelvis. Double-balloon enteroscopy via the anal route was performed for further examination, which demonstrated an approximately 8-cm, sausage-shaped, submucosal tumor located approximately 80 cm proximal to the ileocecal valve. A small depressed erosion was observed at the tip of this lesion. Forceps biopsy revealed heterotopic gastric mucosa. Thus, the patient was diagnosed with an inverted Meckel's diverticulum, and single-incision laparoscopic surgery was performed. This case suggests that an inverted Meckel's diverticulum should be considered as a differential diagnosis for a submucosal tumor in the ileum. Balloon-assisted enteroscopy with forceps biopsy facilitate a precise diagnosis of this condition. PMID:27158212

  16. Single balloon enteroscopy: Technical aspects and clinical applications.

    PubMed

    Manno, Mauro; Barbera, Carmelo; Bertani, Helga; Manta, Raffaele; Mirante, Vincenzo Giorgio; Dabizzi, Emanuele; Caruso, Angelo; Pigo, Flavia; Olivetti, Giampiero; Conigliaro, Rita

    2012-02-16

    The small bowel has long been considered a black box for endoscopists because of its long length and the presence of multiple complex loop. Most of the small bowel is inaccessible by traditional endoscopic means. In addition, radiographic studies have significant limitations with regard to diagnostic yield, and surgery is an invasive alternative. This limitation was overcome through the development of balloon enteroscopy that becomes established throughout the world for diagnostic and therapeutic examinations of the small bowel. The single-balloon enteroscope (SBE) system (Olympus, Tokyo, Japan) was introduced into the commercial market in 2007. Several study demonstrated its efficacy and safety. Early reports on the use of single-balloon enteroscopy have suggested a high diagnostic yield and similar therapeutic potential to that of the double-balloon endoscope. SBE is viable technique for in the management of small bowel disease. Technically, it is easy to perform, may be efficient, and in the literature data available, seems to provide high diagnostic and therapeutic yield. PMID:22347529

  17. A Case of Blind Loop Syndrome Caused by Infection with Giardia duodenalis Diagnosed with Double Balloon Enteroscopy

    PubMed Central

    Nakagawa, Tomoo; Katsuno, Tatsuro; Mandai, Yasushi; Saito, Masaya; Yoshihama, Sayuri; Saito, Keiko; Minemura, Shoko; Maruoka, Daisuke; Matsumura, Tomoaki; Arai, Makoto; Yokosuka, Osamu

    2014-01-01

    A 75-year-old man who had undergone partial gastrectomy was referred to our hospital due to worsening leg edema, loose stools and malnutrition. Double balloon enteroscopy followed by insertion of an indwelling ileus tube was performed to investigate the microbial flora and for washing inside the blind loop. Trophozoites of Giardia were detected in the sampled fluid from the blind loop and DNA analysis disclosed an assemblage of genotype A-II of Giardia duodenalis. Treatment with oral metronidazole was effective. This case emphasizes the importance of a correct diagnosis when treating patients with blind loop syndrome in the digestive tract. PMID:25408630

  18. Conservative approach in Peutz-Jeghers syndrome: Single-balloon enteroscopy and small bowel polypectomy

    PubMed Central

    Torroni, Filippo; Romeo, Erminia; Rea, Francesca; Angelis, Paola De; Foschia, Francesca; Faraci, Simona; Abriola, Giovanni Federici di; Contini, Anna Chiara; Caldaro, Tamara; Dall’Oglio, Luigi

    2014-01-01

    AIM: To assess the usefulness of the balloon assisted enteroscopy in preventing surgical intervention in patients with Peutz-Jeghers syndrome (PJS) having a small bowel large polyps. METHODS: Seven consecutive asymptomatic pts (age 15-38 years) with PJS have been collected; six underwent polypectomy using single balloon enteroscopy (Olympus SIF Q180) with antegrade approach using push and pull technique. SBE system consists of the SIF-Q180 enteroscope, an overtube balloon control unit (OBCU Olympus Balloon Control Unit) and a disposable silicone splinting tube with balloon (ST-SB1). All procedures were performed under general anesthesia. Previously all pts received wireless capsule endoscopy (WCE). Prophylactic polypectomy was reserved mainly in pts who had polyps > 15 mm in diameter. The balloon is inflated and deflated by a balloon control unit with a safety pressure setting range from -6.0 kPa to +5.4 kPa. Informed consent has been obtained from pts or parents for each procedure. RESULTS: Six pts underwent polypectomy of small bowel polyps; in 5 pts a large polyp > 15 mm (range 20-50 mm in diameter) was resected; in 1 patient with WCE negative, SBE was performed for previous surgical resection of gastrointestinal stromal tumors. In 2 pts endoscopic clips were placed due to a polypectomy. No surgical complication have been reported. SBE with resection of small bowel large polyps in PJS pts was useful to avoid gastrointestinal bleeding and emergency laparotomy due to intestinal intussusceptions. No gastrointestinal tumors were found in subsequent enteroscopic surveillance in all seven pts. In order surveillance, all pts received WCE, upper endoscopy, ileocolonoscopy every 2 years. No pts had extraintestinal malignant lesions. SBE was performed when WCE was positive for significant polyps (> 15 mm). CONCLUSION: The effective of prophylactic polypectomy of small bowel large polyps (> 15 mm) could be the first line treatment for conservative approach in management of

  19. Randomized controlled trial comparing outcomes of video capsule endoscopy with push enteroscopy in obscure gastrointestinal bleeding

    PubMed Central

    Segarajasingam, Dev S; Hanley, Stephen C; Barkun, Alan N; Waschke, Kevin A; Burtin, Pascal; Parent, Josée; Mayrand, Serge; Fallone, Carlo A; Jobin, Gilles; Seidman, Ernest G; Martel, Myriam

    2015-01-01

    BACKGROUND: Optimal management of obscure gastrointestinal bleeding (OGIB) remains unclear. OBJECTIVE: To evaluate diagnostic yields and downstream clinical outcomes comparing video capsule endoscopy (VCE) with push enteroscopy (PE). METHODS: Patients with OGIB and negative esophagogastroduodenoscopies and colonoscopies were randomly assigned to VCE or PE and followed for 12 months. End points included diagnostic yield, acute or chronic bleeding, health resource utilization and crossovers. RESULTS: Data from 79 patients were analyzed (VCE n=40; PE n=39; 82.3% overt OGIB). VCE had greater diagnostic yield (72.5% versus 48.7%; P<0.05), especially in the distal small bowel (58% versus 13%; P<0.01). More VCE-identified lesions were rated possible or certain causes of bleeding (79.3% versus 35.0%; P<0.05). During follow-up, there were no differences in the rates of ongoing bleeding (acute [40.0% versus 38.5%; P not significant], chronic [32.5% versus 45.6%; P not significant]), nor in health resource utilization. Fewer VCE-first patients crossed over due to ongoing bleeding (22.5% versus 48.7%; P<0.05). CONCLUSIONS: A VCE-first approach had a significant diagnostic advantage over PE-first in patients with OGIB, especially with regard to detecting small bowel lesions, affecting clinical certainty and subsequent further small bowel investigations, with no subsequent differences in bleeding or resource utilization outcomes in follow-up. These findings question the clinical relevance of many of the discovered endoscopic lesions or the ability to treat most of these effectively over time. Improved prognostication of both patient characteristics and endoscopic lesion appearance with regard to bleeding behaviour, coupled with the impact of therapeutic deep enteroscopy, is now required using adapted, high-quality study methodologies. PMID:25803018

  20. Timing of single balloon enteroscopy: significant or not?

    PubMed Central

    Nelson, Kirbylee K.; Lipka, Seth; Davis-Yadley, Ashley H.; Rodriguez, Andrea C.; Doraiswamy, Vignesh; Rabbanifard, Roshanak; Kumar, Ambuj; Brady, Patrick G.

    2016-01-01

    Background: The development of balloon assisted enteroscopy (BAE) has revolutionized diagnostic and therapeutic modalities for small-bowel disorders. Although the role of emergent esophagogastroduodenoscopy and colonoscopy for upper and lower gastrointestinal bleeding is well defined, there is scarce data with regard to emergent BAE for gastrointestinal bleeding. Study: We performed a retrospective cohort study including 110 hospitalized patients with obscure gastrointestinal bleeding who underwent single balloon enteroscopy (SBE) between January 2010 and August 2013. Patients were divided into two groups based on procedures performed emergently (within 24 hours) versus non-emergently (greater than 24 hours). Data on patient demographics, hemodynamic characteristics, type of obscure bleed, lesions identified, location of lesions, endoscopic intervention performed, need for further surgical or radiological intervention, diagnostic and therapeutic yield, and adverse events were compared between groups. Independent samples t test and Fisher’s exact test were used to assess the association between dependent and independent variables. For continuous data, the results were summarized as mean difference and 95 % confidence intervals (CI), and for binary as odds ratio and 95 %CI. Results: Although patients in the group where enteroscopy was performed within 24 hours had a significantly higher incidence of radiological intervention (10.0 % vs. 0.0 %, P = 0.019), the diagnostic and therapeutic yields between the two groups were not significantly different. Additionally, there were no statistically significant differences between the groups for overt and occult bleeding, transfusion requirements, type and location of lesions, endoscopic intervention performed, or adverse events. Hospital stay was shorter in the patients who had SBE within 24 hours of admission (6.2 vs. 11.3 days, P < 0.001). Conclusions: Although the diagnostic and therapeutic yields of SBE

  1. Outcome of patients who have undergone total enteroscopy for obscure gastrointestinal bleeding

    PubMed Central

    Shishido, Takayoshi; Oka, Shiro; Tanaka, Shinji; Imagawa, Hiroki; Takemura, Yoshito; Yoshida, Shigeto; Chayama, Kazuaki

    2012-01-01

    AIM: To assess the diagnostic success and outcome among patients with obscure gastrointestinal bleeding who underwent total enteroscopy with double-balloon endoscopy. METHODS: Total enteroscopy was attempted in 156 patients between August 2003 and June 2008 at Hiroshima University Hospital and achieved in 75 (48.1%). It is assessed whether sources of bleeding were identified, treatment methods, complications, and 1-year outcomes (including re-bleeding) after treatment, and we compared re-bleeding rates among patients. RESULTS: The source of small bowel bleeding was identified in 36 (48.0%) of the 75 total enteroscopy patients; the source was outside the small bowel in 11 patients (14.7%) and not identified in 28 patients (37.3%). Sixty-one of the 75 patients were followed up for more than 1 year (27.2 ± 13.3 mo). Four (6.6%) of these patients showed signs of re-bleeding during the first year, but bleeding did not recur after treatment. Although statistical significance was not reached, a marked difference was found in the re-bleeding rate between patients in whom total enteroscopy findings were positive (8.6%, 3/35) and negative (3.8%, 1/26) (3/35 vs 1/26, P = 0.63). CONCLUSION: A good outcome can be expected for patients who undergo total enteroscopy and receive proper treatment for the source of bleeding in the small bowel. PMID:22363138

  2. Enablement, Constraint, and "The 7 Habits of Highly Effective People."

    ERIC Educational Resources Information Center

    Carlone, David

    2001-01-01

    Uses interviews to examine how the self-help book "The 7 Habits of Highly Effective People" shapes the identity of organization members who read and use the book. Suggests that such people are simultaneously enabled and constrained as they confront tensions between individualism and community, competition and cooperation, and domination and…

  3. Two Cases of Ileal Dieulafoy Lesion with Massive Hematochezia Treated by Single Balloon Enteroscopy

    PubMed Central

    Choi, Young Chul; Park, Sang Hyun; Kwon, Kye Sook; Kim, Hyung Gil; Shin, Yong Woon

    2012-01-01

    Ileal Dieulafoy lesion is an unusual vascular abnormality that can cause gastrointestinal bleeding. It can be associated with massive, life-threatening hemorrhage and requires urgent angiographic intervention or surgery. Ileal Dieulafoy lesion is hard to recognize due to inaccessibility and normal-appearing mucosa. With advances in endoscopy, aggressive diagnostic and therapeutic approaches including enteroscopy have recently been performed for small bowel bleeding. We report two cases of massive ileal Dieulafoy lesion bleeding diagnosed and treated successfully by single balloon enteroscopy with a review of the literature. PMID:23251897

  4. A Single-Center Randomized Controlled Trial Evaluating Timing of Preparation for Capsule Enteroscopy

    PubMed Central

    Black, Katherine R.; Truss, Wiley; Joiner, Cynthia I.; Peter, Shajan

    2015-01-01

    Background/Aims Intestinal lavage (IL) administration immediately before capsule enteroscopy (CE) is superior to lavage the day before the procedure. We aimed to determine the effect of IL timing on CE diagnostic yield. Methods Patients referred for CE were randomized prospectively into two equal groups according to the timing of IL with 2 L of polyethylene glycol solution. Group A and B underwent IL over 2 hours beginning 14 and 4 hours, respectively, before the scheduled CE. The primary outcome measure was preparation quality, measured with a predetermined validated grading scale. Results A total of 34 patients were randomized. The frequency of mucosal abnormalities (77% vs. 82%, p=not significant [NS]) and diagnostic yield (47% vs. 53%, p=NS) were similar between the two groups. Moreover, no significant association between the quality of small bowel preparation and the timing at which the purgative for IL was administered was observed (overall fluid transparency, p=0.936; overall mucosal invisibility, p=0.091). Conclusions Day-before IL is equivalent to same-day IL in terms of overall preparation quality, proportion of complete studies to cecum, small bowel transit time, frequency of identified mucosal abnormalities, and overall diagnostic yield. PMID:26064824

  5. Bleeding Meckel's diverticulum diagnosed and treated by double-balloon enteroscopy

    PubMed Central

    Olafsson, Snorri; Yang, Julie T.; Jackson, Christian S.; Barakat, Mohamad; Lo, Simon

    2012-01-01

    Meckel's diverticulum (MD) is the most common congenital anomaly of the gastrointestinal (GI) tract. The diagnosis of symptomatic MD has been cumbersome. Several case reports been published regarding direct visualization of MD with double balloon enteroscopy (DBE); diagnosing a bleeding MD leading to surgical resection. We report the use of DBE for the treatment of a bleeding MD. PMID:23210023

  6. Single Balloon Enteroscopy for Endoscopic Retrograde Cholangiography in a Patient with Hepaticojejunostomy after Liver Transplant

    PubMed Central

    Di Pisa, Marta; Miraglia, Roberto; Volpes, Riccardo; Gruttadauria, Salvatore; Traina, Mario

    2010-01-01

    We report a case of a post-transplant patient with hepaticojejunostomy in whom we used a single balloon enteroscopy to access the biliary tree. This procedure seems to be safe and feasible for approaching the biliary anastomosis by means of the overtube and fixation of the small bowel by the balloon. PMID:20454574

  7. Actively bleeding Dieulafoy’s lesion of the small bowel identified by capsule endoscopy and treated by push enteroscopy

    PubMed Central

    Palma, Giovanni D De; Patrone, Francesco; Rega, Maria; Simeoli, Immacolata; Masone, Stefania; Persico, Giovanni

    2006-01-01

    Dieulafoy’s lesion is an unusual cause of recurrent GI bleeding. This report describes a case of actively bleeding Dieulafoy’s lesion of the small bowel in which the diagnosis was made by capsule endoscopy, followed by treatment with the use of push enteroscopy. The case illustrates that capsule endoscopy and enteroscopy are highly complementary in patients with small bowel diseases. PMID:16804987

  8. Double-Balloon Enteroscopy in Elderly Patients: Is It Safe and Useful?

    PubMed Central

    Choi, Dae Han; Kim, Hyun Gun; Lee, Tae Hee; Lee, Woong Cheul; Kang, Byung Soo; Cho, Jun-Hyung; Jung, Yunho; Kim, Wan Jung; Ko, Bong Min; Cho, Joo Young; Lee, Joon Seong; Lee, Moon Sung

    2014-01-01

    Background/Aims Providers may be hesitant to perform double-balloon enteroscopy (DBE) in the elderly because the increased number of co-morbidities in this population poses a greater risk of complications resulting from sedation. There are limited data on the use of DBE in the elderly. Here, we assessed the safety and efficacy of DBE in the elderly compared to those in younger patients. Methods We retrospectively analyzed the medical records of 158 patients who underwent 218 DBEs. Patients were divided into an elderly group (age ≥65 years; mean 71.4±5.4; n=34; 41 DBEs) and a younger group (age <65 years; mean 39.5±13.5; n=124; 177 DBEs). Results In both groups, the most common indication for DBE was obscure gastrointestinal bleeding. Mucosal lesions (33.3% vs. 60.9%; P=0.002) were the most common finding in both groups, followed by tumors (30.8% vs. 14.1%; P=0.036). The elderly were more likely to receive interventional therapy (51.3% vs. 23.5%; P=0.001). The diagnostic yield of DBE was slightly higher in the elderly group (92.3% vs. 86.5%; P=0.422), but was not statistically significant. The therapeutic success rate of DBE was 100% in the elderly group compared to 87.5% in the younger group (P=0.536). The overall DBE complication rate was 1.8% overall, and this rate did not differ significantly between the groups (2.6% vs. 1.7%; P=0.548). Conclusions DBE is safe and effective in the elderly, and has a high diagnostic yield and high therapeutic success rate. PMID:25374498

  9. Successful Removal of a Screw Nail in the Jejunum Using Double-Balloon Enteroscopy

    PubMed Central

    Kim, Dong Ju; Sim, Myoung Ki; Lee, Sang Wook

    2015-01-01

    The vast majority of foreign bodies (FBs) that enter the stomach pass through the gastrointestinal tract spontaneously. When the FB enters the small bowel-beyond the reach of conventional endoscopy-daily radiographs are needed to ensure its safe passage. However, endoscopic intervention is an appropriate management strategy for a sharp-pointed FB, because sharp FBs have a higher risk of intestinal perforation. We describe here a case in which a 1.5-cm, sharp-pointed screw nail in the proximal jejunum was removed successfully by double-balloon enteroscopy from a 19-year-old-male with autism. This case adds to the growing body of evidence demonstrating the value of therapeutic double-balloon enteroscopy in the field of FB ingestion PMID:26473131

  10. Current status of single-balloon enteroscopy: Insertability and clinical applications

    PubMed Central

    Kawamura, Takuji; Uno, Koji; Tanaka, Kiyohito; Yasuda, Kenjiro

    2015-01-01

    The single-balloon enteroscopy (SBE) system was launched in 2007, proposed as a simpler method than double-balloon enteroscopy (DBE). Controversy surrounds whether the SBE system has the same insertability as DBE. However, many methods have been proposed to improve the depth of insertion with the SBE system, involving several techniques and endoscopic accessories. SBE is used for investigating not only small bowel diseases, but also diseases of the pancreatobiliary and colonic structures. SBE is a necessary advancement for many endoscopic procedures and applications in modern clinical practice. In our review, we summarized the current literature concerning the insertability of SBE and described the technical aspects of improving the rate of deep insertion in SBE procedures. In addition, the recent applications of SBE to diseases besides those of the small bowel are described. PMID:25610535

  11. Therapeutic enteroscopy using a new single-balloon enteroscope: a case series

    PubMed Central

    Moreels, Tom G.; Kouinche Madenko, Nathalie; Taha, Alaa; Piessevaux, Hubert; Deprez, Pierre H.

    2016-01-01

    Background and study aims: Balloon-assisted enteroscopy allows therapeutic intervention in the small bowel, and even of the biliopancreatic system in patients with altered anatomy. However, the conventional single-balloon enteroscope (SBE) has limited therapeutic use because of its small-caliber working channel and the lack of an additional water jet channel. The new single-balloon enteroscope prototype XSIF-180JY has been developed to overcome these problems. We present experience with use of the new SBE prototype during 14 therapeutic endoscopy procedures, which illustrates its advantages. Patients and methods: During a 2-month period, 16 SBE procedures were performed (2 antegrade, 2 retrograde and 12 ERCP procedures) using the XSIF-180JY prototype, 14 of which were done with therapeutic intent. Results: The XSIF-180JY SBE allowed deep enteroscopy with balloon dilation and multiple intestinal polypectomies. Moreover, 14 ERCP procedures were successfully performed in 12 patients with Roux-en-Y altered anatomy. Sphincterotomy, balloon dilation, stone extraction and 7 Fr plastic stent placement were performed through the 3.2-mm working channel. The additional water jet was useful for flushing away stone fragments from the intrahepatic bile ducts and the retrieval basket and for flushing away blood from a bleeding sphincterotomy. No complications related to the enteroscope were encountered. Conclusions: The new therapeutic XSIF-180JY SBE permitted therapeutic enteroscopy and ERCP through its 3.2-mm working channel and the additional water jet channel proved useful in flushing away biliary stones and blood without the need to clear the working channel. This newly developed SBE has the advantage of a larger working channel and an additional water jet, improving therapeutic enteroscopy. PMID:27540583

  12. Protein C deficiency related obscure gastrointestinal bleeding treated by enteroscopy and anticoagulant therapy

    PubMed Central

    Hsu, Wei-Fan; Tsang, Yuk-Ming; Teng, Chung-Jen; Chung, Chen-Shuan

    2015-01-01

    Obscure gastrointestinal bleeding is an uncommonly encountered and difficult-to-treat clinical problem in gastroenterology, but advancements in endoscopic and radiologic imaging modalities allow for greater accuracy in diagnosing obscure gastrointestinal bleeding. Ectopic varices account for less than 5% of all variceal bleeding cases, and jejunal variceal bleeding due to extrahepatic portal hypertension is rare. We present a 47-year-old man suffering from obscure gastrointestinal bleeding. Computed tomography of the abdomen revealed multiple vascular tufts around the proximal jejunum but no evidence of cirrhosis, and a visible hypodense filling defect suggestive of thrombus was visible in the superior mesenteric vein. Enteroscopy revealed several serpiginous varices in the proximal jejunum. Serologic data disclosed protein C deficiency (33.6%). The patient was successfully treated by therapeutic balloon-assisted enteroscopy and long-term anticoagulant therapy, which is normally contraindicated in patients with gastrointestinal bleeding. Diagnostic modalities for obscure gastrointestinal bleeding, such as capsule endoscopy, computed tomography enterography, magnetic resonance enterography, and enteroscopy, were also reviewed in this article. PMID:25624741

  13. Inverted Meckel’s diverticulum preoperatively diagnosed using double-balloon enteroscopy

    PubMed Central

    Takagaki, Kosuke; Osawa, Satoshi; Ito, Tatsuhiro; Iwaizumi, Moriya; Hamaya, Yasushi; Tsukui, Hiroe; Furuta, Takahisa; Wada, Hidetoshi; Baba, Satoshi; Sugimoto, Ken

    2016-01-01

    An inverted Meckel’s diverticulum is a rare gastrointestinal congenital anomaly that is difficult to diagnose prior to surgery and presents with anemia, abdominal pain, or intussusception. Here, we report the case of 57-year-old men with an inverted Meckel’s diverticulum, who was preoperatively diagnosed using double-balloon enteroscopy. He had repeatedly experienced epigastric pain for 2 mo. Ultrasonography and computed tomography showed intestinal wall thickening in the pelvis. Double-balloon enteroscopy via the anal route was performed for further examination, which demonstrated an approximately 8-cm, sausage-shaped, submucosal tumor located approximately 80 cm proximal to the ileocecal valve. A small depressed erosion was observed at the tip of this lesion. Forceps biopsy revealed heterotopic gastric mucosa. Thus, the patient was diagnosed with an inverted Meckel’s diverticulum, and single-incision laparoscopic surgery was performed. This case suggests that an inverted Meckel’s diverticulum should be considered as a differential diagnosis for a submucosal tumor in the ileum. Balloon-assisted enteroscopy with forceps biopsy facilitate a precise diagnosis of this condition. PMID:27158212

  14. GPU enabled kinetic effects in radio-frequency heating simulation

    NASA Astrophysics Data System (ADS)

    Green, David; RF-SciDAC Collaboration

    2015-11-01

    In previous work we have demonstrated the iterative addition of parallel kinetic effects to finite-difference frequency-domain simulation of radio-frequency (RF) wave propagation in fusion relevant plasmas. Such iterative addition in configuration space bypasses several of the difficulties with traditional spectral methods for kinetic RF simulation when applied to problems that exhibit non-periodic geometries. Furthermore, the direct numerical integration of particle trajectories in real magnetic field geometries removes violations of the stationary phase approximation inherent in the spectral approach. Here we extend this method to include perpendicular kinetics by relying on the massively parallel capability of GPUs to enable resolution of 3 velocity-space dimensions. We present results for a mode converted ion Bernstein wave scenario in 1-space plus 3-velocity dimensions case relevant to fusion plasmas. This research used resources of the OLCF at ORNL, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

  15. Using balloon-overtube-assisted enteroscopy for postoperative endoscopic retrograde cholangiopancreatography

    PubMed Central

    Skinner, Matthew; Velázquez-Aviña, Jacobo

    2014-01-01

    Endoscopic retrograde cholangiopancreatography (ERCP) is technically more challenging in patients with postsurgical anatomy such as Roux-en-Y anastomosis, frequently mandating an operative intervention. Although limited, there is growing evidence that ERCP can be performed using the balloon-overtube-assisted enteroscopy (BOAE) in patients with complex postoperative anatomy. We present the technical aspects of performing ERCP with the BOAE in patients presenting with complex postsurgical anatomy having biliary problems. ERCP using the BOAE is feasible in patients with complex postsurgical anatomy, permitting diagnostic and therapeutic interventions in 80% of patients. PMID:25364385

  16. Roles of Capsule Endoscopy and Single-Balloon Enteroscopy in Diagnosing Unexplained Gastrointestinal Bleeding

    PubMed Central

    Ooka, Shohei; Kobayashi, Kiyonori; Kawagishi, Kana; Kodo, Masaru; Yokoyama, Kaoru; Sada, Miwa; Tanabe, Satoshi; Koizumi, Wasaburo

    2016-01-01

    Background/Aims: The diagnostic algorithms used for selecting patients with obscure gastrointestinal bleeding (OGIB) for capsule endoscopy (CE) or balloon-assisted enteroscopy (BE) vary among facilities. We aimed to demonstrate the appropriate selection criteria of CE and single balloon-assisted enteroscopy (SBE) for patients with OGIB according to their conditions, by retrospectively comparing the diagnostic performances of CE and BE for detecting the source of the OGIB. Methods: We investigated 194 patients who underwent CE and/or BE. The rate of positive findings, details of the findings, accidental symptoms, and hemostasis methods were examined and analyzed. Results: CE and SBE were performed in 103 and 91 patients, respectively, and 26 patients underwent both examinations. The rate of positive findings was significantly higher with SBE (73.6%) than with CE (47.5%, p<0.01). The rate of positive findings was higher in overt bleeding cases than in occult bleeding cases for both BE and SBE. Among the overt bleeding cases, the rate was significantly higher in ongoing bleeding cases than in previous bleeding cases. Conclusions: Both CE and SBE are useful to diagnose OGIB. For overt bleeding cases and ongoing bleeding cases, SBE may be more appropriate than CE because endoscopic diagnosis and treatment can be completed simultaneously. PMID:26855925

  17. Different roles of capsule endoscopy and double-balloon enteroscopy in obscure small intestinal diseases

    PubMed Central

    Zhang, Zhi-Hong; Qiu, Chun-Hua; Li, Yi

    2015-01-01

    AIM: To compare the roles of capsule endoscopy (CE) and double-balloon enteroscopy (DBE) in the diagnosis of obscure small bowel diseases. METHODS: From June 2009 to December 2014, 88 patients were included in this study; the patients had undergone gastroscopy, colonoscopy, radiological small intestinal barium meal, abdominal computed tomography or magnetic resonance imaging scan and mesenteric angiography, but their diagnoses were still unclear. The patients with gastrointestinal obstructions, fistulas, strictures, or cardiac pacemakers, as well as pregnant women, and individuals who could not accept the capsule-retention or capsule-removal surgery were excluded. Patients with heart, lung and other vital organ failure diseases were also excluded. Everyone involved in this study had undergone CE and DBE. The results were divided into: (1) the definite diagnosis (the diagnosis was confirmed at least by one of the biopsy, surgery, pathology or the drug treatment effects with follow-up for at least 3 mo); (2) the possible diagnosis (a possible diagnosis was suggested by CE or DBE, but not confirmed by the biopsy, surgery or follow-up drug treatment effects); and (3) the unclear diagnosis (no exact causes were provided by CE and DBE for the disease). The detection rate and the diagnostic yield of the two methods were compared. The difference in the etiologies between CE and DBE was estimated, and the different possible etiologies caused by the age groups were also investigated. RESULTS: CE exhibited a better trend than DBE for diagnosing scattered small ulcers (P = 0.242, Fisher’s test), and small vascular malformations (χ2 = 1.810, P = 0.179, Pearson χ2 test), but with no significant differences, possible due to few cases. However, DBE was better than CE for larger tumors (P = 0.018, Fisher’s test) and for diverticular lesions with bleeding ulcers (P = 0.005, Fisher’s test). All three hemangioma cases diagnosed by DBE in this study (including sponge hemangioma

  18. A new approach to blue rubber bleb nevus syndrome: the role of capsule endoscopy and intra-operative enteroscopy.

    PubMed

    Kopácová, Marcela; Tachecí, Ilja; Koudelka, Jaroslav; Králová, Miroslava; Rejchrt, Stanislav; Bures, Jan

    2007-07-01

    Blue rubber bleb nevus syndrome (BRBNS) is a rare vascular malformation disorder with cutaneous and visceral lesions frequently associated with serious, even fatal bleeding and anemia. The syndrome is considered to be autosomaly predominantly inherited. Intra-operative enteroscopy (IOE) is the best method of identification of all lesions (particularly the small ones, less than 3 mm) and treatment by endoscopic electro-coagulation or surgical excision. Capsule wireless endoscopy is optimal for screening before the IOE and for monitoring the effect of therapy (in patients with BRBNS). We report two cases of BRBNS. Anemia, gastrointestinal bleeding, gastrointestinal malformations and multifocal venous malformations of the skin were present in both of our cases. Gastrointestinal lesions were identified by gastroscopy, colonoscopy and capsule endoscopy. The multiple venous malformations were treated partly by endoscopic electro-coagulation (lesions up to 4 mm in diameter) and by wedge resection. Both of our patients were 12-year-old girls at the time of operation. In the first patient 31 venous malformations of the small bowel were coagulated, two were resected by the surgeon. In the second patient 20 lesions were coagulated endoscopically and another 31 nevi were resected during an 8 h procedure. The first girl is doing fine 4 years after the procedure, the second was allowed home 2 weeks after the procedure in excellent condition. IOE is a unique method of small bowel investigation and concurrently provides a solution for pathological findings. Capsule endoscopy is a feasible non-invasive screening procedure. We believe that a radical eliminatory approach by means of combined surgery and IOE is indicated for the BRBNS to prevent ongoing gastrointestinal bleeding. PMID:17205297

  19. Examining the whole bowel, double balloon enteroscopy: Indications, diagnostic yield and complications

    PubMed Central

    Saygili, Fatih; Saygili, Saba Mukaddes; Oztas, Erkin

    2015-01-01

    Double balloon enteroscopy (DBE) is an advanced type of endoscopic procedure which brings the advantage of reaching the whole small bowel using anterograde or the retrograde route. This procedure is both diagnostic and interventional for a variety of small intestinal diseases, such as vascular lesions, tumors, polyps and involvement of inflammatory bowel diseases. Main indication is the diagnosis and treatment of mid-gastrointestinal bleeding according to the recent published data all over the world. The complication rates seem to be higher than conventional procedures but growing experience is lowering them and improving the procedure to be safe and well tolerated. This review is about the technique, indications, diagnostic importance and complications of DBE according to the literature growing since 2001. PMID:25789095

  20. [The role of double-ballon enteroscopy in diagnosis and treatment of polypoid syndromes of gastrointestinal tract].

    PubMed

    Vorobeĭ, A V; Lagodich, N A; Orlovskiĭ, Iu N; Aleksandrov, S V; Sikorin, S A; Dmitrochenko, A P

    2014-01-01

    It was done 192 double-ballon enteroscopies in 141 patients at the period from March 2009 to March 2012. Epithelial benign tumors were detected in 10 (7.1%) patients with congenital polypoid syndromes. Endoscopic excision of polyps was done in 6 patients including 1 case with laparoscopic-assisted technique. Urgent open surgeries were performed before this in 4 patients with Peutz-Jeghers' syndrome and invaginated small bowel obstruction. The authors consider that double-ballon enteroscopy is highly informative diagnostic and treatment method in case of small bowel diseases. It allows to diagnose and to treat epithelial tumors on the early stage. Also it could help to avoid complications development and disability of patients. PMID:24874223

  1. Proteomic analysis of minute amount of colonic biopsies by enteroscopy sampling.

    PubMed

    Liu, Xing; Xu, Yanli; Meng, Qian; Zheng, Qingqing; Wu, Jianhong; Wang, Chen; Jia, Weiping; Figeys, Daniel; Chang, Ying; Zhou, Hu

    2016-08-01

    Colorectal cancer (CRC) is one of the most common types of malignant tumor worldwide. Currently, although many researchers have been devoting themselves in CRC studies, the process of locating biomarkers for CRC early diagnosis and prognostic is still very slow. Using a centrifugal proteomic reactor-based proteomic analysis of minute amount of colonic biopsies by enteroscopy sampling, 2620 protein groups were quantified between cancer mucosa and adjacent normal colorectal mucosa. Of which, 403 protein groups were differentially expressed with statistic significance between cancer and normal tissues, including 195 up-regulated and 208 down-regulated proteins in cancer tissues. Three proteins (SOD3, PRELP and NGAL) were selected for further Western blot validation. And the resulting Western blot experimental results were consistent with the quantitative proteomic data. SOD3 and PRELP are down-regulated in CRC mucosa comparing to adjacent normal tissue, while NGAL is up-regulated in CRC mucosa. In conclusion, the centrifugal proteomic reactor-based label-free quantitative proteomic approach provides a highly sensitive and powerful tool for analyzing minute protein sample from tiny colorectal biopsies, which may facilitate CRC biomarkers discovery for diagnoses and prognoses. PMID:27230957

  2. Accuracy of community based video capsule endoscopy in patients undergoing follow up double balloon enteroscopy

    PubMed Central

    Tenembaum, David; Sison, Cristina; Rubin, Moshe

    2013-01-01

    AIM: To determine the test characteristics of community based video capsule endoscopy (VCE) in patients undergoing sequential VCE and double balloon enteroscopy (DBE). METHODS: Eighty-nine patients (34 females, 55 males, mean age 66) who underwent both VCE and DBE from 2008-2010 were retrospectively reviewed. Lesions detected at VCE were categorized. Capsule directed DBE followed and included 44 antegrade, 11 retrograde and 34 combined antegrade and retrograde procedures. Lesions detected were compared utilizing the McNemar’s test. RESULTS: Angioectasia detection with VCE was 25% and with DBE 35% (P < 0.03) with a calculated sensitivity and specificity of 58% and 93% respectively. Polyps were detected by VCE in 22% and in DBE 20%, (P = 0.6), with a sensitivity and specificity for VCE of 61% and 87%. Small bowel diverticula were only seen in 1% of VCE but in 12% of DBE patients (P < 0.002) with a calculated sensitivity and specificity of VCE of 9% and 100%. CONCLUSION: VCE would be moderately sensitive and specific overall with considerable variation by lesion. Furthermore, VCE cannot be relied upon to diagnose small bowel diverticula. PMID:23596537

  3. Comparison of Capsule Endoscopy Findings to Subsequent Double Balloon Enteroscopy: A Dual Center Experience.

    PubMed

    Kalra, Amandeep S; Walker, Andrew J; Benson, Mark E; Soni, Anurag; Guda, Nalini M; Misha, Mehak; Gopal, Deepak V

    2015-01-01

    Background. There has been a growing use of both capsule endoscopy (CE) and double balloon enteroscopy (DBE) to diagnose and treat patients with obscure gastrointestinal blood loss and suspected small bowel pathology. Aim. To compare and correlate sequential CE and DBE findings in a large series of patients at two tertiary level hospitals in Wisconsin. Methods. An IRB approved retrospective study of patients who underwent sequential CE and DBE, at two separate tertiary care academic centers from May 2007 to December 2011, was performed. Results. 116 patients were included in the study. The mean age ± SD was 66.6 ± 13.2 years. There were 56% males and 43.9% females. Measure of agreement between prior capsule and DBE findings was performed using kappa statistics, which gave kappa value of 0.396 with P < 0.001. Also contingency coefficient was calculated and was found to be 0.732 (P < 0.001). Conclusions. Our study showed good overall agreement between DBE and CE. Findings of angioectasia had maximum agreement of 69%. PMID:26420979

  4. Spiral Enteroscopy Utilizing Capsule Location Index for Achieving High Diagnostic and Therapeutic Yield

    PubMed Central

    Korenblit, Jason; O'Hare, Brendan; Shnitser, Anastasia; Kedika, Ramalinga; Matro, Rebecca; Halegoua-De Marzio, Dina; Infantolino, Anthony; Conn, Mitchell

    2015-01-01

    Background and Aim. Spiral enteroscopy (SE) is a new small bowel endoscopic technique. Our aim is to review the diagnostic and therapeutic yield, safety of SE, and the predictive role of prior capsule endoscopy (CE) at an academic center. Methods. A retrospective review of patients undergoing SE after prior CE between 2008 and 2013 was performed. Capsule location index (CLI) was defined as the fraction of total small bowel transit time when the lesion was seen on CE. Results. A total of 174 SEs were performed: antegrade (147) and retrograde (27). Abnormalities on SE were detected in 65% patients. The procedure was safe in patients with surgically altered bowel anatomy (n = 12). The diagnostic yield of antegrade SE decreased with increasing CLI range. The diagnostic yield of retrograde SE decreased on decreasing CLI range. A CLI cutoff of 0.6 was derived that determined the initial route of SE. Vascular ectasias seen on CE were detected in 83% cases on SE; p < 0.01. Conclusions. SE is safe with a high diagnostic and therapeutic yield. CLI is predictive of the success of SE and determines the best route of SE. The type of small bowel pathology targeted by SE may affect its utility and yield. PMID:26681910

  5. Comparison of Capsule Endoscopy Findings to Subsequent Double Balloon Enteroscopy: A Dual Center Experience

    PubMed Central

    Kalra, Amandeep S.; Walker, Andrew J.; Benson, Mark E.; Soni, Anurag; Guda, Nalini M.; Misha, Mehak; Gopal, Deepak V.

    2015-01-01

    Background. There has been a growing use of both capsule endoscopy (CE) and double balloon enteroscopy (DBE) to diagnose and treat patients with obscure gastrointestinal blood loss and suspected small bowel pathology. Aim. To compare and correlate sequential CE and DBE findings in a large series of patients at two tertiary level hospitals in Wisconsin. Methods. An IRB approved retrospective study of patients who underwent sequential CE and DBE, at two separate tertiary care academic centers from May 2007 to December 2011, was performed. Results. 116 patients were included in the study. The mean age ± SD was 66.6 ± 13.2 years. There were 56% males and 43.9% females. Measure of agreement between prior capsule and DBE findings was performed using kappa statistics, which gave kappa value of 0.396 with P < 0.001. Also contingency coefficient was calculated and was found to be 0.732 (P < 0.001). Conclusions. Our study showed good overall agreement between DBE and CE. Findings of angioectasia had maximum agreement of 69%. PMID:26420979

  6. Using Email to Enable E[superscript 3] (Effective, Efficient, and Engaging) Learning

    ERIC Educational Resources Information Center

    Kim, ChanMin

    2008-01-01

    This article argues that technology that supports both noncognitive and cognitive aspects can make learning more effective, efficient, and engaging (e[superscript 3]-learning). The technology of interest in this article is email. The investigation focuses on characteristics of email that are likely to enable e[superscript 3]-learning. In addition,…

  7. Cap-assisted retrograde single-balloon enteroscopy results in high terminal ileal intubation rate

    PubMed Central

    Dufault, Darin L.; Brock, Andrew S.

    2016-01-01

    Background and study aims: Retrograde single-balloon enteroscopy (RSBE) facilitates evaluation of the distal small bowel and provision of appropriate therapy when necessary. Intubation of the terminal ileum (TI) is a major rate-limiting step, with failure rates as high as 30 %. Cap-assisted endoscopy has proven beneficial in other aspects of endoscopy. We have noticed that it similarly aids in TI intubation during RSBE by facilitating opening of the ileocecal valve (ICV). The primary aim of this study was to measure the TI intubation rate using cap-assisted RSBE. Other procedural details and outcomes were also measured. Patients and methods: A total of 36 consecutive RSBEs performed between July 2011 and May 2014 at the Medical University of South Carolina were retrospectively reviewed. All procedures were performed or supervised by our center’s small bowel endoscopist (ASB). Outcomes measured included TI intubation rate, procedure time, depth of maximal insertion (DMI), diagnostic yield (DY), therapeutic yield (TY), and complications. Results: The TI intubation rate was 97 % (35 /36). The one failure was due to stool completely obscuring the cecum. Median procedure time was 54 minutes, with a mean DMI of 68 cm beyond the ICV. The technical success rate was 86 %, whereas DY and TY were 61 % and 25 %, respectively. There were no complications. The study was limited in that it involved a single endoscopist at a single center. Conclusions: Cap-assisted RSBE results in a high TI intubation rate, without compromise to safety or procedural yield. PMID:26878050

  8. Learning curve for double-balloon enteroscopy: Findings from an analysis of 282 procedures

    PubMed Central

    Tee, Hoi-Poh; How, Soon-Hin; Kaffes, Arthur J

    2012-01-01

    AIM: To determine the learning curves for antegrade double-balloon enteroscopy (aDBE) and retrograde DBE (rDBE) by analyzing the technical success rates. METHODS: A retrospective analysis in a tertiary referral center. This study reviewed all cases from June 2006 to April 2011 with a target lesion in the small-bowel identified by either capsule endoscopy or computed tomography scan posted for DBE examinations. Main outcome measurements were: (1) Technical success of aDBE defined by finding or excluding a target lesion after achieving sufficient length of small bowel intubation; and (2) Technical success for rDBE was defined by either finding the target lesion or achieving stable overtube placement in the ileum. RESULTS: Two hundred and eighty two procedures fulfilled the inclusion criteria and were analyzed. These procedures were analyzed by blocks of 30 cases. There was no distinct learning curve for aDBE. Technical success rates for rDBE continued to rise over time, although on logistic regression analysis testing for trend, there was no significance (P = 0.09). The odds of success increased by a factor of 1.73 (95% CI: 0.93-3.22) for rDBE. For these data, it was estimated that at least 30-35 cases of rDBE under supervision were needed to achieve a good technical success of more than 75%. CONCLUSION: There was no learning curve for aDBE. Technical success continued to increase over time for rDBE, although a learning curve could not be proven statistically. Approximately 30-35 cases of rDBE will be required for stable overtube intubation in ileum. PMID:22912911

  9. The safety and efficacy of single balloon enteroscopy in the elderly

    PubMed Central

    Davis-Yadley, Ashley H.; Lipka, Seth; Rodriguez, Andrea C.; Nelson, Kirbylee K.; Doraiswamy, Vignesh; Rabbanifard, Roshanak; Kumar, Ambuj; Brady, Patrick G.

    2016-01-01

    Background: Single balloon enteroscopy (SBE) is an important tool in the management of small bowel disease with limited data available on its performance in the elderly. We aimed to evaluate the safety, efficacy, diagnostic and therapeutic outcomes of SBE in the elderly. Methods: A retrospective review was performed on 366 patients undergoing 428 SBEs from 2010 to 2014. Patients were divided into different age groups: control <55, 55–64, 65–74 and ⩾75 years. Data on comorbidities, complications, findings, diagnostic and therapeutic yield were compared between groups. Results: Anterograde and retrograde SBE were performed in 340 and 49 patients, respectively, with 63 patients requiring more than 1 procedure. Diagnostic yield was significantly higher for age ⩾75 years compared with <55, 66.3% versus 50%, odds ratio (OR) 1.97 [95% confidence interval (CI) 1.14–3.41]. Therapeutic yield was significantly higher in all three older age groups compared with <55 years, 20.3%: 55–64 years, 44.4%, OR 3.13(95% CI 1.7–5.78); 65–74 years, 42%, OR 2.84 (95% CI 1.59–5.06); and >75 years, 47.5%, OR 3.55 (95% CI 1.96–6.43). No significant difference was seen between age groups in complications or failures. Our overall complication rate was 2.3% with 5 minor and 5 major complications. There was a higher yield of angioectasias in the elderly. Argon plasma coagulation (APC) and multipolar electrocoagulation were used more often in older age groups. Conclusion: SBE is safe in elderly patients and delivers higher diagnostic and therapeutic yields compared to younger patients. The elderly are more likely to have angioectasias and undergo APC and electrocoagulation. PMID:26929779

  10. A case of a ruptured submucosal aneurysm of the small intestine identified using double-balloon enteroscopy.

    PubMed

    Chiba, Hirofumi; Endo, Katsuya; Fujishima, Fumiyoshi; Ohtsuka, Hideo; Naitoh, Takeshi; Kuroha, Masatake; Kimura, Tomoya; Shiga, Hisashi; Kakuta, Yoichi; Kinouchi, Yoshitaka; Unno, Michiaki; Shimosegawa, Tooru

    2016-04-01

    A 47-year-old woman was admitted to our hospital urgently with sudden-onset hematochezia. She was temporarily in a state of hemorrhagic shock. As we strongly suspected bleeding from the small intestine, peroral double-balloon enteroscopy was performed, and indicated a 2.0-cm diameter hemispheric elevated lesion in the jejunum. Moreover, a blood clot was observed at the top of the protrusion. The site was marked by injecting India ink, without taking a biopsy specimen, to avoid further hemorrhaging. Subsequently, laparoscopic partial small bowel resection was performed. On histopathological examination, the lesion was found to be a sac-like submucosal arterial aneurysm, with a diameter of 3.5 mm, comprising several small abnormal arteries. The final diagnosis was a ruptured submucosal aneurysm of the small intestine. Ruptured submucosal aneurysms are very rarely observed in the small intestine. Only a few reports have described their endoscopic findings. Our experience indicates that small bowel enteroscopy may be useful for managing ruptured submucosal aneurysms of the small intestine. PMID:26993305

  11. Integrated radiologist's workstation enabling the radiologist as an effective clinical consultant

    NASA Astrophysics Data System (ADS)

    McEnery, Kevin W.; Suitor, Charles T.; Hildebrand, Stan; Downs, Rebecca; Thompson, Stephen K.; Shepard, S. Jeff

    2002-05-01

    Since February 2000, radiologists at the M. D. Anderson Cancer Center have accessed clinical information through an internally developed radiologist's clinical interpretation workstation called RadStation. This project provides a fully integrated digital dictation workstation with clinical data review. RadStation enables the radiologist as an effective clinical consultant with access to pertinent sources of clinical information at the time of dictation. Data sources not only include prior radiology reports from the radiology information system (RIS) but access to pathology data, laboratory data, history and physicals, clinic notes, and operative reports. With integrated clinical information access, a radiologists's interpretation not only comments on morphologic findings but also can enable evaluation of study findings in the context of pertinent clinical presentation and history. Image access is enabled through the integration of an enterprise image archive (Stentor, San Francisco). Database integration is achieved by a combination of real time HL7 messaging and queries to SQL-based legacy databases. A three-tier system architecture accommodates expanding access to additional databases including real-time patient schedule as well as patient medications and allergies.

  12. Utility of double-balloon enteroscopy in patients with left ventricular assist devices and obscure overt gastrointestinal bleeding.

    PubMed

    Edwards, Adam L; Mönkemüller, Klaus; Pamboukian, Salpy V; George, James F; Wilcox, C M; Peter, Shajan

    2014-11-01

    Obscure overt gastrointestinal bleeding (OGIB) is a challenge in patients with left ventricular assist devices (LVADs). We evaluated the utility and safety of double-balloon enteroscopy (DBE) in patients with LVADs in an observational consecutive-patient cohort from a single tertiary referral center. Ten patients with LVADs underwent thirteen DBEs for obscure OGIB. The first OGIB event necessitating DBE occurred after a mean of 512 ± 363 days of LVAD support. All patients underwent DBE, eleven anterograde and two retrograde, with a mean insertion depth 176 ± 85 cm. Diagnostic yield was 69 % with the primary bleeding lesion most frequently found in the mid-bowel. The most common lesions were arteriovenous malformations. Therapeutic yield with argon plasma coagulation (APC), epinephrine injection, and/or hemoclip placement was 89 %. There were no procedure-related complications. DBE in patients with LVADs has good diagnostic yield and high therapeutic yield for obscure OGIB and is safe and well tolerated. PMID:25290096

  13. [Comorbid Meckel's diverticulum and omphalomesenteric cyst evaluated by small bowel series under double-balloon enteroscopy: a case report].

    PubMed

    Tsuruta, Shinichi; Sumida, Yorinobu; Harada, Naohiko; Hata, Yoshitaka; Nakamuta, Makoto; Ikejiri, Koji; Momosaki, Masaya; Takahashi, Shunsuke; Hirahashi, Minako

    2016-04-01

    A 59-year-old man was referred to our hospital for examination of intermittent abdominal pain. Computed tomography scan showed a cystic lesion adjoining the ileum, and small bowel series demonstrated a small bowel diverticulum. Double-balloon enteroscopy (DBE) revealed a diverticulum in the ileum and a soft and smooth elevated lesion with a small hole at the base of the diverticulum. Small bowel series under DBE demonstrated that the cystic lesion communicated with the diverticulum through the small hole. The diagnosis was Meckel's diverticulum and an omphalomesenteric cyst. This is the first reported case of a Meckel's diverticulum and omphalomesenteric cyst communicating through a small hole without a fibrous ligament. In addition, precise evaluation was possible by small bowel series and DBE. PMID:27052394

  14. Outcome and Safety of Anterograde and Retrograde Single-Balloon Enteroscopy: Clinical Experience at a Tertiary Medical Center in Taiwan

    PubMed Central

    Lin, Meng-Chiung; Chen, Peng-Jen; Shih, Yu-Lueng; Huang, Hsin-Hung; Chang, Wei-Kuo; Hsieh, Tsai-Yuan; Huang, Tien-Yu

    2016-01-01

    Single-balloon enteroscopy (SBE) is designed for identifying possible small bowel lesions with balloon-assisted enteroscopy that allows deep intubation of the intestine. However, data regarding the outcome and safety of SBE remain limited. We conducted this study to evaluate the outcome and safety of anterograde and retrograde SBE approaches. This retrospective review from a tertiary medical center in Taiwan included endoscopic reports and chart data from 128 patients with 200 anterograde and retrograde procedures from September 2009 to November 2014. In this study, the most common indication for both anterograde and retrograde SBE was obscure gastrointestinal bleeding (64.4% vs. 60.6%). There were no significant differences between anterograde and retrograde approaches in terms of the diagnostic yield (69.3% vs. 52.5%) and intervention rate (23.8% vs. 17.2%). The procedure time was shorter for anterograde SBE than for retrograde SBE (68.1 ± 23.9 vs. 76.8 ± 27.7 min, P = 0.018). In addition, among the subgroup of patients with obscure gastrointestinal bleeding, the most common etiologies for those in different age-groups were angiodysplasia (≥ 65 years), non-specific ulcers (30–64 years), and Meckel’s diverticulum (< 30 years). The major complication rate during the study was 1.5%; the rate of asymptomatic hyperamylasemia was higher for patients who underwent anterograde SBE than for those who underwent retrograde SBE (13.9% vs. 2%, P = 0.005). The outcome and safety of anterograde and retrograde SBE are similar. However, anterograde SBE has a shorter procedural time and a higher rate of asymptomatic hyperamylasemia. PMID:27548619

  15. Enabling cost-effective high-current burst-mode operation in superconducting accelerators

    DOE PAGESBeta

    Sheffield, Richard L.

    2015-06-01

    Superconducting (SC) accelerators are very efficient for CW or long-pulse operation, and normal conducting (NC) accelerators are cost effective for short-pulse operation. The addition of a short NC linac section to a SC linac can correct for the energy droop that occurs when pulsed high-current operation is required that exceeds the capability of the klystrons to replenish the cavity RF fields due to the long field fill-times of SC structures, or a requirement to support a broad range of beam currents results in variable beam loading. This paper describes the implementation of this technique to enable microseconds of high beam-current,more » 90 mA or more, in a 12 GeV SC long-pulse accelerator designed for the MaRIE 42-keV XFEL proposed for Los Alamos National Laboratory.« less

  16. Enabling cost-effective high-current burst-mode operation in superconducting accelerators

    SciTech Connect

    Sheffield, Richard L.

    2015-06-01

    Superconducting (SC) accelerators are very efficient for CW or long-pulse operation, and normal conducting (NC) accelerators are cost effective for short-pulse operation. The addition of a short NC linac section to a SC linac can correct for the energy droop that occurs when pulsed high-current operation is required that exceeds the capability of the klystrons to replenish the cavity RF fields due to the long field fill-times of SC structures, or a requirement to support a broad range of beam currents results in variable beam loading. This paper describes the implementation of this technique to enable microseconds of high beam-current, 90 mA or more, in a 12 GeV SC long-pulse accelerator designed for the MaRIE 42-keV XFEL proposed for Los Alamos National Laboratory.

  17. Effect of Knowledge Management on Organizational Performance: Enabling Thought Leadership and Social Capital through Technology Management

    NASA Astrophysics Data System (ADS)

    Chalhoub, Michel S.

    The present paper studies the relationship between social networks enabled by technological advances in social software, and overall business performance. With the booming popularity of online communication and the rise of knowledge communities, businesses are faced with a challenge as well as an opportunity - should they monitor the use of social software or encourage it and learn from it? We introduce the concept of user-autonomy and user-fun, which go beyond the traditional user-friendly requirement of existing information technologies. We identified 120 entities out of a sample of 164 from Mediterranean countries and the Gulf region, to focus on the effect of social exchange information systems in thought leadership.

  18. Magnetic resonance image enhancement by reducing receptors' effective size and enabling multiple channel acquisition.

    PubMed

    Yepes-Calderon, Fernando; Velasquez, Adriana; Lepore, Natasha; Beuf, Olivier

    2014-01-01

    Magnetic resonance imaging is empowered by parallel reading, which reduces acquisition time dramatically. The time saved by parallelization can be used to increase image quality or to enable specialized scanning protocols in clinical and research environments. In small animals, the sizing constraints render the use of multi-channeled approaches even more necessary, as they help to improve the typically low spatial resolution and lesser signal-to-noise ratio; however, the use of multiple channels also generates mutual induction (MI) effects that impairs imaging creation. Here, we created coils and used the shared capacitor technique to diminish first degree MI effects and pre-amplifiers to deal with higher order MI-related image deterioration. The constructed devices are tested by imaging phantoms that contain identical solutions; thus, creating the conditions for several statistical comparisons. We confirm that the shared capacitor strategy can recover the receptor capacity in compounded coils when working at the dimensions imposed by small animal imaging. Additionally, we demonstrate that the use of pre-amplifiers does not significantly reduce the quality of the images. Moreover, in light of our results, the two MI-avoiding techniques can be used together, therefore establishing the practical feasibility of flexible array coils populated with multiple loops for small animal imaging. PMID:25570478

  19. Underwater microwave ignition of hydrophobic thermite powder enabled by the bubble-marble effect

    SciTech Connect

    Meir, Yehuda; Jerby, Eli

    2015-08-03

    Highly energetic thermite reactions could be useful for a variety of combustion and material-processing applications, but their usability is yet limited by their hard ignition conditions. Furthermore, in virtue of their zero-oxygen balance, exothermic thermite reactions may also occur underwater. However, this feature is also hard to utilize because of the hydrophobic properties of the thermite powder, and its tendency to agglomerate on the water surface rather than to sink into the water. The recently discovered bubble-marble (BM) effect enables the insertion and confinement of a thermite-powder batch into water by a magnetic field. Here, we present a phenomenon of underwater ignition of a thermite-BM by localized microwaves. The thermite combustion underwater is observed in-situ, and its microwave absorption and optical spectral emission are detected. The vapour pressure generated by the thermite reaction is measured and compared to theory. The combustion products are examined ex-situ by X-ray photo-electron spectroscopy which verifies the thermite reaction. Potential applications of this underwater combustion effect are considered, e.g., for detonation, wet welding, thermal drilling, material processing, thrust generation, and composite-material production, also for other oxygen-free environments.

  20. Innovative qPCR using interfacial effects to enable low threshold cycle detection and inhibition relief

    PubMed Central

    Harshman, Dustin K.; Rao, Brianna M.; McLain, Jean E.; Watts, George S.; Yoon, Jeong-Yeol

    2015-01-01

    Molecular diagnostics offers quick access to information but fails to operate at a speed required for clinical decision-making. Our novel methodology, droplet-on-thermocouple silhouette real-time polymerase chain reaction (DOTS qPCR), uses interfacial effects for droplet actuation, inhibition relief, and amplification sensing. DOTS qPCR has sample-to-answer times as short as 3 min 30 s. In infective endocarditis diagnosis, DOTS qPCR demonstrates reproducibility, differentiation of antibiotic susceptibility, subpicogram limit of detection, and thermocycling speeds of up to 28 s/cycle in the presence of tissue contaminants. Langmuir and Gibbs adsorption isotherms are used to describe the decreasing interfacial tension upon amplification. Moreover, a log-linear relationship with low threshold cycles is presented for real-time quantification by imaging the droplet-on-thermocouple silhouette with a smartphone. DOTS qPCR resolves several limitations of commercially available real-time PCR systems, which rely on fluorescence detection, have substantially higher threshold cycles, and require expensive optical components and extensive sample preparation. Due to the advantages of low threshold cycle detection, we anticipate extending this technology to biological research applications such as single cell, single nucleus, and single DNA molecule analyses. Our work is the first demonstrated use of interfacial effects for sensing reaction progress, and it will enable point-of-care molecular diagnosis of infections. PMID:26601245

  1. Innovative qPCR using interfacial effects to enable low threshold cycle detection and inhibition relief.

    PubMed

    Harshman, Dustin K; Rao, Brianna M; McLain, Jean E; Watts, George S; Yoon, Jeong-Yeol

    2015-09-01

    Molecular diagnostics offers quick access to information but fails to operate at a speed required for clinical decision-making. Our novel methodology, droplet-on-thermocouple silhouette real-time polymerase chain reaction (DOTS qPCR), uses interfacial effects for droplet actuation, inhibition relief, and amplification sensing. DOTS qPCR has sample-to-answer times as short as 3 min 30 s. In infective endocarditis diagnosis, DOTS qPCR demonstrates reproducibility, differentiation of antibiotic susceptibility, subpicogram limit of detection, and thermocycling speeds of up to 28 s/cycle in the presence of tissue contaminants. Langmuir and Gibbs adsorption isotherms are used to describe the decreasing interfacial tension upon amplification. Moreover, a log-linear relationship with low threshold cycles is presented for real-time quantification by imaging the droplet-on-thermocouple silhouette with a smartphone. DOTS qPCR resolves several limitations of commercially available real-time PCR systems, which rely on fluorescence detection, have substantially higher threshold cycles, and require expensive optical components and extensive sample preparation. Due to the advantages of low threshold cycle detection, we anticipate extending this technology to biological research applications such as single cell, single nucleus, and single DNA molecule analyses. Our work is the first demonstrated use of interfacial effects for sensing reaction progress, and it will enable point-of-care molecular diagnosis of infections. PMID:26601245

  2. Underwater microwave ignition of hydrophobic thermite powder enabled by the bubble-marble effect

    NASA Astrophysics Data System (ADS)

    Meir, Yehuda; Jerby, Eli

    2015-08-01

    Highly energetic thermite reactions could be useful for a variety of combustion and material-processing applications, but their usability is yet limited by their hard ignition conditions. Furthermore, in virtue of their zero-oxygen balance, exothermic thermite reactions may also occur underwater. However, this feature is also hard to utilize because of the hydrophobic properties of the thermite powder, and its tendency to agglomerate on the water surface rather than to sink into the water. The recently discovered bubble-marble (BM) effect enables the insertion and confinement of a thermite-powder batch into water by a magnetic field. Here, we present a phenomenon of underwater ignition of a thermite-BM by localized microwaves. The thermite combustion underwater is observed in-situ, and its microwave absorption and optical spectral emission are detected. The vapour pressure generated by the thermite reaction is measured and compared to theory. The combustion products are examined ex-situ by X-ray photo-electron spectroscopy which verifies the thermite reaction. Potential applications of this underwater combustion effect are considered, e.g., for detonation, wet welding, thermal drilling, material processing, thrust generation, and composite-material production, also for other oxygen-free environments.

  3. Templating effect in DNA proximity ligation enables use of non-bioorthogonal chemistry in biological fluids

    PubMed Central

    Spiropulos, Nicholas G.; Heemstra, Jennifer M.

    2012-01-01

    Here we describe the first example of selective reductive amination in biological fluids using split aptamer proximity ligation (StAPL). Utilizing the cocaine split aptamer, we demonstrate small-molecule-dependent ligation that is dose-dependent over a wide range of target concentrations in buffer, human blood serum and artificial urine medium. We explore the substrate binding preferences of the split aptamer and find that the cinchona alkaloids quinine and quinidine bind to the aptamer with higher affinity than cocaine. This increased affinity leads to improved detection limits for these small-molecule targets. We also demonstrate that linker length and hydrophobicity impact the efficiency of split aptamer ligation. The ability to carry out selective chemical transformations using non-bioorthogonal chemistry in media where competing reactive groups are present highlights the power of the increased effective molarity provided by DNA assembly. Obviating the need for bioorthogonal chemistry would dramatically expand the repertoire of chemical transformations available for use in templated reactions such as proximity ligation assays, in turn enabling the development of novel methods for biomolecule detection. PMID:23370267

  4. Templating effect in DNA proximity ligation enables use of non-bioorthogonal chemistry in biological fluids.

    PubMed

    Spiropulos, Nicholas G; Heemstra, Jennifer M

    2012-07-01

    Here we describe the first example of selective reductive amination in biological fluids using split aptamer proximity ligation (StAPL). Utilizing the cocaine split aptamer, we demonstrate small-molecule-dependent ligation that is dose-dependent over a wide range of target concentrations in buffer, human blood serum and artificial urine medium. We explore the substrate binding preferences of the split aptamer and find that the cinchona alkaloids quinine and quinidine bind to the aptamer with higher affinity than cocaine. This increased affinity leads to improved detection limits for these small-molecule targets. We also demonstrate that linker length and hydrophobicity impact the efficiency of split aptamer ligation. The ability to carry out selective chemical transformations using non-bioorthogonal chemistry in media where competing reactive groups are present highlights the power of the increased effective molarity provided by DNA assembly. Obviating the need for bioorthogonal chemistry would dramatically expand the repertoire of chemical transformations available for use in templated reactions such as proximity ligation assays, in turn enabling the development of novel methods for biomolecule detection. PMID:23370267

  5. Effectiveness and Impact of Technology-Enabled Project-Based Learning with the Use of Process Prompts in Teacher Education

    ERIC Educational Resources Information Center

    Chen, Ching-Huei; Chan, Lim-Ha

    2011-01-01

    This study investigated the effectiveness and impacts of process prompts on students' learning and computer self-efficacy within the technology-enabled project-based learning (PBL) context in an undergraduate educational technology course. If the aim is to prepare prospective teachers to effectively, efficiently, and engagingly use technologies in…

  6. Demonstration of high current carbon nanotube enabled vertical organic field effect transistors at industrially relevant voltages

    NASA Astrophysics Data System (ADS)

    McCarthy, Mitchell

    The display market is presently dominated by the active matrix liquid crystal display (LCD). However, the active matrix organic light emitting diode (AMOLED) display is argued to become the successor to the LCD, and is already beginning its way into the market, mainly in small size displays. But, for AMOLED technology to become comparable in market share to LCD, larger size displays must become available at a competitive price with their LCD counterparts. A major issue preventing low-cost large AMOLED displays is the thin-film transistor (TFT) technology. Unlike the voltage driven LCD, the OLEDs in the AMOLED display are current driven. Because of this, the mature amorphous silicon TFT backplane technology used in the LCD must be upgraded to a material possessing a higher mobility. Polycrystalline silicon and transparent oxide TFT technologies are being considered to fill this need. But these technologies bring with them significant manufacturing complexity and cost concerns. Carbon nanotube enabled vertical organic field effect transistors (CN-VFETs) offer a unique solution to this problem (now known as the AMOLED backplane problem). The CN-VFET allows the use of organic semiconductors to be used for the semiconductor layer. Organics are known for their low-cost large area processing compatibility. Although the mobility of the best organics is only comparable to that of amorphous silicon, the CN-VFET makes up for this by orienting the channel vertically, as opposed to horizontally (like in conventional TFTs). This allows the CN-VFET to achieve sub-micron channel lengths without expensive high resolution patterning. Additionally, because the CN-VFET can be easily converted into a light emitting transistor (called the carbon nanotube enabled vertical organic light emitting transistor---CN-VOLET) by essentially stacking an OLED on top of the CN-VFET, more potential benefits can be realized. These potential benefits include, increased aperture ratio, increased OLED

  7. Complimentary Imaging Modalities for Investigating Obscure Gastrointestinal Bleeding: Capsule Endoscopy, Double-Balloon Enteroscopy, and Computed Tomographic Enterography.

    PubMed

    Chu, Ye; Wu, Sheng; Qian, Yuting; Wang, Qi; Li, Juanjuan; Tang, Yanping; Bai, Tingting; Wang, Lifu

    2016-01-01

    Objectives. The complimentary value of computed tomographic enterography (CTE) and double-balloon enteroscopy (DBE) combined with capsule endoscopy (CE) was evaluated in the diagnosis of obscure gastrointestinal bleeding (OGIB). Methods. Patients who received CE examinations at Ruijin Hospital between July 2007 and July 2014 with the indication of OGIB were identified, and those who also underwent DBE and/or CTE were included. Their clinical information was retrieved, and results from each test were compared with findings from the other two examinations. Results. The overall diagnostic yield of CE was comparable with DBE (73.9% versus 60.9%) but was significantly higher than the yield of CTE (87% versus 25%, p < 0.001). The diagnostic yield of angiodysplasia at CE was significantly higher than CTE (73% versus 8%, p < 0.001) and DBE (39.1% versus 17.4%, p = 0.013), while no significant difference was found between the three approaches for small bowel tumors. DBE and CTE identified small bowel diseases undetected or undetermined by CE. Conversely, CE improved diagnosis in the cases with negative CTE and DBE, and findings at initial CE directed further diagnosis made by DBE. Conclusions. Combination of the three diagnostic platforms provides complementary value in the diagnosis of OGIB. PMID:26858753

  8. Multidetector CT Enterography versus Double-Balloon Enteroscopy: Comparison of the Diagnostic Value for Patients with Suspected Small Bowel Diseases

    PubMed Central

    Guo, Qiaozhen; Zhao, Jianping; Liu, Mei; Liao, Guangquan; Chen, Nianjun; Tian, Dean; Wu, Xiaoli

    2016-01-01

    Aim. To compare the diagnostic value of multidetector CT enterography (MDCTE) and double-balloon enteroscopy (DBE) for patients with suspected small bowel diseases. Methods. From January 2009 to January 2014, 190 patients with suspected small bowel diseases were examined with MDCTE and DBE. The characteristics of the patients, detection rates, diagnostic yields, sensitivity, specificity, positive predictive value, and negative predictive value were described and analyzed. Results. The overall detection rates of DBE and MDCTE were 92.6% and 55.8%, respectively (P<0.05), while the overall diagnostic yields were 83.2% and 33.7%, respectively (P<0.05). The sensitivity, specificity, positive predictive value, and negative predictive value of DBE were all higher than those of MDCTE. DBE had a higher diagnostic yield for OGIB (87.3% versus 20.9%, P<0.05). The diagnostic yields of DBE were higher than those of MDCTE for inflammatory diseases, angioma/angiodysplasia, and diverticulums, while being not for gastrointestinal tumors/polyps. Conclusions. The diagnostic value of DBE for small bowel diseases is better than that of MDCTE as a whole, but if gastrointestinal tumors are suspected, MDCTE is also needed to gain a comprehensive and accurate diagnosis. PMID:26962305

  9. Multidetector CT Enterography versus Double-Balloon Enteroscopy: Comparison of the Diagnostic Value for Patients with Suspected Small Bowel Diseases.

    PubMed

    Wang, Jingjing; Guo, Qiaozhen; Zhao, Jianping; Liu, Mei; Liao, Guangquan; Chen, Nianjun; Tian, Dean; Wu, Xiaoli

    2016-01-01

    Aim. To compare the diagnostic value of multidetector CT enterography (MDCTE) and double-balloon enteroscopy (DBE) for patients with suspected small bowel diseases. Methods. From January 2009 to January 2014, 190 patients with suspected small bowel diseases were examined with MDCTE and DBE. The characteristics of the patients, detection rates, diagnostic yields, sensitivity, specificity, positive predictive value, and negative predictive value were described and analyzed. Results. The overall detection rates of DBE and MDCTE were 92.6% and 55.8%, respectively (P<0.05), while the overall diagnostic yields were 83.2% and 33.7%, respectively (P<0.05). The sensitivity, specificity, positive predictive value, and negative predictive value of DBE were all higher than those of MDCTE. DBE had a higher diagnostic yield for OGIB (87.3% versus 20.9%, P<0.05). The diagnostic yields of DBE were higher than those of MDCTE for inflammatory diseases, angioma/angiodysplasia, and diverticulums, while being not for gastrointestinal tumors/polyps. Conclusions. The diagnostic value of DBE for small bowel diseases is better than that of MDCTE as a whole, but if gastrointestinal tumors are suspected, MDCTE is also needed to gain a comprehensive and accurate diagnosis. PMID:26962305

  10. Complimentary Imaging Modalities for Investigating Obscure Gastrointestinal Bleeding: Capsule Endoscopy, Double-Balloon Enteroscopy, and Computed Tomographic Enterography

    PubMed Central

    Chu, Ye; Wu, Sheng; Qian, Yuting; Wang, Qi; Li, Juanjuan; Tang, Yanping; Bai, Tingting; Wang, Lifu

    2016-01-01

    Objectives. The complimentary value of computed tomographic enterography (CTE) and double-balloon enteroscopy (DBE) combined with capsule endoscopy (CE) was evaluated in the diagnosis of obscure gastrointestinal bleeding (OGIB). Methods. Patients who received CE examinations at Ruijin Hospital between July 2007 and July 2014 with the indication of OGIB were identified, and those who also underwent DBE and/or CTE were included. Their clinical information was retrieved, and results from each test were compared with findings from the other two examinations. Results. The overall diagnostic yield of CE was comparable with DBE (73.9% versus 60.9%) but was significantly higher than the yield of CTE (87% versus 25%, p < 0.001). The diagnostic yield of angiodysplasia at CE was significantly higher than CTE (73% versus 8%, p < 0.001) and DBE (39.1% versus 17.4%, p = 0.013), while no significant difference was found between the three approaches for small bowel tumors. DBE and CTE identified small bowel diseases undetected or undetermined by CE. Conversely, CE improved diagnosis in the cases with negative CTE and DBE, and findings at initial CE directed further diagnosis made by DBE. Conclusions. Combination of the three diagnostic platforms provides complementary value in the diagnosis of OGIB. PMID:26858753

  11. Double-balloon enteroscopy for ERCP in patients with Billroth II anatomy: results of a large series of papillary large-balloon dilation for biliary stone removal

    PubMed Central

    Cheng, Chi-Liang; Liu, Nai-Jen; Tang, Jui-Hsiang; Yu, Ming-Chin; Tsui, Yi-Ning; Hsu, Fang-Yu; Lee, Ching-Song; Lin, Cheng-Hui

    2015-01-01

    Background and study aims: Data on double-balloon enteroscopy (DBE)-assisted endoscopic retrograde cholangiopancreatogrphy (ERCP) in patients with Billroth II gastrectomy and the use of endoscopic papillary large-balloon dilation (EPLBD) for the removal of common bile duct stones in Billroth II anatomy are limited. The aims of the study were to evaluate the success of DBE-assisted ERCP in patients with Billroth II gastrectomy and examine the efficacy of EPLBD ( ≥ 10 mm) for the removal of common bile duct stones. Patients and methods: A total of 77 patients with Billroth II gastrectomy in whom standard ERCP had failed underwent DBE-assisted ERCP. DBE success was defined as visualizing the papilla and ERCP success as completing the intended intervention. The clinical results of EPLBD for the removal of common bile duct stones were analyzed. Results: DBE was successful in 73 of 77 patients (95 %), and ERCP success was achieved in 67 of these 73 (92 %). Therefore, the rate of successful DBE-assisted ERCP was 87 % (67 of a total of 77 patients). The reasons for ERCP failure (n = 10) included tumor obstruction (n = 2), adhesion obstruction (n = 2), failed cannulation (n = 3), failed stone removal (n = 2), and bowel perforation (n = 1). Overall DBE-assisted ERCP complications occurred in 5 of 77 patients (6.5 %). A total of 48 patients (34 male, mean age 75.5 years) with common bile duct stones underwent EPLBD. Complete stone removal in the first session was accomplished in 36 patients (75 %); mechanical lithotripsy was required in 1 patient. EPLBD-related mild perforation occurred in 2 patients (4 %). No acute pancreatitis occurred. Conclusions: DBE permits therapeutic ERCP in patients who have a difficult Billroth II gastrectomy with a high success rate and acceptable complication rates. EPLBD is effective and safe for the removal of common bile duct stones in patients with Billroth II anatomy. PMID:26171434

  12. Effect of centrifugation on water recycling and algal growth to enable algae biodiesel production.

    PubMed

    Igou, Thomas; Van Ginkel, Steven W; Penalver-Argueso, Patricia; Fu, Hao; Doi, Shusuke; Narode, Asmita; Cheruvu, Sarasija; Zhang, Qian; Hassan, Fariha; Woodruff, Frazier; Chen, Yongsheng

    2014-12-01

    The latest research shows that algal biofuels, at the production levels mandated in the Energy Independence and Security Act of 2007, will place significant demands on water and compete with agriculture meant for food production. Thus, there is a great need to recycle water while producing algal biofuels. This study shows that when using a synthetic medium, soluble algal products, bacteria, and other inhibitors can be removed by centrifugation and enable water recycling. Average water recovery reached 84% and water could be recycled at least 10 times without reducing algal growth. PMID:25654935

  13. Capturing Safety Requirements to Enable Effective Task Allocation Between Humans and Automaton in Increasingly Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Neogi, Natasha A.

    2016-01-01

    There is a current drive towards enabling the deployment of increasingly autonomous systems in the National Airspace System (NAS). However, shifting the traditional roles and responsibilities between humans and automation for safety critical tasks must be managed carefully, otherwise the current emergent safety properties of the NAS may be disrupted. In this paper, a verification activity to assess the emergent safety properties of a clearly defined, safety critical, operational scenario that possesses tasks that can be fluidly allocated between human and automated agents is conducted. Task allocation role sets were proposed for a human-automation team performing a contingency maneuver in a reduced crew context. A safety critical contingency procedure (engine out on takeoff) was modeled in the Soar cognitive architecture, then translated into the Hybrid Input Output formalism. Verification activities were then performed to determine whether or not the safety properties held over the increasingly autonomous system. The verification activities lead to the development of several key insights regarding the implicit assumptions on agent capability. It subsequently illustrated the usefulness of task annotations associated with specialized requirements (e.g., communication, timing etc.), and demonstrated the feasibility of this approach.

  14. Note: Electrical detection and quantification of spin rectification effect enabled by shorted microstrip transmission line technique

    SciTech Connect

    Soh, Wee Tee; Ong, C. K.; Peng, Bin; State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 ; Chai, Guozhi

    2014-02-15

    We describe a shorted microstrip method for the sensitive quantification of Spin Rectification Effect (SRE). SRE for a Permalloy (Ni{sub 80}Fe{sub 20}) thin film strip sputtered onto SiO{sub 2} substrate is demonstrated. Our method obviates the need for simultaneous lithographic patterning of the sample and transmission line, therefore greatly simplifying the SRE measurement process. Such a shorted microstrip method can allow different contributions to SRE (anisotropic magnetoresistance, Hall effect, and anomalous Hall effect) to be simultaneously determined. Furthermore, SRE signals from unpatterned 50 nm thick Permalloy films of area dimensions 5 mm × 10 mm can even be detected.

  15. Great Principals at Scale: Creating District Conditions That Enable All Principals to Be Effective. Executive Summary

    ERIC Educational Resources Information Center

    Ikemoto, Gina; Taliaferro, Lori; Fenton, Benjamin; Davis, Jacquelyn

    2014-01-01

    School leaders are critical in the lives of students and to the development of their teachers. Unfortunately, in too many instances, principals are effective in spite of--rather than because of--district conditions. To truly improve student achievement for all students across the country, well-prepared principals need the tools, support, and…

  16. Great Principals at Scale: Creating District Conditions That Enable All Principals to Be Effective

    ERIC Educational Resources Information Center

    Ikemoto, Gina; Taliaferro, Lori; Fenton, Benjamin; Davis, Jacquelyn

    2014-01-01

    School leaders are critical in the lives of students and to the development of their teachers. Unfortunately, in too many instances, principals are effective in spite of--rather than because of--district conditions. To truly improve student achievement for all students across the country, well-prepared principals need the tools, support, and…

  17. Collaborative Activities Enabled by GroupScribbles (GS): An Exploratory Study of Learning Effectiveness

    ERIC Educational Resources Information Center

    Looi, Chee-Kit; Chen, Wenli; Ng, Foo-Keong

    2010-01-01

    This paper describes the findings of an exploratory cycle of a design-based research project and examines the learning effectiveness of collaborative activities that are supported by the GroupScribbles (GS) software technology in two Singapore primary science classrooms. The students had ten weeks of GS-based lessons in science, which were…

  18. The Relationship between School Climate, Trust, Enabling Structures, and Perceived School Effectiveness

    ERIC Educational Resources Information Center

    Mayerson, Deborah R.

    2010-01-01

    The purpose of Deborah R. Mayerson was to assess the relative impact of climate, trust, and bureaucratic structure upon teachers' perceptions of organizational effectiveness. An existing data set compiled by Nancy Casella (2006) for her dissertation was analyzed. The data consisted of questionnaire responses of a random sample of 220 public school…

  19. Enabling the use of climate model data in the Dutch climate effect community

    NASA Astrophysics Data System (ADS)

    Som de Cerff, Wim; Plieger, Maarten

    2010-05-01

    Within the climate effect community the usage of climate model data is emerging. Where mostly climate time series and weather generators were used, there is a shift to incorporate climate model data into climate effect models. The use of climate model data within the climate effect models is difficult, due to missing metadata, resolution and projection issues, data formats and availability of the parameters of interest. Often the climate effect modelers are not aware of available climate model data or are not aware of how they can use it. Together with seven other partners (CERFACS, CNR-IPSL, SMHI, INHGA, CMCC, WUR, MF-CNRM), KNMI is involved in the FP7 IS ENES (http://www.enes.org) project work package 10/JRA5 ‘Bridging Climate Research Data and the Needs of the Impact Community. The aims of this work package are to enhance the use of Climate Research Data and to enhance the interaction with climate effect/impact communities. Phase one is to define use cases together with the Dutch climate effect community, which describe the intended use of climate model data in climate effect models. We defined four use cases: 1) FEWS hydrological Framework (Deltares) 2) METAPHOR, a plants and species dispersion model (Wageningen University) 3) Natuurplanner, an Ecological model suite (Wageningen University) 4) Land use models (Free University/JRC). Also the other partners in JRA5 have defined use cases, which are representative for the climate effect and impact communities in their country. Goal is to find commonalities between all defined use cases. The common functionality will be implemented as e-tools and incorporated in the IS-ENES data portal. Common issues relate to e.g., need for high resolution: downscaling from GCM to local scale (also involves interpolation); parameter selection; finding extremes; averaging methods. At the conference we will describe the FEWS case in more detail: Delft FEWS is an open shell system (in development since 1995) for performing

  20. High performance MoS2-based field-effect transistor enabled by hydrazine doping

    NASA Astrophysics Data System (ADS)

    Lim, Dongsuk; Kannan, E. S.; Lee, Inyeal; Rathi, Servin; Li, Lijun; Lee, Yoontae; Atif Khan, Muhammad; Kang, Moonshik; Park, Jinwoo; Kim, Gil-Ho

    2016-06-01

    We investigated the n-type doping effect of hydrazine on the electrical characteristics of a molybdenum disulphide (MoS2)-based field-effect transistor (FET). The threshold voltage of the MoS2 FET shifted towards more negative values (from ‑20 to ‑70 V) on treating with 100% hydrazine solution with the channel current increasing from 0.5 to 25 μA at zero gate bias. The inverse subthreshold slope decreased sharply on doping, while the ON/OFF ratio increased by a factor of 100. Gate–channel coupling improved with doping, which facilitates the reduction of channel length between the source and drain electrodes without compromising on the transistor performance, making the MoS2-based FET easily scalable.

  1. Performance enhancement of organic photovoltaic devices enabled by Au nanoarrows inducing surface plasmonic resonance effect.

    PubMed

    Li, Shujun; Li, Zhiqi; Zhang, Xinyuan; Zhang, Zhihui; Liu, Chunyu; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2016-09-21

    The surface plasmon resonance (SPR) effect of metal nanoparticles is widely employed in organic solar cells to enhance device performance. However, the light-harvesting improvement is highly dependent on the shape of the metal nanoparticles. In this study, the significantly enhanced performance upon incorporation of Au nanoarrows in solution-processed organic photovoltaic devices is demonstrated. Incorporating Au nanoarrows into the ZnO cathode buffer layer results in superior broadband optical absorption improvement and a power conversion efficiency of 7.82% is realized with a 27.3% enhancement compared with the control device. The experimental and theoretical results indicate that the introduction of Au nanoarrows not only increases optical trapping by the SPR effect but also facilitates exciton generation, dissociation, and charge transport inside the thin film device. PMID:27531663

  2. Develop an Architecture to Enable Effective Information Process in Mitigating Asteroid's Threat

    NASA Astrophysics Data System (ADS)

    Yu, M.; Piccione, M.; Sun, M.; Yang, C. P.; Bambacus, M.; Seery, B.

    2015-12-01

    Research on asteroid impacts on Earth is crucial and challenging nationally and globally. Existing efforts for Near Earth Object (NEO) survey such as Catalina Sky Survey and SAO-minor planets center (MPC) have been established. However, our understanding of asteroids still needs to be advanced through physical characterization, modeling of atmospheric entry/breakup, and risk assessments of impacts (land and water), with emphases on small impactors. To achieve the goal of knowledge advancement, activities such as orbit determination, threat analysis, and impact simulation are fundamental, and all require accurate information and effective processing capability. Here we propose a planetary framework including the workflow, information flow, organization dependencies, and most importantly the cyberinfrastructure configuration required to achieve effective information processing. This framework will serve as a foundation for understanding the NEO hazard and building a long-term capability to counter a potential NEO impact threat.

  3. High performance MoS2-based field-effect transistor enabled by hydrazine doping.

    PubMed

    Lim, Dongsuk; Kannan, E S; Lee, Inyeal; Rathi, Servin; Li, Lijun; Lee, Yoontae; Khan, Muhammad Atif; Kang, Moonshik; Park, Jinwoo; Kim, Gil-Ho

    2016-06-01

    We investigated the n-type doping effect of hydrazine on the electrical characteristics of a molybdenum disulphide (MoS2)-based field-effect transistor (FET). The threshold voltage of the MoS2 FET shifted towards more negative values (from -20 to -70 V) on treating with 100% hydrazine solution with the channel current increasing from 0.5 to 25 μA at zero gate bias. The inverse subthreshold slope decreased sharply on doping, while the ON/OFF ratio increased by a factor of 100. Gate-channel coupling improved with doping, which facilitates the reduction of channel length between the source and drain electrodes without compromising on the transistor performance, making the MoS2-based FET easily scalable. PMID:27098430

  4. Nanoparticle-mediated photothermal effect enables a new method for quantitative biochemical analysis using a thermometer

    NASA Astrophysics Data System (ADS)

    Fu, Guanglei; Sanjay, Sharma T.; Dou, Maowei; Li, Xiujun

    2016-03-01

    A new biomolecular quantitation method, nanoparticle-mediated photothermal bioassay, using a common thermometer as the signal reader was developed. Using an immunoassay as a proof of concept, iron oxide nanoparticles (NPs) captured in the sandwich-type assay system were transformed into a near-infrared (NIR) laser-driven photothermal agent, Prussian blue (PB) NPs, which acted as a photothermal probe to convert the assay signal into heat through the photothermal effect, thus allowing sensitive biomolecular quantitation using a thermometer. This is the first report of biomolecular quantitation using a thermometer and also serves as the first attempt to introduce the nanoparticle-mediated photothermal effect for bioassays.A new biomolecular quantitation method, nanoparticle-mediated photothermal bioassay, using a common thermometer as the signal reader was developed. Using an immunoassay as a proof of concept, iron oxide nanoparticles (NPs) captured in the sandwich-type assay system were transformed into a near-infrared (NIR) laser-driven photothermal agent, Prussian blue (PB) NPs, which acted as a photothermal probe to convert the assay signal into heat through the photothermal effect, thus allowing sensitive biomolecular quantitation using a thermometer. This is the first report of biomolecular quantitation using a thermometer and also serves as the first attempt to introduce the nanoparticle-mediated photothermal effect for bioassays. Electronic supplementary information (ESI) available: Additional information on FTIR characterization (Fig. S1), photothermal immunoassay of PSA in human serum samples (Table S1), and the Experimental section, including preparation of antibody-conjugated iron oxide NPs, sandwich-type immunoassay, characterization, and photothermal detection protocol. See DOI: 10.1039/c5nr09051b

  5. Training effect of a virtual reality haptics-enabled dynamic hip screw simulator

    PubMed Central

    Sugand, Kapil; Akhtar, Kash; Khatri, Chetan; Cobb, Justin; Gupte, Chinmay

    2015-01-01

    Background and purpose — Virtual reality (VR) simulation offers a safe, controlled, and effective environment to complement training but requires extensive validation before it can be implemented within the curriculum. The main objective was to assess whether VR dynamic hip screw (DHS) simulation has a training effect to improve objective performance metrics. Patients and methods — 52 surgical trainees who were naïve to DHS procedures were randomized to 2 groups: the training group, which had 5 attempts, and the control group, which had only one attempt. After 1 week, both cohorts repeated the same number of attempts. Objective performance metrics included total procedural time (sec), fluoroscopy time (sec), number of radiographs (n), tip-apex distance (TAD; mm), attempts at guide-wire insertion (n), and probability of cut-out (%). Mean scores (with SD) and learning curves were calculated. Significance was set as p < 0.05. Results — The training group was 68% quicker than the control group, used 75% less fluoroscopy, took 66% fewer radiographs, had 82% less retries at guide-wire insertion, achieved a reduced TAD (by 41%), had lower probability of cut-out (by 85%), and obtained an increased global score (by 63%). All these results were statistically significant (p < 0.001). The participants agreed that the simulator provided a realistic learning environment, they stated that they had enjoyed using the simulator, and they recognized the need for the simulator in formal training. Interpretation — We found a significant training effect on the VR DHS simulator in improving objective performance metrics of naïve surgical trainees. Patient safety, an important priority, was not compromised. PMID:26168925

  6. Enhanced Consequence Management, Planning and Support System (ENCOMPASS). Enabling an effective, coordinated response.

    PubMed

    Henry, Kurt; Silva, John

    2002-04-01

    In an incident involving a chemical or biological terrorist attack, a staggering number of situations must be managed--casualties must be triaged and treated; nearby residents must be isolated from the impending hazard; a culprit may be on the loose. No single entity can provide adequate response; experts are needed from many organizations , including fire and police departments, hazardous materials units and medical facilities. How can organizations communicate and coordinate to yield an effective response? This article introduces the Enhanced Consequence Management, Planning and Support System (ENCOMPASS), a software system designed to address this issue. PMID:11963609

  7. Contraceptive Counseling: Best Practices to Ensure Quality Communication and Enable Effective Contraceptive Use

    PubMed Central

    Dehlendorf, Christine; Krajewski, Colleen; Borrero, Sonya

    2014-01-01

    Improving the quality of contraceptive counseling is one strategy to prevent unintended pregnancy. We identify aspects of relational and task-oriented communication in family planning care that can assist providers in meeting their patients’ needs. Approaches to optimizing women's experiences of contraceptive counseling include working to develop a close, trusting relationship with patients and using a shared decision-making approach that focuses on eliciting and responding to patient preferences. Providing counseling about side effects and using strategies to promote contraceptive continuation and adherence can also help optimize women's use of contraception. PMID:25264697

  8. Intrinsic properties of cupric oxide nanoparticles enable effective filtration of arsenic from water

    PubMed Central

    McDonald, Kyle J.; Reynolds, Brandon; Reddy, K. J.

    2015-01-01

    The contamination of arsenic in human drinking water supplies is a serious global health concern. Despite multiple years of research, sustainable arsenic treatment technologies have yet to be developed. This study demonstrates the intrinsic abilities of cupric oxide nanoparticles (CuO-NP) towards arsenic adsorption and the development of a point-of-use filter for field application. X-ray diffraction and X-ray photoelectron spectroscopy experiments were used to examine adsorption, desorption, and readsorption of aqueous arsenite and arsenate by CuO-NP. Field experiments were conducted with a point-of-use filter, coupled with real-time arsenic monitoring, to remove arsenic from domestic groundwater samples. The CuO-NP were regenerated by desorbing arsenate via increasing pH above the zero point of charge. Results suggest an effective oxidation of arsenite to arsenate on the surface of CuO-NP. Naturally occurring arsenic was effectively removed by both as-prepared and regenerated CuO-NP in a field demonstration of the point-of-use filter. A sustainable arsenic mitigation model for contaminated water is proposed. PMID:26047164

  9. Intrinsic properties of cupric oxide nanoparticles enable effective filtration of arsenic from water

    NASA Astrophysics Data System (ADS)

    McDonald, Kyle J.; Reynolds, Brandon; Reddy, K. J.

    2015-06-01

    The contamination of arsenic in human drinking water supplies is a serious global health concern. Despite multiple years of research, sustainable arsenic treatment technologies have yet to be developed. This study demonstrates the intrinsic abilities of cupric oxide nanoparticles (CuO-NP) towards arsenic adsorption and the development of a point-of-use filter for field application. X-ray diffraction and X-ray photoelectron spectroscopy experiments were used to examine adsorption, desorption, and readsorption of aqueous arsenite and arsenate by CuO-NP. Field experiments were conducted with a point-of-use filter, coupled with real-time arsenic monitoring, to remove arsenic from domestic groundwater samples. The CuO-NP were regenerated by desorbing arsenate via increasing pH above the zero point of charge. Results suggest an effective oxidation of arsenite to arsenate on the surface of CuO-NP. Naturally occurring arsenic was effectively removed by both as-prepared and regenerated CuO-NP in a field demonstration of the point-of-use filter. A sustainable arsenic mitigation model for contaminated water is proposed.

  10. Utility of Ligand Effect in Homogenous Gold Catalysis: Enabling Regiodivergent π-Bond-Activated Cyclization.

    PubMed

    Ding, Dong; Mou, Tao; Feng, Minghao; Jiang, Xuefeng

    2016-04-27

    Comprehensive utilization of both electronic and steric properties of ligands in homogeneous gold catalysis is achieved in the regiodivergent intramolecular hydroarylation of alkynes. A flexible electron-deficient phosphite ligand, combined with the readily transformable directing group methoxyl amide, is attached to a cationic Au(I) center in three-coordinate mode, affording sterically hindered ortho-position cyclization. Meanwhile, para-position cyclization is exclusively achieved with the assistance of a rigid electron-abundant phosphine ligand-based Au(I) catalyst, in which ligands manifest the compensating effect for cyclization through steric hindrance and electronic properties. By combining gold with silver catalysts, tetrahydropyrroloquinolinones possessing a congested tricyclic structure are obtained via a proven Au/Ag relay catalytic process. PMID:27058740

  11. Developing a mobile application to better inform patients and enable effective consultation in implant dentistry.

    PubMed

    Canbazoglu, Erokan; Salman, Yucel Batu; Yildirim, Mustafa Eren; Merdenyan, Burak; Ince, Ibrahim Furkan

    2016-01-01

    The field of dentistry lacks satisfactory tools to help visualize planned procedures and their potential results to patients. Dentists struggle to provide an effective image in their patient's mind of the end results of the planned treatment only through verbal explanations. Thus, verbal explanations alone often cannot adequately help the patients make a treatment decision. Inadequate attempts are frequently made by dentists to sketch the procedure for the patient in an effort to depict the treatment. These attempts however require an artistic ability not all dentists have. Real case photographs are sometimes of help in explaining and illustrating treatments. However, particularly in implant cases, real case photographs are often ineffective and inadequate. The purpose of this study is to develop a mobile application with an effective user interface design to support the dentist-patient interaction by providing the patient with illustrative descriptions of the procedures and the end result. Sketching, paper prototyping, and wire framing were carried out with the actual user's participation. Hard and soft dental tissues were modeled using three dimensional (3D) modeling programs and real cases. The application enhances the presentation to the patients of potential implants and implant supported prosthetic treatments with rich 3D illustrative content. The application was evaluated in terms of perceived ease of use and perceived usefulness through an online survey. The application helps improve the information sharing behavior of dentists to enhance the patients' right to make informed decisions. The paper clearly demonstrates the relevance of interactive communication technologies for dentist-patient communication. PMID:27453770

  12. Five task clusters that enable efficient and effective digitization of biological collections

    PubMed Central

    Nelson, Gil; Paul, Deborah; Riccardi, Gregory; Mast, Austin R.

    2012-01-01

    Abstract This paper describes and illustrates five major clusters of related tasks (herein referred to as task clusters) that are common to efficient and effective practices in the digitization of biological specimen data and media. Examples of these clusters come from the observation of diverse digitization processes. The staff of iDigBio (The U.S. National Science Foundation’s National Resource for Advancing Digitization of Biological Collections) visited active biological and paleontological collections digitization programs for the purpose of documenting and assessing current digitization practices and tools. These observations identified five task clusters that comprise the digitization process leading up to data publication: (1) pre-digitization curation and staging, (2) specimen image capture, (3) specimen image processing, (4) electronic data capture, and (5) georeferencing locality descriptions. While not all institutions are completing each of these task clusters for each specimen, these clusters describe a composite picture of digitization of biological and paleontological specimens across the programs that were observed. We describe these clusters, three workflow patterns that dominate the implemention of these clusters, and offer a set of workflow recommendations for digitization programs. PMID:22859876

  13. Five task clusters that enable efficient and effective digitization of biological collections.

    PubMed

    Nelson, Gil; Paul, Deborah; Riccardi, Gregory; Mast, Austin R

    2012-01-01

    This paper describes and illustrates five major clusters of related tasks (herein referred to as task clusters) that are common to efficient and effective practices in the digitization of biological specimen data and media. Examples of these clusters come from the observation of diverse digitization processes. The staff of iDigBio (The U.S. National Science Foundation's National Resource for Advancing Digitization of Biological Collections) visited active biological and paleontological collections digitization programs for the purpose of documenting and assessing current digitization practices and tools. These observations identified five task clusters that comprise the digitization process leading up to data publication: (1) pre-digitization curation and staging, (2) specimen image capture, (3) specimen image processing, (4) electronic data capture, and (5) georeferencing locality descriptions. While not all institutions are completing each of these task clusters for each specimen, these clusters describe a composite picture of digitization of biological and paleontological specimens across the programs that were observed. We describe these clusters, three workflow patterns that dominate the implemention of these clusters, and offer a set of workflow recommendations for digitization programs. PMID:22859876

  14. The AMERE project: Enabling real-time detection of radiation effects in individual cells in deep space

    NASA Astrophysics Data System (ADS)

    De Vos, Winnok H.; Meesen, Geert; Szpirer, Cedric; Scohy, Sophie; Cherukuri, Chaitanya; Evrard, Olivier; Hutsebaut, Xavier; Beghuin, Didier

    2012-12-01

    A major concern for long-term deep space missions is the detrimental impact of cosmic radiation on human health. Especially the presence of high-energy particles of high atomic mass (HZE) represents a serious threat. To contribute to a fundamental understanding of space radiation effects and to help improving risk assessment for humans on the Moon, the ESA Lunar Lander mission model payload includes a package dedicated to cell-based radiobiology experiments in the form of an Autonomous Microscope for Examination of Radiation Effects (AMERE). The purpose of this setup is to enable real-time visualization of DNA damage repair in living cells after traversal of HZE particles on the Moon. To assess the feasibility of this challenging experiment, we have analysed the biological and technological demands. In this article, we discuss the experimental concept, the biological considerations and describe the implications for system design.

  15. Sustainability and scale-up of household water treatment and safe storage practices: Enablers and barriers to effective implementation.

    PubMed

    Ojomo, Edema; Elliott, Mark; Goodyear, Lorelei; Forson, Michael; Bartram, Jamie

    2015-11-01

    Household water treatment and safe storage (HWTS) provides a solution, when employed correctly and consistently, for managing water safety at home. However, despite years of promotion by non-governmental organizations (NGOs), governments and others, boiling is the only method to achieve scale. Many HWTS programs have reported strong initial uptake and use that then decreases over time. This study maps out enablers and barriers to sustaining and scaling up HWTS practices. Interviews were carried out with 79 practitioners who had experience with HWTS programs in over 25 countries. A total of 47 enablers and barriers important to sustaining and scaling up HWTS practices were identified. These were grouped into six domains: user guidance on HWTS products; resource availability; standards, certification and regulations; integration and collaboration; user preferences; and market strategies. Collectively, the six domains cover the major aspects of moving products from development to the consumers. It is important that each domain is considered in all programs that aim to sustain and scale-up HWTS practices. Our findings can assist governments, NGOs, and other organizations involved in HWTS to approach programs more effectively and efficiently. PMID:25865927

  16. Effective visualization of integrated knowledge and data to enable informed decisions in drug development and translational medicine.

    PubMed

    Brynne, Lena; Bresell, Anders; Sjögren, Niclas

    2013-01-01

    Integrative understanding of preclinical and clinical data is imperative to enable informed decisions and reduce the attrition rate during drug development. The volume and variety of data generated during drug development have increased tremendously. A new information model and visualization tool was developed to effectively utilize all available data and current knowledge. The Knowledge Plot integrates preclinical, clinical, efficacy and safety data by adding two concepts: knowledge from the different disciplines and protein binding.Internal and public available data were gathered and processed to allow flexible and interactive visualizations. The exposure was expressed as the unbound concentration of the compound and the treatment effect was normalized and scaled by including expert opinion on what a biologically meaningful treatment effect would be.The Knowledge Plot has been applied both retrospectively and prospectively in project teams in a number of different therapeutic areas, resulting in closer collaboration between multiple disciplines discussing both preclinical and clinical data. The Plot allows head to head comparisons of compounds and was used to support Candidate Drug selections and differentiation from comparators and competitors, back translation of clinical data, understanding the predictability of preclinical models and assays, reviewing drift in primary endpoints over the years, and evaluate or benchmark compounds in due diligence comparing multiple attributes.The Knowledge Plot concept allows flexible integration and visualization of relevant data for interpretation in order to enable scientific and informed decision-making in various stages of drug development. The concept can be used for communication, decision-making, knowledge management, and as a forward and back translational tool, that will result in an improved understanding of the competitive edge for a particular project or disease area portfolio. In addition, it also builds up a

  17. Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing

    NASA Astrophysics Data System (ADS)

    Saxena, Samveg

    Homogeneous Charge Compression Ignition (HCCI) engines are one of the most promising engine technologies for the future of energy conversion from clean, efficient combustion. HCCI engines allow high efficiency and lower CO2 emission through the use of high compression ratios and the removal of intake throttle valves (like Diesel), and allow very low levels of urban pollutants like nitric oxide and soot (like Otto). These engines, however, are not without their challenges, such as low power density compared with other engine technologies, and a difficulty in controlling combustion timing. This dissertation first addresses the power output limits. The particular strategies for enabling high power output investigated in this dissertation focus on avoiding five critical limits that either damage an engine, drastically reduce efficiency, or drastically increase emissions: (1) ringing limits, (2) peak in-cylinder pressure limits, (3) misfire limits, (4) low intake temperature limits, and (5) excessive emissions limits. The research shows that the key factors that enable high power output, sufficient for passenger vehicles, while simultaneously avoiding the five limits defined above are the use of: (1) high intake air pressures allowing improved power output, (2) highly delayed combustion timing to avoid ringing limits, and (3) using the highest possible equivalence ratio before encountering ringing limits. These results are revealed by conducting extensive experiments spanning a wide range of operating conditions on a multi-cylinder HCCI engine. Second, this dissertation discusses strategies for effectively sensing combustion characteristics on a HCCI engine. For effective feedback control of HCCI combustion timing, a sensor is required to quantify when combustion occurs. Many laboratory engines use in-cylinder pressure sensors but these sensors are currently prohibitively expensive for wide-scale commercialization. Instead, ion sensors made from inexpensive sparkplugs

  18. Effectiveness, usability, and acceptability of haptic-enabled virtual reality and mannequin modality simulators for surgical cricothyroidotomy.

    PubMed

    Proctor, Michael D; Campbell-Wynn, Lillian

    2014-03-01

    This research assesses the effectiveness, usability, and acceptability of mannequin and haptic-enabled virtual reality (VR) modality simulators by Army medics in a surgical cricothyroidotomy procedure. Research methods investigate through experimentation surgical task performance, technology acceptance, user recommendation, comparative analysis, and select cognitive task load results. Results indicate that the HapMed mannequin and CricSim VR simulators proved effective by meeting training task performance evaluation requirements. Both systems meet 95% user technology acceptance and 85% user recommendation levels. In conclusion, at those levels, either system may complement, reduce, or replace the use of some alternative training methods such as animals or cadavers. To raise recommendation rates, future research needs to reduce barriers to blending visualization with mannequin modalities and make further refinements within the modalities. One research pathway identified blends a mannequin with stereoscopic visualization and motion parallax, providing correlated, partially transparent visual layers of anatomy and of various medical procedures in virtual overlay with the mannequin. Future research also needs to clarify acceptable degrees of freedom levels by task for haptics VR in light of real-world degrees of freedom requirements. Finally, artificial skin may need research to achieve better replication of human skin on mannequins. PMID:24594459

  19. The integration of cyanide hydratase and tyrosinase catalysts enables effective degradation of cyanide and phenol in coking wastewaters.

    PubMed

    Martínková, Ludmila; Chmátal, Martin

    2016-10-01

    The aim of this study was to design an effective method for the bioremediation of coking wastewaters, specifically for the concurrent elimination of their highly toxic components - cyanide and phenols. Almost full degradation of free cyanide (0.32-20 mM; 8.3-520 mg L(-1)) in the model and the real coking wastewaters was achieved by using a recombinant cyanide hydratase in the first step. The removal of cyanide, a strong inhibitor of tyrosinase, enabled an effective degradation of phenols by this enzyme in the second step. Phenol (16.5 mM, 1,552 mg L(-1)) was completely removed from a real coking wastewater within 20 h and cresols (5.0 mM, 540 mg L(-1)) were removed by 66% under the same conditions. The integration of cyanide hydratase and tyrosinase open up new possibilities for the bioremediation of wastewaters with complex pollution. PMID:27328365

  20. Light-Driven Overall Water Splitting Enabled by a Photo-Dember Effect Realized on 3D Plasmonic Structures.

    PubMed

    Chen, Min; Gu, Jiajun; Sun, Cheng; Zhao, Yixin; Zhang, Ruoxi; You, Xinyuan; Liu, Qinglei; Zhang, Wang; Su, Yishi; Su, Huilan; Zhang, Di

    2016-07-26

    Photoelectric conversion driven by sunlight has a broad range of energy/environmental applications (e.g., in solar cells and water splitting). However, difficulties are encountered in the separation of photoexcited charges. Here, we realize a long-range (∼1.5 μm period) electric polarization via asymmetric localization of surface plasmons on a three-dimensional silver structure (3D-Ag). This visible-light-responsive effect-the photo-Dember effect, can be analogous to the thermoelectric effect, in which hot carriers are thermally generated instead of being photogenerated. The induced electric field can efficiently separate photogenerated charges, enabling sunlight-driven overall water splitting on a series of dopant-free commercial semiconductor particles (i.e., ZnO, CeO2, TiO2, and WO3) once they are combined with the 3D-Ag substrate. These photocatalytic processes can last over 30 h on 3D-Ag+ZnO, 3D-Ag+CeO2, and 3D-Ag+TiO2, thus demonstrating good catalytic stability for these systems. Using commercial WO3 powder as a reference, the amount of O2 generated with 3D-Ag+CeO2 surpasses even its recently reported counterpart in which sacrificial reagents had to be involved to run half-reactions. This plasmon-mediated charge separation strategy provides an effective way to improve the efficiency of photoelectric energy conversion, which can be useful in photovoltaics and photocatalysis. PMID:27351779

  1. Cost-effectiveness of a vocational enablement protocol for employees with hearing impairment; design of a randomized controlled trial

    PubMed Central

    2012-01-01

    Background Hearing impairment at the workplace, and the resulting psychosocial problems are a major health problem with substantial costs for employees, companies, and society. Therefore, it is important to develop interventions to support hearing impaired employees. The objective of this article is to describe the design of a randomized controlled trial evaluating the (cost-) effectiveness of a Vocational Enablement Protocol (VEP) compared with usual care. Methods/Design Participants will be selected with the 'Hearing and Distress Screener'. The study population will consist of 160 hearing impaired employees. The VEP intervention group will be compared with usual care. The VEP integrated care programme consists of a multidisciplinary assessment of auditory function, work demands, and personal characteristics. The goal of the intervention is to facilitate participation in work. The primary outcome measure of the study is 'need for recovery after work'. Secondary outcome measures are coping with hearing impairment, distress, self-efficacy, psychosocial workload, job control, general health status, sick leave, work productivity, and health care use. Outcome measures will be assessed by questionnaires at baseline, and 3, 6, 9, and 12 months after baseline. The economic evaluation will be performed from both a societal and a company perspective. A process evaluation will also be performed. Discussion Interventions addressing occupational difficulties of hearing impaired employees are rare but highly needed. If the VEP integrated care programme proves to be (cost-) effective, the intervention can have an impact on the well-being of hearing impaired employees, and thereby, on the costs for the company as well for the society. Trial registration Netherlands Trial Register (NTR): NTR2782 PMID:22380920

  2. Overtube-assisted enteroscopy and capsule endoscopy for the diagnosis of small-bowel polyps and tumors: a systematic review and meta-analysis

    PubMed Central

    Sulbaran, Marianny; de Moura, Eduardo; Bernardo, Wanderley; Morais, Cintia; Oliveira, Joel; Bustamante-Lopez, Leonardo; Sakai, Paulo; Mönkemüller, Klaus; Safatle-Ribeiro, Adriana

    2016-01-01

    Background and study aims: Several studies have evaluated the utility of double-balloon enteroscopy (DBE) and capsule endoscopy (CE) for patients with small-bowel disease showing inconsistent results. The aim of this study was to determine the sensitivity and specificity of overtube-assisted enteroscopy (OAE) as well as the diagnostic concordance between OAE and CE for small-bowel polyps and tumors. Patients and methods: We conducted a systematic review and meta-analysis of studies in which the results of OAE were compared with the results of CE for the evaluation of small-bowel polyps and tumors. When data for surgically resected lesions were available, the histopathological results of OAE and surgical specimens were compared. The sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio for the diagnosis of small-bowel polyps and tumors were analyzed. Secondarily, the rates of diagnostic concordance and discordance between OAE and CE were calculated. Results: There were 15 full-length studies with a total of 821 patients that met the inclusion criteria. The pooled sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio were as follows: 0.89 (95 % confidence interval [CI] 0.84 – 0.93), with heterogeneity χ2 = 41.23 (P = 0.0002) and inconsistency (I 2) = 66.0 %; 0.97 (95 %CI 0.95 – 0.98), with heterogeneity χ2 = 45.27 (P = 0.07) and inconsistency (I 2) = 69.1 %; 16.61 (95 %CI 3.74 – 73.82), with heterogeneity Cochrane’s Q = 225.19 (P < 0.01) and inconsistency (I 2) = 93.8 %; and 0.14 (95 %CI 0.05 – 0.35), with heterogeneity Cochrane’s Q = 81.01 (P < .01) and inconsistency (I 2) = 82.7 %, respectively. A summary receiver operating characteristic curve (SROC) curve was constructed, and the area under the curve (AUC) was 0.97. Conclusion: OAE is an accurate test for the detection of small-bowel polyps and tumors. OAE and CE

  3. Liquid metal enabled pump

    PubMed Central

    Tang, Shi-Yang; Khoshmanesh, Khashayar; Sivan, Vijay; Petersen, Phred; O’Mullane, Anthony P.; Abbott, Derek; Mitchell, Arnan; Kalantar-zadeh, Kourosh

    2014-01-01

    Small-scale pumps will be the heartbeat of many future micro/nanoscale platforms. However, the integration of small-scale pumps is presently hampered by limited flow rate with respect to the input power, and their rather complicated fabrication processes. These issues arise as many conventional pumping effects require intricate moving elements. Here, we demonstrate a system that we call the liquid metal enabled pump, for driving a range of liquids without mechanical moving parts, upon the application of modest electric field. This pump incorporates a droplet of liquid metal, which induces liquid flow at high flow rates, yet with exceptionally low power consumption by electrowetting/deelectrowetting at the metal surface. We present theory explaining this pumping mechanism and show that the operation is fundamentally different from other existing pumps. The presented liquid metal enabled pump is both efficient and simple, and thus has the potential to fundamentally advance the field of microfluidics. PMID:24550485

  4. A single-center United States experience with bleeding Dieulafoy lesions of the small bowel: diagnosis and treatment with single-balloon enteroscopy

    PubMed Central

    Lipka, Seth; Rabbanifard, Roshanak; Kumar, Ambuj; Brady, Patrick

    2015-01-01

    Introduction: A Dieulafoy lesion (DL) of the small bowel can cause severe gastrointestinal bleeding, and presents a difficult clinical setting for endoscopists. Limited data exists on the therapeutic yield of treating DLs of the small bowel using single-balloon enteroscopy (SBE). Methods: Data were collected from Tampa General Hospital a 1 018-bed teaching hospital affiliated with University of South Florida in Tampa, Florida. Patients were selected from a database of patients that underwent SBE from January 2010 – August 2013. Results: Eight patients were found to have DL an incidence of 2.6 % of 309 SBE performed for obscure gastrointestinal bleeding. 7/8 were identified in the jejunum, with one found in the duodenum. The mean age of patients with DL was 71.5 years old. 6/8 patients were on some form of anticoagulant/antiplatelet agent. The primary modality of therapy employed was electrocautery, multipolar electrocoagulation in seven patients and APC (argon plasma coagulation) in one patient. In three patients, electrocoagulation was unsuccessful and hemostasis was achieved with clip placement. Three patients required repeat SBE with one found to have rebleeding from a failed clip with hemostasis achieved upon reapplication of one clip. Conclusion: In our United States’ experience, SBE offers a reasonable therapeutic approach to treat DL of the small bowel with low rates of rebleeding, no adverse events, and no patient requiring surgery. PMID:26356602

  5. Transient overexpression of DNA adenine methylase enables efficient and mobile genome engineering with reduced off-target effects

    PubMed Central

    Lennen, Rebecca M.; Nilsson Wallin, Annika I.; Pedersen, Margit; Bonde, Mads; Luo, Hao; Herrgård, Markus J.; Sommer, Morten O. A.

    2016-01-01

    Homologous recombination of single-stranded oligonucleotides is a highly efficient process for introducing precise mutations into the genome of E. coli and other organisms when mismatch repair (MMR) is disabled. This can result in the rapid accumulation of off-target mutations that can mask desired phenotypes, especially when selections need to be employed following the generation of combinatorial libraries. While the use of inducible mutator phenotypes or other MMR evasion tactics have proven useful, reported methods either require non-mobile genetic modifications or costly oligonucleotides that also result in reduced efficiencies of replacement. Therefore a new system was developed, Transient Mutator Multiplex Automated Genome Engineering (TM-MAGE), that solves problems encountered in other methods for oligonucleotide-mediated recombination. TM-MAGE enables nearly equivalent efficiencies of allelic replacement to the use of strains with fully disabled MMR and with an approximately 12- to 33-fold lower off-target mutation rate. Furthermore, growth temperatures are not restricted and a version of the plasmid can be readily removed by sucrose counterselection. TM-MAGE was used to combinatorially reconstruct mutations found in evolved salt-tolerant strains, enabling the identification of causative mutations and isolation of strains with up to 75% increases in growth rate and greatly reduced lag times in 0.6 M NaCl. PMID:26496947

  6. Small-bowel capsule endoscopy and device-assisted enteroscopy for diagnosis and treatment of small-bowel disorders: European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline.

    PubMed

    Pennazio, Marco; Spada, Cristiano; Eliakim, Rami; Keuchel, Martin; May, Andrea; Mulder, Chris J; Rondonotti, Emanuele; Adler, Samuel N; Albert, Joerg; Baltes, Peter; Barbaro, Federico; Cellier, Christophe; Charton, Jean Pierre; Delvaux, Michel; Despott, Edward J; Domagk, Dirk; Klein, Amir; McAlindon, Mark; Rosa, Bruno; Rowse, Georgina; Sanders, David S; Saurin, Jean Christophe; Sidhu, Reena; Dumonceau, Jean-Marc; Hassan, Cesare; Gralnek, Ian M

    2015-04-01

    This Guideline is an official statement of the European Society of Gastrointestinal Endoscopy (ESGE). The Guideline was also reviewed and endorsed by the British Society of Gastroenterology (BSG). It addresses the roles of small-bowel capsule endoscopy and device-assisted enteroscopy for diagnosis and treatment of small-bowel disorders. Main recommendations 1 ESGE recommends small-bowel video capsule endoscopy as the first-line investigation in patients with obscure gastrointestinal bleeding (strong recommendation, moderate quality evidence). 2 In patients with overt obscure gastrointestinal bleeding, ESGE recommends performing small-bowel capsule endoscopy as soon as possible after the bleeding episode, optimally within 14 days, in order to maximize the diagnostic yield (strong recommendation, moderate quality evidence). 3 ESGE does not recommend the routine performance of second-look endoscopy prior to small-bowel capsule endoscopy; however whether to perform second-look endoscopy before capsule endoscopy in patients with obscure gastrointestinal bleeding or iron-deficiency anaemia should be decided on a case-by-case basis (strong recommendation, low quality evidence). 4 In patients with positive findings at small-bowel capsule endoscopy, ESGE recommends device-assisted enteroscopy to confirm and possibly treat lesions identified by capsule endoscopy (strong recommendation, high quality evidence). 5 ESGE recommends ileocolonoscopy as the first endoscopic examination for investigating patients with suspected Crohn's disease (strong recommendation, high quality evidence). In patients with suspected Crohn's disease and negative ileocolonoscopy findings, ESGE recommends small-bowel capsule endoscopy as the initial diagnostic modality for investigating the small bowel, in the absence of obstructive symptoms or known stenosis (strong recommendation, moderate quality evidence).ESGE does not recommend routine small-bowel imaging or the use of the PillCam patency capsule

  7. Gold-Catalyzed Oxidation of Propargylic Ethers with Internal C-C Triple Bonds: Impressive Regioselectivity Enabled by Inductive Effect

    PubMed Central

    Ji, Kegong; D’Souza, Brendan; Nelson, Jon; Zhang, Liming

    2014-01-01

    Inductive perturbations of C-C triple bonds are shown to dictate the regiochemistry of gold-catalyzed oxidation of internal C-C triple bonds in the cases of propargylic ethers, resulting in highly regioselective formation of β-alkoxy-α,β-unsaturated ketones (up to >50/1 selectivity) via α-oxo gold carbene intermediates. Ethers derived from primary propargylic alcohols can be reliably transformed in good yields, and various functional groups are tolerated. With substrates derived from secondary propargylic alcohols, the development of a new P,N-bidentate ligand enables the minimization of competing alkyl group migration to the gold carbene center over the desired hydride migration; the preferred migration of a phenyl group, however, results in efficient formation of a α-phenyl-β-alkoxy-α,β-unsaturated ketone. These results further advance the surrogacy of a propargyl moiety to synthetically versatile enone function with reliable and readily predictable regioselectivity. PMID:25284890

  8. Enable, mediate, advocate.

    PubMed

    Saan, Hans; Wise, Marilyn

    2011-12-01

    The authors of the Ottawa Charter selected the words enable, mediate and advocate to describe the core activities in what was, in 1986, the new Public Health. This article considers these concepts and the values and ideas upon which they were based. We discuss their relevance in the current context within which health promotion is being conducted, and discuss the implications of changes in the health agenda, media and globalization for practice. We consider developments within health promotion since 1986: its central role in policy rhetoric, the increasing understanding of complexities and the interlinkage with many other societal processes. So the three core activities are reviewed: they still fit well with the main health promotion challenges, but should be refreshed by new ideas and values. As the role of health promotion in the political arena has grown we have become part of the policy establishment and that is a mixed blessing. Making way for community advocates is now our challenge. Enabling requires greater sensitivity to power relations involved and an understanding of the role of health literacy. Mediating keeps its central role as it bridges vital interests of parties. We conclude that these core concepts in the Ottawa Charter need no serious revision. There are, however, lessons from the last 25 years that point to ways to address present and future challenges with greater sensitivity and effectiveness. We invite the next generation to avoid canonizing this text: as is true of every heritage, the heirs must decide on its use. PMID:22080073

  9. Transcriptome-based exon capture enables highly cost-effective comparative genomic data collection at moderate evolutionary scales

    PubMed Central

    2012-01-01

    Background To date, exon capture has largely been restricted to species with fully sequenced genomes, which has precluded its application to lineages that lack high quality genomic resources. We developed a novel strategy for designing array-based exon capture in chipmunks (Tamias) based on de novo transcriptome assemblies. We evaluated the performance of our approach across specimens from four chipmunk species. Results We selectively targeted 11,975 exons (~4 Mb) on custom capture arrays, and enriched over 99% of the targets in all libraries. The percentage of aligned reads was highly consistent (24.4-29.1%) across all specimens, including in multiplexing up to 20 barcoded individuals on a single array. Base coverage among specimens and within targets in each species library was uniform, and the performance of targets among independent exon captures was highly reproducible. There was no decrease in coverage among chipmunk species, which showed up to 1.5% sequence divergence in coding regions. We did observe a decline in capture performance of a subset of targets designed from a much more divergent ground squirrel genome (30 My), however, over 90% of the targets were also recovered. Final assemblies yielded over ten thousand orthologous loci (~3.6 Mb) with thousands of fixed and polymorphic SNPs among species identified. Conclusions Our study demonstrates the potential of a transcriptome-enabled, multiplexed, exon capture method to create thousands of informative markers for population genomic and phylogenetic studies in non-model species across the tree of life. PMID:22900609

  10. Next-Generation Phage Display: Integrating and Comparing Available Molecular Tools to Enable Cost-Effective High-Throughput Analysis

    PubMed Central

    Dias-Neto, Emmanuel; Nunes, Diana N.; Giordano, Ricardo J.; Sun, Jessica; Botz, Gregory H.; Yang, Kuan; Setubal, João C.; Pasqualini, Renata; Arap, Wadih

    2009-01-01

    Background Combinatorial phage display has been used in the last 20 years in the identification of protein-ligands and protein-protein interactions, uncovering relevant molecular recognition events. Rate-limiting steps of combinatorial phage display library selection are (i) the counting of transducing units and (ii) the sequencing of the encoded displayed ligands. Here, we adapted emerging genomic technologies to minimize such challenges. Methodology/Principal Findings We gained efficiency by applying in tandem real-time PCR for rapid quantification to enable bacteria-free phage display library screening, and added phage DNA next-generation sequencing for large-scale ligand analysis, reporting a fully integrated set of high-throughput quantitative and analytical tools. The approach is far less labor-intensive and allows rigorous quantification; for medical applications, including selections in patients, it also represents an advance for quantitative distribution analysis and ligand identification of hundreds of thousands of targeted particles from patient-derived biopsy or autopsy in a longer timeframe post library administration. Additional advantages over current methods include increased sensitivity, less variability, enhanced linearity, scalability, and accuracy at much lower cost. Sequences obtained by qPhage plus pyrosequencing were similar to a dataset produced from conventional Sanger-sequenced transducing-units (TU), with no biases due to GC content, codon usage, and amino acid or peptide frequency. These tools allow phage display selection and ligand analysis at >1,000-fold faster rate, and reduce costs ∼250-fold for generating 106 ligand sequences. Conclusions/Significance Our analyses demonstrates that whereas this approach correlates with the traditional colony-counting, it is also capable of a much larger sampling, allowing a faster, less expensive, more accurate and consistent analysis of phage enrichment. Overall, qPhage plus pyrosequencing is

  11. INVESTIGATING THE EFFECTS OF BT CORN ON SOIL MICROBIAL COMMUNITIES USING PARAMAGNETIC BEAD-ENABLED T-RFLP

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of expression of Cry protein in transgenic Bt corn on soil microbial communities was investigated using terminal restriction fragment length polymorphism (T-RFLP), PLFA, and Biolog profiles. Two lines of Bt-corn and near-isogenic non-Bt corn were grown in three soils of differing textur...

  12. Enabling Remote Access to Fieldwork: Gaining Insight into the Pedagogic Effectiveness of "Direct" and "Remote" Field Activities

    ERIC Educational Resources Information Center

    Stokes, Alison; Collins, Trevor; Maskall, John; Lea, John; Lunt, Paul; Davies, Sarah

    2012-01-01

    This study considers the pedagogical effectiveness of remote access to fieldwork locations. Forty-one students from across the GEES disciplines (geography, earth and environmental sciences) undertook a fieldwork exercise, supported by two lecturers. Twenty students accessed the field site directly and the remainder accessed the site remotely using…

  13. Technology Enabled Learning. Symposium.

    ERIC Educational Resources Information Center

    2002

    This document contains three papers on technology-enabled learning and human resource development. Among results found in "Current State of Technology-enabled Learning Programs in Select Federal Government Organizations: a Case Study of Ten Organizations" (Letitia A. Combs) are the following: the dominant delivery method is traditional…

  14. Developing the practice context to enable more effective pain management with older people: an action research approach

    PubMed Central

    2011-01-01

    Background This paper, which draws upon an Emancipatory Action Research (EAR) approach, unearths how the complexities of context influence the realities of nursing practice. While the intention of the project was to identify and change factors in the practice context that inhibit effective person-centred pain management practices with older people (65 years or older), reflective critical engagement with the findings identified that enhancing pain management practices with older people was dependent on cultural change in the unit as a whole. Methods An EAR approach was utilised. The project was undertaken in a surgical unit that conducted complex abdominal surgery. Eighty-five percent (n = 48) of nursing staff participated in the two-year project (05/NIR02/107). Data were obtained through the use of facilitated critical reflection with nursing staff. Results Three key themes (psychological safety, leadership, oppression) and four subthemes (power, horizontal violence, distorted perceptions, autonomy) were found to influence the way in which effective nursing practice was realised. Within the theme of 'context,' effective leadership and the creation of a psychologically safe environment were key elements in the enhancement of all aspects of nursing practice. Conclusions Whilst other research has identified the importance of 'practice context' and models and frameworks are emerging to address this issue, the theme of 'psychological safety' has been given little attention in the knowledge translation/implementation literature. Within the principles of EAR, facilitated reflective sessions were found to create 'psychologically safe spaces' that supported practitioners to develop effective person-centred nursing practices in complex clinical environments. PMID:21284857

  15. A survey of informatics platforms that enable distributed comparative effectiveness research using multi-institutional heterogenous clinical data.

    PubMed

    Sittig, Dean F; Hazlehurst, Brian L; Brown, Jeffrey; Murphy, Shawn; Rosenman, Marc; Tarczy-Hornoch, Peter; Wilcox, Adam B

    2012-07-01

    Comparative effectiveness research (CER) has the potential to transform the current health care delivery system by identifying the most effective medical and surgical treatments, diagnostic tests, disease prevention methods, and ways to deliver care for specific clinical conditions. To be successful, such research requires the identification, capture, aggregation, integration, and analysis of disparate data sources held by different institutions with diverse representations of the relevant clinical events. In an effort to address these diverse demands, there have been multiple new designs and implementations of informatics platforms that provide access to electronic clinical data and the governance infrastructure required for interinstitutional CER. The goal of this manuscript is to help investigators understand why these informatics platforms are required and to compare and contrast 6 large-scale, recently funded, CER-focused informatics platform development efforts. We utilized an 8-dimension, sociotechnical model of health information technology to help guide our work. We identified 6 generic steps that are necessary in any distributed, multi-institutional CER project: data identification, extraction, modeling, aggregation, analysis, and dissemination. We expect that over the next several years these projects will provide answers to many important, and heretofore unanswerable, clinical research questions. PMID:22692259

  16. A survey of informatics platforms that enable distributed comparative effectiveness research using multi-institutional heterogeneous clinical data

    PubMed Central

    Sittig, Dean F.; Hazlehurst, Brian L.; Brown, Jeffrey; Murphy, Shawn; Rosenman, Marc; Tarczy-Hornoch, Peter; Wilcox, Adam B.

    2012-01-01

    Comparative Effectiveness Research (CER) has the potential to transform the current healthcare delivery system by identifying the most effective medical and surgical treatments, diagnostic tests, disease prevention methods and ways to deliver care for specific clinical conditions. To be successful, such research requires the identification, capture, aggregation, integration, and analysis of disparate data sources held by different institutions with diverse representations of the relevant clinical events. In an effort to address these diverse demands, there have been multiple new designs and implementations of informatics platforms that provide access to electronic clinical data and the governance infrastructure required for inter-institutional CER. The goal of this manuscript is to help investigators understand why these informatics platforms are required and to compare and contrast six, large-scale, recently funded, CER-focused informatics platform development efforts. We utilized an 8-dimension, socio-technical model of health information technology use to help guide our work. We identified six generic steps that are necessary in any distributed, multi-institutional CER project: data identification, extraction, modeling, aggregation, analysis, and dissemination. We expect that over the next several years these projects will provide answers to many important, and heretofore unanswerable, clinical research questions. PMID:22692259

  17. Design and Implementation of Scientific Software Components to Enable Multiscale Modeling: The Effective Fragment Potential (QM/EFP) Method

    SciTech Connect

    Gaenko, Alexander; Windus, Theresa L.; Sosonkina, Masha; Gordon, Mark S.

    2012-10-19

    The design and development of scientific software components to provide an interface to the effective fragment potential (EFP) methods are reported. Multiscale modeling of physical and chemical phenomena demands the merging of software packages developed by research groups in significantly different fields. Componentization offers an efficient way to realize new high performance scientific methods by combining the best models available in different software packages without a need for package readaptation after the initial componentization is complete. The EFP method is an efficient electronic structure theory based model potential that is suitable for predictive modeling of intermolecular interactions in large molecular systems, such as liquids, proteins, atmospheric aerosols, and nanoparticles, with an accuracy that is comparable to that of correlated ab initio methods. The developed components make the EFP functionality accessible for any scientific component-aware software package. The performance of the component is demonstrated on a protein interaction model, and its accuracy is compared with results obtained with coupled cluster methods.

  18. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier

    DOE PAGESBeta

    Liu, Yuanyue; Stradins, Paul; Wei, Su -Huai

    2016-04-22

    Two-dimensional (2D) semiconductors have shown great potential for electronic and optoelectronic applications. However, their development is limited by a large Schottky barrier (SB) at the metal-semiconductor junction (MSJ), which is difficult to tune by using conventional metals because of the effect of strong Fermi level pinning (FLP). We show that this problem can be overcome by using 2D metals, which are bounded with 2D semiconductors through van der Waals (vdW) interactions. This success relies on a weak FLP at the vdW MSJ, which is attributed to the suppression of metal-induced gap states. Consequently, the SB becomes tunable and can vanishmore » with proper 2D metals (for example, H-NbS2). This work not only offers new insights into the fundamental properties of heterojunctions but also uncovers the great potential of 2D metals for device applications.« less

  19. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier

    PubMed Central

    Liu, Yuanyue; Stradins, Paul; Wei, Su-Huai

    2016-01-01

    Two-dimensional (2D) semiconductors have shown great potential for electronic and optoelectronic applications. However, their development is limited by a large Schottky barrier (SB) at the metal-semiconductor junction (MSJ), which is difficult to tune by using conventional metals because of the effect of strong Fermi level pinning (FLP). We show that this problem can be overcome by using 2D metals, which are bounded with 2D semiconductors through van der Waals (vdW) interactions. This success relies on a weak FLP at the vdW MSJ, which is attributed to the suppression of metal-induced gap states. Consequently, the SB becomes tunable and can vanish with proper 2D metals (for example, H-NbS2). This work not only offers new insights into the fundamental properties of heterojunctions but also uncovers the great potential of 2D metals for device applications. PMID:27152360

  20. High-performance GaAs metal-insulator-semiconductor field-effect transistors enabled by self-assembled nanodielectrics

    NASA Astrophysics Data System (ADS)

    Lin, H. C.; Ye, P. D.; Xuan, Y.; Lu, G.; Facchetti, A.; Marks, T. J.

    2006-10-01

    High-performance GaAs metal-insulator-semiconductor field-effect-transistors (MISFETs) fabricated with very thin self-assembled organic nanodielectrics (SANDs), deposited from solution at room temperature, are demonstrated. A submicron gate-length depletion-mode n-channel GaAs MISFET with SAND thicknesses ranging from 5.5to16.5nm exhibit a gate leakage current density <10-5A/cm2 at a gate bias smaller than 3V, a maximum drain current of 370mA/mm at a forward gate bias of 2V, and a maximum intrinsic transconductance of 170mS/mm. The importance of appropriate GaAs surface chemistry treatments on SAND/GaAs interface properties is also presented. Application of SANDs to III-V compound semiconductors affords more opportunities to manipulate the complex III-V surface chemistry with broad materials options.

  1. "Water-in-salt" electrolytes enable the use of cost-effective aluminum current collectors for aqueous high-voltage batteries.

    PubMed

    Kühnel, R-S; Reber, D; Remhof, A; Figi, R; Bleiner, D; Battaglia, C

    2016-08-16

    The extended electrochemical stability window offered by highly concentrated electrolytes allows the operation of aqueous batteries at voltages significantly above the thermodynamic stability limit of water, at which the stability of the current collector potentially limits the cell voltage. Here we report the observation of suppressed anodic dissolution of aluminum in "water-in-salt" electrolytes enabling roll-to-roll electrode fabrication for high-voltage aqueous lithium-ion batteries on cost-effective light-weight aluminum current collectors using established lithium-ion battery technology. PMID:27488137

  2. Nano-porous architecture of N-doped carbon nanorods grown on graphene to enable synergetic effects of supercapacitance.

    PubMed

    Fan, H S; Wang, H; Zhao, N; Xu, J; Pan, F

    2014-01-01

    A novel nano-porous 3D architecture of N-doped carbon nanorods arrays grown on the surface of graphene has been prepared by carbonizing polyaniline/graphene oxide (PANI-GO) composite with PANI nanorod arrays on both sides of GO nanosheets. The obtained carbon materials are entirely composed of regularly grown carbon nanorods on graphene with height of about 100 nm and width about 30 nm, showing porous property due to the decomposition of PANI chains. The morphology of PANI grown on GO at the different growth stages was investigated to demonstrate the mechanism of the finally hierarchical architecture formation. Due to its large specific surface area and incorporation of the nitrogen groups into the carbon matrix, the obtained 3D carbon material enhances the ionic transport and the super-capacitance by synergetic effect of both double-layer and faradaic capacitances. This study provides a controllable approach to fabricate hierarchical carbon material based on conducting polymers and graphene oxide with promising applications in the high-rate electrode material of supercapacitors. PMID:25519206

  3. Nano-porous architecture of N-doped carbon nanorods grown on graphene to enable synergetic effects of supercapacitance

    NASA Astrophysics Data System (ADS)

    Fan, H. S.; Wang, H.; Zhao, N.; Xu, J.; Pan, F.

    2014-12-01

    A novel nano-porous 3D architecture of N-doped carbon nanorods arrays grown on the surface of graphene has been prepared by carbonizing polyaniline/graphene oxide (PANI-GO) composite with PANI nanorod arrays on both sides of GO nanosheets. The obtained carbon materials are entirely composed of regularly grown carbon nanorods on graphene with height of about 100 nm and width about 30 nm, showing porous property due to the decomposition of PANI chains. The morphology of PANI grown on GO at the different growth stages was investigated to demonstrate the mechanism of the finally hierarchical architecture formation. Due to its large specific surface area and incorporation of the nitrogen groups into the carbon matrix, the obtained 3D carbon material enhances the ionic transport and the super-capacitance by synergetic effect of both double-layer and faradaic capacitances. This study provides a controllable approach to fabricate hierarchical carbon material based on conducting polymers and graphene oxide with promising applications in the high-rate electrode material of supercapacitors.

  4. Design and Implementation of Scientific Software Components to Enable Multiscale Modeling: The Effective Fragment Potential (QM/EFP) Method.

    PubMed

    Gaenko, Alexander; Windus, Theresa L; Sosonkina, Masha; Gordon, Mark S

    2013-01-01

    The design and development of scientific software components to provide an interface to the effective fragment potential (EFP) methods are reported. Multiscale modeling of physical and chemical phenomena demands the merging of software packages developed by research groups in significantly different fields. Componentization offers an efficient way to realize new high performance scientific methods by combining the best models available in different software packages without a need for package readaptation after the initial componentization is complete. The EFP method is an efficient electronic structure theory based model potential that is suitable for predictive modeling of intermolecular interactions in large molecular systems, such as liquids, proteins, atmospheric aerosols, and nanoparticles, with an accuracy that is comparable to that of correlated ab initio methods. The developed components make the EFP functionality accessible for any scientific component-aware software package. The performance of the component is demonstrated on a protein interaction model, and its accuracy is compared with results obtained with coupled cluster methods. PMID:26589025

  5. Sequence-engineered mRNA Without Chemical Nucleoside Modifications Enables an Effective Protein Therapy in Large Animals

    PubMed Central

    Thess, Andreas; Grund, Stefanie; Mui, Barbara L; Hope, Michael J; Baumhof, Patrick; Fotin-Mleczek, Mariola; Schlake, Thomas

    2015-01-01

    Being a transient carrier of genetic information, mRNA could be a versatile, flexible, and safe means for protein therapies. While recent findings highlight the enormous therapeutic potential of mRNA, evidence that mRNA-based protein therapies are feasible beyond small animals such as mice is still lacking. Previous studies imply that mRNA therapeutics require chemical nucleoside modifications to obtain sufficient protein expression and avoid activation of the innate immune system. Here we show that chemically unmodified mRNA can achieve those goals as well by applying sequence-engineered molecules. Using erythropoietin (EPO) driven production of red blood cells as the biological model, engineered Epo mRNA elicited meaningful physiological responses from mice to nonhuman primates. Even in pigs of about 20 kg in weight, a single adequate dose of engineered mRNA encapsulated in lipid nanoparticles (LNPs) induced high systemic Epo levels and strong physiological effects. Our results demonstrate that sequence-engineered mRNA has the potential to revolutionize human protein therapies. PMID:26050989

  6. Nano-porous architecture of N-doped carbon nanorods grown on graphene to enable synergetic effects of supercapacitance

    PubMed Central

    Fan, H. S.; Wang, H.; Zhao, N.; Xu, J.; Pan, F.

    2014-01-01

    A novel nano-porous 3D architecture of N-doped carbon nanorods arrays grown on the surface of graphene has been prepared by carbonizing polyaniline/graphene oxide (PANI-GO) composite with PANI nanorod arrays on both sides of GO nanosheets. The obtained carbon materials are entirely composed of regularly grown carbon nanorods on graphene with height of about 100 nm and width about 30 nm, showing porous property due to the decomposition of PANI chains. The morphology of PANI grown on GO at the different growth stages was investigated to demonstrate the mechanism of the finally hierarchical architecture formation. Due to its large specific surface area and incorporation of the nitrogen groups into the carbon matrix, the obtained 3D carbon material enhances the ionic transport and the super-capacitance by synergetic effect of both double-layer and faradaic capacitances. This study provides a controllable approach to fabricate hierarchical carbon material based on conducting polymers and graphene oxide with promising applications in the high-rate electrode material of supercapacitors. PMID:25519206

  7. Enable: Developing Instructional Language Skills.

    ERIC Educational Resources Information Center

    Witt, Beth

    The program presented in this manual provides a structure and activities for systematic development of effective listening comprehension in typical and atypical children. The complete ENABLE kit comes with pictures, cut-outs, and puppets to illustrate the directives, questions, and narrative activities. The manual includes an organizational and…

  8. Nonplanar Nanoscale Fin Field Effect Transistors on Textile, Paper, Wood, Stone, and Vinyl via Soft Material-Enabled Double-Transfer Printing.

    PubMed

    Rojas, Jhonathan P; Torres Sevilla, Galo A; Alfaraj, Nasir; Ghoneim, Mohamed T; Kutbee, Arwa T; Sridharan, Ashvitha; Hussain, Muhammad Mustafa

    2015-05-26

    The ability to incorporate rigid but high-performance nanoscale nonplanar complementary metal-oxide semiconductor (CMOS) electronics with curvilinear, irregular, or asymmetric shapes and surfaces is an arduous but timely challenge in enabling the production of wearable electronics with an in situ information-processing ability in the digital world. Therefore, we are demonstrating a soft-material enabled double-transfer-based process to integrate flexible, silicon-based, nanoscale, nonplanar, fin-shaped field effect transistors (FinFETs) and planar metal-oxide-semiconductor field effect transistors (MOSFETs) on various asymmetric surfaces to study their compatibility and enhanced applicability in various emerging fields. FinFET devices feature sub-20 nm dimensions and state-of-the-art, high-κ/metal gate stacks, showing no performance alteration after the transfer process. A further analysis of the transferred MOSFET devices, featuring 1 μm gate length, exhibits an ION value of nearly 70 μA/μm (VDS = 2 V, VGS = 2 V) and a low subthreshold swing of around 90 mV/dec, proving that a soft interfacial material can act both as a strong adhesion/interposing layer between devices and final substrate as well as a means to reduce strain, which ultimately helps maintain the device's performance with insignificant deterioration even at a high bending state. PMID:25933370

  9. Dust control for Enabler

    NASA Technical Reports Server (NTRS)

    Hilton, Kevin; Karl, Chad; Litherland, Mark; Ritchie, David; Sun, Nancy

    1992-01-01

    The dust control group designed a system to restrict dust that is disturbed by the Enabler during its operation from interfering with astronaut or camera visibility. This design also considers the many different wheel positions made possible through the use of artinuation joints that provide the steering and wheel pitching for the Enabler. The system uses a combination of brushes and fenders to restrict the dust when the vehicle is moving in either direction and in a turn. This design also allows for each of maintenance as well as accessibility of the remainder of the vehicle.

  10. Dust control for Enabler

    NASA Technical Reports Server (NTRS)

    Hilton, Kevin; Karl, Chad; Litherland, Mark; Ritchie, David; Sun, Nancy

    1992-01-01

    The dust control group designed a system to restrict dust that is disturbed by the Enabler during its operation from interfering with astronaut or camera visibility. This design also considers the many different wheel positions made possible through the use of artinuation joints that provide the steering and wheel pitching for the Enabler. The system uses a combination of brushes and fenders to restrict the dust when the vehicle is moving in either direction and in a turn. This design also allows for ease of maintenance as well as accessibility of the remainder of the vehicle.

  11. Microsystems Enabled Photovoltaics

    ScienceCinema

    Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

    2014-06-23

    Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

  12. Microsystems Enabled Photovoltaics

    SciTech Connect

    Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

    2012-07-02

    Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

  13. Tunable optical frequency comb enabled scalable and cost-effective multiuser orthogonal frequency-division multiple access passive optical network with source-free optical network units.

    PubMed

    Chen, Chen; Zhang, Chongfu; Liu, Deming; Qiu, Kun; Liu, Shuang

    2012-10-01

    We propose and experimentally demonstrate a multiuser orthogonal frequency-division multiple access passive optical network (OFDMA-PON) with source-free optical network units (ONUs), enabled by tunable optical frequency comb generation technology. By cascading a phase modulator (PM) and an intensity modulator and dynamically controlling the peak-to-peak voltage of a PM driven signal, a tunable optical frequency comb source can be generated. It is utilized to assist the configuration of a multiple source-free ONUs enhanced OFDMA-PON where simultaneous and interference-free multiuser upstream transmission over a single wavelength can be efficiently supported. The proposed multiuser OFDMA-PON is scalable and cost effective, and its feasibility is successfully verified by experiment. PMID:23027243

  14. Enabling Wind Power Nationwide

    SciTech Connect

    Jose, Zayas; Michael, Derby; Patrick, Gilman; Ananthan, Shreyas; Lantz, Eric; Cotrell, Jason; Beck, Fredic; Tusing, Richard

    2015-05-01

    Leveraging this experience, the U.S. Department of Energy’s (DOE’s) Wind and Water Power Technologies Office has evaluated the potential for wind power to generate electricity in all 50 states. This report analyzes and quantifies the geographic expansion that could be enabled by accessing higher above ground heights for wind turbines and considers the means by which this new potential could be responsibly developed.

  15. Bedrails: restraints or enablers?

    PubMed

    Mullette, Betty; Zulkowski, Karen

    2004-08-01

    Bedrails presently are used as both mobility restraints and enablers in long-term care facilities. As enablers, bedrails facilitate movement and may reduce the risk of pressure ulcer development. As restraints, they impede movement and may increase risk of ulcer development. Omnibus Budget Reconciliation Act regulations on restraint use have led to confusion for state Medicare surveyors and facilities regarding the definition of appropriate bedrail use and need for supportive documentation. Consequently, some facilities receive deficiency citations for inappropriate use or documentation while others do not. The purpose of this survey was to compare responses of Directors of Nursing in long-term care facilities and Medicare state surveyors to determine how each interprets the Omnibus Budget Reconciliation Act bedrail language for use and documentation. Questionnaires on bedrail use and documentation were sent to state surveyors and Directors of Nursing. One hundred, three (103) Directors of Nursing in 45 states and 65 surveyors from 39 states participated in the survey (response rate 61%). Study results demonstrated general acceptance of bedrail use as an enabler but not as a restraint by both Directors of Nursing and state surveyors. Four percent (4%) of Directors of Nursing reported receiving a citation for bedrail use and 59% of surveyors reported issuing citations for bedrail use. Significant differences were noted between the two groups regarding appropriate bedrail use and necessary documentation. The intent of Medicare guidelines and the Centers for Medicare and Medicaid Services is to standardize care for nursing home residents in the United States; yet, current regulations are open to individual interpretation by state surveyors and confusion exists between the intent of the Omnibus Budget Reconciliation Act and the daily operations of nursing homes. Educating clinicians about the risks and benefits of bedrail use, either as restraint or enabler, and

  16. A new procedure for amyloid β oligomers preparation enables the unambiguous testing of their effects on cytosolic and mitochondrial Ca(2+) entry and cell death in primary neurons.

    PubMed

    Caballero, Erica; Calvo-Rodríguez, María; Gonzalo-Ruiz, Alicia; Villalobos, Carlos; Núñez, Lucía

    2016-01-26

    Oligomers of the amyloid β peptide (Aβo) are becoming the most likely neurotoxin in Alzheimer's disease. Controversy remains on the mechanisms involved in neurotoxicity induced by Aβo and the targets involved. We have reported that Aβo promote Ca(2+) entry, mitochondrial Ca(2+) overload and apoptosis in cultured cerebellar neurons. However, recent evidence suggests that some of these effects could be induced by glutamate receptor agonists solved in F12, the media in which Aβo are prepared. Here we have tested the effects of different media on Aβo formation and on cytosolic Ca(2+) concentration ([Ca(2+)]cyt) in rat cerebellar and hippocampal cell cultures. We found that Aβo prepared according to previous protocols but solved in alternative media including saline, MEM and DMEM do not allow oligomer formation and fail to increase [Ca(2+)]cyt. Changes in the oligomerization protocol and supplementation of media with selected salts reported to favor oligomer formation enable Aβo formation. Aβo prepared by the new procedure and containing small molecular weight oligomers increased [Ca(2+)]cyt, promoted mitochondrial Ca(2+) overload and cell death in cerebellar granule cells and hippocampal neurons. These results foster a role for Ca(2+) entry in neurotoxicity induced by Aβo and provide a reliable procedure for investigating the Ca(2+) entry pathway promoted by Aβo. PMID:26655463

  17. Exogenous Attention Enables Perceptual Learning

    PubMed Central

    Szpiro, Sarit F. A.; Carrasco, Marisa

    2015-01-01

    Practice can improve visual perception, and these improvements are considered to be a form of brain plasticity. Training-induced learning is time-consuming and requires hundreds of trials across multiple days. The process of learning acquisition is understudied. Can learning acquisition be potentiated by manipulating visual attentional cues? We developed a protocol in which we used task-irrelevant cues for between-groups manipulation of attention during training. We found that training with exogenous attention can enable the acquisition of learning. Remarkably, this learning was maintained even when observers were subsequently tested under neutral conditions, which indicates that a change in perception was involved. Our study is the first to isolate the effects of exogenous attention and to demonstrate its efficacy to enable learning. We propose that exogenous attention boosts perceptual learning by enhancing stimulus encoding. PMID:26502745

  18. Smart Grid Enabled EVSE

    SciTech Connect

    None, None

    2014-10-15

    The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

  19. Enabling graphene nanoelectronics.

    SciTech Connect

    Pan, Wei; Ohta, Taisuke; Biedermann, Laura Butler; Gutierrez, Carlos; Nolen, C. M.; Howell, Stephen Wayne; Beechem Iii, Thomas Edwin; McCarty, Kevin F.; Ross, Anthony Joseph, III

    2011-09-01

    Recent work has shown that graphene, a 2D electronic material amenable to the planar semiconductor fabrication processing, possesses tunable electronic material properties potentially far superior to metals and other standard semiconductors. Despite its phenomenal electronic properties, focused research is still required to develop techniques for depositing and synthesizing graphene over large areas, thereby enabling the reproducible mass-fabrication of graphene-based devices. To address these issues, we combined an array of growth approaches and characterization resources to investigate several innovative and synergistic approaches for the synthesis of high quality graphene films on technologically relevant substrate (SiC and metals). Our work focused on developing the fundamental scientific understanding necessary to generate large-area graphene films that exhibit highly uniform electronic properties and record carrier mobility, as well as developing techniques to transfer graphene onto other substrates.

  20. Enabling distributed petascale science.

    SciTech Connect

    Baranovski, A.; Bharathi, S.; Bresnahan, J.; chervenak, A.; Foster, I.; Fraser, D.; Freeman, T.; Gunter, D.; Jackson, K.; Keahey, K.; Kesselman, C.; Konerding, D. E.; Leroy, N.; Link, M.; Livny, M.; Miller, N.; Miller, R.; Oleynik, G.; Pearlman, L.; Schopf, J. M.; Schuler, R.; Tierney, B.; Mathematics and Computer Science; FNL; Univ. of Southern California; Univ. of Chicago; LBNL; Univ. of Wisconsin

    2007-01-01

    Petascale science is an end-to-end endeavour, involving not only the creation of massive datasets at supercomputers or experimental facilities, but the subsequent analysis of that data by a user community that may be distributed across many laboratories and universities. The new SciDAC Center for Enabling Distributed Petascale Science (CEDPS) is developing tools to support this end-to-end process. These tools include data placement services for the reliable, high-performance, secure, and policy-driven placement of data within a distributed science environment; tools and techniques for the construction, operation, and provisioning of scalable science services; and tools for the detection and diagnosis of failures in end-to-end data placement and distributed application hosting configurations. In each area, we build on a strong base of existing technology and have made useful progress in the first year of the project. For example, we have recently achieved order-of-magnitude improvements in transfer times (for lots of small files) and implemented asynchronous data staging capabilities; demonstrated dynamic deployment of complex application stacks for the STAR experiment; and designed and deployed end-to-end troubleshooting services. We look forward to working with SciDAC application and technology projects to realize the promise of petascale science.

  1. Enabling immersive simulation.

    SciTech Connect

    McCoy, Josh; Mateas, Michael; Hart, Derek H.; Whetzel, Jonathan; Basilico, Justin Derrick; Glickman, Matthew R.; Abbott, Robert G.

    2009-02-01

    The object of the 'Enabling Immersive Simulation for Complex Systems Analysis and Training' LDRD has been to research, design, and engineer a capability to develop simulations which (1) provide a rich, immersive interface for participation by real humans (exploiting existing high-performance game-engine technology wherever possible), and (2) can leverage Sandia's substantial investment in high-fidelity physical and cognitive models implemented in the Umbra simulation framework. We report here on these efforts. First, we describe the integration of Sandia's Umbra modular simulation framework with the open-source Delta3D game engine. Next, we report on Umbra's integration with Sandia's Cognitive Foundry, specifically to provide for learning behaviors for 'virtual teammates' directly from observed human behavior. Finally, we describe the integration of Delta3D with the ABL behavior engine, and report on research into establishing the theoretical framework that will be required to make use of tools like ABL to scale up to increasingly rich and realistic virtual characters.

  2. Grid-Enabled Measures

    PubMed Central

    Moser, Richard P.; Hesse, Bradford W.; Shaikh, Abdul R.; Courtney, Paul; Morgan, Glen; Augustson, Erik; Kobrin, Sarah; Levin, Kerry; Helba, Cynthia; Garner, David; Dunn, Marsha; Coa, Kisha

    2011-01-01

    Scientists are taking advantage of the Internet and collaborative web technology to accelerate discovery in a massively connected, participative environment —a phenomenon referred to by some as Science 2.0. As a new way of doing science, this phenomenon has the potential to push science forward in a more efficient manner than was previously possible. The Grid-Enabled Measures (GEM) database has been conceptualized as an instantiation of Science 2.0 principles by the National Cancer Institute with two overarching goals: (1) Promote the use of standardized measures, which are tied to theoretically based constructs; and (2) Facilitate the ability to share harmonized data resulting from the use of standardized measures. This is done by creating an online venue connected to the Cancer Biomedical Informatics Grid (caBIG®) where a virtual community of researchers can collaborate together and come to consensus on measures by rating, commenting and viewing meta-data about the measures and associated constructs. This paper will describe the web 2.0 principles on which the GEM database is based, describe its functionality, and discuss some of the important issues involved with creating the GEM database, such as the role of mutually agreed-on ontologies (i.e., knowledge categories and the relationships among these categories— for data sharing). PMID:21521586

  3. Enabling cleanup technology transfer.

    SciTech Connect

    Ditmars, J. D.

    2002-08-12

    Technology transfer in the environmental restoration, or cleanup, area has been challenging. While there is little doubt that innovative technologies are needed to reduce the times, risks, and costs associated with the cleanup of federal sites, particularly those of the Departments of Energy (DOE) and Defense, the use of such technologies in actual cleanups has been relatively limited. There are, of course, many reasons why technologies do not reach the implementation phase or do not get transferred from developing entities to the user community. For example, many past cleanup contracts provided few incentives for performance that would compel a contractor to seek improvement via technology applications. While performance-based contracts are becoming more common, they alone will not drive increased technology applications. This paper focuses on some applications of cleanup methodologies and technologies that have been successful and are illustrative of a more general principle. The principle is at once obvious and not widely practiced. It is that, with few exceptions, innovative cleanup technologies are rarely implemented successfully alone but rather are implemented in the context of enabling processes and methodologies. And, since cleanup is conducted in a regulatory environment, the stage is better set for technology transfer when the context includes substantive interactions with the relevant stakeholders. Examples of this principle are drawn from Argonne National Laboratory's experiences in Adaptive Sampling and Analysis Programs (ASAPs), Precise Excavation, and the DOE Technology Connection (TechCon) Program. The lessons learned may be applicable to the continuing challenges posed by the cleanup and long-term stewardship of radioactive contaminants and unexploded ordnance (UXO) at federal sites.

  4. FOILFEST :community enabled security.

    SciTech Connect

    Moore, Judy Hennessey; Johnson, Curtis Martin; Whitley, John B.; Drayer, Darryl Donald; Cummings, John C., Jr.

    2005-09-01

    The Advanced Concepts Group of Sandia National Laboratories hosted a workshop, ''FOILFest: Community Enabled Security'', on July 18-21, 2005, in Albuquerque, NM. This was a far-reaching look into the future of physical protection consisting of a series of structured brainstorming sessions focused on preventing and foiling attacks on public places and soft targets such as airports, shopping malls, hotels, and public events. These facilities are difficult to protect using traditional security devices since they could easily be pushed out of business through the addition of arduous and expensive security measures. The idea behind this Fest was to explore how the public, which is vital to the function of these institutions, can be leveraged as part of a physical protection system. The workshop considered procedures, space design, and approaches for building community through technology. The workshop explored ways to make the ''good guys'' in public places feel safe and be vigilant while making potential perpetrators of harm feel exposed and convinced that they will not succeed. Participants in the Fest included operators of public places, social scientists, technology experts, representatives of government agencies including DHS and the intelligence community, writers and media experts. Many innovative ideas were explored during the fest with most of the time spent on airports, including consideration of the local airport, the Albuquerque Sunport. Some provocative ideas included: (1) sniffers installed in passage areas like revolving door, escalators, (2) a ''jumbotron'' showing current camera shots in the public space, (3) transparent portal screeners allowing viewing of the screening, (4) a layered open/funnel/open/funnel design where open spaces are used to encourage a sense of ''communitas'' and take advantage of citizen ''sensing'' and funnels are technological tunnels of sensors (the tunnels of truth), (5) curved benches with blast proof walls or backs, (6

  5. Enabling scientific teamwork

    NASA Astrophysics Data System (ADS)

    Hereld, Mark; Hudson, Randy; Norris, John; Papka, Michael E.; Uram, Thomas

    2009-07-01

    The Computer Supported Collaborative Work research community has identified that the technology used to support distributed teams of researchers, such as email, instant messaging, and conferencing environments, are not enough. Building from a list of areas where it is believed technology can help support distributed teams, we have divided our efforts into support of asynchronous and synchronous activities. This paper will describe two of our recent efforts to improve the productivity of distributed science teams. One effort focused on supporting the management and tracking of milestones and results, with the hope of helping manage information overload. The second effort focused on providing an environment that supports real-time analysis of data. Both of these efforts are seen as add-ons to the existing collaborative infrastructure, developed to enhance the experience of teams working at a distance by removing barriers to effective communication.

  6. Enabling technology for human collaboration.

    SciTech Connect

    Murphy, Tim Andrew; Jones, Wendell Bruce; Warner, David Jay; Doser, Adele Beatrice; Johnson, Curtis Martin; Merkle, Peter Benedict

    2003-11-01

    This report summarizes the results of a five-month LDRD late start project which explored the potential of enabling technology to improve the performance of small groups. The purpose was to investigate and develop new methods to assist groups working in high consequence, high stress, ambiguous and time critical situations, especially those for which it is impractical to adequately train or prepare. A testbed was constructed for exploratory analysis of a small group engaged in tasks with high cognitive and communication performance requirements. The system consisted of five computer stations, four with special devices equipped to collect physiologic, somatic, audio and video data. Test subjects were recruited and engaged in a cooperative video game. Each team member was provided with a sensor array for physiologic and somatic data collection while playing the video game. We explored the potential for real-time signal analysis to provide information that enables emergent and desirable group behavior and improved task performance. The data collected in this study included audio, video, game scores, physiological, somatic, keystroke, and mouse movement data. The use of self-organizing maps (SOMs) was explored to search for emergent trends in the physiological data as it correlated with the video, audio and game scores. This exploration resulted in the development of two approaches for analysis, to be used concurrently, an individual SOM and a group SOM. The individual SOM was trained using the unique data of each person, and was used to monitor the effectiveness and stress level of each member of the group. The group SOM was trained using the data of the entire group, and was used to monitor the group effectiveness and dynamics. Results suggested that both types of SOMs were required to adequately track evolutions and shifts in group effectiveness. Four subjects were used in the data collection and development of these tools. This report documents a proof of concept

  7. Enabling a Comprehensive Teaching Strategy: Video Lectures

    ERIC Educational Resources Information Center

    Brecht, H. David; Ogilby, Suzanne M.

    2008-01-01

    This study empirically tests the feasibility and effectiveness of video lectures as a form of video instruction that enables a comprehensive teaching strategy used throughout a traditional classroom course. It examines student use patterns and the videos' effects on student learning, using qualitative and nonparametric statistical analyses of…

  8. Toward genome-enabled mycology.

    PubMed

    Hibbett, David S; Stajich, Jason E; Spatafora, Joseph W

    2013-01-01

    Genome-enabled mycology is a rapidly expanding field that is characterized by the pervasive use of genome-scale data and associated computational tools in all aspects of fungal biology. Genome-enabled mycology is integrative and often requires teams of researchers with diverse skills in organismal mycology, bioinformatics and molecular biology. This issue of Mycologia presents the first complete fungal genomes in the history of the journal, reflecting the ongoing transformation of mycology into a genome-enabled science. Here, we consider the prospects for genome-enabled mycology and the technical and social challenges that will need to be overcome to grow the database of complete fungal genomes and enable all fungal biologists to make use of the new data. PMID:23928422

  9. Solar Glitter -- Microsystems Enabled Photovoltaics

    NASA Astrophysics Data System (ADS)

    Nielson, Gregory N.

    2012-02-01

    Many products have significantly benefitted from, or been enabled by, the ability to manufacture structures at an ever decreasing length scale. Obvious examples of this include integrated circuits, flat panel displays, micro-scale sensors, and LED lighting. These industries have benefited from length scale effects in terms of improved performance, reduced cost, or new functionality (or a combination of these). In a similar manner, we are working to take advantage of length scale effects that exist within solar photovoltaic (PV) systems. While this is a significant step away from traditional approaches to solar power systems, the benefits in terms of new functionality, improved performance, and reduced cost for solar power are compelling. We are exploring scale effects that result from the size of the solar cells within the system. We have developed unique cells of both crystalline silicon and III-V materials that are very thin (5-20 microns thick) and have very small lateral dimensions (on the order of hundreds of microns across). These cells minimize the amount of expensive semiconductor material required for the system, allow improved cell performance, and provide an expanded design space for both module and system concepts allowing optimized power output and reduced module and balance of system costs. Furthermore, the small size of the cells allows for unique high-efficiency, high-flexibility PV panels and new building-integrated PV options that are currently unavailable. These benefits provide a pathway for PV power to become cost competitive with grid power and allow unique power solutions independent of grid power.

  10. Computer Security Systems Enable Access.

    ERIC Educational Resources Information Center

    Riggen, Gary

    1989-01-01

    A good security system enables access and protects information from damage or tampering, but the most important aspects of a security system aren't technical. A security procedures manual addresses the human element of computer security. (MLW)

  11. Enabling Space Science and Exploration

    NASA Technical Reports Server (NTRS)

    Weber, William J.

    2006-01-01

    This viewgraph presentation on enabling space science and exploration covers the following topics: 1) Today s Deep Space Network; 2) Next Generation Deep Space Network; 3) Needed technologies; 4) Mission IT and networking; and 5) Multi-mission operations.

  12. Acyclic Cucurbit[n]uril-Type Molecular Container Enables Systemic Delivery of Effective Doses of Albendazole for Treatment of SK-OV-3 Xenograft Tumors.

    PubMed

    Hettiarachchi, Gaya; Samanta, Soumen K; Falcinelli, Shane; Zhang, Ben; Moncelet, Damien; Isaacs, Lyle; Briken, Volker

    2016-03-01

    Approximately, 40-70% of active pharmaceutical ingredients (API) are severely limited by their extremely poor aqueous solubility, and consequently, there is a high demand for excipients that can be used to formulate clinically relevant doses of these drug candidates. Here, proof-of-concept studies demonstrate the potential of our recently discovered acyclic cucurbit[n]uril-type molecular container Motor1 (M1) as a solubilizing agent for insoluble drugs. M1 did not induce significant rates of mutations in various Salmonella typhimurium test strains during the Ames test, suggesting low genotoxicity. M1 also has low risk of causing cardiac toxicity in humans since it did not inhibit the human Ether-à-go-go-Related Gene channel as tested on transfected CHO cell lines via patch clamp analysis. Albendazole (ABZ) is a widely used antihelminthic agent but that has also shown promising efficacy against cancerous cells in vitro. However, due to its low aqueous solubility (2.7 μM) and poor pharmacokinetics, ABZ is clinically limited as an anticancer agent. Here we investigated the potential of M1 as a solubilizing excipient for ABZ formulation. A pharmacokinetic study indicated that ABZ escapes the peritoneal cavity resulting in 78% absolute bioavailability, while its active intermediate metabolite, albendazole sulfoxide, achieved 43% absolute bioavailability. The daily dosing of 681 mg/kg M1 complexed with 3.2 mg/kg of ABZ for 14 days did not result in significant weight loss or pathology in Swiss Webster mice. In vivo efficacy studies using this M1·ABZ inclusion complex showed significant decreases in tumor growth rates and increases in survival of mice bearing SK-OV-3 xenograft tumors. In conclusion, we provide substantial new evidence demonstrating that M1 is a safe and efficient excipient that enables in vivo parenteral delivery of poorly water-soluble APIs. PMID:26756920

  13. 75 FR 13235 - IP-Enabled Services

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... 47 CFR 63.60(a) and (f), published on August 7, 2009 (74 FR 39551), were approved by the Office of... published a document in the Federal Register, 74 FR 39551, August 7, 2009, that sets forth an effective date... COMMISSION 47 CFR Part 63 IP-Enabled Services AGENCY: Federal Communications Commission ACTION: Final...

  14. Enabling individualized therapy through nanotechnology

    PubMed Central

    Sakamoto, Jason H.; van de Ven, Anne L.; Godin, Biana; Blanco, Elvin; Serda, Rita E.; Grattoni, Alessandro; Ziemys, Arturas; Bouamrani, Ali; Hu, Tony; Ranganathan, Shivakumar I.; De Rosa, Enrica; Martinez, Jonathan O.; Smid, Christine A.; Buchanan, Rachel M.; Lee, Sei-Young; Srinivasan, Srimeenakshi; Landry, Matthew; Meyn, Anne; Tasciotti, Ennio; Liu, Xuewu; Decuzzi, Paolo; Ferrari, Mauro

    2010-01-01

    Individualized medicine is the healthcare strategy that rebukes the idiomatic dogma of ‘losing sight of the forest for the trees’. We are entering a new era of healthcare where it is no longer acceptable to develop and market a drug that is effective for only 80% of the patient population. The emergence of “-omic” technologies (e.g. genomics, transcriptomics, proteomics, metabolomics) and advances in systems biology are magnifying the deficiencies of standardized therapy, which often provide little treatment latitude for accommodating patient physiologic idiosyncrasies. A personalized approach to medicine is not a novel concept. Ever since the scientific community began unraveling the mysteries of the genome, the promise of discarding generic treatment regimens in favor of patient-specific therapies became more feasible and realistic. One of the major scientific impediments of this movement towards personalized medicine has been the need for technological enablement. Nanotechnology is projected to play a critical role in patient-specific therapy; however, this transition will depend heavily upon the evolutionary development of a systems biology approach to clinical medicine based upon “-omic” technology analysis and integration. This manuscript provides a forward looking assessment of the promise of nanomedicine as it pertains to individualized medicine and establishes a technology “snapshot” of the current state of nano-based products over a vast array of clinical indications and range of patient specificity. Other issues such as market driven hurdles and regulatory compliance reform are anticipated to “self-correct” in accordance to scientific advancement and healthcare demand. These peripheral, non-scientific concerns are not addressed at length in this manuscript; however they do exist, and their impact to the paradigm shifting healthcare transformation towards individualized medicine will be critical for its success. PMID:20045055

  15. Do Frameworks Enable Educational Psychologists to Work Effectively and Efficiently in Practice? A Critical Discussion of the Development of Executive Frameworks

    ERIC Educational Resources Information Center

    Wicks, Abigail

    2013-01-01

    This paper explores whether adopting an "executive framework" makes educational psychologists' (EPs) practice more efficient and effective. Whilst many EPs understand and value executive frameworks in theory, explicit use of such tools may not be fully integrated into their day-to-day practice. Why this might be is considered.…

  16. Copolymer Networks From Oligo(ε-caprolactone) and n-Butyl Acrylate Enable a Reversible Bidirectional Shape-Memory Effect at Human Body Temperature.

    PubMed

    Saatchi, Mersa; Behl, Marc; Nöchel, Ulrich; Lendlein, Andreas

    2015-05-01

    Exploiting the tremendous potential of the recently discovered reversible bidirectional shape-memory effect (rbSME) for biomedical applications requires switching temperatures in the physiological range. The recent strategy is based on the reduction of the melting temperature range (ΔT m ) of the actuating oligo(ε-caprolactone) (OCL) domains in copolymer networks from OCL and n-butyl acrylate (BA), where the reversible effect can be adjusted to the human body temperature. In addition, it is investigated whether an rbSME in the temperature range close or even above Tm,offset (end of the melting transition) can be obtained. Two series of networks having mixtures of OCLs reveal broad ΔTm s from 2 °C to 50 °C and from -10 °C to 37 °C, respectively. In cyclic, thermomechanical experiments the rbSME can be tailored to display pronounced actuation in a temperature interval between 20 °C and 37 °C. In this way, the application spectrum of the rbSME can be extended to biomedical applications. PMID:25776303

  17. Direct-current and radio-frequency characterizations of GaAs metal-insulator-semiconductor field-effect transistors enabled by self-assembled nanodielectrics

    NASA Astrophysics Data System (ADS)

    Lin, H. C.; Kim, S. K.; Chang, D.; Xuan, Y.; Mohammadi, S.; Ye, P. D.; Lu, G.; Facchetti, A.; Marks, T. J.

    2007-08-01

    Direct-current and radio-frequency characterizations of GaAs metal-insulator-semiconductor field-effect transistors (MISFETs) with very thin self-assembled organic nanodielectrics (SANDs) are presented. The application of SAND on compound semiconductors offers unique opportunities for high-performance devices. Thus, 1μm gate-length depletion-mode n-channel SAND/GaAs MISFETs exhibit low gate leakage current densities of 10-2-10-5A/cm2, a maximum drain current of 260mA/mm at 2V forward gate bias, and a maximum intrinsic transconductance of 127mS/mm. These devices achieve a current cutoff frequency (fT) of 10.6GHz and a maximum oscillation frequency (fmax) of 6.9GHz. Nearly hysteresis-free Ids-Vgs characteristics and low flicker noise indicate that a high-quality SAND-GaAs interface is achieved.

  18. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: enabling nanoscale direct write homo-junctions

    PubMed Central

    Stanford, Michael G.; Pudasaini, Pushpa Raj; Belianinov, Alex; Cross, Nicholas; Noh, Joo Hyon; Koehler, Michael R.; Mandrus, David G.; Duscher, Gerd; Rondinone, Adam J.; Ivanov, Ilia N.; Ward, T. Zac; Rack, Philip D.

    2016-01-01

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Furthermore, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices. PMID:27263472

  19. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: enabling nanoscale direct write homo-junctions

    NASA Astrophysics Data System (ADS)

    Stanford, Michael G.; Pudasaini, Pushpa Raj; Belianinov, Alex; Cross, Nicholas; Noh, Joo Hyon; Koehler, Michael R.; Mandrus, David G.; Duscher, Gerd; Rondinone, Adam J.; Ivanov, Ilia N.; Ward, T. Zac; Rack, Philip D.

    2016-06-01

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Furthermore, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.

  20. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: enabling nanoscale direct write homo-junctions.

    PubMed

    Stanford, Michael G; Pudasaini, Pushpa Raj; Belianinov, Alex; Cross, Nicholas; Noh, Joo Hyon; Koehler, Michael R; Mandrus, David G; Duscher, Gerd; Rondinone, Adam J; Ivanov, Ilia N; Ward, T Zac; Rack, Philip D

    2016-01-01

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Furthermore, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices. PMID:27263472

  1. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: Enabling nanoscale direct write homo-junctions

    DOE PAGESBeta

    Stanford, Michael; Noh, Joo Hyon; Koehler, Michael R.; Mandrus, David G.; Duscher, Gerd; Rondinone, Adam Justin; Ivanov, Ilia N.; Ward, Thomas Zac; Rack, Philip D.; Pudasaini, Pushpa Raj; et al

    2016-06-06

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuningmore » the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Moreover, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.« less

  2. Rectification and tunneling effects enabled by Al{sub 2}O{sub 3} atomic layer deposited on back contact of CdTe solar cells

    SciTech Connect

    Liang, Jun; Lin, Qinxian; Li, Hao; Su, Yantao; Yang, Xiaoyang; Wu, Zhongzhen; Zheng, Jiaxin; Wang, Xinwei; Lin, Yuan; Pan, Feng

    2015-07-06

    Atomic layer deposition (ALD) of Aluminum oxide (Al{sub 2}O{sub 3}) is employed to optimize the back contact of thin film CdTe solar cells. Al{sub 2}O{sub 3} layers with a thickness of 0.5 nm to 5 nm are tested, and an improved efficiency, up to 12.1%, is found with the 1 nm Al{sub 2}O{sub 3} deposition, compared with the efficiency of 10.7% without Al{sub 2}O{sub 3} modification. The performance improvement stems from the surface modification that optimizes the rectification and tunneling of back contact. The current-voltage analysis indicates that the back contact with 1 nm Al{sub 2}O{sub 3} maintains large tunneling leakage current and improves the filled factor of CdTe cells through the rectification effect. XPS and capacitance-voltage electrical measurement analysis show that the ALD-Al{sub 2}O{sub 3} modification layer features a desired low-density of interface state of 8 × 10{sup 10 }cm{sup −2} by estimation.

  3. Rectification and tunneling effects enabled by Al2O3 atomic layer deposited on back contact of CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Liang, Jun; Lin, Qinxian; Li, Hao; Su, Yantao; Yang, Xiaoyang; Wu, Zhongzhen; Zheng, Jiaxin; Wang, Xinwei; Lin, Yuan; Pan, Feng

    2015-07-01

    Atomic layer deposition (ALD) of Aluminum oxide (Al2O3) is employed to optimize the back contact of thin film CdTe solar cells. Al2O3 layers with a thickness of 0.5 nm to 5 nm are tested, and an improved efficiency, up to 12.1%, is found with the 1 nm Al2O3 deposition, compared with the efficiency of 10.7% without Al2O3 modification. The performance improvement stems from the surface modification that optimizes the rectification and tunneling of back contact. The current-voltage analysis indicates that the back contact with 1 nm Al2O3 maintains large tunneling leakage current and improves the filled factor of CdTe cells through the rectification effect. XPS and capacitance-voltage electrical measurement analysis show that the ALD-Al2O3 modification layer features a desired low-density of interface state of 8 × 1010 cm-2 by estimation.

  4. Clinical effectiveness and cost-effectiveness of the Rehabilitation Enablement in Chronic Heart Failure (REACH-HF) facilitated self-care rehabilitation intervention in heart failure patients and caregivers: rationale and protocol for a multicentre randomised controlled trial

    PubMed Central

    Taylor, R S; Hayward, C; Eyre, V; Austin, J; Davies, R; Doherty, P; Jolly, K; Wingham, J; Van Lingen, R; Abraham, C; Green, C; Warren, FC; Britten, N; Greaves, C J; Singh, S; Buckingham, S; Paul, K; Dalal, H

    2015-01-01

    Introduction The Rehabilitation EnAblement in CHronic Heart Failure (REACH-HF) trial is part of a research programme designed to develop and evaluate a health professional facilitated, home-based, self-help rehabilitation intervention to improve self-care and health-related quality of life in people with heart failure and their caregivers. The trial will assess the clinical effectiveness and cost-effectiveness of the REACH-HF intervention in patients with systolic heart failure and impact on the outcomes of their caregivers. Methods and analysis A parallel two group randomised controlled trial with 1:1 individual allocation to the REACH-HF intervention plus usual care (intervention group) or usual care alone (control group) in 216 patients with systolic heart failure (ejection fraction <45%) and their caregivers. The intervention comprises a self-help manual delivered by specially trained facilitators over a 12-week period. The primary outcome measure is patients’ disease-specific health-related quality of life measured using the Minnesota Living with Heart Failure questionnaire at 12 months’ follow-up. Secondary outcomes include survival and heart failure related hospitalisation, blood biomarkers, psychological well-being, exercise capacity, physical activity, other measures of quality of life, patient safety and the quality of life, psychological well-being and perceived burden of caregivers at 4, 6 and 12 months’ follow-up. A process evaluation will assess fidelity of intervention delivery and explore potential mediators and moderators of changes in health-related quality of life in intervention and control group patients. Qualitative studies will describe patient and caregiver experiences of the intervention. An economic evaluation will estimate the cost-effectiveness of the REACH-HF intervention plus usual care versus usual care alone in patients with systolic heart failure. Ethics and dissemination The study is approved by the North West

  5. Nanofluidics: enabling processes for biotech

    NASA Astrophysics Data System (ADS)

    Ulmanella, Umberto; Ho, Chih-Ming

    2001-10-01

    The advance of micro and nanodevice manufacturing technology enables us to carry out biological and chemical processes in a more efficient manner. In fact, fluidic processes connect the macro and the micro/nano worlds. For devices approaching the size of the fluid molecules, many physical phenomena occur that are not observed in macro flows. In this brief review, we discuss a few selected topics which of are interest for basic research and are important for applications in biotechnology.

  6. Echo-Enabled Harmonic Generation

    SciTech Connect

    Stupakov, Gennady; /SLAC

    2012-06-28

    A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.

  7. Technologies for Networked Enabled Operations

    NASA Technical Reports Server (NTRS)

    Glass, B.; Levine, J.

    2005-01-01

    Current point-to-point data links will not scale to support future integration of surveillance, security, and globally-distributed air traffic data, and already hinders efficiency and capacity. While the FAA and industry focus on a transition to initial system-wide information management (SWIM) capabilities, this paper describes a set of initial studies of NAS network-enabled operations technology gaps targeted for maturity in later SWIM spirals (201 5-2020 timeframe).

  8. MEMS: Enabled Drug Delivery Systems.

    PubMed

    Cobo, Angelica; Sheybani, Roya; Meng, Ellis

    2015-05-01

    Drug delivery systems play a crucial role in the treatment and management of medical conditions. Microelectromechanical systems (MEMS) technologies have allowed the development of advanced miniaturized devices for medical and biological applications. This Review presents the use of MEMS technologies to produce drug delivery devices detailing the delivery mechanisms, device formats employed, and various biomedical applications. The integration of dosing control systems, examples of commercially available microtechnology-enabled drug delivery devices, remaining challenges, and future outlook are also discussed. PMID:25703045

  9. New Generation Sensor Web Enablement

    PubMed Central

    Bröring, Arne; Echterhoff, Johannes; Jirka, Simon; Simonis, Ingo; Everding, Thomas; Stasch, Christoph; Liang, Steve; Lemmens, Rob

    2011-01-01

    Many sensor networks have been deployed to monitor Earth’s environment, and more will follow in the future. Environmental sensors have improved continuously by becoming smaller, cheaper, and more intelligent. Due to the large number of sensor manufacturers and differing accompanying protocols, integrating diverse sensors into observation systems is not straightforward. A coherent infrastructure is needed to treat sensors in an interoperable, platform-independent and uniform way. The concept of the Sensor Web reflects such a kind of infrastructure for sharing, finding, and accessing sensors and their data across different applications. It hides the heterogeneous sensor hardware and communication protocols from the applications built on top of it. The Sensor Web Enablement initiative of the Open Geospatial Consortium standardizes web service interfaces and data encodings which can be used as building blocks for a Sensor Web. This article illustrates and analyzes the recent developments of the new generation of the Sensor Web Enablement specification framework. Further, we relate the Sensor Web to other emerging concepts such as the Web of Things and point out challenges and resulting future work topics for research on Sensor Web Enablement. PMID:22163760

  10. 'Ethos' Enabling Organisational Knowledge Creation

    NASA Astrophysics Data System (ADS)

    Matsudaira, Yoshito

    This paper examines knowledge creation in relation to improvements on the production line in the manufacturing department of Nissan Motor Company and aims to clarify embodied knowledge observed in the actions of organisational members who enable knowledge creation will be clarified. For that purpose, this study adopts an approach that adds a first, second, and third-person's viewpoint to the theory of knowledge creation. Embodied knowledge, observed in the actions of organisational members who enable knowledge creation, is the continued practice of 'ethos' (in Greek) founded in Nissan Production Way as an ethical basis. Ethos is knowledge (intangible) assets for knowledge creating companies. Substantiated analysis classifies ethos into three categories: the individual, team and organisation. This indicates the precise actions of the organisational members in each category during the knowledge creation process. This research will be successful in its role of showing the indispensability of ethos - the new concept of knowledge assets, which enables knowledge creation -for future knowledge-based management in the knowledge society.

  11. Optimized microsystems-enabled photovoltaics

    SciTech Connect

    Cruz-Campa, Jose Luis; Nielson, Gregory N.; Young, Ralph W.; Resnick, Paul J.; Okandan, Murat; Gupta, Vipin P.

    2015-09-22

    Technologies pertaining to designing microsystems-enabled photovoltaic (MEPV) cells are described herein. A first restriction for a first parameter of an MEPV cell is received. Subsequently, a selection of a second parameter of the MEPV cell is received. Values for a plurality of parameters of the MEPV cell are computed such that the MEPV cell is optimized with respect to the second parameter, wherein the values for the plurality of parameters are computed based at least in part upon the restriction for the first parameter.

  12. NASP - Enabling new space launch options

    NASA Technical Reports Server (NTRS)

    Froning, David; Gaubatz, William; Mathews, George

    1990-01-01

    Successful NASP developments in the United States are bringing about the possibility of effective, fully reusable vehicles for transport of people and cargo between earth and space. These developments include: extension of airbreathing propulsion to a much higher speed; densification of propellants for greater energy per unit volume of mass; structures with much greater strength-to-weight at high temperatures; computational advancements that enable more optimal design and integration of airframes, engines and controls; and advances in avionics, robotics, artificial intelligence and automation that enable accomplishment of earth-to-orbit (ETO) operations with much less manpower support and cost. This paper describes the relative magnitude of improvement that these developments may provide.

  13. Directory Enabled Policy Based Networking

    SciTech Connect

    KELIIAA, CURTIS M.

    2001-10-01

    This report presents a discussion of directory-enabled policy-based networking with an emphasis on its role as the foundation for securely scalable enterprise networks. A directory service provides the object-oriented logical environment for interactive cyber-policy implementation. Cyber-policy implementation includes security, network management, operational process and quality of service policies. The leading network-technology vendors have invested in these technologies for secure universal connectivity that transverses Internet, extranet and intranet boundaries. Industry standards are established that provide the fundamental guidelines for directory deployment scalable to global networks. The integration of policy-based networking with directory-service technologies provides for intelligent management of the enterprise network environment as an end-to-end system of related clients, services and resources. This architecture allows logical policies to protect data, manage security and provision critical network services permitting a proactive defense-in-depth cyber-security posture. Enterprise networking imposes the consideration of supporting multiple computing platforms, sites and business-operation models. An industry-standards based approach combined with principled systems engineering in the deployment of these technologies allows these issues to be successfully addressed. This discussion is focused on a directory-based policy architecture for the heterogeneous enterprise network-computing environment and does not propose specific vendor solutions. This document is written to present practical design methodology and provide an understanding of the risks, complexities and most important, the benefits of directory-enabled policy-based networking.

  14. Nanomaterial-Enabled Neural Stimulation.

    PubMed

    Wang, Yongchen; Guo, Liang

    2016-01-01

    Neural stimulation is a critical technique in treating neurological diseases and investigating brain functions. Traditional electrical stimulation uses electrodes to directly create intervening electric fields in the immediate vicinity of neural tissues. Second-generation stimulation techniques directly use light, magnetic fields or ultrasound in a non-contact manner. An emerging generation of non- or minimally invasive neural stimulation techniques is enabled by nanotechnology to achieve a high spatial resolution and cell-type specificity. In these techniques, a nanomaterial converts a remotely transmitted primary stimulus such as a light, magnetic or ultrasonic signal to a localized secondary stimulus such as an electric field or heat to stimulate neurons. The ease of surface modification and bio-conjugation of nanomaterials facilitates cell-type-specific targeting, designated placement and highly localized membrane activation. This review focuses on nanomaterial-enabled neural stimulation techniques primarily involving opto-electric, opto-thermal, magneto-electric, magneto-thermal and acousto-electric transduction mechanisms. Stimulation techniques based on other possible transduction schemes and general consideration for these emerging neurotechnologies are also discussed. PMID:27013938

  15. Enabling Exploration Through Docking Standards

    NASA Technical Reports Server (NTRS)

    Hatfield, Caris A.

    2012-01-01

    Human exploration missions beyond low earth orbit will likely require international cooperation in order to leverage limited resources. International standards can help enable cooperative missions by providing well understood, predefined interfaces allowing compatibility between unique spacecraft and systems. The International Space Station (ISS) partnership has developed a publicly available International Docking System Standard (IDSS) that provides a solution to one of these key interfaces by defining a common docking interface. The docking interface provides a way for even dissimilar spacecraft to dock for exchange of crew and cargo, as well as enabling the assembly of large space systems. This paper provides an overview of the key attributes of the IDSS, an overview of the NASA Docking System (NDS), and the plans for updating the ISS with IDSS compatible interfaces. The NDS provides a state of the art, low impact docking system that will initially be made available to commercial crew and cargo providers. The ISS will be used to demonstrate the operational utility of the IDSS interface as a foundational technology for cooperative exploration.

  16. Nanomaterial-Enabled Neural Stimulation

    PubMed Central

    Wang, Yongchen; Guo, Liang

    2016-01-01

    Neural stimulation is a critical technique in treating neurological diseases and investigating brain functions. Traditional electrical stimulation uses electrodes to directly create intervening electric fields in the immediate vicinity of neural tissues. Second-generation stimulation techniques directly use light, magnetic fields or ultrasound in a non-contact manner. An emerging generation of non- or minimally invasive neural stimulation techniques is enabled by nanotechnology to achieve a high spatial resolution and cell-type specificity. In these techniques, a nanomaterial converts a remotely transmitted primary stimulus such as a light, magnetic or ultrasonic signal to a localized secondary stimulus such as an electric field or heat to stimulate neurons. The ease of surface modification and bio-conjugation of nanomaterials facilitates cell-type-specific targeting, designated placement and highly localized membrane activation. This review focuses on nanomaterial-enabled neural stimulation techniques primarily involving opto-electric, opto-thermal, magneto-electric, magneto-thermal and acousto-electric transduction mechanisms. Stimulation techniques based on other possible transduction schemes and general consideration for these emerging neurotechnologies are also discussed. PMID:27013938

  17. Rotational propulsion enabled by inertia.

    PubMed

    Nadal, François; Pak, On Shun; Zhu, LaiLai; Brandt, Luca; Lauga, Eric

    2014-07-01

    The fluid mechanics of small-scale locomotion has recently attracted considerable attention, due to its importance in cell motility and the design of artificial micro-swimmers for biomedical applications. Most studies on the topic consider the ideal limit of zero Reynolds number. In this paper, we investigate a simple propulsion mechanism --an up-down asymmetric dumbbell rotating about its axis of symmetry-- unable to propel in the absence of inertia in a Newtonian fluid. Inertial forces lead to continuous propulsion for all finite values of the Reynolds number. We study computationally its propulsive characteristics as well as analytically in the small-Reynolds-number limit. We also derive the optimal dumbbell geometry. The direction of propulsion enabled by inertia is opposite to that induced by viscoelasticity. PMID:25034393

  18. Simulation Enabled Safeguards Assessment Methodology

    SciTech Connect

    Robert Bean; Trond Bjornard; Thomas Larson

    2007-09-01

    It is expected that nuclear energy will be a significant component of future supplies. New facilities, operating under a strengthened international nonproliferation regime will be needed. There is good reason to believe virtual engineering applied to the facility design, as well as to the safeguards system design will reduce total project cost and improve efficiency in the design cycle. Simulation Enabled Safeguards Assessment MEthodology (SESAME) has been developed as a software package to provide this capability for nuclear reprocessing facilities. The software architecture is specifically designed for distributed computing, collaborative design efforts, and modular construction to allow step improvements in functionality. Drag and drop wireframe construction allows the user to select the desired components from a component warehouse, render the system for 3D visualization, and, linked to a set of physics libraries and/or computational codes, conduct process evaluations of the system they have designed.

  19. Context-Enabled Business Intelligence

    SciTech Connect

    Troy Hiltbrand

    2012-04-01

    To truly understand context and apply it in business intelligence, it is vital to understand what context is and how it can be applied in addressing organizational needs. Context describes the facets of the environment that impact the way that end users interact with the system. Context includes aspects of location, chronology, access method, demographics, social influence/ relationships, end-user attitude/ emotional state, behavior/ past behavior, and presence. To be successful in making Business Intelligence content enabled, it is important to be able to capture the context of use user. With advances in technology, there are a number of ways in which this user based information can be gathered and exposed to enhance the overall end user experience.

  20. Design and Simulation of MEMS Enabled Systems

    NASA Astrophysics Data System (ADS)

    da Silva, Mark

    2001-03-01

    Over the past two decades considerable progress in microsystems (MEMS) fabrication technologies has been made resulting in a variety of commercially successful devices. Most of these devices have required application specific fabrication steps, which must be developed, and the lack of proper design tools often resulted in repeated prototyping that was expensive and time consuming. Further development of MEMS enabled commercial products and reduction of the time to market requires implementation of a concurrent design methodology through better design tools and standardization of the fabrication processes. The cross-disciplinary nature of MEMS-Enabled Systems necessitates designers with different backgrounds to work together in understanding the effects of one sub-system on another and this requires a top-down approach to integrated system design. Design tools that can facilitate this communication and reduce the need for excessive prototype fabrication and test iterations and significantly reduce cost and time-to-market are vitally important. The main focus of this article is to describe the top-down design methodology and and ongoing research on tools that facilitate concurrent design of MEMS enabled systems.

  1. Enteroscopy in small intestinal inflammatory diseases.

    PubMed

    Gay, G J; Delmotte, J S

    1999-01-01

    The development of new semilong enteroscopes, videopush enteroscope (VPE), has modified the diagnostic and therapeutic approach to inflammatory intestinal diseases owing to the biopsy and therapeutic capacities. In Crohn's Disease, VPE is useful in nonusual clinical presentations: occult intestinal bleeding and in the treatment by dilatation of jejunal and ileal strictures. In atrophic coeliac disease (ACD) VPE is mandatory each time oesogastroduodenoscopy biopsies are noninformative in order to obtain pathologic jejunal biopsis. In addition, in refractory ACD and in the case of jejunal blood loss ACD, VPE is mandatory in the search for ulcerative jejunitis and lymphoma. The management of chronic diarrhea of the adult, classic endoscopy remains the gold standard procedure and is carried out first but in patients with negative results, VPE can proceed immediately. Good results can only be obtained if VPE is performed by endoscopist who is highly interested in this field of investigation. PMID:9834320

  2. Enabling Participation In Exoplanet Science

    NASA Astrophysics Data System (ADS)

    Taylor, Stuart F.

    2015-08-01

    Determining the distribution of exoplanets has required the contributions of a community of astronomers, who all require the support of colleagues to finish their projects in a manner to enable them to enter new collaborations to continue to contribute to understanding exoplanet science.The contributions of each member of the astronomy community are to be encouraged and must never be intentionally obstructed.We present a member’s long pursuit to be a contributing part of the exoplanet community through doing transit photometry as a means of commissioning the telescopes for a new observatory, followed by pursuit of interpreting the distributions in exoplanet parameter data.We present how the photometry projects have been presented as successful by the others who have claimed to have completed them, but how by requiring its employees to present results while omitting one member has been obstructive against members working together and has prevented the results from being published in what can genuinely be called a peer-reviewed fashion.We present how by tolerating one group to obstruct one member from finishing participation and then falsely denying credit is counterproductive to doing science.We show how expecting one member to attempt to go around an ostracizing group by starting something different is destructive to the entire profession. We repeat previously published appeals to help ostracized members to “go around the observatory” by calling for discussion on how the community must act to reverse cases of shunning, bullying, and other abuses. Without better recourse and support from the community, actions that do not meet standard good collegial behavior end up forcing good members from the community. The most important actions are to enable an ostracized member to have recourse to participating in group papers by either working through other authors or through the journal. All journals and authors must expect that no co-author is keeping out a major

  3. DMD-enabled confocal microendoscopy

    NASA Astrophysics Data System (ADS)

    Lane, Pierre M.; Dlugan, Andrew L. P.; MacAulay, Calum E.

    2001-05-01

    Conventional endoscopy is limited to imaging macroscopic views of tissue. The British Columbia Cancer Research Center, in collaboration with Digital Optical Imaging Corp., is developing a fiber-bundle based microendoscopy system to enable in vivo confocal imaging of cells and tissue structure through the biopsy channel of an endoscope, hypodermic needle, or catheter. The feasibility of imaging individual cells and tissue architecture will be presented using both reflectance and tissue auto-fluorescence modes of imaging. The system consists of a coherent fiber bundle, low-magnification high-NA objective lens, Digital Micromirror DeviceTM(DMD), light source, and CCD camera. The novel approach is the precise control and manipulation of light flow into and out of individual optical fibers. This control is achieved by employing a DMD to illuminate and detect light from selected fibers such that only the core of each fiber is illuminated or detected. The objective of the research is to develop a low-cost, clinically viable microendoscopy system for a range of detection, diagnostic, localization and differentiation uses associated with cancer and pre-cancerous conditions. Currently, multi-wavelength reflectance confocal images with 1 micrometers lateral resolution and 1.6 micrometers axial resolution have been achieved using a 0.95 mm bundle with 30,000 fibers.

  4. Enabling Communication in Emergency Response Environments

    PubMed Central

    Aldunate, Roberto G.; Schmidt, Klaus Nicholas; Herrera, Oriel

    2012-01-01

    Effective communication among first responders during response to natural and human-made large-scale catastrophes has increased tremendously during the last decade. However, most efforts to achieve a higher degree of effectiveness in communication lack synergy between the environment and the technology involved to support first responders operations. This article presents a natural and intuitive interface to support Stigmergy; or communication through the environment, based on intuitively marking and retrieving information from the environment with a pointer. A prototype of the system was built and tested in the field, however the pointing activity revealed challenges regarding accuracy due to limitations of the sensors used. The results obtained from these field tests were the basis for this research effort and will have the potential to enable communication through the environment for first responders operating in highly dynamical and inhospitable disaster relief environments. PMID:22778647

  5. A wireless sensor enabled by wireless power.

    PubMed

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-01-01

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network. PMID:23443370

  6. A Wireless Sensor Enabled by Wireless Power

    PubMed Central

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-01-01

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network. PMID:23443370

  7. Two Types of Bureaucracy: Enabling and Coercive.

    ERIC Educational Resources Information Center

    Adler, Paul S.; Borys, Bryan

    1996-01-01

    Proposes a conceptualization of workflow formalization that helps reconcile contrasting assessments of bureaucracy as alienating or enabling to employees. Uses research on equipment technology design to identify enabling and coercive types of formalization. Identifies some forces tending to discourage an enabling orientation and some persistent…

  8. The Master Enabler: In Orbit Servicing

    NASA Technical Reports Server (NTRS)

    Reed, Benjamin B.; Kienlen, Michael; Naasz, Bo; Roberts, Brian; Deweese, Keith; Cassidy, Justin

    2015-01-01

    Some of the most noteworthy missions in space exploration have occurred in the last two decades and owe their success to on-orbit servicing. The tremendously successful Hubble Space Telescope repair and upgrade missions, as well as the completed assembly of the International Space Station (ISS) and its full utilization, lead us to the next chapter and set of challenges. These include fully exploiting the many space systems already launched, assembling large structures in situ thereby enabling new scientific discoveries, and providing systems that reliably and cost-effectively support the next steps in space exploration. In-orbit servicing is a tool--a tool that can serve as the master enabler to create space architectures that would otherwise be unattainable. This paper will survey how NASA's satellite-servicing technology development efforts are being applied to the planning and execution of two such ambitious missions, specifically asteroid capture and the in-space assembly of a very large life-finding telescope.

  9. In-Orbit Servicing: The Master Enabler

    NASA Technical Reports Server (NTRS)

    Reed, Benjamin B.; Kienlen, Michael; Naasz, Bo; Roberts, Brian; Deweese, Keith

    2015-01-01

    Some of the most noteworthy missions in space exploration have occurred in the last two decades and owe their success to on-orbit servicing. The tremendously successful Hubble Space Telescope repair and upgrade missions, as well as the completed assembly of the International Space Station (ISS) and its full utilization, lead us to the next chapter and set of challenges. These include fully exploiting the many space systems already launched, assembling large structures in situ thereby enabling new scientific discoveries, and providing systems that reliably and cost-effectively support the next steps in space exploration. In-orbit servicing is a tool--a tool that can serve as the master enabler to create space architectures that would otherwise be unattainable. This paper will survey how NASA's satellite-servicing technology development efforts are being applied to the planning and execution of two such ambitious missions, specifically asteroid capture and the in-space assembly of a very large life-finding telescope.

  10. The "Master Enabler" - In-Orbit Servicing

    NASA Technical Reports Server (NTRS)

    Reed, Benjamin; Kienlen, Michael; Naasz, Bo; Roberts, Brian; Deweese, Keith; Cassidy, Justin

    2015-01-01

    Some of the most noteworthy missions in space exploration have occurred in the last two decades and owe their success to on-orbit servicing. The tremendously successful Hubble Space Telescope repair and upgrade missions, as well as the completed assembly of the International Space Station (ISS) and its full utilization, lead us to the next chapter and set of challenges. These include fully exploiting the many space systems already launched, assembling large structures in situ thereby enabling new scientific discoveries, and providing systems that reliably and cost-effectively support the next steps in space exploration. In-orbit servicing is a tool-a tool that can serve as the master enabler to create space architectures that would otherwise be unattainable. This paper will survey how NASA's satellite-servicing technology development efforts are being applied to the planning and execution of two such ambitious missions, specifically asteroid capture and the in-space assembly of a very large life-finding telescope.

  11. Nano-Enabled SERS Reporting Photosensitizers

    PubMed Central

    Farhadi, Arash; Roxin, Áron; Wilson, Brian C.; Zheng, Gang

    2015-01-01

    To impart effective cellular damage via photodynamic therapy (PDT), it is vital to deliver the appropriate light dose and photosensitizer concentration, and to monitor the PDT dose delivered at the site of interest. In vivo monitoring of photosensitizers has in large part relied on their fluorescence emission. Palladium-containing photosensitizers have shown promising clinical results by demonstrating near full conversion of light to PDT activity at the cost of having undetectable fluorescence. We demonstrate that, through the coupling of plasmonic nanoparticles with palladium-photosensitizers, surface-enhanced Raman scattering (SERS) provides both reporting and monitoring capability to otherwise quiescent molecules. Nano-enabled SERS reporting of photosensitizers allows for the decoupling of the therapeutic and imaging mechanisms so that both phenomena can be optimized independently. Most importantly, the design enables the use of the same laser wavelength to stimulate both the PDT and imaging features, opening the potential for real-time dosimetry of photosensitizer concentration and PDT dose delivery by SERS monitoring. PMID:25767614

  12. Enabling techniques for asynchronous coherent OCDMA

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Wada, Naoya; Kitayama, Ken-ichi

    2005-11-01

    The coherent OCDMA system could suffer from severe multiple access interference (MAI) and beat noise, which limit the maximum number of active users that can be supported in a network. One effective method to reduce the beat noise as well as the MAI noise is to lower the interference level by adopting ultra-long optical code. Applying optical thresholding technique is also crucial to enable data-rate detection for achieving a practical OCDMA system. In this paper, we review the recent progress in the key enabling techniques for asynchronous coherent OCDMA: the novel encoder/decoders including spatial lightwave phase modulator, micro-ring resonator for spectral phase coding and superstructured FBG (SSFBG) and AWG type encode/decoder for time-spreading coding; optical thresholding techniques with PPLN and nonlinearity in fiber. The FEC has also been applied in OCDMA system recently. With 511-chip SSFBG and SC-based optical thresholder, 10-user, truly-asynchronous gigabit OCDMA transmission has been successfully achieved. Most recently, a record throughput 12×10.71 Gbps truly-asynchronous OCDMA has been demonstrated by using the 16×16 ports AWG-type encoder/decoder and FEC transmit ITU-T G.709 OTN frames.

  13. Asymmetric catalysis: An enabling science

    PubMed Central

    Trost, Barry M.

    2004-01-01

    Chirality of organic molecules plays an enormous role in areas ranging from medicine to material science, yet the synthesis of such entities in one enantiomeric form is one of the most difficult challenges. The advances being made stem from the convergence of a broader understanding of theory and how structure begets function, the developments in the interface between organic and inorganic chemistry and, most notably, the organic chemistry of the transition metals, and the continuing advancements in the tools to help define structure, especially in solution. General themes for designing catalysts to effect asymmetric induction are helping to make this strategy more useful, in general, with the resultant effect of a marked enhancement of synthetic efficiency. PMID:14990801

  14. Electrification will enable sustained prosperity

    SciTech Connect

    Linden, H.R.

    1996-10-01

    The author addresses this topic from the perspective of a technological optimist who believes by 2100 the global energy system will have achieved sustainability or, at least, closely approached it. What will drive this evolution to resource and environmental sustainability is not depletion of economically recoverable fossil fuels or the current anxiety over anthropogenic climate change. Instead, it will be an avalanche of new cost-effective and environmentally benign energy supply, transport, storage and end-use technologies that will change the global energy system even more dramatically than the technological advances of the past 100 years.

  15. Enabling compassionate healthcare: perils, prospects and perspectives

    PubMed Central

    Mannion, Russell

    2014-01-01

    There is an emerging consensus that caring and compassion are under threat in the frenetic environment of modern healthcare. Enabling and sustaining compassionate care requires not only a focus on the needs of the patient, but also on those of the care giver. As such, threats and exhortations to health professionals are likely to have limited and perverse effects and it is to the organisational and system arrangements which support staff that attention should shift. Any approach to supporting compassionate care may work for some services, for some patients and staff, some of the time. No single approach is likely to be a panacea. Unravelling the contexts within which different approaches are effectual will allow for more selective development of support systems and interventions. PMID:24757687

  16. Enabling communication concurrency through flexible MPI endpoints

    DOE PAGESBeta

    Dinan, James; Grant, Ryan E.; Balaji, Pavan; Goodell, David; Miller, Douglas; Snir, Marc; Thakur, Rajeev

    2014-09-23

    MPI defines a one-to-one relationship between MPI processes and ranks. This model captures many use cases effectively; however, it also limits communication concurrency and interoperability between MPI and programming models that utilize threads. Our paper describes the MPI endpoints extension, which relaxes the longstanding one-to-one relationship between MPI processes and ranks. Using endpoints, an MPI implementation can map separate communication contexts to threads, allowing them to drive communication independently. Also, endpoints enable threads to be addressable in MPI operations, enhancing interoperability between MPI and other programming models. Furthermore, these characteristics are illustrated through several examples and an empirical study thatmore » contrasts current multithreaded communication performance with the need for high degrees of communication concurrency to achieve peak communication performance.« less

  17. Enabling Computational Technologies for Terascale Scientific Simulations

    SciTech Connect

    Ashby, S.F.

    2000-08-24

    We develop scalable algorithms and object-oriented code frameworks for terascale scientific simulations on massively parallel processors (MPPs). Our research in multigrid-based linear solvers and adaptive mesh refinement enables Laboratory programs to use MPPs to explore important physical phenomena. For example, our research aids stockpile stewardship by making practical detailed 3D simulations of radiation transport. The need to solve large linear systems arises in many applications, including radiation transport, structural dynamics, combustion, and flow in porous media. These systems result from discretizations of partial differential equations on computational meshes. Our first research objective is to develop multigrid preconditioned iterative methods for such problems and to demonstrate their scalability on MPPs. Scalability describes how total computational work grows with problem size; it measures how effectively additional resources can help solve increasingly larger problems. Many factors contribute to scalability: computer architecture, parallel implementation, and choice of algorithm. Scalable algorithms have been shown to decrease simulation times by several orders of magnitude.

  18. Enabling communication concurrency through flexible MPI endpoints

    SciTech Connect

    Dinan, James; Grant, Ryan E.; Balaji, Pavan; Goodell, David; Miller, Douglas; Snir, Marc; Thakur, Rajeev

    2014-09-23

    MPI defines a one-to-one relationship between MPI processes and ranks. This model captures many use cases effectively; however, it also limits communication concurrency and interoperability between MPI and programming models that utilize threads. Our paper describes the MPI endpoints extension, which relaxes the longstanding one-to-one relationship between MPI processes and ranks. Using endpoints, an MPI implementation can map separate communication contexts to threads, allowing them to drive communication independently. Also, endpoints enable threads to be addressable in MPI operations, enhancing interoperability between MPI and other programming models. Furthermore, these characteristics are illustrated through several examples and an empirical study that contrasts current multithreaded communication performance with the need for high degrees of communication concurrency to achieve peak communication performance.

  19. Semantically enabled image similarity search

    NASA Astrophysics Data System (ADS)

    Casterline, May V.; Emerick, Timothy; Sadeghi, Kolia; Gosse, C. A.; Bartlett, Brent; Casey, Jason

    2015-05-01

    Georeferenced data of various modalities are increasingly available for intelligence and commercial use, however effectively exploiting these sources demands a unified data space capable of capturing the unique contribution of each input. This work presents a suite of software tools for representing geospatial vector data and overhead imagery in a shared high-dimension vector or embedding" space that supports fused learning and similarity search across dissimilar modalities. While the approach is suitable for fusing arbitrary input types, including free text, the present work exploits the obvious but computationally difficult relationship between GIS and overhead imagery. GIS is comprised of temporally-smoothed but information-limited content of a GIS, while overhead imagery provides an information-rich but temporally-limited perspective. This processing framework includes some important extensions of concepts in literature but, more critically, presents a means to accomplish them as a unified framework at scale on commodity cloud architectures.

  20. Enabling Interoperability in Heliophysical Domains

    NASA Astrophysics Data System (ADS)

    Bentley, Robert

    2013-04-01

    There are many aspects of science in the Solar System that are overlapping - phenomena observed in one domain can have effects in other domains. However, there are many problems related to exploiting the data in cross-disciplinary studies because of lack of interoperability of the data and services. The CASSIS project is a Coordination Action funded under FP7 that has the objective of improving the interoperability of data and services related Solar System science. CASSIS has been investigating how the data could be made more accessible with some relatively minor changes to the observational metadata. The project has been looking at the services that are used within the domain and determining whether they are interoperable with each other and if not what would be required make them so. It has also been examining all types of metadata that are used when identifying and using observations and trying to make them more compliant with techniques and standards developed by bodies such as the International Virtual Observatory Alliance (IVOA). Many of the lessons that are being learnt in the study are applicable to domains that go beyond those directly involved in heliophysics. Adopting some simple standards related to the design of the services interfaces and metadata that are used would make it much easier to investigate interdisciplinary science topics. We will report on our finding and describe a roadmap for the future. For more information about CASSIS, please visit the project Web site on cassis-vo.eu

  1. Fundamental enabling issues in nanotechnology :

    SciTech Connect

    Floro, Jerrold Anthony; Foiles, Stephen Martin; Hearne, Sean Joseph; Hoyt, Jeffrey John; Seel, Steven Craig; Webb, Edmund Blackburn,; Morales, Alfredo Martin; Zimmerman, Jonathan A.

    2007-10-01

    To effectively integrate nanotechnology into functional devices, fundamental aspects of material behavior at the nanometer scale must be understood. Stresses generated during thin film growth strongly influence component lifetime and performance; stress has also been proposed as a mechanism for stabilizing supported nanoscale structures. Yet the intrinsic connections between the evolving morphology of supported nanostructures and stress generation are still a matter of debate. This report presents results from a combined experiment and modeling approach to study stress evolution during thin film growth. Fully atomistic simulations are presented predicting stress generation mechanisms and magnitudes during all growth stages, from island nucleation to coalescence and film thickening. Simulations are validated by electrodeposition growth experiments, which establish the dependence of microstructure and growth stresses on process conditions and deposition geometry. Sandia is one of the few facilities with the resources to combine experiments and modeling/theory in this close a fashion. Experiments predicted an ongoing coalescence process that generates signficant tensile stress. Data from deposition experiments also supports the existence of a kinetically limited compressive stress generation mechanism. Atomistic simulations explored island coalescence and deposition onto surfaces intersected by grain boundary structures to permit investigation of stress evolution during later growth stages, e.g. continual island coalescence and adatom incorporation into grain boundaries. The predictive capabilities of simulation permit direct determination of fundamental processes active in stress generation at the nanometer scale while connecting those processes, via new theory, to continuum models for much larger island and film structures. Our combined experiment and simulation results reveal the necessary materials science to tailor stress, and therefore performance, in

  2. An Internet enabled impact limiter material database

    SciTech Connect

    Wix, S.; Kanipe, F.; McMurtry, W.

    1998-09-01

    This paper presents a detailed explanation of the construction of an interest enabled database, also known as a database driven web site. The data contained in the internet enabled database are impact limiter material and seal properties. The technique used in constructing the internet enabled database presented in this paper are applicable when information that is changing in content needs to be disseminated to a wide audience.

  3. Electronic Health Record Application Support Service Enablers.

    PubMed

    Neofytou, M S; Neokleous, K; Aristodemou, A; Constantinou, I; Antoniou, Z; Schiza, E C; Pattichis, C S; Schizas, C N

    2015-08-01

    There is a huge need for open source software solutions in the healthcare domain, given the flexibility, interoperability and resource savings characteristics they offer. In this context, this paper presents the development of three open source libraries - Specific Enablers (SEs) for eHealth applications that were developed under the European project titled "Future Internet Social and Technological Alignment Research" (FI-STAR) funded under the "Future Internet Public Private Partnership" (FI-PPP) program. The three SEs developed under the Electronic Health Record Application Support Service Enablers (EHR-EN) correspond to: a) an Electronic Health Record enabler (EHR SE), b) a patient summary enabler based on the EU project "European patient Summary Open Source services" (epSOS SE) supporting patient mobility and the offering of interoperable services, and c) a Picture Archiving and Communications System (PACS) enabler (PACS SE) based on the dcm4che open source system for the support of medical imaging functionality. The EHR SE follows the HL7 Clinical Document Architecture (CDA) V2.0 and supports the Integrating the Healthcare Enterprise (IHE) profiles (recently awarded in Connectathon 2015). These three FI-STAR platform enablers are designed to facilitate the deployment of innovative applications and value added services in the health care sector. They can be downloaded from the FI-STAR cataloque website. Work in progress focuses in the validation and evaluation scenarios for the proving and demonstration of the usability, applicability and adaptability of the proposed enablers. PMID:26736531

  4. Physical Activity Beliefs, Barriers, and Enablers among Postpartum Women

    PubMed Central

    Aytur, Semra A.; Borodulin, Katja

    2009-01-01

    Abstract Background and Methods Physical activity during postpartum is both a recommended and an essential contributor to maternal health. Understanding the beliefs, barriers, and enablers regarding physical activity during the postpartum period can more effectively tailor physical activity interventions. The objective of this study was to document self-reported beliefs, barriers, and enablers to physical activity among a cohort of women queried at 3 and 12 months postpartum. Five questions about beliefs and two open-ended questions about their main barriers and enablers regarding physical activity and exercise were asked of 667 women at 3 months postpartum. Among the sample, 530 women answered the same questions about barriers and enablers to physical activity at 12 months postpartum. Results Agreement on all five beliefs statements was high (≥89%), indicating that women thought that exercise and physical activity were appropriate at 3 months postpartum, even if they continued to breastfeed. For the cohort, the most common barriers to physical activity at both 3 and 12 months postpartum were lack of time (47% and 51%, respectively) and issues with child care (26% and 22%, respectively). No barrier changed by more than 5% from 3 to 12 months postpartum. For the cohort, the most common enablers at 3 months postpartum were partner support (16%) and desire to feel better (14%). From 3 to 12 months postpartum, only one enabler changed by >5%; women reported baby reasons (e.g., baby older, healthier, not breastfeeding, more active) more often at 12 months than at 3 months postpartum (32% vs. 10%). Environmental/policy and organizational barriers and enablers were reported less often than intrapersonal or interpersonal barriers at both time points. Conclusions A number of barriers and enablers were identified for physical activity, most of which were consistent at 3 and 12 months postpartum. This study provides information to create more successful interventions to

  5. Nanocrystal-enabled solid state bonding.

    SciTech Connect

    San Diego State University, San Diego, CA; Puskar, Joseph David; Tikare, Veena; Garcia Cardona, Cristina; Reece, Mark; Brewer, Luke N.; Holm, Elizabeth Ann

    2010-10-01

    In this project, we performed a preliminary set of sintering experiments to examine nanocrystal-enabled diffusion bonding (NEDB) in Ag-on-Ag and Cu-on-Cu using Ag nanoparticles. The experimental test matrix included the effects of material system, temperature, pressure, and particle size. The nanoparticle compacts were bonded between plates using a customized hot press, tested in shear, and examined post mortem using microscopy techniques. NEDB was found to be a feasible mechanism for low-temperature, low-pressure, solid-state bonding of like materials, creating bonded interfaces that were able to support substantial loads. The maximum supported shear strength varied substantially within sample cohorts due to variation in bonded area; however, systematic variation with fabrication conditions was also observed. Mesoscale sintering simulations were performed in order to understand whether sintering models can aid in understanding the NEDB process. A pressure-assisted sintering model was incorporated into the SPPARKS kinetic Monte Carlo sintering code. Results reproduce most of the qualitative behavior observed in experiments, indicating that simulation can augment experiments during the development of the NEDB process. Because NEDB offers a promising route to low-temperature, low-pressure, solid-state bonding, we recommend further research and development with a goal of devising new NEDB bonding processes to support Sandia's customers.

  6. Water: A Critical Material Enabling Space Exploration

    NASA Technical Reports Server (NTRS)

    Pickering, Karen D.

    2014-01-01

    Water is one of the most critical materials in human spaceflight. The availability of water defines the duration of a space mission; the volume of water required for a long-duration space mission becomes too large, heavy, and expensive for launch vehicles to carry. Since the mission duration is limited by the amount of water a space vehicle can carry, the capability to recycle water enables space exploration. In addition, water management in microgravity impacts spaceflight in other respects, such as the recent emergency termination of a spacewalk caused by free water in an astronaut's spacesuit helmet. A variety of separation technologies are used onboard spacecraft to ensure that water is always available for use, and meets the stringent water quality required for human space exploration. These separation technologies are often adapted for use in a microgravity environment, where water behaves in unique ways. The use of distillation, membrane processes, ion exchange and granular activated carbon will be reviewed. Examples of microgravity effects on operations will also be presented. A roadmap for future technologies, needed to supply water resources for the exploration of Mars, will also be reviewed.

  7. Utility Energy Services Contracts: Enabling Documents

    SciTech Connect

    2009-05-01

    Utility Energy Services Contracts: Enabling Documents provides materials that clarify the authority for Federal agencies to enter into utility energy services contracts (UESCs), as well as sample documents and resources to ease utility partnership contracting.

  8. An Architecture to Enable Future Sensor Webs

    NASA Technical Reports Server (NTRS)

    Mandl, Dan; Caffrey, Robert; Frye, Stu; Grosvenor, Sandra; Hess, Melissa; Chien, Steve; Sherwood, Rob; Davies, Ashley; Hayden, Sandra; Sweet, Adam

    2004-01-01

    A sensor web is a coherent set of distributed 'nodes', interconnected by a communications fabric, that collectively behave as a single dynamic observing system. A 'plug and play' mission architecture enables progressive mission autonomy and rapid assembly and thereby enables sensor webs. This viewgraph presentation addresses: Target mission messaging architecture; Strategy to establish architecture; Progressive autonomy with onboard sensor web; EO-1; Adaptive array antennas (smart antennas) for satellite ground stations.

  9. ISS - Enabling Exploration Through Docking Standards

    NASA Technical Reports Server (NTRS)

    Hatfield, Caris A.

    2011-01-01

    NASA and the ISS partnership are jointly developing a key standard to enable future collaborative exploration. The IDSS is based on flight proven design while incorporating new low impact technology. Low impact technology accommodates a wide range of vehicle contact and capture conditions. This standard will get early demonstration on the ISS. Experience gained here will enable operational experience and the opportunity to refine the standard.

  10. Biotechniques Laboratory: An Enabling Course in the Biological Sciences

    ERIC Educational Resources Information Center

    Di Trapani, Giovanna; Clarke, Frank

    2012-01-01

    Practical skills and competencies are critical to student engagement and effective learning in laboratory courses. This article describes the design of a yearlong, stand-alone laboratory course--the Biotechniques Laboratory--a common core course in the second year of all our degree programs in the biological sciences. It is an enabling,…

  11. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    SciTech Connect

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  12. Vulnerabilities in First-Generation RFID-enabled Credit Cards

    NASA Astrophysics Data System (ADS)

    Heydt-Benjamin, Thomas S.; Bailey, Daniel V.; Fu, Kevin; Juels, Ari; O'Hare, Tom

    RFID-enabled credit cards are widely deployed in the United States and other countries, but no public study has thoroughly analyzed the mechanisms that provide both security and privacy. Using samples from a variety of RFID-enabled credit cards, our study observes that (1) the cardholder's name and often credit card number and expiration are leaked in plaintext to unauthenticated readers, (2) our homemade device costing around 150 effectively clones one type of skimmed cards thus providing a proof-of-concept implementation for the RF replay attack, (3) information revealed by the RFID transmission cross contaminates the security of RFID and non-RFID payment contexts, and (4) RFID-enabled credit cards are susceptible in various degrees to a range of other traditional RFID attacks such as skimming and relaying.

  13. New Labour and the enabling state.

    PubMed

    Taylor, Ian

    2000-11-01

    The notion of the 'enabling state' gained currency in the UK during the 1990s as an alternative to the 'providing' or the welfare state. It reflected the process of contracting out in the NHS and compulsory competitive tendering (CCT) in local government during the 1980s, but was also associated with developments during the 1990s in health, social care and education in particular. The creation of an internal market in the NHS and the associated purchaser-provider split appeared to transfer 'ownership' of services increasingly to the providers - hospitals, General Practitioners (GPs) and schools. The mixed economy of care that was stimulated by the 1990 NHS and Community Care Act appeared to offer local authorities the opportunity to enable non state providers to offer care services in the community. The new service charters were part of the enablement process because they offered users more opportunity to influence provision. This article examines how far service providers were enabled and assesses the extent to which new Labour's policies enhance or reject the 'enabling state' in favour of more direct provision. PMID:11560707

  14. Hydrologic Prediction Through Earthcube Enabled Hydrogeophysical Cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    Versteeg, R. J.; Johnson, D.

    2012-12-01

    to "develop a framework to understand and predict responses of the Earth as a system— from the space-atmosphere boundary to the core, including the influences of humans and ecosystems." Effective development of hydrologic prediction tools will require the hydrogeophysical community to engage in and become conversant with the cyberinfrastructure community. In my presentation I will provide several examples of how such tools could look like, and what some of the opportunities are for getting this engagement going and develop cyberinfrastructure enabled hydrologic prediction tools.

  15. Energy Savings Performance Contract (ESPC) ENABLE Program

    SciTech Connect

    2012-06-01

    The Energy Savings Performance Contract (ESPC) ENABLE program, a new project funding approach, allows small Federal facilities to realize energy and water savings in six months or less. ESPC ENABLE provides a standardized and streamlined process to install targeted energy conservation measures (ECMs) such as lighting, water, and controls with measurement and verification (M&V) appropriate for the size and scope of the project. This allows Federal facilities smaller than 200,000 square feet to make progress towards important energy efficiency and water conservation requirements.

  16. Enabling human HUMS with data modeling

    NASA Astrophysics Data System (ADS)

    Jaenisch, Holger M.; Handley, James W.; Jaenisch, Kristina K.; Hicklen, Michael L.

    2006-05-01

    We simulate a notional Navy SEAL rebreather diver on an extended mission using Model Predictive Control (MPC) theory. A mathematical framework for enabling physiological HUMS (Health Usage Management Systems) is shown. A rebreather simulation is used to derive MPC baseline Data Models of diver status by converting the simulation first into differential equations and then into lookup tables (LUT). When abnormal readings are indicated, sensor data from the diver is published to the ad hoc network, enabling intermittent upload. Mission success confidence is updated and determined during the mission. A novel method of converting MPC Data Models into lookup tables worn by the diver is given.

  17. Origami-enabled deformable silicon solar cells

    SciTech Connect

    Tang, Rui; Huang, Hai; Liang, Hanshuang; Liang, Mengbing; Tu, Hongen; Xu, Yong; Song, Zeming; Jiang, Hanqing; Yu, Hongyu

    2014-02-24

    Deformable electronics have found various applications and elastomeric materials have been widely used to reach flexibility and stretchability. In this Letter, we report an alternative approach to enable deformability through origami. In this approach, the deformability is achieved through folding and unfolding at the creases while the functional devices do not experience strain. We have demonstrated an example of origami-enabled silicon solar cells and showed that this solar cell can reach up to 644% areal compactness while maintaining reasonable good performance upon cyclic folding/unfolding. This approach opens an alternative direction of producing flexible, stretchable, and deformable electronics.

  18. Networking Technologies Enable Advances in Earth Science

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory; Freeman, Kenneth; Gilstrap, Raymond; Beck, Richard

    2004-01-01

    This paper describes an experiment to prototype a new way of conducting science by applying networking and distributed computing technologies to an Earth Science application. A combination of satellite, wireless, and terrestrial networking provided geologists at a remote field site with interactive access to supercomputer facilities at two NASA centers, thus enabling them to validate and calibrate remotely sensed geological data in near-real time. This represents a fundamental shift in the way that Earth scientists analyze remotely sensed data. In this paper we describe the experiment and the network infrastructure that enabled it, analyze the data flow during the experiment, and discuss the scientific impact of the results.

  19. Upgraded NERVA systems: Enabler nuclear system

    NASA Technical Reports Server (NTRS)

    Farbman, Gerry

    1991-01-01

    The NERVA/Rover Enabler technology enables to go on a low risk, short-term program to meet the requirements of the Mars mission and maybe some lunar missions. The following subject areas are covered: NERVA technology - the foundation for tomorrow's space missions; NERVA/Rover reactor system test sequence; NERVA engine development program; nuclear thermal reactor capability based on many related Westinghouse technology programs; investment in Rover/Nerva technology; synergistic applications of NERVA technology; flow schematic of the NDR engine; the NERVA nuclear subsystem; and technology evolution.

  20. Nanotechnologv Enabled Biological and Chemical Sensors

    NASA Technical Reports Server (NTRS)

    Koehne, Jessica; Meyyappan, M.

    2011-01-01

    Nanotechnology is an enabling technology that will impact almost all economic sectors: one of the most important and with great potential is the health/medical sector. - Nanomaterials for drug delivery - Early warning sensors - Implantable devices - Artificial parts with improved characteristics Carbon nanotubes and nanofibers show promise for use in sensor development, electrodes and other biomedical applications.

  1. Technology-Enabled Crime, Policing and Security

    ERIC Educational Resources Information Center

    McQuade, Sam

    2006-01-01

    Crime, policing and security are enabled by and co-evolve with technologies that make them possible. As criminals compete with security and policing officials for technological advantage perpetually complex crime, policing and security results in relatively confusing and therefore unmanageable threats to society. New, adaptive and ordinary crimes…

  2. Action Learning: Avoiding Conflict or Enabling Action

    ERIC Educational Resources Information Center

    Corley, Aileen; Thorne, Ann

    2006-01-01

    Action learning is based on the premise that action and learning are inextricably entwined and it is this potential, to enable action, which has contributed to the growth of action learning within education and management development programmes. However has this growth in action learning lead to an evolution or a dilution of Revan's classical…

  3. Enabling Family-Friendly Cultural Change

    ERIC Educational Resources Information Center

    Quinn, Kate; Yen, Joyce W.; Riskin, Eve A.; Lange, Sheila Edwards

    2007-01-01

    Strategies to address the problem of work and family balance have begun emerging in recent years. Many American college and universities have begun to adopt this "family-friendly policies," such as tenure-clock extensions. Each of the policies to enable work and family balance, however, is situated within the broader academic culture. Departmental…

  4. Safely Enabling Low-Altitude Airspace Operations

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal

    2015-01-01

    Near-term Goal: Enable initial low-altitude airspace and UAS operations with demonstrated safety as early as possible, within 5 years. Long-term Goal: Accommodate increased UAS operations with highest safety, efficiency, and capacity as much autonomously as possible (10-15 years).

  5. Safely Enabling Low-Altitude Airspace Operations

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal

    2015-01-01

    Near-term Goal - Enable initial low-altitude airspace and UAS operations with demonstrated safety as early as possible, within 5 years. Long-term Goal - Accommodate increased UAS operations with highest safety, efficiency, and capacity as much autonomously as possible (10-15 years).

  6. Fluorescent particles enable visualization of gas flow

    NASA Technical Reports Server (NTRS)

    Wilson, A. J.

    1968-01-01

    Fluorescent particles enable visualization of the flow patterns of gases at slow velocities. Through a transparent section in the gas line, a camera views the visible light emitted by the particles carried by the gas stream. Fine definition of the particle tracks are obtained at slow camera shutter speeds.

  7. Enabling Semantic Interoperability for Earth System Science

    NASA Astrophysics Data System (ADS)

    Raskin, R.

    2004-12-01

    Data interoperability across heterogeneous systems can be hampered by differences in terminology, particularly when multiple scientific communities are involved. To reconcile differences in semantics, a common semantic framework was created as a collection of ontologies. Such a shared understanding of concepts enables ontology-aware software tools to understand the meaning of terms in documents and web pages. The ontologies were created as part of the Semantic Web for Earth and Environmental Terminology (SWEET) prototype. The ontologies provide a representation of Earth system science knowledge and associated data, organized in a scalable structure, bulding on the keywords developed by the NASA Global Change Master Directory (GCMD). An integrated search tool consults the ontologies to enable searches without an exact term match. The ontologies can be used within other applications (such as Earth Science Markup Language descriptors) and future semantic web services in Earth system science.

  8. Femtosecond laser enabled keratoplasty for advanced keratoconus

    PubMed Central

    Shivanna, Yathish; Nagaraja, Harsha; Kugar, Thungappa; Shetty, Rohit

    2013-01-01

    Purpose: To assess the efficacy and advantages of femtosecond laser enabled keratoplasty (FLEK) over conventional penetrating keratoplasty (PKP) in advanced keratoconus. Materials and Methods: Detailed review of literature of published randomized controlled trials of operative techniques in PKP and FLEK. Results: Fifteen studies were identified, analyzed, and compared with our outcome. FLEK was found to have better outcome in view of better and earlier stabilization uncorrected visual acuity (UCVA), best corrected visual acuity (BCVA), and better refractive outcomes with low astigmatism as compared with conventional PKP. Wound healing also was noticed to be earlier, enabling early suture removal in FLEK. Conclusions: Studies relating to FLEK have shown better results than conventional PKP, however further studies are needed to assess the safety and intraoperative complications of the procedure. PMID:23925340

  9. Robotics to Enable Older Adults to Remain Living at Home

    PubMed Central

    Pearce, Alan J.; Adair, Brooke; Ozanne, Elizabeth; Said, Catherine; Santamaria, Nick; Morris, Meg E.

    2012-01-01

    Given the rapidly ageing population, interest is growing in robots to enable older people to remain living at home. We conducted a systematic review and critical evaluation of the scientific literature, from 1990 to the present, on the use of robots in aged care. The key research questions were as follows: (1) what is the range of robotic devices available to enable older people to remain mobile, independent, and safe? and, (2) what is the evidence demonstrating that robotic devices are effective in enabling independent living in community dwelling older people? Following database searches for relevant literature an initial yield of 161 articles was obtained. Titles and abstracts of articles were then reviewed by 2 independent people to determine suitability for inclusion. Forty-two articles met the criteria for question 1. Of these, 4 articles met the criteria for question 2. Results showed that robotics is currently available to assist older healthy people and people with disabilities to remain independent and to monitor their safety and social connectedness. Most studies were conducted in laboratories and hospital clinics. Currently limited evidence demonstrates that robots can be used to enable people to remain living at home, although this is an emerging smart technology that is rapidly evolving. PMID:23304507

  10. Robotics to enable older adults to remain living at home.

    PubMed

    Pearce, Alan J; Adair, Brooke; Miller, Kimberly; Ozanne, Elizabeth; Said, Catherine; Santamaria, Nick; Morris, Meg E

    2012-01-01

    Given the rapidly ageing population, interest is growing in robots to enable older people to remain living at home. We conducted a systematic review and critical evaluation of the scientific literature, from 1990 to the present, on the use of robots in aged care. The key research questions were as follows: (1) what is the range of robotic devices available to enable older people to remain mobile, independent, and safe? and, (2) what is the evidence demonstrating that robotic devices are effective in enabling independent living in community dwelling older people? Following database searches for relevant literature an initial yield of 161 articles was obtained. Titles and abstracts of articles were then reviewed by 2 independent people to determine suitability for inclusion. Forty-two articles met the criteria for question 1. Of these, 4 articles met the criteria for question 2. Results showed that robotics is currently available to assist older healthy people and people with disabilities to remain independent and to monitor their safety and social connectedness. Most studies were conducted in laboratories and hospital clinics. Currently limited evidence demonstrates that robots can be used to enable people to remain living at home, although this is an emerging smart technology that is rapidly evolving. PMID:23304507

  11. A novel guide catheter enabling intracranial placement.

    PubMed

    Hurley, Michael C; Sherma, Arun K; Surdell, Daniel; Shaibani, Ali; Bendok, Bernard R

    2009-11-15

    We describe use of a novel guide, catheter with a soft and pliable, 6-cm or 12-cm distal segment that enables distal, including intracranial, placement--the Neuron guide catheter (Penumbra, San Leandro, CA)--in the treatment of 11 cases with a range of neuroendovascular lesions. We were able to advance the Neuron guide catheter to the intended level in each case and suffered no complications related to catheter spasm, dissection, thrombosis or thromboembolism. PMID:19670314

  12. Enabling Technologies for Petascale Electromagnetic Accelerator Simulation

    SciTech Connect

    Lee, Lie-Quan; Akcelik, Volkan; Chen, Sheng; Ge, Li-Xin; Prudencio, Ernesto; Schussman, Greg; Uplenchwar, Ravi; Ng, Cho; Ko, Kwok; Luo, Xiaojun; Shephard, Mark; /Rensselaer Poly.

    2007-11-09

    The SciDAC2 accelerator project at SLAC aims to simulate an entire three-cryomodule radio frequency (RF) unit of the International Linear Collider (ILC) main Linac. Petascale computing resources supported by advances in Applied Mathematics (AM) and Computer Science (CS) and INCITE Program are essential to enable such very large-scale electromagnetic accelerator simulations required by the ILC Global Design Effort. This poster presents the recent advances and achievements in the areas of CS/AM through collaborations.

  13. Enabling international adoption of LOINC through translation

    PubMed Central

    Vreeman, Daniel J.; Chiaravalloti, Maria Teresa; Hook, John; McDonald, Clement J.

    2012-01-01

    Interoperable health information exchange depends on adoption of terminology standards, but international use of such standards can be challenging because of language differences between local concept names and the standard terminology. To address this important barrier, we describe the evolution of an efficient process for constructing translations of LOINC terms names, the foreign language functions in RELMA, and the current state of translations in LOINC. We also present the development of the Italian translation to illustrate how translation is enabling adoption in international contexts. We built a tool that finds the unique list of LOINC Parts that make up a given set of LOINC terms. This list enables translation of smaller pieces like the core component “hepatitis c virus” separately from all the suffixes that could appear with it, such “Ab.IgG”, “DNA”, and “RNA”. We built another tool that generates a translation of a full LOINC name from all of these atomic pieces. As of version 2.36 (June 2011), LOINC terms have been translated into 9 languages from 15 linguistic variants other than its native English. The five largest linguistic variants have all used the Part-based translation mechanism. However, even with efficient tools and processes, translation of standard terminology is a complex undertaking. Two of the prominent linguistic challenges that translators have faced include: the approach to handling acronyms and abbreviations, and the differences in linguistic syntax (e.g. word order) between languages. LOINC’s open and customizable approach has enabled many different groups to create translations that met their needs and matched their resources. Distributing the standard and its many language translations at no cost worldwide accelerates LOINC adoption globally, and is an important enabler of interoperable health information exchange PMID:22285984

  14. NASA Missions Enabled by Space Nuclear Systems

    NASA Technical Reports Server (NTRS)

    Scott, John H.; Schmidt, George R.

    2009-01-01

    This viewgraph presentation reviews NASA Space Missions that are enabled by Space Nuclear Systems. The topics include: 1) Space Nuclear System Applications; 2) Trade Space for Electric Power Systems; 3) Power Generation Specific Energy Trade Space; 4) Radioisotope Power Generation; 5) Radioisotope Missions; 6) Fission Power Generation; 7) Solar Powered Lunar Outpost; 8) Fission Powered Lunar Outpost; 9) Fission Electric Power Generation; and 10) Fission Nuclear Thermal Propulsion.

  15. Delivering compassionate care: the enablers and barriers.

    PubMed

    Christiansen, Angela; O'Brien, Mary R; Kirton, Jennifer A; Zubairu, Kate; Bray, Lucy

    The importance of providing compassionate care to patients is well established. While compassionate care can be understood as an individual response to others' vulnerability, it is acknowledged that healthcare environments can impact significantly on this aspect of practice. This study sought to explore how health professionals and pre-qualifying healthcare students (HCS) understand compassionate care and factors that hinder or enable them to practice compassionately. The perceptions of health professionals (n=146) and HCS (n=166) registered at a university in Northwest England were explored using mixed methods. This article reports on the data gained from the qualitative interviews and responses to open-text questions from the mainly quantitative questionnaire. The findings are discussed under the following themes: individual and relationship factors that impact on compassionate care practice; organisational factors that impact on the clinical environment and team; and leadership factors that hinder or enable a compassionate care culture. This article argues that there are a number of enabling factors that enhance a culture conducive to providing compassionate care. These include leaders who act as positive role models, good relationships between team members and a focus on staff wellbeing. PMID:26355360

  16. Technology Enabling the First 100 Exoplanets

    NASA Astrophysics Data System (ADS)

    Marcy, Geoffrey W.

    2014-01-01

    The discoveries of the first 100 exoplanets by precise radial velocities in the late 1990's at Lick Observatory and Observatoire de Haute-Provence were enabled by several technological advances and a cultural one. A key ingredient was a cross-dispersed echelle spectrometer at a stable, coude focus, with a CCD detector, offering high spectral resolution, large wavelength coverage, and a linear response to photons. A second ingredient was a computer capable of storing the megabyte images from such spectrometers and analyzing them for Doppler shifts. Both Lick and OHP depended on these advents. A third ingredient was a stable wavelength calibration. Here, two technologies emerged independently, with iodine gas employed by Marcy's group (used first by solar physicists doing helioseismology) and simultaneous thorium-argon spectra (enabled by fiber optics) used by Mayor's group. A final ingredient was a new culture emerging in the 1990's of forward-modeling of spectra on computers, enabled by the well-behaved photon noise of CCDs, giving Poisson errors amenable to rigorous statistical algorithms for measuring millipixel Doppler shifts. The prospect of detecting the 12 meter/sec reflex velocity (1/100 pixel) of a Jupiter-like planet was considered impossible, except to a few who asked, "What actually limits Doppler precision?". Inspired insights were provided by Robert Howard, Paul Schechter, Bruce Campbell, and Gordon Walker, leading to the first 100 exoplanets.

  17. Leadership Training Module on Enable Others to Act (Kouzes & Posner)

    ERIC Educational Resources Information Center

    Sharma, Ananya

    2013-01-01

    Everyone has either come in contact with a leader or played the role of a leader. Everyone has also worked with effective leaders and ineffective leaders. And all of us want to work with leaders who can share a vision with us and empower and enable us to meet our goals. One can say that leaders play a crucial role in the success or failure of a…

  18. Incentives and enablers to improve adherence in tuberculosis

    PubMed Central

    Lutge, Elizabeth E; Wiysonge, Charles Shey; Knight, Stephen E; Sinclair, David; Volmink, Jimmy

    2015-01-01

    Background Patient adherence to medications, particularly for conditions requiring prolonged treatment such as tuberculosis (TB), is frequently less than ideal and can result in poor treatment outcomes. Material incentives to reward good behaviour and enablers to remove economic barriers to accessing care are sometimes given in the form of cash, vouchers, or food to improve adherence. Objectives To evaluate the effects of material incentives and enablers in patients undergoing diagnostic testing, or receiving prophylactic or curative therapy, for TB. Search methods We undertook a comprehensive search of the Cochrane Infectious Diseases Group Specialized Register; Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE; EMBASE; LILACS; Science Citation Index; and reference lists of relevant publications up to 5 June 2015. Selection criteria Randomized controlled trials of material incentives in patients being investigated for TB, or on treatment for latent or active TB. Data collection and analysis At least two review authors independently screened and selected studies, extracted data, and assessed the risk of bias in the included trials. We compared the effects of interventions using risk ratios (RR), and presented RRs with 95% confidence intervals (CI). The quality of the evidence was assessed using GRADE. Main results We identified 12 eligible trials. Ten were conducted in the USA: in adolescents (one trial), in injection drug or cocaine users (four trials), in homeless adults (three trials), and in prisoners (two trials). The remaining two trials, in general adult populations, were conducted in Timor-Leste and South Africa. Sustained incentive programmes Only two trials have assessed whether material incentives and enablers can improve long-term adherence and completion of treatment for active TB, and neither demonstrated a clear benefit (RR 1.04, 95% CI 0.97 to 1.14; two trials, 4356 participants; low quality evidence). In one trial, the incentive

  19. Can existing practices expected to lead to improved on-farm water use efficiency enable irrigators to effectively respond to reduced water entitlements in the Murray-Darling Basin?

    NASA Astrophysics Data System (ADS)

    Ticehurst, Jenifer L.; Curtis, Allan L.

    2015-09-01

    Australia is the driest continent and there is increasing competition for scarce fresh water resources between agriculture and the environment. In the Murray-Darling Basin (MDB) that conflict has largely been resolved by reallocating water from agriculture to the environment. As part of the water reform process both governments and industry are focussed on improving on-property water use efficiency (WUE), particularly of irrigated agriculture. This paper examines the potential for WUE to enable MDB irrigators to adapt to cuts in their irrigation entitlements. The paper draws on data from a case study in the Namoi Valley of New South Wales. The distinctive contribution of this paper is that we draw on survey data of the existing and intended adoption of a limited suite of currently available WUE practices. That is, we have not simply assumed that all irrigators, or a specific proportion of irrigators, will adopt each WUE option. Given survey respondents' intended level of adoption, we calculated the potential water savings for each property and then the catchment, without extrapolating beyond the survey respondents. Those calculations suggest that water savings of up to 100.9 GL could be achieved across the Namoi catchment if those interested in doing so were to convert to existing improved WUE practices. Those savings represented 82% of the reduction in irrigator entitlements under the draft MDB Plan, and exceed the 10 GL/yr reductions required under the revised MDB Plan. These results suggest that those adopting existing WUE practices will have additional water for irrigation. To the extent that this is the case, there seems to be less justification for government support for irrigators during the adjustment process.

  20. Web-enabling technologies for the factory floor: a web-enabling strategy for emanufacturing

    NASA Astrophysics Data System (ADS)

    Velez, Ricardo; Lastra, Jose L. M.; Tuokko, Reijo O.

    2001-10-01

    This paper is intended to address the different technologies available for Web-enabling of the factory floor. It will give an overview of the importance of Web-enabling of the factory floor, in the application of the concepts of flexible and intelligent manufacturing, in conjunction with e-commerce. As a last section, it will try to define a Web-enabling strategy for the application in eManufacturing. This is made under the scope of the electronics manufacturing industry, so every application, technology or related matter is presented under such scope.

  1. Effect of 4 years of growth hormone therapy in children with Noonan syndrome in the American Norditropin Studies: Web-Enabled Research (ANSWER) Program® registry

    PubMed Central

    2012-01-01

    Background Noonan syndrome (NS) is a genetic disorder characterized by phenotypic features, including facial dysmorphology, cardiovascular anomalies, and short stature. Growth hormone (GH) has been approved by the United States Food and Drug Administration for short stature in children with NS. The objective of this analysis was to assess the height standard deviation score (HSDS) and change in HSDS (ΔHSDS) for up to 4 years (Y4) of GH therapy in children with NS. Methods The American Norditropin Studies: Web-Enabled Research (ANSWER) Program®, a US-based registry, collects long-term efficacy and safety information on patients treated with Norditropin® (somatropin rDNA origin, Novo Nordisk A/S) at the discretion of participating physicians. A total of 120 children (90 boys, 30 girls) with NS, naïve to previous GH treatment, were included in this analysis. Results The mean (SD) baseline age of subjects (n = 120) was 9.2 (3.8) years. Mean (SD) HSDS increased from –2.65 (0.73) at baseline to –1.32 (1.11) at Y4 (n = 17). Subjects showed continued increase in HSDS from baseline to Y4 without significant differences between genders at Y1 or Y2. The mean (SD) GH dose was 47 (11) mcg/kg/day at baseline and 59 (16) mcg/kg/day at Y4. There was a negative correlation between baseline age and ΔHSDS at Y1 (R = –0.3156; P = 0.0055) and Y2 (R = –0.3394; P = 0.017). ΔHSDS at Y1 was significantly correlated with ΔHSDS at Y2 (n = 37; R = 0.8527, P < 0.0001) and Y3 (n = 20; R = 0.5145; P = 0.0203), but not Y4 (n = 12; R = 0.4066, P = 0.1896). Conclusions GH treatment-naïve patients with NS showed continued increases in HSDS during 4 years of treatment with GH with no significant differences between genders up to 2 years. Baseline age was negatively correlated with ΔHSDS at Y1 and Y2. Whether long-term therapy in NS results in continued increase in HSDS to adult height remains to be investigated. Trial

  2. Sensor Web Enablement for Coastal Buoy Systems

    NASA Astrophysics Data System (ADS)

    Ling, Y.; Durbha, S. S.; King, R. L.

    2006-12-01

    Coastal buoys and stations provide frequent, high-quality marine observations for weather service, public safety, atmospheric, and oceanographic study. However, sharing of the generated datasets, information, and results, between geographically distributed organizations often proves to be challenging. This is due to the complicated steps involved in data discovery and conversion of the data into usable information due to problems of syntactic, structural, and semantic heterogeneity in the datasets. Therefore, a standardized modeling framework is desired for the coastal buoys to provide enhanced capabilities for interoperability and to better disseminate the information. This study is developing an interoperable framework for coastal buoys using Sensor Model Language (SensorML) and other components (e.g., Observations & Measurements Schema (O&M), Transducer Markup Language (TransducerML), Sensor Observation Service (SOS), etc) of the OpenGeospatial Consortium (OGC) Sensor Web Enablement (SWE). SensorML is a standard for the description of measurement devices and more complex measurement systems, in order to enable automatic processing of sensor data by generic software. In this study, buoys operated by the National Data Buoy Center (NDBC) with different payloads (e.g., ARES, DACT, DART, GSBP, MARS, and VEEP) were described using SensorML. Each of these payloads has a variety of sensors used to measure the marine parameters (e.g., sea surface temperature, wind direction, wind speed, water level). Our framework of the proposed Coastal Sensor Web Enablement (CSWE) middleware for buoy systems is built upon the existing OGC web services. The Web service specifications such as Sensor Planning Service (SPS), Sensor Observation Service (SOS), and Sensor Alert Service (SAS) define how data collection requests are expressed, observations retrieved, and alert or alarm conditions defined. The integration of these components in the proposed architecture provides access to

  3. Astronomy Enabled by Ares V -- A Workshop

    NASA Astrophysics Data System (ADS)

    Lester, Daniel F.; Langhoff, S.; Worden, S. P.; Thronson, H.; Correll, R.

    2009-01-01

    On April 26th and 27th, 2008, NASA Ames Research Center hosted a two-day weekend workshop entitled "Astronomy Enabled by Ares V.” The primary goal of the workshop was to begin the process of bringing the Ares V designers together with senior representatives of the astronomical community to discuss the feasibility of using the Ares V heavy-lift launch vehicle to enable both new astronomical telescope architectures and new science. When developed in the latter part of the upcoming decade Ares V will be by far the most capable launch vehicle, with mass and volume launch capability many times that now available. The vehicle is understood to be the main workhorse in carrying humans and cargo to the Moon and beyond and, as such, is a key lynchpin for NASA's new space transportation architecture. Participants included experts from academia, industry, and NASA, including representatives of the Constellation architecture. Participants considered, in the context of identified astronomy needs: (1) Are there telescope concepts or missions capable of breakthrough science that are either enabled or significantly enhanced by the capabilities of an Ares V? (2) What demands do large telescopes place on the payload environment of the Ares V, such as mass, volume, fairing shape, cleanliness, acoustics, etc.? (3) What technology and environmental issues need to be addressed to facilitate launching observatories on an Ares V? (4) Is there a trade-off between mass and complexity that could reduce launch risk and, thereby, the cost of building large telescopes? We report on the results of this workshop, which included discussion on the operations model for such large-investment astronomical facilities. Such an operations model might well involve human and or robotic maintenance and servicing, in order to fully capitalize on the science potential of such facilities.

  4. Small-RPS Enabled Mars Rover Concept

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.

    2004-01-01

    Both the MER and the Mars Pathfinder rovers operated on Mars in an energy-limited mode, since the solar panels generated power during daylight hours only. At other times the rovers relied on power stored in batteries. In comparison, Radioisotope Power Systems (RPS) offer a power-enabled paradigm, where power can be generated for long mission durations (measured in years), independently from the Sun, and on a continuous basis. A study was performed at PL to assess the feasibility of a small-RPS enabled MER-class rover concept and any associated advantages of its mission on Mars. The rover concept relied on design heritage from MER with two significant changes. First, the solar panels were replaced with two single GPHS module based small-RPSs. Second, the Mossbauer spectroscope was substituted with a laser Raman spectroscope, in order to move towards MEPAG defined astrobiology driven science goals. The highest power requirements were contributed to mobility and telecommunication type operating modes, hence influencing power system sizing. The resulting hybrid power system included two small-RPSs and two batteries. Each small-RPS was assumed to generate 50We of power or 62OWh/sol of energy (BOL), comparable to that of MER. The two 8Ah batteries were considered available during peak power usage. Mission architecture, power trades, science instruments, data, communication, thermal and radiation environments, mobility, mass issues were also addressed. The study demonstrated that a new set of RPS-enabled rover missions could be envisioned for Mars exploration within the next decade, targeting astrobiology oriented science objectives, while powered by 2 to 4 GPHS modules.

  5. Camera-enabled techniques for organic synthesis

    PubMed Central

    Ingham, Richard J; O’Brien, Matthew; Browne, Duncan L

    2013-01-01

    Summary A great deal of time is spent within synthetic chemistry laboratories on non-value-adding activities such as sample preparation and work-up operations, and labour intensive activities such as extended periods of continued data collection. Using digital cameras connected to computer vision algorithms, camera-enabled apparatus can perform some of these processes in an automated fashion, allowing skilled chemists to spend their time more productively. In this review we describe recent advances in this field of chemical synthesis and discuss how they will lead to advanced synthesis laboratories of the future. PMID:23766820

  6. The role of CORBA in enabling telemedicine

    SciTech Connect

    Forslund, D.W.

    1997-07-01

    One of the most powerful tools available for telemedicine is a multimedia medical record accessible over a wide area and simultaneously editable by multiple physicians. The ability to do this through an intuitive interface linking multiple distributed data repositories while maintaining full data integrity is a fundamental enabling technology in healthcare. The author discusses the role of distributed object technology using CORBA in providing this capability including an example of such a system (TeleMed) which can be accessed through the World Wide Web. Issues of security, scalability, data integrity, and useability are emphasized.

  7. Transparent displays enabled by resonant nanoparticle scattering

    NASA Astrophysics Data System (ADS)

    Hsu, Chia Wei; Zhen, Bo; Qiu, Wenjun; Shapira, Ofer; Delacy, Brendan G.; Joannopoulos, John D.; Soljačić, Marin

    2014-01-01

    The ability to display graphics and texts on a transparent screen can enable many useful applications. Here we create a transparent display by projecting monochromatic images onto a transparent medium embedded with nanoparticles that selectively scatter light at the projected wavelength. We describe the optimal design of such nanoparticles, and experimentally demonstrate this concept with a blue-color transparent display made of silver nanoparticles in a polymer matrix. This approach has attractive features including simplicity, wide viewing angle, scalability to large sizes and low cost.

  8. WSKE: Web Server Key Enabled Cookies

    NASA Astrophysics Data System (ADS)

    Masone, Chris; Baek, Kwang-Hyun; Smith, Sean

    In this paper, we present the design and prototype of a new approach to cookie management: if a server deposits a cookie only after authenticating itself via the SSL handshake, the browser will return the cookie only to a server that can authenticate itself, via SSL, to the same keypair. This approach can enable usable but secure client authentication. This approach can improve the usability of server authentication by clients. This approach is superior to the prior work on Active Cookies in that it defends against both DNS spoofing and IP spoofing—and does not require binding a user's interaction with a server to individual IP addresses.

  9. Solar vapor generation enabled by nanoparticles.

    PubMed

    Neumann, Oara; Urban, Alexander S; Day, Jared; Lal, Surbhi; Nordlander, Peter; Halas, Naomi J

    2013-01-22

    Solar illumination of broadly absorbing metal or carbon nanoparticles dispersed in a liquid produces vapor without the requirement of heating the fluid volume. When particles are dispersed in water at ambient temperature, energy is directed primarily to vaporization of water into steam, with a much smaller fraction resulting in heating of the fluid. Sunlight-illuminated particles can also drive H(2)O-ethanol distillation, yielding fractions significantly richer in ethanol content than simple thermal distillation. These phenomena can also enable important compact solar applications such as sterilization of waste and surgical instruments in resource-poor locations. PMID:23157159

  10. Agility enabled by the SEMATECH CIM framework

    NASA Astrophysics Data System (ADS)

    Hawker, Scott; Waskiewicz, Fred

    1997-01-01

    The survivor in today's market environment is agile: able to survive and thrive in a market place marked by rapid, continuous change. For manufacturers, this includes an ability to rapidly develop, deploy and reconfigure manufacturing information and control systems. The SEMATECH CIM framework defines an application integration architecture and standard application components that enable agile manufacturing information and control systems. Further, the CIM framework and its evolution process foster virtual organizations of suppliers and manufacturers, combining their products and capabilities into an agile manufacturing information and control system.

  11. ENABLER Nuclear Propulsion System Conceptual Design

    NASA Astrophysics Data System (ADS)

    Pauley, Keith A.; Woodham, Kurt; Ohi, Don; Haga, Heath; Henderson, Bo

    2004-02-01

    The Titan Corporation conducted a systems engineering study to develop an overall architecture that meets both the articulated and unarticulated requirements on the Prometheus Program with the least development effort. Key elements of the Titan-designed ENABLER system include a thermal fission reactor, thermionic power converters, sodium heat pipes, ion thruster engines, and a radiation shield and deployable truss to protect the payload. The overall design is scaleable over a wide range of power requirements from 10s of kilowatts to 10s of megawatts.

  12. Enabling Rapid Naval Architecture Design Space Exploration

    NASA Technical Reports Server (NTRS)

    Mueller, Michael A.; Dufresne, Stephane; Balestrini-Robinson, Santiago; Mavris, Dimitri

    2011-01-01

    Well accepted conceptual ship design tools can be used to explore a design space, but more precise results can be found using detailed models in full-feature computer aided design programs. However, defining a detailed model can be a time intensive task and hence there is an incentive for time sensitive projects to use conceptual design tools to explore the design space. In this project, the combination of advanced aerospace systems design methods and an accepted conceptual design tool facilitates the creation of a tool that enables the user to not only visualize ship geometry but also determine design feasibility and estimate the performance of a design.

  13. Echo-enabled x-ray vortex generation.

    PubMed

    Hemsing, E; Marinelli, A

    2012-11-30

    A technique to generate high-brightness electromagnetic vortices with tunable topological charge at extreme ultraviolet and x-ray wavelengths is described. Based on a modified version of echo-enabled harmonic generation for free-electron lasers, the technique uses two lasers and two chicanes to produce high-harmonic microbunching of a relativistic electron beam with a corkscrew distribution that matches the instantaneous helical phase structure of the x-ray vortex. The strongly correlated electron distribution emerges from an efficient three-dimensional recoherence effect in the echo-enabled harmonic generation transport line and can emit fully coherent vortices in a downstream radiator for access to new research in x-ray science. PMID:23368128

  14. High-performance microlasers enable display applications

    NASA Astrophysics Data System (ADS)

    Takeuchi, Eric B.; Hargis, David E.; Bergstedt, Robert; Dion, Al; Hurtado, Randy; Solone, Paul J.

    1999-08-01

    Recent advances in compact, air-cooled, diode-pumped solid- state visible microlasers have enabled the development of portable laser display systems. In addition to the added benefits of large color gamut, invariant color accuracy, image uniformity, high contrast, and large depth of focus inherent in the microlaser design, the reliability of these all-solid state red-green-blue (RGB) sources make them attractive for display applications. Compact, multi-watt laser modules have been demonstrated for use as a high brightness 'laser light engine' for replacing arc lamps in LCD/DMD type display configurations. Using this 'backlit' approach, a microlaser- based projector has been demonstrated, providing greater than 500 lumens at 1280 X 1024 resolution using reflective AMLCD light valves. Also being developed is an airborne tactical HMD system wherein the laser module is remotely coupled to a subtractive color LCD assembly through an optical fiber to provide a more than 24,000,000 (twenty-four million) cd/m2 luminance for illuminating the LCD assembly. This technology could be applied to a variety of cockpit displays providing sunlight readable illumination for both head-down and head-up backlit display configurations. The advantages of the microlaser technology will enable further applications in other military platforms such as command and control centers, simulators and HMDs. Longer term potential includes high end CAD workstations, entertainment systems, and electronic cinema.

  15. Blue space geographies: Enabling health in place.

    PubMed

    Foley, Ronan; Kistemann, Thomas

    2015-09-01

    Drawing from research on therapeutic landscapes and relationships between environment, health and wellbeing, we propose the idea of 'healthy blue space' as an important new development Complementing research on healthy green space, blue space is defined as; 'health-enabling places and spaces, where water is at the centre of a range of environments with identifiable potential for the promotion of human wellbeing'. Using theoretical ideas from emotional and relational geographies and critical understandings of salutogenesis, the value of blue space to health and wellbeing is recognised and evaluated. Six individual papers from five different countries consider how health can be enabled in mixed blue space settings. Four sub-themes; embodiment, inter-subjectivity, activity and meaning, document multiple experiences within a range of healthy blue spaces. Finally, we suggest a considerable research agenda - theoretical, methodological and applied - for future work within different forms of blue space. All are suggested as having public health policy relevance in social and public space. PMID:26238330

  16. Interaction-enabled topological crystalline phases

    NASA Astrophysics Data System (ADS)

    Lapa, Matthew F.; Teo, Jeffrey C. Y.; Hughes, Taylor L.

    2016-03-01

    In this article we provide a general mechanism for generating interaction-enabled fermionic topological phases. We illustrate the mechanism with crystalline symmetry-protected topological phases in one, two, and three spatial dimensions. These nontrivial phases require interactions for their existence, and in the cases we consider, the free-fermion classification yields only a trivial phase. For the one- and two-dimensional phases we consider, we provide explicit exactly solvable models which realize the interaction-enabled phases. Similar to the interpretation of the Kitaev Majorana wire as a mean-field p -wave superconductor Hamiltonian arising from an interacting model with quartic interactions, we show that our systems can be interpreted as "mean-field" charge-4 e superconductors arising, e.g., from an interacting model with eight-body interactions or through another physical mechanism. The quartet superconducting nature allows for the teleportation of full Cooper pairs and, in two dimensions, for interesting semiclassical crystalline defects with non-Abelian anyon bound states.

  17. MENTOR: an enabler for interoperable intelligent systems

    NASA Astrophysics Data System (ADS)

    Sarraipa, João; Jardim-Goncalves, Ricardo; Steiger-Garcao, Adolfo

    2010-07-01

    A community with knowledge organisation based on ontologies will enable an increase in the computational intelligence of its information systems. However, due to the worldwide diversity of communities, a high number of knowledge representation elements, which are not semantically coincident, have appeared representing the same segment of reality, becoming a barrier to business communications. Even if a domain community uses the same kind of technologies in its information systems, such as ontologies, it doesn't solve its semantics differences. In order to solve this interoperability problem, a solution is to use a reference ontology as an intermediary in the communications between the community enterprises and the outside, while allowing the enterprises to keep their own ontology and semantics unchanged internally. This work proposes MENTOR, a methodology to support the development of a common reference ontology for a group of organisations sharing the same business domain. This methodology is based on the mediator ontology (MO) concept, which assists the semantic transformations among each enterprise's ontology and the referential one. The MO enables each organisation to keep its own terminology, glossary and ontological structures, while providing seamless communication and interaction with the others.

  18. Ultra-precision: enabling our future.

    PubMed

    Shore, Paul; Morantz, Paul

    2012-08-28

    This paper provides a perspective on the development of ultra-precision technologies: What drove their evolution and what do they now promise for the future as we face the consequences of consumption of the Earth's finite resources? Improved application of measurement is introduced as a major enabler of mass production, and its resultant impact on wealth generation is considered. This paper identifies the ambitions of the defence, automotive and microelectronics sectors as important drivers of improved manufacturing accuracy capability and ever smaller feature creation. It then describes how science fields such as astronomy have presented significant precision engineering challenges, illustrating how these fields of science have achieved unprecedented levels of accuracy, sensitivity and sheer scale. Notwithstanding their importance to science understanding, many science-driven ultra-precision technologies became key enablers for wealth generation and other well-being issues. Specific ultra-precision machine tools important to major astronomy programmes are discussed, as well as the way in which subsequently evolved machine tools made at the beginning of the twenty-first century, now provide much wider benefits. PMID:22802499

  19. Petascale Computing Enabling Technologies Project Final Report

    SciTech Connect

    de Supinski, B R

    2010-02-14

    The Petascale Computing Enabling Technologies (PCET) project addressed challenges arising from current trends in computer architecture that will lead to large-scale systems with many more nodes, each of which uses multicore chips. These factors will soon lead to systems that have over one million processors. Also, the use of multicore chips will lead to less memory and less memory bandwidth per core. We need fundamentally new algorithmic approaches to cope with these memory constraints and the huge number of processors. Further, correct, efficient code development is difficult even with the number of processors in current systems; more processors will only make it harder. The goal of PCET was to overcome these challenges by developing the computer science and mathematical underpinnings needed to realize the full potential of our future large-scale systems. Our research results will significantly increase the scientific output obtained from LLNL large-scale computing resources by improving application scientist productivity and system utilization. Our successes include scalable mathematical algorithms that adapt to these emerging architecture trends and through code correctness and performance methodologies that automate critical aspects of application development as well as the foundations for application-level fault tolerance techniques. PCET's scope encompassed several research thrusts in computer science and mathematics: code correctness and performance methodologies, scalable mathematics algorithms appropriate for multicore systems, and application-level fault tolerance techniques. Due to funding limitations, we focused primarily on the first three thrusts although our work also lays the foundation for the needed advances in fault tolerance. In the area of scalable mathematics algorithms, our preliminary work established that OpenMP performance of the AMG linear solver benchmark and important individual kernels on Atlas did not match the predictions of our

  20. Enabling a New Planning and Scheduling Paradigm

    NASA Technical Reports Server (NTRS)

    Jaap, John; Davis, Elizabeth

    2004-01-01

    The Flight Projects Directorate at NASA's Marshall Space Flight Center is developing a new planning and scheduling environment and a new scheduling algorithm to enable a paradigm shift in planning and scheduling concepts. Over the past 33 years Marshall has developed and evolved a paradigm for generating payload timelines for Skylab, Spacelab, various other Shuttle payloads, and the International Space Station. The current paradigm starts by collecting the requirements, called "tasks models," from the scientists and technologists for the tasks that they want to be done. Because of shortcomings in the current modeling schema, some requirements are entered as notes. Next a cadre with knowledge of vehicle and hardware modifies these models to encompass and be compatible with the hardware model; again, notes are added when the modeling schema does not provide a better way to represent the requirements. Finally, another cadre further modifies the models to be compatible with the scheduling engine. This last cadre also submits the models to the scheduling engine or builds the timeline manually to accommodate requirements that are expressed in notes. A future paradigm would provide a scheduling engine that accepts separate science models and hardware models. The modeling schema would have the capability to represent all the requirements without resorting to notes. Furthermore, the scheduling engine would not require that the models be modified to account for the capabilities (limitations) of the scheduling engine. The enabling technology under development at Marshall has three major components. (1) A new modeling schema allows expressing all the requirements of the tasks without resorting to notes or awkward contrivances. The chosen modeling schema is both maximally expressive and easy to use. It utilizes graphics methods to show hierarchies of task constraints and networks of temporal relationships. (2) A new scheduling algorithm automatically schedules the models

  1. Health-Enabled Smart Sensor Fusion Technology

    NASA Technical Reports Server (NTRS)

    Wang, Ray

    2012-01-01

    A process was designed to fuse data from multiple sensors in order to make a more accurate estimation of the environment and overall health in an intelligent rocket test facility (IRTF), to provide reliable, high-confidence measurements for a variety of propulsion test articles. The object of the technology is to provide sensor fusion based on a distributed architecture. Specifically, the fusion technology is intended to succeed in providing health condition monitoring capability at the intelligent transceiver, such as RF signal strength, battery reading, computing resource monitoring, and sensor data reading. The technology also provides analytic and diagnostic intelligence at the intelligent transceiver, enhancing the IEEE 1451.x-based standard for sensor data management and distributions, as well as providing appropriate communications protocols to enable complex interactions to support timely and high-quality flow of information among the system elements.

  2. Laboratory Astrophysics: Enabling Scientific Discovery and Understanding

    NASA Technical Reports Server (NTRS)

    Kirby, K.

    2006-01-01

    NASA's Science Strategic Roadmap for Universe Exploration lays out a series of science objectives on a grand scale and discusses the various missions, over a wide range of wavelengths, which will enable discovery. Astronomical spectroscopy is arguably the most powerful tool we have for exploring the Universe. Experimental and theoretical studies in Laboratory Astrophysics convert "hard-won data into scientific understanding". However, the development of instruments with increasingly high spectroscopic resolution demands atomic and molecular data of unprecedented accuracy and completeness. How to meet these needs, in a time of severe budgetary constraints, poses a significant challenge both to NASA, the astronomical observers and model-builders, and the laboratory astrophysics community. I will discuss these issues, together with some recent examples of productive astronomy/lab astro collaborations.

  3. Enabling technologies to advance microbial isoprenoid production.

    PubMed

    Chen, Yun; Zhou, Yongjin J; Siewers, Verena; Nielsen, Jens

    2015-01-01

    Microbial production of isoprenoids provides an attractive alternative to biomass extraction and chemical synthesis. Although widespread research aims for isoprenoid biosynthesis, it is still in its infancy in terms of delivering commercial products. Large barriers remain in realizing a cost-competitive process, for example, developing an optimal microbial cell factory. Here, we summarize the many tools and methods that have been developed in the metabolic engineering of isoprenoid production, with the advent of systems biology and synthetic biology, and discuss how these technologies advance to accelerate the design-build-test engineering cycle to obtain optimum microbial systems. It is anticipated that innovative combinations of new and existing technologies will continue to emerge, which will enable further development of microbial cell factories for commercial isoprenoid production. PMID:25549781

  4. Nanoplasmon-enabled macroscopic thermal management

    NASA Astrophysics Data System (ADS)

    Jonsson, Gustav Edman; Miljkovic, Vladimir; Dmitriev, Alexandre

    2014-05-01

    In numerous applications of energy harvesting via transformation of light into heat the focus recently shifted towards highly absorptive nanoplasmonic materials. It is currently established that noble metals-based absorptive plasmonic platforms deliver significant light-capturing capability and can be viewed as super-absorbers of optical radiation. Naturally, approaches to the direct experimental probing of macroscopic temperature increase resulting from these absorbers are welcomed. Here we derive a general quantitative method of characterizing heat-generating properties of optically absorptive layers via macroscopic thermal imaging. We further monitor macroscopic areas that are homogeneously heated by several degrees with nanostructures that occupy a mere 8% of the surface, leaving it essentially transparent and evidencing significant heat generation capability of nanoplasmon-enabled light capture. This has a direct bearing to a large number of applications where thermal management is crucial.

  5. Microsystem enabled photovoltaic modules and systems

    DOEpatents

    Nielson, Gregory N; Sweatt, William C; Okandan, Murat

    2015-05-12

    A microsystem enabled photovoltaic (MEPV) module including: an absorber layer; a fixed optic layer coupled to the absorber layer; a translatable optic layer; a translation stage coupled between the fixed and translatable optic layers; and a motion processor electrically coupled to the translation stage to controls motion of the translatable optic layer relative to the fixed optic layer. The absorber layer includes an array of photovoltaic (PV) elements. The fixed optic layer includes an array of quasi-collimating (QC) micro-optical elements designed and arranged to couple incident radiation from an intermediate image formed by the translatable optic layer into one of the PV elements such that it is quasi-collimated. The translatable optic layer includes an array of focusing micro-optical elements corresponding to the QC micro-optical element array. Each focusing micro-optical element is designed to produce a quasi-telecentric intermediate image from substantially collimated radiation incident within a predetermined field of view.

  6. Corrigendum: Exogenous Attention Enables Perceptual Learning.

    PubMed

    2016-04-01

    Szpiro, S. F. A., & Carrasco, M. (2015). Exogenous attention enables perceptual learning.Psychological Science, 26, 1854-1862. (Original DOI:10.1177/0956797615598976)In the second paragraph of the Testing Sessions section of this article, thetvalue for the between-group difference in spatial-frequency differences was incorrectly reported as 9.49,p> .1, rather than 0.95,p> .1. The sentence should read as follows:There was no significant difference between groups for the orientation differences,t(12) = 1.51,p> .1, or for the spatial-frequency differences,t(12) = 0.95,p> .1.Thus, the conclusion regarding the lack of significance remains the same. PMID:26935483

  7. Telexistence: Enabling Humans to Be Virtually Ubiquitous.

    PubMed

    Tachi, Susumu

    2016-01-01

    Telecommunication and remote-controlled operations are becoming increasingly common in our daily lives. While performing these operations, ideally users would feel as if they were actually present at the remote sites. However, the present commercially available telecommunication and telepresence systems do not provide the sensation of self-presence or self-existence, and hence, users do not get the feeling of being spatially present or that they are directly performing spatial tasks, rather than simply controlling them remotely. This article describes the TELESAR V telexistence master-slave system that enables a human user to feel present in a remote environment. TELESAR V can transmit not only visual and auditory sensations, but also haptic sensations, which are conveyed using the principle of haptic primary colors. PMID:26780759

  8. Photonically-enabled RF spectrum analyzer demonstration

    NASA Astrophysics Data System (ADS)

    Kunkee, Elizabeth T.; Tsai, Ken; Smith, Andrew D.; Jung, T.; Lembo, Larry; Davis, Richard; Babbitt, W. Randall; Krishna-Mohan, R.; Cole, Zachary; Merkel, Kristian D.; Wagner, Kelvin H.

    2008-04-01

    A RF spectrum analyzer with high performance and unique capabilities that traditional all-electronic spectrum analyzers do not exhibit is demonstrated. The system is based on photonic signal processing techniques that have enabled us to demonstrate the spectral analysis of a 1.5 GHz bandwidth with a 1.4 ms update time and a resolution bandwidth of 31 kHz. We observed a 100% probability of intercept for all signals, including short pulses, during the measurement window. The spectrum analyzer operated over the 0.5 to 2.0 GHz range and exhibited a spur-free dynamic range of 42 dB. The potential applications of such a system are extensive and include: detection and location of transient electromagnetic signals, spectrum monitoring for adaptive communications such as spectrum-sensing cognitive radio, and battlefield spectrum management.

  9. Metasurface-Enabled Remote Quantum Interference.

    PubMed

    Jha, Pankaj K; Ni, Xingjie; Wu, Chihhui; Wang, Yuan; Zhang, Xiang

    2015-07-10

    An anisotropic quantum vacuum (AQV) opens novel pathways for controlling light-matter interaction in quantum optics, condensed matter physics, etc. Here, we theoretically demonstrate a strong AQV over macroscopic distances enabled by a judiciously designed array of subwavelength-scale nanoantennas-a metasurface. We harness the phase-control ability and the polarization-dependent response of the metasurface to achieve strong anisotropy in the decay rate of a quantum emitter located over distances of hundreds of wavelengths. Such an AQV induces quantum interference among radiative decay channels in an atom with orthogonal transitions. Quantum vacuum engineering with metasurfaces holds promise for exploring new paradigms of long-range light-matter interaction for atom optics, solid-state quantum optics, quantum information processing, etc. PMID:26207477

  10. The network-enabled optimization system server

    SciTech Connect

    Mesnier, M.P.

    1995-08-01

    Mathematical optimization is a technology under constant change and advancement, drawing upon the most efficient and accurate numerical methods to date. Further, these methods can be tailored for a specific application or generalized to accommodate a wider range of problems. This perpetual change creates an ever growing field, one that is often difficult to stay abreast of. Hence, the impetus behind the Network-Enabled Optimization System (NEOS) server, which aims to provide users, both novice and expert, with a guided tour through the expanding world of optimization. The NEOS server is responsible for bridging the gap between users and the optimization software they seek. More specifically, the NEOS server will accept optimization problems over the Internet and return a solution to the user either interactively or by e-mail. This paper discusses the current implementation of the server.

  11. Science Missions Enabled by the Ares V

    NASA Technical Reports Server (NTRS)

    Worden, Simon Peter; Weiler, Edward J.

    2008-01-01

    NASA's planned heavy-lift Ares V rocket is a centerpiece of U.S. Space Exploration Policy. With approximately 30% more capacity to Trans-Lunar Injection (TLI) than the Saturn V, Ares V could also enable additional science and exploration missions currently unachievable or extremely unworkable under current launch vehicle architectures. During the spring and summer of 2008, NASA held two workshops dedicated to the discussion of these new mission concepts for the Ares V rocket. The first workshop dealt with astronomy and astrophysics, and the second dealt primarily with planetary science and exploration, but did touch on Earth science and heliophysics. We present here the summary results and outcomes of these meetings, including a discussion of specific mission concepts and ideas, as well as suggestions on design for the Ares V fairing and flight configurations that improve science return.

  12. Enabling opportunistic resources for CMS Computing Operations

    NASA Astrophysics Data System (ADS)

    Hufnagel, D.; CMS Collaboration

    2015-12-01

    With the increased pressure on computing brought by the higher energy and luminosity from the LHC in Run 2, CMS Computing Operations expects to require the ability to utilize opportunistic resources resources not owned by, or a priori configured for CMS to meet peak demands. In addition to our dedicated resources we look to add computing resources from non CMS grids, cloud resources, and national supercomputing centers. CMS uses the HTCondor/glideinWMS job submission infrastructure for all its batch processing, so such resources will need to be transparently integrated into its glideinWMS pool. Bosco and parrot wrappers are used to enable access and bring the CMS environment into these non CMS resources. Here we describe our strategy to supplement our native capabilities with opportunistic resources and our experience so far using them.

  13. Nanoplasmon-enabled macroscopic thermal management

    PubMed Central

    Jonsson, Gustav Edman; Miljkovic, Vladimir; Dmitriev, Alexandre

    2014-01-01

    In numerous applications of energy harvesting via transformation of light into heat the focus recently shifted towards highly absorptive nanoplasmonic materials. It is currently established that noble metals-based absorptive plasmonic platforms deliver significant light-capturing capability and can be viewed as super-absorbers of optical radiation. Naturally, approaches to the direct experimental probing of macroscopic temperature increase resulting from these absorbers are welcomed. Here we derive a general quantitative method of characterizing heat-generating properties of optically absorptive layers via macroscopic thermal imaging. We further monitor macroscopic areas that are homogeneously heated by several degrees with nanostructures that occupy a mere 8% of the surface, leaving it essentially transparent and evidencing significant heat generation capability of nanoplasmon-enabled light capture. This has a direct bearing to a large number of applications where thermal management is crucial. PMID:24870613

  14. Grid Enabled Geospatial Catalogue Web Service

    NASA Technical Reports Server (NTRS)

    Chen, Ai-Jun; Di, Li-Ping; Wei, Ya-Xing; Liu, Yang; Bui, Yu-Qi; Hu, Chau-Min; Mehrotra, Piyush

    2004-01-01

    Geospatial Catalogue Web Service is a vital service for sharing and interoperating volumes of distributed heterogeneous geospatial resources, such as data, services, applications, and their replicas over the web. Based on the Grid technology and the Open Geospatial Consortium (0GC) s Catalogue Service - Web Information Model, this paper proposes a new information model for Geospatial Catalogue Web Service, named as GCWS which can securely provides Grid-based publishing, managing and querying geospatial data and services, and the transparent access to the replica data and related services under the Grid environment. This information model integrates the information model of the Grid Replica Location Service (RLS)/Monitoring & Discovery Service (MDS) with the information model of OGC Catalogue Service (CSW), and refers to the geospatial data metadata standards from IS0 19115, FGDC and NASA EOS Core System and service metadata standards from IS0 191 19 to extend itself for expressing geospatial resources. Using GCWS, any valid geospatial user, who belongs to an authorized Virtual Organization (VO), can securely publish and manage geospatial resources, especially query on-demand data in the virtual community and get back it through the data-related services which provide functions such as subsetting, reformatting, reprojection etc. This work facilitates the geospatial resources sharing and interoperating under the Grid environment, and implements geospatial resources Grid enabled and Grid technologies geospatial enabled. It 2!so makes researcher to focus on science, 2nd not cn issues with computing ability, data locztic, processir,g and management. GCWS also is a key component for workflow-based virtual geospatial data producing.

  15. Multimodal Supervision Programme to Reduce Catheter Associated Urinary Tract Infections and Its Analysis to Enable Focus on Labour and Cost Effective Infection Control Measures in a Tertiary Care Hospital in India

    PubMed Central

    Jaggi, Namita; Sissodia, Pushpa

    2012-01-01

    Background Catheter Associated Urinary Tract Infections (CAUTI) contribute 30%-40% of all the nosocomial infections and they are associated with substantially increased institutional death rates. A multimodal supervision program which incorporates training of the staff with respect to infection control measures can be effective in reducing the CAUTIs in hospitals. Aim To assess the impact of a multimodal UTI supervision program on the CAUTI rates over a year, from January 2009 to December 2009, in a tertiary care hospital in India. Setting A 215 bedded tertiary care private hospital. Materials and Methods The CAUTI rates were analyzed for the first 6 months (January 2009-June 2009). A UTI supervision program was instituted in the month of July 2009, which included training with respect to the standard protocols for the sample collection and diagnosis, the bundle components of the urinary catheter checklist and hand hygiene practices. The impact was assessed as per the CAUTI rates in the subsequent months. Results The average CAUTI rate was reduced by 47.1% (from 10.6 to 5.6) after the introduction of the supervision program. This study presented the mean age of the patients with CAUTIs as 54.5 years and it showed an approximately equal contribution of both the sexes (52.94% in males and 47.05% in females). The impact analysis of the supervision program showed a reduction of 8.7% (from 23 days to 21 days) during the average duration of the catheterization. The adherence to the components of the urinary catheter check list was increased by 44.4% (p=0.069) and the hand hygiene compliance was increased by 56.4% (p=0.004) respectively after the interventions. Components like bladder irrigation and practising perineal cleaning were found to show no effect on the CAUTI rates. Conclusion The most common labour and cost effective infection control measures as revealed by the supervision programme were adherence to the urinary catheter checklist components (indication for

  16. Nuclear magnetic resonance-based metabolomics enable detection of the effects of a whole grain rye and rye bran diet on the metabolic profile of plasma in prostate cancer patients.

    PubMed

    Moazzami, Ali A; Zhang, Jie-Xian; Kamal-Eldin, Afaf; Aman, Per; Hallmans, Göran; Johansson, Jan-Erik; Andersson, Sven-Olof

    2011-12-01

    Prostate cancer (PC) is the most common cancer in the Western world and the second most important cancer causing male deaths, after lung cancer, in the United States and Britain. Lifestyle and dietary changes are recommended for men diagnosed with early-stage PC. It has been shown that a diet rich in whole grain (WG) rye reduces the progression of early-stage PC, but the underlying mechanism is not clear. This study sought to identify changes in the metabolic signature of plasma in patients with early-stage PC following intervention with a diet rich in WG rye and rye bran product (RP) compared with refined white wheat product (WP) as a tool for mechanistic investigation of the beneficial health effects of RP on PC progression. Seventeen PC patients received 485 g RP or WP in a randomized, controlled, crossover design during a period of 6 wk with a 2-wk washout period. At the end of each intervention period, plasma was collected after fasting and used for (1)H NMR-based metabolomics. Multilevel partial least squares discriminant analysis was used for paired comparisons of multivariate data. A metabolomics analysis of plasma showed an increase in 5 metabolites, including 3-hydroxybutyric acid, acetone, betaine, N,N-dimethylglycine, and dimethyl sulfone, after RP. To understand these metabolic changes, fasting plasma homocysteine, leptin, adiponectin, and glucagon were measured separately. The plasma homocysteine concentration was lower (P = 0.017) and that of leptin tended to be lower (P = 0.07) after RP intake compared to WP intake. The increase in plasma 3-hydroxybutyric acid and acetone after RP suggests a shift in energy metabolism from anabolic to catabolic status, which could explain some of the beneficial health effects of WG rye, i.e., reduction in prostate-specific antigen and reduced 24-h insulin secretion. In addition, the increase in betaine and N,N-dimethylglycine and the decrease in homocysteine show a favorable shift in homocysteine metabolism after RP

  17. Realising the Uncertainty Enabled Model Web

    NASA Astrophysics Data System (ADS)

    Cornford, D.; Bastin, L.; Pebesma, E. J.; Williams, M.; Stasch, C.; Jones, R.; Gerharz, L.

    2012-12-01

    The FP7 funded UncertWeb project aims to create the "uncertainty enabled model web". The central concept here is that geospatial models and data resources are exposed via standard web service interfaces, such as the Open Geospatial Consortium (OGC) suite of encodings and interface standards, allowing the creation of complex workflows combining both data and models. The focus of UncertWeb is on the issue of managing uncertainty in such workflows, and providing the standards, architecture, tools and software support necessary to realise the "uncertainty enabled model web". In this paper we summarise the developments in the first two years of UncertWeb, illustrating several key points with examples taken from the use case requirements that motivate the project. Firstly we address the issue of encoding specifications. We explain the usage of UncertML 2.0, a flexible encoding for representing uncertainty based on a probabilistic approach. This is designed to be used within existing standards such as Observations and Measurements (O&M) and data quality elements of ISO19115 / 19139 (geographic information metadata and encoding specifications) as well as more broadly outside the OGC domain. We show profiles of O&M that have been developed within UncertWeb and how UncertML 2.0 is used within these. We also show encodings based on NetCDF and discuss possible future directions for encodings in JSON. We then discuss the issues of workflow construction, considering discovery of resources (both data and models). We discuss why a brokering approach to service composition is necessary in a world where the web service interfaces remain relatively heterogeneous, including many non-OGC approaches, in particular the more mainstream SOAP and WSDL approaches. We discuss the trade-offs between delegating uncertainty management functions to the service interfaces themselves and integrating the functions in the workflow management system. We describe two utility services to address

  18. Enabling Technologies for Ceramic Hot Section Components

    SciTech Connect

    Venkat Vedula; Tania Bhatia

    2009-04-30

    Silicon-based ceramics are attractive materials for use in gas turbine engine hot sections due to their high temperature mechanical and physical properties as well as lower density than metals. The advantages of utilizing ceramic hot section components include weight reduction, and improved efficiency as well as enhanced power output and lower emissions as a result of reducing or eliminating cooling. Potential gas turbine ceramic components for industrial, commercial and/or military high temperature turbine applications include combustor liners, vanes, rotors, and shrouds. These components require materials that can withstand high temperatures and pressures for long duration under steam-rich environments. For Navy applications, ceramic hot section components have the potential to increase the operation range. The amount of weight reduced by utilizing a lighter gas turbine can be used to increase fuel storage capacity while a more efficient gas turbine consumes less fuel. Both improvements enable a longer operation range for Navy ships and aircraft. Ceramic hot section components will also be beneficial to the Navy's Growth Joint Strike Fighter (JSF) and VAATE (Versatile Affordable Advanced Turbine Engines) initiatives in terms of reduced weight, cooling air savings, and capability/cost index (CCI). For DOE applications, ceramic hot section components provide an avenue to achieve low emissions while improving efficiency. Combustors made of ceramic material can withstand higher wall temperatures and require less cooling air. Ability of the ceramics to withstand high temperatures enables novel combustor designs that have reduced NO{sub x}, smoke and CO levels. In the turbine section, ceramic vanes and blades do not require sophisticated cooling schemes currently used for metal components. The saved cooling air could be used to further improve efficiency and power output. The objectives of this contract were to develop technologies critical for ceramic hot section

  19. A Voice Enabled Procedure Browser for the International Space Station

    NASA Technical Reports Server (NTRS)

    Rayner, Manny; Chatzichrisafis, Nikos; Hockey, Beth Ann; Farrell, Kim; Renders, Jean-Michel

    2005-01-01

    Clarissa, an experimental voice enabled procedure browser that has recently been deployed on the International Space Station (ISS), is to the best of our knowledge the first spoken dialog system in space. This paper gives background on the system and the ISS procedures, then discusses the research developed to address three key problems: grammar-based speech recognition using the Regulus toolkit; SVM based methods for open microphone speech recognition; and robust side-effect free dialogue management for handling undos, corrections and confirmations.

  20. Enabling Anticancer Therapeutics by Nanoparticle Carriers: The Delivery of Paclitaxel

    PubMed Central

    Liu, Yongjin; Zhang, Bin; Yan, Bing

    2011-01-01

    Anticancer drugs, such as paclitaxel (PTX), are indispensable for the treatment of a variety of malignancies. However, the application of most drugs is greatly limited by the low water solubility, poor permeability, or high efflux from cells. Nanoparticles have been widely investigated to enable drug delivery due to their low toxicity, sustained drug release, molecular targeting, and additional therapeutic and imaging functions. This review takes paclitaxel as an example and compares different nanoparticle-based delivery systems for their effectiveness in cancer chemotherapy. PMID:21845085

  1. Technology-enabled Airborne Spacing and Merging

    NASA Technical Reports Server (NTRS)

    Hull, James; Barmore, Bryan; Abbott, Tetence

    2005-01-01

    Over the last several decades, advances in airborne and groundside technologies have allowed the Air Traffic Service Provider (ATSP) to give safer and more efficient service, reduce workload and frequency congestion, and help accommodate a critically escalating traffic volume. These new technologies have included advanced radar displays, and data and communication automation to name a few. In step with such advances, NASA Langley is developing a precision spacing concept designed to increase runway throughput by enabling the flight crews to manage their inter-arrival spacing from TRACON entry to the runway threshold. This concept is being developed as part of NASA s Distributed Air/Ground Traffic Management (DAG-TM) project under the Advanced Air Transportation Technologies Program. Precision spacing is enabled by Automatic Dependent Surveillance-Broadcast (ADS-B), which provides air-to-air data exchange including position and velocity reports; real-time wind information and other necessary data. On the flight deck, a research prototype system called Airborne Merging and Spacing for Terminal Arrivals (AMSTAR) processes this information and provides speed guidance to the flight crew to achieve the desired inter-arrival spacing. AMSTAR is designed to support current ATC operations, provide operationally acceptable system-wide increases in approach spacing performance and increase runway throughput through system stability, predictability and precision spacing. This paper describes problems and costs associated with an imprecise arrival flow. It also discusses methods by which Air Traffic Controllers achieve and maintain an optimum interarrival interval, and explores means by which AMSTAR can assist in this pursuit. AMSTAR is an extension of NASA s previous work on in-trail spacing that was successfully demonstrated in a flight evaluation at Chicago O Hare International Airport in September 2002. In addition to providing for precision inter-arrival spacing, AMSTAR

  2. Willing and Enabled: The Academic Outcomes of a Tertiary Enabling Program in Regional Australia

    ERIC Educational Resources Information Center

    Andrewartha, Lisa; Harvey, Andrew

    2014-01-01

    This paper examines the achievement levels of students undertaking the Tertiary Enabling Program (TEP) at La Trobe University. The TEP is an alternative pathway program that traverses multiple institutions, campuses, and disciplinary areas, and is designed to prepare a diverse student cohort for tertiary study. The Program integrates several…

  3. Smart Sensors Enable Smart Air Conditioning Control

    PubMed Central

    Cheng, Chin-Chi; Lee, Dasheng

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection. PMID:24961213

  4. Smart sensors enable smart air conditioning control.

    PubMed

    Cheng, Chin-Chi; Lee, Dasheng

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection. PMID:24961213

  5. Nanomaterial-enabled membranes for water treatment

    NASA Astrophysics Data System (ADS)

    Rogensues, Adam Roy

    Incorporating engineered nanomaterials as components of synthetic membranes can improve their separation performance and endow membranes with additional functions. This work explores two approaches to the design of membranes modified with nanomaterials. In the first chapter, exfoliated graphite nanoplatelets (xGnP) decorated with gold nanoparticles were embedded in a polysulfone matrix to fabricate phase inversion nanocomposite membranes. The cast membranes were evaluated as flow-through membrane reactors in experiments on the catalytic reduction of 4-nitrophenol. The nanocomposite membranes were not as catalytically efficient as those fabricated by modifying anodized alumina membranes polyelectrolyte multilayers (PEMs) containing gold nanoparticles. However, because of the facility of membrane casting by phase inversion and new opportunities enabled by the demonstrated hierarchy-based approach to nanocomposite membrane design, such membrane may hold commercial promise. In the second part of the study, the practicability of PEM-based nanofiltration was evaluated under conditions of precipitative fouling (i.e. scaling) by calcium sulfate. Polyelectrolytes were deposited onto 50 kDa polyethersulfone membranes to create PEM-based nanofiltration membranes. The prepared membranes were compared with the commercial NF270 membrane in terms of flux and rejection performance, as well as the morphology of gypsum crystals formed on the membrane surface. None of the PEM coatings tested inhibited scale formation.

  6. Enabling scientific workflows in virtual reality

    USGS Publications Warehouse

    Kreylos, O.; Bawden, G.; Bernardin, T.; Billen, M.I.; Cowgill, E.S.; Gold, R.D.; Hamann, B.; Jadamec, M.; Kellogg, L.H.; Staadt, O.G.; Sumner, D.Y.

    2006-01-01

    To advance research and improve the scientific return on data collection and interpretation efforts in the geosciences, we have developed methods of interactive visualization, with a special focus on immersive virtual reality (VR) environments. Earth sciences employ a strongly visual approach to the measurement and analysis of geologic data due to the spatial and temporal scales over which such data ranges, As observations and simulations increase in size and complexity, the Earth sciences are challenged to manage and interpret increasing amounts of data. Reaping the full intellectual benefits of immersive VR requires us to tailor exploratory approaches to scientific problems. These applications build on the visualization method's strengths, using both 3D perception and interaction with data and models, to take advantage of the skills and training of the geological scientists exploring their data in the VR environment. This interactive approach has enabled us to develop a suite of tools that are adaptable to a range of problems in the geosciences and beyond. Copyright ?? 2008 by the Association for Computing Machinery, Inc.

  7. Survey of Enabling Technologies for CAPS

    NASA Technical Reports Server (NTRS)

    Antol, Jeffrey; Mazanek, Daniel D.; Koons, Robert H.

    2005-01-01

    The enabling technologies required for the development of a viable Comet/Asteroid Protection System (CAPS) can be divided into two principal areas: detection and deflection/orbit modification. With the proper funding levels, many of the technologies needed to support a CAPS architecture could be achievable within the next 15 to 20 years. In fact, many advanced detection technologies are currently in development for future in-space telescope systems such as the James Webb Space Telescope (JWST), formerly known as the Next Generation Space Telescope. It is anticipated that many of the JWST technologies would be available for application for CAPS detection concepts. Deflection/orbit modification technologies are also currently being studied as part of advanced power and propulsion research. However, many of these technologies, such as extremely high-output power systems, advanced propulsion, heat rejection, and directed energy systems, would likely be farther term in availability than many of the detection technologies. Discussed subsequently is a preliminary examination of the main technologies that have been identified as being essential to providing the element functionality defined during the CAPS conceptual study. The detailed requirements for many of the technology areas are still unknown, and many additional technologies will be identified as future in-depth studies are conducted in this area.

  8. Powered wheelchairs: are we enabling or disabling?

    PubMed

    Beaumont-White, S; Ham, R O

    1997-04-01

    Following the unsuccessful issue of three powered indoor National Health Service (NHS) wheelchairs, a survey was carried out of 40 users in a London wheelchair service to identify the problems with issue and possible areas for improvement to practice. The survey identified improvements that were necessary both from the service and the manufacturers' booklets. The improvements include the issue of written instructions and information to complement verbal instruction given at handover. Such information should be as interesting to read as possible, make use of appropriate language and diagrams (especially in area where English is often not the first language), colour, text and print size to maximise comprehension to these severely disabled users and often their elderly relatives or carers. The importance of the role of the rehabilitation engineer in training the user, giving instruction at handover and annual review are highlighted to ensure that the equipment remains working, suitable and up to date for the individual's needs. Training in interpersonal and communication skills and the importance of recall should also be emphasised. The implementation of the findings should lead to increasing contact with the service by the user, reduction in repair and replacement costs, regular review, correct supply and will therefore enable users to increase their independence with appropriate equipment. PMID:9141127

  9. Glass ceramic ZERODUR enabling nanometer precision

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Kunisch, Clemens; Nieder, Johannes; Westerhoff, Thomas

    2014-03-01

    The IC Lithography roadmap foresees manufacturing of devices with critical dimension of < 20 nm. Overlay specification of single digit nanometer asking for nanometer positioning accuracy requiring sub nanometer position measurement accuracy. The glass ceramic ZERODUR® is a well-established material in critical components of microlithography wafer stepper and offered with an extremely low coefficient of thermal expansion (CTE), the tightest tolerance available on market. SCHOTT is continuously improving manufacturing processes and it's method to measure and characterize the CTE behavior of ZERODUR® to full fill the ever tighter CTE specification for wafer stepper components. In this paper we present the ZERODUR® Lithography Roadmap on the CTE metrology and tolerance. Additionally, simulation calculations based on a physical model are presented predicting the long term CTE behavior of ZERODUR® components to optimize dimensional stability of precision positioning devices. CTE data of several low thermal expansion materials are compared regarding their temperature dependence between - 50°C and + 100°C. ZERODUR® TAILORED 22°C is full filling the tight CTE tolerance of +/- 10 ppb / K within the broadest temperature interval compared to all other materials of this investigation. The data presented in this paper explicitly demonstrates the capability of ZERODUR® to enable the nanometer precision required for future generation of lithography equipment and processes.

  10. Enabling electroweak baryogenesis through dark matter

    NASA Astrophysics Data System (ADS)

    Lewicki, Marek; Rindler-Daller, Tanja; Wells, James D.

    2016-06-01

    We study the impact on electroweak baryogenesis from a swifter cosmological expansion induced by dark matter. We detail the experimental bounds that one can place on models that realize it, and we investigate the modifications of these bounds that result from a non-standard cosmological history. The modifications can be sizeable if the expansion rate of the Universe increases by several orders of magnitude. We illustrate the impact through the example of scalar field dark matter, which can alter the cosmological history enough to enable a strong-enough first-order phase transition in the Standard Model when it is supplemented by a dimension six operator directly modifying the Higgs boson potential. We show that due to the modified cosmological history, electroweak baryogenesis can be realized, while keeping deviations of the triple Higgs coupling below HL-LHC sensitivies. The required scale of new physics to effectuate a strong-enough first order phase transition can change by as much as twenty percent as the expansion rate increases by six orders of magnitude.

  11. BEST: Barcode Enabled Sequencing of Tetrads

    PubMed Central

    Scott, Adrian C.; Ludlow, Catherine L.; Cromie, Gareth A.; Dudley, Aimée M.

    2014-01-01

    Tetrad analysis is a valuable tool for yeast genetics, but the laborious manual nature of the process has hindered its application on large scales. Barcode Enabled Sequencing of Tetrads (BEST)1 replaces the manual processes of isolating, disrupting and spacing tetrads. BEST isolates tetrads by virtue of a sporulation-specific GFP fusion protein that permits fluorescence-activated cell sorting of tetrads directly onto agar plates, where the ascus is enzymatically digested and the spores are disrupted and randomly arrayed by glass bead plating. The haploid colonies are then assigned sister spore relationships, i.e. information about which spores originated from the same tetrad, using molecular barcodes read during genotyping. By removing the bottleneck of manual dissection, hundreds or even thousands of tetrads can be isolated in minutes. Here we present a detailed description of the experimental procedures required to perform BEST in the yeast Saccharomyces cerevisiae, starting with a heterozygous diploid strain through the isolation of colonies derived from the haploid meiotic progeny. PMID:24836713

  12. Enabler for the agile virtual enterprise

    NASA Astrophysics Data System (ADS)

    Fuerst, Karl; Schmidt, Thomas; Wippel, Gerald

    2001-10-01

    In this presentation, a new approach for a flexible low-cost Internet extended enterprise (project FLoCI-EE) will be presented. FLoCI-EE is a project in the fifth framework program of the European commission with 8 partners from 4 countries, which started in January 2001 and will be finished in December 2003. The main objective of FLoCI-EE is the development of a software prototype, which enables flexible enterprise cooperation with the aim to design, manufacture and sell products commonly, independent of enterprise borderlines. The needed IT-support includes functions of product data management (PDM), enterprise resource planning (ERP), supply chain management (SCM) and customer relationship management (CRM). Especially for small and medium sized enterprises, existing solutions are too expensive and inflexible to be of use under current turbulent market conditions. The second part of this paper covers the item Web Services, because in the role-specific support approach of FLoCI-EE, there are user- interface-components, which are tailored for specific roles in an enterprise. These components integrate automatically the services of the so-called basic-components, and the externally offered Web Services like UDDI.

  13. Bandwidth Enabled Flight Operations: Examining the Possibilities

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Renema, Fritz; Clancy, Dan (Technical Monitor)

    2002-01-01

    The Bandwidth Enabled Flight Operations project is a research effort at the NASA Ames Research Center to investigate the use of satellite communications to improve aviation safety and capacity. This project is a follow on to the AeroSAPIENT Project, which demonstrated methods for transmitting high bandwidth data in various configurations. For this research, we set a goal to nominally use only 10 percent of the available bandwidth demonstrated by AeroSAPIENT or projected by near-term technology advances. This paper describes the results of our research, including available satellite bandwidth, commercial and research efforts to provide these services, and some of the limiting factors inherent with this communications medium. It also describes our investigation into the needs of the stakeholders (Airlines, Pilots, Cabin Crews, ATC, Maintenance, etc). The paper also describes our development of low-cost networked flight deck and airline operations center simulations that were used to demonstrate two application areas: Providing real time weather information to the commercial flight deck, and enhanced crew monitoring and control for airline operations centers.

  14. Imaging enabled platforms for development of therapeutics

    NASA Astrophysics Data System (ADS)

    Celli, Jonathan; Rizvi, Imran; Blanden, Adam R.; Evans, Conor L.; Abu-Yousif, Adnan O.; Spring, Bryan Q.; Muzikansky, Alona; Pogue, Brian W.; Finkelstein, Dianne M.; Hasan, Tayyaba

    2011-03-01

    Advances in imaging and spectroscopic technologies have enabled the optimization of many therapeutic modalities in cancer and noncancer pathologies either by earlier disease detection or by allowing therapy monitoring. Amongst the therapeutic options benefiting from developments in imaging technologies, photodynamic therapy (PDT) is exceptional. PDT is a photochemistry-based therapeutic approach where a light-sensitive molecule (photosensitizer) is activated with light of appropriate energy (wavelength) to produce reactive molecular species such as free radicals and singlet oxygen. These molecular entities then react with biological targets such as DNA, membranes and other cellular components to impair their function and lead to eventual cell and tissue death. Development of PDT-based imaging also provides a platform for rapid screening of new therapeutics in novel in vitro models prior to expensive and labor-intensive animal studies. In this study we demonstrate how an imaging platform can be used for strategizing a novel combination treatment strategy for multifocal ovarian cancer. Using an in vitro 3D model for micrometastatic ovarian cancer in conjunction with quantitative imaging we examine dose and scheduling strategies for PDT in combination with carboplatin, a chemotherapeutic agent presently in clinical use for management of this deadly form of cancer.

  15. Individualized grid-enabled mammographic training system

    NASA Astrophysics Data System (ADS)

    Yap, M. H.; Gale, A. G.

    2009-02-01

    The PERFORMS self-assessment scheme measures individuals skills in identifying key mammographic features on sets of known cases. One aspect of this is that it allows radiologists' skills to be trained, based on their data from this scheme. Consequently, a new strategy is introduced to provide revision training based on mammographic features that the radiologist has had difficulty with in these sets. To do this requires a lot of random cases to provide dynamic, unique, and up-to-date training modules for each individual. We propose GIMI (Generic Infrastructure in Medical Informatics) middleware as the solution to harvest cases from distributed grid servers. The GIMI middleware enables existing and legacy data to support healthcare delivery, research, and training. It is technology-agnostic, data-agnostic, and has a security policy. The trainee examines each case, indicating the location of regions of interest, and completes an evaluation form, to determine mammographic feature labelling, diagnosis, and decisions. For feedback, the trainee can choose to have immediate feedback after examining each case or batch feedback after examining a number of cases. All the trainees' result are recorded in a database which also contains their trainee profile. A full report can be prepared for the trainee after they have completed their training. This project demonstrates the practicality of a grid-based individualised training strategy and the efficacy in generating dynamic training modules within the coverage/outreach of the GIMI middleware. The advantages and limitations of the approach are discussed together with future plans.

  16. Web enabled data management with DPM & LFC

    NASA Astrophysics Data System (ADS)

    Alvarez Ayllon, Alejandro; Beche, Alexandre; Furano, Fabrizio; Hellmich, Martin; Keeble and, Oliver; Brito Da Rocha, Ricardo

    2012-12-01

    The Disk Pool Manager (DPM) and LCG File Catalog (LFC) are two grid data management components currently used in production with more than 240 endpoints. Together with a set of grid client tools they give the users a unified view of their data, hiding most details concerning data location and access. Recently we've put a lot of effort in developing a reliable and high performance HTTP/WebDAV frontend to both our grid catalog and storage components, exposing the existing functionality to users accessing the services via standard clients - e.g. web browsers, curl - present in all operating systems, giving users a simple and straight-forward way of interaction. In addition, as other relevant grid storage components (like dCache) expose their data using the same protocol, for the first time we had the opportunity of attempting a unified view of all grid storage using HTTP. We describe the HTTP redirection mechanism used to integrate the grid catalog(s) with the multiple storage components, including details on some assumptions made to allow integration with other implementations. We describe the way we hide the details regarding site availability or catalog inconsistencies by switching the standard HTTP client automatically between multiple replicas. We also present measurements of access performance, and the relevant factors regarding replica selection - current throughput and load, geographic proximity, etc. Finally, we report on some additional work done to have this system as a viable alternative to GridFTP, providing multi-stream transfers and exploiting some additional features of WebDAV to enable third party copies - essential for managing data movements between storage systems - with equivalent performance.

  17. Enabling a Scientific Cloud Marketplace: VGL (Invited)

    NASA Astrophysics Data System (ADS)

    Fraser, R.; Woodcock, R.; Wyborn, L. A.; Vote, J.; Rankine, T.; Cox, S. J.

    2013-12-01

    The Virtual Geophysics Laboratory (VGL) provides a flexible, web based environment where researchers can browse data and use a variety of scientific software packaged into tool kits that run in the Cloud. Both data and tool kits are published by multiple researchers and registered with the VGL infrastructure forming a data and application marketplace. The VGL provides the basic work flow of Discovery and Access to the disparate data sources and a Library for tool kits and scripting to drive the scientific codes. Computation is then performed on the Research or Commercial Clouds. Provenance information is collected throughout the work flow and can be published alongside the results allowing for experiment comparison and sharing with other researchers. VGL's "mix and match" approach to data, computational resources and scientific codes, enables a dynamic approach to scientific collaboration. VGL allows scientists to publish their specific contribution, be it data, code, compute or work flow, knowing the VGL framework will provide other components needed for a complete application. Other scientists can choose the pieces that suit them best to assemble an experiment. The coarse grain workflow of the VGL framework combined with the flexibility of the scripting library and computational toolkits allows for significant customisation and sharing amongst the community. The VGL utilises the cloud computational and storage resources from the Australian academic research cloud provided by the NeCTAR initiative and a large variety of data accessible from national and state agencies via the Spatial Information Services Stack (SISS - http://siss.auscope.org). VGL v1.2 screenshot - http://vgl.auscope.org

  18. New Catalog of Resources Enables Paleogeosciences Research

    NASA Astrophysics Data System (ADS)

    Lingo, R. C.; Horlick, K. A.; Anderson, D. M.

    2014-12-01

    The 21st century promises a new era for scientists of all disciplines, the age where cyber infrastructure enables research and education and fuels discovery. EarthCube is a working community of over 2,500 scientists and students of many Earth Science disciplines who are looking to build bridges between disciplines. The EarthCube initiative will create a digital infrastructure that connects databases, software, and repositories. A catalog of resources (databases, software, repositories) has been produced by the Research Coordination Network for Paleogeosciences to improve the discoverability of resources. The Catalog is currently made available within the larger-scope CINERGI geosciences portal (http://hydro10.sdsc.edu/geoportal/catalog/main/home.page). Other distribution points and web services are planned, using linked data, content services for the web, and XML descriptions that can be harvested using metadata protocols. The databases provide searchable interfaces to find data sets that would otherwise remain dark data, hidden in drawers and on personal computers. The software will be described in catalog entries so just one click will lead users to methods and analytical tools that many geoscientists were unaware of. The repositories listed in the Paleogeosciences Catalog contain physical samples found all across the globe, from natural history museums to the basements of university buildings. EarthCube has over 250 databases, 300 software systems, and 200 repositories which will grow in the coming year. When completed, geoscientists across the world will be connected into a productive workflow for managing, sharing, and exploring geoscience data and information that expedites collaboration and innovation within the paleogeosciences, potentially bringing about new interdisciplinary discoveries.

  19. A Successful Infusion Process for Enabling Lunar Exploration Technologies

    NASA Technical Reports Server (NTRS)

    Over, Ann P.; Klem, Mark K.; Motil, Susan M.

    2008-01-01

    The NASA Vision for Space Exploration begins with a more reliable flight capability to the International Space Station and ends with sending humans to Mars. An important stepping stone on the path to Mars encompasses human missions to the Moon. There is little doubt throughout the stakeholder community that new technologies will be required to enable this Vision. However, there are many factors that influence the ability to successfully infuse any technology including the technical risk, requirement and development schedule maturity, and, funds available. This paper focuses on effective infusion processes that have been used recently for the technologies in development for the lunar exploration flight program, Constellation. Recent successes with Constellation customers are highlighted for the Exploration Technology Development Program (ETDP) Projects managed by NASA Glenn Research Center (GRC). Following an overview of the technical context of both the flight program and the technology capability mapping, the process is described for how to effectively build an integrated technology infusion plan. The process starts with a sound risk development plan and is completed with an integrated project plan, including content, schedule and cost. In reality, the available resources for this development are going to change over time, necessitating some level of iteration in the planning. However, the driving process is based on the initial risk assessment, which changes only when the overall architecture changes, enabling some level of stability in the process.

  20. Enabling Non-Specialists to Teach School Physics Effectively

    ERIC Educational Resources Information Center

    Campbell, Peter

    2011-01-01

    This article describes the genesis and nature of a 40-day course intended to improve the teaching of physics in England by teachers not originally trained in the subject. It also describes early experiences and discusses course evaluation. An accompanying article by James de Winter reviews experiences as described by participating teachers.…

  1. The OGC Sensor Web Enablement framework

    NASA Astrophysics Data System (ADS)

    Cox, S. J.; Botts, M.

    2006-12-01

    Sensor observations are at the core of natural sciences. Improvements in data-sharing technologies offer the promise of much greater utilisation of observational data. A key to this is interoperable data standards. The Open Geospatial Consortium's (OGC) Sensor Web Enablement initiative (SWE) is developing open standards for web interfaces for the discovery, exchange and processing of sensor observations, and tasking of sensor systems. The goal is to support the construction of complex sensor applications through real-time composition of service chains from standard components. The framework is based around a suite of standard interfaces, and standard encodings for the message transferred between services. The SWE interfaces include: Sensor Observation Service (SOS)-parameterized observation requests (by observation time, feature of interest, property, sensor); Sensor Planning Service (SPS)-tasking a sensor- system to undertake future observations; Sensor Alert Service (SAS)-subscription to an alert, usually triggered by a sensor result exceeding some value. The interface design generally follows the pattern established in the OGC Web Map Service (WMS) and Web Feature Service (WFS) interfaces, where the interaction between a client and service follows a standard sequence of requests and responses. The first obtains a general description of the service capabilities, followed by obtaining detail required to formulate a data request, and finally a request for a data instance or stream. These may be implemented in a stateless "REST" idiom, or using conventional "web-services" (SOAP) messaging. In a deployed system, the SWE interfaces are supplemented by Catalogue, data (WFS) and portrayal (WMS) services, as well as authentication and rights management. The standard SWE data formats are Observations and Measurements (O&M) which encodes observation metadata and results, Sensor Model Language (SensorML) which describes sensor-systems, Transducer Model Language (TML) which

  2. Lithography for enabling advances in integrated circuits and devices.

    PubMed

    Garner, C Michael

    2012-08-28

    Because the transistor was fabricated in volume, lithography has enabled the increase in density of devices and integrated circuits. With the invention of the integrated circuit, lithography enabled the integration of higher densities of field-effect transistors through evolutionary applications of optical lithography. In 1994, the semiconductor industry determined that continuing the increase in density transistors was increasingly difficult and required coordinated development of lithography and process capabilities. It established the US National Technology Roadmap for Semiconductors and this was expanded in 1999 to the International Technology Roadmap for Semiconductors to align multiple industries to provide the complex capabilities to continue increasing the density of integrated circuits to nanometre scales. Since the 1960s, lithography has become increasingly complex with the evolution from contact printers, to steppers, pattern reduction technology at i-line, 248 nm and 193 nm wavelengths, which required dramatic improvements of mask-making technology, photolithography printing and alignment capabilities and photoresist capabilities. At the same time, pattern transfer has evolved from wet etching of features, to plasma etch and more complex etching capabilities to fabricate features that are currently 32 nm in high-volume production. To continue increasing the density of devices and interconnects, new pattern transfer technologies will be needed with options for the future including extreme ultraviolet lithography, imprint technology and directed self-assembly. While complementary metal oxide semiconductors will continue to be extended for many years, these advanced pattern transfer technologies may enable development of novel memory and logic technologies based on different physical phenomena in the future to enhance and extend information processing. PMID:22802500

  3. Factors enabling advanced practice nursing role integration in Canada.

    PubMed

    DiCenso, Alba; Bryant-Lukosius, Denise; Martin-Misener, Ruth; Donald, Faith; Abelson, Julia; Bourgeault, Ivy; Kilpatrick, Kelley; Carter, Nancy; Kaasalainen, Sharon; Harbman, Patricia

    2010-12-01

    Although advanced practice nurses (APNs) have existed in Canada for over 40 years and there is abundant evidence of their safety and effectiveness, their full integration into our healthcare system has not been fully realized. For this paper, we drew on pertinent sections of a scoping review of the Canadian literature from 1990 onward and interviews or focus groups with 81 key informants conducted for a decision support synthesis on advanced practice nursing to identify the factors that enable role development and implementation across the three types of APNs: clinical nurse specialists, primary healthcare nurse practitioners and acute care nurse practitioners. For development of advanced practice nursing roles, many of the enabling factors occur at the federal/provincial/territorial (F/P/T) level. They include utilization of a pan-Canadian approach, provision of high-quality education, and development of appropriate legislative and regulatory mechanisms. Systematic planning to guide role development is needed at both the F/P/T and organizational levels. For implementation of advanced practice nursing roles, some of the enabling factors require action at the F/P/T level. They include recruitment and retention, role funding, intra-professional relations between clinical nurse specialists and nurse practitioners, public awareness, national leadership support and role evaluation. Factors requiring action at the level of the organization include role clarity, healthcare setting support, implementation of all role components and continuing education. Finally, inter-professional relations require action at both the F/P/T and organizational levels. A multidisciplinary roundtable formulated policy and practice recommendations based on the synthesis findings, and these are summarized in this paper. PMID:21478695

  4. Fuel properties to enable lifted-flame combustion

    SciTech Connect

    Kurtz, Eric

    2015-03-15

    The Fuel Properties to Enable Lifted-Flame Combustion project responded directly to solicitation DE-FOA-0000239 AOI 1A, Fuels and Lubricants for Advanced Combustion Regimes. This subtopic was intended to encompass clean and highly-efficient, liquid-fueled combustion engines to achieve extremely low engine-out nitrogen oxides (NOx) and particulate matter (PM) as a target and similar efficiency as state-of-the-art direct injection diesel engines. The intent of this project was to identify how fuel properties can be used to achieve controllable Leaner Lifted Flame Combustion (LLFC) with low NOx and PM emissions. Specifically, this project was expected to identify and test key fuel properties to enable LLFC and their compatibility with current fuel systems and to enhance combustion models to capture the effect of fuel properties on advanced combustion. Successful demonstration of LLFC may reduce the need for after treatment devices, thereby reducing costs and improving thermal efficiency. The project team consisted of key technical personnel from Ford Motor Company (FMC), the University of Wisconsin-Madison (UW), Sandia National Laboratories (SNL) and Lawrence Livermore National Laboratories (LLNL). Each partner had key roles in achieving project objectives. FMC investigated fuel properties relating to LLFC and sooting tendency. Together, FMC and UW developed and integrated 3D combustion models to capture fuel property combustion effects. FMC used these modeling results to develop a combustion system and define fuel properties to support a single-cylinder demonstration of fuel-enabled LLFC. UW investigated modeling the flame characteristics and emissions behavior of different fuels, including those with different cetane number and oxygen content. SNL led spray combustion experiments to quantify the effect of key fuel properties on combustion characteristics critical for LLFC, as well as single cylinder optical engine experiments to improve fundamental

  5. Campus Cyberinfrastructure: A Crucial Enabler for Science

    ERIC Educational Resources Information Center

    Freeman, Peter A.; Almes, Guy T.

    2005-01-01

    Driven by the needs of college/university researchers and guided by a blue-ribbon advisory panel chaired by Daniel E. Atkins, the National Science Foundation (NSF) has initiated a broad, multi-directorate activity to create modern cyberinfrastructure and to apply it to transforming the effectiveness of the scientific research enterprise in higher…

  6. Workplace-Based Practicum: Enabling Expansive Practices

    ERIC Educational Resources Information Center

    Pridham, Bruce A.; Deed, Craig; Cox, Peter

    2013-01-01

    Effective pre-service teacher education integrates theoretical and practical knowledge. One means of integration is practicum in a school workplace. In a time of variable approaches to, and models of, practicum, we outline an innovative model of school immersion as part of a teacher preparation program. We apply Fuller and Unwin's (2004)…

  7. 78 FR 76603 - Enable Gas Transmission, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-18

    ... Energy Regulatory Commission Enable Gas Transmission, LLC; Notice of Application Take notice that on November 26, 2013, Enable Gas Transmission, LLC (Enable) 1111 Louisiana Street, Houston, Texas 77002, filed... Gas Transmission, LLC, P.O. Box 21734 Shreveport, LA 71151 at (318) 429- 3708. Specifically,...

  8. An Investigation of Relations among Academic Enablers and Reading Outcomes

    ERIC Educational Resources Information Center

    Jenkins, Lyndsay N.; Demaray, Michelle Kilpatrick

    2015-01-01

    The current study examined the link between academic enablers and different types of reading achievement measures. Academic enablers are skills and behaviors that support, or enable, students to perform well academically, such as engagement, interpersonal skills, motivation, and study skills. The sample in this study consisted of 61 third-,…

  9. VisTrails : enabling interactive multiple-view visualizations.

    SciTech Connect

    Scheidegger, Carlos E.; Vo, Huy T.; Crossno, Patricia Joyce; Callahan, Steven P.; Bavoil, Louis; Freire, Juliana.; Silva, Claudio

    2005-04-01

    VisTrails is a new system that enables interactive multiple-view visualizations by simplifying the creation and maintenance of visualization pipelines, and by optimizing their execution. It provides a general infrastructure that can be combined with existing visualization systems and libraries. A key component of VisTrails is the visualization trail (vistrail), a formal specification of a pipeline. Unlike existing dataflow-based systems, in VisTrails there is a clear separation between the specification of a pipeline and its execution instances. This separation enables powerful scripting capabilities and provides a scalable mechanism for generating a large number of visualizations. VisTrails also leverages the vistrail specification to identify and avoid redundant operations. This optimization is especially useful while exploring multiple visualizations. When variations of the same pipeline need to be executed, substantial speedups can be obtained by caching the results of overlapping subsequences of the pipelines. In this paper, we describe the design and implementation of VisTrails, and show its effectiveness in different application scenarios.

  10. Experiments Enabled by a New High-Resolution Positron Beam

    NASA Astrophysics Data System (ADS)

    Natisin, Mike; Danielson, James; Surko, Cliff

    2016-05-01

    The ability to make state-resolved measurements of positron interactions with atoms and molecules is limited by difficulties encountered in creating beams with narrow energy spreads. Recent experiments and simulations of buffer gas positron cooling and trap-based beam formation have enabled the design and construction of a cryogenic buffer-gas trap with total beam energy spreads as low as 7 meV FWHM and temporal spreads of sub-microsecond duration. The potential effect of this narrow energy spread on the ability to probe new physics in positron scattering and annihilation experiments will be discussed. For example, beams with such energy spreads are expected to enable the first measurements of state-resolved excitation of molecular rotations by positron impact (i.e., H2). Further, these narrow spreads and resulting enhanced resolving power are expected to permit the study of new features in annihilation energy spectra, such as possible overtone, combination, and IR-inactive vibrational modes in Feshbach-resonant positron annihilation. Work supported by NSF Grant PHY-1401794.

  11. Refined AFC-Enabled High-Lift System Integration Study

    NASA Technical Reports Server (NTRS)

    Hartwich, Peter M.; Shmilovich, Arvin; Lacy, Douglas S.; Dickey, Eric D.; Scalafani, Anthony J.; Sundaram, P.; Yadlin, Yoram

    2016-01-01

    A prior trade study established the effectiveness of using Active Flow Control (AFC) for reducing the mechanical complexities associated with a modern high-lift system without sacrificing aerodynamic performance at low-speed flight conditions representative of takeoff and landing. The current technical report expands on this prior work in two ways: (1) a refined conventional high-lift system based on the NASA Common Research Model (CRM) is presented that is more representative of modern commercial transport aircraft in terms of stall characteristics and maximum Lift/Drag (L/D) ratios at takeoff and landing-approach flight conditions; and (2) the design trade space for AFC-enabled high-lift systems is expanded to explore a wider range of options for improving their efficiency. The refined conventional high-lift CRM (HL-CRM) concept features leading edge slats and slotted trailing edge flaps with Fowler motion. For the current AFC-enhanced high lift system trade study, the refined conventional high-lift system is simplified by substituting simply-hinged trailing edge flaps for the slotted single-element flaps with Fowler motion. The high-lift performance of these two high-lift CRM variants is established using Computational Fluid Dynamics (CFD) solutions to the Reynolds-Averaged Navier-Stokes (RANS) equations. These CFD assessments identify the high-lift performance that needs to be recovered through AFC to have the CRM variant with the lighter and mechanically simpler high-lift system match the performance of the conventional high-lift system. In parallel to the conventional high-lift concept development, parametric studies using CFD guided the development of an effective and efficient AFC-enabled simplified high-lift system. This included parametric trailing edge flap geometry studies addressing the effects of flap chord length and flap deflection. As for the AFC implementation, scaling effects (i.e., wind-tunnel versus full-scale flight conditions) are addressed

  12. Enabling performance skills: Assessment in engineering education

    NASA Astrophysics Data System (ADS)

    Ferrone, Jenny Kristina

    Current reform in engineering education is part of a national trend emphasizing student learning as well as accountability in instruction. Assessing student performance to demonstrate accountability has become a necessity in academia. In newly adopted criterion proposed by the Accreditation Board for Engineering and Technology (ABET), undergraduates are expected to demonstrate proficiency in outcomes considered essential for graduating engineers. The case study was designed as a formative evaluation of freshman engineering students to assess the perceived effectiveness of performance skills in a design laboratory environment. The mixed methodology used both quantitative and qualitative approaches to assess students' performance skills and congruency among the respondents, based on individual, team, and faculty perceptions of team effectiveness in three ABET areas: Communications Skills. Design Skills, and Teamwork. The findings of the research were used to address future use of the assessment tool and process. The results of the study found statistically significant differences in perceptions of Teamwork Skills (p < .05). When groups composed of students and professors were compared, professors were less likely to perceive student's teaming skills as effective. The study indicated the need to: (1) improve non-technical performance skills, such as teamwork, among freshman engineering students; (2) incorporate feedback into the learning process; (3) strengthen the assessment process with a follow-up plan that specifically targets performance skill deficiencies, and (4) integrate the assessment instrument and practice with ongoing curriculum development. The findings generated by this study provides engineering departments engaged in assessment activity, opportunity to reflect, refine, and develop their programs as it continues. It also extends research on ABET competencies of engineering students in an under-investigated topic of factors correlated with team

  13. Automatic Mode Transition Enabled Robust Triboelectric Nanogenerators.

    PubMed

    Chen, Jun; Yang, Jin; Guo, Hengyu; Li, Zhaoling; Zheng, Li; Su, Yuanjie; Wen, Zhen; Fan, Xing; Wang, Zhong Lin

    2015-12-22

    Although the triboelectric nanogenerator (TENG) has been proven to be a renewable and effective route for ambient energy harvesting, its robustness remains a great challenge due to the requirement of surface friction for a decent output, especially for the in-plane sliding mode TENG. Here, we present a rationally designed TENG for achieving a high output performance without compromising the device robustness by, first, converting the in-plane sliding electrification into a contact separation working mode and, second, creating an automatic transition between a contact working state and a noncontact working state. The magnet-assisted automatic transition triboelectric nanogenerator (AT-TENG) was demonstrated to effectively harness various ambient rotational motions to generate electricity with greatly improved device robustness. At a wind speed of 6.5 m/s or a water flow rate of 5.5 L/min, the harvested energy was capable of lighting up 24 spot lights (0.6 W each) simultaneously and charging a capacitor to greater than 120 V in 60 s. Furthermore, due to the rational structural design and unique output characteristics, the AT-TENG was not only capable of harvesting energy from natural bicycling and car motion but also acting as a self-powered speedometer with ultrahigh accuracy. Given such features as structural simplicity, easy fabrication, low cost, wide applicability even in a harsh environment, and high output performance with superior device robustness, the AT-TENG renders an effective and practical approach for ambient mechanical energy harvesting as well as self-powered active sensing. PMID:26529374

  14. Voice recognition: an enabling technology for modern health care?

    PubMed Central

    Bergeron, B. P.

    1996-01-01

    Recent performance breakthroughs in affordable, large vocabulary, speaker independent voice recognition systems have rekindled widespread interest in using voice recognition technology to enhance the palatability and effectiveness of clinician-mediated computing. However, even if industry fully addresses the formidable hardware requirements, less than perfect recognition accuracies, discrete voice recognition requirements, and throughput limitations, there are significant cognitive and implementation issues that must be adequately resolved before voice can become a ubiquitous input modality. Cognitive issues include making allowances for individual differences in verbal communication style and skill levels, the relative cognitive load of using a voice enabled interface compared to alternative modalities, and the user's cognitive style. Implementation issues include a significant training requirement, limited portability, lengthy user switching time, questionable privacy, satisfying hardware requirements and the suitability of voice recognition in specific work environments. The inevitable resolution of these issues coupled with continuously improving voice recognition performance, promises a new era for voice recognition in medicine. PMID:8947776

  15. A microelectromechanical systems-enabled, miniature triple quadrupole mass spectrometer.

    PubMed

    Wright, Steven; Malcolm, Andrew; Wright, Christopher; O'Prey, Shane; Crichton, Edward; Dash, Neil; Moseley, Richard W; Zaczek, Wojciech; Edwards, Peter; Fussell, Richard J; Syms, Richard R A

    2015-03-17

    Miniaturized mass spectrometers are becoming increasingly capable, enabling the development of many novel field and laboratory applications. However, to date, triple quadrupole tandem mass spectrometers, the workhorses of quantitative analysis, have not been significantly reduced in size. Here, the basis of a field-deployable triple quadrupole is described. The key development is a highly miniaturized ion optical assembly in which a sequence of six microengineered components is employed to generate ions at atmospheric pressure, provide a vacuum interface, effect ion guiding, and perform fragmentation and mass analysis. Despite its small dimensions, the collision cell efficiently fragments precursor ions and yields product ion spectra that are very similar to those recorded using conventional instruments. The miniature triple quadrupole has been used to detect thiabendazole, a common pesticide, in apples at a level of 10 ng/g. PMID:25708099

  16. Electroactive polymers (EAP) as an enabling tool in biomimetics

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph

    2007-04-01

    Nature is filled with highly effective biological mechanisms that were refined thru evolution over millions of years offering an incredible model for inspiring human innovation. Humans have always made efforts to imitate nature's inventions. Advances in technology led to capabilities that allow adapting nature innovation beyond simply copying and the pool of possibilities in materials, structures, methods, processes and systems is enormous. Electroactive polymers (EAP) are increasingly being recognized as an important enabling technology for making biologically inspired capabilities. Using them as artificial muscles they are being considered for use a wide range of fields including medical, commercial, entertainment and many others. This paper reviews the up to date role that EAP is playing in advancing biomimetics and the field outlook.

  17. Protective jacket enabling decision support for workers in cold climate.

    PubMed

    Seeberg, Trine M; Vardoy, Astrid-Sofie B; Austad, Hanne O; Wiggen, Oystein; Stenersen, Henning S; Liverud, Anders E; Storholmen, Tore Christian B; Faerevik, Hilde

    2013-01-01

    The cold and harsh climate in the High North represents a threat to safety and work performance. The aim of this study was to show that sensors integrated in clothing can provide information that can improve decision support for workers in cold climate without disturbing the user. Here, a wireless demonstrator consisting of a working jacket with integrated temperature, humidity and activity sensors has been developed. Preliminary results indicate that the demonstrator can provide easy accessible information about the thermal conditions at the site of the worker and local cooling effects of extremities. The demonstrator has the ability to distinguish between activity and rest, and enables implementation of more sophisticated sensor fusion algorithms to assess work load and pre-defined activities. This information can be used in an enhanced safety perspective as an improved tool to advice outdoor work control for workers in cold climate. PMID:24111230

  18. Integrated metrology: an enabler for advanced process control (APC)

    NASA Astrophysics Data System (ADS)

    Schneider, Claus; Pfitzner, Lothar; Ryssel, Heiner

    2001-04-01

    Advanced process control (APC) techniques become more and more important as short innovation cycles in microelectronics and a highly competitive market requires cost-effective solutions in semiconductor manufacturing. APC marks a paradigm shift from statistically based techniques (SPC) using monitor wafers for sampling measurement data towards product wafer control. The APC functionalities including run-to-run control, fault detection, and fault analysis allow to detect process drifts and excursions at an early stage and to minimize the number of misprocessed wafers. APC is being established as part of factory control systems through the definition of an APC framework. A precondition for APC is the availability of sensors and measurement methods providing the necessary wafer data. This paper discusses integrated metrology as an enabler for APC and demonstrates practical implementations in semiconductor manufacturing.

  19. Procedural apprenticeship in school science: Constructivist enabling of connoisseurship

    NASA Astrophysics Data System (ADS)

    Bencze, J. Lawrence

    2000-11-01

    In many parts of the world, school science, especially at the secondary school level, is a sort of selection and training camp for future scientists and engineers. For most students, their general lack of cultural capital (Apple, 1990) minimizes their opportunities to survive the rapid coverage of large volumes of abstract, decontextualized laws, theories, and inventions so typical of school science. Most graduates and drop-outs become relatively scientifically and technologically illiterate. They either have forgotten or have confused conceptions of scientific and technological knowledge; often view science and technology as relatively certain, unbiased, and benign with respect to effects on society and the environment; and lack resources necessary to effectively judge products and processes of science and technology or, crucially, to create their own explanations for and changes to phenomena. Citizens with illiteracy to this extent may have little control over their own thoughts and actions and be prey to whims of those who control knowledge, its production and dissemination. Curriculum frameworks are required that enable all students to achieve their maximum potential literacy and, as well, to create their own knowledge, to develop in directions unique to their needs, interests, abilities, and perspectives; that is, to become self-actualized. This latter goal can, in part, be achieved through apprenticeship education in schools, such that students acquire a measure of scientific and technological connoisseurship - expertise enabling them to conduct open-ended scientific investigations and invention projects of their design. In collaboration with five teachers of secondary school science, such a framework was, indeed, developed, and field-tested. Through a spiraling, cyclical process involving synchronous reconstruction of conceptual and procedural understandings, evidence suggests students were able to carry out experiments, studies, and tests of their

  20. Ocean Research Enabled by Underwater Gliders

    NASA Astrophysics Data System (ADS)

    Rudnick, Daniel L.

    2016-01-01

    Underwater gliders are autonomous underwater vehicles that profile vertically by changing their buoyancy and use wings to move horizontally. Gliders are useful for sustained observation at relatively fine horizontal scales, especially to connect the coastal and open ocean. In this review, research topics are grouped by time and length scales. Large-scale topics addressed include the eastern and western boundary currents and the regional effects of climate variability. The accessibility of horizontal length scales of order 1 km allows investigation of mesoscale and submesoscale features such as fronts and eddies. Because the submesoscales dominate vertical fluxes in the ocean, gliders have found application in studies of biogeochemical processes. At the finest scales, gliders have been used to measure internal waves and turbulent dissipation. The review summarizes gliders' achievements to date and assesses their future in ocean observation.

  1. Ocean Research Enabled by Underwater Gliders.

    PubMed

    Rudnick, Daniel L

    2016-01-01

    Underwater gliders are autonomous underwater vehicles that profile vertically by changing their buoyancy and use wings to move horizontally. Gliders are useful for sustained observation at relatively fine horizontal scales, especially to connect the coastal and open ocean. In this review, research topics are grouped by time and length scales. Large-scale topics addressed include the eastern and western boundary currents and the regional effects of climate variability. The accessibility of horizontal length scales of order 1 km allows investigation of mesoscale and submesoscale features such as fronts and eddies. Because the submesoscales dominate vertical fluxes in the ocean, gliders have found application in studies of biogeochemical processes. At the finest scales, gliders have been used to measure internal waves and turbulent dissipation. The review summarizes gliders' achievements to date and assesses their future in ocean observation. PMID:26291384

  2. Tunable beam steering enabled by graphene metamaterials.

    PubMed

    Orazbayev, B; Beruete, M; Khromova, I

    2016-04-18

    We demonstrate tunable mid-infrared (MIR) beam steering devices based on multilayer graphene-dielectric metamaterials. The effective refractive index of such metamaterials can be manipulated by changing the chemical potential of each graphene layer. This can arbitrarily tailor the spatial distribution of the phase of the transmitted beam, providing mechanisms for active beam steering. Three different beam steerer (BS) designs are discussed: a graded-index (GRIN) graphene-based metamaterial block, an array of metallic waveguides filled with graphene-dielectric metamaterial and an array of planar waveguides created in a graphene-dielectric metamaterial block with a specific spatial profile of graphene sheets doping. The performances of the BSs are numerically analyzed, showing the tunability of the proposed designs for a wide range of output angles (up to approximately 70°). The proposed graphene-based tunable beam steering can be used in tunable transmitter/receiver modules for infrared imaging and sensing. PMID:27137318

  3. Superconductors Enable Lower Cost MRI Systems

    NASA Technical Reports Server (NTRS)

    2013-01-01

    The future looks bright, light, and green, especially where aircraft are concerned. The division of NASA s Fundamental Aeronautics Program called the Subsonic Fixed Wing Project is aiming to reach new heights by 2025-2035, improving the efficiency and environmental impact of air travel by developing new capabilities for cleaner, quieter, and more fuel efficient aircraft. One of the many ways NASA plans to reach its aviation goals is by combining new aircraft configurations with an advanced turboelectric distributed propulsion (TeDP) system. Jeff Trudell, an engineer at Glenn Research Center, says, "The TeDP system consists of gas turbines generating electricity to power a large number of distributed motor-driven fans embedded into the airframe." The combined effect increases the effective bypass ratio and reduces drag to meet future goals. "While room temperature components may help reduce emissions and noise in a TeDP system, cryogenic superconducting electric motors and generators are essential to reduce fuel burn," says Trudell. Superconductors provide significantly higher current densities and smaller and lighter designs than room temperature equivalents. Superconductors are also able to conduct direct current without resistance (loss of energy) below a critical temperature and applied field. Unfortunately, alternating current (AC) losses represent the major part of the heat load and depend on the frequency of the current and applied field. A refrigeration system is necessary to remove the losses and its weight increases with decreasing temperature. In 2001, a material called magnesium diboride (MgB2) was discovered to be superconducting. The challenge, however, has been learning to manufacture MgB2 inexpensively and in long lengths to wind into large coils while meeting the application requirements.

  4. Science Enabled by Ocean Observatory Acoustics

    NASA Astrophysics Data System (ADS)

    Howe, B. M.; Lee, C.; Gobat, J.; Freitag, L.; Miller, J. H.; Committee, I.

    2004-12-01

    Ocean observatories have the potential to examine the physical, chemical, biological, and geological parameters and processes of the ocean at time and space scales previously unexplored. Acoustics provides an efficient and cost-effective means by which these parameters and processes can be measured and information can be communicated. Integrated acoustics systems providing navigation and communications for mobile platforms and conducting acoustical measurements in support of science objectives are critical and essential elements of the ocean observatories presently in the planning and implementation stages. The ORION Workshop (Puerto Rico, 4-8 January 2004) developed science themes that can be addressed utilizing ocean observatory infrastructure. The use of acoustics to sense the 3-d/volumetric ocean environment on all temporal and spatial scales was discussed in many ORION working groups. Science themes that are related to acoustics and measurements using acoustics are reviewed and tabulated, as are the related and sometimes competing requirements for passive listening, acoustic navigation and acoustic communication around observatories. Sound in the sea, brought from observatories to universities and schools via the internet, will also be a major education and outreach mechanism.

  5. Dendrimer-enabled transformation of Anaplasma phagocytophilum.

    PubMed

    Oki, Aminat T; Seidman, David; Lancina, Michael G; Mishra, Manoj K; Kannan, Rangaramanujam M; Yang, Hu; Carlyon, Jason A

    2015-01-01

    Anaplasma phagocytophilum is an obligate intracellular bacterium that causes the emerging infection, granulocytic anaplasmosis. While electroporation can transform A. phagocytophilum isolated from host cells, no method has been developed to transform it while growing inside the ApV (A. phagocytophilum-occupied vacuole). Polyamidoamine (PAMAM) dendrimers, well-defined tree-branched macromolecules used for gene therapy and nucleic acid delivery into mammalian cells, were recently shown to be effective in transforming Chlamydia spp. actively growing in host cells. We determined if we could adapt a similar system to transform A. phagocytophilum. Incubating fluorescently labeled PAMAM dendrimers with infected host cells resulted in fluorescein-positive ApVs. Incubating infected host cells or host cell-free A. phagocytophilum organisms with dendrimers complexed with pCis GFPuv-SS Himar A7 plasmid, which carries a Himar1 transposon cassette encoding GFPuv and spectinomycin/streptomycin resistance plus the Himar1 transposase itself, resulted in GFP-positive, antibiotic resistant bacteria. Yet, transformation efficiencies were low. The transformed bacterial populations could only be maintained for a few passages, likely due to random Himar1 cassette-mediated disruption of A. phagocytophilum genes required for fitness. Nonetheless, these results provide proof of principle that dendrimers can deliver exogenous DNA into A. phagocytophilum, both inside and outside of host cells. PMID:26369714

  6. Scientific Data Management Center for Enabling Technologies

    SciTech Connect

    Vouk, Mladen A.

    2013-01-15

    Managing scientific data has been identified by the scientific community as one of the most important emerging needs because of the sheer volume and increasing complexity of data being collected. Effectively generating, managing, and analyzing this information requires a comprehensive, end-to-end approach to data management that encompasses all of the stages from the initial data acquisition to the final analysis of the data. Fortunately, the data management problems encountered by most scientific domains are common enough to be addressed through shared technology solutions. Based on community input, we have identified three significant requirements. First, more efficient access to storage systems is needed. In particular, parallel file system and I/O system improvements are needed to write and read large volumes of data without slowing a simulation, analysis, or visualization engine. These processes are complicated by the fact that scientific data are structured differently for specific application domains, and are stored in specialized file formats. Second, scientists require technologies to facilitate better understanding of their data, in particular the ability to effectively perform complex data analysis and searches over extremely large data sets. Specialized feature discovery and statistical analysis techniques are needed before the data can be understood or visualized. Furthermore, interactive analysis requires techniques for efficiently selecting subsets of the data. Finally, generating the data, collecting and storing the results, keeping track of data provenance, data post-processing, and analysis of results is a tedious, fragmented process. Tools for automation of this process in a robust, tractable, and recoverable fashion are required to enhance scientific exploration. The SDM center was established under the SciDAC program to address these issues. The SciDAC-1 Scientific Data Management (SDM) Center succeeded in bringing an initial set of advanced

  7. ITK: enabling reproducible research and open science

    PubMed Central

    McCormick, Matthew; Liu, Xiaoxiao; Jomier, Julien; Marion, Charles; Ibanez, Luis

    2014-01-01

    Reproducibility verification is essential to the practice of the scientific method. Researchers report their findings, which are strengthened as other independent groups in the scientific community share similar outcomes. In the many scientific fields where software has become a fundamental tool for capturing and analyzing data, this requirement of reproducibility implies that reliable and comprehensive software platforms and tools should be made available to the scientific community. The tools will empower them and the public to verify, through practice, the reproducibility of observations that are reported in the scientific literature. Medical image analysis is one of the fields in which the use of computational resources, both software and hardware, are an essential platform for performing experimental work. In this arena, the introduction of the Insight Toolkit (ITK) in 1999 has transformed the field and facilitates its progress by accelerating the rate at which algorithmic implementations are developed, tested, disseminated and improved. By building on the efficiency and quality of open source methodologies, ITK has provided the medical image community with an effective platform on which to build a daily workflow that incorporates the true scientific practices of reproducibility verification. This article describes the multiple tools, methodologies, and practices that the ITK community has adopted, refined, and followed during the past decade, in order to become one of the research communities with the most modern reproducibility verification infrastructure. For example, 207 contributors have created over 2400 unit tests that provide over 84% code line test coverage. The Insight Journal, an open publication journal associated with the toolkit, has seen over 360,000 publication downloads. The median normalized closeness centrality, a measure of knowledge flow, resulting from the distributed peer code review system was high, 0.46. PMID:24600387

  8. Translational Activities to Enable NTD Vaccines.

    PubMed

    Gray, S A; Coler, R N; Carter, D; Siddiqui, A A

    2016-01-01

    There is an urgent need to develop new vaccines for tuberculosis, HIV/AIDS, and malaria, as well as for chronic and debilitating infections known as neglected tropical diseases (NTDs). The term "NTD" emerged at the beginning of the new millennium to describe a set of diseases that are characterized as (1) poverty related, (2) endemic to the tropics and subtropics, (3) lacking public health attention and inadequate industrial investment, (4) having poor research funding and a weak research and development (R&D) pipeline, (5) usually associated with high morbidity but low mortality, and (6) often having no safe and long-lasting treatment available. Many additional challenges to the current control and elimination programs for NTDs exist. These include inconsistent performance of diagnostic tests, regional differences in access to treatment and in treatment outcome, lack of integrated surveillance and vector/intermediate host control, and impact of ecological climatic changes particularly in regions where new cases are increasing in previously nonendemic areas. Moreover, the development of NTD vaccines, including those for schistosomiasis, leishmaniasis, leprosy, hookworm, and Chagas disease are being led by nonprofit product development partnerships (PDPs) working in partnership with academic and industrial partners, contract research organizations, and in some instances vaccine manufacturers in developing countries. In this review, we emphasize global efforts to fuel the development of NTD vaccines, the translational activities needed to effectively move promising vaccine candidates to Phase-I clinical trials and some of the hurdles to ensuring their availability to people in the poorest countries of Africa, Asia, Latin America, and the Caribbean. PMID:27571699

  9. Distributive Distillation Enabled by Microchannel Process Technology

    SciTech Connect

    Arora, Ravi

    2013-01-22

    The application of microchannel technology for distributive distillation was studied to achieve the Grand Challenge goals of 25% energy savings and 10% return on investment. In Task 1, a detailed study was conducted and two distillation systems were identified that would meet the Grand Challenge goals if the microchannel distillation technology was used. Material and heat balance calculations were performed to develop process flow sheet designs for the two distillation systems in Task 2. The process designs were focused on two methods of integrating the microchannel technology 1) Integrating microchannel distillation to an existing conventional column, 2) Microchannel distillation for new plants. A design concept for a modular microchannel distillation unit was developed in Task 3. In Task 4, Ultrasonic Additive Machining (UAM) was evaluated as a manufacturing method for microchannel distillation units. However, it was found that a significant development work would be required to develop process parameters to use UAM for commercial distillation manufacturing. Two alternate manufacturing methods were explored. Both manufacturing approaches were experimentally tested to confirm their validity. The conceptual design of the microchannel distillation unit (Task 3) was combined with the manufacturing methods developed in Task 4 and flowsheet designs in Task 2 to estimate the cost of the microchannel distillation unit and this was compared to a conventional distillation column. The best results were for a methanol-water separation unit for the use in a biodiesel facility. For this application microchannel distillation was found to be more cost effective than conventional system and capable of meeting the DOE Grand Challenge performance requirements.

  10. The MMI Device Ontology: Enabling Sensor Integration

    NASA Astrophysics Data System (ADS)

    Rueda, C.; Galbraith, N.; Morris, R. A.; Bermudez, L. E.; Graybeal, J.; Arko, R. A.; Mmi Device Ontology Working Group

    2010-12-01

    .g., SensorML, NetCDF). These identifiers can be resolved through a web browser, or other client applications via HTTP against the MMI Ontology Registry and Repository (ORR), where the ontology is maintained. SPARQL-based query capabilities, which are enhanced with reasoning, along with several supported output formats, allow the effective interaction of diverse client applications with the semantic information associated with the device ontology. In this presentation we describe the process for the development of the MMI Device Ontology and illustrate extensions and applications that demonstrate the benefits of adopting this semantic approach, including example queries involving inference. We also highlight the issues encountered and future work.

  11. Nanostructured porous silicon microparticles enable sustained peptide (Melanotan II) delivery.

    PubMed

    Kilpeläinen, Miia; Mönkäre, Juha; Vlasova, Maria A; Riikonen, Joakim; Lehto, Vesa-Pekka; Salonen, Jarno; Järvinen, Kristiina; Herzig, Karl-Heinz

    2011-01-01

    Peptide molecules can improve the treatment of a number of pathological conditions, but due to their physicochemical properties, their delivery is very challenging. The study aim was to determine whether nanostructured porous silicon could sustain the release and prolong the duration of action of a model peptide Melanotan II (MTII). Thermally hydrocarbonized nanoporous silicon (THCPSi) microparticles (38-53 μm) were loaded with MTII. The pore diameter, volume, specific surface area and loading degree of the microparticles were analyzed, and the peptide release was evaluated in vitro. The effects of MTII on heart rate and water consumption were investigated in vivo after subcutaneous administration of the MTII loaded microparticles. A peptide loading degree of 15% w/w was obtained. In vitro studies (PBS, pH 7.4, 37 °C) indicated sustained release of MTII from the THCPSi microparticles. In vivo, MTII loaded THCPSi induced an increase in the heart rate 2 h later than MTII solution, and the effect lasted 1 h longer. In addition, MTII loaded THCPSi changed the water consumption after 150 min, when the immediate effect of MTII solution was already diminished. The present study demonstrates that MTII loading into nanosized PSi pore structure enables sustained delivery of an active peptide. PMID:20965250

  12. NUCLEAR INCIDENT CAPABILITIES, KNOWLEDGE & ENABLER LEVERAGING

    SciTech Connect

    Kinney, J.; Newman, J.; Goodwyn, A.; Dewes, J.

    2011-04-18

    action. Much work needs to be accomplished to enhance nuclear preparedness and to substantially bolster and clarify the capacity to deploy competent resources. Until detailed plans are scripted, and personnel and other resources are postured, and exercised, IND specific planning remains an urgent need requiring attention and action. Although strategic guidance, policies, concepts of operations, roles, responsibilities, and plans governing the response and consequence management for the IND scenario exist, an ongoing integration challenge prevails regarding how best to get capable and competent surge capacity personnel (disaster reservists) and other resources engaged and readied in an up-front manner with pre-scripted assignments to augment the magnitude of anticipated demands of expertise. With the above in mind, Savannah River National Laboratory (SRNL) puts science to work to create and deploy practical, high-value, cost-effective nuclear solutions. As the Department of Energy's (DOE) applied research and development laboratory, SRNL supports Savannah River Site (SRS) operations, DOE, national initiatives, and other federal agencies, across the country and around the world. SRNL's parent at SRS also employs more than 8,000 personnel. The team is a great asset that seeks to continue their service in the interest of national security and stands ready to accomplish new missions. Overall, an integral part of the vision for SRNL's National and Homeland Security Directorate is the establishment of a National Security Center at SRNL, and development of state of the science capabilities (technologies and trained technical personnel) for responding to emergency events on local, regional, or national scales. This entails leveraging and posturing the skills, knowledge and experience base of SRS personnel to deliver an integrated capability to support local, state, and federal authorities through the development of pre-scripted requests for assistance, agreements, and plans. It

  13. Science enabled by ATHENA: Solar system targets and exoplanets

    NASA Astrophysics Data System (ADS)

    Branduardi-Raymont, Graziella

    2016-07-01

    ATHENA studies of the solar system will offer some of the deepest insights in the complex workings of planetary magnetospheres and exospheres; ATHENA will answer many of the questions that have only started to be tackled by Chandra and XMM-Newton and will add in a major way to our understanding of the interactions of space plasmas with magnetised and un-magnetised bodies in the solar system. The non-dispersive character of X-IFU spectroscopy will enable Jupiter's auroral and disk X-ray emissions, and that from the Io Plasma Torus, to be mapped spatially and spectrally at high resolution; it will also enable surface composition analysis through fluorescence spectra of the Galilean satellites. ATHENA will establish how planetary exospheres, such as that of Mars, and comets respond to the interaction with the solar wind, in a detailed and global way that other observatories or in situ measurements cannot provide. With its remarkably improved sensitivity over current X-ray telescopes, ATHENA will push the search for auroral X-ray emission on Saturn to much fainter limits, and set very sensitive constraints on Uranus X-ray emission. ATHENA will explore the magnetic interplay between stars and planets in X-rays by searching for X-ray spectral variability over the planet's orbital phases and for systems of different orbital eccentricity, and will investigate ingress/eclipse/egress effects for transiting hot-Jupiter exoplanets; again instrumental to this will be the vastly improved signal-to-noise ratio provided by ATHENA over that achievable by XMM-Newton or Chandra.

  14. FINESSE: Field Investigations to Enable Solar System Science and Exploration

    NASA Technical Reports Server (NTRS)

    Heldmann, Jennifer; Lim, Darlene; Colaprete, Anthony

    2015-01-01

    The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team is focused on a science and exploration field-based research program aimed at generating strategic knowledge in preparation for the human and robotic exploration of the Moon, near-Earth asteroids (NEAs) and Phobos and Deimos. We follow the philosophy that "science enables exploration and exploration enables science." 1) FINESSE Science: Understand the effects of volcanism and impacts as dominant planetary processes on the Moon, NEAs, and Phobos & Deimos. 2) FINESSE Exploration: Understand which exploration concepts of operations (ConOps) and capabilities enable and enhance scientific return. To accomplish these objectives, we are conducting an integrated research program focused on scientifically-driven field exploration at Craters of the Moon National Monument and Preserve in Idaho and at the West Clearwater Lake Impact Structure in northern Canada. Field deployments aimed at reconnaissance geology and data acquisition were conducted in 2014 at Craters of the Moon National Monument and Preserve. Targets for data acquisition included selected sites at Kings Bowl eruptive fissure, lava field and blowout crater, Inferno Chasm vent and outflow channel, North Crater lava flow and Highway lava flow. Field investigation included (1) differential GPS (dGPS) measurements of lava flows, channels (and ejecta block at Kings Bowl); (2) LiDAR imaging of lava flow margins, surfaces and other selected features; (3) digital photographic documentation; (4) sampling for geochemical and petrographic analysis; (5) UAV aerial imagery of Kings Bowl and Inferno Chasm features; and (6) geologic assessment of targets and potential new targets. Over the course of the 5-week field FINESSE campaign to the West Clearwater Impact Structure (WCIS) in 2014, the team focused on several WCIS research topics, including impactites, central uplift formation, the impact-generated hydrothermal system, multichronometer

  15. Space Weathering Investigations Enabled by NASA's Virtual Heliophysical Observatories

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; King, Joseph H.; Papitashvili, Natalia E.; Lal, Nand; Sittler, Edward C.; Sturner, Steven J.; Hills, Howard K.; Lipatov, Alexander S.; Kovalick, Tamara J.; Johnson, Rita C.; McGuire, Robert E.; Narock, Thomas W.; Szabo, Adam; Armstrong, Thomas P.; Manweiler, Jerry W.; Patterson, J. Douglas; McKibben, Robert B.

    2012-01-01

    Structural and chemical impact of the heliospheric space environment on exposed planetary surfaces and interplanetary dust grains may be generally defined as space weathering . In the inner solar system, from the asteroid belt inwards towards the Sun, the surface regolith structures of airless bodies are primarily determined by cumulative meteoritic impacts over billions of years, but the molecular composition to meters in depth can be substantially modified by irradiation effects. Plasma ions at eV to keV energies may both erode uppermost surfaces by sputtering, and implant or locally produce exogenic material, e.g. He-3 and H2O, while more energetic ions drive molecular change through electronic ionization. Galactic cosmic ray ions and more energetic solar ions can impact chemistry to meters in depth. High energy cosmic ray interactions produce showers of secondary particles and energetic photons that present hazards for robotic and human exploration missions but also enable detection of potentially useable resources such as water ice, oxygen, and many other elements. Surface sputtering also makes ejected elemental and molecular species accessible for in-situ compositional analysis by spacecraft with ion and neutral mass spectrometers. Modeling of relative impacts for these various space weathering processes requires knowledge of the incident species-resolved ion flux spectra at plasma to cosmic ray energies and as integrated over varying time scales. Although the main drivers for investigations of these processes come from NASA's planetary science and human exploration programs, the NASA heliophysics program provides the requisite data measurement and modeling resources to enable specification of the field & plasma and energetic particle irradiation environments for application to space weather and surface weathering investigations. The Virtual Heliospheric Observatory (VHO), Virtual Energetic Particle Observatory (VEPO), Lunar Solar Origins Exploration (Luna

  16. Complexity Science Framework for Big Data: Data-enabled Science

    NASA Astrophysics Data System (ADS)

    Surjalal Sharma, A.

    2016-07-01

    The ubiquity of Big Data has stimulated the development of analytic tools to harness the potential for timely and improved modeling and prediction. While much of the data is available near-real time and can be compiled to specify the current state of the system, the capability to make predictions is lacking. The main reason is the basic nature of Big Data - the traditional techniques are challenged in their ability to cope with its velocity, volume and variability to make optimum use of the available information. Another aspect is the absence of an effective description of the time evolution or dynamics of the specific system, derived from the data. Once such dynamical models are developed predictions can be made readily. This approach of " letting the data speak for itself " is distinct from the first-principles models based on the understanding of the fundamentals of the system. The predictive capability comes from the data-derived dynamical model, with no modeling assumptions, and can address many issues such as causality and correlation. This approach provides a framework for addressing the challenges in Big Data, especially in the case of spatio-temporal time series data. The reconstruction of dynamics from time series data is based on recognition that in most systems the different variables or degrees of freedom are coupled nonlinearly and in the presence of dissipation the state space contracts, effectively reducing the number of variables, thus enabling a description of its dynamical evolution and consequently prediction of future states. The predictability is analysed from the intrinsic characteristics of the distribution functions, such as Hurst exponents and Hill estimators. In most systems the distributions have heavy tails, which imply higher likelihood for extreme events. The characterization of the probabilities of extreme events are critical in many cases e. g., natural hazards, for proper assessment of risk and mitigation strategies. Big Data with

  17. Enabling Advanced Modeling and Simulations for Fuel-Flexible Combustors

    SciTech Connect

    Pitsch, Heinz

    2010-05-31

    The overall goal of the present project is to enable advanced modeling and simulations for the design and optimization of fuel-flexible turbine combustors. For this purpose we use a high fidelity, extensively-tested large-eddy simulation (LES) code and state-of-the-art models for premixed/partially-premixed turbulent combustion developed in the PI's group. In the frame of the present project, these techniques are applied, assessed, and improved for hydrogen enriched premixed and partially premixed gas-turbine combustion. Our innovative approaches include a completely consistent description of flame propagation; a coupled progress variable/level set method to resolve the detailed flame structure, and incorporation of thermal-diffusion (non-unity Lewis number) effects. In addition, we have developed a general flamelet-type transformation holding in the limits of both non-premixed and premixed burning. As a result, a model for partially premixed combustion has been derived. The coupled progress variable/level method and the general flamelet transformation were validated by LES of a lean-premixed low-swirl burner that has been studied experimentally at Lawrence Berkeley National Laboratory. The model is extended to include the non-unity Lewis number effects, which play a critical role in fuel-flexible combustor with high hydrogen content fuel. More specifically, a two-scalar model for lean hydrogen and hydrogen-enriched combustion is developed and validated against experimental and direct numerical simulation (DNS) data. Results are presented to emphasize the importance of non-unity Lewis number effects in the lean-premixed low-swirl burner of interest in this project. The proposed model gives improved results, which shows that the inclusion of the non-unity Lewis number effects is essential for accurate prediction of the lean-premixed low-swirl flame.

  18. Enabling Advanced Modeling and Simulations for Fuel-Flexible Combustors

    SciTech Connect

    Heinz Pitsch

    2010-05-31

    The overall goal of the present project is to enable advanced modeling and simulations for the design and optimization of fuel-flexible turbine combustors. For this purpose we use a high-fidelity, extensively-tested large-eddy simulation (LES) code and state-of-the-art models for premixed/partially-premixed turbulent combustion developed in the PI's group. In the frame of the present project, these techniques are applied, assessed, and improved for hydrogen enriched premixed and partially premixed gas-turbine combustion. Our innovative approaches include a completely consistent description of flame propagation, a coupled progress variable/level set method to resolve the detailed flame structure, and incorporation of thermal-diffusion (non-unity Lewis number) effects. In addition, we have developed a general flamelet-type transformation holding in the limits of both non-premixed and premixed burning. As a result, a model for partially premixed combustion has been derived. The coupled progress variable/level method and the general flamelet tranformation were validated by LES of a lean-premixed low-swirl burner that has been studied experimentally at Lawrence Berkeley National Laboratory. The model is extended to include the non-unity Lewis number effects, which play a critical role in fuel-flexible combustor with high hydrogen content fuel. More specifically, a two-scalar model for lean hydrogen and hydrogen-enriched combustion is developed and validated against experimental and direct numerical simulation (DNS) data. Results are presented to emphasize the importance of non-unity Lewis number effects in the lean-premixed low-swirl burner of interest in this project. The proposed model gives improved results, which shows that the inclusion of the non-unity Lewis number effects is essential for accurate prediction of the lean-premixed low-swirl flame.

  19. AFC-Enabled Vertical Tail System Integration Study

    NASA Technical Reports Server (NTRS)

    Mooney, Helen P.; Brandt, John B.; Lacy, Douglas S.; Whalen, Edward A.

    2014-01-01

    This document serves as the final report for the SMAAART AFC-Enabled Vertical Tail System Integration Study. Included are the ground rule assumptions which have gone into the study, layouts of the baseline and AFC-enabled configurations, critical sizing information, system requirements and architectures, and assumed system properties that result in an NPV assessment of the two candidate AFC technologies.

  20. Group-enabled DEVS model construction methodology for distributed organizations

    NASA Astrophysics Data System (ADS)

    Sarjoughian, Hessam S.; Vahie, Sankait; Lee, James D.

    1997-06-01

    A USAF project has been initiated to enable groupware that currently supports IDEF activity model capture to be extended to support DEVS model construction. The methodology developed for this purpose enables team participants to enter activity data and then be queried for additional data that support DEVS system decomposition, assigning the activities to components and adding in relevant dynamics.

  1. Commitment in Structurally Enabled and Induced Exchange Relations

    ERIC Educational Resources Information Center

    Lawler, Edward J.; Thye, Shane R.; Yoon, Jeongkoo

    2006-01-01

    Network structures both enable and constrain the development of social relations. This research investigates these features by comparing the development of commitments in structurally enabled and structurally induced exchange relations. We integrate ideas from the theory of relational cohesion and the choice process theory of commitment. In an…

  2. Environmental and policy analysis of renewable energy enabling technologies

    NASA Astrophysics Data System (ADS)

    Denholm, Paul L.

    For intermittent electricity generation sources such as wind and solar energy to meet a large fraction (>20%) of the nation's electricity supply, two enabling technologies, energy storage and long distance transmission, will need to be deployed on a large scale. A life-cycle study was performed to evaluate the environmental performance of energy storage and transmission technologies in terms of compatibility with the goals of deploying renewable energy systems. Metrics were developed to evaluate net efficiency, fossil fuel use, and greenhouse gas emissions that result from the use of enabling technologies with conventional and renewable energy sources. Storage technologies evaluated in this study include pumped hydro storage, compressed air energy storage, and battery energy storage. Three combinations of renewable energy generation and storage were evaluated. Wind/CAES is a likely candidate for large scale deployment, and delivers more than 5 times the amount of electrical energy from a unit of fossil fuel than the most efficient combustion system available, with about 20% of GHG emissions. Both wind/PHS and Solar PVBES also demonstrate superior performance to fossil energy systems in terms of energy sustainability and GHG emissions. Near term deployment of energy storage will likely take advantage of low cost off-peak energy from existing coal plants, which can result in increases in harmful air emissions. The "grandfathering" provisions of the U.S. Clean Air Act allow for increased output from these older plants that produce high levels of emissions. Energy storage provides a loophole that could be used to increase output from these plants, instead of building cleaner alternatives. The unique hybrid-CAES system has lower life-cycle emissions than any other storage technologies when coupled to coal, but effectively produces emissions that far exceed standards for any new source. A new CAES plant in the Midwestern U.S. will effectively produce SO2 at a rate more

  3. Laser cooling of an indium atomic beam enabled by magnetic fields

    NASA Astrophysics Data System (ADS)

    Klöter, B.; Weber, C.; Haubrich, D.; Meschede, D.; Metcalf, H.

    2008-03-01

    We demonstrate magnetic field enabled optical forces on a neutral indium atomic beam in a light field consisting of five frequencies. The role of dark magnetic ground state sublevels is studied and enables us to cool the atomic beam transversely to near the Doppler limit with laser frequencies tuned above the atomic resonance. The effect of laser cooling can be explained with transient effects in the light potential created by the standing wave light field where the atoms are optically pumped into the dark states and recycled by Larmor precession.

  4. A simulation system of grid-enabled communication network capable of joint scheduling of cross-domain communication resources

    NASA Astrophysics Data System (ADS)

    Wen, Xiang; Zheng, Xiangquan

    2011-10-01

    Joint scheduling of cross-domain communication resource based on grid-enabled networking is an efficient solution to better support grid application and provide communication service capability for on-demand cross-domain traffic delivery. This paper presents a grid-enabled communication network simulation system, and carries out study on joint scheduling of cross-domain communication resource in grid-enabled communication network from the point view of feasibility and effectiveness. The result of simulation shows that, by adopting the method of on-demand sharing and flexible composition of communication resource in grid-enable networking, grid application providing quality-guaranteed service could be better supported.

  5. Ecological assessment of nano-enabled supercapacitors for automotive applications

    NASA Astrophysics Data System (ADS)

    Weil, M.; Dura, H.; Shimon, B.; Baumann, M.; Zimmermann, B.; Ziemann, S.; Lei, C.; Markoulidis, F.; Lekakou, T.; Decker, M.

    2012-09-01

    New materials on nano scale have the potential to overcome existing technical barriers and are one of the most promising key technologies to enable the decoupling of economic growth and resource consumption. Developing these innovative materials for industrial applications means facing a complex quality profile, which includes among others technical, economic, and ecological aspects. So far the two latter aspects are not sufficiently included in technology development, especially from a life cycle point of view. Supercapacitors are considered a promising option for electric energy storage in hybrid and full electric cars. In comparison with presently used lithium based electro chemical storage systems supercapacitors possess a high specific power, but a relatively low specific energy. Therefore, the goal of ongoing research is to develop a new generation of supercapacitors with high specific power and high specific energy. To reach this goal particularly nano materials are developed and tested on cell level. In the presented study the ecological implications (regarding known environmental effects) of carbon based nano materials are analysed using Life Cycle Assessment (LCA). Major attention is paid to efficiency gains of nano particle production due to scaling up of such processes from laboratory to industrial production scales. Furthermore, a developed approach will be displayed, how to assess the environmental impact of nano materials on an automotive system level over the whole life cycle.

  6. Resistive random access memory enabled by carbon nanotube crossbar electrodes.

    PubMed

    Tsai, Cheng-Lin; Xiong, Feng; Pop, Eric; Shim, Moonsub

    2013-06-25

    We use single-walled carbon nanotube (CNT) crossbar electrodes to probe sub-5 nm memory domains of thin AlOx films. Both metallic and semiconducting CNTs effectively switch AlOx bits between memory states with high and low resistance. The low-resistance state scales linearly with CNT series resistance down to ∼10 MΩ, at which point the ON-state resistance of the AlOx filament becomes the limiting factor. Dependence of switching behavior on the number of cross-points suggests a single channel to dominate the overall characteristics in multi-crossbar devices. We demonstrate ON/OFF ratios up to 5 × 10(5) and programming currents of 1 to 100 nA with few-volt set/reset voltages. Remarkably low reset currents enable a switching power of 10-100 nW and estimated switching energy as low as 0.1-10 fJ per bit. These results are essential for understanding the ultimate scaling limits of resistive random access memory at single-nanometer bit dimensions. PMID:23705675

  7. How youth-serving organizations enable acquaintance molesters.

    PubMed

    Boyle, Patrick

    2014-10-01

    In recent years, some of the country's most prominent institutions have been ensnared in child sex abuse scandals. While each abuse incident features its own particular circumstances, institutions that have been the subject of these scandals have displayed similar patterns of organizational behavior that allowed molesting to occur and molesters to escape accountability. We can learn from those patterns to better understand and combat acquaintance molestation in youth-serving organizations. Although sex abuse is an inherent risk in youth work, American youth-serving organizations have responded to this risk largely on a case-by-case basis after abuse incidents have been revealed, rather than through proactive strategies to reduce the risk of abuse and to respond effectively to allegations. An examination of abuse scandals reveals common patterns of behavior among paid and volunteer staff in organizations that did not enact comprehensive, proactive strategies: Faith in the organiation blinded staff to the liklihood of abuse; organizations kept workers ignorant about the extent of the abuse problem; when abuse accusations arose, staff gave the benefit of the doubt to the adult; when abuse accusations were confirmed, staffers did not know how to respond; and not knowing how to resopnd, staff prioritized the protection of the organization. As a result, child molesters have been falsely exonerated or not held accountable, abused children have been disbelieved, and abuse has continued. These organizations inadvertently achieved the opposite of their missions: They enabled child molesters at the expense of children. PMID:24860082

  8. Enabling information management systems in tactical network environments

    NASA Astrophysics Data System (ADS)

    Carvalho, Marco; Uszok, Andrzej; Suri, Niranjan; Bradshaw, Jeffrey M.; Ceccio, Philip J.; Hanna, James P.; Sinclair, Asher

    2009-05-01

    Net-Centric Information Management (IM) and sharing in tactical environments promises to revolutionize forward command and control capabilities by providing ubiquitous shared situational awareness to the warfighter. This vision can be realized by leveraging the tactical and Mobile Ad hoc Networks (MANET) which provide the underlying communications infrastructure, but, significant technical challenges remain. Enabling information management in these highly dynamic environments will require multiple support services and protocols which are affected by, and highly dependent on, the underlying capabilities and dynamics of the tactical network infrastructure. In this paper we investigate, discuss, and evaluate the effects of realistic tactical and mobile communications network environments on mission-critical information management systems. We motivate our discussion by introducing the Advanced Information Management System (AIMS) which is targeted for deployment in tactical sensor systems. We present some operational requirements for AIMS and highlight how critical IM support services such as discovery, transport, federation, and Quality of Service (QoS) management are necessary to meet these requirements. Our goal is to provide a qualitative analysis of the impact of underlying assumptions of availability and performance of some of the critical services supporting tactical information management. We will also propose and describe a number of technologies and capabilities that have been developed to address these challenges, providing alternative approaches for transport, service discovery, and federation services for tactical networks.

  9. Anatomy drawing screencasts: enabling flexible learning for medical students.

    PubMed

    Pickering, James D

    2015-01-01

    The traditional lecture remains an essential method of disseminating information to medical students. However, due to the constant development of the modern medical curriculum many institutions are embracing novel means for delivering the core anatomy syllabus. Using mobile media devices is one such way, enabling students to access core material at a time and place that suits their specific learning style. This study has examined the effect of five anatomy drawing screencasts that replicate the popular anatomy drawing element of a lecture. These resources were uploaded to the University's Virtual Learning Environment for student access. Usage data and an end of module questionnaire were used to assess the impact of the screencasts on student education. The data revealed a high level of usage that varied in both the time of day and day of the week, with the number of downloads dramatically increasing towards the end of the module when the assessment was approaching. The student group found the additional resources extremely useful in consolidating information and revision, with many commenting on their preference to the screencasts compared to the more traditional approaches to learning. Scrutinizing the screencasts in relation to cognitive load theory and the cognitive theory of multimedia learning indicates a high correlation with an evidence-based approach to designing learning resources. Overall the screencasts have been a well-received enhancement that supports the student learning and has been shown to promote flexible learning. PMID:25091417

  10. Multispectral tissue analysis and classification towards enabling automated robotic surgery

    NASA Astrophysics Data System (ADS)

    Triana, Brian; Cha, Jaepyeong; Shademan, Azad; Krieger, Axel; Kang, Jin U.; Kim, Peter C. W.

    2014-02-01

    Accurate optical characterization of different tissue types is an important tool for potentially guiding surgeons and enabling automated robotic surgery. Multispectral imaging and analysis have been used in the literature to detect spectral variations in tissue reflectance that may be visible to the naked eye. Using this technique, hidden structures can be visualized and analyzed for effective tissue classification. Here, we investigated the feasibility of automated tissue classification using multispectral tissue analysis. Broadband reflectance spectra (200-1050 nm) were collected from nine different ex vivo porcine tissues types using an optical fiber-probe based spectrometer system. We created a mathematical model to train and distinguish different tissue types based upon analysis of the observed spectra using total principal component regression (TPCR). Compared to other reported methods, our technique is computationally inexpensive and suitable for real-time implementation. Each of the 92 spectra was cross-referenced against the nine tissue types. Preliminary results show a mean detection rate of 91.3%, with detection rates of 100% and 70.0% (inner and outer kidney), 100% and 100% (inner and outer liver), 100% (outer stomach), and 90.9%, 100%, 70.0%, 85.7% (four different inner stomach areas, respectively). We conclude that automated tissue differentiation using our multispectral tissue analysis method is feasible in multiple ex vivo tissue specimens. Although measurements were performed using ex vivo tissues, these results suggest that real-time, in vivo tissue identification during surgery may be possible.

  11. Fabrication Infrastructure to Enable Efficient Exploration and Utilization of Space

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Fikes, John C.; McLemore, Carole A.; Manning, Curtis W.; Good, Jim

    2007-01-01

    Unlike past one-at-a-time mission approaches, system-of-systems infrastructures will be needed to enable ambitious scenarios for sustainable future space exploration and utilization. Fabrication infrastructure will be needed to support habitat structure development, tools and mechanical part fabrication, as well as repair and replacement of ground support and space mission hardware such as life support items, vehicle components and crew systems. The fabrication infrastructure will need the In Situ Fabrication and Repair (ISFR) element, which is working in conjunction with the In Situ Resources Utilization (ISRU) element, to live off the land. The ISFR Element supports the entire life cycle of Exploration by: reducing downtime due to failed components; decreasing risk to crew by recovering quickly from degraded operation of equipment; improving system functionality with advanced geometry capabilities; and enhancing mission safety by reducing assembly part counts of original designs where possible. This paper addresses the fabrication infrastructures that support efficient, affordable, reliable infrastructures for both space exploration systems and logistics; these infrastructures allow sustained, affordable and highly effective operations on the Moon, Mars and beyond.

  12. Use of Theranostic Strategies in Myocardial Cavitation-Enabled Therapy.

    PubMed

    Miller, Douglas L; Dou, Chunyan; Lu, Xiaofang; Zhu, Yiying I; Fabiilli, Mario L; Owens, Gabe E; Kripfgans, Oliver D

    2015-07-01

    The accumulation of microlesions induced by ultrasound interaction with contrast microbubbles in the myocardium potentially represents a new method of tissue reduction therapy. Anesthetized rats were treated in a heated water bath with 1.5-MHz focused ultrasound pulses triggered once every four heartbeats from the electrocardiogram during infusion of microbubble contrast agent. Treatment was guided by an 8-MHz B-mode imaging transducer, which also was used to provide estimates of left ventricular echogenicity as a possible predictor of efficacy during treatment. Strategies to reduce prospective clinical treatment durations were tested, including pulse modulation to simulate a theranostic scanning strategy and an increased agent infusion rate over shorter durations. Sources of variability, including ultrasound path variation and venous catheter placement, also were investigated. Electrocardiographic premature complexes were monitored, and Evans-blue stained cardiomyocyte scores were obtained from frozen sections. Left ventricular echogenicity reflected variations in the infused microbubble concentration, but failed to predict efficacy. Comparison of suspensions of varied microbubble size revealed that left ventricular echogenicity was dominated by larger bubbles, whereas efficacy appeared to be dependent on smaller sizes. Simulated scanning was as effective as the normal fixed-beam treatment, and high agent infusion allowed reduced treatment duration. The success of these theranostic strategies may increase the prospects for realistic clinical translation of myocardial cavitation-enabled therapy. PMID:25890888

  13. Creating an enabling environment for diasporas' participation in homeland development.

    PubMed

    Brinkerhoff, Jennifer M

    2012-01-01

    Diasporas contribute to their homeland’s development through remittances, philanthropy, skills transfer, business investment, and advocacy. This paper focuses on actions that homeland governments can take to create an enabling environment for diasporas’ contributions. Part I addresses the diaspora phenomenon and the homeland government-diaspora relationship. Part II develops a framework for characterizing government’s role in an enabling environment specific to diasporas’ development contributions. Part III considers how to put the framework into practice, identifying important caveats and discussing several implementation issues, including the potential role of donors. The framework is also a tool for diasporans to strategically advocate for improved enabling environments. PMID:22400149

  14. Ultrafast disk technology enables next generation micromachining laser sources

    NASA Astrophysics Data System (ADS)

    Heckl, Oliver H.; Weiler, Sascha; Luzius, Severin; Zawischa, Ivo; Sutter, Dirk

    2013-02-01

    Ultrashort pulsed lasers based on thin disk technology have entered the 100 W regime and deliver several tens of MW peak power without chirped pulse amplification. Highest uptime and insensitivity to back reflections make them ideal tools for efficient and cost effective industrial micromachining. Frequency converted versions allow the processing of a large variety of materials. On one hand, thin disk oscillators deliver more than 30 MW peak power directly out of the resonator in laboratory setups. These peak power levels are made possible by recent progress in the scaling of the pulse energy in excess of 40 μJ. At the corresponding high peak intensity, thin disk technology profits from the limited amount of material and hence the manageable nonlinearity within the resonator. Using new broadband host materials like for example the sesquioxides will eventually reduce the pulse duration during high power operation and further increase the peak power. On the other hand industry grade amplifier systems deliver even higher peak power levels. At closed-loop controlled 100W, the TruMicro Series 5000 currently offers the highest average ultrafast power in an industry proven product, and enables efficient micromachining of almost any material, in particular of glasses, ceramics or sapphire. Conventional laser cutting of these materials often requires UV laser sources with pulse durations of several nanoseconds and an average power in the 10 W range. Material processing based on high peak power laser sources makes use of multi-photon absorption processes. This highly nonlinear absorption enables micromachining driven by the fundamental (1030 nm) or frequency doubled (515 nm) wavelength of Yb:YAG. Operation in the IR or green spectral range reduces the complexity and running costs of industrial systems initially based on UV light sources. Where UV wavelength is required, the TruMicro 5360 with a specified UV crystal life-time of more than 10 thousand hours of continues

  15. Online Monitoring to Enable Improved Diagnostics, Prognostics and Maintenance

    SciTech Connect

    Bond, Leonard J.

    2011-02-01

    For both existing and new plant designs there are increasing opportunities and needs for the application of advanced online surveillance, diagnostic and prognostic techniques. These methods can continuously monitor and assess the health of nuclear power plant systems and components. The added effectiveness of such programs has the potential to enable holistic plant management, and minimize exposure to future and unknown risks. The 'NDE & On-line Monitoring' activities within the Advanced Instrumentation, Information and Control Systems (II&CS) Pathway are developing R&D to establish advanced condition monitoring and prognostics technologies to understand and predict future phenomena, derived from plant aging in systems, structures, and components (SSC). This research includes utilization of the enhanced functionality and system condition awareness that becomes available through the application of digital technologies at existing nuclear power plants for online monitoring and prognostics. The current state-of-the-art for on-line monitoring applied to active components (eg pumps, valves, motors) and passive structure (eg core internals, primary piping, pressure vessel, concrete, cables, buried pipes) is being reviewed. This includes looking at the current deployment of systems that monitor reactor noise, acoustic signals and vibration in various forms, leak monitoring, and now increasingly condition-based maintenance (CBM) for active components. The NDE and on-line monitoring projects are designed to look beyond locally monitored CBM. Current trends include centralized plant monitoring of SSC, potential fleet-based CBM and technology that will enable operation and maintenance to be performed with limited on-site staff. Attention is also moving to systems that use online monitoring to permit longer term operation (LTO), including a prognostic or predictive element that estimates a remaining useful life (RUL). Many, if not all, active components (pumps, valves, motors

  16. A data management system to enable urgent natural disaster computing

    NASA Astrophysics Data System (ADS)

    Leong, Siew Hoon; Kranzlmüller, Dieter; Frank, Anton

    2014-05-01

    Civil protection, in particular natural disaster management, is very important to most nations and civilians in the world. When disasters like flash floods, earthquakes and tsunamis are expected or have taken place, it is of utmost importance to make timely decisions for managing the affected areas and reduce casualties. Computer simulations can generate information and provide predictions to facilitate this decision making process. Getting the data to the required resources is a critical requirement to enable the timely computation of the predictions. An urgent data management system to support natural disaster computing is thus necessary to effectively carry out data activities within a stipulated deadline. Since the trigger of a natural disaster is usually unpredictable, it is not always possible to prepare required resources well in advance. As such, an urgent data management system for natural disaster computing has to be able to work with any type of resources. Additional requirements include the need to manage deadlines and huge volume of data, fault tolerance, reliable, flexibility to changes, ease of usage, etc. The proposed data management platform includes a service manager to provide a uniform and extensible interface for the supported data protocols, a configuration manager to check and retrieve configurations of available resources, a scheduler manager to ensure that the deadlines can be met, a fault tolerance manager to increase the reliability of the platform and a data manager to initiate and perform the data activities. These managers will enable the selection of the most appropriate resource, transfer protocol, etc. such that the hard deadline of an urgent computation can be met for a particular urgent activity, e.g. data staging or computation. We associated 2 types of deadlines [2] with an urgent computing system. Soft-hard deadline: Missing a soft-firm deadline will render the computation less useful resulting in a cost that can have severe

  17. Grid-enabled mammographic auditing and training system

    NASA Astrophysics Data System (ADS)

    Yap, M. H.; Gale, A. G.

    2008-03-01

    Effective use of new technologies to support healthcare initiatives is important and current research is moving towards implementing secure grid-enabled healthcare provision. In the UK, a large-scale collaborative research project (GIMI: Generic Infrastructures for Medical Informatics), which is concerned with the development of a secure IT infrastructure to support very widespread medical research across the country, is underway. In the UK, there are some 109 breast screening centers and a growing number of individuals (circa 650) nationally performing approximately 1.5 million screening examinations per year. At the same, there is a serious, and ongoing, national workforce issue in screening which has seen a loss of consultant mammographers and a growth in specially trained technologists and other non-radiologists. Thus there is a need to offer effective and efficient mammographic training so as to maintain high levels of screening skills. Consequently, a grid based system has been proposed which has the benefit of offering very large volumes of training cases that the mammographers can access anytime and anywhere. A database, spread geographically across three university systems, of screening cases is used as a test set of known cases. The GIMI mammography training system first audits these cases to ensure that they are appropriately described and annotated. Subsequently, the cases are utilized for training in a grid-based system which has been developed. This paper briefly reviews the background to the project and then details the ongoing research. In conclusion, we discuss the contributions, limitations, and future plans of such a grid based approach.

  18. An IT-enabled supply chain model: a simulation study

    NASA Astrophysics Data System (ADS)

    Cannella, Salvatore; Framinan, Jose M.; Barbosa-Póvoa, Ana

    2014-11-01

    During the last decades, supply chain collaboration practices and the underlying enabling technologies have evolved from the classical electronic data interchange (EDI) approach to a web-based and radio frequency identification (RFID)-enabled collaboration. In this field, most of the literature has focused on the study of optimal parameters for reducing the total cost of suppliers, by adopting operational research (OR) techniques. Herein we are interested in showing that the considered information technology (IT)-enabled structure is resilient, that is, it works well across a reasonably broad range of parameter settings. By adopting a methodological approach based on system dynamics, we study a multi-tier collaborative supply chain. Results show that the IT-enabled supply chain improves operational performance and customer service level. Nonetheless, benefits for geographically dispersed networks are of minor entity.

  19. 78 FR 69405 - Enable Gas Transmission, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ... to abandon in place the Leedey Purification Facility, also located in the state of Oklahoma, all as... . Specifically, Enable proposes to abandon in place the Leedey Purification Facility and to abandon by sale...

  20. Utility Energy Services Contracts: Enabling Documents, May 2009 (Book)

    SciTech Connect

    Not Available

    2009-05-01

    Enabling Documents, delivered by the U.S. Department of Energy's Federal Energy Management Program (FEMP) to provide materials that clarify the authority for federal agencies to enter into utility energy services contracts (UESCs).

  1. Mechanical Engineering Design Project report: Enabler control systems

    NASA Technical Reports Server (NTRS)

    Cullen, Christian; Delvecchio, Dave; Scarborough, Alan; Havics, Andrew A.

    1992-01-01

    The Controls Group was assigned the responsibility for designing the Enabler's control system. The requirement for the design was that the control system must provide a simple user interface to control the boom articulation joints, chassis articulation joints, and the wheel drive. The system required controlling hydraulic motors on the Enabler by implementing 8-bit microprocessor boards. In addition, feedback to evaluate positions and velocities must be interfaced to provide the operator with confirmation as well as control.

  2. Supporting Pre-Service Teachers' Technology-Enabled Learning Design Thinking through Whole of Programme Transformation

    ERIC Educational Resources Information Center

    Bower, Matt; Highfield, Kate; Furney, Pam; Mowbray, Lee

    2013-01-01

    This paper explains a development and evaluation project aimed at transforming two pre-service teacher education programmes at Macquarie University to more effectively cultivate students' technology-enabled learning design thinking. The process of transformation was based upon an explicit and sustained focus on developing university academics'…

  3. Health in education for all: enabling school-age children and adults for healthy living.

    PubMed

    Dhillon, H S; Philip, L

    1992-01-01

    The goals of Education for All and Health for All are inseparably linked. Both aim at equity and must be achieved concurrently. Good health is essential for effective learning, and education is a powerful means of enabling children and adults to attain and maintain health and wellbeing. PMID:1398672

  4. Utilizing Fission Technology to Enable Rapid and Affordable Access to any Point in the Solar System

    NASA Technical Reports Server (NTRS)

    Houts, Mike; Bonometti, Joe; Morton, Jeff; Hrbud, Ivana; Bitteker, Leo; VanDyke, Melissa; Godfroy, T.; Pedersen, K.; Dobson, C.; Patton, B.; Martin, J.; Chakrabarti, S.

    2000-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation systems can build on over 45 years of US and international space fission system technology development to minimize cost.

  5. What Enables Size-Selective Trophy Hunting of Wildlife?

    PubMed Central

    2014-01-01

    Although rarely considered predators, wildlife hunters can function as important ecological and evolutionary agents. In part, their influence relates to targeting of large reproductive adults within prey populations. Despite known impacts of size-selective harvests, however, we know little about what enables hunters to kill these older, rarer, and presumably more wary individuals. In other mammalian predators, predatory performance varies with knowledge and physical condition, which accumulates and declines, respectively, with age. Moreover, some species evolved camouflage as a physical trait to aid in predatory performance. In this work, we tested whether knowledge-based faculty (use of a hunting guide with accumulated experience in specific areas), physical traits (relative body mass [RBM] and camouflage clothing), and age can predict predatory performance. We measured performance as do many hunters: size of killed cervid prey, using the number of antler tines as a proxy. Examining ∼4300 online photographs of hunters posing with carcasses, we found that only the presence of guides increased the odds of killing larger prey. Accounting for this effect, modest evidence suggested that unguided hunters presumably handicapped with the highest RBM actually had greater odds of killing large prey. There was no association with hunter age, perhaps because of our coarse measure (presence of grey hair) and the performance trade-offs between knowledge accumulation and physical deterioration with age. Despite its prevalence among sampled hunters (80%), camouflage had no influence on size of killed prey. Should these patterns be representative of other areas and prey, and our interpretations correct, evolutionarily-enlightened harvest management might benefit from regulatory scrutiny on guided hunting. More broadly, we suggest that by being nutritionally and demographically de-coupled from prey and aided by efficient killing technology and road access, wildlife hunters in the

  6. Characterization of macrolesions induced by myocardial cavitation-enabled therapy.

    PubMed

    Zhu, Yiying I; Miller, Douglas L; Dou, Chunyan; Kripfgans, Oliver D

    2015-02-01

    Intermittent high intensity ultrasound pulses with circulating contrast agent microbubbles can induce scattered cavitation caused myocardial microlesions of potential value for tissue reduction therapy. Here, computer-aided histological evaluation of the effective treated volume was implemented to optimize ultrasound pulse parameters, exposure duration, and contrast agent dose. Rats were treated with 1.5 MHz focused ultrasound bursts and Evans blue staining indicates lethal cardiomyocytic injury. Each heart was sectioned to provide samples covering the entire exposed myocardial volume. Both brightfield and fluorescence images were taken for up to 40 tissue sections. Tissue identification and microlesion detection were first done based on 2-D images to form microlesion masks containing the outline of the heart and the stained cell regions. Image registration was then performed on the microlesion masks to reconstruct a volume-based model according to the morphology of the heart. The therapeutic beam path was estimated from the 3-D stacked microlesions, and finally the total microlesion volume, here termed macrolesion, was characterized along the therapeutic beam axis. Radially symmetric fractional macrolesions were characterized via stepping disks of variable radius determined by the local distribution of microlesions. Treated groups showed significant macrolesions of a median volume of 87.3 μL, 2.7 mm radius, 4.8 mm length, and 14.0% lesion density compared to zero radius, length, and lesion density for sham. The proposed radially symmetric lesion model is a robust evaluation for myocardial cavitation-enabled therapy. Future work will include validating the proposed method with varying acoustic exposures and optimizing involved parameters to provide macrolesion characterization. PMID:25347871

  7. Health IT-enabled Care for Underserved Rural Populations: The Role of Nursing

    PubMed Central

    Effken, Judith A.; Abbott, Patricia

    2009-01-01

    This white paper explains the strong roles that nursing can play in using information technology (IT) to improve healthcare delivery in rural areas. The authors describe current challenges to providing care in rural areas, and how technology innovations can help rural communities to improve their health and health care. To maximize benefits, rural stakeholders (as individuals and groups) must collaborate to effect change. Because nonphysician providers deliver much of the health care in rural communities, this paper focuses on the critical roles of nurses on IT-enabled caremanagement teams. The authors propose changes in nursing practice, policy, and education to better prepare, encourage, and enable nurses to assume leadership roles in IT-enabled health care management in rural communities. PMID:19261937

  8. A federated semantic metadata registry framework for enabling interoperability across clinical research and care domains.

    PubMed

    Sinaci, A Anil; Laleci Erturkmen, Gokce B

    2013-10-01

    In order to enable secondary use of Electronic Health Records (EHRs) by bridging the interoperability gap between clinical care and research domains, in this paper, a unified methodology and the supporting framework is introduced which brings together the power of metadata registries (MDR) and semantic web technologies. We introduce a federated semantic metadata registry framework by extending the ISO/IEC 11179 standard, and enable integration of data element registries through Linked Open Data (LOD) principles where each Common Data Element (CDE) can be uniquely referenced, queried and processed to enable the syntactic and semantic interoperability. Each CDE and their components are maintained as LOD resources enabling semantic links with other CDEs, terminology systems and with implementation dependent content models; hence facilitating semantic search, much effective reuse and semantic interoperability across different application domains. There are several important efforts addressing the semantic interoperability in healthcare domain such as IHE DEX profile proposal, CDISC SHARE and CDISC2RDF. Our architecture complements these by providing a framework to interlink existing data element registries and repositories for multiplying their potential for semantic interoperability to a greater extent. Open source implementation of the federated semantic MDR framework presented in this paper is the core of the semantic interoperability layer of the SALUS project which enables the execution of the post marketing safety analysis studies on top of existing EHR systems. PMID:23751263

  9. Barriers and enablers that influence sustainable interprofessional education: a literature review.

    PubMed

    Lawlis, Tanya Rechael; Anson, Judith; Greenfield, David

    2014-07-01

    The effective incorporation of interprofessional education (IPE) within health professional curricula requires the synchronised and systematic collaboration between and within the various stakeholders. Higher education institutions, as primary health education providers, have the capacity to advocate and facilitate this collaboration. However, due to the diversity of stakeholders, facilitating the pedagogical change can be challenging and complex, and brings a degree of uncertainty and resistance. This review, through an analysis of the barriers and enablers investigates the involvement of stakeholders in higher education IPE through three primary stakeholder levels: Government and Professional, Institutional and Individual. A review of eight primary databases using 21 search terms resulted in 40 papers for review. While the barriers to IPE are widely reported within the higher education IPE literature, little is documented about the enablers of IPE. Similarly, the specific identification and importance of enablers for IPE sustainability and the dual nature of some barriers and enablers have not been previously reported. An analysis of the barriers and enablers of IPE across the different stakeholder levels reveals five key "fundamental elements" critical to achieving sustainable IPE in higher education curricula. PMID:24625198

  10. Family physician enabling attitudes: a qualitative study of patient perceptions

    PubMed Central

    2013-01-01

    Background Family physicians frequently interact with people affected by chronic diseases, placing them in a privileged position to enable patients to gain control over and improve their health. Soliciting patients’ perceptions about how their family physician can help them in this process is an essential step to promoting enabling attitudes among these health professionals. In this study, we aimed to identify family physician enabling attitudes and behaviours from the perspective of patients with chronic diseases. Methods We conducted a descriptive qualitative study with 30 patients, 35 to 75 years of age presenting at least one common chronic disease, recruited in primary care clinics in two regions of Quebec, Canada. Data were collected through in-depth interviews and were analyzed using thematic analysis. Results Family physician involvement in a partnership was perceived by participants as the main attribute of enablement. Promoting patient interests in the health care system was also important. Participants considered that having their situation taken into account maximized the impact of their physician’s interventions and allowed the legitimization of their feelings. They found their family physician to be in a good position to acknowledge and promote their expertise, and to help them maintain hope. Conclusions From the patient’s perspective, their partnership with their family physician is the most important aspect of enablement. PMID:23305144

  11. Solar Sail Propulsion: Enabling New Capabilities for Heliophysics

    NASA Technical Reports Server (NTRS)

    Johnson, L.; Young, R.; Alhorn, D.; Heaton, A.; Vansant, T.; Campbell, B.; Pappa, R.; Keats, W.; Liewer, P. C.; Alexander, D.; Wawrzyniak, G.; Ayon, J.; Burton, R.; Carroll, D.; Matloff, G.; Kezerashvili, R. Ya.

    2010-01-01

    Solar sails can play a critical role in enabling solar and heliophysics missions. Solar sail technology within NASA is currently at 80% of TRL-6, suitable for an in-flight technology demonstration. It is conceivable that an initial demonstration could carry scientific payloads that, depending on the type of mission, are commensurate with the goals of the three study panels of the 2010 Heliophysics Survey. Follow-on solar sail missions, leveraging advances in solar sail technology to support Heliophysics Survey goals, would then be feasible. This white paper reports on a sampling of missions enabled by solar sails, the current state of the technology, and what funding is required to advance the current state of technology such that solar sails can enable these missions

  12. Detailed Modeling and Response of Demand Response Enabled Appliances

    SciTech Connect

    Vyakaranam, Bharat; Fuller, Jason C.

    2014-04-14

    Proper modeling of end use loads is very important in order to predict their behavior, and how they interact with the power system, including voltage and temperature dependencies, power system and load control functions, and the complex interactions that occur between devices in such an interconnected system. This paper develops multi-state time variant residential appliance models with demand response enabled capabilities in the GridLAB-DTM simulation environment. These models represent not only the baseline instantaneous power demand and energy consumption, but the control systems developed by GE Appliances to enable response to demand response signals and the change in behavior of the appliance in response to the signal. These DR enabled appliances are simulated to estimate their capability to reduce peak demand and energy consumption.

  13. A Network Enabled Platform for Canadian Space Science Data

    NASA Astrophysics Data System (ADS)

    Rankin, R.; Boteler, D. R.; Jayachandran, T. P.; Mann, I. R.; Sofko, G.; Yau, A. W.

    2008-12-01

    The internet is an example of a pervasive disruptive technology that has transformed society on a global scale. The term "cyberinfrastructure" refers to technology underpinning the collaborative aspect of large science projects and is synonymous with terms such as e-Science, intelligent infrastructure, and/or e- infrastructure. In the context of space science, a significant challenge is to exploit the internet and cyberinfrastructure to form effective virtual organizations (VOs) of scientists that have common or agreed- upon objectives. A typical VO is likely to include universities and government agencies specializing in types of instrumentation (ground and/or space based), which in deployment produce large quantities of space data. Such data is most effectively described by metadata, which if defined in a standard way, facilitates discovery and retrieval of data over the internet by intelligent interfaces and cyberinfrastructure. One recent and significant approach is SPASE, which is being developed by NASA as a data-standard for its Virtual Observatories (VxOs) programs. The space science community in Canada has recently formed a VO designed to complement the e-POP microsatellite mission, and new ground-based observatories (GBOs) that collect data over a large fraction of the Canadian land-mass. The VO includes members of the CGSM community (www.cgsm.ca), which is funded operationally by the Canadian Space Agency. It also includes the UCLA VMO team, and scientists in the NASA THEMIS mission. CANARIE (www.canarie.ca), the federal agency responsible for management, design and operation of Canada's research internet, has recently recognized the value of cyberinfrastucture through the creation of a Network-Enabled-Platforms (NEPs) program. An NEP for space science was funded by CANARIE in its first competition. When fully implemented, the Space Science NEP will consist of a front-end portal providing access to CGSM data. It will utilize an adaptation of the SPASE

  14. The Role of Enabling Technologies in Demand Response

    SciTech Connect

    2007-09-15

    The report provides a study of the technologies that are crucial to the success of demand response programs. It takes a look at the historical development of demand response programs and analyzes how new technology is needed to enable demand response to make the transition from a small scale pilot operation to a mass market means of improving grid reliability. Additionally, the report discusses the key technologies needed to enable a large scale demand response effort and evaluates current efforts to develop and integrate these technologies. Finally, the report provides profiles of leading developers of these key technologies.

  15. Integrated Control with Structural Feedback to Enable Lightweight Aircraft

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.

    2011-01-01

    This presentation for the Fundamental Aeronautics Program Technical Conference covers the benefits of active structural control, related research areas, and focuses on the use of optimal control allocation for the prevention of critical loads. Active control of lightweight structures has the potential to reduce aircraft weight and fuel burn. Sensor, control law, materials, control effector, and system level research will be necessary to enable active control of lightweight structures. Optimal control allocation with structural feedback has been shown in simulation to be feasible in preventing critical loads and is one example of a control law to enable future lightweight aircraft.

  16. The Enabler: A concept for a lunar work vehicle

    NASA Technical Reports Server (NTRS)

    Brazell, James W.; Campbell, Craig; Kaser, Ken; Austin, James A.; Beard, Clark; Ceniza, Glenn; Hamby, Thomas; Robinson, Anne; Wooters, Dana

    1992-01-01

    The Enabler is an earthbound prototype designed to model an actual lunar work vehicle and is able to perform many of the tasks that might be expected of a lunar work vehicle. The vehicle will be constructed entirely from parts made by students and from standard stock parts. The design utilizes only four distinct chassis pieces and sixteen moving parts. The Enabler has non-orthogonal articulating joints that give the vehicle a wide range of mobility and reduce the total number of parts. Composite wheels provide the primary suspension system for the vehicle.

  17. The Enabler: A concept for a lunar work vehicle

    NASA Astrophysics Data System (ADS)

    Brazell, James W.; Campbell, Craig; Kaser, Ken; Austin, James A.; Beard, Clark; Ceniza, Glenn; Hamby, Thomas; Robinson, Anne; Wooters, Dana

    The Enabler is an earthbound prototype designed to model an actual lunar work vehicle and is able to perform many of the tasks that might be expected of a lunar work vehicle. The vehicle will be constructed entirely from parts made by students and from standard stock parts. The design utilizes only four distinct chassis pieces and sixteen moving parts. The Enabler has non-orthogonal articulating joints that give the vehicle a wide range of mobility and reduce the total number of parts. Composite wheels provide the primary suspension system for the vehicle.

  18. Preliminary evaluations of a spoken web enabled care management platform.

    PubMed

    Padman, Rema; Beam, Erika; Szewczyk, Rachel

    2013-01-01

    Telephones are a ubiquitous and widely accepted technology worldwide. The low ownership cost, simple user interface, intuitive voice-based access and long history contribute to the wide-spread use and success of telephones, and more recently, that of mobile phones. This study reports on our preliminary efforts to leverage this technology to bridge disparities in the access to and delivery of personalized health and wellness care by developing and evaluating a Spoken Web enabled Care Management solution. Early results with two proxy evaluations and a few visually impaired users highlight both the potential and challenges associated with this novel, voice-enabled healthcare delivery solution. PMID:23920978

  19. A survey of enabling technologies in synthetic biology

    PubMed Central

    2013-01-01

    Background Realizing constructive applications of synthetic biology requires continued development of enabling technologies as well as policies and practices to ensure these technologies remain accessible for research. Broadly defined, enabling technologies for synthetic biology include any reagent or method that, alone or in combination with associated technologies, provides the means to generate any new research tool or application. Because applications of synthetic biology likely will embody multiple patented inventions, it will be important to create structures for managing intellectual property rights that best promote continued innovation. Monitoring the enabling technologies of synthetic biology will facilitate the systematic investigation of property rights coupled to these technologies and help shape policies and practices that impact the use, regulation, patenting, and licensing of these technologies. Results We conducted a survey among a self-identifying community of practitioners engaged in synthetic biology research to obtain their opinions and experiences with technologies that support the engineering of biological systems. Technologies widely used and considered enabling by survey participants included public and private registries of biological parts, standard methods for physical assembly of DNA constructs, genomic databases, software tools for search, alignment, analysis, and editing of DNA sequences, and commercial services for DNA synthesis and sequencing. Standards and methods supporting measurement, functional composition, and data exchange were less widely used though still considered enabling by a subset of survey participants. Conclusions The set of enabling technologies compiled from this survey provide insight into the many and varied technologies that support innovation in synthetic biology. Many of these technologies are widely accessible for use, either by virtue of being in the public domain or through legal tools such as non

  20. Enabling virtual reality on mobile devices: enhancing students' learning experience

    NASA Astrophysics Data System (ADS)

    Feisst, Markus E.

    2011-05-01

    Nowadays, mobile devices are more and more powerful concerning processing power, main memory and storage as well as graphical output capability and the support for 3D mostly via OpenGL ES. Therefore modern devices allows it to enable Virtual Reality (VR) on them. Most students own (or will own in future) one of these more powerful mobile device. The students owning such a mobile device already using it to communicate (SMS, twitter, etc) and/or to listen to podcasts. Taking this knowledge into account, it makes sense to improve the students learning experience by enabling mobile devices to display VR content.

  1. Surgical Materials: Current Challenges and Nano-enabled Solutions

    PubMed Central

    Annabi, Nasim; Tamayol, Ali; Shin, Su Ryon; Ghaemmaghami, Amir M.; Peppas, Nicholas A.; Khademhosseini, Ali

    2014-01-01

    Surgical adhesive biomaterials have emerged as substitutes to sutures and staples in many clinical applications. Nano-enabled materials containing nanoparticles or having a distinct nanotopography have been utilized for generation of a new class of surgical materials with enhanced functionality. In this review, the state of the art in the development of conventional surgical adhesive biomaterials is critically reviewed and their shortcomings are outlined. Recent advancements in generation of nano-enabled surgical materials with their potential future applications are discussed. This review will open new avenues for the innovative development of the next generation of tissue adhesives, hemostats, and sealants with enhanced functionality for various surgical applications. PMID:25530795

  2. Enabling the BC Transfer System: A Discussion Paper

    ERIC Educational Resources Information Center

    British Columbia Council on Admissions and Transfer, 2011

    2011-01-01

    This discussion paper outlines processes, as well as opportunities and constraints, for "enabling" BC Transfer System institutions to enhance transfer credit information in the BC Transfer Guide, making it more reflective of institutional practices and student mobility. BCCAT's focus is increasing the availability of transfer credit information…

  3. Peer Relationships and Collaborative Learning as Contexts for Academic Enablers.

    ERIC Educational Resources Information Center

    Wentzel, Kathryn R.; Watkins, Deborah E.

    2002-01-01

    In this article it is argued that peers have the potential to provide contexts for learning that can have a profound impact on the development of students' academic enablers. Describes ways in which peer collaborative contexts can promote academic engagement as well as provide a supportive structure for the development of specific problem-solving…

  4. Explorations of Psyche and Callisto Enabled by Ion Propulsion

    NASA Technical Reports Server (NTRS)

    Wenkert, Daniel D.; Landau, Damon F.; Bills, Bruce G.; Elkins-Tanton, Linda T.

    2013-01-01

    Recent developments in ion propulsion (specifically solar electric propulsion - SEP) have the potential for dramatically reducing the transportation cost of planetary missions. We examine two representative cases, where these new developments enable missions which, until recently, would have required resouces well beyond those allocated to the Discovery program. The two cases of interest address differentiation of asteroids and large icy satellites

  5. Thrice Disabling Disability: Enabling Inclusive, Socially Just Teacher Education

    ERIC Educational Resources Information Center

    Thompson, S. Anthony

    2012-01-01

    The goal of this inquiry was to create a social justice-oriented inclusive and enabling pedagogy by situating traditional individualised views of disability alongside three alternative understandings: a disability studies in education perspective, a First Nations view of disability and one based upon the autism pride/autism-as-culture movement.…

  6. Enabling Science and Technology Research Teams: A Breadmaking Metaphor

    ERIC Educational Resources Information Center

    Pennington, Deana

    2010-01-01

    Anyone who has been involved with a cross-disciplinary team that combines scientists and information technology specialists knows just how tough it can be to move these efforts forward. Decades of experience point to the transformative potential of technology-enabled science efforts, and the success stories offer hope for future efforts. But for…

  7. Interactive BIM-Enabled Safety Training Piloted in Construction Education

    ERIC Educational Resources Information Center

    Clevenger, Caroline; Lopez del Puerto, Carla; Glick, Scott

    2015-01-01

    This paper documents and assesses the development of a construction safety training module featuring interactive, BIM-enabled, 3D visualizations to test if such a tool can enhance safety training related to scaffolds. This research documents the technical challenges and the lessons learned through the development and administration of a prototype…

  8. Anatomy Drawing Screencasts: Enabling Flexible Learning for Medical Students

    ERIC Educational Resources Information Center

    Pickering, James D.

    2015-01-01

    The traditional lecture remains an essential method of disseminating information to medical students. However, due to the constant development of the modern medical curriculum many institutions are embracing novel means for delivering the core anatomy syllabus. Using mobile media devices is one such way, enabling students to access core material…

  9. Planetary Exploration Capabilities Enabled by the MIDAS Concept

    NASA Astrophysics Data System (ADS)

    Pitman, J.; Duncan, A.; Stubbs, D.; Sigler, R.; Kendrick, R.; Chilese, J.; Smith, E.; Bierhaus, E.; Delory, G.; Lipps, J.; Manga, M.; Graham, J.; Depater, I.; Rieboldt, S.; Dalton, B.; Fienup, J.; Yu, J.

    2004-05-01

    The Multiple Instrument Distributed Aperture Sensor (MIDAS) concept provides a large-aperture, wide-field, diffraction-limited telescope at a fraction of the cost, mass and volume of traditional space telescopes. By integrating optical interferometry technologies into a mature multiple aperture array concept, MIDAS capabilities fulfil the need for advancing future planetary science remote sensing on missions such as the Jupiter Icy Moons Orbiter (JIMO). MIDAS acts as a single front-end remote sensing science payload for multiple missions, reducing the cost, resources, complexity, and risks with a set of back-end science instruments (SI's) tailored to each specific mission. MIDAS enables either sequential or concurrent SI operations in all functional modes, such as passive imaging by any one SI or multispectral imaging by all SI's concurrently. In its active remote sensing modes using an integrated laser source, MIDAS enables LIDAR, vibrometry, illumination, ablation, and various laser spectroscopies. MIDAS inherently provides nanometer-resolution hyperspectral imaging to help determine the geochemistry of planetary surface materials without the need for any moving parts in the SI's. The MIDAS optical design enables high-resolution spectral imaging at high-altitude with long dwell times, enabling real-time wide-area long-duration remote sensing of active processes on the planet surface. The powerful combination of MIDAS passive and active imaging capabilities, each with sequential or concurrent SI operational modes, significantly increases the potential return for future planetary science missions.

  10. QTIMaps: A Model to Enable Web Maps in Assessment

    ERIC Educational Resources Information Center

    Navarrete, Toni; Santos, Patricia; Hernandez-Leo, Davinia; Blat, Josep

    2011-01-01

    Test-based e-Assessment approaches are mostly focused on the assessment of knowledge and not on that of other skills, which could be supported by multimedia interactive services. This paper presents the QTIMaps model, which combines the IMS QTI standard with web maps services enabling the computational assessment of geographical skills. We…

  11. WAGES (Women and Girls Employment Enabling Service): Final Report.

    ERIC Educational Resources Information Center

    Thomas, Leathia S.; Dickey, Sandy

    The two-year report of the WAGES project (Women and Girls Employment Enabling Service) documents the growth, problems, and success experienced through efforts to open nontraditional fields of employment to women by way of a community-based program in Memphis, Tennessee. Staff and volunteers provided counseling and referrals to applicants. Personal…

  12. Enabling Leadership: Just Cycling Along. CRLRA Discussion Paper.

    ERIC Educational Resources Information Center

    Falk, Ian

    Conventional notions of leadership have focused on the leader alone rather than on the situation that leaders must enable. The common threads to successful rural community development in Australia over the last few decades lie in the way the community develops its stores of social capital, which is based on trust, shared values, networks, and…

  13. Barriers and Enablers to Evidence-Based Practices

    ERIC Educational Resources Information Center

    Foster, Robyn

    2014-01-01

    The importance of educational practices based on evidence is well-supported in the literature, however barriers to their implementation in classrooms still exist. This paper examines the phenomenon of evidence-based practice in education highlighting enablers and barriers to their implementation with particular reference to RTLB practice.

  14. A Semantic Image Annotation Model to Enable Integrative Translational Research

    PubMed Central

    Rubin, Daniel L.; Mongkolwat, Pattanasak; Channin, David S.

    2009-01-01

    Integrating and relating images with clinical and molecular data is a crucial activity in translational research, but challenging because the information in images is not explicit in standard computer-accessible formats. We have developed an ontology-based representation of the semantic contents of radiology images called AIM (Annotation and Image Markup). AIM specifies the quantitative and qualitative content that researchers extract from images. The AIM ontology enables semantic image annotation and markup, specifying the entities and relations necessary to describe images. AIM annotations, represented as instances in the ontology, enable key use cases for images in translational research such as disease status assessment, query, and inter-observer variation analysis. AIM will enable ontology-based query and mining of images, and integration of images with data in other ontology-annotated bioinformatics databases. Our ultimate goal is to enable researchers to link images with related scientific data so they can learn the biological and physiological significance of the image content. PMID:21347180

  15. Critical Issues of Web-Enabled Technologies in Modern Organizations.

    ERIC Educational Resources Information Center

    Khosrow-Pour, Mehdi; Herman, Nancy

    2001-01-01

    Discusses results of a Delphi study that explored issues related to the utilization and management of Web-enabled technologies by modern organizations. Topics include bandwidth restrictions; security; data integrity; inadequate search facilities; system incompatibilities; failure to adhere to standards; email; use of metadata; privacy and…

  16. Fraternity as "Enabling Environment:" Does Membership Lead to Gambling Problems?

    ERIC Educational Resources Information Center

    Biddix, J. Patrick; Hardy, Thomas W.

    2008-01-01

    Researchers have suggested that fraternity membership is the most reliable predictor of gambling and gambling problems on campus. The purpose of this study was to determine if problematic gambling could be linked to specific aspects of fraternity membership. Though the null hypothesis (no enabling environment) failed to be rejected, descriptive…

  17. The Xenopus ORFeome: A resource that enables functional genomics

    PubMed Central

    Grant, Ian M.; Balcha, Dawit; Hao, Tong; Shen, Yun; Trivedi, Prasad; Patrushev, Ilya; Fortriede, Joshua D.; Karpinka, John B.; Liu, Limin; Zorn, Aaron M.; Stukenberg, P. Todd; Hill, David E.; Gilchrist, Michael J.

    2015-01-01

    Functional characterisation of proteins and large-scale, systems-level studies are enabled by extensive sets of cloned open reading frames (ORFs) in an easily-accessible format that enables many different applications. Here we report the release of the first stage of the Xenopus ORFeome, which contains 8673 ORFs from the Xenopus Gene Collection (XGC) for Xenopus laevis, cloned into a Gateway® donor vector enabling rapid in-frame transfer of the ORFs to expression vectors. This resource represents an estimated 7871 unique genes, approximately 40% of the non-redundant X. laevis gene complement, and includes 2724 genes where the human ortholog has an association with disease. Transfer into the Gateway system was validated by 5′ and 3′ end sequencing of the entire collection and protein expression of a set of test clones. In a parallel process, the underlying ORF predictions from the original XGC collection were re-analysed to verify quality and full-length status, identifying those proteins likely to exhibit truncations when translated. These data are integrated into Xenbase, the Xenopus community database, which associates genomic, expression, function and human disease model metadata to each ORF, enabling end-users to search for ORFeome clones with links to commercial distributors of the collection. When coupled with the experimental advantages of Xenopus eggs and embryos, the ORFeome collection represents a valuable resource for functional genomics and disease modelling. PMID:26391338

  18. The Xenopus ORFeome: A resource that enables functional genomics.

    PubMed

    Grant, Ian M; Balcha, Dawit; Hao, Tong; Shen, Yun; Trivedi, Prasad; Patrushev, Ilya; Fortriede, Joshua D; Karpinka, John B; Liu, Limin; Zorn, Aaron M; Stukenberg, P Todd; Hill, David E; Gilchrist, Michael J

    2015-12-15

    Functional characterisation of proteins and large-scale, systems-level studies are enabled by extensive sets of cloned open reading frames (ORFs) in an easily-accessible format that enables many different applications. Here we report the release of the first stage of the Xenopus ORFeome, which contains 8673 ORFs from the Xenopus Gene Collection (XGC) for Xenopus laevis, cloned into a Gateway® donor vector enabling rapid in-frame transfer of the ORFs to expression vectors. This resource represents an estimated 7871 unique genes, approximately 40% of the non-redundant X. laevis gene complement, and includes 2724 genes where the human ortholog has an association with disease. Transfer into the Gateway system was validated by 5' and 3' end sequencing of the entire collection and protein expression of a set of test clones. In a parallel process, the underlying ORF predictions from the original XGC collection were re-analysed to verify quality and full-length status, identifying those proteins likely to exhibit truncations when translated. These data are integrated into Xenbase, the Xenopus community database, which associates genomic, expression, function and human disease model metadata to each ORF, enabling end-users to search for ORFeome clones with links to commercial distributors of the collection. When coupled with the experimental advantages of Xenopus eggs and embryos, the ORFeome collection represents a valuable resource for functional genomics and disease modelling. PMID:26391338

  19. NASA's Space Launch System: An Enabling Capability for Discovery

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.

    2014-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human spaceflight and scientific missions beyond Earth orbit. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Making its first uncrewed test flight in 2017 and its first crewed flight in 2021, the SLS will evolve into the most powerful launch vehicle ever flown, capable of supporting human missions into deep space and to Mars. This paper will summarize the planned capabilities of the vehicle, the progress the SLS Program has made in the years since the Agency formally announced its architecture in September 2011, and the path the program is following to reach the launch pad in 2017 and then to evolve the 70 metric ton (t) initial lift capability to 130 t lift capability. The paper will outline the milestones the program has already reached, from developmental milestones such as the manufacture of the first flight hardware and recordbreaking engine testing, to life-cycle milestones such as the vehicle's Preliminary Design Review in the summer of 2013. The paper will also discuss the remaining challenges in both delivering the 70 t vehicle and in evolving its capabilities to the 130 t vehicle, and how the program plans to accomplish these goals. In addition, this paper will demonstrate how the Space Launch System is being designed to enable or enhance not only human exploration missions, but robotic scientific missions as well. Because of its unique launch capabilities, SLS will support simplifying spacecraft complexity, provide improved mass margins and radiation mitigation, and reduce mission durations. These capabilities offer attractive advantages for ambitious science missions by reducing

  20. Mechanical Design Engineering Enabler Project wheel and wheel drives

    NASA Technical Reports Server (NTRS)

    Nutt, Richard E.; Couch, Britt K.; Holley, John L., Jr.; Garris, Eric S.; Staut, Paul V.

    1992-01-01

    Our group was assigned the responsibility of designing the wheel and wheel drive system for a proof-of-concept model of the lunar-based ENABLER. ENABLER is a multi-purpose, six wheeled vehicle designed to lift and transport heavy objects associated with the construction of a lunar base. The resulting design was based on the performance criteria of the ENABLER. The drive system was designed to enable the vehicle to achieve a speed of 7 mph on a level surface, climb a 30 percent grade, and surpass a one meter high object and one meter wide crevice. The wheel assemblies were designed to support the entire weight of the vehicle on two wheels. The wheels were designed to serve as the main component of the vehicle's suspension and will provide suitable traction for lunar-type surfaces. The expected performance of the drive system for the ENABLER was influenced by many mechanical factors. The expected top speed on a level sandy surface is 4 mph instead of the desired 7 mph. This is due to a lack of necessary power at the wheels. The lack of power resulted from dimension considerations that allowed only an eight horsepower engine and also from mechanical inefficiencies of the hydraulic system. However, the vehicle will be able to climb a 30 percent grade, surpass a one meter high object and one meter wide crevice. The wheel assemblies will be able to support the entire weight of the vehicle on two wheels. The wheels will also provide adequate suspension for the vehicle and sufficient traction for lunar-type surfaces.

  1. Enabling conformity to international standards within SeaDataNet

    NASA Astrophysics Data System (ADS)

    Schaap, Dick M. A.; Boldrini, Enrico; de Korte, Arjen; Santoro, Mattia; Manzella, Giuseppe; Nativi, Stefano

    2010-05-01

    SeaDataNet objective is to construct a standardized system for managing the large and diverse data sets collected by the oceanographic fleets and the new automatic observation systems. The aim is to network and enhance the currently existing infrastructures, which are the national oceanographic data centres and satellite data centres of 36 countries, active in data collection. The networking of these professional data centres, in a unique virtual data management system will provide integrated data sets of standardized quality on-line. The Common Data Index (CDI) is the middleware service adopted by SeaDataNet for discovery and access of the available data. In order to develop an interoperable and effective system, the use of international de facto and de jure standards is required. In particular the new goal object of this presentation is to introduce and discuss the solutions for making SeaDataNet compliant with the European Union (EU) INSPIRE directive and in particular with its Implementing Rules (IR). The European INSPIRE directive aims to rule the creation of an European Spatial Data Infrastructure (ESDI). This will enable the sharing of environmental spatial information among public sector organisations and better facilitate public access to spatial information across Europe. To ensure that the spatial data infrastructures of the European Member States are compatible and usable in a community and transboundary context, the directive requires that common IRs are adopted in a number of specific areas (Metadata, Data Specifications, Network Services, Data and Service Sharing and Monitoring and Reporting). Often the use of already approved digital geographic information standards is mandated, drawing from international organizations like the Open Geospatial Consortium (OGC) and the International Organization for Standardization (ISO), the latter by means of its Technical Committee 211 (ISO/TC 211). In the context of geographic data discovery a set of mandatory

  2. Federated and Cloud Enabled Resources for Data Management and Utilization

    NASA Astrophysics Data System (ADS)

    Rankin, R.; Gordon, M.; Potter, R. G.; Satchwill, B.

    2011-12-01

    The emergence of cloud computing over the past three years has led to a paradigm shift in how data can be managed, processed and made accessible. Building on the federated data management system offered through the Canadian Space Science Data Portal (www.cssdp.ca), we demonstrate how heterogeneous and geographically distributed data sets and modeling tools have been integrated to form a virtual data center and computational modeling platform that has services for data processing and visualization embedded within it. We also discuss positive and negative experiences in utilizing Eucalyptus and OpenStack cloud applications, and job scheduling facilitated by Condor and Star Cluster. We summarize our findings by demonstrating use of these technologies in the Cloud Enabled Space Weather Data Assimilation and Modeling Platform CESWP (www.ceswp.ca), which is funded through Canarie's (canarie.ca) Network Enabled Platforms program in Canada.

  3. Revolutionary Deep Space Science Missions Enabled by Onboard Autonomy

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Debban, Theresa; Yen, Chen wan; Sherwood, Robert; Castano, Rebecca; Cichy, Benjamin; Davies, Ashley; Brul, Michael; Fukunaga, Alex; Fukunaga, Alex; Doggett, Thomas; Williams, Kevin; Dohm, James

    2003-01-01

    Breakthrough autonomy technologies enable a new range of spire missions that acquire vast amounts of data and return only the most scientifically important data to Earth. These missions would monitor science phenomena in great detail (either with frequent observations or at extremely high spatial resolution) and onboard analyze the data to detect specific science events of interest. These missions would monitor volcanic eruptions, formation and movement of aeolian features. and atmospheric phenomena. The autonomous spacecraft would respond to science events by planning its future operations to revisit or perform complementary observations. In this paradigm, the spacecraft represents the scientists agent enabling optimization of the downlink data volume resource. This paper describes preliminary efforts to define and design such missions.

  4. Differentially photo-crosslinked polymers enable self-assembling microfluidics

    PubMed Central

    Jamal, Mustapha; Zarafshar, Aasiyeh M.; Gracias, David H.

    2012-01-01

    An important feature of naturally self-assembled systems such as leaves and tissues is that they are curved and have embedded fluidic channels that enable the transport of nutrients to, or removal of waste from, specific three-dimensional (3D) regions. Here, we report the self-assembly of photopatterned polymers, and consequently microfluidic devices, into curved geometries. We discovered that differentially photo-crosslinked SU-8 films spontaneously and reversibly curved upon film de-solvation and re-solvation. Photolithographic patterning of the SU-8 films enabled the self-assembly of cylinders, cubes, and bidirectionally folded sheets. We integrated polydimethylsiloxane (PDMS) microfluidic channels with these SU-8 films to self-assemble curved microfluidic networks. PMID:22068594

  5. NASA Space Launch System: An Enabling Capability for Discovery

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.

    2014-01-01

    SLS provides capability for human exploration missions. 70 t configuration enables EM-1 and EM-2 flight tests. Evolved configurations enable missions including humans to Mars. u? SLS offers unrivaled benefits for a variety of missions. 70 t provides greater mass lift than any contemporary launch vehicle; 130 t offers greater lift than any launch vehicle ever. With 8.4m and 10m fairings, SLS will over greater volume lift capability than any other vehicle. center dot Initial ICPS configuration and future evolution will offer high C3 for beyond- Earth missions. SLS is currently on schedule for first launch in December 2017. Preliminary design completed in July 2013; SLS is now in implementation. Manufacture and testing are currently underway. Hardware now exists representing all SLS elements.

  6. Global tree network for computing structures enabling global processing operations

    DOEpatents

    Blumrich; Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Steinmacher-Burow, Burkhard D.; Takken, Todd E.; Vranas, Pavlos M.

    2010-01-19

    A system and method for enabling high-speed, low-latency global tree network communications among processing nodes interconnected according to a tree network structure. The global tree network enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices are included that interconnect the nodes of the tree via links to facilitate performance of low-latency global processing operations at nodes of the virtual tree and sub-tree structures. The global operations performed include one or more of: broadcast operations downstream from a root node to leaf nodes of a virtual tree, reduction operations upstream from leaf nodes to the root node in the virtual tree, and point-to-point message passing from any node to the root node. The global tree network is configurable to provide global barrier and interrupt functionality in asynchronous or synchronized manner, and, is physically and logically partitionable.

  7. SciDAC Visualization and Analytics Center for Enabling Technologies

    SciTech Connect

    Joy, Kenneth I.

    2014-09-14

    This project focuses on leveraging scientific visualization and analytics software technology as an enabling technology for increasing scientific productivity and insight. Advances in computational technology have resulted in an "information big bang," which in turn has created a significant data understanding challenge. This challenge is widely acknowledged to be one of the primary bottlenecks in contemporary science. The vision for our Center is to respond directly to that challenge by adapting, extending, creating when necessary and deploying visualization and data understanding technologies for our science stakeholders. Using an organizational model as a Visualization and Analytics Center for Enabling Technologies (VACET), we are well positioned to be responsive to the needs of a diverse set of scientific stakeholders in a coordinated fashion using a range of visualization, mathematics, statistics, computer and computational science and data management technologies.

  8. Using high-performance networks to enable computational aerosciences applications

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory J.

    1992-01-01

    One component of the U.S. Federal High Performance Computing and Communications Program (HPCCP) is the establishment of a gigabit network to provide a communications infrastructure for researchers across the nation. This gigabit network will provide new services and capabilities, in addition to increased bandwidth, to enable future applications. An understanding of these applications is necessary to guide the development of the gigabit network and other high-performance networks of the future. In this paper we focus on computational aerosciences applications run remotely using the Numerical Aerodynamic Simulation (NAS) facility located at NASA Ames Research Center. We characterize these applications in terms of network-related parameters and relate user experiences that reveal limitations imposed by the current wide-area networking infrastructure. Then we investigate how the development of a nationwide gigabit network would enable users of the NAS facility to work in new, more productive ways.

  9. A simple physical mechanism enables homeostasis in primitive cells

    NASA Astrophysics Data System (ADS)

    Engelhart, Aaron E.; Adamala, Katarzyna P.; Szostak, Jack W.

    2016-05-01

    The emergence of homeostatic mechanisms that enable maintenance of an intracellular steady state during growth was critical to the advent of cellular life. Here, we show that concentration-dependent reversible binding of short oligonucleotides, of both specific and random sequence, can modulate ribozyme activity. In both cases, catalysis is inhibited at high concentrations, and dilution activates the ribozyme via inhibitor dissociation, thus maintaining near-constant ribozyme specific activity throughout protocell growth. To mimic the result of RNA synthesis within non-growing protocells, we co-encapsulated high concentrations of ribozyme and oligonucleotides within fatty acid vesicles, and ribozyme activity was inhibited. Following vesicle growth, the resulting internal dilution produced ribozyme activation. This simple physical system enables a primitive homeostatic behaviour: the maintenance of constant ribozyme activity per unit volume during protocell volume changes. We suggest that such systems, wherein short oligonucleotides reversibly inhibit functional RNAs, could have preceded sophisticated modern RNA regulatory mechanisms, such as those involving miRNAs.

  10. Polysulfide flow batteries enabled by percolating nanoscale conductor networks.

    PubMed

    Fan, Frank Y; Woodford, William H; Li, Zheng; Baram, Nir; Smith, Kyle C; Helal, Ahmed; McKinley, Gareth H; Carter, W Craig; Chiang, Yet-Ming

    2014-01-01

    A new approach to flow battery design is demonstrated wherein diffusion-limited aggregation of nanoscale conductor particles at ∼1 vol % concentration is used to impart mixed electronic-ionic conductivity to redox solutions, forming flow electrodes with embedded current collector networks that self-heal after shear. Lithium polysulfide flow cathodes of this architecture exhibit electrochemical activity that is distributed throughout the volume of flow electrodes rather than being confined to surfaces of stationary current collectors. The nanoscale network architecture enables cycling of polysulfide solutions deep into precipitation regimes that historically have shown poor capacity utilization and reversibility and may thereby enable new flow battery designs of higher energy density and lower system cost. Lithium polysulfide half-flow cells operating in both continuous and intermittent flow mode are demonstrated for the first time. PMID:24597525

  11. Using Multi Criteria Decision Making in Analysis of Alternatives for Selection of Enabling Technology

    NASA Astrophysics Data System (ADS)

    Georgiadis, Daniel

    Prior to Milestone A, the Department of Defense (DoD) requires that service sponsors conduct an Analysis of Alternatives (AoA), an analytical comparison of multiple alternatives, to be completed prior to committing and investing costly resources to one project or decision. Despite this requirement, sponsors will circumvent or dilute the process in an effort to save money or schedule, and specific requirements are proposed that can effectively eliminate all but the preselected alternatives. This research focuses on identifying decision aiding methods which can lead to the selection of specific criteria that are key performance drivers thus enabling an informed selection of the enabling technology. This work defines the enabling technology as the sub-system which presents the most risk within the system design. After a thorough literature review of available Multi Criteria Decision Making methods, a case study example is presented demonstrating the selection of the enabling technology of a Light Detection and Ranging (LIDAR) system. Using subjective criteria in the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is shown to successfully account for tacit knowledge of expert practitioners.

  12. Nucleophilic Aromatic Substitution Reactions in Water Enabled by Micellar Catalysis.

    PubMed

    Isley, Nicholas A; Linstadt, Roscoe T H; Kelly, Sean M; Gallou, Fabrice; Lipshutz, Bruce H

    2015-10-01

    Given the huge dependence on dipolar, aprotic solvents such as DMF, DMSO, DMAc, and NMP in nucleophilic aromatic substitution reactions (SNAr), a simple and environmentally friendly alternative is reported. Use of a "benign-by-design" nonionic surfactant, TPGS-750-M, in water enables nitrogen, oxygen, and sulfur nucleophiles to participate in SNAr reactions. Aromatic and heteroaromatic substrates readily participate in this micellar catalysis, which takes place at or near ambient temperatures. PMID:26368348

  13. Volume CT (VCT) enabled by a novel diode technology

    NASA Astrophysics Data System (ADS)

    Ikhlef, Aziz; Zeman, Greg; Hoffman, David; Li, Wen; Possin, George

    2005-04-01

    One of the results of the latest developments in x-ray tube and detector technology, is the enabling of computed tomography (CT) as a strong non-invasive imaging modality for a new set of clinical applications including cardiac and brain imaging. A common theme among the applications is an ability to have wide anatomical coverage in a single rotation. Large coverage in CT is expected to bring significant diagnostic value in clinical field, especially in cardiac, trauma, pediatric, neuro, angiography, Stroke WorkUp and pulmonary applications. This demand, in turn, creates a need for tile-able and scalable detector design. In this paper, we introduce the design of a new diode, a crucial part of the detector, discuss how it enables wide coverage, its performance in terms of cross-talk, light output response, maximized geometric efficiency, and other CT requirements, and compare it to the traditional design which is front-illuminated diode. We ran extensive simulation and measurement experiments to study the geometric efficiency and assess the cross talk and all other performance parameters Critical To Quality (CTQs) with both designs. We modeled x-ray scattering in the scintillator, light scattering through the septa and optical coupler, and electrical cross talk. We tested the design with phantoms and clinical experiments on a scanner (LightSpeed VCT, GE Healthcare Technologies, Waukesha, WI, USA). Our preliminary results indicate that the new diode design performs as well as the traditional in terms of cross talk and other CTQs. It, also, yields better geometric efficiency and enables tile-able detector design, which is crucial for the VCT. We introduced a new diode design, which is an essential enabler for VCT. We demonstrated the new design is superior to the traditional design for the clinically relevant performance measures.

  14. Potential Astrophysics Science Missions Enabled by NASA's Planned Ares V

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Thronson, Harley; Langhoff, Stepheni; Postman, Marc; Lester, Daniel; Lillie, Chuck

    2009-01-01

    NASA s planned Ares V cargo vehicle with its 10 meter diameter fairing and 60,000 kg payload mass to L2 offers the potential to launch entirely new classes of space science missions such as 8-meter monolithic aperture telescopes, 12- meter aperture x-ray telescopes, 16 to 24 meter segmented telescopes and highly capable outer planet missions. The paper will summarize the current Ares V baseline performance capabilities and review potential mission concepts enabled by these capabilities.

  15. Challenges and Enablers of Deprescribing: A General Practitioner Perspective

    PubMed Central

    Ailabouni, Nagham J.; Nishtala, Prasad S.; Mangin, Dee; Tordoff, June M.

    2016-01-01

    Aims Deprescribing is the process of reducing or discontinuing medicines that are unnecessary or deemed to be harmful. We aimed to investigate general practitioner (GP) perceived challenges to deprescribing in residential care and the possible enablers that support GPs to implement deprescribing. Methods A qualitative study was undertaken using semi-structured, face-to-face interviews from two cities in New Zealand and a purpose-developed pilot-tested interview schedule. Interviews were recorded with permission and transcribed verbatim. Transcripts were read and re-read and themes were identified with iterative building of a coding list until all data was accounted for. Interviews continued until saturation of ideas occurred. Analysis was carried out with the assistance of a Theoretical Domains Framework (TDF) and constant comparison techniques. Several themes were identified. Challenges and enablers of deprescribing were determined based on participants’ answers. Results Ten GPs agreed to participate. Four themes were identified to define the issues around prescribing for older people, from the GPs’ perspectives. Theme 1, the ‘recognition of the problem’, discusses the difficulties involved with prescribing for older people. Theme 2 outlines the identified behaviour change factors relevant to the problem. Deprescribing challenges were drawn from these factors and summarised in Theme 3 under three major headings; ‘prescribing factors’, ‘social influences’ and ‘policy and processes’. Deprescribing enablers, based on the opinions and professional experience of GPs, were retrieved and summarised in Theme 4. Conclusion The process of deprescribing is laced with many challenges for GPs. The uncertainty of research evidence in older people and social factors such as specialists’ and nurses’ influences were among the major challenges identified. Deprescribing enablers encompassed support for GPs’ awareness and knowledge, improvement of

  16. Progress Towards a NASA Earth Science Reuse Enablement System (RES)

    NASA Technical Reports Server (NTRS)

    Marshall, James J.; Downs, Robert R.; Mattmann, Chris A.

    2010-01-01

    A Reuse Enablement System (RES) allows developers of Earth science software to contribute software for reuse by others and.for users to find, select, and obtain software for reuse in their own systems. This paper describes work that the X4S,4 Earth Science Data Systems (ESDS) Software Reuse Working Group has completed to date in the development of an RES for NASA.

  17. Potential Science Missions Enabled by NASA's Planned Ares V

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Thronson, Harley; Langhoff, Stephani; Postman, Marc; Lester, Daniel; Lillie, Chuck

    2009-01-01

    NASA s planned Ares V cargo vehicle with its 10 meter diameter fairing and 60,000 kg payload mass to L2 offers the potential to launch entirely new classes of space science missions such as 8-meter monolithic aperture telescopes, 12-meter aperture x-ray telescopes, 16 to 24 meter segmented telescopes and highly capable outer planet missions. The paper will summarize the current Ares V baseline performance capabilities and review potential mission concepts enabled by these capabilities.

  18. Ames Coronagraph Experiment: Enabling Missions to Directly Image Exoplanets

    NASA Technical Reports Server (NTRS)

    Belikov, Ruslan

    2014-01-01

    Technology to find biomarkers and life on other worlds is rapidly maturing. If there is a habitable planet around the nearest star, we may be able to detect it this decade with a small satellite mission. In the 2030 decade, we will likely know if there is life in our Galactic neighborhood (1000 nearest stars). The Ames Coronagraph Experiment is developing coronagraphic technologies to enable such missions.

  19. Informatics Methods to Enable Sharing of Quantitative Imaging Research Data

    PubMed Central

    Levy, Mia A.; Freymann, John B.; Kirby, Justin S.; Fedorov, Andriy; Fennessy, Fiona M.; Eschrich, Steven A.; Berglund, Anders E.; Fenstermacher, David A.; Tan, Yongqiang; Guo, Xiaotao; Casavant, Thomas L.; Brown, Bartley J.; Braun, Terry A.; Dekker, Andre; Roelofs, Erik; Mountz, James M.; Boada, Fernando; Laymon, Charles; Oborski, Matt; Rubin, Daniel L

    2012-01-01

    Introduction The National Cancer Institute (NCI) Quantitative Research Network (QIN) is a collaborative research network whose goal is to share data, algorithms and research tools to accelerate quantitative imaging research. A challenge is the variability in tools and analysis platforms used in quantitative imaging. Our goal was to understand the extent of this variation and to develop an approach to enable sharing data and to promote reuse of quantitative imaging data in the community. Methods We performed a survey of the current tools in use by the QIN member sites for representation and storage of their QIN research data including images, image meta-data and clinical data. We identified existing systems and standards for data sharing and their gaps for the QIN use case. We then proposed a system architecture to enable data sharing and collaborative experimentation within the QIN. Results There area variety of tools currently used by each QIN institution. We developed a general information system architecture to support the QIN goals. We also describe the remaining architecture gaps we are developing to enable members to share research images and image meta-data across the network. Conclusions As a research network, the QIN will stimulate quantitative imaging research by pooling data, algorithms and research tools. However, there are gaps in current functional requirements that will need to be met by future informatics development. Special attention must be given to the technical requirements needed to translate these methods into the clinical research workflow to enable validation and qualification of these novel imaging biomarkers. PMID:22770688

  20. Fly-by-Wire Systems Enable Safer, More Efficient Flight

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Using the ultra-reliable Apollo Guidance Computer that enabled the Apollo Moon missions, Dryden Flight Research Center engineers, in partnership with industry leaders such as Cambridge, Massachusetts-based Draper Laboratory, demonstrated that digital computers could be used to fly aircraft. Digital fly-by-wire systems have since been incorporated into large airliners, military jets, revolutionary new aircraft, and even cars and submarines.

  1. Useful Sensor Web Capabilities to Enable Progressive Mission Autonomy

    NASA Technical Reports Server (NTRS)

    Mandl, Dan

    2007-01-01

    This viewgraph presentation reviews using the Sensor Web capabilities as an enabling technology to allow for progressive autonomy of NASA space missions. The presentation reviews technical challenges for future missions, and some of the capabilities that exist to meet those challenges. To establish the ability of the technology to meet the challenges, experiments were conducted on three missions: Earth Observing 1 (EO-1), Cosmic Hot Interstellar Plasma Spectrometer (CHIPS) and Space Technology 5 (ST-5). These experiments are reviewed.

  2. Split rheometer Couette attachment to enable sample extraction

    NASA Astrophysics Data System (ADS)

    Guthrie, Sarah E.; Idziak, Stefan H. J.

    2005-02-01

    We report on the development of a Couette attachment insert for a rheometer, which is designed to split in half, enabling intact sample extraction of cocoa butter crystallized from the melt under known dynamic stress conditions. This cell is capable of producing a sample 1mm thick. At shear rates of 90-720s-1 and final temperatures of 18-20°C it was shown that the sample will completely separate from the cell surface intact.

  3. Ammonia recycling enables sustainable operation of bioelectrochemical systems.

    PubMed

    Cheng, Ka Yu; Kaksonen, Anna H; Cord-Ruwisch, Ralf

    2013-09-01

    Ammonium (NH4(+)) migration across a cation exchange membrane is commonly observed during the operation of bioelectrochemical systems (BES). This often leads to anolyte acidification (pH <5.5) and complete inactivation of biofilm electroactivity. Without using conventional pH controls (dosage of alkali or pH buffers), the present study revealed that anodic biofilm activity (current) could be sustained if recycling of ammonia (NH3) was implemented. A simple gas-exchange apparatus was designed to enable continuous recycling of NH3 (released from the catholyte at pH >10) from the cathodic headspace to the acidified anolyte. Results indicated that current (110 mA or 688 Am(-3) net anodic chamber volume) was sustained as long as the NH3 recycling path was enabled, facilitating continuous anolyte neutralization with the recycled NH3. Since the microbial current enabled NH4(+) migration against a strong concentration gradient (~10-fold), a novel way of ammonia recovery from wastewaters could be envisaged. PMID:23774293

  4. Enabling Disabled Persons to Gain Access to Digital Media

    NASA Technical Reports Server (NTRS)

    Beach, Glenn; OGrady, Ryan

    2011-01-01

    A report describes the first phase in an effort to enhance the NaviGaze software to enable profoundly disabled persons to operate computers. (Running on a Windows-based computer equipped with a video camera aimed at the user s head, the original NaviGaze software processes the user's head movements and eye blinks into cursor movements and mouse clicks to enable hands-free control of the computer.) To accommodate large variations in movement capabilities among disabled individuals, one of the enhancements was the addition of a graphical user interface for selection of parameters that affect the way the software interacts with the computer and tracks the user s movements. Tracking algorithms were improved to reduce sensitivity to rotations and reduce the likelihood of tracking the wrong features. Visual feedback to the user was improved to provide an indication of the state of the computer system. It was found that users can quickly learn to use the enhanced software, performing single clicks, double clicks, and drags within minutes of first use. Available programs that could increase the usability of NaviGaze were identified. One of these enables entry of text by using NaviGaze as a mouse to select keys on a virtual keyboard.

  5. Fundamental plant biology enabled by the space shuttle.

    PubMed

    Paul, Anna-Lisa; Wheeler, Ray M; Levine, Howard G; Ferl, Robert J

    2013-01-01

    The relationship between fundamental plant biology and space biology was especially synergistic in the era of the Space Shuttle. While all terrestrial organisms are influenced by gravity, the impact of gravity as a tropic stimulus in plants has been a topic of formal study for more than a century. And while plants were parts of early space biology payloads, it was not until the advent of the Space Shuttle that the science of plant space biology enjoyed expansion that truly enabled controlled, fundamental experiments that removed gravity from the equation. The Space Shuttle presented a science platform that provided regular science flights with dedicated plant growth hardware and crew trained in inflight plant manipulations. Part of the impetus for plant biology experiments in space was the realization that plants could be important parts of bioregenerative life support on long missions, recycling water, air, and nutrients for the human crew. However, a large part of the impetus was that the Space Shuttle enabled fundamental plant science essentially in a microgravity environment. Experiments during the Space Shuttle era produced key science insights on biological adaptation to spaceflight and especially plant growth and tropisms. In this review, we present an overview of plant science in the Space Shuttle era with an emphasis on experiments dealing with fundamental plant growth in microgravity. This review discusses general conclusions from the study of plant spaceflight biology enabled by the Space Shuttle by providing historical context and reviews of select experiments that exemplify plant space biology science. PMID:23281389

  6. Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Poster Session. Volume 2

    NASA Technical Reports Server (NTRS)

    Nahra, Henry (Compiler)

    2004-01-01

    Reports are presented from volume 2 of the conference titled Strategic Research to Enable NASA's Exploration Missions, poster session. Topics included spacecraft fire suppression and fire extinguishing agents,materials flammability, various topics on the effects of microgravity including crystal growth, fluid mechanics, electric particulate suspension, melting and solidification, bubble formation, the sloshing of liquid fuels, biological studies, separation of carbon dioxide and carbon monoxide for Mars ISRU.

  7. Recce and UAV: mass memory an enabling technology for merger

    NASA Astrophysics Data System (ADS)

    Hall, Walter J., Jr.

    1996-11-01

    In the era of Declining Defense Dollars, the cost of sophisticated aircraft and highly trained personnel has heightened interest in Unmanned Air Vehicles (UAVs). The obvious lure is the lower vehicle cost (no crew station and crew support systems) and reduced needs for highly skilled air crews. Reconnaissance (commonly called recce) aircraft and their missions are among the commonly sighted applications for UAVs. Today's UAV recce aircraft (such as the Predator) are the genesis of much more sophisticated UAVs of the future. The evolution of the UAV will not be constrained to recce aircraft, but the recce mission will be significant for UAVs. The recce hole has historically been that of a battlefield data collector for post mission review and planning. In the electronic battlefield of the future, that role will be expanded. Envisioned mission for future recce aircraft include real-time scout, target location and fire coordination, battle damage assessment, and large area surveillance. Associated with many of these new roles is the need to store or assess much higher volumes of data. The higher volume data requirements are the result of higher resolution sensors (the Advanced Helicopter Pilotage infrared sensor has a data rate of near 1.2 Gigabits per second) and multi-sensor applications (the Multi-Sensor Aided Targeting program considered infrared, TV, and radar). The evolution of the UAV recce role, and associated increased data storage needs (from higher data rates and increased coverage requirements), requires the development of new data storage equipment. One solution to the increased storage needs is solid-state memory. As solid-state memories become faster, smaller, and cheaper they will enable the UAV recce mission capability to expand. Because of the speed of the memory, it will be possible to buffer and assess (identify the existence of targets or other points of interest) data before committing to consumption of limited storage assets. Faster memory

  8. Advanced Coatings Enabling High Performance Instruments for Astrophysics Missions

    NASA Astrophysics Data System (ADS)

    Nikzad, Shouleh

    We propose a three-year effort to develop techniques for far-ultraviolet (FUV) and ultraviolet coatings both as reflective optics coatings and as out-of-band-rejection (solar-blind) filters that will have a dramatic effect on the throughput and efficiency of instruments. This is an ideal time to address this problem. On the one hand, exciting new science questions posed in UV and optical realm place exacting demands on instrument capabilities far beyond HST-COS, FUSE, and GALEX with large focal plane arrays and high efficiency requirements. And on the other hand, the development of techniques and process such as atomic layer deposition with its atomically precise capability and nano-engineered materials approach enables us to address the challenging materials issues in the UV where interaction of photons and matter happen in the first few nanometers of the material surface. Aluminum substrates with protective overlayers (typically XFy, where X = Li, Mg, or Ca) have been the workhorse of reflective coatings for ultraviolet and visible instruments; however, they have demonstrated severe limitations. The formation of oxide at the Al-XFy interface and thick protective layers both affect the overall optical performance, leading to diminished reflection at shorter wavelengths. To address these long-standing shortcomings of coatings, we will use our newly developed processes and equipment to produce high-quality single- and multi-layer films of a variety of dielectrics and metals deposited with nano-scale control. JPL s new ALD system affords high uniformity, low oxygen background, good plasma processes, and precise temperature control, which are vital to achieving the large scale, uniform, and ultrathin films that are free of oxygen at interfaces. For example, ALD-grown aluminum can be protected using our newly developed chemistry for ALD magnesium fluoride. Our work will verify that the ALD technique reliably prevents the oxidation of aluminum, and will subsequently be

  9. Automatic Offloading C++ Expression Templates to CUDA Enabled GPUs

    SciTech Connect

    Chen, Jie; Joo, Balint; Watson, William A.; Edwards, Robert G.

    2012-05-01

    In the last few years, many scientific applications have been developed for powerful graphics processing units (GPUs) and have achieved remarkable speedups. This success can be partially attributed to high performance host callable GPU library routines that are offloaded to GPUs at runtime. These library routines are based on C/C++-like programming toolkits such as CUDA from NVIDIA and have the same calling signatures as their CPU counterparts. Recently, with the sufficient support of C++ templates from CUDA, the emergence of template libraries have enabled further advancement in code reusability and rapid software development for GPUs. However, Expression Templates (ET), which have been very popular for implementing data parallel scientific software for host CPUs because of their intuitive and mathematics-like syntax, have been underutilized by GPU development libraries. The lack of ET usage is caused by the difficulty of offloading expression templates from hosts to GPUs due to the inability to pass instantiated expressions to GPU kernels as well as the absence of the exact form of the expressions for the templates at the time of coding. This paper presents a general approach that enables automatic offloading of C++ expression templates to CUDA enabled GPUs by using the C++ metaprogramming technique and Just-In-Time (JIT) compilation methodology to generate and compile CUDA kernels for corresponding expression templates followed by executing the kernels with appropriate arguments. This approach allows developers to port applications to run on GPUs with virtually no code modifications. More specifically, this paper uses a large ET based data parallel physics library called QDP++ as an example to illustrate many aspects of the approach to offload expression templates automatically and to demonstrate very good speedups for typical QDP++ applications running on GPUs against running on CPUs using this method of offloading. In addition, this approach of automatic offlo

  10. Solar Sail Propulsion: An Enabling Technology for Fundamental Physics Missions

    NASA Astrophysics Data System (ADS)

    Dachwald, Bernd; Seboldt, Wolfgang; Lämmerzahl, Claus

    Solar sails enable a wide range of high-energy missions, many of which are difficult or even impossible to accomplish with any other type of conventional propulsion system. They are also an enabling propulsion technology for two types of deep-space missions that are very favorable for testing current gravitational theories and the large-scale gravitational field of the solar system: the first type comprises missions that go very close to the Sun (<8 solar radii) and the second one comprises missions that go fast very far away from the Sun (~200AU). Being propelled solely by the freely available solar radiation pressure, solar sails do not consume any propellant. Therefore, their capability to gain (or reduce) orbital energy is theoretically unlimited and practically only limited by their lifetime in the space environment and their distance from the Sun (because the solar radiation pressure decreases with the square of solar distance). Nevertheless, solar sails make also missions that go far away from the Sun feasible because they can gain a large amount of orbital energy by first making one or more close solar approaches that turn the trajectory hyperbolic. For both mission types, the temperature limit of the sail film is a critical issue. In this chapter, we briefly review the physics and the current technological status of solar sails, and then present mission outlines and trade-offs for both mission types. Thereby, we will show that even near- or medium-term solar sails with a relatively moderate performance enable these kinds of missions.

  11. Enabling a Systems Biology Knowledgebase with Gaggle and Firegoose

    SciTech Connect

    Baliga, Nitin S.

    2014-12-12

    The overall goal of this project was to extend the existing Gaggle and Firegoose systems to develop an open-source technology that runs over the web and links desktop applications with many databases and software applications. This technology would enable researchers to incorporate workflows for data analysis that can be executed from this interface to other online applications. The four specific aims were to (1) provide one-click mapping of genes, proteins, and complexes across databases and species; (2) enable multiple simultaneous workflows; (3) expand sophisticated data analysis for online resources; and enhance open-source development of the Gaggle-Firegoose infrastructure. Gaggle is an open-source Java software system that integrates existing bioinformatics programs and data sources into a user-friendly, extensible environment to allow interactive exploration, visualization, and analysis of systems biology data. Firegoose is an extension to the Mozilla Firefox web browser that enables data transfer between websites and desktop tools including Gaggle. In the last phase of this funding period, we have made substantial progress on development and application of the Gaggle integration framework. We implemented the workspace to the Network Portal. Users can capture data from Firegoose and save them to the workspace. Users can create workflows to start multiple software components programmatically and pass data between them. Results of analysis can be saved to the cloud so that they can be easily restored on any machine. We also developed the Gaggle Chrome Goose, a plugin for the Google Chrome browser in tandem with an opencpu server in the Amazon EC2 cloud. This allows users to interactively perform data analysis on a single web page using the R packages deployed on the opencpu server. The cloud-based framework facilitates collaboration between researchers from multiple organizations. We have made a number of enhancements to the cmonkey2 application to enable and

  12. Intelligent security and privacy solutions for enabling personalized telepathology

    PubMed Central

    2011-01-01

    Starting with the paradigm change of health systems towards personalized health services, the paper introduces the technical paradigms to be met for enabling ubiquitous pHealth including ePathology. The system-theoretical, architecture-centric approach to mobile, pervasive and autonomous solutions has to be based on an open component system framework such as the Generic Component Model. The crucial challenge to be met for comprehensive interoperability is multi-disciplinary knowledge representation, which must be integrated into the aforementioned framework. The approach is demonstrated for security and privacy services fundamental for any eHealth or ePathology environment. PMID:21489199

  13. High growth speed of gallium nitride using ENABLE-MBE

    NASA Astrophysics Data System (ADS)

    Williams, J. J.; Fischer, A. M.; Williamson, T. L.; Gangam, S.; Faleev, N. N.; Hoffbauer, M. A.; Honsberg, C. B.

    2015-09-01

    Films of gallium nitride were grown at varying growth speeds, while all other major variables were held constant. Films grown determine the material impact of the high flux capabilities of the unique nitrogen plasma source ENABLE. Growth rates ranged from 13 to near 60 nm/min. X-ray ω scans of GaN (0002) have FWHM in all samples less than 300 arc sec. Cathodoluminescence shows radiative recombination for all samples at the band edge. In general material quality overall is high with slight degradation as growth speeds increase to higher rates.

  14. Chandra enables study of x-ray jets

    PubMed Central

    Schwartz, Daniel

    2010-01-01

    The exquisite angular resolution of the Chandra x-ray telescope has enabled the detection and study of resolved x-ray jets in a wide variety of astronomical systems. Chandra has detected extended jets in our galaxy from protostars, symbiotic binaries, neutron star pulsars, black hole binaries, extragalactic jets in radio sources, and quasars. The x-ray data play an essential role in deducing the emission mechanism of the jets, in revealing the interaction of jets with the intergalactic or intracluster media, and in studying the energy generation budget of black holes. PMID:20378839

  15. Semantically Enabling Knowledge Representation of Metamorphic Petrology Data

    NASA Astrophysics Data System (ADS)

    West, P.; Fox, P. A.; Spear, F. S.; Adali, S.; Nguyen, C.; Hallett, B. W.; Horkley, L. K.

    2012-12-01

    More and more metamorphic petrology data is being collected around the world, and is now being organized together into different virtual data portals by means of virtual organizations. For example, there is the virtual data portal Petrological Database (PetDB, http://www.petdb.org) of the Ocean Floor that is organizing scientific information about geochemical data of ocean floor igneous and metamorphic rocks; and also The Metamorphic Petrology Database (MetPetDB, http://metpetdb.rpi.edu) that is being created by a global community of metamorphic petrologists in collaboration with software engineers and data managers at Rensselaer Polytechnic Institute. The current focus is to provide the ability for scientists and researchers to register their data and search the databases for information regarding sample collections. What we present here is the next step in evolution of the MetPetDB portal, utilizing semantically enabled features such as discovery, data casting, faceted search, knowledge representation, and linked data as well as organizing information about the community and collaboration within the virtual community itself. We take the information that is currently represented in a relational database and make it available through web services, SPARQL endpoints, semantic and triple-stores where inferencing is enabled. We will be leveraging research that has taken place in virtual observatories, such as the Virtual Solar Terrestrial Observatory (VSTO) and the Biological and Chemical Oceanography Data Management Office (BCO-DMO); vocabulary work done in various communities such as Observations and Measurements (ISO 19156), FOAF (Friend of a Friend), Bibo (Bibliography Ontology), and domain specific ontologies; enabling provenance traces of samples and subsamples using the different provenance ontologies; and providing the much needed linking of data from the various research organizations into a common, collaborative virtual observatory. In addition to better

  16. Key Enabling Physical Layer Technologies for LTE-Advanced

    NASA Astrophysics Data System (ADS)

    Jiang, Meilong; Prasad, Narayan; Xin, Yan; Yue, Guosen; Khojastepour, Amir; Liu, Le; Inoue, Takamichi; Koyanagi, Kenji; Kakura, Yoshikazu

    The 3GPP Long Term Evolution Advanced (LTE-A) system, as compared to the LTE system, is anticipated to include several new features and enhancements, such as the usage of channel bandwidth beyond 20MHz (up 100MHz), higher order multiple input multiple output (MIMO) for both downlink and uplink transmissions, larger capacity especially for cell edge user equipment, and voice over IP (VoIP) users, and wider coverage and etc. This paper presents some key enabling technologies including flexible uplink access schemes, advanced uplink MIMO receiver designs, cell search, adaptive hybrid ARQ, and multi-resolution MIMO precoding, for the LTE-A system.

  17. Enabling Technologies for the Future of Chemical Synthesis.

    PubMed

    Fitzpatrick, Daniel E; Battilocchio, Claudio; Ley, Steven V

    2016-03-23

    Technology is evolving at breakneck pace, changing the way we communicate, travel, find out information, and live our lives. Yet chemistry as a science has been slower to adapt to this rapidly shifting world. In this Outlook we use highlights from recent literature reports to describe how progresses in enabling technologies are altering this trend, permitting chemists to incorporate new advances into their work at all levels of the chemistry development cycle. We discuss the benefits and challenges that have arisen, impacts on academic-industry relationships, and future trends in the area of chemical synthesis. PMID:27163040

  18. Smart phones: platform enabling modular, chemical, biological, and explosives sensing

    NASA Astrophysics Data System (ADS)

    Finch, Amethist S.; Coppock, Matthew; Bickford, Justin R.; Conn, Marvin A.; Proctor, Thomas J.; Stratis-Cullum, Dimitra N.

    2013-05-01

    Reliable, robust, and portable technologies are needed for the rapid identification and detection of chemical, biological, and explosive (CBE) materials. A key to addressing the persistent threat to U.S. troops in the current war on terror is the rapid detection and identification of the precursor materials used in development of improvised explosive devices, homemade explosives, and bio-warfare agents. However, a universal methodology for detection and prevention of CBE materials in the use of these devices has proven difficult. Herein, we discuss our efforts towards the development of a modular, robust, inexpensive, pervasive, archival, and compact platform (android based smart phone) enabling the rapid detection of these materials.

  19. Optical stimulation enables paced electrophysiological studies in embryonic hearts

    PubMed Central

    Wang, Yves T.; Gu, Shi; Ma, Pei; Watanabe, Michiko; Rollins, Andrew M.; Jenkins, Michael W.

    2014-01-01

    Cardiac electrophysiology plays a critical role in the development and function of the heart. Studies of early embryonic electrical activity have lacked a viable point stimulation technique to pace in vitro samples. Here, optical pacing by high-precision infrared stimulation is used to pace excised embryonic hearts, allowing electrophysiological parameters to be quantified during pacing at varying rates with optical mapping. Combined optical pacing and optical mapping enables electrophysiological studies in embryos under more physiological conditions and at varying heart rates, allowing detection of abnormal conduction and comparisons between normal and pathological electrical activity during development in various models. PMID:24761284

  20. Graphene-controlled fiber Bragg grating and enabled optical bistability.

    PubMed

    Gan, Xuetao; Wang, Yadong; Zhang, Fanlu; Zhao, Chenyang; Jiang, Biqiang; Fang, Liang; Li, Dongying; Wu, Hao; Ren, Zhaoyu; Zhao, Jianlin

    2016-02-01

    We report a graphene-assisted all-optical control of a fiber Bragg grating (FBG), which enables in-fiber optical bistability and switching. With an optical pump, a micro-FBG wrapped by graphene evolves into chirped and phase-shifted FBGs, whose characteristic wavelengths and bandwidths could be controlled by the pump power. Optical bistability and multistability are achieved in the controlled FBG based on a shifted Bragg reflection or Fabry-Perot-type resonance, which allow the implementation of optical switching with an extinction ratio exceeding 20 dB and a response time in tens of milliseconds. PMID:26907434

  1. SixDOF position sensor: enabling manufacturing flexibility

    SciTech Connect

    Vann, C.S.

    1998-03-24

    A small, non-contact optical sensor invented by the author attaches to a robot (or other machines), enabling the robot to detect objects, adjust its alignment in all six degrees of freedom (SixDOF), and read a task from a code on the part. Thus, the SixDOF sensor provides robots more intelligence to operate autonomously and adapt to changes without human intervention. A description of the sensor is provided. Also, an operating arrangement of a robot using the SixDOF sensor is presented with performance results described.

  2. Enabling New Operations Concepts for Lunar and Mars Exploration

    NASA Technical Reports Server (NTRS)

    Jaap, John; Maxwell, Theresa

    2005-01-01

    The planning and scheduling of human space activities is an expensive and time-consuming task that seldom provides the crew with the control, flexibility, or insight that they need. During the past thirty years, scheduling software has seen only incremental improvements; however, software limitations continue to prevent even evolutionary improvements in the operations concept that is used for human space missions. Space missions are planned on the ground long before they are executed in space, and the crew has little input or influence on the schedule. In recent years the crew has been presented with a job jar of activities that they can do whenever they have time, but the contents of the jar is limited to tasks that do not use scarce shared resources and do not have external timing constraints. Consequently, the crew has no control over the schedule of the majority of their own tasks. As humans venture farther from earth for longer durations, it will become imperative that they have the ability to plan and schedule not only their own activities, but also the unattended activities of the systems, equipment, and robots on the journey with them. Significant software breakthroughs are required to enable the change in the operations concept. The crew does not have the time to build or modify the schedule by hand. They only need to issue a request to schedule a task and the system should automatically do the rest. Of course, the crew should not be required to build the complete schedule. Controllers on the ground should contribute the models and schedules where they have the better knowledge. The system must allow multiple simultaneous users, some on earth and some in space. The Mission Operations Laboratory at NASA's Marshall Space flight Center has been researching and prototyping a modeling schema, scheduling engine, and system architecture that can enable the needed paradigm shift - it can make the crew autonomous. This schema and engine can be the core of a

  3. Enabling New Operations Concepts for Lunar and Mars Exploration

    NASA Astrophysics Data System (ADS)

    Jaap, John; Maxwell, Theresa

    2005-02-01

    The planning and scheduling of human space activities is an expensive and time-consuming task that seldom provides the crew with the control, flexibility, or insight that they need. During the past thirty years, scheduling software has seen only incremental improvements; however, software limitations continue to prevent even evolutionary improvements in the ``operations concept'' that is used for human space missions. Space missions are planned on the ground long before they are executed in space, and the crew has little input or influence on the schedule. In recent years the crew has been presented with a ``job jar'' of activities that they can do whenever they have time, but the contents of the jar is limited to tasks that do not use scarce shared resources and do not have external timing constraints. Consequently, the crew has no control over the schedule of the majority of their own tasks. As humans venture farther from earth for longer durations, it will become imperative that they have the ability to plan and schedule not only their own activities, but also the unattended activities of the systems, equipment, and robots on the journey with them. Significant software breakthroughs are required to enable the change in the operations concept. The crew does not have the time to build or modify the schedule by hand. They only need to issue a request to schedule a task and the system should automatically do the rest. Of course, the crew should not be required to build the complete schedule. Controllers on the ground should contribute the models and schedules where they have the better knowledge. The system must allow multiple simultaneous users, some on earth and some in space. The Mission Operations Laboratory at NASA's Marshall Space Flight Center has been researching and prototyping a modeling schema, scheduling engine, and system architecture that can enable the needed paradigm shift - it can make the crew autonomous. This schema and engine can be the core of a

  4. Enabling Large-Scale Biomedical Analysis in the Cloud

    PubMed Central

    Lin, Ying-Chih; Yu, Chin-Sheng; Lin, Yen-Jen

    2013-01-01

    Recent progress in high-throughput instrumentations has led to an astonishing growth in both volume and complexity of biomedical data collected from various sources. The planet-size data brings serious challenges to the storage and computing technologies. Cloud computing is an alternative to crack the nut because it gives concurrent consideration to enable storage and high-performance computing on large-scale data. This work briefly introduces the data intensive computing system and summarizes existing cloud-based resources in bioinformatics. These developments and applications would facilitate biomedical research to make the vast amount of diversification data meaningful and usable. PMID:24288665

  5. Enabling CoO improvement thru green initiatives

    NASA Astrophysics Data System (ADS)

    Gross, Eric; Padmabandu, G. G.; Ujazdowski, Richard; Haran, Don; Lake, Matt; Mason, Eric; Gillespie, Walter

    2015-03-01

    Chipmakers continued pressure to drive down costs while increasing utilization requires development in all areas. Cymer's commitment to meeting customer's needs includes developing solutions that enable higher productivity as well as lowering cost of lightsource operation. Improvements in system power efficiency and predictability were deployed to chipmakers' in 2014 with release of our latest Master Oscillating gas chamber. In addition, Cymer has committed to reduced gas usage, completing development in methods to reduce Helium gas usage while maintaining superior bandwidth and wavelength stability. The latest developments in lowering cost of operations are paired with our advanced ETC controller in Cymer's XLR 700ix product.

  6. Chandra enables study of x-ray jets.

    PubMed

    Schwartz, Daniel

    2010-04-20

    The exquisite angular resolution of the Chandra x-ray telescope has enabled the detection and study of resolved x-ray jets in a wide variety of astronomical systems. Chandra has detected extended jets in our galaxy from protostars, symbiotic binaries, neutron star pulsars, black hole binaries, extragalactic jets in radio sources, and quasars. The x-ray data play an essential role in deducing the emission mechanism of the jets, in revealing the interaction of jets with the intergalactic or intracluster media, and in studying the energy generation budget of black holes. PMID:20378839

  7. Electric propulsion applications enabled by space nuclear power

    NASA Technical Reports Server (NTRS)

    Vicente, F. A.; Karras, T.; Brewer, L.; Gore, R.

    1989-01-01

    Electric propulsion promises the advantage of providing high Isp's for placing payloads into their assigned orbits. This translates into heavier payloads using a given lift capability or, conversely, the use of smaller boosters. To accomplish this, high electric powers are required. Space reactor power systems such as SP-100 enable this technology. The electric propulsion requirements needed, namely, their power requirements and the resulting payload masses and time-to-orbit, are shown. Also indicated are the missions most benefitting from the use of electric propulsion. An Interim Reference Mission is described, synthesizing the results shown, for demonstration purposes.

  8. Enabling large-scale biomedical analysis in the cloud.

    PubMed

    Lin, Ying-Chih; Yu, Chin-Sheng; Lin, Yen-Jen

    2013-01-01

    Recent progress in high-throughput instrumentations has led to an astonishing growth in both volume and complexity of biomedical data collected from various sources. The planet-size data brings serious challenges to the storage and computing technologies. Cloud computing is an alternative to crack the nut because it gives concurrent consideration to enable storage and high-performance computing on large-scale data. This work briefly introduces the data intensive computing system and summarizes existing cloud-based resources in bioinformatics. These developments and applications would facilitate biomedical research to make the vast amount of diversification data meaningful and usable. PMID:24288665

  9. Enabling Technologies for the Future of Chemical Synthesis

    PubMed Central

    2016-01-01

    Technology is evolving at breakneck pace, changing the way we communicate, travel, find out information, and live our lives. Yet chemistry as a science has been slower to adapt to this rapidly shifting world. In this Outlook we use highlights from recent literature reports to describe how progresses in enabling technologies are altering this trend, permitting chemists to incorporate new advances into their work at all levels of the chemistry development cycle. We discuss the benefits and challenges that have arisen, impacts on academic–industry relationships, and future trends in the area of chemical synthesis. PMID:27163040

  10. PACFEST 2004 : enabling technologies for maritime security in the Pacific region.

    SciTech Connect

    Moore, Judy Hennessey; Whitley, John B.; Chellis, Craig

    2005-06-01

    In October of 2003 experts involved in various aspects of homeland security from the Pacific region met to engage in a free-wheeling discussion and brainstorming (a 'fest') on the role that technology could play in winning the war on terrorism in the Pacific region. The result was a concise and relatively thorough definition of the terrorism problem in the Pacific region, emphasizing the issues unique to Island nations in the Pacific setting, along with an action plan for developing working demonstrations of advanced technological solutions to these issues. Since PacFest 2003, the maritime dimensions of the international security environment have garnered increased attention and interest. To this end, PacFest 2004 sought to identify gaps and enabling technologies for maritime domain awareness and responsive decision-making in the Asia-Pacific region. The PacFest 2004 participants concluded that the technologies and basic information building blocks exist to create a system that would enable the Pacific region government and private organizations to effectively collaborate and share their capabilities and information concerning maritime security. The proposed solution summarized in this report integrates national environments in real time, thereby enabling effective prevention and first response to natural and terrorist induced disasters through better use of national and regional investments in people, infrastructure, systems, processes and standards.

  11. A delicate web: household changes in health behaviour enabled by microcredit in Burkina Faso.

    PubMed

    Hennink, Monique; McFarland, Deborah A

    2013-01-01

    Providing microcredit to women in developing countries has long been highlighted as a simple and effective strategy for poverty reduction and health improvement. However, little is known about how microcredit enables changes in health behaviour. This knowledge is critical to further strengthen microcredit initiatives. This qualitative study, conducted in Burkina Faso, shows how microcredit can not only facilitate savings and investment strategies, but also lead to changes in household decision-making, enabling women to initiate health prevention, seek health treatment and manage health emergencies. Some changes led to increased household burdens for women that impeded health gains, such as administrative loan delays by the microcredit institution and reduced household contributions by the husband. Furthermore, the study highlighted the fragile nature of health gains, which may be eroded due to economic shocks on a household, such as crop failure, drought or illness. PMID:23327537

  12. Towards a comprehensive framework for reuse: A reuse-enabling software evolution environment

    NASA Technical Reports Server (NTRS)

    Basili, V. R.; Rombach, H. D.

    1988-01-01

    Reuse of products, processes and knowledge will be the key to enable the software industry to achieve the dramatic improvement in productivity and quality required to satisfy the anticipated growing demand. Although experience shows that certain kinds of reuse can be successful, general success has been elusive. A software life-cycle technology which allows broad and extensive reuse could provide the means to achieving the desired order-of-magnitude improvements. The scope of a comprehensive framework for understanding, planning, evaluating and motivating reuse practices and the necessary research activities is outlined. As a first step towards such a framework, a reuse-enabling software evolution environment model is introduced which provides a basis for the effective recording of experience, the generalization and tailoring of experience, the formalization of experience, and the (re-)use of experience.

  13. A Single-use Strategy to Enable Manufacturing of Affordable Biologics.

    PubMed

    Jacquemart, Renaud; Vandersluis, Melissa; Zhao, Mochao; Sukhija, Karan; Sidhu, Navneet; Stout, Jim

    2016-01-01

    The current processing paradigm of large manufacturing facilities dedicated to single product production is no longer an effective approach for best manufacturing practices. Increasing competition for new indications and the launch of biosimilars for the monoclonal antibody market have put pressure on manufacturers to produce at lower cost. Single-use technologies and continuous upstream processes have proven to be cost-efficient options to increase biomass production but as of today the adoption has been only minimal for the purification operations, partly due to concerns related to cost and scale-up. This review summarizes how a single-use holistic process and facility strategy can overcome scale limitations and enable cost-efficient manufacturing to support the growing demand for affordable biologics. Technologies enabling high productivity, right-sized, small footprint, continuous, and automated upstream and downstream operations are evaluated in order to propose a concept for the flexible facility of the future. PMID:27570613

  14. Enabling complex queries to drug information sources through functional composition.

    PubMed

    Peters, Lee; Mortensen, Jonathan; Nguyen, Thang; Bodenreider, Olivier

    2013-01-01

    Our objective was to enable an end-user to create complex queries to drug information sources through functional composition, by creating sequences of functions from application program interfaces (API) to drug terminologies. The development of a functional composition model seeks to link functions from two distinct APIs. An ontology was developed using Protégé to model the functions of the RxNorm and NDF-RT APIs by describing the semantics of their input and output. A set of rules were developed to define the interoperable conditions for functional composition. The operational definition of interoperability between function pairs is established by executing the rules on the ontology. We illustrate that the functional composition model supports common use cases, including checking interactions for RxNorm drugs and deploying allergy lists defined in reference to drug properties in NDF-RT. This model supports the RxMix application (http://mor.nlm.nih.gov/RxMix/), an application we developed for enabling complex queries to the RxNorm and NDF-RT APIs. PMID:23920645

  15. ACES: An Enabling Technology for Next Generation Space Transportation

    NASA Astrophysics Data System (ADS)

    Crocker, Andrew M.; Wuerl, Adam M.; Andrews, Jason E.; Andrews, Dana G.

    2004-02-01

    Andrews Space has developed the ``Alchemist'' Air Collection and Enrichment System (ACES), a dual-mode propulsion system that enables safe, economical launch systems that take off and land horizontally. Alchemist generates liquid oxygen through separation of atmospheric air using the refrigeration capacity of liquid hydrogen. The key benefit of Alchemist is that it minimizes vehicle takeoff weight. All internal and NASA-funded activities have shown that ACES, previously proposed for hypersonic combined cycle RLVs, is a higher payoff, lower-risk technology if LOX generation is performed while the vehicle cruises subsonically. Andrews Space has developed the Alchemist concept from a small system study to viable Next Generation launch system technology, conducting not only feasibility studies but also related hardware tests, and it has planned a detailed risk reduction program which employs an experienced, proven contractor team. Andrews also has participated in preliminary studies of an evolvable Next Generation vehicle architecture-enabled by Alchemist ACES-which could meet civil, military, and commercial space requirements within two decades.

  16. Synaptic plasticity enables adaptive self-tuning critical networks.

    PubMed

    Stepp, Nigel; Plenz, Dietmar; Srinivasa, Narayan

    2015-01-01

    During rest, the mammalian cortex displays spontaneous neural activity. Spiking of single neurons during rest has been described as irregular and asynchronous. In contrast, recent in vivo and in vitro population measures of spontaneous activity, using the LFP, EEG, MEG or fMRI suggest that the default state of the cortex is critical, manifested by spontaneous, scale-invariant, cascades of activity known as neuronal avalanches. Criticality keeps a network poised for optimal information processing, but this view seems to be difficult to reconcile with apparently irregular single neuron spiking. Here, we simulate a 10,000 neuron, deterministic, plastic network of spiking neurons. We show that a combination of short- and long-term synaptic plasticity enables these networks to exhibit criticality in the face of intrinsic, i.e. self-sustained, asynchronous spiking. Brief external perturbations lead to adaptive, long-term modification of intrinsic network connectivity through long-term excitatory plasticity, whereas long-term inhibitory plasticity enables rapid self-tuning of the network back to a critical state. The critical state is characterized by a branching parameter oscillating around unity, a critical exponent close to -3/2 and a long tail distribution of a self-similarity parameter between 0.5 and 1. PMID:25590427

  17. Semantically-Enabled Sensor Plug & Play for the Sensor Web

    PubMed Central

    Bröring, Arne; Maúe, Patrick; Janowicz, Krzysztof; Nüst, Daniel; Malewski, Christian

    2011-01-01

    Environmental sensors have continuously improved by becoming smaller, cheaper, and more intelligent over the past years. As consequence of these technological advancements, sensors are increasingly deployed to monitor our environment. The large variety of available sensor types with often incompatible protocols complicates the integration of sensors into observing systems. The standardized Web service interfaces and data encodings defined within OGC’s Sensor Web Enablement (SWE) framework make sensors available over the Web and hide the heterogeneous sensor protocols from applications. So far, the SWE framework does not describe how to integrate sensors on-the-fly with minimal human intervention. The driver software which enables access to sensors has to be implemented and the measured sensor data has to be manually mapped to the SWE models. In this article we introduce a Sensor Plug & Play infrastructure for the Sensor Web by combining (1) semantic matchmaking functionality, (2) a publish/subscribe mechanism underlying the SensorWeb, as well as (3) a model for the declarative description of sensor interfaces which serves as a generic driver mechanism. We implement and evaluate our approach by applying it to an oil spill scenario. The matchmaking is realized using existing ontologies and reasoning engines and provides a strong case for the semantic integration capabilities provided by Semantic Web research. PMID:22164033

  18. Plasma Modeling Enabled Technology Development Empowered by Fundamental Scattering Data

    NASA Astrophysics Data System (ADS)

    Kushner, Mark J.

    2016-05-01

    Technology development increasingly relies on modeling to speed the innovation cycle. This is particularly true for systems using low temperature plasmas (LTPs) and their role in enabling energy efficient processes with minimal environmental impact. In the innovation cycle, LTP modeling supports investigation of fundamental processes that seed the cycle, optimization of newly developed technologies, and prediction of performance of unbuilt systems for new applications. Although proof-of-principle modeling may be performed for idealized systems in simple gases, technology development must address physically complex systems that use complex gas mixtures that now may be multi-phase (e.g., in contact with liquids). The variety of fundamental electron and ion scattering, and radiation transport data (FSRD) required for this modeling increases as the innovation cycle progresses, while the accuracy required of that data depends on the intended outcome. In all cases, the fidelity, depth and impact of the modeling depends on the availability of FSRD. Modeling and technology development are, in fact, empowered by the availability and robustness of FSRD. In this talk, examples of the impact of and requirements for FSRD in the innovation cycle enabled by plasma modeling will be discussed using results from multidimensional and global models. Examples of fundamental studies and technology optimization will focus on microelectronics fabrication and on optically pumped lasers. Modeling of systems as yet unbuilt will address the interaction of atmospheric pressure plasmas with liquids. Work supported by DOE Office of Fusion Energy Science and the National Science Foundation.

  19. Enabling Large Focal Plane Arrays Through Mosaic Hybridization

    NASA Technical Reports Server (NTRS)

    Miller, Timothy M.; Jhabvala, Christine A.; Leong, Edward; Costen, Nick P.; Sharp, Elmer; Adachi, Tomoko; Benford, Dominic J.

    2012-01-01

    We have demonstrated advances in mosaic hybridization that will enable very large format far-infrared detectors. Specifically we have produced electrical detector models via mosaic hybridization yielding superconducting circuit patbs by hybridizing separately fabricated sub-units onto a single detector unit. The detector model was made on a 100mm diameter wafer while four model readout quadrant chips were made from a separate 100mm wafer. The individually fabric.ted parts were hybridized using a Suss FCI50 flip chip bonder to assemble the detector-readout stack. Once all of the hybridized readouts were in place, a single, large and thick silicon substrate was placed on the stack and attached with permanent epoxy to provide strength and a Coefficient of Thermal Expansion match to the silicon components underneath. Wirebond pads on the readout chips connect circuits to warm readout electronics; and were used to validate the successful superconducting electrical interconnection of the model mosaic-hybrid detector. This demonstration is directly scalable to 150 mm diameter wafers, enabling pixel areas over ten times the area currently available.

  20. Enabling Enrichment Analysis with the Human Disease Ontology

    PubMed Central

    LePendu, Paea; Musen, Mark A.; Shah, Nigam H.

    2012-01-01

    Advanced statistical methods used to analyze high-throughput data such as gene-expression assays result in long lists of “significant genes.” One way to gain insight into the significance of altered expression levels is to determine whether Gene Ontology (GO) terms associated with a particular biological process, molecular function, or cellular component are over- or under-represented in the set of genes deemed significant. This process, referred to as enrichment analysis, profiles a gene-set, and is widely used to make sense of the results of high-throughput experiments. Our goal is to develop and apply general enrichment analysis methods to profile other sets of interest, such as patient cohorts from the electronic medical record, using a variety of ontologies including SNOMED CT, MedDRA, RxNorm, and others. Although it is possible to perform enrichment analysis using ontologies other than the GO, a key pre-requisite is the availability of a background set of annotations to enable the enrichment calculation. In the case of the GO, this background set is provided by the Gene Ontology Annotations. In the current work, we describe: (i) a general method that uses hand-curated GO annotations as a starting point for creating background datasets for enrichment analysis using other ontologies; and (ii) a gene–disease background annotation set—that enables disease-based enrichment—to demonstrate feasibility of our method. PMID:21550421

  1. Molecular MRI enables early and sensitive detection of brain metastases.

    PubMed

    Serres, Sébastien; Soto, Manuel Sarmiento; Hamilton, Alastair; McAteer, Martina A; Carbonell, W Shawn; Robson, Matthew D; Ansorge, Olaf; Khrapitchev, Alexandre; Bristow, Claire; Balathasan, Lukxmi; Weissensteiner, Thomas; Anthony, Daniel C; Choudhury, Robin P; Muschel, Ruth J; Sibson, Nicola R

    2012-04-24

    Metastasis to the brain is a leading cause of cancer mortality. The current diagnostic method of gadolinium-enhanced MRI is sensitive only to larger tumors, when therapeutic options are limited. Earlier detection of brain metastases is critical for improved treatment. We have developed a targeted MRI contrast agent based on microparticles of iron oxide that enables imaging of endothelial vascular cell adhesion molecule-1 (VCAM-1). Our objectives here were to determine whether VCAM-1 is up-regulated on vessels associated with brain metastases, and if so, whether VCAM-1-targeted MRI enables early detection of these tumors. Early up-regulation of cerebrovascular VCAM-1 expression was evident on tumor-associated vessels in two separate murine models of brain metastasis. Metastases were detectable in vivo using VCAM-1-targeted MRI 5 d after induction (<1,000 cells). At clinical imaging resolutions, this finding is likely to translate to detection at tumor volumes two to three orders of magnitude smaller (0.3-3 × 10(5) cells) than those volumes detectable clinically (10(7)-10(8) cells). VCAM-1 expression detected by MRI increased significantly (P < 0.0001) with tumor progression, and tumors showed no gadolinium enhancement. Importantly, expression of VCAM-1 was shown in human brain tissue containing both established metastases and micrometastases. Translation of this approach to the clinic could increase therapeutic options and change clinical management in a substantial number of cancer patients. PMID:22451897

  2. Molecular MRI enables early and sensitive detection of brain metastases

    PubMed Central

    Serres, Sébastien; Soto, Manuel Sarmiento; Hamilton, Alastair; McAteer, Martina A.; Carbonell, W. Shawn; Robson, Matthew D.; Ansorge, Olaf; Khrapitchev, Alexandre; Bristow, Claire; Balathasan, Lukxmi; Weissensteiner, Thomas; Anthony, Daniel C.; Choudhury, Robin P.; Muschel, Ruth J.; Sibson, Nicola R.

    2012-01-01

    Metastasis to the brain is a leading cause of cancer mortality. The current diagnostic method of gadolinium-enhanced MRI is sensitive only to larger tumors, when therapeutic options are limited. Earlier detection of brain metastases is critical for improved treatment. We have developed a targeted MRI contrast agent based on microparticles of iron oxide that enables imaging of endothelial vascular cell adhesion molecule-1 (VCAM-1). Our objectives here were to determine whether VCAM-1 is up-regulated on vessels associated with brain metastases, and if so, whether VCAM-1–targeted MRI enables early detection of these tumors. Early up-regulation of cerebrovascular VCAM-1 expression was evident on tumor-associated vessels in two separate murine models of brain metastasis. Metastases were detectable in vivo using VCAM-1–targeted MRI 5 d after induction (<1,000 cells). At clinical imaging resolutions, this finding is likely to translate to detection at tumor volumes two to three orders of magnitude smaller (0.3–3 × 105 cells) than those volumes detectable clinically (107–108 cells). VCAM-1 expression detected by MRI increased significantly (P < 0.0001) with tumor progression, and tumors showed no gadolinium enhancement. Importantly, expression of VCAM-1 was shown in human brain tissue containing both established metastases and micrometastases. Translation of this approach to the clinic could increase therapeutic options and change clinical management in a substantial number of cancer patients. PMID:22451897

  3. Resource optimization scheme for multimedia-enabled wireless mesh networks.

    PubMed

    Ali, Amjad; Ahmed, Muhammad Ejaz; Piran, Md Jalil; Suh, Doug Young

    2014-01-01

    Wireless mesh networking is a promising technology that can support numerous multimedia applications. Multimedia applications have stringent quality of service (QoS) requirements, i.e., bandwidth, delay, jitter, and packet loss ratio. Enabling such QoS-demanding applications over wireless mesh networks (WMNs) require QoS provisioning routing protocols that lead to the network resource underutilization problem. Moreover, random topology deployment leads to have some unused network resources. Therefore, resource optimization is one of the most critical design issues in multi-hop, multi-radio WMNs enabled with multimedia applications. Resource optimization has been studied extensively in the literature for wireless Ad Hoc and sensor networks, but existing studies have not considered resource underutilization issues caused by QoS provisioning routing and random topology deployment. Finding a QoS-provisioned path in wireless mesh networks is an NP complete problem. In this paper, we propose a novel Integer Linear Programming (ILP) optimization model to reconstruct the optimal connected mesh backbone topology with a minimum number of links and relay nodes which satisfies the given end-to-end QoS demands for multimedia traffic and identification of extra resources, while maintaining redundancy. We further propose a polynomial time heuristic algorithm called Link and Node Removal Considering Residual Capacity and Traffic Demands (LNR-RCTD). Simulation studies prove that our heuristic algorithm provides near-optimal results and saves about 20% of resources from being wasted by QoS provisioning routing and random topology deployment. PMID:25111241

  4. Enabling Exploration Through the International Docking System Standard

    NASA Technical Reports Server (NTRS)

    Hatfield, Caris A.

    2011-01-01

    Human exploration missions beyond low earth orbit will likely require international cooperation in order to leverage limited resources. International standards can help enable cooperative missions by providing well understood, predefined interfaces allowing compatibility between unique spacecraft and systems. The International Space Station (ISS) partnership has developed a publically available International Docking System Standard (IDSS) that provides a solution to one of these key interfaces by defining a common docking interface. The docking interface provides a way for even dissimilar spacecraft to dock for exchange of crew and cargo, as well as enabling the assembly of large space systems. This paper provides an overview of the key attributes of the IDSS, an overview of the NASA Docking System (NDS), and the plans for updating the ISS with IDSS compatible interfaces. The NDS provides a state of the art, low impact docking system that will initially be made available to commercial crew and cargo providers. The ISS will be used to demonstrate the operational utility of the IDSS interface as a foundational technology for cooperative exploration.

  5. Radio frequency identification enabled wireless sensing for intelligent food logistics.

    PubMed

    Zou, Zhuo; Chen, Qiang; Chen, Qing; Uysal, Ismail; Zheng, Lirong

    2014-06-13

    Future technologies and applications for the Internet of Things (IoT) will evolve the process of the food supply chain and create added value of business. Radio frequency identifications (RFIDs) and wireless sensor networks (WSNs) have been considered as the key technological enablers. Intelligent tags, powered by autonomous energy, are attached on objects, networked by short-range wireless links, allowing the physical parameters such as temperatures and humidities as well as the location information to seamlessly integrate with the enterprise information system over the Internet. In this paper, challenges, considerations and design examples are reviewed from system, implementation and application perspectives, particularly with focus on intelligent packaging and logistics for the fresh food tracking and monitoring service. An IoT platform with a two-layer network architecture is introduced consisting of an asymmetric tag-reader link (RFID layer) and an ad-hoc link between readers (WSN layer), which are further connected to the Internet via cellular or Wi-Fi. Then, we provide insights into the enabling technology of RFID with sensing capabilities. Passive, semi-passive and active RFID solutions are discussed. In particular, we describe ultra-wideband radio RFID which has been considered as one of the most promising techniques for ultra-low-power and low-cost wireless sensing. Finally, an example is provided in the form of an application in fresh food tracking services and corresponding field testing results. PMID:24797140

  6. Nano-imaging enabled via self-assembly

    PubMed Central

    McLeod, Euan; Ozcan, Aydogan

    2014-01-01

    SUMMARY Imaging object details with length scales below approximately 200 nm has been historically difficult for conventional microscope objective lenses because of their inability to resolve features smaller than one-half the optical wavelength. Here we review some of the recent approaches to surpass this limit by harnessing self-assembly as a fabrication mechanism. Self-assembly can be used to form individual nano- and micro-lenses, as well as to form extended arrays of such lenses. These lenses have been shown to enable imaging with resolutions as small as 50 nm half-pitch using visible light, which is well below the Abbe diffraction limit. Furthermore, self-assembled nano-lenses can be used to boost contrast and signal levels from small nano-particles, enabling them to be detected relative to background noise. Finally, alternative nano-imaging applications of self-assembly are discussed, including three-dimensional imaging, enhanced coupling from light-emitting diodes, and the fabrication of contrast agents such as quantum dots and nanoparticles. PMID:25506387

  7. The anatomy of the grid : enabling scalable virtual organizations.

    SciTech Connect

    Foster, I.; Kesselman, C.; Tuecke, S.; Mathematics and Computer Science; Univ. of Chicago; Univ. of Southern California

    2001-10-01

    'Grid' computing has emerged as an important new field, distinguished from conventional distributed computing by its focus on large-scale resource sharing, innovative applications, and, in some cases, high performance orientation. In this article, the authors define this new field. First, they review the 'Grid problem,' which is defined as flexible, secure, coordinated resource sharing among dynamic collections of individuals, institutions, and resources -- what is referred to as virtual organizations. In such settings, unique authentication, authorization, resource access, resource discovery, and other challenges are encountered. It is this class of problem that is addressed by Grid technologies. Next, the authors present an extensible and open Grid architecture, in which protocols, services, application programming interfaces, and software development kits are categorized according to their roles in enabling resource sharing. The authors describe requirements that they believe any such mechanisms must satisfy and discuss the importance of defining a compact set of intergrid protocols to enable interoperability among different Grid systems. Finally, the authors discuss how Grid technologies relate to other contemporary technologies, including enterprise integration, application service provider, storage service provider, and peer-to-peer computing. They maintain that Grid concepts and technologies complement and have much to contribute to these other approaches.

  8. Wavelet-enabled progressive data Access and Storage Protocol (WASP)

    NASA Astrophysics Data System (ADS)

    Clyne, J.; Frank, L.; Lesperance, T.; Norton, A.

    2015-12-01

    Current practices for storing numerical simulation outputs hail from an era when the disparity between compute and I/O performance was not as great as it is today. The memory contents for every sample, computed at every grid point location, are simply saved at some prescribed temporal frequency. Though straightforward, this approach fails to take advantage of the coherency in neighboring grid points that invariably exists in numerical solutions to mathematical models. Exploiting such coherence is essential to digital multimedia; DVD-Video, digital cameras, streaming movies and audio are all possible today because of transform-based compression schemes that make substantial reductions in data possible by taking advantage of the strong correlation between adjacent samples in both space and time. Such methods can also be exploited to enable progressive data refinement in a manner akin to that used in ubiquitous digital mapping applications: views from far away are shown in coarsened detail to provide context, and can be progressively refined as the user zooms in on a localized region of interest. The NSF funded WASP project aims to provide a common, NetCDF-compatible software framework for supporting wavelet-based, multi-scale, progressive data, enabling interactive exploration of large data sets for the geoscience communities. This presentation will provide an overview of this work in progress to develop community cyber-infrastructure for the efficient analysis of very large data sets.

  9. A simple physical mechanism enables homeostasis in primitive cells.

    PubMed

    Engelhart, Aaron E; Adamala, Katarzyna P; Szostak, Jack W

    2016-05-01

    The emergence of homeostatic mechanisms that enable maintenance of an intracellular steady state during growth was critical to the advent of cellular life. Here, we show that concentration-dependent reversible binding of short oligonucleotides, of both specific and random sequence, can modulate ribozyme activity. In both cases, catalysis is inhibited at high concentrations, and dilution activates the ribozyme via inhibitor dissociation, thus maintaining near-constant ribozyme specific activity throughout protocell growth. To mimic the result of RNA synthesis within non-growing protocells, we co-encapsulated high concentrations of ribozyme and oligonucleotides within fatty acid vesicles, and ribozyme activity was inhibited. Following vesicle growth, the resulting internal dilution produced ribozyme activation. This simple physical system enables a primitive homeostatic behaviour: the maintenance of constant ribozyme activity per unit volume during protocell volume changes. We suggest that such systems, wherein short oligonucleotides reversibly inhibit functional RNAs, could have preceded sophisticated modern RNA regulatory mechanisms, such as those involving miRNAs. PMID:27102678

  10. Heliophysics Science Enabled By the Return to the Moon

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Spence, Harlan; Christensen, Andrew

    2006-01-01

    The lunar plasma and radiation environment and those physical processes that drive and control it, are intrinsically part of the science domain of the Heliophysics Division. Since the inception of the space program with Explorer 1 in 1958 and continuing to the present, scientists in the Heliophysics community have concentrated on characterizing and understanding the connected Sun-Earth system including the regions the Moon traverses and the interaction of plasmas and radiation with large and small bodies. This has been accomplished with in situ and remote sensing instrumentation and physics- and numerically-based models that provide understanding of the dominant mechanisms that define the environment in which the Moon is immersed. Therefore, the Heliospheric science community is uniquely and in many cases exclusively qualified to address interesting and compelling science problems that are enabled by the return to the Moon. This talk will provide an overview of representative, high-priority science investigations that are made possible by the return to the lunar surface. The content of this presentation is a result of an ongoing effort to inventory and articulate compelling science topics and how they are enabled by the return to the Moon.

  11. Synaptic Plasticity Enables Adaptive Self-Tuning Critical Networks

    PubMed Central

    Stepp, Nigel; Plenz, Dietmar; Srinivasa, Narayan

    2015-01-01

    During rest, the mammalian cortex displays spontaneous neural activity. Spiking of single neurons during rest has been described as irregular and asynchronous. In contrast, recent in vivo and in vitro population measures of spontaneous activity, using the LFP, EEG, MEG or fMRI suggest that the default state of the cortex is critical, manifested by spontaneous, scale-invariant, cascades of activity known as neuronal avalanches. Criticality keeps a network poised for optimal information processing, but this view seems to be difficult to reconcile with apparently irregular single neuron spiking. Here, we simulate a 10,000 neuron, deterministic, plastic network of spiking neurons. We show that a combination of short- and long-term synaptic plasticity enables these networks to exhibit criticality in the face of intrinsic, i.e. self-sustained, asynchronous spiking. Brief external perturbations lead to adaptive, long-term modification of intrinsic network connectivity through long-term excitatory plasticity, whereas long-term inhibitory plasticity enables rapid self-tuning of the network back to a critical state. The critical state is characterized by a branching parameter oscillating around unity, a critical exponent close to -3/2 and a long tail distribution of a self-similarity parameter between 0.5 and 1. PMID:25590427

  12. A simple physical mechanism enables homeostasis in primitive cells

    PubMed Central

    Engelhart, Aaron E.; Adamala, Katarzyna; Szostak, Jack W.

    2016-01-01

    The emergence of homeostatic mechanisms that enabled maintenance of an intracellular steady-state during growth was critical to the advent of cellular life. Here, we show that concentration-dependent reversible binding of short oligonucleotides, of both specific and random sequence, can modulate ribozyme activity. In both cases, catalysis is inhibited at high concentrations, and dilution activates the ribozyme via inhibitor dissociation, thus maintaining near-constant ribozyme specific activity throughout protocell growth. To mimic the result of RNA synthesis within non-growing protocells, we co-encapsulated high concentrations of ribozyme and oligonucleotides within fatty acid vesicles; ribozyme activity was inhibited. Following vesicle growth, the resulting internal dilution produced ribozyme activation. This simple physical system enables a primitive homeostatic behavior: the maintenance of constant ribozyme activity per unit volume during protocell volume changes. We suggest such systems, wherein short oligonucleotides reversibly inhibit functional RNAs, could have preceded sophisticated modern RNA regulatory mechanisms, such as those involving miRNAs. PMID:27102678

  13. Enabling Large Focal Plane Arrays Through Mosaic Hybridization

    NASA Technical Reports Server (NTRS)

    Miller, Timothy M.; Jhabvala, Christine A.; Leong, Edward; Costen, Nicholas P.; Sharp, Elmer; Adachi, Tomoko; Benford, Dominic J.

    2012-01-01

    We have demonstrated advances in mosaic hybridization that will enable very large format far-infrared detectors. Specifically we have produced electrical detector models via mosaic hybridization yielding superconducting circuit paths by hybridizing separately fabricated sub-units onto a single detector unit. The detector model was made on a 100mm diameter wafer while four model readout quadrant chips were made from a separate 100mm wafer. The individually fabricated parts were hybridized using a flip-chip bonder to assemble the detector-readout stack. Once all of the hybridized readouts were in place, a single, large and thick silicon substrate was placed on the stack and attached with permanent epoxy to provide strength and a Coefficient of Thermal Expansion match to the silicon components underneath. Wirebond pads on the readout chips connect circuits to warm readout electronics; and were used to validate the successful superconducting electrical interconnection of the model mosaic-hybrid detector. This demonstration is directly scalable to 150 mm diameter wafers, enabling pixel areas over ten times the area currently available.

  14. Tagging and Enriching Proteins Enables Cell-Specific Proteomics.

    PubMed

    Elliott, Thomas S; Bianco, Ambra; Townsley, Fiona M; Fried, Stephen D; Chin, Jason W

    2016-07-21

    Cell-specific proteomics in multicellular systems and whole animals is a promising approach to understand the differentiated functions of cells and tissues. Here, we extend our stochastic orthogonal recoding of translation (SORT) approach for the co-translational tagging of proteomes with a cyclopropene-containing amino acid in response to diverse codons in genetically targeted cells, and create a tetrazine-biotin probe containing a cleavable linker that offers a way to enrich and identify tagged proteins. We demonstrate that SORT with enrichment, SORT-E, efficiently recovers and enriches SORT tagged proteins and enables specific identification of enriched proteins via mass spectrometry, including low-abundance proteins. We show that tagging at distinct codons enriches overlapping, but distinct sets of proteins, suggesting that tagging at more than one codon enhances proteome coverage. Using SORT-E, we accomplish cell-specific proteomics in the fly. These results suggest that SORT-E will enable the definition of cell-specific proteomes in animals during development, disease progression, and learning and memory. PMID:27447048

  15. Resource Optimization Scheme for Multimedia-Enabled Wireless Mesh Networks

    PubMed Central

    Ali, Amjad; Ahmed, Muhammad Ejaz; Piran, Md. Jalil; Suh, Doug Young

    2014-01-01

    Wireless mesh networking is a promising technology that can support numerous multimedia applications. Multimedia applications have stringent quality of service (QoS) requirements, i.e., bandwidth, delay, jitter, and packet loss ratio. Enabling such QoS-demanding applications over wireless mesh networks (WMNs) require QoS provisioning routing protocols that lead to the network resource underutilization problem. Moreover, random topology deployment leads to have some unused network resources. Therefore, resource optimization is one of the most critical design issues in multi-hop, multi-radio WMNs enabled with multimedia applications. Resource optimization has been studied extensively in the literature for wireless Ad Hoc and sensor networks, but existing studies have not considered resource underutilization issues caused by QoS provisioning routing and random topology deployment. Finding a QoS-provisioned path in wireless mesh networks is an NP complete problem. In this paper, we propose a novel Integer Linear Programming (ILP) optimization model to reconstruct the optimal connected mesh backbone topology with a minimum number of links and relay nodes which satisfies the given end-to-end QoS demands for multimedia traffic and identification of extra resources, while maintaining redundancy. We further propose a polynomial time heuristic algorithm called Link and Node Removal Considering Residual Capacity and Traffic Demands (LNR-RCTD). Simulation studies prove that our heuristic algorithm provides near-optimal results and saves about 20% of resources from being wasted by QoS provisioning routing and random topology deployment. PMID:25111241

  16. Nano-enabled tribological thin film coatings: global patent scenario.

    PubMed

    Sivudu, Kurva S; Mahajan, Yashwant R; Joshi, Shrikant V

    2014-01-01

    The aim of this paper is to present current status and future prospects of nano-enabled tribological thin film coatings based on worldwide patent landscape analysis. The study also presents an overview of technological trends by carrying out state-of-the-art literature analysis, including survey of corporate websites. Nanostructured tribological coatings encompass a wide spectrum of nanoscale microstructures, including nanocrystalline, nanolayered, nano-multilayered, nanocomposite, nanogradient structures or their unique combinations, which are composed of single or multi-component phases. The distinct microstructural features of the coatings impart outstanding tribological properties combined with multifunctional attributes to the coated components. Their unique combination of remarkable properties make them ideal candidates for a wide range of applications in diverse fields such as cutting and metalworking tools, biomedical devices, automotive engine components, wear parts, hard disc drives etc. The patent landscape analysis has revealed that nano-enabled tribological thin film coatings have significant potential for commercial applications in view of the lion's share of corporate industry in patenting activity. The largest patent portfolio is held by Japan followed by USA, Germany, Sweden and China. The prominent players involved in this field are Mitsubishi Materials Corp., Sandvik Aktiebolag, Hitachi Ltd., Sumitomo Electric Industries Ltd., OC Oerlikon Corp., and so on. The outstanding potential of nanostructured thin film tribological coatings is yet to be fully unravelled and, therefore, immense opportunities are available in future for microstructurally engineered novel coatings to enhance their performance and functionality by many folds. PMID:24962377

  17. Enabling Complex Queries to Drug Information Sources through Functional Composition

    PubMed Central

    Peters, Lee; Mortensen, Jonathan; Nguyen, Thang; Bodenreider, Olivier

    2015-01-01

    Our objective was to enable an end-user to create complex queries to drug information sources through functional composition, by creating sequences of functions from application program interfaces (API) to drug terminologies. The development of a functional composition model seeks to link functions from two distinct APIs. An ontology was developed using Protégé to model the functions of the RxNorm and NDF-RT APIs by describing the semantics of their input and output. A set of rules were developed to define the interoperable conditions for functional composition. The operational definition of interoperability between function pairs is established by executing the rules on the ontology. We illustrate that the functional composition model supports common use cases, including checking interactions for RxNorm drugs and deploying allergy lists defined in reference to drug properties in NDF-RT. This model supports the RxMix application (http://mor.nlm.nih.gov/RxMix/), an application we developed for enabling complex queries to the RxNorm and NDF-RT APIs. PMID:23920645

  18. Post-coupling strategy enables true receptor-targeted nanoparticles

    PubMed Central

    Chen, Jianmeizi; Jorgensen, Michael R; Thanou, Maya; Miller, Andrew D

    2011-01-01

    A key goal of our research is the targeted delivery of functional biopharmaceutical agents of interest, such as small interfering RNA (siRNA), to selected cells by means of receptor-mediated nanoparticle technologies. Recently, we described how pH-triggered, PEGylated siRNA-nanoparticles (pH triggered siRNA-ABC nanoparticles) were able to mediate the passive targeting of siRNA to liver cells in vivo. In addition, PEGylated siRNA nanoparticles enabled for long-term circulation (LTC siRNA-ABC nanoparticles, LEsiRNA nanoparticles) were shown to do the same to tumour cells in vivo. Further gains in the efficiency of siRNA delivery are expected to require active targeting with nanoparticles targeted for delivery and cellular uptake by means of attached biological ligands. Here we report on the development of a new synthetic chemistry and a bioconjugation methodology that allows for the controlled formulation of PEGylated nanoparticles which surface-present integrin-targeting peptides unambiguously and so enable integrin receptor-mediated cellular uptake. Furthermore, we present delivery data that provide a clear preliminary demonstration of physical principles that we propose should underpin successful, bonefide receptor-mediated targeted delivery of therapeutic and/or imaging agents to cells. PMID:22091319

  19. Gaze-enabled Egocentric Video Summarization via Constrained Submodular Maximization

    PubMed Central

    Xut, Jia; Mukherjee, Lopamudra; Li, Yin; Warner, Jamieson; Rehg, James M.; Singht, Vikas

    2016-01-01

    With the proliferation of wearable cameras, the number of videos of users documenting their personal lives using such devices is rapidly increasing. Since such videos may span hours, there is an important need for mechanisms that represent the information content in a compact form (i.e., shorter videos which are more easily browsable/sharable). Motivated by these applications, this paper focuses on the problem of egocentric video summarization. Such videos are usually continuous with significant camera shake and other quality issues. Because of these reasons, there is growing consensus that direct application of standard video summarization tools to such data yields unsatisfactory performance. In this paper, we demonstrate that using gaze tracking information (such as fixation and saccade) significantly helps the summarization task. It allows meaningful comparison of different image frames and enables deriving personalized summaries (gaze provides a sense of the camera wearer's intent). We formulate a summarization model which captures common-sense properties of a good summary, and show that it can be solved as a submodular function maximization with partition matroid constraints, opening the door to a rich body of work from combinatorial optimization. We evaluate our approach on a new gaze-enabled egocentric video dataset (over 15 hours), which will be a valuable standalone resource. PMID:26973428

  20. Oxytonergic circuitry sustains and enables creative cognition in humans.

    PubMed

    De Dreu, Carsten K W; Baas, Matthijs; Roskes, Marieke; Sligte, Daniel J; Ebstein, Richard P; Chew, Soo Hong; Tong, Terry; Jiang, Yushi; Mayseless, Naama; Shamay-Tsoory, Simone G

    2014-08-01

    Creativity enables humans to adapt flexibly to changing circumstances, to manage complex social relations and to survive and prosper through social, technological and medical innovations. In humans, chronic, trait-based as well as temporary, state-based approach orientation has been linked to increased capacity for divergent rather than convergent thinking, to more global and holistic processing styles and to more original ideation and creative problem solving. Here, we link creative cognition to oxytocin, a hypothalamic neuropeptide known to up-regulate approach orientation in both animals and humans. Study 1 (N = 492) showed that plasma oxytocin predicts novelty-seeking temperament. Study 2 (N = 110) revealed that genotype differences in a polymorphism in the oxytocin receptor gene rs1042778 predicted creative ideation, with GG/GT-carriers being more original than TT-carriers. Using double-blind placebo-controlled between-subjects designs, Studies 3-6 (N = 191) finally showed that intranasal oxytocin (vs matching placebo) reduced analytical reasoning, and increased holistic processing, divergent thinking and creative performance. We conclude that the oxytonergic circuitry sustains and enables the day-to-day creativity humans need for survival and prosperity and discuss implications. PMID:23863476

  1. BIM: Enabling Sustainability and Asset Management through Knowledge Management

    PubMed Central

    2013-01-01

    Building Information Modeling (BIM) is the use of virtual building information models to develop building design solutions and design documentation and to analyse construction processes. Recent advances in IT have enabled advanced knowledge management, which in turn facilitates sustainability and improves asset management in the civil construction industry. There are several important qualifiers and some disadvantages of the current suite of technologies. This paper outlines the benefits, enablers, and barriers associated with BIM and makes suggestions about how these issues may be addressed. The paper highlights the advantages of BIM, particularly the increased utility and speed, enhanced fault finding in all construction phases, and enhanced collaborations and visualisation of data. The paper additionally identifies a range of issues concerning the implementation of BIM as follows: IP, liability, risks, and contracts and the authenticity of users. Implementing BIM requires investment in new technology, skills training, and development of new ways of collaboration and Trade Practices concerns. However, when these challenges are overcome, BIM as a new information technology promises a new level of collaborative engineering knowledge management, designed to facilitate sustainability and asset management issues in design, construction, asset management practices, and eventually decommissioning for the civil engineering industry. PMID:24324392

  2. A Security Architecture for Grid-enabling OGC Web Services

    NASA Astrophysics Data System (ADS)

    Angelini, Valerio; Petronzio, Luca

    2010-05-01

    In the proposed presentation we describe an architectural solution for enabling a secure access to Grids and possibly other large scale on-demand processing infrastructures through OGC (Open Geospatial Consortium) Web Services (OWS). This work has been carried out in the context of the security thread of the G-OWS Working Group. G-OWS (gLite enablement of OGC Web Services) is an international open initiative started in 2008 by the European CYCLOPS , GENESI-DR, and DORII Project Consortia in order to collect/coordinate experiences in the enablement of OWS's on top of the gLite Grid middleware. G-OWS investigates the problem of the development of Spatial Data and Information Infrastructures (SDI and SII) based on the Grid/Cloud capacity in order to enable Earth Science applications and tools. Concerning security issues, the integration of OWS compliant infrastructures and gLite Grids needs to address relevant challenges, due to their respective design principles. In fact OWS's are part of a Web based architecture that demands security aspects to other specifications, whereas the gLite middleware implements the Grid paradigm with a strong security model (the gLite Grid Security Infrastructure: GSI). In our work we propose a Security Architectural Framework allowing the seamless use of Grid-enabled OGC Web Services through the federation of existing security systems (mostly web based) with the gLite GSI. This is made possible mediating between different security realms, whose mutual trust is established in advance during the deployment of the system itself. Our architecture is composed of three different security tiers: the user's security system, a specific G-OWS security system, and the gLite Grid Security Infrastructure. Applying the separation-of-concerns principle, each of these tiers is responsible for controlling the access to a well-defined resource set, respectively: the user's organization resources, the geospatial resources and services, and the Grid

  3. Exploration of the Moon to Enable Lunar and Planetary Science

    NASA Astrophysics Data System (ADS)

    Neal, C. R.

    2014-12-01

    The Moon represents an enabling Solar System exploration asset because of its proximity, resources, and size. Its location has facilitated robotic missions from 5 different space agencies this century. The proximity of the Moon has stimulated commercial space activity, which is critical for sustainable space exploration. Since 2000, a new view of the Moon is coming into focus, which is very different from that of the 20th century. The documented presence of volatiles on the lunar surface, coupled with mature ilmenite-rich regolith locations, represent known resources that could be used for life support on the lunar surface for extended human stays, as well as fuel for robotic and human exploration deeper into the Solar System. The Moon also represents a natural laboratory to explore the terrestrial planets and Solar System processes. For example, it is an end-member in terrestrial planetary body differentiation. Ever since the return of the first lunar samples by Apollo 11, the magma ocean concept was developed and has been applied to both Earth and Mars. Because of the small size of the Moon, planetary differentiation was halted at an early (primary?) stage. However, we still know very little about the lunar interior, despite the Apollo Lunar Surface Experiments, and to understand the structure of the Moon will require establishing a global lunar geophysical network, something Apollo did not achieve. Also, constraining the impact chronology of the Moon allows the surfaces of other terrestrial planets to be dated and the cratering history of the inner Solar System to be constrained. The Moon also represents a natural laboratory to study space weathering of airless bodies. It is apparent, then, that human and robotic missions to the Moon will enable both science and exploration. For example, the next step in resource exploration is prospecting on the surface those deposits identified from orbit to understand the yield that can be expected. Such prospecting will also

  4. Endocrine Proxies Can Simplify Endocrine Complexity to Enable Evolutionary Prediction.

    PubMed

    Davidowitz, Goggy

    2016-08-01

    It is well understood that much of evolutionary change is mediated through the endocrine system with growing interest to identify how this occurs. This however, causes a conflict of sorts. To understand endocrine mechanism, a focus on detail is required. In contrast, to understand evolutionary change, reduction to a few key traits is essential. Endocrine proxies, measurable traits that accurately reflect specific hormonal titers or the timing of specific hormonal events, can reduce endocrine complexity to a few traits that enable predictions of how the endocrine system regulates evolutionary change. In the tobacco hornworm (Manduca sexta, Sphingidae), three endocrine proxies, measured on 5470 individuals, were used to test explicit predictions of how the endocrine system regulates the response to 10 generations of simultaneous selection on body size and development time. The critical weight (CW) reflects the variation in the cessation of juvenile hormone (JH) secretion in the last larval instar, the interval to cessation of growth (ICG) reflects the variation in prothoracicotropic hormone and 20-hydroxyecdysone (20E). Growth rate (GR) reflects the nutrient signaling pathways, primarily the insulin and TOR This is a standard identity similar to DNA signaling pathways. These three endocrine proxies explained 99% and 93% of the variation in body size and development time, respectively, following the 10 generations of simultaneous selection. When the two focal traits, body size and development time, were selected in the same direction, both to either increase or both to decrease, the response to selection was determined primarily by the CW and the ICG, proxies for the developmental hormones JH and 20E, and constrained by GR. In contrast, when the two focal traits were selected in opposite directions, one to increase and the other to decrease, the response to selection was determined primarily by the insulin and TOR signaling pathways as measured by their proxy, GR, and

  5. Enabling collaboration across communities through blogs and mashups

    NASA Astrophysics Data System (ADS)

    Blower, Jon; Frey, Jeremy; Haines, Keith; Gemmell, Alastair; Milsted, Andrew

    2010-05-01

    The use of Web technologies to visualize and explore geoscientific data is now well-established (e.g. [1]). Many systems are now available, based upon standard approaches, to provide interactive online capabilities for publishing data, hiding much of the complexities of the underlying data and infrastructure. Recently, progress has been made in moving beyond simple visualization to enabling intercomparison of diverse datasets (e.g. [2]), supporting scientific work in model validation, data assimilation and other areas. These systems typically lack an important feature, namely the ability of the user to contribute to the information on these sites, rather than simply acting as a consumer. We present early results from two recent projects that apply Web 2.0 and social networking techniques to enable collaborative geoscientific work on the Web in which user-contributed material is just as important as that provided by the central data providers. "BlogMyData" combines an interactive online visualization system (Godiva2) with a sophisticated blogging engine, which was originally designed for laboratory chemists. Scientists use the blog to make comments on the visualizations they see, for example to hold discussions on particular features of interest, such as a potential problem with a numerical forecast model. The blog entries are geospatially tagged, meaning that comments can be discovered by location and time, enabling scientists to find new collaborators in similar areas of interest. A use case in climate reanalysis will be discussed. "MashMyData" builds on previous work in online intercomparison systems by allowing users to upload their own data for automated intercomparison with other datasets. This brings complex datasets within the reach of new communities; for example, we shall demonstrate a particular use case in which an ocean geochemist employs the system to compare her own temperature proxy data (derived from coccolithophore studies) with physical

  6. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles

    PubMed Central

    Carvalho-de-Souza, João L.; Treger, Jeremy S.; Dang, Bobo; Kent, Stephen B. H.; Pepperberg, David R.; Bezanilla, Francisco

    2015-01-01

    Summary Unmodified neurons can be directly stimulated with light to produce action potentials, but such techniques have lacked localization of the delivered light energy. Here we show that gold nanoparticles can be conjugated to high-avidity ligands for a variety of cellular targets. Once bound to a neuron, these particles transduce millisecond pulses of light into heat which changes membrane capacitance, depolarizing the cell and eliciting action potentials. Compared to non-functionalized nanoparticles, ligand-conjugated nanoparticles highly resist convective washout, and enable photothermal stimulation with lower delivered energy and resulting temperature increase. Ligands targeting three different membrane proteins were tested; all showed similar activity and washout resistance. This suggests that many types of ligands can be bound to nanoparticles, preserving ligand and nanoparticle function, and that many different cell phenotypes can be targeted by appropriate choice of ligand. The findings have applications as an alternative to optogenetics, and potentially for therapies involving neuronal photostimulation. PMID:25772189

  7. An Enabling Technology for New Planning and Scheduling Paradigms

    NASA Technical Reports Server (NTRS)

    Jaap, John; Davis, Elizabeth

    2004-01-01

    The Night Projects Directorate at NASA's Marshall Space Flight Center is developing a new planning and scheduling environment and a new scheduling algorithm to enable a paradigm shift in planning and scheduling concepts. Over the past 33 years Marshall has developed and evolved a paradigm for generating payload timelines for Skylab, Spacelab, various other Shuttle payloads, and the International Space Station. The current paradigm starts by collecting the requirements, called ?ask models," from the scientists and technologists for the tasks that are to be scheduled. Because of shortcomings in the current modeling schema, some requirements are entered as notes. Next, a cadre with knowledge of vehicle and hardware modifies these models to encompass and be compatible with the hardware model; again, notes are added when the modeling schema does not provide a better way to represent the requirements. Finally, the models are modified to be compatible with the scheduling engine. Then the models are submitted to the scheduling engine for automatic scheduling or, when requirements are expressed in notes, the timeline is built manually. A future paradigm would provide a scheduling engine that accepts separate science models and hardware models. The modeling schema would have the capability to represent all the requirements without resorting to notes. Furthermore, the scheduling engine would not require that the models be modified to account for the capabilities (limitations) of the scheduling engine. The enabling technology under development at Marshall has three major components: (1) A new modeling schema allows expressing all the requirements of the tasks without resorting to notes or awkward contrivances. The chosen modeling schema is both maximally expressive and easy to use. It utilizes graphical methods to show hierarchies of task constraints and networks of temporal relationships. (2) A new scheduling algorithm automatically schedules the models without the

  8. Tablet PC Enabled Body Sensor System for Rural Telehealth Applications

    PubMed Central

    Panicker, Nitha V.; Kumar, A. Sukesh

    2016-01-01

    Telehealth systems benefit from the rapid growth of mobile communication technology for measuring physiological signals. Development and validation of a tablet PC enabled noninvasive body sensor system for rural telehealth application are discussed in this paper. This system includes real time continuous collection of physiological parameters (blood pressure, pulse rate, and temperature) and fall detection of a patient with the help of a body sensor unit and wireless transmission of the acquired information to a tablet PC handled by the medical staff in a Primary Health Center (PHC). Abnormal conditions are automatically identified and alert messages are given to the medical officer in real time. Clinical validation is performed in a real environment and found to be successful. Bland-Altman analysis is carried out to validate the wrist blood pressure sensor used. The system works well for all measurements. PMID:26884757

  9. Graphene-enabled electrically switchable radar-absorbing surfaces.

    PubMed

    Balci, Osman; Polat, Emre O; Kakenov, Nurbek; Kocabas, Coskun

    2015-01-01

    Radar-absorbing materials are used in stealth technologies for concealment of an object from radar detection. Resistive and/or magnetic composite materials are used to reduce the backscattered microwave signals. Inability to control electrical properties of these materials, however, hinders the realization of active camouflage systems. Here, using large-area graphene electrodes, we demonstrate active surfaces that enable electrical control of reflection, transmission and absorption of microwaves. Instead of tuning bulk material property, our strategy relies on electrostatic tuning of the charge density on an atomically thin electrode, which operates as a tunable metal in microwave frequencies. Notably, we report large-area adaptive radar-absorbing surfaces with tunable reflection suppression ratio up to 50 dB with operation voltages <5 V. Using the developed surfaces, we demonstrate various device architectures including pixelated and curved surfaces. Our results provide a significant step in realization of active camouflage systems in microwave frequencies. PMID:25791719

  10. Using EPICS enabled industrial hardware for upgrading control systems

    SciTech Connect

    Bjorkland, Eric A; Veeramani, Arun; Debelle, Thierry

    2009-01-01

    Los Alamos National Laboratory has been working with National Instruments (NI) and Cosy lab to implement EPICS Input Output Controller (IOC) software that runs directly on NI CompactRIO Real Time Controller (RTC) and communicates with NI LabVIEW through a shared memory interface. In this presentation, we will discuss our current progress in upgrading the control system at the Los Alamos Neutron Science Centre (LANSCE) and what we have learned about integrating CompactRIO into large experimental physics facilities. We will also discuss the implications of using Channel Access Server for LabVIEW which will enable more commercial hardware platforms to be used in upgrading existing facilities or in commissioning new ones.

  11. Integration services to enable regional shared electronic health records.

    PubMed

    Oliveira, Ilídio C; Cunha, João P S

    2011-01-01

    eHealth is expected to integrate a comprehensive set of patient data sources into a coherent continuum, but implementations vary and Portugal is still lacking on electronic patient data sharing. In this work, we present a clinical information hub to aggregate multi-institution patient data and bridge the information silos. This integration platform enables a coherent object model, services-oriented applications development and a trust framework. It has been instantiated in the Rede Telemática de Saúde (www.RTSaude.org) to support a regional Electronic Health Record approach, fed dynamically from production systems at eight partner institutions, providing access to more than 11,000,000 care episodes, relating to over 350,000 citizens. The network has obtained the necessary clearance from the Portuguese data protection agency. PMID:21893763

  12. Energy-efficient hybrid coded modulations enabling terabit optical ethernet

    NASA Astrophysics Data System (ADS)

    Djordjevic, Ivan B.

    2012-01-01

    Future Internet technologies will be affected not only by limited bandwidth of information infrastructure, but also by its energy consumption. In order to solve both problems simultaneously, in this invited paper, we describe several energy-efficient (EE) hybrid coded-modulation (CM) schemes enabling Terabit optical Ethernet: EE 4D CM, EE generalized- OFDM, and EE spatial-domain-based CM. A common property of these is employment of EE modulations, various degrees of freedom and rate-adaptive coding. These EE schemes are called hybrid as all available degrees of freedom are used for transmission over optical fibers including amplitude, phase, polarization and OAM. Since the channel capacity is a linear function in number of dimensions, by increasing the number of basis functions, we can dramatically improve overall capacity. The EE problem is solved by properly designing multi-dimensional signal constellations such that transinformation is maximized, while taking the energy constraint into account.

  13. Enabling Nanotechnology with Focused Ion Beams from Laser Cooled Atoms

    NASA Astrophysics Data System (ADS)

    Steele, A. V.; Knuffman, B.; Orloff, J.; Maazouz, M.; McClelland, J. J.

    2011-05-01

    The Magneto-Optical Trap Ion Source (MOTIS) being developed at NIST has the potential to enable numerous advances in nanoscale science. In a MOTIS, atoms are captured into a MOT, photoionized, and accelerated to an energy of a few hundred eV to a few tens of kV. A beam formed in this way can be brought to a tight focus, competitive with the commercial focused ion beam machines deployed widely today. Additionally, the unique characteristics of this source, coupled with the user's choice of ion from the long and growing list of laser-coolable atomic species suggest that the MOTIS has the potential to advance the state of the art in applications such as imaging, nanofabrication, secondary ion mass spectrometry, and others. I will present high-resolution images from our lithium and chromium MOTIS-based focused ion beams and discuss applications which we will pursue with these new tools.

  14. TCIA: An information resource to enable open science.

    PubMed

    Prior, Fred W; Clark, Ken; Commean, Paul; Freymann, John; Jaffe, Carl; Kirby, Justin; Moore, Stephen; Smith, Kirk; Tarbox, Lawrence; Vendt, Bruce; Marquez, Guillermo

    2013-01-01

    Reusable, publicly available data is a pillar of open science. The Cancer Imaging Archive (TCIA) is an open image archive service supporting cancer research. TCIA collects, de-identifies, curates and manages rich collections of oncology image data. Image data sets have been contributed by 28 institutions and additional image collections are underway. Since June of 2011, more than 2,000 users have registered to search and access data from this freely available resource. TCIA encourages and supports cancer-related open science communities by hosting and managing the image archive, providing project wiki space and searchable metadata repositories. The success of TCIA is measured by the number of active research projects it enables (>40) and the number of scientific publications and presentations that are produced using data from TCIA collections (39). PMID:24109929

  15. Tablet PC Enabled Body Sensor System for Rural Telehealth Applications.

    PubMed

    Panicker, Nitha V; Kumar, A Sukesh

    2016-01-01

    Telehealth systems benefit from the rapid growth of mobile communication technology for measuring physiological signals. Development and validation of a tablet PC enabled noninvasive body sensor system for rural telehealth application are discussed in this paper. This system includes real time continuous collection of physiological parameters (blood pressure, pulse rate, and temperature) and fall detection of a patient with the help of a body sensor unit and wireless transmission of the acquired information to a tablet PC handled by the medical staff in a Primary Health Center (PHC). Abnormal conditions are automatically identified and alert messages are given to the medical officer in real time. Clinical validation is performed in a real environment and found to be successful. Bland-Altman analysis is carried out to validate the wrist blood pressure sensor used. The system works well for all measurements. PMID:26884757

  16. Enabling technologies and green processes in cyclodextrin chemistry.

    PubMed

    Cravotto, Giancarlo; Caporaso, Marina; Jicsinszky, Laszlo; Martina, Katia

    2016-01-01

    The design of efficient synthetic green strategies for the selective modification of cyclodextrins (CDs) is still a challenging task. Outstanding results have been achieved in recent years by means of so-called enabling technologies, such as microwaves, ultrasound and ball mills, that have become irreplaceable tools in the synthesis of CD derivatives. Several examples of sonochemical selective modification of native α-, β- and γ-CDs have been reported including heterogeneous phase Pd- and Cu-catalysed hydrogenations and couplings. Microwave irradiation has emerged as the technique of choice for the production of highly substituted CD derivatives, CD grafted materials and polymers. Mechanochemical methods have successfully furnished greener, solvent-free syntheses and efficient complexation, while flow microreactors may well improve the repeatability and optimization of critical synthetic protocols. PMID:26977187

  17. High-productivity immersion scanner enabling 1xnm hp manufacturing

    NASA Astrophysics Data System (ADS)

    Shirata, Yosuke; Shibazaki, Yuichi; Kosugi, Junichi; Kikuchi, Takahisa; Ohmura, Yasuhiro

    2013-04-01

    NSR-S622D, Nikon's new ArF immersion scanner, provides the best and practicable solutions to meet the escalating requirement from device manufactures to accommodate the further miniaturization of device pattern. NSR-S622D has various additional functions compared to the previous model such as the newly developed illumination system, new projection lens, new AF system new wafer table in addition to the matured Streamlign platform. These new features will derive the outstanding performance of NSR, enabling highly controlled CD uniformity, focus accuracy and overlay accuracy. NSR-S622D will provide the adequate capabilities that are demanded from a lithography tool for production of 1x nm hp node and beyond.

  18. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles.

    PubMed

    Carvalho-de-Souza, João L; Treger, Jeremy S; Dang, Bobo; Kent, Stephen B H; Pepperberg, David R; Bezanilla, Francisco

    2015-04-01

    Unmodified neurons can be directly stimulated with light to produce action potentials, but such techniques have lacked localization of the delivered light energy. Here we show that gold nanoparticles can be conjugated to high-avidity ligands for a variety of cellular targets. Once bound to a neuron, these particles transduce millisecond pulses of light into heat, which changes membrane capacitance, depolarizing the cell and eliciting action potentials. Compared to non-functionalized nanoparticles, ligand-conjugated nanoparticles highly resist convective washout and enable photothermal stimulation with lower delivered energy and resulting temperature increase. Ligands targeting three different membrane proteins were tested; all showed similar activity and washout resistance. This suggests that many types of ligands can be bound to nanoparticles, preserving ligand and nanoparticle function, and that many different cell phenotypes can be targeted by appropriate choice of ligand. The findings have applications as an alternative to optogenetics and potentially for therapies involving neuronal photostimulation. PMID:25772189

  19. Enabling, empowering, inspiring: research and mentorship through the years*

    PubMed Central

    Fuller, Sherrilynne S.

    2000-01-01

    The interrelationship between research and mentorship in an association such as the Medical Library Association (MLA) is revealed through the contributions of individuals and significant association activities in support of research. Research is vital to the well-being and ultimate survival of health sciences librarianship and is not an ivory tower academic activity. Mentorship plays a critical role in setting a standard and model for those individuals who want to be involved in research and, ultimately, for the preparation of the next generation of health sciences librarians. Research and mentorship are discussed in the context of personal experiences, scholarship, and problem solving in a practice environment. Through research and mentorship, we are enabled to enhance our services and programs, empowered to look beyond our own operations for information puzzles to be solved, and inspired to serve society by improving health. PMID:10658958

  20. Nanomaterial-Enabled Dry Electrodes for Electrophysiological Sensing: A Review

    NASA Astrophysics Data System (ADS)

    Yao, Shanshan; Zhu, Yong

    2016-04-01

    Long-term, continuous, and unsupervised tracking of physiological data is becoming increasingly attractive for health/wellness monitoring and ailment treatment. Nanomaterials have recently attracted extensive attention as building blocks for flexible/stretchable conductors and are thus promising candidates for electrophysiological electrodes. Here we provide a review on nanomaterial-enabled dry electrodes for electrophysiological sensing, focusing on electrocardiography (ECG). The dry electrodes can be classified into contact surface electrodes, contact-penetrating electrodes, and noncontact capacitive electrodes. Different types of electrodes including their corresponding equivalent electrode-skin interface models and the sources of the noise are first introduced, followed by a review on recent developments of dry ECG electrodes based on various nanomaterials, including metallic nanowires, metallic nanoparticles, carbon nanotubes, and graphene. Their fabrication processes and performances in terms of electrode-skin impedance, signal-to-noise ratio, resistance to motion artifacts, skin compatibility, and long-term stability are discussed.